Floating-bridge amplifier
Tv from satellites
Electronic cryptography
TESTING MOBILE RADIOS?

... catch this bus with Farnell

and arrive economically at an efficient ATE workstation.

Comprehensive testing under low cost desk computer control.

Manual systems too.

INTERFACE WITH US NOW!
Ask for details from:

Farnell

FARNELL INSTRUMENTS LIMITED • WETHERBY • WEST YORKSHIRE LS22 4DH • ENGLAND • TEL: 0937 61961 • TELEX 557294 FARIST G

WW—001 FOR FURTHER DETAILS
Acoustically small loudspeaker is a unique design in which the enclosures work below the lowest cavity resonance.

Floppy disc store is a controller and 8in drive intended for the Wireless World computer, but adaptable for other designs.

Tuner frequency meter provides digital indication of frequency, mainly for radio receivers, but usable also as a general instrument.

Current issue price 50p, back issue (if available) £1.00, at Retail and Trade Counters, Paris Garden, London SE1. Available on microfilm: please contact editor.

By post, current issue 86p, back issues (if available) £1.00, order and payments to Room CP34, Dorsset House, London SE1 9LU.

Editorial & Advertising offices: Dorsset House, Stamford Street, London SE1 9LU.

Telephones: Editorial 01-261 8620, Advertising 01-261 9339.

Subscription rates: 1 year £9.00 UK and £31 outside UK.

Student rates: 1 year £4.00 UK and £15.50 outside UK.

Distribution: 40 Bowling Green Lane, London EC1R ONB. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444 59188. Please notify a change of address.

USA mailing agent: Expediters of the Printed Word Ltd., 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

Current issue price 50p, back issue (if available) £1.00, at Retail and Trade Counters, Paris Garden, London SE1. Available on microfilm: please contact editor.

By post, current issue 86p, back issues (if available) £1.00, order and payments to Room CP34, Dorsset House, London SE1 9LU.

'Subscription rates: 1 year £9.00 UK and £31 outside UK.

Student rates: 1 year £4.00 UK and £15.50 outside UK.

Distribution: 40 Bowling Green Lane, London EC1R ONB. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444 59188. Please notify a change of address.

USA mailing agent: Expediters of the Printed Word Ltd., 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

Current issue price 50p, back issue (if available) £1.00, at Retail and Trade Counters, Paris Garden, London SE1. Available on microfilm: please contact editor.

By post, current issue 86p, back issues (if available) £1.00, order and payments to Room CP34, Dorsset House, London SE1 9LU.

Editorial & Advertising offices: Dorsset House, Stamford Street, London SE1 9LU.

Telephones: Editorial 01-261 8620, Advertising 01-261 9339.

Subscription rates: 1 year £9.00 UK and £31 outside UK.

Student rates: 1 year £4.00 UK and £15.50 outside UK.

Distribution: 40 Bowling Green Lane, London EC1R ONB. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444 59188. Please notify a change of address.

USA mailing agent: Expediters of the Printed Word Ltd., 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.
Artistic licence?

We at QUAD go to a very great deal of trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your loudspeakers is a virtually exact RIAA transfer of the voltage the pickup will produce into a stated passive load. Nothing added – nothing taken away.

A visiting journalist recently suggested that we should not do this. Final adjustment should be done by ear, he said.

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump in the quack region (2-3kHz), we can make most programmes sound superficially more impressive. Come to that, why not change the $3180\mu S$ to $5000\mu S$ adding a little more ‘heft’ that most people will fall for. We could even make a special model for the boom and tizz brigade.

Been to any live concerts recently?

For further details on the full range of QUAD products write to:
The Acoustical Manufacturing Co. Ltd.,
Huntingdon, Cambs. PE18 7DB
Telephone: (0480) 52561

QUAD

for the closest approach to the original sound

QUAD is a Registered Trade Mark
DON'T GAMBLE WITH PERFORMANCE
BUY
LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

VOLTAGE & dB RANGES
15μV, 50μV, 150μV...500V fsd.
Acc. ± 1% ± 1% fsd ± 1μV at 1kHz.
- 100, -90...+50dB
Scale — 20dB / +6dB ref. 1mW / 600Ω.

RESPONSE
± 3dB from 1 Hz to 3MHz.
± 0.3dB from 4 Hz to 1MHz above 500μV.
TM3B filter switch: LF cut 10kHz.
HF cut 100kHz, 10kHz or 350Hz.

INPUT IMPEDANCE
Above 50μV: 10MΩ < 20pF.
On 50μV to 50mV: > 5MΩ < 50pF.

AMPLIFIER OUTPUT
150mV at fsd.

type TM3A £130
type TM3B £145

BROADBAND VOLTMETERS

H.F. VOLTAGE & dB RANGES
1mV, 3mV, 10mV...3V fsd.
Acc. ± 4% ± 1% fsd at 30MHz.
-50, -40...+20dB
Scale — 20dB / +3dB ref. 1mW / 50Ω.

H.F. RESPONSE
± 3dB from 300kHz to 400MHz.
± 0.7dB from 1MHz to 50MHz.

L.F. RANGES
As TM3.

AMPLIFIER OUTPUT
Square wave at 20Hz on H.F. with amplitude proportional to square of input.
As TM3 on L.F.

type TM6A £199
type TM6B £215

D.C. MICROVOLTMETERS

VOLTAGE RANGES
30μV, 100μV, 300μV...300V.
Acc. ± 1% ± 2% fsd ± 1μV. CZ scale.

CURRENT RANGES
30μA, 100μA, 300μA...300mA.
Acc. ± 2% ± 2% fsd ± 2μA. CZ scale.

LOG. RANGE
± 5μV at ± 10% fsd, ± 5mV at ± 50% fsd.
± 500mV at fsd.

RECORDER OUTPUT
± 1V at fsd into > 1kΩ.

type TM10 £106

These instruments incorporate many useful features, including long battery life. All A type models have 83mm scale meters and case sizes of 185 x 110 x 130mm. B types have 127mm mirror scale meters and case sizes of 260 x 125 x 180mm. Fully detailed specification sheets are available on request for our complete range of portable instruments.

Prices are ex-works, carriage, packing and VAT extra. Optional extras are leather cases and power units.

LEVELL ELECTRONICS LTD.
MOXON STREET, BARNESTON HERTS., EN5 5SD.
TEL: 01-449 5028/440 8686

WW — 007 FOR FURTHER DETAILS
of research... "on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

STETOCILP JUNIOR 60 HEADSET

STETOCILP LIGHTWEIGHT HEADSET

SENIOR STETOCILP HEADSET

STETOMIKE BOOM MICROPHONE HEADSET

STANDARD & SUB-MINOR EARPHONES

PLASTIC EARHANGERS

DANAMIC FIDELITY EARSET

STETOTUBE HEADSET

2.5 mm and 3.5 mm JACK PLUGS & SOCKETS

DANASONIC INDUCTION AUDIO LOOP RECEIVER

SUBMINIATURE SWITCHES

WWW - 044 FOR FURTHER DETAILS
THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall

OLYMPIA, LONDON

Nov 4, 5 & 6, 1980

CAN YOU AFFORD TO MISS BRITAIN’S BIGGEST COMPUTER EXHIBITION?

Sponsored by “Computer Weekly,” “Data Processing,” “Practical Computing” and “Systems International” and with the support of “Electron”, “Electronics Weekly” — all members of IPC Business Press, the worlds largest publisher of specialist and business journals.

GET YOUR TICKETS NOW — SAVE MONEY!

If you send your request for tickets now you will pay only £1.50 per ticket (tickets £2 at the door)

To. Compec Tickets, IPC Exhibitions, 40 Bowling Green Lane, London EC1R 0NE Tel 01-837 3636

Please send meadvance registration tickets for Compec 80 at the privilege price of £1.50 per ticket.

Name ___________________________ Address ___________________________

*Tickets £1.50 in advance, £2 at the door. Applications received after October 3rd, cannot be accepted.

TRADE ONLY — NO SCHOOL PARTIES — NO ADMITTANCE UNDER 16

ALL CHEQUES/MONEY ORDERS TO BE MADE PAYABLE TO IPC BUSINESS PRESS LTD IN UK STERLING
Model — M600

- POWER RESPONSE DC — 20KHz ± 1dB.
- OUTPUT POWER IN EXCESS OF 1.5kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
- D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2kV.
- HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO 6 OHMS
- PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS ★ UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
- FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
- TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW.
- INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
- 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639 / 594

WWW — 993 FOR FURTHER DETAILS
The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters and still it remains in a class of its own. Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240, which a 3½ digit meter would read.

Some other PM 2517 plus points:
- LED or LCD display
- True RMS readings of AC voltage and current
- Autoranging with manual override
- Optional accessories include temperature and data hold probes

Reader inquiry number 220
- 15 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5 mV sensitivity, Y and X (via A input)
- B invert facility

Reader inquiry number 221
- 50 mV sensitivity
- Full four digit counter
- 50 mV RF output at 75Ω can be attenuated to over 100dB
- Electronically stabilised output level
- Wobblulator facility

Reader inquiry number 223
- PM 6307 WOW AND FLUTTER METER
 - X-ta controlled oscillator
 - High accuracy and frequency stability
 - 3150 Hz or 3000 Hz switchable
 - Separate 'Drift' and 'Flutter' indication

All Philips audio and video service instruments are also available from Philips Service Centres (for details see end of PM 3207 section). Input advertisements are designed to meet the needs of our professional customers. They are a shop window for Philips Test and Measuring Instruments - and we will be changing the display frequently because we have a lot of products to show you.

Where you require full information about a product, tick the coupon and attach it to your name and address, or letterhead - or, of course, use the journal's reader inquiry service. You will receive in return a detailed information pack reflecting your specific requirements.

Reader inquiry number 224
- PM 2517 multimeter
- PM 3207 oscilloscope
- PM 5519 colour TV pattern generator
- PM 5326 RF signal generator
- PM 6307 wow and flutter meter

PATTERN FOR THE FUTURE

The PM 3207 - Super Scope, is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.

Both these instruments are available off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors: British Tungram, West Road, Tottenham, London N17 ORN. Tel: 01-898 4844 Philips Service Centres (25 throughout the country). Tel: 01-686 0505 for the address of your nearest branch. Wessex Electronics Ltd, 14-16 North Street, Downend, Bristol BS16 5EE. Tel: (0272) 371404.
The fresh idea from Carston which brings you recent “State-of-the-Art” instruments at competitive prices, with fast delivery (2-4 weeks). Every instrument that carries the Carston 90 Day Full Guarantee covering parts and labour.

Prices from £

Acoustic
- **BRUEL & KJAER**
 - 1613 Octave filter set 31.5 Hz
 - 31.5 Hz
 - 100 kHz
 - 2203 Precision sound level meter
 - 2068 Measuring Amplifier, Hi pass filter
 - 4135 Microphone
 - 60

- **CINTEL**
 - 277 Measuring iron core inductances 0.01-1000 uH
 - 0.1 uH to 1000 uH

- **DAVE**
 - 2108 Decade Capacitance box
 - 10 uF / 10 uF

- **MARCONI**
 - T521/45 'O' meter.
 - Freq. range 1kHz-300KHz using external \(\times \)
 - TR69A Universal Bridge
 - TF131A Universal LCR Bridge

- **WAYNE KERR**
 - 521 Wide range LCR Bridge
 - 8500 Log LCR Bridge
 - 8611 LCR Bridge
 - 8641 Meas. L/C /R /G Accuracy of 0.1%
 - 4901 Y parameter test set. Plus translate adaptor unit

Cable Test Equipment
- **MARCONI**
 - T2233 Transmission Test set
 - 564

- **HEWLETT PACKARD**
 - 396A. For phase-locked measurements from 20 Hz to 20 kHz.
 - 0.1mV - 30V input level
Today Carston Value makes even more sense - all equipment for sale is fully refurbished to manufacturers' original specifications.

New stock is added daily. For latest details on 'standard' equipment or for help in locating your SPECIALIST NEEDS ring us today!

56/13A/74-284. DC-2MHz, four channel; 20 mV sensitivity. Winding speed over 5000rpm 660
56/46 34/82-287 DC-10 MHz, Dual trace 10V/sensivitio, split screen; storage oscilloscope 750
456 Storage 150 rpm, Variable Phase DC-100 MHz 2225
7800 DC-60 MHz Main frame for 3 plug-ins 450

Power Meter DRANETZ 3015 A 500 Hz, 2 in 1000. Accuracy ±1% to ±2%. Analogue O/P 400

Power Meters MARCONI SAUNDERS 6460 10 MHz-40 GHz (Depending on Head) 300
6461 10 MHz-2.4 GHz 10mW 75
6462 10 MHz-18 GHz 100 mW 50
6462 28.6 GHz-40 GHz 10mW 50
MARCONI TF8121 DC-500 MHz 0.5-30V 500 130

Power Supplies ADVANCE 11/2 DC to 240V 50Hz, 150A Inverter 125
BRANDENBURG 4781 12-200V 5mA DC stab. 150
FARNELL L308 0-30V 1A DC stab. 56
FLUKE 4198 0-30V 30mA A 0.005% req. Protected 350
ITT Power Lab 90
MARCONI TF2154 10-30V 1A. 0.25% 2A 0.05% A 4A 60
OLTRONIX A5V2 12.5V-1000V over 10 mA. Current limit 2-12 mA, either ± outputs 50
SORENSEN DCR 300-2.5 300V 2.5A DC stab. 375

Pulse Generators DB ELECTRONICS 150. 1Cs pulse generator 50
EH RESEARCH 121.1 KC 1kHz 200V 900 500 122 220
123L1. 1kHz 500V 1000V 3000 50 RT 100 175
123L1, Timer Unit 6 Channel 0-10.5V 500/300, RT 10ns G710, 5V/500, 30MHz 50 100 100 30
123L2, 50V/501 5-3 MHz 150 121 121 350
HEWLETT PACKARD 2114A 100V/1000. Doubling O/P G9 90V/10m 0.1Hz-12MHz 40 500 90V/50m 0.1Hz-12MHz 40
MARCONI TF100 0.1 Hz-25MHz 10V/50V RT 7ns 350
PHILIPS PM298 D. 0.1kHz-10MHz. Typical RT 6ns Output 1-15V 225

PM5776 7V-500Hz. 1Hz-1000 Hz. Rise/fall times less than 1ns. 275
Recorders and Signal Conditioning Equipment AMPLEX Ph2200 Instrumentation Recorder up to 10 channels. FM/DR. Record reply all speeds. 1" tape FM/DR. IR. DC-40 kHz. FM: 100 Hz-30 kHz 6500
BRUNO WOELKE ME102B. Wave and Flatter meter 76
ME102C. Wave and Flatter meter 90
BRUEL & KJAER 2208 Band type. Mains operated. Log recording of AC. 2 Hz-2000 kHz and 0-50 mm paper speed. 10
2200 Linear Pat DC. 10-30 MHz 75
22000 Linear Pat DC. 10-110 MHz 72
220005 25 dB Powermeter 50
220006 35 dB Powermeter 61
BRYANS SOUTHERN 9000 X-Y Recorder A4.0.25mm- 10V/250m 525
85334 Channel 11V-10V 16 speeds 1650
83616 Channel 1V-10V 16 speeds 2350
2350 X-Y. Single pen 0.25m 10-100V 546
HEWLETT PACKARD 6890M. 5inch. Stripchart Single Pen 5V-120V. 1/2mV/cm 250
100V/20cm. 2.5cm/H 955
7046A Two pen A3.025V S/V/Cm 995
KUDELSKI Nagtak A.2.1 SP Professional Audio Recorder (Att opt) 1215
PHILIPS PM6801 Single pen 10ch 10mV-50VFS 450
PACAL Store 4. Uses D4 inch magnetic tape. Will record 4 channel. 10. Operates at 7 different speeds. 1900
S & E LABORATORIES R921/12 channel UV 1250 mV/25 mm/min 6 in chart 1400
SMITHS INDUSTRIES B1341. 20 Single Pen. 0.5mV/100V FS. 3.63mV/cm and hr 350
YOKOGAWA 3046. 10inch Chrt Single Pen. 0.5mV/100V FS. 3.63mV/cm with hr 350
2047. 2 Part Version of 3046 425

New stock is added daily. For latest details on ‘standard' equipment or for help in locating your SPECIALIST NEEDS ring us today!

Volimeters-Analoge
AVO 8 Ml IV 70
BRILLIG C741/AC. DC/DC/AC current multimeter and RT 75
HEWLETT PACKARD 4001 4.500 Voltsmeter 99
10 Hz-10 MHz 8W 1mv ESS 99
427A. AC/DC. 10 multimeter 275
340A, 1 kHz-2.5 Hz 345
Vektor Vector Voltmeter 1-1000 MHz 1/2
Auto Phone Lock 850
3400A 10 Hz-10 MHz 1mV-300V True RMS 360
LINSLEAD M2B. DC/AC 10 Hz-500 kHz 25
MARCONI TF2003 AC Voltmeter to 1 10 300
PHILIPS PM5643 1mV. 300V 10Hz-12Hz 2 in 19MS DC O/P 300
RACAL 901 RMS Millivoltmeter 10 Hz-1kHz with corr cycle 475
Volmeters-Digital
AMMECE DMM7A/01 1999 FSD. 65 Display 115
FARNELL DM1318 1999 FSD AC/DC/IF Frequency 55
PULSES 619869 FSD. AC/DC/OMS Current 115
HEWLETT PACKARD 5466B FSD. AC-DC-OMS 1999
SOLARTRON LM1281. 2368 FSD DC only 0.5% 75
LM1420. 2830. 230V FSD AC True RMS/DC. 110
AM2020 1999 FSD DC only 110
AM203 1999 FSD AC/DC/IF Frequency 110
AM205 1999 FSD AC/DC/IF. Impedance 0.01V. 1000/1000 resistance 300
AM213 1999 FSD AC/DC/IF. Impedance 0.01V. 1000/1000 resistance 300
AM235 1999 FSD AC/DC/IF. Impedance 0.01V. 1000/1000 resistance 300
AM277 750/9999 Auto AC FSD 75
WAVE Analysers HEWLETT PACKARD 3323A 5-45GHz 1kHz-16kHz Oscilloscope 172
3314 A 5-45GHz 1kHz-16kHz Oscilloscope 172
Spectrum Analysers HEWLETT PACKARD 8443A Tracking Gate/counter 850
8445A Automatic pre selector 1200
10 MHz-18 GHz 8550A RF Plug-in-10MHz-18GHz 3000
NELSON ROSS 011. DC-20k RF. 80dB dynamic range. Detection 100 Hz-10kHz 350
022. DC-100 kHz Dynamic range 400kHz Att into various 500 series CRO's 350
TREKSCAN 20-1200 kHz. Selective frequency range 0.5 to 89MHz Dynamic range 75dB 1000
T2001 20-1200 kHz. Total distortion 280
WAVELE KERR A321 20-1200 kHz Sine 75dB 125

AS NEW — EX STOCK DELIVERY

Oscilloscopes TEKTRONIX 465 DC-100 MHz Dual Trace 5V/5V/Div 120
0.05uS 0.5uS Delayed T/XY DC 4 MHz 120
TEKTRONIX 475A DC- 250 MHz Dual Trace 5V/5V/Div 120
0.05uS 0.5uS Delayed T/XY DC 3 MHz 120

Re sund Test Equipment
Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer.

Redundant Test Equipment

All prices are exclusive of VAT (Standard Rate)

Contact Brian Hollingsworth or Noel Jennings
Shirley House, 27 Camden Road, London NW1 9NR, Telex: 2932900 01.2679.3112
WW — 039 FOR FURTHER DETAILS

inHistory
STATE-OF-THE-ART

Quality Second-User Instrumentation

The product you buy from Second User Electronics is the same as from the manufacturer — same performance, same measuring capability, in most cases even the same guarantee.

We offer top quality, general purpose test equipment, fully maintained, at savings of up to 50% on manufacturers list price — so you make the very most of your capital budget. When equipment is only required for short term use it just doesn’t make sense to buy new.

We give 90-day warranties as standard, with many specified items on a 12 month extension — and we beat manufacturers delivery dates. Buy equipment at down-to-earth prices. You don’t need to buy new, buy SUE.

On 01-897 3759.

Storage Oscilloscopes

1703A Hewlett-Packard
0–30MHz, 10mV–5V/Div, time base
100ns–200s/Div, writing speed 1 cm/μs.
£1200

1223A Hewlett-Packard
0–15MHz, 2mV–10V/Div, time base
100ns–2s/Div, writing speed 1 cm/μs.
From £800

OS2200 Advance
0–25MHz, 10mV–50V/Div, time base
100ns–2s/Div, sweep delay, writing speed 1 cm/μs.
£725

General Purpose Oscilloscopes

454 Tektronix
0–150MHz, 5mV–10V/Div, time base
0.05μs–0.5s/Div, sweep delay.
£1100

485 Tektronix
0–350MHz, 5mV–5V/Div, time base
1ns–0.5s/Div, sweep delay.
£2400

1720A Hewlett-Packard
0–275MHz, 10mV–5V/Div, time base
10ns–0.5s/Div, sweep delay.
£1600

Digital Voltmeters

455 Tektronix
0–50MHz, 5mV–5V/Div, time base
5ns–0.5s/Div, sweep delay.
From £1000

465 Tektronix
0–100MHz, 5mV–5V/Div, time base
5ns–0.5s/Div, sweep delay.
From £1200

7065 6½ Digit Microprocessor Multimeter
Solartron
Scale length 1,400,000, modes: DC, AC, Ohms,
Ranges: = 10mV–1000V, resolution
1μV, ~ 100mV–1000V, resolution
1μV, Ω : 10–10MΩ, resolution 1 mΩ,
Typical accuracy: = 0.005%, ~0.1%,
±0.007%.
£840

7055 5½ Digit Microprocessor Multimeter
Solartron
Scale length 200,000, modes DC, AC, Ohms,
Ranges: = 10mV–1000V, resolution
1μV, ~ 100mV–1000V, resolution
1μV, Ω : 100Ω–10MΩ, resolution
10mΩ, Typical accuracy: = 0.01%,
~0.1%, ±0.03%.
From £715
1051 5½ Digit Multimeter with true RMS
Datron
Scale length, 1.99999, modes: DC, AC, true RMS, Ohms, auto range.
Ranges: = V : 10mV–1000V, resolution 0.1µV, ~V : 100mV–1000V, resolution 1µV, Ω : 100Ω–10mΩ, resolution 1mΩ, Typical accuracy: = V ±0.004%, ~V ±0.06%, Ω±0.02%.

£980

Universal Bridges

B642 Wayne Kerr
Ranges: 10uΩ – 100GΩ, 1fF – 10F, 1nH – 10MH, accuracy 0.1%, Bridge frequency 1591.5Hz.

£680

Digital Counters

5327B 7 Digit Universal Counter Timer and D.V.M. Hewlett-Packard
Modes: Frequency, period, time interval, D.C. Voltage. Frequency range 0 – 550MHz, D.V.M. range 10V – 1000V, resolution 100uV, Counter stability 5 parts in 10^9 short term, counter sensitivity 25mV.

£1500

TC15 9 Digit Timer Counter Advance
Modes: Frequency, period, multiple period, Frequency range 0 – 500MHz, Resolution: 1Hz, 110ms typical stability/ 24H 1 part in 10^7. Maximum sensitivity 10mV.

£495

Tape Recorders

Store 14 14 Channel FM
8 inch NARTB centre spool, frequency range DC – 20KHz, tape speed 15/16 – 60ips.

From £6200

Pound Toughens Up Against the Dollar

Which gives you a chance to buy the latest bulk-purchased USA instrument at lowest-ever prices.

Buy Now, Buy New, Buy SUE!

Just £1400 for the TEKTRONIX 465B
Ring 01-897 3759 for details

REMEMBER SUE is a purchaser of top quality instrumentation ring 01-897 3759

Logic Analyzers

1600A Hewlett-Packard
16 Parallel data measurements displayed on C.R.T., Clock rate 0 – 20MHz, Start display trigger, end display trigger, delay from 0 – 99999 clock pulses.

£1850

For SUE ring 01-897 3759

Store 7 D FM 7 Channel (Racal)
Max. spool size 20cm, FM frequency range 0 – 20KHz, tape speed 15/16 – 60ips.

From £4100

Tape Recorders

Store 14 14 Channel FM
8 inch NARTB centre spool, frequency range DC – 20KHz, tape speed 15/16 – 60ips.

From £6200

12-14, Horton Road, West Drayton, Middlesex
UB7 8EA. Tel: 01-897 3759. WW — 035 FOR FURTHER DETAIL
Think of KGM as your monitor production line...

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM resources. We can take both design and production problems onto our own experienced shoulders. Far better than struggling with complex video concepts yourself!

For a quick scan of KGM capability, look through our new colour folder - featuring some of the units we have produced for major customers. Some are based on our standard monitor range - but even these come with a choice of thin film modules or discrete components, for maximum 'tailor-made' flexibility. And today our technology extends to complete keyboard and microprocessor units. If you're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.

KGM Electronics Limited
Clock Tower Road, Tedworth, Middlesex TW7 6DU.
Tel: 01-568 0151. Telex: 934 120

PORTABLE MAINS DISTRIBUTION — NEW WITH CIRCUIT BREAKERS

New! Slim Jim

- Dim. 1¼" x 2½" x 18¾"
- £13.50 P&P £1 + VAT

- 3½" x 19" Rack Mounting Type 13A/4SW/R
- £18.50 P&P £1 + VAT

- Fitted with M.K. 10 amp C.B. — 13/A5 SW.CB £29.50 + post £1 + VAT

- 4 feet LG, 30 amp total load Instant Trunking System for Wall or Bench Mounting

NEW! 10 sockets switched in sloping box

Type 13A/10SW £29.50. P&P £2 + VAT

COMPLETE WITH 6FT. CABLE AND 13-AMP FUSED PLUG

- 4 sockets 13A £14.00
- 6 sockets 13A £16.50
- 4 sockets 13A switched £15.90
- 6 sockets 13A switched + Post £1 + VAT

MAINISOLATING UNIT

The Olson mains isolating unit is an essential bench item for safety when testing and repairing mains-operated equipment. The isolating transformer has an earthed screen and is rated 250VA.

- £38 + P&P £2 + VAT

ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS & PLUG

Send for details of complete range

WIRELESS WORLD, SEPTEMBER 1980
Get 24 DMMs off the shelf.

Turn to page 3 of your ITT Instrument Services catalogue for a list of top names Thandar (Sinclair), Fluke, Avo, Keithley and Norma. Compare performance and specification then phone or telex Harlow or any local ITT office and we’ll deliver off the shelf.

The ITT Instrument Services catalogue is your key to fast delivery and technical back-up for a vast range of quality instruments. Get it off the shelf.

ITT Instrument Services
Edinburgh Way, Harlow, Essex CM20 2DF.
Tel: (0279) 29522.
Telex: 81525.

IT T instrument services
the only way to buy.

THE FOR-1004
A NEW WIDEBAND
GRAPHICAL RECORDER

9 Recording Modes
The FOR1004 is the first of a new generation from Medelec. A highly versatile graphical recorder, it has been specially developed for wide ranging applications in research and industry. In both performance and economy it has many advantages over conventional instrumentation.

There are nine recording modes—all push button controlled, which permit the optimum presentation of most graphical data. Triggering is fully automatic and displayed signals can be monitored via an internal loudspeaker. The fast response time and wide range timebase allows the detailed examination of transients and trends.

Medelec Limited
Manor Way Old Woking
Surrey GU22 9JU England
Tel: Woking (04862) 70331
Telex: 858141 Medelec G
A Vickers Limited Company

WW — 021 FOR FURTHER DETAILS
Fault us on size and we'll eat it.

Shrinking high voltages into very small packages presents no problem to a manufacturer that has been deeply involved with space missions. The Erie range of high voltage rectifiers, voltage multipliers and power supplies is the product of forty year's leadership in ceramic technology.

If you have a problem of too many volts chasing too small a space in your equipment—talk to us. We have probably already solved it for another customer.

ITT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3PX. Tel: (0493) 4911. Telex: 97421.

www.itt.com
Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glazy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC
£9.00
Book 1 Computers and what they do well; READ, DATA, PRINT, power, brackets, variable names; LET, error; coding simple programs.
Book 2 High and low level language features; controlling functions; ROM and documentation. INPUT, IF, THEN, GO TO; limitations of computers, program definition.
Book 3 Computers and interpreters: loops, FOR...NEXT, RESTORE, debugging; arrays, bitwise working, TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples: glossary.

THE BASIC HANDBOOK £11.50
This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A. N. S. COBOL £4.40
The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more!

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:-
Digital Computer Logic & Electronics at £7.00
Design of Digital Systems at £12.50
Algorithm Writer's Guide at £4.00
Computer Programming in BASIC at £9.00
BASIC Handbook at £11.50
A. N. S. Cobol at £4.40

FOUR WAYS TO PAY
1) A U.K. cheque or a U.K. postal order (not fees or overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge my Access/AM/DC
4) Or phone us with your credit card details - 01204 67746 (charges 24 hour service)

Card No. Signature

Name

Address

U.K. Delivery: up to 28 days
Cambridge Learning, Unit 34 Ringmill Site, FREEPOST, St. Ives, Huntingdon, Reg. in Eng. No. 1328762
Introduction

Introducing the latest professional state-of-the-art 3½-digit DMM – at really old-fashioned prices! From just an unbelievable £39.95 inc. VAT, plus £1.15 p&p!

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>6100</th>
<th>6110</th>
<th>6200</th>
<th>6220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>6100</td>
<td>6110</td>
<td>6200</td>
<td>6220</td>
</tr>
<tr>
<td>Fuel Auto Ranging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units of Measurement Displayed</td>
<td>mV, V, mA</td>
<td>mV, V, mA, A</td>
<td>mV, V, mA</td>
<td>mV, V, mA, A</td>
</tr>
<tr>
<td>Functions Displayed</td>
<td>2, 10, AUTO, BATT, ADJ, LO, - and AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures DC Voltage To</td>
<td>1000V</td>
<td>1000V</td>
<td>1000V</td>
<td>1000V</td>
</tr>
<tr>
<td>Measures AC Voltage To</td>
<td>750V</td>
<td>750V</td>
<td>750V</td>
<td>750V</td>
</tr>
<tr>
<td>Measures AC/DC Current To</td>
<td>200mA</td>
<td>10A</td>
<td>10A</td>
<td>10A</td>
</tr>
<tr>
<td>Zero Adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Power Ohm Ranges</td>
<td>For in-circuit resistance measurements on all models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buzzer - Continuity Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buzzer - Over Range Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete with</td>
<td>Batteries, pair of Test Leads, Spare Fuse, One Year's Guarantee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>ONLY £64.95</td>
<td>ONLY £74.95</td>
<td>ONLY £39.95</td>
<td>ONLY £49.95</td>
</tr>
<tr>
<td>P+P</td>
<td>£1.15</td>
<td>£1.15</td>
<td>£1.15</td>
<td>£1.15</td>
</tr>
</tbody>
</table>

Why such a low, low price?

Because the A/D converter and display are custom built! This is a genuine top-spec DMM. Check these features for unbeatable value – you won't find a hand-held DMM with these features at these prices again!

I believe you! Please send me the DMM/s as marked.

- 6200 @ £64.10 each, inc. VAT, p&p. Total price £
- 6220 @ £65.10 each, inc. VAT, p&p. Total price £
- 6100 @ £66.10 each, inc. VAT, p&p. Total price £
- 6110 @ £67.10 each, inc. VAT, p&p. Total price £
- 6100 @ £68.10 each, inc. VAT, p&p. Total price £
- 6110 @ £69.10 each, inc. VAT, p&p. Total price £

Total cash/cheque enclosed £

Cheques payable to

Maclin-Zand Electronics Ltd., please.

Available exclusively from the company that gives you tomorrow's technology today.

38 Mount Pleasant, London WC1X 0AP.

Tel. 01-278 7369/01-837 115

ACCESS orders taken. Please write card no: and signature.

ACCESS NO

Name

Address

Signed

To: Maclin-Zand Electronics Ltd., 38 Mount Pleasant, London WC1X 0AP.

Despatch by return. For overseas orders, please add £5 to cost of total order package.

WW — 067 FOR FURTHER DETAILS
IDEAS + IDEALS

An ideal cartridge would weigh nothing, its stylus would have zero effective mass and infinite compliance.

An ideal arm would have zero effective mass and infinite compliance.

These are properties of a ray of light and movement towards this goal has continued since the earliest days of reproducing machines with their massive sound boxes and tone arms.

The extent of departure from these ideals is the measure of unwanted mechanical energy reacted in the record and turntable arm.

The effective mass of the Series III precision pick-up arm is a mere 5.25 grams and it will deflect under a force of less than 20 milligrams applied at a 4" radius.

A pick-up arm has physique but not personality.

It is as happy with a moving iron or coil as a moving magnet or moving iron but mass and compliance are another matter.

With a high mass arm you are permanently committed to a low compliance cartridge, with a Series III you always have freedom of choice. Its mass can be raised by the addition of a new weight which we can supply, or lowered again when desired by removing it or using another interchangeable CA-1 carrying arm.

Low compliance cartridges can be thought of as high compliance cartridges in an earlier stage of development. History and design logic establishes this as progress, anticipated with the best pick-up arm in the world.
The finest amplification kits from Crimson Elektrik

★★★★★ LATEST DEVELOPMENTS ★★★★★

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the market today. Yet now with the latest issue 5 innovations THEY ARE EVEN BETTER! We have improved some improvements and developed a unique electronic protection circuit which obviates the need for output fuses. In fact, such fuses can seriously degrade the performance of an amplifier. They can blow under heavy drive conditions even with non-faulty loads (due to thermal fatigue). They can be a time-consuming nuisance and even dangerous to replace, but more importantly they are responsible for 'envelope distortion'. i.e. dynamic compression of the signal, even fuses in the feedback loop suffer from the first two disadvantages, and the latter in a lesser extent.

★★★★★ BEST VALUE ★★★★★

CRIMSON have an enviable reputation for supplying the best value amplifier kits. You can prove this to yourself by checking out the competition in the following crucial areas: Professional grade phono sockets for all signal connections Silver/Gold plated switch contacts Adequate heat sinking for high rated output Available from stock Manufactured by a specialist company with a reputation for friendly and helpful service before and after sale Forms the basis for high quality active loudspeaker systems. Considering the advantages of CRIMSON Kits, why choose anything else?

★★★★★ SOUND ADVICE ★★★★★

Crimson Amplifiers are versatile and dependable. The new CP3000 will give up to 300 watts into 4 ohms at 0.03% T.H.D. and is the obvious choice for P.A. and Disco work. CP3000 is wave length/matched speaker and power amp hardware kit which enable our advanced modules to be housed in attractive metalwork and include everything down to the last nut and bolt.

Our Pre-amplifier can be fitted with the moving coil module allowing it to be used with the latest M.C. cartridge (which can now be bought for as little as £30).

Write for details, specifications and full price list or send 50p. cheque/P.O. for our comprehensive application/user's manual.

Space precludes us from publishing all our products and prices, below are just a few examples:

- Power Amp Modules (single channel) £23.10
- CP 608 (80 W RMS/8 ohms) £38.50
- CP 3000 (300 W RMS/6 ohms) £58.00
- CP 3000 w/ stereo pre and power amp complete kit £208.95
- Stereo Moving Coil Pre-Preamplifier Module MC1 £22.30
- CP 3000 - (300 Watt) £23.40

Don’t forget, Crimson modules are available throughout the country from all branches of Marshall and Mail Order from Badger Sound Services and, of course, Crimson Elektrik.

Prices include VAT and post to anywhere in the U.K.

3½ DIGIT LCD MULTI-METER KIT

Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. 0.5" LCD display with 'Battery Low' warning. Auto-polarity. Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range. 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1mV to 500V. AC/DC current from 0.1uA to 2A. Resistance from 0.1Ω to 2MΩ. 200 hour battery life.

The kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads.

We also offer a calibration service (£5.00 + VAT) and a trouble-shooting and calibration service (£7.50 + VAT). Various other component parts are also available as listed.

The multimeter is also available fully assembled and calibrated at a cost of £39.70 + P&P + VAT.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data Fully Assembled DMM (Inc. Leads) £47.05 £PE-DMK £39.04 £ICL 7106 £10.87 £LCD Display £0.82 £PCB £1.42 £PCB £0.95 £PCB £0.50 £PCB £55.50

FULLY ASSEMBLED DMM (INC. LEADS) £39.70 £6.14 £47.09

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data Fully Assembled DMM (Inc. Leads) £47.05 £PE-DMK £39.04 £ICL 7106 £10.87 £LCD Display £0.82 £PCB £1.42 £PCB £0.95 £PCB £0.50 £PCB £55.50

FULLY ASSEMBLED DMM (INC. LEADS) £39.70 £6.14 £47.09

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data Fully Assembled DMM (Inc. Leads) £47.05 £PE-DMK £39.04 £ICL 7106 £10.87 £LCD Display £0.82 £PCB £1.42 £PCB £0.95 £PCB £0.50 £PCB £55.50

FULLY ASSEMBLED DMM (INC. LEADS) £39.70 £6.14 £47.09
ANNOUNCING TWO BRAND NEW THANDAR INSTRUMENTS

TF200 LCD FREQUENCY METER

The TF200 has the professional specification you need with true portability, small size and low weight combined in a robust, low cost instrument.

- Wide frequency range - 10Hz to 200MHz (800 MHz prescaler available shortly)
- High sensitivity - 10mV rms
- Versatile - LF, HF, Time Avo. period and totalise functions
- Battery or mains operation

* Only £145 + £21.75 VAT (including batteries)

OTHER PORTABLE TEST INSTRUMENTS IN THE THANDAR RANGE

SC110 Single-Trace Portable Oscilloscope
10MHz bandwidth, 10mV/div sensitivity.
£139.00 + £20.85 VAT

DM450 4½ Digit Multimeter
34 ranges; 0.05% basic accuracy
£99.00 + £14.85 VAT

DM350 3½ Digit Multimeter
34 ranges 0.1% basic accuracy
£72.50 + £10.88 VAT

DM235 3½ Digit Multimeter
21 ranges, 0.5% basic accuracy
£52.50 + £7.88 VAT

PFM200 Pocket Frequency Meter
20Hz - 200MHz, 10mV sensitivity
£49.80 + £7.47 VAT

PDM35 Pocket Digital Multimeter
16 ranges; 1% basic accuracy
£34.50 + £5.18 VAT

TG105 PULSE GENERATOR

A comprehensive specification at a highly competitive price! Easy to operate and ideal for laboratory test bench or educational use.

- Wide frequency range: 5kHz to 5MHz
- Independent, fully variable period and pulse control
- Very wide duty cycle capability
- Auto-lockout of inadmissible control settings
- Additional output
- Full gating and single-shot facilities
- Only £85 + £12.78 VAT

For full technical details together with price list and stockist list please contact:

Thandar are proud to introduce two brand new bench/portable instruments as part of an expanding range of test equipment. Housed in stylish compact cases, the Thandar TF200 Frequency Meter and TG105 Pulse Generator both provide portable versatility for bench and field use. Both have wide range specifications with robustness and reliability at prices that are hard to beat.

All Thandar products carry a full 1-year warranty and are backed by the resources and enthusiasm of a company committed to the development and manufacture of high quality equipment.

Sinclair Electronics Ltd also is the sole U.K. importer for Leader Electronic Corp. of Japan who feature an extensive range of high quality products including oscilloscopes and audio, TV, video, radio amateur and C.B. test equipment.

Sinclair Electronics Ltd. reserve the right to alter prices and specifications on Thandar equipment without prior notice.

WW — 068 FOR FURTHER DETAILS
Britain's first computer kit.

The Sinclair ZX80.

£79.95

Price breakdown.
 ZX80 and manual: £69.52
 VAT: £10.43
 Post and packing FREE

Please note: many kit makers quote VAT-exclusive prices.

You've seen the reviews, you've heard the excitement - now make the kit!

This is the ZX80. 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX80 with competitive kits that don't appear with inclusive prices.

'Excellent value' indeed!

For just £79.95 (including VAT and P&P) you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour!); all ICs; case; leads for direct connection to a domestic TV and cassette recorder. The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron.

It immediately proves what a good job you've done. Connect it to your TV... 'link it to an appropriate power source'...and you're ready to go.

The unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter, and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages.

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.

- Unique syntax check: Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.

- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input to request a line of text when necessary.

- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.

- Exceptionally powerful edit facilities, allows modification of existing program lines.

- Randomise function, useful for games and secret codes, as well as more serious applications.

- Timer under program control.

- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.

- High-resolution graphics with 22 standard graphic symbols.

- All characters printable in reverse under program control.

- Lines of unlimited length.

Fewer chips, compact design, volume production - more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful, and advanced LSI chips: A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1K byte RAM is roughly equivalent to 4K bytes in a conventional computer - typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.

- Complete components set, including all ICs - all manufactured by selected world-leading suppliers.

- New rugged Sinclair keyboard, touch-sensitive, wipe-clean.

- Ready moulded case.

- Leads and adaptors for connection to domestic TV and cassette recorder.

- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately - see coupon).

- Additional memory expansion boards allowing up to 16K bytes RAM. (Extra RAM chips also available - see coupon).

*Use a 600mA at 9VDC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

WIRELESS WORLD, SEPTEMBER 1980
ZX80 software – now available!

See advertisements in Personal Computer World, Electronics Today International, and other journals.

New dedicated software — developed independently of Science of Cambridge — reflects the enormous interest in the ZX80. More software available soon — from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you — don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming — from first principles to complex programs. (Available separately — purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80 Kit: £79.95.

Assembled: £99.95. Complete!

The ZX80 kit costs a mere £79.95! Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled and complete with mains adaptor, for only £99.95.

Demand for the ZX80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt — and we have no doubt that you will be.

Sinclair ZX80

Science of Cambridge Ltd

6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Tel: 0223 311488.

ORDER FORM

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Remember: all prices shown include VAT, postage and packing. No hidden extras.

Please send me:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinclair ZX80 Personal Computer kit(s) (Price includes ZX80 BASIC manual, excludes mains adaptor)</td>
<td>£79.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready-assembled Sinclair ZX80 Personal Computer(s) (Price includes ZX80 BASIC manual and mains adaptor)</td>
<td>£99.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains Adaptor(s) (600mA at 9VDC nominal unregulated)</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAM Memory chips — standard 1Kbytes capacity</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinclair ZX80 Manual(s) (Manual free with every ZX80 kit or ready-made computer)</td>
<td>5.00</td>
<td></td>
</tr>
</tbody>
</table>

NB. Your Sinclair ZX80 may qualify as a business expense.

TOTAL: £

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £.

Please print

Name: Mr/Mrs/Miss

Address

WW — 012 FOR FURTHER DETAILS
Dutchgate

The Hitachi range of Low Cost Portable Oscilloscopes

Dutchgate offer the full range of Hitachi innovative Oscilloscopes each with a two year warranty. These easy to operate oscilloscopes featuring wider width band and integrated circuitry offer increased stability, improved reliability and excellent performance.

The vast experience gained by Dutchgate as specialists in servicing and maintaining test and measurement instrumentation will be used to effect a fully reliable and efficient after sales service.

Test Dutchgate today — by asking for details of the Hitachi Low Cost Portable Oscilloscopes and then measure the result.

Dutchgate Ltd

Authorized agents for Hitachi Denshi (UK) Ltd.
TIMEBASE 94, ALFRISTON GARDENS
SHOLING, SOUTHAMPTON Telephone (0703) 431323

HAMEG OSCILLOSCOPES
TOP PERFORMANCE, QUALITY AND VALUE

HM 307 ... £149
Single Trace DC-10MHz
Plus Built-in Component Tester

HM 312 ... £250
Dual Trace DC-20MHz
5mV/cm, Full X-Y, 30MHz
Trigger, plus TV Trigger

HM 412 ... £350
Dual Trace DC-20MHz
5mV/cm, X-Y, 40MHz Trigger
plus Sweep Delay

HM 512 ... £580
Dual Trace DC-50MHz
5mV/cm, X-Y, 70MHz
Trigger, Sweep Delay, plus Single
Shot, Sweep Delay and After
Delay Trigger

HM 812 ... £1,458
Dual Trace as per HM 512 plus
Storage, Automatic Storage and
Variable Persistence

Prices U.K.
List Ex. VAT

For FULL DETAILS and DISTRIBUTOR LIST contact:
HAMEG LTD.
74-78 Collingdon St.
Luton, Beds LU1 1RX
Tel: (0582) 413174
We promised more - and here they are.
High Performance, advanced design - at
prices that are incredibly low. Just read the specs
below, and if you don't see what you want, shout!
There's over 14 new, sensational scopes
in the Kikusui range.

THE MOST COMPLETE
DUAL CHANNEL 50MHz
SCOPE AVAILABLE Model 5650 & 5650E
50MHz.5mV 5 x MAG 1 mV.10MHz, Alternate Time Base Alternate Trigger - 500KHz
Chop Frequency, Auto Level (Lock) Circuit Calibrated Delay Sweep - One Touch
Triggered Delay, Variable Hold Off - B ends A With CH1 Output Signal (5650E), One
Touch X-Y Operation Rectangular CRT, Internal Graticule (5650 Illuminated), Linear Focus
5650 £945; 5650E £365

A PORTABLE, HIGH PERFORMANCE,
RELIABLE DUAL CHANNEL 35MHz SCOPE Model 5630
35MHz.5mV 5 x MAG 1 mV.10MHz Alternate Trigger - 500 KHz Chop Frequency
Calibrated Delayed Sweep - One Touch Triggered Delay Auto Level (Lock) Circuit,
Variable Hold Off - B ends A, One Touch X-Y Operation Rectangular CRT, Internal
Graticule Illuminated, Linear Focus
ONLY £795

A LOWER PRICE, HIGHER
PERFORMANCE, DUAL CHANNEL
35MHz SCOPE Model 5531
35MHz.5mV 5 x MAG 1 mV.15MHz
Automatic Selection Alternate/Chop
(200kHz) and Chop Only Mode Delayed
Sweep - One Touch Triggered Delay
Variable Hold Off, One Touch X-Y
Operation, Auto Focus Internal Graticule
High Brightness CRT (Non- illuminated)
ONLY £500

LOW PRICE, HIGH VALUE, DUAL
CHANNEL 35MHz SCOPES
Models 5530/5530GR
35MHz.5mV 5 x MAG 1mV.10MHz
5530: Illuminated External Graticule
5530GR: Internal Graticule (Non-
iluminated) Post-Accelerating High
Brightness CRT Vertical Delay Line
Built-in One Touch X-Y Operation
ONLY £395

A LOWER PRICED, HIGH
PERFORMANCE 20MHz SCOPE
Model 5520
20MHz.5mV 5 x MAG 1mV.10MHz
One Touch X-Y Operation TV Sync.
Separator (Trigger) Single Sweep
Function High Brightness CRT
ONLY £230

Prices exclude VAT,
and are correct at time of going to press.

THERE'S EVEN MORE 'SCOPE' FOR YOUR MONEY FROM TELONIC BERKELEY

2, Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR
Telephone:Maidenhead (0628) 28057 Telex:849131 Telber G

WW — 037 FOR FURTHER DETAILS
Newport Range -
Sound reinforcement and public address amplifiers; 30, 60, 120 or 200 watts - with a range of 10 models for free standing and rack mounting use -
engineered for reliability

Audix Limited, Station Road, Wenden, Saffron Walden, Essex CB11 4LG
Tel: Saffron Walden (0799) 40888; Telex: 817444

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937

PRODUCTION
TESTING

POWER UNITS
Now available with 3 OUTPUTS

DEVELOPMENT

Type 250VRU/30/25
OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC
ALL Continuously Variable

SERVICING

Valradio

VALRADIO LIMITED, BROWELLS LANE, FELTHAM
MIDDLESEX TW13 7EN
Telephone: 01-890 4242 / 4837

WW — 070 FOR FURTHER DETAILS

WW — 026 FOR FURTHER DETAILS
Complete Audio/Tuner Kits

The Mark III series FM tuner has been updated and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience - a preview copy may be purchased for £1.00.

Mark III B series 'Hyfer' modules, with switched B/FW, pilot cancel decoder £198.95 inc.

A switching synthesiser unit will be made available later this year, and can be retrofitted to either version. All versions include digital frequency readout/lock, UV deviation meters, 6 preset ANN/FM radio tuning stations, 10 bank preset manual tuning, toroidal PSU, output level adjustment, 110/240V AC input. Full alignment service available.

Power Amplifiers

After a couple of pre-views comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mark III W. Well, it's out at last - complete with twin toroidal PSUs for consistent 80W RMS output on each, over 100W peak, but limited by thermal shutdown of the HMOS. 10W -100W log at last - complete with twin toroidal PSUs for comfortable 80W RMS per channel, LED output peak indicator, DC offset protection and switch-on pause relay. AC or HiFi output. Several options available. Price for complete kit £178.25 inc. £5.

Preamp/Filter

Filtering for the discerning audio purveyor. Switchable cut-off to 1.5kHz, plus twin tape inputs. 2 low pass, 2 high pass active filters, genuine volume related loudness, full channel matching, with DC protection. Offers minute size, table top convenience. Suitable for in-line remote control, tape doubling, switching monitor etc. 80dB S/N, THD -70dB or better. Pleasure P sepulation carries none, too. 20dB from complete kit £149 ex VAT.

Radio/Communications ICs

For complete listings - see our new price list.

<table>
<thead>
<tr>
<th>IC</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3066</td>
<td>2.51</td>
<td>£3.31</td>
</tr>
<tr>
<td>CA3198E</td>
<td>2.53</td>
<td>£3.17</td>
</tr>
<tr>
<td>KAI225</td>
<td>1.16</td>
<td>£2.95</td>
</tr>
<tr>
<td>HAI225</td>
<td>2.47</td>
<td>£2.19</td>
</tr>
<tr>
<td>KAI425</td>
<td>1.95</td>
<td>£2.55</td>
</tr>
<tr>
<td>TDA1005</td>
<td>1.69</td>
<td>£2.29</td>
</tr>
<tr>
<td>KBI406</td>
<td>0.09</td>
<td>£2.12</td>
</tr>
</tbody>
</table>

VARIAC DIODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA102</td>
<td>3.5V</td>
<td>£2.29</td>
</tr>
<tr>
<td>BI901</td>
<td>4.7V</td>
<td>£2.53</td>
</tr>
<tr>
<td>B11211</td>
<td>4.7V</td>
<td>£2.29</td>
</tr>
<tr>
<td>MVAM13</td>
<td>3.3V</td>
<td>£2.12</td>
</tr>
</tbody>
</table>

ULTRA LOW NOISE POWER PREAMP

The HAT1057 is the last word in PU preamps, and general low noise audio design. It is an SL IC with 85dB S/N in RIAA configuration, 10mV output capability, 0.002% typ THD at 10mV RMS output (imagine the overload margin !). It comfortably supercedes domestic circuit designs in terms of price/performance, and takes the art beyond the TDA1024's capabilities. (Replace HAI457) £1.80 each or an RIAA applications board with 2 ICs for £5.75. Complete with P/823.95.

Radio Control ICs

We have various RC ICs, including N6444, N6544, and two new ones from OKI.

CMOS, LPSN'TL, TTL, MPU:

Listings in the new price list.

WHAT'S NEW at AMBIT

CMOS, LAB, MCU, PIC

New CMOS, LAB, PIC as available, and includes NEW 8-pin PICs from Hitachi.

Radio/Communications Modules

Complete projector tuned systems available. Pricing starts from £495.00. For a complete price list please contact us.

LW-MW-SW/SW DC tuned and switched

Wireless World, September 1980

VHF Tuner

Europe's largest stock range for broadcast and communications. Probably also the world's largest details in the catalogues and PL. Specials are available in the region 100-300kHz.

Pilots/Cancel PLL Stereo decoders

Again Europe's widest range of stereo decoders including pilot cancel PLL types. The pic shows the N4475 - pilot cancel including post decoder 20/38kHz filtering and muting preamp output.

Switched bandwidth FM IF strips

Broadcast FM IF strips for all occasions, including the new 91225 - with diode switched narrow filter option, ultra linear phase ceramic filters, 84dB S/N, 0.06% THD (40KHz deviation). Plus usual things like AGC, AFC, d.c. mute, level meter drive. £20.95 (supplied in case can with 0.1 wire edge connection.) Also the 7230 hyper type (serves the 9115B, but with slope controlled AFC that operates in conjunction with signal level - and an extra IF amp stage for DXing.

Various digital frequency displays

The World's largest range of receiver DFM is now joined by the DF87 (shown) - and L shaped version of the DFM3 with remote digital graph display - possibly - 1KHz SW resolution with 450kHz or 70MHz option. 100MHz in up to 3.9999MHz, and VHF to 299.99 in MHz steps - £41.75.

Components

Crystal Filters

Most popular types are available:

- 10.7MHz 25KHz Channel spacing 8pole £16.67
- 12KHz £17.85
- 24KHz £24.67
- Monolithic dual roofing filter £6.30
- 3.54MHz 1.36b in, 400mW power, ±12dB £23.95
- 34.5MHz 1.36b in, 100mW power, ±12dB £43.95
- 220MHz 1.36b in, 100mW power, ±12dB £83.95
- 25MHz £105.75

Fixio Sounders

The latest thing in electro-acoustic efficiency. 1mA of drive from CMOS will give an SPL of 83dB -10v RMS drive from CMOS user 3mA, for 100mW at 4.8Hz. £2.75.

Keyboard switches and caps

From the world's most widely used switch manufacturers: ALPS - come the biggest and best range of keyboards, and data entry keyboard switches. The SC81101 is shown here, with the KTS 2-part cap which gives an effective easy fitting of your chosen legend. Other types are available with built in LED, 100mm mounting etc. SC811101 £17p, KTS: 16p - 29/pic cap.

L LED LOCKS

LED DVM

CM161: 7em LCD 12/24V, alarms etc £11.44 each
CM172: 12mm, 12hr, alarm, timer etc £14.32 each
CM173: 12mm, 12V, miniclock, stopwatch £18.42 each
DMV 176: 105/106 based LCD £12/112 £22.16 each

WHAT'S NEW at AMBIT

NEW PRICE LIST/SPECIALS:-

- 28 pages, FOC with A5 SAE pse

- Bigger print than our recent one page list - and extensively updated.

- Big drop in prices than our recent one page list.

- High quality filters, etc available, and includes NEW 8-pin PICs from Hitachi.

