Automotive electronics
Filter transient response
Radio and the Universe
AP DIP JUMPERS
LOWEST PRICE IN THE UK.
NEW AP LOW PROFILE "D" SUB MINIATURE JUMPERS
ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED
FREE TC16 WITH EVERY SUPERSTRIP SOLD

PART NO | CONTACTS | LENGTH INCHES | DESCRIPTION | PRICE
924 229-18 | 25 | 18 | 25 PIN MALE SINGLE END 18" LONG | 5.97
924 222-18 | 25 | 18 | 25 PIN FEMALE SINGLE END 18" LONG | 6.04
924 269-36 | 25 | 36 | 25 PIN MALE TO MALE DOUBLE END 36" | 11.73
924 299-36 | 25 | 36 | 25 PIN MALE TO 24 PIN DIP 36" | 8.35
924 339-36 | 25 | 36 | 25 PIN MALE TO 26 PIN SOCKET 36" | 11.50
924 262-36 | 25 | 36 | 25 PIN FEMALE SINGLE END 24 PIN DIP 36" | 8.75
924 332-36 | 25 | 36 | 25 PIN FEMALE TO 26 PIN SOCKET 36" | 8.75
924 382-36 | 25 | 36 | 25 PIN FEMALE TO 25 MALE 36" | 11.50

ALSO WITH 9, 15, 37 CONTACTS ANY STYLE
HUGE DISCOUNTS FOR QUANTITY

CONTACTS	LENGTH
25 | 18
25 | 18
25 | 36
25 | 24
25 | 26
25 | 25
25 | 18
25 | 24
25 | 26
25 | 25
25 | 18
25 | 24
25 | 26
25 | 25

AP sub-miniature "D" jumpers have the lowest front to back profile in the world and come to you fully assembled, tested and ready to use. They are directly replaceable with existing "D" connections.

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

EX-STOCK DELIVERY
STANDARD LENGTHS 6, 12, 18, 24, 36"
WITH 14, 16, 24, 40 CONTACTS
FULLY ASSEMBLED AND TESTED
INTEGRAL MOULDED ON
STRAIN RELIEF
LINE BY LINE PROBABILITY

SINGLE-ENDED CONTACTS | 34" CONTACTS | 14 | £1.67
16 | £1.89
24 | £2.74
40 | £4.38
DOUBLE-ENDED CONTACTS | 14 | £2.11
6" | £2.21
12" | £2.31
18" | £2.43
24" | £2.63
36" | £3.31
56" | £5.61
96" | £8.81

We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up, tested, ready for use, cheaper than you can buy the parts, ask for quote.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you forever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money. SUPERSTRIP excels at DIPs and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14-pin DIP's at any one time.

AUTOMOTIVE ELECTRONICS
Filter transient response
Radio and the Universe
WIRELESS WORLD AUGUST 1981

Front cover shows spider-like legs and contacts of a jig for testing integrated circuits, photographed at Wentworth Laboratories by Paul Brierley.

IN OUR NEXT ISSUE

Acceleration feedback speaker uses a feedback signal from the bass driver cone to improve low-frequency response and reduce distortion at low frequencies.

Direct memory access in micro systems transfers information rapidly between memory and I/O without involving program control and C.P.U. The principle is explained.

Video discs update. Now that several competing systems are being launched we report latest developments in this consumer electronics technology.

Current issue price 60p, back issues (if available) £1.00, at Retail and Trade Counter, Units 1 & 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.

By post, currently issue 96p, back issues (if available) £1.50, order and payments to EEPC General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500.

Subscription rates: 1 year £18.00 in UK and $33.00 outside UK. Student rates: 1 year £18.00 in UK and $32.00 outside UK. Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone: 01-661 3500.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH19 2NH. Telephone 0444 5918. Please notify a change of address. USA mailing agent: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1017, New York, N.Y. 10022, 2nd-class postage paid at New York.

© IPC Business Press Ltd. 1981 ISSN 0043-6062
Low cost excellence
with a 2 YEAR guarantee

Hi! reliability! Hi! service! Hi! performance! Hi! competitive hi!

These Instruments incorporate many useful features, including long battery life. All 8 type models have 89mm scale meters and case sizes of 185 x 112 x 35mm. Fully-replaced one-piece covers are available on request for our complete range of portable instruments. Prices are exclusive of carriage and V.A.T. extra. Optional extras are leather cases and power units.

DON'T GAMBLE WITH PERFORMANCE
BUY LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

VOLTAGE & dB RANGES

15V, 50V, 150V, 500V fsd.

AC: ± 1% ± 2% fsd ± 1% ± 1% fsd at 1kHz.

RESPONSE: ± 6dB from 1 kHz to 10MHz.

50dB from 4 kHz to 1MHZ above 500V.

TM3B filter switch: LF cut 10kHz, HF cut 100kHz, 10kHz or 350kHz.

INPUT IMPEDANCE: Above 50mV: 50kΩ ± 5% at 1kHz.

AMPLIFIER OUTPUT: 150mV at fsd.

type TM3A £130
type TM3B £145

BROADBAND VOLTMETERS

H.F. VOLTAGE & dB RANGES

1mV, 3mV, 10mV, 30mV fsd.

AC: ± 4% ± 1% fsd at 30MHz.

-50, -40, +20dB

< 0.7dB from 30MHz to 400MHz.

LF. RANGES: As TM3.

AMPLIFIER OUTPUT: Square wave at 20Hz on H.F. with amplitude proportional to square of input.

Type TM6B £199

D.C. MICROVOLTMETERS

VOLTAGE RANGES

30mV, 100mV, 300mV, 1kV, 3kV fsd.

AC: ± 1% ± 2% ± 2% ± 2% ± 2% ± 1% ± 1% fsd.

CURRENT RANGES

30mA, 100mA, 300mA, 1A fsd.

AC: ± 2% ± 2% ± 2% ± 2% ± 2% fsd.

LOG. RANGE: ± 1V fsd into ± 1Ω.

RECORDER OUTPUT: ± 150mV at fsd.

Type TM10 £106

These instruments incorporate many useful features, including long battery life. All 5 type models have 89mm scale meters and case sizes of 183 x 113 x 35mm. Fully-replaced one-piece covers are available on request for our complete range of portable instruments. Prices are exclusive of carriage and V.A.T. extra. Optional extras are leather cases and power units.

Moxon street, Barnet, Herts. EN5 5SD.
Tel: 01-449 5028/440 8686
<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marconi</td>
<td>TF2002B</td>
<td>AM/FM Signal Generator, 9kHz-6MHz, 2 Ch., Mod. 140kHz-200kHz Mod. frequency</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Solartron</td>
<td>1650</td>
<td>Microprocessor DMM, Scale 0.5mV-100V, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
<tr>
<td>Yokogawa</td>
<td>2044</td>
<td>2 Channel Chart Recorder, 0.5mV-100V, Full display</td>
<td>New</td>
<td>£435.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
<tr>
<td>Marconi</td>
<td>TF2005R</td>
<td>2 Tone Signal Source, 20Hz-20KHz, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£295.00</td>
</tr>
<tr>
<td>Wayne Kerr</td>
<td>RA 200</td>
<td>Frequency Response Meter, 20Hz-30KHz</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

ANALOGUE VOLTMETERS AND MULTIMETERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Multimeters</td>
<td>1650</td>
<td>Microprocessor DMM, Scale 0.5mV-100V, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
<tr>
<td>Marconi</td>
<td>TF2005R</td>
<td>2 Tone Signal Source, 20Hz-20KHz, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£295.00</td>
</tr>
</tbody>
</table>

MULTIMETERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Solartron</td>
<td>1650</td>
<td>Microprocessor DMM, Scale 0.5mV-100V, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
<tr>
<td>Yokogawa</td>
<td>2044</td>
<td>2 Channel Chart Recorder, 0.5mV-100V, Full display</td>
<td>New</td>
<td>£435.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

CALIBRATION EQUIPMENT

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

FREQUENCY METERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

FREQUENCY COUNTERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

RECORDERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

SOUND LEVEL METERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

TRANSMISSION MEASURING EQUIPMENT

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

THERMOMETERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

ANALYSERS

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

TIME MEASURING EQUIPMENT

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

OTHER ELECTRONIC EQUIPMENT

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>CONDITION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix</td>
<td>1725A</td>
<td>Oscilloscope DC-50MHz, 2mV-5V/div, Delayed sweep</td>
<td>New</td>
<td>£1200.00</td>
</tr>
<tr>
<td>Brue & Kluger</td>
<td>2603</td>
<td>Sound Level Meter, 0-110dB, 1/3oct, Full display</td>
<td>New</td>
<td>£950.00</td>
</tr>
</tbody>
</table>

HOW TO ORDER

- Telephone: 01-278 3461
- Telex: 296694 Elebo G
- Fax: 01-275 3471
- Pay by: Credit Card, Bank Transfer
- Delivery: Within 24-48 hours
- Terms: 30 days credit
- Returns: 14 days

TRADE PRICES

- All prices are net
- Discounts available for large quantities
- **WARRANTY** on all equipment purchased over £500

SHIPPING

- **FREE UK delivery** on all orders over £50
- **48-hour delivery** on all orders
- **Overseas orders** will be shipped by sea

SPECIAL OFFERS

- **New items** at special prices
- **Used items** at special prices
- **Bulk orders** available

TECHNICAL SUPPORT

- **Technical advice** available
- **Free technical support** for all customers

CONTACT

Electronic Brokers Limited
61/65 Kings Cross Road
London WC1X 9LN England
Telephone: 01-278 3461
Telex: 296694 Elebo G

WWW

www.americanradiohistory.com
Electronic Brokers

Computer equipment and peripherals

A selection of our warehouse showing an extensive range of DEC components and systems available.

PDPI1/1170 Systems available from £22,000

PDPI1/134 inc RLOTs, systems available now. Great savings.

PDPI1/134 wide range of CPU's available from £4000

The VT100, Digital's high performance video terminal

A selection of our indepth range of DEC Terminals.

Electronic Brokers

DEC EQUIPMENT

by Digital Equipment Corporation

Electronic Brokers

Computer equipment and peripherals

A section of our warehouse showing an extensive range of DEC components and systems available.

PDPI1/1170 Systems available from £22,000

PDPI1/134 inc RLOTs, systems available now. Great savings.

PDPI1/134 wide range of CPU's available from £4000

The VT100, Digital's high performance video terminal

A selection of our indepth range of DEC Terminals.

Electronic Brokers

Computer equipment and peripherals

A section of our warehouse showing an extensive range of DEC components and systems available.

PDPI1/1170 Systems available from £22,000

PDPI1/134 inc RLOTs, systems available now. Great savings.

PDPI1/134 wide range of CPU's available from £4000

The VT100, Digital's high performance video terminal

A selection of our indepth range of DEC Terminals.
FAST ERECTING

CLARK

MASTS

Here is the expertise you can depend on-

25 years in this specialist field

When you choose a mast from the comprehensive Clark range you are assured of a high standard of Engineering and operational reliability.

Why compromise?

Extended heights 4 metres-30 metres, capable of lifting headload 1 kg - 200 kg. Sectional or telescopic air operated far field or vehicle mounting. Write of phone us for details today.

WILMSLOW AUDIO

The firm for Speakers

Tel: 0625 252 999 for speaker drive units, kits, PA equipment, mail order enquiries, and all export enquiries.

Tel: 0625 252 613 for Hi-Fi equipment and complete speaker enquiries.

Lightning service on telephoned credit card orders!

WILMSLOW AUDIO

The firm for Speakers

35/39 Church Street
Wilmossow, Cheshire

WIRELESS WORLD AUGUST 1981

Send 50p for 56-PAGE CATALOGUE 'CHOOSING A SPEAKER'

(or price list only free of charge)

Export Catalogue £1 or £3 U.S.

40% OVERSEAS MAIL ORDER

WIRELESS WORLD AUGUST 1981

Incredible Quality

Incredible Performance

Incredible Price!!!

HMS12 Dual Trace Oscilloscope

DC-20kHz

Sensitivity 1mV

20V/cm, Time base range

10µsec to 20ms

-3db bandwidth

1kHz to 10kHz

Deflection sensitivity

50mV/cm, Screen size

120x120mm

Cathode Ray Tube

CRT: 2.3mHz

NOW BETTER VALUE THAN EVER AT

£580

HMS12 Dual Trace Oscilloscope

A world-beating Oscilloscope Offers

FROM

Electronic Brokers

61-65 Kings Cross Road
London WC1X 9LN
Tel: 01-278 3461, Telex 298694

www.americanradiohistory.com
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1
Phone: 01/837/7937
Telex: 82307 HARTRO D

NEW DISTRIBUTORS WANTED

Part of a complete range

Send 30p to cover P&P

For FREE Catalogue

Cobbles Ltd., London. 01-699-2292
Microdigital Ltd., Harpenden. 01-221-3535
Electronics CGL, Manchester. 061-788-0656
Electronic Brokers (Manchester) Ltd., Salford. 061-834-4563

Available from all leading electronic distributors

ELECTRWARE
DUTTON LANE EASTLEIGH SO5 4AA TELEPHONE 0703-239415

GP INDUSTRIAL ELECTRONICS LTD.
Unit 6, Burke Road, Toncas Industrial Estate, Tonca's, Devon Telephone: Toncas (0823) 863-2800 sales, 863-2800 technical

Electronic Brokers
61-65 King's Cross Road
London, WC1X 9LN
Tel: 01-278 3461 - Telex 2986949

BULK EPROM PROGRAMMING

P4000 PRODUCTION EPROM PROGRAMMER

This unit provides simple, reliable programming of up to 8 EPROMS simultaneously. It has been designed for ease of operator use — a single program key starts the self check — blank check — program — verify sequence.

Independent blank check & verify controls are provided along with mode, pass/fail indicators for each copy socket and a sounder to signal a correct key command. The end of a programming run.

Any of the 2704/2708/1716 (3 mil. & 256/512/256/1716)/2716/2732/1732 (single rail) EPROMS may be selected without hardware or personality card changes.

PRICE £545 + VAT. Postage paid

BULK EPROM ERASING

MODEL LV141 EPROM ERASER

• 14 EPROM capacity
• Fast erase time
• Built-in 60 minute timer
• Convenient slide-tray loading of devices
• Safety interlock to prevent eye and skin damage
• Rugged construction
• MRS & ERASE indicators
• Price £78 + VAT postage paid

MODEL LV140 EPROM ERASER

Similar to Model LV141 but without timer. Price £61.50 + VAT post paid

AC volts 200mV-760V, 10V resolution DC volts ±10V, ±10V resolution DC/AC current 2mA-2A, 0.1mA resolution

Resistance 200Ω-20MΩ, 0.1Ω resolution. Conductance 2mS-200mS-20mS-200nS, 2mS resolution

This unit provides simple, reliable erasing of 8 EPROMS simultaneously. It has been designed for ease of operator use — a single program key starts the self check — blank check — program — verify sequence.

Independent blank check & verify controls are provided along with mode, pass/fail indicators for each copy socket and a sounder to signal a correct key command. The end of a erasing run.

Any of the 2704/2708/1716 (3 mil. & 256/512/256/1716)/2716/2732/1732 (single rail) EPROMS may be selected without hardware or personality card changes.

PRICE £425 + VAT. Postage paid

BULK EPROMS

2716 (450ns)
1-9 £5.00
10-24 £4.50
25-49 £4.00
50-99 £3.50
100 up £3.00

2708 (460ns)
£3.90 £3.50 £3.10 £2.90

Postage and packing is included in all prices. ADD VAT at 15%.
All our EPROMS are manufactured by leading companies and are fully guaranteed branded and to full specification

GP INDUSTRIAL ELECTRONICS LTD.
Unit 6, Burke Road, Toncas Industrial Estate, Toncas, Devon

WRITE OR TELEPONNS FOR FURTHER DETAILS OR SEND OFFICIAL COMPANY ORDERS/CHOEQUES TO

GP INDUSTRIAL ELECTRONICS LTD.

WIRELESS WORLD AUGUST 1981

ELECTRONIC BROKERS

800A 4% Digit LCD DMM with true RMS on AC volts and current, DC volts 200mV-1KV, 10V resolution AC volts, 200mV-760V, 10V resolution DC AC current 0.01A-4.0A, 0.01A resolution. Conductance 0.1nS-200mS, 0.1nS resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2mS and 200mS.
£245 mains model
£285 mains battery

8012A 1% Digit LCD DMM with true RMS on AC volts and current, DC volts 200mV-1KV, 10V resolution. AC volts 200mV-760V, 10V resolution. DC AC current model A4 + extra. 0.1A resolution. Conductance ranges 2mA-2A-20mA. 0.01A resolution.
£218.00 mains model
£244.00 mains battery

8014A 1% Digit LCD DMM. Same spec as 8012A plus an 10A AC/DC current range, but no voltage resistance range.
£192.00 mains model
£218.00 mains battery

8020A 3% Digit LCD DMM with peak held Level Detector and continuity tester. DC volts 200mV-1KV, 10V resolution. AC volts 200mV-760V, 10V resolution DC/AC current 2mA-2A, 0.1A resolution. Resistance 2KΩ-20MΩ, 0.1Ω resolution.
£292 mains model
£312 mains battery

8022A Plus with extra conductance range of 2mA but no peak hold, level or continuity ranges.
£390.00, carrying case £80 extra.

8020A 3% Digit hand held LCD DMM. Spec as per 8020A with extra conductance range of 2mA but no peak hold, level or continuity ranges. Complete with carrying case. £125.00.

8022A 3% Digit hand held LCD DMM. Spec as per 8020A but no conductance ranges and slight reduction in accuracy. £89.00 carrying case £80 extra.

Also available a range of accessories including current shunts, EHT plug, RT probe.

Temperature probe and touch and hold probe.

Full details on request.

The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

Electronics Brokers
61-65 King's Cross Road
London, WC1X 9LN
Tel: 01-278 3461 - Telex 2986949

WW - 305 FOR FURTHER DETAILS

For FREE Catalogue

Send 30p to cover P&P

Cobbles Ltd., London. 01-699-2292
Microdigital Ltd., Harpenden. 01-221-3535
Electronics CGL, Manchester. 061-788-0656
Electronic Brokers (Manchester) Ltd., Salford. 061-834-4563

Available from all leading electronic distributors

ELECTRWARE
DUTTON LANE EASTLEIGH SO5 4AA TELEPHONE 0703-239415

GP INDUSTRIAL ELECTRONICS LTD.
Unit 6, Burke Road, Toncas Industrial Estate, Toncas, Devon

WRITE OR TELEPONNS FOR FURTHER DETAILS OR SEND OFFICIAL COMPANY ORDERS/CHOEQUES TO

Overseas customers, please telex or write for quotation and terms.

WIRELESS WORLD AUGUST 1981

EXTENSIVE RANGE OF NEW FLUKE DMM’S FROM ELECTRONIC BROKERS
New! Sinclair ZX81

Personal Computer.

Kit: £49.95 complete

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough – the Sinclair ZX80, world’s first complete personal computer for under £100. At £169.95, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtual universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price.

The ZX81 kit means almost 40% less than the ZX80 kit.

Lower price: higher capability

With the ZX81, it’s just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM – the ‘brain intelligence’ of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements – the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower price – how’s it done?

Quite simply, by design. The ZX80 reduced the chip size working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

Proven micro-processor, new 8K BASIC ROM, RAM, and unique new master chip.

Built: £69.95 complete

New Sinclair teach-yourself BASIC manual

Every ZX81 comes with a comprehensive, specially-written manual – a complete course in BASIC programming, from first principles to complex programs. You need no prior knowledge – children from 12 upwards soon become familiar with computer operation.

New, improved specification

ZX81 micro-processor – new faster version of the famous 258 chip, widely recognised as the best ever made.

• Unique ‘one-touch’ key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.

• Unique syntax check and report codes for identity programming errors immediately.

• Full range of mathematical and scientific functions accurate to eight decimal places.

• Graph-drawing and animated-display facilities.

• Multi-dimensional string and numerical arrays.

• Up to 26 FOR/NEXT loops.

• Randomise function – useful for games as well as serious applications.

• Cassette LOAD and SAVE with named programs.

• 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.

• Able to drive the new Sinclair printer (not available yet – but coming soon!)

• Advanced 4-chip design: micro-processor, ROM, RAM, plus master chip unique, custom-built chip replacing ZX80 chips.

If you own a Sinclair ZX80...

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)

With the exception of animated graphics, all the advanced features of the ZX81 are now available on your ZX80 – including the ability to drive the Sinclair ZX Printer.

Coming soon...the ZX Printer.

Designed exclusively for use with the ZX80 and ZX81 with 8K BASIC ROM, the printer offers full alphanumericics across 32 columns, and highly sophisticated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around £50 – watch this space!

16K-BYTE RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data program storage by 16! Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81

BY PHONE: Access or Barclaycard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPPOST – use the no-stamp-needed coupon below. You can pay by cheque, postal order, Access or Barclaycard. EITHER WAY – please allow up to 28 days for delivery. And there’s a 14-day money-back option, of course. We want you to be satisfied beyond doubt – and we have no doubt that you will be.

Sinclair Research Ltd, FREEPOST 7, Cambridge, CB2 1YV.

Order

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Item price</th>
<th>Total £</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.</td>
<td>12</td>
<td>49.95</td>
<td>49.95</td>
</tr>
<tr>
<td>Ready-assembled Sinclair ZX81 Personal Computer(s). Price includes ZX81 BASIC manual and mains adaptor.</td>
<td>11</td>
<td>69.95</td>
<td>69.95</td>
</tr>
<tr>
<td>Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated)</td>
<td>10</td>
<td>8.95</td>
<td>8.95</td>
</tr>
<tr>
<td>16K-BYTE RAM pack(s)</td>
<td>18</td>
<td>49.95</td>
<td>49.95</td>
</tr>
<tr>
<td>8K BASIC ROM to fit ZX80</td>
<td>17</td>
<td>15.95</td>
<td>15.95</td>
</tr>
</tbody>
</table>

Post and Packing: 2.95

TOTAL £ 95.85

Please tick if you require a VAT receipt. If you enclose a cheque/postal order payable to Sinclair Research Ltd, for £ __________. Please charge to my Access/Barclaycard/Trustcard account no. __________.

*Please delete complete as applicable.

Name: __________
Address: __________

Please print.

Freepost – no stamp needed.

WWW - 425 FOR FURTHER DETAILS

www.americanradiohistory.com
A much improved computer housing situation...

West Hyde Developments Limited have brought about a much improved computer housing situation with the introduction of this superb new series of computer terminal housings, beautifully styled to meet the requirements of data processing equipment manufacturers. Injection moulded in structural foam plastic with interchangeable front mouldings, these housings make up a comprehensive range to suit individual requirements. Standard features include anodised aluminium panels for floppy disc mounting and a "screen" aperture, with plain front mouldings on some models, although several custom options are available on request. These are shown in the illustration (left) which also indicates construction details.

The new CES micropad

The microphone for mobile radio, with DTMF signalling, brings greater system flexibility to your telephone network.

For further information contact the sales agents.

Interface Quartz Direct Limited
29 Market Street, Cowes.
Isle of Wight.

Cromer: 74353
Tipton: 88579

The microphone for mobile
radio, with DTMF signalling,

brings greater system flexibility
to your telephone network.

For further information contact
the sales agents.

FARNELL INSTRUMENTS LIMITED
SANDBECK WAY, WETHERBY
WEST YORKSHIRE LS22 4DH
TELEPHONE (0837) 01061

WW - 010 FOR FURTHER DETAILS

WIRELESS WORLD AUGUST 1981

Sound... Audio power meter

Wide range:

* 30 Hz to 30 kHz
* 10 uW to 50 W
* 1 to 10000 ohms
* mains/battery
* decibel scale - 18dBm to +47dBm

MANUFACTURED BY:

The microphone for mobile radio, with DTMF signalling, brings greater system flexibility to your telecom network.

For further information contact the sales agents.

FARNELL INSTRUMENTS LIMITED
SANDBECK WAY, WETHERBY
WEST YORKSHIRE LS22 4DH
TELEPHONE (0837) 01061

WW - 010 FOR FURTHER DETAILS
The EP4000 is not just an EPROM Programmer...

Real-time EPROM Emulator is the second major feature of the EP4000. This feature allows the machine to directly replace any in-circuit EPROMs during the process of program development – the EP4000 can be configured to look like any EXISTING EPROM, it is capable of full programming. The press of a button isolates the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmer by the EP4000.

...but also a Real Time EPROM Emulator...

The EP4000 comes with a technical manual describing every aspect of the machine – its purpose, its use, and how it is used. It also has a section describing the whole process of program development. And if you ever need technical help or advice, you can now dial direct to your technical department for instant attention – Tel. (0803) 863380.

Finally, a full range of accessories in now available – these include Bipolar programmer modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors, 764/2564 programming satellite, printer and production programmers. The EP4000 is in stock. Price – £545 + VAT (+£12 for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate dispatch – Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.

G.P. Industrial Electronics Ltd.
Unit 6, Tonnis Industrial Estate Tonnes, Devon TQ9 5XL
Tel: Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

WWW - 931 FOR FURTHER DETAILS
SINE WAVE INVERTERS
- FROM CARACAL
200-1000VA

We are one of the leading UK suppliers of high quality, high efficiency static inverters. Our inverters are suitable for use throughout the UK and many other countries wherever a continuous and stable source of AC power is needed. They are also frequently used for mobile or marine applications where only a DC source is available.

