Design competition - 5th month

Full-duplex modem
New radio services
The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8k x 8 sizes, and can be extended to program other devices such as 16k x 8 EPROMs, Bipolar PROMs, single chip microprocessors with external modules. Personality cards and hardware changes are not required as the machine configures itself for the different devices. The EP4000 with 4k x 8 static RAM is still available with EPROM programming and emulation capacity up to 4k x 8 sizes.

- EP8000 8k x 8 Emulator Programmer - £695 + £12 delivery
- BSC4 Buffered emulation cable - £49
- SA27128 Programming adaptor - £69
- SA25128 Programming adaptor - £69
- EP4000 4k x 8 Emulator Programmer - £545 + £12 delivery
- BSC4 Buffered emulation cable - £39
- BP4 (TEXAS) Bipolar PROM Module - £190
- UV141 EPROM Eraser with timer - £78
- GP100A 80 column printer - £225
- GR1 Centronics interface - £65

VAT should be added to all prices

DISTRIBUTORS REQUIRED

EXPORT ENQUIRIES WELCOME

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

WWW.AMERICANAROHIStory.COM
Rather than try to show how electronics could help disabled people this month's cover by Geoff Harrold depicts the things you might choose to surround yourself with in entering our design competition.

NEXT MONTH
Compact electronic typewriter can be equipped with an RS232 interface to enable it to be used as a printer for computer output at a total cost for both typewriter and interface of just over half that of the lowest price commercial alternatives.

Loudspeaker measurement techniques designed to avoid the vagaries of personal prejudice and room acoustics normally require a calibrated microphone. But using the principle of reciprocity Peter Dobbins shows how three transducers can be calibrated with no specialized equipment.

Simple ultrasonic transmitters and receivers with appropriate control by 6502 or Z80 can give a robot distance-measuring capability, even in a noisy environment.

Current issue price 80p, back issues (if available) £1.80, order and payments toEEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01-661 8669.

Editorial & Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Telephones: Editorial 01-661 3614. Advertising 01-661 3120. See leader page.

Telex: 80284 BISPRS G.

Subscription rates: 1 year: £14 UK and £17 outside UK.

Student rates: 1 year £9.35 UK and £11.70 outside UK.

Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3249.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 0444 459188. Please notify a change of address.

USA: $44 surface mail, $52 air mail. Business Press International, Subscriptions Office, 205 E. 42nd Street, New York, NY 10017.

USA mailing agents: Expeditors of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class postage paid at New York.

© Business Press International Ltd 1983 ISSN 0043 6062.
And then buy from us! Electronic Brokers, a leading supplier of Electronic Test and Measuring Equipment, has been established for over sixteen years. Our Distribution Division handles the major names in the industry: Philips, Fluke, Hameg and I.C.E. These products are stocked in depth at our premises in Central London, ready for
prompt despatch to all parts of the Country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring. Visitors are welcome to our showrooms where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service.
RF LINEAR POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Minimum Range</th>
<th>Maximum Range</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9045</td>
<td>VMOS WIDEBAND LINEAR POWER AMPLIFIERS</td>
<td>4 watts</td>
<td>20 watts</td>
<td>10 dB</td>
<td>£49.50</td>
</tr>
<tr>
<td>9050</td>
<td>10 kHz, 100 MHz, 4 watts</td>
<td>£49.50 + £2.50</td>
<td>£52.00 + £2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9056</td>
<td>20 MHz, 100 MHz, 20 watts</td>
<td>£120 + £5</td>
<td>£125 + £5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9064</td>
<td>50 MHz, 500 MHz, 5 watts</td>
<td>£120 + £5</td>
<td>£125 + £5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9068</td>
<td>100 MHz, 1000 MHz, 5 watts</td>
<td>£120 + £5</td>
<td>£125 + £5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9067</td>
<td>20 MHz, 200 MHz, 20 watts</td>
<td>£120 + £5</td>
<td>£125 + £5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9070</td>
<td>As above with integral mains power supply unit</td>
<td>£120 + £5</td>
<td>£125 + £5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOW NOISE GASFET PREAMPLIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Frequency Range</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9002</td>
<td>Two stage Gasfet preamplifier</td>
<td>0.7 MHz</td>
<td>+25 dB</td>
<td>£65 + £2</td>
</tr>
<tr>
<td>9004</td>
<td>UHF two stage Gasfet preamplifier</td>
<td>0.6 MHz</td>
<td>+25 dB</td>
<td>£65 + £2</td>
</tr>
<tr>
<td>9012</td>
<td>Gasfet preamplifier</td>
<td>Specified</td>
<td>Gain</td>
<td>£19.50 + £2</td>
</tr>
<tr>
<td>9010</td>
<td>Masthead weatherproof unit</td>
<td></td>
<td></td>
<td>£6.50 + £2</td>
</tr>
</tbody>
</table>

TECHNICAL SPECIFICATION

- **WIDEBAND RF PREAMPLIFIER**
 - 1KHz-100MHz, without tuning
 - £55 + £2

- **LOW NOISE GASFET PREAMPLIFIER**
 - Two stage Gasfet preamplifier, N.F. 0.7 dB, Gain 25 dB. High Q filter
 - £65 + £2

- **TELEVISION LINEAR POWER AMPLIFIERS**
 - Bands IV or V.
 - Channel group 'A' 21-34, 'B' 39-51, or 'CD' 48-68.

- **VMOS LINEAR POWER AMPLIFIERS**
 - Tuned to your specified frequency in the range 1-250 MHz.
 - £59.50 + £2

- **TELEVISION LINEAR POWER AMPLIFIERS**
 - £39.50 + £2

- **LOW NOISE GASFET PREAMPLIFIER**
 - As above with integral mains power supply
 - £120 + £5

- **LOW NOISE GASFET PREAMPLIFIER**
 - As above with integral mains power supply
 - £120 + £5

RESEARCH COMMUNICATIONS LTD.

UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP

TELEPHONE: CANTERBURY (0227) 56489

YOUR OWN CUSTOMISED COMMUNICATIONS MONITOR

...just 16 lbs

The vast range of available options allows you to customise the FM/AM 500 Micro Monitor to suit your specific needs, and weighing in at just 16 lbs your 'field-tests' can now be precisely that!

For a practical demonstration to prove our point contact:

Mike Dawson on 01-897 6446.

Fieldtech Heathrow Limited
Huntaway House 420 Bath Road
Longford Middlesex UB7 0LL
Tele: 2137 34 FLITEC G

WWW - 041 FOR FURTHER DETAILS

ESTABLISHED RADIO COMMUNICATIONS BUSINESS FOR SALE

For full details contact

Messrs. Kirk Ogden
23 High Street, March
Cambs, PE15 9JA
Telephone number 3187

WWW WIRELESS WORLD JULY 1983

www.americanradiohistory.com
THE SOURCE... of all good used test equipment

Electronic Brokers is Europe’s leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer’s sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALYSERS

DVMs and DMM’s

Bridges

Tektronix Plug Ins

SIGNAL SOURCES

Microwave

Tektronix TV Test Equipment

Fluke

Analyser

Oscilloscopes

Tektronix

Tektronix TM500 SERIES

Brokers

Tektronix Instruments

Wireless World July 1983

Electronic Brokers

Electronic Brokers Limited

61/65 Kings Cross Road

London WC1X 9LN

Telephone: 01-278 3461

Telex: 298964 Elebro G

WW - 207 FOR FURTHER DETAILS

Please note: Prices shown do not include VAT or carriage.

Please see page 4 for full catalogue.

www.americanradiohistory.com
HF COMMUNICATIONS RECEIVERS
FOR
POINT TO POINT/TRANSPORTABLE
AND
MARINE SYSTEMS

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

Fully Synthesised
10Hz or 100Hz steps
Continuously Tuned 50KHz to 30MHz
Modes LSB/USB/CW/AM/FSK
Stability ± 1 part in 10^7/°C
Tuning Keypad/Spin/Decade
Power Supplies 110V/240V AC and 24V DC

SEND FOR TECHNICAL BROCHURES TO:
VIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND
TELEPHONE: (0344) 885656

EASIBINDERS
Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo.

Price U.K. £4.30 including postage, packing and VAT.
Overseas orders add 35p per binder
Nat. Giro No: 5157552.
Please allow 3/4 weeks for fulfillment of order.
Payment by ACCESS/BARCLAYCARD/VISA. Send coupon below detailing credit card no. and signature.
Why not order now? Send the completed coupon below with remittance payable to:

Order Form WIRELESS WORLD

<table>
<thead>
<tr>
<th>Enclose P.O./cheque value for binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK LETTERS PLEASE</td>
</tr>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Registration No: 736136</td>
</tr>
</tbody>
</table>

EASIBIND 42 Hoxton Square
London N1 6NS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses.
SELF-SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds; 24-hour format, auto. GMT/BST and Leap Year; STOPCLOCK, parallel preset, full week output for alarm, etc., and audio to record and show time on playback, receives Rugby 60KHz atomic time signals, built-in antenna, 1000 km range. GET THE TIME RIGHT. £69.60.
LOST DX UNDER QRM? DIG IT OUT with a Tunable Audio Notch Filter, between your receiver and speaker. BOOST your DX/QRM ratio; 40dB notch. Hear WEAK DX. £16.40.
HURRY! Prices go up at end of July. Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, return postage, etc. Money-back assurance. So GET yours NOW.

CAMBRIDGE KITS
45 (WU) Old School Lane, Milton, Cambridge
Telephone: 860150

PICOTUTOR & ANALOGUE INTERFACE

ASSEMBLY LANGUAGE TRAINER
The ideal way to learn machine language and become acquainted with the new "single chip" control oriented microprocessors. 1.8K of EPROM, 20 I/O lines, 112 bytes of RAM and a timer all in a single 28-pin I.C. As featured in this, and subsequent issues of WW.

COMPLETE KIT £39.87
68705 DATA £1.95

ANALOGUE INTERFACE
COMPLETE KIT £39.39
16 WAY LEAD £2.35 extra

PICOTUTOR & ANALOGUE INTERFACE

MAGENTA ELECTRONICS LIMITED (W19)
135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST, 8283 85435

WW - 015 FOR FURTHER DETAILS

WIRELESS WORLD JULY 1983

www.americanradiohistory.com
a selection from our huge stocks. All items reconditioned unless otherwise stated.

DEC PDP 11/70 EQUIPMENT SPECIAL PURCHASE OF 11/70 PROCESSORS, PERIPHERALS AND OPTIONS EX DEC MAINTAINED SITE enabling us to offer a wide variety of configurations and add-ons. Please let us know your requirements.

DEC PDP 11/60 SYSTEMS special offer 11/60 Processor with 256KB 2 x RK06 Disk Drives + control LA36 Console - Rack Cabinet OUR BARGAIN PRICE £5250.00 All items ex-DEC-maintained site

PDP8A/RL01 SYSTEMS special purchase - immaculate as new condition BA400-5R Processor complete with KKB8 CPU MMB8 16KW Core KBBA Programmers Panel KMBAA Option module DKCBA Option module 2 x RL01 AK Disk Drive RL8A Controller 19" Screen cabinet £7450.00

DEC LSI PROCESSORS 11/03LX KD11HA CPU KEV11 EIS/RS, BDV11AA Terminator/Bootstrap. BA11N 5¼ Chassis with Backplane and Power Supply. MSV11DD 32KW MOS NEW £1495

DEC DISK DRIVES RL01 A 5MB £995 RL8A RL01+ BA Cti £2,245 RL11 RL01 + Unibus cti £2,495 RM22AD (NEW) 67MB £8,500 RJM02 RM02 + Cti £11,500 RP60B 176MB £7,500 REP06 RP06 + VAX cti £11,000 RW206 RP06 + 11/70 cti £10,500 RX11BD Dual Floppy £955 RX211 BD Dual Floppy £1,450

DEC PRINTERS AND TERMINALS LA34 DECWnter IV EIA 1300 baud £425 LA36 DECiwer II 20ma £295 LA36 DECiwer II RS232 £325 LA180-PC DEprinter (NEW) £495 LS120 DECwriter III EIA 1200 baud £750 VT50 DECScope 20ma £499 VT50 DECScope RS232 £225 VT105 Graphics Terminal £950 NEW £1200

Tektronix Graphics Display Terminals Special Purchase of Ex-Demonstrator Stock

TEKTRONIX 4014, 4015 and 4016 HIGH RESOLUTION BIG SCREEN DISPLAY TERMINALS

★ 19" Screen providing 4096X by 3120Y displayable points or 8512 alphanumeric points (models 4014 and 4015)
★ 25 Screen providing 4096X by 3120Y displayable points or 15,000 alphanumeric points (model 4016)
★ API Character Set (model 4015)
★ Plot 10 compatible
★ Prices include Enhanced Graphics Option, Extra Memory Option and Programmable Keyboard Option 4014-1 £6950 4015-1 £7250 4016-1 £8950

Other Tektronix graphics equipment currently available includes
4006-1, 4010-1, 4027, 4051, 4952, 6056/6058 and 611

NEW £1020

Electrovalue LTD

WIRELESS WORLD JULY 1983

TEKTRONIX 4014, 4015 and 4016 HIGH RESOLUTION BIG SCREEN DISPLAY TERMINALS

★ 19" Screen providing 4096X by 3120Y displayable points or 8512 alphanumeric points (models 4014 and 4015)
★ 25 Screen providing 4096X by 3120Y displayable points or 15,000 alphanumeric points (model 4016)
★ API Character Set (model 4015)
★ Plot 10 compatible
★ Prices include Enhanced Graphics Option, Extra Memory Option and Programmable Keyboard Option 4014-1 £6950 4015-1 £7250 4016-1 £8950

Other Tektronix graphics equipment currently available includes
4006-1, 4010-1, 4027, 4051, 4952, 6056/6058 and 611

NEW £1020

Electrovalue LTD

WIRELESS WORLD JULY 1983
NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f. transmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range.

The new RCC 8000PM series of equipment uses, for the first time, phase modulated transmissions with massive radiated powers of up to 2 Mega-Watts to offer long range, excellent noise immunity and no scheduled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000S, combined clock, frequency standard and optional stopclock. Internal standby power supply – with dual rate constant current charger. Time-event log – prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock – time announcement or audio recording. Slave controller – total control of single-standard master/slave systems i.e. one pulse/sec. Dual standard slave controller – total control of two different and independent slave systems, i.e. one pulse/sec and one pulse/half min. Slave distribution amplifier – maximum flexibility for the largest master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include:

- IRIG B precision serial o/p
- Intelligent slave systems
- Standard frequency outputs
- Stopclock operation
- Calibrator options for increased accuracy

Circuit Services
Unit 19, Parkengue, Kernick Road Industrial Estate
Perryn, Falmouth, Cornwall, Tel: Falmouth 76007

Accuracy Digital Multimeters at Exceptional Prices

NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE

28 RANGES, EACH WITH FULL OVERLOAD PROTECTION

SPECIFICATION MODELS

<table>
<thead>
<tr>
<th>6010 & 7010</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10 amp AC/DC</td>
</tr>
<tr>
<td>* Battery: Single 9V drycell. Life: 200 hrs</td>
</tr>
<tr>
<td>* Dimensions: 170 x 89 x 38mm</td>
</tr>
<tr>
<td>* Weight: 400g inc. battery</td>
</tr>
<tr>
<td>* Mode Select: Push Button</td>
</tr>
<tr>
<td>* AC DC Current: 200mA to 10A</td>
</tr>
<tr>
<td>* AC Voltage: 200mV to 750V</td>
</tr>
<tr>
<td>* DC Voltage: 200mV to 1000V</td>
</tr>
<tr>
<td>* Resistance: 200Ω to 20MQ</td>
</tr>
<tr>
<td>* Input Impedance: 10KΩ</td>
</tr>
<tr>
<td>* Display: 3½ Digit 13mm LCD</td>
</tr>
<tr>
<td>* Overload Protection: All ranges</td>
</tr>
</tbody>
</table>

6010 £29.95
6015 £29.95
7010 £36.95
7020 £36.95

OTHER FEATURES:
- Auto polarity, auto zero, battery low indicator, A85 plastic case with tilt stand, battery and test leads included, optional carrying case.

Quantity discount for trade on application.

Add 15% to your order for VAT. P&P is free of charge.

ARMON ELECTRONICS LTD.
Cottrell House 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH, England

Telephone: 01-902 4232 (3 lines)

TELEX NO. 929885

WWW – 099 FOR FURTHER DETAILS

Wireless World July 1983

WWW – 051 FOR FURTHER DETAILS
WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency, flexibility, reliability, easy usage, outstanding performance, value for money.

With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

BIPOLAR MODUL\ES

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Output Power Watts</th>
<th>Load Impedance</th>
<th>DISTORTION T.H.D. at 1KHz</th>
<th>Supply Voltage Typ</th>
<th>Size mm</th>
<th>Wt gms</th>
<th>Price inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU 21A</td>
<td>1 x 2W720</td>
<td>1 x H4900. 1 x H5000. 1 x H129</td>
<td>0.1% <0.005%</td>
<td>1 x H244</td>
<td>4504</td>
<td>18</td>
<td>£138.93</td>
</tr>
<tr>
<td>PSU 21R</td>
<td>1 x H5000</td>
<td>1 x H129</td>
<td>0.1% <0.005%</td>
<td>1 x H244</td>
<td>4504</td>
<td>18</td>
<td>£138.93</td>
</tr>
<tr>
<td>PSU 24X</td>
<td>1 x H5000</td>
<td>1 x H129</td>
<td>0.1% <0.005%</td>
<td>1 x H244</td>
<td>4504</td>
<td>18</td>
<td>£138.93</td>
</tr>
<tr>
<td>PSU 24R</td>
<td>1 x H5000</td>
<td>1 x H129</td>
<td>0.1% <0.005%</td>
<td>1 x H244</td>
<td>4504</td>
<td>18</td>
<td>£138.93</td>
</tr>
</tbody>
</table>

MOSFET MODUL\ES

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Output Power Watts</th>
<th>Load Impedance</th>
<th>DISTORTION T.H.D. at 1KHz</th>
<th>Supply Voltage Typ</th>
<th>Size mm</th>
<th>Wt gms</th>
<th>Price inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS 128</td>
<td>40W</td>
<td>0.1% <0.005%</td>
<td>0.0009% <0.0006%</td>
<td>100V</td>
<td>45</td>
<td>170</td>
<td>£243.40</td>
</tr>
<tr>
<td>MOS 218</td>
<td>120W</td>
<td>0.1% <0.005%</td>
<td>0.0009% <0.0006%</td>
<td>250V</td>
<td>45</td>
<td>170</td>
<td>£243.40</td>
</tr>
<tr>
<td>MOS 224</td>
<td>180W</td>
<td>0.1% <0.005%</td>
<td>0.0009% <0.0006%</td>
<td>250V</td>
<td>45</td>
<td>170</td>
<td>£243.40</td>
</tr>
</tbody>
</table>

POWER SUPPLY UNITS

Model Number	For Use With	Price inc. VAT	
---------------	--------------	----------------	
PSU 21A	1 x 2W720	£138.93	
PSU 21R	1 x H5000	£138.93	
PSU 24X	1 x H5000	£138.93	
PSU 24R	1 x H5000	£138.93	

Note: X x y in power indicates output watts. Power input is 0 in brackets.

For 110V 1" in place of 5 to 220V and 1.7 in place of 9 to 240V.
PROFESSIONAL HI-FI THAT EVERY ENTHUSIAST CAN HANDLE...

Unicase

Over the years I.L.P has been aware of the need for a complete packaging system for its products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.

Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.

Because of I.L.P's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion (<0.01%), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the I.L.P Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.

POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp.

Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

<table>
<thead>
<tr>
<th>UNICASES</th>
<th>Price inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiFi Separates</td>
<td>VAT</td>
</tr>
<tr>
<td>UC1</td>
<td>£29.95</td>
</tr>
<tr>
<td>UP1X</td>
<td>£54.95</td>
</tr>
<tr>
<td>UP2X</td>
<td>£64.95</td>
</tr>
<tr>
<td>UP3X</td>
<td>£64.95</td>
</tr>
<tr>
<td>UP5X</td>
<td>£74.95</td>
</tr>
<tr>
<td>UP7X</td>
<td>£99.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Slaves</th>
<th>Power Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>US1X</td>
<td>£59.95</td>
</tr>
<tr>
<td>US2X</td>
<td>£79.95</td>
</tr>
<tr>
<td>US3X</td>
<td>£69.95</td>
</tr>
<tr>
<td>US4X</td>
<td>£99.95</td>
</tr>
</tbody>
</table>

Please note 'X' in part number denotes mains voltage. Please insert 'O' in place of 'X' for 110V. '1' in place of 'X' for 220V (Europe), and '2' in place of 'X' for 240V (U.K.). All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of this page opposite, with FREEPPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add £1 to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

WIRELESS WORLD JULY 1983
When it comes to power for racks, it must be Olson.

Olson Electronics Limited

5-7 Long Street London E2 8HJ
Tel: 01-739 2343 Telex 296797

Essex Tiny Basic System

- RS232 Interface
- 48 I/O Lines
- Powerful National INS 8073 Processor
- Autostart Operation with Watchdog Timer
- Up to 16K Byte EPROM
- EPROM Programmer
- Accommodates Instant ROM & Modules

Price
Excluding V.A.T. £185

Substantial quantity discounts available
Carriage within U.K. £2

The Essex Tiny Basic Computer is an ideal choice for data acquisition and process control systems. Its crystal-controlled timer and interrupts provide accurate timing and fast response to critical events, while the watchdog timer ensures reliable operation. Programs can be entered and tested from an RS232 terminal, and then be copied into EPROM. Alternatively, Instant ROM modules may be used both during development and for program storage.

Instant ROM is the trademark of Greenwich Instruments.

Please send for further information.

Essex Electronics Centre
Wivenhoe Park, Colchester, Essex CO4 3SQ
Telephone: Colchester (0206) 865089

Wireless World July 1983
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days' delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C.1 Phone: 01-837 7937
Telex: 892301 HARTOG

PRODUCTION TESTING
DEVELOPMENT
SERVICING

POWER UNITS
Now available with 3 OUTPUTS

Type 250VRU / 30 / 25

OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

Valradio

VALRADIO LIMITED, BROWELLS LANE, FELTHAM
MIDDLESEX TW13 1ZK
Telephone: 01-390 4242/4837

WW - 021 FOR FURTHER DETAILS

The Keithley 179A

A MEASURE OF ACHIEVEMENT.

Specification... Versatility... Accuracy... Price. In almost every major area the new 179A – a 4½ digit bench/portable DMM – from Keithley Instruments sets some pretty impressive standards:

- 20 amp capability
- Full function: 27 ranges including true RMS AC Measurement
- Year's guarantee on spec
- 0.04% DC accuracy
- IEEE option
- Large display and 10µV dc resolution.

For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world's leading manufacturers.

For more information fill in the coupon at the bottom of the page.

Alternatively, phone our Instant Information Service on 0734 861287 now.

Keithley Instruments Ltd
1 Boulton Road Reading Berks RG2 0NL
Telephone (0734) 861287
Telex 847047

I'd like to know more...
Name
Position
Company
Address
Telephone

WW - 007 FOR FURTHER DETAILS
Sowter Transformers

With 42 years’ experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT!

WE MAKE IT!

OUR RANGE INCLUDES:

Microphone transformers (all types); Microphone Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Micro-miniature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY or P.A. QUALITY, OUR PRICES ARE HIGHLY COMPETITIVE and WE SUPPLY LARGE OR SMALL QUANTITIES and EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal despatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DECK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS and PUBLIC ADDRESS FIRMS. Export to a speciality and we have overseas clients in the COMMUNICATIONS, V.A.T. EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullingham Road, Ipswich, IP1 2EG, Suffolk, P.O. Box 35, Ipswich, IP1 2EL, England
Phone: 0473 52734 & 0473 219390 * Telex: 987703G SOWTER

ANTENNA INSULATORS

SMCCJ1 Dipole Centre Junction, high strain capability (600 Kgs) power rating up to 2KW, P.E.P. Standard unit fitted with S039 sockets, other connectors available.

SMCCJ2 Lighter duty version of CCJ1 moulded in carbon-loaded polypropylene, supplied with all hardware, in S039 and BNC connectors. Weight 120 grammes.

SMCP1 Strain insulator 8½” OA in carbon-loaded polypropylene, very light (80 grammes), virtually indestructible.

SMCP2 Strain insulator as P1 but 3½”, weight 20 grammes.

SMCAUJ light duty centre junction designed for use with twin wire type feeders, 3½” OA.

A complete range of porcelain and pyrex strain, egg, and feedthrough insulators ex-stock.

SMC also stock a complete range of antenna wires, coaxial cables, connectors and rigging accessories, stocked in commercial quantities at competitive prices. Export enquiries welcome.

SOUTH MIDLANDS COMMUNICATIONS LTD.

RUMBRIDGE ST., TOTTEN
SOUTHAMPTON S04 4DP

Telex: 477351 SOWCOMM G
Tel: Totton (0703) 867333

CLEF ELECTRONIC MUSIC

PIANOS

PECIALISTS SINCE 1972

DOMESTIC OR STAGE

SIX OR 7½ OCTAVES

KITS OR MANUFACTURED

DOMESTIC PRICES

<table>
<thead>
<tr>
<th></th>
<th>SIX</th>
<th>7½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>234</td>
<td>256</td>
</tr>
<tr>
<td>Full</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>MIDI</td>
<td>400</td>
<td>432</td>
</tr>
</tbody>
</table>

COMPETITIVE

Write or Phone for full details of our range in high quality kits and manufactured Electronic Music Instruments.

CLEF PRODUCTS (ELECTRONICS)

LIMITED

Dept. W, 444 Bramhall Lane South, Bramhall, Stockport, Cheshire SK7 1AH

061-439 3279

WIRELESS WORLD JULY 1983

www.americanradiohistory.com
Count on quality

THE NEW GSC 6000 FREQUENCY COUNTER

- 5Hz to 650MHz range
- Switchable low-pass 60kHz filter
- Selectable 0.1, 1.0 and 10-second gate times
- Easy-to-Read 8-digit LED display
- Simple touch-button controls
- Streamlined front panel

Accurate frequency measurements need no longer cost the earth. Because the GSC 6000 now offers precision measurement capabilities, plus simplicity and flexibility, at a cost of only £274.25. The Model 6000 is a high-precision 650MHz frequency counter aimed fairly-and-squarely at any section in the electronics marketplace where accurate frequency measurements are required. The 6000's combination of accuracy, versatility and state-of-the-art design makes it ideal for those difficult measurements in engineering labs, quality-control departments and service centres, and its attractive price places it firmly within the scope of the hobbyist market.

Just look at the Model 6000's basic specification - a full 650MHz frequency counter boosted by such facilities as a switchable low-pass filter to prevent interference from high-frequency noise, a bright LED display with a built-in contrast-enhancement filter and leading-zero blanking, and simple pushbutton-activated selection of inputs, gate times, and filters. Applications? You name them - anything from measurements on transmitter frequencies to timebase checks on microprocessor systems. If you're not yet convinced that the Model 6000 is the state-of-the-art frequency counter for all electronics applications, call us today. Even if you are, still call us - you'll be delighted with the results.

GLOBAL SPECIALTIES CORPORATION

GSC (UK) Limited
Freepost-Saffron Walden, Essex CB11 3AQ Tel: Saffron Walden (0799) 21682 Telex: 817477

WWW FOR FURTHER DETAILS

WIRELESS WORLD JULY 1983

www.americanradiohistory.com
CX80 COLOUR MATRIX PRINTER

New low price
£795 + V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours – sophisticated internal programme makes the CX80 easy to use.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

INTEGREX LIMITED

Building a microprocessor board dedicated to a specific machine or task is just one of the many projects that can be undertaken with the ELE microelectronic and microprocessor teaching system.

A complete range of projects can be taught, from building simple electronic circuits to advanced engineering applications such as intelligent robotics.

Features
- Expandable - buy what you want when you want
- Modular - interchangeable components throughout
- Structured - provides a complete educational programme
- Ready to use - no extras to buy
- Comprehensive - over 50 items of equipment in the system

For further information and a free brochure, contact ELE at the address below:

ELE
ELE International
Eastman Way
Hemel Hempstead
Hertfordshire
HP2 7HB
England
Tel: (0442) 50221
Telex: 825239

WWW.015 FOR FURTHER DETAILS
PRINTED CIRCUITS
FOR WIRELESS WORLD PROJECTS

Audio compressor/splitter—Dec 1975—1 s.s. (stereo) £4.25
Cassette recorder—May 1976—1 s.s. £5.00
Audio conditioner—July 1976—1 s.s. £4.75
Audio preamplifier—November 1976—2 s.s. £8.50
Additional circuits—October 1977—1 s.s. £4.00
Stereo coder—April 1977—1 d s.s. £8.50
Low distortion disc amplifier (stereo)—September 1977—1 s.s. £2.00
Low distortion audio oscillator—September 1977—1 s.s. £3.50
Synthesizer F.M. transmitter—November 1977—2 s.s. £12.00
Morse maker—June 1978—1 d s.s. £4.50
Metal detector—July 1978—1 d s.s. £11.50
Osilloscope waveform store—October 1978—4 d s.s. £18.00
Regulator for car alternator—August 1978—1 s.s. £2.00
Watchband noise reducer—November 1978—1 d s.s. £5.00
Versatile noise generator—January 1979—1 s.s. £5.00
200MHz frequency meter—January 1979—2 s.s. £7.95
High performance preamplifier—February 1979—1 s.s. £5.50
Distortion meter and oscillator—July 1979—2 s.s. £5.50
Moving coil preamplifier—August 1979—1 s.s. £3.50
Multi-mode transistor—October 1979—10 d s.s. £35.00
Amplification system—Oct 1979—3 reamplifier power amp £40.20 each
Digital capacitance meter—April 1980—2 s.s. £7.50
Colour graphics system—April 1980—1 d s.s. £18.50
Audio spectrum analyser—May 1980—3 s.s. £10.50
Multi section equaliser—June 1980—2 s.s. £5.00
Floating bridge power amp—Oct 1980—1 s.s. (12V or 40V) £4.00
Nancop 9402 or 6902—Jan, July, 1981—1 d s.s. £9.00
Cassette interface—July, 1981—1 s.s. £11.50
Epicon programmer—Jan, 1982—2 d s.s. £4.50
Logic probe—Feb, 1981—2 d s.s. £6.50
Multimeter frequency counters—March, 1981—8 s.s. £29.75
Opto-electronic contact breaker (Delco)—April, 1981—2 s.s. £4.00
C.B. synthesizer—Sept—1 d s.s. £12.50
Electronic ignition—March, 1982—1 s.s. £4.00
Boards and glass fibre roller-turned and drilled. Prices include VAT and UK postage. Airmail add 30%. Europe add 10%. Insurance 10%. Remittance with order. 3 months credit. 10% discount for cash.

M. R. SABIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

WW—013 FOR FURTHER DETAILS

WW—014 FOR FURTHER DETAILS

Coastal Electronics Ltd.
Unit T1, Kingsville Road, Kingslatch Trading Estate, Cheltenham GL51 9NX
Tel: 0242-41313

Sales Office in U.S.A.
AVEL LINDENBERG INC.
Peacock Alley 116, 1 Pedamar Road, Danbury, CT 06810 U.S.A.
203-765-4869 Telex: 710-658-566

WIRELESS WORLD JULY 1983
BBC Micro Computer System

OFFICIAL DEALER

Please phone for availability

CASSETTE RECORDER

BBC Compatible Cassette Recorder with Counter and Remote Control

FD50 £5.80

Cassette Leads £3.50

Computer Grade Cassettes £0.50 each £4.50 for 10 £1 carr

Sanyo Data Recorder Model DR1101 £39 + £1.50 carr.

MONITORS

MICROVITEC 1415 £29.95

KAGA 12m RGB Monitor £255 + £8 carr

KAGA HY RES RGB Monitor £445 + £8 carr

PRINTERS

SEIKOSHA GP 100A

80 col. 30 CPS

Full ASCII and Graphics

10" wide paper

Now only £80 + £6 carr.

DG50A £235 + £8 carr.

Parallel Printer lead for BBC/Atom to most printers £13.50

Variety of interfaces, ribbons in stock

2,000 fan fold sheets 9½" x 11" for £13.50 + £3 p&p

BBC BOOKS (no VAT)

Basic on BBC £5.95

30 House Basic £5.95

Programming the BBC Micro £6.50

BBC Micro Manual Guide £8.95

Assy Lang Prog, for BBC £9.95

6502 Machine Codes for Beginners £6.95

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NFL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the self renewal of the expansion facilities provided.

See July/August #211 for details.

Built and tested £14.50 + £2 p&p

DISC DRIVES FOR THE FORTH COMPUTER

5¼" Teac FD55 Slim Line Mechanisms

FD50A 40 track SSD 250kb bytes unformatted

Bare £135; Cased: £155

2 x FD65A 40 track SSD 500kb bytes unformatted

Cased x psu £350

FD55E 80 track SSD 500kb bytes unformatted

Bare £180; Cased: £205

2 x FD65E 80 track SSD 1 Mbyte unformatted

Cased + psu £475

5¼" Mitsubishi M4853 Slim Line mechanism 80 track

DSDD 1 Mbyte unformatted

Bare: £225; Cased: £245

2 x M4853 2 Mbytes

Cased + psu £590

Single drive cable £8; Dual Drive cable £12

Other parts for FORTH COMPUTER available send SAE for details.

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMs or use in host computer by using Softy as a simulator. Power for editing facilities permit byte, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV.

Softy II complete with PSU. TV Lead and Romulator lead £168

OFFER

SPECIAL OFFER

2532

2372

2764-25

27126-25

6116-2

6184-2

6118-2

BOOKS (No VAT)

CMOS Cook Book

£7.75

OFF Control Book

£7.95

Programming the 280

£11.50

Z80 Microchip Handbook

£6.95

Programming the 6502

£10.25

6502 Applications

£12.10

6502 Software Design

£3.25

6502 Games...

£10.25

Large selection of databooks, including books on BBC, etc in stock.

Ask for our list.

WIRELESS WORLD PROJECTS

Semiconductors inc.

LC, Transistors, Displays, Connectors and Sockets for most projects are stocked by us

NEW COMPREHENSIVE CATALOGUE AVAILABLE

PLEASE SEND FOR PRICE LIST
Test it on Test on Site

The “Z Meter” capacitor-inductor Analyser, from Sencore, now gives you the fastest, most accurate means of batch testing even from semi-skilled operators—and we’re prepared to come round and prove it.

For an on-site test and more information:
Mike Dawson 01-897 6446.

Success means having the right connections.

You simply can’t make it any cheaper.

Write for full colour accessory catalogue to Department WW

SHURE

www.americanradiohistory.com
Design competition

Although it is too early yet to know whether the outcome of our design competition will be successful, it is at least possible to say that the number of entries and variety of devices under development give grounds for encouragement.

From boxes intended to identify the contents of tins of food to quite exotic equipment concerned with cars, a great deal of imagination is being demonstrated by those who have registered their intention of entering the competition; there are more examples on page 67. It is possible, of course, that some of the ideas will remain exactly that — ideas. But the spur of a rather large money prize and the somewhat more intangible satisfaction of making people’s lives more convenient and pleasurable will, without doubt, convert a significant number of nebulous notions into hardware.

It is not going to be easy. One of the hardest parts of a wide-open competition of this kind is to decide exactly what to design. Many needs can be better satisfied by a simple mechanical device than by a complicated piece of electronics: good judgement in this decision can be the most telling aspect of an entry. The next hurdle comes when it is discovered that the realization of an idea is not as straightforward as it was at first imagined, and the temptation to change one’s mind appears. There is nothing wrong with that, if there is still time before October to complete the work, but it is often the case that this approach leaves one with two half-baked projects instead of one well-done one. It is surprising how a little gentle research in the literature can straighten one out, when to all intents and purposes stuck fast.

The last date for registration is June 30. You do not have to present entries at that time: simply register your intention to do so before October. A panel of judges experienced in both engineering and user aspects of devices to assist handicapped people will take some time to arrive at their decisions, during which some entrants will be asked to come to London to discuss their designs and perhaps take part in a prize-giving ceremony, which may well be televised.

There are six prizes, but we expect to describe many more entries than the winning six during the subsequent year, so that even one of the designs not chosen as a winner could attract attention and may be adopted as a commercial proposition.

