wireless world

SEPTEMBER 1980 50p

Floating-bridge amplifier
Tv from satellites
Electronic cryptography

www.americanradiohistory.com
gets it together...

SAVANT Dispenser
For radio, TV and similar work. Noxious copper fumes.
Size B 89p inc.V.A.T.

Emergency Solder
Self-fluxing, tooled solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 69p inc.V.A.T.

MULTICORE Wick
Multicore Wick for desoldering component leads from PCB's and solder from virtually any joints. Multicore Wick for general metal applications.

Cassette Editing Kit
Make editing simple with the Groov-Kleen tape cleaner and cassette player. With 6.3mm adaptor.
Ref 23 £2.00 inc. VAT

Cassette Fast Hand Tape Winder
The Bib Cassette Fast Winder enables you to wind both cassette and reel to reel tape in a matter of seconds. For electrical and non-electrical use.
Prices inc. VAT

Groov-Kleen Automatic Record Cleaner
For single-play turntables. Removes harmful dust to protect records and stylus. High polish chrome, bright plasticised aluminium and strong back.
Ref 62 £2.99 inc. VAT

Wire stripper and Cutter
Ideal for stripping wires quite easily and cutting leads.
Ref 3 £2.45 inc. VAT

Emergency Solder
Self-fluxing, tooled solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 69p inc.V.A.T.

Solder Cream
Tacky mixture of solder powder and correct percentage of flux difficult to reach areas.

ECONOPAK
A reel of 1.3mm "Erin" multicore solder for general electrical use.
Size 12A £1.15 inc. VAT

A reel of 3mm "Arax" multicore solder for general metal applications.
Size RF10 £1.38 inc. VAT

Handy Dispensers
Multicore Wick for desoldering and desoldering. For soldering component leads from PCB's and solder from virtually any joints.

Pricing inc. VAT

SEPTMBER 1980 50p

Floating-bridge amplifier
TV from satellites
Electronic cryptography

Wireless World, September 1980

USA Pat. No. 4076963 (tapeset)
UK Pat. No. 170763

Kelsey House, Wood Lane End, Hemel Hempstead, Herts, HP2 4QY

WWW-006 FOR FURTHER DETAILS
TESTING MOBILE RADIOS?

... catch this bus with Farnell

and arrive economically at an efficient ATE workstation.

Comprehensive testing under low cost desk computer control.

Manual systems too.

INTERFACE WITH US NOW!

Ask for details from:

FARNELL INSTRUMENTS LIMITED – WETHERBY - WEST YORKSHIRE LS22 4DH - ENGLAND - TEL: 0937 61981 - TELEX 567294 FARIST G

Farnell

IEEE bus standard
Scientific computer Feedback for p.r.b.s. generators

90 World of amateur radio

91 New products
Artistic licence?

We at QUAD go to a very great deal of trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your loudspeakers is a virtually exact RIAA transfer of the voltage the pickup will produce into a stated passive load. Nothing added – nothing taken away.

A visiting journalist recently suggested that we should not do this. Final adjustment should be done by ear, he said.

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump in the quack region (2-3kHz), we can make most programmes sound superficially more impressive.

Come to that, why not change the 3180~S to 5000~S adding a little more 'heft' that most people will fall for. We could even make a special model for the boom and tizz brigade.

Been to any live concerts recently?

For further details on the full range of QUAD products write to:
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE17 2DB
Telephone: (0480) 82861

QUAD for the closest approach to the original sound

QUAD is a Registered Trade Mark

WIRELESS WORLD, SEPTEMBER 1980
THE LEADING EXHIBITION
OF COMPUTERS,
PERIPHERALS AND SYSTEMS

COMPEC '80
will be in the Grand Hall
OLYMPIA, LONDON
Nov 4, 5 & 6, 1980

CAN YOU
AFFORD TO MISS
BRITAIN'S BIGGEST
COMPUTER
EXHIBITION?

GET YOUR TICKETS NOW—SAVE MONEY!
If you send your request for tickets now you will pay only £1.50 per ticket (tickets £2 at the door)

To: Compec Tickets, IPC Exhibitions, 40 Bowling Green Lane, London EC1R 1TE Tel 01-837 3636

Please send me_________________________advance registration tickets for Compec '80 at the privilege price of £1.50 per ticket.

Name:_________________________Address:_________________________

*Tickets £1.50 in advance, £2 at the door. Applications received after October 3rd, cannot be accepted.

TRADE ONLY—NO SCHOOL PARTIES—NO ADMITTANCE UNDER 16

ALL CHEQUES/MONEY ORDERS TO BE MADE PAYABLE TO IPC BUSINESS PRESS LTD IN UK STERLING

WWW.AMERICANRADIOHISTORY.COM
The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters... and still remains in a class of its own.

Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240, which a 3½ digit meter would read.

Some other PM 2517 plus points:

• LED or LCD display
• True RMS readings of AC voltage and current
• Autoranging with manual override

Optional accessories include temperature and data hold probes.

Reader inquiry number 220

The PM 3207 - SuperScope is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.

• POWER RESPONSE DC - 20kHz ± 1dB
• OUTPUT POWER IN EXCESS OF 1.5w INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
• D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2kHz
• HARMONIC DISTORTION LESS THAN 0.05% DC-20kHz AT 1kHz INTO 6 OHMS
• PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS, UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
• OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
• FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
• TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4KW
• INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
• 3-YEAR PARTS AND LABOUR WARRANTY

For details on all Amcron Products write or phone Chris Flack

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/694

WWW.1M1LL.COM

WIRELESS WORLD, SEPTEMBER 1980

PATTERN FOR THE FUTURE

The PM 5519 colour TV pattern generator is already a widely-used instrument. As a major manufacturer of Video cassette recorders, and colour television receivers, and the company which has developed the world's most advanced video disc system, Philips have carefully selected the best patterns for aligning and testing these products. With over 20 colour and low test patterns to choose from it is the most versatile pattern generator on the market.

- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5mV sensitivity, Y and X (via A input)
- INVERT facility

Reader inquiry number 223

PM 6307 WAVE AND FLUTTER METER

• X- and Y-controlled oscillator
• High accuracy and frequency stability
• 30 Hz or 300 Hz switchable
• Separate 'Defect' and 'Flutter' indication

Reader inquiry number 224

All Philips audio and video service instruments are also available from Philips Service Centres - for details see end of PM 3207 section.

Input advertisements are designed to meet the needs of our professional customers. They are a stop window for Philips test and Measuring Instruments - and we will be changing the display frequently because we have a lot of products to show you.

Where you require full information about a product, rock the coupon to your name and address, or letterhead - or, of course, use the reader inquiry service. You will receive in return a display/catalogue with reflecting your specific requirements.

Reader inquiry number 225

PM 2517 multimeter 220
PM 3207 oscilloscope 221
PM 5519 colour TV pattern generator 222
PM 5226 RF signal generator 223
PM 6307 wave and flutter meter 224

Test & Measuring Instruments

WWW.1M1LL.COM

WIRELESS WORLD, SEPTEMBER 1980

NO WAITING FOR THESE TOP PRODUCTS

The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters - and still remains in a class of its own.

Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240, which a 3½ digit meter would read.

Some other PM 2517 plus points:

• LED or LCD display
• True RMS readings of AC voltage and current
• Autoranging with manual override

Optional accessories include temperature and data hold probes.

Reader inquiry number 220

The PM 3207 - SuperScope is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.

• POWER RESPONSE DC - 20kHz ± 1dB
• OUTPUT POWER IN EXCESS OF 1.5w INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
• D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2kHz
• HARMONIC DISTORTION LESS THAN 0.05% DC-20kHz AT 1kHz INTO 6 OHMS
• PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS, UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
• OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
• FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
• TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4KW
• INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
• 3-YEAR PARTS AND LABOUR WARRANTY

For details on all Amcron Products write or phone Chris Flack

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/694

WWW.1M1LL.COM

WIRELESS WORLD, SEPTEMBER 1980

PATTERN FOR THE FUTURE

The PM 5519 colour TV pattern generator is already a widely-used instrument. As a major manufacturer of Video cassette recorders, and colour television receivers, and the company which has developed the world's most advanced video disc system, Philips have carefully selected the best patterns for aligning and testing these products. With over 20 colour and low test patterns to choose from it is the most versatile pattern generator on the market.

- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5mV sensitivity, Y and X (via A input)
- INVERT facility

Reader inquiry number 223

PM 6307 WAVE AND FLUTTER METER

• X- and Y-controlled oscillator
• High accuracy and frequency stability
• 30 Hz or 300 Hz switchable
• Separate 'Defect' and 'Flutter' indication

Reader inquiry number 224

All Philips audio and video service instruments are also available from Philips Service Centres - for details see end of PM 3207 section.

Input advertisements are designed to meet the needs of our professional customers. They are a stop window for Philips test and Measuring Instruments - and we will be changing the display frequently because we have a lot of products to show you.

Where you require full information about a product, rock the coupon to your name and address, or letterhead - or, of course, use the reader inquiry service. You will receive in return a display/catalogue with reflecting your specific requirements.

Reader inquiry number 225

PM 2517 multimeter 220
PM 3207 oscilloscope 221
PM 5519 colour TV pattern generator 222
PM 5226 RF signal generator 223
PM 6307 wave and flutter meter 224

Test & Measuring Instruments

WWW.1M1LL.COM

WIRELESS WORLD, SEPTEMBER 1980
Today Carston Value makes even more sense

-all equipment for sale is fully refurbished to manufacturers' original specifications

-NEW STOCK IS ADDED DAILY. FOR LATEST DETAILS ON 'STANDARD' EQUIPMENT OR FOR HELP IN LOCATING YOUR SPECIALIST NEEDS PLEASE CALL TODAY!

PRIME

Equipment

The second hand tester and measuring instrument specialists

The fresh idea from Carston which brings you recent "State-of-the-Art" equipment at competitive prices, with a full 2 year Guarantee covering parts and labour.

DYMAR

£3550

MARCONI

WAYNE KERR

B641. Measures

B601

Attenuators

31.5kHz

2203

MA B CONI

BRUEL

Log

LCR

(with a Bridge Oscillator)

LIC/R/G

step

0

Bridge box

IF

RF

1600A

Section writing speed

VI

3214 Dual Time

MHz

1

Dtsplay (1 mo.

BCD 0/P

Meter

S.E.

835. DC-15

MHz Time

10mV

Carston

90

MHz Time

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!

£625

MHz

250

475

350

130

£985

MHz

275

O.OOZ5 Hz-10

VGC.

10115V /50f!
STATE-OF-THE-ART

Quality Second-User Instrumentation

The product you buy from Second User Electronics is the same as from the manufacturer – same performance, same measuring capability, in most cases even the same guarantee.

We offer top quality, general purpose test equipment, fully maintained, at savings of up to 50% on manufacturers list price – so you make the very most of your capital budget. When equipment is only required for short term use it just doesn’t make sense to buy new.

We give 90-day warranties as standard, with many specified items on a 12 month extension – and we beat manufacturers delivery dates. Buy equipment at down-to-earth prices. You don’t need to buy new, buy SUE.

01-897 3759.

Storage Oscilloscopes

1703A Hewlett-Packard

0–30MHz, 10mV–5V/Div, time base 100ns–200ms/Div, sweep delay, writing speed 1 cm/µs.

From £1200

General Purpose Oscilloscopes

454 Tektronix

0–150MHz, 5mV–10V/Div, time base 10ns–0.5s/Div, sweep delay.

£1100

485 Tektronix

0–350MHz, 5mV–5V/Div, time base 1ns–0.5s/Div, sweep delay.

£2400

1720A Hewlett-Packard

0–275MHz, 10mV–5V/Div, time base 10ns–0.5s/Div, sweep delay.

£1600

Digital Voltmeters

7085 6½ Digit Microprocessor Multimeter

Solartron

Scale length 1,400,000, modes: DC, AC, Ohms, Ranges: ±10mV–1000V, resolution 1µV, ±10mV–1000V, resolution 1µV, ±10–10mΩ, resolution 1mΩ, Typical accuracy: ±0.005%, ±0.1%, ±0.007%.

£840

7055 5½ Digit Microprocessor Multimeter

Solartron

Scale length 200,000, modes DC, AC, Ohms.

Ranges: ±10mV–1kV, resolution 1µV, ±100mV–1kV, resolution 1µV, ±10–10mΩ, resolution 1mΩ, Typical accuracy: ±0.01%, ±0.1%, ±0.03%.

£640

Digital Counters

5327B 7 Digit Universal Counter Timer

And D.V.M. Hewlett-Packard

Modes: Frequency, period, time interval, D.C. Voltage. Frequency range 0–550MHz, D.V.M. range 10V – 1000V, resolution 100µV, Counter stability 5 parts in 10⁷ short term, counter sensitivity 25µV.

£1500

TC15 9 Digit Timer Counter Advance

Modes: Frequency, period, multiple period, Frequency range 0 – 500MHz, Resolution: 1Hz, 1ns typical stability/24H 1 part in 10⁷. Maximum sensitivity 10mV.

£405

Tape Recorders

Store 7 D FM 7 Channel (Racal)

Max. spool size 20cm, FM frequency range 0 – 20KHz, tape speed 15/16 – 60ips.

From £1400

Universal Bridges

8642 Wayne Kerr

Ranges: 10µΩ – 100Ω, 1F – 10F, 1nH – 100MHz, accuracy 0.1%, Bridge frequency 1591.5Hz.

£680

Logic Analysers

1600A Hewlett-Packard

16 Parallel data measurements displayed on C.R.T., Clock rate 0 – 20MHz, Start display trigger, end display trigger, delay from 0 – 99999 clock pulses.

£1850

1703A Hewlett-Packard

0–15MHz, 2mV–10V/Div, time base 100ns–2s/Div, sweep delay, writing speed 1 cm/µs.

From £800

1223A Hewlett-Packard

0–15MHz, 2mV–10V/Div, time base 100ns–2s/Div, writing speed 1 cm/µs.

From £625

465 Tektronix

0–100MHz, 5mV–5V/Div, time base 5m–0.5s/Div, sweep delay.

From £1200

465 Tektronix

0–275MHz, 10mV–5V/Div, time base 10ns–0.5s/Div, sweep delay.

From £1200

052200 Advance

0–25MHz, 10mV–50V/Div, time base 100ns–2s/Div, sweep delay, writing speed 1 cm/µs.

£725

Solartron

Scale

10mV, ±0.01%, ±0.03%.

Digit Microprocessor Multimeter

24H 1 part in 10⁷.

Remember

SUE is a purchaser of top quality instrumentation ring

01-897 3759

12-14 Horton Road, West Drayton, Middlesex

UB7 8EA. Tel 01-897 3759.

WWW -- 855 FOR FURTHER DETAIL

www.americanradiohistory.com
Think of KGM as your monitor production line...

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM monitors. We can take both design and production problems onto our own experiemental shoulders. Far better than grappling with complex video concepts on you own!

For a quick scan of KGM capability, look through our new colour folders — featuring some of the units we have produced for major customers. Some are based on our standard monitor range — but even these come with a choice of thick film modules or discrete components, for maximum 'tailor-made' flexibility. And today our technology extends to complete keyboards and micro-processor units. If you're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.

KGM Electronics Limited
Clock Tower Road, Radlett, Herts
Tel: 01-568 0151. Telex: 031589

...and wide range timebase operation. In Medelec, it has...
Fault us on size and we’ll eat it.

Shrinking high voltages into very small packages presents no problem to a manufacturer that has been deeply involved with space missions. The Eric range of high voltage rectifiers, voltage multipliers and power supplies is the product of forty year’s leadership in ceramic technology.

If you have a problem of too many volts chasing too small a power supplies is the product of forty year’s leadership in ceramic technology.

ITT Mercator, South Denes, Telex: 97421.

Understanding Digital Electronics

In the years ahead electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970’s and we have digital car instrumentation, cash cards, TV messages from friends and electronic mail.

After completing these books you will have broadened your career prospects and increased your knowledge of the fast changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £7.00

This course is designed as an introduction to digital electronics and is written in a style that suits the beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points made are understood.

Everyone can learn from it - students, engineers, hobbyists, housewives, etc. and the four A4 volumes consist of:

Book 1 Basic digital and decimal number systems, binary to decimal, binary to hexadecimal, decimal to binary, hexadecimal to decimal, binary arithmetic, binary logic, AND, OR, EXCLUSIVE-OR, NOT, Half-Adders, Full Adders, Complementary logic, Design of Logic Circuits, SOH Gates, Dual Input Gates.

Book 2 Induction to pulse and switching theory, inductance, capacitance, and magnetic fields.

Book 3 Introduction to analogue and digital circuits, floating gates, dual input gates.

Book 4 Introduction to pulse and switching circuits, inductance, capacitance, and magnetic fields.

DESIGN OF DIGITAL SYSTEMS £12.50

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its 64 A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits, and finally to an understanding of calculator and computer design.

Book 1 Basic: Binary and decimal number systems, conversion between number systems, binary arithmetic, binary logic, AND, OR, EXCLUSIVE-OR, NOT, Half-Adders, Full Adders, Complementary logic, Design of Logic Circuits, SOH Gates, Dual Input Gates.

Book 2 Basic: Induction to pulse and switching theory, inductance, capacitance, and magnetic fields.

Book 3 Advanced: Basic: further study of logic circuits, logic families, decoding logic circuits, basic logic gates:itch and NOR, AND, OR, EXCLUSIVE-OR, NOT, Half-Adders, Full Adders, Complementary logic, Design of Logic Circuits, SOH Gates, Dual Input Gates.

Book 4 Advanced: Basic further study of logic circuits, further study of number systems and Boolean algebra.

Flow Charts and Algorithms are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas, presenting safety regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER’S GUIDE £4.00

Exploring some of the questions, put them in the best order and draw the flow chart, with numerous examples.
Introducing the latest professional state-of-the-art 3½-digit DMM – at really old-fashioned prices! From just an unbelievable £39.95 inc. VAT, plus £1.15 p&p!

£39.95 (inc VAT)

We’ve got to hand it to you!

- FULL AUTORANGING
- AUTO RANGE
- 3½-DIGIT LCD WITH 200 HRS CONTINUOUS BATTERY LIFE
- AUTO ‘BATT’ WARNING
- RESOLUTION: 6½ DIGITS
- RANGE-HOLD
- SEVEN DIGIT BACKLIT LCD DISPLAY
- MEASURES DC VOLTAGE TO 1000V
- MEASURES AC VOLTAGE TO 750V
- MEASURES AC CURRENT TO 750mA
- MEASURES DC CURRENT TO 100mA
- ZEROS OUT MINUTE TEST-LEAD RESISTANCES FOR PRECISE MEASUREMENTS
- ACCURACY: 0.5% of full scale
- LOW POWER OHM RANGES
- BUZZER – Continuity Test
- BUZZER – Over Range Indicator

Why such a low, low price?

Because the A/D converter and display are custom built! This is a genuine top-spec DMM. Check these features for unbeatable value – you won’t find a hand-held DMM with these features at these prices again!

ACCESS orders taken. Please write card no. and signature.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Base Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6100</td>
<td>£66.10 inc. VAT</td>
<td>£54.95</td>
</tr>
<tr>
<td>6110</td>
<td>£66.10 inc. VAT</td>
<td>£49.95</td>
</tr>
<tr>
<td>6120</td>
<td>£66.10 inc. VAT</td>
<td>£54.95</td>
</tr>
<tr>
<td>6200</td>
<td>£66.10 inc. VAT</td>
<td>£54.95</td>
</tr>
<tr>
<td>6220</td>
<td>£66.10 inc. VAT</td>
<td>£54.95</td>
</tr>
</tbody>
</table>

ACCESS orders taken. Please write card no. and signature.

To: Maclin-Zand Electronics Ltd., 38 Mount Pleasant, London WC1K 6AP.

Dispatch by return. For overseas orders, please add £2.50 to cost of total order package.

Available exclusively from the company that gives you tomorrow’s technology today.

MACLIN-ZAND

making state-of-the-art affordable.

WIRELESS WORLD, SEPTEMBER 1980

IDEAS + IDEALS

An ideal cartridge would weigh nothing, its stylus would have zero effective tip mass and infinite compliance. In the world of music reproduction, this is a far cry from the reality. Even a so-called 'open box' type plug-in cartridge of any kind can, if a pickup arm is not exactly horizontal or if it is not perfectly fitted, cause a measurable amount of unwanted mechanical energy to be introduced into the sound stream.

A plug-in arm’s arm pivot may be the problem if a plug-in arm’s arm pivot is not truly horizontal or if it is not perfectly fitted. In which case, we can supply a plug-in arm. plugs in the click and above the pickup arm’s arm pivot. Using another interchangeable CA-1 carrying arm, low compliance cartridges can be thought of as a necessity in the control of the pick-up arm’s arm pivot. Using another interchangeable CA-1 carrying arm, low compliance cartridges can be thought of as a need for the control of the pick-up arm’s arm pivot.
The finest amplification kits from Crimson Elektrik

Crimson Elektrik

1A STAMFORD STREET, LEICESTER LE1 6NL
TELEPHONE: 0533 653688

ANNOUNCING
TWO BRAND NEW
THANDAR INSTRUMENTS

FURTHER DETAILS

3½ DIGIT LCD MULTI-METER KIT

Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. True function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE), with ability to check diodes. 0.5” LCD display with Battery Low Warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range. 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1mV to 500V, AC/DC current from 0.1uA to 2A. Resistance from 0.11 to 2MΩ. 200 hour battery life.

The Kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads. We also offer a calibration service (£5.00 + VAT) and a trouble-shooting and calibration service (£7.50 + VAT). Various other component parts are also available as listed.

The multimeter is also available fully assembled and calibrated at a cost of £39.70 + P&P + VAT.

Lascar Electronics Ltd., 1, Thomasam Road, Basildon, Essex.
Telephone No: Basildon (0565) 727343.

OTHER PORTABLE TEST INSTRUMENTS IN THE THANDAR RANGE

SC110 Single-Trace Portable Oscilloscope
10MHz band width 10mV/div sensitivity. £195.00 + £20.85 VAT

DM480 4½ Digit Multimeter
3½ range, 0.01% basic accuracy £185.00 + £22.50 VAT

DM390 3½ Digit Multimeter
3½ range, 0.1% basic accuracy £175.00 + £20.85 VAT

DM235 3½ Digit Multimeter
2½ range, 0.5% basic accuracy £150.00 + £18.85 VAT

TFM200 Pocket Frequency Meter
20KHz - 200MHz, 10mV sensitivity £48.00 + £5.46 VAT

PDM35 Pocket Digital Multimeter
-16 range, 1½ basic accuracy £34.50 + £4.68 VAT

For full technical details together with price list and stockist list please contact:

thanda
SINCLAIR ELECTRONICS LTD

A comprehensive specification at a slightly competitive price for a purposeful and functional range of test equipment.

The Kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads. We also offer a calibration service (£5.00 + VAT) and a trouble-shooting and calibration service (£7.50 + VAT). Various other component parts are also available as listed.

The multimeter is also available fully assembled and calibrated at a cost of £39.70 + P&P + VAT.

Lascar Electronics Ltd., 1, Thomasam Road, Basildon, Essex.
Telephone No: Basildon (0565) 727343.
Britain's first complete computer kit.

The Sinclair ZX80.

Price breakdown:
ZX80 kit and manual: £69.95

Post and packing FREE

Please note: many kit makers quote VAT-exclusive prices.

Your ZX80 kit contains:
* Printed circuit board, with IC sockets for all ICs.
* Complete components set, including all ICs-all manufactured by selected world leading suppliers.
* New keyboard (with backlighting). Does not load text automatically into program memory.
* Leads and plugs for connection to EXT 600 TV and cassette recorder. (Programs can be SAVEd and LOADed from a portable cassette recorder.)
* FREE course in BASIC programming and user manual.
* Optional extras.
* Main adapter of 600mA 9V DC nominal unspecified voltage (separately—see coupon).
* Additional memory expansion boards allowing up to 16K bytes RAM. (Extra RAM chips also available—see coupon.)

The unique and valuable components of the Sinclair ZX80.

The ZX80 kit is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two unique advanced components: the Sinclair BASIC interpreter, and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:
- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. The program will not run only if its lines contain errors.
- Excellent string handling capabilities. Up to 256-character strings can be used in programming.
- Excellent basic arithmetic, conditional expressions, etc.
- Exceptionally powerful editing facilities, allowing modification of existing program lines.
- Random function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PECK and ADEK enable entry of machine code instructions. USR causes jump to a user's machine language subroutine.
- High-resolution graphics with 27 standard graphic symbols.
- All characters print in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume production—more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed into two boxes, now smaller, more powerful and advanced, 6K chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1K byte RAM is roughly equivalent to 4K bytes in conventional computer—typically storing 1600 lines of BASIC. (Key words occupy only a single byte.)

The display shows 52 characters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you—don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting, and enjoyable, and represents a complete course in BASIC programming—from first principles to complex programs. (Available separately—purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete! (You can order a complete ZX80 for £99.95. Can't wait to see it in action? No problem! It's also available, ready assembled and complete with mains adaptor, for only £99.95.)

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Remember, all prices shown include VAT, postage and packing. No hidden extras. Please send me:

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Item price £</th>
<th>Total £</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZX80 kit (Includes ZX80, manually assembled)</td>
<td>£79.95</td>
<td></td>
</tr>
<tr>
<td>ZX80 kit (Includes ZX80, manually assembled + mains adaptor)</td>
<td>£99.95</td>
<td></td>
</tr>
<tr>
<td>ZX80 kit (Complete, ready assembled)</td>
<td>£69.95</td>
<td></td>
</tr>
<tr>
<td>Memory Expansion Boards, per 1K byte (no VAT)</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>Memory Expansion Boards, per 1K byte (no VAT)</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>RAM Memory chips, per 1K byte (no VAT)</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>ZX80 Manual(s) (free with every ZX80 kit)</td>
<td>Free</td>
<td></td>
</tr>
</tbody>
</table>

NB: Your ZX80 may qualify for a business expense.

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £. Please print.

Name: Mr/Mrs/Miss

Address:

ORDER TOTAL £

WWW - 402 FOR FURTHER DETAILS
The Hitachi range of Low Cost Portable Oscilloscopes

Dutchgate offer the full range of Hitachi innovative Oscilloscopes each with a two year warranty. These easy to operate oscilloscopes featuring wider width band and integrated circuitry offer increased stability, improved reliability and excellent performance.

The vast experience gained by Dutchgate as specialists in servicing and maintaining test and measurement instrumentation will be used to effect a fully reliable and efficient after sales service.

Test Dutchgate today — by asking for details of the Hitachi Low Cost Portable Oscilloscopes and then measure the result.

Dutchgate Ltd

Authorized agents for Hitachi Denshi (UK) Ltd.
TIMEBASE 94, ALFIRSTON GARDENS
SHRINK, SOUTHAMPTON Telephone: (0703) 431323
WW – 960 FOR FURTHER DETAILS

HAMEG

OSCILLOSCOPES

TOP PERFORMANCE, QUALITY AND VALUE

HM 307 £149
Single Trace DC-10MHz
Plus Built-in Component
Trigger

HM 312 £250
Dual Trace DC-20MHz,
5mV/cm, X-Y, 30MHz
Trigger, plus TV Trigger

HM 412 £350
Dual Trace DC-20MHz,
5mV/cm, X-Y, 30MHz
Trigger, plus Sweep Delay

HM 512 £580
Dual Trace DC-50MHz,
5mV/cm, X-Y, 50MHz
Trigger, plus Single
Shot, Sweep Delay and After
Delay Trigger

Prices U.K.
List Ex. VAT

HM 812 £1,458
Dual Trace as per HM 512 plus Storage, Automatic Storage and
Variable Persistence

For FULL DETAILS and DISTRIBUTOR LIST
Contact

HAMEG LTD.
74-78 Collingdon St.
Luton, Beds LU1 1RX
Tel: (0582) 413174

THE MOST COMPLETE
DUAL CHANNEL 50MHz
SCOPE AVAILABLE Model 5650 & 5650E
50MHz, 5mV/5 x Mag 1mV, 10MHz, Alternate Time Base, Alternate Trigger, 500kHz Chop Frequency, Auto Level (Lock) Circuit, Calibrated Delay Sweep, One Touch Triggered Delay, Variable Hold Off - Bends A With CH1 Output Signal (5650E), One Touch X-Y Operation Rectangular CRT, Internal Graticule (5650 Illuminated), Linear Focus
5650 £945; 5650E £885
A PORTABLE, HIGH PERFORMANCE,
RELIABLE, DUAL CHANNEL 50MHz SCOPE Model 5630
50MHz, 5mV/5 x Mag 1mV, 10MHz, Alternate Trigger - 500kHz Chop Frequency, Calibrated Delayed Sweep, One Touch Triggered Delay, Auto Level (Lock) Circuit, Variable Hold Off - Bends A, One Touch X-Y Operation Rectangular CRT, Internal Graticule Illuminated, Linear Focus
ONLY £795

A LOWER PRICE, HIGHER PERFORMANCE, DUAL CHANNEL 35MHz SCOPES Models 5530/5530GR
35MHz, 5mV/5 x Mag 1mV, 5MHz, Alternate Trigger, 500kHz Chop Frequency, Calibrated Delayed Sweep, One Touch Triggered Delay, Variable Hold Off - Bends A, One Touch X-Y Operation, Rectangular CRT, Internal Graticule (5530 Illuminated), High Brightness CRT, Built-in One Touch X-Y Operation
5530 £500; 5530GR £495

LOW PRICE, HIGH VALUE, DUAL CHANNEL 35MHz SCOPES Models 5520/5520GR
35MHz, 5mV/5 x Mag 1mV, 5MHz, Alternate Trigger - 500kHz Chop Frequency, Calibrated Delayed Sweep, One Touch Triggered Delay, Variable Hold Off - Bends A, One Touch X-Y Operation, Rectangular CRT, Vertical Delay Line, Internal Graticule Illuminated (5520), High Brightness CRT
ONLY £295

A LOWER PRICED, HIGHER PERFORMANCE 20MHz SCOPE Model 5520
20MHz, 5mV/5 x Mag 1mV, 2MHz, Auto Level (Lock) Circuit, 20kHz Chop Frequency, Calibrated Delayed Sweep, One Touch Triggered Delay, Variable Hold Off - Bends A, One Touch X-Y Operation, TV Sync. Separator, (Trigger) Single Sweep Function, High Brightness CRT
ONLY £230

Prices exclude VAT, and are correct at time of going to press.

