Community broadcasting
Multi-section equalizer
Off-resonance metal detector
Analogue computers
Almost everyone agrees that digital multimeters more accurately meet the market's needs.

And, we're proud to say that Gould have more to offer than most, all with LCDs.

Take the Alpha IV, with its 25 measurement ranges; and the Gamma with true R.M.S.

Shown is the Beta, with its 3½ digit display, plus the DMM12 offering 10μV resolution, 4½ digit display and true R.M.S.

If your readings are still giving you the needle, ask for our comprehensive data.

Or, if you're already a committed digital man, ask Gould to demonstrate the way in which we've stretched MOS technology to bring you a finer product at a practical price.

<table>
<thead>
<tr>
<th>Model</th>
<th>Display</th>
<th>DC Res.</th>
<th>DC Accy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha IV</td>
<td>1999</td>
<td>100μV</td>
<td>±0.25%</td>
</tr>
<tr>
<td>Beta</td>
<td>1999</td>
<td>100μV</td>
<td>±0.25%</td>
</tr>
<tr>
<td>Gamma</td>
<td>1999</td>
<td>100μV</td>
<td>±0.2%</td>
</tr>
<tr>
<td>DMM12</td>
<td>19999</td>
<td>10μV</td>
<td>±0.06%</td>
</tr>
</tbody>
</table>

Gould Instruments Division, Roebuck Road, Hainault, Essex 1G6 3UE. Telex: 263785. Tel: 01-5001000. (24-hr service).

DISTRIBUTORS: Scotland Fenwick Electronics Ltd Tel: 041-4297155 N. Ireland IMEX Instruments Ltd Tel: Lisburn 2013 Eire IMEX Instruments Ltd Tel: Dundalk 72300.
Remote control is seeing red. Infra red with Ferranti BPW 41.

BPW 41 is the new infra red detection response photodiode, from Ferranti. The important news is that we've built in a narrow band infra red transmissive filter that eliminates the need for separate filters and gives a very selective spectral response. Take a look at the curve, you'll see it peaking at 925 nm.

BPW 41 offers a narrow spectral band width combined with broad directional response, low junction capacitance for fast response, voltage variable response times, a 7.5 mm² active area for increased sensitivity and virtual immunity to extraneous visible radiation.

With the kind of improved performance BPW 41 gives you, you could do more with your remote control system. Whatever you're into — cordless telephones, TV channel selectors, toys, remote keyboards for VDU's, security or alarm systems — BPW 41 could solve a lot of your problems.

Pick up the phone (cordless or not) and ring 061-624 0515 or write to Opto-electronic Marketing, Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP.

FERRANTI Semiconductors
The world over—
You get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits — and the speediest service — specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 3QJ.
Telephone: Orpington 27099
Telex: 896141
WWW — 025 FOR FURTHER DETAILS
DON'T GAMBLE WITH PERFORMANCE
BUY LEVELL TESTERS

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2V to 150V. Current gains are checked from 1µA to 100mA. Breakdown voltages up to 100V are measured at 10µA, 100µA and 1mA. Collector to emitter saturation voltage is measured at 1mA, 10mA, 30mA and 100mA for I_C/I_B ratios of 10, 20, 30. The instrument is powered by a 9V battery.

TRANSISTOR RANGES (PNP & NPN)

- I_C/B chmod I_E/B:
 - 10mA, 100mA, 1µA, 10µA and 100µA f.s.d.
 - acc. ±2% f.s.d. ±1% at voltages of 2V, 5V, 10V, 20V, 30V, 40V, 50V, 60V, 80V, 100V, 120V, and 150V acc. ±3% ±100mV up to 10µA with fall at 100µA < 5% ±250mV.
- $B V_C/B$:
 - 10V or 100V f.s.d. acc. ±2% f.s.d. ±1% at currents of 10µA, 100µA and 1mA ±20%.
- I_B:
 - 10mA, 100mA, 1µA ... 10mA f.s.d. acc. ±2% f.s.d. ±1% at fixed I_C of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA, and 100mA acc. ±1%.
- $h_F E$:
 - 3 inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert I_B into $h_F E$ readings.
- V_{BE}:
 - 1V f.s.d. acc. ±20mV measured at conditions on $h_F E$ test.
- $V_{CE(sat)}$:
 - 1V f.s.d. acc. ±20mV at collector currents of 1mA, 10mA, 30mA and 100mA with I_C/I_B selected at 10, 20 or 30 acc. ±20%.

DIODE & ZENER DIODE RANGES

- $I_D R$:
 - As I_E/B transistor ranges.
- V_Z:
 - Breakdown ranges as $B V_C/B$ for transistors.
- V_{DF}:
 - 1V f.s.d. acc. ±20mV at I_D of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA and 100mA.

Type

- TM12 **£160**
- TM14 **£170**

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

"See us at LEETRONEX 1st-3rd July, 1980."

LEVELL ELECTRONICS LTD.

MOXON STREET, BARNET, HERTS., EN5 5SD.

TEL: 01-449 5028/440 8686

WW — 049 FOR FURTHER DETAILS
Fault us on quality and we’ll eat it.

For twenty years, Erie RFI filters have been collecting qualifications – like being chosen for every major satellite, missile, aircraft and communications programme in the U.S. and Europe. The wide range includes HF broadband and multi-section filters with soldered or bush mountings as well as rectangular and circular filter connectors and filter pins.

Erie technical supremacy extends right from the ceramic powder to the MIL-approved test house, but at ITT Mercator we do not accept Erie filters on their reputation and MIL-certificate alone. Each batch is tested in our own laboratory to permit DQAB release.

We make doubly sure that you can be sure of the quality of Erie filters.

ITT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3FX. Tel: (0493) 4911. Telex: 97421.
PRIME COMPONENTS LOW PRICES

Also for micro chips or micro pieces. Don’t be fooled by low prices. We do not offer for sale, warrant, test or guarantee any of the above. Any and all of the above are factory prime, full size devices. It is also our policy to offer you the best of new devices that have been tested and quality-controlled. Please refer to “Ordering Information” before ordering. Only orders from Schott, L. P. are accepted.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10</td>
<td>2102 HMC 205 NS</td>
<td>120p</td>
<td>49p</td>
</tr>
<tr>
<td>D11</td>
<td>2102 HMC 205 NS</td>
<td>130p</td>
<td>55p</td>
</tr>
<tr>
<td>D12</td>
<td>2102 HMC 205 NS</td>
<td>140p</td>
<td>62p</td>
</tr>
<tr>
<td>D13</td>
<td>2102 HMC 205 NS</td>
<td>150p</td>
<td>69p</td>
</tr>
<tr>
<td>D14</td>
<td>2102 HMC 205 NS</td>
<td>160p</td>
<td>74p</td>
</tr>
<tr>
<td>D15</td>
<td>2102 HMC 205 NS</td>
<td>170p</td>
<td>80p</td>
</tr>
<tr>
<td>D16</td>
<td>2102 HMC 205 NS</td>
<td>180p</td>
<td>83p</td>
</tr>
<tr>
<td>D17</td>
<td>2102 HMC 205 NS</td>
<td>190p</td>
<td>89p</td>
</tr>
<tr>
<td>D18</td>
<td>2102 HMC 205 NS</td>
<td>200p</td>
<td>95p</td>
</tr>
<tr>
<td>D19</td>
<td>2102 HMC 205 NS</td>
<td>210p</td>
<td>100p</td>
</tr>
</tbody>
</table>

X-RATED CLOCKS

ZULU II CLOCK KIT

Base 2 Model BOOMST

Can be used in any position. The clock kit is available in a variety of colors and can be personalized with a name or message. Prices are subject to change without notice. Please refer to “Ordering Information” before ordering. Only orders from Schott, L. P. are accepted.

PRINTER BREAKTHROUGH! ONLY £385 + P&P + VAT

80 COLUMN HIGH PERFORMANCE IMPACT PRINTER

Use the comparison for PII, AIO, and the Superstar. TRS80, Easy, Superboard, Complex.

New metal edi tronic design makes it ideal for home computing. Comes with a power supply, high-speed printer, and software for Windows. Prices are subject to change without notice. Please refer to “Ordering Information” before ordering. Only orders from Schott, L. P. are accepted.

RUGGED METAL ENCLOSES

Used for home computing. Comes with a power supply, high-speed printer, and software for Windows. Prices are subject to change without notice. Please refer to “Ordering Information” before ordering. Only orders from Schott, L. P. are accepted.
Acoustic
BRUCEL & KJAER
2203 Precision sound level meter
£420
1613 Octave filter set- couplers
directly to 2203 & 2204
£250
CEL
112 LEG meter digital readout
£450
Attenuators
MARCONI SANDERS
6595 VSWR Indicators, Bant Mains
£175
Bridges
CINTEL
272 Measures wire core inductances
0.01H-1000H (with a Q value not less than 2)
£130
DAWE
2186 Decade Capacitance box
0.1uf to 0.1 J step
£20
MARCONI
TF1246 Cmeter. Freq range
1kHz-300MHz using external D.C.
£350
WAYNE KERR
8217 Plus operational amplifier
£225
2201 Measures LCRT
£84
8641 Measures LCR. G. Accuracy of
0.1%
£450
B16 Y parameter test set. Plus
transformer adapter unit
£230
Cable Test Equipment
MARCONI
TF2333 Transmission Test set
£575

Carston Electronics

specialists in second user test and measuring instruments

AS NEW
EX STOCK
DELIVERY
Oscilloscopes

TEKTRONIX 465
DC-100MHz Dual Trace 5mV-5V/Div
0.05µs-0.5s/Div Delayed T/B XY DC 4MHz
£1250

TEKTRONIX 475A
DC-250MHz Dual Trace 5mV-5V/Div
0.01µs-0.5s/Div Delayed T/B XY DC 3MHz
£1950