Caracal inverters employ modern waveform synthesis technology which is usually replacing (ideally tuned type) transformers inverters, by providing triple efficiency in all loads, very low standby current and lower weight. This also makes our inverters a cost effective and reliable source to meet the needs of many applications.

We have a comprehensive range of models and options, at fully competitive prices, to satisfy most customer requirements.

Note these specific details:

- Lower standby current.
- Lower weight.

NOW, the natural choice for inverters!

FULL DETAILS FROM:
CARACAL POWER PRODUCTS LTD.,
43-45 SYDENHAM STREET,
REigate RH1 7AU,
TEL: 0737 8500

FLOPPY DISK DRIVES
NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READ ON!

SIEMENS FDD – 100-8FDD – 200-8

Fully Shugart Compatible Siemens FDD single and double sided disk drives are available now with unbelievable prices at our quoted pricing.

Note these specifications:
- TRACK IDENTIFICATION
- ACTIVITY INDICATION
- MECHANICAL END STOP AT REC/RTP
- AUTO WRITE CURRENT SWITCHING AT TRACK 43

FDD 100-8 Single or Double Density 36x $249.95
FDD 200-8 Single or Double Density 60x $349.95

OTHER PRODUCTS
C.W.O. 30 DAYS
CPM 2.2 $71.50 75.00
CPM 8 $155.75 165.00
BASIC 80 $175.75 185.00
BASIC COMPILER $218.80 230.00
MAIL MERGE $66.50 70.00
SUPERSORT $94.05 99.00

Full range of SD SYSTEMS 5-100 CARDS & KITS AVAILABLE

If anyone works for you, we do

Here are three new equipments to keep you in touch with the action wherever its happening. For more than thirty years Pye Telecommunications have played the leading role in radio communications.

Our total capability covers mobile, paging, portable and fixed radiotelephone systems and point to point links throughout the world.
CX80 COLOUR MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable + 15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specifically designed for those who wish to assemble their own NRDC-based surround sound system which is the result of 7 years' research by the Ambisonic team. KV W. July Aug. '77

The design is so simple that anyone can assemble it with no special knowledge of engineering techniques. Both 2.0 and 5.1 output formats are provided in this most versatile kit.

Complete kit, including licence for £19.70 + VAT or ready built and tested £28.65 + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integral to incorporate several new features, along with improved performance. The kit is easy to build. The internal audible alarm switch after approximately 45 seconds and the unit re-arms. 240v ac mains or 12v battery operated. Detection range up to 45 feet. Internal mains tested voltage free contacts for external bells.

Complete kit £52.50 plus VAT, or ready built and tested £68.50 plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Complete kit PRICE: £49.95 + VAT (3 head model available)

All kits are carmine free

INTEGRAX LIMITED
Model – M600

- POWER RESPONSE DC – 45KHz ± 1dB.
- OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
- HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO 6 OHMS.
- DIG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS
- UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
- TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW.
- FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
- MAIN WEIGHT SYSTEM WITH FINE ADJUSTMENT PROVIDING A WIDE RANGE OF BALANCE.
- GEOMETRY OPTIMISED FOR 12" RECORDS.
- THIN-WALLED STAINLESS STEEL TONE-ARM.
- NEW DESIGN LATERAL BALANCE SYSTEM.
- EXTRA RIGID LOW MASS SHIELD WITH DOUBLE DRAW-IN PINS.
- MAIN WEIGHT SYSTEM WITH FINE ADJUSTMENT PROVIDING A WIDE RANGE OF BALANCE.
- GEOMETRY OPTIMISED FOR 12" RECORDS.

Distortion caused by lateral tracking error is at least 25% less than is possible with a 9" arm and its effective mass of 14 grams makes it particularly suitable for the many medium and low compliance cartridges now on the market.

Full details will be sent on request.

Write to Dept 0663
SME Limited, Steyning, Sussex, BN4 3GY, England
Tel: (0903) 814321, Telex 877808 SME G
WIRELESS WORLD AUGUST 1981

HANDSOME!

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match. Next came the 131. The introduction of the 135 saw 4½ digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout.

The result is an unrivaled selection of handheld measuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!

Model 130

- **Price**: £48.50
- **Features**:
 - 6½-digit backlight display
 - 20,000 counts resolution
 - AC/DC voltage and current measurement
 - Resistance, capacitance, diode, and continuity testing
 - Frequency measurement up to 20 MHz
 - Data hold function

Model 131

- **Price**: £57.95
- **Features**:
 - 7½-digit backlight display
 - 200,000 counts resolution
 - AC/DC voltage and current measurement
 - Resistance, capacitance, diode, and continuity testing
 - Frequency measurement up to 200 MHz
 - Data hold function

DOUGLAS TRANSFORMERS FROM TITAN

NEW FRANCHISE AT FANTASTIC PRICES – EX STOCK

<table>
<thead>
<tr>
<th>Type</th>
<th>VA</th>
<th>Price</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>500</td>
<td>15.00</td>
<td>T120</td>
</tr>
<tr>
<td>121</td>
<td>1250</td>
<td>35.00</td>
<td>T121</td>
</tr>
<tr>
<td>122</td>
<td>5000</td>
<td>100.00</td>
<td>T122</td>
</tr>
<tr>
<td>123</td>
<td>10000</td>
<td>200.00</td>
<td>T123</td>
</tr>
<tr>
<td>124</td>
<td>15000</td>
<td>300.00</td>
<td>T124</td>
</tr>
</tbody>
</table>

Send today ½p REFUNDABLE WITH FIRST ORDER FOR CATALOGUE TITAN TRANSFORMERS AND COMPONENTS

WW – 452 FOR FURTHER DETAILS

Exclusions for handheld units

- **Model 870**: 0.025% accuracy, Centigrade and fahrenheit readout, Measures up to 1370°C, 0.1°C resolution up to 200°C
- **Model 870**: Audio-tone with adjustable threshold, 25 ranges, 5 functions, 10 amp spin
- **Model 128**: 0.05% accuracy, Full overload protection, ACU bandwidth to 20 kHz
- **Model 128**: 0.025% accuracy, 25 ranges, 5 functions, 10 amp spin
- **Model 130**: 0.025% accuracy, 25 ranges, 5 functions, 10 amp spin

All models are guaranteed accurate for one year. And built to the high standards of quality expected of the Keithley name. For more information simply fill in the coupon. And learn about a range which will serve you ... handsomely!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 0NL
Telephone: 0734 851297
Telex 847047
Also available from L.I.T. Instrument Services, Tel: Harlow 29522
WW – 456 FOR FURTHER DETAILS
When you’re ready to “face” the music we have a tip for reduced distortion

Whether you are seeking to reproduce the full dynamic range in the grooves of today’s new superdiscs, or simply to obtain maximum listening pleasure from treasured “oldies” in your record collection, you need a pickup cartridge that will deliver optimum trackability with minimum distortion.

Because the pickup cartridge is the only point of direct contact between the record and your entire stereo system, its role is critical to faithful sound re-creation. That’s why upgrading your pickup cartridge is the single most significant improvement you can make to your stereo system.

To that end Shure now offers the Hyperelliptical Stylus Tip configuration—first introduced on the critically acclaimed V15 Type IV—in a full line of cartridges with a broad range of prices. The Hyperelliptical stylus tip is probably the most significant advance in tip geometry in decades. It has a narrower and more uniform elongated contact area that results in significantly reduced intermodulation and harmonic distortion.

Look over the list at left to see which Shure HE cartridge best matches your tracking force requirements.

For more information about Shure pickup cartridges please write to us at the address below quoting reference IFS-1.

Setting the World Standard in Sound

Shure Electronics Limited
Ecotastic Road
Maidstone ME15 6AU
Telephone: Maidstone (0622) 56681

www.americanradiohistory.com
Electronics on the road — 1
An outline of the main applications of electronics to road vehicles
by J. R. Watkinson, B.Sc., M.Sc.

The peculiar circumstances of the world's motor industry, which produces vast quantities of technically conservative products for a market which is largely influenced by cosmetics, dictate that the equipment fitted usually lags the available technology by at least a decade. Accordingly, many of the applications to be described here may at present be found only on expensive vehicles, if at all.

Power units
Alternators. With the possible exception of radios, the alternator was the first quantity-produced automotive device to rely on semiconductors. The benefits of alternators are well known, but their use in road vehicles was only made possible by the development of low-cost reliable rectifiers1. For a long time the regulator remained mechanical in form, but now electronic regulators are becoming more common. Those using discrete components or thick film technology have been more successful than monolithic devices, primarily because of the adverse environment.

An alternator regulator basically controls the field current, as in Fig. 1, and the switching mode is often used to reduce dissipation.

Electronic ignition. Electronic ignition is interesting in the way timing information is derived and in spark generation. The source of timing has now been generally polarized into two major groups, the magnetic pickup, where a rotating part of the engine modules the flux linking a coil, and the optical system, where a light beam is interrupted2. Both of the above use the existing centrifugal advance mechanism, which is not devoid of drawbacks. A notable exception is the Bowstock system, which uses an r.f.-excited capacitance transducer to eliminate the advance mechanism3.

There are now several variations in the spark generator design. In the inductive-discharge system of Fig. 2, the energy stored in the coil is $V_0 L_0$ joules. The primary current has to be limited to that which the mechanical contacts can handle without burning, so the inductance has to be relatively high to allow sufficient spark energy. The time taken for primary current to build up in that inductance reduces spark energy at high revolutions, even in the absence of points bounce. Replacement of the points with a transistor which can handle a higher current means that the inductance can be greatly reduced, allowing spark energy to be maintained to higher revolutions. It follows that the main benefit of an add-on inductive discharge ignition unit will not be realised if the appropriate low-inductance coil is not also fitted.

All commercial inductive-discharge systems are of similar design, with the exception of the Bowstock system, which employs some original thinking. As shown in Fig. 3, this system uses a matching transformer between the coil and the amplifier, which is a part of the push-pull type to give a more rapid rate of flux change. The matching transformer prevents the coil inductance from limiting the spark rate, and the makers claim 1200 sparks per second with undiminished energy. Also unique is the fact that no current flows from the battery except during the generation of a spark.

In a capacitor-discharge system, shown in Fig. 4, a high-voltage inverter charges a capacitor which, at the moment of firing, is discharged into the coil primary, which is used as a transformer. An equivalent circuit of the c.d. system is shown in Fig. 4(b). As the mutual inductance of the coil, M_{co}, is in order greater than the leakage inductances, it can be neglected, which simplifies the circuit to that of Fig. 4(c). The resonant frequency can be stated as

$$f_r = \frac{1}{\sqrt{L C_{m}}}$$

where $C_{m} = C_p + C_{s}$

The primary current displays a half-sine characteristic, as in Fig. 4(d). The duration of this waveform, using figures quoted by Hoyer4 is

$$t_{spike} = 2\pi \sqrt{C_{m} L} \approx 10\mu s$$

This is extremely short, and in fact the actual spark will be shorter than this. The rise time of the output voltage is correspondingly short, and as a result resistive losses before the spark gap breaks down are very small, which accounts for the unparalleled cold starting performance of the c.d. system. Unfortunately, the weak mixtures used in modern engines can find the spark too short. Simply stated, a weak mixture is not homogenous, but consists of patches of strong mixture floating about in very weak stuff. If the spark arrives when no patch of mixture is adjacent to the electrodes, a misfire results. Turbulence in the cylinder means that a spark maintained for about 300μs will result in ignition, but this is obviously a function of engine design.

In c.d. systems, the spark can be extended in a number of ways. Most common in constructors' circuits is the configuration of Fig. 4(e), where the inverter rectifier forms a return current path, giving a current waveform shown in Fig. 4(f). In Fig. 4(g), the flywheel diode across the coil primary allows the long current decay shown in Fig. 4(h). Obviously, the spark duration should be ascertained by oscilloscope before using a c.d. system on a leaning-burning engine, particularly since the original coil is often used, and is not necessarily optimal for a c.d. system. Reputable manufacturers offer matching coils for their c.d. systems but, as with inductive discharge, the author has yet to see a reasoned argument for the use of matched components in a motor magazine. The reader is referred to a better-than-average effort5, which also gives an interesting insight into the motor fraternity's colloquialisms.

Enhanced-spark systems have been the subject of research for many years now, but commercial availability is relatively recent. The system depends upon the fact that the voltage required to maintain the spark is considerably less than the breakdown voltage of the spark plug.

1. Electronic regulator
2. Optical system
3. Bowstock system
4. Capacitor-discharge system
5. Enhanced-spark systems

WIRELESS WORLD AUGUST 1981

Fig. 1. Basic alternator regulator controls field current.

Fig. 2. Many inductive discharge systems simply replace points with transistor

Fig. 3. Bowstock system uses matching transformer and push-pull amplifier to achieve rapid firing rate at full output. (1 — coil, 2 — transformer)

Fig. 4. Capacitor-discharge system, in basic form at (a). Equivalent circuit at (b) is simplified to that at (c). Coil mutual inductance is ignored. Current waveform produced by circuit at (d) is shown at (e), extended by circuit at (f) to waveform shown at (g). Flywheel diode in circuit at (h) allows long decay shown in (i)

www.americanradiohistory.com
A d.c. supply of several kilovolts is applied to the spark plug but, as this potential is below the breakdown voltage, no spark occurs until an e.h.t. pulse is superimposed upon the d.c. The spark gap then breaks down and a.c. current maintained across the gap until the charge is exhausted. The principle has long been in use in stroke tubes and flash guns, where the trigger pulse generates an intense electric field around the tube, which breaks down and discharges the h.t. capacity until extinction voltage is reached. The technique has also been used on electric arc welders to assist in establishing the arc. The components of such a system are under a great deal of stress and it remains to be seen how reliable commercial systems are. It should be possible to design a system which keeps working on the trigger in the event of the h.t. failing. A further concern is that emission of the spark plug electrodes may be accelerated by the intense sparks generated by such systems. The greatest advantage would appear to be in application to lean-burning engines.

This type of spark generation has come to be known as the plasma system. Its disadvantage is that the sparks generated by other systems are not also plasma. Although misnomers already perpetrated by the industry, such as fluid flywheels and shock absorbers, which have come under a great deal of stress, and it remains to be seen how reliable commercial systems are. It should be possible to design a system which keeps working on the trigger in the event of the h.t. failing. A further concern is that emission of the spark plug electrodes may be accelerated by the intense sparks generated by such systems. The greatest advantage would appear to be in application to lean-burning engines.

The advantages of fuel injection are that the engine should always be running at an efficient speed, and that the driver can concentrate more on the road, with a reduction of manual operation of automatic transmission being complunged. With some notable exceptions, current automatic gearboxes rely on a torque converter in order to skim on the number of ratios provided. A torque converter is supposed to be capable of varying ratios to achieve the principal of automatic transmission being comp}

REFERENCES

11. Electrical System. *Common-bus vehicle wiring, multiplexing and transference of data to display*
12.漖 ABASIA AUGUST 1981

Fig. 5. Basic electronic (indirect fuel injec

**Fig. 6. Eight-speed automatic gearbox with three stages combined in binary sequence. Micro processors inputs to arrive at correct engine power to the gearbox proper. The advantages of fuel injection are that the engine should always be running at an efficient speed, and that the driver can concentrate more on the road, with a reduction of manual operation of automatic transmission being comp.
Although capacitance smoothed dc power supplies are common electronic circuits, surprisingly little has been written on how to design them. Much of what has been published gives the impression that a resistive-valve bridge provides it is large enough for the peak-to-peak ripple voltage, \(V_{ripp} \), across it to be a small fraction, say 5\%, of the dc voltage. As shown later, the performance can be easily evaluated by taking \(V_{ripp} \) to be infinite. The ripple voltage is conservatively given by

\[V_{ripp} = \frac{1}{2} V_e \frac{1}{n} \left(\frac{1}{R_2} + \frac{1}{R_1} \right) \]

where \(V_e \) is the dc output, \(f \) is the mains frequency, and \(n \) is for the circuits in Fig. 1, and 2, for the circuits in Fig. 2. A better approximation for \(V_{ripp} \) is given in equation 11. With 50 Hz mains, \(C_{dc} = 10,000 \mu F \) is about 1\% for a full-wave circuit.

For a second assumption concerns \(V_{osc} \), the forward voltage drop in the rectifiers, which depends on the rectifier peak current is but is unlikely to be more than 1.5V for a silicon device. The design procedure assumes that the rectifiers are ideal, infinite resistance in the reverse direction and zero resistance in the forward direction. When calculating the dc voltage, \(V_{osc} \), from a specified transformer, subtract \(V_{f} \) from the voltage obtained for ideal rectifiers. When choosing a transformer, start by adding \(V_{osc} \) to the required value of \(V_{osc} \). Except for very low currents, \(V_{osc} \) should be taken as 1V per diode, i.e. 2V for a bridge rectifier. Look into the electronic capacitor and in any reverse biased rectifiers causes a voltage drop of up to 0.7V, the forward biased rectifiers. However, \(V_{osc} \) is usually calculated at zero output current so that components with a suitable voltage rating can be chosen, and it is therefore advisable to consider \(V_{osc} \) too.

Transformer considerations

Copper losses are important when determining the transformer performance. Ready made transformers are usually described by some of the following parameters:

- \(P_{core} \) — rated m.r. primary current.
- \(P_{secondary} \) — rated m.r. secondary voltage or the secondary voltage when the current is
- \(\frac{V_{dc}}{V_{rms}} \) — open circuit m.r. secondary voltage.
- \(\frac{V_{rms}}{V_{osc}} \) — regulation (or \(\frac{V_{rms}}{V_{osc}} \))

For a custom designed transformer or one whose parameters are found by measurement, the most readily available quantities are usually

- \(R_1 \) and \(R_2 \) — primary and secondary resistances.
- \(n \) — turns ratio, given by \(V_{osc} = n V_e \frac{1}{n} \).
- \(R_2 \) — output resistance, given by (R)WIRELESS WORLD AUGUST 1981

Simplified design of dc power supplies

Design considerations and formulae for common circuit configurations

by J. C. S. Richards

Transformer considerations

Copper losses are important when determining the transformer performance. Ready made transformers are usually described by some of the following parameters:

- \(P_{core} \) — rated m.r. primary current.
- \(P_{secondary} \) — rated m.r. secondary voltage or the secondary voltage when the current is
- \(\frac{V_{dc}}{V_{rms}} \) — open circuit m.r. secondary voltage.
- \(\frac{V_{rms}}{V_{osc}} \) — regulation (or \(\frac{V_{rms}}{V_{osc}} \))

For a custom designed transformer or one whose parameters are found by measurement, the most readily available quantities are usually

- \(R_1 \) and \(R_2 \) — primary and secondary resistances.
- \(n \) — turns ratio, given by \(V_{osc} = n V_e \frac{1}{n} \).
- \(R_2 \) — output resistance, given by (R)

Because simplified design methods are particularly useful when only a few items are needed as Guidelines, transformer formulas are used, the outline below use the first set of parameters. If the second set is preferred, a conversion can be achieved using

![Fig. 1. Full-wave rectifier circuits. (a) Half-bridge, (b) dual bridge, (c) centre-tapped bridge, (d) two phase. In the design formulae for the bridge circuit, \(V_u \) and \(V_a \) are the ratings for each secondary, For the two-phase circuit, the rating of each secondary is \(V_u \).](attachment://Fig. 1. Full-wave rectifier circuits. (a) Half-bridge, (b) dual bridge, (c) centre-tapped bridge, (d) two phase. In the design formulae for the bridge circuit, \(V_u \) and \(V_a \) are the ratings for each secondary, For the two-phase circuit, the rating of each secondary is \(V_u \).)

![Fig. 2a. Half-wave circuit, (b) symmetrical voltage doubler.](attachment://Fig. 2a. Half-wave circuit, (b) symmetrical voltage doubler.)
The relations

(1) \(r = \frac{v}{v_0} \frac{v_{Rc}}{R_c} \)

(2) \(v = \frac{v_0}{v_{Rc}} \frac{v_{Rc}}{R_c} \)

(3) Tolerances are rarely quoted for transformers and it is not uncommon for the open circuit or secondary voltage to be 5% adrift and the regulation, which is often given as a typical or a maximum value for a broad range of transformer, to be 10% or 20% different. However, these errors usually combine to make the full load voltage within about 2% of its nominal value.

When a transformer has more than one secondary winding, the variation of output voltage with load becomes more complicated because current drawn from one secondary affects the voltages on the rest. However, for a transformer with two similar secondaries, each parallel to the line current, the behaviour can be described in terms of \(v_2 \) and \(v_4 \) above. This is the series and parallel connection of secondaries and the rectifier circuits in Fig. 1(b) and (c). For the two-phase circuit in Fig. 1(d), the r.m.s. current in each secondary is the same, but the current flows in only one secondary at a time. To compare this circuit with a bridge rectifier using both secondaries in parallel, suppose that \(v_2 \), \(v_4 \), \(r_2 \), \(R_c \) and \(R_2 \) are the transformer parameters when the secondaries are in parallel. In this case the ratio of each secondary \(v_2 \) to its resistance is 2\(R_2 \). If current is taken from only one secondary instead of both in parallel, the total r.m.s. current which can be drawn without overheating is \(I_{0R}^2+I_{0P}^2 \) and the effective output resistance is increased to \(R_{2P} \), where

\[
\begin{align*}
K = & \Delta \left(R_2 + R_4 \right) \\
& \Delta \left(R_2 + R_4 \right) \\text{(4)}
\end{align*}
\]

The value of \(k \) must lie between 1 and 2, and this expression is approximately true for a transformer designed to have equal primary and secondary copper losses in normal operation.

Design formulae

A characteristic of capacitance smoothed rectifier circuits is that the currents in the transformer and rectifier are pulsed. The performance is easily calculated using a model of a single secondary. The equivalent circuit is shown in Fig. 2(a). The transformer is represented by the transformer current \(i_1 \), the capacitor is represented by \(C \), the load is represented by \(R_L \), and the instantaneous voltage across the load \(v_L \), is given by

\[
\begin{align*}
v_L = & \frac{1}{C} \int \left(v - i_1 \cdot R_L \right) \, dt \\
& \text{(2.6)}
\end{align*}
\]

In the above expressions, \(i_1 \) is the primary current. \(C \) is the value of the coupling capacitor and \(v \) is the transformer voltage across the primary winding. \(R_L \) is the resistance of the load connected to the transformer.

Choosing a circuit

The choice of circuit is usually between a bridge and a two-phase design. Overall the two-phase circuit is usually better if the area is cheap at low voltages and the bridge is better, but the differences in cost and efficiency are small and often less important than the availability of components.

For example, the two-phase bridge has a natural advantage at high voltage. For the two-phase bridge, the secondaries are relatively short and their rating is less than the transformer rating. If the primary current is taken from the transformer, the transformer current is shown in Fig. 2(b), which is displaced from each other by half a cycle. The curve is the most economic way of obtaining a high voltage. The桥形电路的电流和电压是

\[
\begin{align*}
\text{Current } & = \frac{1}{2} v_1 \cos \omega t \\
\text{Voltage } & = \frac{1}{2} v_1 \sin \omega t \\
& \text{(3.1)}
\end{align*}
\]

As a general guide, for outputs between 10 and 100 VA, a regulation of about 0.1% is a good compromise and suitable transformers are readily available. Transformers with a low power rating, <100A, are not much cheaper than larger types and, because the relatively larger surface permits a higher current density in the copper, a larger fraction of the winding area is occupied by insulation which tends to reduce the copper losses and hence the overall efficiency.

For a bridge or a two-phase circuit when the transformer is at current \(I \), the transformer should be about \(0.8 \) VA and from equations 5 to 11 the following values are found. The figures in brackets are calculated and measured values of \(V_{DC} \). The transformer current is shown in Fig. 4(b), and the voltage across capacitance \(V_{DC} \) is

\[
\begin{align*}
\text{For a two-phase circuit, assuming } & k = 1.5, \text{ the following values are obtained} \\
& v_{DC} = 0.7(0.6) \text{V (0.6V)} \\
& \text{For a bridge circuit, assuming } & k = 1.5, \text{ the following values are obtained} \\
& v_{DC} = 0.7(0.6) \text{V (0.6V)} \\
& \text{Fig. 4(c) and because } & (k+1)b, \text{ is approximately } \\
& \text{the repetition time of } & \text{(3.2)}
\end{align*}
\]

From Fig. 4(c) and because \((k+1)b \) is approximately equal to the repetition time of the ripple is \(\frac{1}{b} \).