THERE'S EVEN MORE 'SCOPE' FOR YOUR MONEY FROM TELONIC BERKELEY

2, Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR
Telephone: Maidenhead (0628) 28057 Telex: 849131 Telber G
WWW - 427 FOR FURTHER DETAILS
Complete Audio/Tuner Kits

Mk III FM Tuner series
Carriage for 9ft ttaper £3 inc.

The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience. A precise copy may be purchased for £1.00.

Mk III A series 'Performance' tuner modules: £177.36 inc.
Mk III B series 'Superior' modules, with switched
IF SW, pilot tuned decoder: £189.95 inc.

A matching 350000Hz crystal and the 96010F module make this year's version an affordable tool for either AM or FM. All with VFOs and demodulators. Prices for manual tuning, optional PSU, output level detectors, interface modules and accessory kits available.

Power Amplifier
Style and performance - a dual rail output power unit.

After a couple of previous continents, it seems that you are as close to a real solution as anybody. While 40000Hz power supply is in the Mark III A range, it's not; it's not a last, complete with twice twice PSUs for twice half-size (RR) RRF per channel, with output protection, the switched central channel of the HEEP, -1500W in transistors, the LED output peak indicator, DC offset protection and switch on power relay. AC for FL stages amplifying directly in mini-assembly outputs terminals. The works. Only one version of this: Complete kit: £198.25 inc. C.R.

Preampulator
With its new Tatton low pass filter and everything made up to 0.002%.

SÉPTEMBER

-1500W for the KVA Kill power circle, with DC outputs, DC output filters, variable soft on/off, and 5 outputs. Suitable for home or large systems. Not all the big systems we've seen work properly.

Semiconductors

Radio/Communications ICs

FOR FULL DETAILS - SEE OUR NEW PRICE LIST

Crystal Filters

Most popular types are available in stock, and quantity.

-10.9kHz IF Filters

Crystal Channel setting: 1kHz: £1.92
2kHz: £1.97
3kHz: £2.30
4kHz: £2.80
5kHz: £3.80
6kHz: £3.95
7kHz: £4.45
8kHz: £4.65
9kHz: £5.05
10kHz: £5.45

Motorola TDA1083(2) or TDA1082(1) £36.80
D/A TDA1083. £39.30

Keyboards and switches

From the world's most widely used switch manufacturers: ALPS: size the biggest and best range of keyboards and data entry keypads. The Developmental line is available at a fraction of the cost of similar models.

LCD DVM

CMOS 16: 7mm LCD 120kHz, alarm £11 44 each
CMOS 17: 7mm LCD 240kHz, alarm £11.72 each
CMOS 18: 7mm LCD 480kHz, alarm £14.17 each
CMOS 19: 7mm LCD 960kHz, alarm £14.50 each
CMOS 20: 7mm LCD 1.92MHz, alarm £15.00 each
CMOS 21: 7mm LCD 3.84MHz, alarm £22.20 each

WHAT'S NEW at AMBIT

NEW PRICE LIST SHORT FORM

Page 28: FOCO with 85 SAE pse

If you still need to convince me of the value in one or two names and get the best, I'll come in and have a look at it. £10 per page, and the FA100.

HANDBOOK BY HITACHI

-1500W for the KVA Kill power circle, with DC outputs, DC output filters, variable soft on/off, and 5 outputs. Suitable for home or large systems. Not all the big systems we've seen work properly.

Please read as SAE with all queries.

ACCESS EXCEPT FOR VACUUM TUBE

Valradio

VALRADIO LIMITED, BROWNS Lane, TELFORD
Mooreseles TV12 7JN. Telephone 01938 280187

METER PROBLEMS?

PRODUCTION TESTING

DEVELOPMENT SERVICING

POWER UNITS

AUXILIARY CONTINUOUSLY VARIABLE

All 37 Standard Ranges in a variety of sizes and stabilities available for 10/14 days delivery. New ranges and special scales can be made to order.

Full information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/637/7937

www.americanradiohistory.com
26

WIRELESS WORLD, SEPTEMBER 1980

18th Edition

Guide to Broadcasting Stations

SINCE 1954
PEOPLE HAVE BEEN ASKING
"WHAT'S NEW?"

In the last three decades, TRW has had more than its fair share of important breakthroughs which have come to be regarded as milestones in the semiconductor industry.

THE 1950's
1958 TRW invented the VARICAP®—now almost a generic term for the varactor.
1959 The first high power, high frequency transistor.
1959 High reliability semiconductors. Starting with the Minuteman, TRW has been part of every space and missile programme since.

THE 1960's
1961 TRW invented TIL Integrated circuits.
1962 Pioneered high voltage, triple diffused switching transistors.
1963 High reliability transistors in plastic package—accepted for military applications.
1966 The first transistor designed specifically for CATV.
1968 5W, 2GHz transistors for general use—off the shelf.

THE 1970's
1970 CATV hybrid amplifiers used in most of today's cable TV systems.
1972 High voltage, high speed monolithic Darlington transistors.
1972 Power Schottky Rectifiers in volume production.
1975 Industry's first monolithic RF L Band circuit.
1976 5W, 2GHz transistors.
1978 Development of L Band radar transistors.

THE 1980's
The first of the decade's big advances—45W microwave pulse power at S Band transistors. The highest available in the world. The start of a new important family of microwave devices.

In the 1980's TRW RF and TRW Power Semiconductors will keep you ahead with the most technologically advanced, exciting products from the most diverse and reliable range available anywhere.

If you're involved in RF (Reader reply no. 014) or Power (Reader reply no. 013) send for your copy of the new Data Books.
SOFTY Software Development System and Eeprom Programmer.

MICROSYSTEM DEVELOPMENT USING SOFTY

SOFTY is intended for the development of programs which will eventually become integral existing in ROM and forming part of a microprocessor. During the development stage of a Microsystem, SOFTY will be connected in place of the software ROM as a replaceable assembly on a plug-in type socket.

Data may be entered into the SOFTY ROM via the data port, panel port, direct memory access, or via teletype, and manipulated via the erase and write functions of the 'softy-convert' data processor. Either an existing softy or a new softy may be powered up and attached to the microsystem with all the original program stored in the hard copy input memory. The contents of the RAM are easily written out to a disc or a tape. A programme of only 5000 bytes is available. If the disc ROM is 2.4" in size, the easy 'softy-erase' data processor is used to clear all data from the disc to a blank state.

In short, when the programme is complete and working, the disc is removed and replaced by a fresh disc programmed by SOFTY. SOFTY is able to program the 2540/4000/7200/7200b and all compatible ROMs using a direct memory access.

NEW — SOFTY CONVERSION CARD — EX-STOCK

Software SOFTY to program the original FORMOS 2540, 2548, 2516, (INTL 2516).

The following items have a high and 24 volt levels and have been specially designed for switching, programming and manipulation of memory.

- SOFTY has built-in monitoring facilities which can be used to store working and useful subroutines.
- The internal microprocessor can be 'switched on' or 'switched off'.
- It is possible to switch in a new microprocessor at any time during the development stage of the microsystem.
- The replacement of the microprocessor can be performed only if the contents of the RAM are being cleared or if it is normal.
- A high-speed RAM (16K) is provided for storing working programs and useful subroutines.
- It is intended for the development of programs which will eventually become integral existing in ROM and forming part of a microprocessor. During the development stage of a Microsystem, SOFTY will be connected in place of the software ROM as a replaceable assembly on a plug-in type socket.

NEW — SOFTY PRINTER CARD — EX-STOCK

- All Commodore motherboards
- 9 pin Sifit
- 3 software switch to change to various states
- 16 releasing keys
- Ideal for TV with the input being performed by a plug-in type circuit board
- Can monitor SOFTY data output
- Suitable for home and working parties
- Built-in microprocessor
- Easy 'softy-erase' data processor
- Proven reliable in use
- Suitable for all 10K and 16K ROMs.

MODEL 14 EPROM ERASERS — EX-STOCK

- Suitable for use with all memory type EPROMs.
- 220VAC and 110VAC
- Model includes 30 sets of the hard copy store.
- Suitable for use with all memory type EPROMs.

MODEL UV141 EPROM ERASER

- Suitable for use with all memory type EPROMs.
- 220VAC and 110VAC
- Model includes 30 sets of the hard copy store.
- Suitable for use with all memory type EPROMs.

MODEL UV140 EPROM ERASER

- Suitable for use with all memory type EPROMs.
- 220VAC and 110VAC
- Model includes 30 sets of the hard copy store.
- Suitable for use with all memory type EPROMs.

GP Industrial Electronics Limited

- 14 Market Street, Crewkerne, Somerset TA18 1JU
- Telephone: 0460 74433
- Telex 46283 infac g

INTERFACENQUARTZ DEVICES LTD

- 29 Market Street, Crewkerne, Somerset TA18 1JU
- Telephone 0460 74433

IQXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

- The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available.

- Many frequencies can be supplied from stock.

INTERFACE Quartz Devices LTD

- 29 Market Street, Crewkerne, Somerset TA18 1JU
- Telephone: 0460 74433
- Telex 46283 infaq c

INOX-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

- The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available.

- Many frequencies can be supplied from stock.

INTERFACE Quartz Devices LTD

- 29 Market Street, Crewkerne, Somerset TA18 1JU
- Telephone: 0460 74433
- Telex 46283 infaq c

A Leader instrument for every need.

- The full range of Leader Test Equipment, the first choice of engineers around the world, is now available in the U.K.

- Leader Products, with a long history of high reliability, backed by a 1-year warranty, are engineered and built to the most rigid standards, and incorporate the latest technology.

LEADER TEST INSTRUMENTS — more performance and reliability than you ever thought possible

- A Leader instrument for every need.

- The full range of Leader Test Equipment, the first choice of engineers around the world, is now available in the U.K.

- Leader Products, with a long history of high reliability, backed by a 1-year warranty, are engineered and built to the most rigid standards, and incorporate the latest technology.

RADIO/CB/TV TEST

- WW — 063

- C.R.T. Testers - Pattern Generators - Signal Generators - Antenna Impedance Meters - RF Power Meters - C.B. Signal Generators

- LSG16 SIGNAL GENERATOR
 - A compact 16-channel signal generator consisting of a multi-functional generator and a test set for use in the U.K.
 - Frequency range: 10 kHz to 20 MHz
 - Output up to 100 mW

- **GENERATOR**
 - For more stringent requirements, ±0.01% from -55 to +125°C is available.
 - Many frequencies can be supplied from stock.

GENERAL TEST

- WW — 064

- Function Generators - Transistor Checkers - L.O.I. Bridges - Power supplies - Multimeter - Curve Tracer - Speaker Analysers - Home Appliance Testers

- LGF1300S SWEEP/FUNCTION GENERATOR
 - A multifunction function generator producing five separate waveforms with a wide frequency range.
 - Frequency range: 100 kHz to 10 MHz
 - Sweep speed: 100 Hz to 10 MHz
 - Circular sweep
 - Dual Trace

- **Sweep Modes**
 - For more stringent requirements, ±0.01% from -55 to +125°C is available.
 - Many frequencies can be supplied from stock.

AUDIO TEST

- WW — 065

- Audio Generators - Frequency Response Recorders - Audio System Analyser - View and Pointer Meters

- LFR5600 FREQUENCY RESPONSE RECORDER
 - A digital frequency response recorder designed to record wave and other stepped, swept, voltage, temperature and frequency may be recorded. Recording time: 1 second
 - Sweep speed: 0.1 to 10 MHz
 - Frequency range: 0.1 Hz to 10 MHz
 - Output voltage: 1 mV

- **Frequency Response Recorders**
 - For more stringent requirements, ±0.01% from -55 to +125°C is available.
 - Many frequencies can be supplied from stock.

OSCILLOSCOPES

- WW — 066

- 9" Dual Trace
 - 10 MHz bandwidth (with 20 MHz probe)
 - 30 MHz General
 - 100 MHz General

- **Variables**
 - 5" Dual Trace
 - 20 MHz bandwidth (with 20 MHz probe)
 - 30 MHz General
 - 100 MHz General

- **Synchronization**
 - Audio, Video, TV, Int, Ext., * Sync

- **Specifications**
 - Bandwidth: 20 MHz
 - Vertical sensitivity: 1 mV, 10 mV, 0.1 V, 0.5 V, 1 V
 - Horizontal sensitivity: 10 ns, 20 ns, 50 ns

- **For full technical details together with price list please contact...**

LEADER

- Sinclair Electronics Ltd
 - London Road, St. Ives, Huntingdon, Cambs. PE17 4DJ
 - Telephone: St. Ives (0487) 80666

- Sinclair Electronics Ltd reserves the right to alter prices and specifications without prior notice.
HERE'S HOW TO TALK TO ALL OF THE PEOPLE ALL OF THE TIME with a communications system built up from the all-embracing, constantly expanding range of REDITRONICS EQUIPMENT

The latest additions to that range —

- **A104K AUTOMATIC ANOUNCER**
- **AA15 FOUR-CHANNEL AUDIO POWER AMPLIFIER**

When it comes to **SOUND** communications, REDITRONICS EQUIPMENT does MORE FOR LESS. REDITRONICS is the one name that says it all.

Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.

and to meet growing demand—

usitone are appointed as Reditronics distributors for Greater London and the Home Counties.

REDITRONICS
TOTAL SYSTEMS CAPABILITY

REDIFFUSION REDITRONICS LTD.
La Poupee Steet, Jersey, Channels Islands
Tel: Jersey (0534) 30321 Telex: 4192341
U.K. DEPOT: South View Road, Bournemouth
Tel: Southampon (0703) 555566

EXPANDORAM II

Features
- S-100 Bus Compatible
- 4MHz Operation
- Board Select for Multi-user System
- Expandable Memory from 16K to 256K (using 16K or 64K devices)
- DIP Switch selectable boundary at any 16K or 64K devices
- Page Mode Operation allows up to 8 boards on a Bus
- Operates with 286 CPUS
- Phantom Output Disable and a manual output
- Selectable Output Disable
- Power Dissipation — 5 watts, Typical
- Wait States and Invisible Refresh synchronized with 4-64K Banks are available with 4164's

Expandable Random Access Memory Board

The Expandoram II provides a low cost means for expanding Random Access Memory capability for computers using the S-100 Bus structure. The board's design allows eight boards to operate from the same S-100 Bus. Page mode operation provides the system with the capability of servicing multiple users without RAM interference. Synchronization of the wait state and invisible refresh deliver faster operation, allowing processing speeds up to 4MHz.

The Expandoram II is compatible with most S-100 CPUs based on the 80286 microprocessor. When other SD SYSTEMS 200 series boards are combined with the Expandoram II, they create a microcomputer with exceptional capabilities and features.

PRICE: £129.00 to £299.50 (64K Kit) Built & Tested from:— £272.00 to £389.00 (64K B-T)

For further information on this board, or any other boards in our comprehensive range, please telephone.

MEET THE PROBLEM SOLVER

The "System One" series of micro computers is probably the most flexible series of micro computers available today. Flexibility of hardware coupled with a wide range of software allows the user to choose the most cost-effective hardware/software configuration to solve his/her problem.

HARDWARE CONFIGURATION
- Computer typ. 16 to 64K
- Disk drives from 8 inch and floppy diskettes
- 1 or 2 double-sided 5¼" or 8" Floppy disk
- Support for most popular makes of printers, 1 or 2 terminals.

SOFTWARE FROM

- BASIC Compiler
- Assembler
- STRUBAL Compiler
- LABEL BASIC

FIDEL

LABEL BASE

STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS LTD.
Portland House, Coppice Side, Brownhills, Walsall
West Midlands. Tel: 335243 SEL. Tel. No. 064-33 78151

SELECTED LITERATURE

- Appendixes in a remarkable range of equipment that can provide every integrated capable of solving the most intricate tasks — allows debugging software. Basic interpreter will cost you £1.650.

FOR FURTHER DETAILS

WIRELESS WORLD, SEPTEMBER 1980

MORE SPEC. FOR YOUR MONEY

TYPE 217 DUAL POWER SUPPLY £64.88 (incl. carriage, etc.)
- Constant voltage or constant current
- Digital-monitoring
- Output indication
- 0 to 40V and —0 to 40V or 0 to 50V
- +1 to 750mA and —0 to 750mA
- All independently selectable

LAB SPEC. - BENCH PRICE!

- £40 ELECTRONICS, PRIORU SYNCHROS VENT 004 001
- Tel. Farningham (0322) 802557

Call SED at our Brownswood office for further details of demonstration.

WIRELESS WORLD, SEPTEMBER 1980
If you have had difficulty sourcing Peak Programme Meters to meet DIN 45406, the list European PPM standard, then Bulgin! The Bulgin DIN 45406 amplifier card and fast meter movement make a peak easy. The scale reads from -50dB to +5dB. The scale has a 0% to 150% including the red part of the scale and is extremely accurate. The amplifier card is ideally suited for use in 54 x 70 mm and the cost won't finish you.

Brief Specification
- Indicating range: -50 dB to +5 dB. 0% to 150% including the red part of the scale.
- OVR corresponds to 100%.
- Accuracy: Better than ±2 dB between -5 and +5 dB, ±10 dB between 0 and +5 dB at 147 Hz.
- Frequency response: ±1.0 dB between 30 Hz and 15000 Hz. Roll-off at least 15 dB at 48000 Hz.
- Attack: ±1.5 dB at ±5 dB above 100 dB.
- Decay: ±3 dB at ±10 dB below -20 dB.
- Input impedance: between 30 and 15000 Hz.
- Sensitivity: Variable.
- OverS - Complete System: Less than ±1.0 dB.

Supply: 30/200 mA. D.C. 45 mA at 24V.

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications interesting; sales demonstrators more effective. After all, we live in a colour world.

Hand Held Thermal Wire Stripper Model TW1
STEPS MOST INSULATIONS
- Self contained - no external power packs required.
- Long life rugged alloy blades heat to 1700° F in four seconds and may be notched for wire sizes.
- Blade depth stop prevents blades touching conductors, eliminating scratching and nicking.
- Temperature control unit available.
- Optional bench stand.

Strips even the finest wires cleanly with no nicking or deformation of the conductors.

TELEPHONE FOR A FREE DEMONSTRATION
Eraser International Ltd., Unit M, Portway Industrial Estate, Andover, Hants SP10 3LU.
Tel: Andover (0264) 513478/ Telex: 477291

Let Bell & Howell show you the answer.
To Peter Glas, Bell & Howell A.V. Ltd., Freeport, Wembridge, Middlesex HA0 1BR.
Please send me more information about video equipment and a list of your Video Centres.
Name
Organisation
Address

WWW/9
JVC CAMERAS, JVC RECORDERS, JVC STUDIO EQUIPMENT, JVC MONITORS, ELECTRONIC MONITORS, PAL VIDEO TAPES.
WWW/9: 882 FOR FURTHER DETAILS.

"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"
INSIST ON
VERSATOWER
BY PROFESSIONALS—
FOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25ft to 120ft (7.5M to 36M).

Designed for Wind Speeds from 85mph to 117mph conforming with CP3 Chapter V, part 11.

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER
THE PROFESSIONALS’ CHOICE

We’ll help you see infra-red and put you on target as well.

As manufacturers of the widest range of broadband infra-red detectors in Europe we offer designers an extensive range of devices to suit virtually all their project requirements.

So, whether you’re involved in infra-red detection for industrial, military or research applications in any of these fields, things are looking better for you:

• Glass analysis
• Laser detection and measurement
• Intruder and fire alarms
• Radiometry and spectroscopy

Plessey infra-red detectors feature a range of element materials: ceramic, lithium tantalate, triglycine sulphate; a choice of windows and filters for selecting spectral response and a choice of electronics to give the required signal response.

And, if your need is for fast photovoltaic detectors for CO, laser range-finding applications, we can also offer lead tin telluride in the 10-11 micron region. High D* (4 x 10^10 cmHz/1W A/p, 800, 1) bandwidth to 10MHz and beyond.

Whatever your requirements, ask for our latest catalogue to put you on target.

Plessey Optoelectronics and Microwave Limited
Road Burrow Way, Trowbridge, Wiltshire, United Kingdom NN12 7JN.
Telephone: 0327 402111 Telex: 311442

USA.

Plessey Optoelectronics and Microwave Limited
541 Kaiser Avenue, Irvine, California 92714, USA.
Telephone: (714) 540-9914 Telex: 8767235

WW — 66 FOR FURTHER DETAILS

WW — 861 FOR FURTHER DETAILS
Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide. That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none. And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recorders—there are now triple standard VHS machines which accept PAL, SECAM and NTSC—we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.

VHS is the No. 1 system in the UK, Europe, the US and Japan. Make sure you've got it. Right?

Advertisement produced co-operatively by: Akai, Ferguson, Hitachi, JVC, Panasonic, Sharp.

The world's No. 1 system.
fact: the SM63 looks (and sounds) great in front of people... and cameras!

Take it from the professionals

A top quality Shure microphone makes a measurable difference in upgrading sound. New, Shure has added a new microphone designed to upgrade the appearance of your act, as well as the sound. The SM63 is a top quality omnidirectional microphone with high output and clear, crisp sound quality — an innovative blending of smaller size, handsome appearance, and truly amazing broadcast-quality performance. Highly effective pop protection, low handling noise and very low profile (so it won't obscure the performer's face) make it the perfect choice for on-camera applications. The SM63 omnidirectional dynamic microphone measures just 5'/ivas long, 1¼ inches in diameter and weighs only 2.8 ounces with no compromise in Shure's standard of reliability. It offers twice the voltage sensitivity of our own SM58 (dB) and features a huffingbody coil for superior rejection of electromagnetic hum (up to 20 db better than competitive units) and an elastomer shock mount for minimized handling noise. The new SM63 also features the Shure-developed VERAFLX® dent resistant grille and a smooth satin finish perfect for on stage and on-camera applications.

Send for complete literature on all Shure professional microphones — including the new SM63. (Please let us know your microphone application.)

SPECIFICATIONS

Frequency Response: 50 to 20,000 Hz

Impedance: 150 ohms

Output Level (at 1,000 Hz Open Circuit Voltage (Db = 1 volt per meter) --76.0 Db (0.16mV)

Hum Pickup: Typical at 60Hz: 13 db equivalent SPL in 1 microphone test

Shock Mount: Patented internal vibration isolator

Case: Champagne finish aluminum with VERAFLX® grille

Dimensions and weight: 5'/ivas long, 1¼ inches in diameter, 2.8 ounces

professional microphones...by Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU — Telephone: Maidstone (0622) 59881

He who hesitates ...

Democratic, parliamentary government is a fine thing. Matters of consequence to the community cannot be left to the whims of dictators, unless they happen to be of an unusually benevolent disposition. The imposition of taxes, the control of education, health care, transport — all must be discussed and arranged in a properly democratic manner. But, when ministers are seen to shy away from the decision which must be taken when the talking stops, one can sometimes begin to wish for a benevolent despot, or at least a well-heeded entrepreneur. In America, Japan and one or two European countries, thousands of millions of pounds worth of investment have been used to build vigorous research, development and production programmes in integrated-circuit technology. In the UK, Sir Keith Joseph hesitated over the second £25 million for Inmos. He would clearly have preferred the company to raise the money from private sources, but only discerned "flickers of interest" from private enterprise. That the interest is only a flicker does not show the City in a particularly adventurous light — it evidently likes to apply its risk capital in an area of slightly less risk — but the decision has to be accepted. Since the original plan to fund Inmos to the tune of £50 million was made, the company has lived up to its promises and is on schedule with its US operation: nothing has changed. Although the original decision was made by a Labour government, there seems to be no reason why the Tory incumbents should wish to throw away the first £25 million by holding back the second. Inmos have said that they have already lost £36 million in the time spent haggling over the second installment. If it had not been forthcoming, Inmos would almost certainly have survived, but as an American company, possibly raising money from US sources.

The question of whether we need Inmos has been raised. It is somewhat late in the game, after all, to start competing with the established giants, particularly as the said giants are pretty well entrenched in Britain already. One American view is that Europe has no need of a semiconductor, manufacturing capability; the application is all, so they say, so why not leave the supply of raw materials — chips — to others? One hesitates to appear churlish in the face of such altruism, but the Americans ought not to be asked to shoulder the whole burden of mountainous profits from semiconductor making.

They do have a very good point, of course. Software and applications development do not run away with the millions in the way that chip design, manufacture and marketing can in the early stages. The UK is already rather good at software (less so at industrial application) so perhaps we should concentrate on this side of the "microelectronic revolution".

If there were a choice, that would possibly be a sensible one. But is there a choice? Is it really in our best interests to leave to foreign companies the conception, design and manufacture of industries which we are constantly being told will be central to our future economy? Will be then be supplied with the devices we want or those we are told to want? Will we be supplied at all? Having already seen control of many of our established industries pass from our hands in an involuntary way, it hardly seems reasonable to forego chance of holding on to one of such significance.

It may be that the pathetically small investment in Inmos which is all that is possible, unless private enterprise becomes more enterprising, is far too little and about fifteen years too late, but however small a UK microelectronics industry finds itself to be when the situation stabilizes, a nucleus of capability strong enough to supply special needs and, more important, to attract the necessary brain power, must be kept. This is a decision which carries extremely long-term consequences; future options should not be limited by further haggling over the petty cash.
The floating bridge
New design principle for audio amplifiers
by R. M. Brady

This article describes a design principle which has the advantages of the bridge amplifier but none of its disadvantages. A simple amplifier which drives four ohm, 15-watt speakers using power from a 12-volt car battery is described in part 2 and test results are included. The design is further applied to a 200-watt version suitable for group use.

Bridge amplifiers offer many potential advantages over single push-pull amplifiers high power, high voltage swing for moderately low-voltage components, lower power dissipation in each transistor, and the capability of operating with high impedance loads, thereby reducing transmission losses and permitting a higher damping factor. They are almost essential if power supply voltage is limited as, for example, with a car battery. Present designs, however, are necessarily of complex and cumbersome manufacture, making them expensive and not so reliable. They also have limited bandwidth and poor distortion performance, because of the close coupling between individual halves of the amplifier.

One half controls the instantaneous potential of one output terminal with respect to earth, and the other does the same job on the other terminal. The new system uses one amplifier to control the difference between output terminal potentials, and a second, cheaper amplifier to control a quantity which could loosely be called the sum of these voltages. This amplifier acts merely as a "slave" to the first one, enabling a full voltage swing to occur, but not in any way directly affecting the required output. The second amplifier is capacitively bypassed at high frequencies, where a full voltage swing is not so important in audio work. This bypassing prevents the instability for which bridge amplifiers are notorious.

The simplest version of the circuit requires that the earth (i.e. chassis, screening and mains earth) be floating, changing potential with respect to the power supply. Although this is unusual, it is perfectly safe and acceptable provided steps are taken to prevent stray mains currents from passing through the system.

It turns out that the design of both component amplifiers may be considerably reduced in complexity by using these systems. Extra, such as current protection, may be added easily and far more simply to the floating bridge than to conventional amplifiers.

The new system has the following advantages over conventional bridge amplifiers:
- wide bandwidth and lower distortion;
- optimized voltage swing, because both amplifiers must bottom before the output is affected;
- saving in cost and complexity.

The output terminals are labelled x and y as shown, being instantaneous potentials with respect to point A, and in both cases the feedback loops are arranged so that at low frequencies A1 controls the value of x-y, and A2 controls the value of x+y. Capacitor C2 bypasses A2 at high frequencies, where large voltage swings are unnecessary, Circuit A, Fig. 1, inverts the signal which circuit A Fig. 2 does not.