This is an interesting, socially valuable and possibly profitable competition. A large number of readers have already entered: there is still time for a great many more. You have a couple of weeks left to make up your mind.
Spectrum battles

Although the US Congress agreed late last year to the ratification of the WARC 1979 “Radio Regulations”, many influential American groups continue to express disenchantment with the whole process of international frequency allocation and ITU procedures. Among the critics have been members of FCC who were most unhappy at the proceedings at the ITU Plenipotentiary Conference at Nairobi in Autumn 1982, and the “needless politicization” of the decision making. Although it is being suggested that the US should remain in the ITU it is being urged that, if “politicization” continues, the US should have available “a fully developed and workable alternative organization”. However Kalmann Schafer, international affairs adviser to the FCC, believes that few important US interests have been surrendered and that “the day will come when the Third World realizes that disruption of ITU conferences will be against their own best interests”.

The sort of problems that face the forthcoming ITU Conference on DBS planning for Region 2 is shown by the fact that both the UK and Argentina have listed the Falkland Islands – with 1800 residents and a lot of sheep – as an area they intend to serve by DBS. One suspects it might be less costly to provide every home with a v.c.r. and a large number of cassettes, or cable every habitation! Meanwhile the mere idea of having two different international spectrum regulatory bodies would seem the sure path to chaos.

World television?

That chaos is already close on h.f. was emphasised recently by Douglas Muggeridge, m.d. of BBC External Services who sees that disruption of ITU conferences will be against their own best interests”. But what is a right to free speech to some, is malevolent propaganda to others!

In reality, of course, international regulation of the radio spectrum and the use of the airwaves to broadcast to other than your own people have been inconclusively debated for over 50 years. Did the old International Broadcasting Union in May 1983 – on the initiative of a BBC plagued by Radio Luxembourg and Captain L. F. Pludge’s Radio Normandie – resolve that the systematic diffusion of programmes or messages specifically intended for listeners in another country should be considered an “inadmissible act”? Dough such a resolution must have seemed a poor breakwater against the rising flood of transmissions from Zeessen, Radio Roma and Radio Moscow. It was not long before the UK was plunging into foreign-language broadcasting. Even today some countries argue that there should be no transmissions of “politically subversive or culturally disruptive material” across frontiers “without the prior consent of the receiving State”, and defend their right to jam transmissions they find offensive while themselves engaging in massive external broadcasting. The USSR has ground-wave jammers in all Soviet cities of more than 200,000 people and rather less effective skywave jamming in rural areas. The Western Nations, it would seem, are attempting to counter jamming by engaging in the power race and multiple-frequency techniques that in themselves contribute to the destruction of orderly spectrum planning. The BBC, for example, is currently seeking planning permission to install at the former Post Office receiving station at Bearley, Warwickshire six 300kW h.f. transmitters primarily for serving Eastern Europe. Today few people distinguish between h.f. and/or m.f. broadcasting in your own language (e.g. BBC World Service), surely a laudable service, and the one-time “inadmissible” practice of foreign-language broadcasting!

Black broadcasting

Governments are not always content even with straight-forward external broadcasting, as witness the take-over of one of the 250kW transmitters on Ascension Island last year and similar action during the Suez affair in 1956. A detailed study of radio skulduggery has recently been published by Ellic Howe, an eminent typographer whose special skills were used in World War 2 to forge leaflets and other printed material on behalf of the Political Warfare Executive. His book “The Black Game” (Michael Joseph, 1982) provides much new information on P.W.E.’s many “black” radio services and the building in 1942 of the 600kW “Aspidistra” m.f. transmitter at Crowborough, a transmitter that was finally retired last year. Much of the technical detail has been provided by Harold Robin who for many years was chief engineer of the Diplomatic Wireless Service but who previously worked for Sir Richard Gambier-Parry’s wartime “Special Communications”.

E.m.p. bomb?

In the December 1981 issue of WW Kenneth Cook of the M-O Valve Co. Ltd drew attention to his company’s gas-filled protection devices that operate in less than one nanosecond. Such devices he claimed “will protect solid-state receivers and telephone equipment in a simulated e.m.p. explosion making it made to appear that...” E.m.p. is the massive pulse that follows the explosion of a nuclear device high above ground.

Despite this assurance that effective protection against e.m.p. is available, there can be little doubt that the potential threat to radio communications, computer installations and telecommunications posed by
high-altitude (40 to 400km) nuclear explosions is still being taken very seriously in many parts of the world. Even if military installations can be effectively "hardened" there remains the problem of the enormous number of civilian installations.

Now, according to recent press reports from Washington, the US Government is investigating the possibility of developing an atomic weapon designed specifically to provide a defensive system that would hurt the enemy without necessarily hurting his people’. E.m.p. bombs could be launched to black-out enemy communications; the Americans are also reported to be currently providing additional shielding against e.m.p. on their B-52 long-range bombers. Similarly scientists at the University of Minnesota are reported to be working on techniques that would not only counter the effects of e.m.p. but could also reduce the effects of solar flares, which can cause radio blackouts, auroral propagation etc., particularly in northern latitudes.

New call signs

Before long the Home Office expect to be issuing call signs in the G0, GM0 etc. sequences for Class A, and G1, GM1 etc. sequences for Class B. The figures G1 are the only remaining unused digits since G7, G9 are used for commercial "test and development" licences. The present G6 class B sequence is already up to "W" and G4 class A to "T". When the 0 and 1 sequences are used up it would be possible for the Home Office to issue British amateurs calls with an M-prefix. Both GAA to GZZ and MAA to MZZ are internationally allocated to the UK.

One internationally-recognized radio amateur, Ray Cracknell, Z22JV of Zimbabwes (formerly G2AHU) would welcome either a G or an M call sign when he returns soon to the UK. Ray Cracknell has been, over several decades, one of the most successful pioneers of transsequatorial propagation. He has been responsible for uncovering, with the help of his equipment and a series of "beacons" which he has built, a wealth of information about the tropical ionosphere, much of it previously unknown and unsuspected by both professional and amateur researchers. Yet recently when he sought to renew his British licence it was indicated, presumably as the result of a dispute over reciprocal licensing with Zimbabwe, that he would be required to sit an RAE and take a Morse test. One can think of few people deserving of an unhindered re-issue of a licence than Ray Cracknell. Let us hope by the time these notes appear the Home Office will have graciously rescinded such an apparently bureaucratic ruling.

Ionospheric focusing

Although it is now generally accepted that many low-power h.f. transmissions travel long-distances without intermediate ground-reflection by what is termed chordal hop propagation, amateur operators have paid less attention to antipodal-type mechanisms that result in enhanced signals at a point precisely on the opposite side of the globe. Signals travelling along great circle paths will converge on the antipodal point. Amateurs in the UK have no exact antipodal point with which to exchange signals, since this point is in the Pacific Ocean, although UK amateurs have long recognised the consistency of the long-distance paths to Australia and New Zealand, the nearest land-mass to the antipodal point.

Brian Austin, ZG6BKW, writing from the University of the Witwatersrand, Johannesburg notes that South Africans are more fortunate in that they have Hawaii as the antipodal point. He comments: "Over many years I have listened, on and off, to WWVH mainly on 15 MHz. What has struck me lately is that the Fort Collins, Colorado station, WWV, runs the same power (10kW) and I assume uses similar antennas. Yet WWVH is by far the stronger signal of the two in this country. Could it be because of antipodal focusing or would the fact that Hawaii is a relatively small land mass, and hence the signals may be launched more effectively over the sea "groundplane" be the reason? He feels there is still much to be finally discovered about h.f. ionospheric propagation.

Code-free in USA?

Although in late 1982, the president of ARRL, Vic Clark, W4KFC, asked FCC to defer for at least 18 months any action that might lead to a class of amateur licence not requiring a test in the international Morse code, the FCC has subsequently issued a "notice of proposed rule making" for two forms of code-free licence. The first would eliminate the 5wpm test for existing "Technician" licences (above 50 MHz). The second would be an "Experimenter class" licence rather akin to the Canadian "Digital Amateur Class Certification" but conveying all normal operating privileges on frequencies above 144 MHz. There are no proposals for any form of code-free h.f. licence. Comments on the FCC proposals were due by April 29.

In brief

Harold Ling, G4CCH has made several e.m.e. ("moonbounce") contacts on 1.3GHz using only an 8ft aerial and 100 watts of transmitter output. ... In CQ-TV, R. Platt's, G8ZP comments on the "anti-social and selfish" behaviour of some amateur television enthusiasts who make broadband transmissions on 430MHz "in excess of two hours duration". He feels such operation should last more than 15-20 minutes. ... John Wood, G3YQC of Rugby, in association with G8VBC, has succeeded in exchanging pictures on 1255MHz with F1EDM at Le Havre, a distance of about 200 miles.... The paid-up membership of AMSAT-UK increased from about 1300 to 1700 during 1982. ... Launching of the Phase IIIB Oscar amateur satellite, set for June 3, has been delayed. ... Amateurs in north-west England have been experiencing considerable interference on 432 MHz from Syledis. ... Forthcoming mobile rallies: June 26 Longleat Park, Warminster; July 10 Dartwich High School, Ottershaw Road, Dartwich; July 17 RAIBC Picnic at the Fairground, Broadlands Estate, Romsey, Hants, and Camborne Technical College, Camborne, Cornwall; July 24 Anglian rally, Stanway School, Colchester, Essex and McMichael rally, Bells Hill, Stoke Poges, near Slough; July 31 Rolls-Royce Sports & Social Club, Barnoldswick; August 7 RSGB National rally at Woburn. PAT HAWKER, G3 VA
Fig. 2. Experiments to determine the degree of protection needed to separate signals transmitted on the same frequency. The first connects a generator, tuned to the same frequency as a local station, directly to the aerial of a receiver tuned to the same station. It is possible to adjust the level of the generator signal so that the received broadcast signal is heard with little or no interference from the generator. The second experiment is similar but the generator is connected to a transmitting dipole. Orientation of the receiver's aerial can find positions where the generator signal does not interfere with the received signal even with the generator at full power.

the target area, and that their maximum height should be restricted to no more than, say, 15 metres above ground level. In this way, geographical screening outside the service area will be maximised, while the service within the assigned area should be adequate in most locations.

We considered that with careful siting of transmitting aerials along these lines, it should be possible to re-use any frequency successfully at a distance of just five times the service radius — i.e. 10km should separate adjacent neighbourhood stations on the same frequency. This is backed up by two very simple but useful experiments which we carried out into practical levels of co-channel interference.

Co-channel protection ratios

The first experiment involves hooking the output of an f.m. signal generator via a crocodile clip to the telescopic aerial of a portable v.h.f. receiver (Fig. 2). The receiver should then be tuned to a local programme, and the generator tuned to the same frequency, and modulated with an alternative programme (or tone). With the radio operating in mono, adjust the level of signal emitted from the generator while listening to the output from the radio. The object of the experiment is to determine the degree of co-channel protection needed to obtain subjectively satisfactory suppression of the weaker signal.

One assumption may be made about the programme content: it may be taken that the modulation is compressed or otherwise kept reasonably constant in depth (such as the signals from Radio 2 or commercial radio). Under these circumstances, we consider that acceptable levels of unwanted interference can be obtained with a co-channel protection ratio of as little as 20dB. The total range covered on the generator's attenuator, between virtual inaudibility and almost complete ‘capture’ of the frequency, is never much more than 40dB, in our experience.

A development of this experiment is shown in Fig. 2. Here, instead of having the generator connected directly to the receiver, it is connected instead to a dipole aerial of appropriate length (about 1.5m). The attenuator of the signal generator should be set for maximum output, and the receiver moved away from the dipole aerial until a point is reached where the signals from the local generator and the more distant broadcast transmitter are competing — in space — for its attention.

You should find that very minor movements of the receiver and/or its aerial will produce nearly complete elimination of one signal or the other, as far as the audible output from the receiver is concerned.

The conclusions which we draw from these two experiments are: (a) that 20dB co-channel protection ratio is just adequate for mono reception; (b) that where two or more signals are present, moving the receiver and/or its aerial very slightly has a marked effect on the relative signal strengths picked up from the melange.

In the case of our idealised lattice (Fig. 1), free-space attenuation alone will provide a 12dB ratio between a transmitter 2km distant and one 8km away. We then have geographical screening and receiver positioning available as factors to ensure that at least a further 8dB difference is introduced between the wanted and the total unwanted signals. On the face of it, this does not seem too implausible, though practical tests would be interesting to carry out.

We suggest that the total power radiated by each transmitter should be of the order of 2 to 10W e.r.p. — the idea being to ensure that 2km distant the service is limited more by co-channel interference than by failing signal strength. The unattenuated field 2km away at this level of power is several millivolts per metre, but we are assuming that we ought to be reaching portable receivers in less-than-advantageous domestic locations.

Medium wave

We also looked at medium-wave, and carried out a number of exploratory calculations to see what would happen when the medium-wave transmitters of various powers were operated. The first step towards performing these calculations is to draw up a mean propagation curve from published data. This curve is shown in Fig. 3, and is compiled from the average of two CCIR recommendations for signals at 1500kHz — one for a ground conductivity of 3mS/m, and the other for a ground conductivity of 10mS/m. This curve may be taken to be valid, within a few dB either way, for frequencies between 1251 and 1602 kHz and for the range of ground conductivities present in and around London.

We restricted our calculations to the high-frequency end of the m.f. band because it seemed that this was the most fruitful place to search for relatively quiet channels — in daytime at least — and also because fairly efficient aerials can be constructed on these frequencies without the need for great height.

If the signal strength 1km from the

<p>| Table 1. Vital statistics of various low-powered m.f. stations operating in London. |
|------------------------|--------------------------|-----------------|-----------------|--------------------------|------------------------|</p>
<table>
<thead>
<tr>
<th>TX power</th>
<th>70dBµ</th>
<th>area</th>
<th>Population `000s inner city</th>
<th>Population `000s suburbs</th>
<th>40dBµ</th>
<th>sky wave radius</th>
<th>100-400km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>2.5km</td>
<td>20km²</td>
<td>155</td>
<td>70</td>
<td>20km</td>
<td>21dBµ</td>
<td></td>
</tr>
<tr>
<td>2W</td>
<td>3.1km</td>
<td>30km²</td>
<td>260</td>
<td>114</td>
<td>23km</td>
<td>24dBµ</td>
<td></td>
</tr>
<tr>
<td>4W</td>
<td>4.0km</td>
<td>50km²</td>
<td>400</td>
<td>170</td>
<td>28km</td>
<td>27dBµ</td>
<td></td>
</tr>
<tr>
<td>8W</td>
<td>5.0km</td>
<td>78km²</td>
<td>620</td>
<td>260</td>
<td>33km</td>
<td>30dBµ</td>
<td></td>
</tr>
<tr>
<td>16W</td>
<td>6.0km</td>
<td>112km²</td>
<td>870</td>
<td>375</td>
<td>38km</td>
<td>33dBµ</td>
<td></td>
</tr>
<tr>
<td>32W</td>
<td>7.2km</td>
<td>162km²</td>
<td>1260</td>
<td>542</td>
<td>44km</td>
<td>36dBµ</td>
<td></td>
</tr>
<tr>
<td>64W</td>
<td>9.0km</td>
<td>254km²</td>
<td>1970</td>
<td>850</td>
<td>50km</td>
<td>39dBµ</td>
<td></td>
</tr>
<tr>
<td>128W</td>
<td>11.0km</td>
<td>380km²</td>
<td>2960</td>
<td>1270</td>
<td>61km</td>
<td>42dBµ</td>
<td></td>
</tr>
</tbody>
</table>
transmitter is known (and this can be inferred from the effective monopole radiated power) then the predicted signal strength at any distance up to 60km from the transmitter can simply be read off the graph. The vertical axis of Figure 3 is scaled in decibels relative to the signal strength at 1km.

Figure 3 shows how this curve is used to predict the 'service' (70dBu) radii of transmitters using various amounts of power. Also shown on this curve is the 'impact' radius — defined by the 40dBu contour, and representing the minimum radius, at which the occupied frequency could be reused.

The IBA transmitter on 1548kHz is also shown on the diagram to provide a sense of perspective. All three London 'local' radio stations use high-power channels — channels which could (and in the view of the author should) be used for network levels of power and coverage. Our proposals cannot run to the tens of kilowatts used by the BBC and the IBA because international clearance for such powers would not be forthcoming. Indeed, after contemplating 'impact' radii and sky-wave propagation estimates (Table 1), we decided that we could keep effective monopole radiated power down to a few hundred watts on any frequency, while providing London-wide coverage on a pair of channels.

We take the view that new community radio services should take the lead in applying an approach to broadcast engineering which seeks to maximise the efficiency with which every watt or radiated power is used. It is clear from the data which we have generated from our exploratory calculations that using a large number of smaller transmitters is much more effective than using one large one with the same total power. For instance, eight two-watt transmitters will cover an area of 272km² with a field strength of 70dBu or more; one sixteen-watt transmitter covers just 112km² to the same effect.

Clearly, there are economic imperatives which ultimately point us in the other direction. But maximising the number of listeners per watt is probably the most important task facing broadcast engineers in the all-too-crowded spectrum.

The hypothetical m.f. transmitters which we have analysed may either be used independently, or as part of a network of fully-synchronous transmitters using two frequencies per service — in much the same way as Radio 1 and Radio 2 already cover the country. We suggested that between eight to ten transmitters, each with an effective monopole radiated power of about 50 to 80W, should be assigned to the two frequencies in such a way that good reception on one channel coincides with poor reception (due to multiple signals) on the other. The problem of cyclic fading, due to imperfect synchronisation between carriers, and of modulation distortion due to unequal time-delays in the distribution network are both easier to solve on this smaller scale. Cyclic fading can be tackled by locking each transmitter to a common frequency source (such as one of the Brookman's Park m.f. transmitters), while the time delays in any distribution circuit are sufficiently small for correction circuits to be easy and practical.

We did suggest (perhaps rather optimistically) that frequencies at v.h.f. or u.h.f. (possibly old broadcasting frequencies released by the Merrill Spectrum Review Committee) should be made available for point-to-point links across the city, thus saving the expense and bother associated with land-lines.

Conclusions
For the moment, all this can be dismissed as just an amusing piece of speculation.
Continued on page 44
Mixed logic

First came nand and nor, their functions being a product of the technology of the time. Circuit synthesis procedures evolved which regarded these devices as actually performing nand/nor logic functions. We now inherit a system which automatically generates obscurely-intentioned circuit schematics. But all is not lost . . .

A circuit diagram is a medium of communication and is one of the most important items of documentation linking the designer with the user.

The circuit diagram of a digital system should convey the original logic intentions of the designer of the circuit. It should do this directly, with no requirement for elaborate transformations.

- Circuit symbols should represent combinational logic directly in and-or-not terms.
- Correspondence between logic value (true and false) and physical voltage counterpart (high and low) should be evident at any point in the circuit.
- Notation should clearly indicate type of physical device used at any point in diagram.

The reality

A manufacturer produces a device with the following response to applied input voltage signals

Using positive logic convention, the manufacturer suggests a logic truth table for this device

And assigns a symbol to the device . . .

Now make a full analysis with the aid of Fig. 5.

"Duality. — Given a physical device characterised by a table of combinations, the logic function performed by the device is determined by the specific choices of the l-state at its inputs and outputs . . ."

Highlighted sector of Fig. 2 is the only region that most customers consider. As a result, a whole tradition of logic synthesis has evolved which concerns itself with forcing reduced expressions into a fixed format (network of nand gates) by tortuous manipulation, De Morgan's rule being constantly invoked.

Examination of Fig. 2 however reveals that it conceals another logic identity . . .

Mike Butler, M.S.E.R.T., joined Marconi International Marine Co. as a Radio Officer in 1961. After 6½ years he went ashore to head office in Chelmsford as a test engineer. Work in the engineering division led to his current position as a radar development engineer in the company's laboratories.
Definition extracted from BS3939, section 21. In Fig. 5, left, we may recognize two pairs of 'duals', i.e. (b) i & ii and (c) i & ii. Examine another physical device:

![Fig. 6]

It is evident from Figs 5 and 6 that one physical device may have its logic function interpreted in four ways, i.e. two pairs of logic duals.

We must regard an example to reinforce our bewilderment.

![Fig. 7]

Fig. 7 above illustrates a standard schematic representation of a logic function. Without the transformation shown, it is not possible to directly interpret its function. Re-draw the circuit, using the logic dual concept (intentional logic):

![Fig. 8]

From Fig. 8
- the 'negation indicator' (circle at input/output) may be regarded as a DeMorgan operator
- two negation indicators at each end of a connective line, cancel the effect of each other
- use of the logic dual clarifies interpretation of a schematic representa-

The above illustration does however raise a nasty doubt in the mind! Are the two gates in the example, physical nor gates using negative logic representation Fig. 6 (c)? And are the two gates in the example, physical nand gates using positive logic representation Fig. 6 (b)?

We are left with the problem of identifying the physical implementation of the above circuit, with no clues to conjure with!

Summary so far
- Classical logic synthesis procedures tend to generate unreadable circuit schematics.
- A logic function may be synthesized directly in and-or terms using logic duals (intentional logic).
- The 'not' function may be implemented easily by manipulation of the negation indicator on connectives.
- Logic diagrams below do not directly relate logic state to voltage level at each node in the circuit, a factor which can be of extreme significance in field servicing.

![Fig. 9]

Mixed logic

We must abandon the fixed convention of positive and negative logic and mix them! Conventional methods emphasize close parallel between logic and voltage; mixed logic will emphasize the **distinction** between the two, eliminating the confusion introduced by forcing a fixed relationship between logic and voltage.

Back to basics

The functions 'and' and 'or' are represented by the customary symbols BS3939.

![Fig. 10]

Following conventions are stated

Logic validity defined as true symbolized by 1 or false symbolized by 0
Voltage level is described as high symbolised by H or low symbolised by L.

A new symbol is introduced to indicate application of a convention: the 'flag' or polarity indicator.

![Fig. 11]

This is applied as shown below.

<table>
<thead>
<tr>
<th>Logic</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 equivalent to H</td>
<td></td>
</tr>
<tr>
<td>0 equivalent to L</td>
<td></td>
</tr>
<tr>
<td>(no polarity indicator)</td>
<td></td>
</tr>
<tr>
<td>1 equivalent to L</td>
<td></td>
</tr>
<tr>
<td>0 equivalent to H</td>
<td></td>
</tr>
<tr>
<td>(polarity indicator used)</td>
<td></td>
</tr>
</tbody>
</table>

For example

![Fig. 12]

Presence or absence of polarity indicator serves only to define which **voltage convention** in force at interconnection input or output interface of basic logic symbol, and does not indicate reversal of logic state.

To reinforce this concept, study the following examples. Note that they include two truth tables to emphasize the **crucial** distinction between logic and voltage.

From Fig. 13, over,

Logic truth table remains same for each basic identity, whether flagged or unflagged.

Relevant section of voltage truth table modified where flag is applied.

The voltage truth tables above can be taken to describe the action of a physical device which would be used to implement
the function. The voltage truth table of (ii) describes a t.t.l. 7400 nand gate, while the voltage truth table of (iv) describes a t.t.l. 7402 nor gate.

Two more examples are shown in Fig. 14.

Logic duality

If you now compare the voltage truth tables in Fig. 14 with the voltage truth tables of the previous four examples in Fig. 13, you should come to a startling conclusion, Fig. 15, right.

The same physical gate may perform an 'or' or an 'and' logic function under certain conditions, a physical nand gate may perform a logic 'or' function, and a physical nor gate may perform a logic 'and' function. This is the law of Logic Duality.

We now introduce the non-equivalence and equivalence logic functions. Figure 16 shows the gate symbols and truth tables for these two functions.

You are now left to prove the Fig. 17 duals, using the procedure outlined earlier.

Figure 18 summarizes logic duals.

Voltage level changing

Given the following problem, what do we do?

![Voltage level changing diagram](image)

Fig. 19

To validate the voltage truth table in physical terms, we require of course a physical device called a voltage inverter, symbolized below.

![Inverter diagram](image)

Fig. 20

Our solution to the above problem is therefore

![Inverter solution diagram](image)

Fig. 21

Note carefully that no logc change has occurred; the same logical signal is present on both sides of the voltage inverter. Sole function of the voltage inverter is to change voltage representations for logic truth.

As further example for emphasis, consider implementation of equation \(M = A + B \), where

- input \(A \) is flagged ('1' \(\equiv L \))
- input \(B \) is un-flagged ('0' \(\equiv H \))
- output \(M \) is flagged ('1' \(\equiv L \)).

![Example implementation diagram](image)

Fig. 22
We obviously require a voltage inverter at the A input.

Fig. 23

The same logic signal is present on both sides of voltage inverter on A line. The voltage inverter may be implemented in a variety of other ways.

Fig. 24

All of these variants will be encountered in practical circuits.

Logic inversion
What is the physical implementation of logic "not"? Consider the circuits of Fig. 25.

Logic variables A and B are being physically implemented by the same voltage on wire. The logic tables above are derived...
from voltage on line (H or L), logic states depending on the presence or absence of flags at A and B. In cases (a) and (b) no inversion occurs. However, in cases (c) and (d) the logic truth table indicates logic inversion (logical not).

To summarize: logical not operation occurs over a piece of wire on which voltage convention is 'switched'.

To guard against any tendency to wonder about an error in the circuit diagram, an oblique 'slash' . . .

is placed across any line over which logical not operation has occurred.

The logical not operation is thus clearly identified on the diagram, and shows that voltage convention has been switched:

The presence or absence of a 'polarity indicator' also serves to define voltage convention in force at a 'labelled' input or output to combinational logic network, and is associated with validity of 'label' at these points, Fig. 27.

Last words

Adoption of the system presented means total reversal of an outlook drilled into a generation of students by basic classic textbooks, and I confess to performing many mental gymnastics in the process of re-conditioning my thinking. During this procedure however, many nasty rule-of-thumb habits were discarded.

With regard to design of combinational logic circuits, the technique is very powerful and results in economical design. Greatest advantage lies in the fact that the designer works in pure logic and only reverts to the physical world when choosing devices to implement the design; at which point a few voltage inverters transform the circuit into the real world.

Use of duals in circuit diagrams appears to upset users who encounter this representation for the first time, and the response is very typical: "This is all very nice and academic of course, but how will the p.c.b. layout draughtsman and service technician be able to identify the physical type of, say, IC30 and IC31?"

The answer lies of course in the fact that manufactured devices are always in 'and', 'or' nand or nor form, i.e. they don't have flagged inputs. Therefore on encountering a gate with flagged inputs a mental dual transformation is all that is necessary, Fig. 28.

Continued on page 35
300baud full-duplex modem

Most designs featured in magazine articles have been acoustically coupled and have not met any previously adopted standard for frequencies. This design directly couples to the telephone line, giving better security and lower error rates, and uses standard data channel frequencies.

by Des Richards

<table>
<thead>
<tr>
<th>Call mode</th>
<th>Frequency</th>
<th>Answer mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>960Hz - binary 1</td>
<td></td>
</tr>
<tr>
<td>Receive</td>
<td>1180Hz - binary 0</td>
<td></td>
</tr>
<tr>
<td>Transmit</td>
<td>1650Hz - binary 1</td>
<td></td>
</tr>
<tr>
<td>Receive</td>
<td>Channel 2 - Transmit 1850Hz - binary 0</td>
<td></td>
</tr>
</tbody>
</table>

Using this convention the contention of two modems trying to transmit to one another on the same frequencies will not arise provided that each modem is in the complementary mode. To enable duplex transmission over a two-wire circuit the transmit and receive signals must be separated by the use of a hybrid transformer and transmit and receive filters. The hybrid transformer also provides a d.c. loop on the telephone circuit to hold the call. This is required on both the originating call and the answering call to indicate to the exchange equipment that the line is in use. The transformer must be able to carry a primary direct current of up to 120mA and not saturate, thus enabling a.c. signals to be sent and received through the transformer without attenuation. Both the transmit and receive signals are buffered by zero-gain amplifiers to give a stable impedance of 600 ohms to the hybrid and they also provide a degree of protection to the filter against high voltage transients which could be induced into the transformer from the telephone circuit.

The filter consists of a single integrated circuit specifically designed for modem use. It is the Reticon R5631, a monolithic i.c. containing two ten-pole switched-capacitor band-pass filters fabricated in n-mos technology with a 16 pin dual in-line package (see below for pin connections).

Included in the chip is a receiver gain-control stage which is externally variable from 0 to 20dB, a separate limiter for use with the receive output, a clock oscillator and t.t.l.-compatible switch inputs for self-test and mode selection, Fig. 3. The self-test mode gives the ability to loop the modulator and demodulator together via the filter and thereby enable local testing to be carried out.

The mode select and self-test gives the following combination of filters.

Modulator

The modulator is built using the XR2207 f.s.k. modulator i.c. which gives phase continuous output, the frequency of which is determined by C7 and the resistors R7, R4 selected by the logic combinations on pins 8 and 9.

The XR2207 provides two outputs, one a square wave on pin 13 and the one used in this application is a triangular waveform on pin 14. Use of the channel-select input on pin 8 gives the ability to change channel when the modem is switched between the
To auto answer unit

All switches shown in answer mode (high band Tx, low band Rx)

This switched capacitor filter chip is Reticon 5631. Adjustable resistors around 2207 circuit (top) are RV1 to RV4 in text.

call and answer modes.

To set the frequencies of the modulator follow this procedure. Apply a logic 1 to the data input and select channel one by applying a logic 0 to pin 8, this can be done by switching to originate mode. Adjust RV1 to give an output frequency of 980Hz. Then apply a logic 0 to the data input and adjust RV2 to give 1180Hz at the output. The adjustments must be done in this order as RV1 affects both the low and the high frequency whereas RV2 only affects the high frequency.

The same procedure applies to set channel 2 frequencies. This is done by selecting the answer mode and applying logic 1 to the data input. Resistor RV3 is then adjusted to give a frequency of 1650Hz. The data input is then set to logic 0 and RV4 adjusted to give an output frequency of 1850Hz. The output level is adjusted to give −10dB into 600ohms at the two-wire line side of the hybrid transformer. This completes the alignment procedure for the modulator.
Demodulator

The demodulator is built using another Exar circuit, the XR2211 which is a monolithic phase-locked loop device. It consists of a basic phase-locked loop for tracking a signal within the passband, a quadrature phase detector that provides carrier detection, and an FSK voltage comparator circuit that provides FSK demodulation. It will detect a signal between 2mV and 3V and has a built-in a.g.c preamplifier. The centre frequency, bandwidth and output delay are set by external components, centre frequency being determined by Cf and Rc. Adjustment of Rf is as follows:

Open Rf and monitor pin 13 or 14 with a high impedance probe. Don’t try to adjust the centre frequency by monitoring Cf with everything connected and no input signal applied.

The two centre frequencies are adjusted in the same way. Select call mode and adjust the frequency to 1750Hz and then select the answer mode and adjust the frequency to 1080Hz. This completes the alignment of the demodulator.

The carrier detect output drives the hold relay on the auto-answer board, and also gives a status indication of carrier being present on the circuit. The complementary output to this is connected to the data output circuit to hold the output to a logic 1 (-12V) when no carrier is present. This prevents spurious data from appearing on the output when no carrier is present. The output of the demodulator is unipolar and is converted to RS232 by an op-amp buffer to give ±12 volts.

To be continued

With regard to servicing, one is only concerned with reading the logic action and checking voltage levels at specifically numbered pins on labelled i.c. packages (assuming a silk-screened p.c.b., and suitable documentation). It is only when replacing a defective package that one must identify its physical type, and this information should be present in the documentation.

Example

With (a), (b) and (c) representing spare gates, which two of three shown can be connected to fulfill the function of the network illustrated?

How will the network be represented in mixed logic notation? (For maximum clarity of operation.)
NEWS

More micros for minors

Eight million pounds of Government money is to go toward new computing equipment and up-grading existing computers in schools and colleges of further education.

The extension to the Micros in Schools Scheme consists of 50% funding to allow RM3802 and BBC Model A computers to be converted. The Research Machines computer will be provided with 56K of memory (formerly 32K) and the graphics board with software, while the BBC design in its Model B form is to have disc drives and an Econet interface. Both computers can be supplied with a Microvitec colour monitor and a Walters printer. As an extra to the computers, the Government will also assist schools to buy a Buggy, which is a three-wheeled robotic device by Economatics, controlled by the computer, which will adaptively follow set paths, detect and delineate objects, operate a pen and find its way towards a given point. There is also Vela, which is effectively a multipurpose measuring instrument for voltage, frequency, waveform generation, transient capture and data analysis, being a central-hardware, programmable-function device.

A further scheme – CNC Machine Tools in Further Education – has as its aim the equipping of colleges with computer numerically controlled tools of various types, again on a 50% basis. Announcing the CNC programme, Kenneth Baker MP, Minister for Information Technology, said “This scheme follows the enormously successful micros for school schemes, as a result of which the UK has achieved the greatest progress of any country in technological education for young people.”

More than 6500 secondary schools have already received microcomputers under the scheme.

934MHz changed to meet European plans ...

UK 934 MHz citizens’ band is to be moved downward by 12½kHz following a Home Office decision to fall in line with a recent international channelling agreement for Europe reached by the Conference of European Posts and Telecommunications Authority, CEPT. Other technical requirements for 934MHz remain unchanged and existing sets may be used for the present. Dates by which existing sets must be modified and sets being manufactured must conform to the new channel requirements have yet to be fixed. Amendments to Home Office performance specification MPT1321 are being made to reflect the new channel plan.

... for whom?

Currently only one UK manufacturer, Reftec, makes sets for 934MHz and according to the company’s main distributor, 934 Communications, some 500 transceivers have been sold since Reftec first started manufacturing some 15 months ago. But a second company, Beeware of Harrogate, is about to break the monopoly by selling a 934MHz transverter that can be used with existing 27MHz sets. Beeware expects to sell around 1800 transverters in the first 12-18 months, a figure representing 2½% of the existing 75 000 official and unofficial c.b. operators.

Prices of a basic Reftec transceiver and a Beeware transverter with a 27MHz set are almost the same, working out at around £250, but the second option is more attractive to those who already have 27MHz sets and to those who want to operate on both bands. But according to Don Lane, a spokesman for 934 Communications, “Beeware cannot be serious. Japanese companies need an order of 10 000 before they will manufacture anything and there just isn’t the market for that number of sets.” Technical Director of Beeware, Bill Dewhurst replied “Of course we are serious. We have carried out a feasibility study, spent money and liaised with the Home Office on the specifications – had it not been for the recent changes, our product would be on the market now.” Sanwa make the company’s 27MHz set but Mr Dewhurst could not tell us who was manufacturing the Grandstand transverter expected to be available by the end of July.

Sets conforming to a European standard can potentially be exported. When approached on this subject, Dewhurst said “the snag is that the Japanese like to do things their own way. Exporting Japanese sets from the UK would not be easy but we have plans to manufacture in the UK, in which case we would be looking into exports. We have a design for a complete 934MHz transceiver and are looking into other fields of communications like marine and land-mobile radio and satellite tv.”

Lasers and radiation safety

Rapid increase in the use of lasers in both industrial and commercial has led to a complete revision of the BSI standard on laser radiation safety which has been in effect since 1972. Radiation safety of laser products and systems, BS 4083, has been published in advance of an international standard, which is an infrequent occurrence, and it could be that ISO in Geneva will base their standard on its content.

BSI says “It is impossible to regard laser products and systems as a single group since hazards vary according to factors such as wavelength, power and energy of the beam and duration of the emission. Eyes are the organs most at risk because the incoming visible or near infrared beam may be focussed on the retina to a 10 to 200µm spot which raises energy density by...
Racal gets 25 years in cells

Racal Millicom has received a 25-year licence to run a mobile telephone service based on cellular-radio technology but according to the DoI, the competing licence to be held by the BT/Securicor consortium is still to be issued. The licence requires that the service must start no later than 31 March 1985 – unless the holder has a good excuse – and that 95% of the population must be served by 1989.

When asked why BT hadn't got its licence yet, a spokesman said: 'We are working toward providing a cellular radio service in early 1985 – the licence is incidental, and there's no need to have it immediately.' On the other hand, Racal could not tell us anything more than what is in the licence and how much it costs (£1,000 initially then £1,000 p.a.). When asked when production of equipment might start – or indeed when anything concerned with cellular radio might start – Racal replied 'we'll let you know.' But as we write, the election looms and one can say that it is likely to be more embarrassing for a Government to retract a licence than it would be to refuse to issue one in the first place.