References

Effect of finite capacitance

The ripple voltage across capacitance \(V_{DC} \) is associated with a fast triangle waveform, the diagram in Fig. 4(e) is produced where \(V_{DC} \) and the voltage across a finite capacitance \(V_{DC} \) is shown together. The voltage across the capacitor is given by \(\frac{1}{2} V_0 \cos \omega t \), but the improvement is small if the ripple is small. For example, the change in voltage for a bridge system is around \(\frac{1}{2} V_0 \cos \omega t \), which is <1% provided that \(V_0 \) is small and a transformer with \(r > 0.05 \) is used to ensure the maximum capacity. With such an improvement is justified, a more accurate relationship for the rectifier may be given by \(V_0 \) and the voltage drop should be used. The discharge current out of the capacitor is therefore, if \(u_0 \) discharges for time \(t \),

\[
\begin{align*}
& u_0 = \frac{1}{2} V_0 \cos \omega t \sin \omega t \\
& \text{Because the average value of } & u_0 = \frac{1}{10} V_0 \cos \omega t \\
& \text{is given by} & \frac{1}{\sqrt{2}} \frac{1}{2} V_0 \cos \omega t \\
& \text{This equation can be solved by trial and error or by the} & \text{truncated power series in 0 and then using} \\
& \text{Newton's approximation to obtain equation} & \text{(3.4)} \\
& \text{above.}
\end{align*}
\]
Programmable sound-generator interface

Although the AY-3-8910 programmable sound generator was designed for use with a microprocessor, it can only be directly used with CP1600/1610 devices. This disadvantage allows up to four generators to be controlled by the popular Z80 using I/O instructions.

The AY-3-8910 programmable sound generator, p.s.g., i.e., in a 40-pin i.e., containing 14 read/write registers which determine tone frequency, noise amplitude and envelope shape on three separate audio output channels. These features make the device suitable for computer control and, with simple programming, a wide range of musical and non-musical sounds can be produced.

Fig. 1. Interface decoding logic for two programmable sound generators.

Once programmed, the p.s.g. can produce and sustain a particular sound without further control from the computer, and several devices can generate elaborate contrapuntal effects.

Individual registers in the device are accessed and written/erased via an 8-bit bidirectional bus which is controlled by BDIR, BCI and B2C signals. If B2C is connected to +5V, bus control can be achieved with the signals shown below.

The BDIR BCI Function 0 0 bus inactive 0 1 read data from latched p.s.g. register 1 0 write data to latched p.s.g. address 1 1 latch register address

The BDIR and BCI signals are directly available from CP1600/1610 processors, but with other microprocessors they must be simulated and synchronized to allow data transfer between the processor and p.s.g. bus.

The AY-3-8910 also has an independent general purpose 8-bit I/O channels, registers 14 and 15, which have no effect on the sound generation. These are equivalent to a Z80 p.i.o. without the handshaking lines and interrupt facility, and can be used, for example, to read a keyboard.

Fig. 2. Control circuit for one or two p.s.gs. Z80 connections are marked with a circle.

DISTORTION AT THE AMPLIFIER–SPEAKER INTERFACE

The two-part article "Intermodulation distortion at the amplifier–speaker interface" by Canada's Telecommunications Engineer, Professor McLeod and G. Shepherd, published in the February 1981 issue of Wireless World contains some serious flaws.

The authors have a copy of an Audio Engineering Society preprint, No. 1336 of February-March 1978. Its authors are aware of at least three independent rebuttals of that preprint, one of which has already been published. This published rebuttal is by R. R. Cordell of Bell Telephone Laboratories, and is also available as AES Convention preprint No. 1337 of November 1979, under the title "Open-loop output impedance and intermodulation distortion in audio power amplifiers." One of the unpublished rebuttals is by E. M. Cherry and G. K. Cambrell of Monash University. Originally submitted to the AES Journal in February 1979, a rebuttal to the Cordell article was submitted in October 1980 under the title "Output stages of audio power amplifiers: a review of the intermodulation distortion problem." Cherry and Cambrell make the following comments:

1. If an amplifier uses a common-emitter output stage then, if collector resistance is varied without changes in any other parameter, intermodulation distortion, i.m., increases monotonically as collector resistance is reduced.

2. If an amplifier using a given transistor has a common-emitter output stage, and if this is changed to the common-collector configuration and nothing else is changed except the phase of the feedback connection, i.m. at best remain constant but is more likely to increase.

Taken together, 1) and 2) are absolutely contrary to the suggested "rule" of providing a lower load output resistance (rfw Dec. 1980, p.50).

1) For practical purposes, a loudspeaker is passive and cannot inject a signal back into an amplifier. (2) The transistor is m.p. produced by sources incident on the loudspeaker cone from room or enclosure reflections of from other sources is measured in comparison with the open circuit output voltage. Substantial c.m. m.p. results from the signal applied to the loudspeaker and loudspeaker interface. However, the substitution (or compensation) theorem of network theory shows that an active network which models a loudspeaker and includes such a motional e.m.f. can be replaced identically by the passive RC lattice that completely models the driving-point impedance of the loudspeaker. A loudspeaker is a highly passive so far as any applied electrical signal is concerned, and there is no possibility of i.m. as defined because there is no independent signal source in the load.

4. i.m. is proportional to a product of output current amplitudes in Fig. 4. The constant of proportionality depends on the detail of the circuit, but cannot exceed the constant in a standard two-tone intermodulation test. i.m. at given output current amplitudes cannot exceed standard intermodulation at the same current amplitudes.

Taken together, 3) and 4) suggest that the distortion power produced in a real-life situation by the interface intermodulation mechanism is minuscule compared with the distortion power produced by the standard intermodulation mechanism.

Edward M. Cherry
Deartment of Electrical Engineering
Monash University
Chang, Victoria, Australia

The authors reply:

We are not aware of any rebuttals of our AES paper. The paper of Cordell is based on different premises from ours. Cordell purports to demonstrate that the amplifier open-loop distortion to be constant in the compression, whereas our analysis is based on the closed-loop distortion being held constant. This difference is grounded in our fundamental treatment of such conditions taken into account. Cordell's results are in agreement with ours and the paper can hardly be considered a rebuttal. In many cases, other references quoted are unknown to us, and will be considered if and when available.

The points the writer makes sound familiar to us as if they were our own results taken from our paper:

1. This conclusion is a corollary to our paper. We assume the amplifier closed-loop distortion to be constant, which is a real-life engineering consideration, as discussed in our paper. Cordell's assumption is that the open-loop distortion is constant and the amount of overall negative feedback varies with the collector resistance. This leads to complete agreement with our results, if allowance is made for the different boundary conditions. However, we doubt if the writer's case could be realistic in practice. 2. Our theory shows that the i.m. in this case should in principle remain the same just as the writer states. We cannot see any theoretical discrepancy here either. Nevertheless, this kind of a hat-trick would be impossible in practice, and practical measurements show the common-emitter stage to be inferior because of larger closed-loop distortion.

As we submit this point with as, is stated in our paper, (b) As far as the loudspeaker is concerned, this is just a matter of definition. We wish to point out that the proposed i.m. measurement method was not conservative in simulating the physical loudspeaker. But just to expose the amplifier output port to such a real-case current and voltage relationships which might occur when real loudspeaker loads are being driven.

4. This is a reprinting of the opening paragraph of Part 2 of our paper. In many cases, i.m. will be negligible as compared to the COF-two-tone i.m. However, in a poorly designed amplifier, i.e., as shown in our Fig. 14, it may equal in magnitude the two-tone i.m., as can be seen from our Figs. 15 and 17.

In conclusion, the letter does not seem to indicate any flaws in our paper, on the contrary. Many a thing may seem controversial if viewed from different positions. However, a more thorough examination which takes into account the different sets of boundary conditions show no conflict to exist.

Mark Otsa, Ferma Lamminen, Technical Research Centre of Finland, Oulu, Finland
As the step advances further ahead, extra electrons appear in locations such as that shown in the TEM step guided between two conductors. However, the step does not continue to fill in the new E lines involved in the next gap and therefore there is no increase in the thickness of transmission line width.

It would seem from the successes we have had in electromagnetic theory (i.e., radio and stereo systems available to so many people) that our second fundamental concept must be quite a valid and useful way of thinking. I am also a little to see how Mr Cart can develop his theory of the barrier and resistance with the energy current entering the resistor sideways at p. 50. December issues are giving such useful material. The stereo's electronic circuits are still a mystery, even for those of us that are familiar with the simple circuit; therefore if we were able to solve this problem we would certainly be a step closer to understanding the whole device. It would seem, however, that at least to look at the theory behind the problem of the stereo is not as clear as raising it above the ground. The telephone's process. We cannot accept this theory as the only solution, but we can accept it as a step closer to understanding the problem.

As to the electron, although I may allow the existence of the standing-wave electron, I find the second part of the last paragraph, like Osiander, is incorrect. If I have not the privilege of coming to the main theme of the last paragraph, I find that I am not so much in favor of Theory C, which merely removes the possibility of any such other devices but does not clearly explain why the interference current is so much. The author replies: I think the first part of the last paragraph, like Osiander, is wrong. It is a pity that virtually no radio astronomy scientists are so familiar with this important concept. I find it difficult to accept the argument for the man made devices, because it is clear to me that any increase in the thickness of the wire is merely an effect of the change in the resistance.

If I have not the privilege of coming to the main theme of the last paragraph, I find that I am not so much in favor of Theory C, which merely removes the possibility of any such other devices but does not clearly explain why the interference current is so much. The author replies: I think the first part of the last paragraph, like Osiander, is wrong. It is a pity that virtually no radio astronomy scientists are so familiar with this important concept. I find it difficult to accept the argument for the man made devices, because it is clear to me that any increase in the thickness of the wire is merely an effect of the change in the resistance.

Hergebert Dingle

Perhaps I may be permitted to make a brief reply to Dr Wilkie's lengthy attack in the June issue. It may, I suppose, one day be possible to explain that in quoting his father's obituary notice, Dr Wilkie was accused of 'dangerous obscurantism'. As to the second part of the last paragraph, I am not so much in favor of Theory C, which merely removes the possibility of any such other devices but does not clearly explain why the interference current is so much. The author replies: I think the first part of the last paragraph, like Osiander, is wrong. It is a pity that virtually no radio astronomy scientists are so familiar with this important concept. I find it difficult to accept the argument for the man made devices, because it is clear to me that any increase in the thickness of the wire is merely an effect of the change in the resistance.

Hergebert Dingle

Perhaps I may be permitted to make a brief reply to Dr Wilkie's lengthy attack in the June issue. It may, I suppose, one day be possible to explain that in quoting his father's obituary notice, Dr Wilkie was accused of 'dangerous obscurantism'. As to the second part of the last paragraph, I am not so much in favor of Theory C, which merely removes the possibility of any such other devices but does not clearly explain why the interference current is so much. The author replies: I think the first part of the last paragraph, like Osiander, is wrong. It is a pity that virtually no radio astronomy scientists are so familiar with this important concept. I find it difficult to accept the argument for the man made devices, because it is clear to me that any increase in the thickness of the wire is merely an effect of the change in the resistance. It is well established that a distorted bias signal is the cause of distortion in the stereo. Even harmonics in the bias supply are reduced when we move to 32Ω. This is one of the reasons why one bias frequency is important. I have tried to show that the print-through signal down the frequency spectrum where it is generally less significant. The extent of any print-through is a function of the tape, is the situation responsible for the distortion components. The author replies: The extent of any print-through is a function of the tape, is the situation responsible for the distortion components.

LOW-NOISE AMPLIFICATION

In his "Introduction to low-noise amplifier design", J. D. G. Pratt gives a rough system by using my Motorola 6000 evaluation kit Apple II and TRS80. I got rid of the interference by shielding the system completely, which is the least expensive means in terms of time and money. Many power supplies are filtered and data ports are decoupled by bi-polar caps, but in my opinion today's microcomputers are very prone to radio frequency interference. They can be shielded in a cabinet, large p.c. boards, small power supplies, and printed circuit boards (decoupling capacitors).

The author replies: The extent of any print-through is a function of the tape, is the situation responsible for the distortion components. The author replies: The extent of any print-through is a function of the tape, is the situation responsible for the distortion components.

LOW-NOISE AMPLIFICATION

In his "Introduction to low-noise amplifier design", J. D. G. Pratt gives a rough system by using my Motorola 6000 evaluation kit Apple II and TRS80. I got rid of the interference by shielding the system completely, which is the least expensive means in terms of time and money. Many power supplies are filtered and data ports are decoupled by bi-polar caps, but in my opinion today's microcomputers are very prone to radio frequency interference. They can be shielded in a cabinet, large p.c. boards, small power supplies, and printed circuit boards (decoupling capacitors).
MICROCOMPUTERS FOR SCHOOLS

While most of us are expert in the field of microcomputers (I am a full-time professional in this field) we need to be aware that the students in schools know a great deal about the subject. In some cases, they are more knowledgeable than we are! As a microcomputer consultant in schools, I have come across a number of interesting situations and would like to share them with you.

One of the most interesting situations occurred at a recent meeting of the Inner London Education Authority (ULEA). The meeting was being held in the main conference room of the Inner London Education Authority offices. It was an important meeting, as it dealt with the future of microcomputers in the schools.

During the meeting, one of the teachers asked me if I could give a presentation on the use of microcomputers in schools. I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a second presentation on the use of microcomputers in schools. I was taken aback, as I had already given a presentation on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a second presentation on the subject. She asked if I could give a second presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a third presentation on the use of microcomputers in schools. I was taken aback, as I had already given two presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a third presentation on the subject. She asked if I could give a third presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a fourth presentation on the use of microcomputers in schools. I was taken aback, as I had already given three presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a fourth presentation on the subject. She asked if I could give a fourth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a fifth presentation on the use of microcomputers in schools. I was taken aback, as I had already given four presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a fifth presentation on the subject. She asked if I could give a fifth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a sixth presentation on the use of microcomputers in schools. I was taken aback, as I had already given five presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a sixth presentation on the subject. She asked if I could give a sixth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a seventh presentation on the use of microcomputers in schools. I was taken aback, as I had already given six presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a seventh presentation on the subject. She asked if I could give a seventh presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give an eighth presentation on the use of microcomputers in schools. I was taken aback, as I had already given seven presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give an eighth presentation on the subject. She asked if I could give an eighth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a ninth presentation on the use of microcomputers in schools. I was taken aback, as I had already given eight presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a ninth presentation on the subject. She asked if I could give a ninth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a tenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given nine presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a tenth presentation on the subject. She asked if I could give a tenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give an eleventh presentation on the use of microcomputers in schools. I was taken aback, as I had already given ten presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give an eleventh presentation on the subject. She asked if I could give an eleventh presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a twelfth presentation on the use of microcomputers in schools. I was taken aback, as I had already given eleven presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a twelfth presentation on the subject. She asked if I could give a twelfth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a thirteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given twelve presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a thirteenth presentation on the subject. She asked if I could give a thirteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a fourteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given thirteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a fourteenth presentation on the subject. She asked if I could give a fourteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a fifteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given fourteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a fifteenth presentation on the subject. She asked if I could give a fifteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a sixteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given fifteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a sixteenth presentation on the subject. She asked if I could give a sixteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a seventeenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given sixteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a seventeenth presentation on the subject. She asked if I could give a seventeenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give an eighteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given seventeen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give an eighteenth presentation on the subject. She asked if I could give an eighteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a nineteenth presentation on the use of microcomputers in schools. I was taken aback, as I had already given eighteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a nineteenth presentation on the subject. She asked if I could give a nineteenth presentation on the use of microcomputers in schools.

I agreed, and the presentation was well received. However, after the presentation, one of the teachers approached me and asked if I could give a twentieth presentation on the use of microcomputers in schools. I was taken aback, as I had already given nineteen presentations on the subject.

The teacher explained that she had a number of questions about the use of microcomputers in schools, and that she had been asked by her students to give a twentieth presentation on the subject. She asked if I could give a twentieth presentation on the use of microcomputers in schools.
Satellite tracking by home computer

Both software and aerial rotator interface for the scientific computer
by Neoklis Kyriazis, B.Sc.

This two-part article describes a tracking system for circular orbiting satellites using the Wireless World scientific computer. Part one, this issue, deals with the interface circuit for controlling the aerial azimuth and elevation angles, and with aerial rotators and their mountings. In the next section, the Basic/machine-code program will be presented. This program processes the satellite orbit parameters and converts data for use with the interface.

Many home computers are capable of handling the arithmetic necessary for tracking a satellite but they require large amounts of software to make them behave as a numeric calculator. The Z80/MM57109 combination used in the Wireless World scientific computer enables the complex trigonometry involved in satellite elevation and azimuth angle calculations to be processed with a minimum of software. For the program used here, the MikIII BURP interpreter must be installed in the computer.

Although the program was written for tracking the Amsat Oscar series, any satellite on a circular orbit can be tracked by inserting the relevant parameters in the BURP program.

Aerials and rotators

The aerial system used by the author for tracking Oscars 7 and 8 comprises two yagis, one of eight elements for 145.9MHz and one of 16 elements for 435.1MHz. One aerial is mounted at each end of a 1.5m long tube supported centrally by a 150°-to-150° loop. The aerial is mounted on a metal plate with a tube welded underneath it which is supported by a second rotator for controlling the azimuth angle.

The Alliance U-200 ‘Tenna rotor’ type aerial rotators used by the author have a four-core control cable; two of these cores are for forward/reverse control of the motor, one for the ground connection and one is connected to a cam switch that controls and opens for every 10° rotation of the driven shaft. Semi-air spaced 75 ohm coaxial cable is used to feed the aerials. This type of cable is efficient even at u.h.f. but a matched pre-amp is required for Mode J down-converts. Note that in the system described here, aerial elevation is increased by counter-clockwise rotation of its rotor while the inverse applies for the azimuth rotor.

There is a mechanical stop in the rotators used by the author which prevents the aerial turning through more than 360°. This means that if the satellite’s azimuth changes from 0° to 360° the rotor must turn through 360° before it can resume tracking. As it takes more than a minute for the rotor to make one full turn, the program is arranged so that it calculates orbits passing north of the ground station and adds 180° to the result while keeping 180° elevation so that the aerials rotate in the right direction. The same problem does not apply to the elevation rotor.

The interface

Digital information from the computer drives the two aerial rotators via an interface. This interface also conveys information relating to the positions of the aerials back to the computer. As mentioned earlier, a cam switch on the shafts of the rotators opens and closes for every 10° of shaft rotation. One contact of the switch is connected internally to ground and the other is tied externally to +5V via a 2k2 ohm resistor. A 100μF capacitor and a 220 ohm resistor are used at these connections as a.c. caused by switching high motor currents may affect the operation of the computer.

Each time the cam switch closes and opens, the voltage across one of the two 100μF capacitors shown in Fig. 1 produces an 0° level pulse which is fed into the computer via the 0 input port. The program counts these pulses to keep track of the position and although resolution is only 10°, reception of Amsat Oscar 8 in Mode J using a 10-element yagi is not affected by the error. If a highly directional aerial is to be used, some more accurate method of feedback may be needed.

Each rotor motor has two windings at 90° to each other. One end of each winding is connected to ground and a 150μF, non-polarized capacitor is connected between the other two supply inputs. The capacitor provides phase shift in the alternating current supplied to one of the rotor windings. Two relays are used for each rotor; one to switch the 24V supply from one winding to the other to determine the direction of rotation and one to switch the supply in and out. The aerial output of the computer is used to control the motors via a CD4015 in parallel-out shift register which drives the relay coils through four buffer transistors.

An accurate timer is needed to provide the program with real-time information. For this purpose a main-frequency divider chain consisting of a 7400 and three 7490 ICs is used to produce a short pulse every 10 seconds. This pulse activates the maskable interrupt of the Z80 and sends the processor to a routine that increments the value of the real-time variable, named T in the BURP program, by 100μS, i.e., 10 seconds. Since the INT pin of the Z80 is used by the MM57109 some simple modifications are necessary to give an OR function between the timer and the number cruncheer, details of which will be given later.

Circuit details

Figure 1 shows the complete circuit diagram of the rotator controller. Transformer T1 supplies 24V a.c. for the rotor motors and 10V a.c. for the rest of the circuit. Diode D5 and a 2200μF capacitor provide 12V d.c. for the relay coils and for the 5V regulator which supplies the CD4015 c.m.o.s. shift register and the timer section i.e., logic signals to and from the computer are fed through a 6-way DIN socket and to and from the rotors via two 5-way DIN sockets. The buffered D7 line from the computer is connected to the data input of the CD4015 at pin 7 whilst a clock pulse to pins 1 and 9 of the IC is supplied from pin 10 of D6.

Thus, a control word from the computer is fed to the CD4015 in serial form from output port HEX A0. The parallel outputs Q0 to Q3 drive transistors T7 to T10 through 1k ohm resistors and any spurious pulses caused during data transmission are bypassed through 47μF capacitors. Outputs Q0 to Q3 of the 4015 are not used but are available for controlling additional circuits if required. Transistors T10 to T13 drive the four relay coils from the c.m.o.s. shift register outputs so they have a high input. Thus, a Darlington pair can be used if necessary.

Relays RLA and RLG, switch the direction of the elevation and azimuth motors respectively while RLB and RLD switch the 24V a.c. supply to the motors on or off. Each rotor can switch output is tied to the +5V supply through a 2.2k ohm resistor and a 220μF series resistor and 100μA bypass capacitor in each line prevent a.c. from the motor ground return turns passing through to the computer input. When a relay switch is closed a logic ‘1’ is sent by the computer and when a switch is open a logic ‘0’. Switch S4, between ground and the azimuth cam switch input
Radio and the birth of the universe

The cosmic microwave background in the Big Bang theory

by Eric Eastwood, F.R.S.

The radiation which mediated the processes of nucleosynthesis at the birth of the universe and controlled the helium/hydrogen radiation during the inflationary era is one that was cooled by adiabatic expansion, now described as the 3K cosmic microwave background. This article first reviews the growth of radio astronomy from the 1940s until 1964. In 1964, Arno Penzias and Robert Wilson made their momentous discovery of this cosmic radiation background. It outlines the meaning of the programme and the immediate effects of the radiation, offered by Dicke and his colleagues. Also it deals with the measurements presented and the degree of anisotropy in the radio background and describes how the antenna temperature variation led to a determination of the "peculiar" velocity of the galaxy. The theory of the "hot big bang" is touched upon and there is a summary of the modern state of the theory which has been able to build upon the essential fact supplied by the temperature measurement of 3K of the cosmic background – the ratio of the number of photons to the number of nucleons.

When Karl Jansky set up his aerial and receiver system at Holmdel, New Jersey, in August 1931, his purpose was not to launch the science of radio astronomy but simply to use an instrument derived from atmospherics that might occur with new radio circuits being planned to operate in the F band (2–2.5 MHz). From the inception of wireless telegraphy in 1896 long waves had dominanted world radio communications but in the 1920s Marconi showed that cost effective radio systems could be engineered using the so-called short waves. Jansky recognised that the commercial success of such high frequency radio communication circuits depended upon a good understanding of atmospheric interference effects. Such interference was familiar at long waves and varied with the seasons of the year and time of day; little experience of terrestrial interference had been accumulated, however, and these were the effects which Jansky set out to investigate.

This article is reprinted from The Marconi Review, Vol. XXIII, No. 218, Third Quarter 1980, by kind permission of the editor.

Fig. 1. Solar (S) and galactic (G) noise signals on the p.p.i. of a metric wave radar.

13.40 HRS.

15.30 HRS.

15.50 HRS.

15.54 HRS.
World Radio August 1981

Theorv of the expanding universe

Improvements in telescopes during the early 18th century were such that astronomers were able to distinguish clearly between the nebulae and other more extended luminous regions which appeared to be of the nature of the Milky Way.
In order to measure the received noise power absolutely a comparison method was employed whereby the receiver was switched between the incoming sky signal and the noise signal delivered by a resistive load placed in the receiver’s high frequency circuit, so that any noise effects in the receiving system were eliminated. Although several precautions to eliminate such effects might still be introduced by noise signals generated in the antenna structure itself, it was believed that this was not an important source of error.

Microwave radio noise background

Just as Jansky in 1931 was looking for sources and magnitudes of noise that might preclude the performance of a high-fidelity radio communication circuit, so in 1964 two later Bell Laboratory scientists working at the same Holmdel Field Station—Penzias and Wilson—were engaged on a not dissimilar task. Their operational objective was in fact to detect and monitor any radio emissions from the galaxy at microwave frequencies, and also propagation effects in the atmosphere.

In order to study seasonal effects the antenna was set up on the side of a 100-ft diameter balloon made of the same metalized fabric which was erected from a gantry after launch into orbit and inflated from the balloon’s interior. On the other end, a radome was a shielded parabolic antenna which had a very low level back-up, it was virtually impossible to detect the presence of noise from the earth’s surface since all the observations were made in the daytime, the antenna being directed to the zenith. It seemed most unlikely that such a well engineered structure would be weak in a wind, but it was necessary to confirm that such an effect was totally absent before they made their first observations at a wavelength of 10 cm. The magnitude of the interfering emissions from the atmosphere and from myriad of man-made molecules could be allowed for by taking measurements at various angles of elevation.

In spite of these precautions to eliminate all possible sources of error it was found that there still remained a level of noise power in the zenith direction at 10 cm higher than expected and corresponded to a variability of some 3.5 ± 1.0 K. The antenna temperature when directed to the zenith was 6.7 K, even after allowing for the effect of the Earth’s atmosphere and 0.9 K due to back lobe and feed losses. No account could therefore be taken of the variation of the signal could be detected. This was in sharp contrast to Jansky’s original discovery of the radiation from the galaxy and eliminated the galaxy as a source of the isotropic signal. It appeared that the antenna and the earth itself were bathed in the radio flux and the conclusion seemed to be inevitable that the whole universe must be filled with this radiation. This was the microwave background radiation, which is produced by a black body radiation and, if so, what was its significance and from whence had the flux originally derived?