For consider a simple-minded approach to a conventional bridge amplifier, Fig. 3. Feedback loops are arranged so that if V is the instantaneous input voltage then x+V, and y-V, and the output across the load is x-y+2V. Remembering the close coupling between individual amplifiers, imagine that x rises for some reason because of effects of A2, This causes A1 to turn on, to keep y constant. The fact that A1 has turned on effects the value of x, causing A2 to react each time there is a small phase shift, which can only be amplified in this mechanism and cause unwanted oscillation. Hiding things can happen at the cross-over point where both amplifiers must conduct simultaneously. The new system almost completely eliminates this coupling effect.

Effect of A1 in circuit A Fig. 4 shows A1 pole and feed-back loop. For the present A1 can be regarded as a sink which will accept any current generated by A2. In the quiescent state, A1 stabilizes x+y to its own (ideally zero) off-set voltage. Imagine that the potential y rises with respect to x for some reason. The potential at the + input to the amplifier remains at almost earth potential x, so that there is a voltage across R2 which tends to make a current pass into the + input. This causes A1 to turn on in such direction as to make a current pass from x to y through the load impedance, thereby reducing the value of y-x and stabilizing the system.

Amplifier A2, is acting as a virtual earth amplifier, and its voltage gain is R3/R1. Because A1 is insensitive to supply voltages, then any change in potential y with respect to the power supply will not be noticed by A1 (apart from stray capacitance effects). As the potential

*Remember Kirchoff's Law: if current is supposed to disappear down the earth line, where is it supposed to be coming from?

**There is also a low frequency coupling, discussed in part 2.

WIRELESS WORLD, SEPTEMBER 1980

and if you do, you may find it good advice to forget temporarily the electronics you have already learnt, and to investigate the circuits from first principles.

Block diagram analysis
Two alternative but similar arrangements of the bridge amplifiers are shown in Figs 1 & 2. Amplifiers are non-inverting and A1 is insensitive to the state of the power supply. Output terminals are labelled x and y as shown, being instantaneous potentials with respect to point A, and in both cases the feedback loops are arranged so that at low frequencies A2 controls the value of x-y, and A3 controls the value of x+y. Capacitor C2 by-passes A3 at high frequencies, where large voltage swings are unnecessary. Circuit A, Fig. 1, inverts the signal which circuit A Fig. 2 does not.

For consider a simple-minded approach to a conventional bridge amplifier, Fig. 3. Feedback loops are arranged so that if V is the instantaneous input voltage then x+V, and y-V, and the output across the load is x-y+2V. Remembering the close coupling between individual amplifiers, imagine that x rises for some reason because of effects of A2. This causes A1 to turn on, to keep y constant. The fact that A1 has turned on effects the value of x, causing A2 to react each time there is a small phase shift, which can only be amplified in this mechanism and cause unwanted oscillation. Hiding things can happen at the cross-over point where both amplifiers must conduct simultaneously. The new system almost completely eliminates this coupling effect.

Effect of A1 in circuit A Fig. 4 shows A1 pole and feedback loop. For the present A1 can be regarded as a sink which will accept any current generated by A2. In the quiescent state, A1 stabilizes x+y to its own (ideally zero) off-set voltage. Imagine that the potential y rises with respect to x for some reason. The potential at the + input to the amplifier remains at almost earth potential x, so that there is a voltage across R2 which tends to make a current pass into the + input. This causes A1 to turn on in such direction as to make a current pass from x to y through the load impedance, thereby reducing the value of y-x and stabilizing the system.

Amplifier A2, is acting as a virtual earth amplifier, and its voltage gain is R3/R1. Because A1 is insensitive to supply voltages, then any change in potential y with respect to the power supply will not be noticed by A1 (apart from stray capacitance effects). As the potential

*Remember Kirchoff's Law: if current is supposed to disappear down the earth line, where is it supposed to be coming from?

**There is also a low frequency coupling, discussed in part 2.

WIRELESS WORLD, SEPTEMBER 1980

and if you do, you may find it good advice to forget temporarily the electronics you have already learnt, and to investigate the circuits from first principles.

Block diagram analysis
Two alternative but similar arrangements of the bridge amplifiers are shown in Figs 1 & 2. Amplifiers are non-inverting and A1 is insensitive to the state of the power supply. Output terminals are labelled x and y as shown, being instantaneous potentials with respect to point A, and in both cases the feedback loops are arranged so that at low frequencies A2 controls the value of x-y, and A3 controls the value of x+y. Capacitor C2 by-passes A3 at high frequencies, where large voltage swings are unnecessary. Circuit A, Fig. 1, inverts the signal which circuit A Fig. 2 does not.

For consider a simple-minded approach to a conventional bridge amplifier, Fig. 3. Feedback loops are arranged so that if V is the instantaneous input voltage then x+V, and y-V, and the output across the load is x-y+2V. Remembering the close coupling between individual amplifiers, imagine that x rises for some reason because of effects of A2. This causes A1 to turn on, to keep y constant. The fact that A1 has turned on effects the value of x, causing A2 to react each time there is a small phase shift, which can only be amplified in this mechanism and cause unwanted oscillation. Hiding things can happen at the cross-over point where both amplifiers must conduct simultaneously. The new system almost completely eliminates this coupling effect.

Effect of A1 in circuit A Fig. 4 shows A1 pole and feedback loop. For the present A1 can be regarded as a sink which will accept any current generated by A2. In the quiescent state, A1 stabilizes x+y to its own (ideally zero) off-set voltage. Imagine that the potential y rises with respect to x for some reason. The potential at the + input to the amplifier remains at almost earth potential x, so that there is a voltage across R2 which tends to make a current pass into the + input. This causes A1 to turn on in such direction as to make a current pass from x to y through the load impedance, thereby reducing the value of y-x and stabilizing the system.

Amplifier A2, is acting as a virtual earth amplifier, and its voltage gain is R3/R1. Because A1 is insensitive to supply voltages, then any change in potential y with respect to the power supply will not be noticed by A1 (apart from stray capacitance effects). As the potential

*Remember Kirchoff's Law: if current is supposed to disappear down the earth line, where is it supposed to be coming from?

**There is also a low frequency coupling, discussed in part 2.

WIRELESS WORLD, SEPTEMBER 1980

and if you do, you may find it good advice to forget temporarily the electronics you have already learnt, and to investigate the circuits from first principles.
y with respect to the power supply is the only thing which is affected by A_0, then A_1 is decoupled from A_0. This confers a high degree of stability on the circuit, and enables A_0 to be of cheap design, with good distortion performance, in what will remain a high fidelity system. Effect of A_0 in circuit A. Fig. 5 shows A_0, and the associated feedback loop. Resistor R_1 is large-valued, providing bias, so that the conditions are identical with those for circuit A. Imagine that the input voltage rises. This causes A_0 to conduct in one direction so as to cause y to rise with respect to x. Negative feedback is applied through R_0, causing the potential of x to rise. The input current $i_{x}=i_{R0}=i_{R1}$ when the input voltage V_{x} is again decoupled from A_0. The diagram shows the effect of feedback loop, C_1 by-passes A_2 at high frequencies. Resistance R_2 will be set near unity, so that at low frequencies A_0 controls the potential of y in such a way that $x+y$ is always equal to the potential at point A. This corresponds to the voltage swings experienced in conventional bridge amplifiers, and has the advantage that the power dissipation is shared equally between the two component amplifiers. In practice, however, R_2 will be set slightly larger than R_0 so that at low frequencies, A_0 bottoms shortly before A_0 does. This enables a full voltage swing to occur, and is illustrated in Fig. 7. The system can cope with a poor quality decoupling capacitor C_1, the required output being appreciably affected. Cost savings can be quite large in this area.

Earthing arrangements. Fig. 8 shows a typical supply arrangement. Capacitors C_1, C_2, the stray capacitance between earth and the bulky components of the power supply, and C_3, the stray capacitance between primary and secondary of the transformer. An apparent problem as regards building a bridge amplifier is the capacitor C_1, since this capacitor is the only part of the circuit that is effectively put across the output, and is therefore a potential source of drift. This capacitance is stray between earth and the output, and is seen that, whilst the system is working correctly these currents are safely passed. The feedback loop of A_0 causes the potential y to follow that of the power supply, if it rises with respect to x (i.e. earth). Such a rise in y causes A_0 to conduct, so that $x+y$ is always equal to the mains currents. But this does not apply at switch-on, or on failure of some component. It is thus highly desirable to insert an earthed capacitor, between primary and secondary of the transformer.

A further safeguard, which is necessary for highly inductive loads, is to insert reverse-biased diodes between the pre-amplifiers, and the power supply. This prevents any transients from being reverse-biased. However, if a good screen is included in the transformer, and stray capacitance between earth and each power rail is far away from, or screened from, the rest of the control circuitry, and provided that the capacitance between collector and base of T_4 is small. Even with a large capacitance here (say a maximum of 100µF), then a small capacitance between collector and base of T_4, could safely be included, thus damping out any interaction. This precaution is probably unnecessary: for example, if $TXX304$ is used for T_4, then a working voltage of 700V can be used, but there is a capacitance of only 6µF between collector and base.

Further applications

Change of origin device

This section describes how the amplifier can be included in a stereo arrangement, avoiding the unusual earthing arrangement of Fig. 8, and also describing how a bridge amplifier can be included here because it follows on from the same supply would result in the act of a virtual earth amplifier, so that the a.c. signal I_1 is equal to $i_{R2}R_2/V_{amplifier}$, where $V_{amplifier}$ is the input voltage.

Because of the effect of C_1, C_2, R_m, and R_{pot}, a constant current passes through R_{pot}, and any a.c. variations in V_m are caused by A_0 to pass through R_0 so that the output e.m.f. is $(R_m/R_0)V_{amplifier}/R_0$. Thus the gain is R_m/R_0.

There is no possibility of coupling between the pre-amplifier and bridge amplifier stages, provided that T_4 is sensibly positioned so that its collector is far away from, or screened from, the rest of the control circuitry, and provided that the capacitance between collector and base of T_4 is small. Even with large capacitance here (say a maximum of 100µF), then a small capacitance between collector and base of T_4, could safely be included, thus damping out any interaction. This precaution is probably unnecessary: for example, if $TXX304$ is used for T_4, then a working voltage of 700V can be used, but there is a capacitance of only 6µF between collector and base.

Components C_m, and R_m are unnecessary in actual circuits because there is a semi-stabilized voltage point E_0 at the Wembley Conference Centre, London from March 11-13, 1981. The first two days are intended for design engineers and those involved in designing and implementing microsystems of all types. Scope includes cases such as processor boards, memory, microprocessors, project management, real time languages, signal processing, software development, and so on.

A call for papers has been issued for the Microsystems 81 conference, being held at the Wembley Conference Centre, London from March 11-13, 1981. The first two days are intended for design engineers and those involved in designing and implementing microsystems of all types. Scope includes cases such as processor boards, memory, microprocessors, project management, real time languages, signal processing, software development, and so on.

A call for papers has been issued for the Microsystems 81 conference, being held at the Wembley Conference Centre, London from March 11-13, 1981. The first two days are intended for design engineers and those involved in designing and implementing microsystems of all types. Scope includes cases such as processor boards, memory, microprocessors, project management, real time languages, signal processing, software development, and so on.
Electronic cryptography

Codes, ciphers, communications and computers

Lively controversy in the USA about the degree of security provided by the new NBS data encryption standard (DES)

The marriage of communication technology and computers has proved a fruitful alliance that has already led many profound advances in the technology has been of interest primarily to Bletchley Park.

The capture by the North Koreans of Hindi in which the same running key is repeated only rarely. Ideally the same substitute-alphabet should be used only randomly; the users need to be instructed by means of a running key whereby each letter of the plain text, and their instructions should, if possible, be given in a truly random sequence. In other words the sequence indicated by the key should never recur. In practice this can be done by means of a "one-time pad" or "one-time tape" containing strings of random letters, figures or binary digits. Such a key may indicate to the user by how much each letter should be shifted along the alphabet; in a form of encryption (but unlike arithmetical addition with no carry) see Fig. 2.

A true one-time system is distinctly secure and will defy all forms of cryptanalysis.

Cipher machines

For centuries, manual encryption was done painstakingly by hand, aided sometimes by simple abacus-type machines and the like. Use of the printed page. Polyalphabetic, first proposed in 1553 in the form of the "Koch, Dammann, Schoberius and a basically similar machine but using six wheels and a drum. The first cipher machine was developed by Hagelin in 1934.

Most machines had a number of interesting features, notably between input and output contacts as to form a polyalphabetic substitution cipher. While using polyalphabetic ciphers greatly increases security, it brings with it the need for the user to have some form of key or running key that is not available to the eavesdropper.

It is a feature of any polyalphabetic cipher that the users need some form of aide-memoire or key to decipher the message, just as a codebook or other directory is a form of codebook as a substitute alphabet.

The capture by the North Koreans of Hindi in which the same running key is repeated only rarely. Ideally the same substitute-alphabet should be used only randomly; the users need to be instructed by means of a running key whereby each letter of the plain text, and their instructions should, if possible, be given in a truly random sequence. In other words the sequence indicated by the key should never recur. In practice this can be done by means of a "one-time pad" or "one-time tape" containing strings of random letters, figures or binary digits. Such a key may indicate to the user by how much each letter should be shifted along the alphabet; in a form of encryption (but unlike arithmetical addition with no carry) see Fig. 2.

A true one-time system is distinctly secure and will defy all forms of cryptanalysis.

Cipher machines

For centuries, manual encryption was done painstakingly by hand, aided sometimes by simple abacus-type machines and the like. Use of the printed page. Polyalphabetic, first proposed in 1553 in the form of the "Koch, Dammann, Schoberius and a basically similar machine but using six wheels and a drum. The first cipher machine was developed by Hagelin in 1934.

Most machines had a number of interesting features, notably between input and output contacts as to form a polyalphabetic substitution cipher. While using polyalphabetic ciphers greatly increases security, it brings with it the need for the user to have some form of key or running key that is not available to the eavesdropper.

It is a feature of any polyalphabetic cipher that the users need some form of aide-memoire or key to decipher the message, just as a codebook or other directory is a form of codebook as a substitute alphabet.

The capture by the North Koreans of Hindi in which the same running key is repeated only rarely. Ideally the same substitute-alphabet should be used only randomly; the users need to be instructed by means of a running key whereby each letter of the plain text, and their instructions should, if possible, be given in a truly random sequence. In other words the sequence indicated by the key should never recur. In practice this can be done by means of a "one-time pad" or "one-time tape" containing strings of random letters, figures or binary digits. Such a key may indicate to the user by how much each letter should be shifted along the alphabet; in a form of encryption (but unlike arithmetical addition with no carry) see Fig. 2.

A true one-time system is distinctly secure and will defy all forms of cryptanalysis.
The cipher alphabet sequence repeats, although the authorized users (with identical machines and rotors) only had to know which permutation to use, their initial settings and usually some further permutations made possible, for example, by a previously adjustable jackknife.

Those who devised rotor machines in the 1920s apparently believed that they would be secure against all then-known methods of practical cryptanalysis, the combined efforts of codebreakers in Poland, France, and at Bletchley Park, and the work of Friedman in the United States, showed this not to be the case. The Enigma-type machines of the Germans and Japanese (more complex forms of a machine developed and patented for commercial use) provided a massive input to the codebreakers for subsequent distribution as Ultra, Purple, etc. Methods of successfully attacking even single short messages in Hagelin cipher text with known plain text, or longer messages without this aid, have been described. Nevertheless there is no evidence that all rotor-type machine ciphers have been broken, even with computer assistance, as it is possible to add to their complexity in many ways, for example by increasing the number of rotors.

Digital Coding

In one sense a cipher text intended for telegraphic transmission involves the use of digital codes. Morse code, for example, if read as a binary non-return-to-zero digital code. However, modern practice is to convert the plain text into a code or cipher text or into binary digital form first for on-line systems and only then to make a secret by combining the resultant bit stream with a running key, also in digital form, Fig. 3. If the running key is used only once (one-time) the resulting cryptosystem can be considered unconditionally secure. On the other hand, if, for example, a simple pseudo-random bit generator is used to provide a shift-register sequence, which need not recur, then it is essentially useless as a linear logic. If linear logic is used, Diffie and Hellman claim that the resulting cryptosystem can be broken in around 700 seconds on a minicomputer. It was this vulnerability that led IBM to investigate the use of non-linear block ciphers in which the plain text is divided into separate blocks, each block of data being operated independently. Such a cryptosystem using simple substitution requires an extremely large number of key bits. The IBM approach has therefore been to use relatively few key bits but to subject each block of text to a very complex series of transformations, including both permutations of order and substitutions based on the derived keys.

The aim has been to produce a computationally secure cryptosystem comprising a large number individual cryptosystems each of which employs the same algorithm yet which can be deciphered only by someone who can generate the correct, though relatively simple, unique key sequence. From a manufacturing viewpoint, there are clearly significant advantages if it is a simple, standard algorithm that is public property: the individual short digital sequence can generate the key stream for the authorized users is kept secret, involving great care in key management and key distribution. The basic key generator may be in the form of a sealed, tamper-proof module.

Digital systems have a further important advantage: their use is not completely dependent upon the fact that the system is fast enough, it can be applied to real-time digitized speech, thus providing telephone and radiotelegraphy with secure scrambling or privacy systems much more secure than the traditional forms of analogue scrambling. Digital encryption can be applied also to teletex, facsimile and many other systems where data transmission links are involved to prevent unauthorized users from obtaining any information or to prevent software piracy.

Cryp-tanalysis

The moment anything is committed to paper or fed into an electronic store as plain text or as encrypted messages, it becomes vulnerable to an eavesdropper, whether by interception, data theft or physical access. If the encrypted material cannot be read by the eavesdropper with the help of cryptanalysis then it can be considered secure. Nevertheless a determined eavesdropper in such circumstances will seek to acquire examples of known plain text, for example from message files before they have been enciphered, or after they have been deciphered, or from subsequence in paraphrased form, or by being transmitted into a non-secure machine. Any code or cipher, even one which has a one-time cryptosystem defined as unconditionally secure, is in practice only as secure as the circumstances surrounding its use.

An eavesdropper faced with cipher text that cannot be deciphered often retains the encrypted material in the hope that success may come later, when perhaps some of the plain text will have come into possession as described above; or when time has allowed careful observation of what happens after the receipt of the message by the addressee. Many cryptosystems which are difficult to attack also produce very few cipher text messages which may reveal their algorithms. However, many complex systems require the attacker or his keys when attacked with known text and this information may then open the lock to other messages which may reveal future using the same cryptosystem.

If all else fails a computer can search the encryption scheme using all of the possible key permutations until a meaningful result is achieved. Modern digital systems require a very intensive search indeed: a key of 100 binary digits requires an average of 2^{100} possibilities, a mind-boggling total.

In the years BC (before computers) cryptanalysis depended for its degree of relative security either on keys of unlimited length, great ingenuity in the use of algebraic manipulation, and the ability of the various processes (e.g. double-transposition ciphers). Today the emphasis is on making the transformations of the plain text so complicated that even with massive computer power it would be totally uneconomical to search out all possible solutions; such ciphers are termed conditionally secure. However not all ciphers that are thought to be secure against computer attack may be so actually. According to Martin Hellman, "At present mathematicians lack the tools for proving systems to be computationally secure and the history of cryptography demonstrates all too well that supposedly unbreakable systems have hidden flaws".

Security of Codes

The so-called one-time pad, that is to say the provision of truly random paired keys of unlimited length, has been accepted as one of the few systems that are unconditionally secure. The use of such a system however involves many practical difficulties, including the production and distribution of the pads or tapes. If used for multiple-address messages then the loss of one pad puts the entire system in jeopardy; if operated only with paired-users the production and distribution costs become formidable. Physical security of machines is important and personnel must be trained when the whole system is operated.

In practice the cage and keywheels of the Hagelin machine and the rotors of Enigma, and the sealed, potted module. The moment anything is committed to paper or fed into an electronic store as plain text or as encrypted messages, it becomes vulnerable to an eavesdropper, whether by interception, data theft or physical access. If the encrypted material cannot be read by the eavesdropper with the help of cryptanalysis then it can be considered secure. Nevertheless a determined eavesdropper in such circumstances will seek to acquire examples of known plain text, for example from message files before they have been enciphered, or after they have been deciphered, or from subsequence in paraphrased form, or by being transmitted into a non-secure machine. Any code or cipher, even one which has a one-time cryptosystem defined as unconditionally secure, is in practice only as secure as the circumstances surrounding its use.

An eavesdropper faced with cipher text that cannot be deciphered often retains the encrypted material in the hope that success may come later, when perhaps some of the plain text will have come into possession as described above; or when time has allowed careful observation of what happens after the receipt of the message by the addressee. Many cryptosystems which are difficult to attack also produce very few cipher text messages which may reveal their algorithms. However, many complex systems require the attacker or his keys when attacked with known text and this information may then open the lock to other messages which may reveal future using the same cryptosystem.

If all else fails a computer can search the encryption scheme using all of the possible key permutations until a meaningful result is achieved. Modern digital systems require a very intensive search indeed: a key of 100 binary digits requires an average of 2^{100} possibilities, a mind-boggling total.

In the years BC (before computers) cryptanalysis depended for its degree of relative security either on keys of unlimited length, great ingenuity in the use of algebraic manipulation, and the ability of the various processes (e.g. double-transposition ciphers). Today the emphasis is on making the transformations of the plain text so complicated that even with massive computer power it would be totally uneconomical to search out all possible solutions; such ciphers are termed conditionally secure. However not all ciphers that are thought to be secure against computer attack may be so actually. According to Martin Hellman, "At present mathematicians lack the tools for proving systems to be computationally secure and the history of cryptography demonstrates all too well that supposedly unbreakable systems have hidden flaws".

Security of Codes

The so-called one-time pad, that is to say the provision of truly random paired keys of unlimited length, has been accepted as one of the few systems that are unconditionally secure. The use of such a system however involves many practical difficulties, including the production and distribution of the pads or tapes. If used for multiple-address messages then the loss of one pad puts the entire system in jeopardy; if operated only with paired-users the production and distribution costs become formidable. Physical security of machines is important and personnel must be trained when the whole system is operated.

In practice the cage and keywheels of the Hagelin machine and the rotors of Enigma, and the sealed, potted module.
DES provides a ciphering algorithm or set of rules involving both substitution and transposition techniques and capable of being implemented in current I.A. technology. Figs 4, 5 and 6. Each data block passes through 18 data-manipulation stages in which 16 different internal ciphering keys are derived from a 56-bit main key (with 64-bit input code). This provides 2^80 possible codes with a codebreaker with the need for a truly massive search, always provided that nothing is known about the enciphering key. Diffie and Hellman, advocates of the public key system, pointed out that knowledge of even a quite small part of the basic key would greatly reduce the search required, and that I.A. technology now making possible to contemplate the use of gigantic proportions. They postulated a decoding machine using a million I.A. chips, that could search 1016 keys per second, so that if the full 1016 keys could be searched in about a day. This modern version of "Colossus" could cost an estimated £10 million, with an average cost per solution of about £250. While only a very few organizations, including governments, could positively contemplate building such a machine, the mere possibility of such a validation of hardware based on this complex non-linear algorithmic design is checked on the need to ensure that the output can never contain the key or plain text. The advent of DES has already sparked off a vigorous debate as to the degree of security it may give, and whether it would not have been better to develop an alternative, probably more secure, classical or linear form of cryptosystem, known as "public-key systems." (third column).

WIRELESS WORLD, SEPTEMBER 1980

RSA public-key crysptosystem devised by Rivest, Shamir and Adleman (whose initials make up the "RSA" acronym) are known as Diffie and Hellman "trapdoor" system by means of what is called a trapdoor function. The key to indicate a one-way or irreversible function, while the trapdoor is derived from a class of mathematical functions that can be solved only by those who know the appropriate method of solution. The trapdoor itself consists of a set of numbers that are used to encrypt a piece of data and then decrypt the data. The key to successful operation of the trapdoor is the trapdoor function.

Several systems using basically similar techniques have been proposed or developed for application to computers, including home computers, where no hardware or software exists that will prevent unauthorised users from using software or information to prevent software piracy. An example of such a system is known as a "cryptosystem." Cryptosystems are used for a wide variety of purposes, such as encrypting data on computer networks or even for personal use. They are designed to provide a level of security that is adequate for the intended application, while also being easy to use and understand.

In summary, the existence of DES and other similar algorithms indicates that the world is moving toward a more secure form of communication. While there may still be some concerns about the security of these systems, their widespread adoption and use in various applications is an indication of their effectiveness and usefulness. As technology continues to advance, it is likely that we will see even more secure and efficient methods of protecting information from unauthorized access.
Like Faraday (Maxwell) looked upon the role of conductors in electricity as a minor one, since they only terminations of the lines of force of the surrounding electric field.

The Encyclopedia Britannica

Physics offers some other examples of dual representation - light (photon, electrons as particles or waves (electron diffraction) - but only in electrochemical phenomena are the two dual representations, circuit and field, always and exactly interchangeable. It is only in the present century that there has been such an awareness of development in the techniques of circuit analysis, while earlier scientists such as Faraday (1791-1858), Maxwell (1831-1879) and Poynting (1852-1914) regarded fields as pre-eminent. (It should be added that fields involve only the algebraic manipulation of one-dimensional quantities.) The development of waveguide and associated techniques, for which circuit representation is impracticable, may tend to reinvolve the balance.

The first question asked nowadays is "Are fields real?" Those who ask this question overlook the fact that the established alternative to fields is action at a distance, but the idea of gravitational attraction that it needs an Einstein to remind us of the problem. It is clear, for example, from a study of waves before Newton, namely how can the sun exert a force on a planet across the whole universe? If there were no planets, the sun's rays, for example, would be a wave of electromagnetic phenomena and Maxwell showed that such fields could be propagated as waves, in empty space as well as in material media. (See "No radio without displacement currents." Wireless World, August 1979.) Evidence in support of this idea of electromagnetic phenomena was direct - the phenomenon of propagation can be observed. An interesting example of this is that a circular loop of wire acquires radiating properties, i.e., becomes a useful frame aerial instead of a simple conducting loop when the time taken for the magnetic field to spread from one side of the loop to the other becomes a significant part of the period of the alternating current, which is producing it.

So acceptable is the concept of fields and waves in substitution for action-at-a-distance that scientists are now looking for gravity waves (without much success so far). It is true that discerning the "luminous ether" which was supposed to be an all-pervading medium supporting electromagnetic waves, in the fields which were originally thought of as "states of stress in a medium" must now be regarded as "properties which exist in space", but this is more difficult to accept than other indisputable concepts of modern physics, such as the wave nature of the electron and the quark; one has to get used to the difficult concept of wave mechanics (sometimes introduced in terms of "wave interference and probability") which provides the theoretical basis for the whole of modern solid-state technology. Einstein's principle of the irreversibility of the process of gravitational action-at-a-distance was therefore imagined by Maxwell (1855) that a force could arise when a body continues in a straight line, by what is called "slowing down" or "shortest line" in a curved space with the 'curvature' being due to the presence of mass. In more recent times, the concept of space by the presence of mass is just as far from everyday experience as fields in empty space. Wherever you go, modern physics demands faith in something which is not comprehensible in terms of everyday experience: the laws of physics demand acceptance because they produce a coherent structure of theory which accords with all experimental evidence. Let us now look at the simplest example of the circuit in which we have the energy stored in a dielectric which can be anything from a vacuum to high-permittivity ceramic (Fig. 1). From a circuit viewpoint we say that the charge Q from one plate to the other is $q v$ where v is the potential difference across the plates and q is the time of transfer. Since v increases as the charge builds up the total work done and therefore energy in the electric or magnetic fields is dependent on the potential difference and energy in any of the fields. In electrostatics the total value of D integrated over a surface is equal to \mathbf{E}, which is equal to \mathbf{D} for a vacuum (the flux of electric induction \mathbf{D} originates (Gauss's theorem). This is always true, whatever the medium, so D can be regarded as a primary field which emanates from charge, the "cause" of any observed phenomenon. Then the electric field force is one of the consequences of the magnitude is found by dividing D by the dielectric constant ε of the medium, which can vary from a vacuum to a perfect conductor (the units are farads per metre). The reason why, is not made unity in the system is to enable the system to incorporate amperes, metre, kilogram and second as basic units. One can test directly the inverse-square law of force between two charged masses, but one will need a constant of proportionality like the gravitational constant in the formula for the force between two masses. If the formula for force between two charges $F = k q_1 q_2 / r^2$ (7) is to apply, the vector force is in the same direction as the vector distance \mathbf{r}. From equation (3) can be split by introducing electric field force $\mathbf{E} = \mathbf{F} / q$, where $E = \mathbf{F}_x / q$ (4).

The subject of magnetism has been confused due to the use of magnets and is more complicated because the simple (scalar) relationships of electrostatics have to be replaced by vector relationships. The equation for the line integral of the current strengths \mathbf{J} around a closed path is

$$\oint \mathbf{E} \cdot d\mathbf{r} = \mathbf{B} \cdot \mathbf{d} \quad \text{(4)}$$

where heavy type indicates vector quantities, \mathbf{A} is a unit vector in the r-direction and the cross product $\mathbf{A} \times \mathbf{F}$ or \mathbf{B} as vector multiplications. This also can be split into a current and a field of force $\mathbf{E} = \mathbf{F} / q$, where $E = \mathbf{F}_x / q$ (4).