Digital v.c.r. with metal powder tape

Using recently developed metal-powder coated tape and a modified domestic video cassette recorder, researchers at NHK laboratories have demonstrated that high-density digital recording can give better results than conventional analogue v.c.r.s. The researchers say that given some improvement in head sensitivity and tracking accuracy, the digital v.c.r. will consume less tape than its analogue counterpart and produce good picture quality.

Digital circuits used are the same as those developed for NHK's 1979 digital v.t.r. experiments but using trial samples of Fujii's metal powder tape has allowed recording density to be more than doubled, to 3kbit/mm. With the same tape consumption as a conventional recorder, digital rates of 216Mbs were achieved. This experiment is outlined in NHK Laboratories Note No 218.

In brief

An agreement to support European Computer Manufacturers' Association work towards proposed CCITT electronic mail standards was signed on 29 April by seven companies – ICL, Rank Xerox, Ferranti, CII Honeywell Bull, Olivetti, ITL and Logica.

City & Guilds Radio Amateur course 765 starts at Oak Farm centre, Chaucer Road, Farnborough, Hants on 22 September. For further details teleph one 0252 540084.

Incorporated Practitioners in Radio and Electronics, IPRE, is born under the wing of the Society of Electronic and Radio Technicians. Providing professional services to engineers involved in domestic and industrial electronics servicing, IPRE bases its entry levels on City and Guilds courses and is the only institution open to the many service technicians whose study is not normally recognized because of its practical nature.

Infrared astronomical satellite IRAS spotted a comet approaching us at 28km/s on 11 April and estimated that it would miss Earth by 4.5 million kilometres on 11 May, appearing faint but several times the size of the moon.

General specifications for NHK's experiments in high-density digital recording for video signals. Digital circuits for both experiments are the same but using metal powder tape has double recording capacity. Characteristics of reproduced digital video signal are also given. "There were many dropouts because a trial production metal-powder tape was used, but error rate could be reduced to one tenth of this value by using a mass-production coater in the tape manufacturing process."
MOS power device with thyristor on resistance

A mos gate-controlled power switch with an on resistance comparable to that of a thyristor has been developed by RCA. On resistance of v-mos power devices rises with increasing drain-source voltage capability, limiting their high-voltage applications, but the newly structured device exhibits an on resistance ten times lower than standard state-of-the-art mosfets with the same size and voltage rating. RCA scientists have manufactured several hundred of the devices, called Comfets (conductivity-modulated fet), some 1.5mm² and some 3mm², and nearly all of the larger chips had on resistances of less than 0.1Ω at 20A.

Typical experimental Comfets with 8A anode current took 1µs to turn on but between five and 20µs to turn off, which is relatively slow. The n-p-n-p structure of the device is similar to that of a thyristor and it can be made to latch using high drive currents. In the larger devices latching occurred at between 10 and 30A, depending as one would expect on temperature and anode voltage. But an interesting feature of the device is that latching current is also strongly influenced by gate turn-off time. Slow gate turn offs of around 10µs permit anode currents up to 30A without latching but a rapid gate turn off of less than 1µs leads to latching at much lower anode-current levels in the region of 10A. The Comfet is detailed by J. P. Russel, A. M. Goodman, L. A. Goodman and J. M. Nielson in IEEE Electron Device Letters, vol. EDL4, no 3, March 1983.

4Mbyte micro-floppy

Using a different approach to perpendicular magnetic recording, Sony claims to have produced the highest density magnetic recording ever, with a linear density of 2.58kbit/mm. This represents an improvement of 31 times that of a 51/4in floppy disc or eight times that of a high-density microfloppy. Toward the end of last year Toshiba claimed a 27-fold improvement over conventional floppy discs for their p.m.r. technique (February News) and although this figure is lower than the latest claim, Toshiba indicated their disc and drive was ready for manufacture whereas Sony's development is still in the experimental stage.

Effects of magnetic properties and thickness of single-layer cobalt-chromium media on perpendicular recording with a ring-shaped head are discussed in IEEE Transactions on Magnetics, vol. Mag-18, no. 6, November 1982. In this experiment Sony researchers achieved a recording density of 4.5kbit/mm using a ring-shaped head but the disc drive more recently described uses a w-shaped head to give a recording density of 2.58kbit/mm. Toshiba uses a ring-shaped head in its drive.

Obituary

Lawrence Henry Hewes Cooper, 'Dick' Cooper to his many friends and associates, died in hospital last February following an operation.

Born in 1912 and educated at Dulwich College, he spent a lifetime in electronic engineering. In his early career he worked with P.G.H. Voight at the Edison Bell Company, where he was involved in sound recording and reproduction. In 1933 he joined British Acoustic Films and worked on the design and installation of recording equipment at the Gaumont British Studios in Shepherds Bush. By 1935 he was working independently on the design of battery charging equipment using wet tantalum rectifiers, work which, coupled with other developments, led to the formation of Correx Communications and Correx Amplifiers. During this period he took out a patent for a modified form of push-pull drive circuit using a double-wound choke in place of the resistance or transformer feed circuit then in current use.

In June 1948, Transformer Equipment Ltd was founded and was soon serving many of the best known names in the electrical engineering industry. In addition to a wide range of other transformers, from 1958 the company made well known and widely used ultra-linear output transformer designed by J. Somerset-Murray.

Lawrence Cooper's phase-splitting circuit was the subject of an article in the 22 October 1937 issue of Wireless World. At that time, centre-tapped inter-valve transformers had been widely used for driving push-pull output stages but the demand for high-fidelity reproduction had led to resistive phase splitting circuits being introduced which became inefficient with low h.t. supplies. Mr Cooper's solution was to use a double-wound choke in place of the phase-splitting resistors to give a greater anode voltage with a lower potential difference between heater and cathode at low h.t. supplies.

Corrections

High-impedance electronics. In the first paragraph of this article, which appeared in the April issue, a line was dropped. The relevant section, nine lines into the paragraph, should read "... it saturates at 500 to 600mV as the junction becomes forward biased (Fig. 2). If the diode is connected between 'real' earth and the virtual earth ...".

Domestic alarm system. Several errors occurred in this article, published in the March issue. In Fig. 1, V+ should go to the right of the fuse, and C2 (unlabelled) is connected to pin 4 of gate A. The Disarm line should continue to the disarm switch, bypassing pin 5 of IC2, and the 1uF capacitor across IC2 should still go to pin 5. Diodes across the relays are 1N4001, and the resistor on pin 4 of IC7A is 680k not 220kΩ. The caption to Fig. 2 shows a 25s delay, not 20s.

In Fig. 3, the capacitor on pin 4 of IC7A is 47µF, 16V and IC10 is 7555. The switches should be S3 and S4, not S1 and S2, which are fire and disarm in Fig. 1. Capacitor C8 is on pin 2 of IC7A. Lines 14 and 15 of the first paragraph of page 30 should refer to FIRE, not F ire, and line 2 of this page should say "IC2 input".

The third line of paragraph two of the section headed 'Control unit' should refer to a 30s delay.
Organ interface for microcomputer

Principles used for each section of the software for the Nascom 2 organ interface and music editor, described in the June Issue, with source code listings for the critical elements.

By R. D. Easson

The software is described in four sections, see panel. The first enables the microcomputer to repeat a performance made on the organ, with variation of speed, whilst the second provides the edit functions. The third section allows music to be typed into the microcomputer, and the fourth (in Forth) provides simple polyphonic extemporization.

The first section comprises only about 150 instructions. Only the first two sections were conceived when the interface was originally designed but to date the software has obstinately refused to stop growing.

Read and play routines

The system now has 24 register pairs. Two groups of 24 bytes of ram are designated console fields 1 and 2. When the read and play modes are entered, the console fields are set to represent the console switches with all keys off (status 0) and all stops cancelled (status 1). The PIO is then set up to mode 01 (input) and the interrupts are enabled, as described by the source listings given in List 1. It is worth commenting that four levels of interrupt have to be set: c.p.u. interrupt mode 2, PIO port B interrupt, c.p.u. enable interrupt, and pending interrupt disable. The last of these was particularly vexing: even Mostek did not seem to know about it when they wrote the provisional data sheet on the MK3881 PIO. It was finally laid to rest on page 109 of the Mostek 1979 Microcomputer Components Data Book. The address of the routine which services the interrupt is kept at the vector address.

Once the PIO and c.p.u. are ready to accept an interrupt, the microcomputer enters a wait loop which includes a scan of its own keyboard for the read-mode direct commands. On the Nascom 2 with NAS-SYS 3 this is accomplished very simply with the routine "in" (DF62H) which transfers the ASCII code for any character typed to the A register. When the interrupt arrives from the interface hardware, operation moves to the interrupt service routine (List 1) and the first byte is read in through port A to console field 2. The remaining 23 bytes follow at about 20μs intervals. Operation relies on the hardware working slightly faster than the software (which necessitates a short wait loop if the c.p.u. is running at 4MHz) but the hardware and software are re-synchronized after each byte because the hardware has to wait for the c.p.u. to raise the ready line.

Thus the status of each register is read into the appropriate place in console field 2 once per frame. Before operation returns to the wait loop for the next frame (i.e. as part of the interrupt service routine), the new console field is compared byte by byte with the previous one. If there has been no change, the null frame counter (n.f.c., a two-byte variable) is incremented. If something has changed, the contents of the n.f.c. and the number and revised status of the register or registers which have changed are read to the data field (which normally starts at 1340H) and the data field packed data pointer is incremented accordingly to the start of the next frame. Thus a frame comprises 3+2n bytes including the frame byte when n is the number of registers whose status has changed. The packed data and other pointers are sometimes parked in a scratchpad area of ram but where speed is important they are kept in register pairs of the Z80 or where necessary on the stack. Both sets of registers are used to provide sufficient pointers for comparing console fields 1 and 2, which is probably faster than using the index registers would be. The source code for this part of the interrupt service routine is given in List 2. Once the information has been extracted from console field 2 it is transferred to the console field 1 position so that console field 2 becomes free for the next frame.

Operation in play mode is simpler than in read mode because comparisons are not required. As before, a console field is initiated and the PIO and interrupts are enabled in the same way, except that different vector and interrupt service routine addresses are used and that the PIO is set to mode 00 (output) via port B. The wait loop is then entered and includes the checks for the play mode direct commands. When the interrupt arrives, the console field is trundled out through port B into the 4094 latches and the n.f.c. is decremented.

Operation then returns to the wait loop, which includes a check of the n.f.c. When it reaches zero, control passes to the update console field routine, which takes less than one frame period. This routine inspects the next byte in the date field. If it is a frame byte, the next value of n.f.c. is taken and the process continues, but if it is a register number the revised status of that register (the following byte) is read to the appropriate position in the console field and so on until the frame byte is reached (software couplings can be introduced at this stage). Operation then returns to the wait loop so that when the next interrupt arrives the revised console field is read to the console latches.

Console field 2 (read mode) or the console latches (play mode) are reset for every frame whether or not anything has changed. Should an error occur due to triggering of the interface hardware by a noise spike (a rare event) it will quickly be corrected, normally within one or two frames. Similarly, the synchronization of hardware and software is achieved one or two frames after the execution of the play mode and read mode routines.

Edit routines

The principal edit routines are effected by the play mode direct commands J (join) and E (edit) once the edit points have been
Interrupts are either without interfering with what edit length section been away when everything has been stored about the needs to the other, different block (LDIR LDDR). The selected interrupt then throws the next two characters are translated directly into machine code.

The principle is that the one values (durations) are translated directly into the null code. It was found that the machine code for each character, incremented or decremented, is the most convenient for a relatively simple console (LDDR). In each code field, the first character is:

- Natural keys and pedals
- "Black", "Keys", and "Pedals"
- "A", "B", "C", "D", and "E"
- "F" for foot pedals
- "G" for foot pedals
- "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"
Furthermore, the key codes for the three divisions were divided exclusively by the least significant half-byte. From then on, things fell into place quite easily. For example, the address of the first byte in the table for any of the 49 Hauptwerk keys is found by adding 8800H. Thus the register number for C3 (433H in ASCII) is stored at FB35H, whilst its status is stored at FB53H. The Z (for #) adds a further 10H to give the corresponding table addresses for HC3#: FB43H and FB63H. At a later stage, extra routines were added to convert flats (indicated by) to the corresponding sharps. The same conversion process works for all notes except A for which an extra test is required, as shown in List 3. Again to keep the table reasonably compact the stop codes (e.g. P8 for Prinzipal 8') are divided into two groups: the first group having initial character P, Q, R, S, T, U, V, or W with all others in the second group.

The thumbprint on the instrument in question are divided into five groups designated A1 to E3, plus four “disables”. These codes are converted in a similar manner. The complete table of conversion factors (apart from those for the thumbprint characters which are specific to the instrument) is shown at the foot of this column.

Some rearrangement might be required for different stop lists. The stop names and codes used on the instrument to which the interface is connected are shown in Table 2.

The directory character L (lifts) causes a search through the 16 bytes of the console field which represent keys and pedals. If the status of any of these is non-zero, their register numbers are read to the data field with status zero. The console field is also reset to zero. Later keying entries in the same frame might cause a further change of status, but the final status is left in the console field when the data field is unpacked by operation in play mode.

When the translate routine is operated, up to eleven lines of 48 characters in video ram are scanned directly, one or two characters at a time, by the video ram pointer according to the video ram line and column count (VRCLC and VRCC). Scanning ceases at “.”. Spaces are ignored, except for the ones which define the ends of Duration definitions. Following any space, any character apart from the eight directory characters is treated as an error.

The knottiest part of this section is the part which sorts out the natural, sharp and flat notes and the keyings from releases. One way of doing this is shown in List 3, in which the two-character key codes as typed are designated VRNC (video ram note code) whilst the contents of the look-up table (LUT) are designated ORN and ORS (organ number and register status).

Additional characters could be added to the main directory. For example, “,” instead of “,” indicating a bar line before the next duration, using a different frame byte; would enable the microcomputer to vary rhythm and tempo. "X" might be used for expression (swell pedal) followed by a number in the range say 0 to 1FH to indicate degree of opening. This information could also probably be stored in the frame byte.

It is not a necessary type of notation in most music, which contains sequences (phrases repeated at a different pitch) and echo passages. When this occurs the first phrase can be edited for the second or subsequent phrases.

Polyphonic extemporization

By this time, the original 150 instructions had grown to some 5K bytes of code, documented in about 60 pages of minute manuscript, some of which had been rewritten several times. Things were getting unwieldy and an alternative approach to programming seemed to be required. Forth came to the rescue. Using ‘character fetch’ and ‘character store’ together with four machine-code Forth words mainly extracted from the earlier programs, communication was soon established between the console field, the data field and the Forth stack. New console fields quickly blossomed, each one adding an address defined by a Forth constant, with

List 3. In translate mode, each key code can have one or two following characters to indicate sharp, flat and/or release. This routine determines the appropriate conversion factors.

![Table with key codes and their corresponding translations](image)

Initial or second character
- For m.s.b. address, add
- To convert to l.s.b. address, add

Manuals

<table>
<thead>
<tr>
<th>H</th>
<th>R</th>
<th>P</th>
<th>H</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>8005</td>
<td>B80A</td>
<td>A7D0</td>
<td>A870</td>
<td>B840</td>
</tr>
</tbody>
</table>

Pedals

<table>
<thead>
<tr>
<th>0020</th>
<th>0020</th>
<th>0020</th>
<th>0001</th>
<th>0001</th>
<th>0001</th>
<th>0001</th>
<th>0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stop

- First group
- Second group

<table>
<thead>
<tr>
<th>H</th>
<th>R</th>
<th>P</th>
<th>H</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>8005</td>
<td>B80A</td>
<td>A7D0</td>
<td>A870</td>
<td>B840</td>
</tr>
</tbody>
</table>

Notes

- For “black” notes (0010), flats (0010) and A0 (0700).

OK for keyboard compass to 85. Use B806 and B80C if C6 is needed. Additional conversion factors are used for “black” notes (0010), flats (0010) and A0 (0700).

氨酸
Digital filter design procedure

These examples of the design of a simple digital filter (June issue) and that of a fourth-order Butterworth filter show how laborious maths may be simplified and the recurrence formula written without having to solve a fourth-order equation.

by J. T. R. Sylvester Bradley

Bilinear transformation. The analogue Butterworth filter has a transfer function with a flat characteristic at low frequencies, rolls off sharply at the cut-off frequency and falls to zero at an infinite frequency. The digital version must follow the analogue characteristic as closely as possible, with a flat characteristic in the pass band, roll-off sharply at cut-off, and then fall to zero at f_{max} (not infinity, as for an analogue filter; f_{max} is half the sampling frequency and is the maximum frequency that can be processed by the digital filter). We have to make the frequencies on the z-plane correspond with those on the s-plane of the analogue equivalent. One way to make the frequencies correspond is use the mapping

$$s = \frac{2(z-1)}{z+1}.$$

It follows that the frequencies on the z-plane are represented by angles (ωT) so that

$$\omega T = 2\tan^{-1}\omega/2.$$

T is the sampling period. Thus the z-plane maximum frequency is ω_{max} corresponds to an analogue frequency given by

$$\tan^{-1}
\frac{\omega_{\text{max}} T}{2} = \tan 90 = \infty.$$

So having chosen the cut-off frequency ω_c as 3/8 of the sampling frequency f_c, the equivalent analogue cut-off frequency Ω_c is

$$\Omega_c = 2\tan^{-1}\frac{\omega_c T}{2}.$$

In general, for a nth-order filter $H(s) = \frac{\Omega_c^n}{(s+\Sigma_1 \pm j\Omega_1)(s+\Sigma_2 \pm j\Omega_2)\ldots(s+\Sigma_n \pm j\Omega_n)}$.

*See page 207 of Digital Signal Processing by Oppenheim and Schafer.

There are poles on the s-plane where $s+i\Omega = 0$ (i = 1 to n/2). Using the transformation given, the poles on the z-plane are where

$$\frac{2(z-1)}{z+1} + \Sigma_i = 0.$$

.: For $+j\Omega_1, 2-2z = \Sigma_i(z+j\Omega_1 z+j\Omega_1 + \Sigma_i$.

.: For pole 1, $z = \frac{-\Sigma_i -j\Omega_1}{2\Sigma_i +j\Omega_1}$.

Design method

- Filter data: f_c kHz, f_s kHz, f_{max} kHz, f_{max} kHz.

- Pre-warp the cut-off frequency to obtain the equivalent analogue cut-off frequency

$$\Omega_c = 2\tan\frac{\omega_{\text{max}} T}{2} = 2\tan 1.178 = 4.828.$$

- Draw the s-plane diagram for the equivalent analogue Butterworth filter. This has poles distributed equally round the left-hand side of a circle (the Butterworth circle) of radius Ω_c, Fig. 9. The positions of the poles are given in terms of $\Sigma + j\Omega$ as

$$p_1 = \Sigma_1 + j\Omega_1 = 2.5 + 1.848.$$

$$p_2 = \Sigma_2 + j\Omega_2 = 2.5 + 4.460.$$

$$p_3 = \Sigma_3 + j\Omega_3 = 2.5 + 8.920.$$

Similarly for p_4 and p_5 in conjugate positions.

- Find the positions of the corresponding poles on the z-plane.

For p_1

$$Z_1 = \frac{2-\Sigma_1 - j\Omega_1}{2 + \Sigma_1 + j\Omega_1} = \frac{2 - 1.848 - j4.460}{2 + 1.848 + j4.460} = 0.758 \angle -137.2^\circ.$$

Fig. 9. S-plane diagram of a fourth-order (analogue) Butterworth filter.

Many digital filter requirements can be met without any more algebra than as shown. It remains a problem, however, to design a low-pass filter with anything approaching an ideal characteristic, just as it does in the analogue world. The well-known Butterworth filter has a flat characteristic in the pass band and a steep roll-off depending on the filter order. In the example, a digital equivalent to a Butterworth filter is designed, and rather laborious algebra is involved. So far as is possible, this is worked in general form so that it can be applied to other filters with different cut-off frequencies, and one or two short cuts are pointed out.

To obtain a steep roll-off a high order is required, but this would need many terms in the recurrence formula, resulting in a time delay that would probably be too great for the filter to operate in real time. The order must be chosen with the ability of the hardware in mind. With this in view a fourth-order filter is worked as an example, as this is the minimum order which shows the Butterworth characteristic clearly.

Cut-off frequency is a function of the sampling frequency. Suppose a 4 kHz base-band slot were sampled at the Nyquist rate (8 kHz), with the requirement to filter the input so that there is no distortion in the pass band and a sharp cut-off at 3 kHz. Then the required cut-off frequency is 3/8 of the sampling frequency: $f_c = 3f_s/8$.
Find $H(z)$ from $H(s)$. In general form first,
\[H(z) = G(z+1)^4 \]

where a_1 to a_8 are the pole parameters, and G is a gain factor. The zero parameters are the coefficients of z in the numerator, which could be found by multiplying out. But this is not necessary as the coefficients are simply the binomial coefficients, which for the fourth-order expression are $1, 4, 6, 4, 1$ (b_0, b_1, b_2, b_3 and b_4). Now in general
\[H(s) = \frac{\Omega^4}{(2 + \Sigma_{i=1}^4 \Omega_i) / (s + \Sigma_{i=1}^4 \Omega_i)} \]

where $A=1$
\[B = 2 \Sigma_{i=1}^2 \Sigma_{j=1}^2 \]
\[C = \Sigma_{i=1}^2 \Sigma_{j=1}^2 \]
\[D = 2 (\Sigma_{i=1}^2 \Sigma_{j=1}^2 + \Sigma_{i=1}^2 \Sigma_{j=1}^2) \]
\[E = \Sigma_{i=1}^2 \Sigma_{j=1}^2 + \Sigma_{i=1}^2 \Sigma_{j=1}^2. \]

To find $H(z)$ use the bilinear transformation and substitute $s = 2(z-1)/(z+1)$, whence
\[H(z) = G \frac{16A(z-1)^4 + 8B(z-1)^3 + 4C(z-1)^2 + 2D(z-1) + E}{16A(z+1)^4 + 8B(z+1)^3 + 4C(z+1)^2 + 2D(z+1) + E} \]

Now obtain the coefficients of z in the $H(z)$ transfer function equation by evaluating A, B, C, D and E from the values for Σ_1, Ω_1, Ξ_1, Ω_2 given earlier ($\Sigma_1 = \Omega_2 = 1.848$, $\Xi_1 = \Omega_1 = 4.46$). Then
\[A = 1 \]
\[B = 2 \Sigma_1 + 2 \Xi_2 = 12.616 \]
\[C = \Sigma_1^2 + \Omega_1^2 + \Sigma_2^2 + \Omega_2^2 + 4 \Xi_1 \Xi_2 = 79.58 \]
\[D = 2 (\Sigma_1^2 \Xi_2^2 + \Sigma_2^2 \Xi_1^2 + \Omega_1^2 \Xi_2^2 + \Omega_2^2 \Xi_1^2) = 294.04 \]
\[E = \Sigma_1^2 \Xi_2^2 + \Omega_1^2 \Xi_2^2 + \Sigma_2^2 \Xi_1^2 + \Omega_2^2 \Xi_1^2 = 543.2 \]

The parameters of z in the denominator are conveniently evaluated using the tabular form shown on the next page (top). Totals are normalized to a_0. This only affects G, which can be made any convenient value in a digital filter, so dividing both numerator and denominator of the general $H(z)$ by a_0 yields
\[a_0 = 1 \]
\[a_1 = 1.968 \]
\[a_2 = 1.734 \]
\[a_3 = 0.1203 \]

and substituting these values in $H(z)$ gives the transfer function
\[H(z) = \frac{G(z+1)^4}{z^4 + 1.968 z^3 + 1.734 z^2 + 0.7242 z + 0.1203} \]

The coefficients of y and x in the recurrence formula can be read directly from the transfer function in this form
\[y \text{ coefficients} \]
\[\begin{align*}
 a_0 &= 1.968 \\
 a_1 &= 1.734 \\
 a_2 &= 0.1203 \\
 b_0 &= 1 \\
 b_1 &= 4 \\
 b_2 &= 6 \\
 b_3 &= 4 \\
 b_4 &= 1
\end{align*} \]

The b coefficients in the recurrence formula are simply the fourth-order binomial coefficients. Cross-multiplying gives
\[Y(z).z^4 + 1.968 Y(z).z^3 + 1.734 Y(z).z^2 + 0.7242 Y(z).z + 0.1203 Y(z) = G X(z).z^4 + 4z^3 + 6z^2 + 4z + 1. \]

\[x(n) \quad y(n) \]

Fig. 10. Z-plane diagram and $|H(j\omega)|$ frequency spectrum of the fourth-order digital Butterworth filter showing a typical flat response up to the cut-off frequency.

Fig. 11. Realization diagram for the fourth-order digital Butterworth filter.
The recurrence formula can be written directly into a computer to realize the filter. Impulse response is shown at Fig. 12, from which it can be seen that the filter rings at 1/3 of the sampling frequency f_s, as expected.

Planning for plenty

The Government shows no sign of being on the brink of licencing new radio services, perhaps because so far attempts to press it to do so have been ill-organised and incoherent. But it is important that engineers – without whom no radio services can ever be possible – become involved in the discussion about future directions for our radio services. Perhaps they can bring to it some clarity, cohesion and common sense!

Further reading

Partridge, S. "Not the BBC/IBA: The Case For Community Radio" Comedia Publishing Group ISBN 0 906890 18 7 (9 Pontland Street, London W1V 3DG)

The other magazine of the airwaves available quarterly from Box 12, 2A St Paul's Road, London N1 – annual subscription £2 for individuals.

References

2. Commerce written answers no.59 and no.60 29 March 1983. Speaking specifically about community radio, Mr Whitelaw said: "... given the resource demands of other developments in the broadcasting field, and since the spectrum available in the longer term is not yet known, I have concluded that it would not be right to take matters further at present. However, in the preparation of UK proposals for the v.h.f. Band II Broadcasting Planning Conference next year, account will be taken of the possible needs of community radio with the aim of reducing the spectrum constraints which could otherwise apply in the future; and further consideration will be given to the possible development of community radio when the outcome of the Conference is known..."
8. CCIR recommendation 368-2, XHth Plenary Assembly, Geneva, 1974

Fig. 12. Fourth-order Butterworth filter in action, showing impulse response with the filter "ringing" at 1/3 of the sampling frequency, as expected.

Fig. 13. Filter processing a series of four-sample pulses.

Dividing by z^4 gives

\[Y(z) = -1.968Y(z)z^{-1} - 1.734Y(z)z^{-2} - 0.7242Y(z)z^{-3} - 0.1203Y(z)z^{-4} + G(X(z) + 4X(z)z^{-1} + 6X(z)z^{-2} + 4X(z)z^{-3} + z^{-4}) \]

The gain G can be put external to the filter and can therefore be assumed equal to unity. The recurrence form is therefore and the realization diagram is drawn at Fig. 11. The recurrence formula can be
voltmeter will then get a nasty surprise every time the resistance terminals become open circuit!

The constant current source can be provided using a purpose-made integrated circuit, but protection for the meter is more of a problem. All the i.c.s used in the voltmeter described last month are capable of withstanding the full supply voltage at their input terminals; but there is still the meter movement to worry about because there is insufficient voltage headroom to incorporate current limiting in series with it.

The sensible answer is to place the limitation in the resistance measuring unit such that whatever the condition of its input terminals its output cannot exceed a value just in excess of full scale deflection of the voltmeter on its lowest range. The voltmeter could then be left switched to this range (or be directly connected) and the resistance scale switching effected from the resistance unit.

Circuit description

The circuit is shown in Fig. 1. IC₁ is a small transistor-sized i.c. designed to allow a constant current to flow in any circuit with which it is connected in series. The value of the current is determined by a resistor R₁, connected between the terminal and the negative terminal of the device. The i.c. is tolerant of a fairly wide voltage range across its terminals, but its output is temperature-dependent. Compensation is provided by the addition of D₁ and R₂ between the input terminals to ensure that this is achieved. Taps are taken from the feedback network so that whichever range is selected, the output of the voltmeter provides a full scale deflection of 10mV. This obviates the need to switch the voltmeter.

Since there is no ready means of checking the current out of IC₁, test resistors (one for each current range) can be optionally included.

The ability to measure resistances over 1 megohm is not often required in radio work and its implementation is not practical using this circuit. This is because of the low voltage available and the limitation on the voltage applied to IC₂.

Construction

A suggested p.c.b. is shown in Fig. 2, with a component overlay in Fig. 3. The layout can stand alone or it can be printed on the same board as the voltmeter. Position 7 of the voltmeter switch can be used for the add-on unit if the resistors which only use the switch as a tag-board are moved round.

The calibrated input divider present at all since the resistance terminal output is 10mV. If the input and output leads are kept separate then the wires between the switch and board can be laced together.

Calibration

If the resistance unit is carefully set up there is no need for panel-mounted adjustments because the accuracy is independent of the supply voltage. There are two variables in the circuit: the test current and the gain of IC₂. It is unlikely that the average constructor will have the equipment to measure a current of one microamp with any degree of confidence except by indirect methods, so we must look for another reference point in the circuit. We have one if IC₂ is driven to its output limiting condition, provided that the supply voltages remain constant. However, as with the voltmeter itself, the internal current-limiting feature of the 7650 should not be used in this circuit (i.e. pin 9 of IC₂ must not be connected to pin 4).

Before starting to set up the unit, give the construction a final check; then put a pencil mark on the scale about two divisions (4%) past the end of the normal f.s.d. scale position. Leave the input terminals open circuit and set all resistance trimmers to half way except R₁ which should be set to maximum.

Power up the circuit and if a battery model is being calibrated, set the supply voltage to 8V (equivalent to a low battery). Adjust R₈ on the 1Ω range, R₉ on the 100Ω range and R₁₀ on the 100kΩ range so that the meter needle just rests over the mark previously made on the scale.

Now, a non-inverting amplifier under dynamic conditions has three points of equal potential: the two input terminals and the tap on the feedback divider. In this circuit the lower part of the feedback divider is fixed, therefore the voltage across this portion is equal to the input voltage. Those last three adjustments effectively set the gain of the amplifier so that with a 4% overload at the input we have a 4% overload at the output. At the same time we are defining the point at which the amplifier limits, thereby setting the maximum output to the following voltmeter when the resistance unit terminals are open circuit.

WIRELESS WORLD JULY 1983
Having set the gain of IC2 now set the test currents by switching the standard resistors to the input terminals and adjusting R1 with 1Ω, R2 with 100Ω and R3 with 100kΩ to obtain full-scale deflection on the appropriate scales. The adjustments should be carefully carried out at each stage since the test currents and amplifier gains do not go in pairs: one test current serves three gain settings and so each adjustment should be as near perfect as possible.

In battery-operated models with a fresh battery fitted the limiting voltage of IC1 is higher, so that under input open-circuit conditions the meter needle will hit the forward stop. Accuracy will not suffer, but IC1 will not limit until an overload of more than 4% has been applied. The half-supply difference between a new battery at 9V and an old one at 8V is 12%. In the new-battery condition therefore the meter tries to read 112.5%, so it is in no great danger.

<table>
<thead>
<tr>
<th>Scale</th>
<th>I(Vx)</th>
<th>IC2 gain</th>
<th>Vout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ω</td>
<td>10mA</td>
<td>10mV</td>
<td>500</td>
</tr>
<tr>
<td>10Ω</td>
<td>1mA</td>
<td>10mV</td>
<td>500</td>
</tr>
<tr>
<td>100Ω</td>
<td>1mA</td>
<td>100mV</td>
<td>50</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1mA</td>
<td>1V</td>
<td>5</td>
</tr>
<tr>
<td>10kΩ</td>
<td>1μA</td>
<td>10mV</td>
<td>500</td>
</tr>
<tr>
<td>100kΩ</td>
<td>1μA</td>
<td>100mV</td>
<td>50</td>
</tr>
<tr>
<td>1MΩ</td>
<td>1μA</td>
<td>1V</td>
<td>5</td>
</tr>
</tbody>
</table>

The table (left) indicates the status of the various parts of the circuit on different ranges; this may also be useful in interpreting the connections of the range switch.

For testing capacitors, the 1MΩ range can be used. The meter needle will move downwards indicating a low resistance until the capacitor becomes charged. Semiconductor diodes can be tested on the 1kΩ range, and the forward voltage drop of the diode deduced from the table. Obviously the test current cannot be forced through a reverse-biased diode.

Components

For the four sections of S1, four one-pole 12-way miniature switch wafers may be used. The diodes and integrated circuits are obtainable from RS Components or from Technomatic Ltd. Cermet trimmers are recommended for the variable resistors. The fixed resistors should be 1% tolerance or better; a suitable range is available from Ambit International.

BOOKS

TV for Amateurs, by John L. Wood, G3YQC. Paperback, 522pp. Available from BATC Publications, 14 Lilac Avenue, Leicester LE5 1FN, for £1.75 including inland postage.

It is said that around one-sixth of British households now have a video recorder. No doubt amongst those householders there must be quite a few who would like to use their video equipment on the air; and for them, this book provides an excellent practical guide. It does not attempt to replace the more comprehensive Amateur TV Handbooks also published by the BATC, but provides enough circuit designs and background information to enable the average radio amateur to set up a basic television station. There is a useful section on operating practices and, for the more faint-hearted, a list of sources of some of the commercially-made transmitting equipment now becoming available to the t.v. amateur.

After the less-than-rapturous reception accorded by the British public to the latest newcomers to the television airwaves, some may wonder how many more channels the viewer really wants. For satellite television enthusiasts, such considerations of programme content do not apply. In the United States, and increasingly in Europe, commercially-available satellite receiving terminals for the home are making it possible even for non-technical people to eavesdrop on the multitude of programmes from the skies. This book is aimed at the installers and owners of such equipment, and it offers a satellite-by-satellite guide to the sort of transmissions to expect and where to look for them. As well as broadcasts for direct reception, these include distribution links for terrestrial t.v. services and international exchanges such as the daily news feeds.

The author is one of the leading British authorities on satellite t.v. reception, and he provides a great deal of practical information which is otherwise difficult to obtain – for example, technical details and operational information about some of the many Soviet communications satellites, much of which has been compiled from his own detailed observations. It must be hoped that the engineers at the Dubna ground-station are not already behind bars as a result of Mr Birkill’s revelations: on Friday nights, apparently, they keep their Gorizont satellite channel open with such un-Soviet material as Bugs Bunny cartoons and old editions of the BBC-1’s ‘Top of the Pops’.

The book contains no constructional information, though it does offer a few technical suggestions for improving reception. Among these are hints at ways of getting round the video and audio scrambling on which some of the more unspoiling telecommunications authorities insist. The text is extensively illustrated with off-screen photographs, mostly taken at the author’s home in the North of England, and the many diagrams include visibility charts and band plans for a wide range of satellite-borne services. It is a pity that the book is so expensive.
KNOW HOW RESOURCE OR PROPERTY

Your editorial (April, 1983) poses a fundamental question: to whom should the resources of the planet (including the airwaves and technology including the entire means of production, distribution and communication) belong?

The Left has always appeared to have opposite answers, but in reality their social objectives are more similar than they are different. Both Right and Left stand for a minority possession of the earth’s resources — even though the state capitalism of the Left is presented as ‘public ownership’. Both Right and Left accept the market as the economic arbiter of need — with the Left indulging in Keynesian fantasies about regulating the market so as to make profit compatible with social goals.

The alternative to a system of minority ownership and control, where goods and services are produced for sale on the market with a view to profit, is a social order based upon common ownership and democratic control of the earth by all of its inhabitants. In such a system of society production will be solely for use, with no buying and selling, but free access to the available resources. The aim of creating a genuine socialist society defies the imaginations of both the Right and the Left, both of which confine themselves to the sterile debate between private and state capitalism. Yet in a world which modern communication technology has turned into a global village, are the premises of an offended science — with a few exceptions — which, in their present, capitalist form, are products of centuries past?

Stephen Coleman

Clapham

London

PROGRESS?

By now your readers must all have a wide selection of electronic equipment around the house and in the interest of progress it is time to take a look at the most old-fashioned and inefficient of these, the telephone. To do so may assist anyone contemplating working for British Telecom.

In ten years in central London my phone has gone wrong dozens of times and has taken up to three weeks to repair. Lately research on these goings-on has uncovered an internal message system instituted since the split with the Post Office and rather slower, which is doubtless a good deal more costly as well on account of the much smaller traffic. Another discovery is that the microphone inserts are liable to failure every few years which leads to inadequate current for dialling, but they can be often be ameliorated by banging. However, at best they only yield faint speech at the other end due to their inherent weakness and the long runs of thin underground wiring met in calls across London; this lack of decibels cannot be cured as it does not officially exist.