Anisotropy of microwave background

In the letter to the Astrophysical Journal describing their measurement of the 3.5 K excess antenna temperature Penzias and Wilson stated, “This excess temperature is, we believe, a very real and consistent isotropic, unpolarized and free from seasonal variations”. This question of isotropy was of course of concern to workers at the same time as the back body nature of the radiation was being established. In their work at the same time much of the radio based experiments had permitted any anisotropy to pass unnoticed. Later, when observational limits began to be less than one part in five hundred, which corresponds to a few millidegrees in the angular diameter, it became necessary to define this measurement still further it was necessary to try and reduce this source of interference – which was Jansky noise from the galaxy, but at microwave frequencies. Radio astronomers have shown that such radiation is indeed produced by the motion of energetic electrons, not in the simple thermal agitation model of the hotter hot black body, but by spiralling about the lines of force of the galactic magnetic field – the so-called synchrotron effect.

Such synchrotron emission falls off with the square of the frequency, so that for two selected wavelengths this galactic noise interference would be reduced and, at the same time, a radio signal originating in the cosmic background would be increased. This was the observational problem that Mulder and his colleagues at the University of California when planning an experiment sensitivity and could be identified as the time when the expansion of the universe in which the temperature difference between the two sky regions could be measured. Microwave astronomers in the millimeter region set up their antenna on the beam of the antenna due to the diurnal rotation of the earth; the same is substantially the same as when a radiation thermometer is used in an aircraft.

In order to study seasonal effects the right programme extended over the whole of 1977 and clearly revealed that some new method of comparison was needed. They found that the temperature of the sky varied smoothly according to a cosine law from a minimum in December at the constellation Leo to a maximum in the summer at the constellation Virgo. The temperature differences between these two directions and the central point of the sky were extremely small and the observed effect was attributed to the velocity of the receiving antenna with respect to the cosmic microwave background.

When Lord Kelvin made his calculation of the age of the earth, based upon the cooling of a large sphere from an initial high temperature, he recognized that his estimate was much too high to satisfy the geologists and he included in his thermodynamic argument the effect that there might be within the earth some undiscovered source of heat that would lengthen the time scale. We now know that certain nuclei disintegrated in the earth, which was to provide the answer to Kelvin’s objection. This was due to the decay of neutrons to protons, and the energy released was sufficient to cool the earth. Later it was discovered that this was one of the many examples of the Mexican hat or Mexican hat potential, which is a form of the black body character of the radiation almost throughout the visible spectrum. The temperature of the microwave background due to the characteristic dipole dependence of the velocity of the galaxy.

When’s law the typical wavelength is inversely proportional to the intensity of the radiation field, or $T_e = 300$ K in the 10 cm band. This was the design decision made by Muller and his colleagues at the University of California when planning an experiment sensitivity and could be identified as the time when the expansion of the universe in which the temperature difference between the two sky regions could be measured. Microwave astronomers in the millimeter region set up their antenna on the beam of the antenna due to the diurnal rotation of the earth; the same is substantially the same as when a radiation thermometer is used in an aircraft.

Cosmic role of radiation

Most important of the contributions to cosmology which stem from knowledge of the nature of the cosmic microwave background is the fact that the temperature of about 3 K is the fact that it permits the estimation of the ratio of the number of deuterium to hydrogen. This is the so-called D/H ratio or the number of deuterium nuclei in the present universe. This ratio would have been maintained...
was in thermal equilibrium. The principles

two reactions:

the temperature is well above the threshold

indicates that 8% of the atoms are helium, 0.1%

prepared the essential material from which

hydrogen; thus the percentage by weight

abundance of various nuclei in our galaxy

taken as a mix of protons and neutrons at a

photons of the radiation (5.9×

processes

radiation which controls the reactions at

to

accurate calculations shows the figure to be

 tons per litre is in the order of a million;

of the peak emission is about 1mm. Now

and in particular, to monitor the produc­

is necessary to study the progress of the

to Weinberg

lived long enough to be

conversion in the presence of a strong radiation field

came transparent to radiation; expansion

of the radiation and matter followed,

were rapidly converted into helium. Thus

in the presence of a strong radiation field

in the early universe that

preceded the

11 states of the early universe that

WIRELESS WORLD AUGUST 1981

Digital storage and analysis of speech

2 – Coding in the time domain

by Ian H. Witten, M.A., M.Sc., Ph.D., M.I.E.E., University of Calgary

The modern version of the Big Bang

cosmology has already achieved some notable successes, not least being the way it has

been able to explain the origin of the cosmic microwave background. Steven Weinberg,

awarded a Nobel Prize in 1979 for his work in particle physics, discusses in

his exciting book "The First Three Minutes" the early universe that may have preceded the 108 K stage which was taken as the starting point of this

study. However, many of the problems in particle physics are involved in the description of the back-burning of the universe in time. What is certain is that the present

theory of the foundation of the universe

predicts that the universe will continue to expand for a long time. Then further research and

searches the need for more observations, many of which will have to be performed

in space vehicles. The techniques at least of microwave communica­

Sylvan coding

We have already studied one time-domain

coding technique, namely logarithmic quantization, or log p.c.m. (sometimes

"constant modulus coding"). A more sophisticated encoder could track

slowly varying trends in the overall ampli­

tude of the speech signal and use this infor­

mation to adjust the quantization levels

independently for each frequency. Speech coding methods based on this principle are called adaptive pulse code modulation systems (a.p.c.m.). Because

the overall amplitude changes slowly, it is sufficient to adjust the quanti­

zation levels relatively infrequently (compared with the sampling rate), and this is

often done at rates approximating the syllable rate of running speech, leading to the term

"syllabic companding". A block floating­

point format can be used, with a common exponent being stored every M samples

(with M, say, 125 for a 100 ms block rate at 8 kHz), followed by the actual difference

in the block. Thus

M ∑ ≠ k (x(n) − x̂(n+k))2

is used to determine a suitable exponent, and every sample in the block – namely

x(k), x(k+1), ... x(k+M−1) – is scaled according to that exponent. Note that for

speech transmission systems this method necessitates a delay of M samples at the encoder, and indeed some methods base the exponent on the energy in the last M blocks to avoid this. For a given speech signal, however, the delay is irrelevant. A rather different, nonsylvan, method of adaptive p.c.m. continues to change the step size of a uniform quantizer, by multiplying it by a constant at each sample which is

given by

(1 − 10−11)

where the parameter α is adapted (and stored) on a syllabic time-scale. This leads to a slight improvement in signal-to-noise ratio which is combined with the adaptation by quantization. Much more substantial benefits can be realized by using a weighted sum of the past several

difference signal for a given overall

Actually, the improvement is not all that

great – about 4–5 dB in signal-to-noise ratio – or just under one bit per sample for a given signal-to-noise ratio – for the differ­

ence signal can be nearly as large as the basic signal level.

If p.c.d.m. is used in conjunction with adaptive quantization, giving one form of

adaptive differential pulse code modulation (a.d.p.c.m.), both the overall ampli­

tude variation and the sample-to-sample correlation are exploited, leading to a com­

bined gain of 10–11 dB in signal-to-noise ratio (or just under two bit reduction per sample for telephone-quality speech).

Reference

1. Karl G. Jansky. "Directional Studies of Atoms in

Weather at High Latitudes", Proc.

2. Karl G. Jansky. "Electrical Disturbances

in the Immense Radio-Absorbing Layer in

4. E. Eastwood. "Some New Applications of

Deficiency in the Absorption at a Temperature of

742, 419, 1963.

6. R. H. Dick, P. J. E. Peebles, P. G. Doll, and

D. Wilson. "Cosmic Black Body Radiation

at a Temperature of 2.73 K.", Nature, 214, 1965

7. E. E. Mullin. "The Cosmic Background

at a Temperature of 0.1 mK.", Science, 182, 215, 1975.

Fig. 6. Conversion hardware for delta modula­

tion.

www.americanradiohistory.com
Delta modulation

The coding methods presented so far all increase the complexity of the analogue-to-digital interface (or, if the sampled waveform is coded digitally, they increase the processing required before and after storage). One method which considerably simplifies the interface is the limiting case of p.c.m. with just 1-bit quantization, in which only the sign of the difference between the current and last values is transmitted. Figure 9 shows the conversion hardware. The encoding part is essentially the same as a tracking d-a converter, where the value in a counter is forced to track the analogue input by incrementing or decrementing the counter according as the input exceeds or falls short of the analogue equivalent of the counter's contents. However, for this encoding scheme, called "delta modulation", the increment-decrement signal itself forms the discrete representation of the waveform, instead of the counter's contents. The analogue waveform can be constituted from the bit stream with another counter and d-a converter.

However, an all-analogue implementation can be used, both for the encoder and decoder, with a capacitor as integrator whose charging current is controlled digitally. This is a much cheaper realisation.

It is fairly obvious that the sampling frequency for delta modulation will need to be considerably higher than for straightforward p.c.m. Figure 10 shows an effect called "slope overload" which occurs when the sampling rate is too low. Either a higher sample rate or a larger interval between samples will reduce the overload; however, larger steps increase the noise level of the alternate 1s and 0s which occur when no input is present - called "granular noise".

A compromise is necessary between slope overload and granular noise for a given bit rate. Delta modulation results in lower data rates than logarithmic quantization for a given signal-to-noise ratio if that ratio is low (poor-quality speech). As the desired speech quality is increased, its data rate grows faster than that of logarithmic p.c.m. The crossover point occurs at a much lower rate than would be needed for telephone quality speech, and so although delta modulation is used for some applications where the permissible data rate is severely constrained, it is not really suitable for speech output from computers.

It is profitable to adjust the step size, leading to adaptive delta modulation. The common strategy is to increase or decrease the step size by a multiplicative constant, which depends on whether the new transmitted bit will be equal to or different from the last one. That is, stepsize (n+1) = stepsize (n) x 2 if x(n) = x(n+1), or stepsize (n) x 0.5 if x(n) ≠ x(n+1) (slope overload condition); stepsize (n+1) = stepsize (n) if x(n) = x(n+1), x(n+1) = 1-x(n) (granular noise condition).

Programmable sound generator interface

The interface decoding logic, shown in Fig. 1, uses A0-A7, J0 and WR signals from the Z80 and four i.c.s to provide BCI and BDIR signals for two p.s.g. The two separately addressable p.s.g.s require four Z80 addresses, which can be selected by using one or more of the three spare gates to invert the address lines before IC 1.

The p.s.g.s are programmed by latching their relevant register and then writing or reading data. The following instructions must be achieved with the following instructions:

L.D.A R is the p.s.g. register address (up to 15)
OUT (252), A latch register address R in p.s.g. 1.
L.D.D D = output data, D = 0-255
OUT (253), A output data to latched register in p.s.g. 1.
 Maiden character and dot-row code bits to 745262

Literature received

Monthly news sheets, which contain details of a host of electronic components, accessories and instruments, are sent out free of charge by J. Bull (Electrical) Ltd, 346 America Lane, Haywards Heath, West Sussex RH16 3QU.

Instruments and accessories for measurement and test, and a number of instrument case are illustrated and specified in a catalogue from Global Specialities Corporation, Short Hill, Distary Estates, Units 1 and 2, Saffron Walden, Essex CB11 3AQ.

A large range of active and passive components for thick-film hybrid circuits is fully detailed in a new catalogue from Norsem Thick Film Products, Level 1, The Civic Centre, Harrogate, Cleveland.

Improving the 74S262 character generator

A disadvantage of the 74S262 character generator is that it is the display output for zero and upper-case O are identical. This circuit simulates the style of zero found in other types. The ISO-7 code for zero, 011000, is converted to letter A, 000000, and the dot-row address is modified so that the lower half of the displayed character is a reflection of the upper half. Because only the address inputs to the r.o.m. are modified, other functions such as character rounding are not affected. This change can be included to disable the circuit if required.

A. Pemberton
Sheffield

Voltage-change detector

This detector produces a negative pulse when the input voltage changes direction by more than about 15mV. The differentiator in section A detects and amplifies the leading edge of a voltage change and the output switches positive or negative depending on the polarity of the input voltage change. Section B converts any pulses from IC 1 which are 4.5V or greater to negative pulses. Section C is standard monostable circuit with a delay of 5s set by the RC network. The output goes high on the falling edge of the pulse. Section A is necessary if the detector is used with a cadmium sulphide cell or a thermistor. The voltage fed to the detector input is restricted to between 1/3 and 2/3Vcc. Other op-amps can be used for IC1 provided they have an input impedance of around 20MΩ.

M. L. Ford
Wincatter
By combining two sets of K.V.D. digits, clock and the time offset to be added, both clocks can be produced from 1 to 23. This variation is not only effective in reducing cost, parts of the design can be integrated with other devices to a great extent.

When combined data, for instance,

\[\text{true potential difference} \rightarrow \text{true potential difference} \]

Thus it

\[\text{true potential difference} \rightarrow \text{true potential difference} \]

If the components of the device are set, it can be programmed for use anywhere. It can be used as

- A microprocessor
- A microcomputer
- A minicomputer
- A mainframe

Assembling the device is relatively easy, it can be programmed as

- A microprocessor
- A microcomputer
- A minicomputer
- A mainframe

The device is available for a variety of uses, such as

- As a simple calculator
- As a simple computer
- As a simple microprocessor
- As a simple microcomputer

The fact that the device can be programmed for use anywhere is remarkable. It can be used as

- A simple calculator
- A simple computer
- A simple microprocessor
- A simple microcomputer

No hidden extra price is for a "BUILT IN"atu digital

- No hidden extra price is for a "BUILT IN"atu digital
- No hidden extra price is for a "BUILT IN"atu digital
- No hidden extra price is for a "BUILT IN"atu digital

The device is available for a variety of uses, such as

- As a simple calculator
- As a simple computer
- As a simple microprocessor
- As a simple microcomputer

The device is available for a variety of uses, such as

- As a simple calculator
- As a simple computer
- As a simple microprocessor
- As a simple microcomputer

The device is available for a variety of uses, such as

- As a simple calculator
- As a simple computer
- As a simple microprocessor
- As a simple microcomputer
New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions.

Solderable Stud Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the PC Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex.
Telephone 01-902 5941, Telex: 923456.
The correlation function of a signal has been tied up with pitch and coloration by Bilsen, who found the experimental subjective weighting function shown in Fig. 4. The pitch and coloration threshold, according to Bilsen, is given by

$$R(t) = 0.063 \frac{R(t)}{R(0)} p(t)^2$$

That is, if the normalized white noise autocorrelation function of the system exceeds 0.063(p(t)) coloration may be detected in the signal.

The pitch of white noise fed through a high-pass or low-pass filter is closely related to its cut-off frequency. This would be expected from its autocorrelation function, Fig. 3(d), which shows substantial ripples of a period corresponding to the cut off frequency: compare this with the autocorrelation function of a sine wave, Fig. 3(a). This pitch and cut-off frequency relationship was confirmed experimentally by Small and Daniloff and by Fast. However, with high-pass filters having a cut-off frequency below about 600Hz anomalous results are obtained which suggest that coloration is not audible with high-pass filters in the frequency range where they are usually used.

The sensation of pitch becomes more definite as the slope of a sharp cut-off filter is increased. Rakowski has reported experiments with filters having slopes of 15, 50, and 150Odec above -3dB frequencies of between 200Hz and 5kHz. He found that "The accuracy of the pitch judgement decreases for extreme low and high frequencies. The increase in steepness of noise band skirts improves the accuracy of the pitch judgements but at 150Odec the judgement may still be made with considerable consistency." This is in accordance with an autocorrelation theory, which predicts increased coloration as the filter cut-off frequency increases towards the ideal frequency-domain filter.

From the weight of experimental evidence then, an autocorrelation theory of hearing including a suitable weighting function appears to explain the phenomenon of filter coloration satisfactorily.

Step response

The white-noise autocorrelation function of a filter is not a very familiar quantity to many electronics engineers although it is one of the time-domain descriptions of signals. (An oscilloscope is a time-domain display system, invaluable for studying the effect of networks on pulses.)

The step response of a network is closely related to its white-noise autocorrelation function: the autocorrelation function of a signal is the time domain description of its power spectral density (its "frequency spectrum") and contains the same information. Given a white noise input, the power spectral density directly depends on the transfer function of the network. Taking the transfer function one can find the impulse response or the step response of the network by means of the Laplace transform. So the step response is a close cousin of the white-noise autocorrelation function and contains all its information, as well as additional phase information.

If the step response of a network is known, the response to an arbitrary signal, for example speech or music, can be found. The input signal can be approximated by a staircase function, as in Fig. 5, and by taking smaller and smaller steps one can get as close to the original as necessary. This staircase function can be decomposed into the sum of a large number of positive or negative steps of varying magnitude each of which has its own step response when passed through the network. If these are added together the resulting waveform is the response of the network to the input signal. There is therefore a direct connection between the step response of a network and its response to real signals.

By studying the step responses of some idealized and real filters these can be related to their white-noise autocorrelation functions and criteria for audio filters can be established. Consider first the ideal frequency-domain filter shown in Fig. 6(a). The step response shows considerable ringing as would be expected. There is also a precursor, that is a response before the input step is applied, pointing to the non-realizability of this ideal filter. A real approximation to this type of response is the third-order Butterworth response shown in Fig. 6(b). There is now no precursor but there is still a lot of ringing. This sort of filter is common in audio equipment although it is by no means optimal for the application.

The ideal time-domain filter is one with a fast rise time and no overshoot or ringing. This is achieved if the amplitude response follows a Gaussian shape and if the phase response is linear. The step response of a Gaussian filter has a precursor, but a practical filter, a third-order Laguerre Gaussian approximation, gives a delayed response with no precursor and negligible ringing.

The subject of filter families such as Butterworth, Bessel, Chebyshev, is too wide to cover in one article but is well covered in the literature.

Design criteria

Basically, there is a need for as much attenuation as possible in the stop band with a flat amplitude response in the pass band. A steep slope in the stop band is not harmful in itself (the Gaussian filter approaches an infinite slope) but the shape of the response curve in the transition region between the pass band and the stop band is important. Looking at the Gaussian, Laguerre and simple RC filters, there is little or no ringing when the cut-off is approximately Gaussian over the first 10dB or so of attenuation. The phase response associated with this type of cut-off tends to be linear in the case of practical transfer functions, and this has sometimes led to the misconception that filters should be specified to have a linear phase response to minimize ringing. The step response contains information which is discarded in the autocorrelation response. This implies that a pure autocorrelation theory of hearing does not take account of the ears' sensitivity to phase information, but there has been considerable controversy over the degree to which phase shifts are detectable. What is important in the present context is that phase linearity, by itself, is no guarantee of adequate audio filter design.

One could choose a sharp cut-off response characteristic and then add an all-pass phase equalizer to give good phase linearity, but this would not give freedom from ringing. The ideal frequency-domain filter is a good example of this: even with zero phase there is bad ringing. Adjusting the phase response near the band edge can alter the symmetry between precursor and overshoot but can never remove the ringing.

The conclusion must be drawn that the main factor governing transient response is the shape of the amplitude response roll-off in the transition region. For best results this should have a Gaussian shape, that is

$$V_{out} = \exp \left(-\frac{s}{s_{\text{HB}}} \right)$$
This is unrealistic as it stands but it can be approximated by either a Taylor or a Laguerre series expansion. Several other filter approximations also produce a quasi-Gaussian roll-off, for example the well-known Bessel or Thomson family and the in-line pole approximations.

While a Gaussian roll-off is ideal from the point of view of step response, the ear is not so critical of ringing as the cut-off frequency is raised. This implies that a sharper cut may be used at high frequencies without being objectionable.

As filters can be broken down into first and second-order terms, the last being responsible for ringing, the maximum allowable Q-factor of the various terms in the transfer function could be related to frequency as a criterion for audio network design.**

** High-pass filters are less critical in their design. As previously mentioned, although at high cut-off frequencies ringing is noticeable, below about 600 Hz this effect subjectively disappears. The design of high-pass filters can be based on conventional frequency-domain considerations. For example, a typical rumble filter might have a third-order Butterworth response with a -3 dB frequency of 24 Hz, giving 1 dB drop at 30 Hz.

** Research into the effect of similar transfer functions in introducing audible coloration has been carried out at the University of Surrey by J. M. Bowsher and R. Martin.

Variable low-pass filter

One solution to the problem of ringing adopted in some high-fidelity preamplifiers is to use a switched cut-off frequency and to add another filter control known as a slope or roll-off control. In one type of slope control mainly affects the rate of fall-off in the stop band, thus sacrificing unwanted attenuation to reduce the unwanted coloration. The provision of three switched frequencies plus a slope control gives a comprehensive filtering facility in the sense that the user has a wide choice of filter characteristics. I believe this is unnecessarily complicated and that a single control can be adequate for most applications if correctly designed.

Essentially what is required is a steep final rate of attenuation, say 18 dB/octave, but with a gradual initial roll-off approximating a Gaussian shape. Filter control is possible if the cut-off frequency is made smoothly variable rather than switched. Secondly, the ear is less sensitive to ringing at the upper end of the spectrum than toward the middle and a sharper cut-off is more permissible (and desirable) near the band edge. The object of this design was therefore to obtain an 18 dB/octave slope which could be shifted along the frequency spectrum whilst automatically changing its shape in the transition region to give the maximum amount of attenuation without coloration at any setting. This aim has been achieved in the following way.

A second-order low-pass section has a peak in its response which depends on its Q-factor. If the Q-factor is allowed to increase as the cut-off frequency is increased, curves like those of Fig. 8 are obtained. If this rising response is offset by a first-order response falling at 6 dB/octave the result is an almost-flat pass-band response with a variable cut-off frequency, the initial roll-off becoming steeper with increasing cut-off frequency. (In practice, the first-order section must also have a variable cut-off frequency to avoid a peaked response.)

The filter was designed to be variable between a Bessel response with a cut-off at 6.3 kHz, and a 0.5 dB ripple Chebyshev response with a 20 kHz cut-off. The subjective sensation of pitch is approximately linear with logarithmic frequency and as there is evidence to show that the subjective effect of reducing the bandwidth of a signal is also nearly proportional to the logarithm of the cut-off frequency, this law has been incorporated in the variable control. The resulting circuit is analysed in the Appendix and computed response curves are given in Figs 9 & 10.

Practical circuit

A practical circuit suitable for use in a high-fidelity preamplifier or in professional audio equipment is given in Fig. 11. In addition to the variable low-pass facility there is a fixed rumble filter built around the input stage which cuts off at 18 dB/octave with a Butterworth characteristic.
Designing with microprocessors

10 – Concluding interrupt-driven circuits

d by D. Zissos and G. Stone

Department of Computer Science, University of Virginia, Canada

The last two articles on interrupt-driven circuits, June and July 1981, described operation, applications and design procedures. This article covers interrupt controllers and routines for the operation and use of two common interrupt chips.

The function of interrupt controllers is to generate an interrupt request, IRQ signal when one or more flags are present, and to provide the microprocessor with information which will allow it to identify the source of interruption. Fig. 1 last month showed the basis of interrupt systems, and the step-by-step operation is described in reference 1. Interrupts are classified as vectored or non-vectored depending on the type of information available to the microprocessor. In vectored interrupts, the vectoring address is generator externally prior to program interruption. In non-vectored types, the controller provides the microprocessor with information about the state of the individual flags, and it is left to the programmer to identify the source of interruption. For describing interrupt controllers, it is assumed that the higher the suffix of an interrupt flag, the higher its priority unless otherwise specified.

Controllers for vectored interrupts

The function of controllers for vectored interrupts is to identify the source of interruption before generating the interrupt signal, and to load the program counter with the appropriate vectoring address when the microprocessor is interrupted. Fig. 4 shows two methods for generating vectoring addresses. In (a), the vectored address is generated directly by the interrupt controller but in (b), the interrupt controller sets a pointer to the memory location which holds the appropriate vectoring address and releases it. The first method is used by the Intel 8085, and the basic operation of this device depends on the execution of the three-byte Call instruction which allows direct access to the program counter. This is because the data bus is linked to the program counter during the last two machine cycles as shown in Fig. 5. The 8259 issues an interrupt request signal when the microprocessor operating system is interrupted, and waits for the processor to respond with INTA. When this occurs it reads the data bus with the opcode of the Call instruction and then the two-byte vectoring address. The opcode is loaded into the instruction register and the vectoring address into the program counter as shown in Fig. 5. Before the vectoring address is loaded, its contents are automatically stored in stack. The second method of generating vectoring addresses is used by the Motorola 6828. In common with all interrupt controllers, the 6828 generates an interrupt request signal in response to external flags and waits for the microprocessor to respond. The procedure responds by outputting consecutively addressed signals

Controllers for non-vectored interrupts

The controller for non-vectored interrupts in Fig. 2a consists of an i/o port and two gates. The IRQ signal is generated by ORing the flag signals. When program interruption occurs, the programmer saves the processor status and reads the flag bits into the accumulator by simply executing an Input instruction with address Ap in this case. The processor status is saved to allow the interrupted program to continue correctly.