- Everything you should know about HMOSFET devices theory and applications.

- £1.50 each or free with orders of HMOS and the PA1018.

- Parts 1-3 AMBIT catalogues 60p, or £1.60 the lot.
GUIDE TO BROADCASTING STATIONS

18th Edition

Around the world, some thousands of radio stations are sending signals. If you're receiving, this standard guide will tell you who's where. It lists stations broadcasting in the long, medium, short wave and vhf bands, dealing with them by frequency, geographical location and alphabetically. Sections are helpfully cross referenced. The Wireless World Guide to Broadcasting Stations is the eighteenth edition of a publication which has sold over 270,000 copies. In addition to the stations, it includes much useful information on radio receivers, ariels, propagation, signal identifications and reception reports.

£3.25 inc. postage

To: General Sales Dept., Room CP34
Donnat House, Stamford Street, London SE1 9LU
Please send me a copy of this Wireless World Guide to Broadcasting Stations (18th Edition) @ £3.25 a copy, inclusive. Cheque/P.O. payable to IPC Business Press Ltd.

Name (please print)
Address

Registered in England No. 677/128
Registered Office: Donnat House, Stamford Street, London SE1 9LU

Registered in England No. 677/128
Registered Office: Donnat House, Stamford Street, London SE1 9LU
In the last three decades, TRW has had more than its fair share of important breakthroughs which have come to be regarded as milestones in the semiconductor industry.

THE 1950's
1958 TRW invented the VARICAP®—now almost a generic term for the varactor.
1959 The first high power, high frequency transistor.
1959 High reliability semiconductors. Starting with the Minuteman, TRW has been part of every space and missile programme since.

THE 1960's
1961 TRW invented TTL Integrated circuits.
1962 Pioneered high voltage, triple diffused switching transistors.
1963 High reliability transistors in plastic package—accepted for military applications.
1966 The first transistor designed specifically for CATV.
1968 5W, 2GHz transistors for general use—off the shelf.

THE 1970's
1970 CATV hybrid amplifiers used in most of today's cable TV systems.
1972 High voltage, high speed monolithic Darlington transistors.
1972 Power Schottky Rectifiers in volume production.
1975 Industry's first monolithic RF L Band circuit.
1976 5W, 5GHz transistors.
1978 Development of L Band radar transistors.

THE 1980's
The first of the decade's big advances—45W microwave pulse power at S Band transistors. The highest available in the world. The start of a new important family of microwave devices.

In the 1980's TRW RF and TRW Power Semiconductors will keep you ahead with the most technologically advanced, exciting products from the most diverse and reliable range available anywhere.

If you're involved in RF (Reader reply no. 014) or Power (Reader reply no. 013) send for your copy of the new Data Books.

TRW® SEMICONDUCTORS

MCP Electronics Ltd.,
38 Rosemont Road,
Alperton, Wembley, Middx.
Telephone 01-902 5941. Telex: 923455.
MICROSISTEM DEVELOPMENT USING SOFTY

SOFTY is intended for the development of programs which will eventually become software resident in ROM and forming part of a microsystem. During the development stage of a microsystem, SOFTY will be connected in place of the firmware ROM via a ribbon cable, terminated in a 24-pin DIL plug.

Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assembler key functions.

When the program has been entered, the internal microprocessor can be turned off, and the external microsystem and its resident microprocessor allowed to access and run the program in SOFTY’s RAM and/or programming socket. In this way modification can be made until the required program is complete — the contents of the RAM being clearly visible as a page on TV or monitor. 4 pages are available, 2 of the Data RAM an 2 of the programming socket.

In the end, when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails.

To help in the process of program development, SOFTY has various assembler key functions, which include — block shift without overwriting, block store, cursor control, match byte and displacement calculations (for jumps, etc.). A high-speed cassette interface is also provided for storing working programs and useful subroutines.

SOFTY Kits of parts—(including zero insertion force socket for EPROM programmer).

NEW — SOFTY CONVERSION CARD — EX-STOCK

Enables SOFTY to program the special rail EPROMS 2508, 2708, 2616. [2716].

Selection of device type and 1K block are by 4-way push-pull switches. Programming socket is zero insertion force. Supplied ready-built and tested with DIP jumper for connection to SOFTY. £48 (inc. VAT p&p).

NEW — SOFTY PRINTER CARD — EX-STOCK

40 column electromechanical printer 5x7 dot matrix software selection of characters per line (11 to 16 bytes) push-button printing of EPROM/ROM/interceptor contents connects to SOFTY card edge. Wall mounted. Supplied ready built and tested. Including power supply, edge connector, and paper roll for £166.75 (inc. VAT p&p). Spare paper rolls (28-30 metres/roll) — 4 rolls for £8 (inc. VAT p&p).

MODEL 14 EPROM ERASERS

EX-STOCK

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 1K EPROM capacity
- Builds in 5 to 50 minute timer to cater for all 4EPROMs
- Safely interlocked to prevent eye and skin damage
- Convenient slide top loading of fuses
- MAINS and ERASE indicators
- Rugged construction
- Priced at only £89.70 (inc. VAT, p&p)

MODEL UV141 EPROM ERASER

Similar to Model UV141 but without timer.

Low price at only £70.75 (inc. VAT, p&p).

WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES/OFFICIAL COMPANY ORDERS TO:

GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth
PL4 8HA. Telephone: Plymouth (0752) 28627
TRADE AND EXPORT ENQUIRIES WELCOME

WW — 028 FOR FURTHER DETAILS

IQXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

- Hermetically sealed metal package
- DIL compatible
- 20.70L x 13.08W x 5.08H (mm)

The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available.

Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU
Crewkerne (0460) 74433 Telex 46283 inface g

WW — 085 FOR FURTHER DETAILS

OLSON

INSTRUMENT CASES

- 8 Different sizes
- Wall mounted in 4 sizes
- 24 Different sizes
- Advanced design
- High Quality
- Rigid Construction
- Low Price

Panels and cases punched to customer’s requirements at very low cost. Please write for details.

OLSON ELECTRONICS LTD.
Factory No. 8, 5-7 Long St., London E2 8HJ
Tel. 01-738 2343

WW — 089 FOR FURTHER DETAILS
LEADER TEST INSTRUMENTS

- more performance and reliability than you ever thought possible

A Leader instrument for every need.

The full range of Leader Test Equipment, the first choice of engineers around the world, is now available in the U.K.

RADIO/CB/TV TEST

- CRTesters, Pattern Generators, Signal Generators, Antenna Impedance Meters, RF Power Meters, C.B. Signal Generators

LSG16 SIGNAL GENERATOR

A compact R.F. generator ideally suited to checking alignment of AM/FM and T.V. receivers.

- Frequency Range: 100 KHz - 100 Mhz
- Frequency Accuracy: ± 1.5%
- Crystal Oscillator: 1 - 15 MHz
- Modulation Internal: 1kHz for A.M.
- Output Voltage: 0.1/0.5/1 or higher to 100 MHz

GENERAL TEST

- Function Generators, Transistor Checkers, LCR Bridges, Power Supplies, Millivoltmeters, Curve Tracers, Speaker Analyzers, Home Appliance Testers.

LFG1300S SWEEP/FUNCTION GENERATOR

A multipurpose function generator producing five separate waveforms over a wide frequency range.

- Frequency Range: 0.002 Hz - 2MHz
- Five different waveforms
- Symmetry function
- Built in Linear/Log Sweep function
- A.M. output
- T.T.L. level output

AUDIO TEST

- Audio Generators, Frequency Respones, Recorders, Audio Systems, Analyzers,Wow & Flutter Meters

LFR5600 FREQUENCY RESPONSE RECORDER

Designed to graphically record saw and flutter, drift, voltage, temperature and frequency response of audio equipment.

- Frequency Range: 20 Hz - 30KHz
- Variable chart speed
- Voltage range 0.1V, 1V, 10V
- Sweep Oscillator
- A.M. signal
- Metered. Sweep frequency - input/output voltage

OSCILLOSCOPES

- 4 - 35 MHz Oscilloscopes with more performance and reliability for less cost. The Leader range of oscilloscopes includes 12 models, single and dual trace, bench or field use. All models offer comprehensive triggering controls, TTL compatible 2 AXS modulation and convenient colour-keyed front panel layout.

LBO508A OSCILLOSCOPE

- With 20MHz bandwidth and 10 mV input sensitivity on a 5" screen, this universal oscilloscope is suitable for a wide range of applications.

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Input Sensitivity</th>
<th>Screen Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBO 316A</td>
<td>4MHz</td>
<td>20mV</td>
<td>5"</td>
</tr>
<tr>
<td>LBO 301</td>
<td>7MHz</td>
<td>10mV</td>
<td>Single Trace 3"</td>
</tr>
<tr>
<td>LBO 305</td>
<td>20MHz</td>
<td>2mV</td>
<td>Dual Trace 3"</td>
</tr>
<tr>
<td>LBO 515A</td>
<td>4-20MHz</td>
<td>20mV</td>
<td>Single Trace 5"</td>
</tr>
<tr>
<td>LBO 512A</td>
<td>10MHz</td>
<td>10mV</td>
<td>Single Trace 5"</td>
</tr>
<tr>
<td>LBO 513</td>
<td>10MHz</td>
<td>5mV</td>
<td>Single Trace 5"</td>
</tr>
<tr>
<td>LBO 514</td>
<td>15MHz</td>
<td>5mV</td>
<td>Dual Trace 5"</td>
</tr>
<tr>
<td>LBO 506A</td>
<td>15MHz</td>
<td>10mV</td>
<td>Dual Trace 5"</td>
</tr>
<tr>
<td>LBO 507A</td>
<td>20MHz</td>
<td>10mV</td>
<td>Single Trace 5"</td>
</tr>
<tr>
<td>LBO 515A</td>
<td>25MHz</td>
<td>5mV</td>
<td>Dual Trace 5"</td>
</tr>
<tr>
<td>LBO 508A</td>
<td>35MHz</td>
<td>15mV</td>
<td>Dual Trace 5"</td>
</tr>
</tbody>
</table>

SINCLAIR ELECTRONICS LTD

London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.

For full technical details together with price list please contact:

SINCLAIR ELECTRONICS LTD

London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.

Telephone: St. Ives (0480) 54646. Telex: 32250

S Sinclair Electronics Ltd. reserve the right to alter prices and specifications on Leader equipment without prior notice.
HERE’S HOW TO TALK TO ALL OF THE PEOPLE ALL OF THE TIME
with a communications system built up from the all-embracing, constantly expanding range of

REEDITRONICS EQUIPMENT

The latest additions to that range –

- **A104K AUTOMATIC ANNOUNCER**
 - ENCODED SPOT CAPABILITY for central recording on essence-proof spots, local recording on blank spots with spot omission switch facility, built-in chime, monitor loudspeaker and/or headphone...direct paging priority via associated mic.

When it comes to **SOUND** communications, **REEDITRONICS EQUIPMENT** does MORE FOR LESS. **REEDITRONICS** is the one name that says it all.

Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.

and to meet growing demand—

Musitune are appointed as Reditronics distributors for Greater London and the Home Counties.

Contact Musitune Ltd., 388 Green Lanes, London N4 1DW (Tel: 01-802 1163) for Reditronics systems-planning to your exact requirements.

EXPANDORAM II

Expandable Random Access Memory Board

The ExpandoRAM II provides a low cost means for expanding Random Access Memory capability for computers using the S-100 Bus structure. The board's design allows eight boards to operate from the same S-100 Bus.

Page mode operation provides the system with the capability of servicing multiple users without RAM interference. Synchronization of the wait state and invisible refresh deliver faster operation, allowing processing speeds up to 4MHz.

The ExpandoRAM II is compatible with most S-100 CPUs based on the Z80 microprocessor. When other SD SYSTEMS 200 series boards are combined with the ExpandoRAM II, they create a microcomputer with exceptional capabilities and features.

OUR PRICE: £129.00 to £299.50 (64K Kit) Built & Tested from: £272.00 to £398.00 (64K B-T)

All items subject to V.A.T.

For further information on this board, or any other boards in our comprehensive range
i.e.: SBC100, Versafloppy I + II, VDB 8024, Z80 Starter Kit etc. Please write or telephone.

Features

- S-100 Bus Compatible
- 4MHz Operation
- Board Select for Multi-user System
- Expandable Memory from 16K to 256K using 16K or 64K devices
- DIP Switch selectable boundaries at any 16K or 64K boundary
- Page Mode Operation Allows up to 8 boards on a Bus
- Operates with Z80 CPUs
- Phantom Output Disable and a manual Switch Selectable Output Disable
- Power Dissipation — 5 watts, Typical
- Wait States and Invisible Refresh Synchronized
- 4-64K Banks are available with 4164's

WW — 048 FOR FURTHER DETAILS

WW — 029 FOR FURTHER DETAILS
PRECISION PETITE MINIATURE DRILLS AND ACCESSORIES

for all your modelling needs

A choice of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks — drilling, shaping, cutting, polishing etc in the minimum of time. There are two types of drill stand, S1 for P1 drill, S2 for all drills, plus all the necessary accessories in a remarkable range that fills every need. Fully illustrated literature is available and will be gladly sent upon receipt of 9" x 4" stamped addressed envelope.

Access & Barclaycard welcome

Sole UK Distributors PRECISION PETITE LTD
119a HIGH ST. TEDDINGTON, MDX.Tel. 01-977 0878

WW — 017 FOR FURTHER DETAILS

MEET THE PROBLEM SOLVER

The "System One" series of micro computers is probably the most flexible series of micro computers available today. Flexibility of hardware coupled with a wide range of software, allows the user to choose the most cost effective hardware/software configuration to solve his/her problem.

HARDWARE CONFIGURATION

- Internal storage from 32 to 81K.
- 1 or 2 single-sided 5½" or 8" floppy disks.
- 1 or 2 double-sided 5½" or 8" floppy disks.
- Support for most popular makes of printers. 1 or 2 terminals.

SOFTWARE FROM

- FORTRAN Compiler
- BASIC Compiler
- STRUBAL Compiler
- LABEL BASIC
- PILOT
- Assemblers
- Text Processor

SYSTEM ONE

Basic interpreter both sequential and Random Access Versions. Plus full development and debugging software.

You can choose a two Operating Systems. SSBDOS or FLEX.

With all this to choose from you might begin to think you could not afford it — well a 32K storage system one with dual single sided 5½" floppy disks, SSBDOS and a basic interpreter would cost you £1,650.

If you require a terminal as well, the above system together with the ACT-1 keyboard and 9" video monitor would cost you £1,970.

Call SEED at our Brownhills office for further details of demonstration.

SEED

STRUMECH ENGINEERING ELECTRONIC DEVELOPMENTS LTD.
Portland House, Coppice Side, Brownhills, Walsall
West Midlands. Telex 335243 SEL. Tel. No. 054-33 78151

WW — 046 FOR FURTHER DETAILS

MORE SPEC. FOR YOUR MONEY

TYPE 217 DUAL POWER SUPPLY

£84.88 & £3.00 carriage, ins. etc.

CONSTANT VOLTAGE or CONSTANT CURRENT

DIGITAL MONITORING

MODE INDICATION

- +0 to 20V and —0 to 20V or 0 to 40V
- +0 to 750mA and —0 to 750mA

ALL INDEPENDENTLY SELECTABLE

LAB SPEC. — BENCH PRICE!

OMB ELECTRONICS, RIVERSIDE, EYNSFORD, KENT DA4 0AE
Tel. Farningham (0322) 863587

Prices, which are C/W and ex-VAT, are correct at the time of going to press and are subject to change without notice.

FROM OMB ELECTRONICS

WW — 019 FOR FURTHER DETAILS
If you had difficulty sourcing Peak Programme Meters to meet DIN 45406, the fast European PPM standard, then Relax! The Soundex PPM 302 amplifier card and fast meter movement make it look easy. The scale reads from $-50\,\text{dB}$ to $+5\,\text{db}$, 0% to 180% including the red part of the scale and it's surprisingly accurate. Our amplifier card is surely the smallest at only $54 \times 70 \,\text{mm}$ and the cost won't finish you.

Brief Specification

- **Indicating range:** $-50\,\text{dB}$ to $+5\,\text{db}$ 0% to 180%
- **Accuracy:** Better than $\pm 1\,\text{dB}$ between -5 and $+5\,\text{dB}$ at $1\,\text{kHz}$ and $\pm 2\,\text{dB}$ between -40 and $-5\,\text{dB}$ at $1417\,\text{Hz}$
- **Frequency response:** $\pm 1.0\,\text{dB}$ between $30\,\text{Hz}$ and $15,000\,\text{Hz}$. Rolloff: at least $15\,\text{dB}$ at $40\,\text{kHz}$
- **Attack:** $-1\,\text{dB}$ to $0.5\,\text{dB}$ after $10\,\text{mS}$
- **Decay:** $1.7\,\pm 0.35\,\text{s}$ to fall to $-20\,\text{dB}$
- **Input Impedance:** 100$k\,\Omega$ to $30\,\text{V}$(D.C.)
- **Sensitivity:** Variable
- **Overshoot:** Complete System: Less than $1\,\text{dB}$
- **Supply:** 20V to $30\,\text{V}$ D.C. $45\,\text{mA}$ at $24\,\text{V}$

Input Specifications

- **Sensitivity:** $1\,\text{mV}$
- **Input Impedance:** $10\,\text{K}\,\Omega$
- **Attenuation:** $-1\,\text{dB}$
- **Decay:** $1.7\,\pm 0.35\,\text{s}$ to fall to $-20\,\text{dB}$
- **Input impedance:** 10$k\,\Omega$
- **Supply:** 20 to $30\,\text{V}$ D.C.
- **Sensitivity:** Variable
- **Overshoot:** Complete System: Less than $1\,\text{dB}$
- **Supply:** 20V to $30\,\text{V}$ D.C. $45\,\text{mA}$ at $24\,\text{V}$

Hand Held Thermal Wire Stripper

Model TW1

- **Strips most** Insulations
- Especially suitable for PTFE
- Wire sizes up to 6mm OD

- **Self contained** - no external power packs required
- **Long life** Rugged alloy blades heat to $1700\,\text{°F}$ in four seconds and may be notched for wire sizes
- **Blade depth** stop prevents blades touching conductors, eliminating scratching and nicking
- **Temperature** control unit available
- **Optional bench stand**

Adjustable stops for strip length and blade depth

TELEPHONE FOR A FREE DEMONSTRATION

Eraser International Ltd.,
Unit M, Portway Industrial Estate,
Andover, Hants SP10 3LU.
Tel: Andover (0264) 51347/8 Telex: 477291

The fastest PPM—easily!
"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell & Howell or one of our Video Centres and get the current facts.

The fact, for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as £1,300 plus VAT. For playback, a standard TV receiver is all you need.

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm; TTL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC ¾-inch U-format recorder.

The picture will be improved. You'll have another sound track to use for foreign-language commentaries or question-and-answer training routines.

On ¾-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still the cost of the system needn't exceed £2,700 plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell & Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?

Let the Video Centre, or Bell & Howell, help you decide.

Whatever your decision, two things are certain. One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use). Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell & Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell & Howell Supershield guarantee.

Let Bell & Howell show you the answer.

To Pieter Glas, Bell & Howell A.V. Ltd., Freepost, Wembley, Middlesex HA0 1BR.

Please send me more information about video equipment and a list of your Video Centres.

Name
Organisation
Address

JVC CAMERAS, JVC RECORDER, JVC STUDIO EQUIPMENT, JVC MONITORS, ELECTROHOME MONITORS, Fuji Video Tapes.

WW 035 FOR FURTHER DETAILS
The VERSATOWER range of telescopic and tilt-over towers cover a range of 25ft to 120ft (7.5M to 36M).

Designed for Wind Speeds from 85mph to 117mph conforming with CP3 Chapter V, part 11.

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER
THE PROFESSIONALS' CHOICE

PORTLAND HOUSE, COPPICE SIDE
BROWNHILLS, WEST MIDLANDS
TEL: (05433) 4321 TELEX: 335243 SEL

WWW — 047 FOR FURTHER DETAILS

VERSATOWER SYSTEM

STRUMECH

WWW — 092 FOR FURTHER DETAILS
We'll help you see infra-red and put you on target as well.

As manufacturers of the widest range of broadband infra-red detectors in Europe we offer designers an extensive range of devices to suit virtually all their project requirements.

So, whether you're involved in infra-red detection for industrial, military or research applications in any of these fields, things are looking better for you:

- Gas analysis
- Laser detection and measurement
- Intruder and fire alarms
- Radiometry and spectroscopy

Plessey infra-red detectors feature a range of element materials: ceramic, lithium tantalate, triglycine sulphate; a choice of windows and filters for selecting spectral response and a choice of electronics to give the required signal response.

And, if your need is for fast photovoltaic detectors for CO₂ laser range-finding applications, we can also offer lead tin telluride in the 10-11 micron region. High

\[D^*(4 \times 10^6 \text{cmHz}^1 \text{W}^{-1} \text{Ap}, 800, 1) \]

bandwidth to 10MHz and beyond.

Whatever your requirements, ask for our latest catalogue to put you on target.

Plessey Optoelectronics and Microwave Limited
Wood Burcote Way, Towcester, Northants, United Kingdom NN12 7JN.
Telephone: (0327) 51871 Telex: 311442

Plessey Optoelectronics and Microwave Limited
1641 Kaiser Avenue, Irving, California 92714, USA.
Telephone: (714) 540 9934 TWX: 910 595 1930

WW — 040 FOR FURTHER DETAILS
Advertisement produced co-operatively by: Akai, Ferguson
Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That’s why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there’s less need to change it later on.

So while we have continually improved the quality of our recorders - there are now triple standard VHS machines which accept PAL, SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.

VHS is the No. 1 system in the UK, Europe, the US and Japan.

Make sure you’ve got it. Right?

The world’s No. 1 system.

Hitachi, JVC, Panasonic, Sharp.
fact: the SM63 looks (and sounds) great in front of people... and cameras!

SM63
Omnidirectional Dynamic Microphone (actual size)

Take it from the professionals
A top quality Shure microphone makes a measurable difference in upgrading sound. Now, Shure has added a new microphone designed to upgrade the appearance of your act, as well as the sound. The SM63 is a top-quality omnidirectional microphone with high output and clear, crisp sound quality—an innovative blending of smaller size, handsome appearance, and truly noteworthy broadcast-quality performance. Highly effective pop protection, low handling noise and very low profile (so it won't obscure the performer's face) make it the perfect choice for on-camera applications. The SM63 omnidirectional dynamic microphone measures just 5 1/4 in. long, 1 1/4 in. in diameter and weighs only 2.8 ounces with no compromise in Shure’s standard of reliability. It offers twice the voltage sensitivity of our own SM61 (6 dB) and features a humbucking coil for superior rejection of electromagnetic hum (up to 20 dB better than competitive units) and an elastomer isolation shock mount for minimized handling noise. The new SM63 also features the Shure-developed VERAFLEx® dent resistant grille and a smooth satin finish perfect for onstage and on-camera applications.

Send for complete literature on all Shure professional microphones— including the new SM63. (Please let us know your microphone application.)

SPECIFICATIONS
Frequency Response: 50 to 20,000 Hz
Polar Pattern: Omnidirectional
Impedance: 150 ohms
Output Level (at 1,000 Hz): Open Circuit Voltage (Odb = 1 volt per microbar) — 76.0db (0.16mV) Power Level (0db = 1 milliwatt per 10 microbars) — 56.5db
Hum Pickup (typical at 60Hz): 13 db equivalent SPL in 1 millioned field
Shock Mount: Patented internal vibration isolator
Case: Champagne finish aluminum with VERAFLEx® grille
Dimensions and weight: 5 1/4 in. long, 1 1/4 in. in diameter; 2.8 ounces

professional microphones...by

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU — Telephone: Maidstone (0622) 59881

WWW — 065 FOR FURTHER DETAILS
Democratic, parliamentary government is a fine thing. Matters of consequence to the community cannot be left to the whims of dictators, unless they happen to be of an unusually benevolent disposition. The imposition of taxes, the control of education, health care, transport — all must be discussed and arranged in a properly democratic manner. But, when ministers are seen to shy away from the decision which must be taken when the talking stops, one can sometimes begin to wish for a benevolent despot, or at least a well-heeled entrepreneur.

In America, Japan and one or two European countries, thousands of millions of pounds worth of investment have been used to build vigorous research, development and production programmes in integrated-circuit technology. In the UK, Sir Keith Joseph hesitated over the second £25 million for Inmos. He would clearly have preferred the company to raise the money from private sources, but only discerned “flickers of interest” from private enterprise. That the interest is only a flicker does not show the City in a particularly adventurous light — it evidently likes to apply its risk capital in an area of slightly less risk — but the decision has to be accepted.

Since the original plan to fund Inmos to the tune of £50 million was made, the company has lived up to its promises and is on schedule with its US operation: nothing has changed. Although the original decision was made by a Labour government, there seems to be no reason why the Tory incumbents should wish to throw away the first £25 million by holding back the second. Inmos have said that they have already lost £36 million in the time spent hawering over the second instalment. If it had not been forthcoming, Inmos would almost certainly have survived, but as an American company, possibly raising money from US sources.

The question of whether we need Inmos has been raised. It is somewhat late in the game, after all, to start competing with the established giants, particularly as the said giants are pretty well entrenched in Britain already. One American view is that Europe has no need of a semiconductor, manufacturing capability; the application is all, so they say, so why not leave the supply of raw materials — chips — to others? One hesitates to appear churlish in the face of such altruism, but the Americans ought not to be asked to shoulder the whole burden of mountainous profits from semiconductor making.

They do have a very good point, of course. Software and applications development do not run away with the millions in the way that chip design, manufacture and marketing can in the early stages. The UK is already rather good at software (less so at industrial application) so perhaps we should concentrate on this side of the "microelectronic revolution".

If there were a choice, that would possibly be a sensible one. But is there a choice? Is it really in our best interests to leave to foreign companies the conception, design and manufacture of supplies which we are constantly being told will be central to our future economy? Will we then be supplied with the devices we want or those we are told to want? Will we be supplied at all? Having already seen control of many of our established industries pass from our hands in an involuntary way, it hardly seems reasonable to forego a chance of holding on to one of such significance.

It may be that the pathetically small investment in Inmos which is all that is possible, unless private enterprise becomes more enterprising, is far too little and about fifteen years too late, but however small a UK microelectronics industry finds itself to be when the situation stabilizes, a nucleus of capability strong enough to supply special needs and, more important, to attract the necessary brain power, must be kept. This is a decision which carries extremely long-term consequences: future options should not be limited by further haggling over the petty cash.
The floating bridge

New design principle for audio amplifiers

by R. M. Brady

This article describes a design principle which has the advantages of the bridge amplifier but none of its disadvantages. A simple amplifier which drives four ohm, 15-watt speakers using power from a 12-volt car battery is described in Part 2 and test results are included. The design is further applied to a 200-watt version suitable for group use.

Bridge amplifiers offer many potential advantages over single push-pull amplifiers: high power, high voltage swing for moderately low-voltage components, lower power dissipation in each transistor, and the capability of operating with high impedance loads, thereby reducing transmission losses and permitting a high damping factor. They are almost essential if power supply voltage is limited as, for example, with a car battery. Present designs, however, are necessarily of complex and cumbersome manufacture, making them expensive and not so reliable. They also have limited bandwidth and poor distortion performance, because of the close coupling between individual halves of the amplifier.

One half controls the instantaneous potential of one output terminal with respect to earth, and the other does the same job on the other terminal. The new system uses one amplifier to control the difference between output terminal potentials, and a second, cheaper amplifier to control a quantity which could loosely be called the sum of these voltages. This amplifier acts merely as a “slave” to the first one, enabling a full voltage swing to occur, but not in any way directly affecting the required output. The second amplifier is capacitively by-passed at high frequencies, where a full voltage swing is not so important in audio work. This bypassing prevents the instability for which bridge amplifiers are renowned.

The simplest version of the circuit requires that the earth (i.e. chassis, screening and mains earth) be floating, changing potential with respect to the power supply. Although this is unusual, it is perfectly safe and acceptable provided steps are taken to prevent stray mains currents from passing through the system.

It turns out that the design of both component amplifiers may be considerably reduced in complexity by using this system. Extras, such as current protection, may be added easily and far more simply to the floating bridge than to conventional amplifiers.

The new system has the following advantages over conventional bridge amplifiers:

- wider bandwidth and lower distortion
- optimized voltage swing, because both amplifiers must bottom before the output is affected
- saving in cost and complexity
- one output terminal may be earthed
- possibility of using two floating bridges to make a bridge-bridge amplifier

The next section presents the system in block diagram form, contrasting it with a conventional bridge amplifier configuration, and then sub-dividing the circuits for tracing through the feedback loops of the whole system, prior to reading the later paragraphs. The circuits are rather unconventional.

Fig. 1. In version A, \(A \) is a high quality amplifier which controls the difference between output terminal voltages, \(x - y \), while \(A \) is a cheaper amplifier which controls the sum \(x + y \) so that full voltage swing can occur. Note the unusual position of the earth. (\(x \) and \(y \) are potentials with respect to point \(A \)).

Fig. 2. Version B of the floating bridge amplifier is similar to version A, but has a different input configuration.
and if you do, you may find it good advice to forget temporarily the electronics you have already learnt, and to investigate the circuits from first principles.

Block diagram analysis

Two alternative but similar arrangements of the bridge amplifiers are shown in Figs 1 & 2. Amplifiers are inverting and non-inverting and A1 is insensitive to the state of the power supply. Output terminals are labelled x and y as shown, being instantaneous potentials with respect to point A, and in both cases the feedback loops are arranged so that at low frequencies A1 controls the value of x - y, and A2 controls the value of xR1 + yR2 \approx x + y. Capacitor C2 by-passes A2 at high frequencies, where large voltage swings are unnecessary. Circuit A, Fig. 1, inverts the signal whereas circuit B, Fig. 2, does not.

First consider a simple-minded approach to a conventional bridge amplifier, Fig. 3. Feedback loops are arranged so that if V is the instantaneous input voltage then x = GV and y = -GV, and the output across the load is x - y = 2GV. Remembering the close coupling between individual amplifiers, imagine that x rises for some reason because of effects in A1. This causes A2 to turn on, to keep y constant. The fact that A2 has turned on affects the value of x, causing A1 to react each time there is a small phase shift, which can easily be amplified by this mechanism and cause unwanted oscillation. Hideous things can happen at the cross-over point where both amplifiers must conduct simultaneously. The new system almost completely eliminates this coupling effect.

Effect of A1 in circuit A Fig. 4 shows A1 and its associated feedback loop. For the present A2 can be regarded as a sink which will accept any current generated by A1. In the quiescent state, A1 stabilizes x - y to its own (ideally zero) offset voltage. Imagine that the potential y rises with respect to x for some reason. The potential at the + input to the amplifier remains at almost earth potential x, so that there is a voltage across R2 which tends to make a current pass into the + input. This causes A1 to turn on in such direction as to make a current pass from x to y through the load impedance, thereby reducing the value of y - x and stabilizing the system. Amplifier A1 is acting as a virtual earth amplifier, and its voltage gain is R2/R1.

Because A1 is insensitive to supply voltages, then any change in potential y with respect to the power supply will not be noticed by A1 (apart from stray capacitance effects\(^*\)). As the potential

\(^*\)Remember Kirchhoff’s Law; if current is supposed to disappear down the earth line, where is the circuit supposed to be completed?

\(^*\)There is also a low frequency coupling, discussed in part 2.

Fig. 3. In the conventional bridge amplifier A1 and A2 are identical good quality amplifiers arranged so that output x is proportional to the input and output y is the negative of this. It enables a high maximum voltage swing to occur for a given power supply, but is expensive and prone to instability.

Fig. 4. A1 amplifier of version A. Ignoring the earth connection, imagine voltage y rises; feedback is arranged so that this causes a current to flow into x, causing x to rise, and so restoring the correct output x — y (i.e. negative feedback). As there is only one earth connection it cannot short out any currents! Amplifier gain is R2/R1.

Fig. 5. A2 amplifier of version B, similar to that of version A, but with slightly different input. Amplifier gain is again R2/R1.

Fig. 6. Cheap amplifier A1 controls the sum x + y. Normally, this must control the current so that y = -x, which would be the case if R1 = R2. At high frequencies full voltage swing is not so important and C2 gives feedback so that y remains constant; this greatly simplifies design.
Fig. 7. Operation of the circuit when over-driven with a large signal. Cheap amplifier A_1 is arranged to bottom before the full voltage is reached. This enables a full voltage swing to occur in the output, but bottoming of A_1 does not affect the output.

Fig. 8. Simple power supply arrangement in which C_1 is stray between earth and the power supply, C_2 is the transformer capacitance between the mains and secondary; if an earthed screen is not included then mains currents could pass, destroying the amplifiers. A conventional power supply can be used if a change-of-origin preamplifier is included.

Fig. 9. Change-of-origin preamplifier. Earth is connected to the power supply negative rail, so many floating bridges can be operated on the same power supply. Preamplifier converts the signal into current I, which passes through R_f from an a.c. point of view. Output $x - y$ is therefore $I \times R_f$.
correctly these currents are safely passed. The feedback loop of A_1 causes the potential y to follow that of the power supply, if it rises with respect to x (i.e. earth). Such a rise in y causes A_2 to conduct so as to safely pass any such mains currents. But this does not apply at switch-on, or on failure of some component. It is thus highly desirable to insert an earthed screen, between primary and secondary of the transformer.

A further safeguard, which is necessary for highly inductive loads anyway, is to insert reverse-biased diodes between x and each power rail. This prevents the e.m.f. on the collector of any transistor in A_1 from exceeding the power supply e.m.f. and also prevents any transistors from being reverse-biased. However, if a good screen is included, and any inductive loads are by-passed by the usual C-R network, then this is unnecessary.

Further application: Change of origin device

This section describes how the amplifier can be included in a stereo arrangement, avoiding the usual earthing arrangement of Fig. 8, and also describes a bridge-to-bridge circuit. It is included here because it follows on naturally from the block-diagram treatment which the bridge amplifier has so far received. If you wish to see how the block-diagram amplifier actually looks in real circuits and actual components you may prefer to jump to part 2 and come back to this section later.

The earthing devices so far described are fine, provided only one amplifier is used with each power supply. Any attempt to operate two such amplifiers from the same supply would result in each A_1 shorting out the other A_1. Fig. 9 shows circuit A with a modification so that many such amplifiers can be operated using one power supply. The input is with respect to the $-\text{rail}$. A similar modification could be made to circuit B type floating bridges.

The transistors are arranged with d.c. feedback, so that in the quiescent state $i_1 = V_i/R_n$, where V_i is the base-emitter voltage of Tr_{10}. From an a.c. point of view, they act as a virtual earth amplifier, so that the a.c. signal I_1 is equal to $(R_{in}/R_{o1}) \times V_{in}/R_1$, where V_{in} is the input voltage.

Because of the effect of C_{o1}, C_{10}, R_{10} and R_{2}, a constant current passes through R_1 and any a.c. variations in I_1 are caused by A_2 to pass through R_2 so that the output e.m.f. is $(R_{in}/R_{o1})(V_1/R_1).$ Thus the gain is R_{in}/R_{o1}.

There is no possibility of coupling between the pre-amplifier and bridge amplifier stages, provided that Tr_{10} is sensibly positioned so that its collector is far away from, or screened from, the rest of the control circuitry, and provided that the capacitance between collector and base of Tr_{10} is small. Even with a large capacitance here (say a maximum of 100pF), then a small capacitor between collector and base of Tr_{10} could safely be included, thus damping out any interaction. This precaution is probably unnecessary: for example, if ZTX304 is used for Tr_{10} then a working voltage of 70V can be used, but there is a capacitance of only 6pF between collector and base.

Components C_{10} and R_{10} are unnecessary in actual circuits because there is a semi-stabilized voltage point already in the circuit for A_1 which may be used (point C in Fig. 14, part 2). In practical circuits, R_{10} and R_{19} could be replaced by some frequency-dependent circuit: for example, a tone-control or a high or low-pass filter.

Fig. 10 shows the circuit of a bridge-bridge amplifier. Amplifiers BR_1 and BR_2 represent complete bridge amplifier circuits, with inputs $+$ and $-$ and point A, and outputs x_1, x_2, y_1, y_2 and points A_1 and A_2. x is connected internally in both feedback loops to the "earth" input, but a connection is shown externally for clarity.

Using a "change of origin" device, many bridge-bridge amplifiers could be operated from two supplies, but note that each such two-bridge must carry the same signal. If A is the instantaneous output voltage x--y from one amplifier and B is the output of a second such bridge amplifier connected to the same supplies, then a bottomed state will be reached when the total available supply voltage becomes equal to the largest of A, B and $A+B$. In the case where A is approximately equal to B then the third condition is never satisfied, and each amplifier can work independently.

If low-level signals are used which require sharp peaks, then this system could be used for carrying a number of different signals - but the high-level signal will be clipped, and the low-level signal will not be clipped (if working into a similar load).

The use of change of origin with a two-bridge is likely to be restricted to specialized applications, such as for group P.A. where many amplifiers are required to carry the same signal.

Practical circuits will be given in a second part of this article.

Micro '81

A call for papers has been issued for the Microsystems 81 conference, being held at the Wembley Conference Centre, London from March 11-13, 1981. The first two days are intended for design engineers and those involved in designing and implementing microsystems of all types. Scope includes case studies, communications, design aids, distributed processing, industrial control, interfacing, multimicroprocessors, project management, real time languages, signal processing, software development, standards and testing. The third day is devoted to personal computers and small business systems and their use in commerce, industry and education. Synopses of papers for consideration should be sent by September 12, 1980 to Robert Parry, Microsystems 81, PO Box 63, Westbury House, Bury Street, Guildford, Surrey GU2 5BH.

Microsystems 81 is owned by IPC Business Press and sponsored by Computer Weekly, Microprocessors and Microsystems, Practical Computing and Systems International.
Lively controversy in the USA about the degree of security provided by the new NBS data encryption standard poses the question: might data security be better served by going to one of the proposed "public key" systems? The debate has an important bearing on data transmission in the UK, as well as in the USA.

Pat Hawker provides background information as a reminder that even clever coding systems may not be quite as secure as you think.

The marriage of communication technology and computers has proved a fruitful alliance that has already led to many profound advances in the technology of information collection, collation, processing and distribution, affecting government, commerce, industry and not least the citizen concerned with living under the shadow of his electronic dossier. But increasingly important in this cozy family relationship are those out-of-wedlock twins: cryptography and cryptanalysis. This simile is not altogether fanciful: the first true electronic computer, Colossus, was created by Turing and Flowers for that wartime temple of the black art at Bletchley Park.

Diffie and Hellman have pointed out in an important tutorial contribution to the subject that "Until recently cryptography has been of interest primarily to the military and diplomatic communities. Private individuals and even commercial organisations have rarely considered it necessary to resort to encryption for protection of their communication, and those that have, have seldom done so with particular care." The traditional commercial telegraphic code books were developed primarily to reduce the number of words that needed to be transmitted; used in isolation they did nothing to ensure privacy. But the whole concept of electronic mail, centralized information storage linked with multiple visual display units, the implications of digitalized packet-switching telecommunication networks and the general growth of information technology together pose an increasingly significant threat to the privacy of the individual and to commercial confidentiality.

Electronic storage and transmission of information has opened the way to new forms of traditional crimes — data theft, industrial espionage, sabotage, fraud by deception — and to potential invasion of privacy of the individual. The act of communicating so much information between different locations not only vastly increases the extent and variety of information available to a determined eavesdropper but the same modern technology also makes eavesdropping easier and relatively less costly.

It is not solely a question of data-processing technology. The use of microwave radio relays rather than cable, combined with direct long-distance dialling, allows the interception of public and defence telecommunication traffic without the need for physical tapping of wires and without the eavesdropper being in proximity to the target of his surveillance. The ability to program a computer to select from a flood of messages only those containing key words or specific addresses or telephone or telex numbers makes possible far more selective eavesdropping.

Communication technology, admittedlly, discourages the casual listener by multiplexing large numbers of circuits on a single bearer or by the use of high transmission speeds, including burst techniques, and by confining radio signals to narrower, sharper beams and increasingly higher frequencies. But none of these techniques can be expected to defeat the determined eavesdropper. Techniques of steganography, which seek to conceal the very existence of communication, such as pseudo-noise or frequency-hopping transmission or information concealed on sub-carriers within conventional transmissions, cannot be guaranteed to elude for long the attention of listeners equipped with spectrum analysers and the like.

While this article doesn't intend to probe the sensitive area of official monitoring and surveillance services, some idea of the scope of signals intelligence (SIGINT) can be gained from the simple statistic that 40,000 of the Collins R390 family of general-purpose h.f. communication receivers were manufactured post-1950: not all, but a considerable proportion, are likely to have been used for American surveillance work.

The capture by the North Koreans of American cryptographic equipment on the USS Pueblo is said to have made possible the decoding of an enormous store of messages intercepted in previous years — and to have led to the attempted counter-coup of the Hughes deep-sea recovery vessel Glomar Explorer and its vastly expensive efforts to raise the sunken Russian submarine off Hawaii. The Russian "bombardment" of the US embassy in Moscow with microwaves appears to have been an attempt to prevent the Americans intercepting microwave trunk systems, in the manner alleged to have been carried out by the Russians in Washington DC and at consulates in other parts of the USA, almost certainly aided by computer selection of circuits of particular interest.

Modern data transmission, commercial as well as official, is thus facing an increasing desire for better security that can be provided only by cryptography. Messages need to be encrypted in a code that cannot be economically read by an eavesdropper and that conveys sufficient proof of authenticity. Any cryptographic system that is less secure than the users believe represents a major risk. A code thought to be secure invariably tempts users to transmit information that, were such a code not available, would never be entrusted to radio or cable. During World War II the Germans fastened a small plaque on their military radios "Feind hoert mit" (the enemy listens also) but were so convinced of the security of their Enigma and other secret writing machines that they were prepared to communicate not only tactical information, whose importance would rapidly evaporate, but also strategic and logistic information that remained of value even when it took days or weeks to recover the plain text. This does not mean that all codes need to be absolutely secure, provided that they delay sufficiently the recovery of the plain text or involve the codebreakers in an unduly large and unjustifiable operation.

The techniques of cryptography have progressed from hand codes to machine codes to on-line, all-electronic systems, but the changes in technology have not invalidated the classic principles of the craft.
Basics of cryptography

Over the years cryptography has acquired a specialized terminology that sets it apart from communication engineering with its more familiar signal coding, pulse code modulation and error detection and correction codes. For the history and development of codes and ciphers read Kahn's The Codebreakers (the original hardback edition contains more technical material than the later paperback). Here only a few terms and techniques relevant to modern electronic cryptography are discussed; more details are in the tutorial paper by Diffie and Hellman.

The term cryptography covers both codes and ciphers; in essence a code consists of changing a message into pre-arranged code blocks, for example five-letter or five-figure groups, with each group representing a word or phrase of the original message, known as the plain text. The coded message thus is not directly related to the number of letters or words in the plain text but unless further manipulated any given code group always represents the same phrase. Radio operators, for example, are familiar with the international Q-code which overcomes language difficulties and reduces transmission time but is not intended to provide privacy. An ordinary telephone directory is a form of codebook as a complete address can be reduced to a unique STD number. *(However, it would be virtually impossible to decode the number without making an exhausting search through a directory, arranged only in alphabetical order of names.)* Codes based on words and phrases are less readily automated than ciphers, though codes may be used within a cipher where personal privacy is needed.

Ciphering is the process of changing the plain text by letter so that the enciphered message still contains the original text but with either the position of the letters changed (transposition cipher) or new letters substituted (substitution cipher). Each process may be carried out more than once or a combination of both processes may be used. A simple substitution cipher could consist of moving each letter in the plain text a few places along the alphabet (e.g. putting a D for an A, E for a B, etc.). This, however, would be extremely vulnerable to cryptanalysis - the art of breaking enciphered messages - by somebody not in possession of the cipher; language structure renders a simple substitution cipher little more than a child's puzzle. Simple transposition ciphers are similarly vulnerable.

To make substitution ciphers more secure, it is common practice to use different substitution alphabets to encipher successive letters of the plain text (polyalphabetic ciphers). For example an A might be changed to B in one position in the plain text but could be any other letter elsewhere. Most modern ciphers are based on polyalphabetic substitutions (or the equivalent in digital terms). The degree of security depends on the use of many substitution alphabets to avoid regular repetition of the use of any one of them. While the use of polyalphabetic ciphers greatly increases security, it brings about a need for the users to have some form of key or running key that is not available to the eavesdropper.

It is a feature of any complex cipher that the users need some form of aide-memoire or key to decipher the message, just as a code book or other form of memory is needed for codes. This may take many forms: book ciphers may use words or letters taken in some way from the pages of a readily available book; proverbs or poems may be committed to memory; special key blocks to provide running keys may be printed in a miniature book or pad; in electronic systems a key generator providing a specific stream of 0 or 1 can be in a potted, sealed module.

Historically a further form of secret writing has been important: concealed codes or ciphers, more correctly termed steganography where the users endeavour to conceal the existence of the secret communication. These were invisible inks, pin pricks (punctured codes), letter codes with short messages concealed in a long letter, and microdots to radio transmission techniques such as pseudo-noise forms of spread spectrum.

In a complex ciphering system there are two secrets that will, at least initially, be unknown to the eavesdropper: the general form of the substitutions and transpositions (the algorithm) and the key, Fig. 1. To recover the plain text, both need to be known and it may not be necessary for the users to keep both secrets from the eavesdropper. In electronic systems for commercial use, it may even be advantageous to establish and publish an agreed algorithm, the security of the cryptosystem then depending upon the key. It will then be essential that the key should not become available to the eavesdropper and it is necessary to enforce strict rules of key management and key distribution.

One-time systems

To be secure a polyalphabetic cipher needs to use a large number of different substitute-alphabets so that each is repeated only rarely. Ideally the same substitute-alphabet should be used only randomly: the users need to be instructed by means of a running key which substitute-alphabet to use for each letter of the plain text, and these instructions should, if possible, be given in a truly random sequence; in other words the sequence indicated by the key should never reoccur. In practice this can be done by means of a "one-time pad" or "one-time tape" containing strings of random letters, figures or binary digits. Such a key may indicate to the user by how much each letter should be shifted along the alphabet; a form of addition (but unlike arithmetical addition with no carry-forward); see Fig. 2.

A true one-time system is unconditionally secure and will defy all forms of cryptanalysis.

Cipher machines

For centuries, most encryption was done painstakingly by hand, aided sometimes by simple abacus-type machines and the liberal use of squared paper. Polyalphabeticity, first proposed in 1466 by the Italian architect Leo Battista Alberti, at the request of the Pope's secretary, gradually established itself as the dominant form of high-grade encryption and was the basis for the first successful coding machines and later for on-line machines. A series of early rotor machines were devised from about 1916 by Hebern, Koch, Damm and Scheribus and a basically similar machine but using six wheels and a drum or cage to generate the key was developed by Hagelin in 1934.

Most machines had a number of interchangeable rotors, electrically wired between input and output contacts as to form a whole series of polyalphabetic substitution ciphers. With say six rotors, there can be some 26⁶ letters before
the cipher alphabet sequence repeats, although the authorized users (with identical machines and rotors) only had to know which permutation of rotors to use, their initial settings and usually some further permutations made possible, for example, by a manually adjustable jackfield.

Those who devised rotor machines had every reason to believe that they would be secure against all then-known methods of practical cryptanalysis; the combined efforts of codebreakers in Poland, France and at Bletchley Park, and the work of Friedman in the United States, showed this not to be the case. The Enigma-type machines of the Germans and Japanese (more complex forms of a machine developed and patented for commercial use) provided a massive input to the codebreakers for subsequent distribution as Ultra, Purple, etc. Methods of successfully attacking even single short messages in Hagelin cipher text with known plain text, or longer messages without this aid, have been described. Nevertheless there is no evidence that all rotor-type machine ciphers have been broken, even with computer assistance, as it is possible to add to their complexity in many ways, for example by increasing the number of rotors.

Digital coding

In one sense all cipher text intended for telegraphic transmission involves the use of digital codes. Morse code, for example, can be classified as a binary non-return-to-zero digital code. However modern practice is to convert the plain text into digital form particularly for on-line systems and only then make it secret by combining the resultant bit stream with a running key, also in digital form, Fig. 3. If the running-key is used only once (one-time) the resulting cryptosystem can be considered unconditionally secure. On the other hand, if, for example, a simple pseudo-random bit generator is used to provide a shift-register sequence, which need not recur, then it is essential to use non-linear logic. If linear logic is used, Diffie and Hellman claim that the resulting cryptosystem can be broken in a few seconds on a minicomputer. It was this vulnerability that led IBM to investigate non-linear block ciphers in which the plain text is divided into separate blocks, with each block operated on independently. Such a cryptosystem using simple substitution requires an extremely large number of key bits. The IBM approach has therefore been to use relatively few key bits but to subject each block of text to a very complex series of transformations, including both transpositions of order and substitutions based on the derived keys.

The aim has been to produce a computationally secure cryptosystem comprising a large number individual cryptosystems each of which employs the same algorithm yet which can be deciphered only by someone who can generate the correct, though relatively short, unique key sequence. From a manufacturing viewpoint, there are clearly significant advantages if a high proportion of all commercial/industrial data security systems can be made using just one standard encryption algorithm. The user also gains because systems become compatible. In 1977, what might at first sight seem an absurdity was published in the USA: a "standard" for a secret encryption system. But, of course, only the algorithm is public property: the individual short digital sequence used to generate the key stream for the authorized users is still kept secret, involving great care in key management and key distribution. The basic key generator may be in the form of a sealed, potted module.

Digital systems have a further important advantage: their use is not confined to text but, provided that the system is fast enough, it can be applied to real-time digitized speech, thus providing telephone and radiotelephone scrambling or privacy systems much more secure than with the traditional forms of analogue scrambling.

Digital encryption can be applied also to computer installations even where no data transmission links are involved to prevent unauthorized users from withdrawing information or to prevent software piracy.

Cryptanalysis

The moment anything is committed to paper or fed into an electronic store as plain text or as encrypted messages, it becomes vulnerable to an eavesdropper, whether by interception, data theft or physical access. If the encrypted material cannot be read by the eavesdropper with the help of cryptanalysis then it can be deemed secure. Nevertheless a determined eavesdropper in such circumstances will seek to acquire examples of known plain text, for example from message files before they have been enciphered, or after they have been deciphered, or from subsequent release in paraphrased form, or by being re-enciphered into a non-secure cryptosystem. Any code or cipher, even one which like a one-time cryptosystem is defined as unconditionally secure, is in practice only as secure as the circumstances surrounding its use.

An eavesdropper faced with cipher text that cannot be deciphered often retains the encrypted material in the hope that success may come later, when perhaps some of the plain text will have come into possession as described above or when time has allowed careful observation of what happens after the receipt of the message by the addressee. Many cryptosystems that may be difficult to break into purely from the encrypted messages may reveal their algorithms or their keys when attacked with known text and this information may then open the lock to other messages past and future using the same cryptosystem.

If all else fails a computer can search the encrypted message using all or some of the possible key permutations until a meaningful result is achieved. Modern digital systems may require a very extensive search indeed; a key of 100 binary digits will represent 2^{100} possibilities, a mind-boggling total.

In the years BC (before computers) cryptography depended for absolute security either on keys of unlimited length, great ingenuity in the use of algorithms, or by doubling or tripling the various processes (e.g. double-transposition ciphers). Today the

Fig. 2. Simplified form of polyalphabetic substitution enciphering in which the position of each letter of the original text (plain text) is shifted along the alphabet by an amount determined by the corresponding letter of the key. For example $N + B = P$. A cipher text letter may thus represent any letter of plain text except itself. If the running key is truly random and of unlimited length the cipher cannot be broken.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

PLAIN TEXT	N O W I S T H E T I M E F O R A L L
RUNNING KEY	B A C E D Z O P K R H I G J N S U F
SHIFT	2 1 3 5 4 26 15 16 11 18 8 9 7 10 14 19 21 6
CIPHER TEXT	P P Z N W S W U E J U N M Y F T G R

Fig. 3. Simplified form of digital polyalphabetic cipher. Random running key acts individually on each bit of the digitized plain text to produce an unconditionally secure cryptosystem.

A/D CODE	A	B	C	D	ETC
00001 | 00100 | 00011 | 00100 | ETC

| PLAINTEXT | T H E Q U I C k B |
| DIGITIZED |
PLAINTEXT	10100 01000 00101 10001 10100 01000 00111 01011 00010
RUNNING KEY	0110 11001 00110 10101 11101 01001 00010 01110 11011
TRANSMISSION	11100 11001 00111 01001 00100 00011 00101 11011
emphasis is on making the transformations of the plain text so complicated that even with massive computer power it would be totally uneconomical to search out all possible solutions; such ciphers are then termed computationally secure. However not all ciphers that are thought to be secure against computer attack may be so in reality. According to Martin Hellman, "At present mathematicians lack the tools for proving systems to be computationally secure and the history of cryptography demonstrates all too well that supposedly unbreakable systems have hidden flaws."

Security of codes

The so-called one-time pad, that is to say the provision of truly random paired keys of unlimited length, has long been accepted as one of the few systems that are unconditionally secure. The use of such a system however involves many practical difficulties, including the production and distribution of the pads or tapes. If used for multiple-address messages then the loss of one pad puts the entire system in jeopardy; if operated only with paired-users the production and distribution costs become formidable. Physical security of machines is important and personnel may sometimes be suborned.

In practice the cage and keywheels of the Hagelin machine and the rotors of Enigma, Sigaba and the British Typex machines provided the workhorses for high-grade traffic until the development of purely electronic, on-line systems based on digital techniques.

Many systems may be relatively impregnable against a listener who has access only to the deciphered messages, but may be fallible if some or all of the plain text of some of the messages is known. There are various ways in which this situation may arise, either from system faults, human errors or by deliberately inducing the user to send a message of which at least some words will be known to the codebreaker. Then again it is usually necessary for the sender to include key groups which provide instructions for the decoder, or indicate the priority of the message and which may reduce its security. The techniques of traffic analysis, particularly when applied to military communications, can provide valuable intelligence even when the code remains unbroken. Deception techniques, including the holding and subsequent re-transmission of an operational message at a different time, or (where the code can be broken) the alteration of its contents may be less applicable to the commercial than the military scene, but cannot be disregarded altogether. Deception operations which were aided by the use of codes thought to be secure or in which warning check signals were disregarded included the now well-known British "Double-Cross" and the German "North Pole" exploitation of radio links.