However, what we have here is a century-old instrument that has retained a tariff keeping its use to a fraction of the public (when modern technology would have started by considering every household a market and worked from there) and causing severe worry to commercial firms, with many exchanges still based on principles developed by an undertaker, Strowger, bent on preventing cavedropping by operators who approached with a wrongful intent; thus emphasising the lack of privacy carefully maintained by British Telecom today with massive bugging installations which Duncan Campbell of the New Statesman has pointed out beam to America by microwave the entire cross-channel telephone traffic for some reason — a wild allegation which a Parliamentary reply carefully avoided denying. (There are said to be rocks ahead over enabling BT as a private firm to continue this task.)

A friend who worked at the BT HQ complained that he was kept re-hashing stuff from 6 years before but in the matter of telephone exchanges their deficiencies are more serious. After taking 10 years to perceive that the gas tube driven one at Highgate Wood did not actually work, they embroiled British manufacturers in the TXE4 which was an early Sixties design still being built in the middle Seventies.

About that time they wrote to my mother explaining they were about to install the latest electronic equipment and I observed they wouldn't even recognise the latest electronic equipment they install. Here's what they did. Well, the right thing to run telephone exchanges is a computer, but ITT, according to Anthony Sampson's book "ITT — the Corporate State", used to keep a man in New York specially to stop engineers developing computers, since the public might have involved some sort of collision with IBM. So there they were messing around with the TXE4, and System X was born, another failure the last I heard.

When I consider the robust telephones we had before the war which often had to be held away from the ear to reduce volume for comfort, much the same as the instruments people were using on 30s' sets runs of robust overhead wires before 1900, I remark that since then we have been robbed of telephone numbers by the introduction of STD, whereby the dialling code is a function of two variables, caller's exchange and exchange which do not take pieces, and the latter have no provision for directories.

None of this is funny at a time when electronics everywhere is getting cheaper in leaps and bounds. Obviously the private telephone is a cost problem since many people only make 2 calls a week. The obvious answer these days is simply to incorporate elaborate micro-circuits to do something fairly appropriate; I suspect this would first involve bunching phones in fifties on a sort of ring main rather like the first transatlantic cable speech amplifiers, supplying +50V and — 50V and allowing each phone a 1.5V drop as its supply; speech and instructions would be digitised and sent by packet-switching techniques, but later I would expect telephones to be powered from subscriber's mains so they could utilise the same technology. In view of techniques of optical isolation available for decades now at speech frequencies, I would expect subscribers to be able to have such isolation if the sound current was to be allowed to connect anything they pleased provided it would receive and transmit calls while avoiding the frequencies used by BT for dialling via trunk lines.

Bernard Jones

London W1

AERIALS AT SEA

Perhaps we are tiring of the subject of 'Aerials at sea'. However, I have a suggestion relevant to lifestiff aerals.

A useful aerial would be a vertical loop. This works well at low height, and as it is low-impedance, would not be too upset by salt spray. The main problem with a loop is to obtain a sufficiently low r.f. resistance. This is achieved by using a sufficiently large gauge of conductor, which may be hollow, because of skin effect.

I imagine a loop in the form of an inflated torus, similar to a large bicycle inner tube, metallized on the enclosed surface, made part of the structure of an inflatable lifestiff.

As a starting point for a design, a land-based rigid loop, as used by the US Army, is described in "Amateur Radio Techniques" by Pat Hawkner (G3VA) (p 234, 5th edition).

D. Parnell

Pickering

N. Yorkshire

RADIO AMATEURS EXAMINATION

The periodic review of the syllabus for the Radio Amateurs Examination is now due and the City and Guilds R.A.E. Subject Committee has established a working party for this purpose.

The principal objective of the examination is to ascertain the candidate's ability to operate an amateur station within the terms of the licence and not necessarily to test expertise in particular aspects of the Amateur Service. Suggestions for alterations or amendments to the existing syllabus would be welcome and should be sent to Mr S. D. Allison, City and Guilds of London Institute, 46 Britannia Street, London WC1X 9RG.

S. D. Allison

City and Guilds of London Institute

CITIZENS BAND

Having followed, within the pages of WW, the running battle about CB in your country for some time, I am finally moved to make the profound comment, "history repeats itself".

To read these letters bemoaning the advent of CB by some amateurs, and the such lucid arguments for its introduction by those in favour, is to pick up dusty back issues of many local (Australian) magazines of nearly a decade ago.

Now it's legal, and still the battle continues. With the benefit of my 20-20 hindsight, may I make a few observations, as it is possible to interpolate between the British scene and that which convulsed Australia and led to so many changes.

Many amateurs believed that CB would lead to the demise of amateur radio as a hobby. This has as yet not happened in this country; in fact the opposite has taken place. The number of amateur licences has increased rapidly. The many "new friends" have come up through the ranks of the CB operators.

At first there was a large amount of piracy outside the legal allocations, but apart from the few "hard core", who have always been with us, this seems to have lost its fascination. There was a time when nearly all the repeaters had their trouble makers, it took some time to educate some of the normal users of these devices not to...
react, as this surely gave 'them' the encourage-
ment to continue. The worst of these offenders
were caught and dealt with by the authorities, in
due course.

It was a two way learning process, the staff of
'Telecom' had a lot of lessons to learn, not in
the least hindered by the archaic wireless telegraphy
act, that has yet to be brought up to date with
changes since the two world wars. But now it
seems to be working. The rationalization of
the processes of obtaining a CB licence and the
availability of cheap, mass produced equipment
for the 'legal' channels, has provided the
majority with what they want, personal two way
radio.

The initial CB hysteria has died to quiet
obscurity, in fact, many users have seen that
they were used, by some, to make a great deal of
noise. Of the millions of CB users many now
have amateur licences and many more have ex-
pensive CB equipment sitting in the cupboard
unused for years. The once crowded bands are
at times totally quiet: u.h.f. users have the
repeaters, facilities once pioneered by the edited
in ters. In fact many amateurs have CB licences;
you see the wife is not interested in A.R. but it's
very useful to be able to contact her via CB.

Robert Wilkins VK3AUR
Tallaharita
Victoria

DESIGN COMPETITION

I was interested to see that one reader has come
up with the idea of informing blind persons the
contents of cans and packages without opening
them. No further information was given.

I should like to suggest (if this is not the
method used) that it would be a simple matter to
'read' the bar codes that are appearing in-
creasingly on modern packaging by means of a
light reader; decoding the information and re-
moving extraneous information normally used in
stock control and presenting to the blind
information to the blind person by means of a
voice synthesizer through a private earpiece.

Being completely without technological training I would nevertheless suggest that in this
day and age the cost of the chip is not be beyond
the realms of possibility to produce a fairly light-
weight pack which could be worn like a
handbag over the shoulder and weigh about the
same.

Once the technique had been perfected there
is no reason why bar-code labels could not be used
in other circumstances to aid the blind to
read. We already see these codes on the edges
of supermarket shelves and on packaging. Why
not make complete sentences and print books in
the same manner. Naturally a monotonous Da-
lek 'voice' would never replace the enjoyment of
silent reading that Braille offers but this would
be ideal for official pamphlets for the blind,
direction signs and other informative instruc-
tions.

J. Devereaux
Weslby
West Midlands

Some weeks ago you or one of your colleagues
was interested on the BBC Radio London
programme for the Blind "Guideline". I should
like to put forward some suggestions for suitable
projects that may be of interest to your readers.

Firstly, let me give you some background
detail as to the reason for these suggestions. I
am a member of the British Computer Associa-
tion of the Blind, which is affiliated to the
British Computer Society. The aims of the
B.C.A.B. are to promote the employment and
training of blind and visually handicapped
people within the field of computing. Due to
my specialist knowledge, I have a degree in
electronics, I provide technical liaison for the
association, particularly in relation to computer
terminals for the blind and communications
problems.

At the present time there are some 90 blind
people in the UK, and the figure is growing
every month, who use "paperless Braille
machines". These are essentially microproces-
sor-based devices which have a "soft copy"
electro-mechanical Braille display. They are
used by blind people as computer terminals or
word processors or simply to provide an
editable file. One of the main problems
facing the blind, particularly the profes-
sional, is that of finding information, if, for
example, a particular reference book is available
on tape or in Braille. At the moment this in-
formation is held somewhat haphazardly in dif-
ferent locations and in different catalogues, with
numerous supplements.

As a result of the increased availability of
these machines the association has now begun to
discuss the viability of setting up a data base for
the visually disabled. Such a data base would
provide information on Braille books, tapes and
even aids available.

We would like ideally to use Prestel or
a similar system. However, this poses a few tech-
nical problems which might be solved by one of
your readers.

I should like to make some general points of
guidance to your readers. There is little point
in re-inventing the wheel; talking terminals are
already available from a number of sources.
There is little chance that an individual will
have the necessary resources to produce a better
one. Simplicity is the best approach.

If a device is to be widely used, its cost must
be low and it should be easy to use, remember
that many blind are elderly.

Finally, I would like to make the suggestion to contact me if you
would like any assistance or advice
on the suitability of aids for the blind. The association is always pleased to support ventures which can
benefit the blind and the field of electronics
offers many as yet unexplored possibilities.
My office telephone number is 0242 431344, ext.
6003.
Gary M. Robinson
St. Leonards-on-Sea
East Sussex

List of projects

Project 1.
Current Vwindow systems, Presset etc use an
asymmetric duplex system for the transmission
and reception of the data between the users termi-
 nal and the data base. Unfortunately most of
the paperless Braille machines used by blind people
are designed to run under a more conventional
symmetric duplex system.
A line speed convertor is therefore required to
convert the 1200 baud 7m infrared signal used
by the modems to a 1200/1200 symmetric duplex
signal from the Braille machine. Since the conver-
 sion from 1200 to 75 baud is only required for the
backward channel, and this data is coming from a
keyboard any buffering problem will be minimal.

Though commercial line speed convertors are
available their cost is prohibitive and their capabi-
ties are excessive for this simple task.

Such a device would enable a paperless Braille
machine to be used in conjunction with one of the
cheap "Prestel" type modems that are appearing
on the scene and through it gain access to a data
base.

Project 2.
A mains on/off timer.
This device which would control any mains de-
vice would plug into the standard 13 amp mains
socket and the device be controlled into it. The
main feature would be that the time setting would
be electronic and would have a spoken numeric
readout. There are a number of simple numeric
speech chips available so that speech in this simple
case would not be difficult.

A more sophisticated version of this could be
perhaps extended to give multiple settings both for
on or off as to allow the blind to have a timer
control facility on things like tape recorders etc.
Existing ones rely on the blind user being able
to read Braille or have a good sense of touch and
since they are tactile they can be somewhat inaccurate
when trying to set a precise time.

Over the years there have been several methods
for the disabled to signal help when they are in
difficulties — cords, bells, lights, whistles etc.
and, of course, the telephone. They are all so
limited that they are virtually useless for the
very people for whom they are most needed —
the very severely disabled, including the frail
elderly. When they fall to the floor, or in similar
difficulty, they are helpless; they cannot reach
any of the communication aids presently sug-
gested.

What is needed is a portable fail-safe alarm,
which can be worn around the wrist or neck
which the person can immediately operate, act-
vating automatically the telephone or similar
means of communication to an outside source of
help. I have to say that there are one or two such
devices on the market, but they, too, are limited
in their applications and expensive.

If something really suitable could be pro-
duced it would be a tremendous boon for the
increasing number of disabled people. There
would be an enormous market amongst them,
and Social Services departments, especially with
the increasing emphasis on community care.

I hope this will be taken up.

E. M. Cohen
Southend-on-Sea

STEPPER MOTOR

DRIVE

Unfortunately, I do not seem to have got my
main point over to B. S. Beddow (May Letters),
despite the headline description "simple, cost-
effective."

My circuit is no more complex than the resis-
tance limited drive it is intended to replace (just
one extra small transistor Tr1 per phase) and yet
offers greatly improved efficiency, and hence
savings in the cost of power supply components.

His circuit is intended for use in drive from
being a stepper drive (did he try positive feed-
back around the comparator?) and so is very
much more complex then mine. He offers
voltage control of current, better temperature
independence and better stability. The price of
these features in terms of component count, p.c.
area and reduction of mean time between failures
must be carefully evaluated.

Incidentally, nowhere in my article do I claim
originality. I put the circuit in the category of
"one of those obvious things that needs saying." A.
D. Bailey
Loughborough
Leicestershire
Checking op-amps

Checking first-order integrity of op-amps with a transistor curve-tracer needs only simple interpretation, lending itself to "goods inward" testing.

by B. L. Hart

In analogue circuit development work involving the popular 741 operational amplifier it is useful to have available a simple, independent method of checking what might be termed the first-order integrity of the device, i.e. its capability of behaving as a direct-coupled differential gain block. There is certainly little point in making more detailed tests on parameters such as input offset voltage and common-mode rejection ratio until this has been established. This article describes the basis of a simple check that is applicable to a transistor curve tracer is available. The method has two major merits — first, no auxiliary power supplies are required, and second, no detailed interpretation of the display is necessary so the check can be performed by unskilled personnel, e.g. at a "goods-in" test stage.

Terminals C,B,E are collector, base, emitter terminals of the transistor curve tracer the relevant parts of which are shown in block form inside the box. The positive collector voltage sweep of the curve tracer is applied, via the dissipation-limiting resistor \(R_D \) to the positive rail supply of the amplifier under test: the negative rail supply is earthed. The amplifier is connected for 100% d.c. negative feedback and an attenuated version of the collector sweep is applied to its non-inverting input terminal.

The controls of the curve tracer are set for display of base voltage \(v_B \) collector voltage. The base step voltage generator cannot normally be switched off — a desirable condition for the check being performed — but its effect can be reduced by arranging for the display of the fewest small amplitude positive-going steps (e.g. four steps with step amplitude 10 mV) and using the maximum value of base drive resistor \(R_B \).

Circuit operation can be understood by reference to the signature of a good 741, sketched below. The characteristic has three parts: (i) \(v_B = 0 \) initially because \(v_C = 0 \) and \(R_B \) is effectively connected to earth, but when \(v_C \) starts to increase \(v_B \) rises to the lower saturation level of the amplifier; (ii) \(v_B \) remains almost constant at its saturation value as \(v_C \) increases because \(v_C \) is insufficient for all the bipolar devices comprising the amplifier to operate in the forward-active mode; (iii) \(v_B \) increases linearly with \(v_C \). In this operating condition all the transistors of the amplifier operate in the forward-active mode and the feedback is operative. The circuit behaves as a unity-gain voltage-follower. As there is insignificant potential difference between the inverting and non-inverting terminals, \(v_B = v_C / 2 \), so that the characteristic has a slope of +0.5 and when extrapolated back appears to pass through the origin of coordinates.

The precise location of (i) and (ii) of the characteristic might well depend slightly on the particular amplifier but the location of (iii) should be independent of the specific parameters. It is this feature that forms the basis of the check of amplifier integrity. In (iii) there are large changes in the open-loop voltage gain \(A_V \) of the amplifier because \(A_V \) is a function of the rail supply. However, there is no significant effect on the slope of the characteristic as this is dependent on the expression \(A_V(1 + A_V) \) and \(A_V > 1 \) throughout region (iii). For practical convenience the curve tracer controls can be set so that the horizontal scale (V/cm) is twice that of the vertical scale. Then (iii) has an easily-recognized slope of unity.

The sweep test technique can obviously be adapted for use with an oscilloscope providing it has a time-base sweep voltage output socket and an x-y display facility.

Bryan Hart B.Sc. M.I.E.E. is senior lecturer in electronics at North East London Polytechnic, Dagenham.

Characteristic of op-amp chosen from 75 amplifiers by several manufacturers (left) with circuit waveforms (centre). Double-exposure photo (right) shows coincident characteristics from two randomly chosen op-amps. Scales: 1V/cm horiz., 0.5V/cm vertical except for centre traces which are 5ms/cm horiz., 5V/cm for \(v_C \) (top), 2V/cm for \(v_B \) (bottom). Curve tracer: Tektronix 576 \((R_O = 2k, R_B = 22k, R = 10k) \).
Resistance measuring unit

Designed as an optional extra for the precision voltmeter described in the June issue, but suitable for any high-impedance voltmeter having a 10mV range.

Obtaining quick and accurate measurements of resistance has long been a problem for designers and equipment users alike. There are two problems: one is the wide range of magnitudes required (10^{-7} or 10^{-8} to one) and the other is the fact that any moving-coil meter is current-driven and so the resistance-to-current relationship is reciprocal. The scale calibration of the meter will therefore not be linear.

In the average moving-coil test meter, even with a low current meter movement, we are restricted to two or at the best three highly non-linear resistance scales. In addition it is usually necessary to provide two power sources if the higher scales are to be useful.

A more accurate method but one far more tedious to operate is the Wheatstone bridge. This requires a galvanometer delicate enough to detect a fine balance yet robust enough to withstand the full out-of-balance current. The basic unit can be expensive and even more so if a two or three-coil galvanometer is employed.

In more recent times the advent of the semiconductor and in particular the highly predictable operational amplifier has allowed the exploitation of two methods of resistance measurement long known but little used.

The first is the ratiometric method. In this case a current is passed through a known resistance and the unknown resistance in series. The voltage across each resistance is measured simultaneously and the value of the unknown resistance is then calculated as the value of the known resistor multiplied by the voltage ratio.

This method can be easily implemented by using the 7106/7107 type of digital voltmeter i.e. Reliable measurement can be made from tenths of an ohm (limited by lead and circuit resistance) to megohms (limited by resistor and circuit noise). The difficulty comes when the behaviour of a changing resistance is important: for instance, when moving a cable form looking for an intermittent short-circuit or earth connection an operator would not find it easy to cope with a continually changing set of numbers.

This article therefore concentrates on the second approach. In this method a specific current is passed through the unknown resistance and the voltage across the resistance is measured. If the current is constant then the voltage to resistance relationship is linear, resulting in linear scales (although one scale per decade is then required). However, if low voltage supplies are chosen, then very low currents with high stability will be required when high values of resistance are to be measured; and if a constant current circuit is used then when there is no load the voltage across the measuring terminals will rise very close to the supply. The following
GATE SYMBOLS

May I ask for guidance through your columns as to what logic symbol is appropriate to indicate the function of the following circuit?

This gives an output only when one of the inputs is in the opposite logic state to the other two, and should thus, I presume, be called a Disparity Gate. The truth table is as shown:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 0</td>
<td>1</td>
</tr>
<tr>
<td>One 1</td>
<td>0</td>
</tr>
<tr>
<td>Two 1</td>
<td>0</td>
</tr>
<tr>
<td>All 1</td>
<td>0</td>
</tr>
</tbody>
</table>

When the new logic symbol pundits have worked out that there is an elaboration of this circuit that can convert it into a Two out of Three Quorum Gate* which has the additional property of being exclusive.

Power supply? Anyone who has not been ordered to design circuitry without any power supply specified doesn’t know what if feels like to be an electronic engineer!

J. C. Rudge

Harlington, Middlesex

HERETIC’S GUIDE TO MODERN PHYSICS

In his May article, Dr. Scott Murray is yet again guilty of the inexcusable — misquoting facts out of context. This was blatantly manifested when he used Dirac’s postulation of the positron as a pretext to an attack on the tunnel effect, despite the fact that there is no connection between the two.

Dirac’s calculations had a square root in the result for the charge of electrons. This allowed them to have either negative charge-electrons, or positive charge-positrons. Dirac never suggested that positrons had negative mass. He did not have to ‘explain’ the positron; his mathematics predicted it and physics later confirmed its existence. Dr. Murray appears to have confused the positron with its negative-mass ‘counter’, the hole. The holes are gaps in a free electronic continuum, and in that context only can you have positively charged particles with negative mass.

In conclusion, Dirac’s antimatter concept may appear in some science fiction, but it is very much science fact. Dr. Murray’s use of this, misquoted out of context and in any case totally irrelevant, is a very poor attempt to mislead gullible readers.

M. J. Niman
Manchester

In the May issue a number of letters critical of Dr. Scott-Murray’s long-running saga “A Heretic’s guide to modern physics” appeared. In commenting on mine Dr. Murray wisely sidestepped the first two paragraphs and concentrated on the third. A number of ideas which were current half a century ago have not stood the test of time, and the notion of duality is certainly one of them. In fact, so far as I can see, my unpublished letter I emphasized that ‘quantum objects’ such as photons and electrons were neither waves nor particles, exactly the point made by Mr. Gleave in the May letters. Nevertheless Dr. Murray in his first comment on my letter chose to flagrantly misrepresent me by stating that I had written as if ‘light is both (particle and wave) simultaneously’.

In this context a feature not brought out by Mr. Gleave is the fact that quantum mechanics provides a single mathematical description of photon behaviour which covers not only the quasi-particle and quasi-wave aspects, but in addition the in-between world typified by the remarkable kinds of behaviour shown in so-called ‘Mössbauer experiments. Originally Planck and Einstein attributed properties to photons in an essentially *ad hoc* fashion, but for some decades now theoretical accounts of behaviour have been available (see Heitler’s ‘Quantum Theory of Radiation’) which show that they must be regarded as behaving in a way far removed from the billiard-ball-like objects of Dr. Murray’s imagination.

In the unpublished letter I also pointed out that the spectra of gamma rays from radioactive sources obtained using Ge(Li) detectors regularly showed features indicating that over a microsecond or so an amount of charge was less by some orders of magnitude than the millions which Dr. Murray in his October article said he would settle for, yet that these gamma rays still showed interference effects, in that their energies (or wavelengths) could be determined by passing them through a quartz crystal acting as a diffracting grating. These facts too I felt entitled to ignore.

Turning to his second comment, I must first admit some order of magnitude difficulties of my own: a photon of visible light has a wavelength, not of some tens, but of some thousands of interatomic spacings. He asked in connection with the optical photo-electric effect why is it that only one of these (millions) of electrons is ejected by the photon’s impact?. The answer is simple — on the purely classical basis of the image force between an electron and a conductor it will take a finite amount of energy to remove even a conduction electron from a metal. Photons of visible light simply do not have enough energy to remove more than one conduction electron from alkali metals such as sodium and potassium.

He went on to ask ‘what physical mechanism determines which electron is ejected, and how wide is a photon, please?’ Now Doppler shift measurements show that the conduction electrons in metals have speeds of about 0.1% of the speed of light, some ten times the value to be expected from classical theory, but fully in agreement with the predictions of wave mechanics. If one assumes that the delay between a photon hitting the surface of a metal and any subsequent emission of a photoelectron is of the order of 1 ps, a typical conduction electron will in that time have travelled some thousand of times the average distance between neighbouring atoms, so that willingly the photon will have interacted with electrons over an area comparable with the square of its wavelength. These same conduction electrons have de Broglie wavelengths of several interatomic distances, and according to wave mechanics this is the feature which allows them to move freely about in metals. Dr. Murray really should try his hand at using his ideas to account for, say, the temperature dependence of the resistance of metals at liquid helium temperatures. Although no-one would realize the fact from reading his articles, it was the success of wave mechanics in interpreting this dependence and many other puzzling aspects of the behaviour of solid materials that first persuaded many physicists to consider the new theories seriously.

C. F. Coleman
Grove
Oxfordshire

Abstract Law is just as unbreakable in Copenhagen as anywhere else!

I have already touched briefly upon the law of pressure, resistance and flow: another is the law of decay from interaction.

The further interaction is reduced, the less decay there is. Insulators attempt to stop interaction, and they succeed more or less. There is not, nor can there ever be a perfect insulator, and any perfectly insulated device would be an absolute singularity having nothing to interact: needless to say, there is one, and one only, and you are in it up to the eyes and beyond!

For these reasons, no potential barrier can be absolute, and I could not really care a tinker’s damn how electrons managed to get past it, though I am happy to hazard a guess (based upon the same deductive logic which says that energy exists) that there is a massive carrier in apparently empty space through which energetic interaction occurs.

Thus, while I positively adore Dr. Scott Murray, it seems to me that his subjective arguments are so shallow and superficial that they merely invite argument from the specialists of this world: the drops in the ocean may be seen as particles in motion, and it takes one particle an impossible amount of work to make a wave.

What is all the fuss about? Rubbing the nose of a mess-maker in his mess merely makes him argue. Let them stew in it: make the prognosis, and let time prove it.

Dirac and Bohr must come to accept that space is not empty: it just appears that way because you can’t catch a basic building block! There is nothing smaller with which an adequate mesh can be made, so that it inevitably slips through the holes.

It is a simple matter of inter-disciplinary analysis of which the single discipline specialist is mentally incapable. Farm the blighters!

James A. MacHarg
Wooler
Northumberland

WIRELESS WORLD JULY 1983
argues in your March issue that it is possible to determine what the velocity of an electron is "to any accuracy we please". But all electrons look alike. How then can we know whether the electron on which the second observation of position was made is the same as that on which the first observation was made?

K. S. Hall
City University
London

FORTH COMPUTER

In his article on a FORTH computer Brian Woodroffe takes the dangerous step of comparing microprocessor c.p.u's by preparing a number of examples of small isolated sections of code. Whilst I do not wish to take a standpoint in favour of any particular device I would like to point out that this sort of comparison is, at best, worthless and can be misleading. To quote one counter example, the 8088 ‘+‘ operation could be carried out via the instructions

POP AX
MOV BP SP
ADD [BP] AX

equal to the 6809 in terms of instructions, or, BP has a fixed relation to SP, as is the case in most executing programs,

POP AX
ADD [BP + a] AX

where X is an assembly time constant. I hasten to point out that I am not trying to challenge his choice of processor but simply to point out that his reasoning is flawed. I have no doubt that any software engineer (sorry Mr Cat) familiar with the other c.p.u. mentioned could improve upon the quoted examples.

J. O'Connor
Crewe

ELECTROMAGNETIC DOPPLER

In the May issue Mr S. Hobson offers his explanation of c. m. Doppler. His assertion that the mechanism is "v is not helpful, 'v' is the cause, a change in frequency is the effect; the mechanism sought is that which links the two. The description he gives for 'wave crests' is equitably valid if applied to a string of bullets fired at B by A and in this case the velocity of the bullets as seen by B would be the equivalent of (c-v)."

What S. H. does is to divorce the fact that the light travels from A to B from the fact that A and B are moving apart, carefully avoiding describing the resultant composite motion. His final suggestion that v is not velocity but rate of change of distance is playing with words.

The light must leave A and must arrive at B and at each must have an observed velocity, frequency and wavelength which together conform to the equation:

\[v = \beta \]

The light leaves A at velocity c. If at B one assumed that it still travels at c relative to A then its velocity relative to B will be c-v. We can write

at A \(c = \lambda A \)

at B \(c - v = \lambda B \)

and \(\lambda A = c - v \)

This then is a common-sense description of events which very elegantly produces the right answer but is of course heresy.

It was not possible by observing the light from a source to tell whether or not the source is moving, one could logically deduce that the motion of light is unaffected by the velocity of the source. As it is possible to tell if a source is moving, then clearly something is affected by movement. If the frequency of a periodic function is lower, then either it is going past more slowly or the ‘wave crests’ are further apart. If one is not a heretic, light cannot be going slower, therefore the wavelength must have increased. What causes the wavelength to change? Where does the change take place?

Suppose at the moment of measurement B passes a third observer A stationary with respect to B. If the change in frequency observed by B is attributed to a yet unexplained change in wavelength which has occurred at a yet unspecified point between A and B how is it that D does not also observe this change in wavelength. He is at the same point of time and space as B, is observing the same wave as B observes, passing him at the same velocity as it passes B.

Heresy is so much simpler.

J. Kennough
Cornwall

Like your correspondent Kennough in Wireless World, May, 1983 I have been looking at the Doppler theory.

If one considers a particle stream where there is velocity, frequency and separation instead of velocity, frequency and wavelength then the Doppler effects can still be expected.

In calculating the relative velocities of the source and the particles with respect to the observer one can invoke the presence of an 'ether' against which the velocities are measured. These can then be summed to get the relative velocities and to remove the 'ether'. This may at first sight appear to be a pointless exercise but if it is done for an Einsteinian system then it is obvious that for every value of a relative velocity (of the source with respect to the observer) there is an infinite set of pairs of velocities (of each with respect to the 'ether') that produce the same Doppler effect. With a non-Einsteinian system there is only one set of velocities that produces the effect.

The reason for this is that in a non-Einsteinian system the movement of the source produces a change in the velocity and the separation of the particles but not the frequency whereas a movement of the observer produces a change in the frequency and the frequency of the particles but not the separations. Thus the movements of the source and the observer do not cause the same change in the Doppler effect whereas in an einsteinian system they do.

An interesting consequence of this is that in a non-Einsteinian system the universe has built into it a means of identifying which object, source or observer has changed its motion. The contributions of each body to the total relative velocity can thus be calculated.

It would appear, therefore, that some velocities are relative and some absolutely so.

James L. Smith
St. Albans
Hertfordshire
variables for a rash of new pointers. Two further machine-code words provided nine-bit multiply and divide by two which greatly speeded up the process of transposition, made faster still by an alternative word to transpose by eight notes at a time. This is particularly useful for transposing between divisions of the organ — fortunately, care had been taken when the hardware was installed to wire the 128 keying register lines in a logical sequence.

To date, the extemporizations available are largely based on canon in two or three parts, with independent time and pitch offsets (mostly defined by variables) for each part. Each part has its own p.d.p. in the input data field (representing the theme) and its own input and output (i.e. transposed) console field. The Firth program then combines the two or three parts into a new output data field, which can then be auditioned using play mode in the usual way. Up to now, therefore, the machine does not perform true extemporization, that is to say in real time, but the speed of operation suggests that this is feasible if the correct interrupt priorities can be established.

For a three-part canon, a seven-branch decision tree is needed to determine from the durations whether all three, which two or which one of the parts are (or is) the next to move. A decorated line, which can be combined with a two-part accompaniment, is provided by using the two-part canon routine but allowing only the latest part to move in the output console field. With the appropriate time offset, this can provide a highly synchronized variation on the original theme, plus curious ‘hocket-like’ effects when the original notes depart slightly from strict time or strict legato.

The next thing to do was to provide some harmonization rules. By temporarily transposing the console field for one part and comparing it with another, any interval can be detected and changed into any other interval. To date, this has been used only to turn adjacent notes into minor thirds, but even this simple rule can produce charming suspensions and cadences (charming at least in relation to their somewhat austere surroundings).

The structure of the Firth words seems to clarify by an interactive process (by the programmer, not the computer) as the work proceeds. For example, the harmonization rule mentioned above boils down to the word ‘augment minor seconds’, abbreviated to AMS. To use this, it is simply inserted at the beginning of the definition of ‘transfer and/or console fields’ which prepares the combined console field for output to the data field. Needless to say, if the machine were “performing” in real time, the output data field would not be necessary.

Perhaps the most charitable thing which could be said about the results from the extemporization routines after six weeks of spare time work is that they offer plenty of scope for further development. Probably the next fruitful step would be some rules for motion of the separate parts.

EVENTS

June 14-17
Tectronica '83; International exhibition for test, measurement and control and for the laboratory. Earls Court, London. Industrial and Trade Fairs Ltd. Tel: 021-705 6707.

June 21-22
World Electronics: Europe — the way ahead. Financial Times conference to be held in London. Details from Financial Times. Tel: 01-248 8000 ext 4123.

June 21-23
Compec North '83; Business computer show. Belle Vue, Manchester. Reed Exhibitions. Tel: 01-613 8040.

June 22-24

June 27-July 1
Digital signal processing; course organised by the George Washington University (18 St George Street, London WIR 9DE), at Imperial College, London. Tel: 0626 83 3012.

June 27-29
Videotex '83; Conference and exhibition at the New York Hilton, NY, USA. Organised by London Online Inc. Details in UK from Online. Tel: 09274 28211.

June 27-July 1

June 27-29
Frequency synthesizers; Course organised by the George Washington University, at Imperial College, London. Tel: 0626 83 3012.

June 27-30
Integrated optics and optical fibre communication. Fourth International Conference in Tokyo, Japan. Details from IEE. Tel: 01-240 1871 ext 330.

June 27-July 1
Integrated circuit engineering, with emphasis on vlsi and vhdc. Course organised by the George Washington University at Imperial College, London. For details tel: 0626 83 3012.

June 27-July 1
Laser '83 Opto-electronics. Sixth International Congress and trade fair. Trade Fair Centre, Munich. AMEG, Messegelände, Postfach 12 10 09, D-8000 München 12.

June 28-29
Comex '83; Conference and exhibition of mobile radio communications and paging systems. DeVere Hotel, Coventry. Federation of Communications Services. Tel: 01-635 2657.

June 30-July 1
An applications-oriented approach to artificial intelligence. Course organised by the George Washington University at Imperial College, London. For details tel: 0626 83 3012.

July 3-8
Semi-custom ic design and vlsi; IEE vacation school at Edinburgh University. IEE. Tel: 01-240 1871 ext 330.

July 3-8
Interfacing techniques for microprocessor instrumentation. IEE vacation school at University College of North Wales. IEE. Tel: 01-240 1871 ext 330.

July 3-15
Microwave solid state components and subsystem design. IEE vacation school at Leeds University. IEE, tel: 01-240 1871 ext 308.
Aspects of audio amplifier design

Given sufficiently high linearity of certain silicon bipolar transistors with initially linear regions of their input characteristic, it seems expedient to use them in audio amplifiers – especially those feeding horn loudspeakers – without overall feedback.

by Y. Miloslavsky, Dipl. Ing.

The perfection of audio amplifiers involves not only the perfection of electric circuits but the perfection of amplifying elements - transistors - as well. Efficiency in audio amplifiers may sometimes be considered a secondary technical requirement because of the existence of compact effective and relatively cheap power supplies with the mains to convert the 50-60Hz frequency at the power supply input to a higher one. This article illustrates, through the example of single-ended amplifier design for horn loudspeakers without overall feedback, some aspects that might become significant in the future, as well as in the present time. High stability and (as a rule) better dependence of non-linear distortion on output voltage can be achieved by simple methods and without sacrificing other parameters. In push-pull amplifiers, some compensation of the second harmonic exists but with an increase of third harmonic that is more considerable than the decrease of the second. Another essential feature of single-ended amplifiers is the equalizing of the amplifier load of the loudspeaker by the small resistance in the emitter of the Darlington output stage.

Modern horn radiators have an output exceeding 114-117dB (1m/1W) when using cobalt, samarium and other highly efficient magnets for normal polar response. The output of low-frequency loudspeakers without horns is limited by the flat amplitude response at low frequencies, this output usually being no more than 94-97dB. Bearing in mind that the maximum power of low frequency loudspeakers is limited by voice coil heat dissipation and by the nature of the moving system as a whole, and taking into account large intermodulation distortion in i.f. loudspeakers at $P_{out}>5$ to 25W (the ear becomes more sensitive to a.m./f.m. as sound pressure level increases), the maximum power of low-frequency loudspeakers cannot exceed 25-200W. And this has been borne out in practice. In addition horn radiators possess specific (smooth) non-linear elasticities of air in the plenum chamber for large throat amplitudes. These distortions occur when the acoustic power divided by the input horn area is greater than about 0.25W/cm². If the throat area is 6cm² and the efficiency around 50%, then the rated amplifier power will be about 3W. Thus the power output of medium and high-frequency channels of power amplifiers should equal 0.25 to 2W, and taking account of the spectra of musical signals, we come to a value for power output of 1 to 4W.

Such amplifiers can be designed on the basis of a single-ended circuit, below, and can meet the most stringent up-to-date requirements provided that all of their components - capacitors, resistors, transistors - also meet up-to-date requirements.

Realisation of such an amplifier with either valves or field-effect transistors gives no advantage from the point of efficiency, output resistance and even linearity. The output resistance of valve and field-effect transistor amplifiers cannot be reduced sufficiently without overall negative feedback, or special complicated circuits if followers are used. Then the output resistance is

$$R_{out} = \frac{R_{s}}{1+\mu} \geq 20\Omega.$$

From equation 1 (appendix) the output resistance of followers using bipolar transistors, particularly a Darlington transistor, reduces to

$$R_{out} = \frac{R_2}{R_1} \cdot \frac{R_3}{R_2}.$$

In this case $R_{out} \leq 0.4$ to 0.2ohm, with $R_3=1.5k\Omega$, $\beta_{HE} = 3\times10^3$. This value of output resistance is enough even for a low frequency channel.