After the flag bits are stored in the accumulator, the programmer tests the value of each bit in turn by shifting left one position the contents of the accumulator through the carry flip-flop, and checking whether it is set, C=1, or reset, C=0, see Fig. 2b). If the flip-flop is set, control of the program is transferred to the appropriate interrupt routine, otherwise the shift operation is repeated as shown in Fig. 3.

At the end of each service routine the processor status is restored, the interrupts are enabled and the interrupted program is resumed by executing a Return instruction. This method, commonly called soft-pend, involves no special hardware and is often favoured by people familiar with software. However, it is slow and if a large number of interrupts are necessary, the response time may be too slow for certain real-time applications.

References
FFF8 and FFF9. The presence of these signals on the address bus activates the interrupt controller, which then modifies their values in accordance with the interrupt flags, as shown in Fig. 6. Address bits 1 to 4 are replaced by four new bits z1 to z4. One method of achieving this, using a priority encoder (flag sorter) and some logic, is shown in Fig. 7. The priority encoder identifies the flag with the highest priority, see Fig. 8. For example, \(q_4 q_3 q_2 q_1 = 010 \) when flag 2 is identified and \(q_4 q_3 q_2 q_1 = 111 \) if flag 7 is present. The values of the modified address bits are also given in Fig. 8 which shows:

\[
\begin{align*}
z_1 &= q_0 \\
z_3 &= q_2 \\
z_2 &= q_1 \\
z_4 &= q_2
\end{align*}
\]

A priority encoder and inverter circuit is shown in Fig. 9.

Restarts

Restarts are one-byte instructions whose format is 11dddd111 where ddd are variables. When this instruction is executed, the program counter is pushed on stack, and bytes 00000000 and 00000000 are written into it. This means that the execution of a restart instruction transfers program control to one of eight locations specified by 00000000 0ddd0000, see Fig. 10. The restart instruction can be generated by a priority encoder and, because it is loaded into the instruction register rather than the program counter, all that is required is an i/o port and one AND gate.

References

Fig. 6. Basic operation of the 6828 interrupt device.

Fig. 7. Modification of the 6800 address signals FFF8/9 during interrupt cycles.

Fig. 8. Modified vectoring addresses, see Fig. 7.

Fig. 9. Practical circuit for modifying address signals as shown in Fig. 7.
Electronic detection of meteors

Two young avionics engineers, armed with a portable 'all-sky camera', plus material help from their company, are making a contribution to an international scientific experiment this summer, involving a comet which appears once in every 119 years. David Fosberry BSc, 25, Project Engineer with Marconi Avionics Limited and his partner Joe Cardwell, 22, Development Engineer, have designed an electronic detection instrument, the first of its kind, which can tell the presence of meteors and count them automatically.

The new Electronic Meteor Detection System (EMDS) is to be used as part of an international experiment, organised by the Meteor Section of the British Astronomical Association. Known as Project Perseid, it involves studying the appearance of the Perseid meteor stream, which is associated with the comet known as Swift-Tuttle 1862 III, recorded only once before and due to reappear this year.

The EMDS has been designed to meet the requirements of Europe's largest amateur group for meteor observation, the South Downs Astronomical Society, whose president, celebrated amateur astronomer and broadcaster Patrick Moore, is associated with the comet known as (EMDS).

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

Project Perseid winners are planning to observe the comet and its many thousands of rapidly-travelling members every 119 years. David Fosberry (known as the "radiant"), institutes which meteors are of the Perseid stream. To aid the study, the "all-sky camera" system is designed to be used and it is with the help of this new electronic equipment that the EMDS is associated.

When one considers that British Telecom charge £90 for each telephone evaluation and this is almost as much as a new television receiver, it is an interesting fact that the full EMDS system is expected to cost no more than £400 and that the EMDS is to be used as part of an international study jointly by N. M. Rothschild, the merchant bank, David Trundle, Goodwood, near Chichester, before mid August, when the number of meteors expected to be at a maximum.

The results will help to determine whether or not the Perseid meteors are occurring at random and whether a periodicity is present in the stream—questions of particular importance to the better understanding of comets and their movement.

New Quad electrostatic loudspeaker

For many years, whenever one read a review of a new loudspeaker, the chances were that it had been used in a/d comparisons was always the Quad ESL. Now comes another model that is also being advertised for its transparency and high fidelity, and it is expected to be at a maximum.

Patrick Wormald pointed out that a very light diaphragm could be made to reproduce the air particle motion to an imaginary plane some distance away which could represent the same image as if he were hearing that ideal source. The Quad ESL-63 achieves this by means of the relatively constant background light of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.

The EMDS responds to the transient streaks of light which characterise part of each meteor's path. The relatively constant background light from stars and planets is cancelled out automatically and an electronic tally is kept of the total number of meteors, together with the times at which they occur, to an accuracy of 10 microns (one hundredth of a second). All the hourly data collected is stored in the 'Lincoln Study' computer system and it is used in and with this that the new electronic detection system is associated.
Recharging dry batteries

With a flourish on trumpets Fidelity have announced their new portable radio, The Battery Saver, which runs on an ordinary PP9 or type battery or from the mains. When connected to the mains, an automatic battery charger operates and continues to do so even if the set is switched off. Fidelity claim that the battery will last four times as long as that the radio would almost pay for itself in the cost of batteries over a five-year period.

Recharging Lead-acid cells in a subject which has recurred many times; as long ago as 1953 World Wireless published an article by R. W. Hallowes on 'Reactivating the dry cell'. In 1955 we published a description by the same author of the Elektrorhoor reactivator. This used a half-wave rectifier with a resistor in parallel to provide 'dry' dc and proved to be very successful in recharging zinc in the cells. In a follow-up article in 1956, Mr Hallowes reported: "One's biggest surprise on opening the can of a cell which has been many times discharged and subsequently reactivated by the Elektrorhoor is to find as a rule no trace of lumpy or spogy deposits, but a hard, even, inner surface. The superimposed (on the dc recharging supply) not only produces this most desirable result, but speeds up the process of depolarisation and makes it more complete.

The Elektrorhoor was the invention of a Dutch engineer, Minstre Beer.

An Ever-Ready spokesman has told us that their PP9 batteries can be recharged as long as they are not discharged by more than 10 to 15% and as long as the charging current is very carefully controlled. Any overcharge would lead to the production of gas inside could lead to a build-up of 'component land'. At the same time they have found that if the charging current is kept below a very high internal resistance or open circuit value, the layers of the battery being forced apart can normally be used on the mains with occasional use at different locations when powered by the batteries. Early ready sources should be recharged.

The Fidelity Battery Saver portable radio set which incorporates a battery charger for the dry cell battery.

After the crash

When a mammoth corporation crashes a lot of the dependent companies are affected and in the case of Rank many offshoots, some of them older than the Rank corporation were involved.

We have heard that the Bush Radio brand name has been acquired by Interstate Electronics, who market radios, cassette players and electronic clock radios manufactured in the Far East. They have changed their company name to Bush Radio but will continue to market their existing product ranges under the Interior label.

Following the closure of Rank-Toshiba, their Plymouth factory for the production of of receivers is to be re-opened by Toshiba Consumer Products (UK) Ltd. The company is operated through Toshiba (UK) Ltd, the British-based marketing company of the Toshiba Corporation. The company has recruited its employees almost entirely from former Rank-Toshiba personnel.

Meanwhile one of the surviving branches, Rank Hi-Fi, have appointed a new research and development manager, Mr Ken Russell, who will be responsible for co-ordinating all research at Wharfedale, the loudspeaker manufacturers, and at Eico, the West German sister company.

Mr Russell will also be in charge of speaker development and new product co-ordination for the Rank Hi-Fi group.

Raising standards

For a quarter of a century leading recording, broadcasting and loudspeaker engineers have used the Quad electrostatic loudspeaker as a standard of reference. Its influence on the quality of reproduction which we have come to expect has been considerable.

The introduction of its successor, the Quad ESL-63 is an event of great significance, destined to set the standards for the future. It is no coincidence that the first customers for the Quad ESL-63 have been recording and broadcasting engineers and loudspeaker manufacturers.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, the high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

Inmos are ready to sell

Described recently in the Guardian as the world's biggest venture capital operation, Inmos have announced that they have appointed Rapid Recall and Hawke Cramer to distribute their products in the UK. At the same time they have launched the Inmos IMS1400 a 16K x 1 static RAM.

The IMS1400 has 455 access time and a maximum power dissipation of 160mW, which allows for high-density packing. It is the first commercially available product, claims Inmos, to incorporate redundancy, allowing the resynchronization of memory cells. Currently manufactured in the US, European production of the IMS1400 will commence in the large scale 'manufacturing facility' due to go into operation in Newport, Gwent in mid-1982.

Considering that £50 million of public money has been spent to set up Inmos, we wish it all success.

News in brief

Technomatic has opened a new retail shop at 305 Edgware Road, London W2 in the centre of 'component' land. At the same time they have become an official distributor for the Texas Instrument range of components.

End of public broadcasting now in sight? is the provocative title of the Royal Television Society Convention to be held in Cambridge, 17-20 September 1981. The Convention will examine the transformation of broadcasting which is already under way. The upheaval resulting from satellite transmission, cable distribution and home video is likely to have a profound effect on the course of broadcasting.

The convention will also consider the financing of broadcasting, the effect of the fourth channel and will take a look at the broadening of television access and relate this to the work of the new Community Commission. Details are available from the Royal Television Society, Tavistock House East, Tavistock Square, London WC1H 9JR.

Wimbledon Radio who supply loudspeakers and kits for loudspeaker design, have moved to new premises at 35/9 Church Street, Wimbledon, London SW19 1AS. Telephone: 081-529 2599.

One of their latest offerings is a range of Wadebridge kits, the ESL-70 and ESL-80. The kits are supplied with all panels accurately cut to size and the baffle boards have the necessary speaker apertures cut and rebated as required. All the available kits are on demonstration at the new location.

When a home computer becomes popular the people will not only be interested in writing but in enjoying music. The director of the Luddington Music Group states that the music industry must develop to a market for music.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

Ken Russell, newly appointed research and development manager of Rank Hi-Fi.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.

The Quad ESL-63 is a major advance in the art of high-fidelity recording. Its superiority is due to a combination of four principal factors: the use of a high-quality, large membrane loudspeaker, and the use of a high-quality, large membrane loudspeaker.
One is tempted to think of resistance as being a property of resistors, the latter being typified by lengths of wire of high resistivity, thin films of carbon or metal and suitable bodies of high activity material like carbon, permanganate or silicon. But resistance can be more generally defined either as "that element of a circuit which absorbs power" or as "that element of a circuit which is the seat of Johnson (thermal) noise in accordance with Nyquist's theorem". These two are in fact equivalent, because of the "modified-dissipation theorem" which says that everything which is capable of dissipating energy will exhibit the fluctuations which we call thermal noise.

Johnson noise

Looking first at the second criterion, the Johnson or thermal noise, which in material resistors is often described as the Brownian motion of electrons. This is particularly appropriate to receiving aerials. Starting with the work of Lorentz using classical physics and continuing with Bakker and Heller using quantum mechanics, it was possible to show that the application of established kinetic theory of gases to the conduction electrons in a metal leads to the well-known relations between mean-square noise voltage or current and resistance or conductance:

\[
\text{Voltage Noise} = 4kT/R \text{ with } R \geq 10 \Omega
\]

\[
\text{Current Noise} = 4kT \text{ at } R = 0
\]

Here \(k \) is Boltzmann's constant and \(T \) the temperature of the object or circuit. The resistance \(R \) is the presence of any number of degrees of freedom equal to the number of modes of motion which could be established in equilibrium. (This led to prediction of the "ultra-violet catastrophe" and to the introduction of quantum theory.) In due course Nyquist adopted the similar idea that the number of degrees of freedom of a transmission line was determined by the number of standing-wave modes which it would support, and matching the characteristics of the line to a resistive terminus or in the last resort by radiation.

Please send me ... [copy of] RADIO AND TELEVISION SERVICING 1980-81 Models at £17.50 per copy (post paid).

I enclose my cheque/PO for £... (made payable to Macdonald and Company Publishers Ltd.) or debit my...

Name []

Signature []

Please allow 28 days for delivery

Is radiation resistance real?

A real resistance produces thermal noise and absorbs power, but does radiation resistance? And why does it depend on the ratio of aerial size to wavelength?

by D. A. Bell, F.Inst.P., F.I.E.E.

SEMEL-ABACUS

Features:

- Z-80 4MHz CPU
- 64K Memory
- Two Serial Ports
- Two Parallel Ports
- System Can Support MP/M

AFGAN DT-400 Series BRITISH MAKE DUAL TRACE SCOPES

DT-410, 10 MHz

- CH1, CH2: 0.1 to 100MHz
- Trigger: Level, Slope
- Graticole: 50 Free-Hand
- Width: 4x

DT-415, 15MHz

- CH1, CH2: 0.1 to 150MHz
- Trigger: Level, Slope
- Graticole: 50 Free-Hand
- Width: 4x

PROBE (X-Y REFER-X10) £10.50

SEMEM AN ELECTRONICS LTD.

LONDON: 335 LONDON ROAD, SYDENHAM, LONDON, S.E.M. 9JW

DETAILED SPECIFICATIONS

W3049 - FOR FURTHER DETAILS

Theoretical details of Professor Bell appeared in the January issue, page 60.
Absorption of power

For the radiation resistance of a transmitting aerial one can use the alternative definition: that element of a circuit which absorbs power. It is then said that if \(R_{\text{t}} \) flows in an aerial of radiation resistance \(R_T \), radiant power \(P_R \), then \(P_R = R_T \cdot R_{\text{t}} \). There are then two methods of calculating \(R_T \), when the geometry of the aerial is known.

The first, the Poynting vector method, is to calculate the field and determine the power density at all points on a sphere surrounding the aerial, and so by integration of the power density over the surface of the sphere to find the total power radiated. This is a tedious, but radiation resistance is usually proportional to the square of k, where k is the length of aerial and wavelength: for a straight wire with \(k \cdot R_T = 20 \ln \rho \).

The second method is to calculate the in-phase e.m.f. which is induced in all parts of the aerial by its own current. In many practical cases this also involves mathematical complexity, but a circular loop can provide a simple example which gives some insight into the reason for \(R_T \) depending on the ratio of size of aerial to wavelength. In the figure a current, \(\sin 2\pi a t \), is supposed to circulate round the loop, having the same phase at all points. The magnetic field adjacent to \(dL \) but due to the current in \(dL \) will be delayed by \(\pi/2 \) rad, and so the two points and so will be slightly out of phase with one another. The current in \(dL \) is therefore a function of the ratio of the current in another loop, which is then given by the e.m.f. in \(dL \) due to the current in another loop.

Appendix 1: Nyquist's transmission line

Section 1 is a loss-free transmission line of finite length \(L \), open-circuited at its ends. This will support a standing wave of every wavelength such that \(L = n \pi / 2 \). It is therefore a function of the ratio of the current in another loop, which is then given by the e.m.f. in \(dL \) due to the current in another loop.

Method of calculating radiation resistance for small-circular loop

The e.m.f. induced in an element \(dL \) will be obtained from the magnetic vector potential \(A \) at that point according to

\[V = E = \int dl \cdot \mathbf{B} = \int_{-1}^{1} \mathbf{B} \cdot d\mathbf{l} \]

where a negative sign has been added on the left because the e.m.f. is opposed to the current.

This is the result of two travelling waves moving in opposite directions with velocity \(v \), and therefore carrying power \(KdV/L \) each. Now let the line be extended to an infinite length, but cut at the position of the observer and the right-hand part replaced by a resistance \(R_0 \) matched to the characteristic impedance \(Z_0 \) of the line. Because the termination is matched, conditions in the remaining half of the transmission line are unchanged. Therefore power \(KdV/L \) will flow along the transmission line in equal power must flow from \(R_0 \) into the line. As indicated in section (c) this can be represented by combining voltage \(E \) with current \(I \).

where the double integration along the loop appears as follows. First find the e.m.f. \(E \) in the line as a function of \(t \), and then integrate \(E \) around the circle to find the total effect for the whole of the current.

The rate of change of current in the current is the real part of equation \(A_2 \), but because of the initial \(\sin \) comes from the imaginary part of the integrand, replacing \(\sin \) by \(\cos \).

Now expand the cos as a series of powers of \(\sin \) and \(\cos \), and because division by \(\sin \) is \(t \) to make it constant and \(\cos \).

The cubic term is then the leading term and

This digital correlator, operating by the coincidence of pulses representing angles of rotation, gives the instantaneous cross-correlation between a selected and a measured angle and also its frequency of occurrence. It can be used for checking timing scatter in automobile ignition systems which is suitable for converting a continuous signal electronically scanned omnidirectional surveillance radar receiver into one with a variable scanning rate.

Engineers may wish to compare the performances of automobile ignition systems under laboratory and field conditions in order to select the best system. This might be done, for example, by applying a closed-loop control to engines to optimize performance and efficiency under various road and environmental conditions while minimizing exhaust emissions. Doubts have been expressed about the reliability and consistency of spark ignition at some specified angle of advance and it would seem reasonable to expect a spread in the ignition time, particularly when using the conventional mechanical ignition system. The elimination of spring-operated points contacts, with their inherent contact bounce, high erosion rate, variation of dwell time with speed and other characteristics of the cam-operated mechanical switch, including backlash, friction and wear, should reduce the probability of spread in the ignition time. A high degree of consistency in ignition time can therefore be expected from electronic ignition systems not using mechanically operated contacts.

Because of the statistical nature of the problem, a measure of the spark scatter about a modal value can be obtained by cross-correlating the firing angle with a selected angle (i.e. summing the product of their instantaneous values with time) to produce an angular frequency distribution. This could be defined in terms of the standard deviation, if a theoretical distribution can be determined from the measurements at a given speed. The system having the greatest frequency at the nominal, or modal, angle will have the smallest standard deviation. Two different test procedures (i.e. integrating the cross-correlator output over a range of angles about the modal value. By selecting the most suitable ignition system on this basis, the type of distribution associated with it could be determined, to give a suitable performance criterion.

Cross-correlation

The principle of the correlator used in this technique is as follows. Two independent inputs (f1 and f2) are applied to a coincidence circuit or AND gate, whose output X(t), a function of their product, is then summed over a time T. A continuous train of such outputs may be formally stated as

\[R_g(t) = \int_{-\infty}^{\infty} R_1(\tau) R_2(t-\tau) d\tau \]

where \(R_1 \) and \(R_2 \) are known and unknown inputs respectively. For the selected three-digit encoder output and a test pulse (e.g. an internal combustion engine spark ignition pulse at a preset or required angle of advance) the output \(R_1(t) \) or \(R_2(t) \) after summing (counting or integrating) over a finite time, equals the frequency of \(\phi \) when coincidence is perfect.

The process of cross-correlation is illustrated in the Appendix. By the output \(R_1(t) \) and \(R_2(t) \) are applied to a coincidence circuit or AND gate, whose output X(t), a function of their product, is then summed over a time T. A continuous train of such outputs may be formally stated as

\[R_g(t) = \int_{-\infty}^{\infty} R_1(\tau) R_2(t-\tau) d\tau \]

The digital correlator

In Fig. 1, a train of 360 equally-spaced pulses per engine revolution, independent of whether input X(t) is measured or not, is considered to be zero.
of speed, is applied to a 9-stage counter used as a comparator for a 9-bit binary word. Corresponding collectors of each comparator stage are simultaneously applied to all input of nine two-input NAND and NOR gates in parallel. The second inputs of these accept from an encoder one of nine bits defining the selected word or ignition angle. When the comparator input pulse corresponding to the required angle of advance produces simultaneous coincidence at each of the nine parallel two-input gates, each NOR gate output is inverted before enabling its parallel NAND gate output at a selected NAND stage.

Reference to the respective truth tables shown in Figs. 2 and 3. Waveform (h) in the output of the single three-input NAND gate used for inhibiting the comparator input of Fig. 2, and, when inverted, for gating the ignition trigger or plug gap-breakdown pulse in Fig. 1. Its trailing edge is locked to the encoder output, shifting to the left or right with the angular switch positions, and occurs at the instant the measured and selected angles are coincident. The leading edge occurs at that instant, as at the leading edge of (c) inverted.

Waveform (i) is a test pulse obtained by locating a light source and actuator, 1.85V across the 360th pulse in Fig. 1. Its edge is locked to the encoder output, shifting to the left or right with the angular switch positions, and occurs at the instant the measured and selected angles are coincident. The leading edge occurs at that instant, as at the leading edge of (c) inverted.

As the method of measurement depends on the accuracy of a pulse train the correlation between laboratory and field measurements should be good and independent of the speed at which the cable is wound after one revolution, selection will have been made for this in the correlator. The angular resolution is determined by the number of slots on an input chopping disc and is halved by using a zero crossing detector; for a 1° resolution, only 180 slots are required on the chopping disc.

To meet this requirement for constant speed, an electro-mechanical or velocimeter speed control system, in which speed of rotation is held closely proportional to an input voltage by feedback methods, was used with a conventional six-way distributor, 0.25-in.

As the viscous friction damping in the
speed control system of Fig. 4 may be negligible, its response will be highly oscillatory, which is definitely unacceptable for this application, so the damping must be artificially increased. Both smoothed and phase-advanced output control, together with proportional and integral control, has been considered. Analysis of the former gives a velocity error of approximately 3.5 r.p.m. using the constants of a modified Type 73 API184 velocity with control amplifier gain \(G = 60 \text{mAV} \). That is, with a constant input, an output shaft deflection exceeding 3.6 radians will overload the amplifier.

The velocity error or lag can be completely eliminated by the introduction of a term proportional to the integral of the error, in the step response equation. A circuit suitable for use with the two-lag system of Fig. 5, and providing a control amplifier integral proportional to the error and its integral, is given in Fig. 6. (The component values for this have been derived in an appendix which can be obtained by sending a large s.a.e. to Wireless World's editorial office.) In the steady state, the velocity error has been completely eliminated.

An obvious advantage of integral control is that input perturbations, or interference of duration short compared with this response time, will not affect the control system. In determining the step response, the inertia of the distributor and chopper disc were neglected and, provided the control amplifier gain \(G \) is sufficiently high, this should be of no consequence. It can be shown that the peak overload velocity overshoot is only 5 r.p.m.; with a constant input, an output deflection of 29° relative to the input will overload the control amplifier.

The ability of the velocynde speed control system of Fig. 4, with proportional and integral control, is assured by the rapid logarithmic decrement of the step-response, which has a value of 0.64, given by \(b = \sqrt{\text{1.4}} - 1 \), where the damping factor \(q \) is 0.2.

Alternative Gating

The parallel NOR and NAND circuits of Fig. 1, in each correlator channel, can be gated directly by the trigger pulse of the ignition system under test, thereby eliminating the encoder. By inhibiting the comparator input as before and decoding the 9-bit word stored in it, the angle of advance using either a visual or tape read-out will be known. However, an encoder provides the cross-correlator with a self-test capability without an ignition trigger pulse; it is thus able to synthesize a trigger pulse as well as measure it, which is not possible otherwise.

Comparison of Ignition Systems

Fig. 7 shows some results from using the cross-correlator technique to test and compare different ignition systems. At (a) are the results from an opto-electronic triggered capacitor-discharge system with variable spark duration; at (b) from a type E contact-operated c-d system; and at (c) from a transistor-assisted contact system. In the graphs the positions of the graph lines along the "angle of advance" are the delays show their spreads of ignition timing at 1° intervals of angle of advance at different engine speeds (in r.p.m.). Thus the bunches of lines can be regarded as spectra. The length of each graph line shows on the "frequency" scale, the frequency or number of occurrences in the test interval, of firing (spark plug gap-breakdown) at a particular firing angle.

The frequency spectrum of Fig. 7 (c) has an angular spread exceeding 10° at the highest speeds; the system (a) distributor with its light-chopper could reduce or eliminate these angular distributions. The bandwidth seems adequate with no reduction in modulator value with speed: the increased scatter with speed is due to distributor contact bounce and inerteria as well as spring inertia. The use of a 22kΩ suppressor resistor in system (b) could contribute to the increased scatter and low modulator values at the lower speeds because of a larger breakdown current.

In a four-cylinder engine, such high distributor speeds are as used for checking the correlator are unlikely, and for engine speeds up to 5000 r.p.m. the performance of system (c), a standard 12V inductive ignition system, is superior to that of system (b) which is more complex. If the current switch was optically rather than mechanically triggered to eliminate the point contacts, its performance should equal that of system (a), which is complex and impracticable. While the use of long or short pulses seem irrelevant here, their effect on engine performance is most important, a fast rise-time is essential, that is, adequate system bandwidth.

The linear speed characteristic of Fig. 7(a) for 100% correlation establishes the accuracy and reliability of the cross-correlator within its 1° resolution. It could be tested without a synthesised trigger pulse by enabling waveform (j) in Fig. 1, with a 5V supply and gating the nine respective comparator outputs at any selected angle within the encoder's range. However, an external pulse source checks the pulse amplifier and the correlator's stability or ability to respond to a test pulse at the set angle of advance and discriminate against spurious pulses over a realistic speed range. The results are confirmed by the uniform correlator angular output of Fig. 7(b) over a 9.1° spread range generated by the photo-epic distributor of system (a) even though the absolute angular values measured in coincidence with Fig. 7(a).