Human fallibility, including failure to operate strictly the signalling rules of a system, plays an important role in cryptanalysis. It was once my experience to decode a message made secure by a one-time pad with a plain text that read: "Hawker is not repeat not to have access to the code books". When I duly presented this to the addressee, he laughed and told me to continue decoding his messages as before! Humans have a habit of defeating systems.

The existence of a communications channel carrying coded messages provides a strong temptation to unauthor-
During the past few years the relative transmission of sensitive data was regularly used and much appreciated by the Viet Cong. At a lower level, signals personnel may establish their own private networks of communication.

Data encryption standard

During the past few years the relatively open study of modern cryptography, particularly by IBM and at Stanford University, California, is leading to a better understanding of the requirements of systems for the protection of commercial and administrative data transmission. The IBM work has led directly to the establishment of a data encryption standard (DES) for the safe transmission of sensitive (but not highly classified) information. DES is based on work by IBM, including six years development work by Tuchman and Meyers of the Communications Systems Development Laboratory in Kingston, New York originally for a cash-dispensing scheme for a London bank. The US National Bureau of Standards with the advice of the American National Security Agency have established the Standard and provides a test bed for the validation of hardware based on this complex non-linear algorithm device design is checked for malfunctions and to ensure that the output can never contain the key or plain text. However, the establishment of DES has already sparked off a vigorous debate as to the degree of security it provides and whether it would not have been better to develop an alternative, probably more secure, system of a new form of cryptosystem, known as "public-key" systems (third column).

DES provides a ciphering algorithm or set of rules involving both substitution and transposition techniques and capable of being implemented in current I.S.I. technology: Figs 4, 5 and 6. Each data block passes through 18 data-manipulation stages in which 16 different internal coding keys are derived from a 56-bit main key (with 64-bit input coding). This provides 2^{56} or 10^{17} keys, presenting a codebreaker with the need for a truly massive search, always provided that nothing is known about the enciphering key. Diffie and Hellman, advocates of the public key system, pointed out that knowledge of even a quite small part of the basic key would greatly reduce the search required, and that I.S.I. technology now makes it possible to contemplate searches of gigantic proportions. They postulate a decoding machine using a million I.S.I. chips, that could search 10^{12} keys per second, so that even the full 10^{70} keys could be searched in about a day. This modern version of "Colossus" would cost an estimated £10-million, with an average cost per second of about £2500. While only a very few organisations, including governments, could positively contemplate building such machines, the mere possibility tends to send shivers down the spines of those who are intending to trust their data security to the NBS standard. There is some suspicion, reflected in American comments, that the National Security Agency may not be over-keen to promote the adoption by the business community of codes that they could not themselves break and that they persuaded IBM to opt for a 56-bit key. Memories die hard of NSA's Project Shamrock which is alleged to have scanned all telegraph and telex traffic passing in and out of the United States for key words (British readers feeling complacent should recall the 1967 cable-venting furore).

Several systems using basically similar techniques have been proposed or developed for application to computers, including home computers, where no data transmission is involved, to prevent unauthorised users from withdrawing information or to prevent software piracy. An 80-bit key is used by Cryptext for a low-cost home computer system and a cryptomicroprocessor has been proposed by Best. The idea is to encipher computer programs or stored data and then decipher them as each instruction is fetched for execution.

Public-key systems

Although the DEC algorithm is being widely, if at times hesitantly, welcomed by industry and commerce, and suitable I.S.I. devices are appearing on the market and incorporated in systems, it has to be accepted that it is a system of limited security, even though nobody has yet proved publicly that this is the case. An alternative family of novel cryptographic techniques, known as "public key cryptography" has recently been advocated on the grounds of providing greater security in the long-term, although at present it is at a less advanced state of development.

Public-key systems were first proposed by Merkle, Diffie and Hellman at Stanford University; in these, only the addresses would hold the deciphering key which would not be available to the person enciphering the message or date, Fig 7.

It is claimed that public-key systems overcome the problem of distributing key generators or one-time tapes by separating the enciphering and deciphering functions. In effect they provide a technique by which the sender of the message enciphers it for a particular addressee without herself having the ability to decipher it. The rather convoluted mathematics of public-key cryptography has been set out in some detail by Hellman in Scientific American (August 1979) and no attempt is made to reproduce here the 10-page explanation given here.

But, in brief, several systems have been proposed in which the family of enciphering transformations can be separated from the family of deciphering transformations in such a way that given a member of one family it is not feasible to find the corresponding member of the other. Front-runners among these systems are the
RSA public-key cryptosystem devised by Rivest, Shamir and Adleman (whose initials make up the "RSA") and so-called "trapdoor knapsack" system by Merkle and Hellman (trapdoor is meant to indicate a one-way or irreversible function, while the term knapsack is derived from a class of mathematical puzzles that require the solver to determine how many rods of the same diameter, but of differing lengths, would completely fill a given knapsack).

In practice, a public directory would indicate the addresser's encryption key number but not his private individual decryption key. The system depends on the mathematics of number theory, that is the study of the properties of integers. Encryption-decryption "mates" are established by using integers that separate the two algorithms. In a much simplified sense, the system can be thought of as depending more on multiplication than the traditional polyalphabetic shifting (addition) of the running key and the plain or partly coded texts as already outlined in Figs 2 & 3.

In the RSA system, developed at MIT, the security is based on the concept that multiplying is easy to a computer but factoring is extremely difficult. For example, whereas two 100-bit factors can be multiplied electronically in a fraction of a second, the reverse process of factoring them might take a million years even with a one-microsecond instruction time.

All the public key systems that have been proposed face the criticism that compared with the systems based on the DES they are only at a relatively early stage of development — and for this reason may never be fully developed for commercial applications.

An advantage of public key techniques is that they are "read only" systems and so, for example, would not permit data read out from remote instruments (in say a host country) to be doctored en route. Yet at the same time a decryption key could be made available to the host country. Similarly they can also provide an authentic digital signature as it is no longer possible for an addresssee, himself or at any of his terminals, to encipher a message purporting to come from the addressor as, of course, can be done with all conventional cryptosystems. The public-key approach clearly has many attractions, especially in eliminating or reducing many of the problems of key distribution and key management.

Secure — but how secure?

At the 1979 British Association meeting, Sir Norman Lindop, former chairman of the Home Office data protection committee claimed that the UK lags behind Europe in enforcing legislation to protect the public from the abuse of computer-stored personal data and that we are becoming "an illicit data haven."

While security of data transmission is only one aspect of this subject, it is one that seems likely to be of increasing concern to systems designers. As David Kahn states in his introduction to The Codebreakers — "codebreaking is the most important form of secret intelligence in the world today". Its ramifications are now spreading well beyond the confines of the military, diplomatic and intelligence communities.

Codebreaking can be helped by analysis of the electrical interference radiated by nearby coding equipment or even by directing strong radio signals at the equipment and then analysing what occurs, rather as analysis of the sounds emitted by electromechanical coding equipment could provide an eavesdropper with valuable clues as to its operation. Cryptanalysts are by no means restricted to theoretical methods of solving codes, and for example an electrical fault, or irregular pulse shapes may provide useful information.

Many electronic engineers in the UK are today directly concerned with the implementation of data protection systems; the current American controversy about DES, however, shows the desirability of drawing on the past, pre-electronic history and experience of cryptography. Nobody wants to keep reinventing the wheel, or more importantly, re-inventing square wheels. The disasters as well as the successes of British cryptography should not be forgotten. How many lives and ships might have been saved if, for example, the Admiralty had heed Lord Louis Mountbatten's advice, when he was Fleet Wireless Officer in the 1930s, to develop machine codes offering greater security than the hand codes then in use? In the outcome the broadcast instructions to the British and Allied merchant ships were read by the German Beobachter-Dienst until the autumn of 1943 and many of the Royal Navy messages were read in the first year of World War II.

Those American cryptographers concerned at the danger of uncritical acceptance of NBS's DES by industry concur that this is a difficult system to break and that it could well fulfil all normal commercial requirements for the next 5-10 years — but stress that users must recognise that it provides only limited security against a determined eavesdropper. The greatest danger of a cryptographic system remains, as always, the false sense of security it may give.

Further reading

The following sources have been used passim in this article:

Harvey J. Hinden, LSI-based data encryption discourages the data thief, Electronics, June 21, 1979.

Harvey J. Hinden, New security planned for data, Electronics, August 16, 1979.

Bob German, Encryption the key to security, Electronics Weekly, September 12, 1979.

Miniature, ten-line telephone exchange.

Several small errors, for which we apologize, crept into this article in the August issue. Firstly, the open contact of A_1 on p.42 should go to the open contact of D_2, not the junction of F_2 and the 470hm resistor. Secondly, the make contact connected to the closed contact of D_2 is F_1, not F_2. Lastly, in Table 2 on p.45, the relays operated on called-line 2 are SB and HB.
Like Faraday [Maxwell] looked upon the role of conductors in electricity as a minor one, since they served only as terminations of the lines of force of the surrounding electric field.

Encyclopedia Britannica

Physics offers several other examples of dual representation — light waves and photons, electrons as particles or waves (electron diffraction) — but only in electrical phenomena are the two dual representations, circuit and field, always and exactly interchangeable. It is only in the present century that there has been such a tremendous developement in the techniques of circuit analysis, while earlier scientists such as Faraday (1791-1858), Maxwell (1831-1879) and Poynting (1852-1914) regarded fields as pre-eminent. (It should be added that fields involve the use of vectors, and often difficult geometric problems, whereas circuits involve only the algebraic manipulation of one-dimensional quantities.) The development of waveguide and associated techniques, for which circuit representation is impracticable, may tend to redress the balance.

The first question asked nowadays is "Are fields real?" Those who ask this question overlook the fact that the established alternative to fields is action-at-a-distance. We are so used to the idea of gravitational attraction that it needs an Einstein to remind us of the problem which much concerned people before Newton, namely how can the sun exert a force on a planet across millions of miles of empty space? Electric and magnetic fields were introduced to 'explain' similar remote forces in electromagnetic phenomena and Maxwell showed that such fields could be propagated as waves, in empty space as well as in material media. (See "No radio without displacement current", Wireless World, August 1979.) Evidence in support of this idea of electromagnetic fields is the fact that their velocity of propagation can be observed. An interesting example of this is that a circular loop of wire acquires radiating properties, i.e. becomes a useful frame aerial instead of simply an inductor, when the time taken for the magnetic field to spread from one side of the loop to the other becomes a significant part of the period of the alternating current which is producing it.

So acceptable is the concept of fields and waves in substitution for action-at-a-distance that scientists are now looking for gravity waves (without much success so far). It is true that discarding the "luminiferous aether", which was supposed to be an all-pervading medium supporting electromagnetic waves, means that fields which were originally thought of as "states of stress in a medium" must now be regarded as "properties which exist in space", but is this more difficult to accept than other indispensable concepts of modern physics, such as the wave nature of the electron and the quantisation of energy? The difficult concept of wave mechanics (sometimes described in terms of "waves of probability") provides the theoretical basis for the whole of modern solid-state technology. Einstein's proposed solution of the problem of gravitational action-at-a-distance was to enhance Newton's law, that a force-free moving body continues in a straight line, by replacing "straight line" by "shortest line in 'curved' space" with the 'curvature' being due to the presence of mass. The 'curvature' of space by the presence of mass is just as far from everyday experience as fields in empty space. Whichever way you go, modern physics demands faith in something which is not comprehensible in term of everyday experience: the laws of physics demand acceptance because they produce a coherent structure of theory which accords with all experimental evidence.

Let us now look at the simplest example of the circuit/field equivalence, namely the energy stored in a charged capacitor made up of two plane parallel electrodes separated by a dielectric which may be anything from a vacuum to high-permittivity ceramic (Fig. 1). From a circuit viewpoint we say that the work done in transferring charge q from one plate to the other is qv where v is the potential difference between plates at the time of transfer. Since v increases as the charge builds up the total work done (and therefore energy stored) is expressed in terms of the final charge and potential difference as $W_f = \frac{1}{2} qV$...

(b) $W_f = \frac{1}{2} qV^2$

Using the relation $Q = CV$. But according to the theory of electromagnetic fields, the energy stored in the dielectric is $\frac{1}{2} DE$ per unit volume where E is the electric field-strength and D is a field quantity equal in magnitude to the charge per unit area of the conducting surface bounding the field ("the surface on which the lines of force end", as Faraday and Maxwell would have said). But E is V/d and D, being equal to the charge per unit area of plate, is Q/A; and the volume occupied by the field is dA. Thus the total field energy should be

$$W_f = (dA)\frac{1}{2} (Q/A)(V/d) = \frac{1}{2} qV$$

(2) which is the same as (1a) so the equivalence works in this case. A minor caveat is that the formula "$\frac{1}{2} DE$ per unit volume" has been rigorously proved only for the average over an infinite volume (because the proof depends on the rates at which different vector field quantities vanish at infinity) but it has always worked when applied to particular finite cases.

But what is the significance of the extra field quantity D which was slipped into the derivation of equation (2) and was said to be equal to the charge density at the boundaries of the field? In a well behaved dielectric (linear and isotropic) D is simply equal to εE where ε is the dielectric constant of the medium. But what is the dielectric constant of a vacuum? This is where we tend to get a conflict between physicists and engineers. Physicists used to use the c.g.s. system of units, in which the dielectric constant of vacuum is unity and so D is equal to E in a vacuum. (Before assuming that they are the same thing, as well as being equal in magnitude, note that it was the rate of change of D, not E, which Maxwell called displacement current.) Some physicists argue that they must be identical, because the only physical entities which really exist

Fig. 1. Electric field and charges in a parallel plate capacitor.

As you like it: circuits or fields

An introduction to Poynting’s Theorem

by D. A. Bell, F.Inst.P., F.I.E.E.
are space and sub-atomic particles; and the difference between D and E in a material medium is due to the reactions to the field of the various charged particles in the medium. From an engineering viewpoint, however, it is convenient to split the fields between "cause" and "effect", the former being independent of the nature of the medium. In electrostatics the total value of D integrated over a surface is equal in SI units to the enclosed charge from which the "flux of electric induction" D originates (Gauss's theorem). This is always true, whatever the medium, so D can be regarded as a primary field which emanates from charge, the "cause" of any observed phenomenon. Then the electric force field E is an "effect" of which the magnitude is found by dividing D by the dielectric constant \(\varepsilon \) of the medium, which for a vacuum is \(\varepsilon_0 = 8.854 \times 10^{-12} \) (The units are farads per metre.) The reason why \(\varepsilon \) is not made unity in the SI system is to enable the system to incorporate ampere, metre, kilogram and second as basic units. One can test directly the inverse-square law of force between two concentrated charges, but one will need a constant of proportionality like the gravitational constant in the formula for the gravitational force between two masses. If the formula for force between two charges

\[
F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}
\]

(3) is to apply with force in newtons, charge in coulombs and distance in metres, then for a vacuum \(\varepsilon \) must be given the value cited above for \(\varepsilon_0 \). The right-hand side of equation (3) can be split by introducing electric field of force E:

\[
F = qE
\]

where

\[
E = \frac{q}{4\pi \varepsilon_0 r^2}
\]

(4)

The subject of magnetism has been confused by the use of permanent magnets and is more complicated because the simple (scalar) relationships of electrostatics have to be replaced by vector relationships. The equation for the element of force between two current elements of lengths \(dI_1 \) and \(dI_2 \) and current strengths \(i_1 \) and \(i_2 \) is

\[
dF = i_1 dI_1 \times i_2 dI_2 \times a \quad \frac{1}{r^2}
\]

(5)

where heavy type indicates vector quantities, \(a \) is a unit vector in the \(r \) direction and the crosses indicate vector or cross products rather than arithmetic multiplications. This also can be split into a current and a field of magnetic force,

\[
dF = i_1 dI_1 \times B_2 \times a
\]

where

\[
B_2 = \frac{\mu_0 i_1}{4\pi r^2}
\]

(6)

If \(B \) is uniform along the length of a current-carrying conductor, and magnetic flux \(B \) is regarded as an "effect": one has to provide the appropriate magnetomotive force in order to establish the desired flux in a given magnetic circuit. Unfortunately the electric and magnetic systems are not quite symmetrical since in the electric system field \(D \) is continuous across a boundary between different media, but in the magnetic system field \(B \) is continuous. This is related to the point that 'lines' of \(D \) terminate on electric charge while 'lines' of \(B \) are always closed loops.

After this lengthy digression to establish electric and magnetic fields we can come to Poynting's theorem (proposed by J. H. Poynting in 1883) that the flow of energy in an electrical system which is usually expressed as the circuit quantity \(v \) can alternatively be expressed in terms of the power flow per unit area of a surface drawn through the electric and magnetic fields surrounding the conductors. In vector notation this flow is represented by the Poynting vector

\[
P = E \times H
\]

(9)

The vector \(P \) is at right angles to the plane continuing \(E \) and \(H \) and its magnitude is \(EH \sin \theta \) where \(\theta \) is the angle between \(E \) and \(H \) and in most cases of interest \(E \) and \(H \) are at right angles so that the magnitude of \(P \) is simply \(EH \). The coaxial cable provides an example in which the fields are known and limited in extent (within the cable); but it involves a little mathematics to deal with the radial non-uniformity of the fields and has therefore been relegated to the appendix. A strip transmission line provides an example with simple rectangular geometry (if one neglects fringing at the edges) and provides an opportunity to enlarge on the measurement of \(H \) in amperes per metre.

The circuit shown in Fig. 2(a), with the inclusion of the capacitances in dotted lines, is the lumped equivalent circuit of a transmission line between a source \(G \) and a load \(L \). Note that we are not in any way restricted as to frequency. The source \(G \) may be simply a battery supplying d.c. or an a.c. generator; and the load may be simply a resistance or a complex impedance. In the latter case there may be a phase angle between electric and magnetic fields, but this is taken care of by the fact that the Poynting vector uses instantaneous values of field and the average power flow is to be found by averaging \(P \) over a complete cycle of the alternating current. In Fig. 2(b) the inductive part of the equivalent circuit is shown as a solenoid of length \(b \) wound with a fairly large number \(n_1 \) of turns of thin wire carrying a small current \(i_1 \). The load is inserted at the centre of the inductance. If eddy current effects are neglected, the magnetomotive force is

\[
H = n_1 i_1 / b
\]

(10)

In Fig. 2(c) the coil has been re-wound with a small number \(n_2 \) of turns of copper strip carrying a larger current \(i_2 \).
As long as n_{ij} is equal to n_{ij}, the value of H will be the same. In Fig. 2(d) the process has been pushed to the limit, with only one turn. Alternatively the changes can be thought of as taking the original winding with groups of different numbers of turns in parallel instead of in series. Clearly the number of turns, or the series/parallel connection of turns, does not matter as long as the total current circulating around the solenoid is kept constant. For Fig. 2(d) in particular one can write

$$H = i/b \text{ Amps/metre} \quad (11)$$

It is a simple matter to squash the inductor of Fig. 2(d) into the strip transmission line of Fig. 3. The magnetic field in the space between conductors will remain unchanged at $H = i/b \text{ A/m}$. Assuming for the moment that the resistance of the transmission line is negligible so that the potential difference between the two strips is v throughout the length, then with separation d the electric field is $E = v/d \text{ volts/metre}$. The magnitude of the Poynting vector for power flow per unit area through a cross-sectional surface is

$$P = EH = (v/d)(i/b) \quad (12)$$

But this is per unit area and the area of cross-section is bd so the total power flow is $bdP = vi$.

If the voltage drop along the line is not negligible, the conditions near the upper strip are as shown in Fig. 4. The electric field no longer consists only of the component v/d normal to the strip:

$$W = iv \quad (A1)$$

$X \neq H$, is into the paper.

W through an annulus between radii r and $r + dr$ is given by the magnitude EH of the Poynting vector multiplied by the area $2\pi r dr$. (The direction of the Poynting vector is of course parallel to the axis of the coaxial system.)

$$dW = EH \cdot 2\pi r \cdot dr = iv \cdot dr \left(\ln(b/a)\right) \quad (A3)$$

The total power flow is then

$$W = \int_{a}^{b} iv \cdot \frac{dr}{r} \quad (A4)$$

But the value of the integral is $\ln(b/a)$ so

$$W = iv \quad (A5)$$

If the resistance of the conductors is significant, then just as in the case of the strip line there will be a component of E parallel to the length of the system and a component of the Poynting vector pointing into the conductors to account for the PR loss.

APPENDIX

Power flow in a lossless coaxial cable.

A cross-section of a coaxial cable having inner and outer radii a and b is shown in Fig. A1. Calculation is simplified if it is assumed that (a) the working frequency is so high that one can neglect penetration of the currents into the conductors and (b) resistive voltage drop along the length of the conductors is negligible. (In fact conditions (a) and (b) are not independent since the skin depth depends on the resistivity.) At distance r from the centre the magnetic field is

$$H = \frac{i}{2\pi r} \quad (A1)$$

We know that the electric field is greatest at the inner surface and decreases towards the outer, but its relationship to the difference of potential v between the two surfaces is not obvious. By using Gauss's theorem as in the procedure for finding the capacitance between coaxial cylinders it can be found that at radius r

$$E = \frac{v}{\ln(b/a)} \quad (A2)$$

(In is the symbol for a natural logarithm, otherwise denoted by \log_e.) The power flow there is also the component R_i corresponding to the volt-drop per unit length of conductor. The resultant electric field is E' and consequently the modified Poynting vector P' does not point straight along the gap, but as a component (proportional to R_i and H and therefore to PR) pointing into the conductor. This indicates a flow of energy from the field into the conductor which matches the PR loss. The Poynting vector method of calculating power flow is always exact, and you may use either the circuit or the field calculation, whichever is more convenient. One obviously uses the field calculation for waveguide and radiation problems.

BOOKS

Telecommunication System Engineering, by Roger I. Freeman, is described as "a textbook and ready reference for the student, practising engineer, planner and telecommunication engineer." The view of telecommunications adopted is the widest possible, since in 400 pages radio is only allotted 66, which does seem a little cavalier, to say the least. The main body of the book is therefore concerned with the communication over telephone circuits of voice messages, data and facsimile, in analogue and digital forms.

In the field the author sets out to cover it is difficult to imagine a more complete treatment, starting as it does with a diagram of two telephones, a cable and a battery, and finishing with the concept of digital data networks and the economical technical planning involved in national networks. The author is American, which may mean that some transatlantic terms are unfamiliar, although he has used the UK engineers' term 'bearer,' for example, to denote the signal-carrying medium. The book is published at £17.70 in hardback by John Wiley and Sons Ltd. Baffins Lane, Chichester, West Sussex, PO19 1UD.

Practical Hi-Fi Sound, by Roger Driscoll, is the latest in a long line of books intended to clarify the absurd technospeak so carefully built up by makers of sound equipment. The main difference between this one and a great many of the others is that this author keeps his object well in mind and does not fall prey to the temptation to show his own technical superiority.

The treatment is not detailed, but rather seeks to answer the questions which would be asked by someone who wanted to know some of the background to the present state of audio equipment. The two introductory chapters are concerned with musical sounds and their reproduction, being followed by two sections on equipment, including building instructions for a loudspeaker. The acoustic performance of the listening rooms is dealt with in the final chapter. The book fulfills its avowed purpose admirably and can be recommended. It costs £6.99 and is published by Hamlyn, Aeronaut House, Hounslow Road, Feltham, Middlesex, TW14 9AR.
Simple alternatives to the monostable

Using low-cost gates for non-critical timing circuits

by D. Price

In comparison with other i.c.s, c.m.o.s monostables are rather expensive, the 4528 package costing about £1 for two circuits. In a non-critical situation, for example when a reset pulse is required, cheaper solutions are available.

A 4093 NAND Schmitt trigger, costing about 16p per gate, provides the basis for a satisfactory alternative. Referring to Fig. 1, the high input impedance of a c.m.o.s. gate ensures that, in the absence of other constraints, the voltage at B follows the voltage at A. However, gate protection diodes and the bias resistor modify the voltage performance in the following way. After a long quiescent period, the input voltage V_1 will be high and the output low. If a negative pulse is applied by G, the input to G will go low and the output will go high. After a time determined by R and C, but not equal to RC, the output will fall. The input potential must be held low for the duration of the pulse, otherwise the output will be prematurely terminated. A positive going excursion from G, will drive V_1 above the power supply rail but, as soon as a voltage of $V^+ + 0.5V$ is reached, the gate protection diode starts to conduct and dissipates any excess change. The circuit is therefore quickly reset. If the resistor is taken to the negative rail, all of the pulse directions are reversed.

The output pulse length is determined by R and C. As an approximation, assume that the trigger point of the gate is half way between the two power rails. Using the formula $V = V^+e^{-t/RC}$, and substituting $V = V^+ / 2$ gives $e^{-t/RC} = 1/2$. Therefore, $t = 0.57RC$.

This principle can be used with two inputs simultaneously as shown in Fig. 2, which gives two gated monostables. However, the NAND property of the gate will not allow the resistors to be connected to the negative rail.

If a slow fall time can be accepted, which is often the case, an ordinary gate can be used as shown in Fig. 3 where a three input NAND becomes a trio of gated monostables costing about 2p each. If an inverted output is required, replace the NAND with an AND gate or take all of the resistors to the negative rail and use a NOR gate.

During the off transition of the gate, both output transistors are switched on and are dissipating power. For this reason, long time constants, i.e. slow transitions, should be avoided. Adding a diode to the external components of the above circuits produces a monostable which is activated while the input is low, and the RC time constant occurs after the input goes high, see Fig. 4. A somewhat more complex arrangement can provide two time constants as shown in Fig. 5. Although this circuit is not a conventional monostable, it is useful if, for instance, a delayed switch on and off is necessary.

A wide range of RC values can be used with c.m.o.s. but, to avoid excessive dissipation and possible damage to the gate protection diodes, capacitor values below 100nF should be used. This does not apply to Fig. 4 and 5 as the circuits do not use the gate diodes. At the other extreme, less than 10pF may cause trouble due to the c.m.o.s. input capacitance, see Fig. 6. The voltage induced at N_1 by a negative transition of V_A is $\frac{1}{3}V_A$, and this may not activate the Schmitt trigger. If the trigger is activated, the time constant will be much shorter than anticipated.

Almost any resistor value above 1kΩ can be used, and for long time constants a reverse-biased diode is a useful high value resistance. The resistance limit of 10kΩ is set by the input impedance of the gate.
More work on spectrum utilization needed' says CCIR chief

Not enough effort is being put into finding better ways of utilizing the radio spectrum, according to Richard Kirby, director of the CCIR. Speaking at a recent IEE conference in London devoted to this subject he said that studies of spectrum utilization ought to be better recognized as a legitimate and challenging discipline of communication science. Many university faculties and research budgets did not recognize this fact. "The subject may be seen only in a limited perspective of radio interference protection, a narrow gut which can be applied to system development. Or, if seen in a broader perspective, as fundamental study to expand the utility of the spectrum as a resource, there is a question of support, return on investment is uncertain, indirect, and long-term. It is clear that there are not very many Ph.D. theses on spectrum utilization topics. Some of the best talent in communication science ought to be encouraged to explore and develop this field. It would seem to me that the IEE is in a good position to foster this".

Earlier Mr Kirby gave an outline of the work in this field that the CCIR (a permanent body of the ITU) will be doing in the aftermath of the 1979 World Administrative Radio Conference at Geneva. He indicated five main areas: bandwidth-efficient modulation, frequency re-use, domestic and regional satellite systems, the role of h.f. and improvement of equipment standards from the point of view of spurious emissions and unwanted responses.

"First, as regards bandwidth-efficient, interference-resistant modulation: the dominant trend to digital systems for terrestrial and space systems alike, mobile, fixed, and ultimately even television, is being greatly spurred by the rapid development of very large scale integrated circuitry. Spread spectrum has already proven advantages for rejection of narrow-band interference and reduction of interfering power spectral density. It remains to be seen whether, by the additional processing gain of correlation codes, an ensemble of spread-spectrum systems can share a given band of spectrum more efficiently than narrow band signals. The new processing technology should have a great bearing on "multi-user communications", i.e., techniques by which one or more transmitters are simultaneously communicating with one or more receivers over a common channel in the radio spectrum. "Packet radio", a related random-access concept, is promising not only for data, but also for speech. A resolution of the WARC has asked the CCIR to give special attention to studies of these new digital techniques which could lead to a whole new approach to channel assignment and the possibility of greatly expanded use of the spectrum compared with present-day frequency division. At the same time, there is increased emphasis on multiple-multiplexation schemes. Some television bandwidth compression techniques are very promising. More conventionally, single-sideband is finally being seriously considered for sound broadcasting. The CCIR has to intensify its studies of means of transition to single-sideband broadcasting". The coming h.f. broadcasting conference, while committed to double sideband for the next plan, also had on its agenda the specification of an s.h. system suitable for future broadcasting.

"Frequency-re-use is the objective of some of the most important developments in antenna systems for satellites and terrestrial communications alike. It is the motivation for important propagation research, especially at frequencies below 40GHz where the main features of propagation are already known. Questions such as how much polarization discrimination can be achieved in practice, as under rainfall conditions, and how small antenna beamwidths can be maintained through the atmosphere, might at one time have been considered second-order questions. They are now central to frequency re-use, as are anomalous propagation effects such as ducting and scintillation."

One of the most important technical topics for the future of radio communications was the efficient use of the geostationary satellite orbit. "One method to increase the efficiency of the use of the orbit is by reduction of inhomogeneity. Sharing is more difficult, less efficient, among a variety of beamwidths, power levels, and receiver sensitivities than among a homogeneous set of these system requirements. So only a degree of homogeneity can be sought, in terms of the range of certain parameters. Other aspects being studied are the level of permissible inter-network interference, and the antenna characteristics for both earth stations and satellites." The CCIR preparatory work for a satellite conference in 1984 was centered on a CCIR working party, which would now also consider methods for ensuring equitable access for all countries to the geostationary satellite orbit.

The h.f. part of the spectrum was "seen as the most economical method for thin route intermittent communications which do not yet justify microwave or satellite links... It may remain most susceptible to congestion and interference. There is a considerable technical challenge here to make systems more interference resistant."
Open Channel (CB) implications in decisions about model control band

Announcing the government's intention to exempt users of model control transmitters, metal detectors and pipelining equipment from the need to licence such equipment, the Home Secretary said that current holder licences would be able to "pursue their hobbies exactly as now, and that...this will lead to less bureaucratic control and greater freedom for individuals.

He said that he would be bringing forward proposals in the next few months in relation to the Wireless Telegraphy Act 1949 and at a later stage to identify other categories of radio device which can be dealt with similarly.

Approximately 93,000 licences for model control equipment had been issued up to the end of 1979 and when the new regulations come into force, these licences will be formally revoked. A simplified form of the existing operating conditions will be used so that frequency and output power requirements will remain unchanged. In general, users of the model control band (27MHz) are restricted to 1.5W radiated power, and the current licence fee is £2.80 for a five-year period.

The licence fee for pipeliners and metal detector equipment is £1.40 for five years and the number of licences issued has risen from 2,000 in 1972 to 150,000 in December 1979, reflecting the substantial growth in the use of such equipment by treasure-hunting enthusiasts. However, exemption of metal detector licences from licence requirements does not in any way absolve users from the need to obtain permission to enter, search and dig land and to keep of protected archaeological sites.

Equipment will no longer be subject to the type-approval procedure, so the exempting regulations will set out the simple technical conditions which will have to be met so as to avoid interference to other radio users. The conditions will be framed so that they cover all existing type-approved equipment.

Almost simultaneously with William Whiteley's announcement was Timothy Raison's disclosure that the Home Office had received 7,800 letters on the subject of C.B. and 40 petitions carrying thousands of signatures. In replies to questions he said that the annual cost to the Post Office of investigations into complaints of interference to "non-broadcast services" and into all forms of illicit installation or use of radio equipment, was about £1 million. The costs incurred in dealing with illicit use of 27MHz were not recorded separately and "no figures are available for the cost of controlling imports of prohibited equipment."

He also revealed that from 1st January to 31st April 1979, 94 persons were prosecuted in connexion with unlicensed installations or use of C.B. equipment at 27MHz, and a further 135 cases are pending. In 1978 a total of three persons were convicted of such offences and in 1979 the total had risen to 30. Minister of State at the Treasury, Peter Rees, disclosed that 721 sets were seized by Customs and Excise in the first quarter of 1980 and a total of 2,250 during 1979.

One interpretation of these official trends might be that the government wishes to give no more than the appearance of movement on the Open Channel issue. With C.B. enthusiasts becoming more vocal as a result of continuing stalling tactics from both government and Home Office (the discussion document promised in April has not materialized), it may be that licence exemption for model users is a red herring designed to, on the one hand, suggest more freedom of access (it is only an official sanction) to the spectrum, and on the other hand to consolidate the decision not to introduce Open Channel at this frequency.

De-regulation could have the effect of encouraging more widespread use of 27MHz by modelers, who might then very jealously guard their spectrum "slot", perhaps even introducing a "self-policing" activity. "Kamikaze model aircraft crashes in flames on illicit radio shack."

The only positive conclusion to be drawn from these government pronouncements is that something may well happen at some future date, having been duly considered and fully costed.

News in brief

The Mobile Radio Trade Association, formed in 1978, was set up with the intention of obtaining for its members effective representation with both manufacturers and statutory bodies. The association's aim is an outline of the facilities it can offer to interested companies or fleet operators are available from its offices at 9-11 Lower Addiscombe Road, Croydon, Surrey, Tel. 01-680 4444. The Annual membership subscription is £20 plus v.a.t.

South London College will be running a course of eight lectures, the first starting on 14th October, 1980 and the last on 2 December 1980, entitled "Optical Fibre Communications." The course is intended to provide a comprehensive technical introduction to optical communication devices and systems and their application to multi-channel telephony and wideband services. The course fee for London students is £9 and applications should be made to A. A. Rowlands, South London College, Knights Hill, London SE27 OTX. Telephone 01-670 4488.

Part of the new facility at Plassey Circuits Ltd, South Shields, showing the drilling and routing area. Eight-spindle drilling/routing machines are in use, providing a hit-rate of up to 350 per minute, with routing rates of 4ft per minute to a positional accuracy of plus or minus 0.0008 in. Tool change is automatically controlled by computer.

Plassey expands and contracts

The Secretary of State for Industry, Sir Keith Joseph, officially opened the Plassey p.c.b. plant at South Shields on July 11th, and also formally introduced the new company - Plassey Circuits Ltd.

The aim of the plant, which represents an investment of £5 million, is to produce mainly plated-through-hole (p.t.h.) p.c.b.s on a large scale for marketing in the UK and in Europe at competitive prices by using modern maskless etching and plating techniques and a production line which is almost completely controlled by a central computer. V.d.us, strategically placed at each point in the line, give all the information required by the process operator including audible "cautions" and "warnings" of out-of-tolerance conditions such as high etch bath temperature, etc.

The plant has a production capacity of over 2.5 million p.c.b.s a year and currently has a workforce of 185 people, which is expected to rise to 300. Plassey pre-tax profits for the year ended March 31, 1980, were 30% up at £60.1 million. In a cold and precise paragraph released in June, the company also refers to "extraordinary items" (£4.7 million) . . . "which includes the cost of eliminating the loss-making businesses of Garrard and Plassey Automatica Electrca Portuguesa. Losses have also been eliminated on Strengler activity at Edge Lane."
Unsuspected gremlins at work in hospital computing

According to an item in Reports on Research (Massachusetts Institute of Technology), computer-based administrative and medical information systems in hospitals in the US, are prone to interference by hospital staff. In some cases this interference, which is often accomplished through subtle processes such as non-co-operation in schemes to change from manual to automatic systems, is detrimental to the running of hospitals and may be detrimental to the health of patients.

Alan Dowling, a doctoral candidate in health management and management information systems at MIT’s Sloan School of Management, defines staff interference as “instances where a member of the hospital staff deliberately acts or fails to act, so as to oppose, retard, hinder or impede a system’s implementation.” He says the interference can be overt or covert, violent or non-violent and can range from “passive non-co-operation to physical destruction.”

Dowling conducted a survey of 40 hospitals and as a result of findings decided that this form of interference had occurred in at least half of them. He believes the reasons for this behaviour are more complicated than simple resistance to change, although this is an underlying factor. He cites other causes such as human organizational problems which the system may aggravate, difficulty in dealing with hardware and software problems, insufficient resource support for the implementation effort, lack of user involvement, changing staff reward structures and failure to meet staff expectations because of “overselling” the system.

As the number of hospitals attempting to change to computer-based systems grows, so the negative aspects of computer-bashing may be more seriously felt, with direct effect upon patient care. The problem isn’t unique to hospitals, according to Dowling, and is fairly widespread in industry, but emerges as more serious in hospitals, where there is a “high rate of turnover among system vendors”, suggesting that these problems are generally being ignored.

Where patient care is concerned, as Dowling points out, potentially life-threatening situations could result from a practitioner basing treatment on erroneous data. In his report, he traces three case histories of interference and isolates five major forms of interference. The most common form, he says, is passive resistance, in which a staff member deliberately fails to co-operate with other staff members or system specialists who are trying to implement the system.

In one hospital, the chiefs of several medical departments, themselves opposed to one aspect of a system, quietly ignored the requirement to make their staff available for system training over a prolonged period.

Two-way radio installed in caves

The network of caves below the site of Nottingham Castle is to be served by a two-way radio system, the equipment being supplied by Pye Telecommunications for the City of Nottingham’s Technical Services Dept.

These caves are open to the public for guided tours and as a result of difficulties experienced by elderly visitors negotiating the slopes and bends, as well as for security purposes, the city’s administrators decided to install a base station at ground level, supplemented by several “Pocketfone” portable two-way transceivers.

The scheme will enable guides, who are not permitted to leave their parties once underground or send a member of the party for help, to summon medical aid instantly.

Marconi to supply military equipment to China

A £40 million contract for the supply of electronics equipment “for defence purposes” has just been signed by Marconi Companies and China.

The contract calls for delivery of equipment and associated trials and includes the establishment of some manufacture under licence in China. The main body of the work, which the company says will create several hundred skilled jobs in Kent, Essex and Hertfordshire, will consist of engineering, production, on-site trials and product support.

Marconi supplies avionics systems for 150 different aircraft and, in addition to supplying a wide range of electronic equipment for aviation, industrial and military applications, has already established the production of fuel flow measurement equipment under licence in China.

News in brief

Illegal c.b. operator Thomas Hanson, whose callsign is Captain Beaky, will be getting his transmitter back from the Home Office investigators who confiscated it after a raid on his car. Although he was fined £80 for installing and using the equipment in a vehicle, the magistrates at York, where prosecuting council Julian Hay had asked for the £200 set to be forfeited, refused to make such an order.

The International Broadcasting Convention (IBC) will be held from 20 to 23 September 1980 in Brighton, at the Metropole Hotel. Further information is available from the IBC Secretariat, IEE, Savoy Place, London WC2R 0BL.

Newcastle upon Tyne Education Authority is running a course which is designed to prepare students for the Radio Amateur’s Examination (RAE). The course begins in September 1980 at Gosforth Secondary School and will run every Tuesday from 7 to 9 p.m. Candidates for the May/June examinations may sit for them at the school and any enquiries should be addressed to the Principal, Gosforth Adult Association, Gosforth Secondary School, Newcastle upon Tyne or by telephoning Newcastle upon Tyne 666458.

Industrial and Trade Fairs Ltd, have announced plans to hold Components ’81 at Earl’s Court, from 9 to 12 June 1981. The event will be known alternatively as the Electronics Components Industry Fair and the company is to invest £400,000 in what the exhibition director, Frank Winter, describes as “a major event on a scale comparable to the Munich and Paris events and to establish and maintain the international credibility for the industry." Full details can be obtained from Industrial and Trade Fairs Ltd, Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG.

Fifty years ago, this 211 lb. wonder, the Blatterphone, was used to record and reproduce a speech by King George V on a 6mm steel tape. This tape recorder, which was featured during May at the Bridgwater Exhibition (Admiral Blake Museum)’ Broadcasting in the Twenties and Thirties’ is considered by some to have been the first suitable for broadcasting.

WIRELESS WORLD, SEPTEMBER 1980

www.americanrare.com
Universities and companies to unite in industrial robot programme

At a recent press conference held at the headquarters of the Royal Society, officials of the Science Research Council announced a £500,000 five-year programme funding in industrial robotics.

The plans outlined by Peter Davey, the programme co-ordinator, will involve the realization of university-based ideas by companies interested in both development of the robots and their exploitation in manufacturing industry. The council says that UK industry has seriously lagged behind its overseas counterparts and in taking up robotic techniques and current research activity is "sparse". The main aim of the projected programme, according to Davey, will be to "leap-frog" the present generation of robots and devices and to provide the research necessary to take full industrial advantage of the technique as it emerges in the mid 1980s.

A number of vital areas of activity had been identified, including the development of fast-acting tactile, visual and aural sensory devices, modular robot construction, better, cheaper and lighter actuators and linkages and work on the effects of wear on accuracy. Other vital areas of interest include optimization of robot dynamics, research on safety aspects and the development of standards.

The first collaboration will take place between Warwick University, the Basingstoke-based company, Lansig-Bagnall (fork-lift truck manufacturers) and GEC. Lansig-Bagnall's interest lies particularly in the need to produce free-rolling industrial vehicles, to replace those currently in use which are controlled by taut wire or by optical means. GEC comes into the picture as the company which will promote the so-called "intelligence" in the machine. The technical problems to be investigated and developed are coincident with those of.computing in general — communication problems such as pattern recognition, analysis and processing, speech recognition and generation, improved graphics and displays etc. — typical microprocessor application problems.

Comments were made at the press conference concerning the current application of industrial robots in the automotive industry. It was felt that although there is considerable exploitation of robots in this field, the natural growth area lies in flexible manufacturing systems, where a large number of different product types will be demanded by an increasingly sophisticated market.

In response to a question concerning the application of robots to difficult or dirty jobs, such as mining, Mr D. H. Roberts, of GEC, said that such an application could not be considered in the same light as manufacturing needs. He emphasized this by commenting on questions dealing with the possibility of domestic robot development by saying that "Britain will not go broke if the domestic robot does not emerge, but it will if the industrial robot does not."

Peter Davey felt that, in any event, the domestic robot would have to exist in a very dirty environment, which might preclude cost-effective development of peripheral equipment.

The SRC has produced a handbook outlining plans for the robotics development programme, which includes a summary of the main areas of activity. A firm building robots may be a suitable partner in the scheme if it acts as a "window" through which the academic group may be aware of not just one, but a number of potential applications which can benefit from the proposed work. On the other hand, there are few such firms in the UK and those that do exist tend to be preoccupied with the problems involved in producing their current models.

University or polytechnic groups wishing to take part in the programme, or firms seeking links with the groups, should contact the programme co-ordinator as early as possible to discuss in outline the proposed area of research, and the chance of a formal application being successful. If both factors appear promising, a grant application should be prepared on form RG2 with a supporting case not exceeding 6 pages clearly defining the objectives of the research, the methodology to be employed, project milestones and staff and equipment required.

Also attached should be a letter from senior management in the partner firm to support the programme of work and to give detailed costings of staff, equipment and facilities etc.

Grants will normally be made for periods up to 3 years, or perhaps 4 in special cases. Deadlines for completion of the final application are the SRC's normal ones of 1st April, 15 September and 15 December in any year.

Further details are available from Mr F. P. G. Davey, Co-ordinator of Robotics Programme, Rutherford and Appleton Laboratories, Chilton, Didcot, Oxfordshire OX11 0QX. Tel: Abingdon (0235) 21900, ext. 6106.

Catching Halley's Comet by the tail

Giottto, the 14th century Italian painter, who was also noted for his observations of Halley's Comet in 1301, is to be commemorated in a related event — the interception of the comet by a satellite. This is in hope expressed by the British Aerospace Dynamics Group, who, under contract to the European Space Agency, have recently completed a feasibility study of the operation.

The satellite, to be called Giottto, will be based upon the GEOS-1 and GEOS-2 designs, and if everything goes according to plan, will be launched early in 1985 or 1986, when the comet makes one of its 76-year appearances in the night sky. The object of the mission will be to obtain data from instruments aboard the satellite on the chemical composition of the "coma" region surrounding the nucleus as well as that of the tail. Photographs will be taken of the nucleus and measurements will also be taken of the comet's magnetic field.

In order to make the checks effective, the satellite must pass within 1000 km of the nucleus and since only a few hours of observation will be possible, prediction of accurate orbits is vital to the success of the operation. A solid propellant rocket motor will be used to inject the satellite into the comet's orbit and data will be transmitted over nearly 100 million miles back to Earth.

Not quite the shape of things to come as foreseen by H. G. Wells or Isaac Asimov, but a working robot called Commander Bill. Developed by the Research Group at Warwick University, the robot has been specially designed to operate over rough terrain and to negotiate steps.

A spokesman of British Aerospace Dynamics pointed out that, important as the mission is, there is no guarantee that it will be approved, although recent events seem encouraging. The appropriate-ESA committee met in mid-July and gave a favourable report, but has yet to decide how the undertaking will be funded and managed. A definite decision is expected by September 1980.

Government go-ahead for Inmos as censure motion falls

The second charge of £25 million pounds due to Inmos, the state micrcircuit company, is to be released by the government and will be supplemented by further amounts up to 22% of this amount depending upon where the production plant is sited in South Wales.

Announcing the plans for Inmos at the crucial moment in the debate on the Opposition's motion of censure on July 29, Mrs Thatcher said that the plans are expected to create 2,000 new jobs. In addition, seven "enterprise" zones will be set up in areas of economic and physical distress.

Sir Keith Joseph said that he had spent a long time over the decision because of the question of siting the new factory. It had originally been the intention to site it in Bristol, where Inmos already has a technological centre. A report on this delay was given in News of the Month in Wireless World (August 1980).

Both the government and the NEB, of which Inmos is a subsidiary, are reported to be looking for private sector involvement as soon as possible and Sir Arthur Knight, the NEB's chairman, said that he expected the company to be self-financing by 1984. Sir Keith also announced that there will be a second UK production plant set up and, like that in South Wales, will manufacture advanced memory devices.
Flexible rate control
This circuit may be useful for digital tuning or a model control which requires reverse, stop, forward and speed functions from one potentiometer.

Resistor R_{1b} controls digital outputs A, B and C via two comparators so that A is 1 when $0 < V < V_1$, B is 1 when $V_2 < V < V_2$ and C is 1 when $V > V_2$. The ratios of A, B and C, shown on the graph, can be varied by R_2. R_{1a} controls the analogue output symmetrically about the centre of rotation. The control is non-linear and varies most rapidly at the extremes of rotation. In some applications it may be more useful for R_{1a} to control a RC oscillator.

D. C. Hopkins
Newcastle
Gwent

Parallel binary multiplier
Binary multiplication is usually performed by repetitive addition using serial and/or parallel operations. Because parallel multipliers are faster, they are preferable for computing applications. This circuit is a 4×4-bit parallel multiplier which operates in a similar way to conventional written multiplication. The 8-bit product is generated in less than 60ns, and at around half the cost of dedicated circuits such as the 74284 and 285.

Imaddin Al-Bazz
University of Technology
Iraq
Asynchronous serial data transmitter
When information needs to be sent asynchronously using a start-stop bit format, but the application does not justify a standard u.a.r.t. i.e., this data transmitter can provide a simple solution.

When data is available, the Data Ready line goes high, which removes the reset from the counter and sets the shift register in the parallel mode. At the next positive going clock edge, the start bit and seven data bits are loaded into the shift register, Q0 goes low, Q1 goes high.

Keyboard sounder
When using a keyboard it is helpful to have an audible indication that an entry has registered. This circuit was designed for the scientific computer, and gives a beep through the television loudspeaker.

An input 555 is connected as a monostable and, when triggered, gives a 50ms pulse. The second timer is connected in the astable mode, and gives a burst of 2kHz when enabled by the monostable. The input requires a negative going pulse, which is available from pin 17, NMI input, of the Z80. The output is fed to the volume control of the v.d.u.

M. A. Wheatley
Maidenhead
Berkshire

Adding capacitance ranges to a multimeter
Capacitance ranges can be economically incorporated in 3½ digit l.c.d. multimeters based on the ICL7106. A 4066 is used to generate a square wave with the same frequency as the display backplane drive, and with a pk-to-pk amplitude defined by the internal 2.8V reference of the 7106. A second 4066 forms a full-wave synchronous rectifier. One inverter is required and is formed by an exclusive-OR gate because three gates are needed to drive the decimal points.

The circuit uses precision shunt resistors and offers good linearity up to about 10µF. Beyond this value the linearity deteriorates rapidly because the capacitor no longer has time to charge or discharge completely during each half cycle. The 7106 operates on the dual-slope principle and, for correct operation, the clock frequency should be adjusted or crystal controlled to reject mains pickup by making the integration interval an integer number of mains cycles. An important advantage of this circuit is that ripple, at twice the backplane frequency, across the 150nF capacitor is automatically rejected in the same way. However, the backplane frequency should be several Hertz removed from the mains frequency to prevent a l.f. beat which would cause fluctuations of the capacitance reading. The clock frequencies listed below provide good stability, even when unscreened test leads are used.

J. B. Cole
Houston
Texas
Video-line trigger
An individual video line or group of lines can be displayed on an oscilloscope by using this simple trigger circuit. The 555 monostable is triggered by a frame pulse derived from the mixed sync, and generates a pulse of up to 20ms. The flip-flop synchronizes the end of this pulse with the next line sync. pulse to prevent display jitter. Current consumption is typically 30mA.

P. Newman and M. Tierney
Southern General Hospital
Glasgow

Efficient c.d.i. system
This capacitor-discharge ignition system is based on R. M. Carter's transistor converter. Circuit ideas, Nov. 1975. Tr₁ is biased on by current through R₁, which causes collector current to pass through the primary winding of T₁. Positive feedback from the secondary winding increases the collector current and, at saturation, insufficient base current turns Tr₁ off. Energy stored in the magnetic field of T₁ passes through D₂ and into C₁. This oscillation continues until the charge on C₁ is sufficient to switch Tr₂ on, which then inhibits Tr₁.

The discharge circuit uses a conventional thyristor design. D₂, C₁ and R₁ form a debounce circuit, and R₂ can also act as a rev. limiter. Because the inverter has a quiescent current of about 175mA, it will happily run from two alkaline cells.

W. K. Todd
Colchester
Essex

Decimal to binary conversion
If it is necessary or convenient to load data via thumbwheel switches, this circuit provides a cheap method of conversion provided numbers from 0 to 99 are sufficient. The units thumbwheel is an ordinary b.c.d. type, and the tens thumbwheel is a decimal output version. Each decade feeds the appropriate number into the binary adders, which can be c.m.o.s. or t.t.l.

I. H. Math
Alexandria
Dunbartonshire
Transient recorder — 2

Control and timing signals

by G. J. Adams B.Sc., Ph. D.

The logic required for the address counter is shown in Fig. 9. The address lines A₁ to A₄ are set low by the reset button. When the counter is enabled, the address counts from 0 to 255 and IC₃₁ produces an end signal to mark the end of a single sweep. If the load signal is taken low, the address presented to the external address input appears on A₁ to A₆. Therefore, any memory location can be addressed by an external device.

For normal operation the manual/auto switch is set to the auto position. However, if the contents of the memory need to be examined one word at a time, the manual position is selected. After operation of the reset button, the contents of the first memory location will be displayed on the readout. Operation of the manual clock-switch advances the address by one and displays the contents of the next location.

The circuit shown in Fig. 10 provides timing signals for the sample, a-to-d conversion, word storage sequence and the clock signal required for the address counter. Clock 1 and clock 2 outputs, which are t.l.i.-level square-wave signals at the same frequency as the sampling rate, are produced by the voltage-controlled function generator IC₃₁. Five overlapping frequency ranges are provided and variation within each range is achieved by adjusting a 2kΩ potentiometer which is calibrated from 1 to 11. Frequency variation is roughly linear with potentiometer variation, and a ten-turn potentiometer with a turns counter was used in the prototype. The low-frequency limit is adjusted first by setting the turns counter to 1 and setting the potentiometer to give the correct frequency. The upper limit is set by turning the potentiometer to 10 and adjusting R₅ to give the correct frequency. The 470 pF capacitor may require trimming due to stray capacitance.

A separate +15V regulator supplies the oscillator i.c. to prevent modulation of the main +15V line by the clock. This additional regulator also improves the stability of the clock frequency. The main power supply in Fig. 11 uses two regulators to provide four supply rails.

Increasing the memory

If a larger memory is required, additional stages must be incorporated in the address counter so that the extra memory locations can be addressed. For example, if a third 74193 counter is connected to IC₃₂ in the same way as IC₃₁ is connected to IC₃₃, then 12 bits will be available which can address up to 4096 memory locations. IC₃₃ will need additional inputs so that the end output is in the low state only when the last memory location is addressed.

If pairs of 256 × 4-bit memory blocks are used to construct an 8-bit memory, the address-input lines, data-input and data-output lines should be connected in parallel. The chip-enable and output-disable lines of each pair of memory blocks can then be driven by the outputs of a decoder whose inputs are the address lines of the additional counter stages. The decoding logic ensures that only one pair of memory blocks is active at a time. An alternative scheme, which is more expensive but reduces the amount of wiring required, is to use 1024 × 4-bit memory blocks.

Operation

To operate the transient recorder, select auto mode and push the reset button. For recording, select a suitable input sensitivity and sampling frequency, and operate the arm button. In this state the input is continually sampled and the digital word is displayed by the I.C.s. With no input present, the a-to-d converter's full range can be observed by adjusting the offset control. With an input signal connected, the recorder is triggered manually or by a 5V high-to-low edge at the trigger input. Triggering may not occur immediately due to the free-running clock, however, it will occur within one sample period and the exact triggering point is identified by a positive edge at the trigger-acknowledge output. Information stored in the first memory location corresponds to the sample taken immediately before this output. Therefore, although the recorder may not trigger immediately, the stored data is valid from receipt of the trigger signal, and in some cases up to a sample period before this. When all of the memory locations have been filled with data, the recording I.E.D. turns off.