In general, the output resistance is a complex value Z_{out}, the modulus of which increases with increase in frequency due to weakening of local negative feedback (β_{HE}). The input resistance of Darlington transistor is limited by resistance r_{CT2}, from equation 2 (appendix). In general, the input resistance of a follower is also a complex value and approaches R_{ST2} with increase in frequency. Moreover $f_c = f_{upper}$ (f_c is pole frequency in Z_{in}, see appendix).

As a first approximation, one may ig-

Single-ended amplifiers can meet the most stringent requirements for horn loudspeaker drivers provided that components are carefully chosen.
K(p) = \frac{K_0(1 + \alpha p)}{1 + mp + np}

Such a function points to possible oscillatory characteristics of the transient process or a possible overshoot. With the calculated capacitor C_L = C_{p2} connected in parallel with the resistor mentioned above, the transient function becomes ideal (ref. 8) under certain conditions:

K(p) = \frac{K_0}{1 + \alpha p},

where m = \alpha + \frac{n}{\alpha}

f_{pole2} = f_{zero}, f_{pole2} > f_{pole1}

and C_L = p2 = C_{fupper max}.

In the case of an emitter follower signal frequencies must be properly limited, since the abrupt displacement of the operating point into the region of small h_{21} is possible, and the transient process is defined by time constant (Z_{0} || R_{0}) \times (C_{0} + C_{L}); with R_{out} = R_{D}(t).

Because the output and input resistances are complex values and their module are accordingly dependent on frequency, there is a tendency to raise f_{upper} to 10MHz so that non-linear distortions, output resistance and frequency dependance of amplitude and phase responses deteriorate as little as possible in the operational frequency band of around 200kHz. This bandwidth is necessary for more faithful reproduction of transient processes, for decreasing the level of difference tones for frequencies higher than 20kHz, and for decreasing amplitude and phase distortion of the whole system. The correct reproduction of transients becomes a decisive factor in many cases. Piano sound is the most characteristic case, with its abrupt attack and lack of stationary sound, which corresponds to conclusions given in reference 9. Some of the basic parameters of amplifiers are upper frequency limit, coefficients a2 to a4 in the power series transfer characteristic

V_{out} = kV_{in} + a2V_{in}^2 + a3V_{in} + a4V_{in}^4 + \ldots + a_{n}V_{in}^n

the nature of dependence \alpha_m = \alpha_m(\beta, \omega, \tau), signal-to-noise ratio, output resistance, reliability, life time, constructional design, and overall cost. Let us analyse some of the specified parameters in detail. The value 0.5 to 2MHz of f_{upper} can easily be achieved using proper high-frequency bipolar transistors and using small-signal source resistances R_{S} for each stage. We assume that this bandwidth is sufficient in the present situation.

Amplifier design without overall negative feedback is preferable according to Nyquist’s “regeneration theory” and the theory of electrical networks, in particular t.i.m. But it is necessary to meet the most stringent and rational requirements to reduce non-linearity. The characteristics I_{C} = I_{C}(V_{CE}, V_{BE} const) and I_{C} = I_{C}(V_{CE}, V_{BE} const), especially in n-p-n transistors, are of the same order as the corresponding characteristics in valve pentodes I_{p} = I_{E}(V_{E}), I_{A} = I_{A}(V_{A}, V_{CE} const), and in some cases are even better. The input characteristics I_{E} = I_{E}(V_{E}) of amplification valves are linear, except in the special case I_{E} \neq 0, but the input characteristics I_{E} = I_{E}(V_{BE}, V_{CE}) of transistors are non-linear, except in some special cases. By these and other factors, one can explain lower non-linearity (i.e. sufficiently fast approach of transfer characteristic coefficients a2 to a4, especially a4 to a5, to zero) in circuits with valve pentodes and triodes. We should also take into account that in the presence of large overall negative feedback, and for a large non-linearity in a system without overall feedback, the law of feedback changes in an unfavourable direction. In semiconductor circuits the signal often passes through an excessive number of p-n and n-p junctions, which in addition operate impulsively at high temperatures (for horn radiators one stage is more than enough for voltage amplification). Strong dependence of the junction temperature on signal level is also undesirable. Sometimes high junction temperatures cause undulation of output characteristics. As to push-pull stages with semiconductor components, a large asymmetry of arms additionally occurs as a rule through the overall

Undesirable non-linear distortion, e.g. in the second harmonic, can reach several per cent in a single-ended cascade in a small-signal regime. Amplitude and phase distortion above 10kHz can be several orders more than corresponding internal distortions due to C_P and C_L in h.f. transistors. Reference 7 gives possible methods of compensation for these distortions.

Born in Moscow in 1947, Yuri Miloslavsky graduated from the department of physics of the Saratov State University in 1971. Assigned to a military plant in Saratov, he worked in the fields of microwave technology and digital telephone systems. Later he joined the scientific research institute of television and broadcasting in Moscow where he worked on problems of electroacoustics, architectural acoustics, subjective aspects of sound reproduction. Since 1978 he has been in the laboratory of architectural acoustics in the Moscow institute of the physics of construction. Last year he emigrated to the USA.
operational range of voltage and current, often of very complicated nature. All these factors make reduction of non-linearity in semiconductor amplifiers more difficult (though a sum of certain factors may partly compensate for some of its).

For amplifier stages the class A operating mode is always preferable because the ear becomes more sensitive to harmonic and sum and difference tone distortion as sound pressure level decreases, based on specific features of hearing thresholds under masking, because of smaller $\Delta f - f_0$ dependence on f_0 and because of weak dependence of junctions temperature from signal level. If operational areas of input and output characteristics of amplification elements are correctly selected class A distortions decrease or increase as a function of output voltage of the load linearly or strictly monotonically.

What can be expected from such an amplifier in practice? In this circuit I have used the following transistors: KT630B(b) as T_1 and T_2; KT912 as T_3 (see catalogue of Mashpribinortorg, USSR). The most essential known parameters are

The output resistance of power supply including resistance of wires between power supply and amplifier should be low enough to prevent distortion of and transient responses. On the other hand, the requirements for the stability of the power supply voltage are very mild and the following version of power supply is likely to be optimum, see diagram, for which

The existence of the additional parametric stabilizer (with additional winding of the transformer) for the supply of the zener diode D increases dramatically the ripple suppression coefficient (stabilization factor K), by approximately one hundred times. As a rule the frequency and transient properties of this stabilizer are better than in multistage stabilizers.

This power amplifier circuit can be designed on the basis of maximum possible efficiency (a push-pull version is also possible), or on the basis of the smallest power dissipation by transistors T_2 and T_3. In general the maximum possible efficiency approaches 8.6%, or 25% with a dynamic current source as R_s.

Further reading
Appendix 1

Output resistance R_{out} is approximately

$$R_{out} = \frac{R_1 + R_2}{2} + r_T + \frac{r_T + R_2}{2}$$

where r_T is the function of many variables for the given type transistor and approximately equal to 5 to 4 x 10^7 ohm, and $R_2 = 0.026$ ohm.

Using $f_{max} = 39$ of R_{out} for 34 dB is $f_{max} < F_{upper}$.

$$R_{out} = \frac{r_T + R_2}{2} + r_T$$

Omitting r_T and r_T in our case

$$R_{out} = R_1 + R_2 + \frac{r_T}{2}$$

$$R_{out} = \frac{r_T + R_2}{2} + r_T$$

From equation (1),

$$R_{out} = \frac{1}{2} \left(\frac{r_T + R_2}{2} + r_T \right)$$

and $R_{out} = r_T$.

Value $r_T = r_T (f_T + f_T)$ depending on the signal current imposes a principle restriction on the attainable nonlinear distortion level, depending on R_2/R_{out}. Moreover, it is obvious that the value is itself a source of nonlinearity.

Appendix 2

Based on Jacobson's simplified equivalent network for a bipolar transistor (Tr1). If $R_2 = 0$,

$$Z_m = \frac{R_1 + R_2}{2} + r_T$$

$$+ \frac{r_T + R_2}{2} + r_T$$

where $r_T = r_T (f_T + f_T)$ and $C_m = C_m (f_T)$

The function Z_m has a pole and zero, where the pole frequency is f_{upper}.

$$f_{upper} = 2nC_m + C_m (f_T)$$

Hand tools and tool kits for the electrical and electronic engineer are described in a 40-page catalogue. Sections of the catalogue are devoted to wire and cable strippers, crimping tools, pliers, nut and screwdrivers, ancillary equipment and tool kits. AB Engineering Co, Timber Lane, Woburn, Milton Keynes MK17 9PL.

WW405

Two Plessey handbooks, one on Linear integrated circuits (PS1973) includes details of op-amps, linear r.f. amplifiers, phase locked-loop circuits, limiting wideband amplifiers and other radio communication and power control circuits. The other on high-speed data processing (PS1989) covers crystal oscillators, ECL III, data conversion circuits, fast gates, comparators, flip-flops and a-to-d/d-to-a circuits. Both from United Components Ltd, Unit 5, Wye Estate, London Road, High Wycombe, Bucks HP11 1LH.

WW406

Clamps and clips, board supports and all sorts of plastics fasteners and components are illustrated in a 52-page catalogue from Richco International Company, West Street, Erith, Kent.

WWW07

A Guide to Personal Computing, produced by Digital should be more accurately titled the Guide to Digital Personal Computing as that company's products are featured prominently. Nonetheless, it contains useful information on computers and their operation and is free from Digital Equipment Co Ltd, Customer Information Centre, Basingstoke, Hants.

WWW08

Aids for the production of p.c.b. artwork, circuit diagrams consist of self-adhesive symbols and shapes which may be accurately positioned using a registration system and stuck down by finger pressure. Fully illustrated in a catalogue from Circuitape Ltd, New Street, Aylesbury, Bucks HP20 2LN.

WWW09

References

www.americanradiohistory.com
Forth computer

Interface circuits and software for disc-drive control are main subjects of Brian Woodroffe's third article describing his 6809-based microcomputer. First, operation of the video controller is concluded and i/o software discussed.

by Brian Woodroffe

since it is cheaper than using s.s.i./m.s.i. devices. Complexity of the WD1793 controller is comparable to that of the 6809. The first problem was interfacing an 8080 style peripheral to the M6809 bus, the main difficulty being the writing data-hold times.

The problem of data-hold times was solved using the memory-ready signal, MRDY, which when active (low) holds the processor clock cycles in an E-not-Q state for at least one quarter of a bus cycle. This quarter cycle provides the hold time. The memory-ready signal triggers a monostable multivibrator each time the processor wants access to peripheral-drive address space between C000 and DFFF on the rising edge of the Q clock and this signal forms the floppy-disc controller write signal.

A read signal is derived from clocks E and Q. Interrupt and data-request outputs of the floppy-disc controller are connected to the processor FIRQ pin so that data transfer can take place using the M6809 SYNC instruction. As noted before, a floppy-disc drive's data rate can cause problems when d.m.a. is not used. In double-density recording on a 5¼ in floppy using a WD1793 controller, the worst-case data-transfer rate is 27us/byte. Coding is shown in Table 1.

The trick is that SYNC stops the M6809's execution without affecting the clocks until the floppy-disc controller interrupts occurs and the processor resumes execution. This provides quick synchronization between the processor and controller. Despite that modifying the direct-page register gives quicker access to the f.d.c. which is in high memory, this feature was not used because of the extra coding needed. Had the processor clock been slower this alternative might have been necessary.

Interfacing the floppy-disc controller to the drive is the next problem. Most of this is covered in an ANSI standard but the problem of clock recovery remains. Because of mechanical constraints, data read from disc will not be synchronous with any processor clock so clock information contained in the data stream must be extracted. In single-density recordings each bit cell has a clock bit and a possible data bit (no data bit is zero) and in double-density recording the position of the bit within the cell determines whether it is a one or a zero. A clock synchronous with incoming data is required to determine the incoming bit's position.

Although it gives the best performance, a phase-locked loop circuit was rejected on grounds of cost. Instead a crystal clock running at eight times the nominal read clock is used and a divide-by-eight version of this clock is phased with the incoming data to recover the original clock. First the incoming bit stream is synchronized to the crystal clock (×8) to produce pulses with accurately defined widths using an LS74. This pulse stream is fed to the floppy-disc controller (RAW READ).

The reading clock is provided by an LS161 counter which is normally held off until the controller wants to read the disc, when the counter is enabled by the readgate signal. This counter would normally free run at about the nominal clock rate, but it is synchronized by applying the raw read signal to its load input. The load frequency locks its D output (READ CLOCK) so that it changes mid-way between input bits. As the maximum number of bit cells without read bits is three, the recovered clock never gets too far out of phase.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB FDC</td>
<td>Send command byte to f.d.c.</td>
</tr>
<tr>
<td>SYNC</td>
<td>Wait for f.d.c.'s response</td>
</tr>
<tr>
<td>LDB FDC</td>
<td>Get status</td>
</tr>
<tr>
<td>BIT #2</td>
<td>Test byte-in</td>
</tr>
<tr>
<td>BEO BRR</td>
<td>No, then error</td>
</tr>
<tr>
<td>STA 0, Y+</td>
<td>Get byte</td>
</tr>
<tr>
<td>LEAX = -1,X</td>
<td>Store, advance pointer</td>
</tr>
<tr>
<td>BNE BRED2</td>
<td>Reduce count</td>
</tr>
<tr>
<td>LCD FDC</td>
<td>Loop back</td>
</tr>
<tr>
<td>BIT #1</td>
<td>Wait till</td>
</tr>
<tr>
<td>BRED3</td>
<td>F.d.c. finishes</td>
</tr>
<tr>
<td>LCD FDC</td>
<td>26FA</td>
</tr>
<tr>
<td>BRR</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 1. Code showing how the M6809 SYNC instruction is used for floppy-disc drive data transfer.

Character-code and row information for the video-controller i.c. is supplied as an address to a character rom. Character information for each row is fed to an LS165 shift register and serial output from this register is combined with synchronization signals in an analogue gate to give a standard 1V p-p composite-video signal which is subsequently fed to a u.h.f. modulator.

The dot clock, consisting of a Schmitt-trigger relaxation oscillator, should be adjusted to the minimum frequency to minimize the luminance bandwidth required in the monitor consistent with all text displayed on the screen. Character values 10 to 1H and 20 to 1F hexadecimal are programmed into the character rom to give coarse graphics. Two 2114 rows hold enough information for one 1024-character Forth screen to be displayed.

Two further video rows store text normally lost at the top of the screen. A switch allows a page of lost text to be displayed.

Terminal and i/o software

The Forth reset routine checks to see if there is an M6850 present and if not automatically redirects terminal i/o routines from the RS232 interface to the p.i.a. for parallel i/o. Forth words giving access to user ports are included in this operating system. These words, P(?and P!) act in the same way as Forth words @ and ! except that they allow access to user i/o ports.

The software-driven output word, P!, makes data available on the p.i.a. B lines then activates the address coded on the A lines. On-input, P@, reads data while the port address is made. Output ports ideally connect to LS273 latches and input ports to LS244 buffers. Port-strobe lines are decoded from the p.i.a. A lines using LS138 three-to-eight-line decoders. Eight read and eight write ports can be connected to this hardware and if more ports are needed then a further 6821 p.i.a. could be connected and mapped into the USER variable-address area. Cursor control codes, i.e. decimal codes for EMIT, are as follows.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Left (backspace)</td>
</tr>
<tr>
<td>9</td>
<td>Right (tab)</td>
</tr>
<tr>
<td>10</td>
<td>Down (line feed)</td>
</tr>
<tr>
<td>11</td>
<td>Up</td>
</tr>
<tr>
<td>12</td>
<td>Home and erase</td>
</tr>
<tr>
<td>13</td>
<td>Carriage return</td>
</tr>
<tr>
<td>14</td>
<td>Home</td>
</tr>
<tr>
<td>15</td>
<td>Carriage return and line erase</td>
</tr>
</tbody>
</table>

Disc interface hardware

Interfacing to the floppy disc is done using the most readily available controller

The author is with Hewlett Packard in research and development.
Problems with phasing are most noticeable when double-density recording is used, so a means of preventing bunching of the bits is used. Precompensation prevents bunching by moving the written data bits slightly relative to the nominal position in a bit cell so that when the data is read back the bits appear to be in their correct positions. The matter of precompensation depends on the drive used. For those drives that do not require precompensation, including the TEAC FD50A used in the original design, the precompensation circuit is omitted.

The disc should be set to respond to its address and head-load on drive select and not to the motor-on signal, i.e. the TEAC FD50 disc drive should be set as follows (for further drives, follow the same pattern).

<table>
<thead>
<tr>
<th>DRIVE 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS = set, MX = set, DS0 = set, DS1, DS2, DS3 = unset, HM = disconnected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRIVE 1 (if fitted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS = set, MX = set, DS1 = set, DS0, DS2, DS3 = unset, HM = disconnected.</td>
</tr>
</tbody>
</table>

Disc-interface software

Under command of the c.p.u., the floppy-disc controller takes care of head positioning, sector positioning, data serialization and cyclic-redundancy checking. As soft sectoring is used, sector positioning is determined by the address record read from the formatted disc. The controller may be programmed to format the disc. So long as certain inter-record gap and record sizes are adhered to, the formatted disc capacity may be increased, Table 2.

Different systems use different sector formats, numbers and sizes of sectors and sector numbering systems. In this system, all variables associated with disc formatting are defined by the user which means that most disc formats may be read. The sector size is written into the address record of each sector so it is possible for the system to adjust its buffer size to that of the disc. Forth word /DISC is included to read the current disc and set parameters termed DENSITY, B/BUF and SEC/TRK to those associated with the disc. Only formats mentioned in Table 3 apply to the disc format program and /DISC.

When formatting a disc, it can be advantageous to interleave the sectors on a track. With this in mind a dummy word SKEW was included which is currently defined as no operation, but it may be redefined to perform an interleaving algorithm during formatting, Table 3. Defining Forth word FORMAT for disc formatting is shown in Table 4.

Forth treats all disc memory systems in the same way, i.e. as a contiguous set of 1024byte screens, hence the choice of a v.d.u. Main Forth words used to gain access to screens on a disc are R/W, which moves data between a disc and memory, and BLOCK. As disc sector size depends on format, words BLOCK and constants B/BUF, bytes-per-sector, SEC/TRK, sectors-per-track, TRK/SIDE, tracks-per-side and SIDE/DISC provide a means for Forth to work out which sectors make up a screen. The size of virtual memory buffers in Forth should be the same size as a sector.

Time taken for the head to position itself over the relevant track is a major constraint when using disc drives. Other time factors for a 5¼in floppy-disc drive are motor start-up time, head-load time and rotational latency. To speed up access time for double-sided discs it is usual to physically combine two tracks on opposite sides of the disc into one logical track. This minimizes head seek time for it is likely that the sector required will be on the same bigger logical track and the time taken to gain access to the other side of the disc is governed by the time taken for an electrical switch to act rather than by the delay of a mechanical head seek. But since Forth treats all discs in the same way, including this feature would have meant that one could not mix single and double-sided discs.

When using the Teac FD50A disc drive, access time is dominated by the start-up time of 1s. If faster disc drives are used, time constants may be changed (discussed in a following article). Start-up time and head-seeking rate constants are moved into ram from eeprom by the Forth start-up word COLD and may be modified to suit faster drives. Forth constants normally hold the values of constants in the parameter-field address (p.f.a.) but as this system is rom based, modification of the constants would not be possible so they are coded with a new routine which stores the value in ram. This list shows how the constant DENSITY is altered from single to double density and gives other constants and their meanings.

<table>
<thead>
<tr>
<th>DENSITY =1 (double density, 0 for single density)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/BUF = 512 (number of bytes per disc sector)</td>
</tr>
<tr>
<td>SEC/TRK = 16 (number of sectors per disc track)</td>
</tr>
<tr>
<td>TRK/SIDE = (number of tracks on disc, normally 35-40 for a mini-floppy)</td>
</tr>
<tr>
<td>SIDE/DISC = 1 (for double-sided)</td>
</tr>
<tr>
<td>SEC-OFST = 1 (for numbering sectors 1 to n, 0 for numbering 0 to n-1)</td>
</tr>
</tbody>
</table>

1 (value to store, returned after execution of DENSITY) |

DENSITY (find DENSITY p.f.a. address) |

@ (p.f.a. in this special constant points to constant position) |

! (store 1 there) |

Power supply

Only one 15V secondary winding is required on the transformer to provide a low-current ~5V supply for biasing the dynamic rams. +12V for the rams and floppy-disc drive and +5V for all logic circuits. A minimum value for the unregulated supply is determined by the 12V rail; unregulated input should be 20V to ensure adequate regulation with low mains supplies. Heaviest current demands are on the 5V supply, and using a linear regulator to provide this rail would have resulted in excessive heat generation with a loss of efficiency so a switching regulator was designed.

Table 2. Capacity of a formatted disc may be increased provided that certain record sizes and gaps are not exceeded.

<table>
<thead>
<tr>
<th>Density</th>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes/sector</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Sectors/track</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Bytes/track</td>
<td>2048</td>
<td>2560</td>
</tr>
<tr>
<td>Bytes/disc</td>
<td>82K</td>
<td>102K</td>
</tr>
<tr>
<td>Relative</td>
<td>100%</td>
<td>125%</td>
</tr>
</tbody>
</table>

Table 3. Example of a routine for defining dummy word SKEW to give interleaved formatting.

<table>
<thead>
<tr>
<th>FORTH HEX</th>
<th>select Forth and hexadecimal number base</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SKEW1 DUP</td>
<td>new word, duplicate sector # to be interleaved</td>
</tr>
<tr>
<td>1 AND IF</td>
<td>only even sectors are interleaved</td>
</tr>
<tr>
<td>SEC/TRK 2 / FE AND</td>
<td>sector offset by half the disc</td>
</tr>
<tr>
<td>+ SEC/TRK MOD</td>
<td>add offset and keep with 0 . . . n-1 sectors on track</td>
</tr>
<tr>
<td>/SKEW!</td>
<td>find c.f.a. of new interleaving address</td>
</tr>
<tr>
<td>/SKEW1</td>
<td>find old skew p.f.a. and overwrite no-op there</td>
</tr>
</tbody>
</table>

Table 4. Routine for defining Forth word FORMAT for disc formatting.

FORMAT	start compiling the word format
0 DR-SEL 100MS RATE CMND	(turn disc drive on, seek track 0)
#SIDEx 0 DO	(do for both sides)
TRK/DISC 0 DO	(do for all tracks)
DP	(save pointer to scratch area)
1 J BLD-TRK WR-TRK	(build up image of track, write it out)
" . track/side/status = " I	(inform user, 0=good status)
1 STEP	(step in for next track)
DP	(recover scratch area)
LOOP	(for other side)
RATE CMND LOOP	(turn drive off, finish compilation)
DE-SEL;	(carry out format)
After bridge rectification and capacitive filtering, the 15V r.m.s. transformer output gives approximately 20V. Dynamic rams are sensitive to the sequence in which power is applied to them so the supply had to be designed so that -5V appears first, followed by +5V then +12V.

Heart of the switch-mode power supply is a relaxation oscillator, the squarewave output of which feeds a charge pump to produce about -20V peak. This is regulated by a zener diode to produce -5V. Reference for the +5V supply is a 10V zener diode connected in a feedback loop to maintain constant current even when the 20V unregulated supply varies. An error signal derived from the +10V reference and +5V supply, and the relaxation oscillator triangle wave are fed to a comparator. A portion of the triangle wave depending on the magnitude of the error signal is fed to the switching transistor. This pulse-width modulated base drive is disabled when the -5V supply is not present.

The free-wheel diode, inductor and smoothing capacitor are fed by the switching transistor and are chosen with the operating frequency in mind. Around 17kHz is used since it is the best compromise between high-frequency losses and component size. At low frequencies the smoothing capacitor and choke become too large and at high frequencies the switching transition time takes up a large portion of the cycle time and efficiency is reduced.

Unregulated supply passes to the 12V monolithic regulator under control of a transistor switched by the +5V supply. To prevent overvoltage problems, an s.c.r. is included which switches on and blows the secondary winding fuse if either the +5 or +12 rails rise too high.

To be continued with construction tips, parts list and vocabulary.

References
A-to-d realises non-linear functions

An analogue-to-digital converter and differential multiplexer can replace diode function generators to realise arbitrary transfer functions with flexibility and excellent drift characteristics. The circuit shown is for an eight-segment function using the three most significant bits of an inexpensive a-to-d converter to generate eight segments.

The converter is connected in continuous-convert mode and controls the multiplexer. Depending on the converter output, the appropriate slope-select resistor and intercept voltage are switched in to realise the transfer function. The number of segments may be increased and the circuit extended for positive and negative slopes as shown. These circuits can realise continuous or non-continuous transfer functions.

K. Neelakantan
Reactor Research Centre
Kalpakkam
India

Simplified backup for cmos rams

The prime consideration when setting cmos ram in low-current standby mode is that the chip-enable voltage must be \(V_{CC} - 0.2 \). Usually one would use back-to-back diodes with a charging resistor in the positive supply rail but anything connected to the chip-enable input must allow the voltage to drop to zero when the main supply is removed so a switch and pull-up resistor are usual. Current through the measuring link should drop from a few mA to a few \(\mu A \) when the main supply is removed.

V. R. Halsall
Bushey
Watford

Three-phase sequence detector

Phase-sequence detection in three-phase systems can be accomplished by generating signals that contain the relative phase difference between two successive phases and comparing them with an arbitrary reference.

Two exclusive-NOR gates form phase comparators to produce signals representing the difference between phases A and B (A \(\oplus \) B) and C and A (C \(\oplus \) A). Since the voltages applied to A, B and C have phases of \(E \angle 0^\circ \), \(E \angle +120^\circ \) and \(E \angle -120^\circ \) respectively and exclusive NOR operation
Hammond 14312 × 3

produces signals that contain the ±120° phase difference. Appropriate outputs are compared with a reference clock to give sequence detection; outputs A/B and C/A are compared with the reference phase A using two D-type flip-flops.

The flip-flop output is low or switches at 30Hz with a 1/6 duty cycle depending on whether the sequence is normal or reversed. Two remaining NOR gates form inverters to drive the indicators through current-limiting resistors. A complementary output from the flip-flops may be used to activate reverse-sequence alarms, relay drivers, direction indicators for motors and gyrocompass synchro-repeaters or for inhibiting three-phase s.c.r.-controlled battery chargers to avoid misfiring which leads to line-to-line faults.

Three 230/12V isolating transformers are star-connected to allow a larger input-voltage swing and limit the upper input voltage to 440V. When the input voltage falls to 190V the regulator is affected. Input capacitors filter line harmonics and r.f. For lower line voltages opto-isolators may be used instead of transformers but a separate power supply is needed; batteries make the unit portable.

A. L. Eguizabal
Vancouver
Canada

Z80 16bit output

Normally one would use two output ports of the Z80 to give a 16bit word but if both bytes are to be strobed or latched at the same time, additional hardware is needed to synchronise the two output executions and complications arise. But during an OUT(C),r instruction the Z80 places data and the port address on data lines and the lower byte of the address bus respectively and places B-register contents on the upper eight address lines so only one output-port instruction and one output port are necessary.

The circuit was used to control eight multiplexed seven-segment leds for a small controller. I/O port-select was not decoded – As was used instead. If one of address lines 0 to 7 is used it must be low to select.
Data to control the active segment is loaded into the accumulator, the active digit mask is loaded into register B and the port address is loaded into register C. An OUT(C),A instruction is then executed. Common-anode or common-cathode led may be used. Active digit outputs should be buffered by transistors.

It is also possible to perform an eight-bit input and an eight-bit input with only one instruction input with a different circuit.

Javier Cazor
Horndean
Hants

Positive feedback without hysteresis

This circuit overcomes the problem of conventional d.c. hysteresis degrading precision of low-level detection for comparators driven from poor voltage sources. To obtain reliable switching from low-level voltages (<100mV) exhibiting slow rates of change and non-zero output resistance it is usually necessary to provide positive feedback around the comparator. Direct-current positive feedback can generate significant hysteresis, substantially shifting the switching levels, resulting in an asymmetrical output.

The method operates by a.c. coupling positive feedback through C_f resulting in zero d.c. hysteresis. The value of R_f is chosen to give the desired amount of feedback in conjunction with the source resistance R_s. Typical values for C_f are between 10-100pF. To operate correctly at high repetition rates requires that the time constant C_fR_f is less than the time constant of the input waveform to ensure that C_f has time to recharge between transitions. For best results, comparator supply lines should be decoupled to ground by 0.01µF disc ceramic capacitors close to the i.c. For example, using a 311 comparator a 50mV 1kΩ triangular waveform can be reliably switched with no hysteresis up to 1MHz with C_f = 10pF and R_f = 100kΩ.

B. Wilson
Nottingham University

Single-frequency shortwave receiver

I designed this shortwave receiver for one frequency only; it has the advantage that the local oscillator can be crystal controlled. Our radio news in Denmark is rather bad so the receiver is designed to receive BBC World Service on 9.41MHz.

An SO42P (Siemens) forms the local oscillator and mixer, the output feeding a 455kHz LC filter followed by a 455kHz ceramic i.f. filter. I.f. amplification and a.m. detection are performed by a ZN414 (Ferranti). This i.c. has its own a.g.c. but it is not sufficient to handle large amplitude variations on the shortwave band. To improve this the 414 output is amplified by about ten times after low-pass filtering. Output from this amplifier is connected to gate two of the mosfet h.f. stage to control gain and improve reception. Finally the i.f. signal is amplified by an LM386 (National Semiconductor) which gives about 0.2W into 8Ω with a 6V supply.

Per Hojlev
Copenhagen
Denmark
World Service frequency information can be obtained from BBC External Services Publicity, Bush House, PO Box 76, Strand, London WC2B 4PH.

Coil winding
L1, L2: 30 turns of 24mm copper wire
L3: 5 " " " "

Wireless World July 1983
Thévenin-Norton transient theorem

The Thévenin-Norton theorem is restricted to the manipulation of independent sources only. This new theorem manipulates all sources, but still produces equivalent generators, similar to those contributed by Thévenin and Norton. Finding the generator immittance is now greatly simplified.

by Harry E. Stockman

The above is readily turned into an s-domain derivation by the observation of proper s-variables and the replacement of D by s. Many of the equivalent-network derivations are carried out much faster if we refrain from the use of the Laplace transform with its dependence on proper tables and instead stay in the time domain all the time. The required time-immittance is made available by the versatile D-operator. However, when the answer has to be given as an operator-free time expression, Laplace’s method usually provides the quickest route to the answer, except for periodic steady-state portions, where Steinmetz’ method yields a still faster solution.

Application example

An interesting case is at hand when the theorem is applied to a segment of a larger network, the segment containing dependent sources only. Then the Thévenin-

Norton theorem does not apply, while the new theorem allows us to construct an equivalent generator that replaces the segmented network. For a simple example see Fig. 3, where the network segment to be replaced is shown to the left of port AB, while the series-form generator that takes its place is shown in broken line to the right of port AB. Assume that the total network does not extend beyond the points marked x.

Fig. 2

If the driving voltage e(s) is a step voltage, we may use Laplace’s method, but if it is a sinusoidal e.m.f. we would probably use Steinmetz’ technique. Consider the unknown quantity to be i(s). The theorem yields directly

\[e'(s) = arZ(s)i(s)[Z(s) + R_1] \]

\[Z'(s) = R_3 + Z(s)R_i[Z(s) + R_1] \]

We readily find for the total network

\[i(s) = [e(s) - e'(s)]Z'(s) + r]. \]

In this simple example, a conventional solution using Kirchhoff’s laws is almost as quick, but for more complicated cases the theorem saves time. This is particularly true when the segmented network contains a mixture of dependent and independent sources, and when initial conditions must be taken into account.

Wireless World July 1983
Craft and technology

Should modern technology be combined with the craftmanship associated with the past? Dr Ken Smith discusses the role of the industrial designer.

At a craft fair in Kent, I discovered a bracket clock of modern design, with fine traditional metalwork mounted in a handcrafted case of amber tinted transparent acrylic. The silvered chapter ring, brass spandrels and finials were finely engraved and hand finished. It gave the impression of being a traditional English timepiece while using modern materials.

By K. L. Smith

In answer to my question, the designer/craftsman, Mr R. Marchant said, "Contemporary artists and craftsmen must use modern materials and mould them to give a message of what we are doing now".

My sympathy with this philosophy led me to muse about the function of industri-
rial design. Such artefacts as a well-structured p.c.b. with all the components colour-coded and laid out for strictly functional use, can be aesthetically (though unintentionally) very pleasing, and may be subjects of study by future art historians, much as we now collect and discuss vernacular objects from the past. Many mass-produced goods disguise themselves in poor design, however good the technology incorporated in them.

What relevance has all this in an electronics journal like Wireless World? The answer is that the clock I have mentioned, although it originated in a cottage industry established by a craftsman, uses a very up-to-date quartz drive.

Many clockmakers denigrate the advance of the quartz clock; they think of it as damaging and vulgarising their craft. It is true that microelectronics with tiny precision quartz resonators, has completely swept the clock and watch market. Millions of digital and analogue devices have appeared and digital watches seem to cost little more than the cells that drive them.

Yet with high craftsmanship and deliberate exploitation of the medium, Mr Marchant’s clock bridges the void between fine individually made objects and the anonymous mass-produced (although highly technological) goods.

The success of this design encourages me. It has a message that individualism in small scale industry is very much alive. There are artists and craftsmen on the fringe of capitalism who can use its media and materials to express themselves, and make an income. They do not need to go through the paraphernalia of ‘management studies’, ‘rationalisation’, factory development, growth and so on. In this age of depression, listlessness, unemployment, technocracy, with electronics engineers working as mercenaries on machines of death, this could be an important message, and much in keeping with some recent editorial comments in Wireless World.

References
3. Improvement relating to the Emmission and Reception of Submarine Waves, P. Langevin, French Patent no. 505 903, 1918.

Last chance to enter

Our cover reflects the theme of the competition announced in the March issue in which we invited readers to design an electronic device to help the disabled. We asked intending competitors to return their entry forms by the end of June, and so there is still an opportunity for you to take part if you have received this issue in good time.

An encouragingly substantial heap of entries is already with us. They come from participants of every description, including academic groups, professional designers working on their own or in teams and individual hobbyists. Some have already told us about the projects they are working on, and they range from small gadgets to complex computer-based devices. Complexity, however, will not win prizes if it means unreliability and a high cost to the user; and so the lone entrant with limited resources is not necessarily at a disadvantage. Our judges will be looking for devices which provide a practical solution to the problems of the type of person they are aimed at and which are affordable as well.

COMPETITION

£8,000 IN PRIZES

The competition has attracted entries dealing with a wide variety of disabilities. Projects we have heard about in the last few weeks include a device to allow blind people to detect colours; a specially-designed key-
Single-chip printer controller

Until recently the preserve of the high-volume manufacturer, the single-chip microcomputer is now becoming available to a wider market. Here is an original application for an Intel 8048 microcomputer, as the controller for a small dot-matrix printer.

Although the microprocessor has become an accepted electronic component rather than a curiosity, most engineers and users are familiar only with the general purpose 8 or 16bit devices exemplified by the 8085, 6502 and 6800. These microprocessors are always accompanied by random access or read/write memory (ram), read-only memory (rom) and input/output (i/o) devices to make them into something useful in a multichip system. In fact, these devices represent only the tip of the microprocessor iceberg.

By far the majority of applications are too cost-sensitive to use a multichip system, and the semiconductor device manufacturers have responded by designing a wide range of simple, cheap computers in which the c.p.u., ram, rom and i/o are integrated into a single silicon chip. These find applications from toys to business machines, and are sold in tens of millions. Many have special architectures optimized for control rather than computation, though a few are derived from general-purpose processors, such as the 6502 or 6800.

The single-chip controller used as the basis of this article is the Intel 8048, an eight-bit microcomputer with c.p.u., 1K of ram, 64 bytes of ram, and 27 lines in a 40-pin package. Such devices are mask-programmed; that is, the program is built into the chip during manufacture, and cannot be changed. An eprom equivalent, the 8748, can be used for development or small-volume manufacture.

The Epson M150/M160 series of miniature dot-matrix printers is unique in several ways. Exceptionally compact, yet printing on plain paper with a 5V supply and very inexpensive, they open up a whole new range of printer applications. It is now feasible to incorporate a printer into low-cost equipment; the M160 is the printer chosen for the new Epson HX20 handheld computer. As it makes little sense to swamp such a small and inexpensive printer with a costly multichip interface, a single-chip controller was programmed to handle data inputs, mechanism control and character generation.