THESE INSTRUMENTS SOLD WITH ONE YEAR FULL GUARANTEE

WIRELESS WORLD. JUNE 1980

Prices
from £

3209 Manual Entry Keyboard
120
3213 Push Button Display for Time
£180
or Measured Value of Selected
Channel
3205 10 Channel P Card, Quantity as required. Price per 10 Channels
80
FACIT
4010 Tape punch (ASC 11)
500
CLARY
35. 3220 3204 10 columns, 2 ½
write paper 0.50 print cycle
Interface for 3240 only
190
Distortion Systems
RADFORD
DM52 10 Hz 10kHz meter
£160
LD32 '10 Hz 10kHz Oscillator
£160
Function Generators
ADVANCE
J4 10 Hz 10kHz 10V/s + m s
output Sine Square Wave
175
HEWLETT PACKARD
3310 0.005-sec 5 MHz
10V 500 time: square: triangular
250
INTER-STATE
ELECTRONICS
5314 Multi Mode - and offset
0.005 Hz to 10 MHz 10-18V 5021
5354 A: Mode 0.025 Hz 10
MHz 10 V, 500 Ext. VGC, IIR
0. P up to 300 hertz, etc
350
PHILIPS
PMS/27 0.1 Hz 1 MHz Sine
Square Triangle Pulse Outputs
External sweep facility 30V p-p max outputs
325
Logic Analysers
HEWLETT PACKARD
1661 Logic state analyser
12-channel display
250
Modulation Meters
AIRMEC
210 1 300 MHz AM/FM
£493 1 380 MHz AM/FM
295
MARCONI
TF23004A 1100 MHz AM/FM
£450
Multimeters-
Analogue
AVO
8901 AC DC V, AC DC Amps
£60
Oscilloscopes
ADVANCE
DS1000A DC 20 MHz dual trace
£310
DYNAMCO
1200 DC 15 MHz. Dual Trace 1mV
sensitivity
£200
1210 DC 15 MHz. Dual Trace 1mV
sensitivity on CHI Delayed
Timings
£300
HEWLETT PACKARD
1704A Storage 10000-20000-40000
DC 35 MHz dual trace mains Ext
£1200
17078 020 DC 75 MHz Dual Trace
£700
17078 012A 17078 020 with
internal Battery fitted
£750
RACAL Storage 10000-20000-40000
DC 100 MHz mains trolley
£500
PHILIPS
PMA10 1 GHz Sampling oscilloscope
£950
TEKTRONIX
3204A 1A1 DC 15 MHz dual trace
£250
3266 1A True dual beam
DC 50 MHz Can display 2 separate
signals at different sweep rates
£700
458E 1A1 DC 30 MHz dual trace
£325
Delayed Sweep
HEWLETT PACKARD
3614 A 36 381 DC 10 MHz Dual
Trace. High performance tube
Delayed Timebase
£275
386A 82 DC 80 MHz dual trace
£525
10 mV sensitivity
£525
167 A1 DC 50 MHz dual trace
£19
15A 1A DC 50 MHz four trace
£19
Radial Electronics

www.americanradiohistory.com
Power Meters

- MARCONI SAUNDERS: 6660 10 kHz 10 Hz, 100 Hz (Dependent on Heat) 300
- 0421 10 MHz 12 GHz, 10 MHz 75
- 0422 10 MHz 1 GHz, 100 MHz 50
- 0428 20 50 MHz, 40 GHz 50

Sensitivity

- Dual trace. Storage
- TEKRONIX D83 DC-50 Plug-ins
- Mainframe 7704A
- Differential Adaptor
- CRT. Dual trace. Large
- 1200
- 80 kHz
- 120 GHz
- 100 V/50m
- 1000 mW
- 6 mW
- 20 mW
- 50 V
- 1 A

Spectrum Analysers

- NELSON ROSS: 01.11 20k Hz 100 mV 4-bit
- Spectrum generators
- 30 kHz - 2 GHz
- 10 mV
- 1 M Hz
- 100 kHz
- 1200

RÖHDE & SCHWARZ

- SW60B 2 kHz 1.2 GHz 4-bit
- SCHAEFFNER
- 10 mV
- 1 M Hz
- 100 kHz
- 1200

Test Equipment

- PHILIPS 6105 Spectrometer 4-bit
- Frequency analyser
- 225

Volunteers-Analogue

- BRAWLEY C1474. AC/DC
- 75

Farnell

- DM1318. 3A450. DC/DC
- 85

FLUKE

- BMK16. 1:1, 1000 V
- 180

Graeme Electronics Limited

- Shirley House, 27 Camden Road, London NW1 9JR
- 01-267 5311/2
- 400

Oscilloscope Plug-ins

- ROANETZ
- 301 A & 6 Hz

Sweep Generators

- HEWLETT-PACKARD
- 86510E Manche	in 101.7 AM
- 1000

Capacitance

- 1200

Cryogenics

- AMERICAN RADIO HISTORY.COM
- 600

FM

- 600

Spectrum Analyser

- 4161
- 350

Volunteers-Television

- 1200

Threaded Jumper

- 1200

Vibration

- 80 kHz
- 80 kHz
- 75

Wave Analysers

- 350

Carston Electronics Limited

Shirley House, 27 Camden Road, London NW1 9JR

Contact: David Kennedy or Noel Jennings

01-267 5311/2

Redundant Test Equipment

Why not turn your under-utilized test equipment into cash? Ring us and we’ll make you an offer.

VAT charged at Standard Rate

wikipedia.americanradiohistory.com
Whatever it is, the HHH S’ range of power amplifiers will handle it

The HHH ‘S’ range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D
- Dual Channel
- 19” rack mount 3½” high
- 500w r.m.s. into 2.5 ohms per channel
- 900w r.m.s. in bridge mode
- DC—20 KHZ at full power
- 0.005% harmonic distortion (typical) at
- 300w r.m.s. into 4 ohms at 1 KHZ
- 3KW dissipation from in-built force cooled dissipators

S 250D
- Single Channel
- 19” rack mount 3½” high
- 500w r.m.s. into 2.5 ohms
- Retro-convertible to dual channel
- DC—20 KHZ at full power
- Full short and open circuit protection
- Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.

Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR HHH ELECTRONICS
WW — 034 FOR FURTHER DETAILS
Get 24 DMMs off the shelf.

Turn to page 3 of your ITT Instrument Services catalogue for a list of top names Thandar (Sinclair), Fluke, Avo, Keithley and Norma. Compare performance and specification then phone or telex Harlow or any local ITT office and we'll deliver off the shelf.

The ITT Instrument Services catalogue is your key to fast delivery and technical back-up for a vast range of quality instruments. Get it off the shelf.

ITT Instrument Services
Edinburgh Way, Harlow, Essex CM20 2DF.
Tel: (0279) 29522.
Telex: 81525.

Get a Grip on the state of your I.C.'s

The Logic Monitor 2 by CSC provides greater versatility and precision in testing all types of digital circuits. It incorporates a fully isolated power supply which means that there is no loading of a circuit under test, avoids logic level shifts, false triggering and power supply loading. The self contained power supply in conjunction with I.C. comparators provides constant current drive to LEDs and ensures a uniformly bright display. A logic family selection switch enables the precise selection of logic thresholds and provides more accurate measurement of I.C.'s under test.

CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) Limited,
Dept 7DD Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477
We mean it.
The new 30AX colour tube system from Mullard doesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one has been 'designed out'.

Every tube that leaves our factory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.

As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide the best picture shape yet.
And rest assured it'll stay that way. In a slim 110° package that trims about 3” off conventional 22” 90° TV cabinet depths.

Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

For more information just write your name and address on this page and send it to Dept. MCG2, Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD.

Mullard
30AX. The perfect slimline.
DC POWER SUPPLIES a vast range suited to meeting both amateur and professional requirements
MEASURING INSTRUMENTS Digital frequency meter, digital capacity meter
PSICHEDELIC LIGHTS EQUIPMENT various models of light modulators, with/without microphone, stroboscope, spot lights etc.
EQUIPMENT FOR CB linear amplifiers, S.W.R. meter, wattmeters
METAL DETECTOR
AUTOMATIC BATTERY CHARGER
Our articles, which are of top quality, are known and exported worldwide.

WE ARE LOOKING FOR AN EXCLUSIVE IMPORTER well introduced on the English market for all our articles and for some lines of our product.

WWW - 006 FOR FURTHER DETAILS www.americanradiohistory.com
The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters - and still it remains in a class of its own.

Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240, which a 3½ digit meter would read.

Some other PM 2517 plus points:
- LED or LCD display
- True RMS readings of AC voltage and current
- Autoranging with manual override
- Optional accessories include temperature and data hold probes

Reader inquiry number 220

The PM 3207 - Super Scope - is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring instruments.
- 15 MHz dual trace

Philips engineers have encountered the same reaction from customers and competitors alike when showing off the new microcomputer controlled PM 6667 (120 MHz) and PM 6668 (1 GHz) frequency counters: "How do they do it for the price?" Here's a brief summary of what the counters offer.
- Reciprocal frequency counting (for higher resolution without ± 1 cycle error)
- Auto-triggering on all waveforms

Reader inquiry number 222

Both these instruments are available off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors: British Tungsram, West Road, Tottenham, London N17; Pye Unicam Ltd, Pye Eectro Instruments Dept, York Street, Cambridge; Wessex Electronics Ltd, 114-116 North Street, Downend, Bristol BS16 55E. Tel: 721 571404. Telex 817331 Philips Service Centres throughout the country. Tel: 01-686-0505 for the address of your nearest branch.

Reader inquiry number 221

PHILIPS

WWW - 079 FOR FURTHER DETAILS

WWW.americanradiohistory.com
Get all the waveforms you need – 1 Hz to 1 MHz in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves – even a separate TTL square wave output. Plus high- and low-level main outputs.