To display the contents of the memory on an oscilloscope, select repetitive mode and a suitable playback rate, i.e. the sampling frequency. When the analogue output is connected to an oscilloscope, recorded data is displayed as a continuous periodic waveform. To plot the data on a chart recorder, operate the reset button, select the

Fig. 9. Counter logic controls the 8-bit memory address.
single-sweep mode and a low playback rate suitable for the response time of the chart recorder.

Operation of the trigger button then produces a single sweep of the memory contents.

If the recorder is armed unintentionally the reset button can be used, but memory location 0 will have become contaminated.

Fig.12 shows an input and output triangle waveform of the recorder and illustrates the smoothing effect obtained by switching in the low-pass filter. Fig.13 shows a pressure impulse received by a microphone from a loudspeaker. This excitation pulse was obtained from a generator triggered by the trigger acknowledge output of the transient recorder.

Construction of this design is straightforward, but the following precautions should be noted. If a metal case is used it should be connected to earth and also to 0V from the power supply. Even with a low-field transformer, mains-frequency voltages are induced in the chassis, so it is worthwhile to isolate the earth side of the a.c. input socket from the main chassis and connect it to the 0V rail of the input amplifier. This ensures that voltages induced in the chassis do not appear in series with the input signal. Because BNC sockets were used on the prototype, it was found more convenient to isolate the front panel. Separate power supply leads, including 0V, should be used for each board, with connections made to busbars on the power supply board. If a hexadecimal display is required, suitable i.e.d. types are available such as the TIL311 which can be driven directly by the data-output lines.

Fig. 10. Clock and timing circuits provide signals for sampling, a-to-d conversion and storage.

Fig. 11. Power supply. The L129 regulator should be mounted on a heatsink, and a toroidal transformer is recommended.

Fig. 12. (a) Input test waveform at 240Hz, (b) output waveform from d-to-a converter after sampling at 24 kHz, (c) output waveform after filtering.

Fig. 13. Impulse response of a loudspeaker system measured using the transient recorder.
Designing with microprocessors

4 — The synchronization problem

by D. Zissos and Laurelle Valan, Department of Computer Science, University of Calgary, Canada

This article explains the need to synchronize the internal operation of the microprocessor chip with the responses of peripherals. Software and hardware methods of doing this are outlined. Their step-by-step implementation will be discussed in later articles.

When data is to be transferred between two devices, the transmitting device, before it outputs the data, must ensure that the receiving device is able to accept it, otherwise the data will be lost. As communicating devices generally operate at different speeds, their operation must be synchronized, if system malfunction due to speed mismatch is to be avoided. The set of circuits and signals used for this purpose are referred to collectively as interfaces. The block diagram of an interface involving two devices, a data source and a data acceptor, is shown in Fig. 1. Its function is to monitor the status signals of the two communicating devices and to generate their command signals in the correct sequence to ensure that they operate in step with each other. In practice an interface accepts external signals for such purposes as initiating a data transfer, putting the system on alert, and so on.

A clear understanding of the synchronization problem and of the available solutions is essential for the design and implementation of microprocessor-based systems, and indeed of any system. We shall start by first describing the nature of the synchronization problem in microprocessor-based systems.

The synchronization problem in microprocessor-based systems is probably best illustrated by considering the steps involved in using a character printer to produce a hard copy of a block of 32 characters stored as bytes in consecutive locations in memory. A simplified block diagram showing the flow of information through a microprocessor chip is shown in Fig. 2(a). The routing of the data through the microprocessor chip, instead of transmitting it directly to the printer, allows such functions as code conversion, formatting, parity checking and so on, to be performed on the data prior to printing. If no processing is required, a direct link (d.m.a. link) between memory and printer may be established, as we shall discuss in a future article.

The operation of our system, which consists of fetching each byte from memory into the microprocessor chip and printing it, is shown in Fig. 2(b). The flowchart of the software required to fetch and print each byte is shown in Fig. 3. Its implementation is shown in the case of the Motorola 6800 (see instruction set in Appendix), is shown overleaf.

Reference to the manufacturer’s manual (1) indicates that the execution time of a fetch/print loop (statements in locations 0005 to 000F) requires 24 machine cycles. If we assume the execution time of a machine cycle to be around 1μs, the characters will be output to the printer at the rate of around 40,000 per second — far too fast for character printers, which typically will be operating at 30 characters per second. The outputting of data to the printer faster than it can accept will clearly result in a large proportion of it getting lost. It is therefore necessary for the designer not to output a character to the printer until it is ready to accept it. The most straight-

*See also Appendix
forward method is to stretch the fetch/print cycle in Fig. 4. This delay can be implemented using either software or hardware; in the first case we shall refer to it as software wait and in the second case as hardware wait.

Software wait is implemented by means of a programming loop during which the status of the printer is read into the microprocessor chip and tested. If the printer is found to be busy, the process is repeated. When the printer becomes ready (indicated by its status signals), the microprocessor exits the software wait loop, as shown in Fig. 5. Note that the wait loop may be entered either before or after the print operation.

The step-by-step implementation of microprocessor-based systems using software wait will be discussed in the next article.

Implementation of Fig. 3 processes in Motorola 6800

<table>
<thead>
<tr>
<th>Hex address</th>
<th>Hex listing</th>
<th>Mnemonics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>CE</td>
<td>LDX #$U350</td>
<td>Load the index register with the initial memory block address</td>
</tr>
<tr>
<td>0001</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>C6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1:</td>
<td>0005</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000B</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000C</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000D</td>
<td>5A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000E</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000F</td>
<td>F5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2:</td>
<td>0010</td>
<td>3F</td>
<td>SWI</td>
</tr>
</tbody>
</table>

Fig. 3. Flowchart for printing a block of n characters stored in memory.

Fig. 4. Stretched fetch/print cycle.

Fig. 5. Flowcharts of software wait loops (a) with wait loop entered before print operation, (b) entered after print operation.

Fig. 6. Flowcharts of hardware wait loops implemented (a) before and (b) after print operations.
Appendix: Motorola 6800 instruction set (continued on next page)

<table>
<thead>
<tr>
<th>ACCUMULATOR AND MEMORY</th>
<th>ADDRESSING MODES</th>
<th>BOOLEAN/ARITHMETIC OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONS</td>
<td>MNEMONIC</td>
<td>IMMED</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Add</td>
<td>ADDB</td>
<td>02</td>
</tr>
<tr>
<td>Add ADR</td>
<td>ADDR</td>
<td>02</td>
</tr>
<tr>
<td>Add with Carry</td>
<td>ADCA</td>
<td>02</td>
</tr>
<tr>
<td>And</td>
<td>ANDA</td>
<td>02</td>
</tr>
<tr>
<td>Bit Test</td>
<td>BITA</td>
<td>02</td>
</tr>
<tr>
<td>Clear</td>
<td>CLR</td>
<td>02</td>
</tr>
<tr>
<td>Compare</td>
<td>CMPA</td>
<td>02</td>
</tr>
<tr>
<td>Compare ADR</td>
<td>CMRA</td>
<td>02</td>
</tr>
<tr>
<td>Complement, V's</td>
<td>COM</td>
<td>02</td>
</tr>
<tr>
<td>Complement, (Negate)</td>
<td>COMA</td>
<td>02</td>
</tr>
<tr>
<td>Complement, 2's</td>
<td>NEG</td>
<td>02</td>
</tr>
<tr>
<td>Decimal Adjust, A</td>
<td>DAA</td>
<td>02</td>
</tr>
<tr>
<td>Decrement</td>
<td>DEC</td>
<td>02</td>
</tr>
<tr>
<td>Exclusive OR</td>
<td>EDRA</td>
<td>02</td>
</tr>
<tr>
<td>Excl OR</td>
<td>EDRB</td>
<td>02</td>
</tr>
<tr>
<td>Increment</td>
<td>INC</td>
<td>02</td>
</tr>
<tr>
<td>Load ADR</td>
<td>LDAA</td>
<td>02</td>
</tr>
<tr>
<td>Or, Inclusive</td>
<td>DRRA</td>
<td>02</td>
</tr>
<tr>
<td>Or, Inclusive</td>
<td>DRRB</td>
<td>02</td>
</tr>
<tr>
<td>Push Data</td>
<td>PSHA</td>
<td>02</td>
</tr>
<tr>
<td>Pull Data</td>
<td>PUL</td>
<td>02</td>
</tr>
<tr>
<td>Rotate Left</td>
<td>ROL</td>
<td>02</td>
</tr>
<tr>
<td>Rotate Right</td>
<td>ROR</td>
<td>02</td>
</tr>
<tr>
<td>Shift Left, Arithmetic</td>
<td>ASL</td>
<td>02</td>
</tr>
<tr>
<td>Shift Right, Arithmetic</td>
<td>ASR</td>
<td>02</td>
</tr>
<tr>
<td>Subtract</td>
<td>SUBA</td>
<td>02</td>
</tr>
<tr>
<td>Subtract with Carry</td>
<td>SBCA</td>
<td>02</td>
</tr>
<tr>
<td>Transfer ADR</td>
<td>TAB</td>
<td>02</td>
</tr>
<tr>
<td>Test, Zero or Minus</td>
<td>TST</td>
<td>02</td>
</tr>
<tr>
<td>Store ADR</td>
<td>STA</td>
<td>02</td>
</tr>
<tr>
<td>Subtract</td>
<td>SUBB</td>
<td>02</td>
</tr>
<tr>
<td>Subtract with Carry</td>
<td>SBCB</td>
<td>02</td>
</tr>
<tr>
<td>Transfer ADR</td>
<td>TAB</td>
<td>02</td>
</tr>
<tr>
<td>Test, Zero or Minus</td>
<td>TST</td>
<td>02</td>
</tr>
</tbody>
</table>

(All register labels refer to contents)

<table>
<thead>
<tr>
<th>COND. CODE REG.</th>
<th>H</th>
<th>I</th>
<th>N</th>
<th>Z</th>
<th>V</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CMP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(Space)
Hardware wait is implemented by causing the microprocessor chip to enter into idling state, during which all the microprocessor activities are suspended without turning off the clock. As in the case of the software wait, the hardware wait may be implemented either before or after the print operation — see Fig. 6.

We shall refer to the idling state as a wait state. The microprocessor may remain in a wait state indefinitely. The wait state is entered by pulling a specified pin on an m.p.u. high or low.

Examples. Pulling pin 23 low puts the Intel 8080 in the wait state, and pulling it high brings it out of the wait state — see Fig. 3 in article 1.

In the case of the Motorola 6800 the wait state is entered at the end of the current instruction by pulling pin 2 low.

Table above is continuation of the Appendix.
Development of a satellite terminal

Experimental system for tv reception

by S. J. Birkill

Development of the author's satellite terminal started in 1975 with the introduction of instructional tv broadcasting to villages in India. The results of his original experiments were published in March 1976. This article describes how the terminal has been modified to receive microwave transmissions, and shows a selection of the author's more recent results.

During 1975 NASA's ATS-6 began a one-year SITE experiment of instructional tv broadcasting to village communities in India. As the transmissions were at 860MHz in the familiar u.h.f. broadcast band, the signals did not need specialized reception techniques, but just a suitable antenna, low noise amplifier and tv receiver equipped with a wideband f.m. demodulator. The SITE broadcasts ended in August 1976, and ATS-6 was manoeuvred westward to a new geostationary location over the Pacific Ocean, out of sight of the UK, for further experiments with US terminals. Since I had been inspired by the ATS results, I was now eager to receive more satellite tv broadcasts. The USSR had a system known as Orbita which used Molniya satellites in 63° inclined orbits, but information was sparse. The Molniya-1 series used frequencies around 1000MHz, and the locus of possible apogees (Molniyas were activated for a six-hour period around apogee, when their orbital characteristics made them appear almost stationary in the northern sky) arced northwards to east and west of a point almost overhead. Signals were received, but they carried f.s.k. data at a low bit-rate. It appeared that the Orbita tv service had been transferred to the Molniya-2 and -3 series, with downlinks in the 4GHz band. At around this time there was news of Russian tv broadcasting tests from one of their first geostationary satellites, Skran, or Stationar-T. The e.i.r.p. was quoted as 56.5dBW at 714MHz, but the satellite's longitude of 99°E put it well below the eastern horizon.

It became clear that the best results would be achieved in the microwave part of the spectrum and that 3.7 to
4.2GHz should be explored. The 5ft mesh dish used for ATS-6 was discarded, and I obtained a surplus 8ft solid-surface paraboloid, originally used for terrestrial radio links in the 7GHz region. To resolve pictures from the signals available on 4GHz, an overall system noise temperature of better than 400°C was required. The dish was fitted with a circular polarisation antenna feed, made from a piece of 2in. copper pipe, carrying the downconverter, a low-noise amplifier constructed from two HXTR-6101 devices on a microstrip, and 25dB of wideband u.h.f. i.f. amplification. The amplifier was included so that signals could be carried 50ft to the house without significant breakthrough of local u.h.f. tv broadcast stations. The second converter was installed in the house together with the remainder of the receiver. A modified Varicap u.h.f. tv tuner was used, as for ATS-6, but with facilities for reinserting syncs, phase-locked to the output of an independently-tuned narrow-band sync, pulse demodulator.

The receiver was aimed at the sun and the beams on maximum solar noise. A figure of 55dB above clear sky was achieved on the first day which, with an assumed value for solar noise flux of $8 \times 10^{-21} \text{W/m}^2\text{Hz}$, translated to a G/T of 12.6dB/°K. This gave a predicted overall receiver noise figure of about 3.5dB, which was later confirmed by comparing ground noise with sky noise. When the antenna beam was lowered onto the geostationary orbit arc, my efforts were rewarded by the appearance of RTVE's (Spain) first chain programme via the leased half-transponder 6 of the new Intelsat-1VA (F2) at 29.5°W. This Canary Islands relay is at present carried on the Major Path 1 Intelsat at 34.5°W.

Since receiving RTVE, many other 4GHz satellite tv downlinks have been observed. In addition to carrying the world news and sports events, many nations lease capacity on the Intelsat system for their own use, such as internal tv distribution from studio centres to transmitters, and tv relay to their overseas territories. Because Intelsat's constitution precludes broadcasting activities, reception of their transmissons by private terminals can only be made for experimental purposes to prove equipment performance. However, a rather different situation exists in the USA where a private terminal boom is taking place. Home use of the common carrier traffic on domestic communications satellites is permitted, provided the programme supplier's permission is obtained. For about 3000$ a person can purchase the principal elements of a 10ft satellite terminal, and have access to around 36 full-time tv channels without the video and colour distortions which occur on long distance terrestrial distribution.

During the last three years the Soviet Union has begun to establish Intersputnik, a rival system to Intelsat, with 4GHz downlink satellites in geostationary orbit over the three main ocean regions. To date, two types of satellite have been launched. The Raduga (Rainbow) class, which carry a single tv channel and appear to be similar to the Molniya-3 type, and the Gorizont (Horizon) class with 5 or 6 tv channels in the 3650 to 4000 MHz range. Their orbital stations are assigned Stationar numbers so the 14°W Atlantic slot for instance, called Stationar-4, is currently occupied by spacecraft Gorizont-2. Two channels on this satellite use higher power or spot beams and radiate almost 10dB (in this direction) above the standard USSR 4GHz e.i.r.p.
of about 29dBW. Stasiounar-4 is the most powerful satellite at this frequency, and can be received even with an indoor antenna.

As the accompanying photographs show, results have been improved since the early tests, due partly to the use of a Plessey gallium arsenide f.e.t. type GAT 5, which reduced the 4GHz system noise temperature to 185°K, a 3dB improvement in sensitivity.

Results have been further improved by the addition of another GaAs f.e.t. stage, a HFET-2202 device from Hewlett Packard. This half-micron gate length f.e.t has a noise figure only slightly above 1dB, and should produce a receiver noise temperature close to 100°K.

Fig. 8. Intersputnik Coverage of non-aligned nations summit in Havana, received September 1979, Stasiounar-4, channel 5, 3875 MHz, e.i.r.p. about 29dBW, c/n density 75dB(Hz).

Fig. 9. Soviet tv received November 1979. News and information programme "Vremya". Stasiounar-4, channel 1, 3675 MHz, e.i.r.p. about 37dBW, c/n density 83dB(Hz), SECAM colour.

Fig. 10. Italian tv via USSR satellite, received 1980. RAI feed via Eurovision Brussels, converted to SECAM in Moscow and transmitted to Intersputnik over Stasiounar-4, channel 5 at around 29dBW e.i.r.p. Frequency 3875 MHz, c/n density about 78dB(Hz).

Fig. 11. French tv on 11.64 GHz received February 1979. TDF-2 via OTS, e.i.r.p. about 45dBW, c/n density about 85dB(Hz).

Fig. 12. Via Sirio received January 1980. Italian tv on 11.525 GHz, e.i.r.p. estimated at 28dBW, c/n density about 65dB(Hz).

Fig. 13. Video display switched to spectrum analyzer mode to show a portion of the 3.7-4.2GHz band while receiving a tv transmission from a Molnya (Lightning) spacecraft on 3895 MHz. Level increases from left to right, graticule lines are at 10dB intervals. Frequency increases from top to bottom, cursor line is set to 3915MHz. Carrier plus noise/noise ratio of this transmission was 15dB in the analyzer's noise bandwidth.
With the launch of the European Space Agency's OTS satellite in May 1978, I decided to explore a new satellite TV frequency band of 11-12GHz. The sub-bands in this region were destined to ease the congestion experienced by international and domestic systems in the 4GHz band, and provide the new regional (ECS) system for Europe as well as the allocations already made at WARC-77 for satellite TV broadcast downlinks. A new head unit was built around the feed horn, which was made capable of handling either linear (plane) or circular polarisation. The downconverter comprises a single unbalanced diode mixer, with a Gunn device in a coaxial cavity as the local oscillator. To improve performance, GaAs f.e.t. stages in microstrip construction were subsequently added. Mid-band noise temperature of the 11-12GHz system is around 400°K and, with an antenna gain of around 47dBi, this gives a G/T of 21dB/K (clear sky) compared with the 4dB/K being assumed for future direct-broadcast home terminals in this band. The same u.h.f. tunable f.i. is used as for 4GHz, which enables a 500MHz portion of the 11-12GHz band to be tuned for any setting of the Gunn source. High quality pictures have been received from OTS on the wide-deviation 120MHz wide spot-beam channels and on the standard-deviation 40MHz "Eurobeam" transponders. Television from various European broadcasters has been seen via OTS, often with the audio carried in digital "sound-in-syncs" form. However, the transmission schedule is a mystery, with long periods devoted to colour bars.

The Italian experimental satellite Sirio, also on 11-12GHz, has provided TV signals but, with an e.i.r.p. of only 28.5dBW compared with 37 to 45dBW for OTS, pictures are rather noisy as shown in Fig. 12. The carrier/noise density figures in the captions are more meaningful than a carrier-to-noise ratio because the f.m. demodulator is a variable-bandwidth p.l.l. which can be narrowed at low c/n densities to optimise the trade-off between noise and video distortion over the picture portion of the video modulated signals. So, for a strong signal with a c/n density of 84dB(Hz), the noise bandwidth can be 25MHz and the signal may still exceed the f.m. threshold of about 10dB c/n ratio. But, with a signal of only 65dB(Hz) c/n density, reducing the bandwidth to 1MHz would only recover a 5dB c/n ratio. Therefore, bandwidth must be set to achieve the greatest possible c/n ratio over most of the deviation occupied by the f.m. luminance components of the pre-emphasised signal, perhaps 4MHz, which results in a picture similar to Fig. 12. The receiver can be switched to a 70dB logarithmic spectrum analyzer display, which is very useful when aligning to a satellite or looking for new signals. Fig. 13 shows part of the 4GHz band between 3.85 and 4.20GHz while a Russian Molniya satellite was being received. The level reads from left to right and frequency from top to bottom of the screen.

Later this year the first Intelsat V should be launched for operation over the Atlantic with 4 and 11GHz downlink transponders. The first Soviet "Louch" 11-12GHz spacecraft is also anticipated. Both satellites will have high e.i.r.p.s to allow for periods of high attenuation, caused by atmospheric water vapour in the downlink path, and should be easy to receive in clear weather. Within three or four years Europe may have direct TV broadcasting satellites, and the development of comparatively low-cost terminals for home use will take place.

Plessey and Mullard (Philips) are already working on monolithic low-noise downconverters on gallium arsenide chips. The Japanese already have 12GHz home terminals for the market following extensive tests with the Japanese "Broadcasting Satellite for Experimental Purposes". It is anticipated that the European broadcasting satellites will operate with an e.i.r.p. 15 or 20dB higher than OTS. This should allow reception at the Sheffield terminal, even though their beams will not be directed at the UK.

Bibliography

IN OUR NEXT ISSUE

Acoustically small loudspeaker
To reduce colouration and cabinet resonances, the mid-range and high-frequency drivers of this active crossover design are mounted in an oblate cylinder, made of modelling clay. The enclosures are operated below lowest resonance, and the unusual shape gives an exceptionally 'solid' stereo image.

Floppy disc store
Because most home computers use audio cassettes for storing information, the location and transfer of data is very slow. Our floppy disc system comprises a controller and an 8in drive, which can store 400K bytes and transfer data at 500 bytes per second. The disc store has been designed by John Adams for the Wireless World scientific computer, but can be adapted for other systems bases on the Z80.

Frequency meter for radio receivers
A versatile digital frequency meter, usable from low frequencies to v.h.f. with a pre-scaler, and primarily intended for use in radio receivers to identify stations. John Linsley Hood has avoided the large-scale chips and, with the aim of achieving a more flexible design, has used c.m.o.s. logic, together with low-power Schottky elements.

On sale 17 September
The TM8 is a new autoranging analogue true r.m.s. millivoltmeter with a specified operating range of 10kHz to 1GHz and useful indications up to 1.5GHz. It measures r.f. voltage from 1mV to 3V (or 300V using the 100:1 precision divider) and also has a logarithmic range which spans four decades – useful in setting-up tuned circuits.

Careful consideration of the circuit design resulted in the use of CMOS low power IC’s thus the whole unit only uses five watts of power and has minimal temperature drift as well as high reliability.

The meter is provided with damping so that fast changes in amplitude of the signal can be filtered out without either registering on the meter or on the pen recorder output. This output socket gives a 0 to 1V output for zero to full scale reading on the meter.

Like most Farnell r.f. test gear, the TM8 is b.c.d. programmable and will soon be ‘busable’ using the Farnell Omnibus IEEE488 interface.

A final touch of refinement to the design is the ‘hold-reading’ switch on the probe which will, as its name suggests, hold the reading that appears in the meter to within 1% for at least 3 minutes.

The TM8 is supplied complete with probe (integral with input lead) probe to b.n.c. adapter, ‘T’ connector and 100:1 high impedance divider.

Leaflet available.
GET YOUR HANDS ON A KEITHLEY 130

The pocket Digital Multimeter by which others are judged.

£79 PLUS VAT

And generous discounts start at 10 units: 5%.

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:

- Only one calibration adjustment.
- One year guarantee on spec.
- 25 ranges and five functions: ohms, DC and AC volts and amps.
- 10 amp range.
- 100 µV, 1 µA, 0.1 Ω sensitivity.
- 20,000 hour M.T.B.F.

All this is backed by the immense know-how of a specialist company with an enviable reputation for test equipment spanning almost all requirements from 3½ to 5½ digits.

How do you get one?
Simple. Just send off the coupon enclosing cheque or postal order. And see for yourself how the 130 measures up.

The Keithley 130 — the D.M.M. that won't stretch your pocket!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861282

To Keithley Instruments Ltd. 1 Boulton Road, Reading, Berkshire
(Packaging and Postage included)

Please send me

(name)

enclose a cheque/postal order for

(£)

(allow 21 days for delivery)

Name/Address

United Kingdom

www.americanradiohistory.com
Graphical communication with microcomputers — 2

Character generation and graphics

by I. H. Witten, M.A., M.Sc., Ph.D., M.I.E.E. Department of Electrical Engineering Science, University of Essex

Dr Witten continues his article on interacting with a microcomputer. This final part goes on with the discussion of raster-scanned displays, finishing with a look at the light-pen and tablet method of input.

Cell-organized displays. To make a display system easily manageable by the programs that generate the pictures, it is necessary to impose a structure on them that allows the raw picture data to be compressed and stored. For example, we saw earlier how line-generating hardware in a point-plotting display processor permits a whole line to be specified by its two end points. The natural structure to impose on a raster-scanned display is a pattern of rectangular cells. Figure 15 shows a 256 × 256 bit-per-point screen, organized as a 32 × 32 array of cells, each one being 8 × 8 dots. There are 64 bits in each cell, so 2^64 possible patterns can occupy one cell alone. However, most of these patterns are unlikely to be used in a simple picture. Suppose we sacrifice flexibility for convenience and low cost by defining a small repertoire — say 256 — of patterns which may occupy each cell. Then to hold the complete set of patterns we need 256 × 8 × 8 bits — 2 Kbytes, and now a particular pattern can be indicated by an 8-bit pattern number. Since there are 32 × 32 cells on the screen, only 1024 of these numbers, or 1 Kbyte, are needed to hold the screen contents.

This certainly saves some storage. Previously, 8 Kbytes were needed to hold the screen contents on a bit-per-point basis. Now only 1 Kbyte specifies the screen contents, together with 2 Kbytes for the pattern dictionary. The price paid is heavy, though: only a tiny fraction of possible pictures can be displayed. (You may care to verify that the fraction is 1/2^{224}, which is small indeed!) But the real advantage is one of convenience: now the computer need only wrestle with a 32 × 32 array of cells instead of a 256 × 256 array of dots. Since its storage and bus structure is in terms of bytes and not bits anyway, it is actually easier to handle cell pattern numbers than individual dots. (Recall the difficulty of generating straight lines on a bit-per-point display.)

Figure 17 shows the connexion of a memory-mapped, cell-organized dis-
play to the computer bus. As with the bit-per-point system of Fig. 13, the display system is called memory-mapped because the screen contents appear to the processor as ordinary store. The connection between the bus and the pattern dictionary is dashed because it is often not there at all: the patterns are fixed and cannot be changed by the processor.

The success of a cell-organized display in practice depends on the match between the patterns in the cells and the kind of pictures that are drawn on the screen. General cell displays which are intended for line drawings have been built, in which the cell repertoire naturally consists of line segments. However, the number of possible line segments through an 8 x 8 dot cell is unreasonably large, and rotational and axial symmetry is called into play to reduce the dictionary size. Then, the display interface must be able to perform rotation and symmetry transformations, and becomes a display processor which treats the screen contents store more as a program than as a list of pattern numbers. This parallels precisely the development of the display processor for point-plotting displays.

Let us instead examine some rather less ambitious pattern repertoires for cell-organized displays.

Character generation. One obvious use for a cell-organized display is to show text. Cell-organized character displays are called v.d.us (visual display units) — a rather unfortunate term because it gives no indication that only characters can be shown. The screen of Fig. 15 can accommodate 32 lines of 32 characters, each one being on an 8 x 8 grid. Of course, space must be left between neighbouring characters and between successive lines, so the actual character area is normally chosen as 7 x 5 dots.

Character storage. A 7 x 5 dot matrix is quite adequate for upper-case characters, digits, and some special symbols. The standard 64-character upper-case alphabet is shown in Fig. 18, along with the characters that augment it to the standard 96-character upper- and lower-case alphabet. Although lower-case characters can be written satisfactorily on a 7 x 5 character cell, the letters e, j, p, q, and y — have tails which should descend below the line if written properly. This needs a 9 x 5 dot matrix, with any one character occupying either the upper or the lower 7 x 5 section; this works because there aren't any characters with both descenders and "risers". Higher-quality text can be obtained with an 11 x 7 matrix, with any given character occupying either the upper or the lower 9 x 7 section. The possibilities are summarized in Fig. 19, where a dotted outline shows the cell containing the character, including inter-character and inter-line space, and the solid line shows the actual size of the characters.

Read-only memory chips with the character patterns already in them are available from a variety of manufacturers. When addressed with the ASCII code of a character, the appropriate dot pattern appears on the output pins. The address of a particular row of dots is usually provided to the character generator and the dots comprising only that row appear at the output. Thus, with 64 characters of 7 x 5 dots each, 9 bits are required to address a particular row of a character and there are 5 output pins giving the dots in that row. This arrangement is especially suited to raster-scan displays, because one line of the raster is generated at a time. In some character generator, the action of "lowering" characters with descenders must be done externally to the chip, the user providing circuitry to detect these five characters and adjust the row address accordingly. The amount of storage required in a character generator is quite small. For our example, we need 512 words of 5 bits to provide the 64-character upper-case alphabet.

A 256 x 256 screen accommodates 32 lines of 32 characters if the character cell is 8 x 8, 21 lines of 42 characters if it is 12 x 6, and only 17 lines of 28 characters if it is 15 x 9. All of these sizes are unrealistically small for text. A normal sheet of typed paper can comfortably hold about 57 lines of 80 characters. To achieve this with a 12 x 6 cell would require a 684 x 480 screen, which is not possible within the British 625-line standard. Many v.d.us compromise with about 24 full-length lines of 80 characters, requiring a 288 x 480 screen. There is currently a great deal of commercial interest in high-quality v.d.us, and special high-resolution screens are built for them, but they don't have the advantage of the mass TV market to bring down the price. However, it is worth noting that a 1125-line high-resolution TV system is under development in Japan, which should accommodate up to 75 lines of high-quality text, with a 11 x 7 character size (15 x 9 cell).

The v.d.u. V.d.us are not, in general, memory-mapped. It is far more convenient for the computer user to regard his text as a linear string, selecting the character at a time to the display device. Usually it is transmitted in serial form by a parallel-to-serial converter.
attached to the bus, as shown in Fig. 20. The v.d.u. must provide store for the screen contents, but this only needs one byte per character displayed — say 2 Kbytes for 24 lines by 80 characters. In fact, local storage is sometimes provided for a good deal more than this, so that the v.d.u. can retain several screenfuls of text and you can look back to see what was presented a few moments ago.

The v.d.u. itself has to decide what to do when the screen fills up. A scrolling feature is almost universally provided, where the entire screen contents move up as necessary. Continual rapid jumping of the text is irritating and tiring for the reader, and so several lines are scrolled at a time. Smooth scrolling, where the contents move up a dot at a time rather than jumping whole lines is unfortunately rather rare at present, although it does not cause any particular technical problems. Other features which are often provided are blinking of the text on a selected area of screen, reverse video (black text on a white background), half-intensity or double-intensity display, and underlining of parts of the text. These options are switched on and off by control characters (ASCII codes 0000000—0011111) and sent down the line as part of the text, which can unfortunately alter all subsequent characters if a text character is corrupted by noise into a control character.

One really useful feature is the ability to move the current position for text to any point on the screen, so that characters in the middle of the text can be overwritten. A mark called the “cursor” is usually made on the screen at the current writing position, and any input typed on the keyboard appears at the cursor position (which is moved along with each successive character). Then, a questionnaire can be displayed and the cursor moved to the places where the user enters his answers, constraining him to write in the space provided. Cursor control is again dictated by a special character which signals the v.d.u. to interpret the next character as the cursor position. Notice that this reinstates the flexibility of a memory-mapped display where a character can be placed at any position on the screen.

Most v.d.u.s operate at speeds up to 9600 baud. Unlike printers, no extra effort is needed to make a v.d.u. go fast. 9600 baud allows a full screen of 24 × 80 characters to be sent in 2 seconds, which is certainly a high reading rate! However, people often scan text much faster than this — how quickly do you read a newspaper? Present v.d.u. technology leaves plenty of room for improvement.

Limited graphics

Pressure to provide limited graphics facilities based on inexpensive raster-scanned displays has come from two directions: home computers and the teletext and viewdata information services. The character-generating read-only memories of most home computers contain an assortment of graphic symbols to draw primitive pictures. Figure 21, for example, shows the 64 symbols of PET, a typical low-priced domestic computer. In order that graphic symbols can abut to form pictures, the inter-word and inter-character spaces are stored explicitly in the character generator and not provided by external hardware as in most v.d.u.s. PET uses an 8 × 8 cell. The standard 64-character upper-case alphabet of Fig. 18 is provided, together with the 64 graphic symbols or the lower-case letters — software can select which of these latter groups is used. Some of the graphics reflect the game-playing orientation of PET; but the lack of coherent structure of the others makes constructing pictures or charts a rather tedious task. There is no standardization of graphics alphabets in the home computer industry.

Teletext. The teletext scheme for broadcast information defines a graphics standard, and it is possible that this might spread to the microcomputer industry. It uses 64 codes in a systematic way to provide a refinement of its basic 24 × 40 character grid. Each cell is split into the six regions shown in Fig. 22, and a 6-bit word specifies any combination of white and black ones. Thus, an effective 72 × 80 grid is available for graphics, and the picture of Fig. 6 gives an example of the resolution obtained. The teletext cell is not square but has 10 × 8 dots, with a 9 × 5 upper-and-lower-case character matrix. The problem of dividing a cell 10 rows high into three equal portions for the graphic symbols is a continuing challenge for copier and viewdata receiver designers! Teletext also has a defined protocol for coping with colour displays by inserting colour-change control characters into the text stream.

User-defined graphics. An unusual and interesting limited graphics facility is provided in the Sorcerer home computer. 256 character codes are used instead of the usual 64 or 96. Of these, 128 correspond to pre-defined patterns, which include the 96-character basic alphabet of Fig. 18 together with 32 extra graphics. For the others, the character-generating memory can be altered by the processor, so that the user can define his own graphic symbols. Since the character matrix is 8 × 8, 8 bytes serve to define one character,
and the read-only and writeable parts of the character generator are each 1 Kbyte. The circuitry required to generate characters from a read/write memory is a little more complex than for read-only memories, because contention will occur when the display reads and the processor writes simultaneously. But the extra power provided is enormous, for the Sorcerer can simulate both PET and the teletext system, as well as others. For example, graphs can be displayed quite accurately by defining eight patterns each with one dot in the centre, at different heights. Or a character set can be defined for line drawings which includes all the line segments which are needed in a particular picture. Or a Cyrillic alphabet for text in Russian. This combines much of the flexibility of the memory-mapped bit-per-point display with a structure that can show text sensibly and simulate systems like PET and teletext.

The light-pen and tablet

Turning now to graphical input, a light-pen is a device that detects whether or not there is a spot of light on the screen at the place it is pointing. It can also signal the exact time the light appears. Recall that the picture is refreshed every 40 msec or so, so that if the pen points at a spot which is brightened up a signal will appear during every refresh cycle. The interrupt mechanism is ideally suited to advising the processor at the time a hit occurs.

The time-of-hit information provided naturally by a light-pen can easily be converted into the position of the hit by adding the hardware shown by dashed lines in Fig. 23. The x and y signals from the output port are routed back to an input port — in practice, this will be before they converted from digital to analogue form — and loaded into two registers there whenever a hit occurs. Then the processor can examine these registers at leisure to ascertain the position of the last hit.

But which kind of information, time-of-hit or coordinates-of-point, is more useful? Suppose the house picture of Fig. 24 is stored as 28 lines.

Fig. 24. A house. Timing or coordinates?

Fig. 25. Tracking cross.

tell where it is. A "tracking cross" is often drawn as part of the picture; this follows the pen around in an attempt to provide light for it to see. For the cross of Fig. 25, if a hit occurs on line 1 the cross should move up, for line 2 it should move to the left, and so on. The processor detects the hits and moves the cross as necessary. If the centre of the cross coincides with part of the picture, then a hit is registered whenever that component of the picture is refreshed, and so the processor can tell what part is being indicated.

Further reading

Simple active filters for equalizers

Design examples using simulated inductors

by D. W. Protheroe, B.Sc.

Simple design rules allow construction of filters having any desired value of centre frequency, Q and gain, using simulated inductors. Examples illustrate provision of a symmetrical bandpass to band-stop characteristic, varied with a single control.

The majority of designs published as octave or graphic equalizers feature a number of independently controllable filters allowing boost or cut of specific frequencies within the audio band. These designs fall into two main categories:

- RC bandpass/bandstop filters. A typical system may have a number of active filters either enclosed in a negative feedback loop, Fig. 1 and refs 1, 9, 10, or having their outputs fed to a differential amplifier, Fig. 2 and ref. 8. Problems arise from both these configurations. In Fig. 1 noise generated within the active filters is coupled into the output amplifier, the signal-to-noise ratio decreasing as the number of filter sections is increased. This problem is avoided in Fig. 2, but the component values must be carefully calculated to give a symmetrical cut/boost characteristic. Many designs have been published giving only bandpass (presence) or bandstop (notch) characteristics.

- Series LCR filters. This arrangement, Fig. 3, suffers from the disadvantages normally associated with discrete inductors, i.e. size, cost, distortion. refs 2, 3, 4. The present design overcomes this by synthesizing the necessary inductors, using the circuit of Fig. 4.

To duplicate the impedance versus frequency characteristic of an inductor, the input impedance of the circuit must be of the form \(R + j\omega L \), and it can be seen in the Appendix that the circuit has an input impedance of \(R_1 + R_2 + j\omega CR_1 R_2 \). Although many other methods of simulating inductance have been published (e.g. search under Gyrators), they have suffered from greater complexity or lower performance, often both.

Now add a series capacitor, \(C_s \), to Fig. 4 to give a series LCR circuit, Fig. 5, which may be used in the circuit of Fig. 3 to realise the same function, though the parameters of the inductor are now easily controlled.

Design procedure

Making use of the standard formulae for series-toned circuits:

\[
\begin{align*}
Q &= \frac{1}{2\pi f_0 L C} \\
C &= \frac{1}{2\pi f_0 R Q}
\end{align*}
\]

where the symbols have their usual significance, and \(r \) is the equivalent series resistance. Eliminate \(L \) thus

\[
L = C_r^2 Q^2
\]

and

\[
C = \frac{1}{2\pi f_0 R Q}
\]

Also,

\[
L = C_r Q^2 = \frac{CR_1 R_2}{R_1 + R_2}
\]

Fig. 3 shows that maximum or minimum gain at \(f_0 \) is

\[
20\log \left(\frac{R + r}{f} \right) \text{ dB}
\]

Armed with these equations, filter design becomes a matter of setting the design parameters, taking account of any required component values, and calculating the remaining component values.

Fig. 6 shows an example of a 50Hz notch filter, depth of null variable, \(Q=50 \) (say). Synthesized inductance has a value of \(\sim 1400H \). To enable frequency to be trimmed to off-set the effect of component tolerances, \(R_1 \) and \(R_2 \) incorporate a potentiometer. Thus \(f_0 \) and the notch depth are independently variable.

The value of the potentiometer used as the cut/boost control is non-critical, varying only the control law. The buffer amplifier used in Fig. 4 can be an emitter follower, a Darlington follower, or a 741 follower depending on the load to be driven (the values of \(C_s \), \(R_1 \), \(R_2 \)) and the performance required. Signal-to-noise ratio and distortion level for the system depend mainly on the differential
amplifier used; for most purposes the 741 is sufficient, though increased performance may be achieved with a more specialized amplifier.6,7

Practical applications of this circuit have varied (in frequency) from I.F. variable filters for electrophysiological research, to a fine-section tone control for audio systems. Although developed for use at audio and sub-audio frequencies, high frequency operation is dependent only upon the characteristics of the amplifiers used. However, as the frequency of operation is increased, the value and size of a discrete inductor soon reach manageable proportions.

References

Dave Protheroe was an electronics technician in the psychology department of the City of London Polytechnic, where he constructed prototypes of this filter. Since then he has graduated in electrical engineering and is now lecturing in electronics at Thames Polytechnic. Researching into digital systems design, recent work has centre around applications of digital devices, especially the hardware and software design of a Z80-based microcomputer system.

Appendix

A voltage V_x is applied to the input terminal of Fig. 4. Then

$$V_i = V_x - v$$

where $v = V_x \left(\frac{R_2}{R_1 + R_2} \right)$

Thus

$$i = \frac{V_i}{R_1} = \frac{V_x}{R_1} \left(1 - \frac{R_2}{R_1 + j\omega C R_1} \right)$$

where i is the current flowing into the input terminal.

Practical designs

9-14Hz three-section filter

Application: vibration analysis, electromagnetic recording. Design criteria: constant bandwidth, control range ±26dB. Values of R_1, R_2, R_3 were chosen to give the required control range. Q value was then calculated from $Q = f_e/\text{bandwidth}$. The underlined equations give the required capacitor values, and the last equation gave the value of R. amplifier was used. To avoid slew-rate limiting at high frequencies use faster op-amps e.g. 748, 741S, 531. Control range: ±12dB, consistent with commercial units. Component values chosen as above.

Practical designs

9-14Hz three-section filter

Application: vibration analysis, electromagnetic recording. Design criteria: constant bandwidth, control range ±26dB. Values of R_1, R_2, R_3 were chosen to give the required control range. Q value was then calculated from $Q = f_e/\text{bandwidth}$. The underlined equations give the required capacitor values, and the last equation gave the value of R. amplifier was used. To avoid slew-rate limiting at high frequencies use faster op-amps e.g. 748, 741S, 531. Control range: ±12dB, consistent with commercial units. Component values chosen as above.

50Hz-2.8kHz five-section equalizer

Application: supplement to audio tone controls. Constant-Q characteristic is required to keep tonal effect of filters constant over the frequency range. In the interests of higher s/n ratio a more complex differential amplifier was used. To avoid slew-rate limiting at high frequencies use faster op-amps e.g. 748, 741S, 531. Control range: ±12dB, consistent with commercial units. Component values chosen as above.

Table: 50Hz-2.8kHz five-section equalizer

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>Q</th>
<th>C_x</th>
<th>C</th>
<th>R_1, R_2, R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>1μ</td>
<td>4.2μ</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>0.27μ</td>
<td>1</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>800</td>
<td>1</td>
<td>0.27μ</td>
<td>1</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>3.2k</td>
<td>1</td>
<td>16.8n</td>
<td>1.5k</td>
<td>10k</td>
</tr>
<tr>
<td>12.8k</td>
<td>4n</td>
<td>16.8n</td>
<td>1.5k</td>
<td>10k</td>
</tr>
</tbody>
</table>

Table: 50Hz-2.8kHz five-section equalizer

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>Q</th>
<th>C_x</th>
<th>C</th>
<th>R_1, R_2, R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>1μ</td>
<td>4.2μ</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>0.27μ</td>
<td>1</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>800</td>
<td>1</td>
<td>0.27μ</td>
<td>1</td>
<td>1.5k 10k</td>
</tr>
<tr>
<td>3.2k</td>
<td>1</td>
<td>16.8n</td>
<td>1.5k</td>
<td>10k</td>
</tr>
<tr>
<td>12.8k</td>
<td>4n</td>
<td>16.8n</td>
<td>1.5k</td>
<td>10k</td>
</tr>
</tbody>
</table>
American letter
from George Tillett in Chicago

Attendance at the Chicago Summer CES was about 55,000, some 15% less than last year — although the advance bookings were at a record high. The reason, of course, had to do with the uncertain economic situation, but the growing popularity of the January Las Vegas Show might have had an effect too. If there is a recession, some of the exhibitors seemed unaware of it, judging from the number of high-priced luxury items on show. Infinity had a $20,000 loudspeaker system and Lux were showing a $3,000 turntable, while there were several phono cartridges costing over $250. One was priced at $550 and a precision tonearm could be had for a mere $1300! If you are tired of ordinary tv, you can spend anything between $16,500 and $30,000 for a dish antenna so you can watch satellite transmissions.

Video
As at the last Show, video discs were again a centre of attraction and the Pioneer and Magnavox demonstrations were always crowded. Both these models use a laser system, but RCA were showing off their Selectavision player, which uses a stylus pick-up, at a hotel nearby. RCA state that recent modifications include random access and that the price will still be lower than its competitors. Since they have an agreement with CBS they also have access to a wider range of programme material. V.c.r.s are fast gaining in popularity and several new six-hour models were to be seen. In the long-playing mode, there is inevitably a loss in definition — particularly with models with reduced track width. The ordinary track width in CBS machines is 58 microns, but when the same heads are used to scan the 19.3 micron width employed in the six-hour mode, the tracks overlap, causing picture degradation, since adjacent tracks are out-of-phase. Now, JVC have come up with a simple — well, relatively simple — solution: two extra narrow-field heads are switched in for the long playing mode.

Sony’s AG-300 features a cassette autochanger, permitting 20 hours of recording time, and the programme unit allows the user to record separate programmes on separate cassettes. Other Sony models use Beta-Scan, which lets the user search backwards or forwards at any desired speed up to 20 times normal, with or without a remote control unit. Toshiba has a similar fast scan system, but theirs can flip the tape at 40 times the normal speed.

Sony’s latest tv projection uses a ceiling-mounted projector to produce a picture measuring 11½ feet by 5, and a switch allows the size to be changed. Another company, Electron Systems Products, introduced a projection system capable of producing a 20 ft picture. It is quite portable, measuring 20 by 28 by 9½ inches, and the extra brightness is achieved by using a liquid-coupled lens with liquid-cooled tubes to increase the light output.

Turning to “ordinary” tv sets, there seems to be a trend towards better audio quality and several models were seen with multi-speakers and separate amplifiers. One model even boasted simulated stereo, using a time-delay circuit.

In spite of the relatively high prices, there appears to be a growing interest in dish antennas to receive satellite transmissions. One company quotes a basic price of $16,500 for a single-channel system, plus $5,000 for each additional channel. The leaflet I picked up also mentions concrete pads: “Try not to think about mounting the antenna on the roof. It weighs 2000 lbs, it is 16 feet in diameter and it makes a great sail.” You might ask what programmes are available to justify all this hassle? Well, there are many transmissions intended for cable networks and they carry such intriguing titles as “Showtime”, “Galavision”, “Calliope” and the “Movie Channel”. There is a small licence charge for hotel and apartment users.

Audio
Two or three years ago, receiver makers were committed to a kind of ‘power race’ to see how many watts they could cram in, but not too many buyers were enthusiastic about the cumbersome 400 watts jobs. So these days the accent is on features such as automatic scanning.

Infinity’s Reference Standard.
present station selection, bar-graphs and so on. Onkyo scooped its competitors with a receiver having a built-in “snap, crackle and pop” remover that works like the SAE and Garrard units, which reverse the phasing of the signal before removing the now-pulse transient. A few genuine Class A amplifiers and receivers were to be seen but there is a definite trend towards a modified Class A circuit where the output stage is biased by the signal. Efficiency is claimed to be comparable with Class B without the switching or crossover problems that are known by several names: Kenwood use the term “Zero Switching” and JVC use the description “Super A”, while Fisher prefer “Class-II” and Technics call their arrangement “Synchrohiasis”.

All manufacturers are aware of the problems caused by too much negative feedback and designers have abandoned the “force” loop of the 50-60 dB to get some impressive figures. In other words, amplifiers are designed for low distortion before the loop is closed, so that only 15 to 20 dB is necessary. Yet another approach will, I believe, become quite popular — at least for the more expensive models. This is the “feedback” circuit which involves the use of a separate amplifier to balance out the inherent distortion in the main amplifier. Threshold were the first to use it in their Stasis model, but now Sansui have developed a similar circuit. They introduced the first model at the Show, the AU-DII rated at 120 watts per channel at a distortion less than 0.004%. Frequency response is within +0 and —3 dB from zero to 200 kHz.

Cassette decks now offer better value for money than ever and several models were to be seen priced at well below $160 with metal tape capability, large VU meters, provision for four kinds of tape, a Dolby system and a good all-round performance. The more expensive decks featured such refinements as digital displays, automatic programme selection, end of tape indicators and mic-line mixing. At least 12 models boasted the new Dolby HX (Headroom Extender) circuit while among the dual-speed (3% and 1½ ips) models were entries from Marantz, BIC, and Fisher.

Turntables are also reasonably priced now and there is quite a selection of direct-drive models under $180. Straight tonearms seem to have almost superseded the old familiar S-shaped designs, although Technics still use them in most of their range. Linear tracking or straight-line arms are becoming more common, and among those seen were models from Technics, Harman-Kardon, Mitsubishi, Yamaha, Phono-Linear and Denon. The last named turntable uses a tiny air pump to float the phono cartridge. Lux also have a turntable which employs a pump but this one creates a vacuum to hold down the record so it is really flat. It seems to be an expensive way of doing things, as the price of this model is $3000! Dual were using a special record to demonstrate the virtues of their Ultra Low Mass (ULM) arm and Ortofon phono cartridge. The record carries a 300 Hz signal, but when played on a high-end line of V-shaped spars. The eight-gram ULM combination plays it without trouble, but the severe intermodulation produced by a standard 18 gram arm combination could easily be heard.

Once again, the Show was enlivened by a fascinating array of loudspeakers ranging from shoebox models to wood-case droves and even a few high-end models. The most elaborate system was Infinity’s new Reference Standard at a cool $20,000, It consists of four modules, 7½ inches high which house two 1.5 kilowatt bass amplifiers as well as the drive units. Each bass column contains six 12 inch drivers and servo feedback is obtained with an accelerometer. Crossover frequencies range from 250 Hz to 6 kHz. The midrange section consists of a vertical stack of 12 planar electromagnetic induction units arranged as a dipole. High frequencies are handled by another stack of 36 planar units. The cabinets are 1 inch thick and some of the sections are sand-filled (remember the Wharfedale baffles?) and the total weight is 1200 lbs. How did it sound? Well, it was unquestionably very, very good and the low frequencies were particularly impressive. After all, a dozen 12 inch speakers can move a lot of air! Although the system is not a true line source, the stereo image was outstanding, but it must be said that the overall gain over a really good pair of $1000 systems is quite small — at least at “normal” listening levels. It’s the law of diminishing returns.

Cervin-Vega were demonstrating a new model, designed to “meet the challenge of the new digital super-discs”. It is a three-way system with an 18 inch bass driver and a 12 inch co-axial unit, which has a compression tweeter. An unusual feature of this model is the use of inert gas to effectively increase the volume of the bass compartment of the enclosure. No, the gas can’t escape: it is contained in plastic bags. The system stands 52 inches high and it will handle 1000 (yes, one thousand) watts continuous power.

The Iophon is back again: its new name is “Ionovac” and the one at the Show hailed from West Germany. Crossover point has been moved an octave up to 6 kHz. My old original used to radiate for a considerable distance on all TV bands, which caused some friction with the neighbours, but I’m told that this and other drawbacks have been overcome.

Sony had a large, floor-standing system using four drivers, all with flat diaphragms made from a honeycomb carbon fibre material. The bass speaker diaphragm is about 13 inches square and it is driven by four speech cones, positioned to “ensure a piston movement without flexing”. Jumette, a Canadian manufacturer, were demonstrating the latest version of their system, which uses a horn-loaded ribbon transducer from 600 Hz up — some of the best sound heard at the Show. The VSC company introduced several low-priced cassette players using a new i.c. with a “bucket-brigade” chip to provide high-speed, intelligible audio playback at speeds up to three times normal. According to the makers, there is a definite interest in the idea from manufacturers of V.C.R.s that can operate in the six-hour mode.

It is not surprising that the unique PZM microphone at the January Show and again, it was attracting a lot of attention. It uses a new principle of sound detecting, using the pressure zone at an acoustic boundary to eliminate distortion problems common to other microphones — so say the inventors. The active element is a pressure-controlled, oil-filled magnetostrictive system which is mounted on a plate measuring 5 × 5 inches. One of the advantages of the PZM is that the frequency response is independent of distance, but the gain in clarity is almost unbelievable. In one demonstration, it was compared with a very expensive German studio microphone in a recording session with a large orchestra. As soon as the PZMs were switched in, the feeling of strain simply vanished. Various models are available and they can be put inside a bass drum or piano, since inputs as high as 150 dB can be handled.

Garrulous gadgets

Talking clocks, calculators and microwave ovens are becoming commonplace and speech quality is improving. One reason is the use of new chips that can synthesize phonemes. It is said there are at least 45 uniquely different sounds needed to phonetically create words in the English language. These, plus 16 other dualtonal alternatives are provided by a new LSI chip made by Votrax. There are also three “pause” phonemes often necessary to separate phrases in continuous speech, so the result is a total of 64 phoneme selections. The duration of each phoneme is fixed, the slowest being 40ms and the fastest 250ms. Pitch variation varies automatically, or it can be controlled by an external “clock”. Continuous electronic speech is created by sequencing sounds into recognisable words. For instance, 'phoneme' becomes F-01-N-EI-M.

Panasonic were showing a talking calculator which had a female voice with an impeccable British accent — Roedean, if I'm not mistaken. Casio had another which also contained a clock, date memories, a calendar and 12 recorded tunes. The user could program tunes for special occasions such as “Happy Birthday” or “The Wedding March”, but one tune could not be changed. The thing plays “Jingle Bells” every Christmas...
Today's precision world of electronic equipment demands perfection in tools and equipment. The British made TCSUI Antex soldering station is being constantly updated to meet these demands. Only the toughest material is used in the moulding and, the introduction of the anti-static earth connection protects MOS devices.

There are two alternative irons available with the station for miniature or ordinary soldering work. No Workshop should be without this equipment which incorporates the very latest in electronic engineering soldering technology.

Both models are fitted with 5-conductor silicone burn-free cable and 5 pin DIN sockets

Model TCSUI Station £32.49 including V.A.T. (Nett to Industry) Postage extra

Model XTC 50 Watt
Priced at £11.73 including V.A.T. and P&P

ANTEX (Electronics) Ltd.
Mayflower House, Plymouth, Devon.
Tel. (0752) 67377/8 Telex 45236

Please send me the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
</table>

ANTEX TCSUI Colour Brochure.

Name
Address
Telephone

WW — 056 FOR FURTHER DETAILS
THE CS1830 30 MHz + Sweep Delay

The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticule, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of 1µS-100 µS and trace bright up to show the delay position. As you can see from close study of the photograph, the CS1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.

Brief specification
Rectangular PDA tube 120 x 96 mm, P31 phosphor.
Bandwidth DC-30 MHz
Sensitivity 5mV/cm (30 MHz)
2mV/cm (20 MHz)
Input R.C. 1 MΩ / 23 pF
Rise time 11.7 ns

CS1830 only £455 + VAT includes 2 probes

THE CS1572 30 MHz for the VTR Lab.

If you are in Video, you need the CS1572

The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS1572.

Brief Specification
All for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS1572 only £425 + VAT, includes 2 probes

THE CS1577 30 MHz at 2mV + Signal Delay

The most popular scope in the range.

The CS1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS1577 combines a wide bandwidth DC-30 MHz performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.