If \mathbf{B} is uniform along the length of a current-carrying conductor, and $\mathbf{F} = \mathbf{E} \times \mathbf{B}$ where the magnetic line starts and ends at the same point, the line integral of the current strength between two points is zero. This is always true, whatever the medium, so D can be regarded as a primary field which emanates from charge, the "cause" of any observed phenomenon. Then the electric field force is one of the consequences of the magnitude is found by dividing D by the dielectric constant ε of the medium, which can vary from a vacuum to a perfect conductor (the units are farads per metre). The reason why, is not made unity in the system is to enable the system to incorporate amperes, metre, kilogram and second as basic units. One can test directly the inverse-square law of force between two charged masses, but one will need a constant of proportionality like the gravitational constant in the formula for the force between two masses. If the formula for force between two charges $F = k q_1 q_2 / r^2$ (7) is to apply, the vector force is in the same direction as the vector distance \mathbf{r}.

The vector \mathbf{P} is at right angles to the plane of Fig. 2(a) and \mathbf{E} and \mathbf{H} and its magnitude is E if \mathbf{P} is parallel to \mathbf{E} and \mathbf{H} and its magnitude is H if \mathbf{P} is perpendicular to \mathbf{E} and \mathbf{H}. The magnetic field of a current I flowing along a wire of radius a is

$$\mathbf{H} = \frac{B}{2 \pi a} \mathbf{n}$$

where B is the magnetic field and \mathbf{n} is a unit normal to the plane of the current. The current I is the total current flowing through the circular cross-section of the wire. This is always true, whatever the medium, so D can be regarded as a primary field which emanates from charge, the "cause" of any observed phenomenon. Then the electric field force is one of the consequences of the magnitude is found by dividing D by the dielectric constant ε of the medium, which can vary from a vacuum to a perfect conductor (the units are farads per metre). The reason why, is not made unity in the system is to enable the system to incorporate amperes, metre, kilogram and second as basic units. One can test directly the inverse-square law of force between two charged masses, but one will need a constant of proportionality like the gravitational constant in the formula for the force between two masses. If the formula for force between two charges $F = k q_1 q_2 / r^2$ (7) is to apply, the vector force is in the same direction as the vector distance \mathbf{r}.

The vector \mathbf{P} is at right angles to the plane of Fig. 2(a) and \mathbf{E} and \mathbf{H} and its magnitude is E if \mathbf{P} is parallel to \mathbf{E} and \mathbf{H} and its magnitude is H if \mathbf{P} is perpendicular to \mathbf{E} and \mathbf{H}. The magnetic field of a current I flowing along a wire of radius a is

$$\mathbf{H} = \frac{B}{2 \pi a} \mathbf{n}$$

where B is the magnetic field and \mathbf{n} is a unit normal to the plane of the current. The current I is the total current flowing through the circular cross-section of the wire.
As long as n_H/a is equal to n_F/b, the value of H will be the same. In Fig. 2(d) the process has been pushed to the limit, with only one turn. Alternatively the configuration of the original winding with groups of different numbers of turns in parallel, instead of in series. Clearly the number of turns, or the series/parallel connection of turns, does not matter as long as the total current circulating around the solenoid is kept constant. For Fig. 2(e) in particular one can write

$$H = \frac{a}{b} \text{ampere/metre} \quad (11)$$

It is a simple matter to squash the inductor of Fig. 2(d) into the stripped transmission line of Fig. 3. The magnetic field in the space between conductors will remain unchanged at $H = \frac{n_\text{F}}{b}$ amperes/metre. Assuming for the moment that the resistance of the transmission line is negligible so that the potential difference between the two strips is throughout the length, then with separation d the electric field is $E = dH$ volts/metre. The magnitude of the Poynting vector for power flow per unit area through a cross-sectional line in the field is $S = \frac{E^2}{\varepsilon_0}$. The power flow is always exact, and you may use either the circuit or the field calculation, whichever is more convenient. One obviously uses the field calculation for waveguide and radiation problems.

APPENDIX

Power flow in a lossless coaxial cable.

A cross-section of a coaxial cable having inner and outer radii a and b, with inner conductor 1 and outer conductor 2, is shown in Fig. 1. Calculation is simplified if it is assumed that (a) the working frequency is so high that one can neglect penetration of the currents into the conductors and (b) resistive voltage drop along the length of the conductors is negligible. In fact conditions (a) and (b) are not independent since the skin depth depends on the resistivity.) At distance r from the centre of the cable, the radial component of the magnetic field is $B = \frac{H}{r}$. (11)

$$E = \frac{dH}{dr} = \frac{B}{\mu} \quad \text{(A1)}$$

We know that the electric field is greatest at the inner surface and decreases linearly to zero at the outer surface, but its relationship to the difference of potential between the two surfaces is not obvious. By using Gauss's theorem as in the previous proof for finding the capacitance between coaxial cylinders it can be shown that at radius r:

$$E = \frac{H}{2\pi r} \quad \text{(A2)}$$

In (is the symbol for a natural logarithm, otherwise denoted by \ln.) The total magnetic field is also the component B of the magnetic field in the space between the two conductors:

$$B = \frac{H}{r} \quad \text{(A3)}$$

The total power flow is then

$$P = \int_{r_1}^{r_2} \frac{E^2}{\varepsilon_0} \, dr = \frac{E^2}{\varepsilon_0} \int_{r_1}^{r_2} \frac{1}{r} \, dr = \frac{E^2}{\varepsilon_0} \ln \left(\frac{r_2}{r_1} \right) \quad \text{(A4)}$$

But the value of the integral is $\ln(r/a)$ so

$$P = \frac{E^2}{\varepsilon_0} \ln \left(\frac{r}{a} \right) \quad \text{(A5)}$$

Simple alternatives to the monostable

Using low-cost gates for non-critical timing circuits

By D. Price

In comparison with other ICS, c.m.o.s. monostables are rather expensive, the 4538 package costing about £1.50 for two circuits. In a non-critical situation, for example when a reset pulse is required, cheaper solutions are available. A 4093 NAND Schmitt trigger, costing about 10p per gate, provides the basis for an alternative. Referring to Fig. 1, the high input impedance of a c.m.o.s. gate ensures that the absence of other constraints, the voltage at B follows the voltage at A. High gate protection diodes and the bias resistor modify the voltage performance in the following way. After a long quiescent period, the input voltage V_a will be high and the output low. If a negative pulse is applied to G, the output will go low and the output will go high. After a determined period the output voltage V_a will be high and the output low. However, the input potential must be kept low for the duration of the pulse, otherwise the output will be prematurely terminated. A positive-going excursion from G to V_a will drive the power supply rail, but as long as a voltage of $V_+ + 0.5V$ is reached, the gate protection diode starts to conduct and dissipate any excess current. The circuit is therefore quickly reset. If the resistor is taken to the negative rail, all of the pulse directions are reversed. The output pulse length is determined by $R \cdot C$, and C is an approximation, assume that the trigger point of the gate is at half-way between the two power rails. Using the formula $V_+ = \frac{1}{2} V$, the substituting $V = V_+/2$ gives $e^{-t/RC}$. Therefore, $t_{2\text{max}} = RC/2$.

This principle can be used with two inputs simultaneously as shown in Fig. 2, which gives two gated monostables. However, the NAND property of the gate will not allow the resistors to be connected to the negative rail. If a slow fall time can be accepted, which is often the case, the circuit can be used as shown in Fig. 3 where a three input NAND becomes a trio of gated monostables costing about 2p each. If an inverted output is required, replace the NAND with an AND gate and take all of the resistors to the negative rail and use a NOR gate.

During the transition of the gate, both output transistors are switched on and are dissipating power. For this reason, long time constants, i.e. slow transitions, should be avoided. Adding a diode to the external components of the above circuits produces a monostable which is activated while the input is low, and the RC time constant occurs after the input goes high, see Fig. 4. A somewhat more complex arrangement can provide two time constants as shown in Fig. 5. Although this circuit is not a conventional monostable, it is useful, for instance, a delayed switch on and off is necessary.
OPEN CHANNEL (CB) IMPLICATIONS IN DECISIONS ABOUT MODEL CB BAND

Announcing the government's intention to exempt a number of new and existing metal detector and pipe-patching equipment from the Home Secretary's ban on CB licences, licences will be ‘pursue’ to ‘pursue’ the Home Office had received 10,000 letters on the subject of C.B. and 40 petitions carrying thousands of signatures. In reply to questions said that the annual cost to the Post Office of investigations into complaints of interference to 'non-block' activity 'would not amount to $1 million. The costs incurred in dealing with illicit use of 27 MHz were not recorded separately and 'no figures are available for the cost of controlling imports of prohibited equipment.'

He also revealed that from 1st January to 30th April 1979, 84 people were prosecuted in connection with unlicensed installations or use of C.B. equipment at 27MHz, and a further 135 cases are pending. In 1979 a total of 48 persons were convicted of such offences and in 1979 the total reached 83. At the Treasury, Peter Rees, disclosed that '71 sets were seized by Customs and Excise in the first quarter of 1980 and a total of 48 sets were seized in the first quarter of 1980. One of these opinion: trends might be that the government wishes to give

He also revealed that from 1st January to 30th April 1979, 84 people were prosecuted in connection with unlicensed installations or use of C.B. equipment at 27MHz, and a further 135 cases are pending. In 1979 a total of 48 persons were convicted of such offences and in 1979 the total reached 83. At the Treasury, Peter Rees, disclosed that '71 sets were seized by Customs and Excise in the first quarter of 1980 and a total of 48 sets were seized in the first quarter of 1980. One of these opinion: trends might be that the government wishes to give

He also revealed that from 1st January to 30th April 1979, 84 people were prosecuted in connection with unlicensed installations or use of C.B. equipment at 27MHz, and a further 135 cases are pending. In 1979 a total of 48 persons were convicted of such offences and in 1979 the total reached 83. At the Treasury, Peter Rees, disclosed that '71 sets were seized by Customs and Excise in the first quarter of 1980 and a total of 48 sets were seized in the first quarter of 1980. One of these opinion: trends might be that the government wishes to give
Universities and companies to unite in industrial robot programme

At a recent press conference held at the headquarters of Britain's small but active subsidiary of the Science Research Council announced a £500,000 five-year programme funding in industrial robotics.

The plans outlined by Peter Davey, the programme's director, include the realisation of university-based ideas by companies interested in both development of the robots and their exploitation in manufacturing industry. The COSTAR project, which is likely to have serious repercussions on the automotive industry, has already established the production of the P'ye Telecommunications for the City of Nottingham's Technical Services

These caves are open to the public for guided tours and as a result of difficulties experienced by elderly visitors negotiating the sloping walks, as well as for security purposes, the City's administrators decided to install a base station on level ground to provide a member of the party for help.

Two-way radio installed in caves

The network of caves below the site of Nottingham Castle to be served by a two-way radio system, the equipment being supplied by P'ye Telecommunications for the City of Nottingham's Technical Services

At a recent press conference held at the headquarters of Britain's small but active subsidiary of the Science Research Council announced a £500,000 five-year programme funding in industrial robotics.

The plans outlined by Peter Davey, the programme's director, include the realisation of university-based ideas by companies interested in both development of the robots and their exploitation in manufacturing industry. The COSTAR project, which is likely to have serious repercussions on the automotive industry, has already established the production of the P'ye Telecommunications for the City of Nottingham's Technical Services

These caves are open to the public for guided tours and as a result of difficulties experienced by elderly visitors negotiating the sloping walks, as well as for security purposes, the City's administrators decided to install a base station on level ground to provide a member of the party for help.

Two-way radio installed in caves

The network of caves below the site of Nottingham Castle to be served by a two-way radio system, the equipment being supplied by P'ye Telecommunications for the City of Nottingham's Technical Services

At a recent press conference held at the headquarters of Britain's small but active subsidiary of the Science Research Council announced a £500,000 five-year programme funding in industrial robotics.

The plans outlined by Peter Davey, the programme's director, include the realisation of university-based ideas by companies interested in both development of the robots and their exploitation in manufacturing industry. The COSTAR project, which is likely to have serious repercussions on the automotive industry, has already established the production of the P'ye Telecommunications for the City of Nottingham's Technical Services

These caves are open to the public for guided tours and as a result of difficulties experienced by elderly visitors negotiating the sloping walks, as well as for security purposes, the City's administrators decided to install a base station on level ground to provide a member of the party for help.
Flexible rate control

This circuit may be useful for digital tuning or a model control which requires reverse, stop, forward and speed functions from one potentiometer.

Resistor \(R_{\text{a}} \) controls digital outputs A, B and C via two comparators so that A is 1 when \(0 < V < V_{\text{OV}} \), B is 1 when \(V_{\text{OV}} < V < V_{\text{OV}} \), and C is 1 when \(V > V_{\text{OV}} \). The ratios of A, B and C, shown on the graph, can be varied by \(R_{\text{a}} \). \(R_{\text{a}} \) controls the analogue output symmetrically about the centre of rotation. The control is non-linear and varies most rapidly at the extremes of rotation. In some applications it may be more useful for \(R_{\text{a}} \) to control a RC oscillator.

D. C. Hopkins

Newcastle

Iveyest

Parallel binary multiplier

Binary multiplication is usually performed by repetitive addition using serial and/or parallel operations. Because parallel multipliers are faster, they are preferable for computing applications. This circuit is a 4x4-bit parallel multiplier which operates in a similar way to conventional written multiplication. The 8-bit product is generated in less than 60ns, and at around half the cost of dedicated circuits such as the 74294 and 285.

Imad Al-Bazz

University of Technology

Iraq

Asynchronous serial data transmitter

When information needs to be sent asynchronously using a start-stop bit format, but the application does not justify a standard UART, i.e., this data transmitter can provide a simple solution.

When data is available, the Data Ready line goes high, which removes the reset from the counter and sets the shift register in the parallel mode. At the next positive clock edge, the start bit and seven data bits are loaded into the shift register. Q0 goes low, Q1 goes high,

D. C. Hopkins

Newcastle

Iveyest

Adding capacitance ranges to a multimeter

Capacitance ranges can be economically incorporated in 3½ digit LCD multimeters based on the KCL7106. A 4066 is used to generate a square wave with the same frequency as the display backplane drive, and with a pk-to-pk amplitude defined by the internal 2.8V reference of the 7106. A second 4066 forms a full-wave synchronous rectifier. One inverter is required and is formed by an exclusive-OR gate because three gates are needed to drive the decimal points.

The circuit uses precision shunt resistors and offers good linearity up to about 10pF. Beyond this value the linearity deteriorates rapidly because the capacitor no longer has time to charge or discharge completely during each half cycle. The 7106 operates on the dual-slope principle and, for correct operation, the clock frequency should be adjusted or crystal controlled to reject mains pickup by making the integration interval an integer number of mains cycles. An important advantage of this circuit is that it is immune to mains frequency to prevent a low frequency beat which would cause fluctuations of the capacitance reading. The clock frequencies listed below provide good stability, even when unscreened test leads are used.

J. B. Cole

Houston

Texas

Computer sounder

When using a keyboard it is helpful to have an audible indication that an entry has registered. This circuit was designed for the scientific computer, and gives a beep through the television loudspeaker.

A 555 is connected as a monostable and, when triggered, gives a 50ms pulse. The second timer is connected in the astable mode, and gives a burst of 2kHz when enabled by the output of the monostable. The input requires a negative-going pulse, which is available from pin 17, NMI input, of the Z80. The output is fed to the volume control of the v.d.u.

M. A. Wheatley

Maidenhead

Berkshire

WIRELESS WORLD, SEPTEMBER 1980
Video-line trigger

An individual video line or group of lines can be displayed on an oscilloscope by using this simple trigger circuit. The 555 monostable is triggered by a frame pulse derived from the mixed sync, and generates a pulse of up to 20ms. The flip-flop synchronizes the end of this pulse with the next line sync, pulse to prevent display jitter. Current consumption is typically 30mA.

P. Newman and M. Tierney
Southern General Hospital
Glasgow

Efficient c.d.i. system

This capacitor-discharge ignition system is based on R. H. Carter's transistor converter. Circuit ideas, Nov. 1975. Tr1 is biased on by current through Rf, which causes collector current to pass through the primary winding of T1. Positive feedback from the secondary winding increases the collector current and, at saturation, insufficient base current turns Tr off. Energy stored in the magnetic field of T1 passes through D2 and into C3. This oscillation continues until the charge on C3 is sufficient to switch Tr1 on, which then inhibits Tr2.

The discharge circuit uses a conventional thyristor design. D3, C3 and Rf form a de-bounce circuit, and R3 can also act as a rev. limiter. Because the inverter has a quiescent current of about 75mA, it will happily run from two alkaline cells.

W. K. Todd
Colchester
Essex

Decimal to binary conversion

If it is necessary or convenient to load data via thumbwheel switches, this circuit provides a cheap method of conversion provided numbers from 0 to 99 are sufficient. The units thumbwheel is an ordinary b.c.d. type, and the tens thumbwheel is a decimal output version. Each decade feeds the appropriate number into the binary adders, which can be c.m.o.s. or t.t.l.

I. H. Math
Alexandria
Dunbartonshire

The logic required for the address counter is shown in Fig.9. The address lines A7 to A0 are set low by the reset button. When the counter is enabled, the address outputs from 0 to 255 and IC9 produces an end signal to mark the end of a single sweep. If the load signal is taken low, the address point A7 to the external address input appears on A0 to A6. Therefore, any memory location can be addressed by an external device.

For normal operation the manual/auto switch is set to the auto position. However, if the contents of the memory are to be examined one word at a time, the manual position is selected. After operation of the reset button, the contents of the memory counter will be displayed on the readout. Operation of the manual clock-switch advances the address by one and displays the contents of the next location.

The circuit shown in Fig.10 provides timing signals for the sample, a-to-d conversion, word storage sequence and the clock signal required for the address counter. Clock 1 and clock 2 outputs, which are t.t.l.-level square-wave signals at the same frequency as the sampling rate, are produced by the voltage-controlled function generator IC9. Five overlapping frequency ranges are provided and variation within each range is achieved by adjusting a 2kΩ potentiometer which is calibrated from 1 to 11. Frequency variation is roughly linear with potentiometer variation, and a ten-turn potentiometer with a turn counter was used in the prototype. The low-frequency limit is adjusted first by setting the turn counter to 1 and setting the potentiometer to give the correct frequency. The upper limit is set by turning the potentiometer to 10 and adjusting R3 to give the correct frequency. The 470 pf capacitor may require trimming due to stray capacitance.

A separate +15V regulator supplies the oscillator i.e. to prevent modulation of the main +15V line by the clock. This additional regulator also improves the stability of the clock frequency. The main power supply in Fig.11 uses two regulators to provide four supply rails.

Increasing the memory

If a larger memory is required, additional stages must be incorporated in the address counter so that the extra memory locations can be addressed. For example, if a third 74193 counter is connected to IC9, in the same way as IC9 is connected to IC8, then 12 bits will be available which can address up to 4096 memory locations. IC9 will send additional inputs so that the end output is in the low state only when the last memory location is addressed.

If pairs of 256 x 4-bit memory blocks are used to construct an 8-bit memory, the address-input lines, data-input and data-output lines should be connected in parallel. The chip-enable and output-enable lines of each pair of memory blocks can then be driven by the outputs of a decoder whose inputs are the address lines of the additional counter stages. The decoding logic ensures that only one pair of memory blocks is active at a time. An alternative scheme, which uses only one additional counter. The decoding logic ensures that only one pair of memory blocks is active at a time. An alternative scheme, which uses only one additional counter.

Operation

To operate the transient recorder, select auto mode and push the reset button. For recording, select a suitable input sensitivity and sampling frequency, and operate the arm button. In this state the input is continuously sampled and the digital word is displayed by the l.e.ds. With no input present, the a-d converter's full range can be observed by adjusting the offset control. With an input signal connected, the recorder is triggered manually by a 5V high level at the trigger input. Triggering may not occur immediately due to the free-running clock, however, it will occur within one sample period and the exact triggering point is identified by a positive edge at the trigger-acknowledge output. Information stored in the first memory location corresponds to the sample taken immediately before this output. Therefore, although the recorder may not trigger immediately, the stored data is valid from receipt of the trigger signal, and in some cases up to a sample period before this. When all of the memory locations have been filled with data, the recording l.e.d.s turns off.

To display the contents of the memory on an oscilloscope, select repetitive mode and a suitable playback rate, i.e. the sampling frequency. When the analogue output is connected to an oscilloscope, recorded data is displayed as a continuous periodic waveform. To plot the data on a chart recorder, operate the reset button, select the

The clock signal required for the address counter.

Fig. 9. Counter logic controls the B-bit memory address.

by G. J. Adams B.Sc., Ph. D.
Designing with microprocessors

4 - The synchronization problem

by D. Zissos and Laurelle Vala,
Department of Computer Science, University of Calgary, Canada

This article explains the need to synchronize the internal operation of the microprocessor chip with the response of peripherals. Software and hardware methods of doing this are outlined. Their step-by-step implementation will be discussed in later articles.

When data is to be transferred between two devices, the transmitting device, before it outputs the data, must ensure that the receiving device is able to accept it, otherwise the data will be lost. As communicating devices generally operate at different speeds, their operation must be synchronized, if system malfunction due to speed mismatch is to be avoided. The set of circuits and signals used for this purpose are referred to collectively as interfaces. The block diagram of an interface involving two devices, a data source and a data acceptor, is shown in Fig. 1. Its function is to monitor the status signals of the two communicating devices and to generate their command signals in the correct sequence to ensure that they operate in step with each other.

A clear understanding of the synchronization problem and of the available solutions is essential for the design and implementation of microprocessor-based systems, and indeed of any system. We shall start by first describing the nature of the synchronization problem in microprocessor-based systems.

The synchronization problem in microprocessor-based systems is probably best illustrated by considering the steps involved in using a character printer to produce a hard copy of a block of 32 characters stored as bytes in consecutive locations in memory. A simplified block diagram showing the flow of information through a microprocessor chip is shown in Fig. 2(a). The routing of the data through the microprocessor chip, instead of transmitting it directly to the printer, allows such functions as code conversion, formatting, parity checking and so on, to be performed on the data prior to printing. If no processing is required, a direct link (d.m.a. link) between memory and printer may be established, as we shall discuss in a future article.

The operation of our system, which consists of fetching each byte from memory into the microprocessor chip and printing it, is shown in Fig. 2(b). The flowchart of the software required to fetch and print each byte is shown in Fig. 3. Its implementation in the case of the Motorola 6800 (see instruction set in Appendix), is shown overhead.

Reference to the manufacturer's manual (1) indicates that the execution time of a fetch/print loop (statements in locations 0005 to 000F) requires 24 machine cycles. If we assume the execution time of a machine cycle to be around 1μs, the characters will be output to the printer at the rate of around 40,000 per second — far too fast for character printers, which typically will be operating at 30 characters per second. The outputting of data to the printer faster than it can accept will clearly result in a large proportion of it getting lost. It is therefore necessary for the designer not to output a character to the printer until it is ready to accept it. The most straightforward

*See also Appendix

Fig. 1. Block diagram of an interface.

Fig. 2. Block diagrams showing (a) data flow and (b) fetch/print cycle.
Implementation of Fig. 3 processes in Motorola 6800

<table>
<thead>
<tr>
<th>Hex address</th>
<th>Hex listing</th>
<th>Mnemonics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 CE</td>
<td>LDX # 41350</td>
<td>Load the index register with the initial memory block address</td>
<td></td>
</tr>
<tr>
<td>0001 03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0003 06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0004 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0005 27</td>
<td>BEO L2</td>
<td>Load the block length (hex 20) into accumulator B - hex 20 = decimal 32 Go to L2 if acc. B is zero</td>
<td></td>
</tr>
<tr>
<td>0006 03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007 A6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009 87</td>
<td>STAA 50400</td>
<td>Print the byte in loc. A</td>
<td></td>
</tr>
<tr>
<td>000A 04</td>
<td></td>
<td>Increment the memory block address</td>
<td></td>
</tr>
<tr>
<td>000B 06</td>
<td></td>
<td>Decrement the block length Go to L1</td>
<td></td>
</tr>
<tr>
<td>000C 08</td>
<td></td>
<td>Increment the memory block address</td>
<td></td>
</tr>
<tr>
<td>000D 0A</td>
<td></td>
<td>Decrement the block length</td>
<td></td>
</tr>
<tr>
<td>000E 2D</td>
<td>BRA LI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000F 3F</td>
<td>SWI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2: 0010</td>
<td></td>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

Software wait is implemented by means of a programming loop during which the status of the printer is read into the microprocessor chip and test. If the printer is found to be busy, the process is repeated. When the printer becomes ready (indicated by its status signal), the microprocessor exits the software wait loop, as shown in Fig. 5. Note that the wait loop may be entered either before or after the print operation.

The step-by-step implementation of microprocessor-based systems using software wait will be discussed in the next article.

Fig. 4. Stretched fetch/print cycle.

Fig. 5. Flowcharts of software wait loops (a) with wait loop entered before print operation, (b) entered after print operation.

Appendix: Motorola 6800 instruction set (continued on next page)
Hardware wait is implemented by causing the microprocessor chip to enter into an idle state, during which all the microprocessor activities are suspended without turning off the clock. As in the case of the software wait, the hardware wait may be implemented either before or after the print operation — see Fig. 6.

We shall refer to the idling state as a wait state. The microprocessor may remain in a wait state indefinitely. The wait state is entered by pulling a specified pin on an m.p.u. high or low.

Examples. Pulling pin 23 low puts the Intel 8080 in the wait state, and pulling it high brings it out of the wait state — see Fig. 3 in article 1.

In the case of the Motorola 6800 the wait state is entered at the end of the current instruction by pulling pin 2 low.

Pulling pin 2 high brings it out of the wait state. The Intel 8085 uses pin 35 in the same way as pin 23 is used in the case of the Intel 8080.

Reference 1. "M6800 Microprocessor System Design Data," Motorola 1976, Fig. 3 in article 1.

In the case of the Motorola 6800 the wait state is entered at the end of the current instruction by pulling pin 2 low.

Table above is continuation of the Appendix.##
4.2GHz should be explored. The 5ft mesh dish used for ATS-6 was discarded, and I obtained a surplus 8ft solid-surface paraboloid, originally used for terrestrial radio links in the 7GHz region. To resolve pictures from the signals available on 4GHz, an overall system noise temperature of better than 400°K was required. The dish was fitted with a circular polarisation antenna feed, made from a piece of 2in. copper pipe, carrying the downconverter, a low-noise amplifier constructed from two HSTR-1001 devices on a microstrip, and 25dB of wideband u.h.f. i.f. amplification. The amplifier was included so that signals could be carried 50ft to the house without significant breakthrough of local u.h.f. signals. A Varicap u.h.f. tv tuner was used, as for ATS-6, but with facilities for reinserting sync., phase-locked to the output of an independently-tuned narrow-band sync. pulse demodulator.

The receiver was aimed at the sun and aligned for maximum solar noise. A figure of 5.5dB above clear sky was achieved on the first day which, with an assumed value for solar noise flux of 8 \times 10^{-8} W/m^2/Hz, translated to a G/T of 12.6dB/K. This gave a predicted overall receiver noise figure of about 3.5dB, which was later confirmed by comparing ground noise with sky noise. When the antenna beam was lowered onto the geostationary orbit arc, my efforts were rewarded by the appearance of RTVE’s (Spain) first chain programme via the leased half-transponder 6 of the new Intelsat-1VA (F2) at 29.5°W. This Canary Islands relay is at present carried on the Major Path 1 at 34.5°W.

Since receiving RTVE, many other 4GHz satellite tv downlinks have been observed. In addition to carrying the world news and sports events, many nations lease capacity on the Intelsat system for their own use, such as internal tv distribution from studio centres to transmitters, and tv relay to their overseas territories. Because Intelsat’s constitution precludes broadcasting activities on private grounds, the improvement in sensitivity.

Results have been further improved by the addition of another GaAs f.e.t., stage, a HFET-2202 device from Hewlett Packard. This half-micron gate length f.e.t has a noise figure only slightly above 1dB, and should produce a receiver noise temperature close to 100°K.

of about 28dBW, Statsionar-4 is the most powerful satellite at this frequency, and can be received even with an indoor antenna. As the accompanying photographs show, results have been improved since the early tests, due partly to the use of a Pleiades gallium arsenide f.e.t., type GAT 5, which reduced the 4GHz system noise temperature to 105°K, a 3dB improvement in sensitivity.

Results have been further improved by the addition of another GaAs f.e.t., stage, a HFET-2202 device from Hewlett Packard. This half-micron gate length f.e.t has a noise figure only slightly above 1dB, and should produce a receiver noise temperature close to 100°K.

of about 28dBW, Statsionar-4 is the most powerful satellite at this frequency, and can be received even with an indoor antenna. As the accompanying photographs show, results have been improved since the early tests, due partly to the use of a Pleiades gallium arsenide f.e.t., type GAT 5, which reduced the 4GHz system noise temperature to 105°K, a 3dB improvement in sensitivity.