An applied DC Voltage at the sweep input can shift the 2001’s frequency: or sweep up to 100:1 with an AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.

For value for money the 2001 sweeps the rest off the board.

For immediate action — The C.S.C. 24 hour, 5 day a week service
Tel: (0799) 21682 and give us your Access, American Express, Barclaycard/Access/American Express number and your order will be in the post immediately or just clip out the coupon.

<table>
<thead>
<tr>
<th>Model 2001 Sweepable Function Generator</th>
<th>£87.98 (inc. P&P and 15% VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qnty Req'd</td>
<td>For FREE catalogue tick box</td>
</tr>
</tbody>
</table>

Name ... Address ...

I enclose PO/Cheque for £ ... or debit my

Barclaycard/Access/American Express No ... Exp date

WW — 013 FOR FURTHER DETAILS

THE MEDIA YOU WANT, WHEN YOU WANT IT. FAST FROM THE SPECIALISTS.

3M are, and always have been, the Media Specialists. We don't make computers, only the media they depend on.

From raw material to finished product, every item is produced entirely in-house. As media specialists, we bring you Britain's most comprehensive range of minicomputer media: Scotch cassettes, Scotch data cartridges, Scotch disk cartridges, Scotch diskettes and minidiskettes.

Furthermore, we hold enough stocks to promise immediate supply of all media in common use. You can order by phone or in writing, from us direct or from our network of local distributors.

Complete the details below and send the coupon back to us. We'll sort out the immediate action for value for money.

MINICOMPUTER MEDIA SERVICE

To: The Minicomputer Media Service
3M United Kingdom Ltd
FREEPOST Bracknell Berkshire RG12 1BR
Telephone: Bracknell (0344) 559522

My business uses an

minicomputer which uses

Disk cartridges

Digital cassettes

Media cartridges

Diskettes

Minidiskettes

Other items

Please ask your specialist wholesaler or local distributor for details — they can send you more information on your service.

Name ...

Position ...

Company ...

Address ...

Telephone ...

WW — 016 FOR FURTHER DETAILS

www.americanradiohistory.com
Miniature 6 volt soldering station
PSU-6
A complete station for precision soldering

Pyrometer
Complete and self contained for tip temperature reading

Precision vice 301
Beautifully engineered 350° rotating head with 180° tilt

Miniature mains iron, 17 watts
Model M3

Safety stand
For ORYX 50
T°C and Super 30 irons

Vacuum based p.c.b. holder
Will take a range of vice heads

Temperature controlled soldering iron
The famous ORYX 50

Bench vice 1-B
Highly versatile for soldering and drilling operations

Desoldering tool SR 3A S

Desoldering tool SR 3A

G.P. 27 watt soldering iron
The ORYX Super 30

Desoldering tool SR 3A Micro

TURE DETAILS

Miniature solder pot
Ideal for workshop or laboratory

Desoldering tool SR 3A

'Quick Charge' cordless soldering iron
Will recharge in only 3 to 4 hours

Miniature mains iron, 17 watts
Model M3

Vacuum based p.c.b. holder
Will take a range of vice heads

All these and more make up the widest range of professional soldering products.

Ask us for our full information pack.

Greenwood Electronics
Portman Road, Reading, Berks. RG3 1NE
Tel: (0734) 595844 Telex: 848659
Hilomast Ltd

MICROSYSTEM DEVELOPMENT USING SOFTY

SOFTY is intended for the development of programs which will eventually be stored in ROM and forming part of a microsystem. During the development stage of a microsystem, SOFTY will be connected in place of the firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.

Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assembler key-functions.

When the program has been entered, the internal microprocessor can be 'turned off', and the external microsystem and its resident microprocessor allowed to access and run the program in SOFTY's RAM and/or programming socket. In this way modification can be made until the required program is complete — the contents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available. 2 of the Data RAM an 2 of the programming socket.

In the end, when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails — we supply with each SOFTY details of a simple modification which allows SOFTY to program the single rail 2716/2732 etc. (If you want to program EPROMs/PROMs other than the 2704/2708/2716 family, we may be able to help you — our range of add-on Programming Modules is currently under development.)

To help in the process of program development SOFTY has various assembler key-functions which include — block shift without overwriting, block store, cursor control, match byte and displacement calculations (for jumps, etc.) A high speed cassette interface is also provided for storing working programs and useful subroutines.

Software is supplied for serial data transfers — which means that you can write an assembler for your favourite MPU in BASIC on your Superboard, UK101, NASCOM, etc. and transfer the hex code directly to EPROM via SOFTY. The serial transfer program runs in the scratchpad and can be easily loaded from cassette or the programming socket.

Besides software development and EPROM programming, SOFTY has other uses — as a training aid, or as a control computer in its own right, with up to 2K bytes firmware, 1K of RAM, 221/0 ports and Direct Memory Access.

SOFTY Key parts including (extra memory base socket for EPROM programming).

Built conversion card for programming single rail EPROMs (with ZIF) — £46 (inc. VAT, p&p).

Built SOFTY power supply — £23 (inc. VAT, p&p).

Write or telephone for full details.

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built-in 5 to 60 minute timer to cater for all EPROMs
- Safety interlocked to prevent eye and skin damage
- Convenient slide-tray loading of devices
- MAINS and ERASE indicators
- Rugged construction
- Priced at only £89.70 (inc VAT, p&p)

MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer

Priced at only £70.73 (inc VAT, p&p)

WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES. OFFICIAL COMPANY ORDERS TO:

GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth
PL4 8HA. Telephone: Plymouth (0752) 28627

TRADE AND EXPORT ENQUIRIES WELCOME

WWW — 041 FOR FURTHER DETAILS
Front cover shows interior of an English Electric Valve Co. magnetron (cutaway model) for use in radar systems. Photographer: Paul Brierley.

IN OUR NEXT ISSUE

Graphical communication with computers introduces the technology of interactive computer graphics and describes input and output methods for information in this form.

Transient recorder. Constructing an instrument which captures one-shot events for later display on an oscilloscope or chart recorder. Memory contents can be examined word-by-word.

Solid-state level meter. This solid-state indicator, using 20 I.e.s of any colour mix, offers a.c. or d.c. and dot or bar operation.

Current issue price 50p. back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.

USA mailing agents: Exceders of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

Editorial & Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
NEW PRODUCTS — NEW PRODUCTS
Our product range for the 80s is outlined, but it is impossible to cover everything in such a small space. For detailed information and a price list send a large SAE or a dollar bill.

PRE-AMP & POWER AMP KITS

The pre-amp is now available in kit form in various to suit any cartridge and consists of the Module C2 (below) and the hardware kit No. 1. No soldering is involved and assembly takes about 20 mins. There are six power amp kits: four mono and two stereo, from 45 to 260W to satisfy virtually every requirement. They are ready built and tested PCB boards to achieve an ease of construction similar to module based kits at lower cost. There are also mains supply kits to enable independent use of the pre-amp, which is normally powered via our power amp. Similarly, equipment is also available ready-built from us or via our dealers.

C2 + HK1 £70.95
P2 (stereo 45W per channel) kit £87.28
P4 (stereo 110W per channel) kit £109.42

MOVING-COIL & PRE-AMP MODULES

Previously restricted to trade and export, the C2 pre-amp module is now available separately in 3 versions to match any cartridge. It has unbreakable specifications, silks for disc, auxiliary and 2 or 3 head tape machines and requires only a rough supply of 18 to 35V d.c. The new moving coil pre-amp achieves low thd, high overload, speed r.t., rejection and good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be powered either via the C2 or by a battery. Hardware kits are available to build both types and they are also available ready-built.

MC1 Module £22.25
C2mc £51.75

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also available to retail customers, in a variety of powers and formats up to 260W x m. s. They use the same high performance circuitry as the kits above, giving thd below 0.1% at 1KHz, but are capable of sustained high level use with excellent reliability. There are also coolers for use with any one of two of these modules, all of which use toroidal transformers, also available separately. The module illustrated is a medium duty 150W x m. s. type the M150B, which requires the M3.5 supply.

M150B £35.79
M3 £26.28

Exports: We can deal efficiently with orders to any country. Please write with your specific requirements and we will return a quote by return. All equipment is also available for 110V mains.

PLEASE NOTE: OUR NEW ADDRESS FROM 1ST MAY
8 ALBION STREET, LEICESTER. Tel: 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel: 1-302 798-7932
MINIC TELEPRODUCTOR, BOX 12035, S-750 12, UPPSALA 12, SWEDEN

Three great miniature drills

PI £9.95
pp 50p

P2 £17.55
pp 120p

P3 Universal chuck £17.55
pp 120p

plus all the accessories

DRILLS
SPADE & TWIST up to 2.5mm
40p each

BURRS
3 sizes. Also tungsten*

WIRE BRUSHES

POLISHERS

CARBORUNDUM
DISC
WHEEL

GRINDING STONES

ST1
2
1
1
1
1

Tungsten 175p

PI
50p ea.

C2
50p ea.

Above are illustrated just a few of the many accessories available in the range to fit these drills. For full details ask for Accessories leaflet. All items are subject to availability from manufacturer.

Please note: full details of range to

Sole UK Distributors
PRECISION PETITE LTD
19a HIGH STREET, TEDDINGTON, MIDDLESEX, TW11 8HG
TEL: 01-977 0878

WIRELESS WORLD, JUNE / JULY 1980

www.americanradiohistory.com
Distress calls are made every day—hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messages—sometimes several at a time. In such instances a positive need for communications recording arises—a need for a system with instant message trace and replay—at the touch of a button—and at any speed to assist intelligibility.