Fixed signal delay is provided by a helix delay line which allows viewing of the leading edges of fast pulses for accurate rise time measurement, and the 120 mm PDA tube gives a bright, stable trace even at the highest sweep speeds (20 nS/cm using 5 expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH1 or CH2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays.

Truly an oscilloscope masterpiece CS1577.

CS1577 only £410 + VAT, includes 2 probes.

THE CS1576, unique dual trace 4 function Audio Scope

The CS1576 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to 1 mV/cm but not only can it display the input signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with vastly differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS1576 is now in use all over the world. See it in action or send for complete details.

CS1576 only £235 + VAT.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER

DC to 1000V
AC to 1000V
Ω to 20MΩ
⅔ to 2A
Semi Auto Ranging

£70 + VAT

FC756 500 MHz COUNTER

10 Hz-500 MHz
50mV

Superb instrument

£225 + VAT

For further details and ex stock delivery contact

LOWE ELECTRONICS

CHESTERFIELD ROAD, MATLOCK, DERBYS.
0829-2430 - TELEX 377482

WW-487 FOR FURTHER DETAILS
Colour tv receiver design

3 — More on the colour decoder; also video outputs, sync processor and timebases

by R. Wilkinson, B.Sc.(Hons), M.I.E.E., Decca Radio & Television Ltd

The previous article, in the August issue, ended with an outline of the three-chip colour decoder. The present article continues with further description of this decoder before passing on to other sections of the receiver.

Various sections of the circuit require a number of pulses for the purposes of gating, blanking and clamping. Fig. 10(b) shows the various pulses required and their relative timing and Fig. 10(a) shows how the signals are affected by them.

The “sandcastle” pulse is a convenient way of applying two pulses into one pin of an i.c. Level sensors in the i.c. sort out which width of pulse should go to which section of circuitry.

1. Sandcastle pulse on pin 7 of TDA 2560. The narrow top part of the pulse is used to clamp the luminance signal at black level during the back porch. The actual voltage of this black level is determined by the position of the brightness control. The wider lower part is used to gate the gain-controlled amplifiers which control the saturation and contrast (saturation tracking). During this time (the burst interval) these amplifiers are switched to maximum gain to prevent disturbance to the a.c.c. loop. This pulse must be wide enough to cater for tolerances in broadcast burst position.

2. Sandcastle pulse on pin 15 of TDA 2522. The narrow pulse gates in the burst for use in the subcarrier regenerator section of the i.c. This pulse must be as narrow as possible for optimum noise performance. However, due to the tolerances on broadcast burst position, some degree of adjustment is necessary to the leading edge of this pulse to ensure that all the burst is gated in. If part of the burst is lost, the pull-in range of the subcarrier regenerator a.p.c. loop will be impaired.

The wider part of the pulse is used for blanking the chrominance signal for the whole of the line and field flyback periods. This is needed because the process of gating the gain-controlled amplifiers to maximum gain inevitably produces coloured noise during these periods and this would show on the screen.

3. Luminance blanking. After the narrow part of the pulse 1 has clamped the black level to the voltage set by the customer brightness control, line and field pulses blank the signal during the whole of the line and field flyback periods. Thus these pulses must be derived from the line and field timebases. The luminance signal is blanked to a reinserted level of +1.5V. This luminance signal is then d.c. coupled throughout the remainder of the decoder.

4. Output clamp. A pulse wider than that of the chroma gain switch but narrower than the chroma blanking is required for clamping the colour difference signals before they are added to the luminance signal. The control for each of these clamps is derived from a sample of the video output signal thus ensuring that the d.c. level of this output signal (and hence the black level on the c.r.t.) is closely controlled within a feedback loop.

The background controls, for presetting the black level of each colour, are also included in this loop.

Video outputs

Video output stages need to drive up to 90V p-p of video at a reasonable bandwidth into a load (the c.r.t. cathode) which has a substantial capacitance. The amplifier obviously needs to present a low output impedance to this load and a simple class A amplifier for this application would dissipate an appreciable number of watts. Consequently, several types of low-dissipation circuit have been developed to overcome this problem. The 70 series chassis uses a class A amplifier with an active load (Fig. 11).

In this circuit the drive is applied to a transistor operating as a high class A amplifier with a high-resistance load thus keeping the dissipation down. As long as this transistor is being turned on (i.e. the signal at its collector is going towards the 0V line) the output impedance is effectively low. However, if the drive to the class A transistor starts to go in a negative direction, trying to turn it off, then the output impedance would effectively be the high resistance collector load. Hence the reason for the second transistor, which acts as an emitter follower for positive going output signals and consequently presents a low output impedance to the c.r.t. cathodes.

To ensure good linearity of the output waveform, feedback is applied over the whole stage, part of which is in the i.c. Here, a sample of the blanking level is also taken and the d.c. level of the output corrected as necessary. The c.r.t. background controls are d.c. potentiometers acting in this part of the circuit.

Sync processor

The purpose of the sync processor or “jungle” i.c. is to select the sync pulses from the video waveform, and use them to phase lock an oscillator running at the same frequency. By careful choice of time constants the phase locking process reduces the effect on the picture of noise and disturbances on the video waveform. The resulting line drive pulses can then be compared in another phase locked loop with flyback pulses derived from the line output stage and the resulting pulses amplified to drive the line output transistor. The sync processor i.c. may also separate out field sync pulses and may produce gating/clamping pulses for the colour decoder.

The TDA2571 used in the 70 series chassis does not contain the second phase-locked loop which compares the line oscillator output with the line flyback pulses. This loop, as we shall see, is contained in the power supply control i.c.

The TDA 2571 contains two major innovations, an adaptive sync separator, and a count-down field sync pulse system. Conventional sync separators are based on the d.c. restoring circuit shown in Fig. 12(a). Tr, is biased by R, so that it is just on the point of conducting. As each sync pulse comes along it drives Tr hard on, producing the output pulses shown. The time constant 10R, is chosen so that sufficient charge leaks away between pulses to enable each pulse to turn Tr on. This type of circuit is particularly susceptible to noise on the sync pulses and also to “ghosts” or cross-modulation on the received signal. The principle of the adaptive sync separator used in the 70 series chassis is shown in Fig. 12(b).

The video signal is applied to a gain controlled amplifier which amplifies the sync pulse and sets the black level and sync tip level at the two levels shown. A level corrector takes a sample of each of
Fig. 10(a). Simplified block diagram of decoder, showing relationship of pulses to video signals.
these levels and corrects the gain of the amplifier as necessary. With the sync pulse having been closely defined, a small slice is taken out of the centre of it and amplified, thus producing a very stable, closely defined sync pulse. This type of circuit has been demonstrated to be markedly superior to the older type of circuit especially under noisy, "ghosty", or cross-modulated signal conditions.

Once the mixed sync pulses have been separated out, a further circuit separates out the field sync pulses. Often simple integration is sufficient, but again poor signals can result in poor or even no field pulses. Obviously the mixed sync pulses from the adaptive type of sync separator give improved field pulses but certain signals can be improved by the use of a field pulse count-down system.

A set of dividers counts down from the line oscillator frequency (in this case 2x line frequency = 31.25kHz) to the field frequency of 50Hz and produce an output pulse at this frequency. A normal integrating sync separator produces a field sync pulse directly from the mixed sync waveform and this is compared with the count-down pulse. If the two are completely in phase for a sequence of complete fields, the count-down pulse is fed out to the field timebase. If the pulses are not in phase, the integrated pulse is fed out. This procedure guards against incorrect processing of signals which do not have a defined count-down ratio between line and field sync pulses (e.g. some cctv cameras, video games, etc.).

The necessary delay in deciding which pulses to feed out causes a noticeable though not objectionable effect on the picture — on changing sync sources (e.g. changing channels) the picture locks momentarily with the field blanking interval in the centre of the screen before locking normally.

Direct frame sync
It was discovered, early on in the development of the 70 series chassis, that if the cctv camera or video game, or whatever was the non-counted-down source, had a line/field frequency ratio close enough to the true counted-down one, then the i.c. sent out a proper indirect count down pulse. However, a few fields later it would "realise the error of its ways" when the direct pulse had drifted out of phase with the indirect pulse. It then momentarily supplied the direct field sync pulse while it "considered" the situation. Eventually for a few fields, the unlocked source would appear to have a locked line/field relationship and so the i.c. would revert to supplying the counted down pulse. This sequence would repeat itself ad infinitum and the picture would exhibit an irritating slow vertical jitter. For this reason a small sub-panel was fitted to the 70 series main panel to supply direct

Fig. 11. Video output amplifier (simplified).

Fig. 12. (a) Conventional sync separator. (b) adaptive sync separator.
field sync when required. The customer channel-select switches are arranged to switch in this feature in conjunction with the a.v. time constant switching for v.c.r.s etc.

Line timebase
The requirements of the main output of the power supply are largely governed by those of the line output stage. The least losses (and hence lowest dissipation and highest reliability) occur with low current, high voltage line output devices. The transformer is also simpler in this configuration, acting just as a high impedance supply choke as far as the line scan coils are concerned (Fig. 13). Hence the scan coils are switched directly across the supply and, consequently, their impedance (which, at 16525Hz, is largely composed of their inductance) and their sensitivity determine the supply voltage. The basic formula used is \(E = -L (\frac{di}{dt}) \). The resistor \(R \) is required to limit the current in the transistor in the event of a c.r.t. flashover and extra volts must be allowed for the drop across this resistor.

The line output stage is often a secondary power supply itself, the overwind on the t.f. being the source of e.h.t. and focus voltage for the c.r.t. Sometimes tapped windings, scan rectified, are used to produce some supply voltages for the signal circuitry. All these sources add to the current through \(R \) and contribute to the volt drop across it.

In the 70 series chassis all the supply lines except one are taken from the s.m.p.s.u. transformer. This avoids any losses due to conversion efficiency in the line output stage. The field timebase h.t. is taken from the line output stage because of the need to "track" the height with the width during c.r.t. beam current variation. When the beam current increases, the supply current through \(R \) increases and so \(E \) falls, resulting in a drop in e.h.t. Now both line and field scan sensitivities are affected by variations in e.h.t. and, in general, when the e.h.t. falls the picture on the screen gets bigger. However, when \(E \) falls, so does the scan current \((E = -L (\frac{di}{dt}) \text{ again}) \) and by careful choice of the value of \(R \) the "breathing" of the picture width can be reduced to a minimum. However, if nothing further were done, the height would apparently alter with beam current.

Since a scan rectified supply goes up and down in sympathy with \(E \) this is a convenient source for the field timebase, enabling the height to "track" with the width.

Field timebase
This uses the well-established TDA1170 which has operated successfully for several years in the 80 series chassis. The i.c. is a complete timebase with oscillator, sawtooth generator and output amplifier (Fig. 14). The output circuit incorporates a flyback generator which helps to reduce power consumption. In some circuits the field flyback is contained within the supply rails and consequently a good deal of power is wasted (Fig. 15). In the TDA1170 the supply is only sufficient to contain the scan waveform. During flyback, the supply is switched to a value which is double that during scanning. Thus fast flyback is achieved with lower dissipation.

(To be continued)

Notes on Part 2
For space reasons we deleted a few lines from the text under the section "Sound i.f. and output" on page 64 of the August issue. As the author feels the matter is of importance to the design we are printing them here.

The 18V supply for the TDA11907 is taken from the switched-mode power supply since the large current pulses which the audio output stage takes during bass transients would cause unacceptable picture movement if this supply were scan-derived.

Acknowledgements should have been included to Mullard Ltd for permission to publish Figs 4, 6, 7 and 8 - Ed.
COMMUNITY RADIO
Norman Macleod could have strengthened his arguments about community radio (June/July issue) by reference to the experience of the surprisingly lively pirate broadcast radio in the nation's capital.

1. London has had a community radio station. For about fifteen months until it finally ceased transmitting in the summer of 1975, Radio AMY (Alternative Media for You) attempted a service for the six North London boroughs of Camden, Islington, Haringey, Enfield, Barnet, and Hackney. The rather idealistic collective that ran it had a vision of London divided into five manageable radio constituencies, three north of the river and two south. The six hours of programming included much local news and interviews, even locally produced music and dramatics.

It was the very scope of their ambitions which was their undoing — quite different from the usual deejay shows of the conventional pirate. In the end the collective was too exhausted to carry on — all that work with no possibility of a source of finance. Still, while it lasted it succeeded in what it set out to do.

2. A number of the spectrum 'holes' referred to in the Fred Wise report are actually used most Sundays by the present generation of pirates. In general, the medium-wave operators start around mid-day and close well before the dusk brings extended propagation and the v.h.f. stations tend to come in on the evening. Though one well-established v.h.f. pirate who sometimes uses stereo prefers 12 mid-day to 3 p.m. Readers with the right sort of equipment may like to judge for themselves the extent to which these stations cause interference both within their nominated territory and beyond.

Lest this be misunderstood, I am not in favour of unregulated use of the radio spectrum, for all the obvious reasons. But, faced with the poor record of the Home Office Radio Regulatory Department in presenting honest information on the availability of r.f. spectrum space and the politician's lack of vision in restricting broadcast licences to only two bodies, the occasional carefully planned and well-engineered demonstration seems entirely admirable.

Lennie Michaels
North London

IEEE BUS STANDARD
Some clarifications are required in the article by P. R. Ellefsen published in your June/July issue.

IEEE-Std. 488 (1978) defines with precision the General Purpose Interface Bus (GPIB), including its electrical and mechanical specifications, and the interface functions. IEC 625-2 will provide further guidance on the GPIB message content and formatting in byte-serial data streams.

In his discussion on the type of data driver required by IEEE-488 (1978) Mr Ellefsen is imprecise in his interpretation of the standard. He writes "...some means of allowing one device to control the state of a bus line has to be provided. The available options are twofold: three-state logic, and wired-or. The more universal, and cheaper, wired-or-system is used." 1. The GPIB uses binary logic. It is optional to use three-state output stages on gates driving the ATN, EOI, DAV, REN, and IFC lines.

2. By "wired-or" Mr Ellefsen means "open-collector." The RFD and DAC, messages are a "wired-and" combination of all the open-collector gates connected to the RNF and NDAC lines. The SRQ message is a "wired-or" combination of all the open-collector gates connected to the SRQ line.

3. The DO10-DI08 lines may be three-state or open-collector outputs. In the Parallel-Poll Active State these lines must be open-collector.

4. If three-state drivers are selected for DAV and DO10-DI08 then the GPIB data rate can be up to 1 Mbyte/second. To say that "A tacitly agreed limit of 250 kbyte/second is therefore normally accepted" is a serious misinterpretation of IEEE-488.

The maximum data rate permissible on the GPB is:

(a) 250 kbyte/s using open collector data drivers.
(b) 500 kbyte/s using three-state drivers for DAV and DO10-DI08 and EOI.
(c) IM byte/s using three-state drivers for DAV, DO10-DI08, EOI and ATN, provided that (i) no more than 10m of cable is used (ii) there is at least one standard termination network per metre of cable, (iii) there are no powered-off instruments on the bus, and (iv) the device capacitance is less than 50F.

In practice there are few GPIB instruments able to transfer data at even 250kbyte/s; however, this is not a limitation of the bus but of the instruments. In the future it is likely that test systems designers will require and obtain instruments operating at faster data rates.

The GPIB Parallel Poll function is a source of frequent confusion. In the Parallel Poll Enable message (PPE) the Controller instructs the current Listener how to respond to a subsequent Parallel Poll sequence. The interface function will give an affirmative Parallel Poll Response (PPR) in the Parallel Poll Active State (PPAS) only if the local "individual status" device message (stim) corresponds to DI04 of the last received PPE message. For example, if DI04 was 'l' the 'ist' must be 'l' for an affirmative PPR to be sent. If DI04 and 'ist' are in opposite states then there must be no PPR (PPAS). Because DO10-DI08 are open-collector outputs and not three-state, the PPR received by the Controller is the wired-or function of all devices whose 'ist' message matches the DO4 bit of the last PPE command received by each device.

Jonathan Summers
Fairchild Camera & Instrument (UK) Ltd
Bristol

The author replies:
My thanks to Mr Summers for his comments. Regarding drivers, it is quite true that three-state drivers may optionally be used on some lines, usually with the intent of increasing speed, and the end of the section which Mr Summers quoted should read: "...wired- or system is generally used." I particularly tried to avoid confusion in the article by not referring to the RFD and DAC messages (which are the logical invariants of the state of the NRFD and NDAC lines). It is, however, clear that wired-and of RFD (for example) is equivalent to wired-or of NRFD. I note, incidentally, that Mr Summers occasionally refers to the bus lines by their "high=true" logical names (e.g. SRQ). This is a very useful way to refer to the lines when designing interfaces to the bus, but can lead to confusion when referring to the standard which, as I mentioned in the article, uses "low=true" logic.

My statement that 250 kbyte/sec is a generally accepted maximum data rate is based on paragraph 5.2 of the 1975 standard which states: "A standard performance bus will operate at distances up to 20m at a maximum of 250,000 bytes per second ... using 48mA open collector drivers." However, Mr Summer's explicitly detailed definition of data rates is totally accurate. Note that in paragraph 5.2.3 of the 1978 standard, a warning is given that if a speed-enhanced talker is used to achieve 1 Mbyte/s data rates, with standard talkers, problems may be experienced even when the interface is not being used at that rate.

Mr Summers' section on Parallel Poll is extremely lucid, and I thank him for it.

Finally, I should like to correct a mistake which somehow crept into my manuscript. On p.77 the “untalk” message should be "101111", and "unisten" "1111111".

P. R. Ellefsen

MILITARY ELECTRONICS
Your News of the Month in the June/July issue reports that according to the Defence Estimates the defence equipment programme sustains about 200,000 job opportunities within the electronics industries, and about the same number again indirectly in industry.

It seems to me to be illogical to work for wars in peace-time, even if they are only vaguely anticipated, i.e. by building up one's defences. It was, e.g., a very old Roman precept which said: 'if you desire peace, prepare for war', and, as the late Lord Mountbatten pointed out in a speech shortly before he died, that precept is now "absolute nuclear nonsense".

The defence programme therefore seems to me to be an illogical development of electronics, and also, perhaps, an increasingly dangerous one. Would this not seem to imply that the electronics engineers employed to maintain the defence equipment programme would therefore (a) be better off on the dole, since (b) their knowledge of electronics may serve grave serious gaps, inconsistencies, or failings?

This policy (to make these jobs redundant) could also help considerably to reduce inflationary pressure in the UK, as well as giving support to pacifism, which is surely the only sensible philosophy in Western Europe at the present time.

Peter G. M. Davie
Oxford
WHAT'S SO NATURAL ABOUT e?

Die ganzen zahlen hat Gott gemacht, Alles anderes ist menschenwerke

I do not understand why Dr Finlay (December, February, April) wishes to determine e using a ruler and two jam-jars. The method which he made it clearly not satisfied with integers. It has always been my wish, however, that these columns should bring light and sunshine into the lives of others, especially my bank manager.

Three jam-jars, I think, will be better, and nothing you can't find, if desperate enough, in the ordinary home. I do not possess a metre rule, but some quick hammering at a ceiling has provided a lath just over a metre long. A tape measure, some sand or sugar, or, if your grocer is old-fashioned, a mixture, and string.

The jam-jars are best replaced by those revolving plastic beakers, with string handles stapled on to make small buckets. The metre rule is drilled at its centre, and pivoted, or hung by string from a convenient support. A supply of what the French call le Scotch, so described to help to break down the separation of the two cultures, will be useful, or, preferably, draughting tape. Most readers will have this in their homes (Deuteroatomy Ch.25 v.4).

We now have our balance, the suspended metre rule. I propose to measure from the centre, 500mm. Set one empty bucket at +30 and another at -300 (200 and 530 on the scale).

Use a small coin to trim the balance, mark its position with the tape. Remove it.

Set buckets at +300 and -300. Fill to about one-quarter and then add salt/sand/sugar to get a balance. Remove one bucket and mark it as 'reference standard'. Set the other unit weight at +30 and an empty bucket at -300. Replace the trimmer. Add material to the -300 bucket to get a balance. Empty the material from -300 into +30. Repeat ten times in all.

Set this bucket, now nearly ¾ full, at -100, and use the standard bucket to measure its weight. The scale reading will be about 200, or +100.

The operation is based on the defining equation:

\[\frac{d}{dx} \varphi(x) = \varphi(x) \]

and \(f(0) = 1 \).

The process corresponds to finding e by the construction of Fig. 1. As each chord is a short cut the value is always low, and I was surprised to find that on a diagram with 10cm diameter, hastily done, the total path A, B, C, . . . N came to 31cm.

We can draw another form, producing tangents. This gives a high value, again surprisingly close. The corresponding approach to e is to start with the standard buckets fairly full. Material is sponged out of the +30 bucket into the -300 bucket to get a balance, and is then discarded. Again ten steps are taken and the materials remaining weighed against the standard.

The basic experiment can be elaborated. The effect of taking fewer large steps, and more small steps, can be studied: the size of \(e \) from \(e(x) = x \), through \(e(x) = 0.1 \), up to \(e(x) = 0.9 \) can be recorded. With rather more stable equilibrium explosive growth of \(e \) as it goes on can be shown.

Finally, there is one feature of this system which I find particularly attractive: you don't need the apparatus at all, or, to put it another way, you can repeat the operation on your adding machine.

\[f_1 = 1.00, \quad 0.1f_1 = 0.1, \quad f_2 = 1.1, \quad 0.1f_2 = 0.11, \quad f_3 = 1.21, \quad 0.1f_3 = 0.121 \text{ etc.} \]

But my little adding machine, the back of an envelope, finds 3 significant figures the limit. A classier machine gave me 2.3579.

Thomas Roddam
London W8

SCIENTIFIC COMPUTER

I would like to thank John Adams and your selves for such an excellent and timely educational project as the Scientific Computer which appeared in your April to September, 1979, issues. Although I have modified the basic design to permit the use of dynamic random access memories and the use of an unmodified 525 lines/minute video display television, Mr Adam's design presented me with the exposure and guidelines which were necessary to undertake such a project as an amateur.

Mr Adams's design utilizing the MM57109 number cruncher as an op-erator as a peripheral device of the X10 main microprocessor to handle computations is indeed a novel one. This technique should be very attractive to those developers catering specifically for applications in science and engineering.

BUPR Mk II has greatly enhanced the facilities of the computer but still lacks a few very vital functions like string variables, arrays and read/data statements. However, the branching of control to an address in r.a.m. for unrecognized commands, statements and functions allows additional facilities to be added fairly easily. In fact, I have added the use of REM for remarks, LINK N as a statement to link BUPR and machine language programs and have changed the multi-line statement separator to the more familiar colon.

I should mention here that, instead of reprogramming my original r.o.m.s with the Mk II monitor/interpreter firmware, I have rewritten the Mk II so that it will load and run in r.a.m. at location 5440 to 1D4F. This modified version of BUPR Mk II is then saved on cassette tape and re-read into the computer when necessary. This exercise is done only as a temporary means of making use of the added facilities of BUPR Mk II and retain the use of my 5-unit code Baudot 50 baud teletypewriter until I am satisfied that BUPR firmware is sufficiently developed with enough facilities.

My system comprises 3K r.o.m. from 0000 to 02FF, expandable to 02FF (4K) and 12K dynamic r.a.m. from 0000 to 3FFF, expandable to 7FFF (28K).

The code memory is mainly loaded from 8000 upwards but of necessity comprises half pages of 16 lines by 64 characters per half page, with each displayed half page automatically or manually selectable.

Since the computer makes use of r.a.m. area 1E00 to IFFF without memory protection, I have transferred the commencement of BUPR program loading to 2000. This position prevents long or graphically oriented programs. Unfolding into memory area used by the computer and also semi-reserves the area 1000 to IFFF for machine language programs and any additional facility that may be added to the interpretor. It also provides comments for interested persons via P.O. Box 65, St John's, Antigua, West Indies.

Eustace N. Phillip, VPZAX
St John's
Antigua, W.I.

TECHNICAL AUTHORS

I was sorry to see that Mr Ronald C. Slater's otherwise comprehensive article on Careers in the Electronics Industry (May issue) should have overlooked so completely the engineers who produce the manuals and other technical publications upon which the success of a product can, and often does, finally depend. The work of the technical author surely deserves - together with that of engineers engaged in the paralell activity of technical design - to be ranked with the "main activities of a typical company".

The provision of operating, maintenance and repair information is an essential support service for electronic equipment. It is generally a contractual requirement and a potential customer may be expected to defer the purchase of any new product, however meritorious, unless and until the necessary technical manuals are made available.

Mr Adams's design utilizing the MM57109 number cruncher as an op-erator as a peripheral device of the X10 main microprocessor to handle computations is indeed a novel one. This technique should be very attractive to those developers catering specifically for applications in science and engineering.

BUPR Mk II has greatly enhanced the facilities of the computer but still lacks a few very vital functions like string variables, arrays and read/data statements. However, the branching of control to an address in r.a.m. for unrecognized commands, statements and functions allows additional facilities to be added fairly easily. In fact, I have added the use of REM for remarks, LINK N as a statement to link BUPR and machine language programs and have changed the multi-line statement separator to the more familiar colon.

I should mention here that, instead of reprogramming my original r.o.m.s with the Mk II monitor/interpreter firmware, I have rewritten the Mk II so that it will load and run in r.a.m. at location 5440 to 1D4F. This modified version of BUPR Mk II is then saved on cassette tape and re-read into the computer when necessary. This exercise is done only as a temporary means of making use of the added facilities of BUPR Mk II and retain the use of my 5-unit code Baudot 50 baud teletypewriter until I am satisfied that BUPR firmware is sufficiently developed with enough facilities.

My system comprises 3K r.o.m. from 0000 to 02FF, expandable to 02FF (4K) and 12K dynamic r.a.m. from 0000 to 3FFF, expandable to 7FFF (28K).

The code memory is mainly loaded from 8000 upwards but of necessity comprises half pages of 16 lines by 64 characters per half page, with each displayed half page automatically or manually selectable.

Since the computer makes use of r.a.m. area 1E00 to IFFF without memory protection, I have transferred the commencement of BUPR program loading to 2000. This position prevents long or graphically oriented programs. Unfolding into memory area used by the computer and also semi-reserves the area 1000 to IFFF for machine language programs and any additional facility that may be added to the interpretor. It also provides comments for interested persons via P.O. Box 65, St John's, Antigua, West Indies.

Eustace N. Phillip, VPZAX
St John's
Antigua, W.I.
A different kind of degenerate operation is possible under other conditions. As an example, consider a p.r.b.s. generator where $a = 18, b = 1$. If the logic outputs should achieve the sequence in Fig. 2, or a shifted version of it (as it would normally do), then it will perpetuate the pattern in a closed loop of three states, $a, b, 0$. This arises because the system described can be analysed as being equi-
valent to Fig. 3, which is a two-element

Fig. 3

p.r.b.s. generator with an extra delay, of suitable length to provide positive feedback (since 12 is a multiple of 3).

As a result of the above, rules can be drawn up which must be obeyed for non-degenerate p.r.b.s. operation:

$$a = (a + b)v \oplus x$$

where $a = 1, 2, \ldots, (a + b - 1)$. $v = 1, 2, 3$. $x = 1, 2, \ldots, (smaller \ of \ a \ and \ b)$.

A feedback connection table generated from these equations is given below. There are a few notable differences from Mr Butler's table.

a-b Non-degenerate values for a
2 1
3 1, 2
4 1, 3
5 1, 2, 3
6 1, 5
7 1, 2, 3, 4, 5, 6
8 3, 5
9 1, 2, 4, 5, 7, 8
10 3, 4, 6, 7, 8, 9
11 2, 3, 4, 5, 6, 7, 8, 9
12 5, 7, 11
13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
14 2, 3, 4, 5, 6, 8, 9, 10, 11, 12
15 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14

Note that it is simple to 'construct' these devices in microprocessor systems. I have written a 280 routine for a 64-element generator in less than 32 bytes.

K. Wood
Ipwich
Suffolk

ILLICIT CB ON 27MHz

A number of people have urged the Government to move quickly on citizens' band radio before illicit use of 27MHz gets out of hand. I have a nasty suspicion that it's already too late. The authorities will never catch these users (they can't even be bothered to catch those who jam v.h.f. amateur radio repeaters continually, where they know the names and addresses of the offenders; how will they catch tens of thousands of illicit c.b.ers?), even with the current wave of indiscriminate stopping anyone and everyone with a non-broadcast antenna on the roof of their car (RSGB cards count for nothing and I now have to carry my licence at all times - not a legal requirement officially).

It's difficult to see what will entice these users on to another band. Certainly, rigs will have to be a good deal cheaper than the £50-£100 black-market price of an American 27MHz rig smuggled into the country, and I don't see that as being economically viable for British manufacturers as there will only be the home market and the chances of even the EEC adopting a system other than 27MHz a.m./s.s.b. must be pretty remote.

And there'll always be people who prefer the American mode and its UK illegality and just want to say '10-4' to each other; they'll never give up 27MHz. And there's something to be said for international compatibility. My 2-
metre amateur rig is pretty useful anywhere in the world I care to go with a reciprocal licence. Would it not be a good thing to standardise c.d. equipment in a similar way? Then there would be a far greater market to encourage UK manufacturers (who already make the odd frequency synthesiser for Japan) and the possibility of cheaper rigs. Temporary import controls could establish the UK industry, which could then stand or fall on its ability to compete internationally.

What this all comes to is two points. First, 27MHz will never go away; the technical problems are easily sorted out and it really comes down to acknowledging that the present thousands are unlikely to leave the band. Either they are legalised or they aren't. Second, prices for v.h.f. rigs that are above the £50-£100 mark will ensure the continuation of 27MHz use and will equally ensure that the average 'citizen' won't be able to afford to use his 'band', leaving the way open for a future government to take the said band away because nobody's using it: it was never really necessary. At best, such a c.b. would be little broader-based, socially speaking, than the amateur bands, which are almost exclusively middle-class. US and illicit UK 27MHz activities are totally classless, at least partially, because everyone can afford a rig.

After long consideration we may find that the technical arguments against 27MHz - which are very powerful and generally sensible - must be reconsidered in view of the social implications of a v.h.f. citizens' band or indeed any band which requires expensive equipment and isn't already - albeit illicit - in use.

Richard Elen, G8RXJ
Croydon

ELECTRONIC IGNITION

I was most interested to read the letter from Mr D. J. Bryns in the March issue since I have been building and using c-d systems for eight years. Last year I wrote to a well known manufacturer with some constructive criticism of his design. A few days later I received the offer of a job! My own conclusions are:

1. The capacitor-discharge unit itself is not always to blame for spurious faults, although careful attention must be given to the choice of suitable components; in particular, the thyristor and the capacitor which must tolerate very fast risetimes, high voltage and high temperature.

2. The high output voltage from the coil attached to a c-d unit is susceptible to leakage and arcing caused by dust, dirty or cracked h.t. leads, faulty coil or suppressor caps.

3. C-d ignition does not appear to cope with a weak mixture any better than standard Ken-tering ignition, possibly because although the voltage can be higher, the duration of spark is much less than that of the standard system.

4. The c-d system does seem to cope with a rich mixture, perhaps because its fall-rise time allows it to fire a fouled spark plug.

Note that points 2, 3, and 4 can result in misfiring or a c.d. driven system but apparently acceptable performance from standard ignition.

M. T. Pickering
Stockton, Cleveland
LONG-PATH AND SIMPLE AERIALS

The ability of amateurs using only simple aerials to work long distances by taking advantage of the extremely reliable morning choral-hop, long-path to Australia, via the dawn and dusk “tilts” in the ionosphere, rather than multi-hop paths, is underlined by the observations of Ron Fisher, VK3OM of Glen Waverley, Victoria. He reports working on 14MHz s.s.b. some 147 different British amateurs under “long-path” conditions during the past year. Of these, 55 of the British stations were using dipole-type aerials, 32 were using ground planes and vertical monopoles, four were using “mobile whips”, representing a total of 91 with simple aerials, compared with 56 using already-some 140 antennas. He writes: “It is interesting to note that some of the more consistent British stations heard in Australia at this time of day use dipoles; they are not necessarily the strongest signals but often the difference between them and the stronger signals heard at the same time is small, perhaps 1-1½ “S” points. (S-point calibration varies widely between different receivers but this probably represents about 4 to 5 dB).”

US REPLY TO THE PECKER?

An American h.f. over-the-horizon radar system (Conus OTH-B) has recently begun a nine-months trial from a transmitter site near Moscow (sic). Maine, with the receiving site for the backscatter signals about 100 miles away near Columbia Falls. The system is designed to detect moving targets at a range of up to about 1800 nautical miles, using complex digital data processing to isolate targets from the large amount of sea and land backscatter clutter. Twelve 100 kW transmitters are used on a 24-hour basis with any of four centre frequencies between 6.8 and 21.8MHz. The transmitting aerial array comprises 48 elements, 12 for each of the four bands: a ground screen stretches 750ft in front of the array to improve low-angle radiation. The USAF is said to have already spent some $100 million on over-the-horizon radar development, although the American over-the-horizon radar at Orfordness in England was taken out of commission some years ago and the site turned over to BBC External Services.

Although it is stated that the OTH-B signals will cause much less interference to other services than the notorious Russian “Woodpecker”, there are fears that the growth of such systems, if they prove successful, may become world-wide and will inevitably affect low-power amateur transmissions. OTH-B signals will have a faster “kneecing” rate than the Pecker, varying from about 20 to 60Hz and sounding rather like “mains hum”. The system is being operated on a “non-interference” basis and one hopes that this will be achieved in practice. Amateur frequencies are to be avoided.

LOCAL COURSES FOR RAE

Evening classes for those wishing to sit the Radio Amateur’s Examination are again starting soon in many local education centres, with enrolment during early September. Among the towns where courses have been notified to the R.S.G.B. are: Bath, Belfast, Birkenhead, Birmingham, Bracknell, Gosforth, Turnford near Hoddesdon, Langley near Slough, Manchester, Melton Mowbray, Newport, Northampton, Orpington, Scunthorpe, Stockport, Walsall and Weybridge. As this list is probably incomplete, enquiries should be made at local adult education centres.

A second training course for electronics and amateur radio was held in Colombo, Sri Lanka recently with the co-operation of the German national amateur radio society, DARC. There were 29 participants, including students from India and Bangladesh (although amateur licences are not yet available in Bangladesh).

AROUND THE BANDS

The IARU Region 1 Executive Committee has recommended that the new amateur band between 10,100 to 10,150 kHz (which is expected to become available about 1980) should be for c.w. operation only. This is to enable as many amateurs as possible to make effective use of this band which will be the narrowest of all amateur allocations. The IARU Conference in 1981 (to be held at Brighton from April 27 to May 1) is expected to set up a working group to consider band plans for the 18 and 24MHz bands, although these may not become available to amateurs for several years.

H. L. Wilson, EI2W, one of the few European amateurs permitted to use the 50MHz band, has reported making 1552 transatlantic contacts with 600 different stations during the period October 20, 1979 to December 20, 1979, using a transmitter with an output of about 10 watts and a three-element beam aerial. On December 18 he reports that the m.u.f. was observed to 62.75MHz.

According to Ham Radio, first news of the initial volcanic eruption at Mount St Helens, Washington on March 27 came from an amateur radio station operated by a camper on the mountain slope. His dramatic transmission ended: “I’m getting the hell out of here” but he, and two other radio amateurs, were among the missing. Some 100 amateurs worked with rescue crews and another 100 at the communications centres: it is claimed that radio proved more effective than the telephone.

W. A. Scarr, G2WS, chairman of the Radio Amateur Invalid and Blind Club, has appealed for a wider understanding and appreciation of the club’s aims and activities. RAIBC exists to help handicapped members to participate fully in amateur radio. The club has an RAE tuition course on tape cassettes for blind candidates and this has recently been revised; a number of Datong Morse tutors have been donated by friends of the club and are proving successful. Some 50 copies of the club newsletter “Radial” are distributed on tape.

IN BRIEF

Kenya has introduced a “type approval” system for amateur radio equipment, charging a fee of $150 which has to be paid again each time any alterations are made. Attendance at the RSVG National Amateur Radio Exhibition at Alexandra Palace last May was over 6,600. Dates for the ARRA amateur radio exhibition at Leicester have been changed to November 6, 7 and 8. Sixty years ago — summer 1920 — saw the issue of the first post World War I British amateur licences, including “2FZ” as the call sign of the Manchester Wireless Society. It was August 1920 when the weekly concerts for British listeners began from The Hague: PCGG on 1000 metres. The Queen’s Birthday Honours List included the award of an MBE to Roy Stevens. G2BVN in recognition of his work for amateur radio. Basil O’Brien, G2AMV of Wirral, Cheshire is to be the 1981 President of the RSVG. Although the “Firewheel” scientific satellite on board the ill-fated Ariane launch last May has been recovered from the sea, the Oscar Phase 3A satellite seems unlikely to be salvaged. Furthermore, events include the Scottish Amateur Radio Convention on September 13 and the Welsh Amateur Radio Convention on September 28. Charles Suckling, G3WHD in examining tape recordings of 432MHz “moonbounce” echoes has found that they include further “long delay” echoes.

PAT HAWKER G3VA
Four-channel driver i.c.
The L293 is designed to drive inductive loads and can handle currents of up to 1A (3A repetitive peak) with supplies of up to 36V, enabling driving of relays, solenoids, d.c. motors and stepping motors.

The logic section of the device, which may be powered by a separate low-voltage supply, accepts normal logic levels and is provided with six inputs, one for each channel, and two inhibit inputs, each serving two channels.

The four centre pins of the 16 pin d.l.i. package provide thermal conduction for the L293, which has full thermal protection and a maximum power dissipation of 5W, SGS-ATES (U.K.) Ltd, Walton St, Aylesbury, Bucks.

Adjustable crystal oscillator
Precise frequency setting to within ±0.001% is possible with this ovenized crystal oscillator by means of an integral multi-turn trimmer. The Ovenaire 85-1 series is available in a frequency range from 1 to 16MHz, each unit having a t.l.l. output circuit, with a fanout of three, the input of which fully buffers the oscillator circuit to provide low isolation.

Both oscillator and oven-control circuits have built-in voltage regulation and the glass-enclosed crystal has aging figures of ±7×10⁻⁶/week at the time of shipping to ±1×10⁻⁶/year after 90 days of operation. Dimensions of the 85-1 units are 44.5×31.75×26.50mm. Walmore Electronics Ltd, 11-15 Beterton St, Drury Lane, London WC2H 9BS.

Direct-to-wire connector kit
A new Direct-to-Wire Kit which offers 1000 connections for £39.95, is introduced by Verospeed. The kit contains eight types of connector, interlinked with M100, 16-way ribbon cable, supplied on two reels, and a selection of pre-stripped ribbon cable in various lengths.

Gas-tight connections, which obviate the use of noble metals to give cost reduction, are achieved by direct insertion of tinned, stranded or solid contacts into the contact assemblies, GTH contacts, patented by BICC-Burndy, are the basis of the kit, which offers the Research and Development Engineer the ability to incorporate the same products that are used in production, thus eliminating the need for value engineering.

All individual replacement parts are available from Verospeed, and production quantities in excess of 1000 pieces will be quoted for by BICC-Burndy.

Low-profile p.c. relay
With a weight of only 12.5g, this subminiature relay is described as being the lightest of its kind available. The Type SF series low-profile relays are distributed by Diamond H Ltd, and offer a choice of either double-pole, double-throw or four-pole, double-throw contact configurations, with contact ratings of 2A d.c. or 50W, at a maximum of 60V d.c. into resistive loads. Relays with activating coils for operation at either 5, 6, 12, 24 or 28V d.c. are available, each coil having a power consumption of 0.56W.

In addition to the standard basic relay, designated SFA, other more specialized versions are available, including non-polarity, self-latching types, designated SFL, and polarity self-latching types, designated SFB. Further, a variety of alternative contact forms may be incorporated to meet individual user requirements. The terminals of the relays are in standard d.l.i. form and their bifurcated cross-bar contacts are of gold over silver palladium alloy. Diamond H Controls Ltd, Vulcan Road North, Norwich NR6 6AH.

P.t.f.e./woven glass laminate
Two new types of laminate have been introduced by the 3M (UK) Ltd, namely Cuclad 217, which has a dielectric constant of 2.17±0.04 and a dissipation factor of 0.0009 at X-band, and Cuclad 233, which has a dielectric constant of 2.33±0.04 and a dissipation factor of 0.0015 at X-band.

Primarily designed for use in microwave applications, such as computer systems working at sub-nanosecond bit processing times and microwave antennae, amplifiers, filters and couplers, the boards have mechanical strength and dimensional stability equal to similar woven glass products, and offer processing advantages as they do not require "double-etching".

The 217 type is available in thicknesses from 0.010in up to 0.125in, and the 233 type from 0.005in to 0.125in, both types having a standard size of 36×17in, a larger size of 36×34in being available on request. 3M (UK) Ltd, 3M House, PO Box 1, Bracknell, Berkshire RG12 1JU.

Push-pull r.f. power f.e.t.s
Claims of the first r.f. push-pull power f.e.t.s using the v.m.o.s technique are made by Siliconix Ltd. These devices are intended for broadband applications from 2 to 200MHz, and offer the advantages of enabling reduced amplifier size, and minimizing the costs usually associated with the matching of transistor pairs by encapsulating two matched n-channel enhancement mode f.e.t.s in a single package.

The DV 28120D, DV 2880D and DV 2840D can deliver up to 100, 80 and 40 watts respectively and give tuned outputs of 25watts with a minimum power gain of 10db at 175 MHz. The units can be used in either class A, B or C configuration. Siliconix Ltd, Morton, Swanswick S69 6NE.

New microprocessor
All other single-chip microcomputers are out-performed by the 8051, claim GEC Semiconductors. It fits in at the top of the Intel MCS-48 family, and has an instruction set which includes multiply, divide, subtract with borrow, compare and non-paged jumps. Another of its features is a 'Boolean Processor' which allows very high speed implementation of logical or decision-making operations.

The 8051 is suitable for stand-alone, single-chip controller applications requiring up to 64K bytes of memory, and has itself 4K bytes of p.r.o.m. and 128 bytes of r.a.m. Unlike other processors in the MCS-48 range, the 8051 includes a full duplex u.a.r.t. for serial communication, complete with oscillator and clock circuits. For distributed systems, the serial I/O provides an inbuilt, high-speed multiprocessor protocol. Two 16-bit timer counters and four 8-bit I/O ports are also included.

The 8051 will be available in three versions: the 8051, which has a mask-programmed program memory; the 8051, which has a u.v.-erasable memory and the 8051 which has no internal program memory. GEC Semiconductors Ltd, East Lane, Wembley, Middlesex HA9 7PP.
Portable radio for the handicapped

A scanning portable radio, ideal for the blind, short-sighted or handicapped, has been developed by Sony (UK) Ltd. The ICF-M20L requires no visual control as raised dots on the touch buttons allow touch-reading, and "piptones" are given to tell the user when the controls are operated correctly and when the radio is scanning. At each receivable station, the scanning stops automatically, and the radio has a memory in which up to seven stations on f.m. and seven stations on m.w./l.w. can be stored and recalled by one touch operation.

Dimensions of the ICF-M20L are 179 x 85 x 26mm, and its weight is 380g, including batteries. Sony (U.K.) Ltd, 134 Regent St, London W1.

WW309

Conducting elastomer connectors

Connexion between elements which have contact pads as close as 0.010in is possible with the Stox Series 405/2 interconnexion system which uses alternate layers of conducting and insulating silicone-rubber, each 0.002in thick, that are bonded together to form a "block". Clamping of the block to the mating conductors is required to ensure good contact, the pressure required being that which causes the block to deflect by between 5% and 20%.

Elastomer connectors can be used to interconnect components such as displays, i.e. chip-carriers, p.c.b.s, leadless hybrid circuits and flat-cables, and as no soldering is required, and a greater tolerance to misalign ment is available than with conventional connectors, time savings can be made where large-scale production is concerned.

Stax 405/2 low-profile connectors are manufactured by Huiltronics Inc. (USA), and have a temperature range of -50 to +150°C. Symot Ltd, 22A Reading Rd, Henley on Thames, Oxon RG9 1AG.

WW310

High-voltage networks

This new range of custom-built resistance networks is being launched by Welwyn Electric Ltd. Each network is capable of withdrawing up to 30kV, provided that the power dissipation of the device is not exceeded, making them particularly suitable for use as high-voltage dividers.

With power ratings of up to 4.5W, the networks can be obtained in a resistance range from 100Ω to 2GΩ, with a stability of 0.5% after 1000hrs of use, and a standard tolerance of ±5%, tighter tolerances being obtainable if required. Other applications in which the networks can be used to advantage are very low inductance and noise systems, accurate feedback controls, measurement systems and bleeder chains.

WWW309

Conducting elastomer connectors

Comprehensive measurement of sound, vibration and voltage is possible with the new wide-range amplifier/voltmeter Type 2610, from B&K Laboratories Ltd, in which d.e. displays are incorporated for the gain/measuring range and overload indications, and accurate true r.m.s. and peak level detectors plus a max. hold facility enable its use as a precision voltmeter.

High-pass filter and 'A' weighting system for sound measurement, provisions to enable con-
WILMSLOW AUDIO

The firm for Speakers

HI-FI DRIVE UNITS

- Audio HD12 0025
- Audio HD1125/6B/C
- Audio HD25/64/SX
- Audio HD28/34H
- Baxi Super7
- Chariot Super S 8/9/80
- Chariot CEA205 pairs only
- Code 4001
- Code 3000
- Cheetah 6/250/II
- Cheetah HD 7200
- Dalisford AM 10
- Dalisford 300/110
- Dalisford 500/153
- Dalisford 650/200
- Dalisford 90/250
- Dalisford 110/610
- Dalisford D10 tweeter
- Denon London Horn
- Deco CO/1000/8
- Elac CNC204 6½" £7.95
- Elac CNC29B 8" £7.95
- EM type 350, 13½" x 8", 4 ohm £9.45
- EM 144/700, 14¾" x 6", 8 ohm £19.00
- Iophon KEB/8
- Iophon KX16/8
- Jordan Watts Models
- Jordan Watts HF kit
- Jordan 50mm unit
- Jordan DB crossover £24.50 pair
- Jordan Mono crossover £24.50 pair

PA GROUP & DISCO UNITS

- JefT7
- Kef 1110
- Kef 1200
- Kef 1310
- Kef 101
- Kef 1012
- Kef 012
- Lowther FM G
- Lowther FM Mk I £62.25
- Peerless K107/D £16.95
- Peerles K107/DNC £16.95
- Peerles K107/40NF £16.95
- Radford RD25 Mk III £25.95
- Radford RD9 £24.85
- Radford RN8 / RN31 £22.50
- Richard Allan CDRT £35.50
- Richard Allan GT7 £5.95
- Richard Allan DT30 £10.75
- SGH H107 £31.00 per pair
- Shearer Electrostatic with polar, network & crossover £130.00 pair
- Tannoy DC286 10" £107.35
- Tannoy DC318 12½" £148.50
- Tannoy DC385 15" £178.90

WILMSLOW AUDIO

- Celestion G12/20TC £19.50
- Celestion G12/80TC £24.90
- Celestion G12/100TC £23.75
- Celestion G12/125C £42.00
- Celestion G15/100C £37.85
- Celestion G15/100TC £38.75
- Celestion G18/200 £64.75
- Celestion HF130D £12.50
- Celestion HF2000 £58.80
- Celestion Powercell 12/150 £68.00
- Celestion Powercell 15/250 £72.00
- Celestion M1000 £81.75
- Fane Classic 45 12" £13.95
- Fane Classic 55 12" £15.95
- Fane Classic 80 12" £19.75
- Fane Classic 95 15" £26.25
- Fane Classic 150 15" £37.95
- Fane Classic 125 18" £43.95
- Fane Classic 175 18" £47.95
- Fane Guter R0L 112" £26.25
- Fane Guter R08 2/12" £27.25
- Fane Guter 150 12" £26.25
- Fane PA8S 12" £35.00
- Fane Speaker 100 19" £57.50
- Fane Crescendo 12E £74.90
- Fane Crescentia £74.90
- Fane Crescendo 18E £95.00
- Fane Colossus 18E £95.00
- Fane J44 £6.90
- Fane J10 £15.95
- Fane J3 £10.90
- Fane HPX7/HPX2 £3.45
- Fane HPX3 £5.60
- Fane HPX3B £4.95
- Goodmans SP2 £5.45
- Goodmans PIP2 £5.45
- Goodmans D12 £25.50
- Goodmans D15 £24.45
- Goodmans D18 £48.45
- Goodmans Halos 50/XH £21.55
- McKenzie C1208TC £26.50
- McKenzie C1208TC £25.00
- McKenzie G15 £35.10
- McKenzie C15 £35.10
- McKenzie C15C £59.60
- Motorola Fibre horn 3½" £16.50
- Motorola Fibre 4½ x 6" £21.25
- Richard Allan HD8T £39.00
- Richard Allan HD10T £39.00
- Richard Allan HD12T £39.00
- Richard Allan HD15 £52.75
- Richard Allan HD15P £52.75
- Richard Allan Atlas 15" £77.00
- Richard Allan Atlas 18" £75.00

WILMSLOW AUDIO

KITS FOR MAGAZINE DESIGNS, etc.

KITS INCLUDE DRIVE UNITS, CROSSOVERS, BAF & LONG FIBRE WOOL, etc.

FOR A PAIR OF SPEAKERS

Carriage £3.75 unless otherwise stated

Practical Hi-Fi & Audio PROD-71L (Rogers)

As above but including felt panels £182.75 + £5 carriage

Hi-Fi Answers Monitor (Rogers)

£267.00 + £5 carriage

Hi-Fi News State of the Art (Adams)

£231.50 + £5 carriage

Popular Hi-Fi Mini Monitor (Colloms)

£121.00 + £5 carriage

Popular Hi-Fi Round Sound (Stephens)

£71.90 + £5 carriage

Popular Hi-Fi Jordan System 1

£198.00 + £3 carriage

Practical Hi-Fi and Audio BSCJ (Rogers)

£185.00

Popular Hi-Fi and Audio Monitor (Giles)

£100.00

Practical Hi-Fi and Audio Triangle (Giles)

£170.00

Hi-Fi News Tabor (Jones) with J4 bass units

£58.00

Hi-Fi News Tabor (Jones) with H4 bass units

£76.00

Worldwide Wireless Transmission Line KEF (Bailey)

£125.00

Worldwide Wireless Transmission Line RAG (Ford)

£179.00

Everyday Electronics FE 70 (Stephens)

£150 + £5 carriage

Everyday Electronics FE 70 (Stephens)

£250 + £3 carriage

SMART BARGAINS FREE WITH ABOVE KITS (TO GIVE THAT PROFESIONAL TOUCH TO YOUR DIY SPEAKERS)

REPRINTS/CONSTRUCTION DETAILS OF ABOVE DESIGNS 10p EACH

CARRYAGE & INSURANCE

TWEEETERS / CROSSOVERS 50p each

SPEAKERS 4" to 6½"

80p each

8" to 10½"

£1.25 each

12½" x 8"

£1.95 each

18" x 9"

£1.95 each

18"

£2.45 each

40w KITS

£1.85 each

MAG. DESIGN KITS

£3.95 pair

ALL PRICES INCLUDE VAT @ 15%

Send 50p for a 1980 56-page catalogue ‘Choosing a Speaker’

Tel: 0625 526959 for MAIL ORDER & EXPORT OF DRIVE UNITS, KITS, ETC.

Tel: 0625 526213 (SWIFT OF WILMSLOW) FOR HI-FI & COMPLETE SPEAKER SYSTEMS.

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR

BAF, LONG FIBRE WOOL, FOAM, CROSSOVERS, FEET, PANELS, COMPONENTS, ETC. LARGE SELECTION OF GRILLE FABRICS

(Send 2sp in stamps for grille fabric samples.)

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square, Wilmslow, Cheshire.

WW — 025 FOR FURTHER DETAILS
Testing... Testing... Testing...

anywhere!

The New FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter - and up to five service engineers who could be doing something else!

For further information contact Mike Taylor

FieldTech Ltd
Heathrow Airport
London Hounslow
TW6 3AF
Tel: 01-759 2811
Telex: 23734
FLDTEC G

STOP IT
Heyco Nylon Hole Plugs
snap-lock into panels to provide quick, neat entrance seals. Low cost. Fingertip assembly. 20 sizes for holes 3/16" to 2".

SMOOTH-IT
Heyco Nylon Snap Bushings
convert sharp edges to smooth, insulated holes quickly and easily. Snap-fit with fingertip pressure. 44 sizes — 1/8" to 2 1/2".

FREE SAMPLES
and catalogue on request.

Heyco have got it made for cables

Heyco Manufacturing Co. Ltd.,
Uddens Trading Estate,
Nr Wimborne, Dorset BH21 7NL
Tel: Ferndown (STD: 0202) 871411 (4 lines)
Telegrams: HEYCOMAN Wimborne.
Telex: 41408.

STOP IT

Electronic components
& applications

Use your scissors to keep informed.

Cut the coupon and subscribe to Electronic Components and Applications. Its 64 pages, contain in-depth articles like
- Microprocessor applications
- TV and radio digital control
- Electronic news gathering
- 30AX - latest TV techniques
- AC motor speed control, written by top specialists from Philips, Signetics and Mullard.

I enclose £8 for a year's subscription of 4 issues.
I would like a free sample back number.
Please tick

Name
Company
Address

Make cheques payable to William Dawson and Sons Ltd and send to:
Dawson Subscription Marketing Services, Cannon House, Folkestone, Kent CT19 5EE.

Mullard

WW — 098 FOR FURTHER DETAILS
Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM/AM Field Service Monitor
CE-50A-1: FM/AM Field Service-Spectrum Monitor

Guess who builds this great

Logic Probe...YOU! for only £11.92

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly—thanks to our very descriptive step-by-step manual—you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.

CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) Limited
Dept. 7Z Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682
Telex: 817477

CONTINENTAL SPECIALTIES CORPORATION, DEPT. 7Z
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.

Name:

Address:

Inc. P&P and 15% VAT

LPK-1 £14.86

I enclose cheque/PO for £

Card No

FREE Catalogue

Expiration date

WW — 673 FOR FURTHER DETAILS
CB RADIO ACCESSORIES

The Largest distributors of CB accessories in the UK.

Come and see the biggest and best selection of CB radio accessories including:

- SWR METERS including HANSEN
- MICROPHONES by TURNER - K40 G.C.ELECTRONICS
- ANTENNAS by HY-GAIN SIRTEL & HMP

MURA Electronics (UK) Ltd.