The M150/M160 differ from most matrix printers in having only four printing solenoids, arranged horizontally in a shuttle which moves from side to side, building up characters as a raster of dot rows. A d.c. motor, gears and cams move the shuttle and feed the paper on synchronism; an a.c. tacho and reed switch time
the dot pulses and indicate the start of each dot line. A dynamic brake is required to stop the motor quickly between dot rows.

The M150 prints 16 characters across the 44mm paper, four to each solenoid, the M160 prints 24 across 57mm, six to each. Interface hardware is identical, but the software is slightly different to accommodate the character format. From now on, the two will be referred to as the M150. The full electrical specification would occupy half his magazine, but briefly it is

Solenoids (4): 4.0V d.c. 1.5A 2.5A pk

Motor (drive): 4.5V d.c. 0.17A 0.8A pk
(brake): 4.5V d.c. 0.3A

Tacho output: 3V pk-pk

These requirements can be met by very simple circuits, as shown. The solenoid drives are paired as each 8048 output can sink only 1.6mA, whereas 3.2mA I_s is needed to produce a 2.5A I_s from a BD676 device. No flyback diodes are needed, as these rugged Darlingtons can easily absorb the turn-off spike, and the high instantaneous reverse voltage helps to collapse the solenoid field and makes for crisper printing. The brake circuit effectively shorts out the d.c. motor, which is rapidly brought to rest. Experience has shown that the tacho signal easily drives the 8048 T_i input if suitably biased: some trimming of the divider may be needed to equalize print density between solenoids.

Data interfaces are provided that are parallel, rather like Centronics practice and designed for connection to the host via a PIA port and serial, following RS232 protocol at 110, 300, 1200 and 2400 baud, though at 5V levels. The rate is selected on data 5 & 6, and serial mode selected by taking S/PS high. Four i/o pins are left for local control functions: paper feed, self-test, selection of reversed printing (for use in panel mounting applications), and selection of mechanism (150 or 160).

The FP150 chip accepts ASCII seven-bit data. Control codes select various print formats, including double width and height, and inverted print. It will also print graphics patterns by accepting binary-coded 'characters', again with special control codes. It is then possible to print any dot pattern that can be accommodated in a 96-wide field (144 in the M160).

The 8048 program memory area of 1024 bytes is divided into four pages of 256 bytes. The 64-character ASCII set is coded up as 320 bytes, or five per character, in hexadecimal, to give a 5 by 8 character set (the eighth bit is used for underlining and descenders on punctuation marks). The character generator software "looks up" these data bytes, and shifts them into the appropriate pattern to form the dot matrix as the print solenoids move across the paper.

Character generation is complicated by the requirement to print in both normal and reversed modes, in single or double width and/or height, and to accept graphics input. In all, 16 printing modes are provided, so all through the character generator conditional jumps hop and skip through the listing to select the functions required. This has led to nearly half the available 1K program being devoted to character formation.

The other major software area is in the data interface. Here the parallel input is straightforward, consisting only of a bus read instruction and testing of the strobe input once that mode is established. The serial input routine is much more complicated: the strobe pin is sampled at intervals determined by the data rate chosen, to build up a replica of the transmitted char-
Frequency control of turntable motors

Many high-quality turntables use a small synchronous motor to drive a heavy turntable platter through a flexible belt. Where mains frequency fluctuates, the speed of the turntable alters. This circuit overcomes the problem by providing a reference frequency independent of the supply.

Synchronous motors achieve their constant speed by locking on to the mains frequency. However there are two main disadvantages: Firstly the wow and flutter performance depends particularly on frequency. This is not always met, particularly in my country, New Zealand, where periodic fluctuations, outside the stated limits are evident, presumably due to faults with generator regulation and where frequency is reduced when the grid is under heavy load, compounded by a subsequent speed-up to regulate the time on synchronous clocks. Then secondly, synchronous motors do not allow any convenient method of speed regulation, unlike many direct-drive or d.c. controlled turntables.

Synchronous motors use very little power and can lock on to the supply frequency over a wide range of voltages. Thus it is relatively simple to construct an oscillator that will produce the required frequency signal and then boost the output voltage to the level of the mains by the use of a power amplifier, which can be small and cost little, and an output transformer.

The motor needed a waveform close to a sinusoidal, or it could find difficulty locking on to the frequency and could even run backwards. Waveforms with excessive harmonic content could cause sound to be radiated through the motor and the belt. A Wein bridge oscillator with its inherent sinusoidal output would seem to be ideal, but it needed two resistors to be varied simultaneously to adjust low frequencies. During tests it was found that any mismatch in the tracking caused settling delays which could make the turntable stop and start and run in reverse. Another disadvantage was the ability to find a suitable thermistor to act as a gain control element.

Voltage-controlled oscillators (v.c.os) are an appropriate choice which give a constant amplitude of the output wave independent of the output frequency. Unfortunately v.c.os give triangular or square waves and these need to be shaped. The circuit shown in Fig. 1 has been devised to do this. IC2, a 566, is a very stable v.c.o. whose frequency of oscillation is given by:

\[f_0 = \frac{V_c - V_0}{R_4 C_1 V_s} \]

Where IC2 is the control voltage at pin 5, \(V_s \) is the supply voltage and \(R_1, C_1 \) are as indicated in Fig. 1. If \(V_c \) is derived from a resistive divider, the ratio \(V_c \) to \(V_s \) is constant so the frequency should be independent of the supply voltage. The only likely source of drift in the frequency is the temperature coefficient of IC2 (300 p.p.m/°C), the divider chain, \(R_1 \) and \(C_1 \). The use of metal oxide resistors and a high quality potentiometer should help to minimise this. The motor was unable to lock onto high or low extremes of frequency so the resistor chain was selected to restrict the range. The potentiometer I used was a ten-turn Beckman Helitrim. A high quality wire-wound potentiometer was also used.

By Peter A. Stockwell

Fig. 1. Frequency generator is based on a 566 v.c.o. \(R_3 \) is adjusted to give the frequency for the turntable speed for all records including 78r/m. The 741 with its feedback matrix shapes the waveform.

Fig. 2. Sanken hybrid amplifier feeds the signal to a mains transformer used backwards to provide the turntable motor with mains power at the chosen frequency.
with a changeover switch to select a preset turntable speed.

The 741 has a diode resistor matrix in the feedback loop to convert the triangle wave output of the 566 into an acceptable approach to a sine wave. R3 and R4 both control the shape of the output waveform and are most easily set by using an oscilloscope on the output. R3 controls the shape of the peaks while R4 controls the positive and negative symmetry. R5 is set to give the required voltage output to the motor.

Alternative v.c.os, like the Intersil ICL8038, can produce a sinusoidal output directly, but one was not readily available to me. However, by the time that the necessary external components are added, for controlling the symmetry, minimising the distortion etc, it is unlikely that the component count would be much below that for the circuit given.

Power amplifier choice was dictated more by the contents of my junk box than by any particular suitability for the application. However, it does work satisfactorily even on the rather low supply voltage (the junk box again!). The output transformer is a small power transformer used backwards. It takes a few watts of power to provide the magnetising current or the core allowing for this, the power consumption of the motor with a little headroom must be considered when choosing a suitable amplifier. In addition falling impedance with frequency causes excessive power consumption, though this may be offset by a capacitor-coupled amplifier since the capacitor impedance increases with falling frequency.

The effects of the series capacitor at low frequencies and of the transformer inductance at higher frequencies mean that output voltage will decrease at higher frequency. The d.c. resistance of the transformer produces some reduction in the output voltage under load. However there is no need for output voltage regulation as the synchronous motor is very tolerant to variations in voltage. The neon across the output provides a simple indicator while the capacitors across the input prevent transients from getting into the mains and hence into the hi-fi system.

Satisfactory performance over several months has been achieved on my Thorens TD-160 turntable. It is suitable for a number of high quality turntables driven by synchronous motors including Linn, Sondek, Transcriptors and other Thorens models. One difficulty has been finding a suitable way of measuring the correct turntable speed in order to regulate the output frequency. I used a strobe-scop disc under the mains lighting, but this is far from ideal as the whole point of the circuit is that the mains frequency is not constant. I leave it to the reader to devise the most satisfactory means of setting the speed.

Continued from page 69

Peter Stockwell holds an honours degree in Biochemistry and is currently involved in the development of computer programs to analyse DNA sequence data at the Biochemistry Department of Otago University. 31 years old, his interests include electronics particularly as applied to high fidelity, music (he plays a pipe organ) and photography.

character in the 8048 accumulator by shifting the carry bit into it.

Once the parallel or serial character is received, the busy line is set high to tell the host not to send more data, and the processor then tests the received character to determine what should be done with it. Control codes are compared with a look-up table, a suitable response being made if a match is found; lower-case codes are arithmetically converted to upper case, and illegal codes discarded. Valid printing characters are stored in a designated area of the 8048 ram. When the ram is full or a line terminating character is received, the printing cycle starts.

The data input and sorting routines occupy about a quarter of the rom; the remaining quarter is taken up by a self-test routine, and various initialisation, timing and housekeeping subroutines. The entire 1K byte of program were written directly in machine code, leading to a very compact program with no wasted space.

Similar design techniques have since been applied to interface controllers for other dot matrix printers, I.c.d. interfaces, and an MSF Rugby clock decoder/display driver, recently featured in WW (New Products, February issue page 83) and the subject of a future article.
COMPUTER GRAPHICS SLIDES
Developed to meet a demand for electronic production of high-quality slides for use in audio-visual presentations, the Dicomed system is both fast and flexible. A wide range of support and commands are at hand, together with an extensive library of images including lines, circles and polygons as well as existing artwork, maps, logos, etc. Composition and balance from a choice of 64 colours can be altered and every element of the design can be moved, enlarged or reduced, replicated or rotated to any angle. Freehand drawing may be entered using a digitizing tablet. Animation is possible with start and end images; the computer can interpose in-between steps.

Designs are stored in digital form on a floppy disc and some 133 designs may be stored on one disc. The designs can be posted on a floppy disc or transmitted by telephone line to be reproduced on the company's slide production equipment. The images are photographed using a high resolution c.r.t. with 4000 lines. Also available is a software package for use with an Apple II microcomputer to allow creation of graphs, pie charts and histograms.

Eidographics Ltd, 47 Marylebone Lane, London W1M 5FN.

BALL CONTROL
Tracker balls seem to be in competition with mice as computer input devices to plot x-y positions accurately on a v.d.u. Marconi have two controllers to translate the motion of a tracker ball into precise positional control. They can be used to position markers on a display, including radar and are claimed to be fatigue-free when used with interactive graphics displays in the engineering design field.

The protruding ball is in slip-free contact with two shafts positioned at right angles. Slotted discs attached to each shaft offer optically detectable motion which is translated by the electronic circuitry. The two basic versions are a rugged 2in diameter ball or a 3in ball. Marconi Electronic Devices Ltd, Dodington Road, Lincoln LN6 0LF.

RELAYS WITHOUT TRANSIENTS
Photo-o.c.r. coupling provides transient-free switching as well as 2.500V input-output isolation in the Teledyne SerenDIP, d.i.l. packaged solid-state relays. The maximum measured generated noise is claimed to be less than 15µV at all test frequencies from 0.45 to 50MHz, which makes the relays suitable for computer applications while the high voltage isolation is useful in industrial controls. There are three versions with output voltage ratings of 140, 250 (with 400V peak) and 250 with 600V peak. The 645 range is available from STC Electronic Services, Edinburgh Way, Harlow, Essex.

COMPUTING OSCILLOSCOPE
A digital storage oscilloscope waveform analyser, transient signal analyser, spectrum analyser and a data acquisition system are all combined into one instrument, the Analogic Data 6000. Built around a 16-bit microprocessor with an 8MHz internal clock, it has 48K-bytes of rom and 8K-bytes of ram. The scope has been designed for the analysis of transient signals which may occur as digital glitches, or may arise during analysis of transient responses in networks. Other applications are in medical monitoring, wind tunnel, shock and destructive testing equipment. Data can be recorded for up to 5,000 hours. Analogic Ltd, The Centre, 68 High Street, Weybridge, Surrey.

DUAL LOW-PASS FILTER
Suitable for continuously variable-slope detection or speech synthesis, the MC145414 is a dual, tunable, low-pass filter using switched capacitor techniques. It consists of two fifth-order elliptical filters and includes two extra op-amps for gain adjustment or extra filtering. C-mos circuitry ensures low power consumption from a supply between 10 and 16V. Clock frequency may be varied between 15 and 400kHz to provide cut-off frequencies of 1.25 to 10kHz. Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0PR.

14-BIT A-TO-D
Claimed to be the first c-mos monolithic analogue-to-digital converter, the Intersil ICL7115 uses thin-film resistors together with an on-chip rom calibration table to give 14-bit linearity without the need for expensive laser trimming. Internally it works with 17 bits with an exponential (1/85) base. It can measure accurately signals up to 118% of full scale. The rom incorporates an error-correction code and therefore does not rely on the accuracy of the resistor ladder in its successive approximation algorithm. The rom is programmed after manufacture to take into account any measured variations. The circuit may be easily interfaced with microprocessor systems. Reference voltage inputs and signals have separate sense controls so that the device can accept positive signals relative to a positive reference and negative signals with a negative reference level. It operates from ±5V with a power consumption of 60mW. Conversion time is 40µs.

Intersil Datel UK Ltd, Belgrave House, Basing View, Basingstoke, Hants.

MICRO-TURTLE
A two-wheeled mobile robot which can be controlled by any microcomputer has been developed by Colne Robotics. Movements are controlled using an umbilical cable. The robot has touch sensors and the accompanying software "teaches" it how to find another route. A retractable pen is attached to the underside and allows the machine to draw Logo graphics. The Zeaker Micro-turtle comes complete with interface, power supply, operating manual and software all for £69.50 assembled, or £52.00 in kit form (v.a.t. extra).

Colne Robotics Co. Ltd, Beaumont Road, off Richmond Road, Twickenham, Middlesex TW1 2PH.

AID FOR THE COLOURBLIND
Component identification by the use of colour codes can lead to hazardous situations if the constructor is colourblind. Difficulty with the difference between red and green is the commonest form of colourblindness and a simple viewer incorporating selected red and green filters can assist in distinguishing between these colours. The makers of Viewboy claim that, with practice, the severely handicapped can also identify most other colours. J. Holder, 10 Lancast Avenue, Dunstable, Beds LU6 2AW.
SPACE-SAVING PCB SWITCHES
By turning the dual-in-line switch on its side, Erg claim to save 30% of the p.c.b. area taken up by conventional switches. SDOS-10-023 contains ten on/off switches which may be edge-mounted to offer front-panel switching with no additional hardware. Two to 18-way switches, colour-coded and numbered, will be included in the range. Erg Components, Luton Road, Dunstable, Beds LU5 4LJ. WW309

WIRELESS JOYSTICKS
A single-chip radio transmitter has been incorporated into a tv games joystick to allow the user to zap the space invaders from the comfort of an armchair, without the encumbrance of wires. A receiver is placed next to the games unit (and could be incorporated into it). It decodes the signals sent by the joystick into the same signals that would have been received if the joystick were connected directly, and feeds these through the normal joystick ports into the games computer. The 'serious' application of the joystick control is menu-driven computer programs. The product is the first of a series planned to be expanded to include a wireless computer keyboard. The Wireless Joystick is manufactured in New York by Conex and marketed in the UK by Dynavest Ltd, 8 Waterloo Place, London SW1 Y 4BE. WW310

LOW-COST AVO METER
Despite the digital explosion of multimeters, Avo still have faith in analogue meters and have produced a series of test instruments called the 'analogue toolbag range'. The Avometer 1001 can measure direct and alternating voltages up to 1kV, direct current up to 1A and resistance up to 2MΩ. Sensitivity is 10kΩ/V on d.c. ranges. A continuity buzzer is included. The a.b.s. plastics case features an integral carrying handle which has a slot in it to allow for quick and easy lead stowage. The meter costs £28.50 (trade price) with a heavy duty version with a tougher case for £37.30.

Announced at the same time is a series of Megger insulation testers which no longer have the generator handle on the side as they are battery driven, powered by a 9V (PP3) battery. Different models offer test voltages of 500 or 250V with continuity ranges on all models of 0 to 200Ω and 0 to 11Ω, the last-mentioned being used to suit the methods laid down by the IEE wiring regulations. One model has an additional voltage range while others provide intermediate resistance ranges of 1MΩ and 500kΩ. All the meters come complete with test leads, probes and clips which fit into moulded channels on the back of the case. Thorn EMI Instruments Ltd, Archcliffe Road, Dover, Kent CT17 9EN. WW311

PORTABLE RECORDING STUDIO
A four-track cassette recorder combined with a mixer needs only microphones and monitor headphones to make multi-track recording almost anywhere. The Fostex X-15 Multitracker is battery powered and is little larger than an average cassette deck, yet incorporates many features found normally only in a recording studio. It has equalizer, gain and pan controls for each of the channels which may be used in overdub or mixdown. Punch-in may be remotely controlled and there is ±15% pitch control for tuning or for special effects. Dolby-B noise reduction is incorporated. Manufacturers claim that professional musicians can use the recorder as a 'sketch pad' to prepare a session, much as a Polaroid camera may be used to compose a shot in a photographic studio. The X-15 retails at £299, inclusive. Bandive Ltd, Brent View Road, London NW9 9EL. WW312

ELECTRONIC OFFICE FROM BT
Word processors and computers with an accent on telecommunications are now being marketed by British Telecom. The Merlin range of business systems starts with the M1100 communicating v.d.u. terminal which may be used to access Prestel or data banks and can be used for electronic mail with automatic dialling.

The M2226 business computer has 256K memory internally with a 5Mbyte Winchester disc and 800Kbytes on floppy disc. It can operate with CP/M and therefore has access to a wide range of software; BT have added their own MerlinMaster software interface to make the whole system easy to use. In addition there is the M3300 word processor which has two floppy-disc drives and a daisy-wheel printer. Both the computers can have auto-dial modems, can be linked to teleprinters and have full access to telex and telex services. There is a range of peripherals and software launched at the same time. British Telecom Merlin, Room 2028 Howland Street, London WIP 6HQ. WW313

WIRELESS WORLD JULY 1983
INFORMATION THEORY
There are many ways of gathering information. We all know the trials of formal study to pass exams or for more immediate and practical reasons. But, in general life, we gather most of our knowledge by piecing together fragments picked up in random conversations. Sometimes it is the experts talking but more often it's just ordinary folk.

Moreover, the breadth of experience revealed in the most casual conversation is often quite surprising. There was that painter, for example, in the next office boasting to his mate about the marvellous television reception in Croydon — "... and all we had was one of those two-pronged indoor aerials that stand on the set like a Martian's helmet".

Then our cleaning lady was telling me about her young son, who came in wearing blue sun glasses. As he is only about four feet high and has red hair, she told me, those glasses made him look just like a Martian.

Weeks later, on a very wet morning our dedicated cyclist, Jimmy, arrived dripping with rain, clad in waterproof leggings and a pale blue plastic cape. Kathy, our office girl, gasped with astonishment. "... in those yellow trousers and blue top, I thought you were a Martian!"

"Kids! They'll do anything to get 'emselves noticed.

So I have discovered that a Martian is about four feet high, has red hair, wears blue spectacles, yellow trousers and a blue top, and protects his head with a two-pronged helmet. Actually, most of the Martians around our way are much taller with tight blue jeans and multicoloured Red Indian haircuts.

WORDS AND MUSIC MAESTRO
I have just been watching that programme on television about the British Leyland Maestro, and they way in which the more sophisticated versions feature an audio readout of certain dashboard information. Do we call this a speakout? It is quite a status feature, and rather upstages such refine-
ments as electric windows or remotely controlled door mirrors.

The only demonstration of the speakout was the rather bossy synthesized feminine voice telling the driver to fasten his seat belt. But I understood from the report that the thing is programmed to blurt out information when an alarm situation occurs; e.g., "we're nearly out of petrol!!" I suppose it also draws attention to the engine overheating, very low oil pressure or lack of brake fluid. I wonder if it mentions tyre pressure — that is the one we usually forget.

In the report that I heard, the only microcomputer mentioned was the one that controls the engine, but you may be sure that the speakout system depends on at least one of these devices. No modern electronic system amounts to much without one. So we are naturally led to speculate on the conversational ability of the car of the future as more-and-more data processing power is compressed into smaller-and-smaller devices.

I read quite recently about a Japanese heavy-goods vehicle with solid-state television cameras mounted at "blind" locations on the truck body, with a c.r.t. in the cab to augment the conventional rear-view mirrors. There are already computer programmes for interpretation of signals and t.v. cameras into exact information for machine-tool control, etc., so who knows what the future may bring.

With the general trend towards the use of high technology for totally frivolous purposes, it is possible that the techniques mentioned will one day be combined to enable the car to utter those helpful comments currently made by one's passengers; e.g., "all clear left ... if you're quick", or "that's a police car you're overtaking".

Such technical developments could ultimately do away with the need for passengers altogether; we could have quite chatty cars to keep us company on long journeys; and there may even be the optional electronic "hitch-hiker" which gives an authentic account of all the lifts he's ever thumbed while you are trying to listen to the test match commentary on Radio 3.

MORE TALKING MOTOR CARS
It seems that BL have started a trend with the talking Maestro. I have just read a report in the Financial Times about a new experimental car by the Japanese Nissan Company, which not only talks to the driver but also responds to spoken commands.

It has a voice dialogue system which enables the driver to ask for such things as lights to be switched on and wing mirrors adjusted. Have you ever tried to adjust a wing mirror for a friend in response to his spoken instructions? "... up a bit — no, not too far — now a bit to the left — etc." Its very difficult and always leads to bad feeling. Now imagine trying to instruct a stupid computer — in Japanese.

And that's only the beginning. This car also has a drowsiness monitor, which measures brainwave patterns and can tell if the driver is becoming tired. If he begins to fall asleep a flashing light and a buzzer operate, and the computer will eventually ask him to rest. With all these distractions it may, of course, be already too late; he may be resting permanently.

But he will not have driven into the back of the vehicle ahead, because this car is fitted with a radar which measures the distance to the vehicle in front, and if the gap becomes too small for any given speed the car is slowed until a safety distance is restored. Very useful in fog, but if it fails does it fail-safe? ... and does fail-safe mean fail with the brakes on?

A SHOW BY ANY OTHER NAME
I see they are holding IFSEC at Olympia as usual this year; and then there is HEVAC at the Barbican Centre a week or so later.

Of course, they are names of exhibitions. The first is the International Fire, Security and Safety Exhibition and Conference — not surprising that it is abbreviated to initials — and the second is the Heating, Ventilating and Air Conditioning Show. But only a cypher would find it easy to work out what is going on at these exhibitions from the title alone.

Some almost seem to be deliberately misleading. How about CONTEXT? Something to do with printing you may think, or some other form of self-expression. No, its the co-ordinated Furnishing Exhibition at Earls Court. Then there is TECTRONICA — not an exhibition of oscilloscopes but an international show for the life and physical sciences. POWTECH has nothing to do with turbo-generators or enormous high-fi amplifiers — it is all about powder and bulk solids.

Of course there are many exhibitions where the title is fully appropriate, so that one can guess what the show is all about immediately. There is ELECTRONICA in Munich, SHOPEX in London, TESTMEX and TEST at Wembley; but, familiar though it may be, I have never worked out the meaning of INTERNEP-CON and, judging by the variety of types of exhibit, I doubt if anyone else has either.

However, for the most appropriate exhibition name the prize must go the Farmers' Waste Management Exhibition at Stoneleigh. They call it MUCK — a show by any other name would smell as sweet?
Testing...Testing...Testing anywhere!

FM/AM 1100S with Spectrum Analyser.
The most sophisticated portable Communications Service Monitor from IFR, with an unrivalled versatility of integrated functions.

For a practical demonstration to prove our point contact:
Mike Dawson on 01-897 6446.

Fieldtech Heathrow Limited
Huntavia House 420 Bath Road
Longford Middlesex UB7 0LL
Telex: 23734 FLDTEC G

Richardson Electronics (Europe) Ltd.
A WORLD LEADING DISTRIBUTOR AND MANUFACTURER

Electron Tubes

STOCKISTS OR EQUIVALENTS FOR
AMPEREX - AMPERITE
BURROUGHS - CETRON
CTC - Du MONT - EIMAC
ELECTRONICS
GENERAL ELECTRIC
GENALEX - ITT
LITTON - MACHLETT
MULLARD
NATIONAL
OMNI WAVE
R.C.A. - RAYTHEON
STC - SIEMENS
SYLVANIA
TELEFUNKEN
THERMOSEN
TUNGSOL - VARIAN
VICTOREEN
WESTINGHOUSE

R.F. Power Transistors

STOCKISTS OR EQUIVALENTS FOR
MOTOROLA
GENERAL ELECTRIC
R.C.A.
JOHNSON
AEROTRON
QUINTRON
REGENGY
WILSON
T.R.W.
MSC
ACRIAN
TOSHIBA
NEC
MITSUBISHI
PHILIPS
AMPEREX

CATALOGUES AVAILABLE FOR: ELECTRON TUBES, RF TRANSISTORS, READOUT TUBES, POWER SEMICONDUCTORS, CAMERA TUBES

Dean Road Outer Circle Road Industrial Estate Lincoln England LN2 4DV Telephone: 0522-42631 Telex: 56175 REEL UK
Could you design a piece of equipment to help a disabled person? If so, you would — in addition to undertaking this worthy task — be eligible to win a substantial cash prize.

Our competition is open to individuals or groups resident in the UK. You register your entry using the form below, sending it to the Editor to arrive at his office not later than June 30th 1983. The designs themselves must be submitted to his office by 1st October 1983.

Entries, which will be judged by a group of eminent engineers and doctors, must consist of the following: a statement of the design objectives; an overall description of the device, detailed circuit descriptions and diagrams; a model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.

The finalists will be invited to London to talk over their entries with the judges and be awarded their prizes. The prizes are:

1st prize £2,500
2nd prize £1,500

and the 4 runners up will be awarded prizes each of £1,000

To make sure you have the maximum time to undertake your design, return your entry form now!

"DESIGN AN ELECTRONIC DEVICE TO HELP THE DISABLED"

LIST OF RULES

1. The competition is open to UK residents only.
2. Entries can be individual or groups.
3. All entries must be in English.
4. Entries must be submitted to the Wireless World Editorial Department by the 30th June 1983.
5. All entries will be judged on overall description of the device, detailed circuit descriptions and diagrams; model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.
6. The judges reserve the right to disqualify entries which do not meet the criteria.
7. The judges will judge entries on:
 a) Originality and benefit to disabled people
 b) Overall description of the device
 c) Detailed circuit descriptions and diagrams
 d) Model of the device or a unique aspect of the design sufficient to demonstrate its feasibility

"Design an electronic device to help the disabled"

COMPETITION ENTRY FORM

Name of competitor:
Address:
Telephone (Home):
Telephone (Business):

I understand that, in order to qualify, my entry must be in the hands of the judges by 1st October, 1983.

Date:

Signature:

I intend to enter the competition and to abide by the rules as laid down in the July 1983 issue of Wireless World.

Please send this form, as soon as possible, to:
The Editor, WIRELESS WORLD
Room L102, Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS.

Receipt of the form will be acknowledged.
GET THE COMPLETE PICTURE
AT YOUR NEWSAGENT DURING JULY — OR DIRECT

The New Catalogue from the industry’s ‘DISTRIBUTOR OF THE YEAR’!

COMPONENTS FOR ELECTRONICS, COMMUNICATIONS & COMPUTING

ambit INTERNATIONAL

WORLD OF RADIO & ELECTRONICS — CATALOGUE —

STILL THE ONLY CATALOGUE FOR THE COMPLETE RANGE OF COMPONENTS. BATTERIES, CRYSTAL FILTERS, RF POWER, MOSFET, TOKO COILS, CHOKE, ALPS PLOTTERS, SOLENOID CASSETTE MECHS ETC.

200 North Service Road, Brentwood, Essex CM14 4SG
Tel: (Consumer Sales/Enquiries) 0277-230909.
Tel: (Industrial Sales/Enquiries) 0277-231616.
Tlx: 995194 AMBIT G. Data 24hrs (RS232/300 baud) 0277-232628.

LOW COST PROFESSIONAL TEST INSTRUMENTS

Write or phone for illustrated Test Instrument catalogue and price list.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS & MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tall Ho corner
Telephone 445 2713/0749

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934 416033

WW - 008 FOR FURTHER DETAILS

WW - 011 FOR FURTHER DETAILS

WW - 024 FOR FURTHER DETAILS

WW - 037 FOR FURTHER DETAILS
MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many ‘new generation’ readers who bought at 1976 bargain prices + 10% discount for 10 sets! Most sets are still available although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

The Offer stands, so order now your sets of 127 x 204mm cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)*
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits
11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators
16 Current differencing amplifiers – signal processing 17 Current differencing amplifiers – signal generation
18 Current differencing amplifiers – measurement and detection 19 Monostable circuits
20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection
23 Reference circuits 24 Voltage regulators 25 RC oscillators – 1 26 RC oscillators – 2
27 Linear cmos – 1 28 Linear cmos – 2 29 Analogue multipliers 30 Rms/log/power laws
31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications – 1
35 Analogue gate applications – 2

*Photocopies only: 3 Waveform generators 4A.C, measurement 5 Audio circuits @ £3.20 each set.

To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

Company Registered Number: 151537 (ENGLAND).
Registered Office: Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Please send me the following sets of
Circards..£2 each,
£18 for 10 post free.
Remittance enclosed..........................payable
to BUSINESS PRESS INTERNATIONAL LIMITED
Name (Please print)...............................
Address (Please print).........................
THE POWERFET SPECIALISTS

POWERFET AMPLIFIER MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>POWER RANGE</th>
<th>TYPICAL LOADS</th>
<th>PRICES (one off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA 100</td>
<td>50W-150W</td>
<td>45L, 86L</td>
<td>£20.95</td>
</tr>
<tr>
<td>PFA 200</td>
<td>100W-300W</td>
<td>45L, 86L</td>
<td>£29.95</td>
</tr>
<tr>
<td>PFA 500</td>
<td>250W-500W</td>
<td>45L, 86L</td>
<td>£42.00</td>
</tr>
<tr>
<td>PFA HV</td>
<td>200W-300W</td>
<td>45L, 86L, 16L</td>
<td>£36.04</td>
</tr>
</tbody>
</table>

Key features:
- RELIABLE
- Linearity
- FAST
- QUIET
- BRIDGEBASE
- STABLE
- LOW COST

As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. The HV is aimed at digital audio. Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.

Also:
- PAN 20 — Ultra-low-noise/distortion, mono preamp board, £7.61
- 2WAY — 2-way active crossover board (24dB/octave) plus regulators, £9.70
- THE HEAT EXCHANGER — New, super-efficient heatsink, handles 300W or 1.2kW when blown, 7in. x 4in. x 21/4in., £7.90

This is just a fraction of the new products available from Pantechnic — check us out!

Prices exclude VAT. Carriage 75p

Price and Delivery
PANTECHNIC (Dept. WW1)
17A, WOOLTON STREET
LIVERPOOL L25 5NH
Tel: 051-428 8485

Technical Enquiries
Paul Runner
on 01-800 6667

Opus Supplies Summer Savers

VIEWDATA TERMINALS

Now that we have moved to larger premises we have the space to store these superb units and can offer them to "Wireless World" readers at this fantastic price. These superb terminals built to industrial specification by a world-famous manufacturer feature: — * High Resolution 400 lines — * Slimline dimensions — depth 14.1 inches, width 11.9 inches, height 7.6 inches — Attractive beige case with black trim

LIMITED QUANTITY AVAILABLE ONLY £199 BRAND NEW AND BOXED + CARR & VAT

14'' RGB COLOUR MONITOR

Stop Press — Brand new, fully cased manufactured by JVC
- Medium Resolution £199
- High Resolution £299

Please ring for further details/spec. sheet

TEAC DISC DRIVES

- TEAC 55F 5/1/4'' D/S D/D Track, Formatted Single Density 400K, ONLY £29
- Case with built-in power supply to hold 2 drives, ONLY £39.95; if case purchased with out drive, £45
- Ribbon Lead, £12; Power Lead, £5
- Ideal for use with BBC Micro
- Slimline — latest technology
- Low-power consumption
- Full warranty

TO ORDER ADD CARRIAGE AT £7 PER UNIT AND VAT @15% AND SEND YOUR ORDER TO:
OPUS SUPPLIES, 158 CAMBERWELL ROAD, LONDON SE5 0EE
TELEPHONE 01-701 8668/9 OR 01-703 6155/6/7
GOVT, EDUCATIONAL AND OFFICIAL ORDERS WELCOME

WIRELESS WORLD JULY 1983

79

www.americanradiohistory.com
TWO NEW HANDHELD DIGITAL MULTIMETERS

MODEL 6010
DC ACCURACY 0-5%
£29.95
PLUS VAT = £34.44

MODEL 7030
DC ACCURACY 0-1%
£35.95
PLUS VAT = £41.34

200µA – 10 AMP AC-DC
28 RANGES EACH WITH FULL OVERLOAD PROTECTION

SPECIFICATION
- Mode select: Push button
- AC DC current: 200µA to 10A – 6 Ranges
- AC voltage: 200mV to 750V – 5 Ranges
- DC voltage: 200mV to 1000V – 5 Ranges
- Resistance: 200Ω to 20MΩ – 6 Ranges
- Input impedance: 10MΩ
- Display: 3½ Digit 13mm LCD
- Overload protection. All ranges
- Battery: Single PP9 type (included)
- Battery life: 200 hours
- Dimensions: 170 x 89 x 38mm
- Weight: 400g incl. battery

OTHER FEATURES:
- Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads, spare fuse and operators manual included. Optional carrying case.

AFDEC
318 Kempshott Lane, Basingstoke
Hants RG22 5LT

I wish to order the following

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

All prices include VAT and post and packaging. All items include a full year guarantee. Allow up to 10 days for delivery. Cheques/Postal Orders etc. should be made payable to AFDEC Electronics Ltd.

Address

Overseas customers add £4.00 post and packaging

AFDEC ELECTRONICS LTD

DIODES

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRT TUBES

A selection available. Prices on request.

Diodes

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA & EQUIV. BOOKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PM COMPONENTS LTD

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TWO NEW HANDHELD DIGITAL MULTIMETERS

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFDEC ELECTRONICS LTD

318 Kempshott Lane, Basingstoke
Hants RG22 5LT

I wish to order the following

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

All prices include VAT and post and packaging. All items include a full year guarantee. Allow up to 10 days for delivery. Cheques/Postal Orders etc. should be made payable to AFDEC Electronics Ltd.

Address

Overseas customers add £4.00 post and packaging

AFDEC ELECTRONICS LTD

DIODES

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRT TUBES

A selection available. Prices on request.

Diodes

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA & EQUIV. BOOKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PM COMPONENTS LTD

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TWO NEW HANDHELD DIGITAL MULTIMETERS

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFDEC ELECTRONICS LTD

318 Kempshott Lane, Basingstoke
Hants RG22 5LT

I wish to order the following

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

All prices include VAT and post and packaging. All items include a full year guarantee. Allow up to 10 days for delivery. Cheques/Postal Orders etc. should be made payable to AFDEC Electronics Ltd.

Address

Overseas customers add £4.00 post and packaging

AFDEC ELECTRONICS LTD

DIODES

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRT TUBES

A selection available. Prices on request.

Diodes

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA & EQUIV. BOOKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PM COMPONENTS LTD

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TWO NEW HANDHELD DIGITAL MULTIMETERS

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMICONDUCORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wide Selection of Branded Valves

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6110</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6111</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6112</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6113</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6114</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6115</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6116</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6117</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6118</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
<tr>
<td>C6119</td>
<td>100V, 500mA</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Wirewound Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0R1</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R2</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R3</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R4</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R5</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R6</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R7</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R8</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
<tr>
<td>0R9</td>
<td>1% 0.1W</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Zener Diodes

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4735</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4736</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4737</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4738</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4739</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4740</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4741</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4742</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4743</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
<tr>
<td>1N4744</td>
<td>1W 5.1V</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Thermistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR220</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR221</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR222</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR223</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR224</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR225</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR226</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR227</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR228</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
<tr>
<td>TR229</td>
<td>250 ohm</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Batteries

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1#7</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#8</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#9</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#10</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#11</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#12</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#13</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#14</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#15</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
<tr>
<td>1#16</td>
<td>1.5V Battery</td>
<td>0.75</td>
</tr>
</tbody>
</table>

WELCOME TO CALLERS WELCOME

Entrance on A227

50 YDS SOUTH OF MEOPHAM GREEN

CAR PARKING AVAILABLE

OPEN MONDAY TO FRIDAY 9a.m. - 5.30p.m.