All these facilities, and more, are available in the Racal Recorders 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to:
Racal Recorders Limited
Hardley Industrial Estate
Hythe, Southampton,
Hampshire, SO4 6ZH
England
Telephone: 0703 843265
Telex: 47600.

Callstore, from Racal Recorders, answers all the questions.
Britain's first computer kit.

The Sinclair ZX80.

Price breakdown

ZX80 and manual: £69.52
VAT: £10.43
Post and packing FREE

Please note: many kit makers quote VAT-exclusive prices.

You've seen the reviews... you've heard the excitement... now make the kit!
This is the ZX80. Personal Computer World gave it 5 stars for 'excellent value.' Benchmark tests say it is faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX80 with competitive kits that don't appeal with inclusive prices.

'Excellent value' indeed!

For just £79.95 (including VAT and p&p) you get everything you need to build a personal computer at home - PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done: connect it to your TV... link it to an appropriate power source... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected world-leading suppliers.
- New rugged Sinclair keyboard, touch-sensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16K bytes RAM. (Extra RAM chips also available - see coupon.

*Use a 600 mA at 9 V DC nominal unregulated mains adaptor Available from Sinclair if desired (see coupon).

The unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages.

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input to request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEX and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume production - more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1K byte RAM is roughly equivalent to 4K bytes in a conventional computer - typically storing 100 lines of BASIC (files occupy only a single byte.)

The display shows 32 characters by 24 lines.

And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.
ZX80 software – now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July).

New dedicated software – developed independently of Science of Cambridge – reflects the enormous interest in the ZX80. More software available soon – from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you – don’t worry! They’re all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming – from first principles to complex programs. (Available separately – purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80 Kit: £79.95. Assembled: £99.95. Complete!
The ZX80 kit costs a mere £79 95. Can’t wait to have a ZX80 up and running? No problem! It’s also available, ready assembled, for only £99 95. Demand for the ZX80 is very high, use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We’ll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt – and we have no doubt that you will be.

ORDER FORM

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Remember: all prices shown include VAT, postage and packing. No hidden extras.

Please send me

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sinclair ZX80 Personal Computer kit(s)</td>
<td>£79.95</td>
<td>£79.95</td>
</tr>
<tr>
<td>1</td>
<td>Ready-assembled Sinclair ZX80 Personal Computer(s)</td>
<td>£99.95</td>
<td>£99.95</td>
</tr>
<tr>
<td>1</td>
<td>Mains Adaptor(s) (500 mA at 9 VDC nominal, unregulated)</td>
<td>8.95</td>
<td>8.95</td>
</tr>
<tr>
<td>1</td>
<td>Memory Expansion Board(s) (each one takes up to 3K bytes)</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>1</td>
<td>Sinclair ZX80 Manual(s) (manual tree with every ZX80 kit or ready made computer)</td>
<td>5.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

NB Your Sinclair ZX80 may qualify as a business expense

TOTAL £

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £

Please print

Name Mr/Mrs/Miss

Address

WW

WW — 098 FOR FURTHER DETAILS
Recognise me?

If you do you should know your authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs
Large stocks of new AVOMETERS

Farnell International
Farnell International Instruments Ltd.,
Sandbeck Way, Wetherby West Yorkshire LS22 4DH
Tel 0937 63541 Telex 557294 Farist G

Metro Problems?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937

Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM/AM Field Service Monitor
CE-50A-1: FM/AM Field Service-Spectrum Monitor

Exclusive representative:
Aspen Electronics Limited
Communications Equipment and Components
2 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9U
Telephone: 01-868 1188
Telex: 8812727

WWW - 051 FOR FURTHER DETAILS

WWW - 021 FOR FURTHER DETAILS

WWW - 050 FOR FURTHER DETAILS
“I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE”

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell & Howell or one of our Video Centres and get the current facts.

The fact, for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as £1,300 plus VAT. For playback, a standard TV receiver is all you need.

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions, a 6:1 power or manual zoom, giving close-ups as close as 50 mm; TTL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC ½-inch U-format recorder.

The picture will be improved. You'll have another sound track to use for foreign-language commentaries or question-and-answer training routines.

On ½-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still the cost of the system needn't exceed £2,700 plus VAT. Alternatively, at very attractive rates, it can be leased.

TALK FIRST, PAY LATER

You can, of course, spend more. At any Bell & Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?

Let the Video Centre, or Bell & Howell, help you decide. Whatever your decision, two things are certain.

One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty unique to Bell & Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped supershield video workshop.

Convert to (or start) with colour. With JVC video equipment, And the Bell & Howell Supershield guarantee.

Let Bell & Howell show you the answer.

To Pieter Glas, Bell & Howell AV Ltd., Freepost, Wembley, Middlesex HA0 1BR

Please send me more information about video equipment and a list of your Video Centres

Name

Organisation

Address

www.americanradiohistory.com
We righ

Advertisement produced co-operatively by: Akai, Ferguson,
Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recorders - there are now triple standard VHS machines which accept PAL, SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.

VHS is the No. 1 system in the UK, Europe, the US and Japan.

Make sure you've got it.

Right?

Got it right, from the start.

The world's No. 1 system.

VHS

Hitachi, JVC, Panasonic, Sharp.

WW - 115 FOR FURTHER DETAILS
The Thandar 10MHz Portable Oscilloscope

A low weight, low power Oscilloscope that provides workshop facilities but with true portability £139.00 + VAT

The Thandar Portable Oscilloscope is a breakthrough in development. Now, for the first time, every engineer, serviceman and technician can carry with him this piece of electronic test gear weighing less than 2 pounds, yet having the performance of most standard bench oscilloscopes.

The Thandar Portable Oscilloscope is less than 2" thick. It is based around a 2" diagonal CRT and has a 10 MHz bandwidth with sensitivity down to 10mV per division. Full trigger facilities are provided, including Bright Line Auto with TV Line and Frame positions.

The superb ergonomic design of the Thandar Portable Oscilloscope enables it to be carried in a briefcase or toolkit. It can be held in one hand or operated whilst hung around the neck.

Send now for further details or call at your local Thandar Stockist.

To Sinclair Electronics Ltd.,
London Road, St. Ives,
Huntingdon, Cambs., PE17 4HJ.

Please send me further technical information, price list and stockist list of the Thandar Portable Oscilloscope. I am also interested in
- Digital Multimeters
- Pocket Multimeters
- Pocket Frequency Meters

Name:
Address:

WW — 026 FOR FURTHER DETAILS

Sinclair Electronics Ltd.,
London Road, St. Ives
Huntingdon, Cambs., PE17 4HJ.
Tel: 0480 64646. Telex: 32250

Sinclair Electronics Ltd. reserve the right to alter prices and specifications on Thandar equipment without prior notice.

WW - 026 FOR FURTHER DETAILS

Lascar's new range of DIN Cased Digital Display Products are low-cost, compact alternatives to electro-mechanical products. They give high levels of accuracy and enhance the appearance of any instrument or panel. The range includes counters, panel meters, timers, frequency meters and thermometers. LED or Liquid Crystal displays are available in a variety of digit sizes. All prices are 1 off and exclusive of VAT. Large discounts available to OEM users.

3½ Digit LED Panel Meter
3½ Digit LCD Panel Meter
4½ Digit LED Panel Meter
4 Digit LED Counter
4 Digit LCD Counter
6 Digit LED Counter
8 Digit LED Universal Counter-Timer

1 off 1,000 off £28.03 £14.98.
£28.03 £14.98.
£53.95 £26.97.
£28.03 £14.98.
£38.83 £19.97.
£37.75 £19.48.

WWW — 045 FOR FURTHER DETAILS

www.americanradiohistory.com
MORE SPEC. FOR YOUR MONEY

TYPE 631 FILTER OSCILLATOR
£112 & 2.50 carriage, ins etc.

COVERS THE RANGE 0.1Hz to 100kHz

MODES —

ACCEPT 0 from less than 1 to over 300
REJECT 90 dB notch
Hi and Lo PASS 12 dB per octave
OSCILLATE Sine wave and square wave

TYPE 631LF — £118.13 & 2.50 carriage, ins etc.

Low frequency version 0.01Hz to 10kHz

FROM OMB ELECTRONICS
WW—116 FOR FURTHER DETAILS

COMBIWRAP
A high precision, low cost hand tool which performs three functions

The Vero Systems Combiwrap is designed to strip the insulation from 30AWG wire, wrapping it and make a 'modified wrap' joint onto a miniwrap terminal. To remove a wrapped joint, simply use the tool in an anti-clockwise direction and the wire will be unwrapped with ease and without damage to the terminal.

SPECIFICATION
Wire Size 30AWG
Post Size 0.025" (0.6mm)

Strip length 1 1/2" (3.81cm)
Modified wrap — a wrap having 90° to 115° turns of insulation wrapped around the terminal for additional mechanical stability.

Order Code: 163-20300A
Price: £3.50 including post and packing and VAT

ACCESS AND BARCLAYCARD WELCOME

VERO SYSTEMS (ELECTRONIC) LIMITED
362, SPRING ROAD, SOUTHAMPTON, HANTS, S09 5QJ
Telephone: (0703) 440611 Telex: 471764
WW — 878 FOR FURTHER DETAILS

Electronic components from Rendar

Lighted switches - 'Minitop' miniature switches
LED indicator lights - Fuse holders

Switches - toggle, slide, rocker, push-button - Cable connectors

Binding posts, Phono plugs and sockets
Terminals - Miniature Jack plugs

Valve sockets - Appliance plug connectors
Mains connectors - Coaxial components

The vast range of components now available from Rendar include West German, Swiss and Japanese products which all conform to international state-of-the-art specifications.

Call Maria Eade now for a quotation!