79 Church Road, Hendon, London NW4
Tel: 01 203 5277/8

QUARTZ CRYSTALS FAST!

made to your spec.

MOD & CAA APPROVED

AEL CRYSTALS LTD

GATWICK HOUSE, HORLEY, SURREY, ENGLAND BRI 8BU
Telephones: Horley 0734 5455 - Glenmore 3177 (Hursley)

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers' requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CR02XX.
01-684 1422, 01-889 8741

PLAN FOR THE 80's WITH THE ADCOLA SOLDERING UNIT 101

It has features other tools have not

- 50w ELECTRONIC TEMPERATURE CONTROL
- TOTAL EARTH SYSTEM
- NO MAINS INTERFERENCE
- NO MOVING PARTS
- LOW SAFETY VOLTAGE OPERATION
- ADJUSTABLE TEMPERATURE WITHOUT BIT CHANGE
- MINIMUM OF MAINTENANCE
- SIMPLE PLUG IN BITS
- PROMPT BIT REPLACEMENT SERVICE
- TOOL INTERCHANGEABILITY
- LOCKABLE TEMPERATURE INDICATING DIAL
- 12 MONTHS GUARANTEE

Soldering Unit 101 showing the two instruments available

ADCOLA PRODUCTS LIMITED

GAUDEN ROAD, LONDON SW4 6LH. TELEPHONE 01 822 0231/4. TELEX 21851 ADCOLA G
WASP SYNTHESISER

DREAM PLANT ELECTRONICS

IN ASSOCIATION WITH ELECTRONIC DREAM PLANT LIMITED

PRESENT THE FAMOUS DIGITAL WASP SYNTHESISER

NOW AVAILABLE IN KIT FORM FOR ONLY

£149.50 including VAT + P&P

FEATURES INCLUDE:

- TOUCH SENSITIVE DIGITAL KEYBOARD
- 2 OSCILLATORS
- CONTROL OSC. WITH RANDOM SAMPLE & HOLD
- WHITE NOISE
- FULLY COMPREHENSIVE 3 BAND FILTER
- WITH FREQUENCY 'Q' CONTROLS FOR
- LOW/BAND/HIGH PASS
- 2 ENVELOPE GENERATORS WITH
- REPEAT & DELAY CONTROLS
- OUTPUT JACKS TO CONNECT TO
- OTHER WASPS USING A SIMPLE TO
- FOLLOW CODE FOR CONNECTION TO
- ANY INTERFACE MICROPROCESSOR
- BUILT IN SPEAKER & 9 VOLT ADAPTOR INPUT
- LINE & HEADPHONE OUTPUTS
- THIS SYNTHESISER IS ENTIRELY SELF-CONTAINED
- IN A TOUGH PLASTIC CASE COMPLETE WITH
- BATTERY COMPARTMENT FOR SIX 'C' SIZE BATTERIES

THE COMPLETE KIT COMES WITH AN EASY TO FOLLOW ASSEMBLY GUIDE AND PLAYING MANUAL

101 - DREAM PLANT ELECTRONICS
RED GABLES
STONEFIELD ROAD
COMBE, OXFORD OX7 2ER

PLEASE SEND ME WASP SYNTHESISER KITS
AT 149.50 EACH INCLUDING VAT + P & P
(+ £5 EACH FOR ORDERS OUTSIDE GB & NORTHERN IRELAND)

PLEASE SEND ME FREE INFORMATION BROCHURE(S)
(PLEASE ENCLOSE S.A.E.)

NAME

ADDRESS

ACCESS/DARCLAY/CARD NO

PLEASE MAKE CHEQUES PAYABLE TO "DREAM PLANT ELECTRONICS"
AND ALLOW 28 DAYS FOR POSTAGE.

WW - 109 FOR FURTHER DETAILS
CHOICE OF 3 PRIMARY INPUTS

- Transformer is available in choice of 110V, 220V, or 240V, as stated on labels.
- For 110V Primary Input, 1 Transformer = 1 transformer.
- For 220V Primary Input, 1 Transformer = 1 transformer.
- For 240V Primary Input, 1 Transformer = 1 transformer.

Example - 220V

<table>
<thead>
<tr>
<th>Type</th>
<th>VA</th>
<th>Secondaries</th>
<th>Dimensions</th>
<th>Weight Kg</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>26010</td>
<td>50</td>
<td>6 x 6</td>
<td>70 x 40mm</td>
<td>0.9</td>
<td>EACH £5.40</td>
</tr>
<tr>
<td>26011</td>
<td>50</td>
<td>9 x 9</td>
<td>70 x 40mm</td>
<td>0.9</td>
<td>EACH £5.40</td>
</tr>
<tr>
<td>26012</td>
<td>50</td>
<td>12 x 12</td>
<td>70 x 40mm</td>
<td>1.0</td>
<td>EACH £5.70</td>
</tr>
<tr>
<td>26013</td>
<td>50</td>
<td>15 x 15</td>
<td>70 x 40mm</td>
<td>1.0</td>
<td>EACH £6.72</td>
</tr>
<tr>
<td>26014</td>
<td>50</td>
<td>18 x 18</td>
<td>70 x 40mm</td>
<td>1.2</td>
<td>EACH £10.68</td>
</tr>
<tr>
<td>26015</td>
<td>50</td>
<td>22 x 22</td>
<td>70 x 40mm</td>
<td>1.0</td>
<td>EACH £12.27</td>
</tr>
<tr>
<td>26016</td>
<td>50</td>
<td>25 x 25</td>
<td>70 x 40mm</td>
<td>1.0</td>
<td>EACH £12.27</td>
</tr>
</tbody>
</table>

FREEPOST facility.

We are pleased to offer this facility. Simply address your order to FREEPOST TS to

TO ORDER

- Contact the supplier for further details.

People in the know, keep in touch.

Call your secretary, factory manager, accountant or even hold a conference - all at the press of a button using the first easy to install 100% British designed and manufactured Duplex Intercom System.

- Operation on a 8 wire system.
- Plug in anywhere on the system.
- Retain identity station number.
- Up to 56 stations.
- Two speech channels.
- 22 Volt supply.
- All from the smallest central unit available and of course the least expensive.

Barkway keeps you in touch...

Write or phone NOW for further details.

Barkway Electronics Ltd., Barkway, Royston, Herts SG8 8EE, England.
Tel: Barkway (0763 841) 666
Telex: 817651 BARCOM G

NEW VALVES

BRANDED & INDIVIDUALLY BOXED

AVAILABLE FROM:

PM COMPONENTS LTD.

VALVE & COMPONENT SPECIALISTS

CONINGSBY HOUSE WROTHAM ROAD, MEOPHAM

KENT

MANY OTHER TYPES AVAILABLE, INCLUDING SPECIAL QUALITY & VINTAGE, PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

EXPORT & TRADE enquiries welcome.

Phone our sales desk 0474 813225

W W — 108 FOR FURTHER DETAILS

W W — 022 FOR FURTHER DETAILS
CLEARANCE SALE
We are moving to New Premises, and it is necessary to clear most of our existing stock.

THE SALE
Is for ONE WEEK commencing 1000Hr. Monday, 8th September, 1980 to Saturday, 13th September, 1980.

ANNUAL HOLIDAYS from 27th AUG. ‘80 to 3rd SEPT. ‘80
Orders accepted only from Education & Government establishments, otherwise cash sales only.

For list send stamped addressed envelope.

MARTIN ASSOCIATES (ELECTRONICS) LTD.
34 Crown Street, Reading, Berks.
Tele: Reading (0734) 51074 & 595853

SINE WAVE INVERTERS
— FROM CARACAL

200 to 1000VA
DC Input:
12, 24 or 48 V
AC Output:
220/240 V or 110/120 V
50/60 Hz

Caracal sine wave inverters are designed to replace older tuned-type inverters in fixed, mobile or marine use. They are also used for standby AC power for computers, communications and many other applications.

Our technical specification and competitive pricing offer without doubt the best value on the market.

- Very stable output voltage (±2%) and frequency (±0.3 Hz) under all load/battery conditions.
- High efficiency throughout the load range, not just at full load — resulting in lower battery size and cost.
- Very low distortion sine wave — only 3% T.H.D.
- Low idling/no-load input current.
- Automatic "standby" operation available.
- Comparatively low weight.

CARACAL
CARACAL POWER PRODUCTS LTD.
42-44 SHORTMEAD ST., BIGGLESWADE
BEDFORDSHIRE. TEL. 0767-81361.

JUMP TO IT!
Climb aboard the breadboarding bandwagon with CSC's new WK-1 wire jumper kit — just what you've always wanted to make breadboarding easier and quicker than ever before. Here, in one neatly compartmented box, are all those different lengths of insulated hook-up wire you need — 25 pieces of each, in 14 lengths ranging from 0.1 inch to 4 inches. What's more, the CSC kit makes your job even easier by colour-coding all the different lengths and providing a quarter-inch length at each end with the insulation stripped off and bent through 90°. So CSC jumper wires come ready to plug straight into your quick-test sockets, bus strips or breadboard system. No more fiddling around with wire cutters, strippers or pliers — everything you need in one box. Take the plunge right now by filling in the CSC coupon.

CSC (UK) Ltd. Dept. 7RR, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AG.
Telephone: (0799) 21682. Telex: 81747.

W W — 015 FOR FURTHER DETAILS

CONTINENTAL SPECIALTIES CORPORATION
CSC
FREE catalogue ticket box

Continentals Specialties Corporation (UK) Limited, Dept. 7RR
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AG.
TOMORROW'S TOOLS TODAY

WW — 074 FOR FURTHER DETAILS
You should attend...

INTERNEPCON/UK '80

14, 15, 16 OCTOBER 1980
METROPOLE CONVENTION CENTRE & THE BRIGHTON CENTRE, BRIGHTON, ENGLAND

... the 13th annual event devoted to total electronics production technology

Because INTERNEPCON/UK ‘80 is the only exhibition in Europe this year, presenting displays of equipment and systems for all areas of production, processing and testing by more than 500 companies.

Exhibits will include chemicals, materials, pcb’s, tools, connectors, component insertion equipment, test systems, production equipment and associated hardware

--- plus ---

The most comprehensive conference programme with technical sessions covering development, packaging, processing and testing in all areas of electronics manufacturing and applications.

FOR ADVANCE INFORMATION COMPLETE AND RETURN THE COUPON — NOW

Return to Kiver Communications S.A.
171/185 Ewell Road, Surbiton, Surrey, England
Telephone: 01-390-0281 Telex: 92637

Name
Company
Address

☐ Please send FREE exhibition ticket
☐ Please provide conference programme INTERNEPCON/UK '80

SOFTY provides:
- TV map of memory contents (Hex)
- Keyboard entry with assembler facility
- Serial/parallel Inputs (e.g. RS232)
- EPROM programming (2708, 2716, 2732, etc.)
- Cassette tape storage
- A low cost solution! (£100 kit, £120 built + VAT)

SOFTY - What else do you need?

For literature and the name of your local retailer, contact Dataman, P.O. Box 5, Dorchester, Dorset. DT2 7UB or Telephone 03002 700.

Eurocard power supplies

The cards are designed to Eurocard standard size (100 x 160mm) to fit straight into your card or case frame. Each supply is fully regulated with over voltage over current and thermal protection. Input voltage is 110/120/220/230/240 volts AC and both outputs on dual supplies are fully isolated from each other but may be connected to give different power rail configurations. The cards are supplied with choice of D or F type DIN 41612 indirect connector.

- **DUAL 5 volts 2 x 1 amp**
- **DUAL 12 volts 2 x 1 amp**
- **DUAL 15 volts 2 x 0.5 amp**
- **MIXED 5 and 12 volts 2 x 1 amp**
- **MIXED 5 and 15 volts 1 amp and 0.5 amp**
- **NEW 5 volts at 5 amps**

VERO SYSTEMS

VERO SYSTEMS (ELECTRONIC) LIMITED
362 Spring Rd, Sholing, Southampton, Hants, SO9 5QJ
Telephone: (0703) 440611 Telex: 477164

WW — 687 FOR FURTHER DETAILS
S-2020TA STEREO TUNER/AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button
FM Varicap Stereo Tuner combined
with a 24W r.m.s. per channel Stereo
Amplifier.

Brief Spec: Amplifier Low field Toroidal transformer, Mag. input, Tape in/Out facility (for noise reduction unit, etc.) THD < 0.1% at 20W into 8 ohms. High Slew Rate. Low noise op. amps used throughout. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment. Ceramic IF, INTERSTATION VOLUME, and phase locked IC stereo decoder, LED tuning and stereo indicators. Tuning range 88-104MHz, 96dB mono S/N @ 1.2V. THD 0.3%. Pre-coder 'bricky' filter.

PRICE: £59.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual
gate MOSFET RF and Mixer ready built
front end, triple gang varicap tuning,
linear phase I.F. and 3 state MPX de-
coder.

PRICE: £69.95 + VAT

NRDC-AMBISONIC
SURROUND SOUND DECODER

The first ever kit specially produced by Integrer for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug. '77

The unit is designed to decode not only UHJ but virtually all other 'quadruphonic' systems (NH.CDA), including the new BBC HJ. 10 input selections.

The decoder is linear throughout and does not rely on listener fudging logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output signals are provided in this most versatile unit.

Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £49.95 + VAT or ready built and tested £67.50 + VAT

S5050A STEREO AMP

Very high performance kit

50 watts rms-channel. 0.015% THD. S/N 90 dB. Mag.s/n 80 dB. Output device rating 360w per channel.

Tone cancel switch. 2 tape monitor switches. Metal case — comprehensive heatsinks.

Complete kit only £63.90 + VAT

(INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrer to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 4s and the unit re-arms. 240V ac mains or 12V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.

Complete kit £49.50 plus VAT, or ready built and tested £64.50 plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories inc.

Complete Kit PRICE: £43.90 + VAT (3 head model available)

Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which)

Single channel plug-in Dolby PROCESSOR BOARD'S (92 x 87mm) with gold plated contacts and all components.

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free

INTEGREX LIMITED

Please send SAE for complete lists and specifications

Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106
Always have a panel of experts.

Assembling a front panel and PC board has always been very time consuming. By using our new FF system, it enables you to be your own expert and build a superbly engineered front panel, quickly and efficiently. The fully interlocking system of L.E.D.s, toggle switches, push button switches, cermet potentiometers, test jack sockets and other components are all built to a standard format and can be fitted into your own custom built system or one of our front panel units. Send now for our catalogue, and start assembling your own panel of experts...

MANUFACTURED IN GERMANY BY

Happy Memories

4116 200ns £3.75 4116 150ns £5.50
2114 200ns £3.45 2114 450ns £2.95
2708 450ns £4.95 2716 5 volt £10.95

MEMOREX mini disc soft sectored — with FREE library case £19.95 per ten.

WE'VE MOVED!!

All prices include VAT
30p postage on orders below £10
Access & Barclaycard
All orders to:
Dept. WW
HAPPY MEMORIES
Gladestry
Kington
Herefordshire HR5 3NY
Tel. (054422) 618

TELEPRINTER TYPE 7B: Passerprinter 24v d.c. power supply. Speed 50 bands per min. 5½ hand good cond. (too parts broken) £85.75. OR GPO MODEL as above except motor 110/230V a.c. £64.50. Carry each type £3.50. Send SAE for list of Teleprinter spares available.

RADAR ECHO BOX TS-488A X-band. £55. Carr. £5.

TS-147 RADAR TEST SET Combination Sig. generator and frequency meter and power meter. Provides C.W. & F.M. signals. 100 Hz a.c. £225. Carr. £7.

AUTOMODEMMA 230v/115v 50/60Hz 100 watts. Mounted in strong steel case 9" x 6" x 7". Return engineered. £17.25 + carr.

TRANSISTORIZED 4cm RADAR AMPLIFIER SWITCH with 24w waveguide switch, 5 x 4cm ins, with crystal CV.288 and spark gap VX.1068. £17.25 + £1 post.

INSULATION TEST SET E to 100V, negative earth, with formation Amplifier, 100-230V AC. £46.87 + carr.

RC-251 FREQUENCY METER: 125-20,000kc/s complete with original calibration charts £24.15 + carr.

ROTARY INVERTER TYPE PE-218E: Input 24-28v DC 80 amps, 4.800rpm. Output 11v AC 12.5amp 400v/s. 1ph P.E.P. £22 + carr.

RESONATOR PERFORMANCE CTC 434-8151.92 to 3.3cm £68.58 + post £2.

INVERTER 24v DC Input 400 cycles 1ph 6000 r.p.m. 200v, perk. £6.85 + £2 post.

OXYGEN BOTTLE 1000fl. w.p. £11.25 + carr.

NOISE SOURCE UNIT with CV.1881 noise source mount. Produces thermal noise 15.5dBi 230/230V, AC £68.58.

HS32 HEADSET, Low imp. £5.35 + 75p post.

MURPHY DECADE OSCILLATOR TYPE 406D. £92 + carr. £5.

SIEMENS POWER METER REL01/84/A08: 0.12kHz 1mw 500mvw 6 ranges, 0.1%D 300vom. £5.75 + carr.

CV.1596 CATHODE RAY TUBE: (09D, 09G), 6" screen, green electrostatic base B128, £5.80. RADAR RECEIVING ANTENNA TYPE X445 MK D: Suitable for detecting signals on 308/1 and £4.50.

RADAR PERFORM. 24V 3/8" waveguide horns, associated crystals, Transmission line amplifier and associated motor, etc. £41.75.

VACUUM & PRESSURE DET. TEST EQUIPMENT: complete with 3 x 4" gauges indicating 0.205e to 0.300s vacuum. With stand, hand pump, etc. £54.58 + carr.

BARGAIN MAPS

Large stocks of used U.S.A surplus maps, weather charts, etc., including:

ONC-E - U.K. & all part N.W. Europe: Scale 1:1,000,000.
ONC-BN - N. Europe, U.K., Scandinavia, Scale 1:2,000,000.
ONC-21N - Europe (Mediterranean). Scale 1:2,000,000.
ONC-21N - U.S.A. & Canada. Scale 1:2,000,000.
ONC-21N - U.S.A. & Canada . Scale 1:2,000,000.
ONC-21N - Mediterranean area. Scale 1:2,000,000.
ONC-21N - Mediterranean area. Scale 1:2,000,000.

25 x Maps (either same type OR assorted), £18 + £6.50 P&P.

All prices include VAT @ 15%}

Carriage quotes given are for 50-mile radius of Herts.

W. MILLS

The Martings, Station Road
SANDRIDGEWORTH, Herts.
Tel: Bishop's Stortford (0279) 723872
MAIL ORDER PROTECTION SCHEME
(Limited Liability)

If you order from dual order advertisers in this magazine, except for classified advertisements, and pay by
post in advance of delivery, Wireless World will consider you for compensation if the advertiser should
become insolvent or bankrupt, provided:
1. You have not received the goods or lost your money, relevant, and
2. You write to the publisher of Wireless World explaining the position not earlier than 28 days from the
time you send your order and not later than 2 months from that day.

Please do not delay until the last moment to inform us. When you write, we will tell you how to make your
claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedures or such as
possible after the advertiser has been declared bankrupt or insolvent up to a limit of £3,550 per
person for any one advertiser or a total of £13,550 in respect of all insolvent
advertisers. Claims may be paid for higher amounts, or when the above procedures has not been complied
with, at the discretion of Wireless World; we do not guarantee to do so in view of the need to set some
limit to this commitment and to inter-guaranty of readers' difficulties.

This guarantee covers any advance payments made in direct response to an advertisement in this
magazine, e.g., for example, payments made in response to advertisements, etc., readied as a result of
answering such advertisements. Personal advertisements are excluded.

FUSES Quick acting, Anti surge. Ceramic, from £2.80 per 100.
WIREWOUND POWER RESISTORS 5W-17w, ORS-39K from
£8.50 per 100.
PCB Guides, self-fixing from £4.86 per 100.
C.F. RESISTORS, AEL & Iskrå ½w-2w, from £4 per 1.000.
ELMA knobs & accessories. Crimp (solderless) TERMINALS.
CABLE SLEEVES & Markets from £1 per 1.000.
SLEEVING, Neoprene, PVC, Silicone rubber—all colours.
SPECIALLY REDUCED PRICES for C.F. resistors, Poly styrene
Capacitors etc. for values on which we are overstocked. Special list
available.

Write, phone or call for lists required.

PBRA LTD. Hopfield 345
Golden Green, Tonbridge, Kent TN11 OLH
Member Crystalate Group.

WW — 087 FOR FURTHER DETAILS

FREQUENCY COUNTERS—OFF/AIR RECEIVERS

250MHz
801 B
£250
Crystal oven
3 parts 10°

WIREL E S S W OR LD, S E P T E M B E R 1 9 8 0

MEMBER CRYSTALATE GROUP.

GOLDEN GREEN, TONBRIDGE, KENT TN11 01H

BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type
batteries, SAE for lists and prices. £1.45 for booklet, "Nickel
Cadmium Power," plus catalogue.

Write or call at:

SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764

See full range at TLC, 32 Craven street, Charing Cross, London
WC2.

WW — 079 FOR FURTHER DETAILS

NEEDS NO EXAMINATION

You don't need to look too closely
at the CSC Proto-Clips range of IC test
clips to see that they provide instant
connection to dual-inline packaged
components. Use them on ICs, networks
or relays to provide a high-
integration interface for "hands-off"
testing with oscilloscopes, signal
sources, logic analysers and other
instruments. Contact spacings designed
to suit all standard IC packages, CSC Proto-Clips feature a
moulded webbing construction, non-corroding nickel-silver
contacts, and clip notches to prevent slippage during
testing. Make contact with CSC Proto-Clips right away by
filling in the coupon.

CSC (UK) Ltd. Dept. 700, Unit 1, Shire Hill Industrial Estate, Saffron Walden,
Essex CB1 2AQ. Telephone: (0799) 21682, Telex: 817477.

FREE TIX. CATALOGUE TICK BOX

Continental Specialties Corporation
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 2AQ.

TOMORROW'S TOOLS TODAY

WW — 087 FOR FURTHER DETAILS

WW18

XVII INTERNATIONAL IMAGE SOUND AND ELECTRONICS SHOW

TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH

1 Manufacturers of T.V., Radio, Hi-Fi
2 Hi-Fi, Sound and Vision, Recording,
3 Musical Instruments and Equipment
4 Spectacular lighting systems.

FAIR GROUND: BARCELONA (SPAIN) 29th september, 5th october, 1980
Trade visitors: 29th, 30th September and 1st october - General Public: 2nd, 3rd, 4th and 5th october

INFORMATION Avida. M. Cristina, s/n. BARCELONA-4 (Spain) Tel: 223 31 01
Telex 50458 FOIMB E
POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pick-ups, tuners, etc. using digital or analogue sound sources.

Load impedance - all models 4 Ω - ∞
Input sensitivity - all models 500 mV
Input impedance - all models 100KΩ
Frequency response - all models 10Hz - 45KHz - 3dB

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power R.M.S.</th>
<th>Distortion Typical at 1KHz</th>
<th>Minimum Signal/Noise Ratio</th>
<th>Power Supply Voltage</th>
<th>Size in mm</th>
<th>Weight in gms</th>
<th>Price + VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15W into 8Ω</td>
<td>0.02%</td>
<td>100dB</td>
<td>-20 -0 +20</td>
<td>105x50x25</td>
<td>155</td>
<td>£6.34</td>
</tr>
<tr>
<td>HY50</td>
<td>30W into 8Ω</td>
<td>0.02%</td>
<td>100dB</td>
<td>-25 -0 +25</td>
<td>105x50x25</td>
<td>155</td>
<td>£7.24</td>
</tr>
<tr>
<td>HY120</td>
<td>60W into 8Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-35 -0 +35</td>
<td>114x50x85</td>
<td>575</td>
<td>£15.20</td>
</tr>
<tr>
<td>HY200</td>
<td>120W into 8Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x50x85</td>
<td>575</td>
<td>£18.44</td>
</tr>
<tr>
<td>HY400</td>
<td>240W into 4Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x100x85</td>
<td>1,150</td>
<td>£27.68</td>
</tr>
</tbody>
</table>

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and apart from PSU 30 and 36 which are smaller PSUs - all the other ILP's own manufactured toroidal transformers are used which are half the size and weight of laminated equivalents. They are also more efficient and have greatly reduced fields of radiation.

PSU 30 15V at 100mA to drive up to 12 x HY6 or 8 x HY66
£4.50 + £0.88 VAT
THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS
PSU 36 for 1 or 2 HY30's £8.10 + £1.22 VAT

The following include toroidal transformers.

PSU 50 for 1 or 2 HY50's £9.75 + £1.46 VAT
PSU 60 for 1 HY120 £8.75 + £1.46 VAT
PSU 70 for 1 or 2 HY120s £13.61 + £2.04 VAT
PSU 90 for 1 HY200 £13.61 + £2.04 VAT
PSU 180 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

ILP PRE-AMPS ARE COMPATIBLE WITH ALL ILP POWER AMPS AND PSUs

POWER SUPPLY UNITS

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.
this time with two new pre-amps

HY6 mono HY66 stereo

When ILP add a new design to their audio module range, there have to be very special reasons for doing so. You expect even better results. We have achieved this with two new pre amplifiers: HY6 for mono operation, HY66 for stereo.

We have simplified connections and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.

Sizes - HY6 45 x 20 x 40 mm HY66 90 x 20 x 40 mm Active Tone Control circuits provide ± 12dB cut and boost. Inputs Sensitivity - Mag. PU - 3mV Mic - selectable 1-12mV All others 100mV

Main O/P - 500mV. Frequency response - DC to 100KHz - 3dB

** HY6 mono **

£5.60 + VAT 85p

** HY66 stereo **

£10.60 + VAT 1.59

Connectors included

B6 Mounting Board 78p + 12p VAT

B66 Mounting Board 99p + 15p VAT

- LOW DISTORTION - Typically 0.005%
- HIGH OVERLOAD FACTOR - 38 dB on Mag. P.U.
- LATEST DESIGN HIGH QUALITY CONNECTORS.
- REQUIRE ONLY POTS, SWITCHES, PLUGS AND SOCKETS.
- COMPATIBLE WITH ALL ILP POWER AMPS AND PSUs.
- NEEDS ONLY UNREGULATED POWER SUPPLY ±15V to ± 60V.

NO QUIBBLE
5 YEAR GUARANTEE
7 DAY DESPATCH ON ALL ORDERS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

- See below

** ALL U.K. ORDERS DESPATCHED POST PAID **

** HOW TO ORDER, USING FREEPOST SYSTEM **

Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

Please supply Total purchase price £

I enclose Cheque [] Postal Orders [] International Money Order []

Please debit my Access/Barclaycard Account No.

NAME ADDRESS

Signature
<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th>VALVES</th>
<th>BASES</th>
<th>CRTS</th>
<th>INTEGRATED CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A106</td>
<td>A201</td>
<td>A106</td>
<td>G110</td>
<td>7406</td>
</tr>
<tr>
<td>1020</td>
<td>2012</td>
<td>1200</td>
<td>M120</td>
<td>7413</td>
</tr>
<tr>
<td>1320</td>
<td>2400</td>
<td>1300</td>
<td>M130</td>
<td>7416</td>
</tr>
<tr>
<td>1500</td>
<td>2500</td>
<td>1500</td>
<td>M150</td>
<td>7417</td>
</tr>
<tr>
<td>1700</td>
<td>2600</td>
<td>1700</td>
<td>M170</td>
<td>7418</td>
</tr>
<tr>
<td>1900</td>
<td>2800</td>
<td>1900</td>
<td>M190</td>
<td>7419</td>
</tr>
<tr>
<td>2100</td>
<td>3000</td>
<td>2100</td>
<td>M210</td>
<td>7420</td>
</tr>
<tr>
<td>2300</td>
<td>3200</td>
<td>2300</td>
<td>M230</td>
<td>7421</td>
</tr>
<tr>
<td>2500</td>
<td>3400</td>
<td>2500</td>
<td>M250</td>
<td>7422</td>
</tr>
<tr>
<td>2700</td>
<td>3600</td>
<td>2700</td>
<td>M270</td>
<td>7423</td>
</tr>
<tr>
<td>2900</td>
<td>3800</td>
<td>2900</td>
<td>M290</td>
<td>7424</td>
</tr>
<tr>
<td>3100</td>
<td>4000</td>
<td>3100</td>
<td>M310</td>
<td>7425</td>
</tr>
<tr>
<td>3300</td>
<td>4200</td>
<td>3300</td>
<td>M330</td>
<td>7426</td>
</tr>
<tr>
<td>3500</td>
<td>4400</td>
<td>3500</td>
<td>M350</td>
<td>7427</td>
</tr>
<tr>
<td>3700</td>
<td>4600</td>
<td>3700</td>
<td>M370</td>
<td>7428</td>
</tr>
<tr>
<td>3900</td>
<td>4800</td>
<td>3900</td>
<td>M390</td>
<td>7429</td>
</tr>
<tr>
<td>4100</td>
<td>5000</td>
<td>4100</td>
<td>M410</td>
<td>7430</td>
</tr>
<tr>
<td>4300</td>
<td>5200</td>
<td>4300</td>
<td>M430</td>
<td>7431</td>
</tr>
<tr>
<td>4500</td>
<td>5400</td>
<td>4500</td>
<td>M450</td>
<td>7432</td>
</tr>
<tr>
<td>4700</td>
<td>5600</td>
<td>4700</td>
<td>M470</td>
<td>7433</td>
</tr>
<tr>
<td>4900</td>
<td>5800</td>
<td>4900</td>
<td>M490</td>
<td>7434</td>
</tr>
<tr>
<td>5100</td>
<td>6000</td>
<td>5100</td>
<td>M510</td>
<td>7435</td>
</tr>
<tr>
<td>5300</td>
<td>6200</td>
<td>5300</td>
<td>M530</td>
<td>7436</td>
</tr>
<tr>
<td>5500</td>
<td>6400</td>
<td>5500</td>
<td>M550</td>
<td>7437</td>
</tr>
<tr>
<td>5700</td>
<td>6600</td>
<td>5700</td>
<td>M570</td>
<td>7438</td>
</tr>
<tr>
<td>5900</td>
<td>6800</td>
<td>5900</td>
<td>M590</td>
<td>7439</td>
</tr>
<tr>
<td>6100</td>
<td>7000</td>
<td>6100</td>
<td>M610</td>
<td>7440</td>
</tr>
<tr>
<td>6300</td>
<td>7200</td>
<td>6300</td>
<td>M630</td>
<td>7441</td>
</tr>
<tr>
<td>6500</td>
<td>7400</td>
<td>6500</td>
<td>M650</td>
<td>7442</td>
</tr>
<tr>
<td>6700</td>
<td>7600</td>
<td>6700</td>
<td>M670</td>
<td>7443</td>
</tr>
<tr>
<td>6900</td>
<td>7800</td>
<td>6900</td>
<td>M690</td>
<td>7444</td>
</tr>
<tr>
<td>7100</td>
<td>8000</td>
<td>7100</td>
<td>M710</td>
<td>7445</td>
</tr>
<tr>
<td>7300</td>
<td>8200</td>
<td>7300</td>
<td>M730</td>
<td>7446</td>
</tr>
<tr>
<td>7500</td>
<td>8400</td>
<td>7500</td>
<td>M750</td>
<td>7447</td>
</tr>
<tr>
<td>7700</td>
<td>8600</td>
<td>7700</td>
<td>M770</td>
<td>7448</td>
</tr>
<tr>
<td>7900</td>
<td>8800</td>
<td>7900</td>
<td>M790</td>
<td>7449</td>
</tr>
<tr>
<td>8100</td>
<td>9000</td>
<td>8100</td>
<td>M810</td>
<td>7450</td>
</tr>
<tr>
<td>8300</td>
<td>9200</td>
<td>8300</td>
<td>M830</td>
<td>7451</td>
</tr>
<tr>
<td>8500</td>
<td>9400</td>
<td>8500</td>
<td>M850</td>
<td>7452</td>
</tr>
<tr>
<td>8700</td>
<td>9600</td>
<td>8700</td>
<td>M870</td>
<td>7453</td>
</tr>
<tr>
<td>8900</td>
<td>9800</td>
<td>8900</td>
<td>M890</td>
<td>7454</td>
</tr>
<tr>
<td>9100</td>
<td>10000</td>
<td>9100</td>
<td>M910</td>
<td>7455</td>
</tr>
<tr>
<td>9300</td>
<td>10200</td>
<td>9300</td>
<td>M930</td>
<td>7456</td>
</tr>
<tr>
<td>9500</td>
<td>10400</td>
<td>9500</td>
<td>M950</td>
<td>7457</td>
</tr>
<tr>
<td>9700</td>
<td>10600</td>
<td>9700</td>
<td>M970</td>
<td>7458</td>
</tr>
</tbody>
</table>

Terms of business: CWRO. Postage and packing valves and semiconductors 30p per order. CR1s £1. All prices include VAT.

Price ruling at time of dispatch.

In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press.

Account facilities available to approved companies with minimum order charge £10. Carriage and packing £1 on credit orders.

Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.

Open to callers Monday-Friday 9 a.m.-5 p.m.

Telephone 01-677 2424/7
Telex 946708
E. & O.E.
POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER HANTS SP10 3NN

(0264) 64455

8K ON BOARD MEMORY!

5K RAM, 3K ROM or 4K RAM, 4K ROM (link selectable). Kit supplied with 3K RAM, 3K ROM. System expandable far up to 32K memory.

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option — includes transition symbols! Only £18.20 extra!

MEMORY MAPPED

High resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2K memory to give 32 lines for 64 characters.

KANSAS CITY

Low error rate tape interface.

PSI COMP 80

280 Based powerful scientific computer. Design as published in WIRELESS WORLD

The kit for this outstandingly practical design by John Adams published in a series of articles in WIRELESS World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet. Fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction. IC sockets, high reliability metal oxide resistors, power supply using custom designed transistors. 2K Basic and 1K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE PACKS

For those customers who wish to spread their purchase or build a personalized system the kit is available as separate packs e.g. PCB (16"X12.5") £43.20. Pair of keyboards £34.90. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.50. Cabinet (very rugged, made from steel, really beautifully finished) £26.50. P.S. Will greatly enhance any other single board computer including OHIO SUPERBOARD for which it can be readily modified. Other packs listed in our FREE CATALOGUE.

PSI COMP 80 Memory Expansion System

Expansion up to 32K all inside the computer's own cabinet!

By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 3 8K RAM or 4K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.

Mother Board: Fibre glass double sided plated through hole PCB 8.7"x3.0" set of all components including all brackets. Fixed parts and ribbon cable with socket to connect to expansion plug £39.90

8K Static RAM board: Fibre glass double sided plated through hole PCB 5.6"X4.8" £12.50

Set of components including IC sockets, plug and socket but excluding RAMs £11.20 2114L RAM (16 required) £8.50 Complete set of board, components, 10 RAMS £89.50

8K ROM board: Fibre glass double sided plated through hole PCB 5.6"X4.8" £12.40

Set of components including IC sockets, plug and socket but excluding ROMs £10.70 2708 ROM (9 required) £8.20 Complete set of board, components, 8 ROMS £88.50

2 MICROPROCESSORS

280 the powerful CPU with 155 instruction including all 78 of the BBS80, controls the MM57108 number cruncher. Functions include: +, -, /, squares, roots, logs, exponentials, log functions, inverses, etc.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything instantly!

RESIDENT BASIC

With extended mathematical capability. Only 2K memory required but more powerful than most 8K Basiacs!

1K MONITOR

Resident in EPROM.

SINGLE BOARD DESIGN

Even keyboards and power supply circuitry on the superb quality double sided printed through-hole PCB.

COMPLETE KIT NOW ONLY £225+VAT!

ETI VOCODER

COMPLETE KIT

ONLY £195+VAT

Published in Electronics Today International

Panel size 19.0"x5.25": Depth 12.2"

14 CHANNELS!

NOISE GENERATOR

SLEW RATE CONTROL!

2 OSCILLATORS!

voiced/unvoiced detector!

LED PPM METERS!

Kit includes FREE foot control and test oscillator!

Like all our kits, the ETI VOCODER really is complete — fully finished metalwork, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc., — even a 13A plug!

MANY MORE KITS

ON PAGES 103, 105

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER HANTS SP10 3NN

(0264) 64455

PRICE STABILITY: Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until October 31st, 1980, if this month's advertisement is mentioned with your order. Errors and VAT are charge excluded.

EXPRESS DELIVERY: For this optional service (U.K. mainland only) add £2.50 VAT inclusive per kit.

We are delighted to announce the appearance of the new 8K memory expansion system! For more information please contact us.

POWERTRAN

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER HANTS SP10 3NN

(0264) 64455

POWERTRAN

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE U4313
- Sensitivity: 20,000 o.p.v.
- Resistance: 500M ohms
- Accuracy: 0.05% D.C.

TYPE U4315
- Sensitivity: 20,000 o.p.v.
- Resistance: 500M ohms
- Accuracy: 0.05% D.C.

Price complete with pressed steel carrying case and test leads

- Packing and postage (U.K.) £10.50
- £1.50

TYPE U4323
- COMBINED WITH SPOT FREQUENCY OSCILLATOR

Price, in carrying case, complete with leads and manual

- £8.00
- Packing and postage (U.K.) £1.00

GEC HIGH QUALITY STEREO

10 + 10 watt AMPLIFIER WITH AM/FM STEREO TUNER

IDEAL FOR THE HOME

A cancelled export order brings you this offer from the world-famous firm of G.E.C.

- **AM/FM stereo Tuner Amplifier**
 - Tuner: pre-amp, board and separate power supply/pent am, built-in
 - Rotary Controls: Tuning, on/off volume, balance, tone, bass, stereo bass indicator

- **Push-button Controls:** Menu, Tape, Disc, A.F.C.

- **Power Output:** 7 watts RMS per channel, at better than 2% THD into 8 ohms, 10 watts speech and music.

- **Frequency Response:** 60Hz-18KHz within ±3dB.

- **Tape Sensitivity/Output:** Typically 150 mV input - 300mW or greater output.

- **Disc Sensitivity:** 100 mV (parallel cartridge)

- **Radio:** FM (90 MHz), 100kHz
 - Long Wave: 1540-160kHz
 - Short Wave: 3000kHz

- **Size:** 2 x 10 x 12 x 10 in, Power Amp: 2 x 50, 2 x 25, 2 x 15

LIST PRICE OVER £50

- J.V.C. turntable supplied complete with an Audio Technica AT10A stereo magnetic cartridge.
- *‘S‘ shaped tone arm. Belt driven.
- *Full-size 12‘ platter.
- *Calibrated counter balance weight (0.3 gms.)
- *Anti-skate (bias) device.
- *Size 12‘ x 15¼‘
- *Modern design.

LISTED STOKES £25.99

- PLUS VAT £3.89 Post £2.50

MONEY SAVING BARGAIN EX- STOCK FROM US

- **J.V.C. BELT DRIVEN TURNABLE WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE**

- **LIST PRICE OVER £50**

- J.V.C. turntable supplied complete with an Audio Technica AT10A stereo magnetic cartridge.

- Power Supply: 7 watts RMS per channel, at better than 2% THD into 8 ohms, 10 watts speech and music.

- Frequency Response: 60Hz-18KHz within ±3dB.

- Tape Sensitivity: Typically 150 mV input - 300mW or greater output.

- Disc Sensitivity: 100 mV (parallel cartridge)

- Radio: FM (90 MHz), 100kHz
 - Long Wave: 1540-160kHz
 - Short Wave: 3000kHz

- Size: 2 x 10 x 12 x 10 in, Power Amp: 2 x 50, 2 x 25, 2 x 15

LOW PRICE OFFER

- **ON-OF BALANCE, TREBLE, BASS, MONO TAPE PHONE T/C IN LR, MNJ SW Tuning.**

- **FULLY GUARANTEED EX-STOCK**

CAR STEREO CASSETTE MECHANISM made for MOTOROLA

- **Front loading 12-volt transistorised**
- **Speed and voltage control**
- **Ex-equipped test - guaranteed**

PRICE complete with test leads and fibreglass storage case

- **£9.50**
- Packing and postage (U.K.) £1.20

FOR FURTHER DETAILS

WW-854 FOR FURTHER DETAILS
TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

Another superb design by synthesizer expert Tim Orr — published in Electronics Today International

The Transcendent DPX is a really versatile new 6 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound — fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or you should prefer — strings on the top of the keyboard and brass at the lower end (like in classical) split after the first two octaves or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds — just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics necessary for a high degree of realism.

There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

The DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connections, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes fully finished metalwork, solid wood cabinet, professional quality components (all resistors 2% metal oxide) nuts, bolts, etc., even a 13A plug!

COMPLETE KIT ONLY £299 +VAT

To add interest to the sounds and make them more natural there is a chorus / ensemble unit which is a complex phasing system using CDC (charge coupled device) analogue delay lines. The overall effect of this is to emulate how several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects.

As the system is based on digital circuitry, digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing, etc., etc.)

Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connections, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes, fully finished metalwork, fully assembled solid wood cabinet, filter sweep pedal, professional quality components (all resistors 0.1% metal oxide) nuts, bolts, etc., even a 13A plug!

POWERTRAN

MANY MORE KITS ON PAGE 105. MORE KITS AND ORDERING INFORMATION ON PAGE 101

TRANSCENDENT 2000

SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is: portamento, pitch bending, VCO output, ADsR envelope shaper. There is also a slow oscillator, a pitch detector, a 3 voice reverb, a sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.

The kit includes fully finished metalwork, fully assembled solid wood cabinet, filter sweep pedal, professional quality components (all resistors 0.1% metal oxide or 1/2% metal film) and it really is complete — right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mounted directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price.

COMPLETE KIT ONLY £168.50+VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!
NEW PRICES ON MEMORIES

STRUTTS prices down again

1+ 50+ 100+
2114-300ns 1K X 4 SRAM 3.33 2.77 2.40
4116-200ns 1K X 1 DRAM 3.60 3.00 2.60
2708-450ns 1K X 8 EPROM 4.39 4.00 3.70
2516-6v 2K X 8 EPROM 9.99 8.62 7.47
2532-450ns 4K X 8 EPROM 29.90 28.40 24.70
Carter ASCII Keyboard .. £39.50
AY-5-1013 UART ... £2.60

Please add 50p Postage and 15% VAT to all orders.

STRUTT LTD.
(ELECTRONIC COMPONENTS DISTRIBUTORS)
3C Barley Market Street
Tavistock, Devon PL19 0JF
Tel. Tavistock 0822-5439/5548
Telex 45263

Exhibiting at
International Broadcasting Convention
Brighton, September 20-23

PPM3 drive circuit to IEC288-10A, BS4297, draft BS428-9.
Unbalanced input. May be used in equipment which will be
required to pass IBA Code of Practice inspection.

PPM2 drive circuit under licence from the BBC. Balanced
inputs. Approved for critical programme monitoring by IBA,
EBU and BPO.

SUM AND DIFFERENCE changeover board to suit PPM2
or BBC ME17/V.

ERNEST TURNER high quality movements 640, 642, 643
and TMM with bush mounting adaptors and illumination kits
from stock.

Peak Deviation Meter ++ Programme and Deviation Chart
Recorders ++ Stereo Disc Amplifier 2 and 3 ++ Moving Coil
Preamp ++ 10 Outlet Distribution Amplifier ++ Stabilizer ++
Fixed Shift Circuit Records.

SURREY ELECTRONICS
The Forge, Lulka Green, Croyde, Devon EX5 190
Tel: 04846 5997

Post-HNC Endorsement in
Television Technology

A postgraduate endorsement course in Television Engineering,
recognised by the IEE, for students of engineering at HNC or degree
level.
18.00-21.00 Wednesday evenings
Course fee: £14
Enrolment:
23 September 17.30-19.00
24 September 17.30-19.00

Further details from and enrolments at:
The Registry
School of Engineering and Science
PCL, 115 New Cavendish Street, W1M 6JS
Tel: 01-466 5811, ext. 6234

WWW - 100 FOR FURTHER DETAILS

POSITIVE RESIST
COATED LAMINATE

Direct from MANUFACTURER
for high quality printed circuit production -
compatible with all positive working
systems.

Ex Stock Delivery

PRICE SINGLE DOUBLE
EACH SIDED SIDED

4" x 6" £0.99 £1.08
6" x 8" £1.23 £1.38
8" x 9" £2.59 £2.93

All packed individually.
Cash with order only.

All prices inclusive of V.A.T. and Delivery.

WWW - 101 FOR FURTHER DETAILS
MPA 200 100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI the MPA 200 is an exceptionally low priced — but professionally finished — general purpose high power amplifier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.

The kit includes fully finished metalwork, fibreglass PCBs, switches, wire, etc. — complete down to the last nut and bolt.

COMPLETE KIT ONLY

£49.90 + VAT!

MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

CHROMATHEQUE 5000

5 CHANNEL LIGHTING EFFECTS SYSTEM

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound to light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. — Complete right down to the last nut and bolt!

COMPLETE KIT ONLY

£49.50 + VAT!

SYNTHESIZER KITS ON PAGE 103. MORE KITs AND ORDERING INFORMATION ON PAGE 101.

DE LUXE EASY TO BUILD LINSLEY HOOD
75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit is based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, variable tone controls and tape monitoring while distortion is less than 0.01%.

All kits also available as separate packs (e.g. PCB, component sets, hardware sets, etc.) Prices in our FREE CATALOGUE.

POWERTRAN

DE LUXE EASY TO BUILD LINSLEY HOOD
75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit is based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, variable tone controls and tape monitoring while distortion is less than 0.01%.

DE LUXE EASY TO BUILD LINSLEY HOOD
75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit is based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, variable tone controls and tape monitoring while distortion is less than 0.01%.

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit (T30 + 30) is also available for £38.40 + VAT. MACHING TUNERS — See our FREE CATALOGUE!

BLACK HOLE

MUSIC EFFECTS DEVICE — AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS Mode which gives a 'swappy' feel to the sound achieved by delaying the input signal and mixing it back with the original. 75W of clean output power (T20) or 50W with Linsley Hood (T30) is supplied. The circuitry is fully inter-connected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward.

The BLACK HOLE can be used in its own right or as a pre-amplifier for any mixing desk or stereo amplifier. It can be added to any instrument or system for added performance. The BLACK HOLEs are available in singles, pairs or multipacks containing complete sets of controls, wires, etc. — complete down to the last nut and bolt.

COMPLETE KIT ONLY £49.80 + VAT (single delay line system)

De Luxe version (dual delay line system) also available for £59.80 + VAT

Cabinet size 10.0" x 8.5" x 2.5" (rear) 1.8" (front)
there are transformers and...

Drake Transformers

OEM — let Drake Transformers advise you on a component specification and design to solve that special problem. Pre-production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennedy Lane
Billerica Essex CM11 2SP
Telephone: Billericay (02774)5155
Telex: 99426 (prefix Drake)

PRE-AMP: KIT £70.95, BUILT £80.41

The most cost-effective pre-amplifier available. It provides a perfect match for any cartidge, moving coil or magnetic and also accepts auxiliary and 2 or 3 head tape machine with outstanding technical performance from an all-transistor configuration. The kit requires no soldering and takes only about 15 minutes. The module is available separately at £51.75. We also have separate mains supplies for the pre-amplifier in kit form and ready-built, and modules/hardware for moving coil head amps.

POWER MPS: KITS FROM £87.28, BUILT £131.27

There are two stereo and four mono 'domestic' power amplifiers from 45W to 250W/8 ohms, ready built or in kit form. The kits use built and tested printed circuit boards and require only simple assembly and point-to-point wiring.

Exemplary specification includes t.h.d. less than 0.1% at 1kHz, slop rate greater than 30V/s, noise greater than 110dB, fully protected against overload, unconditionally stable.

45W channel: kit, P2, £87.28; built, 202, £131.27
110W/channel: kit, P4, £109.42; built, 204, £153.42

POWER AMP MODULES AND SUPPLIES

QE 1708, 1704, £31.96
QE 1004, £20.69

M1504, 1508, £53.79
M2603, £50.28
M054, £28.00
M2606, £53.96

We offer a wide range of power amplifier modules to suit virtually any application with a performance that is unbeatable at the price. Using circuitry basically identical to our widely acclaimed amplifiers above, they are available in both the popular 1, bracket versions for 60 to 170W module rating for medium duty use and also in high dissipation formats using separate heatsinks for ultimate reliability as up to 250W per channel. Matching power supplies using toroidal transformers (available separately up to 500VA) are available.

EXCELLENT TRADE PRICES

We also build rack mounting power amplifiers, sub-assemblies and special modules to individual specifications. Please telephone with your enquiry.

NEW DELUXE SPEAKER KITS

SYSTEM 1 £89.00
SYSTEM 2 £90.00
SYSTEM 3 £159.00
SYSTEM 4 £139.00

PRICES PER PAIR INC. BAFFLES

Have you wondered why the existing sources of speaker kit offer a bewildering choice of systems, particularly combinations of 200mm baffle unit and tweeter? Don't they know which ones are best? No, why bother with the rest? Well we have sorted out these super kits so you can order in confidence, knowing you get our full endorsement of their performance and value. The kits incorporate professionally finished front baffles with the drive units already mounted so all the hard work is done for you. All that is left to do is to make a simple box. Crossover networks, boxes and terminals are included. Systems 1 and 2 use 200mm bass and 25mm dome tweeter from Son Audax. System 2 being a reflex design that we enthusiastically recommend. System 3 is a competitive 3-way 1.8 using Seas bass and mid and a Son Audax tweeter, cleverly incorporating a stand at the bottom of the enclosure, as does System 4, undoubtedly the best kit on the market, using a Wiat 250mm bass driver with a 25/min ABP on the rear baffle (also supplied), a modified Peerless mid and Son Audax tweeter. We will also be retailing selected drive units at competitive prices, e.g. Son Audax 200mm bass, 208Z/6M £13.50, 25mm tweeter, HD1000 25, £9.00.

All our prices include V.A.T. and delivery. Export no problem — please send for a specific quote by return. All equipment can be wired for 110V mains. Please send a large S.A.E. or dollar bill for our full information and review reports.

PLEASE NOTE THE ADDRESS OF
OUR NEW LARGER PREMISES:
8 ALBION STREET, LEICESTER
Tel: (0533) 546198
Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility using CMOS IC's for extra reliability, Z modulation for brightening or dimming the trace. 10MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £210.00* it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and 10mV/cm sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £360.00*.

Plus the 4S6 single beam 6MHz bandwidth model with easy to use controls. 10mV sensitivity and timebase range of 1us to 100ms/cm. Lightweight, compact and a very good price. £144.00*.

Return the coupon for full details of the range that gives you a lot more scope.

*UK list price excluding VAT.

Scopex Sales, Pixmore Avenue, Letchworth, Herts SG6 1JJ.
Tel: (04626) 72771.

Please send me full details of the Scopex range.

Name
Company
Address
Tel:

WW — 111 FOR FURTHER DETAILS
RADIO AND TELEVISION SERVICING 1979-80 MODELS

Editor
R N Wainwright, T.Eng. (CEI), F.S.E.R.T.

The latest volume in the RADIO AND TELEVISION SERVICING series —
* Bigger than ever — over 900 pages
* Quick reference to hundreds of models
* Essential service information — Television (Colour and Monochrome) Radio — (Portables, Clock Radios, Cassettes, In-car, Unit Audio, Record Players)
* Latest design techniques described
* Receiver adjustment and alignment
* Manufacturers' recommended modifications

Radio Receivers: Bush, Crown, Dynatron, Ferguson, Fidelity, Grundig, Murphy, National, Philips, Pye, Roberts, Sanyo, Sharp, Sony, Ultra, Waltham

An essential reference book for all service engineers

£14.50 14 August

Special price for six-volume set £58.00 (including p&p)
Consisting of vols. 74/75, 75/76, 76/77, 77/78, 78/79, 79/80
Previous volumes still available individually
Enquiries to Sales Dept. Macdonald Futura
From booksellers or, in case of difficulty, please use the form below.

To: The Sales Dept, Macdonald Futura Publishers Ltd,
8 Shepherdess Walk, London N1

Please send me _______copy(ies) of RADIO AND TELEVISION SERVICING 1979-80 Models at £14.50 per copy (post paid). I enclose my cheque/PO for £______ (made payable to Macdonald Futura Publishers Ltd) or debit

☐ Access ☐ American Express ☐ Barclay Card
☐ Diners Club
My card number is _______

Signature ___________________ Date __________

GIRO A/C No. 205/4221
Name _________________________
Address _______________________

Please allow 28 days for delivery.

Macdonald A Division of Macdonald Futura Publishers Ltd.

W W — 0 0 9 F O R FURTHER DETAILS

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear.

We are situated just around the corner from West Hampstead Underground Station (akerless) line. A few minutes' walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following bus routes: 28, 59, 159. Hours of opening are S-S Monday to Friday, Closed for Lunch 1-2. Saturday we are open 9-7.30 only. World wide exports.

TR-7 Transceiver

Ham Bands with 1.5-30 MHz receive with built-in 150 MHz frequency counter plus option of 0-1.5 MHz receive and/or any transceiving application 1.8-30 MHz.

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY

Giro Account No. 588 7181. Telephone: 01-624 7774
Cable: Radio Shack, London, NW8. Telex: 23718

W W — 0 0 5 F O R FURTHER DETAILS

MARKING PENS

with fluorescent colour inks

A range of marking pens is available in ten colours for permanent and removable markings. The inks are highly fluorescent, electrically non-conductive and can be used for marking metal, plastic, fabric or through an oily film.

STANDARD PNEUMATIC MOTOR CO.

35 Stafford Road, Weston-super-Mare, Avon

BS23 3BN

Tel. No. 0934 417803. Telex 449460

W W — 1 1 0 F O R FURTHER DETAILS
Conquer the chip.

Be it a career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years. Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTER ELECTRONICS
LEARN THE PRACTICAL WAY
BY SEEING AND DOING
- Building an oscilloscope
- Recognition of components
- Understanding circuit diagrams
- Handling all types Solid State "Chip"
- Carry out over 40 experiments on basic circuits and on digital electronics
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS
LEARN HOW TO REALLY UNDERSTAND COMPUTERS. HOW THEY WORK - THEIR "LANGUAGES" AND HOW TO DO PROGRAMS
- Complete Home Study library.
- Special educational Mini-Computer supplied ready for use.
- Self Test program exercise.