24 HOUR ANSWERPHONE SERVICE ★
ACCU ACCOUNTS ★ CARRY CARD ORDERS ★
MANY OTHER ITEMS AVAILABLE ★

UK ORDERS £5 & £50 PLEASE ADD VAT AT 15% ★

EXPRESS ORDERS WELCOME. CARRIAGE/POST AT COST

Wireless World July 1983

Wireless World Online

www.americanradiohistory.com
NEW! ICOM ICH2 SYNTHESIZED FM HANDPORTABLE

The ICH2 is the first of a new breed of synthesized hand-held radio transceivers. Being synthesized, it requires no crystals to be set on to frequency. All that is required is to lift a recessed panel on the top of the set and cut the correct diodes to program the set to one or two channels. Duplex or simplex is obtained in the same way. This really is a boon to the busy dealer and customer who wants those extra few sets "yesterday".

The ICH2 is very versatile, coming complete with a rechargeable nicad pack, small mains charger, rubber helical antenna, earphone and strong spring belt clip. Optional extras include: A speaker/microphone, cigarette lighter plug 12V charging lead, 12V converter to operate direct from the car supply, leather and leatherette cases, various different types of slide on/off battery packs both rechargeable and dry and a desk charger that fast charges some of the battery packs in 1 to 1½ hours. The battery packs slide on and off very easily, enabling a spare to be carried in your pocket and an exchange made in the field. Sizes are 6.5"H x 2.6"W x 1.4"D, weighing 1.1lb. Power output is 1-3 watts and covers a frequency range of 156.575-174.135MHz, duplex or simplex. Retail price is 268 pounds each plus VAT. We are also looking for dealers for general distribution. More details from Thanet Electronics ICOM

143 Reculver Road, Herne Bay, Kent
Tel: 02273 63869, Telex 565179

WWW - 049 FOR FURTHER DETAILS

TUNE INTO THE WEATHER . . .

USING OUR COMPLETE 'METEOSAT' WEATHER SATELLITE RECEPTION SYSTEM

We supply the complete system from antenna to video monitor, at the lowest price ever imagined for such a comprehensive system. View the entire globe on your video screen, or select any enlarged portion of the earth, for example Europe, as seen by the satellite from 20,000 miles above the earth. Both visible light pictures and infra-red pictures can be selected, the latter giving useful temperature information.

Our complete system consists of the following items:

1. ANTENNA: 1.1 metre diameter parabolic dish with feed, supplied in kit form to reduce costs and make transportation easier.
2. ANTENNA PREAMPLIFIER: Gasfet low-noise preamplifier to be bolted on to the antenna, to overcome feeder losses and provide maximum sensitivity.
3. 1650 MHz CONVERTER: Frequency converter from 1680 MHz to 137.5 MHz to allow a conventional receiver to be utilised.
4. 137 MHz RECEIVER: The FM receiver, which demodulates the received encoded signal. Orbiting satellites on the 136-138 MHz band can also be received using this receiver.
5. DIGITAL FRAME STORE: The audio signal from the receiver is stored in a large Dynamic RAM memory, which then drives the monitor to provide a continuous display.
6. VIDEO MONITOR: A high quality black-and-white monitor, with 25 MHz bandwidth, ideal for displaying this type of image with excellent definition.

The above items are all that are necessary to obtain first-class pictures from Meteosat. ALL FOR £1,295 + VAT.

Individual items from the above system are also available

Write or phone for further details.

MICROWAVE MODULES LTD

BROOKFIELD DRIVE, Aintree, Liverpool L9 1AN, England
Telephone: 051-523 4011 Telex: 629608 MICRO G

WWW - 055 FOR FURTHER DETAILS

WWW - 032 FOR FURTHER DETAILS

WIRELESS WORLD JULY 1983
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognize the advantages to the toroidals offer in size, weight, lower radiation field and, thanks to I.P. PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

The benefits of I.P. toroidal transformers

I.P. toroidal transformers are now null weight and has a larger laminated or laminated equivalent and is available with 1.25V or 240V primary coded as follows:

Table: I.P. toroidal transformers

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Secondary</th>
<th>RMS</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 V</td>
<td>6/40 A</td>
<td>15 40MM</td>
<td>6.4</td>
<td>125</td>
</tr>
<tr>
<td>62 x 33mm</td>
<td>6/40 A</td>
<td>60 33MM</td>
<td>6.4</td>
<td>125</td>
</tr>
<tr>
<td>0.30kg</td>
<td>6/40 A</td>
<td>40 30MM</td>
<td>6.4</td>
<td>125</td>
</tr>
</tbody>
</table>

Regulation %

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Secondary</th>
<th>RMS</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGULATION</td>
<td>REGULATION</td>
<td>REGULATION</td>
<td>REGULATION</td>
<td>REGULATION</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

£5.12

(Encased in ABS plastic)

120 VA

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Secondary</th>
<th>RMS</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
<tr>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
<td>120 120</td>
</tr>
</tbody>
</table>

£7.42

160 VA

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Secondary</th>
<th>RMS</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
</tbody>
</table>

£8.43

225 VA

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Secondary</th>
<th>RMS</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
<tr>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
<td>225 225</td>
</tr>
</tbody>
</table>

£9.81

For mail order please make your crossed cheques or postal orders payable to I.P. Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms. Phone to I.P. Electronics Ltd Graham Barkhouse, Rye Road, Canterbury, CT2 7AJ, Kent, England Telephone: (0227) 94777, Telex: 969788

Hitachi Oscilloscopes performance, reliability, value

New Models! immediate delivery!

Now from Hitachi are three low-cost benchscopes with bigger screens and extra features in a new slimline ultra-lightweight format. The range now extends to 13 models:

- Dual trace single channel models 20MHz to 40MHz
- Dual trace sweep delay models 20MHz and 35MHz
- Dual timebase multi-trace models 60MHz and 100MHz
- 2 miniature field portable models, 20MHz and 50MHz
- 3 storage models, one tube storage, two digital storage

Prices start at £295 plus VAT (model illustrated) including 2 probes and a 2-year warranty. We hold the range in stock for immediate delivery.

For further information giving specifications and prices please contact (0480) 63570.

www.americanradiohistory.com
WIRELESS WORLD JULY 1983

WIRELESS WORLD JULY 1983

JACK PLUGS
NEON
U.H.F.
Sockets
1P
WAFER SWITCHES.
ANTEX SOLDERING IRON 'C' 15W £5.25. 25W
LOCKTITE
MINIATURE TOGGLES
TOGGLE SWITCHES
ALUMINIUM
ALUMINIUM
case
DRILL SPEED
case
MAINS
GARRARD 6200 Rim
177½x 13½x3¼in. £5
240 -AMP
METAL PLINTHS
10mv to
MAGNETIC
BULK TAPE ERASER £9.50 Post 95p
303/4x13½x3¼in.
STEREO CERAMIC.
4x21/2x2
3P
1/4"x5/8" £1.90.
12x5
STEREO CERAMIC.
4x21/2x2
11/4"x11/2x3/4in. £1.50.
ELECTRIC SHOCK

2 WAYS TO RECOVERY

ACT AT ONCE – DELAY IS FATAL

Display the ELECTRICAL REVIEW shock first aid chart (356x508mm) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card (92x126mm) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there’s a useful two-year calendar on the back.

GET IT – READ IT – PRACTISE 1-4

BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

ACT AT ONCE—DELAY IS FATAL!

To Electrical-Electronic Press
General Sales Department
Room 205
Quadrant House
Sutton SM2 5AS
Surrey
England

Company Registered Number: 151537 (ENGLAND)
Registered Office: Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Please send copy/copies as indicated
Pocket Card @ 70p each inc VAT
Paper Chart @ £1.00 each post free
Card Chart @ £2.00 each post free
Plastic Chart @ £3.00 each post free

Discounts: 100 + copies 10%
500 + copies 15%

(Overseas surface and air mail rates supplied on application.)
<table>
<thead>
<tr>
<th>BASES</th>
<th>CRTs</th>
<th>INTEGRATED CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>7445</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74136</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74175</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74148</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74147</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74151</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74152</td>
</tr>
<tr>
<td>5ADP</td>
<td>CRTs</td>
<td>74167</td>
</tr>
</tbody>
</table>
VAT.

automatic standby power

Pye

output, **plus VAT.**

UHF

Pye

available.

Pye

speaker and **cradle. £90 each plus £2 p.p. plus VAT.**

Pye Westminister W15 FM G and 42-54 MHz, unboxed and like new, but less noise, speaker and cradle. £85 each plus £2 p.p. plus VAT.

Pye Westminister W15 AM mid-band multi-channel sets, no speakers, radios plus £2 each plus £2 p.p. plus VAT.

Pye Westminister W15 AMN mid-band crystalised and converted to 129.9 MHz, 130.1 MHz, 130.4 MHz. Very good condition. £120 each plus £2 p.p. plus VAT.

Pye Westminister W15 AMN high-band and low-band sets available. Sets complete but less mixers, speakers and cradles. £70 each plus £2 p.p. plus VAT.

Pye Westminister W15 AMO mid-band sets only with battery, aerial and power pack. Sets complete and in good condition. £45 each plus £2 p.p. plus VAT.

Pye base station FBU, remotely controlled, 5 Watt output, UHF (440-470 MHz), single channel. £90 each plus £5 p.p. plus VAT.

Pye base station FBU142 UHF (440-470 MHz), 25kHz channel spacing, single channel, local control. £250 each plus £15 p.p. plus VAT.

Pye Beaver M24 high-band FM sets, 15 Watt, robust mobile radiotelephones for industrial use, sets complete but less crystals, as new. £120 each plus £2 p.p. plus VAT.

Pye Base Station type F4AM, remotely controlled, 5 Watt output, medium band and low band available. £90 each plus £5 p.p. plus VAT.

Pye AC200 mains power unit for Olympic or Reporter, automatic standby power facility with trickle charging and built in quartz digital clock. £95 each plus £5 p.p. plus VAT.

Mains Transformers

- **Main isolating transformer, 500VA 240V input, 240V C.T. output, housed in metal box. £15 each plus £2 p.p. plus VAT.**
- **Marconi isolating transformer, 240V tapped input, 240V 3 amp, plus 12V 0.5 amp output. £20 each plus £5 p.p. plus VAT.**
- **Advance Voltaire transformers, type CVN200/5, input 24 or 29V DC, output 240 or 240V RMS 150 watt, 50Hz. £10 each plus £4 p.p. plus VAT.**

EMISSION

- **Government and Manufacturers’ Surplus**

WANTED

Top prices paid for surplus Pye radiotelephone equipment

5 STATION ROAD
LITTLEPORT CAMBS CB6 1OE

Telephone: Ely (0353) 860185

Electronic Components

Telephone: (0768) 764862/764100, **Telex:** 312354 Griffin G

TV Tube Components

If you are Rebuilding or Manufacturing TV Tubes — We are the leading suppliers of Valve and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.

Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Kits, Bases, Getters and all associated items for TV Tube Production. A full technical back-up and Advisory Service is available to all customers worldwide.

Please request our current catalogues and Data Information.

MICROWAVE MODULES

BROOKFIELD DRIVE, ANTHEA, UVENFOL L9 9AF, ENGLAND

Telephone: 051-523 4911 Telex: 529038 MICRO G

- **WWW - 059 FOR FURTHER DETAILS**

PPM5

20-PIN DUAL IN-LINE HYBRID

- Vcc 5.5-35V at 3mA
- Only signal level and meter tolerance presets required
- Applications Note and full specifications on request

SURREY ELECTRONICS LTD.

The Forces, Lucky Green
Cranleigh, Surrey, GU6 7BG

Tel: 0483 275997

Microwave Modules

Applications

- **Note and full specifications needed.**
- **Further Details.**

Access

- **BARCLYCARD**
- **VIS**

WWW - FOR FURTHER DETAILS
To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Australia: Gordon & Gotch (Australia) Ltd, 380 London Street, Melbourne 3000, Victoria
Belgium: Agence et Montages de la Presse. 1 Rue de la Patrie - ILS Brussels 7
Canada: David Circulation Agency, 133 St. Clair Avenue West, Toronto 195, Ontario
Cyprus: General Press Agency Ltd, 131 Prodromou Street, P.O. Box 4526, Nicosia
Denmark: Dansk Bladdistribution, Hoeghsholmvej 8, DK. 1103 Kopenhagen
Finland: Rautakirja OY, Extraventurenbld,. 01640 Yentesi-64, Finland
France: Dawson-France S.A., B.F. 40, F-92121, Palaiseau
Germany: W. E. Searby GmbH, 8 Koln 1, Folterstrasse 2
Greece: Hellasian Distribution Agency, P.O. Box 316, 345 Syngrou Avenue, Nea Smirni, Greece
Holland: Van Dillen N.V., Oostelzaksestraat 11, Amsterdam 1004
India: International Book House, Indian Mercantile Mansion Ext, Madame Cama Road, Bombay 1
Iran: A.D.A., 151 Khilbe, Soroush, Tehran
Israel: Stainitzky's Agency Ltd, Clima House, P.O. Box 628, Tel Aviv
Italy: Infostampa, Via Vittorio Emanuele 8, 20124 Milano
Japan: Western Publica- tarea Distribution Agency, 170 Nihonbashi Hikiki 4-Chome, Shikoku, Kyoto 100
Lebanon: Levant Distributors Co., P.O. Box 1161, Masadel Street, Haim Hanna Bldg, Beirut
Lebanon: Times Distribution Ltd., Times House, 390 Kim Sang Road, Singapore 9, Malaysia
Malta: W. H. Smith Continental Ltd, 18a Scutari Street, Valletta
New Zealand: Gordon & Gotch (New Zealand) Ltd, 102 Adelaide Road, Wellington 2
Nigeria: Daily Times of Nigeria Ltd, 3 Kakawa Street, P.O. Box 139, Lagos
Norway: A/S Nynasens Konsor. Bernand Nynasens val 2, Oslo 6
Portugal: Livraria Bertand & C. Ltd, Apartado 37, Amadora
South Africa: Central News Agency Ltd, P.O. Box 1033, Johannesburg
Spain: Comercial Alimentaria s.a., Comisaria del Mercado 130-135, Barcelona 16
Switzerland: Nuelle & Cie SA, Rue Levier 9-7, CH-1211 Geneva 1, Schwabe Agency AG, Savogelstrasse 34, 4002 Basle

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England
EX-STOCK TRANSFORMERS

STANDARD MODULES

VOLTAGE RANGES & APPLICATIONS

- Standard Modules
- Special designs
- Winding and Plan Details
- Sizes

AUTOMOBILE TRANSFORMERS

- Low Cost
- Universal Voltage

LOW COST SOLDERING IRONS

- Soldering Accessories

SOLDERING IRONS

- Professional Soldering
- Power Soldering

INDUSTRIAL STANDARD TOROIDAL

- Heavy Duty
- Industrial

ramifination, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. — CRIMSON will do exactly that!

Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development, and research will testify, when you need a particular

INVERTEC

- Transformers
- Power Supplies

- Transformers
- Power Supplies
MARCONI SIGNAL GENERATORS

TF2020AS (illustrated 10kHz-2MHz, AM/FM, £750)

MARCONI TF1968B. AM/FM Generator 10-40MHz, 0.2V-200V output. FM Deviation up to ±1kHz. £550

MARCONI TF1969B. AM/FM Generator. Narrow deviation model 995 covering 1.5-220MHz. £450. TF1915. 10-50MHz. AM/FM

MARCONI TF1046/B. AM/FM Signal generator covering in three ranges 68-108, 118-156 and 156-200MHz. FM fixed deviations of 3.5 & 10kHz. AM fixed 30%. £225

DOLBY NOISE WEIGHTING FILTERS
C/N No. 904. Noise weighting filters for COR/ARM signal-to-noise ratio measurements. As new units. £40 ea.

BECKMAN TURNS COUNTERT DIALS

Miniature type (22mm diam.). Counting up to 15 turns reliable. Brand new with mounting instructions. Only £2.50 each.

VARIACS - SPECIAL PURCHASE

We now have a stock of various variacs in excellent condition, fully tested, variable output (0-20V transformers) available in the following ratings:

- ZENITH (non-enclosed) 8A £25.00 + £2.50 pp
- ZENITH (enclosed) 8A £26.00 + £2.50 pp
- BERCO (non-enclosed) 8A £24.00 + £2.50 pp
- Also available, small quantity of Heavy Duty and 3 Phase Variacs. P.O.A.

AUDIO WATTMETERS

Switchable 1kW & 10kW FSD. Internal 3.5 & 8 Ohm bridge resistances. Grounded input in grey enamelled 6x8x3" case. Large easy to read 3" sq. meter. Scope output provision. £160 ea. £195 + £11 pp.

HEATHKIT: Model AW-12. Internal load switchable 3, 8, 16 & 50 Ohm. Meter dial scaled 0-300 (±5% outer scale). 5 ranges from 5mW-50kW FSD. Mains screened £285 £315.

MARCONI TF893A. 1mW/10W Full scale in 5 ranges. 1mW/10W/1kW/5kW/50kW. £350.

Direct calibration in Watts and dbm. £48. + £12.

GPO JACK SOCKET STRIPS. 20-WAY Type 320 (10 pole) £5.50 each. £40 a complete strip. £59. Contact £4 ea. Please include 35 pairs for each positive with the 10 pole type 316 jacks plugs for above 20 ea. (10+ post free). Plus VAT please. Also available stock of new, mint condition Type 720. £4 ea.

CONSTANT VOLTAGE TRANSFORMERS

ADVANCE VOLTSTAT. Type Model TM110A. Mains input 190-260V AC. Output 230V AC @ 150W. Price £22 each. VAT + £2 carriage.

A bulk purchase of Advance series "scopes enables us to offer the following fully reconditioned, guar- anteed units:

- OS200 25MHz single-trace plug-in. 1.0kHz £160.
- OS200 25MHz dual-trace. 10cm/cm plug-in. £255.
- OS220 1MHz 50V/cm Differential plug-in. £200
- OS220 5MHz dual-trace. STORAGE SCOPE £325.

N.B. All these prices include 15% VAT. Service after purchase if required + £10 (15% for full sales). Selection of other oscilloscopes available ex stock.

MARCONI TF2110 dual-trace 100MHz Sweep-delay £460 +

DYNAMO 10MHz battery portable dual-trace £250+

ARMEC 4 Trace Display Oscilloscope Type 279 (17" CRT). £1250

MARCONI TF284A Quantization Distortion Meter. MARCONI TF2105 AM/FM Signal Generator, 10-30MHz.

HEWLEET PACKARD 20425 meter, 0-300kHz. £400.

SEIROM/MEX VF, Function Gen., 0-22kHz, Variable Phase. HEWLEET PACKARD AM Signal Generator, 10-40MHz. £200.

RODHE & SCHWARZ AM Signal Generator. 5.3-IHGH. "SDR"

TELONIC 1000 Sweep Generator. 450-850MHz.

TGL Spectrum Analyser Type 3A108 and 102. 500MHz. Brand new units. Use with CRO having external input. POA.

For full details of the above and other items, see the article on "Oscilloscopes" in our Work:page. (LOCATE 07, 1980).

MICROFILLET VIEWERS

Type 50R. Screen size 9x5". Ret, ea. £15. Further quantity now £9.50.

SWEEPERS

TELCOR Sweeper generator system type 2023. Fitted with Marker, attenuator, Detector plug in units and Generator covering 800-1500MHz. £235

MURHEAD FACSIMILE UNITS

MURHEAD FACSIMILE facsimile receiver type K441 and transmitter types K400 in stock in excellent condition.

Please note. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry a three months' guarantee. For our own reconditioning work we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. Please ask for full details: VAT included.

£460+

DISC CARTRIDGES

BULL & HOWELL

FUSES, WIREWOUND RESISTORS

British made by Beswick, Osbourne. Stock items available at 30% extra discount. Also a range of wire wound resistors (Asian) stock items available at 50% extra discount. Send or phone for stock lists.

Our regular lines always available:
- 300ppm. 5% tolerance, 1% each. 89 prices. See left. Minimum order £20. Minimum 10 pcs per value. VAT, P&P incl.

SPECIAL OFFER

10 pcs of each value. 890 pcs for £25.30

SPECIAL "POP" PACK

100 pcs 10R, 1K, 10K, 100K, 1M. .1% tolerance. £80.00. 1K, 10K, 100K, 1M. 2% tolerance. £85.00. 100,000 100K. 2% tolerance. £82.50.

One of each pack £50 only

www.americanradiohistory.com
WIRELESS WORLD JULY 1983

WIRELESS WORLD

Current cost £32.00.

almost silent running

miniature reversible

very quiet running 240

finguard

with out range

Keep your hot parts COOL and RELIABLE

auto switching, ideal networks

and

Join the

transmit

disk drive for

with data

test

1200 baud full duplex over

and full

print mechanism giving

chassis

heavy

Made to the very highest

internal

163 characters per

120.00.

£10.50. 1000's

8 AMP MAINS FILTERS

PSU

THE

HARD

1200 baud

duplex

more information

required

as

for connection

Order NOW

With RS232 i/o levels

in

Manual

computer

of OVER

Socket, remote

wires or

for U.K

VAT

7100 Single sided £225.00

7100 single sided £20.00

7702 1133 8 BIT WORD - NO PARITY

240MB in 44A/4000A/B

£10.50. 50 way ribbon cable £3.20 per metre.

AMPS

MISS

au

MISS

card.

as

a

stock items

credit

7100

ins.

MULTIYOU

on Ali

job.

provision.

Only

كار

100%

5.50. 50 way ribbon cable £3.20 per metre.

7100 Single sided £225.00 + Carr 7200 Double sided £495 + Carr

Optional accessories. Full technical manual £290.00 plus £10.50 with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit £85.50. Way DC connector £5.50. 50 way ribbon cable £3.20 per metre.

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter

diary wheel at a fraction of its original cost.

FOR ONLY £499 + VAT

 viel

ME3029 for
circuit. 240

guaranteed.

Dm 45 x 22 x 11 cm. DC requirements +5v, +12.34v,

Carriage and £10.00.

$100 Bus 19 Mb. Subsystem. A cancelled order and change of

nobody of a major British disk drive manufacturer enables us to offer you "last year's model" at a plug in and ready to go "SUPER LOW PRICE". Our own custom controller put direct into the $100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbits! and at disk transfer rates in excess of 7 Mbit/sec seeing is believing! Supplied complete with use configurable BIOS etc. Save a fortune. Limited quantity only.

S100 19 Mb. Disk drive £699.00 PSU unit £129.00 + VAT Extension cable £20.00 Special SUBSYSTEM prices. 1 x 3100 disk + PSU + Controller or 2 x 2400 disks + 2 PSU + Controller £799.00 No VAT. All prices + VAT and carriage. 90 day guarantee. Data on request.

ALL PRICES PLUS VAT

www.americanradiohistory.com
These latest designs from the drawing board of John Linsley-Hood, engineered to the very highest standard, represent the very best that is available on the market today. The delicacy and transparency of the tone quality enable these amplifiers to outperform on a side-by-side comparison, this bulk of amplifiers in the commercial market-place and even exceed the high standard set by his earlier 70-watt design.

Three versions are offered: a 30-watt with Darlington output stage and full range with multi-puck output devices. All are of identical outside appearance which is designed to match and stack with our Linsley-Hood cassette recorder 2.

As with all Linsley-Hood cassette amplifiers, the unit will be in stock and shipped immediately. As this is a special offer, the items may have to be ordered in multiples of 10.

This month's special offer.

Complete stereo cassette deck.

Brand new high-quality stereo cassette unit with built-in recorder and play electronics ideal for use with any hi-fi system or music centre. Only a single 9-Volt DC supply is required to power the whole unit.

Microphone and line inputs are provided on both channels and the line output will feed into any normal hi-fi amplifier. Erase and bias is provided by an ultrasonic oscillator, automatically switching to the correct level when a chrome or ferric cassette is put in place. Overall size 180mm x 130mm x 73mm. Complete with 3-digit counter.

We value this deck at about £30. Our very special price including VAT and postage is - THIS IS ALL YOU PAY - ONLY £18.34 (while stocks last).

FSK High Performance Teletype Modems

HFSSB Selective Calling Systems

Solid state 500W - 1000W linear amplifiers

Compatible with Most existing HFSSB systems.

Aero Electronics (AEL) Ltd.

Galbraith House, Horsley, Surrey, England RH12 3SU Telephone (0306) 85333 Telex 87116 Aero G Cable: Aeroidvsatic Teleday 54615943

WWW - 006 FOR FURTHER DETAILS

High Quality Replacement Cassette Heads

Do your tapes lack treble? A worn head could be the problem. Filling bars of our replacement heads could restore performance to better than new. Standard mounting makes fitting easy and with a choice of 23 standard heads and several high performance heads, we have the actual imprinters which you get the best quality of lower prices for prime parts. Compare us with other suppliers and see the following is a list of our most popular heads. All are suitable for use with Decca machines and are in stock.

2C02 Permatloy Stereo Head. This is the standard head fitted as original equipment on most decks £4.25

HT616 High Beta Permalloy Head. A hard-working, high performance head with minimal distortion £3.75

HS12 High Beta Permalloy Head. Longer life than Permalloy, higher output than Ferrite, fantastic frequency response £5.25

HC20 4-Tent Head for auto-reverse or quadrophonic use. Full specification record and playback head £7.40

Please consult our list for technical data on these and other Special Purpose heads.

STUART TAPE CIRCUITS

These circuits are built from pre-tested and screened that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simple off tape monitoring. We also have the heads. This kit is well engineered but does not have the detailed instructions that we give with our recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free. No VAT.

Hart Triple-Programme Test Cassette TC1

One inexpensive test cassette enables you to test your head and tape quality. Invaluable when fitting new heads. Only £3.80 plus VAT and 50p postage.

Tape Head De-magnetiser: Handy cassette suits mains operated unit prevents build up of residual head magnetisation and allows a noise on playback.

Cassette Motors

Brand New Governed 12v DC Tape Drive Motor Type MMB-5A5X.

As used in SP85 and many other decks. 40mm Dia x 25mm Shaft. Depth 145mm x 20mm x 20mm. Fitted to 20mm B.C. on shaft face and foot. Anti-clockwise rotation at rated speed of 1200 RPM. Free run current 25mA. 48V max.

Price £1.50 each. 50p Postage. Orders to be placed through Stockists. Full details of the extensive range of HART products is contained in our illustrated list. Ask for your FREE copy NOW.

Enquiries for lists and ordering are ex-stock.

Order Form WIRELESS WORLD

Hart Electronic Kits LTD.
Oswestry, Shropshire SY10 9AF

WIRELESS WORLD JULY 1983

FSK High Performance Teletype Modems

HFSSB Selective Calling Systems

Solid State 500W - 1000W Linear Amplifiers

compatible with Most existing HFSSB Systems.

Aero Electronics (AEL) Ltd.

Galbraith House, Horsley, Surrey, England RH12 3SU Telephone (0306) 85333 Telex 87116 Aero G Cable: Aeroidvsatic Teleday 54615943

WWW - 006 FOR FURTHER DETAILS

EasiBinders

Quick, neat and easy!

It's so easy and tidy with the Eastindian to tie your copies away. Each binder is designed to hold six copies and is attractive in appearance and binding with the WIRELESS WORLD logo. Price £1.30 including postage, packing and VAT.

Overseas orders add 35p per binder.

Net. (Exc. VAT) £1.95

Please allow 3-4 weeks for delivery.

Payment by ACCESS/BARCLAYCARD/VISA. Credit card number to be shown.

EasiBinder, 42 Hoxton Square, London N1 6NS

order form WIRELESS WORLD

EasiBinder P.O. Box no. for binders

Years required

BLOCK LETTERS PLEASE NAME

Address

Date Registration No. 735718

www.americanradiohistory.com
Always Ahead With The Best!

£5,000-£18,000

★ Where does your interest lie: Communications; Computers; Weapons; Radar; Nav. Aids; Data-Comms; Image Processing; Medical; Telemetry; Simulation; Satcom; Local Area Nets.

★ Experienced in: Mini/Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?

★ There are opportunities in: Design; Test; Sales and Service for Engineers and Managers.

★ First call: MIKE GERNAT or JOHN SANDERS on 076 384 676/7.

Electronic Computer and Management Appointments Limited

148-150 High St, Barkway, Royston, Herts SG8 6EG

Newham Health Authority

Newham Hospital

Glen Road

Plaistow

London, E.13

Medical Physics Technician

£6,728-£8,522 inclusive

This full-time post will be the first appointment to this grade in the District. Initially the postholder will be responsible for the dismantling, re-assembling and testing of equipment being disinfected or sterilised in CSSD.

However, the successful applicant will be qualified in electronics and will also be responsible for servicing equipment at Newham Maternity Hospital, a service which is intended to expand to serve the District.

Application form and job description from:

District Personnel Department

St Clement’s Hospital

Bow Road

London E3 4LL

Tel. 01-980 4899, ext. 7

Closing date: July 13th, 1983

Capital Appointments Ltd

The UK’s No. 1 Electronics Agency

If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:

Telephone now for our free jobs list

We have vacancies in all areas of the UK

Salaries to £15,000 pa

01-637 5551 or 01-636 9659

(24 hours)

Or if you prefer send a full CV to:

Capital Appointments Ltd

29-30 Windmill Street, London W1P 1HG

Technical Writer

and

CTV, Audio, Video Home Computer Engineers

We invite applications from candidates with manufacturing or servicing experience in the brown goods industry. Technical Writer applicants must also have brown goods experience, with recognised technical qualifications. Candidates should have the ability to communicate technical information to the consumer, and will have responsibility to write, rewrite service manuals for a variety of brown goods, a flair for technical graphics would be an advantage.

Applications in writing, full cv, personal snapshot and salary requirements to:

Box No. 2154
THE UNIVERSITY OF PAPUA NEW GUINEA – PORT MORESBY

Applications are invited from suitably qualified persons for the post of Senior Technical Officer in the Department of Physics. The successful applicant will be expected to join a technical group involved in carrying out electrical-electronic maintenance to scientific departments and facilities within the University. A proven record of experience is required covering maintenance and servicing in a wide range of teaching and research instrumentation commonly used in Bio-Medical Sciences. The Department of Physics houses modern and well-equipped electronics and teaching workshops to facilitate the work envisaged. He/she will be required to supervise and provide on-the-job training to national Papua New Guinean technical staff. Applicants should have a Higher National Certificate in Electrical/Electronics Engineering or equivalent qualification. Possession of a valid driving licence will be desirable.

Salary: K16,645 per annum plus gratuity. (£1 sterling = K1.3195)

Applications will be treated as strictly confidential and should include a full curriculum vitae, a recent small photograph and the names and addresses of three referees.

Three-years contract. Gratuity entitlement based on 24% of salary earned and payable in installments of lump-sum and taxed at a flat rate of 20%. Benefits include: support for approved research; rent-free accommodation; appointment and repatriation airfares for appointees and dependents; financial assistance towards the cost of transporting personal effects to and from PNG; six-weeks’ annual recreation leave with home airfares available after each 18 months’ continuous service; generous education subsidies for children attending schools in PNG or overseas; a salary continuation scheme to cover extended illness or disability. Applicants who wish to arrange secondment from their home institutions will be welcome.

Applications should be forwarded to the Assistant Secretary (Staffing), University of Papua New Guinea, PO Box 320, UNIVERSITY, to reach him no later than 30 June, 1983. Applicants resident in the UK should also send one copy to the Overseas Educational Appointments Department, The British Council, 90-91 Tottenham Court Road, London W1P DOT, quoting reference U78/83.

RF SERVICE ENGINEER

We are responsible for all aspects of sales, service and warranty in Europe for the Plasma Therm range of RF generators, plasma processing equipment and inductively coupled plasma systems throughout UK, Europe and Scandinavia. The Plasma Therm product range is a market leader in its field and has an enviable track record of profitable growth and product innovation.

THE JOB. RF service engineer based in London to provide RF service and technical support throughout UK, Europe and Scandinavia. The candidate should be a self starter, willing and able to work on his own, and be able to trouble-shoot and solve problems in the field.

RENUMERATION. The right candidate will be offered an attractive financial package to include a performance-related bonus scheme, pension and a company car.

Applications and cvs should be addressed to:

Mr J. F. Stackhouse
PLASMA THERM LTD.
Kangley Bridge Road, Sydenham
London SE26 5AR

APPLIED RESEARCH ENGINEERS

GRADUATES WITH EXPERIENCE or ability to produce new concepts, to take designs to the breadboard proving stage. Applications and topics are varied. For example circuits for image processing modern laser applications, displays (CRT, PLASMA or LCD), designs incorporating the latest MPLS or high-volume memories.

SUFIICIENTLY SCIENTIFIC to contribute to the thinking of top-notch boffins in the field of infra-red and work to principles necessary for multi-disciplinary design.

SUFIICIENTLY COMMERCIAL to accept a high level of project responsibility in a design that you intend to be a world leader. The type of experience you will gain in this demanding and forward thinking environment is sufficient to direct young people of ambition to a successful and highly creative career path.

SALARY will reflect the contribution the engineer can make.

LOCATION: London’s Green Belt.

FOR FURTHER DETAILS, ETC.:

Charles Airey Associates
Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ
Telephone: 01-223 7662 or 228 6294

CHELTON (ELECTROSTATICS) LIMITED

Following a management buyout and success of our new U.S.A. subsidiary we need additional sales engineers.

AVIONICS DESIGN ENGINEERS

(Both Electrical and Mechanical)

Also

Draughtsman (M/F) and Technical Author

For development projects which include:

- ★ Airborne and Ground Antennas and Arrays, both passive and active, covering H.F. to Microwaves
- ★ Specialised Receivers for Homing and A.D.F. Systems
- ★ Automatic Tuning Units: R.F. Filter Networks
- ★ Bus Controlled Microprocessor Logic Devices
- ★ Specialised Test Sets for own and other Products
- ★ Operation and extension of our Polar Diagram Range

We will pay high salaries for skilled and motivated staff. Employment available at both our Marlow and Plymouth works.

Please write in the first instance to: TECHNICAL DIRECTOR, CHELTON LIMITED MARLOW, BUCKS SL7 1LR

THIS ADVERTISEMENT IS AS NEAR TO THE TRUTH AS ANYBODY PAID TO EXAGGERATE DARES PUBLISH.

Our client company is in the Military Defence Industry. They produce electro-optical surveillance and detection systems embracing thermal imaging, other day/night vision aids with laser integration.

SO WHAT'S THE ATTRACTION

The company’s vigorous buccaneer spirit is reflected in a full order book – 80 per cent exports. To maintain this position new products must follow. A business development group has been formed to ensure that successful high technology concepts are generated to create a range of products which will satisfy the market demands of the future. They now require:

WIRELESS WORLD JULY 1983

[americanradiohistory.com]
NATIONAL COVERAGE

The Engineering Recruitment Officer, BBC Broadcasting House, London W1A 1AA

Name:
Address:
Tel no:
Age:
My qualifications are:
I am currently working as:
I would prefer to work in:

We are an equal opportunities employer.

If you combine a talent for electronic engineering with a fascination for "show business" then you'll discover a technically challenging and personally rewarding career with BBC Engineering. And you don't even need to head for the bright lights of London.

The BBC is a truly national service which provides information and entertainment throughout the United Kingdom. Every week we broadcast 3,500 hours of radio and television programmes through our network of regional centres and local stations. With the successful launch of Breakfast Time and expansion in many other areas, the BBC's world is growing and, as you can see, there are openings for Engineers throughout the country.

BBC Engineers, both men and women, provide all the complex technical facilities which make the production and teleporting of our sound and television programmes possible. Much of the equipment our Engineers operate and maintain has been developed in-house and sets the state of the art for the broadcasting world. But while we enjoy being innovative, we are equally concerned with reliability. However smooth, professional and trouble-free our programmes seem behind the scenes it can be a very different picture. Surmounting technical problems under pressure is the challenge which confronts and stimulates our Engineers.

You will need to be qualified with a UK degree in Electrical Engineering or Electronics or an equivalent HNC or Higher TEC Diploma in Electronics. Normal hearing and colour vision are essential for a career in Broadcast Engineering.