Results have been further improved by the addition of another GaAs f.e.t., stage, a HFET-2202 device from Hewlett Packard. This half-micron gate length f.e.t has a noise figure only slightly above 1dB, and should produce a receiver noise temperature close to 100°K.

of about 28dBW, Statsionar-4 is the most powerful satellite at this frequency, and can be received even with an indoor antenna. As the accompanying photographs show, results have been improved since the early tests, due partly to the use of a Pleiades gallium arsenide f.e.t., type GAT 5, which reduced the 4GHz system noise temperature to 105°K, a 3dB improvement in sensitivity.
With the launch of the European Space Agency's OTS satellite in May 1978, I decided to explore a new satellite TV frequency band of 11-12GHz. The sub-bands in this region were destined to ease the congestion experienced by international and domestic systems in the 4GHz band, and to provide the new regional (ECS) system for Europe as well as the allocations already made at WARC-77 for satellite TV broadcast downlinks. A long head was built around the feed horn, which was made capable of handling either linear (plane) or circular polarisation. The downconverter comprises a single unbalanced diode mixer in stripline, with a Gunn device in a coaxial cavity as the local oscillator. To improve performance, GaAs FET stages in microstrip construction were subsequently added. Mid-band noise temperature of the 11-12GHz system is the same as 4GHz and, with an antenna gain of around 47dB, this gives a G/T of 22dB/K (clear sky) compared with the 48dB/K being assumed for future direct-broadcast home terminals in this band. The same uhf tunable IF is used as for 4GHz, which enables a 500MHz portion of the 11-12GHz band to be tuned for any setting of the Gunn source. High quality pictures have been received from OTS on the wide-deviation 12MHz wide spot-beam channels and on the standard-deviation 40MHz "Eurobeam" transponders. The first Soviet "Louch" 11-12GHz spacecraft is also anticipated. Later this year the first Intelsat V will be launched for operation over the Atlantic with 4 and 11GHz downlink transponders. The first Soviet "Louch" 11-12GHz spacecraft is also anticipated. Both satellites will have high e.i.r.p. to allow for periods of high attenuation caused by atmospheric water vapour in the downlink path, and should be easy to receive in clear weather. Within three or four years Europe may have direct TV broadcasting satellites, and the development of comparatively low-cost terminals for home use will take place.

Plessey and Mullard (Philips) are already working on monolithic low-noise downconverters on gallium arsenide chips. The Japanese have already achieved 12GHz terminal frequencies for the market following extensive tests with the Japanese "Broadcasting Satellites for Experimental Purposes". It is anticipated that the European broadcasting satellites will operate with an e.i.r.p. of 15 or 20dB higher than OTS. This should allow reception at the Sheffield terminal, even though their beams will not be directed at the UK.

Bibliography

difficulties with an antenna setting of the Gunn source. High quality pictures have been received from OTS on the wide-deviation 12MHz wide spot-beam channels and on the standard-deviation 40MHz "Eurobeam" transponders. The first Soviet "Louch" 11-12GHz spacecraft is also anticipated. Later this year the first Intelsat V will be launched for operation over the Atlantic with 4 and 11GHz downlink transponders. The first Soviet "Louch" 11-12GHz spacecraft is also anticipated. Both satellites will have high e.i.r.p. to allow for periods of high attenuation caused by atmospheric water vapour in the downlink path, and should be easy to receive in clear weather. Within three or four years Europe may have direct TV broadcasting satellites, and the development of comparatively low-cost terminals for home use will take place. Plessey and Mullard (Philips) are already working on monolithic low-noise downconverters on gallium arsenide chips. The Japanese have already achieved 12GHz terminal frequencies for the market following extensive tests with the Japanese "Broadcasting Satellites for Experimental Purposes". It is anticipated that the European broadcasting satellites will operate with an e.i.r.p. of 15 or 20dB higher than OTS. This should allow reception at the Sheffield terminal, even though their beams will not be directed at the UK.

Bibliography

The TM6 is a new autoranging analogue true r.m.s. millivoltmeter with a specified operating range of 10kHz to 1GHz and useful indication down to 10.15kHz. It measures r.f. voltage from 1mV to 3V (or 300V using the 100:1 precision divider) and also has a logarithmic range which spans four decades—useful in setting-up tuned circuits.

Careful consideration of the circuit design resulted in the use of CMOS low power IC's thus the whole unit only uses five watts of power and has minimal temperature drift as well as high reliability.

The meter is provided with damping so that fast changes in amplitude of the signal can be filtered out without either registering on the meter or on the pen recorder output. This output socket gives a 0 to 1V output for zero to full scale reading on the meter.

Like most Farnell r.f. test gear, the TM6 is b.c.d. programmable and will soon be 'busable' using the Farnell Omnibus/IEEE488 interface.

A final touch of refinement to the design is the 'hold-reading' switch on the probe which, as its name suggests, holds the reading that appears in the meter to within 1% for at least 3 minutes.

The TM6 is supplied complete with probe (integral with input lead) probe to b.c.n. adapter, 'I' connector and 100:1 high impedance divider.

Leaflet available.

NEW R.F. MILLIVOLT METER
Graphical communication with microcomputers — 2

Character generation and graphics

by I. H. Witten, M.A., M.Sc., Ph.D., M.I.E.E. Department of Electrical Engineering Science, University of Essex

Dr. Witten continues his article on interacting with a microcomputer. This final part goes on with the discussion of raster-scanned displays, finishing with a look at the light-pen and tablet method of input.

Cell-organized displays. To make a display system easily manageable by the programs that generate the pictures, it is necessary to impose a structure on them that allows the raw picture data to be compressed and stored. For example, we saw earlier how line-generating hardware in a point-plotting display processor permits a whole line to be specified by its two end points. The natural structure to impose on a raster-scanned display is a pattern of rectangular cells. Figure 15 shows a 256 × 256 bit-per-point screen, organized as a 32 × 32 array of cells, each one being 8 × 8 dots. There are 64 bits in each cell, so 2⁶⁴ possible patterns can occupy one cell alone. However, most of these patterns are unlikely to be used in a simple picture. Suppose we sacrifice flexibility for convenience and low cost by defining a small repertoire — say 256 — of patterns which may occupy each cell. Then to hold the complete set of patterns we need 256 × 8 × 8 bits — 2 Kbytes, and now a particular pattern can be indicated by an 8-bit pattern number. Since there are 32 × 32 cells on the screen, only 1024 of these numbers, or 1 Kbyte, are needed to hold the screen contents.

This certainly saves some storage. Previously, 8 Kbytes were needed to hold the screen contents on a bit-per-point basis. Now only 1 Kbyte specifies the screen contents, together with 2 Kbytes for the pattern dictionary. The price paid is heavy, though: only a tiny fraction of possible pictures can be displayed. (You may care to verify that the fraction is 1/2²⁵⁶, which is small indeed!) But the real advantage is one of convenience: now the computer need only wrestle with a 32 × 32 array of cells instead of a 256 × 256 array of dots. Since its storage and bus structure is in terms of bytes and not bits anyway, it is actually easier to handle cell pattern numbers than individual dots. (Recall the difficulty of generating straight lines on a bit-per-point display.)

Figure 17 shows the connection of a memory-mapped, cell-organized dis-
to the computer. As with the bit-per-point system of Fig. 13, the di-
play system is called memory-mapped because the screen contents appear to
the processor as ordinary information. The connection between the bus and the
pattern dictionary is dashed because it is not often there at all; the patterns
are fixed and cannot be changed by the program.

The success of a cell-organized display in practice depends on the match
between the patterns in the cells and the kinds of pictures that are drawn on the
screen. General cell displays which are intended for line drawings have been
built, in which the cell repertoire naturally consists of line segments. How-
ever, the number of possible line seg-
ments through an 8 x 8 dot cell is unreasonably large, and rotational and
axial symmetry is called into play to reduce the variety. Then, the
display interface must be able to per-
form rotation and symmetry transformations, and becomes a display processor
which treats the screen contents like a program as a list of pattern numbers. This parallels
precisely the development of the display processor for point-pointing displays.

Let us instead examine some rather less ambitious pattern repertoires for
cell-organized displays.

Character generation. One obvious use of cell displays is to show text.
Cell-organized character displays are called v.d.us (visual display units) - a
name adopted on account of the way it gives no indication that only characters
can be shown. The screen of Fig. 15 can accommodate 32 lines of 28 charac-
ters each, one being on an 8 x 8 grid. Of course, space must be left between
neighbouring characters and between successive lines, so the actual character
storage is rather sparsely chosen.

Character storage. A 7 x 5 dot matrix is quite adequate for upper-case char-
acters, digits, and some special sym-
 bols. The standard 7 x 5 matrix for upper-
case alphabet is shown in Fig. 18, along
with the characters that augment it to the
96-character upper- and
lower-case alphabet. Although lower-
case characters can be written satisfac-
torily with a 7 x 5 matrix, five of them - i, j, p, q, and y - have tails which should be added below to use in transmitting properly. This needs a 9 x 5 dot matrix.

with any one character occupying either the upper or the lower 7 x 5 section; this works because there aren't any characters with both descenders and "risers." Higher-quality text can be obtained with a 11 x 7 matrix, with any given character occupying either the upper or the lower 9 x 7 section. The possibilities are summarized in Fig. 19, where a dotted outline shows the cell containing the character, including inter-character and inter-line space, and the solid line shows the actual size of the characters.

Real-money chips with the character patterns already in them are available in a variety of manufac-
turers. When addressed with the ASCII code of a character, the appropriate dot pattern appears on the output pins. The address of a particular row of dots is usually provided to the character generator by a 12-bit code comprising only
that row, and the output pins are devoted to the output. Thus, with characters of 7 x 5 dots each, 256 bits are required to address a particular row of a character and there are 8 output pins giving the dots in that row. This arrangement is especially suited to raster-scan displays, because one line of the raster is generated at a time. In some character generators, the action of "lowering" the characters with descenders must be done externally to the chip, the user providing circuitry to detect these five points and adjust the output string accordingly. The amount of storage required in a character generator of this kind is quite small. For our example, we need 512 words of 5 bits to provide the 64-character upper-case alphabet.

A 256 x 256 screen accommodates 32 lines of characters if the character cell is 8 x 8, 21 lines of 42 characters if it is 12 x 12, and only 17 lines of 26 charac-
ters if it is 15 x 15. All of these sizes are almost arbitrarily small. A normal sheet of typed paper can comfortably hold about 57 lines of 80 charac-
ters. Hence, the size of a character cell would require a 64 x 480 screen, which is not possible within the British 625 line standard. Many teletext systems include a 24 x 192-line or a 28 x 256-line display, which is a little more realistic. However, it is only under these circumstances that a character cell can be seen to the processor, so that the user enters characters to the program, which
then writes on and off by arrows, con-
stant character symbols (ASCII codes 00000000-00111111) and sends down the line as part of the text, which can unfortunately alter all subsequent characters if a text character is corrupted by noise into a control character.

One really useful feature is the ability to place the current position at any point on the screen, so that characters written in the middle of the text can be overwritten. A mark called the "cursor" is usually made on the screen at the current position, and any input typed on the keyboard appears at the cursor position (which is moved along with each successive character). Thus, a questionnaire can be displayed and the cursor moved to the places where the user enters answers, constraining him to write in the space provided. Cursor control can be implemented by a special character which signals the v.d.u. to interpret the next character as an instruction. This renews the flexibility of a memory-mapped display where a character can be placed anywhere on the screen.

Most v.d.us operate at speeds up to 9600 baud. Unlike printers, no extra effort is needed to make a v.d.u. go fast. 9600 baud is incidentally the full capacity of 90 characters to be sent in 2 seconds, which is certainly an upper rate. However, people read faster than this - how quickly do you read "wireless world," for example? Pressure limits a reasonable speed of 24 x 40 character grid. Each cell is split into the sections shown in Fig. 22, and 64 x 256 space could be visualized if white and black dots. Thus, an effective 72 x 80 grid is available for graphics, and the picture of Fig. 6 gives an example of the resolution obtained.

Limited graphics. Pressure to provide limited graphics facilities based on inexpensive raster-scanned displays has come to

Fig. 18. Standard 64-character and 96-character alphabets.

Fig. 19. Common character sizes.

Fig. 20. Connecting v.d.u. to the bus.

Fig. 21. PET graphic symbols.

Wireless. The teletext scheme for broadcast information defines a graphics standard, and is possible that this might spread to the microcomputer in the near future. It uses 64 codes in a systematic way to provide a refinement of its basic
24 x 40 character grid. Each cell is split into the sections shown in Fig. 22, and 4x6 space could be visualized if white and black dots. Thus, an effective 72 x 80 grid is available for graphics, and the picture of Fig. 6 gives an example of the resolution obtained.

Teletext. The teletext scheme for broadcast information defines a graphics standard, and is possible that this might spread to the microcomputer in the near future. It uses 64 codes in a systematic way to provide a refinement of its basic
24 x 40 character grid. Each cell is split into the sections shown in Fig. 22, and 4x6 space could be visualized if white and black dots. Thus, an effective 72 x 80 grid is available for graphics, and the picture of Fig. 6 gives an example of the resolution obtained.

Fig. 22. Teletext graphics.

User-defined graphics. An unusual and interesting limited graphics facility is provided in the Sorcerer home com-
puter. 256 character codes are used instead of the usual 64 or 96. Of these, 128 correspond to pre-defined patterns which include the 96-character basic alphabet of Fig. 18 together with 32 extra symbols. For the others, the character-generating memory can be altered by the processor, so that the user can create his own graphic symb.

Because graphical circuits are slightly more expensive than normal circuits, a translator is built to provide the rest of the machine with a signal to indicate that there has been a change of character.

Fig. 23. Translator circuit.
Simple active filters for equalizers

Design examples using simulated inductors

by D. W. Protheroe, B. Sc.

Simple design rules allow construction of filters having any desired value of centre frequency, Q and gain, using simulated inductors. Examples illustrate provision of a symmetrical bandpass to band-stop characteristic, varied with a single control.

The majority of designs published as octave or equal width filters feature a number of independently controllable filters allowing boost or cut of specific frequencies within the audio band. These designs fall into two main categories:

- RC bandpass/bandstop filters. A typical system may have a number of active filters either enclosed in a negative feedback loop, Fig. 1 and refs 1, 9, 10, or having their outputs fed to a differential amplifier, Fig. 2 and refs 3, 4. Problems arise from both these configurations. In Fig. 1 noise generated within the active filter is coupled into the output amplifier, the signal-to-noise ratio decreasing as the number of filter sections is increased. This problem is avoided in Fig. 2, but the component values must be carefully calculated to give a symmetrical cut, boost characteristic. Many designs have been published giving only bandstop values. To overcome this, simulated bandpass and bandstop (notch) characteristics have been introduced (refs 3, 4). Series LCR filters. This arrangement, Fig. 3, suffers from the disadvantages normally associated with discrete inductors, i.e. size, cost, distortion, refs 2, 3, 4. The present design overcomes this by synthesizing the necessary inductors, using the circuit of Fig. 4.

To duplicate the impedance versus frequency characteristic of the RC network, the input impedance of the circuit must be of the form $R + jX$, and it can be seen in the Appendix that the circuit has an input impedance of $R + jX = CR_{1}R_{2}$. Although this may appear difficult in the real world, the complex value of simulating inductance have been published (e.g. search under 'Gyration').

Further reading

Fig. 24. A house. Timing or coordinates?

Touch-tablet. Figure 26 illustrates another kind of graphical input device which is entirely independent of any display and provides the coordinates of the pen position.

Current is injected into a uniform resistor sheet through the pen tip, and is measured at one side of the table while the other is earthed. The resistive sheet acts as a potential divider, and the ratio of the output to the input current gives one coordinate. Then the connections are changed so that the other coordinate can be measured.

A particularly interesting feature of the tablet is that a finger can act as the pen, using high-frequency alternating current and capacitive coupling with the sheet instead of d.c. with direct coupling. Effectively, you sit on an electric chair and inject current with your finger. Then, no pen is needed and if the sheet is made transparent and fitted on to a display screen, you can indicate parts of the picture just by pointing at them with a finger.

Fig. 25. Tracking cross.

and the read-only and writeable parts of the character generator are each 1 Kbyte. The circuitry required to generate characters from a read/write memory is a little more complex than for read-only memories, because contention will occur when the display is read and the processor writes simultaneously. But the extra power provided is enormous, for the Sorcerer can simulate both PET and the teletext system, as well as others. For example, graphs can be displayed quite accurately by defining eight patterns each with one dot in the centre, at different heights. Or a character set can be defined by line drawings which includes all the line segments which are needed in a particular picture. Or a Cyrillic alphabet for text in Russian. This combines much of the flexibility of the memory-mapped bit-per-point display with a structure that can show text sensibly and simulate systems like PET and teletext.

The light-pen and tablet

Turning now to graphical input, a light-pen is a device that detects whether or not there is a spot of light on the screen at the place it is pointing. It can also signal the exact time the light appears. Recall that the picture is refreshed every 40 microsec or so, so that if the pen points at a spot which is brightened up a signal will appear during every refresh cycle. The interrupt mechanism is ideally suited to activating the processor at the time a hit occurs.

The time-of-hit information provided naturally by a light-pen can easily be converted into the position of the hit by adding the hardware shown by dashed lines in Fig. 23. The x and y signals from the output port are routed back to an input port - in practice, this will be before they converted from digital to analogue form - and loaded into two registers there when a hit occurs. Then the processor can examine these registers at leisure to ascertain the position of the last hit.

The majority of designs published as octave or equal width filters feature a number of independently controllable filters allowing boost or cut of specific frequencies within the audio band. These designs fall into two main categories:

- RC bandpass/bandstop filters. A typical system may have a number of active filters either enclosed in a negative feedback loop, Fig. 1 and refs 1, 9, 10, or having their outputs fed to a differential amplifier, Fig. 2 and refs 3, 4. Problems arise from both these configurations. In Fig. 1 noise generated within the active filter is coupled into the output amplifier, the signal-to-noise ratio decreasing as the number of filter sections is increased. This problem is avoided in Fig. 2, but the component values must be carefully calculated to give a symmetrical cut, boost characteristic. Many designs have been published giving only bandstop values. To overcome this, simulated bandpass and bandstop (notch) characteristics have been introduced (refs 3, 4). Series LCR filters. This arrangement, Fig. 3, suffers from the disadvantages normally associated with discrete inductors, i.e. size, cost, distortion, refs 2, 3, 4. The present design overcomes this by synthesizing the necessary inductors, using the circuit of Fig. 4.

To duplicate the impedance versus frequency characteristic of the RC network, the input impedance of the circuit must be of the form $R + jX$, and it can be seen in the Appendix that the circuit has an input impedance of $R + jX = CR_{1}R_{2}$. Although this may appear difficult in the real world, the complex value of simulating inductance have been published (e.g. search under 'Gyration').

Further reading

Fig. 24. A house. Timing or coordinates?

Touch-tablet. Figure 26 illustrates another kind of graphical input device which is entirely independent of any display and provides the coordinates of the pen position. Current is injected into a uniform resistor sheet through the pen tip, and is measured at one side of the table while the other is earthed. The resistive sheet acts as a potential divider, and the ratio of the output to the input current gives one coordinate. Then the connections are changed so that the other coordinate can be measured.

A particularly interesting feature of the tablet is that a finger can act as the pen, using high-frequency alternating current and capacitive coupling with the sheet instead of d.c. with direct coupling. Effectively, you sit on an electric chair and inject current with your finger. Then, no pen is needed and if the sheet is made transparent and fitted on to a display screen, you can indicate parts of the picture just by pointing at them with a finger.

Fig. 25. Tracking cross.
amplifier used; for most purposes the 741 is sufficient, though increased performance may be achieved with a more specialized amplifier.4,7

Practical applications of this circuit have varied (in frequency) from l.f. variable filters for electrophysiological research, to a fine-section tone control with lower potentiometer. 1

References

Dave Protheroe was an electronic technician in the psychology department of the City of London Polytechnic, where he constructed prototypes of this filter. Since then he has graduated in electrical engineering and is now lecturing in electronics at Thames Polytechnic. Researching into digital systems design, recent work has centred around applications of digital devices, especially the hardware and software design of a Z80-based microcomputer system.

Practical designs

5-15Hz three-section filter

Application: vibration analysis, electronic circuit recording. Design criteria: constant bandwidth, control range = 20dB. Values of R1, R2, R3 were chosen to give the required gain control range. Q value was then calculated from

\[Q = \frac{f}{\text{bandwidth}} \]

The underlined equations give the required capacitor values, and the last equation gave the value of R1.

Appendix

A voltage \(V_i \) is applied to the input terminal of Fig. 4. Then

\[V_i = \frac{V_i}{V_o} \]

where \(V_o \) is the output voltage at the terminal.

Thus

\[V_i = \frac{1}{R_1} \left(\frac{R_2}{R_3} + j \frac{R_3}{CR} \right) \]

This is of the form required and assumes the amplifier has a gain of unity, a high input impedance, and a low output impedance conditions easily satisfied.

American letter

from George Tillet in Chicago

At the Chicago Summer CES was about $5,000, some 1% less than last year—although the advance bookings were at a record high. The reason, of course, had to do with the uncertain economic situation, but the growing popularity of the January Las Vegas Show might have had an effect too. If there is a recession, some of the exhibitors seemed unaware of it, judging from the number of high-priced luxury items on show. Infinity had a $20,000 loudspeaker system and Lux were showing a $3,000 turntable, while there were several photo cartridges coming over £200. One was priced at £500 and a precision tonearm could be had for a mere $1300. If you are tired of ordinary TV, you can spend anything between $16,000 and $30,000 for a dish antenna so you can watch satellite transmissions.

Video

As at the last show, video discs were again a centre of attraction and the Pioneer and Magnavox demonstration were always crowded. Both these models use a laser system, but RCA were showing off their Selectavision player, which uses a stylus pick-up, at a hotel nearby. RCA state that recent modifications include random access to a wider range of programme material. V.C.R.s are fast gaining in popularity and several new six-hour machines were to be seen. In the long-playing mode, there is inevitably a loss in definition—particularly with models with reduced track width. The ordinary track width in V.H.S. machines is 58 microns, but when the same heads are used to scan the 19.3 micron width employed in the six-hour mode, the tracks overlap, causing picture degradation, since adjacent tracks are out-of-phase. Now, JVC have come up with a simple—well, relatively simple—solution: two extra narrow-field heads are switched in for the long playing mode.

Sony's AG-380 features a cassette autochanger allowing 20 hours of recording time, and the programme unit allows the user to record separate programmes on separate cassettes. Other Sony models use Beta-Scan, which lets the user search backwards or forwards at any desired speed up to 20 times normal, with or without a remote control unit. Toshiba has a similar fast scan system, but theirs can flip the tape at 40 times the normal speed.

Audio

Two or three years ago, receiver makers were committed to a kind of 'power race' to see how many watts they could cram in, but not too many buyers were enthusiastic about the cumbersome 400 watts jobs. So these days the accent is on features such as automatic scanning, Infinity's Reference Standard.
All manufacturers are aware of the problems caused by too much negative feedback and designers have abandoned the use of "brute force" loops of 50 to 60 dB to get some impressive figures. In other words, amplifiers are designed for low distortion before the loop is closed, so that only 15 to 20 dB is necessary. Yet another approach well, I believe, become quite popular — at least for the more expensive models. This is the "feedforward" circuit which involves the use of a separate amplifier to balance out the inherent distortion in the main amplifier. Threshold were the first to use it in their Stasis model, now Sansui have developed a similar circuit. They introduced the first model at the Stas­sis AU­DI­II designed to 120 watts per channel at a distortion less than 0.004%. Frequency response is within ±0 and ±2 dB from zero to 20 kHz.

Cassettes decks now offer better value for money than ever and several models were to be seen priced at well below $100 with metal tape capability. For example, the 4 head VU meters, provision for four kinds of tape, a Dolby system and a good all­round performance. The more expensive decks featured such refinements as digital displays, automatic programme select, use of tape indicators and micro­line mixing. At least 12 models boasted the new Dolby NSX (Headroom Extender) circuit while among the dual­speed (3% and 1½%) models were entries from Marantz, JVC, and Fisher.

Turntables are also reasonably priced now and there is quite a selection of direct­drive models under $180. Standard tonearms seem to have almost superseded the old familiar S-shaped designs, although Technics still use them in most of their range. Linear tracking or straight­line arms are becoming more common, and among those seen were models from Technics, Harman­Kardon, Mitsubishi, Yamaha, Phase line­ar and Densene. The last named turntable uses a cutting head, which floats the phonograph record so it is really flat. It seems to be an expensive way of doing things, as the price of this model is $3000! Dual were using a special record to demonstrate the virtues of their Ultra Low Mass (ULM) arm and Ortofon cartridge. The record carries a 300 Hz signal, but it also has eight uniformly spaced warps. The eight gram ULM combination plays it with no trouble, but the same interlemination problem on a standard 18 gram arm combination could easily be heard.

Once again, the Show was enlivened by a fascinating array of loudspeakers ranging from shoebox models to war­drobe sized behemoths. The most elaborate system was Infinity's new Reference Standard at a cool $20,000. It consists of four modules, 7½ inches high which house two 1.5 kilowatt bass amplifiers as well as the drive units. Each bass column consists six 12 inch drivers and servo feedback is obtained with an accelerometer. Crossover frequency is 70 Hz and the midrange section consists of a vertical stack of 12 planar electro­magnetic induction units arranged as a dipole. High frequencies are handled by another stack of 36 planar units. The cabinets are 1 inch thick and some of the sections are sand­filled (remember the Wharfedale baffles?) and the total weight is 1200 lbs. How did it sound? Well, it was un­equally very, very good and the low frequencies were particularly impressive. After all, a dozen 12 inch speakers can move a lot of air! Although the system is not a true line source, the stereo image was outstanding, but it must be said that the overall gain over a really good pair of $1000 systems is quite small — at least at "normal" listening levels. It’s the law of diminishing returns.

Cerwin­Vega were demonstrating a new model, designed to "meet the challenge of the new digital super­discs". It is a three­way system with an 18 inch bass driver and a 12 inch co­axial unit, plus a compression tweeter. An unusual feature of this model is the use of active cross­overs to effectively increase the volume of the bass compartment of the enclosure. No, the gas can’t escape: it is contained in plastic bags. The system stands 52 inches high and it will handle 1000 (yes, one thousand) watts continuously.

The Iso­phone is back again! Its new name is "Boracov" and the one at the Show hailed from West Germany. Crossover point has been moved an octave up to 6 kHz. My old origin was used to radiate for a considerable distance on all tv bands, caused some friction with the neighbours, but I’m told that this and other drawbacks have been overcome.

Sony had a large, floor­standing sys­tem using four drivers, all with flat diaphragms made from a honeycomb carbon fibre material. The bass speaker diaphragm is about 13 inches square and it is driven by four speech coils, positioned to "ensure a piston move­ment without flexing". Jumet­ta, a

Canadian manufacturer, were demon­strating the latest version of their sys­tem, which uses a horn­loaded ribbon tweeter from 600 Hz up. Some of the best sound heard at the Show.

The VSC company introduced several low­priced causeway speakers, i.e. with a "bucket­brigade" chip to process the signals, allowing an affordable audio playback up speeds to three times normal. According to the makers, there is a great interest in the idea that manufacturers of c.r.s. that can operate in the six­hour mode.

Crown introduced the unique PZM microphone at the January Show and again, it was attracting a lot of attention. It uses a new principle of sound detecting, using the pressure zone at an acoustic boundary to eliminate distortion problems common to other micro­phones — so say the inventors. The active element is a pressure­calibrated electret capsule and it is mounted on a plate measuring 3 x 5 inches. One of the advantages of the PZM is that the frequency response is independent of distance, but the gain in clarity is almost unbelievable. In one demonstration, it was compared with a very expensive German dual microphone in a recording session with a large orchestra. As soon as the PZMs were switched in, the feeling of strain, simply vanished. Various models are available and they can be put inside a small cabinet, or bass drum or piano, since inputs as high as 150 dB can be handled.

Garrulous gadgets
Talking clocks, calculators and micro­wave ovens are becoming common­place and speech quality is improving. One reason is the use of new chips that can synthesize phonemes. It is said there are at least 40 uniquely different sounds needed to phonetically create words in the English language. These, plus 16 other durational alternatives are produced by a new l.s.i. chip made by Votrax. There are also three "pause" phonemes often necessary as sentence pauses in continuous speech, so the result is a total of 64 phoneme selections. The duration of each phoneme is fixed, the slowest being 4mths and the fastest 25mths. Pitch variation varies automatically, or it can be controlled by an external "clock": Continuous flow of electronic speech is created by sequencing sounds into recognizable words. For instance, "aphone" becomes F­61­N­EL­M.

Panasonic were showing a talking calculator which had a female voice with an impeccable British accent — Rodgers, if I'm not mistaken. Casio had another which also contained a clock, date memories, a calendar and 12 recorded tunes. The computer could be used for special occasions such as "Happy Birthday" or "The Wedding March", but one tune could not be changed. The thing plays "Jingle Bells" every Christmas . . .
TELEX 3 77482

THE RANGE

TWO

For further details and ex stock delivery contact

THE CS1830 30 MHz + Sweep Delay

The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, integral pulse generator for accurate bright line. A new feature is the instrument of cathode-ray sweep delay with a range of 0-100 ns and trace height up to 10. You can see from close-up shots of the photograph the CS1830 has all the facilities you could want in a performance instrument but for more detail, simply ask for a comprehensive leaflet.