Rendar
Wilmot Breeden Electronics Limited
Durban Road - Bognor Regis
West Sussex PO22 9NL - England
Telephone Bognor (0243) 825811 - Telex 86120

WWW — 010 FOR FURTHER DETAILS
High quality - good value

Edicron

Edicron Ltd, Redan House, Redan Place, London W2 4SA
Telephone: 01-221 4717 Telex: 265531

Valves • Tubes • Germanium and Silicon semi-conductors • TV tube guns

People in the know keep in touch.

Call your secretary, factory manager, accountant or even hold a conference - all at the press of a button using the first easy to install 100% British designed and manufactured Duplex Intercom System.

- Operation on a 6 wire system.
- Plug in anywhere on the system.
- Retain identity station number.
- Up to 56 stations.
- Two speech channels.
- 24 Volt supply.
- All from the smallest central unit available and of course the least expensive.

Barkway keeps you in touch...

Write or phone NOW for further details.

Barkway Electronics Ltd.,
Barkway, Royston,
Herts SG8 8EE, England.
Tel: Barkway (0763 84) 666
Telex: 817651 BARCOM G

Production Testing

Development

Servicing

Power Units

Now available with 3 outputs

Type 250VRU/30/25

- Output 1: 0.30v, 25A DC
- Output 2: 0.70v, 10A AC
- Output 3: 0.250v, 4A AC

ALL Continuously Variable

Valradio

Valradio Limited, Browells Lane, Feltham
Middlesex TW13 7EN
Telephone: 01-890 4265/4817

Extensive range of receiving and industrial valves. Quick delivery from stock. Exporters of international repute, established over 20 years. Direct supplies for OEM, industrial and TV rental users and wholesalers. Private and retail users please send for list of distributors. Overseas distributor enquiries welcomed. Write, ring or telex for details and prices.

WWW—079 FOR FURTHER DETAILS
WIRELESS WORLD, JUNE / JULY 1980

PLANT FOR THE 80's WITH THE
ADCOLA SOLDERING UNIT 101

It has features other tools have not
- 50w ELECTRONIC TEMPERATURE CONTROL
- TOTAL EARTH SYSTEM
- NO MAINS INTERFERENCE
- NO MOVING PARTS
- LOW SAFETY VOLTAGE OPERATION
- ADJUSTABLE TEMPERATURE WITHOUT BIT CHANGE

ADCOLA PRODUCTS LIMITED
GAUDEN ROAD, LONDON SW4 6LH TELEPHONE 01 249 5624

ORGAN and PIANO KEYBOARDS

Price
inc VAT P & P

4-Octave C-C £32.20 £2.75
5-Octave C-C £34.50 £2.75
5-Octave F-F £34.50 £2.75
6-Octave C-C £36.80 £3.00

DALSTON ELECTRONICS
40a Dalston Lane, Dalston Junction
London, E8 2AZ Tel: 01-249 5624

Thurlby PL Series
Now the bench power supply takes a major step forward!
- Simultaneous digital metering of voltage and current.
- Twin 3½ digit (4000 count) meters with ½" LED displays
- 0.1% accuracy, Resolution of 0.01 volts and 0.001 amps.
- True constant voltage or constant current operation.
- Current Limit can be set precisely without shaving the output.
- Remote sense facility for maintained precision at high currents.
- Designed to rigorous quality and safety standards.

Ex-Stock

Thurlby PL Series: single, dual and triple output units
Prices from around £100

Full data and distributor list from Thurlby Electronics Ltd.
Coach Meas, St. Ives, Cambs. PE17 4BN Telephone 0480 63570

with push-button selection of isolated, parallel, series, or series-tracking modes

www.americanradiohistory.com
INTRODUCING THE FLUKE 8024A
The only 11 Function DMM you can buy.

- Finds pulses \(\pm \) or \(\pm \).
- Finds peaks and holds them AC or DC.
- Finds hot spots with any "K" thermocouple.
- Finds loose connections and shorts with an audio tone or display indication.
- Finds leakage to 10,000 MΩ with conductance.
- Plus of course AC & DC volts, AC & DC current and ohms, and diode test.

For your troubleshooting application, the 8024A does it all for only £135.

The 8024A is one of the Fluke range of hand-held DMMs. Send for your Free Catalogue—NOW!

IT'S NYCE TO BE HERE IN BRITAIN
360 TRCX
100,000 OPV, Meter + transistor checker & capacitor meter.
A C volts 0.5-10-25-50-100-200-1000V
D C volts 0.25-2-5-10-25-50-100-200V
D C current 10 uA-2.5mA-25mA-50mA-10A
A C current 0-10A
Resistance X1-X10-X100-1000 ohm
Transistors HFE 0-1000/ICD-50 µA
Capacitance range 5PF-30UF-0.01-50UF
£39 15 + VAT

ETU 5000
50,000 OPV
A C volts 0.5-10-25-50-125-250-500-1000V
D C volts 0.125-250mV-0.1-2.5-5-10-25-50-125-250-500-1000V
D C current 10 ranges 50 µA = 10 Amp
Resistance 5 ranges 0.2k = 20 M ohm
£16.58 + VAT

VF 25
20 000 OPV range doubler meter
A C volts 10 ranges = 0.25V
D C volts 6 ranges = 15V
A C volts 5 ranges = 500µA-50mA
D C current 3 ranges = X1-X100-X1K
A C OPV.10k ohm
£13.25 + VAT

SEND FOR COMPLETE LIST OF OUR RANGE OF MULTIMETERS.

CRAEL UK LTD
7 HUGHENDEN ROAD, HASTINGS, SUSSEX TN34 3TG
TEL: 0424-428131

WIRELESS WORLD, JUNE/JULY 1980
The New SUPER-S dBm has RF power output, to locker 2-tone generator, reduced price. The New FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S. A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter - and up to five service engineers who could be doing something else! For further information contact Mike Taylor.

The B605 Automatic Component Bridge.

With this Wayne Kerr automatic component bridge L, C, R, D and Q are measured automatically to a guaranteed accuracy of 0.1% over a wide dynamic range. The B605 is microprocessor-based for reliability and superb resolution. Moreover, the standard features of Auto-Range & Hold and Auto-Trim eliminate individual adjustments: just push the lead wires of an 'unknown' component into the special adaptor, press a button and read the answer! It takes less than 5 seconds.

The Wayne Kerr range includes the B905 Automatic Precision Bridge (accuracy 0.05% and with many advanced features and options such as sorting, binning and ATE compatibility) and the B424 Component Meter for easy LCR measurements (accuracy 0.25%). A growing family of test equipment for the 1980's.

For further information contact Mike Taylor.
Businesses have been built on our ferrites.

Ours included.

If you’re a manufacturer, even the most inexpensive components must be checked out—in order to keep your product from being junked. And it’s particularly true of ferrites. Apex are the sole UK agents for one of America’s largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are. The range cover most shapes from torroidal and pot cores to E cores, shield beads and baluns. Full data is available on request.

The most useful kit in the business.

We’ve put together a kit of assorted ferrites that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just £10.00 (cheque or company order). It’s really too good to miss.

Apex. Big enough to look after you. Properly.

Apex Inductive Devices, 27 Abbey Industrial Estate, Mount Pleasant, Alperton, Middx. Tel: 01-903 2944.
WIRELESS WORLD, JUNE/JULY 1980

COMPUTER KITS FROM NEWTRONICS

ELF II

Hobbyists! Engineers! Technicians! Students!

Computer Kit STARTS AT £59.95

plus V.A.T.

ELF BOARD WITH VIDEO OUTPUT

FEATURING THE RCA COSMAC 1802 cpu

STOP reading about computers and get your "hands on" an ELF II and Tom Piman’s short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute, and the short course speedily instructs you how to use them.

ELF II was designed to be both a trainer and the heart of a powerful computer system. The £59.95 ELF II gives you all components and everything you need to write and run your own programs immediately, even if you've never used a computer before. Then, once you've mastered computer fundamentals, ELF II can be expanded to give you tremendous computing power.

Plus the greatest range of Expansion Kits and Software:

GIANT I/O BDL 4K RAMS - ASCII KEYBOARD - LIGHT PEN - VIDEO DISPLAY BD - PROTOTYPE BD - PSU - CABINETS - FULL BASIC WITH RPN - TINY BASIC - ELF-BUG - TEXT EDITOR - ASSEMBLER - DISASSEMBLER - MANUALS AND LOTS MORE

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals). P&P £2. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

We are now open for demonstrations and Sales. Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground on main A1 into London.

Explorer/85

Professional Computer Kit AT £299 + VAT

with Microsoft BASIC in ROM

WITH ONBOARD S-100 EXPANSION

FEATURES INTEL 8085 cpu

FLEXIBILITY: Real flexibility at LAST. The EXPLORER/85 features the Intel 8085 cpu. 100% compatible with all 8080A and 8086 software. Runs at 3MHz. Mother Board (Level A) with 2 S-100 pods expandable to 6 Level C).

2K Monitor ROM - 1K Video RAM - 4K WORKSPACE/USER RAM - Expandable to 64K - 8K Microsoft BASIC in ROM - STANDALONE FULL ASCII Keyboard, text - RS 232/20MA Loop - Direct interface for any S-100 board - p.s.u. requirements 8V, 1.5A.C. - Runs with North Star controller and Floppies - EXPLORER/85 can be purchased in individual levels kit form or wired and tested OR as a package deal as above.

64K S100 DYNAMIC RAM BOARD

£149

16K RAM BDL in Kit form

Assembled, tested and burned in

16K expansion kits

£164

£70

Newtronics

255 ARCHWAY ROAD, LONDON N.6
TEL: 01-348 3325

WW - 019 FOR FURTHER DETAILS

Eddystone at SONIC SOUND AUDIO BRITAIN’S No.1 AUDIO STORE

THE COMMUNICATION CENTRE

SONIC SOUND AUDIO

240-256 TOTTENHAM COURT ROAD LONDON W1 TEL: 01-637 1908

WWW - 014 FOR FURTHER DETAILS

www.americanradiohistory.com
Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

Give for those who Gave

Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them, or their dependents are now in need of help.