As the correlator's performance is independent of the prime mover, any discrepancy between laboratory and field measurements can only be due to prime mover velocity perturbations, caused by wear and backlash in the mechanical transmission from the engine to the distributor, together with the mechanical imperfections of the spring loaded point contacts, aggravated by the kinetic energy of the advance and retard mechanism.

A quick method of selecting an ignition system is to apply the voltage proportional to the ignition system spark gap breakdown current, i.e. the ignition scatter, to a two-input NAND gate enabled by the zero-crossing detector. The NAND gate output, after inversion, will consist of a train of discrete equally-spaced positive pulses at the gating repetition rate, having the same envelope as the scattered ignition input, i.e. a discrete spectral distribution of the ignition energy per revolution. By integrating this discrete spectrum to give a continuous distribution envelope or sampling and holding it with a box-car circuit to give a discontinuous distribution envelope with time, it may be applied to a c.r.o. triggered by the chopping disc reference pulse. It may then be photographed, for example after one minute, for comparison with other ignition system energy distributions. Unfortunately this method does not provide angular information or permit the measurement of the distributor spark-angle characteristic. However, the standard deviation by inspection of the distribution envelope will immediately indicate the best ignition system at one particular speed, repeating the comparison if necessary over the whole speed range. This kind of selection is an example of the "ensemble" method of averaging while that using a cross-correlator is one of "time" averaging. In system (a) the statistical processes are stationary since from Fig. 7(a) the frequencies at a given speed are the same.

Finally, although the correlator has been designed for selecting an ignition system by measuring the standard deviation of its angular distribution at a given speed, it would be a useful addition to a radar receiver for determining precisely the bearing of a return pulse. It would be particularly suitable for use in a within-pulse scanning system, with its fast modulation or zero-crossing frequency. By squaring the sinusoidal modulation waveform and dividing it electronically into equal parts, depending on the angular resolution required, the chopping-disc and velocity-control loop will be eliminated. Using a synchronized omnidirectional encoder with the same resolution, attention can be focused on a stationary return pulse from any known direction exceeding the threshold level. The encoder effectively converts the continuous electronically-scanned omnidirectional surveillance radar receiver into one with a variable scanning rate, since it could be switched sequentially manually or electronically in either direction at any frequency.

References

NEW PRODUCTS

"Fingernail" switches
These're 10 position binary coded decimal units, called fingernail switches rather than thumbwheel switches because of their small size, have wire-wrap pins and can be joined together to form a solid unit for mounting at the rear of a panel. Switching capacity of the Super Miniature series is 50mA at 25V d.c., (resistive load) with a continueous rating of between 100mA and 10mA. Contact resistance is 200mΩ maximum and insulation resistance at 250V d.c., 100MΩ. Temperatures range of the series is -20 to 80°C and applications include computers, automatic control and measurement equipment and any situation where a numeric value tends to be adjusted periodically but space is limited. Coincord Ltd, Eleanor Cross Rd, Wallingford, Hers, WW301

50MHz oscilloscopes
Growing demands for low-cost, general-purpose oscilloscopes have led Tektronix to design the general-purpose oscilloscopes have been adjusted for use in service departments, educational establishments and other similar situations and will be available through Electron. Tektronix Uk Ltd, Braverton House, PO Box 69, Henden, Hers, WW303

High-voltage probe
Availability of a probe with a built in meter for measuring up to 60kV d.c. has been announced by Sinclar Electronics Ltd. The LHJ-20A, from the Japanese company 6617 and 2215 at £79 both have 50MHz bandwidth, 2mV sensitivity and dual trace. Basic differences between the two are that the 2215 has a dual timebase and cathode bias, whereas the 2213 has a single timebase and uncalibrated decay. As switched-mode power supplies are incorporated, consumption is kept low and mains input variations from 90 to 250V and 48 to 52Hz can be accepted without adjustment. Both units have seven finding, automatic immunity and focus facilities and weight 6.3kg each. For sensitivity settings above 20mV/cm, the bandwidth is increased to 60MHz. These portable oscilloscopes are designed for use in service departments, educational establishments and other such centres and will be available through Electron. Tektronix Uk Ltd, Braverton House, PO Box 69, Henden, Hers, WW303

Low-power r.a.m.
Two 256 x 4-bit c.m.o.s. static r.a.m.s with 50W power consumption in standby mode are available from Rapid Recall. The IM65X53 has 22 pins and separate i/o data lines, whereas the IM65X61 has 18 pins and multiplexed data lines. Both types are t.r.l. compatible, have internal address registers and can be supplied with either 300ns or 220ns access times. A third option is available with 4.5 to 5.5V maximum operating range. These i.c.s can be supplied for various operating temperature ranges. Rapid Recall Ltd, Rapid House, Den­mark St, High Wycombe, Bucks HP1 2ER. WW303

Microprocessor trainer
Many people with a knowledge of logic goes find difficulties when they come to try to understand the microprocessor. Unilab, with their microprocessor trainer, hope to make the transition easier by providing a board which functions as a common microprocessor but using one-bit operation. Instruction words define the microprocessor concepts and how they can be illustrated using the board. The One Bit Microprocessor is divided into sections and 35 J. & L.industry Ltd. shows the broad states of lines between these sections and at the bottom the I.0 can be used for controlling simple demonstration models from programs entered as 256 x 4-bit r.a.m. each. Each unit costs around £60 with options like a 30MHz supply, Unilab Ltd, Clarendon Rd, Blokburn, Lancs BB1 9TA. WW304

Leader, has an analogue meter built into its handle which indicates readings in 25 steps with a maximum error of 3%. The LHJ-40A weighs 500g and costs £11 excluding v.a.t. Sinclar Electronics Ltd, London Rd, St Ives, Huntingdon, Cambs PEI7 4JH. WW304

V.h.f./h.f. converter
Conversion of 144/146MHz band signals down to the range 45.5/46.5MHz for use with h.f. band receivers is the function of Du­ting's DC144/28 converter. At minimum gain, 1dB, the video signal is 3.3mV and 30kHz to 30MHz is available. The third order input interce­ption is typically 40dB. Separate gain controls are provided for the 500 com­pensator input and output. The DC144/28 incorporates a high-level Schottky-diode balanced mixer, m.o.s.f.e.t. input, i.f.e.t. post­amplifier, and fifth-overtone crystal oscillator. 52039 (h.f.) type connectors are used at both input and output. An external d.c. supply of between 10 and 14V is required to power the unit via a jack socket. Two versions of the DC144/28 are available, one with i.p.s. and one with i.p.s. and v.h.f. output. 514MHz to 516MHz signals can be received on 2-metre band equipment. EME Ltd, King Street Lane, Farn­worth, Wokingham, Bersk. WW309

Frequency counter
An eight-digit 10Hz to 150MHz counter for measuring frequency. period and r.p.m. is available through Tektronix. Berkeley. The 1501 resistance frequency period input of the Kikusui 255 has 20% sensitivity and automatic limit control when measuring large signals. Gate times are 10, 1, 0.1 and 0.01s for frequency measurement and 60, 6, 0.6 and 0.06s in timebase mode for measuring up to 100,000 pulses. Periods from 10ms to 1s can be measured. The 10MHz time-base, a t.r.l. compatible output of which is available at the rear of the unit, is stable to within 2.1 x 10^-5/°s. A more stable version of the 255, the 256, is available with an error of 2.3 x 10^-7/°s. Frequency counter WW307

100MHz time-base, a t.r.l. compatible output of which is available at the rear of the unit, is stable to within ±3%. The IM65X61 has a dual timebase and uncalibrated decay. As switched-mode power supplies are incorporated, consumption is kept low and mains input variations from 90 to 250V and 48 to 52Hz can be accepted without adjustment. Both units have seven finding, automatic immunity and focus facilities and weight 6.3kg each. For sensitivity settings above 20mV/cm, the bandwidth is increased to 60MHz. These portable oscilloscopes are designed for use in service departments, educational establishments and other such centres and will be available through Electron. Tektronix Uk Ltd, Braverton House, PO Box 69, Henden, Hers, WW303

Error measurement system
Testing and performance evaluation of digital transmission and terminal equipment are the purposes of the 3781A/3782A error detector developed by Hewlett-Packard. The 3781A pattern generator and 3782A error detector provide a system for testing error susceptibility that can be used with four levels of digital hierarchy up to 50MHz. With the 3781A, errors can be injected individually at or 1 in 10^4 or 1 in 10^5 error rates into a range of predefined pseudo-random binary sequences and 16-bit word test patterns in a.m.i. or b.i.i.-I line codes. Both units are balanced and 1200 balanced pseudo-random outputs and t.r.l. compatible monitor outputs are provided. Binary and code errors detected by the 3782A can be displayed as error rates, error counts, error-second and second between errors over various gating periods. All four parameters are updated simultaneously over the same gating period. A printer output and real-time clock are included in the 3782A. Applications of the system are in research and development of error detection systems, and production testing with remote testing via an IEEE 488 bus is required. Hewlett-Pack­ard Co., Ltd, Ring Street Lane, Wim­nesh, Wokingham, Bersk. WW309

Electro-plating repair kit
Small-area breaks, wear and blemishes in plated surfaces can be repaired using a unit from Automatic Production. The three-piece unit is basically a variable voltage-regulated/current-limited power supply designed to provide power for two brush-driven probe types, one for cleaning the surface to be repaired and one for applying the plating solution. A third point probe provides the earth return from the surface. Various plating compounds are available for use with the unit, including gold, nickel, copper, aluminium, tin-lead and tin. Automated Production Equipment Corp, 142 Po主观 Ave., Medford, NY 11763, USA. WW307

Industrial controller
Smallest in a range of industrial microprocessor controllers from EME is the TIM 101 for use in timing and sequencing applications. Four debounced t.r.l. compatible inputs and seven outputs are provided. Of the seven outputs, five use relay changeover contacts for loads up to 3A and two are open collector outputs for up to 12A. Eight t.r.l. compatible inputs can be selected by programming to operate as either inputs or outputs. Pro­grammations for up to 8-way d.i. switches are available so that different parameters such as time periods, counts, limits and values can be controlled. The controller uses a 4802 microprocessor and can store programs of up to 2K. A single a.c. supply (either mains or low voltage) is required to power the unit via a jack socket. Two versions of the TIM 101 are available, one with i.p.s. and one with i.p.s. and v.h.f. output. The DC144/28 incorporates a high-level

Radio measurement equipment
SRS-069 (b.i.i.-I, a.m.i. and d.b.-3 line codes. Both 7Sn 9 to 14MHz are available at £265 plus VAT. Schottky-diode balanced mixer, m.o.s.f.e.t. input, i.f.e.t. post­amplifier, and fifth-overtone crystal oscillator. 52039 (h.f.) type connectors are used at both input and output. An external d.c. supply of between 10 and 14V is required to power the unit via a jack socket. Two versions of the DC144/28 are available, one with i.p.s. and one with i.p.s. and v.h.f. output. 514MHz to 516MHz signals can be received on 2-metre band equipment. EME Ltd, King Street Lane, Farn­worth, Wokingham, Bersk. WW309
How's that again?

To inform a wide general public about the superordinate relationships of new technologies. It is, a matter of showing trends and tendencies, of creating transparency and of promoting understanding for a life with controlled electronics by means of relevant information. (Institut 81 press handout).

I think it means, Mr. Fowler; it's all about telling Joe Public that electronics is wonderful. There's this big Swiss electronics exhibition in Basel where the purpose, aside from a "mediator function between manufacturer and user" (selling gene), is to "eliminate the fear of excessive mental demands, to help him throw a bridge to (at) the new technologies."

Simple, really.

It's all going to be like that, though, I'm not going. I think one of the younger end should be sent — they have no fear of excessive mental demands.

Yaipecc Yopld

Near enough, anyway. That is, in case you thought the printer was losing his touch, is what you ask for when you go to a bookstall in Russia to pick up the latest Wireless World. It isn't a translation, just a transliteration (Graziela Oswald). What happened is that the Russians buy a few copies from us, copy and reprint them with the above, and sell them out. I don't know how many they print, but it must be quite a lot, or it wouldn't be worthwhile doing at all. It loses a bit in the process — the drawings are all right, but the pictures come out looking a bit wan. And it's all in black and white, so that Paul Briley's colour photos on the cover suffer sorely.

What puzzles me is why we don't receive a few more contributions from the U.S.S.R. They're pretty bright people over there — brighter than most in many ways, and I can only remember two contributors in the last decade or so. It would be good to hear a bit more about what goes on in their electronics — they can't spend all their time orienteering, although they do seem extraordinarily keen on, judging by their magazine Radio.

Long-felt want

It began to look as though I'd have to acquire a computer of some sort, even if it's only to guard against abuse from the younger element here. Three of them have got them now and their conversation has taken a turn towards the grossly guilty-ready: it is not easy to maintain my front of omniscience when all around people are chatting amably about dairy wheats, acne, apples and various other intelligent vegetables.

I still have to solve the problem of what I'm going to do with it when I've got it, but that isn't the vital thing. What is important is that I must put on a bit of a spat to catch up with the language, at least. It's moving so fast now: one hardly dares speak in case one is unwittingly guilty of a serious knock telecom. If Shakespeare were writing today, he wouldn't dare make any mistakes.

Thoughts like that, of course. It is as in case it was taken as an excuse to jump to the next scene. It's even got to the stage now, when people say they mention the world program, they all think I'm talking about Radio 4, not being able to credit that I've heard about computers yet.

Still, having got myself a computer, it will have to work for its living. On the whole, I really think I'd like to use it as a word-processor — I can probably live without all the staff of the prime numbers up to several million, and I know the state of my bank account because the manager keeps writing him little notes to tell me. No, I think a word-processor might well be a great help: the typewriter I use makes too many mistakes and I get so fed up of correcting them that sometimes I don't bother and they get printed. When I do scribble all over the typescript the printers can't read my writing anyway, so mistakes are all right.

All this, so I'm told, will not be a problem with a word-processor. All you do is type stuff in, press a few buttons, and it all leaps into position, mistakes corrected, documents reordered on demand and the right-hand edge straight as a die. Another keystroke and the printer fires it all off at some favourable speed, ready for sending off to the printers. Yes, I think that's for me. It might even do the index every year, so you'll be able to have it before the end of the preceding year.

Breaker breaking

In it has already. There I was, driving peacefully along between Sutton and Cheam, when a disembodied voice rudely told me to stop. It was Frederika von Stade, who had been singing a Canteloube song from the Auvergne, to announce that if any breaker so desired, he was ready to hold converse with them. I think that's what it said, at any rate. I can't claim absolute certainty on this point, because the request was couched in such an unsavoury combination of South London whine and Texas drawl that it might have been anything.

I wasn't able to hear the replies (I suppose he was breaking into the front end because of his proximity) and, in any case, I was trying to listen to Mass F. von S. singing her television commercial, but he must have conveyed a reply from somewhere who was similarly baffled by the double talk, since the reference was all to do with this old creep in front of him who was driving too slowly. The impudence of the fellow was in the next moment all the more nudging speed at which I feel safe — nearly 25 m.p.h., in fact, to be exact.

It wasn't the reflection on the verve and dash of my driving that hurt, though, nor the slighting reference to my noble vehicle by anyone who was at this point I realised that the c.b. was a great help: the typewriter I use makes too many mistakes and I get so fed up of correcting them that sometimes I don't bother and they get printed. When I do scribble all over the typescript the printers can't read my writing anyway, so mistakes are all right.

All this, so I'm told, will not be a problem with a word-processor. All you do is type stuff in, press a few buttons, and it all leaps into position, mistakes corrected, documents reordered on demand and the right-hand edge straight as a die. Another keystroke and the printer fires it all off at some favourable speed, ready for sending off to the printers. Yes, I think that's for me. It might even do the index every year, so you'll be able to have it before the end of the preceding year.

Little boxes

People keep telling me that the audio boom is coming, and the way it must be if the experts say so, but I haven't seen much indication of it myself. The magazines which concern themselves with audio are still with us and I haven't noticed any diminution in the number of impressive-looking boxes with knobs on shop windows.

But if the experts are right and the boxes are falling to the size of a thimble, I can't say I'm surprised. The public can be taken for a ride by anyone with enough money for ever. For ever. For ever.

There is no doubt that some technology is on the point of being able to grasp the 'latest' of anything, and when it is introduced on us that the row of L.E.D. on the new cassette deck is so much better than the meters on the old one that the expenditure of a wad of fivers is an nothing compared to the enhanced quality of music we can now enjoy, we fall for it — for a time, at any rate.

Comes the time, though, when a chap begins to wonder. How can it be, they'll muse, that the new amplifier doesn't sound any different to the old one, even though it costs twice as much and has a pair of meters? Meters? If the thing sounds as though it's overloading, you turn the wick down, and if it doesn't, you don't. Who needs meters?

The truth is, that manufacturers have exploited the public's weakness for gimmicks for years, and if the time has come to cool it, they ought not to flinch. Maybe they could start on video machines next — there's a fortune to be made there.

People keep telling me that the audio boom is coming, and the way it must be if the experts say so, but I haven't seen much indication of it myself. The magazines which concern themselves with audio are still with us and I haven't noticed any diminution in the number of impressive-looking boxes with knobs on shop windows.

But if the experts are right and the boxes are falling to the size of a thimble, I can't say I'm surprised. The public can be taken for a ride by anyone with enough money for ever. For ever. For ever.

There is no doubt that some technology is on the point of being able to grasp the 'latest' of anything, and when it is introduced on us that the row of L.E.D. on the new cassette deck is so much better than the meters on the old one that the expenditure of a wad of fivers is an nothing compared to the enhanced quality of music we can now enjoy, we fall for it — for a time, at any rate.

Comes the time, though, when a chap begins to wonder. How can it be, they'll muse, that the new amplifier doesn't sound any different to the old one, even though it costs twice as much and has a pair of meters? Meters? If the thing sounds as though it's overloading, you turn the wick down, and if it doesn't, you don't. Who needs meters?

The truth is, that manufacturers have exploited the public's weakness for gimmicks for years, and if the time has come to cool it, they ought not to flinch. Maybe they could start on video machines next — there's a fortune to be made there.

People keep telling me that the audio boom is coming, and the way it must be if the experts say so, but I haven't seen much indication of it myself. The magazines which concern themselves with audio are still with us and I haven't noticed any diminution in the number of impressive-looking boxes with knobs on shop windows.

But if the experts are right and the boxes are falling to the size of a thimble, I can't say I'm surprised. The public can be taken for a ride by anyone with enough money for ever. For ever. For ever.

There is no doubt that some technology is on the point of being able to grasp the 'latest' of anything, and when it is introduced on us that the row of L.E.D. on the new cassette deck is so much better than the meters on the old one that the expenditure of a wad of fivers is an nothing compared to the enhanced quality of music we can now enjoy, we fall for it — for a time, at any rate.

Comes the time, though, when a chap begins to wonder. How can it be, they'll muse, that the new amplifier doesn't sound any different to the old one, even though it costs twice as much and has a pair of meters? Meters? If the thing sounds as though it's overloading, you turn the wick down, and if it doesn't, you don't. Who needs meters?

The truth is, that manufacturers have exploited the public's weakness for gimmicks for years, and if the time has come to cool it, they ought not to flinch. Maybe they could start on video machines next — there's a fortune to be made there.
20 POWER AMPS 19 FUNCTIONAL MODULES DAWNO A NEW ERA

Which amplifier?
I.L.P. Amplifiers now come in three basic types, each of which is available with or without heat-sink. Having decided the system you want — home hi-fi (modules HY20, HY6, or HY20K for example), super-quality hi-fi with extra versatility (MO5120, MO5200 or Disco/PA/Guitar HY120, HD200 or HD400) you will then decide whether amplifiers housed within their own heat-sinks or plate amplifiers for bolting to a metal chassis will suit. With choice such as this and a brilliant new range of I.L.P. functional modules to choose from you have the chance to build the finest audio system ever offered to the constructor.

The Heavy Duty range can easily be adapted for bolting to a metal chassis, or for use as a power amplifier in a music case, size 45 x 200 x 80mm. HY120P, HY60P, HY400P, HD400P, HY120, HY60, HD400 are all selected retailers.

The following amplifiers for example, super-quality hi-fi with extra versatility (MO5120, MO5200 or Disco/PA/Guitar HY120, HD200 or HD400) you will then decide whether amplifiers housed within their own heat-sinks or plate amplifiers for bolting to a metal chassis will suit. With choice such as this and a brilliant new range of I.L.P. functional modules to choose from you have the chance to build the finest audio system ever offered to the constructor.

Which modules?
In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list — see how these modules will combine to almost any audio project you fancy — and remember all I.L.P. modules are compatible with each other, so that when you have the chance to build the finest audio system ever offered to the constructor.

For easy mounting we recommend M.B. Mounting board for mobile HY — HY137b + 42x, V.A.T. for mounting board HY — HY117b + 89x + 3p, V.A.T.

All I.L.P. modules include full connection data.

By each module in the price list shown on the opposite page. All the above modules operate from a 18V mains supply ± 30% maximum — higher voltages being accommodated by use of dropper resistors. HY17 can be used with the supplied 50mA supply unit.

All L.P. Products are of British Design and Manufacture.
NEW BRED for the 80's

Range of Monolithic Ceramic Capacitors

Full range of NPO and XTR dielectrics in 3 body sizes td = 1.6"

Very robust construction

Short rectangular rigid leads with monocrystal free shoulder

No flux trap

Try the "New Breed"

contact Vitramon Limited for further information

Vitramon

WW - 615 FOR FURTHER DETAILS

TEST INSTRUMENTS

THANDAR

- Digital Multimeters LED:
 - PDM25: £34.50
 - PDM30: £34.50
 - PDM35: £34.95
 - PDM40: £35.50
 - PDM50: £41.95
 - PDM60: £49.95
 - PDM70: £64.95

- Oscilloscopes (100kV / 200MHz):
 - PDM100: £39.95
 - PDM200: £49.95
 - PDM300: £59.95
 - PDM400: £69.95
 - PDM500: £79.95

- Power Supplies:
 - PDM100: £39.95
 - PDM200: £49.95
 - PDM300: £59.95
 - PDM400: £69.95
 - PDM500: £79.95

- Mains Adaptors:
 - PDM25: £24.95
 - PDM30: £24.95
 - PDM35: £34.95
 - PDM40: £35.50
 - PDM50: £41.95
 - PDM60: £49.95

- Universal Test Leads:
 - PDM200: £49.95
 - PDM300: £59.95
 - PDM400: £69.95
 - PDM500: £79.95

- Microscopes (Optical):
 - PDM25: £39.95
 - PDM30: £39.95
 - PDM35: £59.95
 - PDM40: £59.95
 - PDM50: £79.95

- Microscopes (Advanced):
 - PDM25: £59.95
 - PDM30: £59.95
 - PDM35: £79.95
 - PDM40: £79.95
 - PDM50: £99.95

- Microscopes (Industrial):
 - PDM25: £79.95
 - PDM30: £79.95
 - PDM35: £99.95
 - PDM40: £99.95
 - PDM50: £119.95

SAFAGN SCOPES

- DT-410: £95
 - DT-412: £75
 - DT-415: £65

- Probe: X1-REF-X10) £11.50

- F.P. £5.00 for parcel service £5.50 (+ VAT)

- Catalogue available Now

MUFFIN FANS

- 3" x 31/4" £1.95
- 4" x 31/4" £2.25
- 6" x 31/4" £2.95
- 8" x 4" £3.45

DAROM SUPPLIES

- Opal: Monday to Friday 9 a.m. - 5.30 p.m.
- 4 SANDY LANE, STOCKTON HEATH, WARRINGTON WA4 6AY. CHESTER. Telephone: 0477 247745

QUARTZ CRYSTALS

- Mod & CAA approved

- Quartz crystals made to your specification

- Fast delivery

- Mod & CAA approved

- AEL CRYSTALS LTD

- 170 Goldhawk Rd., London W12

- Tel. 01-743 8299 or 01-743 3534

- Open Monday to Friday 9 a.m. - 5.30 p.m.

- www.americanradiohistory.com

- (+15%)

- VAT
50+ CASES FOR SPECIALISTS
referred by JENSEN

JTK 17
Available in 12 different case modifications:
- Specialty suited for maintenance of electronic, communications, radar, computers and
- metric tools.
- 57 metric tools.
- VOM Test Meter optional.
- A complete case suitable for construction, lamp, grain covering and metric tools.
- Metric conversion kit available.

JTK 16
Designed for the professional electronics technician requiring a complete set of metric tools.
- 50 professional tools.
- VOM Test meter optional.
- Also available with metric tools
- JTK 15mm kit.

Please see the entire range of over 300 empty cases together with more than 300 other complete specialist tool kits and a complete range of over 250 empty cases in the JENSEN catalogue now available on request.