Brief specification

Rectangular P.D.A 120 x 96 mm. F.S. phosphor.

Sensitivity

DC-5MHz

50mV, 1mV, 5mV, 20mV, 50mV, 200mV, 500mV, 2V, 5V, 20V, 100V

Input Ref. C 1 M/23 mV per div.

Rise time 11.7 ns

DC-5MHz

Linearly better than 3%

Sweep 200ns to 200ms 0.5:1/1:1/2:1

DC-30MHz

Sweep Delay 1.5 to 1000 ns.

CS1830 only £455 + VAT, includes 2 probes

THE CS1572 30 MHz for the VTR lab

If you are in Video, you need the CS1572

The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video derived sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video signal and external fields. A unique feature of this instrument is the time-base and trigger synchronization of the fast sweep band with a separate synchronization. It can be used for general laboratory use. The complete range of video facilities is too great to explain in a short advertisement so why not call us and ask for the full story on the CS1572.

Brief leaflet available

As for CS1572 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR segments.

CS1572 only £245 + VAT, includes 2 probes

THE CS1577 30 MHz at 2mV + Signal Delay

The most popular scope in the range.

The CS1577 is the departure point in our range of performance oscilloscopes. The most popular specification and hundreds of satisfied customers in all sections of the electronics industry will confirm this. The CS1577 contains a complete 30 MHz performance with extraordinary wide range bandwidth (DC-40 MHz) and 2mV sensitivity over the full bandwidth.

Fixed signal delay is provided by a delay line via which allows viewing of the leading edges of fast pulses for accurate rise time measurement. The 150 MHz PDA tube gives a form factor of 1.5:1 and the highest sweep speeds (500 nm cm using a 3G pulse) for high resolution display. Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS1577 demonstrates this perfection.

Triggering, as always, either a signal or a trigger is provided to signal input. The input section can be switched to permit input to 120V without damage to the tube. The full bandwidth isswitched to the test section and 30 MHz is switched to the delay section. The operator is thus able to use the full bandwidth of the oscilloscope right up to the critical 100MHz.

The CS1577 only £610 + VAT, includes 2 probes.

THE CS1575, unique dual trace 4 function Audio Scope.

The CS1575 is the departure point for the audio engineer. It features the normal facility of dual trace display, with sensitivity to 1 mV/cm but not only can it display the input signal on two channels and trigger on either channel, it can also display the vertical sensitivity for the test section and measure the phase angle reference to a zero phase delay display. In addition toTriggering an input, it also has a separate triggering input from either channel to give complete flexibility in the type of triggering required.

Absolutely standard to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or for complete details.

CS1575 only £390 + VAT, includes 2 probes.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER

400V D.C., 500V A.C.

0 to 100MΩ

Semi Auto Ranging

£70 + VAT

For further details and ex stock delivery contact

AND TWO NEW ADDITIONS TO THE RANGE

F C 756 500 MHz COUNTER

10 Hz-500MHz

Stop Watch

£225 + VAT

LOW ELECTRONICS

CHESTERFIELD ROAD, MALTOCK, DERBYS.

0629-2430 - TEL:737482

WWW.RE viewl...
Fig. 10(a). Simplified block diagram of decoder, showing relationship of pulses to video signals.

Fig. 10(b). Details of waveforms in decoder (Fig. 10(a)).

Fig. 11. Video output amplifier (simplified).

Fig. 12. (a) Conventional sync separator. (b) Adaptive sync separator.
The requirements of the main output of the power supply are largely governed by the transformer. The transformer is also simpler because of the need to design interfaces to the bus, but can lead to confusion when referring to the standard which, as I mentioned in the article, uses "three-line" logic.

My statement that 250 kbyte/sec is a generally accepted maximum data rate is based on paragraph 5.2 of the 1978 standard which states: "A standard performance bus will operate at distances up to 28m at a maximum of 250,000 bytes per second..." using 4mA open collector drivers.

My thanks to Mr Summers for his comments. Mr Summers's section on Parallel Poll is extremely lucid, and I thank him for it. Finally, I hope that a speed-enhanced talker is used to achieve 1/4my data rates, with standard talkers, problems may be experienced even when the interface is not being used at that rate.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have serious gaps, increasing the danger still further.

Peter C. M. Davie

MILITARY ELECTRONICS

Your News of the Month in the June/July issue reports that according to the Defence Estimates the defence equipment programme sustains about 300,000 jobs opportunity cost and has the same number again indirectly involved.

This seems to me to be a logical expansion of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.

The Defence programme therefore seems to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronic engineers employed to maintain the defence equipment programme were not as knowledgeable on the pole, since (b) their knowledge of electronics may even have gaps, increasing the danger still further.
WHAT'S SO NATURAL ABOUT?

Die ganzen zahlen hat Gott gemacht, Alle andere ist menschenwerke

I do not understand why Dr Finlay (December, February, April) wishes to denigrate set of rules and two jam jars. The messiah who made it was clearly not satisfied with progress. It has always been my wish, however, that these columns should bring light and sanctity into the homes of others, especially my bank manager.

The jam jars, I think, will be better, and nothing you can't find, if desperate enough, in your grocer's old-fashioned, a mixture, and sometimes an accident.

The jam jars are best replaced by those revolting plastic beakers, with string handles stapled on to make small buckets. The metre rule hung by string from a convenient support.

It has always been my wish; how­ever, that these columns should bring light and sanctity into the homes of others, especially my bank manager.

But my little adding machine, the back of an ordinary envelope, the provision of Qoperating, maintenance and service for electronic equipment.

The branched of control to an address in the system below, provided that f(x) = 1 and a few notable differences from Mr Butler in the February 1975 issue on Pseudo Random Binary Sequence Generators, I think your work of art is not the final crisp answer to feedback selection. Careful choice must be made to ensure the full sequentiality of the system. If we consider the total shift register branched into two parts, feedback from the system below, provided that f(x) = 1 and a

The capacitor-discharge unit itself is not a legal requirement officially). At least, such a c.w. would be less little-handed, socially speaking, than the amateur, which can be legally, and mora­bly, nothing but a nuisance.

The principle of feedback around the system breaks down to being equivalent for British manufacturers as there will only perpetuate the pattern in a closed loop of three

It takes an electronic engineer to generate a detailed technical manual for an electronic device, but the system breaks down to being equivalent for British manufacturers as there will only perpetuate the pattern in a closed loop of three

Then stand or fall on its ability to compete internationally.

All this comes to two points. First, 27MHz will never go away; the technical problem of the reorganisation of the band comes down to acknowledging that the present band is not a legal band. Either they are legalised or aren't. Second, the CB-60100 mark will ensure the continuation of 27MHz and will equally ensure that the CB-60100 won't be able to afford to use its "band", leaving the way open for a future government to take the said band away ‘because nobody’s using it: it was never really necessary’. At best, such a c.w. would be less little-handed, socially speaking, than the amateur, which can be legally, and mora­bly, nothing but a nuisance.

The practice of provision, maintenance and repair of a computer, even for systems that are not computers, can be a highly rewarding service for electronic equipment. It is gener­ally accepted as a rule of thumb that a potential customer may be expected to defer the purchase of any new product, however

If the principles of the present article are adhered to, the total path A, 27MHz activities are totally classless, at least partly. Everyone can affect the provision of a good service. But my little adding machine, the back of an ordinary envelope, the provision of Qoperating, maintenance and service for electronic equipment.

The principle of feedback around the system breaks down to being equivalent for British manufacturers as there will only perpetuate the pattern in a closed loop of three

The computer corresponds to finding e by the construction of a table, but it still lacks a few numbers of additional operating systems which are not available even in a closed loop of three

The process of provision, maintenance and repair of a computer, even for systems that are not computers, can be a highly rewarding service for electronic equipment. It is generally accepted as a rule of thumb that a potential customer may be expected to defer the purchase of any new product, however unreasonably expensive, unless and until the necessary technical manuals are made available.

I think the principle of provision, maintenance and repair of a computer, even for systems that are not computers, can be a highly rewarding service for electronic equipment. It is generally accepted as a rule of thumb that a potential customer may be expected to defer the purchase of any new product, however unreasonably expensive, unless and until the necessary technical manuals are made available.

The computer corresponds to finding e by the construction of a table, but it still lacks a few numbers of additional operating systems which are not available even in a closed loop of three

The process of provision, maintenance and repair of a computer, even for systems that are not computers, can be a highly rewarding service for electronic equipment. It is generally accepted as a rule of thumb that a potential customer may be expected to defer the purchase of any new product, however unreasonably expensive, unless and until the necessary technical manuals are made available.

The computer corresponds to finding e by the construction of a table, but it still lacks a few numbers of additional operating systems which are not available even in a closed loop of three
Long-path and simple aerials

The ability of amateurs using only simple aerials to work long distances by taking advantage of the extremely reliable morning chordal-hop, long-path to Australia, via the dawn "glimpse" in the ionosphere, rather than multi-hop paths, is underlined by the story of Ron Fisher, VX3OM, of Glen Waverley, Victoria. He reports working on 14 MHz s.a.m., some 140 stations heard as British amateurs under "long-path" conditions during the past year. Of these, 35 of the British stations were heard at the minimum of three different long-path aerials, 32 were using ground planes and the remaining 63 were using the monopole "mobile whips", representing a total of 91 with simple aerials, compared with 56 using beam arrays of various types. He writes: "It is interesting to note that some of the more constant British stations heard in Australia at this time of day use dipole; they are not necessarily the strongest signals but often the difference between them and the stronger signals heard at the same time is small, perhaps 1/150 "2 points. (2 point calibration varies widely between different receivers but this probably represents about 4 to 5 dB)."

US reply to the Pecker?

An American f.i. over-the-horizon radar system (COMSTAR) began a nine-months trial from a transmitter site near Cape May, with the receiving site for the backscatter signals about 100 miles away near Columbus Falls. The system has been designed to detect moving targets at a range of up to about 1000 nautical miles, using a combination of simple, non-isolate targets from the large amount of sea and land based bounce. Twelve 100 kW transmitters are used on a 24-hour basis with any of four centre frequencies 35.5, 40.5, 45.5 and 50.5 MHz. The transmitting aerial array comprises 48 elements, 12 for each of the four bands: a ground screen stretches 700ft in front of the array to improve low-altitude radar performance. All bands have already spent some $160 million on over-the-horizon radar development, although there is no indication of operational capacity in the United Kingdom, the main transmitter site for the over-the-horizon radar at Orfordness in England was taken out of commission some years ago and the site is still owned by BBC External Services.

Although it is stated that the OTH-B signals will cause much less interference to other services than the notorious Russian "Woodpecker", there are fears that the growth of such systems, if they prove successful, may become worldwide and will inevitably affect low-power amateur transmitters. OTH-B signals will have a faster "knocking" rate than the Pecker, varying from about 20 to 60,000 p.s.i. and sounding rather like "mains hum". The system is being operated on a "non-tactical" basis and a new system will be phased in. This will be achieved in practice. Amateur frequencies are to be avoided.

Local courses for RAJ

During early September. Among the participants wishing to work on over-the-horizon radar developments were: Bath, Belfast, Birkenhead, Birmingham, Bracknell, Gosforth, Turnford near Hoddesdon, Langley near Slough, Manchester, Mel­ ton Mowbray, Newport, Northampton, Orpington, Stockport, Stockton-on-Tees, Weybridge.

Four-channel drive

L.20 is a drive designed to drive industrial loads and can operate currents of up to 1.8A (280V) at frequencies up to 30V, enabling driving of relays, solenoids, d.c. motors and digital systems.

W. A. Scarr, G2WS, chairman of the Amateur Radio Invalid and Blind Club, has reported for a wider interest in and appreciation of the club's aims and plans. RAIBC exists to help handicapped people who are in full-time amateur radio. The club has an RAJE tuition course on tape cassettes for blind candidates and this has recently been revised; a number of Datong morse tutors have been donated by friends of the club and are proving successful. Some 50 copies of the club newsletter "Radio" are distributed on tape.

In brief

Kenyatta has introduced a Type "approval" system on television in the country. Charging a fee of 150 shs which has to be paid each time any alteration is made to an existing Type "approval", is the Proposed National Amateur Radio Exhibition at Alexander Palace, London W4, 5/6pm. Dates for the ARJA amateur radio exhibition at Leicester have been changed to November 6, 7 and 8, and the Sixty Club exhibition to November 6, 7 and 8.

Adjutable crystal oscillator

Precise frequency setting to within ± 0.001 p.m is possible with this new type of adjustable crystal oscillator by means of an integral miniaturized "trimmer". The Coronet 85-1 series is available in a frequency range from 1 to 110 MHz and has a 0.01% crystal output circuit, with a fanout of 100. This type of oscillator is ideal for buffering an overriding oscillator circuit for increased stability.

Push-pull f.p. power f.e.t.s

Claims of the first f.p. push-pull power f.e.t.s using the v.m.o. technique, are made by Siliconix Inc., 4000 Mission College Blvd, Santa Clara, California 95054, for broadband applications from 2 to 2000mhz, and offer the advantage of enabling reduced amplifier size, and minimizing bias component requirements, by the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

New microprocessor

All other single-chip microcomputers are out-performed by the 8086, clone GEC machines. It fits in at the top of the list. The 8086-40 has a high speed, with oscillator and clock circuits. The Type SF series low-profile relay distributes 8 terminals and offers the choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 5 A.c. or 0.5 A.d.c. at 250 v.d.c. or 36 V.a.c. being available on request. (UK) Ltd, 3M House, Edgbaston, Birmingham B15 2HJ, UK.

Four-channel driver

L.20 is a drive designed to drive industrial loads and can operate currents of up to 1.8A (280V) at frequencies up to 30V, enabling driving of relays, solenoids, d.c. motors and digital systems.

W. A. Scarr, G2WS, chairman of the Amateur Radio Invalid and Blind Club, has reported for a wider interest in and appreciation of the club's aims and plans. RAIBC exists to help handicapped people who are in full-time amateur radio. The club has an RAJE tuition course on tape cassettes for blind candidates and this has recently been revised; a number of Datong morse tutors have been donated by friends of the club and are proving successful. Some 50 copies of the club newsletter "Radio" are distributed on tape.

Adjustable crystal oscillator

Precise frequency setting to within ± 0.001 p.m is possible with this new type of adjustable crystal oscillator by means of an integral miniaturized "trimmer". The Coronet 85-1 series is available in a frequency range from 1 to 110 MHz and has a 0.01% crystal output circuit, with a fanout of 100. This type of oscillator is ideal for buffering an overriding oscillator circuit for increased stability.

Push-pull f.p. power f.e.t.s

Claims of the first f.p. push-pull power f.e.t.s using the v.m.o. technique, are made by Siliconix Inc., 4000 Mission College Blvd, Santa Clara, California 95054, for broadband applications from 2 to 2000mhz, and offer the advantage of enabling reduced amplifier size, and minimizing bias component requirements, by the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

New microprocessor

All other single-chip microcomputers are out-performed by the 8086, clone GEC machines. It fits in at the top of the list. The 8086-40 has a high speed, with oscillator and clock circuits. The Type SF series low-profile relay distributes 8 terminals and offers the choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 5 A.c. or 0.5 A.d.c. at 250 v.d.c. or 36 V.a.c. being available on request. (UK) Ltd, 3M House, Edgbaston, Birmingham B15 2HJ, UK.

Push-pull f.p. power f.e.t.s

Claims of the first f.p. push-pull power f.e.t.s using the v.m.o. technique, are made by Siliconix Inc., 4000 Mission College Blvd, Santa Clara, California 95054, for broadband applications from 2 to 2000mhz, and offer the advantage of enabling reduced amplifier size, and minimizing bias component requirements, by the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

New microprocessor

All other single-chip microcomputers are out-performed by the 8086, clone GEC machines. It fits in at the top of the list. The 8086-40 has a high speed, with oscillator and clock circuits. The Type SF series low-profile relay distributes 8 terminals and offers the choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 5 A.c. or 0.5 A.d.c. at 250 v.d.c. or 36 V.a.c. being available on request. (UK) Ltd, 3M House, Edgbaston, Birmingham B15 2HJ, UK.

Push-pull f.p. power f.e.t.s

Claims of the first f.p. push-pull power f.e.t.s using the v.m.o. technique, are made by Siliconix Inc., 4000 Mission College Blvd, Santa Clara, California 95054, for broadband applications from 2 to 2000mhz, and offer the advantage of enabling reduced amplifier size, and minimizing bias component requirements, by the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

New microprocessor

All other single-chip microcomputers are out-performed by the 8086, clone GEC machines. It fits in at the top of the list. The 8086-40 has a high speed, with oscillator and clock circuits. The Type SF series low-profile relay distributes 8 terminals and offers the choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 5 A.c. or 0.5 A.d.c. at 250 v.d.c. or 36 V.a.c. being available on request. (UK) Ltd, 3M House, Edgbaston, Birmingham B15 2HJ, UK.

Push-pull f.p. power f.e.t.s

Claims of the first f.p. push-pull power f.e.t.s using the v.m.o. technique, are made by Siliconix Inc., 4000 Mission College Blvd, Santa Clara, California 95054, for broadband applications from 2 to 2000mhz, and offer the advantage of enabling reduced amplifier size, and minimizing bias component requirements, by the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

New microprocessor

All other single-chip microcomputers are out-performed by the 8086, clone GEC machines. It fits in at the top of the list. The 8086-40 has a high speed, with oscillator and clock circuits. The Type SF series low-profile relay distributes 8 terminals and offers the choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 5 A.c. or 0.5 A.d.c. at 250 v.d.c. or 36 V.a.c. being available on request. (UK) Ltd, 3M House, Edgbaston, Birmingham B15 2HJ, UK.
allow touch-reading, and “topes” are given to tell the user when the device is functioning correctly and when the radio is scanning. At each selectable station, the scanning stops and requires no visual control as an example of external Ethers for frequency analysis, and two versions providing either a.c. lin. or d.c. input. Output are also available. Various microphones, for which polarizing voltages are provided, and vibration transducers, can be used in conjunction with the low-noise amplifier/voltmeter, which complies with the IEC, ANSI and DIN standards for precision sound level meters. B&K Laboratories Ltd, Cross Lancs Road, Hounslow, Middlesex TW3 5AS.

Conducting elastomer connectors

Connectors which have contact pads as close together to form a “block”. Clamping of the block to the mating conductors is required to ensure good contact, the pressure being adjustable which causes the block to deflect by between 15% and 30%. Elastomer connectors can be used with interconnection components such as displays, i.e. chip-carriers, p.c.b. leads, hybrid circuits and fast-cables, and as soldering is required, and a greater tolerance to misalignment is available than with conventional connectors, time and savings can be made where large-scale production is concerned.

Stax 40/2 low-profile connect was manufactured by Hi-Tec Inc. (USA), and have a temperature range of -30°C to +70°C. The 40/2 is a development of the 40/1, which holds the circuit under test in position and against the spring-loaded contacts. It is claimed that the “bed of nails” test-heads can be changed in a matter of seconds, an important feature where production runs are to be minimized in the testing of p.c.b. of varying nature and size.

The receiver, which is available for either 30 or 60°C test head mounting, is either demonstrated, in which case a Cannon 156 way terminal connector is usually fitted, or semi-permanently installed into an i.e. system. Each spring-loaded contact consists of a probe, which is made from beryllium copper, plated with either gold or silver, and a mating socket. Constant contact between probe and socket is ensured by using a patent “blowing-bell” construction which also prevents current passage through the pressure spring. The contacts are replaceable. The U3000 is made by Pylex and distributed in the U.K. by Telos Ltd., Tecofi House, Meadow Road, Godalming, Surrey GU7 1AP.

High-voltage networks

This new range of custom-built resistance networks is being manufactured by Welwyn Electric Ltd. Each network is capable of withstandin up to 30kV, provided that the power dissipation of the device is not exceeded, making them particularly suitable for use as high-voltage dividers.

Click-stop pots

Industry-standard potentiometers in either single or tandem-stereo forms, denominated Radiohm F20 and JPB requirements and is manufactured by East Grinstead Electric Components Ltd. They are produced in a choice of 12 different linear and non-linear law patterns ranging from 1982 to 2.2M conductor, and are available in cento-in. 11 and 20 pin variations and with either tin or ferritic spindles.

Standard track-dissipation ratings at 46°C are 0.4W and 0.25W for linear and non-linear versions respectively, with a minimum limiting element voltage of 900V d.c. and insulation breakdown voltage of 1800V a.c. Normal ratings for torque over the full 360° rotation is 0.4Nm, and stop and minimum torque is between 60 and 80Nm, dependent upon style and maximum spindle load is 100N for Stec. Various p.c.b. and hard-wiring solder tag terminals are also available, as integral support terminals, enabling robust assemblies to be achieved. East Grinstead Electronic Components Ltd, Iverna Industrial Estate, East Grinstead, Sussex RH19 1B.

Universal vacuum-test fixture

Test heads which are interchangeable and a universal receiver, the section upon which the test heads are mounted, are the main components of this p.c.b. test fixture, the U3000, which holds the circuit under test in position and against the spring-loaded contacts, using a vacuum. It is claimed that the “bed of nails” test-heads can be changed in a matter of seconds, an important feature where production runs are to be minimized in the testing of p.c.b. of varying nature and size.

The receiver, which is available for either 30 or 60°C test head mounting, is either demonstrated, in which case a Cannon 156 way terminal connector is usually fitted, or semi-permanently installed into an i.e. system. Each spring-loaded contact consists of a probe, which is made from beryllium copper, plated with either gold or silver, and a mating socket. Constant contact between probe and socket is ensured by using a patent “blowing-bell” construction which also prevents current passage through the pressure spring. The contacts are replaceable. The U3000 is made by Pylex and distributed in the U.K. by Telos Ltd., Tecofi House, Meadow Road, Godalming, Surrey GU7 1AP.

Double networks are identical in pattern, shape and electric characteristics, offering a more consistent performance to that obtained with discrete resistors. Substrate sizes range from a 25 x 8.5mm to 25 x 50mm. Welwyn Electric Ltd, ,
The New FM/AM 1000s with Spectrum Analyser—we call it the SUPER-S

A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, modulation meter, oscilloscope, deviation meter, and catalogue request.

Heyco have got it made for cables

Heyco Manufacturing Co. Ltd., Unit 1, Shire Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: 0799 21682. Telex: 817477.

Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM/AM Field Service Monitor
CE-50A: FM/AM Field Service Spectrum Monitor

Secret who builds this great

Logic Probe...YOU! Only £11.92

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly—thanks to our very descriptive step-by-step manual—you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.

Use your scissors to keep informed.

Cut the coupon and subscribe to Electronic Components and Applications. Its 64 pages, contain in-depth articles like:

- Microprocessor applications
- TV and radio digital control
- Electronic news gathering
- 30AX—latest TV techniques
- AC motor speed control, written by top specialists from Philips, magnetic and Mullard.

Exclusive representative:
Aspen Electronics Limited
Communications Equipment and Components
2 Kildare Close, Euston, Ruislip, Middlesex HA4 9UR
Telephone: 01-886 1188
Telex: BB12727

Guess who builds this great

Logic Probe...YOU! Only £11.92

Details from:

C.S.C. (UK) Limited
Dept. TZ Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AG
Telephone: 01-799 21682
Telex: 817477
The Largest distributors of CB accessories in the UK.

Come and see the biggest and best selection of CB radio accessories including:

- Microphones by Turner-K40
- G.C.Electronics
- SWR meters including Hansen
- Suppression equipment plus much much more!
- Antennas by HY-Gain Sirtel & HMP

Mura
Mura Electronics (UK) Ltd.
76 Church Road, Nendal, Londen, NN3
Tel: 01 203 5277/8

Sole UK agents for:

NV-RAMA CORPORATION SA

Shop now open.

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers' requirements.

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Wills Road, Crowley. CRO90X
01 684 1422, 01 684 8741

It has features other tools have not

- 50w Electronic temperature control
- Total earth system
- No mains interference
- No moving parts
- Low safety voltage operation
- Adjustable temperature without bit change
- 12 months guarantee

Solding unit!01 showing the two instruments available

ADCOLA PRODUCTS LIMITED
Gains Road, London, SW13 8EQ.
Telephone: 01 822 8801, Telex: 89171 ADCOLA.G

IN ASSOCIATION WITH ELECTRONIC DREAM PLANT LIMITED

PRESENT THE FAMOUS DIGITAL WASP SYNTHESER

NOW AVAILABLE IN KIT FORM FOR ONLY

£149.50, including VAT + P&P

FEATURES INCLUDE:-

- Touch sensitive digital keyboard
- 2 oscillators, each with random sample control
- With frequency & Q controls for
- Low band/hi-fi range
- Full comprehensive 3 band filter
- Output jacks to connect to
- Other units using a simple to follow cover for connection to
- AM/INTERFACED MICROPROCESSOR
- Built-in speaker & 3 volt adaptor input
- Line & headphone outputs
- This synthesiser is entirely self-contained
- In a tough plastic case complete with
- Battery compartment for six 6V size batteries.

THE COMPLETE KIT COMES WITH AN EASY TO FOLLOW ASSEMBLY GUIDE AND PLAYING MANUAL

NAME
ADDRESS
ACCESS/BARCLAYCARD NO.

DREAM PLANT ELECTRONICS
RED GABLES, STONESFIELD ROAD, COMBE, OXFORD, OX7 2ER.

PLEASE SEND ME WASP SYNTHESER KITS
AT 149.50 EACH INCLUDING VAT + P & P.

(£1.5 EACH FOR ORDERS OUTSIDE G.B. & NORTHERN IRL.)

PLEASE SEND ME..... FREE INFORMATION BROCHURE(S)

[PLEASE ENCLOSE S.A.E.]

WASP ELECTRONICS
RED GABLES
STONESFIELD ROAD
OXFORD OX7 2ER

PLEASE SEND ME WASP SYNTHESER KITS
AT 149.50 EACH INCLUDING VAT + P & P.

£1.5 EACH FOR ORDERS OUTSIDE G.B. & NORTHERN IRL.

PLEASE SEND ME..... FREE INFORMATION BROCHURE(S)

WIRELESS WORLD, SEPTEMBER 1980
Toroidal Transformers

We specialize in providing transformer technology to meet our toroidal requirements. They have half the weight and half the width of similar components. The range can be supplied from stock. Special requests welcome. Our various models offer flexibility and a wide range of options to suit your needs. Contact us for further details or to order.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>YR</th>
<th>QUANTITY</th>
<th>NO. OF TURNS</th>
<th>DIA - HT</th>
<th>WEIGHT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>30X1</td>
<td>150</td>
<td>3,000</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X2</td>
<td>250</td>
<td>2,500</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X3</td>
<td>350</td>
<td>2,000</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X4</td>
<td>450</td>
<td>1,500</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X5</td>
<td>550</td>
<td>1,000</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X6</td>
<td>650</td>
<td>500</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X7</td>
<td>750</td>
<td>250</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X8</td>
<td>850</td>
<td>125</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X9</td>
<td>950</td>
<td>62.5</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
<tr>
<td>30X10</td>
<td>1,000</td>
<td>31.25</td>
<td>100</td>
<td>0.30</td>
<td>£5.40</td>
<td></td>
</tr>
</tbody>
</table>

CHOICE OF 3 PRIMARY INPUTS

L.P. Toroidal Transformers are available in 110v, 230v, or 240v, coated or galvanized. B.R.A.N.D.E.D & CLEARLY MARKED TO CLEARANCE SALE.

FREEPOST Facility

All prices include VAT. Single order copies available as FREEPOST to U.K. customers.

TO ORDER

Complete the coupon and enclose with your remittance. Details available on request.

People in the know, keep in touch.

Call your secretary, factory manager, accountant or even hold a conference - all at your fingertips. With our easy-to-use system, you can contact anyone, anywhere, at any time.

Barkway keeps you in touch...

Write or phone NOW for further details.

Barkway Electronics Ltd.,
Barkway, Royston,
Tel: Barkway (0763 84) 666
Telex: 817651 BARCOM G

NEW VALVES

BRANDED & INDIVIDUALLY BOXED - AVAILABLE FROM:

PM COMPONENTS LTD.
VALVE & COMPONENT SPECIALISTS
CONINGSBY HOUSE, WROMTHAM ROAD, MEPPHAM

SINE WAVE INVERTERS

FROM CARACAL

200 to 1000VA
DC Input: 12, 24 or 48 V
AC Output: 220/240 V or 110/120 V
50/60 Hz

Caracal sine wave inverters are designed to replace older tuned type inverters in hand, mobile or marine use. They are also suitable for stand-by AC power for computers, communications and many other applications.

Our technical specification and competitive pricing offer without doubt the best value on the market.

- Very stable output voltage (5%) and frequency (0.3 Hz) under all load/battery conditions.
- High efficiency throughout the load range, not just at full load - resulting in lower battery size and cost.
- Very low distortion sine wave — only 5% T.H.D.
- Low idling/no-load input current.
- Automatic "standby" operation available.
- Comparitively low weight.