Please assist by giving all you can for an emblem during WINGS WEEK or please send us a donation.

Please wear this emblem during WINGS WEEK in September

Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
(Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960).

Space donated by:
Now you can afford to
go digital with
the TRW
Video A/D Converter

We’ve done today what everyone thought was years away. We’ve developed a Monolithic Video A/D Converter to sell for less than £350—and best of all, it’s ready for delivery now.

TRW’s new 8 bit TDC 1007J costs only £320 (in 100’s), features up to a 10 to 1 power reduction over existing converters, is less than a third the size, and converts with unmatched accuracy up to 30MHz (33 ns conversion time).

The TDC 1007J exceeds the standards that are required for TV studio equipment, yet it is economical enough for field and/or industrial use. If you have a product that is now using one of those expensive Video A/D Converters you can mount the TDC 1007J (and about £25 worth of other components) on a card and start saving immediately. (Incidentally—we are making available, in small quantities, an evaluation board. It’s a fully tested drop-in unit containing everything you need to go digital—just ask for TDC 1007 PCB).

Let us show you how you can go digital... economically.

Now also available in 4 and 6 bit versions and MIL TEMP RANGE

MCP Electronics Ltd.
Station Wharf
Alperton, Wembley, Middx.
Tel: 01-902 5941

www.americanradiohistory.com
The PRO MASTER modular sound system ushers in a new generation of sound system versatility, reliability, and quality for today's entertainers, musicians, and speakers—for use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and schools. Its multitude of performance-proven features is the result of sophisticated computer design techniques, advanced materials, and countless hours of personal consultation with performers and sound technicians.

Revolutionary New Console
Finally! The best of both worlds: A console so easy to use that it won't overwhelm the beginning group, yet with the advanced features and capabilities required by experienced professional performers—such as pre-fader monitor mixing, effects and/or built-in reverb, with their own tone controls, LED clipping indicators with attenuators on each input, and full patching facilities for every system component. Super power: twin 200-watt solid-state power amplifiers! Doubles as a stereo recording console for groups that want to "lay down a few tracks" without paying for studio time, or can be used as an ultra-sophisticated keyboard mixer with power. Unitized ARMO-DUR structural foam combination case and chassis makes it more durable than steel. Ultra-light: only 47 pounds.

Revolutionary: Variable Dispersion Sound System
Advanced new variable dispersion high-frequency horn system projects your sound—everywhere in the house, giving you a choice of 60° long-throw, or 120° wide-angle dispersion with the twist of a knob. Tailors the sound to the room—even L-shaped rooms.

Revolutionary New Loudspeaker
Every extra ounce—every unnecessary cubic inch—has been computer designed OUT of the PRO MASTER loudspeaker. Modern materials and moulding techniques accommodate a high-performance 15-inch woofer and high-frequency horn and compression driver in a startlingly small, efficient enclosure. Less than 28 inches high, 23 inches wide, 16 inches deep. Weighs an easy-to-handle 58 pounds. Yet, the power handling capacity is a remarkable 150 watts, and the frequency response is 50 to 15 kHz.

PLUS... Revolutionary: FEEDBACK FINDER™/Equalizer
PATCH BLOCK™ Patch Panel
LED Status Indicators

SHURE
PRO MASTER™ sound system
Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU—Telephone: Maidstone (0622) 59881

WW—112 FOR FURTHER DETAILS
Producers before products

It may be a coincidence that markets for office automation equipment and military electronics equipment are both growing at nearly 30 percent per year. But both trades are obviously doing well in the business of helping to get rid of people — in their different arenas and different ways, of course.

Whenever one deplores the fact that parts of our industry are thriving on activities which are fundamentally hostile to life and its environment one gets the sweetly reasonable answer that such expansion is increasing our prosperity, providing more jobs (in different kinds of work), improving the country’s balance of payments and so on. And indeed it is this rise in the material standard of living which anaesthetizes us to accept the extraordinary contradictions of our industrialized society, to live docilely with what an observer from another planet might well consider insane. Planned obsolescence means that the ultimate purpose of production is waste. Peacefully we manufacture equipment for warfare; skilfully we design machines to abolish skill; high intellects are turned to the creation of trash; and great bodies of technical knowledge, built up over centuries, to bringing forth mere ephemera. We develop products to satisfy demands which don’t yet exist, and sell these products to rich minorities in the midst of the poverty-stricken majority.

Workers suffer intense boredom to produce goods the images of which are used to excite and stimulate other workers. Worst of all, in pursuing endless consumption we behave as if we did not know that the Earth’s minerals and sources of energy cannot be renewed. One doesn’t have to look far in electronics and communications to see examples of all these processes.

Some psychiatrists think that unavoidable contradictions in society (called “double-binds”) are what lead to mental breakdown. Nevertheless our leaders treat them as inevitable, to be endured as the price we have to pay for what is called progress. Lord Zuckerman, for example, well known as a scientific adviser to the UK government, assured us last year in a lecture entitled “Look forward to the electronic future” that we must accept the fact that “the Garden of Eden has already been ploughed up”.

For Lord Zuckerman and his contemporaries it probably doesn’t matter too much. But thankfully there are some young people who do very much care about the world we are making for ourselves. They have decided they do not see life entirely in terms of manufacturing and acquiring products but that it is equally important to become fully awake, to widen and deepen one’s experience and try to find more humane ways of living without the aggression and ambition which a competitive system encourages. In our own field of electronics, this optimistic aim formulates itself in the question of why a powerful technology such as this cannot be used directly for the benefit of human beings, instead of through the absurdly indirect process of first turning it into products of sometimes dubious utility and thence into money from which incomes and taxation are used to pay for the things and services we really need. Naive? Certainly, in the light of the conventional wisdom. Electronics as used in medicine, agriculture, education, the arts and all life-sustaining application is still entirely dependent on large-scale, high-technology, competitive industry for its basic components. But we shouldn’t be confused into thinking that because the present industrial system is the reality of the world it is therefore rational. We must leave our minds open to the possibility of an alternative way, a rational way in which the producers are put before the products.
The effectiveness of radio broadcasting in satisfying the needs of small communities is examined. A case is made for smaller, more directly concerned stations, using either medium-wave or v.h.f. transmitters and costing less to install and run than existing local broadcasting stations which, the author feels, do not concern themselves with local interests. He makes a plea for more experimentation with a view to providing impetus and evidence for a public debate on the whole subject of UK radio broadcasting.

The community radio lobby in the UK wants to see the emergence of a “third force” in British broadcasting. This desire stems from a deep-seated discontent with radio broadcasting controlled by the BBC and the IBA, and can be seen as part of a general longing for more homely and decentralized forms of communication. Existing community activity, such as the production of small-scale and largely non-profit-making newspapers, has sprung up mostly in cities and larger towns, where many people feel more lonely and isolated than in rural areas.

It has occurred to a number of people that radio could be used to promote community feeling, debate and culture much more effectively than any printed medium. Not only does it offer a unique immediacy, and the ability to reproduce music and drama, but as the cost of newspaper, printing and paper distribution has risen dramatically in the past decade, so has the cost of modest broadcasting equipment fallen by comparison. The Government, however, remains committed to the policy that “responsibility for broadcasting services should be vested only in public authorities appointed as trustees for the public interest”, and has yet to be convinced that the BBC and the IBA are not the best organizations to control all future sound radio broadcasting in the UK. Supporters of community radio feel, on the other hand, that to put the present broadcasting superpowers in charge of a community radio station is about as thoughtful and sensitive as having a village corner shop at the mercy of a multinational food conglomerase.

The present “local” broadcasting operations of the BBC and the IBA are seen as having very little to do with community radio proper; the BBC is too hamstrung by bureaucracy and careerism, and ILR is overly preoccupied with making money. Both forms of station are much too large and formal to allow ordinary people much more in the way of access to the airwaves than the now statutory “phone-in”. As the Danish pioneers put it: “Community radio is first and foremost . . . public access to the medium of radio on as fair conditions as possible. The need to express an opinion often arises from a desire to influence the political, social or cultural situation in the local district . . . one must build up community radio and a structure which makes it possible for the public to use it.”

Apart from the lack of community involvement in decision-making, the present local services have been widely condemned for the great similarity between stations up and down the country. The BBC stations have a “divide and rule” attitude to community involvement. Local “experts” are permitted to enter BBC stations in order to prepare specialist programmes on fishing, motoring, folk music, student activity, etc., but the programmes are brief, pre-recorded, and go on air at very odd times, sometimes fortnightly or even less frequently. The success of this sort of programme relies on potential listeners scanning the “Radio Times” a week previously, to mark off those programmes which look interesting. Subsequently they are expected to remember to switch on their receivers at the appointed time and listen carefully. In practice this simply does not happen. Most people are too busy with other things to plan their listening so religiously, and most community programmes are heard either by the few who listen almost continuously to the station every day, or by the odd soul who discovers one by accident rather than design. As a result, much of BBC local radio’s “community” output has an audience so small as to be derisory.

The IBA’s community record is even worse. Practically all commercial radio stations can be geared to play exactly the same pop records and commercials, interspersed by bland mid-Atlantic voices, up and down the country. Local information and news are fed unobtrusively into the general stream of pop and prattle: individual access is limited to the “phone-in, and minority programmes are safely relegated to off-peak hours, when the loss of advertising revenue can be minimized.