Special Products Distributors Limited
81 Piccadilly, London W1V OHL
Tel: 01-629 9558
Cables: Specialdex, London, W.1

WWW - 099 FOR FURTHER DETAILS

THE W.W. DISK OFFER
RE-OPENS AT LAST

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon

Circle the enquiry number for data

Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE
(Staff £132, P and P £22, VAT £20.22)

Please make cheques and P.O.s payable to W.W. Disk Offer and send to:

W.W. DISK OFFER
19 Milford Hill
Batford
Herts

Please call 0582-429122 to check on availability before ordering

Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non-U.K. orders send SAE for quotation

WWW - 099 FOR FURTHER DETAILS

50+ CASES FOR SPECIALISTS
referred by JENSEN

JTK 17
Available in 12 different case modifications:
- Specialty suited for maintenance of electronic, communications, radar, computers and
- metric tools.
- 57 metric tools.
- VOM Test Meter optional.
- A complete case suitable for construction, lamp, grain covering and metric tools.
- Metric conversion kit available.

JTK 16
Designed for the professional electronics technician requiring a complete set of metric tools.
- 50 professional tools.
- VOM Test meter optional.
- Also available with metric tools
- JTK 15mm kit.

Please see the entire range of over 300 empty cases together with more than 300 other complete specialist tool kits and a complete range of over 250 empty cases in the JENSEN catalogue now available on request.

Special Products Distributors Limited
81 Piccadilly, London W1V OHL
Tel: 01-629 9558
Cables: Specialdex, London, W.1

WWW - 099 FOR FURTHER DETAILS

THE W.W. DISK OFFER
RE-OPENS AT LAST

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon

Circle the enquiry number for data

Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE
(Staff £132, P and P £22, VAT £20.22)

Please make cheques and P.O.s payable to W.W. Disk Offer and send to:

W.W. DISK OFFER
19 Milford Hill
Batford
Herts

Please call 0582-429122 to check on availability before ordering

Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non-U.K. orders send SAE for quotation

WWW - 099 FOR FURTHER DETAILS

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big improvement in sound quality from your tape recorder. A full catalogue is available, price £50, which features a wide range of heads for cassette and reel to reel machines, as well as replacement motors, tape transports, etc.

Universal cassette heads for the standard hole centres 17mm apart, 12mm from head face:

B2500: Mono-recording head £4.62
B2501: Stereo playback £4.62
B2502: Stereo £7.66
B2504: Stereo for Dolby systems £4.95
C2508/20: Stereo/mono send head, suitable for chrome and metal tapes £10.47
C2508/24: Stereo/mono chrome/ferrite, the ultimate long life, high performance head £12.34
C2508/18: Stereo high gap for long life head for record monitors £9.40
C2582: Mono/Stereo erase head £2.13
C2583: Four rhythm heads £15.15
C2584: Twin hall track erase £5.43

Ex stock deliveries, all prices include VAT and packing £45.45

WWW - 099 FOR FURTHER DETAILS

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big improvement in sound quality from your tape recorder. A full catalogue is available, price £50, which features a wide range of heads for cassette and reel to reel machines, as well as replacement motors, tape transports, etc.

Universal cassette heads for the standard hole centres 17mm apart, 12mm from head face:

B2500: Mono-recording head £4.62
B2501: Stereo playback £4.62
B2502: Stereo £7.66
B2504: Stereo for Dolby systems £4.95
C2508/20: Stereo/mono send head, suitable for chrome and metal tapes £10.47
C2508/24: Stereo/mono chrome/ferrite, the ultimate long life, high performance head £12.34
C2508/18: Stereo high gap for long life head for record monitors £9.40
C2582: Mono/Stereo erase head £2.13
C2583: Four rhythm heads £15.15
C2584: Twin hall track erase £5.43

Ex stock deliveries, all prices include VAT and packing £45.45

WWW - 099 FOR FURTHER DETAILS

WWW - 099 FOR FURTHER DETAILS

WWW - 099 FOR FURTHER DETAILS

WWW - 099 FOR FURTHER DETAILS
De-mystifying the micro with...

Practical Computing

Other features in the August issue include:
- Review of the Tandy Model III and Sharp PC-8201 business systems.
- Evaluation of Micromodeller - a business modelling package similar to VISICALC.
- How a solicitor in Weymouth is using a microcomputer in his practice.
- Education - which comes first - hardware or software?

Guidelines for those in schools who are getting to grips with microcomputers.

All this, together with our regular advice columns for users of PET, Apple, Tandy, Sinclair ZX80/81 micros and the Acorn Atom too.

PLUS the official guide to the 1981 Microcomputer Show being held at Wembley from July 50-August 1. All for only 80p from your newsagent or post this coupon now.

Out July 15

WIRELESS WORLD AUGUST 1981

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

£7.50

Audio comparator - Ferranti (May 1978) (100 items) (damaged).
£5.00

Frequency generator - Smaller (May 1978) £5.00 (damaged).
£5.00

Audio comparator - Ferranti (June 1978) £5.00.
£5.00

Two digit counter - May 1978 £5.00.
£5.00

Frequency generator - Smaller (May 1978) £5.00.
£5.00

Audio comparator - Ferranti (June 1978) £5.00.
£5.00

Monostable - July 1978 £5.00.
£5.00

Varicap - July 1978 £5.00.
£5.00

Two digit counter - August 1978 £5.00.
£5.00

Frequency generator - Smaller (July 1978) £5.00.
£5.00

Audio comparator - Ferranti (July 1978) £5.00.
£5.00

Monostable - August 1978 £5.00.
£5.00

Varicap - August 1978 £5.00.
£5.00

Two digit counter - September 1978 £5.00.
£5.00

Frequency generator - Smaller (September 1978) £5.00.
£5.00

Audio comparator - Ferranti (September 1978) £5.00.
£5.00

Monostable - October 1978 £5.00.
£5.00

Varicap - October 1978 £5.00.
£5.00

Two digit counter - November 1978 £5.00.
£5.00

Frequency generator - Smaller (November 1978) £5.00.
£5.00

Audio comparator - Ferranti (December 1978) £5.00.
£5.00

Monostable - December 1978 £5.00.
£5.00

Varicap - December 1978 £5.00.
£5.00

Two digit counter - January 1979 £5.00.
£5.00

Frequency generator - Smaller (January 1979) £5.00.
£5.00

Audio comparator - Ferranti (January 1979) £5.00.
£5.00

Monostable - February 1979 £5.00.
£5.00

Varicap - February 1979 £5.00.
£5.00

Two digit counter - February 1979 £5.00.
£5.00

Frequency generator - Smaller (February 1979) £5.00.
£5.00

Audio comparator - Ferranti (February 1979) £5.00.
£5.00

Monostable - March 1979 £5.00.
£5.00

Varicap - March 1979 £5.00.
£5.00

Two digit counter - March 1979 £5.00.
£5.00

Frequency generator - Smaller (March 1979) £5.00.
£5.00

Audio comparator - Ferranti (March 1979) £5.00.
£5.00

Monostable - April 1979 £5.00.
£5.00

Varicap - April 1979 £5.00.
£5.00

Two digit counter - April 1979 £5.00.
£5.00

Frequency generator - Smaller (April 1979) £5.00.
£5.00

Audio comparator - Ferranti (April 1979) £5.00.
£5.00

Monostable - May 1979 £5.00.
£5.00

Varicap - May 1979 £5.00.
£5.00

Two digit counter - May 1979 £5.00.
£5.00

Frequency generator - Smaller (May 1979) £5.00.
£5.00

Audio comparator - Ferranti (May 1979) £5.00.
£5.00

Monostable - June 1979 £5.00.
£5.00

Varicap - June 1979 £5.00.
£5.00

Two digit counter - June 1979 £5.00.
£5.00

Frequency generator - Smaller (June 1979) £5.00.
£5.00

Audio comparator - Ferranti (June 1979) £5.00.
£5.00

Monostable - July 1979 £5.00.
£5.00

Varicap - July 1979 £5.00.
£5.00

Two digit counter - July 1979 £5.00.
£5.00

Frequency generator - Smaller (July 1979) £5.00.
£5.00

Audio comparator - Ferranti (July 1979) £5.00.
£5.00

Monostable - August 1979 £5.00.
£5.00

Varicap - August 1979 £5.00.
£5.00

Two digit counter - August 1979 £5.00.
£5.00

Frequency generator - Smaller (August 1979) £5.00.
£5.00

Audio comparator - Ferranti (August 1979) £5.00.
£5.00

Monostable - September 1979 £5.00.
£5.00

Varicap - September 1979 £5.00.
£5.00

Two digit counter - September 1979 £5.00.
£5.00

Frequency generator - Smaller (September 1979) £5.00.
£5.00

Audio comparator - Ferranti (September 1979) £5.00.
£5.00

Monostable - October 1979 £5.00.
£5.00

Varicap - October 1979 £5.00.
£5.00

Two digit counter - October 1979 £5.00.
£5.00

Frequency generator - Smaller (October 1979) £5.00.
£5.00

Audio comparator - Ferranti (October 1979) £5.00.
£5.00

Monostable - November 1979 £5.00.
£5.00

Varicap - November 1979 £5.00.
£5.00

Two digit counter - November 1979 £5.00.
£5.00

Frequency generator - Smaller (November 1979) £5.00.
£5.00

Audio comparator - Ferranti (November 1979) £5.00.
£5.00

Monostable - December 1979 £5.00.
£5.00

Varicap - December 1979 £5.00.
£5.00

Two digit counter - December 1979 £5.00.
£5.00

Frequency generator - Smaller (December 1979) £5.00.
HASBROOK TRADING
Postal Address: P.O. Box 818, CLEMENT CENTRAL, SINGAPORE 911.

Lowest Prices - Prompt Delivery - Quality Products

LINEAR ICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA 159</td>
<td>TBA 159</td>
<td>£0.58</td>
</tr>
<tr>
<td>TBA 127</td>
<td>TBA 127</td>
<td>£0.67</td>
</tr>
<tr>
<td>TBA 355</td>
<td>TBA 355</td>
<td>£0.67</td>
</tr>
<tr>
<td>TBA 226</td>
<td>TBA 226</td>
<td>£0.63</td>
</tr>
<tr>
<td>TBA 371</td>
<td>TBA 371</td>
<td>£0.60</td>
</tr>
<tr>
<td>TBA 260</td>
<td>TBA 260</td>
<td>£0.60</td>
</tr>
<tr>
<td>TBA 150</td>
<td>TBA 150</td>
<td>£0.50</td>
</tr>
<tr>
<td>TBA 140</td>
<td>TBA 140</td>
<td>£0.60</td>
</tr>
<tr>
<td>TBA 540</td>
<td>TBA 540</td>
<td>£0.60</td>
</tr>
<tr>
<td>TBA 380</td>
<td>TBA 380</td>
<td>£0.60</td>
</tr>
<tr>
<td>TBA 750</td>
<td>TBA 750</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.56</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.48</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.47</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.41</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.42</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.45</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.48</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.50</td>
</tr>
<tr>
<td>SN 74 LS 6N</td>
<td>SN 74 LS 6N</td>
<td>£0.52</td>
</tr>
</tbody>
</table>

ORDERING

Microchip

Ordering is now on a new computer system with more than 4500 parts including 1000 transistors and 1000 diodes. For details write or phone.

FOR SIMPLE VOLTAGE REGULATION, USE A SERIES RESISTOR TO LIMIT CURRENT.

MICRO TIMES
19 Mill Street, Bideford, North Devon, EX39 2JR
Telephone Bideford (023-72) 79790 Dept. WW1

WIRELESS WORLD AUGUST 1981

EDC
RADIOMICROPHONES
DESIGNED & BUILT BY PROFESSIONALS

METALFILM RESISTORS
1% Tolerance, 1/4 Watt

ONLY 3p EACH

Maximum 10 per order.

ONION SCIENTIFIC PRODUCTS LTD.
4 Golden Sq., London W1

TV TUBE REBUILDING
Faircrest Engineering Ltd. manufacture a comprehensive range of equipments for processing all types of picture tubes, colour and monochrome. Standard or custom built units for established or new businesses. We export world-wide and have an excellent service backed by a strong technical team.

Full training courses are individually tailored to customers' requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CR0 2XX
01-684 1422/01-684 0246

A PROFESSIONAL TOOLCASE FOR UNDER £40

Designed for the professional Electronics, T.V. or Instrument Technician who needs to carry a large number of specialist tools.

The 1L99 sets a standard as a low cost alternative to the more expensive cases.

It offers strength with a practical use of space and many other features.

KITS FOR BEGINNERS

AROUND THE MICROCHIP INTEREST IN THE YOUNGSTERS STARTER KITS

Production Testing

Development

Servicing

Power Units

Now available with 3 Outputs

Type 250VRU/30/25

OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

ULTRASONIC FLY INSECT KILLER

Light Activated Electronic Wheel of Fortune

Electronic Kit Boxed kit with instructions. For educational purposes. Not suitable for adults.

£6.50

Tools NOT included. British made.

Money back guarantee: Allow 7-14 days for delivery.
WHO'S LOOKING....

FOR

STRONG, INEXPENSIVE

MULTI-PURPOSE

BOXES

WITH THAT LITTLE TOUCH OF

AESTHETIC SOPHISTICATION

YOU ARE?

WELL SLIDE OPEN A

TUBOX

AND EXPERIENCE REAL

TOUGH ELEGANCE

* Anodised aluminium, "U" section base
 extrusion providing long term rigidity
* Contrasting, black PVC covered, single
 piece slide-out covers
* 75mm wide x 40mm deep in 6 lengths
 ranging from 70mm to 220mm
* 4 screw fixing enabling rapid access
 So if you’re into
Hand Held Instruments
Walkie Talkies
or
In-Field Test Gear
You should look into a

TUBOX

Our prices won't make your eyes water
Zaerix Electronics Limited
46 Westbourne Grove, London W2 5SF, England
Tel: 01-221 3642 Telex: 261306

WIRELESS WORLD AUGUST 1981

PM COMPONENTS LTD. VALVE & COMPONENTS SPECIALISTS
DEPT. A, CONINGSBY HOUSE, WROTHAM RD, MEOPHAM, KENT DA13 0HN
PHONE 0474 813225. TELEX 965666 WEST ST G

SEMI CONDUCTORS

G3250

INTEGRATED CIRCUITS

NEW BRAND ICE VALVES

ZEN EQ DIODES

BASES

DIODES

RESISTORS

WIREWOUND CAPACITORS

LINE OUTPUT TRANSFORMERS

WIREWOUND TRANSFORMERS

SMD RESISTORS

WIND ON RESISTORS

SMD CAPACITORS

SMD COMPONENTS

PM COMPONENTS LTD. VALVE & COMPONENTS SPECIALISTS
DEPT. A, CONINGSBY HOUSE, WROTHAM RD, MEOPHAM, KENT DA13 0HN
PHONE 0474 813225. TELEX 965666 WEST ST G

101

WIRELESS WORLD AUGUST 1981

WWW.americanradiohistory.com
TRANSCENDENT 2000 - a single-board synthesiser

Complete Kit £168.50

The kit includes fully finished metalwork, fully assembled desk top cabinet, four piece brass over the whole range of different voices, fully finished metalwork and woodwork of which is designed for side-by-side operation, housing an electronic circuit for the electronic circuit for the ensemble circuitry and the use of very high quality components. Assembling the electronic circuit for the ensemble circuitry is an easy and straightforward process.

TRANSCENDENT POLYSYNTH - an expandable synthesiser

Complete Kit £220

The kit is designed to take advantage of the flexibility of the electronic circuit for the ensemble circuitry and the use of very high quality components, making it possible to play a wide range of different voices simultaneously. This is achieved by using a combination of the electronic circuit for the ensemble circuitry and the use of very high quality components, resulting in minimal wiring and construction delightfully straightforward.

K40 ADVANCED ACCESSORIES FROM STRUTT LTD

SHURE MICROPHONES £26.99

TRADE INQUIRIES WELCOME

K40 ADVANCED ACCESSORIES FROM STRUTT LTD

SHURE MICROPHONES £26.99

TRADE INQUIRIES WELCOME

If you are looking for amplification, take advantage of the same super quality Crimson mods that the BBC, MX, HP and numerous recording studios have been using for years! Our expertise in this field of electronic design is internationally renowned, our reputation is based on quality, reliability and excellent service and where it comes to technology, our modules feature fully processed analogues and discrete components. Our circuits are designed to give the best possible sound quality. Our reputation is based on the use of high quality components and our commitment to producing reliable and high quality products.

PORTWAY INDUSTRIAL EST. ANDOVER, HANTS, SP10 3MM

DE LUXE LINSLEY HODG 76W STEREO AMPLIFIER

Complete Kit £85

The design of this kit is unique in its approach to the problem of constructing a high power stereo amplifier. It is based on the classic design of the amplifier, which has been refined and updated over the years to give a high power, low distortion and low noise performance. The kit includes a 76W stereo amplifier with RSS, which is a high quality design.

POWERTRAN WORLDWIDE DISTRIBUTORS IN ELECTRONIC KITS

DE LUXE LINSLEY HODG 76W STEREO AMPLIFIER

Complete Kit £85

The design of this kit is unique in its approach to the problem of constructing a high power stereo amplifier. It is based on the classic design of the amplifier, which has been refined and updated over the years to give a high power, low distortion and low noise performance. The kit includes a 76W stereo amplifier with RSS, which is a high quality design.

NEW KITS!

1024 COMPOSER Complete Kit £98.50

The 1024 Compressor is a high-quality, low-cost synthesizer that is designed to be used with a wide range of musical instruments. It is a simple to use, powerful and flexible tool that can be used to create a wide range of musical effects and sounds.

DJO DISCO SYSTEM - READ ALL ABOUT IT

DJO DISCO SYSTEM - READ ALL ABOUT IT

This is a fully assembled, prewired, pretested and ready-to-play synthesizer. It is a simple to use, powerful and flexible tool that can be used to create a wide range of musical effects and sounds.

TRANSCENDENT DPX MULTI VOICE SYNTHESIZER Complete Kit £299

The kit includes fully finished metalwork, fully assembled desk top, four piece brass over the whole range of different voices, fully finished metalwork and woodwork of which is designed for side-by-side operation, housing a perfect circuit for the ensemble circuitry and the use of very high quality components, making it possible to play a wide range of different voices simultaneously. This is achieved by using a combination of the electronic circuit for the ensemble circuitry and the use of very high quality components, resulting in minimal wiring and construction delightfully straightforward.
SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY

LOTS INCLUDE:

Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neon, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares, and two Ford Transit vans. Over 900 lots. Catalogues available

TO BE HELD ON WEDNESDAY, 12th AUGUST, 1981

ON THE PREMISES OF

B. BAMBER ELECTRONICS

5 STATION ROAD

LITTLEPORT

CAMBS. CB6 1OE

TEL: ELY (0353) 860185

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,

Oakfield House, Perrymount Road,

Haywards Heath, Sussex RH16 3DH,

England

Do not affix Postage Stamps if posted to

GT Britain, Channel Islands, N Ireland or the Isle of Man

Enquiry Service for Professional Readers

Wireless World Reader Enquiry Service
429 Brighton Road

South Croydon

Surrey CR2 9PS

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the price provided.

Name

Address

Telephone Number

Nature of Company/ Business

No. of employees at this establishment

I wish to subscribe to Wireless World

[]

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the price provided.

Name

Address

Telephone Number

Nature of Company/ Business

No. of employees at this establishment

I wish to subscribe to Wireless World

[]

Cut Here

Valid for Six Months Only

Cut Here

Cut Here

Cut Here
SCOPEX 14D-10V Vital for Video

BEFORE

AFTER!

PUT A SMILE BACK ON YOUR OLD AVOMETER!

Send it now for estimate, repair or recalibration

Quick turn round on estimates/repairs

Large stocks of new AVOMETERS

Avo Sales and Service

Farnell International
Farnell International Instruments Ltd., Sandbeck Way, Wetherby, West Yorkshire LS22 4DH
Tel 0937 63541, Telex 557294 Fairst G

The 14D-10V is a dual trace 10MHz oscilloscope with active TV sync separator and line selector specifically designed for the servicing and alignment of video cassette and disc recorders, colour television and video games.

- Active TV sync separator.
- 10 cm x 8 cm display.
- Add and invert facility.
- Probe compensation.
- Line selector.
- 2mV sensitivity on both channels.
- Push button X-Y.
- Complete with probes.

At a price of £350 00+VAT. Carriage paid UK mainland.

Enquiries for further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD Reader Enquiry Service 429 Brighton Road South Croydon Surrey CR2 9PS

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

WIRELESS WORLD Subscription Order Form Wireless World, August 1981 WW 16d

<table>
<thead>
<tr>
<th>Wireless World</th>
<th>Subscription Order Form</th>
<th>Wire* Wireless World, August 1981 WW 16d</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK subscription rates</td>
<td>USA & Canada subscription rates</td>
<td></td>
</tr>
<tr>
<td>1 year: £11.00</td>
<td>1 year: £33.90</td>
<td></td>
</tr>
<tr>
<td>Overseas</td>
<td>1 year: £13.00</td>
<td></td>
</tr>
</tbody>
</table>

Please enter my subscription to Wireless World for 1 year

I enclose remittance value made payable to IPC BUSINESS PRESS Ltd.

Name
Address

Valid for six months only

Cut here

We only accept cheques made payable to IPC BUSINESS PRESS Ltd.
FARNELL A15: 210-240V IP. Dual Op. 12-17v per rail at 100mA. Remote sensing (current limit protection). 1164 x 130 x 88mm mm,Sold by: £12.
FARNELL 735C: 120-240V IP. Adjustable current. Remote sensing (a > 95x). Two versions available: 10V at 2A or 3A, £15 ea.
AUGMENT Oa: NEW. Operators 30V DC. 200/240V IP. Dual Op. 12-15v at 110mA (98 x 8 x 45mm), £12 or £2 for 2.
BRANDENBURG Photomultiplier P5U. 19in rack mount.
Material: Glass, current limit protection.
374,37A 300V-1kV at 5mA.
374,376 500V-1kV at 10mA.
376,360 500V-1kV at 10mA.
MOGUL 374,37A reversible polarity op. All others have negative polarity op. All models £40. Some photo multiplier tubes available.
COUTANT EMUS: 105-220/220-105V. Four separate ops. 5V at 3A stabilised with current limit, overvoltage protection and remote cut off. £12 to 1-15V at 50mA stabilised. 12V or 24V unbalanced. (12x 28 x 25mm), £30.
ELECTRIC CAPACITORS. Very large stock capacity. Mostly ITT EN1212 EN123 types.
Over 2 million now in stock, mostly ITT. Many high-voltage types, e.g.
250kV 1.1 V, 2x2V 1x2V 10V 2V.
Please send for our ceramic capacitor lists.

YE PAPER CLEAR CASS - WELWYN STRAIN GAUGE. (Precision Micro-Mea-
urements Ltd.) Type: M9-090048-3R. 100/200/300/500/1000 mV full scale. £13. List price £15. Large quantities available.

REED CONTACTS 15 TURN Ceram Trimpot 1500uA, £0.30, 1 turn. By Beckman & B.

SEND TO A CONVERTERS
15MHz, 88

By Micro Consultants Ltd. COG cable drive op. Linearity 0.2%, max. 0.12% typ. Settling time: 2 sec 70V/s typ. 2 sec 100V/s typ. Part Types: Phase stab 0.5 typ. types rated 802 and MC208/288. Un-used ex-stock.

SPECIAL OFFER PRICE: £20

TRANSFORMERS
5-9V 4000mA £1.25
5-9V 600mA £1.25
6-0V 250mA £1.25
9-9V 3A £1.25
11-12V 250mA £1.25
12-13V 600mA £1.25
12-13V 250mA £1.25
0-12-0-12 600mA £1.25
15-15V 1amps £1.25
24-22-60mA £1.25
24-22 1amps £1.25
24-V 25mA £1.25
28-22 1amps £1.25
32-25-2513 1amps £1.25
0-24-6-10A £1.25
RESISTORS: Over 2 million in stock at last count.
CARBON FILM 1% E12 $1.00
2% £170, 5k £100, 10k £500
METAL FILM RESISTORS: Values in £4 range, 1/2W, 5W, 0.15W, 0.5W, 1W, 2W, 2.5W, 5W, 10W. Value tolerance available.

FILTERS: LF 100K-100K 3-200W. A selection of mains droppers and killed metal, etc.

SWITCHES

5V at 14A. £10.

5V at 14A. £10.
The Tektronix 2200 Series. So advanced they cost you less.

Tektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths we ourselves have laid down.

With the 2213 priced at £617 and the 2215 at £785, these oscilloscopes are an entirely new form of machine. They are the result of a new approach to the design of oscilloscopes, an approach which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have made the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability. Board construction has been greatly simplified and the number of boards reduced - one only in the 2213. Board connectors have also been reduced substantially and cabling cut by an amazing 90%.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no line-voltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, 48–62Hz, switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering system, beam finder - and much more.

You just cannot buy more advanced oscilloscopes for less money. Send in the reply card now for full details of the Tektronix 2200 Series.