WIRELESS WORLD, SEPTEMBER 1980

CLEARANCE SALE

We are moving to New Premises, and it is necessary to clear all of our existing stock.

THE SALE

Is for ONE WEEK commencing 1000Hr. Monday, 8th September, 1980 to Saturday, 13th September, 1980.

ANNUAL HOLIDAYS from 27th AUG. '80 to 3rd Sept. '80

Orders accepted only from Education & Government establishments, otherwise cash sales only.

For list send stamped addressed envelope.

MARTIN ASSOCIATES [ELECTRONICS] LTD.
34 Crown Street, Reading, Berks.
Telephone: (0734) 51074 & 595583

TOMORROW'S TOOLS TODAY

WIRELESS WORLD, SEPTEMBER 1980
You should attend...

INTERNEPCON/UK '80

14, 15, 16 OCTOBER 1980

METROPOLE CONVENTION CENTRE, BRIGHTON, ENGLAND

... the 13th annual event devoted to total electronics production technology

Because INTERNEPCON/UK '80 is the only exposition in Europe this year, presenting displays of equipment and systems for all areas of production, processing and testing by more than 500 companies.

Exhibits will include chemicals, materials, PCB’s, tools, connectors, component insertion equipment, test systems, production equipment and associated hardware

The most comprehensive conference programme with technical sessions covering development, packaging, processing and testing in all areas of electronics manufacturing and applications.

FOR ADVANCE INFORMATION COMPLETE AND RETURN THE COUPON — NOW

Return to Kiever Communications S.A., 171/180 Ewell Road, Sutton, Surrey, England

For literature and the notice of your local event, contact: Dataman, P.O. Box S, Dorking, Surrey, or Telephone 0303 776560.

RETURNO

 wurf-02 FOR FURTHER DETAILS

DEVELOPING A MICROSYSTEM?

Then plug a Softy into your ROM socket.

 SofTy provides:

• TV map of memory contents (Hex)
• Keyboard entry with assembler facility
• Serial/parallel Inputs (e.g. RS232)
• EPROM programming (2764, 2782, etc.)
• Cassette tape storage
• A low cost solution (£100 kit, £120 built + VAT)

SOF T Y—What else do you need?

WWW WIRELESS WORLD, SEPTEMBER 1980

S-2020TA STEREO TUNER/AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button FM Variicap Stereo Tuner combined with a 24W m.s. per channel Stereo Amplifier.

Price £59.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang Variicap tuning, linear phase L.F. and 3 state MPX decode.

Price £99.95 + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever decoder specifically produced by England’s first NRDC broadcast surround sound system which after a full 7 years research by the Ambisonic team. W.W. July - Aug. ‘77

The unit is designed to decode not only FM but virtually all other quadrupole systems RHC/COS, including the new BBC/Hi. High output, 50 watts per channel through a standard size (92mm x 87mm) cassette tape storage. Single channel plug in with pre coded or ready built £69.95 + VAT.

S5050A STEREO AMP

Very high performance kit

50 watts mono channel, 0.01% THD, 5.5mV/60dB Output areas. Complete kit £63.90 + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Intruder to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms.

Price £95.00 plus VAT, or ready built and tested £64.50 plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Typical performance:

Input sensitivity: 0.5% of full weight input

Harmonic distortion: 0.3% at Dolby level measured. A maximum of 0.2% at other levels. A maximum of 0.5% at other levels. A maximum of 0.12% at other levels. A maximum of 0.02% at other levels.

Dolby noise level: 0.02% (effective noise level: 0.01%)

Price £25.00 + VAT

Wireless World

Please send S.A.E for complete kits and specifications

Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE61 9PT

Burton-on-Trent (0283) 216432 Telex 377106

All kits are carriage free

INTERGEX LIMITED
Always have a panel of experts.

Assembling a front panel and PCB board has always been very time consuming. By using our new FP system, it enables you to be your own expert and build a superbly engineered front panel, quickly and efficiently. The fully interlocking system of L.E.D.s, toggle switches, push button switches, cermet potentiometers, test jack sockets and other components are all built to a standard format and can be fitted into your own custom built system or one of our front panel units. Send now for our catalogue, and start assembling your own panel of experts.

MANUFACTURED IN GERMANY BY
MENTOR

WIRELESS WORLD, SEPTEMBER 1980

MAIL ORDER PROTECTION SCHEME
(Limited Liability)

If you order from a mail order advertiser in this magazine, except for classified advertisements, and pay by post in advance of delivery, Wireless World will accept no responsibility for loss or damage, but the scheme applies only to mail order sales direct to you. We can therefore only offer protection in cases where the advertiser has been paid for your order before delivery. If you have not received your goods or tax your money refunded, and wish to make a claim under the scheme, please write to Wireless World, 463 High Road, Eastbourne, East Sussex BN23 6PH, giving your name, address, and order number, and stating the nature of your complaint. We will examine every claim and, if necessary, intervene between advertiser and subscriber, unless the advertiser offers to quote you the retail or invoiced price in his own sales literature. By returning this form you agree to let Wireless World use your name and address in connection with the scheme. This offer is not available to agents, subagents, or representatives of advertisers, or anyone who is connected with an advertiser or his firm, including employees, agents, or representatives of the Wireless World publishers.

FUSION Quick acting, Anti surge. Ceramic from £2.80 per 100.
WIREPOWER WAVE RESISTORS 5w-17w. ORS-39K from £17.50.
PCB Guitars: off-rolling from €4.88 per 100.
C.R. RESISTORS 1% & 2% 0.1 to 10,000 ohm from £1.48 per 1,000.
ELMA knobs & accessories. Crimp (goldplated) TERMINALS.
CARBON SLEEVES & Markets from £1 per 1,000.
SLEEPING, Neoprene, PVC. Silicone rubber—all colours.
SPECIAL REDUCED PRICES for C.F. resistors. Polystyrene Capacitors etc.; for values on which we are understocked. Special list available.
Write, phone or call for list required.
P.B.R.A LTD. Hopfield 345
Golden Green, Tonbridge, Kent TN11 OHL
Member Crystal Group

FREQUENCY COUNTERS—OFF/AIR RECEIVERS

250MHz 801 B
£350
Crystal
Format 4 parts 10
401A
50MHz 6 Digit £150
8018/M
250MHz 8 Digit £250
50MHz 8 Digit £352
1001M
1.25GHz 8 Digit £850
20 models available including LED versions

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries. SAE for lists and prices. £1.45 for booklet. "Nickel Cadmium Power," plus catalogue.

Write, phone or call at
SANDWELL PLANT LTD.
2 Union Drive, Boldon.
Sutton Coldfield, West Midlands 021-354 9764
See full range at T.C.L., 32 Clive Street, Unnaring Cross, London WC2

WE'RE 479 FOR FURTHER DETAILS

NEEDS NO EXAMINATION

You don't need to look too closely at the CSC Proto-Clips range of IC test clips to see that they provide instant connection to dual-inline packaged components. Use them on ICs, networks or relays to provide a high-integrity interface for hands-off testing with oscilloscopes, signal sources, logic analysers and other test instruments. Contact spacings designed to suit all standard IC packages, CSC Proto-Clips feature a moulded webbing construction, non-corroding nickel-silver contacts, and are designed to prevent signal degradation during testing. Make contact with CSC Proto-Clips right away by filling in the coupon.

CSC Sheild Ltd, Dicks 200, Unit 1, Birre Hill Industrial Estate, Sefford Walless, Essex CO11 3AD

"On the need to look...""You don't need to look too closely at the...""...

WIRELESS WORLD, SEPTEMBER 1980

www.americanradiohistory.com
Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heat sinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, phono inputs, tuning, etc. using digital or analogue sound sources.

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power</th>
<th>Distance (Typical) at 1KHz</th>
<th>Minimum Signal/Noise Ratio Power Supply Voltage</th>
<th>Size (in mm)</th>
<th>Weight (in gms)</th>
<th>Price + VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15W (10W)</td>
<td>-</td>
<td>100dB</td>
<td>35 x 110 x 25</td>
<td>155</td>
<td>£6.34</td>
</tr>
<tr>
<td>HY50</td>
<td>20W (15W)</td>
<td>-</td>
<td>100dB</td>
<td>35 x 140 x 35</td>
<td>155</td>
<td>£7.24</td>
</tr>
<tr>
<td>HY120</td>
<td>60W (40W)</td>
<td>-</td>
<td>100dB</td>
<td>40 x 140 x 50</td>
<td>155</td>
<td>£19.20</td>
</tr>
<tr>
<td>HY200</td>
<td>120W (80W)</td>
<td>-</td>
<td>100dB</td>
<td>45 x 140 x 50</td>
<td>155</td>
<td>£18.44</td>
</tr>
<tr>
<td>HY400</td>
<td>240W (160W)</td>
<td>-</td>
<td>100dB</td>
<td>50 x 140 x 50</td>
<td>155</td>
<td>£27.68</td>
</tr>
</tbody>
</table>

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and apart from PSU 30 and 38 which are smaller PSUs — all the other ILP's own manufactured toroidal transformers are used which are half the size and weight of conventional equivalents. They are also more efficient and have greatly reduced fields of radiation.

- PSU 30: 15V at 100mA to drive up to 12 x HY6 or 6 x HY60
 - £5.40 + £0.38 VAT
 - The following will also drive ILP PRE-AMPS

- PSD 36: for 1 x HY30
 - £6.20 + £1.22 VAT

The following include toroidal transformers:

- PSU 50 for 1 x HY50
 - £6.75 + £1.46 VAT

- PSU 50 for 1 x HY100
 - £9.75 + £1.88 VAT

- PSU 50 for 2 x HY120
 - £13.80 + £2.64 VAT

- PSU 50 for 1 x HY200
 - £13.80 + £2.64 VAT

- PSU 180 for HY400 or 2 x HY200
 - £23.92 + £3.45 VAT

This time with two new pre-amps

HY6 mono HY66 stereo

When ILP added a new design to their audio module range, there were to be very special transformers designed to yield excellent results. We have achieved this with the two new pre-amplifiers — HY6 for mono operation, HY66 for stereo. We have simple connections, and improved performance figures all round.

Our new pre-amps are short circuit and polarity protected; mounting boards are available to simplify construction.

Sizes: HY6: 65 x 40 x 40. HY66: 100 x 50 x 25. Active Tone Control provides ±12dB cut and boost. Input Sensitivity: 0.5/1V. Input Impedance: 50/100kΩ. Input Preamplifier: 500mV. Frequency response: 0.1-100kHz, -3dB.

ILP's exclusive mini circuitry ensures their suitability for use with the finest loudspeakers, phono inputs, tuning, etc. using digital or analogue sound sources.

LOW DISTORTION - Typically 0.005%
S/N RATIO - Typically 90dB (Mag. P.U. - 64dB)
HIGH OVERLOAD factor - 90 dB on Mag. P.U.
LATEST DESIGN HIGH QUALITY CONNECTORS.
REQUIRE ONLY POTS, SWITCHES, PLUGS AND SOCKETS.
COMPATIBLE WITH ALL ILP POWER AMPS AND PSU.
MENTS ONLY UNREGULATED POWER SUPPLY ±10V to ±20V.

* ALL U.K. ORDERS DESPATCHED POST PAID
HOW TO ORDER. USING FREEPOST SYSTEM
Simply fill coupon with payment or credit card instructions. Post to address as above but without stamp. In payment postcard and letter sent to us by readers of this journal.

Please supply:

- Total purchase price
- Enclosed Cheque
- Postal Orders
- International Money Order

Please debit my Access/Bankcard/Account No.

NAME
ADDRESS

TOTAL £

FREEPOST 5
Guiney Bell House, Rope Close, Canterbury. Kent CT2 7EP
Telephone: 0227/54778
Toll 50778

NO DISCOUNT OFFER

FREEPOST SERVICE

WIRELESS WORLD, SEPTEMBER 1980

www.americanradiohistory.com
PSI COMP 80

280 Based powerful scientific computer. Design as published in Wireless World.

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI COMP 80</td>
</tr>
</tbody>
</table>

Technical Details

- **Complete Kit**
 - **Price**: £225 + VAT

Features

- **Cabinet size**: 19.0" x 16.7" x 3.3"
- **Television not included in price**

KIT ALSO AVAILABLE AS SEPARATE PACKS

For those who prefer to build their own, there are kits available. The kit is fully assembled and ready to use.

- **Price**: £30.00

MEMORY EXPANSION SYSTEM

- **Price**: £26.50
 - **Components**:
 - 4K RAM expansion board
 - 8K ROM expansion board
 - 16K EPROMs

MORE KITS

- **Price**: £195 + VAT
 - **Components**:
 - 16 MACHINES
 - NOISE GENERATOR
 - SLOW RATE CONTROL

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER

HANTS SP10 3NN

(0264) 64455

POWERTRANRSC WORLD, SEPTEMBER 1980

<table>
<thead>
<tr>
<th>EMITTERS</th>
<th>IMPEDANCE</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3708</td>
<td>102</td>
<td>2N3440</td>
</tr>
<tr>
<td>2N3055</td>
<td>102</td>
<td>2N2222</td>
</tr>
<tr>
<td>2N1671</td>
<td>102</td>
<td>2N1613</td>
</tr>
<tr>
<td>2N3773</td>
<td>102</td>
<td>3N3773</td>
</tr>
</tbody>
</table>

- **Contact**: Tel: 01-677 2424 Telex: 946708

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CRYSTAL</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS116</td>
<td>102</td>
<td>2N3708</td>
</tr>
<tr>
<td>74LS164</td>
<td>102</td>
<td>2N3440</td>
</tr>
<tr>
<td>74LS257</td>
<td>102</td>
<td>2N3055</td>
</tr>
<tr>
<td>74LS283</td>
<td>102</td>
<td>2N2222</td>
</tr>
<tr>
<td>74LS233</td>
<td>102</td>
<td>2N1671</td>
</tr>
<tr>
<td>74LS285</td>
<td>102</td>
<td>2N1613</td>
</tr>
<tr>
<td>74LS284</td>
<td>102</td>
<td>2N3773</td>
</tr>
</tbody>
</table>

- **Contact**: Tel: 01-677 2424 Telex: 946708

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CRYSTAL</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS138</td>
<td>102</td>
<td>2N3708</td>
</tr>
<tr>
<td>74LS139</td>
<td>102</td>
<td>2N3440</td>
</tr>
<tr>
<td>74LS147</td>
<td>102</td>
<td>2N3055</td>
</tr>
<tr>
<td>74LS148</td>
<td>102</td>
<td>2N2222</td>
</tr>
<tr>
<td>74LS233</td>
<td>102</td>
<td>2N1671</td>
</tr>
<tr>
<td>74LS283</td>
<td>102</td>
<td>2N1613</td>
</tr>
<tr>
<td>74LS285</td>
<td>102</td>
<td>2N3773</td>
</tr>
</tbody>
</table>

- **Contact**: Tel: 01-677 2424 Telex: 946708

VALVES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CRYSTAL</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS138</td>
<td>102</td>
<td>2N3708</td>
</tr>
<tr>
<td>74LS139</td>
<td>102</td>
<td>2N3440</td>
</tr>
<tr>
<td>74LS147</td>
<td>102</td>
<td>2N3055</td>
</tr>
<tr>
<td>74LS148</td>
<td>102</td>
<td>2N2222</td>
</tr>
<tr>
<td>74LS233</td>
<td>102</td>
<td>2N1671</td>
</tr>
<tr>
<td>74LS283</td>
<td>102</td>
<td>2N1613</td>
</tr>
<tr>
<td>74LS285</td>
<td>102</td>
<td>2N3773</td>
</tr>
</tbody>
</table>

- **Contact**: Tel: 01-677 2424 Telex: 946708

BASICS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CRYSTAL</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS138</td>
<td>102</td>
<td>2N3708</td>
</tr>
<tr>
<td>74LS139</td>
<td>102</td>
<td>2N3440</td>
</tr>
<tr>
<td>74LS147</td>
<td>102</td>
<td>2N3055</td>
</tr>
<tr>
<td>74LS148</td>
<td>102</td>
<td>2N2222</td>
</tr>
<tr>
<td>74LS233</td>
<td>102</td>
<td>2N1671</td>
</tr>
<tr>
<td>74LS283</td>
<td>102</td>
<td>2N1613</td>
</tr>
<tr>
<td>74LS285</td>
<td>102</td>
<td>2N3773</td>
</tr>
</tbody>
</table>

- **Contact**: Tel: 01-677 2424 Telex: 946708

LANGREX SUPPLIES LTD

Climax House, Fallsbrook Rd., Streatham, London SW16 6ED

Tel: 01-677 2424 Telex: 946708
Z & I AERO SERVICES LTD.
Head Office: 42-44A-48 WESTBOURNE GROVE, LONDON W2 5SF
Tel. 727 5641 Telex 261306

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SUITABILITY</th>
<th>VOLTAGE</th>
<th>CURRENT</th>
<th>WAVEFORM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U4313</td>
<td>Sensitivity 0.1%</td>
<td>25mV</td>
<td>100μA</td>
<td>0.01-1MHz</td>
<td>£5.00</td>
</tr>
<tr>
<td>U4315</td>
<td>Sensitivity 0.01%</td>
<td>25mV</td>
<td>100μA</td>
<td>0.01-1MHz</td>
<td>£8.50</td>
</tr>
</tbody>
</table>

PRICE: complete with test leads and fibreboard storage case £8.50

Packaging and post (U.K.) £1.00

MONEY SAVING BARGAIN

J.V.C. BELT DRIVEN

WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE

LIST PRICE OVER £50

J.V.C. variable speed turntable with an Audio Technica AT50 headshell

LOW PRICE OFFER

| S.HQ STEREO | 10 + 10 watt AMPLIFIER WITH AM/FM STEREO TUNER IDEAL FOR THE HOME | £37.40 |

GEC HIGH QUALITY STEREO

Suitable speakers in cabinets 10 watts

| PAIR | £19.95 |

CAR STEREO CASSETTE MECHANISM made for MOTOROLA

- Front loading 12-volt transistorised
- Speed and voltage control
- Ex-equipment tested - guaranteed

ONLY £7.50

WIRELESS WORLD, SEPTEMBER 1980

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTIO-VOICE SYNTHESIZER

Another superb design by synthesizer expert Tim Orr - published in Electronics Today International

The Transcendent DPX is a remarkably versatile five voice 16-track keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful transistor or pure transistor - i.e. no predistortion, no distortion - which is perfect for piano sounds, leads, brass sounds, etc. On the second there is a wide array of digital effects, fully polyphonic. It can be a straightforward piano or a non-totally piano - i.e. one of the five! Alternatively you can play a whole range of percussion sounds, combine these with a wide range of digital effects and put it all into the audio output. The DPX is electronically well set after the first two times or once you have a handheld microprocessor in the loop. It's possible to swap sounds - just like sequential piano. The digital controlled multi-pitch system includes touch sensitivity with the complete dynamic range necessary for a high degree of realism. There is a mains power and tone control, a separate control for modulation sounds and a filter on each voice with variable depth together with a transistor output. All voice comes in only after a short time delay (the strobe is strong for more realistic working positions).
NEW PRICES ON MEMORIES

STRUFTS prices down again

2114-300ns 1K X 4 SRAM
2116-200ns 16K X 1 DRAM
2708-450ns 1K X 8 EPROM
2516-2X X 8 EPROM
2532-4K X 8 EPROM
Carter ASCII Keyboard

Please add 50p Postage and 15% VAT to all orders.

STRUFT LTD.

(ELECTRONIC COMPONENTS DISTRIBUTORS)

3C Bailey Market Street
Tavistock, Devon PL19 0JF
Tel: Tavistock 0822-5439/5648
Telex 45263

POSITIVE RESIST
COATED LAMINATE

for high quality printed circuit production –
compatible with all positive working
systems.

Ex Stock Delivery

PRICE
SINGLE £9.99
DOUBLE £12.23
4" x 6" £1.08
6" x 8" £1.38
8" x 9" £2.59

All packed individually. Cash with order only. All prices inclusive of V.A.T. and Delivery.

MPS 200 100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Complete kit only £49.90 + VAT

MATCHES THE CHROMATHEQUE 5000

POWERTRAN

SYNTHESIZER KITS ON PAGE 103. MORE KITS AND ORDERING INFORMATION ON PAGE 101.

POWERTRON

DE LUXE EASY TO BUILD LINSLEY HODD
70W STEREO AMPLIFIER £23.90 + VAT

This luxury, built in kit is published in Powertron’s TOP 100 series and built in a double-sided, line system.

COMPLETE KIT ONLY £23.90 + VAT

In the Black Hole music effects device, you can generate a wide range of effects including a high pitch, sing like a bird, beatifully tuned crescendo.

COMPLETE KIT ONLY £49.80 + VAT (single delay line system)

Deluxe version (dual delay line system) also available for £59.80 + VAT

KELAN ENGINEERING LTD
27-29 Leadhall Lane, Harrogate, North Yorks. HG2 9JN.
there are transformers and...

Drake Transformers

OEM — let Drake Transformers advise you on component specification and design to solve that special problem. Pre-production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialises in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works • Kineton Lane
Billencote Essex CM11 2SP
Telephone: Billencote (0277) 51155
Telex: 99426 (prefix Drake)

WIRELESS WORLD, September 1980

Power AMPS: KITS FROM
Quantum Electronics. 70W 'module' (available separately £26.00. M2308, £35.79). The module requires no "point-to-point wiring." the coil built, and tested printed circuit boards and requires only simple assembly and mounting. The kit is available for the M2308 at a price £35.79. Using circuitry supplied (also supplied). £9.00...}
WIRELESS WORLD, September 1980

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keen pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility using CMOS IC's for extra reliability, Z modulation for brightening or dimming the trace. 10MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £210.00 it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and 10mW/cm sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £360.00.

Plus the 4S6 single beam 6MHz bandwidth model with easy to use controls. 10mV sensitivity and timebase range of 1 us to 100ms/cm. Lightweight, compact and a very good price. £144.00.

Return the coupon for full details of the range that gives you a lot more scope.

*UK list price excluding VAT.

Scopex Sales, Pixmore Avenue, Letchworth, Herts SG6 1JJ. Tel: 04623/72771.

Please send me full details of the Scopex range.

Name:
Company:
Address:
Tel:

WIRELESS WORLD, September 1980

DATA PRECISION

Model 935

3½ digit, LCD display

DIGITAL MULTIMETER

HANDY—easily to hold, carry, to use, to read. Always at hand to make difficult measurements easy.

VERSATILE—all the functions and ranges you need. ... 9 in all, volts and amps, a.c. and d.c., switchable H and L ohms.

TOUGH—built to take the rough and tumble of field service and survive normally disastrous overloads the 935 will stay in cal.

PRECISE—better than 0.1% d.c. accuracy—better than many bench models.

MSBLE—big, clear, high contrast 3½ digit, LCD display, readable anywhere. ½” characters.

EXPANDABLE—accessories extend measurements to 10MHz, 40V, 100MHz or DVM at 84 £935.00 man made available excl. VAT. It uses a low cost 9V battery which can give up to 200 hours use.

See why your next multimeter should be a Data Precision 935.

Get the leaflet now from:

Farnell International

FARNELL INTERNATIONAL INSTRUMENTS LTD

VERTHLEY, WEST YORKS LS22 4XW

TEL: 0937 65141 / TELEX 557294 FAURST O

In LONDON OFFICE—TEL: 01 894 7433

WW 925 for further details.
RADIO AND TELEVISION SERVICING
1979-80 MODELS

Editor
R N Wainwright, T.Eng. (CEI), F.S.E.R.T.
The latest volume in the RADIO AND TELEVISION SERVICING series.

Ham Bands with 1.5-30 MHz receive with built-in 150 MHz frequency counter plus option of 0.1-5 MHz receive and/or any transmitting application 1.5-30 MHz.

RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NW8 3AY

For Communications equipment including Trios and Trio testgear.

MARKING PENS
with fluorescent colour inks

A range of marking pens is available in ten colours for permanent and removable markings. The inks are highly fluorescent, electrically non-conductive and can be used for marking metal, plastic, fabric or through an oil film.

STANDARD PNEUMATIC MOTOR CO.
35 Stafford Road, Weston-super-Mare, Avon BS23 8BN
Tel. No. 0934 417803. Telex 449480

For further details, please write to:
Macdonald
Division of Macdonald Futura Publishers Ltd.
The SW-M Mini Gas Soldering Iron now from KAM

flameless and ideal for fast soldering anywhere

Using only ordinary gas lighter fuel and giving 4 hours continuous use from one charge the SW-M, is ideal for many applications. There is no danger of electric current leakage and with flameless combustion there is negligible risk of fire. Soldering iron tip temperature is adjustable. Models available include 20W, 30W, 40W and 60W (wattage equivalents).

For full details ask for Bulletin No. 4.

Send for full technical information to:
Kam Circuits Limited, Porte Marsh Road, Caine, Wills, SNN 9BW.
Telephone: (0249) 815262 Telex: 444218

WIRELESS WORLD. SEPTEMBER 1980

LOW COST - HIGH RESULTS

Major Price breakthrough on 6 MIL Pink Poly

Why pay more for the same results? Our Pink Poly bags end the hazard of static spark discharge in handling and packaging of sensitive electronic components.

44 Standard sizes, 15 from Stock.

Example:
8 x 8 £111.07/1000
10 x 12 £173.47/1000
13 x 16 £217.78/1000

Send for full technical information to:
CAVAC SYSTEMS LTD
Unit 15, Suttons Industrial Park, London Road, Earley, Reading, RG6 1AZ
Tel: (0734) 686963 Telex: 849386

WIRELESS WORLD. SEPTEMBER 1980
ELECTRONIC
GILT-EDGED
USED

BRAND NEW

TEKTIXON

PORTABLE
OSCILLOSCOPE

100MHz Dual Trace Displayed and Mixed Signal Trigger. View supplied with all Standard Accessories + 1 YEAR WARRANTY

OUR AMAZING PRICE

£1395

Tel: 01-837.7781

HEWLETT PACKARD

3490A DMM

5½ digit AC/DC volts

±0.005% + 3 Digits

Auto-ranging. Variable display time (Resistance display down to 1MΩ)

UNBELIEvably LOW PRICE

£375

30 day warranty

D.V.M.s AND D.M.M.s

£95

D.V.M. 1051

£85

D.V.M. 1030A (New)

£85

D.V.M. 1030B

£80

D.V.M. 3040A-01

£85

D.V.M. 3030A

£80

PHILIPS

£55

Auto-ranging D.V.M. PM 2514

£55

Auto-ranging D.V.M. PM 2522

£55

Auto-ranging D.V.M. PM 2522

£55

SCHLUMBERGER

£45

±0.005% + 3 Digits

D.V.M. D.M. 19A

£80

Microprocessor D.M.M. 7065

£80

As above with precision cover

£80

Microprocessor D.M.M. 7055

£80

As above with precision cover

£80

FREQUENCY COUNTERS

£45

Advance 5000Hz Counter TC 15 & TC 15 P1

£95

12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

123

122

WIRELESS WORLD. SEPTEMBER 1980

WIRELESS WORLD. SEPTEMBER 1980

123

122

www.americanradiohistory.com
Electronic Brokers
No.1 in Second User Minis & Peripherals

NEW ASCII KEYBOARDS — NEW LOW PRICES

- KB776 56-station ASCII Keyboard
- KB756F 56-station ASCII Keyboard for PET
- KB736F 56-station ASCII Keyboard
- KB756FM 56-station ASCII Keyboard for PET

LOW COST PRINTER OFFER

- DIGITRONICS P135 Paper tape punch: 35 cps.
- SHUGART 946000 Microtape disc drive

NEW PRICING:
- HP 4750T Printer £140.00
- DL950 PostScript Laser Printer £225.00

Electronics Brokers Ltd
WIRELESS WORLD SEPTEMBER 1980

£199
£299
£425

The Hazeltine Modular One terminal offers the full range of terminal performances — from simple teletypewriter compatibility to enhanced editing and polling capabilities. The Modular One is supplied in two different versions. The BASIC MODEL provides the following features: 1,920 character display (80x24), 12-inch banded/Incremental and absolute cursor positioning. *Dual video input/Line 1 key numeric pad ! Modular keyboard *Choice of B transmission rates up to 9600 baud Communication interfaces: EIA RS-232 and current loop. *Choice of black or blinking underscore Cursor. *Choice of white-on-black or black-on-white display representation.

Hazeilne MODULAR ONE

- LOWEST PRICES
- COMPETITIVE PRICES
- BEST PRICES

ELECTRO NIC BROKERS LTD
VDU PRICES
SHATTERED

For more information, visit www.americanradiohistory.com
WIRELESS WORLD, SEPTEMBER 1980

LEAD SHEILD panel 310 Ballast printer. Size £400. OUR PRICE ONLY £360 or make
DEEDS. Talk direct (0326) 254 343.

HAPPY new DIVER 14-pin OPERATIONAL AMPLIFIER?