Service of skilled tutor available.

MASTER THE REST
- Radio Amateurs Licence. LOGO/Digital techniques
- Examination courses (City & Guilds etc.) in electronics
- Semi-conductor technology.
- Kins for Signal Generators - Digital Meters etc.

FREE
Fill in your FREE brochure
AIRCRAFT TUBING A DG A T E &
FREE SAMPLES PLEASE
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL
4 CLEVELAND ROAD, JERSEY, CHANNEL ISLANDS.

Wireless World, September 1980

Incredible Quality
Incredible Performance
Incredible Price!!!

HM312 Dual
Trace Oscilloscope.
DC-20MHz
5V-20V/cm
Time base range
0.5s-0.25s with x 5 horiz mag to 100ns/cm.
CRT screen 8x10cm, Full XY using chill as X input.
Bandwidth 2.3 MHz.
TV trigger.

£250

HM612 Dual
Trace Oscilloscope with delayed sweep.
DC-50MHz
Sensitivity 5mV-20V/cm
Time base range
0.1s-2.5s/cm with x 5 horiz mag to 20ns/cm.
Delay ranges 7 decades steps
100ns-15 with fine control CRT screen 8x10cm, Full XY using ch II as x input, bandwidth 4 MHz. Z input.
Delay line allows viewing of leading edge.
Vernial overscan indicated by 2 LED's.

£580

World-beating Oscilloscope Offers
FROM
Electronic Brokers

49-53 Pancras Road,
London NW1 2GB
Tel: 01-837 7781. Telex: 296694

Prices do not include carriage or VAT.

Barrie Electronics Ltd.
3 THE MINORIES, LONDON EC3N 1BJ
TELEPHONE 01-488 3316 / 77
NEAREST TUBE STATIONS ALDGATE & LIVERPOOL ST.

PRIME COMPONENTS LOW PRICES

Also our micro chips are at micro prices. Don't be fooled by low prices. We do not offer fake components and offer genuine products. For all our parts are guaranteed new, first-quality, tubes, transistors, semiconductor devices. If you find any problem with any of these parts, you are eligible to apply for a complete exchange. To order from us, please refer to "Ordering Information" before ordering. Official orders from Schools, Libraries, and other institutions can be placed for quantities of $50 or more.

NEW UNALTERABLE SENDER RECEIVER KIT

TOTAL SECURITY! Completely unalterable ultrasonic (23KHz) Sound beam works like a physical barrier utilised for security protection but is unaffected by smoke, heat or moisture. The receiver has been designed for use from 6 inches to 26 feet a. An object breaking the beam cause the output to go low for up to 150 milliseconds and will send up to 1500 MA spikes (150V peak). A lot of full electronic protection is provided. Works on 12VDC (unregulated) and draws less than 100 mA. Ideal for burglary alarms, object counters, automatic door openers, electronic railroad switches.

NEW X-RATED CLOCKS

With CALENDAR AND ALARM.

Attract your customers with this innovative X-RATED CLOCKS.

NEW ULTRASONIC SENDER & RECEIVER KIT

M1871 RC ENCODER/TRANSMITTER & LM1872 RC RECEIVER/DECODER

New from National Semiconductor, the LM1872 is a completely new, unalterable ultrasonic (23KHz) Sound beam works like a physical barrier utilised for security protection but is unaffected by smoke, heat or moisture. The receiver has been designed for use from 6 inches to 26 feet a. An object breaking the beam cause the output to go low for up to 150 milliseconds and will send up to 1500 MA spikes (150V peak). A lot of full electronic protection is provided. Works on 12VDC (unregulated) and draws less than 100 mA. Ideal for burglary alarms, object counters, automatic door openers, electronic railroad switches.

NEW LED BAR GRAPH AND ANALOG METER DRIVER

New from National LM1341, Drive 10 LED Directly for maximum analog signal representation. Designed to drive up to 100mA per LED, the LM1341 is ideal for use with all types of analog signals. The LM1341 can be used for any number of applications, including as an LED bar graph driver, analog meter driver, and much more. It is particularly useful in applications that require high current drive capability, such as LED displays and digital meters.

NEW THE XR2266 Decoder/Sense & Drive Chip for toy cars that DRIVE LIKE REAL! Only £5.95!

This versatile 18pin dual in-line IC is designed and the sensor and drive functions to run receiver correct carity by a factor of at least a factor of two. Switching action is rapid, and indicators, sensor and drive functions are from the XR2266.

NEW MICRO CIRCUITS

Dept. WW1, 4 Meeting Street, Appledor, Nr. Bideford, North Devon EX39 1RY. Tel: Bideford (03272) 79507. Telex: 8853084.
Get a great deal from Marshall's

We are old established specialist electronic component distributors carrying a very wide range of quality stock. We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue. Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crimson Elektrik High Fi Modules; Rechargeable Nickel/Cadmium Batteries; Send S.A.E. for details.

Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

EXTENSIVE RANGE OF NEW FLUKE DMM's FROM ELECTRONIC BROKERS

CASIO FX-502P PROGRAMMABLE CALCULATOR

- Links up with an adapter for program—data storage on standard cassette meters
- 216-step programme memory and 22 data registers are both protected (non-volatile)
- Up to 10 levels of parenthesis nesting.
- True algebraic logic — only key operations same as written formula.
- Battery service life is 1,300 hours. Auto power-off feature is provided.
- Thin and lightweight; easy to carry around.
- Up to 10 programmes available. Programme keys are individual as user's functions.
- All built-in functions all usable in programmes.
- A variety of 'jump' commands. Unconditional jump, conditional jump and indirect jump.
- Up to 9 subroutines incorporated: nestable possible up to 9 levels.
- Easy to edit and debug programmes. PAUSE key, random number key, back step/rapid run key.
- Amazing operating speed.

Optional FA.1 Programme Adapter permits programme data storage on standard cassette tape recorders for re-entry. Typical storage/re-entry time 0.10 seconds. with a thredigit code for programme reference and identification. Also contains a music switch which converts both calculations and music synthesizers — duration of notes, rests, tempo, slur and tie are all programmable.

Dimensions are 69mm H x 71mm W x 11mm D. A comprehensive Programme Manual, instruction booklet and idemergency wallet are supplied. FA-1 comes complete with a construction cassette with pre-recorded programmes, including games and music.

FREE

MASTER PACK

- Software package
- on request
- with order

MASTER PACK comprises USER MANUAL with basic and advanced programming; etc.

- PLUS pre-recorded cassette with over 150 ready-to-run programmes. Full cassette library, personal computer programmes, banking, diet, birthhythms, powerful subroutines and data packing.

FX-502P

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>£74.95</td>
<td>FA.1 Adapter</td>
</tr>
<tr>
<td>£19.95</td>
<td>(R. R. P. £84.95)</td>
</tr>
</tbody>
</table>

Send S.A.E. for catalogue of used CASIO and SANKO products.

Prices include V.A.T. at 15% and post and packing. Send your Company order, cheque or Postal Orders, or phone your ACCESS or BARCLAYCARD number to:

DEP, WW

THE BEALMONT CENTRE

154-167 EAST ROAD

CAMBRIDGE, CB1 1DB

Tel: (0223) 312266

TEMPUS

WW — 601 FOR FURTHER DETAILS

8050A 4½ Digit LCD DMM with true RMS on AC volts and current. DC volts 200mV-1KV, 10μV resolution AC volts. 200mV-750V, 10μV resolution. DC/AC current 200A-2A, 0.1μA resolution. Resistance 2002-20MΩ, 0.12μΩ resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2mS and 200nS. £199.00 mains model £219.00 mains battery.

8012A 3½ Digit LCD DMM with true RMS on AC and DC volts and current. DC volts 200mV-1KV, 10μV resolution. AC volts 200mV-750V, 10μV resolution. DC/AC current 200mA-2A, 0.1μA resolution. Resistance 2002-20MΩ, 0.12μΩ resolution. Low resistance 2Ω and 20Ω, 1μΩ resolution. Conductance ranges 2mS-20S-200nS. £199.00 mains model £219.00 mains battery.

8010A 3½ Digit LCD DMM Same spec as 8012A plus a 10 Amp DC/AC Current range, but no low resistance range. £199.00 mains model £219.00 mains battery.

8024A 3½ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts 200mV-1KV, 10μV resolution. AC volts 200mV-750V, 10μV resolution. DC/AC current 2mA-2A, 1μA resolution. Resistance 2002-20MΩ, 0.12μΩ resolution. Conductance 200nS. Peakhold of AC or DC volts and current. Level detector operates around +0.8V reference. Audio tone on level and continuity. £195.00 carrying case £7.00 extra.

8020A 3½ Digit hand held LCD DMM. Spec as per 8024A with extra conductance range of 2mS but no peak hold, level or continuity ranges. Complete with carrying case. £112.00

8022A 3½ Digit hand held LCD DMM. Spec as per 8020A but no conductance ranges and slight reduction on accuracy. Was £88.00 now reduced to £75.00 carrying case £7.00 extra.

Also available a range of accessories including current shunts, EHT probe, rf probe, Temperature probe and touch and hold probe. Full details on request.

The warranty period on all items shown is 1 year other than the 8020A which is 2 years.
Trust FC. Lane to offer low planar cable prices

Spectra GREY ZIP Planar Cable
10, 14, 16, 20, 24, 25, 26, 34, 37, 40, 50, 60, and 64 way all at
80p per conductor per 100ft Roll
Discounts available to large users. Full range of IDC connectors & cables. Ask for catalogue.

F.C. Lane Electronics Ltd.
Slinfold Lodge, Horsham
West Sussex RH13 7RN
Tel: Slinfold 790661
Telex 87530

The SW-M Mini Gas Soldering Iron
now from KAM
flameless and ideal for fast soldering anywhere
Using only ordinary gas lighter fuel and giving 4 hours continuous use from one charge the SW–M, is ideal for many applications. There is no danger of electric current leakage and with flameless combustion there is negligible risk of fire. Soldering iron tip temperature is adjustable. Models available include 20W, 30W, 40W and 60W (wattage equivalents).
For full details ask for Bulletin No. 4.

LOW COST — HIGH RESULTS
Major Price breakthrough on 6 MIL Pink Poly

Why pay more for the same results?
Our Pink Poly bags end the hazard of static spark discharge in handling and packaging of sensitive electronic components.
44 Standard sizes, 15 from Stock.
Example:
8 x 8 £111.07/1000
10 x 12 £173.47/1000
13 x 16 £217.78/1000
Other sizes and quantity prices available on request.

Give for those who Gave
Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them or their dependants are now in need of help.
Please assist by giving all you can for an emblem during WINGS WEEK or please send us a donation.

Please Wear THIS EMBLEM During Wings Appeal in September

Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
(Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960.)
IEEE SCIENTIFIC COMPUTER

Superboard 2.assel, £165.95, plus £2.50 postage and packing;
computer version of Superboard 2.
= £188.45. 19% easy.

Special offer: bought with Superboard 2, computer these items are at the reduced price shown below.

- Also available separately at the below prices:
 -add £18.75 (UK). £20.10 (Europe).
 -CO2/10 (US).

SPECIAL OFFER

If bought with Superboard 2 or 4K extra delivery.
A.C. VOLTMETERS
BOONTON
True RMS Voltmeter 93A £375
FLUKE
AC/DC Differential Voltmeter 883AB £975
HEWLETT PACKARD
Log Voltmeter / Amplifier 7563A £445
840 5A Vector Voltmeter, 1 MHz-1GHz. In new Condition
1 Only £1500.00
MARCONI INSTRUMENTS
A C Voltmeter 400EL £225
Valve Voltmeter TF 2600 £175
Valve Voltmeter TF 2604 £250
R.F. Millivoltmeter TF 2603 £525
PHILIPS
A C Millivoltmeter PM2454B £225

ANALYSERS
BIOMATION
Logic Analyser 1650D £3600
GENERAL RADIO
Vibration Analyser 1911A £1750
HEWLETT PACKARD
Spectrum Analyser 141T £4350
c/w 8552A & 8554L £1350
Logic Analyser 1600A £3500
Network Analyser System 8407A +8412A c/w 8800A +8601A Sweep Marker Generator 100KHz-110MHz range £3500
Swept Amplitude Analyser 182T +8555A 15MHz-18GHz £2500
MARCONI INSTRUMENTS
Wave Analyser TF 2330A £725

BRIDGES
BOONTON
VHF Q. Meter. 280AP (210-610 MHz) £850
Inductance Bridge 63H £2750
GENERAL RADIO
Imittance Bridge 1607A £750
LCR Bridge (0.05%) 1608A £1195
MARCONI INSTRUMENTS
Universal Bridge TF 1313 £325
100 meter TF1245 c/w TF1246 and TF1247 £1995
RHODE AND SCHWARZ
Inductance Meter LRT £475
Capacitance Meter KRT £475
WAYNE KERR
A C Testmatic A60 £1500
Universal Bridge B221 (0.1%) £225
D.V.M.s AND D.M.M.s
DATRON
5½ digit D.V.M. 1051 £995
FLUKE
3½ digit D.M.M. 8222A (New) £89
3½ digit D.M.M. 8220A £99
5½ digit D.M.M. 8800A £299
5½ digit D.M.M. 8800A-01 £650
5½ digit D.V.M. 8300A £199
PHILIPS
Autoranging D.M.M. PM 2514 £125
3½ digit D.M.M. PM 2522 £175
4 digit D.M.M. PM 2524 £225
Autoranging D.M.M. PM 2527 £400
SCHURMÉRGER
5½ digit D.M.M. A243 £425
Microprocessor D.M.M. 7055 £950
As above with processor option £1250
Microprocessor D.M.M. 7055 £950
As above with processor option £1150

FREQUENCY COUNTERS
ADVANCE
500MHz Counter TC 15 & TC 15 P1 £495

UNBELIEVABLY LOW PRICE
HEWLETT PACKARD
3490A DMM 5½ digit, AC/DC volts. 1µV resolution on DC. Autoranging Variable display time. Resistance down to 1mΩ
£375

SUPER VALUE SUPER QUALITY
COSSOR
CDU150 OSCILLOSCOPE 35MHz Dual Trace Sweep Delay
£195

TEKTRONIX
465B PORTABLE OSCILLOSCOPE 100MHz Dual Trace Delayed and Mixed Sweep Trigger View supplied with all Standard Accessories + 1 YEAR WARRANTY
£1395

NEW LIST PRICE £1528

TEKTRONIX July 1980

1000KHz-110MHz range £3500

NEW LIST PRICE £1528

TEKTRONIX July 1980

122
WIRELESS WORLD, SEPTEMBER 1980

12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

BRAND NEW! FLUKE D.M.M.s
We now stock all the 8000 Series D.M.M.s
Specs & Prices on request

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

Hours of Business: Mon-Fri. 9 am - 5 p.m. Closed lunch 1-2 p.m.

Add 15% VAT to ALL PRICES

A copy of our trading conditions is available on request. Carriage and Packing charge extra on all items unless otherwise stated.

WW — 165 FOR FURTHER DETAILS
Electronic Brokers
No.1 in Second User Minis & Peripherals

CENTRONICS 101A
Heavy duty Matrix Printer with 64 ASCII upper case character set. 165 cpi operation. 132 print positions with adjustable tractor feed. 7 x 9 dot matrix, parallel input. £750.00.

GE TERMINET 1200 RO
High-Speed computer-quality Impact Printer with switch-selectable print speeds of 30, 50 and 120 c.p.m. 80 print positions with adjustable paper feed tractor. Full upper and lower case ASCII character set. Current buggy (OEM) interface. NOW ONLY £495.00. (optional extra — parity card £50.00.)

DEC EQUIPMENT
DD11-CK 4-slot backplane (11/34) £175.00
DRV11 Parallel I/O (LSI 11) £75.00
H775-CB Battery Back-up £525.00
KABE Positive I/O (8E) £95.00
KDBE Databreak (8E) £145.00
KL78A Asynchronous I/O (8E) £275.00
KLE Asynchronous I/O (8E) £250.00
KPBE Power Fail (8E) £95.00
KW11P Programmable Clock (PDP 11) £345.00
MF11L 8KW Core including 9-slot system unit £975.00
MM11LP 8KW Parity Core £750.00
MSV11C 16KW Memory (LS11) £495.00
MS11JP 16KW MOS Memory £895.00
PDP11/40 Processor with 32KW parity core, KT11D Memory Management, DL11 Interface 6ft cabinet £4950.00
PR11 High speed reader & control £925.00
REV11 Bootstrap (LS11) £75.00
RK05F Add-on disk drive £2250.00
VT55-FB Graphics Terminal with integral hard copy £1650.00
PDP8E Series modules — large stocks of option modules, add-on core, CPU boards etc. all at reduced prices.

CABINET 101A
Heavy duty Matrix Printer with 64 ASCII upper case character set. 165 cpi operation. 132 print positions with adjustable tractor feed. 7 x 9 dot matrix, parallel input. £750.00.

DEC PDP 11/34 Processor.
10/32 126KW MOS, DL11W, KY118 PRICE £8950.00

DEC LA-11PD 180cps
Matrix Printer. Parallel input. £1295.00

NEW ASCII KEYSERWY — NEW LOW PRICES
KB 771 Superb 71-station ASCII Keyboard incorporating separate numeric/cursor control panel and installed in custom-built steel enclosure with textured blue 'e' (E) finish. Ideal for the VDU builder. Case dimensions 17.34" x 11.5" x 3/8". Total weight 4kg. PRICE £89.50 (mail order total £108.10).

Mail Order Total Weight
KB756 56-station ASCII Keyboard mounted on P.C.B. £45.00 £53.48
KB756MF As above, fitted with metal mounting frame for extra rigidity £49.50 £58.65
KB710 10-key numeric pad; supplied with connecting cable £9.00 £8.78
KB701 Plastic enclosure for KB756 or KB756MF £12.50 £15.24
KB702 Steel enclosure for KB756 or KB756MF £18.00 £23.00
KB2376 Spare ROM Encoder £12.50 £15.24
KB15P Edge connector for KB756 or KB756MF £3.25 £4.31
DC-512 DC converter to allow operation at 5V only (plugs in to P.C.B.) £7.50 £9.20
DB25S Mating connector for KB771 £4.25 £5.46
PERK 56-station ASCII Keyboard for PET Complete with PET interface, built-in power supply and steel enclosure £145.00 £172.50 Discounts available for quantities

ASR 33 Teletype
Input/Output terminal incorporating paper tape punch and reader. 64 ASCII upper case character set. 110 baud operation, even parity keyboard, choice of RS232 or 20 mA interface. NOW ONLY £595.00
Option: IC-type keyboard £50.00, 9th level marking £25.00, remote reed control £50.00, reader step £200.00, Auto reader £280.00, potentiometer £30.00.

EMI MONITOR
15" Diagonal Tube Integral Power Supplies. accepts composite or separate video input. BRAND NEW SURPLUS. Price £100.00.

MISCELLANEOUS
LOW COST PRINTER OFFER
TELETYPE 33 Printer mechanism including case but no keyboard or electronics. 64 upper case ASCII, 10cps, pintsed platen. Ideal for the electronic hobbyist. ONLY £85.00
BALL MIRATEL 9" Monitor with case including space for keyboard. Integral power supplies included. Requires separate horizontal & vertical video input. £95.00
CLARE KEYBOARD SWITCHES Special purchase of top-quality Clare SF-type switches BRAND NEW SURPLUS 25p each
DATA GENERAL model 1210 CPU with 4K core £795.00
DIGITRONICS P135 paper tape punches 35 cps. Solenoid device with 27VDC coil £95.00
FAC1 4070 Paper Tape Punch £875.00
HAZELTINE THERMAL PRINTER 80-column 30cps silent RO printer with parallel TTL input £395.00
SHUGART SA4000 Mini-floppy disc drive — BRAND NEW £195.00
SHUGART SA4000 8" Floppy disc drive — BRAND NEW £395.00

TALLY 1602 MATRIX PRINTER, Parallel Input. Upper/Lower case. Tractor fed, as new £895.00
TERMIPRINTER 7075 RO Impact Printer. Upper/Lower case, pin feed. RS232 £395.00
TEXAS 72S Portable Terminal with acoustic coupler. £825.00
TEXAS 743 Portable Terminal RS232 £795.00
TEXAS 733 ASR Terminal £1375.00

NEW low price

4953 Pancras Road London NW12QB Tel: 01-837 7781. Telex 298694
Hazeltine H-1000
The low, low priced teletypewriter-compatible video display terminal, offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking.

Specification
SCREEN SIZE — 12" diagonal.
SCREEN CAPACITY — 960 characters: 80 per line x 12 lines.
CHARACTERS — 5 x 7 Dot Matrix: 825-line raster.
CHARACTER SET — 64 ASCII alphanumeric and symbols.
KEYBOARD — TTY format.
INDICATORS — PowerOn, Parity Error.
PARITY — Parity error indicated by Parity Light and question mark (?) displayed in character position.

TRANSMISSION — Asynchronous. Switch-selectable for any two standard rates up to 9600 baud.
OPERATING MODES — Full/ Half Duplex.
MEMORY — High Speed MOS refreshed.

REFRESH RATE — 50 fields per second.

When ordering please specify your choice of switch-selectable baud rates.
Standard — Either A) 110/300 baud or B) 300/1200 baud.
Optional: A combination of any 2 of the following transmission speeds can be provided at a surcharge of £25.00.
75, 110, 150, 200, 300, 600, 900, 1200, 1800, 2400, 4800, 9600. (N.B. 900/1800 not compatible with 110/200 respectively).

Hazeltine H-2000
The world's largest selling teletypewriter-compatible video display terminal. The Hazeltine 2000 sets the standard in features, performance, reliability and value in an ever-expanding list of applications in Universities, Hospitals, Business, Finance and Government.

Features include: Switch-selectable transmission rates to 9600 baud. Three switch-selectable operating modes — full duplex, half-duplex or batch.

Direct Cursor Addressability. Dual-intensive video.

Parity select. Large screen capacity.

Clear 5 x 7 matrix character image. Full remote command set. Format capability.

Standard peripheral interfaces.

Specification
SCREEN — 12" diagonal. 1998 characters: 74 per line x 27 lines.
CHARACTERS — 5 x 7 Dot Matrix: 825 lines raster.
CHARACTER SET — 64 ASCII alphabetic and symbols.
KEYBOARD — 32 ASCII control codes.

TRANSMISSION — Asynchronous. Switch-selectable, for combinations of 5 standard rates. 110 to 9600 baud.
OPERATING MODES — Switch-selectable, full duplex, half-duplex or batch.

MEMORY TYPE — 2048 x 8 RAM.

EDITING FEATURES — Full Cursor Controls plus Insert/Delete Character, Insert/Delete Line, Clear Screen, Clear Foreground Data Only, Tab.

REMOTE COMMANDS — Insert/delete Line, Clear Screen, Clear Foreground Data Only, Home Cursor, Address Cursor, Select Background intensity, Set Background intensity, Set Foreground Intensity, Carriage Return, Backspace, Ring Bell, Transmit, Print.

AUXILIARY OUTPUT — Standard printer interface, standard cassette interface.

Hazeltine MODULAR ONE
The Hazeltine Modular One terminal offers the full range of terminal performances — from simple teletypewriter compatibility to enhanced editing and polling capabilities.

The modular one is supplied in two different versions. The Basic Model provides the following features: 1. 1200 character display (80x24). 2. 12-inch bond. 3. Incremental and absolute cursor positioning. 4. Dual video intensity. 5. 11-key numeric pad. 6. MIDI keyboard. 7. Remote & Polling capacity.

Further details:

£199 + VAT
£299 + VAT
£425 + VAT

Electronic Brokers Ltd
VDU Prices Shattered

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694
SCOOP PRINTER PURCHASE

PROFESSIONAL EQUIPMENT AT HOBBYIST PRICES
SO LOW EVEN OUR COMPETITORS GASPS!

DATA DYNAMICS 390 ASCII PRINTERS

ONLY
£12.50 + VAT

TELETYPETE ASR33 1/0 TERMINALS

£23.50 + CAR + VAT

ICL TERMIPRINTER 300 BAUD TERMINALS

£32.50 + CAR + VAT

RAM AND EPROM STAR OFFERS

2716 Single 5v rail EPROMs
£10.25

2716 Three rail EPROMs
£8.50

64K x 8 DYNAMIC/STATIC CARDS

A massive build of a brand new "state of the art" data processing equipment enables us to offer the following chips at never, and we mean never, to be repeated prices.

B085A
Central Processor
£11.99

B105C
256k Static Ram
£5.95

B253C
Programmable Interval Timer
£9.95

B259A
Programmable Peripheral Interface
£4.75

B259A-8
Programmable Interrupt Control
£14.75

MC8085P
ACAI
£3.75

8252
MPCC Convector
£24.00

2103K
Static 650ns RAMs 8 for £25.25

1702
256k EPROM
£5.10

5101L-1
256k 4x Static Ram 45ns £4.95

And Remember All Chips Prices Include V.A.T.

All as above £12.50 if 10 or more.

SEMICONDUCTOR "GRAB BAGS"

Amazing valued semiconductors, include transistors, diode, linear, IC's, analogue, bridge rectifiers, etc. etc. All devices guaranteed brand new, full spec with manufacturer markings, fully guaranteed.

50 + 50G 2€9.50 + 100 — BAGS £5.15

MUFFIN FANS

Keep your electronics cool and healthy with our range of muffins. 50p for 2, £1.50 for 10, £10.25 per box of 100. A.C. 110V. 60Hz. 15 Watts. 85 x 85 mm. 1050 RPM. 95% DIMENSIONS 4 x 4 x 2.5

ELECTRONIC COMPONENTS & EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of IC's, L.C. Transistors, Relays, Cap's, P.C.B.'s, Sub-assembly, Switches, etc. etc. subject to our requirements. Because we don't have sufficient stocks of any one item to indulge our, we are packing all these items into the "BARGAIN PACKAGE OF A LIFETIME". Thousands of components at guaranteed prices! Guaranteed to be worth at least 7 times what you pay that we also include something from our ads for unpredictable! Sold by weight.

2 Sticks £ 4.75 + pp £1.25
24 Sticks £ 6.75 + pp £1.95
10k Resistors £ 11.75 + pp £2.25
20k Resistors £ 19.99 + pp £4.75

SHUGART SA800
8 Floppy Disk Drives
as new £225.00 + VAT

NORTH STAR 56k modems
guaranteed £179.50 + VAT

HEWLETT PACKARD
HP programmable clock
£140 + VAT

BEARCAT 210
Scanning receiver
40.95 + VAT

POWER SUPPLY UNITS

Building a system? Then your P.S.U. requirements stop here! Removed from brand new fire damage front end processors originally costing several thousands of pounds each, these supplies feature 1980's technology including switching regulators, R.F. filtered and regulated continuous outputs of: +5v @ 15 amps, +12v @ 9 amps, and -12v @ 3 amps all on a P.C.B. heatsink mount and as each is £27.50 + VAT. Supplied complete with circuit, transformer and easily removed smoke marks! £195.00 + VAT 27.50 + VAT

KEYBOARDS

LOW PRICE CHASSIS

A special bulk purchase enables us to offer the above keyboards at a todays price! £50 each less 50% we are forced to offer these keyboards at a top of the range. Includes complete keyboard, as new £36.95 + VAT. £26.95 + VAT. £15.95 + VAT.

SUPERVALUE P.C.B. SPECIAL

Another great buy, Board contents include 62 Computer I.C. All is located in 14 pin D.I.L. sockets. Original price £290, our price only £49.95 + pp £85p

BARGAINS GALORE!

In our walk round Warehouse NOW OPEN Monday Saturday 9.30-5.30

HOW TO GET HERE

In stock now test equipment: microprocessors, peripherals, painters, transformers, power supplies, scopes, t.v., gen's, motors, peripheral equipment, I.C.'s, tools, components, varicopes, keyboards, and many other components + thousands of transistors, microswitches, V.O.U.'s. Our very best prices on all these are displayed below, 100's of bargains for callers.

NOW OPEN Monday-Saturday 9.30-5.30

WIRELESS WORLD, SEPTEMBER 1980

HOW TO GET HERE

London Bridge or Bowborn Viaduct to Thornton Heath. 1 minute from Thornton Heath Station.

SPECIAL OFFERS

HORIZON NORTH STAR
56k mod, quad flaps guaranteed £179.50 + VAT

W W - 1 1 3 F OR F U R T H E R D E T A I L S
LEAH SIEGEL model 210 Bellissima. Save, FOUR O'CLOCK only $950 or make an offer.

DOMINOES 135. Used but clean £600.

TERMINET 30 PRINTER with TWINS CASSETTE. 30 cps. Standard 221, £700 or offer.

NEW AMIGAN '98 with Keyboards Model '97. Over 20000 offered. CIPHER YOU with separate Keyboard (No Case). Printer, portrait reverse video/flushing etc £375 each or offer.

CALCOP M84 BARREL PRINTER. MUST GO. C50. £500. + Tax for serious inquirers. FACT 401 READER with 2 spoolers 415. £457. We will make an offer on this.

FACT7 PUNCH with 5107 CONTROLLER £250. DIOCO Disk Drive 9" Emxminster £132 each. TELETEX PUNCH in Silent Case £45 each. ARCTURUS A182, 180 bit. With Data. Another gift £425.

COMPLETE RANGE with TTL Interface. Massive Documentation & quantity of paper tapes. And again a gift at £380.

HOLEPOWER 1141A COMPUTER. No data. NO HENCE £475.

TELETS AB3 33 with 20ma Loop £332 each, 234 extra at cost extra. KSR as above £252 each.

TWIN SHUGT Floppy Drives a £650 gift. A FEW OLEVITTI PRINTERS & KEYBOARD Type 3Teclit still available — please inquire.

STEPPING MOTORS 200 Steps - 20"c/o in torque. 12/24 volt operating 3-wire £48 each. P& P £1.50 each.

STEPPING MOTORS 200 Steps - 20"c/o in torque 12 volt operating 3-wire £12.50 each. P& P £1.50 each.

WIRELESS WORLD, SEPTEMBER 1980

MOONSTAR 14C5 12A 20V 115 0.9A. £15. TIP 31, TIP 41A, 2N296, AF139, 7451, 74C24, 74C86 50241, 74C32, 74C25 20p. £20, 50p. 10p.

 şi10 £12.50 each. P& P £1.50 each.

MINIATURE KEYBOARD

Pull catch. Originally for Ministry aircraft. therefore finest quality — very good in balder, two magnet in one, £12. CARRYAGE £1.25 cash.

STEPPING MOTORS North American Phillips, 5 volt 3 Aim operation. 2 wires PFS 0-200 0-250 used. Tested £16 each. P& P £1.50 each.

MINIATURE POLAROID SPECTRUM ANALYSER

Five Displays. These are supplied with STU 2 plug-in. 1 to 45 Hz. £15 each.

709 DIL 14 PIN OPERATIONAL AMPLIFIERS

100 or 25% discount.

MAGNETOS

Original Ex-Ministry. Excellent.
EXECUTIVE ALARM CHRONOGRAPH
Full month calendar, tone control, hourly chime.
70CS-518 Stainless steel (£4.45)
£39.45

(1) C - 811 Melody Maker (R.R.P. £26.95)
(2) Stanton
Monthly calendar from the year 19X1 to 19X2.
Day, date and month display.
Day & date alarm.
Countdown timer.
24 hour display.
Automatic time correction.
Hourly tone chime.
Full calendar display.
Material:
Glass water resistant.
81Q-3SB Alarm Chronograph Stainless steel, Mineral glass. Water resistant.
£29.45

C-80 Calculator Watch (Finger type keyboard)
Hours, minutes, seconds, day, Red display, date, Night display.
Water resistant, Step alarm, hourly chime.
Staple from 1/100 second to 1/1000 second.
Night light.
40 digits calculator.
Water resistant.
Mineral Glass.
Black main dial, white background.
£24.45

(2) 24 hour alarm & 12 hour alarm.
(R.R.P. £39.45)
£29.45

NEW Star Buys FROM CASIO

Something to sing about with twelve programmed melodies!
CASIO ML-90 Melody Maker (R.R.P. £26.95)
ONLY £19.45
Click, hourly chime, calendar to 19X1 Alarm 1-12 hour alarm, melody selection.
24 hour display. Select any melody or buzzer.
Alarm 2: a fixed melody or buzzer.
Date memory 1: “February 2”
“Wedding March” or “Drinking Song”.
On January 1st plays a jingle.
(1) With 11-line keyboard, full score memory, square root, X, 7/8 x 2/8 x 4/8.
24 month batteries.

STAR BUY FROM CASIO

83Q-41B Alarm Chronograph S/encased
Mineral glass. Water resistant.
3 YEAR BATTERY.
From 8:00 a.m. to 9:59 p.m.,
Monthly calendar from the year 19X1 to 19X2.
Day, date, month and year.
5-YEAR BATTERY.
Year, month and day.
£19.45

EAGLE MULTIMETER
And day, date, month and year.
£24.45

KELVINATOR. Environmental control system, 260 to 1700°F used condenser but in working order. Due to size and weight too costly.
FRIDEN FLEXICON. Wired with tape reader and punch. Insured in dust cabinet, on good condition.
£189 + VAT

GENERAL AIDS. Type 1288 watchcal 900-2000 MHz with accurately powered supply. Type 1288-A.
£280 + VAT
Type 3186 watt complete but not perfect.
£65 + VAT
AIRTECH. Type 3186 watt automatic complete but less price.
£280 + VAT

SCHOMANDL. Type 2 8000 watt, 30-900 kHz, £70 + VAT
BARCLAY. £90 + VAT
WATTOMETER. Type 2 8000 watt, 30-900 kHz, £75 + VAT
MARCONI. Type T109022 1 kHz, 1-100 MHz, £60 + VAT
MARCONI. Type T109022 1 kHz, 1-100 MHz, £80 + VAT
WATTOMETER. £100 + VAT
TAPPERT. Type 2 8000 watt, 30-900 kHz, £40 + VAT
Volume adjuster to match with microphone, Ideal for schools or colleges.
Contains central parts of high voltage supply to be included power supply, printed circuit card, complementary symmetry, hybrid and simple transistor circuits.
£100 + VAT
VARICAP TUNER HEADS. 4 Type 222s. With AFC switch and button. Brand new.
£2 + VAT
AMPS. Price of units, buttons, washers, legs, self tap, etc. Mixed MA.
£20 + VAT
LOW VOLTAGE TESTERS. Pack of 100.
£1.50 + VAT
JAYCEEM STARRECK U.H.F. For top tier, Brand new and boxed.
£1 + VAT
ERISIN MULTICORE SOLAR. 300 solar wrist on glass prices 40 sq. in.
£69.95 + VAT
Available in 500 meter sets.
£75.90 + VAT
CHANNEL MASTER COLORATOR. Shot swinger. Way 8100 type.
£95.90 + VAT
GEOX, LIVING ROOM. Frequency 8200 type, gear rate 2200, 1 control center for audio, visual, telephone and public address.
£100 + VAT
INFRARED REMOTE CONTROL. Special 8 3B + VAT.
£20 + VAT
HEP SLUTTED HORIZONTAL RAIL. Available in 12 lengths.
£1.90 + VAT
RADIOGRAM 15 PIPES. Few only £1.70 + VAT.
£2 for £1.90 + VAT.
RIBBON CABLE. 100 yards 90% $1.25 + VAT
£2 for £1.40 + VAT
BEGEL V-FAN 1000. White mounted on polished wood.
£1.25 + VAT
£2 for £1.50 + VAT
EGUL 7567. 75 ohms mounted on polished wood.
£1.40 + VAT
£2 for £1.80 + VAT
DECO BASS. Very large capacity.
£1.90 + VAT
EXTECH 1020.000-4000.000 $1.20 + VAT.
£10.40 + VAT
DC Current 0.100. 0.600. Resistance 0.600. Magnetic. Price.
£1.90 + VAT

LADIES’ CASIO WATCHES from £12.45

TERMS OF BUSINESS: All Casio items include VAT, P&P and in price. Send cheques, P.O.s or quote Barclaycard or B. BAMBERG ELECTRONICS, 24-hour phone service (0345) 860185. Callers welcome, Tues-Sat. 9.30 a.m.-5.30 p.m.
Send 20p for catalogue of Casio watches and calculators.

B. BAMBERGER ELECTRONICS
DEPT W.W., 5 STATION ROAD, LITTLEPORT, CAMBS CB6 1GE
TEL ELY (0345) 860185
WW - 689 FOR FURTHER DETAILS
Microprocessor board (Nascom 2)

4MHz Z80 CPU. TV or Video + 1200 baud Kansas City + Serial RS232 printer Interfaces: Keyboard. 128 character ASCII plus 128 Graphics in 2 x 2 ROM; free 16-way parallel port: 8X BASIC, NAS SYS operating monitor. £280 built and tested.

System 80 KITS from £225

Power Supply £29.50 + VAT.

Microprocessors Z80A, 8 bit CPU. This will run at MHz, with selectable between 2/4 MHz. This CPU has now been generally accepted as the most powerful 8 bit micro on the market.

INTERFACE

Keyboard: Expanded 57 key Licon solid state keyboard especially built for Nascom. Uses standard z80 keyboard layout. 16 bit peak to peak signal can drive a monitor directly and is also fed to the on-board monitor to drive the displays. I.E.C. On-board UART (nr. 8140) which provides serial handling for the on-board cassette interface or the RS22/20mA type teletype interface. The on-board interface is a Kansas City standard at either 200 or 1200 baud. There is a link option on the back panel for a 2400 baud. The RS232 and 20mA loop connector will interface directly to any standard modem. The input and output sides of the UART are independently selectable to any of the options, i.e. it is possible to have input on the cassette and output on the printer.

PID

There is also a totally uncommitted Parallel I/O (MK 388T) giving 16, programmable, I/O lines. These are addressable as 2 x 8 bit ports with complete handshake control.

Documentation

Full construction article is provided for those who buy a kit with an extensive software manual is provided for the monitor and Basic. The Nascom 2 contains a full 8K Microsoft Basic in one floppy chip with additional features like DECK, DOKE, SET-RESET for simple programming.

NASCOM IMP

PLAIN PAPER PRINTER

Fro just £32.50 plus VAT. Interfaces with all micro computers.

The Nascom IMP (Impact Matrix Printer) features:

- 60 lines per minute. 90 characters per line.
- Two speed settings 1/2 line per minute.
- Tractor/pressure feed. Baud rate range 110 to 9600. External signal for optional synchronisation of baud rate.

IDEAL FOR WORD PROCESSING

COMPUTER KEYBOARDS

- TASA 56 key touch sensitive keyboard. All ASCII characters, including control keys. Auto key repeat. Parallel output with some Shift lock, with indicator LED. Built in 'beeper' with level control. 9 V DC at 30 mA 15" x 2" x 2.5" thick. Black mat enclosed.

- £49.50 + VAT

Star Devices Mk III 71 key touch sensitive keyboard. With numeric pad. All ASCII characters including control keys. Auto key repeat. Parallel output with some Shift lock, with indicator LED. Built in 'beeper' with level control. 5 V DC at 300 mA 15" x 2" x 2.5" thick. Grey case with white keys on blue.

- £48.50 + VAT

Cardell 61 key ASCII keyboard. Conventional keyboard. 128 ASCII characters including control keys. Parallel output with some Shift lock, with indicator LED. Built in 'beeper' with level control. 5 V DC at 300 mA 15" x 2" x 2.5" thick. Grey case with white keys on blue.

- £39.50 + VAT

FERRANTI

- SIZE: 14" x 6" x 3" SLOPING FRONT

£9.95 ASCII Coded in steel case. Complete with Plug and Cable with circuit to convert to T.T.I. levels. In good condition at only £29 + VAT. P/F £22.50.

CENTRONICS QUICK PRINTER

LIST PRICE

£59.99 INCL. VAT

EXCLUSIVE TO HENRY'S 50% OFF MAKER'S PRICE

- £195.00 + VAT

TANDY PET

- £195.00 + VAT

NASCOM

- £195.00 + VAT

CONTRIBUTIONS QUICK PRINTER

- £195.00 + VAT

EXTENDED OFFER

- £195.00 + VAT

HENDY'S

- £195.00 + VAT

COMPUTING TODAY

- £195.00 + VAT

POST PAID Price £195.00 + VAT

Send to COMPUTER TODAY, Recommendations, Month/Year issue.

YOUR LONDON & NATIONAL NASCOM DISTRIBUTOR.

FOR COMPLETE COMPUTER BROCHURE FREEPOST TO ADDRESS BELOW
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

Baker Loudspeakers

special prices

model	**size**	**watts**	**type**	**price**
major | 12 | 4-6-8-10 | hi-fi | £12
super | 8 | 6-8-10 | hi-fi | £8
audiorum | 15 | 6-8-10 | hi-fi | £10
group 45 | 18 | 6-8-10 | pa | £15
group 47 | 18 | 6-8-10 | pa | £18
group 75 | 18 | 6-8-10 | pa | £20

100 watt amplifier

model	**size**	**watts**	**type**	**price**
goodman | 500 | 250 | 240v | £100
adagio | 500 | 250 | 240v | £120
seas | 50 | 70 | 240v | £70
seas | 50 | 35 | 240v | £55
seas | 35 | 20 | 240v | £35
seas | 20 | 15 | 240v | £25

famous loudspeakers

special prices

model	**size**	**watts**	**type**	**price**
goodman | 150 | 200 | 240v | £150
adagio | 150 | 150 | 240v | £120
seas | 100 | 150 | 240v | £100
seas | 50 | 70 | 240v | £70

power amplifier

model	**size**	**watts**	**type**	**price**
goodman | 50 | 70 | 240v | £70
seas | 50 | 35 | 240v | £55
seas | 20 | 15 | 240v | £25

battery eliminator

model	**size**	**watts**	**type**	**price**
goodman | 50 | 70 | 240v | £70
seas | 50 | 35 | 240v | £55
seas | 20 | 15 | 240v | £25

jack plugs

model	**size**	**watts**	**type**	**price**
goodman | 50 | 70 | 240v | £70
seas | 50 | 35 | 240v | £55
seas | 20 | 15 | 240v | £25

valves

model	**size**	**watts**	**type**	**price**
valves | 350 | 500 | 240v | £50

radio component specialists

price list 337 whitehorse road, croydon open 9-6. closed day wed. open sat. 9-6.

radio components and specialists price list page 20.
WIRELESS WORLD, SEPTEMBER 1980

TRANSMISSORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF/PH</td>
<td>100 kHz</td>
<td>TP43, TP44</td>
</tr>
<tr>
<td>HF/PH</td>
<td>100 kHz</td>
<td>TP43, TP44</td>
</tr>
<tr>
<td>LF/PH</td>
<td>100 kHz</td>
<td>TP43, TP44</td>
</tr>
</tbody>
</table>

MEMORIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit</td>
<td>1 kbyte</td>
<td>TMK500</td>
</tr>
</tbody>
</table>

UARTS

<table>
<thead>
<tr>
<th>Type</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C</td>
<td>AV5103F</td>
</tr>
<tr>
<td>RS-422</td>
<td>TM5601NC</td>
</tr>
</tbody>
</table>

CRYSTALS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz</td>
<td>10.000 MHz</td>
<td>TP100</td>
</tr>
<tr>
<td>12 MHz</td>
<td>12.000 MHz</td>
<td>TP110</td>
</tr>
</tbody>
</table>

CONDENSERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>225 pF</td>
</tr>
<tr>
<td>100 nF</td>
<td>220 pF</td>
</tr>
<tr>
<td>1 µF</td>
<td>220 pF</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kΩ</td>
<td>220 pF</td>
</tr>
<tr>
<td>10 kΩ</td>
<td>225 pF</td>
</tr>
<tr>
<td>100 kΩ</td>
<td>220 pF</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP</td>
<td>2N3904</td>
</tr>
<tr>
<td>NPN</td>
<td>2N2222</td>
</tr>
</tbody>
</table>

OTHER COMPONENTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICs</td>
<td>TT1001</td>
</tr>
<tr>
<td>LEDs</td>
<td>TD3377</td>
</tr>
<tr>
<td>SUPPORT</td>
<td>Support</td>
</tr>
<tr>
<td>DEVICES</td>
<td>Devices</td>
</tr>
</tbody>
</table>

SPECIAL OFFERS (subject to stocks)

- 555 timer: £18/100
- 741: £7/35
- 7414: £8/10
- 7416: £10/20

TECHNOMATIC LTD.

17 BURNEY ROAD, LONDON NW10

12 minutes from Dollis Hill tube station. Sample stock parking:

Tel: 01 452 1500/1 450 659
Telex: 927500
Read all about home entertainment ideas for the nineteen-eighties in the new Hi Fi Yearbook and Home Entertainment. Still the leading reference book on Hi Fi it's now bigger and better than ever, with over 550 pages and new sections covering other types of home entertainment equipment: radios, electronic organs, colour TVs, video recorders and electronic TV games. There are specifications, prices and illustrations for the equipment covered, as well as informative articles written by experts. . . . Plus directories of manufacturers, suppliers and dealers.

Hi Fi Yearbook and Home Entertainment 1980 available at leading newsagents and bookshops from November 1st. Price £3.75.

If in difficulty order direct from the publisher @ £4.25 inclusive.

To: General Sales Manager, Room CP34
IPC Business Press Ltd., Dorset House,
Stamford Street, London SE1 9LU

Please send me............copy/copies of Hi Fi Yearbook and Home Entertainment 1980 @ £4.25 a copy inclusive, remittance enclosed.
Cheque/p.o. should be made payable to IPC Business Press Ltd.

Name

Address

Registered in England No. 677126
Registered Office: Dorset House, Stamford Street, London SE1 9LU
SUPER BARGAIN TUNER OFFER

Brand new by famous manufacturer. MW/LW/FM Tuner and Stereo Decoder Board.
Features include capacitor tuned mosfet front end, integrated circuit I.F. strip, and phase locked loop stereo decoder chip. Stabilised power supply and rectifier on board only requires 19V AC at 175MA to power. Size 12 1/2 x 3 1/2 x 1 1/2.
Supplied complete with circuit diagram and ferrite rod aerial. FM section fully aligned and tested before dispatch. Fantastic value at ONLY £9.99 plus VAT. P.P. £1.

LENO CASSETTE DECKS AND MOTORS

We have obtained a large quantity of Lenco decks and motors. Decks include the following types: CRV, FFR, SPF, Mini-TB and Mini-S. There are also a few solenoid controlled decks and some dual Capstan three head units.

The motors include various AC and DC types. All are going for silly prices. Let us know your requirements.

VFL 910. Vertical front loading Super Hi-Fi deck, as used in our new Linsley-Hood Cassette Recorder 2. £31.99 + VAT. Set of knobs £1.45 + VAT.

CASSETTE HEADS

H515 SENGUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Ferrite. Higher output than Ferrite. Fantastic frequency response. Complete with data... £6.80
H220 Stereo Ferrite R/P head for replacement uses in car players, etc. £4.25
HM10 Stereo R/P head for METAL tape. Complete with data... £7.25
HS61 Special Erase Head for METAL tape... £6.80
HS/4 Standard Ferrite Erase Head... £1.90
4-Track R/P Head. Standard Mounting... £7.60
ME84 2/2 (Double Mono) R/P Head. Std. Mfg... £4.80
ME151 2/2 Ferrite Erase. Large Mfg... £4.25
CCE/8M 2/2 Erase. Std. Mfg... £7.80

We are the actual importers of these heads and invite trade/quantity enquiries.

All prices plus VAT.

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1.

This latest version has the following extra features. Ultra low wow-and-flutter of 0.5% — easily meets DIN Hi-Fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record lockback prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest £9.99 + VAT we ask for the complete kit.

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design, but which was cheaper and simple to build for applications where higher power is not needed. This new kit is designed to match the Linsley-Hood Cassette Recorder 2 and a tuner will be available later to make a complete stackable system. A very advanced assembly system has been devised by us to make construction ultra simple and anyone who can solder components in a printed circuit board will find a great fun. Conventional wiring is an irreducible minimum, only being needed to connect the main transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.

All parts can be bought separately at a total cost of £79.12 but complete kits are available at a special introductory discount price of only £65 + VAT.

STUART TAPE CIRCUITS

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free. No VAT.

LINSLEY HOOD CASSETTE RECORDER 2

Our latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design, but which was cheaper and simple to build for applications where higher power is not needed. This new kit is designed to match the Linsley-Hood Cassette Recorder 2 and a tuner will be available later to make a complete stackable system. A very advanced assembly system has been devised by us to make construction ultra simple and anyone who can solder components in a printed circuit board will find a great fun. Conventional wiring is an irreducible minimum, only being needed to connect the main transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.

All parts can be bought separately at a total cost of £79.12 but complete kits are available at a special introductory discount price of only £65 + VAT.

STUART TAPE CIRCUITS

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free. No VAT.
Appointments

DISPLAYED APPOINTMENTS VACANT: £12.00 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £2.00 per line, minimum three lines.
BOX NUMBERS: £1 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU).
PHONE: Anthony Hadley, 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Land a good job...

If you’re thinking of a shore-based job, here’s where you’ll find interesting work, job security, good money and the opportunity to enjoy all the comforts of home where you appreciate them most – at home!

British Telecom Maritime Service has vacancies at Portshead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone operating.

To apply, you must have a United Kingdom Maritime Radio Communication Operator’s General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Preferably you should have some sea-going experience.

The starting pay at 25 or over will be about £5,381; after 3 years’ service this figure rises to around £7,087. (If you are between 19 and 24 your pay on entry will vary between approximately £4,229 and £4,937). Overtime is additional and there is a good pension scheme, sick-pay benefits, at least 4 weeks’ holiday a year, and excellent prospects of promotion to senior management.

For further information, please telephone Kathleen Watson on Freephone 2281 or write to her at the following address: IE Maritime Radio Services Division [WWB], IS81.12. Room 304, Landsec House, 23 New Fetter Lane, London EC4A 1E.

BROADCASTS ELECTRONICS ENGINEER

ENGINEERING TRAINING DEPARTMENT, Evesham, WORCS.

The BBC’s Engineering Training Department is situated in the Worcestershire countryside and includes well equipped Radio and Colour Television Studios. There are excellent welfare and club facilities.

Duties: Maintaining a full range of professional radio and television broadcasting equipment. This includes modifications to and commissioning of broadcast equipment, the repair and recalibration of sophisticated instruments. (Appropriate guidance will be given to candidates who are unfamiliar with BBC equipment).

Requirements: Recent experience of maintaining electronic equipment. A good technical knowledge of radio and/or video equipment.

One of the following qualifications is essential:

A degree from a British University in electronics or electrical engineering.
HNC or HND (Electrical Engineering or Applied Physics).
C & G Full Technical Certificate in Telecommunications.

Salary, depending upon experience, in the range of £2050 - £2660 raising to £7455 plus 10% Shift Allowance.

Pensionable Post. Re-location expenses considered.

Further Details: If you would like to hear more and receive an application form, please send a stamped addressed envelope of at least 9" x 4" to Head of Technical Operations Training Section, Engineering Training Department, Wood Norton, Evesham, Worcs. WR11 4TE quoting reference number 80.E.2305/WW. Closing date for return of application forms, 14 days after publication.

Trainee Radio Officers

First-class, secure career opportunities

A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee Radio Officers.

If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.

Candidates must have had at least two years’ radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly.

On successful completion of 40 weeks’ specialist training, promotion will occur to the Radio Officer grade.

Registered disabled people may be considered.

Salary & Prospects:

TRAINEE RADIO OFFICER: £3859 at 19 to £4549 at 25 and over. On promotion to RADIO OFFICER: £5288 at 19 to £6884 at 25 and over. Then by four annual increments to £9339 inclusive of shift working and Saturday and Sunday elements.

For full details please contact Robby Robinson, our Recruitment Officer, on Cheltenham (0242) 21491, Ext. 2269, or write to him at: Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire GL52 5AJ.
Aerial Engineers
(Broadcasting Systems)

Our current demanding programme of work includes the expansion of Independent Local Radio and the introduction of the fourth Television Channel. This provides excellent opportunities for Aerial Specialists at all levels – to strengthen our existing expertise and to provide for the future by training those keen on entering this challenging field. We are small enough for you to be able to make your mark in a professional and friendly environment but at the same time large enough to provide career prospects.

Senior Aerial Systems Engineers
(up to £9600 p.a. under review)
Aerial Systems Engineers
(up to £8350 p.a. under review)
To be responsible for the design and specification – acceptance and commissioning of aerial systems, high and low power filters, channel combining and separating equipment for UHF, VHF and MF services.

Aerial Maintenance Engineers
(up to £8350 p.a. under review)
To be responsible for implementing a programme of preventive maintenance for transmitting and receiving aerials, feeders, combining units and RF filters at TV, Radio and Link Stations. To provide a specialist corrective maintenance service, as necessary.

You should be qualified to degree/HNC level (or equivalent) and have substantial relevant experience (at the senior level supervisory ability is essential). We would also be happy to consider new graduates or those with little experience with a genuine interest in broadcast engineering to start at a trainee level.

You must be fit and able to climb tall structures; you must also hold a current driving licence and be prepared to travel within the U.K. Starting salaries will be according to experience – the figures quoted above are under review. Generous re-location, car and travelling allowances are payable together with free life assurance and personal accident scheme and an excellent contributory pension scheme.

Most of these posts will be based at our Engineering Headquarters, here in Hampshire, although there may be opportunities for appointments at our Regional Engineering bases.

Applicants (male or female) should send full details of qualifications and experience as soon as possible to Glynis Powell, IBA, Crawley Court, Winchester, Hampshire, SO21 2QA.
Opportunities in Digital Electronics

Datek Systems Ltd., a subsidiary of the Mergenthaler-Linotype Group, are leading manufacturers of advanced intelligent terminals for the printing industry. We are a small, friendly company, based in Wembley, and we need the following key people:

Software Development Engineer

Here is a unique chance to be in at the beginning of an exciting new project, as our design team commences work on a new-generation machine. Candidates should have a minimum of two years' experience in applications software. Salary will be up to £9000 p.a.

Senior Test Engineer

This post affords an opportunity for an engineer to further his/her career and extend his/her technical skills, by becoming head of a small team of engineers testing highly sophisticated systems. Several years' experience in testing digital equipment is essential, together with the ability to direct and motivate others. The salary will be around £7,500 p.a.

Both the above posts are open to men and women and offer generous terms and conditions of employment. Relocation expenses may also be available for the right candidates, if appropriate.