Salaries are currently under review and are in the range £7,314 to £7,892 in London and £6,584 to £6,962 outside London, depending upon experience. These are anticipated to rise to a basic of £7,750 in London and £6,720 outside London. Shift allowances are in addition to the above basic salaries.

BBC Engineering
Making an Art of Technology
Satellite Communications

- Spacecraft Systems • Communications Systems
- Antenna Design • Radar and Signal Processing
- Electronic Circuit Design
- RF and Microwave Equipments
- Mechanical, Thermal and Dynamics Design

Recently awarded contracts have created a need for immediate expansion of on-site facilities and the design team. Some senior appointments have been filled from within, but there are still opportunities for Engineers Managers and Group Leaders to lead up additional teams now being formed.

At Senior Engineer/Engineer levels there are several vacancies in each of the above work areas.
Qualifications required are Degree/HND/HNC in a relevant discipline, plus experience. Excellent salaries and comprehensive range of benefits are offered, together with relocation assistance if required.

Please complete the coupon below and send it to:

(Applications are invited from both male and female candidates)

Marconi Space & Defence Systems

Design Engineers

Name ___________________________
Address ________________________

Age __________ Telephone (Home) ________ (Work) ________
Qualifications __________________________

Spacecraft Systems ☐ RF and Microwave Equipments ☐
Communications Systems ☐ Radar/Signal Processing ☐
Antenna Design ☐ Electronic Circuits (VHF/UFH) ☐
Structures ☐ Mechanical ☐ Thermal ☐ Dynamics ☐

Ref BL 73

Electronic Engineers

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of £6,500 p.a. and could be up to £11,000 p.a.

Electronic Design/Development

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or part peripherals or electronic packaging or film technology or telecommunications. Also above for updating in modern techniques. Salaries up to £15,000.

Software Programmers & Engineers

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to £12,000 p.a.

Please contact by telephone, or letter, to discuss companies and possibilities. Watford 49456 anytime.

GORE MANAGEMENT SERVICES LTD

SELECTION & TRAINING CONSULTANTS
218 St Albans Road, Watford, Herts.
Tel: Watford 49456

Bored?
Then change your job!

1) Film TV Equipment
Installation and maintenance of studio and TV equipment UK and abroad.
2) Satellite Communications
Test Engineers required with experience of digital circuits £7,700, Surrey.
3) Microcomputers and Peripherals
Service Engineers required £6,700 – 10,000 Canterbury.
4) Data Communications
Senior Engineers required from microprocessor-based equipment £8,000 – 12,300 Reading.
5) Service Personnel
We have many clients interested in employing service technicians and technicians at sites throughout the UK. Phone for details.
6) £500 per week
We are paying very high rates for contract design and test engineers who have a back ground in RF, Microwave, Digital Analogue or Software at sites throughout the UK.

Phone or write:
Roger C. Eng. M. I.E. R. E.
CLIVEDEN CONSULTANTS
87 St. Leonard's Road, Windsor, Berks. Windsor (07535) 58022 (15 lines)

CLIVEDEN
HAMMERSMITH AND FULHAM HEALTH AUTHORITY
CHARING CROSS HOSPITAL
Senior Chief Technician
INCLUSIVE SALARY SCALE:
£8,896 – £11,395

Applications are invited for the above post which carries responsibility for the day-to-day administration of the technician staff in the Medical Electronics Section of the Medical Physics Department.

The main duties are associated with equipment management which includes maintenance, electrical safety testing and evaluation of new equipment. Extensive use is made of a microcomputer for record keeping and work scheduling.

Applicants should have considerable experience of electronic equipment and should currently be in charge of an equipment maintenance section. The successful applicant will probably have a degree, HNC or HND in Electronic Engineering and will be appointed on the Medical Physics Technicians scale.

For further information please telephone Mr. C. G. Carter, Senior Electronics Engineer, on 01-748 2040, Ext. 2588.

For an application form and job description please contact the District Personnel Department, Brandon House, 116 Fulham Palace Road, London, W.6. Tel. 01-748 2040, Ext. 2902.

Closing date: June 24, 1983

Premier international electronics companies - very secure and expanding in London and the south of England - require professional senior staff (including departmental heads). Relocation allowance up to £3,000.

Electronic Engineers

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of £6,500 p.a. and could be up to £11,000 p.a.

Electronic Design/Development

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or part peripherals or electronic packaging or film technology or telecommunications. Also above for updating in modern techniques. Salaries up to £15,000.

Software Programmers & Engineers

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to £12,000 p.a.

Please contact by telephone, or letter, to discuss companies and possibilities. Watford 49456 anytime.

GORE MANAGEMENT SERVICES LTD

SELECTION & TRAINING CONSULTANTS
218 St Albans Road, Watford, Herts.
Tel: Watford 49456

WIRELESS WORLD JULY 1983

www.americanradiohistory.com
Systems Engineer

Sony Broadcast: one of the world's leaders in professional broadcast television equipment and systems, are undergoing a planned programme of expansion. As a result of continued growth and success, they are now looking for experienced engineers to join their Systems Department. The successful applicants will join a young and enthusiastic team involved in the design, manufacture and commissioning of complex static and mobile television systems. This is a challenging and responsible position and candidates should have direct experience of sound and television principles, gained in operational television or its allied manufacturing industry.

If you like the thought of enjoying the success of one of the world's leaders in Broadcast technology, together with an attractive salary and benefits package, then write with details of career and current salary to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hampshire RG21 2LA. Telephone (0256) 55011

Sony Broadcast Ltd.
City Wall House
Basing View, Basingstoke
Hampshire RG21 2LA
United Kingdom
Telephone (0256) 55 0 11

Attractively situated in a semi-rural area in one of the Home Counties, our client is engaged in the research, development and manufacture of a wide range of advanced systems for guided weapons, satellites and electronic warfare. The company is one of Britain's most successful and prestigious companies who have recently acquired major new contracts which necessitate the recruitment of people to work on state-of-the-art projects in the following disciplines:

Satellite Communications and E.W. c. £9K to £17K

DESIGN AND DEVELOPMENT ENGINEERS
For interesting work in the design and development of digital circuits, or analogue circuits, or D to A and A to D converters. Or VLS, to discrete circuits or logic circuits; also for packaging and thermal design of components and assemblies.

SOFTWARE ENGINEERS AND PROGRAMMERS
For software design associated with INTEL 8085 and 8086 microprocessor based real time systems or computer modelling and simulation, or data analysis.

SYSTEMS ENGINEERS
To deal with the definition of engineering and performance requirements, algorithm development, simulation and modelling, trials co-ordination and data analysis associated with complex, high-technology systems.

You would join a young, informal, enthusiastic team, working in a pleasant environment, producing state-of-the-art designs at the forefront of technology using the latest techniques and equipment to solve the most difficult problems. The rapid rate of change within the industry would ensure you will be constantly updating your knowledge and will be able to expand on the expertise you have already acquired.

Executive Recruitment Services
29-33 Bridge Street, Hemel Hempstead, Herts HP1 1EG. Tel: (0442) 212655 (5 lines)
WIRELESS WORLD JULY 1983
Phenomenal growth at our Radlett site, in the field of computerised medical imaging equipment, combined with international design authority to meet worldwide demand has created a unique position for a

DESIGN ENGINEER

To **£12K**

Responsible for establishing complete on-site design programmes through to the manufacturing stage for high performance C.R.T. monitors used in new project/product introduction.

Applicants should have experience in monitor design or support.

You should hold an HND/BSc together with 2/5 years relevant industrial experience.

Opportunities for development into either technical, management or support functions are excellent.

Please write enclosing career details, or telephone Malcolm Lakin, Personnel Department

I.G.E.N.Y. LTD.

COLNEY STREET,

ST. ALBANS, HERTS.

TEL. RADLETT 4722

SALES ENGINEER

CEL urgently require a field sales engineer to assist with the sales and support of a widening range of digital video products. Based at Saffron Walden, the post will involve work both at our factory and throughout the UK and Europe.

The successful applicant will have extensive knowledge of video equipment in general (ideally both broadcast and non-broadcast) and be able and willing to work alongside a wide variety of operational situations.

An excellent remuneration package is on offer to the right person.

Applications in confidence to:

P. A. Rutter

Sales & Marketing Director

CEL Electronics Limited

Chroma House

Shire Hill

Saffron Walden

Essex

RADIO ENGINEER

To work as a technical adviser with a Latin American organisation for education by radio, with 40 affiliated radio stations in 17 countries.

The engineer will initially be based in Quito, Ecuador and will later travel to radio stations in other countries. The job consists of planning and running training courses for local technicians in maintenance of mainly small, short and medium wave transmitters, aerials and studios.

Applicants should have radio engineering experience, gained in a broadcast environment; the post will demand skills in training people with non-technical backgrounds and in planning and improving equipment. Spanish speakers especially welcome, but language training can be provided.

The post is initially for three years on a basic salary. Because of extensive travel, it is unlikely to suit applicants with families. CIR will provide orientation and language training, insurance, air-fares and various allowances.

For a job description and application form, please send a brief CV to CIR Overseas Programme, 22 Coleman Fields, London N1 7AF, quoting ref WW/2.
Telecommunications Technicians

Up to £9,830

The posts available are varied, but broadly they fall into two groups at three different locations.

HANSSLOPE PARK (MILTON KEYNES) and CENTRAL LONDON

for installation, maintenance and other work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.

CROWBOROUGH, SUSSEX

for maintenance and operation of high power, medium and short wave broadcasting transmitters and associated equipment.

Applicants should normally have four years' relevant experience, and must hold one or more of the following:

★ O'N in Engineering (with pass in Electrical Engineering 'A')
★ O'N in Applied Physics
★ TEC/SCOTEC certificate
★ City & Guilds Telecommunications Technicians Certificate Part II (Course No 271) or Part 1 plus Maths 'B', Telecommunications Principles 'B' and one other subject.
★ a pass in the Council of Engineering Institutions Part I examination
★ an equivalent or higher relevant qualification

Ex-Service personnel who have had suitable training and at least three years' appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary: £6,262-£8,560, London £1,250 more, starting salary may be above minimum for those with additional relevant experience. Promotion prospects are good. Relocation assistance may be available.

Foreign & Commonwealth Office

SERVICE MANAGER

SERVICE ENGINEER

MEDICAL LABORATORY EQUIPMENT

Due to continuing expansion of the medical division within the UK, Greiner has vacancies for the above positions. Either position would suit applicants already working as service engineers on electro-mechanical instruments, or persons employed in medical/biochemical laboratories and familiar with automatic analysers.

Applicants should have mechanical aptitude and a good working knowledge of digital electronics. Ability to work with the minimum of supervision and a willingness to travel, for short periods, within the UK, will be expected.

In addition, those applying for the Service Manager position should also be capable of organisation and control of a service department offering virtually immediate response. Competitive salaries will be offered, together with a company car. Full product training will be given in the UK and Switzerland.

Please write, giving details of experience, qualifications and past career, to:

GREINER ELECTRONICS (GB) LTD.
185 Angel Place
London N18 2UD
Tel: 01-893 8432

(2592)

FIELD ELECTRIC LTD.
3 SHENLEY ROAD
BOREHAMWOOD, HERTS.
01-953 6609

Specialist for PC and stepping motors, fans, blowers, AC capacitors, relays, microswitches, linear and switched mode power supplies, VDUs, keyboards, test equip, electric and geared motors.

Send see for full list (2156)

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Low wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRTregenning, metallising, Research & Development. Barratts, Mayo Road, Croydon CR0 3XP. 01-644 9917. (9675)

HYDROKIT

Hydraulic Flypress Conversion

Complete Hydraulic Kits comprising: Power Pack, Central Valve, Ram, Hose Kits and Fittings. Suitable for many applications including Presses with Ram Pressure up to 2,000 l. Available as kits or as a complete system. Write for full details.

PRICE FROM £428

"HYDROKITS" are COMPLETE kits. Just remove arm of press and operate screw to provide ram. Include new main ram, pump, control valve (as supplied), fill with hydraulic oil and connect to power source. 13 amp or 380v. See advert for full kit details. Payable within 30 days. Write for full kit details. (1938)

ARTICLES FOR SALE
BROADCAST

"Scattered or sown over the General Surface"

Broadcasting these days tends to refer to those people scattering information rather than barley, but then much has changed! If you could be interested in changing then here is a small sample of the positions we have within our Communications division.

RF Components Designer to £14,500 Rural Southern England
To design very sophisticated components used by the communication industry. Ref: 046/1

Cable TV Systems Designer £16,000
To work on major proposals for Cable TV with a very successful TV/Telecomms Group. Ref: 046/2.

Cable TV Network Planner £22,000
To control a group planning and proposing major Cable franchises. Ref: 046/3.

Video Project Leader £17,000
Design and Development of video equipment used in the field of surveillance, etc. Ref: 046/4.

RF Engineer £14,000 Rural N. England
Designing an RF based system for use in para-medical field. Ref: 046/5.

RF/Telecomms/TV (Cable & National) Audio – Speech Synthesis Engineers Required throughout UK. Many for smaller and unusual companies.

Telephone Paul Hequet on Lewes (07916) 71271 or write to him to broadcast your own potential.

The Electronics Recruitment Company
Temple House
25/26 High Street, Lewes
East Sussex BN7 2LU
Tel: Lewes (07916) 71271

TECHNICAL TRAINING FOR TELEVISION

Thames Television will be running its Technical Training Scheme beginning October 1983.

1. Technical operations covering VTR, Telecine, Vision Control and maintenance.

2. Studio Sound Operations.

3. Film Editing.

The course will consist of 5 months broad based training and 4 months specialist training and will take place at the Training Centre, Teddington, with additional experience gained on attachment at each of the Company’s sites.

Salary during training will be 1-3 months £5,500 per annum, 4-9 months £6,500 per annum.

Successful Trainees will then be absorbed into operational departments at one of the Company’s sites and go on to a salary structure applicable to the grade.

Candidates should preferably be 20-30 years of age and have academic qualifications, specialist training or experience relevant to their chosen area.

Thames is an equal opportunity employer and these vacancies are open to all male and female candidates regardless of national/ethnic origin and marital status.

For an application form and further details please send a large stamped addressed envelope to:-

Mike Allen,
Personnel Department,
Thames Television Limited,
Broom Road,
Teddington Lock,
Middlesex.

LONDON’S WEEKDAY ITV

ARTICLES FOR SALE

Analogical integrated circuit design on a single chip. Phone Paul-D Limited on 0279-2926.

Gould OS 300 Double Beam Oscilloscope including external probe, used once only. For more details telephone Mrs Kedge on Burgess Hill (0444) 47717.

Valves, Projector Lamps. 5000 type, etc.

Tel: (0279) 30323.

Bored?

Then change your job!

1) TV Broadcast Equipment

Test engineers with knowledge of digital circuitry wanted to work on studio products. Up to E10,000 – Hants.

2) Materials Testing Equipment

Senior test engineer required to test range of machines, which include microprocessor-based control systems. Experience of analogue and digital systems needed £9,000-£10,000 – Bucks.

3) Medical Equipment

Installation of field service of a variety of equipment. Experience of analogue and digital control circuitry. £7-£9,000 + car.

4) Security Systems

Maintenance Engineers required repairing to component level. CMOS and TTL logic with experience of microprocessors. Circa £7,000 – Berkshire.

5) Radar Systems

Test engineers needed for work on radar equipment. E8,000 – Middlesex.

6) Audio Equipment

Service engineers with experience of maintaining audio systems required. I.W. London. £10,000.

7) Data Communications

Field service of microprocessor based Modems and associated equipment. £8,000 + car. – Reading.

Hundreds of other Electronic and Computer Vacancies to £12,500

Phone or write: Roger Howard, C. Eng., M.I.E.E., M.I.R.E.

CLIVEDEN CONSULTANTS
87 St. Leonard’s Road, Windsor, Berks. Windsor (0753) 58022 (5 lines)

CLIVEDEN

ARTICLES FOR SALE

THE SCIENTIFIC WIRE COMPANY
111 Foreman Road, Upper Norwood, London SE2 9QD

SCREW TERMINALS

CTH: 08 0.50 1.00 1.25 2.00 5.00 10.00 25.00 51.00 75.00 100.00

SOLDER BATH COPPER WIRE

SVNS 24 36 48 51 54 57 60 £1.00 £1.50 £1.75 £1.90 £2.00 £2.25 £2.50 £2.60

APPLICATIONS WIRE 20FT £1.61 £2.58 £2.98 £3.00 £3.20 £3.20 £3.40 £3.40

THE QUARTZ CRYSTAL CO. LTD.
58 C.C. WORKS, WILLOW CREST, NEW MALDEN, SURREY 01-942 0346 & 2908

LINSLEY HOOD DESIGNS

75 Watt and 100 Watt amplifiers
Audio Signal Generators

75 Watt amp p.c.b. £27.30
100 Watt Mosfet p.c.b. £29.50

WIRELESS WORLD JULY 1983

(8493)
CABLE TELEVISION

CABLETIME is a newly formed company involved in the manufacture and installation of cable television systems, based in pleasant offices in central Newbury, Berkshire.

To assist in this new venture Cabletime are looking for the following staff:

SENIOR PROGRAMMER

A Senior Programmer is needed to join the Cabletime team of highly qualified engineers, to design and develop new high and low level software, and support and extend existing software packages. A suitable candidate for this position would be qualified to degree level or equivalent, have at least 2 years’ experience in the design and implementation of real-time systems (biased towards communications), using DEC hardware and software. Also experience of developing microprocessor software for Intel microprocessors, and fault-finding of microprocessor-based systems would be useful.

DEVELOPMENT ENGINEER

A Development Engineer with experience in the field of television engineering is needed to design and develop electronic circuitry for the cable television industry. Experience of VHF/UHF techniques, and/or data communications would be a distinct advantage. A suitable candidate is likely to be a graduate, but this should not preclude anyone with a proven track record from applying.

If you are interested in an exciting career with this new venture then please write or telephone for an application form to:

The Personnel Officer, Cabletime Ltd., 17 West Mills, Newbury, Berkshire.
Tel: Newbury (0635) 48222.

A member of the UEL/Micro Consultants Group.

Barcud is an independent television facilities company supplying outside broadcast and editing facilities and staff to television companies and producers from its base in Caernarfon. Because of recent and forthcoming expansion in its work and facilities, we now have a vacancy for an experienced

VISION AND VTR ENGINEER

The successful applicant will have experience of operating 1" VTR machines and familiarity with the Sony 5000 editing system would be an advantage. There will be opportunities to work on the company’s single and multi-camera outside broadcast units and in the new editing suite. Salary, according to experience and qualifications, based on a scale in excess of ACTT rates. The company offers a pension and a bonus scheme.

Please send cv and names of two referees to: The Managing Director, Barcud Cyf, Cibyn, Caernarfon, Gwynedd by June 25th. Tel: (0286) 3459.
Senior RF Engineer

The modern communications complex of Marconi, Space and Defence Systems at Portsmouth requires an experienced professional Senior Engineer to develop new VHF/UHF receivers and micro processor based communications system. This involves directing the technical work of engineers in a project team who will be working on the design, development and evaluation of R.F. circuits.

Marconi
Space & Defence Systems

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO AND ELECTRONIC COMPONENTS FOR DISPOSAL

- SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, CRYSTAL FILTERS, etc.
- CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C286, DISC CERAMIC, MELT CERAMIC, etc.
- ELECTROLYTIC CAPACITORS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.

ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE.

040 376236

EURO CONNECTORS, dins 41652, 2x3 u pin socket, £2.20-2.32 ang. pin plug, £2.20-3.32 ST pin socket, £2.50-3.42 ang. pin plug, £2.50-9s high end connectors with divisions, £2.50 9s piper metal film resistor, Popular values, £4 80 per thousand x 1,000 for lab. MJ 3000 Darlington transistors, 39p, 1,000 meters of 273, individual silicon selected coils, 100 OHMs. Offers over £500. Photographic and Optical Services Ltd, 126 Longfords Road, Twickenham, Middlesex.

RACIAL COMMUNICATION RECEIVERS

MJA1217, CABLES, SCREENED WIRE, SCREWS, MICS, PLATE CERAMICS, etc.

OSILLOSCOPES

WAVEGUIDE, Flanges and Disks. All standard sizes and alloys (new material only) from stock. Special sizes to order. Cal Earth Stations, 0-124, 9786, 22 House Street, London, SW11.

HEWLETT PACKARD computer HP 9828A, £40, as new, current 20B series 56 bh GPIB controller, BASIC 2.0, disk drive, full documentation, rear discs, including A.C. circuit analysis, HP 7525A, digital vector plotter. GPIB, fully equipped £1,000-0-794-2679.

LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIAGTE LIGHTING on HITCHIN (0443) 737336 between 9am-18pm.

BUSINESS OPPORTUNITIES

NORTH SENSIBLE, 040 376236.

TW ELECTRONICS LTD

The PCB Assemblers

More and more companies are investigating the advantages of using a professional subcontractor. This undertaking requires certain assurances.

TW are able to satisfy all of them - quality, competitive pricing, firm delivery and close cooperation with the customer.

Assembled boards at 100% inspected before flow soldering and reworked after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance.

For further details contact us at our new works:

Blenheim Industrial Park
Bedeport, Lowestoft
Suffolk IP33 3UT
Telephone: 0282 3831 (1466)

FREE PROTOTYPE of the finest quality with EVERY PCB artwork designed by us. Competitive hourly rates, and high standard of work.

Hintel Designs Limited. Tel: Harlow (0727) 477108 (2126)

BATCH PRODUCTION, PC assembly to sample or drawings, any quantity. Stagecraft (Electronics) Ltd, 1 Chaucer Road, Acton. W3 6BF. Tel: (01) 963 3660. (2059)

BATCH PRODUCTION, wiring and assembly to sample or drawings. McDoane Electronics Ltd, 19 Stoney Parade, Edgware, London, W3. Tel: 01-992 9786. (148)

WIRELESS WORLD JUNE 1983

102
WANTED
Test equipment, receivers, valves, transmitters, components, cables and electronic scrap, and quantity Prompt service and cash. Member of A.R.R.A.

M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 35649

WANTED
Redundant test equipment - receiving and transmitting equipment - valves, plugs and sockets - synchronisers.
Phone: Johns Radio
0274 680407
84 Whitallth Road
East Birkenshaw
Bradford BD11 2ER

SURPLUS
Top prices paid for surplus, redundant and obsolete test equipment, factory spares.
Also quantities of components, immediate settlement. We will call anywhere in the United Kingdom.

TURN YOUR SURPLUS. Capacitors, Transistors, etc. into cash. Contact COLES-HARDING & Co., 103 South Brink, Wisbech, Cambs. 0944 584188. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

QUAD VALVE AMPLIFIERS. Gerrard 101 & 401, all types of valve equipment, please ask for "Wanted List". All valve amplifiers repaired. The Vintage Wireless Company, 60 Broad Street, Staple Hill, Bristol BS16 1NL. (0772) 960472. (1989)

DESIGN AND DEVELOPMENT. Analog, digital, RF and microwave circuit and system design. Also PCB design, mechanical design and prototype small batch production. - Ademore Limited, 77 Longchamp Estate, Bracknell, Berkshire. Tel: Bracknell (0344) 52023. (1984)

PCBS & PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Shire Custom Products, 78 Berry Grove, Thornhill, Rotherham, Yorkshire S63 1TP. Telephone: (0709) 89525. (1982)

PCBS & PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Shire Custom Products, 78 Berry Grove, Thornhill, Rotherham, Yorkshire S63 1TP. Tele- phone (0709) 89525. (1982)

CLASSIFIED ADVERTISEMENTS
Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISMENT INDICATED ON FORM BELOW

WANTED
Redundant test equipment - receiving and transmitting equipment - valves, plugs and sockets - synchronisers.
Phone: Johns Radio
0274 680407
84 Whitallth Road
East Birkenshaw
Bradford BD11 2ER
(0248)

FOR THE BEST PCB SERVICE AVAILABLE
- Circuit Design & Development
- Digital and Analogue
- Assembly
- Full range of work from prototype to semi-production - excellent rates.
- 24-hour service.
- PCB assembly, wiring and cable forming by qualified staff.

TURN YOUR SURPLUS. Capacitors, Transistors, etc. into cash. Contact COLES-HARDING & Co., 103 South Brink, Wisbech, Cambs. 0944 584188. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

QUAD VALVE AMPLIFIERS. Gerrard 101 & 401, all types of valve equipment, please ask for "Wanted List". All valve amplifiers repaired. The Vintage Wireless Company, 60 Broad Street, Staple Hill, Bristol BS16 1NL. (0772) 960472. (1989)

DESIGN AND DEVELOPMENT. Analog, digital, RF and microwave circuit and system design. Also PCB design, mechanical design and prototype small batch production. - Ademore Limited, 77 Longchamp Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023. (1984)

PCBS & PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Shire Custom Products, 78 Berry Grove, Thornhill, Rotherham, Yorkshire S63 1TP. Telephone: (0709) 89525. (1982)

PCBS & PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Shire Custom Products, 78 Berry Grove, Thornhill, Rotherham, Yorkshire S63 1TP. Tele- phone (0709) 89525. (1982)

BEBELK
- DESIGN & DEVELOPMENT (ANALOGUE & DIGITAL)
- ART WORK
- MANUFACTURE (CERTIFICATE OF CONFORMITY)
- TEST (TO YOUR EPS OR AS REQUIRED)
- FAST TURN-ROUND
- COMPETITIVE RATES

CONTACT: ALLFORD ELECTRICALS
0442 832665
(1988)

PRINTED CIRCUIT BOARDS
Manufacturers from A/W or film, small or large quantities, average turn-around two weeks.
MAYLAND PCB CO. LTD.
Chelmsford, Essex CM3 6AB
Tel: (0282) 741566. (2051)

Who can develop:
Listening Devices Intelligence Electronics Pi-Metal Detectors Speed Radar Detectors BOX No. 2138

WIRELESS WORLD JULY 1983
103

www.americanradiohistory.com
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 93-103

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aero Electronics (AEL) Ltd</td>
<td>92</td>
</tr>
<tr>
<td>AFDEC Electronics Ltd</td>
<td>80</td>
</tr>
<tr>
<td>Ambit International</td>
<td>79</td>
</tr>
<tr>
<td>Armon Electronics Ltd</td>
<td>8</td>
</tr>
<tr>
<td>Audio Electronics (Combelec) Ltd</td>
<td>17</td>
</tr>
<tr>
<td>Avel Lindburg (Combelec)</td>
<td>17</td>
</tr>
<tr>
<td>Bamber, A. Electronics</td>
<td>88</td>
</tr>
<tr>
<td>Barrie Electronics Ltd</td>
<td>89</td>
</tr>
<tr>
<td>Black Star Ltd</td>
<td>77</td>
</tr>
<tr>
<td>Broadfield and Mayco Disposals</td>
<td>77</td>
</tr>
<tr>
<td>Cambridge Instruments Ltd</td>
<td>6</td>
</tr>
<tr>
<td>CIL Microsystems Ltd</td>
<td>82</td>
</tr>
<tr>
<td>Circuit Services</td>
<td>8</td>
</tr>
<tr>
<td>Clef Products (Electronic) Ltd</td>
<td>14</td>
</tr>
<tr>
<td>Control Universal Ltd</td>
<td>Cover IV</td>
</tr>
<tr>
<td>Cryogen Electronik</td>
<td>89</td>
</tr>
<tr>
<td>Crotech Instruments Ltd</td>
<td>104</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>91</td>
</tr>
<tr>
<td>Eastind</td>
<td>6</td>
</tr>
<tr>
<td>Electrical Review Stock Cards</td>
<td>86</td>
</tr>
<tr>
<td>Electronic Brokers Ltd</td>
<td>2, 3, 5, 7</td>
</tr>
<tr>
<td>Electronvalve Ltd</td>
<td>16</td>
</tr>
<tr>
<td>ELE Internationale</td>
<td>12</td>
</tr>
<tr>
<td>Fieldtech Heathrow Ltd</td>
<td>4, 20, 75</td>
</tr>
<tr>
<td>Pyle Electronic Laboratory</td>
<td>20</td>
</tr>
<tr>
<td>Global Specialties Corporation (UK) Ltd</td>
<td>15</td>
</tr>
<tr>
<td>GP Industrial Electronics Ltd</td>
<td>Cover II, Cover III</td>
</tr>
<tr>
<td>Gritronic Emission Ltd</td>
<td>88</td>
</tr>
<tr>
<td>Harris Electronics (London)</td>
<td>13</td>
</tr>
<tr>
<td>Harrison Bros. Electrical Distributors</td>
<td>92</td>
</tr>
<tr>
<td>Hart Electronic Kbs Ltd</td>
<td>7</td>
</tr>
<tr>
<td>Hemmings Electronics and Microcomputers</td>
<td>84</td>
</tr>
<tr>
<td>Henry's Computer Shop</td>
<td>20</td>
</tr>
<tr>
<td>HW International</td>
<td>16</td>
</tr>
<tr>
<td>ILP</td>
<td>10, 11, 83</td>
</tr>
<tr>
<td>Integrex Ltd</td>
<td>16</td>
</tr>
<tr>
<td>Keibles Instruments Ltd</td>
<td>13</td>
</tr>
<tr>
<td>Kirk Ogden</td>
<td>4</td>
</tr>
<tr>
<td>Langrex Supplies Ltd</td>
<td>87</td>
</tr>
<tr>
<td>Magenta Electronics Ltd</td>
<td>6</td>
</tr>
<tr>
<td>Microwave Modules</td>
<td>82, 84</td>
</tr>
<tr>
<td>Midwich Computer Co Ltd</td>
<td>9</td>
</tr>
<tr>
<td>Nova Products (APB) Ltd</td>
<td>90</td>
</tr>
<tr>
<td>Osram Electronics Ltd</td>
<td>12</td>
</tr>
<tr>
<td>Opus Supplies</td>
<td>79</td>
</tr>
<tr>
<td>Orion Scientific Products Ltd</td>
<td>90</td>
</tr>
<tr>
<td>Pantech</td>
<td>79</td>
</tr>
<tr>
<td>PM Components</td>
<td>80, 81</td>
</tr>
<tr>
<td>P&K Computer Shop</td>
<td>14</td>
</tr>
<tr>
<td>Wireless World Circuits</td>
<td>78</td>
</tr>
<tr>
<td>Wireless World Competition</td>
<td>76</td>
</tr>
</tbody>
</table>

OVERSEAS ADVERTISEMENT AGENTS

Victor A. Jales, Elektronix International, P.O. Box 38457, Los Angeles, Calif. 90034, USA - Telephone (213) 821-8561 - Telex: 18-1059.

Printed in Great Britain by QB Ltd, Sheepen Place, Colchester, for the proprietors, Business Press International Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. © Business Press International Ltd 1983. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon & Gotch Ltd. SOUTH AFRICA: Central UNITED STATES: Eastern News Distribution Inc., 4th Floor, 1lth Avenue, New York, NY 10011.

WW - 023 FOR FURTHER DETAILS

Crotech Oscilloscopes
Nationwide availability
local to You

London & Home Counties
Audio Electronics London W2 01-724-3564
Carston Electronics London N1 01-267-5311
Kentwood Electronics Reading 0734-398040
Precision Instruments Laboratories London SE15 01-628-4461

Wales & West
Glewum Instruments Gloucester 0452-31620

Crotech Instruments Limited
5 Nimrod Way - Elgar Road - Reading - Berkshire - RG2 OEB
Telephone: (07341) 666945
Telex: 847073 POWLIN G

The following: 14th World Electronic Exhibition
www.americanradiohistory.com
P8000 — THE PRODUCTION PROGRAMMER THAT HANDLES ALL NMOS EPROMS

- Checks, Programs, Compares up to 8 devices simultaneously
- Handles all NMOS EPROMS up to projected 128K designs with no personality modules or characterisers — See list
- Easy to use, menu driven operation for blankcheck, program, verify, illegal bit check, checksum, self-test
- Constant display of device type, mode and fault codings
- Individual socket LED indicators for EPROM status
- Comprehensive EPROM integrity checks — Illegal bit check, data and address shorts, constant power line monitoring
- Full safeguard protection on all sockets
- Automatic machine self-test routine
- RS232C interface supplied as standard
- Powered down sockets
- Cost effective price — £695 + VAT
- Available from stock

Write or phone for more details

DISTRIBUTORS REQUIRED • EXPORT ENQUIRIES WELCOME

GP Industrial Electronics Ltd.

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Tel: Plymouth (0752) 332961
Telex: 42513

FOR FURTHER DETAILS
CUBE—Universal Control by Eurocomputer

CUBE is the comprehensive Eurocard computer system. Over the past two years, many of Britain's top industrial companies have been quietly and efficiently using CUBE modules in their small-scale computer control projects. The range exceeds 30 master Eurocards, extended by almost limitless permutations. Now, with the powerful new EUROCUBE, a single board computer which is a system in itself, the range is complete. All these robust, sensible products are very low-priced—the EUROCUBE, for example, is just over £100.

The fundamental choice is between 6502 and 6800 microprocessors and the newly-available 68000. Each choice is fully supported with efficient assembly language development tools and, with high-level languages for really quick programming. The range is extended by a continuing program of industrial computer development, and by compatibility with Acorn Eurocards. Similarly, the CUBE cards can be used as extensions to the BBC computer.

The Cube Systems

All CUBE systems are delivered to the customer configured to his exact requirements, and tested in that arrangement. An appropriate text editor, machine code assembler and high level language are included with each system, as our experience has shown that most applications demand these tools, and the CUBE systems offer just about the most cost effective development station available.

The Software Products

Each of the three processor options 6502, 6500 and 68000 have associated machine operating systems, disk operating systems, and machine code assemblers.

On 6502, the user has a choice of a 10k version of ROM or disk BASIC with built-in screen graphic commands, or a 12k version called ICOL, which provides real time control of inputs, outputs and timers.

On 6800, the disk operating system offered is FLEX, under which a wide variety of languages may be used, such as Pascal, BASIC, and PL9. The advantage of PL9 is that while it is similar to BASIC in ease of use and quickness of implementation, the final program is compiled, and therefore is much faster in operation than interpretive BASIC, and does not require the purchase of an interpreter for each implementation. A 2k version of FLEX is also available. BASIC is available on 68000.

The Hardware Products

EUROCUBE: The complete system on one small card. Available with either 6502 or 6800, and supplied complete with two channels of serial I/O, 20 channels of digital I/O, four memory sockets, each of which can take up to 32K of ROM, EPROM or RAM, and a battery back-up circuit which provides non-volatility for CMOS RAM. FORCE PROF II. 68000 single board computer with 128K DRAM, 2 serial and 2 digital ports, and 2 user EPROM sockets.

CU-MEM: Universal Memory Carrier board for ROM, EPROM and RAM up to 8K per device, with 2 banks of 428 pin memory sockets and battery back-up circuit for CMOS RAM.

CU-DRAM: 64K of DRAM Plus 16K ROM/EPROM socket.

CU-KEY: Standard QUEWTTY layout keyboard, or non-staggered arrangement of 5 x 8 or 5 x 12 keys.

CU-DRAW: High resolution VDU card for programmable text layout of up to 80 columns x 23 rows, mixed with graphics of 112 x 230 pixels. Uses independent memory from microprocessor, and colour extension allows eight logical colours with no loss of resolution.

CU-MOT: 6800 single board computer for study purposes, without machine or disk operating systems, or languages support.

CU-PROM: EPROM programming unit for EPROMs up to 32K (e.g. Z8755)

CU-CLOCK: Real time calendar clock, with battery back-up and watchdog circuit.

CUPS: Range of power supplies for CUBE system.

CU-STOR: Single and double density floppy disk controller.

INDO: Industrial heavy duty input/output system.

RACKPRINT: Panel mounted impact printer.

VIEWLINE: Simple line display module.

CU-BAN: Analog interface with choice of 8 bit or 12 bit conversion.

ROMULATOR: Development tool for simulating ROM based programs in target systems.

SERIO: 2 or 4 channel serial interface.

BEEREX: Allows use of BBC computer with CUBE peripherals.

Compact, superbly-capable and incredibly economical, Control Universal's cards are the best deal around in industrial control intelligence.

Find out more by ringing one of our engineers or sending for our new catalogue, 150 pages of detailed product information. It's absolutely free!

Control Universal Ltd
The Hardware House
Unit 2 Andersons Court,
Newnham Road, Cambridge CB3 9E2
Telephone (0223) 336737

WW-002 FOR FURTHER DETAILS