By contrast, the word which best sums up the ideal state of a community radio development is “diversity”. Instead of being united by common factors inimical to the development of a distinctive character, community stations would be free to go their own ways, being managed by and answerable to the local people in the area which they serve, and to no-one else. The only justification for a central authority would be for the management of frequencies, and the representation of community radio interests at national level. Stations would use low-power transmitters connected to much less expensive studios and equipment than are in use at present, and the central authority may be able to assist with engineering advice, but would not be in the business of laying down rigid standards.

Current experiments

There are a few exceptions to the current rigid and unappealing framework of local sound radio broadcasting – in Cardiff, a community-based group applied for and got the franchise for the forthcoming ILR station due to open this year. Half the shares were offered at £1 each to financial investors, and the other half were sold for 3p to the Cardiff Broadcasting Trust. This trust guarantees listeners the opportunity of influencing the type of programmes which are broadcast.

Universities have been running their own radio stations since 1968. They are permitted to do so provided they transmit using an inductive loop radiating system which does not permit reception outside the university campus. The University stations are compelled by the Home Office to operate under much stricter technical conditions than any other form of broadcasting. For example, the Home Office technical specification requires that the medium-frequency transmitters used by student stations have their audio input filtered to reduce frequencies of 4.3kHz or above by 34dB. There is no need to protect the non-UK channels adjacent to university transmissions in
WIRELESS WORLD, JUNE / JULY 1980

this manner from slight sideband splatter, since university stations cannot, by definition, be heard in the local town, far less abroad. The National Association of Student Broadcasters has protested, unsuccessfully, to the effect that all BBC and IBA transmitters currently in use would fail this particular requirement. Since much of the output of the stations is music, the dull and lifeless sound quality produced by the sharp cut-off filter needed to meet the specification is far from welcome.

The Home Office has also shown itself to be extremely sensitive about the possibility of non-university residents hearing student transmissions, even to the point of insisting that public highways passing alongside university grounds must not receive an audible signal, presumably in case a motorist jutting happens to tune to the right frequency while passing in a car! In fairness it ought to be said that the Home Office is far too preoccupied to pay much attention to a university station once it is on the air, that the engineers who visit are invariably courteous and helpful, and that provided a station does not acquire any local notoriety it is generally left alone. Nevertheless, many university station managers look wistfully across the Atlantic, where their counterparts are permitted to broadcast freely, on stereo u.h.f. transmitters, to the whole of the local town or city.

The other form of community broadcasting licensed directly by the Home Office takes place on closed-circuit cable systems, such as the one operated by Rediffusion in Basildon. Radio Basildon has been operating since September 1978 to 24,000 homes, and proudly claims 60,000 listeners a week. It raises most of its revenue through the sale of advertising, and employs two full-time staff — a manager/programme editor and a sales manager. The rest of the work involved in producing a full spectrum of daily broadcasts is carried out by three part-time workers and about 40 volunteers.

Radio Basildon is formed as a company limited by guarantee, with each member having a limited liability of £1, and no share capital. It is governed by a board of twelve persons, who may not be serving local politicians and must be approved by the Home Office. The Home Office requires that programmes must be specifically designed for the local community and have a small proportion of commercially recorded music. It requires advance logs of programme output, and that the station’s broadcasts be recorded on tape and held for three months, in a similar manner to the logging requirements imposed by the IBA on their operating companies. So far, the impression is that the Home Office is well satisfied with the success of the experiment, and Radio Basildon’s major complaint is that it is not allowed to broadcast to those parts of Basildon not covered by the cable system, or to people with portable radios in kitchens or cars. It has formed a “Transmitter Campaign Committee”, which has collected thousands of signatures on a petition to the local Member of Parliament, and an all-party motion was passed at a Basildon District Council meeting, pressing for a radio transmitter for the station.

Radio Basildon serves a potential audience of around 90,000 people from a studio which cost £16,500 to set up and £28,000 to run per year. University stations serve between 1000 and 5000 students, and at today’s prices would cost between £4,000 and £7,000 to set up and about half those figures for annual running costs, depending on the scope of activity. The new BBC local radio station at Lincoln will service half-a-million people for half-a-million pounds, and a figure of the same order annually.

Com-Com

The umbrella organization attempting to contain and reconcile the various parties is the Community Communications Group, known as Com-Com. Com-Com supported the Annan committee’s proposal for a Local Broadcasting Authority, which was put forward as a solution to the untidy growth of the present local broadcasting services. Annan recognized that “a different animal needs a different breeder”, but the present government, like its predecessor, declined to implement this proposal, and does not appear to have any desire to break the hold on broadcasting maintained by the BBC, the IBA and the Home Office.

Many members of Com-Com sense a dark conspiracy amongst these three organizations to deny them their rights. On the other hand, officials privately denounce Com-Com as “a bureaucracy looking for a niche”, while publicly explaining those technical facts which can be marshalled in support of the status quo. Com-Com has also suffered considerable internal agonizing over its structure, and has admitted that it has been less than influential in determining broadcasting policy in the UK.

Technical factors

Com-Com recently commissioned a report by the former IBA engineer Fred Wise on the possibility of v.h.f. spectrum use, in the existing band, by low-power stations in the London area. This takes an ad hoc approach to the problem, looking for gaps in the present v.h.f. broadcast band of 88.1–97.5 MHz, assuming that the present development of local and national services on these frequencies is complete and, for the time being at least, immuttable.

London’s principal v.h.f. services come from the BBC transmitter at Wrotham and the IBA site at Croydon, on 89.1, 91.3, 93.5, 94.9, 95.8 and 97.3 MHz. There are also weaker network and local services appearing on various other frequencies. In essence, the Fred Wise report regards the bands ± 600 kHz from the local high-power transmissions as fair game, and then chooses those frequencies which are relatively ‘quiet’ among the remainder. Figure 1 shows that the channels which emerge for possible community use are 88.1/2, 90.2/3/4, 92.1, 92.5/6 and 96.4/5 MHz.

The report envisions three types of community station: Category A stations, being v.h.f. with a coverage area radius of 3 or 4 km; Category B stations, medium-sized stations covering a sector of the city, and Category C stations, aimed at specialist interests and covering the whole city. The result of the frequency survey was that either one Category B station and “about a dozen” Category A stations would be practicable, or that the Category B station could be traded for two more Category A stations.

The great attraction of this scheme is that the frequencies proposed for community radio stations in London could never be used for anything else, and their use for this purpose would not be in the detriment of existing services. Unfortunately, interference in the reverse direction is accepted as likely: “…it should not be a condition that a community service should be developed only if good reception is possible in the whole of the target area for at least 95% of the time. The choice will frequently be not between forster’s coverage and a less good coverage, but between a less good coverage and no coverage at all. Thus planning should be approached in this light.”

The Home Office takes a dim view of the prospect of very low-power community stations sharing channels used by high-power transmitters. The official line is that “a small low-power station can have a significant effect on frequency planning, partly because it can cause interference over a
wider area than it is intended to serve, but principally because its presence inhibits the re-use of the same frequency over a wide area by more powerful stations serving larger communities, because they can cause unacceptable interference to the small station.1 As far as it goes, this argument is perfectly sound. But it assumes that the community station will be established first, and the high-power services will come along later.

Medium frequency use

It is also worth looking at whether the medium-frequency broadcast band could similarly be exploited on an ad hoc basis for community broadcasting. In effect, this band is really a two distinct animals: during the day, a number of channels have no discernible signals on them, while during the hours of darkness, every frequency has strong signals from European transmitters produced by sky-wave propagation. So a service planned for daytime use will have much more restricted coverage at night. This need be less of a handicap to community radio stations than it is for any other form of broadcasting, in that community stations are expected to be on the air for a few hours a day only, and most of them during daylight.

The current state of the medium-frequency band in London is such that there are a number of frequencies, well spaced from present services, which could be exploited under Article 8 of the Copenhagen convention. This states that a country may use a channel assigned to another for low-power transmissions, provided that no interference is caused to the foreign service. Since the power of the community transmitters is likely to be less than a hundred watts, compared to the hundreds of kilowatts used elsewhere, the amount of interference by ground or sky-wave caused to non-UK services by community stations is likely to be completely negligible.

Medium-frequency broadcasting of local services in the UK already makes use of a very large number of channels assigned in this manner, including low-power BBC network relays and univers-

Fig. 2. Idealized lattice structure made up of equilateral triangles. In practice, the shape is distorted by geographical and environmental factors, but the diagram enables general conclusions to be drawn about the separation of stations and the service radius of each.

Fig. 3. Mean m.f. propagation curve, normalized at 5km from transmitter.

Fig. 4. Three transmitters, one as in Fig. 3, and two others, one 50km and the other 100km from the first.

Fig. 5. As Fig. 4, but on a smaller scale. Basic curve is normalized for 1.5km.
The possibility emerges of building up a lattice structure, as shown in Fig. 2, across the UK on certain medium frequencies, for the use of community stations. Taking the average of five CCIR recommendations for medium-frequency propagation at frequencies between 700 and 1500kHz and for ground conductivities between 1 and 30ms/m, produces the propagation curve shown in Fig. 3. Figs. 4 and 5 show how this curve may be applied to lattices of sides 22.5, 30, 50 and 100km, assuming that an inter-station protection ratio of 30dB is deemed the minimum necessary to provide an acceptable service.

For a service area boundary limit of 70dB/μV/m, which is the IBA planning norm, the effective monopole radiated power required by stations on 22.5, 30, 50 and 100km lattices would be approximately 500mW, 850mW, 5W and 45W for service radii of 2, 2.6, 5.5 and 12km respectively. In practice, the transmitter powers required would be a good deal higher due to aerial losses: even so, except for the last example, the transmitting equipment needed would not be particularly costly.