Please send me details of the 2213 □ 2215 □

Name ____________________________

Position _________________________

Company _________________________

Address ___________________________

Telephone _________________________

Publicity Dept.,
Tektronix UK Limited, PO Box 69,
Coldharbour Lane, Harpenden,
Herts AL5 4UP.
Tel: Harpenden 63141

Regional Tel Numbers: Harpenden 63141, Maidenhead 73211,

WW-476 FOR FURTHER DETAILS
Senior Engineer/Engineers

Have you considered helping to control the technical quality of Independent Broadcasting? We take great pride in the fact that our System is one of the best in the world, and so it is important to place the highest possible emphasis on maintaining the quality of the service.

We are looking for staff to work in our Quality Control Section of our Network Operations and Maintenance Department. Within the two units which form this section we have the following vacancies.

Technical Facilities Unit (Ref. WW10186)

This Unit operates comprehensive technical facilities for use by all the Divisions of the Authority within the IBAs Winchester and London Headquarters and at many external locations. We are looking for staff who have the experience of working in technical operations to the ultimate standards associated with UK Television and Radio broadcasters, and who know the systems philosophies, as well as the design minutiae, of equipment as diverse as television cameras, stereo sound disks, vision mixers and audio video recorders, etc.

You must be used to "GB Life" - self-sufficiency in ad-hoc arrangements yet producing as professional an output as with permanent facilities at base. If you have at least five years' (for the Senior Engineer post) and 18 months' (for the Engineer post) operational experience in radio and television, you are qualified to the equivalent of HNC level in Electrical/Electronic Engineering and want to work in a team where Quality is the keyword, we would like to hear from you.

Quality Control Unit (Ref. WW10186)

This Unit helps to monitor and control the technical quality of Independent Television and Radio services. We are looking, therefore, for staff who want a challenge - a challenge of dealing with television cameras, film, audio and video recording, transmitters and acoustics, to mention but a few of the topics.

If you have at least three years' operational experience in radio and television broadcasting, are qualified to the equivalent of HNC level in Electrical/Electronic Engineering and, above all, want to help maintain a thoroughly professional broadcasting standard - we would like to hear from you.

All posts involve working away from base and outside normal office hours. A current driving licence is essential.

The commencing salary depending upon qualifications and experience will be on a range which rises to £8,000 per annum for the Engineer posts. Salaries are currently under review. Generous relocation expenses will be paid where applicable.

For further information please telephone TONY OWERS.

Would previous applicants please reconfirm their interest.

PERSONNEL & ELECTRONICS LTD.

Triumph House, 1096 Usbridge Road, HAYES, Middlesex UB4 8GH
Tel: 01-573 8323. Telex: 942471

URGENTLY REQUIRED TRANSMITTER ENGINEERS

SHORT WAVE, MEDIUM WAVE LOW & HIGH POWER

We have several vacancies for U.K. based installation engineers for overseas projects in AFRICA and the FAR EAST with periods at manufacturing plants in the U.S.A.

For more details please contact TONY OWERS.

DOLBY LABORATORIES INC.

Dolby Laboratories has achieved a worldwide reputation for the high quality of their professional audio noise reduction equipment which is used in the recording, broadcast and film industries. The high quality is maintained by extensive testing and precise alignment using the best proprietary and in-house designed equipment.

We require a graduate engineer with appropriate supervisory experience to take charge of the Test department. Responsibilities, in addition to direct supervision, include co-ordination with the Sales Department. Salary will be negotiable, and experience, to £9,603 per annum for the Engineer posts. Salaries are currently under review. Generous relocation expenses will be paid where applicable.

Please apply in writing, giving details of qualifications and experience, to—

TELEMOTIVE LTD.

We are a leading firm of PATENT AGENTS in practical practice in London and have a vacancy for a British assistant to be trained as a Patent Agent. The ideal applicant will be a graduate in engineering (eg. physics, electronics, mechanical) with a wide interest in electronics and have a particular interest in electronics, and preferably an academic background. We offer the opportunity of training and career advancement. Please contact: Mike Gernat quoting reference: '05.48-150 H•>!h Sl. 1212'.

**AS A LEADING FIRM OF PATENT AGENTS in practical practice in London and have a vacancy for a British assistant to be trained as a Patent Agent. The ideal applicant will be a graduate in engineering (eg. physics, electronics, mechanical) with a wide interest in electronics and have a particular interest in electronics, and preferably an academic background. We offer the opportunity of training and career advancement. Please contact: Mike Gernat quoting reference: '05.48-150 H•>!h Sl. 1212'.
Instrumentation Engineer

Taylor Woodrow Research Laboratories, based in Southall, Middlesex, carry out a wide variety of civil and electronic engineering test work which requires instrumentation in various forms.

To strengthen our capabilities in this field we are setting up an Instrumentation Group to be responsible for this activity within the Laboratory, and we are seeking an experienced Engineer to head up the Group, which will undertake the following:

- Design and construction of instrumentation for materials and structural component testing under a variety of extreme regimes.
- Development of innovative measurement techniques to be used, for example, in surveying structures for signs of deterioration.
- Development of systems for data monitoring and analysis using microprocessors, data loggers, oscilloscopes, video equipment, etc.
- Providing advice to research groups on the design and procurement of instrumentation for on-site testing.

Suitable applicants are likely to be in their thirties, have a degree in Physics or relevant Engineering discipline, considerable electronics experience and a proven record of success in the instrumentation field.

For more information and an application form, please contact:

The Personnel Manager (Ref RDB), Taylor Woodrow Construction Limited, 345 Ruislip Road, Southall, Middlesex.
Tel: 01-575 48626

ELECTRONICS SPECIALIST - POLICE OPERATIONAL EQUIPMENT

Chelmsford-based

This is an opportunity to join the Home Office Police Scientific Development Branch in Chelmsford, Essex, which is responsible for the day-to-day running of the Police Operational Support Unit.

The work involves identifying, selecting and making items of electronic, optical, acoustic and electrochemical equipment to support police operations, and assisting in the development and implementation of new equipment, maintaining sophisticated equipment at maximum accuracy and automatically recording its use; liaising with senior police officers and advising on the capabilities of new technology to improve efficiency. A considerable qualification in engineering, applied physics or other relevant subject; a ONC, HNC or equivalent training in an appropriate subject.

Applicants should write to the Personnel Manager, Technical Specialist, Police Operational Support Unit, Essex (HMSO office hours). Working hours are 14:00-01:00, Monday to Saturday, with opportunities to work overtime.

For more information and an application form, please contact:

The Personnel Manager (Ref RDB), Taylor Woodrow Construction Limited, 345 Ruislip Road, Southall, Middlesex.
Tel: 01-575 48626

Home Office

A & B OPPORTUNITIES, Senior level vacancies for Communications Technicians within B.E.A., specialising in either air traffic control or engineering; also in radio broadcasting. Inquiries to Universal Engineers Consultants Ltd, 19 Hawley Square, London, W.1. Tel. 01-434 5182.

WE ARE YOU GOOD BUT GREEDY?

In an age of mass education and a general lowering of standards in the marketplace, it is not uncommon to come across a directory in which one is mentioned as a key supplier in a wide range of fields, from telephone systems to manufacturing processes. Brevity is desirable in such circumstances, and one may well wonder whether the Directory's editorial policy is aimed more at padding the company's sales literature than at promoting genuine excellence.

One of the latest directories to fall foul of this criticism is the **Instruments and Science** directory, which is intended to provide a comprehensive guide to the world of electronic instrumentation. The directory is divided into two sections: **Instruments and Science** and **Instruments and Technology**. The former section covers a wide range of topics, including electronics, computer science, and telecommunications. The latter section is devoted to technology, and includes topics such as manufacturing processes, materials science, and environmental engineering.

The directory's editors have taken great care to ensure that it is up to date and accurate. The directory is published annually, and each issue contains a detailed index of the topics covered. This makes it easy to find specific information on any topic of interest. In addition, the directory includes a comprehensive list of suppliers, which makes it easy to find the best products available in any given field.

One of the key features of the directory is its emphasis on quality. The editors have worked hard to ensure that only the best companies are included in the directory. This is evident in the high level of detail that is provided for each company, including contact information, product descriptions, and prices.

Overall, the **Instruments and Science** directory is a valuable resource for anyone interested in the world of electronic instrumentation. It is an excellent example of how a well-edited directory can provide a comprehensive guide to the latest developments in any field.
We, a progressive Broadcast TV facilities company, require an experienced and qualified Electronics Engineer to take responsibility for the maintenance and development of our electronic equipment and CMX computer system.

This is a senior role within the company and the salary and conditions will reflect the level of the person required.

Suitable applicants ring: R. Knibbs on 01-722 9265

TRANSVIDEO LIMITED
ST. JOHN'S WOOD STUDIOS, ST. JOHN'S WOOD TERRACE
LONDON NW8

We urgently require a Logic Engineer with experience in this field to join a team of graduates and technicians responsible for the overall management of electronic equipment used to monitor and treat patients. The person appointed will be expected to participate in the routine p.m. and servicing of a wide range of instruments. There will also be scope for some design and installation work.

Applications are invited from those who possess a Degree or equivalent qualification and have an interest in this type of work, and also wish to assist in developing an association with the Allied Health Services. Appointees will be in the grade LL.R.2 and the company will consider candidates in the V.H.C. range (circa £6180-£7150) per annum.

We are offering an attractive remuneration package which currently ranges from circa £6633-£7700 per annum depending upon qualifications, experience and pattern of work. Our comprehensive benefits package includes: Full Pension Scheme, free Life Assurance, car parking facilities, subsidised canteen and bar.

Applications in strict confidence to:
Mr. R. E. Wallis
TECHNOLOGY CENTRE
39-41 WINCHESTER STREET
LONDON NW8 7EH

VIEWS

Marconi Instruments Limited, Feaslop, St. Albans, Herts (AL4 0DB). Telephone: St. Albans 85292

A GEC-Marconi Electronic Company

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced communications test equipment and A.T.E. To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well.

If you would like to develop your potential in the exciting future of Europe's leading test equipment specialist, complete the coupon and send it to us at the address below:

Return this coupon to John Procter, Marconi Instruments Limited, Feaslop, St. Albans, Hertfordshire, AL4 0DB. Telephone: St. Albans 85292

Name ____________________________ Date ____________ Age ____________

Address ____________________________

Telephone/Work/Home (if convenient) ____________________________

Years of experience: ____________ Pay: ____________

Present salary: ____________ Over 60,000: ____________

Qualifications: None CBG HNC Degree:

Present Job: ____________

NORTHERN REGIONAL HEALTH AUTHORITY
ELECTRONICS TECHNICAL ASSISTANT

Required for Regional Engineer's Division, based at Walthamstow, Newbury Park, London. The appointment will be at Technical Assistant Grade 1. Salary £6633-£7704 per annum.

The post offers interesting and varied work with excellent opportunities for development in both design and practical work. Knowledge of all aspects of electronic engineering and a good basic education in this subject is essential. Applicants must be capable of working on their own and as part of a team.

The Regional Engineer's Division provides a wide range of television, audio-visual and data processing services to the National Health Authority, Berfield Road, Newbattle Community Hospital, Scotland.

Applications from suitably qualified and experienced people are invited.

Contact either Dr. J. W. A. James, ext. 2278 or Miss A. Newell, ext. 2275.

NORTHERN REGIONAL HEALTH AUTHORITY

A Mersey Regional Health Authority

Oldchurch Hospital
Romford, Essex RM7 0BE

Electronic Technician
Salary scale, Medical Physics Technician III, commencing £2,760 (or at 23 years or over £3,832) rising to £4,277 per annum including London Weighting.

Electronic Technician to work in the new District Services Department of the increasingly complex technically orientated Oldchurch Hospital. Applicants should hold a Certificate in Electronic Engineering or equivalent and have 3 years' appropriate experience.

Salary £6633-£7700 (or at 23 years or over £6,832) rising to £7,277 per annum.

Minimum qualifications: ONC or equivalent, for at least 3 years' experience with modern electronic equipment.

Closing date for completed application forms is 10th August, 1981.

Logic and Television ENGINEERS

We urgently require a Logic Engineer with practical experience of fault-finding on microprocessors and T.V. monitors.

Interesting and varied work in the Leisure industry. Good salary – negotiable. Prefer 25 or over. Prospects for the right person in this leading company which is a subsidiary of Trusthouse Forte.

This is not a field service appointment. Candidates must therefore live within a reasonable travelling distance.

Apply in writing and strict confidence to: J. C. Pringle, Exe. Managing Director LONDON COIN MACHINES LTD. 22-24 Bromells Road, London SW4 OBO

We offer an attractive remuneration package which currently ranges from circa £8,500-£13,000 per annum depending upon qualifications, experience and pattern of work. Our comprehensive benefits package include:

- Full Pension Scheme
- Free Life Assurance
- Car parking facilities
- Subsidised canteen
- Bar

Applications in strict confidence to:
Mr. R. E. Wallis

TECHNOLOGY CENTRE
39-41 WINCHESTER STREET
LONDON NW8 7EH

VIEWS

EXETER HEALTH CARE DISTRICT
BASIC GRADE ELECTRONICS ENGINEER/PHYSICIST

to join a team of graduates and technicians responsible for the overall management of electronic equipment used to monitor and treat patients. The person appointed will be expected to participate in the routine p.m. and servicing of a wide range of instruments. There will also be scope for some design and installation work.

Applications are invited from those who possess a Degree or equivalent qualification and have an interest in this type of work and also wish to assist in developing an association with the Allied Health Services. Added to the benefits of living in a very pleasant area with excellent sailing facilities, etc.

Starting salary £5,346-£5,958 p.a. according to qualifications and experience.

Contact either Dr. J. James, ext. 2278 or Mr. J. Burgess, ext. 2248 for further details.

Application form and job description from Personnel Department, Royal Devon and Exeter Hospital (Wonford), Exeter Road, Exeter. Tel: 77621, ext. 2188.

Marconi Instruments Limited

A GEC-Marconi Electronic Company

Exeter Hospital

Basic Grade

Electronics Engineer/Physicist

We are offering an attractive remuneration package which currently ranges from circa £8,500-£13,000 per annum depending upon qualifications, experience and pattern of work. Our comprehensive benefits package include:

- Full Pension Scheme
- Free Life Assurance
- Car parking facilities
- Subsidised canteen
- Bar

Applications in strict confidence to:
Mr. R. E. Wallis

TECHNOLOGY CENTRE
39-41 WINCHESTER STREET
LONDON NW8 7EH

VIEWS

EXETER HEALTH CARE DISTRICT
BASIC GRADE ELECTRONICS ENGINEER/PHYSICIST

to join a team of graduates and technicians responsible for the overall management of electronic equipment used to monitor and treat patients. The person appointed will be expected to participate in the routine p.m. and servicing of a wide range of instruments. There will also be scope for some design and installation work.

Applications are invited from those who possess a Degree or equivalent qualification and have an interest in this type of work and also wish to assist in developing an association with the Allied Health Services. Added to the benefits of living in a very pleasant area with excellent sailing facilities, etc.

Starting salary £5,346-£5,958 p.a. according to qualifications and experience.

Contact either Dr. J. James, ext. 2278 or Mr. J. Burgess, ext. 2248 for further details.

Application form and job description from Personnel Department, Royal Devon and Exeter Hospital (Wonford), Exeter Road, Exeter. Tel: 77621, ext. 2188.

Marconi Instruments Limited

A GEC-Marconi Electronic Company

Exeter Hospital

Basic Grade

Electronics Engineer/Physicist

We are offering an attractive remuneration package which currently ranges from circa £8,500-£13,000 per annum depending upon qualifications, experience and pattern of work. Our comprehensive benefits package include:

- Full Pension Scheme
- Free Life Assurance
- Car parking facilities
- Subsidised canteen
- Bar

Applications in strict confidence to:
Mr. R. E. Wallis

TECHNOLOGY CENTRE
39-41 WINCHESTER STREET
LONDON NW8 7EH

VIEWS

EXETER HEALTH CARE DISTRICT
BASIC GRADE ELECTRONICS ENGINEER/PHYSICIST

To join a team of graduates and technicians responsible for the overall management of electronic equipment used to monitor and treat patients. The person appointed will be expected to participate in the routine p.m. and servicing of a wide range of instruments. There will also be scope for some design and installation work.

Applications are invited from those who possess a Degree or equivalent qualification and have an interest in this type of work and also wish to assist in developing an association with the Allied Health Services. Added to the benefits of living in a very pleasant area with excellent sailing facilities, etc.

Starting salary £5,346-£5,958 p.a. according to qualifications and experience.

Contact either Dr. J. James, ext. 2278 or Mr. J. Burgess, ext. 2248 for further details.

Application form and job description from Personnel Department, Royal Devon and Exeter Hospital (Wonford), Exeter Road, Exeter. Tel: 77621, ext. 2188.
Telecommunications Engineer - Offshore

ARABIAN GULF

BP wishes to recruit an experienced Telecommunications Engineer on an overseas short service agreement - minimum 3 years - for service with Abu Dhabi Marine Operating Company based offshore. The successful candidate’s main duties will be the direction and control of the installation, maintenance and operation of telecommunications equipment in offshore areas. This includes MF radio beacons, HF, SSB networks, automatic dialing radio telephones, VHF and UHF aircraft stations, VHF ship stations, multi-channel microwave circuits with associated microwave equipment, mobile VHF radios, small telephone exchanges and telephone distribution etc.

Please write giving details of age, qualifications and experience, and quoting reference Z1E1 to: Mrs. J.S. Bartholomew, Central Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London ECY 6BU.

WIRELESS WORLD AUGUST 1981

always ahead with the best!
£5,000-£15,000

Where does your skill and interest lie?
- Our posts are drawn from all sectors of the telecommunications industry.
- You are one of our new recruits.
- Your first call count - Contact Mike GERNAT on 076 384 6767 (usually until 8 p.m.)

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED

(42) 190 High St, Barnaby, Rayston, Herts SG8 0EG.

RESEARCH SCIENTISTS

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

INTERACTION OF MICROWAVES WITH THE HUMAN BODY

Applications are invited for a research post concerned with innovative electromechanical design work on microwave antennas and devices for inducing hyperthermia and monitoring tissue temperature. This research is sponsored by the Medical Research Council and will be carried out in collaboration with the MRC United Kingdom Research Unit, Hambermith Hospital where the clinical applications of microwaves to cancer treatment is being investigated.

This is a Period Appointment with a duration of three years.

Applications should be made to Professor Research Scientist/Higher Research Scientist level according to qualifications and experience.

QUALIFICATIONS: Applicants must hold a good honours degree in physics, mathematics or engineering and have the ability to carry out experimental and engineering design work in microwaves.

SALARIES: Higher Research Scientist (minimum of 2 years' postgraduate experience) £6,075-£7,999. Senior Research Scientist (minimum of 4 years' postgraduate experience) £7,544-£9,619.

Accommodation for a single person may be available in a Hall of Residence and there is a possibility of housing for a married candidate.

Application forms and further information may be obtained from the Civilian Personnel Office, Royal Military College of Science, Shrivenham, Swindon, Wiltshire SN6 8LA.
Telephone: 0793-782551 Ext. 421. Please quote reference HQ 120/1/1122.
CLOSING DATE FOR APPLICATION 31st March 1982.

RESEARCH MACHINES LIMITED

MANUFACTURE - PCB MANUFACTURING & ASSEMBLY

MILL STREET, OXFORD OX2 0BW, TELEPHONE: 0865-879791

PCB MACHINERY AND ASSEMBLY

P.C.B. machinery, layout, production, inspection, testing and assembly. Equipment available.

FREE OFFER for details of a free introductory offer to our sub-contract PCB assembly service.

CIRCLECO FIRST EPIC SOFTWARE SERVICES LTD.

152, LONDON W21 BB

P.C.B. MANUFACTURE AND ASSEMBLY

CIRCLECO FIRST EPIC SOFTWARE SERVICES LTD.

152, LONDON W21 BB

ENSCO ELECTRONIC Printed circuit board manufacturers. Low volume assemblies and trial model specialists.

Bruce Grieve, Industrial Estates, Tel: Wiston (0629) 4094

ELECTRONIC DESIGN SERVICES MICROPROCESSOR HARDWARE SOFTWARE DESIGN SERVICE SPECIALISED DESIGN SERVICES IN P.C.B. MANUFACTURING AND ASSEMBLY. OVER 10 YEARS EXPERIENCE IN HARDWARE, SOFTWARE, DESIGN AND MANUFACTURING SERVICES. PHONE AND WIRELESS COMPETENCE. UNRESTRICTED MANUFACTURING PRODUCTION.

PO Box 14, Southwold, Suffolk.

PUBLIC SECTOR WORK, SPECIALISED DESIGN SERVICES IN P.C.B. MANUFACTURING AND ASSEMBLY. OVER 10 YEARS EXPERIENCE IN HARDWARE, SOFTWARE, DESIGN AND MANUFACTURING SERVICES. PHONE AND WIRELESS COMPETENCE. UNRESTRICTED MANUFACTURING PRODUCTION.

PO Box 14, Southwold, Suffolk.
FIELD SERVICE ENGINEERS £13,000+ National Experience in minicomputers/parallel boards. Ref: MS/194

VIDEO ENGINEERS/TECHNICIANS £6,500-£7,000 N.W. London/Middlesex Practical experience in video/broadcasting/TV/video equipment. Ref: LE209

CALIBRATION/REPAIR TECHNICIANS £10,000+ W. Germany Experience in cover Measurements/Calibration/Testing. Ref: LE947

TEST/COMMISSIONING ENGINEERS £12,000+ W. Midlands Specializing in Testing of Digital or Logic Circuits. Ref: LR944

Ländsdowne Appointments Registrar

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS & BULK BUYERS ONLY

Large quantities of Radio, TV and Electronic Components.

RESISTORS CARRIERS & C/F 1/2, 1/4, 1/2 Watt. From 1 ohm to 10 meg.

TERMINAL WIREWOUND 1/2, 2, 3, 4, 5, 10, 14, 25 Watt.

CAPACITORS Silver mica, Polystylene, Polyester, Disc Ceramics. Measurement: CRO, etc.

Convergence Pots, Slider Pots, Electrolytic condensers. Can Types, Axil, Radial etc.

Transformers, chokes, haptos, turnres, cables, screened wires, connecting wires, screened cables, etc.

All at Knockout prices. Come and give us a visit. Telephone 445 2713, 445 2714.

BROADFIELDS & MACayo DISPOSALS

2 Lodge Lane, H. Finchley, London, N. 12, 3 mins. from Turnley Fr. Crus.

1981

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

The PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. M.man. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2 R.A.

Phone 432-9379

TELEX 104278 MODBOOKS RN

NEW SUPPLIES COMPONENTS, B.V.

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

19-21 PRAED STREET LONDON W2

Phone 432-9379

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

THE PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. Mcman. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

19-21 PRAED STREET LONDON W2

Phone 432-9379

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

THE PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. Mcman. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

19-21 PRAED STREET LONDON W2

Phone 432-9379

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

THE PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. Mcman. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

19-21 PRAED STREET LONDON W2

Phone 432-9379

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

THE PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. Mcman. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

19-21 PRAED STREET LONDON W2

Phone 432-9379

THE ART OF ELECTRONICS

by Horowitz & Hill

Price £13.50

THE PPL Electronic Design Cookbook, by R. Kline. Price £15.25

The Machinist Cookbook, by C. Mcman. Price £9.75

Digital ICs...How They Work and How to Use Them, by W. Barlow. Price £8.50

Electronic Design Techniques: The Shelf Integrated Circuit, by E. Dwyer. Price £8.25

SOLID STATE ELECTRONICS PROJECTS, by A. W. Butler. Price £5.50

A COMPLETE ENCYCLOPEDIA OF ELECTRONIC HANDBOOK, by A. R. J. Price £8.00

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialists in Scientific Books

19-21 PRAED STREET LONDON W2

Phone 432-9379

WEATHERFORD, Auburn, Ala.

& MANUFACTURERS OF WAVEGUIDE, COAXIEN, DIODES, TRANSISTORS, IC'S, ETHER 8-12V.C.

AP DIP JUMPERS LOWEST PRICE IN THE UK.
NEW AP LOW-PROFILE “D” SUB MINIATURE JUMPERS
ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED
FREE TC16 WITH EVERY SUPERSTRIP SOLD

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

- EX-STOCK DELIVERY
- 5 STANDARD LENGTHS
 6, 12, 18, 24, 36”
- WITH 14, 16, 24, 40 CONTACTS
- FULLY ASSEMBLED AND TESTED
- INTEGRAL MOULDED ON
- STRAIN RELIEF
- LINE BY LINE PROBABILITY

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee.
SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money.
With 840 contact points SUPERSTRIP accepts all DIP’s and discrete components and with eight bus bars of 26 contact points each SUPERSTRIP will take up to nine 14-pin DIP’s at any one time.
You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee.

SUPERSTRIP SS2 £23.52 PRICE INCL. VAT £23.78

WE CAN SUPPLY EBBO BLOCK, ADVENTURES WITH EBBO BOARDS.
We supply EBBO block, adventures with electronics book which gives step by step instructions to build 16 projects including: chip radio, two transistor radio, electronic organ etc. and every component needed. Nothing else to buy.

We supply EBBO block, adventures with electronics book which gives step by step instructions to build 16 projects including: chip radio, two transistor radio, electronic organ etc. and every component needed. Nothing else to buy.