MINIATURE KEYBOARD

PU0H 14-pin OPERATIONAL AMPLIFIERS

MAGNETOS

STEEPING MOTORS

STEEPING MOTORS

STEEPING MOTORS

INFRA RED IMAGE CONVERTER type 9606 (CV 144)

MITSUBISHI POLARAR SPECTRUM ANALYSER

STEREO INVERTER

STEREO INVERTER

EDDINGTON RXS

MINIMUM ORDER 3 VALUE OF GOODS. MINIMUM F& P £ _— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MAIN MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM F&P £— where F&P or post charge may use own discretion — ex works postage. CARRIAGE AL we.
HIGH QUALITY

JVC DECK

J.V.C. BELT DRIVE STEREO DECK

RCA SET TO LIGHT KIT Ns.

Kit of parts to build a 3 channel sound. Kit with 3000 series plate, 5000 series plate, dual generally bias compensation. D5.

Baker Loudspeakers

Baker 50 WATT AMPLIFIER

Baker 250 WATT AMP.

Baker 150 WATT MIXER/POWER AMPLIFIER

Baker's unique feature is the high-quality Japanese sound to Polystyrene Spk. £10.50. £27.50

EMI 131 x 8inh. LOUDSPEAKERS

Emi 131 x 8in. £5.95. £9.95. £10.95

EMI 131 x 8in. SPEAKERS

EMI 131 x 8in. £5.95. £9.95. £10.95

AMERICAN RADIO HISTORY

www.americanradiohistory.com
Land a good job...

Your Radio Officer's qualifications could mean a lot here on shore.

...Your based job, where you'll be earning good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

British Telecom Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and Radio Telephone operating.

To apply, you must have:
- A good technical knowledge of audio and/or video equipment.
- Experience in the operation of sophisticated instruments.
- (Appropriate guidance will be given to those keen on entering this challenging field.

A number of vacancies are currently zero rated for the purpose of V.A.T.

Closing date for return of application forms, 14 days after publication.

Application form, please send a stamped addressed envelope of at least 4" x 6".

Pensionable Post. Re-location expenses considered.

P.S. A good pension scheme, sick-pay benefits, at £315 per annum, and £600 for 3 years' service, this figure rises to around £1,900, and £3,500 after 5 years' service. The starting pay at 25" will be about £5,390. After 3 years' service this figure rises to around £7,052. If you are between 27 and 30 your pay may well be between approximately £4,279 and £4,537. Overtime is additional and there is a good pension scheme, sick-pay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.

For further information, contact Telephone Kaiser, Warrington, Cheltenham, Gloucestershire.

£1 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Museum Street, London EC1R 9D).

PHONE: Anthony Hadley, 01-261 8508.

Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

BROADCASTS

ELECTRONICS ENGINEER

ENGINEERING TRAINING DEPARTMENT, EVESHAM, WORCS.

The BBC's Engineering Training Department is situated in the Worcestershire countryside and includes well equipped Radio and Television Studios. There are excellent welfare and club facilities.

Duties: Maintaining a full range of professional radio and television broadcasting equipment. The includes modifications and commissioning of broadcast equipment, the repair and servicing of sophisticated instruments. Appropriate guidance will be given to candidates who are unfamiliar with BBC equipment.

Requirements: Basic experience of operating equipment that includes television, audio and television equipment.

One of the following qualifications is essential:
- A degree from a British University in electronics or electrical engineering.
- HN.Dip HND (Electrical Engineering or Applied Physics).
- G and G Full Technological Certificate in Telecommunications.

Salary, depending on experience, in the range of £2,000 - £2,800 rising to £2,500 plus 15% Shift Allowance.

Pensionable Post. Re-location expenses considered.

Further Details: If you would like to know more and receive an application form, please send a stamped addressed envelope of at least 4" x 6" to Head of Technical Operations Training Section, Engineer, Engineering Training Department, Wood Norton, Evesham, Worcs. WR11 2YR. (Closing for return of application forms 11 days after publication.

Trainee Radio Officers

First-class, secure career opportunities

A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee Radio Officers.

If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.

Applicants must have had at least two years' radio operating experience or hold a PMG, MPT or MRCC certificate, or expect to obtain this shortly.

On successful completion of 40 weeks' specialist training, promotion will occur to the Radio Officer grade.

Registered disabled people may be considered.

Salary & Prospects:

TRAI NEE RADIO OFFICER: £3500 to £8349 at 25 and over. On promotion to RADIO OFFICER £5288 at 19 and £8684 at 25. Over then by four annual increments to £9339 inclusive of shift working and Saturday and Sunday elements.

For full details please contact Robby Robinson, our Recruitment Officer, on Cheltenham (0034) 21481, Ext. 2269, or write to him at: Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 8AJ.

Aerial Engineers

(Broadcasting Systems)

Our current demanding programme of work includes the expansion of Independent Local Radio and the introduction of the fourth Television Channel. This provides excellent opportunities for Aerial Specialists at all levels – to strengthen our existing expertise and to provide for the future by training those keen on entering this challenging field.

We are small enough for you to be able to make your mark to a professional and friendly environment but at the same time large enough to provide career prospects.

Senior Aerial Systems Engineers

(up to £39000 p.a. under review)

Aerial Systems Engineers

(up to £38500 p.a. under review)

To be responsible for the design and specification – acceptance and commissioning of aerial systems, high and low power filters, channel combiner and separating equipment for UHF, VHF and MF services.

Aerial Maintenance Engineers

(up to £33500 p.a. under review)

To be responsible for implementing a programme of preventive maintenance for transmitting and receiving aerials, feeders, combining units and RF filters at TV, Radio and Link Stations. To provide a specialist corrective maintenance service, as necessary.

You should be qualified to degree/HNC level (or equivalent) and have substantial relevant experience (at the senior level supervisory ability is essential). We would also be happy to consider new graduates or those with little experience with a genuine interest in broadcast engineering to start at a trainee level.

You must be fit and able to climb tall structures; you must also hold a current driving licence and be prepared to travel within the U.K. Starting salaries will be according to experience – the figures quoted above are under review. Generous re-location, car and travelling allowances are payable together with free life assurance and personal accident scheme and an excellent contributory pension scheme.

Most of these posts will be based at our Engineering Headquarters here in Hampshire, although there may be opportunities for appointments at our Regional Engineering bases.

IBA INDEPENDENT BROADCASTING AUTHORITY

Applicants (male or female) should send full details of qualifications and experience as soon as possible to Glynn Powell, I.B.A., Crawley Court, Winchester, Hampshire, SO21 2QA.
Datek Systems Ltd., a subsidiary of the Mengenthal-Linotype Group, are leading manufacturers of advanced intelligent terminals for the printing industry. We are a small, friendly company, based in Wembley, and we need the following key people:

Software Development Engineer

Here is a unique chance to be in at the beginning of an exciting new project, as our design team commences work on a new-generation machine. Candidates should have a minimum of two years experience in applications software. Salary will be up to £9000 p.a.

Senior Test Engineer

This post affords an opportunity for an engineer to further his/her career and extend his/her technical skills, by becoming involved with a small team testing highly sophisticated systems. Several years’ experience in testing digital equipment is essential, as is the ability to direct and motivate others. The salary will be around £7500 p.a.

Both the above posts are open to men and women and offer generous terms and conditions of employment. Relocation expenses may also be available for the right candidates, if appropriate.

For further information and an application form, please contact: Miss Linda Bux, Datek Systems Ltd, 849 Harrow Road, Wembley, Middlesex. Tel. 01-904 0906

£25 REWARD

For anyone who can rechristen our hard-working computer "Einstein" in a way that is both wittily appropriate and quite right. The winner of this competition, which has been instigated by David Tabutt in the June issue of Personal Computer World, is Miss Linda Bux, Datek Systems Ltd., Wembley, Middlesex. Tel. 01-904 0061.

The successful candidate will be expected to undertake maintenance of the master control section on broadcast standard videotape equipment, as well as the repair and maintenance of emissions equipment, including video recorders, logical amplifiers and computer peripherals. The work requires the thorough understanding of modern digital technologies and design.

Applications should be submitted to the Hon. Ada Augusta— not the dreaded Linda.

£10,000 + bonus contracts. Free furnished accommodation and pleasant and stable part of the Arabian Gulf. Applicants should preferably hold an engineering degree and have at least 5 years’ experience in fields such as submarine specialist communications experience, or have had 3 years’ experience in similar areas. Relocation expenses may also be available for the right candidates, if appropriate.

For further information and an application form, please contact: Miss Linda Bux, Datek Systems Ltd, 849 Harrow Road, Wembley, Middlesex. Tel. 01-904 0906

INNER LONDON EDUCATION AUTHORITY

LEARNING MEDIA SERVICES TELEVISION CENTRE

VIDEOTAPE ENGINEER (ST3)

The Learning Media Services Production team are recruiting experienced engineers to work in a small team with the existing technical staff. You will be required to install and maintain equipment in our Production Centre and to provide a range of technical support to the production team.

Salary within the scale £7904 to £8498.

Application forms are available from: IOE/ESAT, 1C Room 365, The County Hall, SW1 9TP. Telephone No. 633 7456/8848.

ENGINEERS...FACILITIES...for ENGINEERS & TECHNICIANS

ENGINEERS £11,450 to £19,200

TECHNICIANS £10,100 to £14,500 per contract year after tax.

Armac are involved in many varied projects in Saudi Arabia that will last for many years.

The COMMUNICATIONS PROJECTS MANAGEMENT DEPARTMENT is responsible for the communications networks throughout the Eastern Province of Saudi Arabia and need skilled Engineers and Field Technicians in the following fields:

ENGINEERS & TECHNICIANS for the installation and commissioning of telemetry systems and field work as far afield as remote terminal units, pipeline etc. You will be involved in technical and system monitoring and maintenance of a range of telemetry equipment including radio and microwave. Excellent opportunities for career advancement are available for the right candidates.

Applications should be submitted to Mr. W. L. B. (Medical) Engineer, The Company with a Future...
RADIO TECHNICIANS
COMMUNICATIONS ENGINEERS

Glaxo Plessey design, install and maintain communications systems for the oil industry, at home and abroad. Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tramposcatter.

In the North Sea, earnings are in the range £9,000 to £12,000 p.a. Overseas earnings could be up to £200,000—plus tax concessions and generous home leave. The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.

The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick—but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses. Please apply, with details of your career to date, to:

EAE design, qualified ONC/HNC or equivalent should have previous prototype equipment during the development phase. There is a great need for a technical officer to help in constructing and testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic, digital circuits, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise—positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, servicing, testing, and maintaining our equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications. Regular inspections of your performance are made, and employees, who achieve a high standard, may be encouraged to take advantage of appropriate training to advance to the next grade of Radiotechnician or Engineer.

Applicants qualified ONC/HNC or equivalent should have previous experience in electronic construction. Some experience with printed circuit boards and an ability to translate circuit diagrams into practice is essential. An interest in the construction of prototype equipment, making use of microprocessors and needing some degree of innovation is required.

Starting salary within the range £2170 to £4650 according to qualifications and experience. Bonus and non-contributory pension scheme.

Please apply to: Miss E. M. Butler, Personnel Department, Glaxo Group Research Ltd., Greenford Road, Greenford, Middlesex UB6 0IL (01-874 6941, Ext. 2180). You should also quote the ref. ZH.334.

Glaxo Group Research Ltd.
Electronic Engineers – What you want, where you want it!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Agencies exist in all branches of electronics and allied disciplines – right through from design to marketing – at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Please send me a TJB Appointments Registration form:

Name ..
Address ...

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.
Tel: 0892 39588

Electronics Workshops Engineer

We are looking for an energetic and technically sound man or woman to join us in this specialist/assistant management post. You should have proven skills in the fabrication and wiring of control panels and in the making of scientific instruments. You must have the ability to carry out development work without supervision and will preferably have a knowledge of solid state technology and microwave techniques.

We see you as holding an appropriate qualification and would be prepared to offer training facilities if you are still in the process of gaining your qualification.

We offer a competitive salary, pension and life assurance. Flexible working hours and assistance with relocation expenses in an appropriate case.

INTERESTED?

Then write or phone for an appointment form to the Recruitment Officer, Unilever Research Port Sunlight Laboratory, Quarry Road East, Wirral, Merseyside, L63 2JW. Tel: 051-645 2000, ext. 8408. Please quote ref. P5715AC.

A Member of the THOMN EMG Group

Test Engineers & Test Gear Engineers

Move into new areas of Electronics Development and an assured quality of life...

EMI Electronics Ltd. builds quality and reliability into every product. Our reputation for excellence is now established and is a major factor in generating new orders worldwide.

The growth of our business here in historic Wells creates the need for more Test Engineers to take us through the 1980's.

As one of the world's leaders in specialised defence electronics systems – particularly the fields of radar, proximity fusing, telemetry and radar modelling – we will maintain stringent quality standards. You will join one of our professional teams responsible for ensuring that our wide range of "State of the Art" electronics systems on test equipment meet our exacting standards.

We are looking for people with either ONC or HNC Electronics and varying levels of experience of testing or maintenance (and detection systems in the electronics industry or armed forces. We offer competitive salaries, comprehensive benefits and assistance with your relocation to this beautiful part of Somerset.

For further information fill in the coupon and send it to F. M. Taylor, Assistant Personnel Manager, EMI Electronics Ltd., Penbridge House, Wooky Hole Road, Wells, Somerset, BA5 1AA or phone him for more information on Wells (0749) 72081.

Name .. Address ...
Tel: .. Age ..
Current position
Qualifications

B.B.C.

Installation Technician

We have a vacancy in the Unit which deals with the supply, installation and commissioning of television studio lighting and mechanical equipment. This includes lighting control systems, dimmer luminaires and their mechanical suspension systems, camera mountings and lighting systems and their control systems.

The successful applicant will assist professional engineers in this work and the duties will include supervision of craftsmen, liaison with contractors and other specialists.

Applicants, male or female, must have a good practical understanding of at least one of the following fields:

Electronic Power Control
Mechanical Mechanisms
Electronic Control Systems

Salary apparently £3250 to £3900. You should be in receipt of £5535 to £5985 rising by annual increments of £225 up to a maximum of £7455 per annum. Additional allowances are paid for overtime, around the £2000 mark.

The successful candidate will be based in the London area but may be required to work elsewhere in Great Britain for periods which do not normally exceed four weeks at a time.

Salary, depending on experience and qualifications, will initially be in the range of £3250 to £3900. You should be in receipt of £5535 to £5985 rising by annual increments of £225 up to a maximum of £7455 per annum. Additional allowances are paid for overtime around the £2000 mark.

Applicants in writing with full details of age, qualifications, work experience and personal circumstances should apply to Manager, S. A. Fernal, Assistant Secretary, Roehampton Institute of Higher Education, Educational Building, Roehampton Lane, Southfields, London SW15 5BN, to arrive not later than 6 September, 1980.

Applicants should note that although we shall give priority to those in receipt of a B.B.C. pension, this may not be the case for those without experience.
Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a range of studio products from colour cameras to simple D.A.'s. We are also one of the largest suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in Andover for a worldwide market.

TECHNICAL SALES ENGINEER

To be involved in the active selling of television broadcast equipment.

The successful candidate should have a sound technical electronic background, preferably with at least three years experience within the Broadcast Industry, but not necessarily in Sales.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept through manufacture to delivery and installation.

Our custom-built systems require a high degree of customer contact at engineering level from the initial design, to customer training after completion of the contract, both within the U.K. and overseas.

Applications are invited from engineers with a knowledge of T.V. studio engineering gained from experience in this type of work or from experience in the operation side of television.

Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

Name __ Age ___________
Address __
Telephone Work/Home (if convenient) ____________________________
Years of experience 0-1 1-3 3-6 Over 6
Present salary £3,500 - £4,500 - £5,500 - Over £6,500
Qualifications None C & G HCN Degree

Return this coupon to John Proctor, Marconi Instruments Limited, FREPOST, St. Albans, Herts, AL4 6BN. Tel. St Albans 92522.
LECTURING WITH A DIFFERENCE

The difference is the MARCONI COLLEGE is neither just an academic nor an isolated institution but an appealing blend of both. The College is presently situated in Shendish and the majority of staff are available for training the engineers of the Marconi Electronics Group and customers.

DIGITAL SYSTEMS

Experience in the development and maintenance of a wide range of digital systems and equipment over a wide range of applications including the expanding field of automatic systems. Applicants should have either a degree or equivalent qualification in electronics with knowledge of digital techniques, or several years' relevant experience. Teaching experience desirable but not essential.

TELECOMMUNICATIONS

A high standard of knowledge and maintenance of a wide range of telecommunications systems and equipment. The range includes HF, VHF and Microwave Systems incorporating the latest microprocessor devices.

Applications should have a sufficient combination from a degree or equivalent qualification, teaching experience in secondary schools with 4 or 5 years' practical experience of professional radio communications systems, or if all practical experience, a degree or equivalent is required.

Applications are invited for the post of CHIEF, TECHNICAL SERVICES SECTION (P-5)

Supervises and specifies arrangements for the installation, operation and maintenance of equipment associated with the United Nations conference and radio and television programming operations. This includes all aspects of audio and video equipment, simultaneous interpretation installations and electronic voting equipment.

Responsibilities include directing the work of some 100 personnel, design and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.

Should have advanced university degree in relevant engineering discipline, good electronic knowledge, computer experience and management skills particularly in the fields of budgeting, procurement and cost control, with 13 years' professional experience.

Level P-6 carries net base salary per annum from US$24,296 (single) and US$26,298 (with dependents) plus post adjustment from US$11,627 (single) and US$12,584 (with dependents) per annum.

VA. 80-D-DAM-109-NY

2. CHIEF, TELEVISION AND FILM UNIT (P-4)

Controls the technical aspects of the United Nations television and film unit which works to full professional broadcast standards.

Responsibility for professional broadcast standards, design of and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.

Should have advanced university degree in electrical engineering with eight years' professional experience in the operation and maintenance of television and film equipment.

Level P-6 carries net base salary per annum from US$20,209 (single) and US$21,785 (with dependents) plus post adjustment from US$9,778 (single) and US$10,527 (with dependents) per annum.

VA. 80-D-DAM-108-NY

3. ENGINEER (TELECOMMUNICATIONS) (P-4)

Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment.

Responsibility for system development and design and for the installation of these facilities both at Headquarters and for conferences away from Headquarters.

Should have advanced university degree in an engineering discipline, with eight years' professional experience.

VA. 79-D-DAM-357-NY

APPLICANTS: Please complete two copies of United Nations Personal History Form (P.11), and send detailed curriculum vitae to Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number.

WIRELESS WORLD, SEPTEMBER 1980
Do you want to work in electronics as a Technician?

At the Government Communications Headquarters in Cheltenham, we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under review, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, installing, commissioning, testing and maintaining our equipment. Such work will take you to the frontiers of technology on a broad and wide area of expertise - positive career advancement, worthwhile experience in new and expanding field of digital communications, valuable experience in practical research and development, and widen your area of expertise.

You should have or expect to obtain a TEC Certificate in Telecommunications Engineering or the City and Guilds Telecommunications Technician Certificate Part 1 (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are an ex-serve or in M. Forces, your Service trade may allow us to discharge the need for formal qualifications.

Pay scales for Radio Technicians start at £4,640 per annum, rising to £5,525, and promotion will put you on the road to posts paying substantially more. There are also opportunities for overtime and non-regular work paying good rates. Starting pay may be adjusted to £5,045 depending on relevant experience.

Applicants possessing the necessary formal qualifications (e.g. TEC or City & Guilds Telecommunications Technician Certificate) but with insufficient practical experience for Radio Technicians posts may be suitable for our Trainee Radio Technicians posts. Pay scales for these posts are £3,826 per annum and at age 24. Suitable candidates may also be invited to interview in Cheltenham—at our expense.

You will be required to work a 40-hour week, during which time you will be encouraged to take advantage of company facilities for recreation and social life. The Government Communications Headquarters is situated on the outskirts of Cheltenham, offering quiet and pleasant surroundings in a pleasant area.

You will be expected to work overtime and on-call work paying good rates. Starting pay may be adjusted to £5,045 depending on relevant experience.

Pay scales for Radio Technicians start at £4,640 per annum, rising to £5,525, and promotion will put you on the road to posts paying substantially more. There are also opportunities for overtime and on-call work paying good rates. Starting pay may be adjusted to £5,045 depending on relevant experience.

Applicants possessing the necessary formal qualifications (e.g. TEC or City & Guilds Telecommunications Technician Certificate) but with insufficient practical experience for Radio Technicians posts may be suitable for our Trainee Radio Technicians posts. Pay scales for these posts are £3,826 per annum and at age 24. Suitable candidates may also be invited to interview in Cheltenham—at our expense.

Applications should be addressed to our Recruitment Office, Robby Robinson, on Cheltenham (0242) 21491, Ext. 2269, or write to him at GCHO, Oakley, Priors Road, Cheltenham, GL52 5AJ. If you seem suitable we will invite you to interview in Cheltenham—at our expense.
INVERTERS
High quality DC-AC. Also "no inverter" type. 1.5 kVA single phase, 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS LIVERPOOL. 01-552 7477. P.O. Box 541, L1 9JZ.

TO MANUFACTURERS, WHOLESALERS & BULK BUYERS ONLY
Large quantities of Radio, TV and Electronic Components.
RESISTORS\ON CARBON & METAL, 1/4%, 1/2, 1%, 5% from 1 ohm to 100 M ohm.

RESISTORS WIREWOUND. 1/2, 2, 3, 5, 10, 14, 25 Watt.
CAPACITORS. Silver mica, Polypropylene, Polyester, Disc Ceramics, Monolithic.

Convergence Pots, Slide Pots, Electrolytic condensers, Can Types, Aluminium.
Transformers, chokes, hums, tuners, speakers, cables, spreaders, wirewound, ceramic core.

Please quote component number. Minimum order £10.00.

TB salver/spares (Thorn, Philips, Etc.).

120v. 110v. 50, 60 Hz. 240v. E.E. (50, 60Hz).

Microprocessors, memory chips, CMOS, etc.

Send when available. Sided. We specialise in flow marking and high volume, single line because we are to large batches.

Send when available. Sided. We specialise in flow marking and high volume, single line because we are to large batches.

6000 CHIPS, 600 5000, 5000 4000, 4000 3000, 3000 2000, 2000 1000, 1000 500.

WANTED
CANCELLATION PARELS: Transistors, resistors, ICs, etc. Domestic and industrial equipment.

SPACERS
AEC MICROTECHNOLOGY

SAVE TIME!

Audit and monitor to a high standard.

AEC MICROTECHNOLOGY

FABRICATORS

PCB ASSEMBLY CAPACITY AVAILABLE

PCB assembly, test and control. In-house facilities available.

I. H. S. TECHNOLOGY

PCB Assembly and Component Assembly.

SAMSUNG SMD 5040

Price per control.$100.50

Large quantities available.

For details contact:

I. H. S. TECHNOLOGY

PCB MANUFACTURING AND ASSEMBLY

FOR CLASSIFIED ADVERTISING

RING ANTHONY HADLEY ON 01-261 8508

SATURDAY TIMES LONDON, 18 SEPTEMBER 1992
Microsystems '81 is the fourth conference and exhibition to meet the rapidly changing information needs of managers and engineers developing and using microprocessor-based systems.

The first two days of the conference are dedicated to design engineers seeking answers to problems encountered in designing and implementing microsystems through discussion and sharing experiences with other experts in the field. The third day is devoted to personal computers and small business systems and their use in industry, commerce and education.

Microsystems '81 is sponsored by the publications Microprocessors & Microsystems, Computer Weekly Systems International and Practical Computing.

SCOPE

- case studies
- communications
- design aids
- distributed processing
- education and training
- industrial control
- interfacing
- multimicroprocessors
- project management
- real-time languages
- signal processing
- software development
- standards

THE BRAND NEW 8022A

HAND HELD DMM

Consider the following features:

- Resistance ranges from 2MΩ - 2500 Ohms
- AC Current: 0.02 mA - 20 mA
- DC Current: 0 - 0.5 mA
- DC Volts: 0 - 0.5 Volts
- 20,000 counts

A handsome, soft carrying case is included (this model only)

Please £112

For only £89

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- Autoranging in 20,000 counts
- 200 mA DC - the 8022A has two amper current ranges
- Voltage Probe £45.00
- Hold Probe £18.00

The following are available free with the counter:

- Temperature probe
- Logic module
- Spectrum module
- Display module
- Input module
- Logic interface module
- Multi-function interface module
- Input conditioning with switchable 1 MHz low pass filter and attenuator
- Input module module
- Logic interface module
- Multi-function interface module
- Input conditioning with switchable 1 MHz low pass filter and attenuator
- Input module module
- Logic interface module
- Multi-function interface module
- Input conditioning with switchable 1 MHz low pass filter and attenuator

The following are available free with the counter:

- Logic module
- Spectrum module
- Display module
- Input module
- Logic interface module
- Multi-function interface module
- Input conditioning with switchable 1 MHz low pass filter and attenuator
- Input module module
- Logic interface module
- Multi-function interface module
- Input conditioning with switchable 1 MHz low pass filter and attenuator

HERE IT IS! THE BRAND NEW 8022A HAND HELD DMM

WIRELESS WORLD, SEPTEMBER 1980

FOR PROFESSIONAL & BUSINESS PEOPLE

WILL TAKE PLACE

29th-31st OCTOBER 1980

WEST CENTRE HOTEL, LILLIE ROAD, LONDON

10 am to 6 pm

(Closing 5 pm on the last day)

The response to the second exhibition for professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel.

An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free.

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata & teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP, Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

- Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other "umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:

Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R 0NE
Soldering Flux Paste

Erisn

A fast non-corrosive, rosin flux for general and electrical soldering.

Use in conjunction with *Erisn* Multicore solders.

Size RF10 £1.38 inc. VAT

Arax Use in conjunction with *Arax* Multicore solder for general metal fabrication.

Size RF14 £1.61 inc. VAT

Multicore Wick

Multicore Wick for solder-removal and desoldering

For desoldering component leads from PCB's or removing solder from virtually any joints. Size AB10 £1.38 inc. VAT

Wire Stripper and Cutter

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device.

Ref 9 £2.48 inc. VAT

Cassette Editing Kit

Make editing simple with the Bib splicer, tape cutter and splicing tape, with 6.3mm adaptor.

Ref 96 £2.88 inc. VAT

Groov-Guard XL-2

Anti-static liquid and record preservative.

Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable Non-toxic.

Ref 27 £2.48 inc. VAT

Emergency Solder

Self fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 69p inc. VAT

Savbit Dispenser

For radio, TV and similar work. Reduces copper erosion.

Size 5 90p inc. VAT

Record Valet

Soft bristles on leading edge remove dust and humed velvet pad collects dust. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 25ml bottle of anti-static cleaner.

Ref 47 £3.29 inc. VAT

Emergency Dispenser

For electrical and non-electrical applications. Size Ref 25 £2.48 inc. VAT

Tape Head Maintenance Kit

Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders. Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.

Ref 25 £2.48 inc. VAT

Cassette Fast Hand Tape Winder

The Bib Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a C.90 cassette in 60 seconds — faster than most recorders.

Ref 78 £1.66 inc. VAT

Groov-Kleen Automatic Record Cleaner

For single-play turntables. Removes harmful dust to protect records and stylii. Finished in chrome, bright anodised aluminium and shiny black.

Ref 47 £2.89 inc. VAT

Solder Cream

Tacky mixture of solder powder and correct percentage of flux for difficult to reach areas. Use in conjunction with *Arax* flux (Electrical/ Electronic). Size BCR10 £1.38 inc. VAT

Econopak

A reel of 1.2mm *Erisn* Multicore solder for general electrical use.

Size 13A £4.14 inc. VAT

A reel of 3mm *Arax* Multicore solder for general non-electrical use.

Size 16A £4.14 inc. VAT

Record Cleaner

Automatic for difficult to reach areas. Size AL150 Aluminium £1.93 inc. VAT

Soldering Flux Paste

Erisn A fast non-corrosive, rosin flux for general and electrical soldering.

Use in conjunction with *Erisn* Multicore solders.

Size RF10 £1.38 inc. VAT

Arax Use in conjunction with *Arax* Multicore solder for general metal fabrication.

Size RF14 £1.61 inc. VAT

Wire Stripper and Cutter

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device.

Ref 9 £2.48 inc. VAT

Cassette Editing Kit

Make editing simple with the Bib splicer, tape cutter and splicing tape, with 6.3mm adaptor.

Ref 96 £2.88 inc. VAT

Groov-Guard XL-2

Anti-static liquid and record preservative.

Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable Non-toxic.

Ref 27 £2.48 inc. VAT

Emergency Solder

Self fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 69p inc. VAT

Savbit Dispenser

For radio, TV and similar work. Reduces copper erosion.

Size 5 90p inc. VAT

Record Valet

Soft bristles on leading edge remove dust and humed velvet pad collects dust. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 25ml bottle of anti-static cleaner.

Ref 47 £3.29 inc. VAT

Emergency Dispenser

For electrical and non-electrical applications. Size Ref 25 £2.48 inc. VAT

Tape Head Maintenance Kit

Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders. Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.

Ref 25 £2.48 inc. VAT

WW—004 FOR FURTHER DETAILS

www.americanradiohistory.com