For further information and an application form, please contact: Miss Linda Bux, Datek Systems Ltd, 849 Harrow Road, Wembley, Middlesex. Tel (01) 904 0061.

Charles Airey Associates
4 Hammertsmith Grove, London W6 ONA. Tel 01 741 4011
"PROBABLY THE BEST KNOWN SUPPLIER OF ELECTRONIC ENGINEERS IN THE COUNTRY" - Financial Times
INNER LONDON EDUCATION AUTHORITY
LEARNING MATERIALS SERVICE TELEVISION CENTRE
Thackery Road, Battersea SW8

VIDEO TAPE ENGINEER (ST3)

The Learning Materials Service produces teaching programmes in colour for ILEA schools and colleges, many of which are marketed throughout the U.K. and abroad. There is a Television Studio and mobile unit and a daily cycle. The programmes are recorded in the master control section on broadcast standard videotape (CCIR formats A and C). This section carries out all editing and post-production work, and provides large scale duplication on a variety of helical videocassette formats.

A vacancy has arisen in this section, which consists of four senior engineers. Applicants will be expected to have good operational experience of videotape, with a thorough understanding of the technical features, and to have appropriate technical qualifications. A general grounding in colour television theory is essential. The successful candidate will be expected to undertake maintenance of the tape machines and associated equipment, as well as the operational functions. Some overtime is required.

Salary within the scale £7904 to £8498.

Application forms from EO/Estab. 1C Room 365, The County Hall, SE1 Telephone No. 633 7456/8848.

ARAMECO

The COMPANY WITH A FUTURE ... for ENGINEERS & TECHNICIANS

ENGINEERS £11,450 to £19,200
TECHNICIANS £10,100 to £14,500 per contract year after tax.

Aramco is involved in many varied projects in Saudi Arabia that will last for many years.

The COMMUNICATIONS PROJECTS MANAGEMENT DEPARTMENT is responsible for the communications networks throughout the Eastern Province of Saudi Arabia and need skilled Engineers and Field Technicians in the following fields:-

ENGINEERS & TECHNICIANS for the installation and commissioning of telemetry systems, field work covers substations, remote terminal units, pipelines etc. You will be involved at module, unit and systems levels using a range of test equipment, digital diagnostic test procedures and control systems.

Engineers should have B.Sc or HNC in Electrical or Electronic Engineering plus minimum of 4 years relevant experience. Technicians should have apprenticeship plus at least 3 years relevant experience.

DATA ENGINEERS with at least 5 years experience in systems engineering on data handling equipment and analogue systems.

A degree in electrical engineering or computer science is required for these positions.

COMMUNICATIONS ENGINEERS to act as technical consultants and systems planners on specification and design. Degree plus 5 years experience is required.

COMMUNICATIONS ENGINEERS for communications hardware and systems including local distributions and coaxial versus paired cables, multiplexers, multichannel radio bearers, VHF/UHF/HF/ME equipment, outside telephone cable plant and telephone/ electronic switching.

Contracts are single status and renewable yearly with low-cost air conditioned accommodation and free medical care provided. Good recreation facilities include libraries, cinema, TV, swimming pools etc. Married men receive leave after each 4 month period on a 14, 14 and 22 day cycle. Single men receive 30 days leave at end of each year. Fares Paid. A valid UK driving licence is required for all the above positions.

Certain senior positions will qualify for married status after satisfactory completion of one year's employment.

Please write with brief career details etc., quoting ref. WW/20/8to:

UNIVERSITY OF ABERDEEN

ELECTRONICS WORKSHOP SUPERVISOR
(Technician Grade 6)

required for the Department of Psychology. Duties include the design, development, construction and modification of electronic instruments used in research and teaching laboratories - as well as the repair and maintenance of electronic equipment, including video recorders, biological amplifiers and computer peripherals. The work requires a thorough understanding of modern analogue and digital techniques and creativity.

Applicants should hold a H.N.C. or equivalent qualification and have had 9-10 years relevant experience.

For suitably qualified candidate, salary on scale £4884-£5852 with pay award awaited from Pay Comparability Commission, but for candidates with less than the requisite qualifications an appointment on a lower scale would be considered.

Applications by letter giving date of birth, and details of qualifications and experience, should reach the Secretary, University Office, Regent Walk, Aberdeen, AB9 1FX, by September 15, and quote Ref. No. 124/80.

REHABILITATION ENGINEERING UNIT

Chaliley Heritage

ELECTRONICS TECHNICIAN
(Medical Physics Technician III)

This post offers opportunity for initiative in design and construction of special equipment for disabled children with particular emphasis on research and development.

Applicants should be experienced in current electronics and be prepared to work with clinical staff and patients.

Salary scale £6547-£6918 p.a. (increase pending).

Further details from Technical Director, Chaliley Heritage, Lewes, Sussex. Tel: 082 572 2112, Ext. 38.
Challenging positions at home and abroad

RADIO TECHNICIANS
COMMUNICATIONS ENGINEERS

Plessey EAE design, install and maintain communications systems for the oil industry, at home and abroad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.

In the North Sea, earnings are in the range £9,000 to £12,000 p.a. Overseas earnings could be up to £20,000 – plus tax concessions and generous home leave.

The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.

The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick – but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses.

Please apply, with details of your career to date, to: Personnel Manager, Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road, Gt. Yarmouth, Norfolk NR31 0JB Telephone 0493 58541

Experimental Officer
(Electronics)

Greenford Middx.

Our Research Central Services Unit is undertaking an increasing amount of design and constructional electronics work. The application of microprocessor technology to the scientific effort is particularly important. Whilst routine construction work is undertaken elsewhere, there is a great need for a technical officer to help in constructing prototype equipment during the development phase.

Applicants qualified ONC/HNC or equivalent should have previous experience in electronic construction. Some experience with printed circuit boards and an ability to translate circuit diagrams into practice is essential. An interest in the construction of experimental equipment, making use of microprocessors and needing some degree of innovation is required.

Starting salary within the range £4270 to £6450 according to qualifications and experience. Bonus and non-contributory pension scheme.

Please apply to: Miss E. M. Butler, Personnel Department, Glaxo Group Research Ltd., Greenford Road, Greenford, Middlesex UB6 0HE. Tel: 01-422 3434, ext. 180, quoting ref. ZH.334.

Glaxo Group Research Ltd.

Department of Physics
B.Sc (Hons.) and B.Sc.
Combined Science

Available as five-year day-release modular courses offering a wide choice of units in science subjects.

M.Sc. The Physical Basis of Electronics

Available as two-year day-release, and two-year and three-year evenings-only courses. For graduates in Physics, Electrical Engineering and allied subjects. Suitable graduates applying to enter one of these part-time M.Sc. courses in September 1980 are invited to apply also for one of ten Science Research Council bursaries. Students must meet normal S.R.C. requirements for residential and academic qualifications. If the demand for the bursaries exceeds the number available, selection will be competitive. Please ask for further details if required.

H.N.C. Applied Physics

A two-year day-release course, including electronics, vacuum physics, computing and spectroscopy. For technicians and others with suitable O.N.C., A levels or equivalent.

The Physics Department also offers full-time courses leading to B.Sc (Hons.) in Physics and Physical Electronics, B.Sc. (Hons.) in Combined Science, and M.Sc. in the Physical Basis of Electronics.

Further details of all courses may be obtained from:
The Secretary, Physics Department (Ref. WW/6), THE POLYTECHNIC OF NORTH LONDON, Holloway, London, N7 8BD (Tel: 01-867 2789, Ext. 2180).

The Polytechnic of North London

UNIVERSITY OF NOTTINGHAM
Department of Psychology

A vacancy exists in the Psychology Department for a Grade 6

COMPUTER TECHNICIAN

(male or female). Duties include the design and development of sophisticated on-line equipment for laboratory central plus real-time monitoring of the Department's computer laboratory complex. The laboratory is based on a PDP-11/34 minicomputer with DEC GT40 and LSI 11 slave machines. Expansion of the system, including microprocessor-based developments, is in progress.

Design experience with CMOS/TLI devices is essential and previous computer experience desirable.

Suitable qualifications include HNC or equivalent in a relevant subject or HNC with appropriate computer experience.

Salary: In the range £4,684–£5,832 per annum.

Application forms can be obtained from the Establishment Office, University of Nottinghan, University Park, Nottingham, NG7 2RD. Telephone: Nottingham 56101 ext. 2093. Ref. No. PSY/160. (616)
Radio Technicians
Work in Communications R&D
and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise — positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel — we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas.

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.

Registered disabled people may be considered.

Pay scales for Radio technicians start at £4640 per annum, rising to £6525, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.

Get full details from our Recruitment Office, Robby Robinson, on Cheltenham (0242) 21491, Ext 2269, or write to him at GCHQ, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

Radio Communications
Electronics Engineers and Software Designers
Mid-Sussex—S.W. London

Salaries up to £8,000

To join our expanding R&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipment includes transmitters and receivers for marine- and land-based use, radio nav aids and radio monitoring remote computer-controlled systems.

Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Brookhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

Nene College Northampton
Applications are invited for the post of Lecturer I/II in Electrical Engineering

Candidates should be graduates or Chartered Engineers with recent industrial experience.

The successful applicant will be able to lecture in the fields of electronics and instrumentation.

Salary Scales:
Lecturer Grade I £3,777-£6,498
Lecturer Grade II £4,651-£7,794
point of entry depending on previous experience.

Application forms and further particulars are available from The Dean, School of Technology, Nene College, St. George’s Avenue, Northampton, to be returned within fourteen days of the date of appearance of this notice.
Electronic Engineers
What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.
Tel: 0892 39388

Please send me a TJB Appointments Registration form:

Name
Address

COMMISSION AGENTS REQUIRED
To sell Electronic Instrumentation Equipment and Components.
Areas to include: N.E. and N.W. ENGLAND, SCOTLAND, THE MIDLANDS AND WALES.
Send details to: DEPT. CTI, P.O. BOX NO. 1, BILLINGSHURST, WEST SUSSEX. RH14 9DD.

Royal College of Art, School of Film and Television
For a Junior Technician/Assistant Engineer.

TJB research

ELECTRONICS WORKSHOPS ENGINEER
(INSTRUMENT MAKING)

We are looking for an energetic and technically sound man or woman to join us in this specialist assistant management post.

You should have proven skills in the fabrication and wiring of control panels and in the making of scientific instruments. You must have the ability to carry out development work without supervision and will preferably have a knowledge of solid state technology and microprocessors.

We see you as holding an appropriate ONC/HNC but would be prepared to offer day release facilities if you are still in the process of gaining your qualification. We offer a progresive salary, pension and life assurance, flexible working hours and assistance with relocation expenses in an appropriate case.

INTERESTED?
Then write or phone for an application form to the Recruitment Officer, Unilever Research Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, Merseyside, L63 3JW. Tel: 051-645 2000, ext. 8408. Please quote ref. P8715AC.

FOREIGN AND COMMONWEALTH OFFICE TELECOMMUNICATIONS

We have vacancies for

TECHNICIANS

on duties involving the testing, maintenance and repair of machine telegraph and associated electronic equipment in London, and also on the installation of PABX telephone systems in British Government offices overseas. Staff employed on the latter duties are based at Halsope, near Milton Keynes in Buckinghamshire. Applicants should possess a sound knowledge of basic principles and preferably have some experience with the appropriate equipment. Some knowledge of Radio would be an advantage. The vacancies are in the grade of Radio Technician; opportunities exist for transfer to other types of duty in due course, and the grade is the main source of recruitment, on promotion (subject to the possession of the necessary qualification and satisfactory performance) for our resident overseas maintenance staff.

QUALIFICATIONS REQUIRED:
A City and Guilds Intermediate Certificate in Telecommunications or an equivalent or higher qualification.
An Ordinary National Certificate in Electrical Engineering. SALARY: is on a scale £4 640-£6 523. An additional allowance of £780 is paid for working in London. The appointments attract four weeks' paid annual holiday and there are prospects of permanent employment.

For an application form apply to:

Recruitment Section
FOREIGN AND COMMONWEALTH OFFICE
Halslope Park, Halslope, Milton Keynes MK19 7BH

ROYAL COLLEGE OF ART
School of Film and Television
For a Junior Technician/Assistant Engineer.

For free expert advice and immediate action on salary, and career improvement, 'phone or write to: Mike Garrett/BSc.

Technomark
Engineering and Technical Recruitment
11 Westbourne Grove
London W11 2QR

WIRELESS WORLD. SEPTEMBER 1980

APPOINTMENTS IN ELECTRONICS
£5 - £10,000
Take your pick of the permanent posts in:
- MISSILES - MEDICAL
- COMPUTERS - RADAR
- COMMS MICROPROCESSOR - SOFTWARE
For free expert advice and immediate action on salary, and career improvement, 'phone or write to: Mike Garrett/BSc.

(9238)

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251.

(8994)

UNIVERSITY COLLEGE, CARDIFF
Applications are invited for the post of TECHNICIAN (Grade 5) in the FACULTY OF SCIENCE ELECTRONICS WORKSHOP. Applicants should possess an HNC or equivalent and have a good knowledge of analog and digital techniques, experience with microcomputer-controlled instruments and literature would be an advantage. Salary range: £5700-£6154 p.a. Rates of progression are given in the Instruction Circular. Applications, together with the names and addresses of two referees, should be forwarded to the Dean (Admissions) and Registrar, University College, P.O. Box 78, Cardiff, C21 1US. Closing date: September 30, 1980. Reference 2067.

(8739)

WIRELESS WORLD. SEPTEMBER 1980

FOREIGN AND COMMONWEALTH OFFICE TELECOMMUNICATIONS

We have vacancies for

TECHNICIANS

on duties involving the testing, maintenance and repair of machine telegraph and associated electronic equipment in London, and also on the installation of PABX telephone systems in British Government offices overseas. Staff employed on the latter duties are based at Halslope, near Milton Keynes in Buckinghamshire. Applicants should possess a sound knowledge of basic principles and preferably have some experience with the appropriate equipment. Some knowledge of Radio would be an advantage. The vacancies are in the grade of Radio Technician; opportunities exist for transfer to other types of duty in due course, and the grade is the main source of recruitment, on promotion (subject to the possession of the necessary qualification and satisfactory performance) for our resident overseas maintenance staff.

QUALIFICATIONS REQUIRED:
A City and Guilds Intermediate Certificate in Telecommunications or an equivalent or higher qualification.
An Ordinary National Certificate in Electrical Engineering. SALARY: is on a scale £4 640-£6 523. An additional allowance of £780 is paid for working in London. The appointments attract four weeks' paid annual holiday and there are prospects of permanent employment.

For an application form apply to:

Recruitment Section
FOREIGN AND COMMONWEALTH OFFICE
Halslope Park, Halslope, Milton Keynes MK19 7BH

(519)
Test Engineers & Test Gear Engineers

Move into new areas of Electronics Development and an assured quality of life...

EMI Electronics Ltd. builds quality and reliability into every product. Our reputation for excellence is long established and is a major factor in generating new orders.

The growth of our business here in historic Wells creates the need for more Test Engineers to take us through the 1980's.

As one of the world's leaders in specialised defence electronic systems - particularly the fields of radar, proximity fusing, telemetry and radio modelling we maintain stringent quality standards. You will join one of our professional teams responsible for ensuring that our wide range of "State of the Art" electronic systems on test equipment meet our exacting standards.

We are looking for people with either ONC or HNC Electronics and varying levels of experience of testing or servicing modern detection systems in the electronics industry or armed forces.

We offer competitive salaries, comprehensive benefits and assistance with your relocation to this beautiful part of Somerset.

For further information fill in the coupon and send it to F. M. Taylor, Assistant Personnel Manager, EMI Electronics Ltd., Penleigh Works, Wooksey Hole Road, Wells, Somerset, BAS 1AA or phone him for more information on Wells (0749) 72081.

Name ____________________________
Address __________________________
Tel: ____________________ Age: ________
Current position ____________________
Qualifications ______________________

Ref. W.W. 158

Roehampton Institute

PSYCHOLOGY TECHNICIAN
(NJC/APTC Grade 2)

Required at DIGBY STUART COLLEGE as soon as possible to take responsibility for establishing and equipping a new technical workshop in the Psychology Department; servicing and maintenance of existing equipment in the Department; and construction of new equipment for use by teaching staff and students. The successful applicant will also be expected to make a contribution to the technical support of the Psychology Department. Applicants should either have an HNC of City and Guilds Part II qualification in Electronics (or equivalent), or have relevant experience and proven ability to fulfil the above responsibilities.

Salary (subject to review): £4716 to £5202 including London Allowance, according to age, experience and/or qualifications.

Applications in writing, with full details of age, qualifications, work experience and present salary, plus the names and addresses of two referees, to:

R. A. Forsell, Assistant Secretary, Roehampton Institute of Higher Education, Richmond Building, Digby Stuart College, Roehampton Lane, London SW15 5NP, to arrive not later than 8 September, 1980.

(Applicants should note that, although initially the appointment will be at Digby Stuart, they may be required to work elsewhere within the Roehampton Institute.) (591)

B.B.C.

INSTALLATION TECHNICIAN

We have a vacancy in the Unit which deals with the supply, installation and commissioning of television studio lighting and mechanical equipment. This includes lighting control systems, dimmers, luminaires and their mechanical suspension systems, camera mountings and lenses, servo systems and their controls.

The successful applicant will assist professional engineers in this work and the duties will include supervision of craftsmen, liaison with contractors and other specialists.

Applicants, male or female, must have a good practical understanding of work in at least one of the following fields:

- Electrical Power Control
- Mechanical Mechanisms
- Electronic Control Systems

The successful candidate will be based in the London area but must be prepared to work anywhere in Great Britain for periods which do not normally exceed four weeks at a time.

Salary, depending on experience and qualifications, will initially be in the range of £5,535 to £5,985 rising by annual increments of £225 to a maximum of £7,455 per annum. Additional allowances are paid for on-site working, approximately 8% of salary.

4 weeks and 2 days annual leave.

Request for application forms to the Engineering Recruitment Officer, B.B.C. Broadcasting House, London W1A 1AA, quoting reference 88 E 2602. Please enclose an addressed envelope with your application; no stamp is required. Closing date for completed application forms is 14 days after publication.
All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:

Name ____________________________ Age ______

Address __

Telephone Work/Home (if convenient) _______________________________________

Years of experience 0-1 1-3 3-6 Over 6 □ □ □ □ □

Present salary £3,500- £4,500- £5,500- over £4,500 £5,500 £6,500 £6,500 □ □ □ □ □

Qualifications None C & G HNC Degree □ □ □ □ □

Present job ___

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 0BR Tel. St Albans 59292

Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a range of studio products from colour cameras to simple D.A.s. We are also one of the largest suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in Andover for a worldwide market.

TECHNICAL SALES ENGINEER

To be involved in the active selling of television broadcast equipment.

The successful applicant should have a sound technical electronic background, preferably with at least three years’ experience within the Broadcast Industry, but not necessarily in Sales.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept through manufacture to delivery and installation.

Our custom-built systems require a high degree of customer contact at engineering level from the initial design, to customer training after completion of the contract, both within the U.K. and overseas.

Applications are invited from engineers with a knowledge of T.V. studio engineering gained from experience in this type of work or from experience in the operation side of television.

Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

Link Electronics Limited, North Way, Andover, Hants, SP10 5AJ.

Telephone: (0264) 61345

Take your pick

HF-VHF-UHF

Microwave Optics & Acoustics

A challenging and full career in Government Service.

Minimum qualification — HNC.

Starting salary up to £6,737 (under review).

Please apply for an application form to the Recruitment Officer (Dept. WW9)

H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

ROYAL OBSERVATORY, EDINBURGH

PROFESSIONAL AND TECHNOLOGY OFFICER

GRADE I

There is a vacancy in the Technology Unit at the Royal Observatory, Edinburgh, for an electronics engineer to work on the development of prototype astronomical instruments such as photometers, polarimeters, measuring machines and guidance and acquisition systems.

The Observatory provides technological support to several major national astronomical facilities in the UK and overseas.

Initially the successful candidate will work with Officers at PTO II, III and IV levels designing, developing and commissioning acquisition and guidance systems and other instruments for use on the 3.8 metre infrared telescope situated in Hawaii.

These systems incorporate a variety of detectors including cooled SIT TV cameras, and microprocessor controlled digital image storage and display. Special techniques are being developed to present complex information in a simplified form to assist astronomers working in a difficult environment.

The successful candidate may be required to work abroad on short term detached duty or on postings of up to three years. It is a pre-requisite of working in Hawaii that a special high-altitude medical examination be taken and passed.

Applicants are expected to have qualifications at degree level in the appropriate subjects leading to corporate membership of an appropriate professional body.

Experience in one or more of the following fields would be an advantage: Detectors, Detector Arrays, CCDs and associated amplifiers, low light level TV Systems, Integration and digital image storage techniques, application of microprocessor hardware and software.

Salary will be in the range £6000-£10200 per annum. There is a non-contributory superannuation scheme.

Application forms from The Personnel Officer, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ. Application forms should be returned by 1 September, 1980.
Telecommunications Officers

Appointments

Up to £7950

in London and at Hanse Park, Milton Keynes, for work in the installation, maintenance and operation of HF, VHF, UHF and microwave receivers, associated test equipment, recorders, telephone and teleprinter equipment, electronic ancillary apparatus (some using analogue and digital techniques), voice frequency telegraphy and other aspects.

Candidates must have served an apprenticeship or have had equivalent training. They should normally have 3 years’ relevant experience, and hold ONC in Engineering (with pass in Electrical Engineering ‘A’) or Applied Physics or TEC/SCOTEC certificate or equivalent qualification in a relevant subject. Ex-Service personnel who have had suitable training and at least 3 years’ appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary: £5310–£7170. London £780 more. Starting salary may be above the minimum for those with additional relevant experience. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by September 12, 1980) write to Civil Service Commission, Alcon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0258) 68551 (answering service operates outside office hours). Please quote T/5424.

FOREIGN AND COMMONWEALTH OFFICE

LECTURING WITH A DIFFERENCE

The difference is that MARCONI COLLEGE is neither just an academic nor an industrial institution but an appealing blend of both. The College is pleasantly situated in Chalfont and the members of staff are responsible for training the engineers of the Marconi Electronics Group and customers.

DIGITAL SYSTEMS

Vacancies exist for Lecturers to instruct on digital systems and equipment over a wide range of applications including the expanding field of automatic control. Applicants should have either a degree or equivalent qualification in electronics with knowledge of digital techniques, or several years’ relevant experience. Teaching experience desirable but not essential.

TELECOMMUNICATIONS

A Lecturer is required to instruct in the principles/functioning and maintenance of a wide range of telecommunications systems and equipment. Applicants should have a sufficient combination from a degree or equivalent qualification, teaching experience in similar technology and three to four years’ practical experience of professional radio communications systems. For all posts commencing salary up to £7,500 plus benefits.

Applications to Frank Braybrooke, GEC-Marconi Electronics Limited, Marconi House, New Street, Chalfont, Buckinghamshire CM1 1PL. Telephone Chalfont (0249) 383221 Extension 478.

GEC-Marconi Electronics Ltd.
UNITED NATIONS
Invites Applications for the following positions
at New York Headquarters

1. CHIEF, TECHNICAL SERVICES SECTION (P-5)
Supervises and specifies arrangements for the installation, operation and maintenance of equipment associated with the United Nations conference servicing and radio and television programming operations. This includes a wide range of broadcast standard audio and video equipment, simultaneous interpretation installations and electronic voting equipment. Responsibilities include directing the work of some 100 personnel, design of and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.
Should have advanced university degree in relevant engineering discipline, good electronic knowledge, computer experience and management skills particularly in the fields of budgeting projection and cost control, with 13 years' professional experience.
Level P-5 carries net base salary per annum from US $24,298 (single) and US $26,298 (with dependants) plus post adjustment from US$11,627 (single) and US$12,584 (with dependants) per annum.

VA. 80-D-DAM-109-NY

2. CHIEF, TELEVISION AND FILM UNIT (P-4)
Controls the technical aspects of the United Nations television and film unit which works to full professional broadcast standards.
Is responsible for system development and specifying operational and maintenance techniques and for assessing needs and making recommendations for purchase of equipment.
Supervises the operations in the technical areas and maintains contact with outside TV networks and operators.
Should have advanced university degree in electrical engineering with eight years' professional experience in the operation and maintenance of television and film equipment.
Level P-4 carries net base salary per annum from US$20,209 (single) and US$21,755 (with dependants) plus post adjustment from US$9,779 (single) and US$10,527 (with dependants) per annum.

VA. 80-D-DAM-108-NY

3. ENGINEER (TELECOMMUNICATIONS) (P-4)
Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment.
Responsible for system development and design and for the installation of these facilities both at Headquarters and for conferences away from headquarters.
Should have advanced university degree in an engineering discipline, with eight years' professional experience.

VA. 79-D-DAM-357-NY.

APPLICATIONS: Please complete two copies of United Nations Personal History Form (P.11), or send detailed curriculum vitae to: Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number.
Do you want to work in electronics as a Technician?

At the Government Communications Headquarters in Cheltenham, we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing and maintaining our equipment. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise — positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You should hold or expect to obtain shortly a TEC Certificate in Telecommunications Engineering or the City and Guilds Telecommunications Technician Certificate Part 1 (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are or have been in H.M. Forces, your Service trade may allow us to dispense with the need for formal qualifications.

Pay scales for Radio Technicians start at £4,640 per annum, rising to £6,525, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work paying good rates. Starting pay may be adjusted to £5,040 depending on relevant experience.

Applicants possessing the necessary formal qualifications (e.g. TEC or C & G Telecommunications Technician Certificate) but with insufficient practical experience for Radio Technician posts may be suitable for our Trainee Radio Technician posts. Pay scales for these posts are £3,825 per annum at age 19 to £4,640 at age 24. Successful completion of our practical training course will lead to regrading to Radio Technician.

A non-contributory pension scheme provides cash and pension benefits based on salary and length of service. Annual leave is 4 weeks (for RT) plus 10½ days' public and privilege holidays.

Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext. 2269, or write to him a GCHQ, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ. If you seem suitable we will invite you to interview in Cheltenham—at our expense.
TRAIN IN U.S.A.!

COMPUTER ENGINEER

LONDON/HOME COUNTIES
£6,500 + Choice of Car

A fabulous opportunity to become a COMPUTER ENGINEER working on a prestigious range of Mini Computers and peripherals. If you have an electronic background (not necessarily computers) and are looking for variety Customer Contact, problem solving and promotion then these benefits. Salary start £5,500 — overtime — standby — choice of car — PLUS a top quality product training course in the U.S.A.

INTERESTED?

Then call our Computer engineer today with details of your hardware background. Consultants Ref K2014

AB EXECUTIVE (KINGSTON) LTD
01-549 6441 (24 hours)

G.R. Thomas
MUSICAL INSTRUMENTS LIMITED

URGENTLY REQUIRE A FULLY-QUALIFIED

ELECTRONICS TECHNICIAN

Applicants must be able to work on own initiative and have full working knowledge of product quality testing for electronic organs plus capability to have as dealers' engineers. Above all we are searching for someone who is truly enthusiastic about our business. If you are searching for a company to reward your skills, efforts and enthusiasm, please write or call us today.

THOMAS MUSICAL INSTRUMENTS LTD
Unit 6
Abercorn Trading Estate
Manor Farm Road
Alperton, Wembley, Middlesex
Tel: 01-903 3081

BROMLEY AREA HEALTH AUTHORITY

Kent

up to £6,350

Our medical electronics staff carry out vital work concerned with the accept ance testing and maintenance of cardiac monitors, emergency and other electronic equipment in hospitals throughout the Authority's area. We are now looking for an Electronics Technician, educated to OCN level or equivalent, to join the team.

Whilst some knowledge of electronics as applied to patient care and safety would be an advantage, full on-the-job training will be given (for which a mileage allowance is payable) and clean driving licence is essential.

Salary will be within a scale of £5,003-£6,350 inclusive of London Weighting. Single temporary accommodation may be available.

For a job description and application form, please contact the Area Personnel Officer, Bromley Area Health Authority, "Bassett", St. Hilary Hill Road, Farnborough, Kent. BR6 7AR. Tel: Farnborough (0689) 53333, Ext. 339

ARTICLES FOR SALE

TRS-80 LEVEL IV K+ RAM, complete system. Numerous programs on cassette, £450 one. Price: Wolverhampton 36939 (evenings).

400 VALVES, ex stock, 100 types, original packaging. May split. S. For details, write: B. McNamara, 91 Forbes Avenue, Pot ters Bar, Herts.

WIRELESS WORLD COMPUTER, Mk III Firmware (UK), 4K RAM, fully documented, many extras, £200. — Reading 41842I.

OFFERS INVITED for Wireless World 1964 to 1979 almost complete. Tel: 0222 804 224. H. R. F. R.Aadio receiving station be laid down. Various TV radio and telegraph equipment for disposal. Tel: 0222 804 224. Offers invited:

FOR SALE, electronic Megas 500 or 1900 volts, pocket size, a bargain for all electricians only, £38.50 plus battery and P&P £1.50. Bowers, 18 Melbourne Road, Welling, Surrey.

G. R. Thomas
MUSICAL INSTRUMENTS LIMITED

ACRULATE RELIABLE

G.R. Thomas
MUSICAL INSTRUMENTS LIMITED

ARTICLES FOR SALE

GRAFOLOUR SPECTRUM ANALYZER.
C/W system desk, colour TV camera and digitizer. First reasonable offer secures. Warriow. Lisburn 413700. (694.9.3)

U.K. AIR BAND FREQUENCIES LIST, approach, tower, A/C, weather, rescue, emergency, etc. £20. Send cheque. PO. To P.B. Electronics, 20 Vittoria Road, Frome, Somerset. BAI 3EF.

THE QUARTZ CRYSTAL CO. LTD

QUICKWITS, WELLINGTON CRESCENT
NEW MALDEN, SURREY
T. 0204 561 & 562

ELECTRONIC TESTING & FAULT DIAGNOSIS
by G. C. Loveday. Price: £5.50
DIGITAL TECHNIQUES & SYSTEMS by D. C. Green. Price: £5.50

ELECTRONIC FAULT DIAGNOSIS by I. R. Sinclair. Price: £3.50

ELECTRONIC DESIGNER'S H/B by K. Hemingway. Price: £13.50

HANDBOOK OF ELECTRONICS CALCULATIONS FOR ENGINEERS & TECHNICIANS by M. K. Kaufman. Price: £14.70

H/B OF MICRO CIRCUIT DESIGN & APPLICATION by D. F. Stout. Price: £10.20

UNDERSTANDING MICROPROCESSORS by J. D. Silfords. Price: £8.25

THE COMPLETE MICROCOMPUTER SYSTEMS H/B by J. D. Silfords. Price: £28.25

TOWERS' INTERNATIONAL TRANSISTOR SELECTION by T. D. Towers. Price: £10.50

ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.
Specialist in Scientific & Technical Books
19-21 PRADO STREET
LONDON W2 1NP

Phone 402 9176
Closed Sat 1pm

classified@history.com
DO YOUR OWN SHEET-METAL WORK

For Shearing, Notching, Aper-
ture cutting, Punching, Box-
folding etc. You need the con-
centrated versatility of only 3
Gabo Machines.

For well illustrated literature—
GALOE BROS, (ENGINEERS) LTD.
HATHERSHEM CLOSE,
SMALLFORD, SY R. H E .
Tel: (0342-84) 2157

MSF TIME

MSF CLOCK & ALWAYS CORRECT
never gains or loses, self set on switch-
off. It does not show Date, Hours, Minutes and
Seconds. Additional £2.50. A quartz
set, BTR at £1.45. Phillips, 8p.

BROADCAST SATELLITE
SATELLITE TUNING EQUIPMENT
PHILIPS TIME MASTER 5171

SATELLITE SUPPILIES
172 WEST END LANE,
BRICKMEN, MILTON CANTON,
MILTON MANCHESTER

TRADE BUYERS

J.P. R. DISTRIBUTORS

New trade counter is now open. We
stock: Carbon film resistors from £3.50
per 1000. Rotary pots from 10p.
Pre-sold sets. Single cables from £1.
Km. BRD decks from £3.80. Also, Elec-
tronic & polyester capacitors, switches,
indicators, plugs & sockets, semiconductor
devices, chassis speakers, microphones, telephone etc.

STOCK CLEARANCE: M.B. & R. BROS.

172 WEST END LANE,
HAMPSTEAD, LONDON NW3

785039

2526

TVII

SATELLITE TUNING EQUIPMENT

PHILIPS TIME MASTER 5171

SATELLITE SUPPILIES
172 WEST END LANE,
BRICKMEN, MILTON CANTON,
MILTON MANCHESTER

TRADE BUYERS

J.P. R. DISTRIBUTORS

New trade counter is now open. We
stock: Carbon film resistors from £3.50
per 1000. Rotary pots from 10p.
Pre-sold sets. Single cables from £1.
Km. BRD decks from £3.80. Also, Elec-
tronic & polyester capacitors, switches,
indicators, plugs & sockets, semiconductor
devices, chassis speakers, microphones, telephone etc.

STOCK CLEARANCE: M.B. & R. BROS.

172 WEST END LANE,
HAMPSTEAD, LONDON NW3

785039

2526

TVII
PROTOTYPE
SAME DAY DESPATCH

Prototype spacy, glass printed circuit boards up to 250mm x 200mm from your camera ready artwork.

Up to 125mm x 100mm—£18+VAT per side etch only, drilling £6+VAT
Up to 240mm x 300mm—£24+VAT per side etch only, drilling £7+VAT

Order your work with sound choice, choice and operations received by 10 a.m. guaranteed despatched the same day only (then day etched and drilled) or your money refunded subject to acceptance at stock.

ACR
AUSTERLEY-CLARK RESEARCH. Tel. 0484 48016
42 Blackhouse Road Huddersfield HD2 1AR (059)

CIRCOLEC
THE COMPLETE ELECTRONIC MANUFACTURING SERVICE

Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your individual requirement.

For competitive prices and fast turnaround contact:
CIRCOLEC, 1 Franciscan Road, Tooting, S.W.17
Telephone: 01-767 1233

COMPUTERS
Learn to really understand computers - how they work and how they are programmed. Home study course with a skilled Tutor available ensures success. No previous experience needed. Colour brochure from:-
British National Radio & Electronic School,
4 Cleveland Rd, St.Helier,
Jersey, Channel Islands. (060)

DESIGN DEVELOPMENT MANUFACTURE. We can offer a high quality, professional service, covering all aspects from original design to small batch production. Digital/Analogues prototypes welcome. Colour photography and quick delivery phone Mr. Flower, Digitek, 1 Kilburn Road, Goring-on-Thames, Oxfordshire. Tel. 949 14 3166. (925)

TUBE REBUILDING PLANTS PROCESS. all TV tubes can be seen in operation. They can be installed internationally as an IN 554 Stafford Road, Birmingghan 11 A4, Aylesbury, Bucks. (997)

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 0847-572 for instant quotes or write to ASTRONICS Ltd., 47/44 Post Street, Placentia Road, Westhampnett, Devan. (8897)

SMALL BATCH PCB's produced from artwork for DIALS, PANELS, LABELS. Camera work undertaken. FAS IN FIELD B. Details: Winston Promotions, 6 Hatton Terrace, London EC1N 8DD. Tel. 01-463 4125/0969. (9794)

I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development. We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.

Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-253 4562 or reply to Box No. WW 8237

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Ltd. 01-850 6555 Southwood Road, New Eltham SE9

BATCH PRODUCTION wiring and assembly to sample or drawings. MCDeane Electronics, 16 Station Parade, East Common, London SW5. Tel. 01-992 8976. (1306)

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work. PCB, artwork etc. Small batch and prototype production welcome.

BROADFIELDS & MAYO DISPOSALS

will pay you top prices for any large stocks of surplus or redundant components which you may wish to clear. We will call at your works in the United Kingdom.

71 LODGE LANE
NORTH FINCHLEY, LONDON N12 8JQ
Telephone Nos. 01-445 0750/445 2713
After office hours 958 7828

FOR CLASSIFIED ADVERTISING
RING ANTHONY HADLEY ON 01-261 8508
Microsystems '81 is the fourth conference and exhibition to meet the rapidly changing information needs of managers and engineers developing and using microprocessor-based systems.

The first two days of the conference are dedicated to design engineers seeking answers to problems encountered in designing and implementing microsystems through discussion and sharing experiences with other experts in the field. The third day is devoted to personal computers and small business systems and their use in industry, commerce and education.

Microsystems '81 is sponsored by the publications Microprocessors & Microsystems, Computer Weekly Systems International and Practical Computing.

SCOPE

- case studies
- communications
- design aids
- distributed processing
- education and training
- industrial control
- interfacing
- multimicroprocessors
- project management
- real-time languages
- signal processing
- software development
- standards
- testing

Synopses of papers for consideration should be sent by 12 September, 1980 to Robert Parry, Microsystems '81, PO Box 63, Westbury House, Bury Street, Guildford, Surrey GU2 5BH.

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:

- 8 sensitivity ranges from 200mV-2000V
- 8 current ranges from 2mA-2A
- Pocket size — weighing only 370gms
- Full overload protection — will withstand 6x spikes
- Rugged construction — virtually indestructible
- Meets tough military specs — drop proof
- In-line, push button operation for
- 10 voltage ranges from 200mV-2000V, 20mA-75mA
- 2 current ranges from 2mA-2A, 250-2000
- 3 conductance ranges from 2mS-200nS.

Fluke 8022A Hand Held DMM

The model incorporates all features of the 8022A but with additional features:

- A peak hold switch which can be used in
- Ac or DC for volts and current functions.
- Audible continuity testing and low level
test for sensing logic levels.
- A temperature (T) range for use with a thermocouple £135

For only £89

Cargcage and Insurance £3

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER

MODEL 1900A

- Autoranging in both current and period measurement modes
- Wide frequency range 4 to 50 MHz
- High frequency range 50 MHz to 200 MHz
- Six digital LED displays — leading zero suppression, automatic annunciation and offset
- Optional external battery pack providing 8 hours continuous operation
- Automatic on all gate times, all function switches
- Four manually selected gate times providing resolution to 0.1 Hz
- Event counting to 100,000 with over flow indicator
- Signal input conditioning with selectable 1 MHz low pass filter and attenuator
- Rugged moulded case with connectors being carrying handle
- Optimal peak data output with decimal point and annunciation
- Additional high fault quality

£195 Cargage and Insurance £3

CALLERS WELCOME

Monday-Saturday

We carry a very large selection of electronic components and
electro-mechanical items.

Special quotations on quantities

PLEASE ADD 15% VAT TO ALL ORDERS

EXCEPT WHERE ITEMS MARKED "VAT INCLUDED."

ROTARY STUD SWITCH

Plessey 360° range, 2 bars.

Single pole, includes 1 amp

24 V, AC-DC 0-5000 res.

BENDIX MAGNETIC CLUCTHER

Superb example of electromechanical. Motor

body in two sections, cold section fitted with "U"

staves, drive section featuring an output arm.

Aligning plate has 30° bearing on both sides

and 18 tooth ring wheel. Extremely power-

ful transmission, 24V D.C. 240Watts

£47.50 F/P £50.

Dinoval controls in Home Farm, Workshops & Lab.

ELECTRO-TECH COMPONENTS LTD.

364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

Y726X FN 30,000 OPV

AC Vols, 0-10, 50, 250, 500, 1000.

DC volts, 0-10, 250, 500, 1000.

1000, 2000, 5000, 10000.

Resistance, 0 to 10, 5000, 10000.

Diode, 0 to 10, 1000, 5000.

Diode, 0 to 1000, 5000, 10000.

£10.95 + F/P £15.

2A PROBE 30,000 OPV

A probe made in large quantity, excellent

performance.

£10.95 + F/P £15.

£10.95 + F/P £15.
The Viewdata Exhibition

For Professional & Business People

WILL TAKE PLACE
29th-31st OCTOBER 1980
WEST CENTRE HOTEL, LILLIE ROAD, LONDON
10 am to 6 pm
(Closing 5 pm on the last day)

The response to the second exhibition for professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel.

An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free.

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata & teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP, Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

- Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other "umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:

Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R 0NE
Here's why you should buy an I.C.E. instead of just any multimeter.

INDEX TO ADVERTISERS SEPTEMBER
Appointments Vacant Advertisements appear on pages 134-149

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustical Mfg.</td>
<td>2</td>
</tr>
<tr>
<td>Able Products</td>
<td>96</td>
</tr>
<tr>
<td>A.E.I. Crystals</td>
<td>96</td>
</tr>
<tr>
<td>Ambit Instruments</td>
<td>22</td>
</tr>
<tr>
<td>Antex</td>
<td>81</td>
</tr>
<tr>
<td>Araiaco</td>
<td>30</td>
</tr>
<tr>
<td>Aspen Electronics Ltd</td>
<td>95</td>
</tr>
<tr>
<td>Audix BB</td>
<td>24</td>
</tr>
<tr>
<td>Bamber, B. Electronics</td>
<td>128</td>
</tr>
<tr>
<td>Barkway Electronics Ltd</td>
<td>98</td>
</tr>
<tr>
<td>Barrie Electric Ltd</td>
<td>117</td>
</tr>
<tr>
<td>Bell & Howell</td>
<td>33</td>
</tr>
<tr>
<td>Bib Hi-Fi</td>
<td>Cover iv</td>
</tr>
<tr>
<td>British National Radio</td>
<td>32</td>
</tr>
<tr>
<td>Bulgin Electronics Ltd</td>
<td>32</td>
</tr>
<tr>
<td>Cambridge Learning</td>
<td>15</td>
</tr>
<tr>
<td>Caracal Eng.</td>
<td>99</td>
</tr>
<tr>
<td>Carlon Electronics Ltd</td>
<td>6, 9</td>
</tr>
<tr>
<td>Cava Systems</td>
<td>120</td>
</tr>
<tr>
<td>Chilmed Ltd</td>
<td>127</td>
</tr>
<tr>
<td>CII Electronics Ltd</td>
<td>114</td>
</tr>
<tr>
<td>Circuit Services</td>
<td>114</td>
</tr>
<tr>
<td>Cobomic Ltd</td>
<td>121</td>
</tr>
<tr>
<td>Codeplug Inc.</td>
<td>121</td>
</tr>
<tr>
<td>Colomor</td>
<td>121</td>
</tr>
<tr>
<td>Conpec UK (VC)</td>
<td>121</td>
</tr>
<tr>
<td>Continental Specialties</td>
<td>95, 99, 103</td>
</tr>
<tr>
<td>Cremin Elektrik</td>
<td>18</td>
</tr>
<tr>
<td>Dansvov (GB) Ltd</td>
<td>4</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>120</td>
</tr>
<tr>
<td>Drake Transformers</td>
<td>112</td>
</tr>
<tr>
<td>Dream Plant Electronics</td>
<td>118</td>
</tr>
<tr>
<td>Dutchgave Ltd</td>
<td>22</td>
</tr>
<tr>
<td>Electronic Brokers Ltd 117, 119, 122, 123, 124, 125, 125</td>
<td>28</td>
</tr>
<tr>
<td>Electro- Tech Comps Ltd</td>
<td>150</td>
</tr>
<tr>
<td>Fraser Int’l</td>
<td>32</td>
</tr>
<tr>
<td>Faircrest Eng.</td>
<td>96</td>
</tr>
<tr>
<td>Farvel Instruments Ltd</td>
<td>Cover ii, 71 Readers card</td>
</tr>
<tr>
<td>Field Tech</td>
<td>94</td>
</tr>
<tr>
<td>Fyde Electron Labs</td>
<td>32</td>
</tr>
<tr>
<td>G.P. Industrial Elec. Ltd</td>
<td>28</td>
</tr>
<tr>
<td>Guide to Broadcasting Stations</td>
<td>26</td>
</tr>
<tr>
<td>Hamag</td>
<td>22</td>
</tr>
<tr>
<td>Happy Memories</td>
<td>102</td>
</tr>
<tr>
<td>Harris Electronics (London) Ltd</td>
<td>24</td>
</tr>
<tr>
<td>Hart Electronics</td>
<td>133</td>
</tr>
<tr>
<td>Henry’s Radio</td>
<td>108, 129</td>
</tr>
<tr>
<td>Herryo Mfg.</td>
<td>94</td>
</tr>
<tr>
<td>Hi-Fi V/Book</td>
<td>132</td>
</tr>
<tr>
<td>I.L.P. Electronics Ltd</td>
<td>104, 105</td>
</tr>
<tr>
<td>I.L.P. Transformers Ltd</td>
<td>98</td>
</tr>
<tr>
<td>Intregex Ltd</td>
<td>101</td>
</tr>
<tr>
<td>Interface</td>
<td>122</td>
</tr>
<tr>
<td>Interface Quartz Devices</td>
<td>28</td>
</tr>
<tr>
<td>Interphone (Kiver)</td>
<td>100</td>
</tr>
<tr>
<td>ITT Instrument Services</td>
<td>13</td>
</tr>
<tr>
<td>ITT Mercator</td>
<td>14</td>
</tr>
<tr>
<td>Kam Circuits</td>
<td>120</td>
</tr>
<tr>
<td>Keithley Insts.</td>
<td>72</td>
</tr>
<tr>
<td>KGM Electronics</td>
<td>12</td>
</tr>
<tr>
<td>Keland Engineering</td>
<td>110</td>
</tr>
<tr>
<td>Kimber Amplifier</td>
<td>6</td>
</tr>
<tr>
<td>Lane, F. C.</td>
<td>120</td>
</tr>
<tr>
<td>Langstrom</td>
<td>106</td>
</tr>
<tr>
<td>Lascar Electronics</td>
<td>18</td>
</tr>
<tr>
<td>Leveil Electronics Ltd</td>
<td>3</td>
</tr>
<tr>
<td>Lowe Electronics Ltd</td>
<td>82</td>
</tr>
<tr>
<td>MacDonald & Janes</td>
<td>116</td>
</tr>
<tr>
<td>Macia-Zand Elec. Ltd</td>
<td>16</td>
</tr>
<tr>
<td>Maplin Electronic Supplies</td>
<td>Cover iii</td>
</tr>
<tr>
<td>Marshall, A. & Sons (London) Ltd.</td>
<td>119</td>
</tr>
<tr>
<td>Martin Associates</td>
<td>99</td>
</tr>
<tr>
<td>MCF Electronics</td>
<td>27</td>
</tr>
<tr>
<td>Medelec</td>
<td>13</td>
</tr>
<tr>
<td>Microcircuits Ltd.</td>
<td>115</td>
</tr>
<tr>
<td>Micro-Systems</td>
<td>81, 150</td>
</tr>
<tr>
<td>Midwich Computer Co.</td>
<td>148</td>
</tr>
<tr>
<td>Mills, W.</td>
<td>102</td>
</tr>
<tr>
<td>Milward, G. F.</td>
<td>114</td>
</tr>
<tr>
<td>Monolith Electronics Co.</td>
<td>34</td>
</tr>
<tr>
<td>Mullard</td>
<td>94</td>
</tr>
<tr>
<td>Multisource Soliders Ltd</td>
<td>Cover iv</td>
</tr>
<tr>
<td>Mura Electronics</td>
<td>96</td>
</tr>
<tr>
<td>Olson Electronics</td>
<td>12, 28</td>
</tr>
<tr>
<td>OMB Electronics</td>
<td>96</td>
</tr>
<tr>
<td>P.B.R.A. Ltd.</td>
<td>103</td>
</tr>
<tr>
<td>Plessey Optoelectronics</td>
<td>35</td>
</tr>
<tr>
<td>P.M. Components</td>
<td>96</td>
</tr>
<tr>
<td>Pride Electronics</td>
<td>110</td>
</tr>
<tr>
<td>Powertran Electronics</td>
<td>107, 109, 111</td>
</tr>
<tr>
<td>Reyco Mfg.</td>
<td>35</td>
</tr>
<tr>
<td>Reyco Precision</td>
<td>35</td>
</tr>
<tr>
<td>Rye Unicam</td>
<td>7</td>
</tr>
<tr>
<td>Quantum Electronics</td>
<td>112</td>
</tr>
<tr>
<td>Quartzlock</td>
<td>132</td>
</tr>
<tr>
<td>Racal Recorders</td>
<td>132</td>
</tr>
<tr>
<td>Racal Components Specialists</td>
<td>130</td>
</tr>
<tr>
<td>Radio Shack</td>
<td>116</td>
</tr>
<tr>
<td>R.C.S. Electronics</td>
<td>103</td>
</tr>
<tr>
<td>Redfiajon PETs</td>
<td>30</td>
</tr>
<tr>
<td>RST Valves</td>
<td>106</td>
</tr>
<tr>
<td>Safagas Electronics</td>
<td>110</td>
</tr>
<tr>
<td>Sandwell Plant Ltd.</td>
<td>103</td>
</tr>
<tr>
<td>Science of Cambridge</td>
<td>20, 21</td>
</tr>
<tr>
<td>Scopex Instruments Ltd.</td>
<td>113</td>
</tr>
<tr>
<td>Second User Electronics</td>
<td>16, 11</td>
</tr>
<tr>
<td>Service Trading</td>
<td>97</td>
</tr>
<tr>
<td>Shure Electronics</td>
<td>38</td>
</tr>
<tr>
<td>Sinclair Radiodics</td>
<td>18, 20</td>
</tr>
<tr>
<td>Sofly Ltd.</td>
<td>100</td>
</tr>
<tr>
<td>SME Ltd.</td>
<td>17</td>
</tr>
<tr>
<td>Sommag 18</td>
<td></td>
</tr>
<tr>
<td>Southern Electronics</td>
<td>132</td>
</tr>
<tr>
<td>Special Products Ltd.</td>
<td>34</td>
</tr>
<tr>
<td>Straat Electrical & MSH Ltd.</td>
<td>110</td>
</tr>
<tr>
<td>Surrey Electronics Ltd.</td>
<td>110</td>
</tr>
<tr>
<td>Sweden Electronics Ltd.</td>
<td>121</td>
</tr>
<tr>
<td>Technomatic</td>
<td>131</td>
</tr>
<tr>
<td>Telecomm Berkeley (UK)</td>
<td>23</td>
</tr>
<tr>
<td>Tempsa</td>
<td>119</td>
</tr>
<tr>
<td>Vairado Ltd.</td>
<td>28</td>
</tr>
<tr>
<td>Vero Systems Ltd.</td>
<td>100</td>
</tr>
<tr>
<td>VHS Committee</td>
<td>36, 37</td>
</tr>
<tr>
<td>West Hyde Developments Ltd</td>
<td>102</td>
</tr>
<tr>
<td>West London Direct Sales</td>
<td>102</td>
</tr>
<tr>
<td>Wilmslow Audio</td>
<td>93</td>
</tr>
<tr>
<td>Wireless World Film Offer</td>
<td>Loose insert</td>
</tr>
<tr>
<td>Z. & I. Aero Services Ltd.</td>
<td>108</td>
</tr>
</tbody>
</table>

Printed in Great Britain by QJB Ltd., Sharpness Place, Chesham, and Published by the Proprietors IPC ELECTRONIC PRESS LTD., Dairy House, Stanford Street, London, SE1 9LD; telephone 61381 8090. Wireless World can be obtained abroad by the following: AUSTRALIA and NEW ZEALAND: Gordon & Gotch Ltd. INDIA: A. H. Wheeler & Co.; CANADA: The Wh. Dawson Subscription Service Ltd. Gordon & Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd. William Dawson & Sons (B.A.) Ltd. UNITED STATES: Eastern News Distribution Inc., 14th Floor, 111 Eighth Avenue, New York, N.Y. 10011.
STEP INTO A NEW WORLD WHEN YOU DISCOVER MAPLIN

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components – from resistors to microprocessors – clearly described and illustrated.

Send the coupon for your copy and STEP UP TO MAPLIN SERVICE NOW

Post this coupon now for your copy of our 1979-80 catalogue price 70p.
Please send me a copy of your 280 page catalogue: I enclose 70p (plus 46p pp). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send £1.35 or ten International Reply Coupons. I enclose £1.16.

NAME
ADDRESS

WW 980

You are now available in all branches of WHSmith Price £1.00
Wireless World, September 1980

gets it together...

Soldering Flux Paste
Er'sin
A fast non-corrosive, resin flux for general and electrical soldering.
Use in conjunction with 'Er'sin' Multicore solders.
Size R110 £1.65 inc. VAT

Multicore Wick
Multicore Wick for soldered and desoldering
For desoldering component leads from PCB's or removing solder from virtually any joints.
Size A810 £1.38p inc. VAT

Econopak
A reel of 1.2mm 'Er'sin' Multicore solder for general electrical use.
Size 13A £4.14 inc. VAT

Handy Dispensers
(All prices inc. V.A.T.)
Size 19A All electrical work £1.65p
Size PCT15 For small components £1.15p
Size SV15 Use with copper bits and wires £1.65p
Size AR140 Metal repairs £1.38p
Size AL150 Aluminium £1.93p
Size SS160 Stainless Steel £2.53p

Emergency Solder
Self fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications.
Size ES36 £0.90p inc. VAT

Bib
keeps it playing

Wire Stripper and Cutter
Easily adjustable for most sizes of flex and cable.
Fitted with extra strong spring for automatic opening.
Easy grip handles and handle locking device.
Ref 8 £2.48 inc. VAT

Savbit Dispenser
For radio, TV and similar work. Reduces copper erosion.
Size 5 £0.90p inc. VAT

Cassette Editing Kit
Make editing simple with the Bib splicer, tape cutter and splicing tape, with 6.3mm adaptor.
Ref 56 £2.88 inc. VAT

USA Pat. No. 4007563 (splicer) Brit. Pat. No. 1507563
Brit. Pat. No. 1252283 (method of splicing)

Groov-Kleen Automatic Record Cleaner
For single-play turntables. Removes harmful dust to protect records and stylus.
Packed in chrome, bright anodised aluminium and shiny black.
Ref 42 £2.85 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative. Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record.
Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable Non-toxic.
Ref 27 £2.48 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative.
In difficulty send direct, plus 40p P & P.
Send S.A.E. for free copy of colour catalogue detailing complete range.
Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

Record Valet
Soft bristles on leading edge remove dust and humid velvet pad collects particles. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 22ml bottle of anti-static cleaner.
Ref 47 £3.29 inc. VAT

Tape Head Maintenance Kit
Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders.
Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.
Ref 25 £4.48 inc. VAT

All prices shown are recommended retail, inc. VAT.

WWW.americanradiohistory.com