Studio standards

Both the BBC and the IBA insist on very high technical standards for the studio equipment used in local broadcasting: frequency response, noise, wow and flutter, sound insulation, acoustics and so on are rigidly specified. Experience at hospital, university and other small-scale operations has shown that a much cheaper and less technically exacting studio can be constructed without regard for these strict requirements, which offers a performance to which no listeners have taken exception. It would appear that the technical standards insisted on for present-day professional broadcasting can be very substantially relaxed in the community radio context without giving rise to complaints from the general public. This would particularly be the case if amplitude-modulated, m.f. broadcasting were the norm for what the Fred Wise report describes as “category A” stations. However, even on v.h.f., the number of ordinary listeners who could tell the difference between a well-engineered £4,000 studio, and a professional outfit costing ten or even a hundred times as much is likely to be negligibly small.

This is not to say that the high performances standards insisted on by the BBC and the IBA are themselves unnecessary. Large-scale broadcasters are investing in equipment on behalf of a public who have in total invested far more in their receiving apparatus — no listener investing heavily on good-quality receiving apparatus should be let down by poor-quality transmitting on the part of national and large-scale “local” broadcasters. However, the inherently low-cost nature of community operations will be destroyed, for co-compensatory benefit, if the professional standards of technical excellence insisted on by the BBC are not applied. In addition, audio technology is advancing so quickly that the performance of quite modestly-priced equipment of today is frequently superior to the professional standards of only a few years ago.

Conclusions

I believe that as many experiments in community broadcasting as are technically feasible should be allowed to take place with the minimum of delay, because the time is ripe for a public debate on the whole structure of radio broadcasting in this country, and this debate will be better-informed if a number of people have been able to experience and compare various forms of national, regional, local and community broadcasting, as a prelude to determining the best balance between these services in the years to come.

Technically, sound broadcasting in this country, although technically engineered, is in a mess. The v.h.f. band II is sadly neglected by the public, and rarely promoted by the broadcasters. It is ineffectually used by the BBC for an ugly hotch-potch of services on the national networks; the local radio stations, given the choice between f.m. and a.m., would choose the latter any day.

Radio 2 is wastefully duplicated on literally dozens of unnecessary frequencies for long periods of time, while other services, or would-be services, are denied any frequencies at all.

It would be premature to say whether or not community radio is a good idea, because the idea has not been fully tried. But while the experiments are going on, consideration should also be given to the following questions. Is it not time that there was a clear general policy to encourage the use of v.h.f. by, providing an attractive choice of programmes on that band? A.m. radio is better suited to speech than to music; it is likely to become increasingly unusable after dark; what, therefore, are the most appropriate services to use medium and low frequencies? What of the balance between large and small-scale operations — what do people want from these services? What is to become of the BBC: ill-funded it certainly is, but is it also crippled by its own sheer size and bureaucracy?

These questions have been considered by the Independent Broadcasting Authority, and by similar bodies in the past. Governments of both parties, however, have shied away from major decisions about broadcasting and have frequently disregarded the recommendations of their own select committees. It is time to bring the future of sound radio broadcasting back under a spotlight in the public arena.

Expectations from community radio

John Thompson, the IBA’s director of radio, warned recently of the danger of expecting too much from community radio as an instrument for dealing with social problems. Writing in Independent Television News in April 1979, he said: “I would raise some questions about the extent to which radio can claim to provide solutions to social or human problems. Radio can act as a channel between the social service agencies, the experts in social and human problems, and the general listening public. Local radio in particular can often mobilise the loyalty and affection of the audience to offer help or funds at times of emergency or with individual distress. Radio has stimulated much valuable aid and valid response, and long may it continue to do so. But hazards exist too, don’t they? If the broadcasters stray too often or too heavily into the social field, such worthy broadcasting can become unconvincing and tedious, rather quickly.

“All radio stations have to be careful not to become confused in the public mind, especially among those listeners who are in personal trouble or difficulty, with the specialists whose job it is to try and provide first-hand social or specialist help. The utility of radio is mainly, if not entirely, not to act as a channel for information for referral... Some listeners can be very impressionable. Building up hopes of help and advice that probably cannot consistently be met by a radio channel can provide a certain basis, but on a regular basis, any more than a popular disc jockey can become a real rather than a fantasy friend for his fans, is likely to be of dubious utility. Our radio services can, I suggest, continue during the next decade to offer much authentic help in social and human problems, possibly increasingly so, provided this aspect of radio’s activity does not make exaggerated claims and is not accused of seeking more than can be delivered in relation to that central triad of providing information, entertainment and education.”

References

2. The first experiment with community radio in Denmark, Radio Svendborg, on the Danish island of Funen, took place from the 8th to the 14th October 1977. More information can be acquired from: Baandvaerkstedet, Jac. Daugaardsgade 15, DK 1973 Copenhagen V, Denmark.

3. Specifically the requirement is for “any sideband component displaced from the carrier by more than 4.5kHz (to be) attenuated below that carrier by more than 40dB.” Since 100% modulation produces two sidebands each —6db relative to the carrier, the audio-frequency implications of this requirement are as stated.

4. See, for instance, IBA Technical Review No 5, p30, Fig. 5.

5. Com-Com’s registered address is 8 Millfield Close, Farndon, Cheshire.

6. CCIR recommendation 362-2, XIIth Plenary Assembly, Geneva, 1974. The curves used to obtain the mean value of Figs. 3-5 were 700kHz at 10-2 and 3x10-5/m/s, 1MHz at 10-2/m/s/m, and 1.5MHz at 10-3 and 3x10-6/m/s/m. Frequency has a more important bearing on propagation than ground conductivity, in the UK at least.

Exposure to r.f.

Both amateurs and professionals have been watching with some anxiety the growing public controversy over the “safe level” of continuous exposure to non-ionizing radiation from communication, broadcast and radar transmitters, microwave ovens and high-voltage electricity cables. Although for many years the figure adopted in the UK, the USA and many other countries has been 10mW/cm², based many years ago on a very conservative estimate of the known thermal effects of radiated r.f. energy, a number of countries, including the USSR, have for a long time placed the level much lower, down to 0.01mW/cm². This extremely low figure was apparently based on a number of experiments that suggested that exposure to non-ionizing radiation can result in biological effects of an athermal nature. Attempts over 20 years ago to repeat such experiments in the West failed to produce any really positive results, and since the alleged symptoms included headaches, inability to make decisions, general tension, sense of anxiety, lack of sex drive, etc., these were not easy to “measure” with any degree of accuracy.

Recently, as a result of the concern in the United States that the public was being “zapped” by microwaves, including the leakage from microwave ovens, a whole new series of experiments have been taking place. While full reports are still awaited, it would appear that this time biological effects are being observed in small mammals subjected to microwave radiation at power densities rather less than 10mW/cm², at least in the sense that there appear to be body mechanisms regulating internal temperatures, etc.

Experiments at the John B. Pierce Foundation, New Haven, Connecticut on squirrel-monkeys with 2.45GHz radiation at power densities of 6-8 mW/cm² are reported in “Electronics”. As the power density is positive, though of course this does not prove that there would be similar effects on humans, of very different physical size.

At the US Naval Medical Research Institute in Bethesda, Maryland it has been shown that radiation can greatly increase the stimulating effects on rats of desoxyxynephrine with power densities down to about 1mW/cm². This follows the discovery a year or two ago, of unexplained behavioural effects when rats are given Liemur while exposed to microwave radiation.

While this recent work in no way invalidates the belief that there is no danger to the public or to prudent operators from the levels of r.f. radiation at normal distances from amateur radio aerials, it does raise again the question of handheld equipments of more than a very few watts output, since these normally have the aerial held close to the head of the user. Similarly those of us who use “long wire” h.f. aerials coming right into the “shack”, or indoor v.h.f. aerials, may need to take rather more precautions than has been thought necessary in the past.

H.f. broadcasting and WARC

There is increasing evidence that some of the frequency allocations to radio amateurs in the low h.f. bands came very near to being lost at WARC 1979. They were saved by determined opposition from “non-aligned” and “Third World” countries to the extensions to the h.f. broadcast bands so eagerly sought by many of the “developed” countries (including the UK). An article in the “EBU Review” commenting rather sourly on the lack of success of European broadcasters to secure any new frequencies below 5MHz states: “In fact Latin American countries were opposed to any extensions of the h.f. bands for broadcasting; they claimed they needed the h.f. spectrum primarily for their fixed services, together with other services such as the amateur service.”

European h.f. broadcasters consider their bands are “overloaded by a factor of three or four” but seem reluctant to ascribe the blame to the practice of using many channels directed simultaneously at the same target areas: the current power race; and the continued practice by some countries of “illegal” jamming. Their claims of “many millions” of listeners often fail to distinguish between those listening to overseas m.f. relays and those struggling to listen on h.f.

Despite their lack of success at WARC, the European broadcasters are continuing to press for introduction of s.s.b. transmissions; while this would provide more channels (and in theory make possible a reduction in power) it would call for transmitter stabilities of about 0.1Hz and a receiver stability of about 2Hz to avoid distortion on music.

One topic discussed at WARC was the Russian Woodpecker which makes a nonsense of the Radio Regulations. Although less troublesome than in its early days, the Pecker still causes a great deal of interference and this will become worse as the sunspot cycle advances and the diurnal span of m.f. contracts. For this reason considerable interest is being shown in a design by Ulrich Rohde, DI2LR/W2, in “Electronic Design” of a noise blanket for pulse interference claimed to be effective against the Pecker over a dynamic range of 80dB. This uses two CPR43 power f.e.ts in the signal path in order not to degrade the signal handling capabilities of high-performance receivers.

Scanning the bands

During March, 50MHz signals from South Africa were received in the south of England around noon, and a number of crossband 30/28MHz contacts were made. A 50MHz Hawaiian beacon station, KH8EQ1, was reported heard in Athens, Greece by SV1DH. Nevertheless it is becoming increasingly clear that November 1979 represented the peak of the present sunspot cycle.

British amateurs have been reminded of Air Navigation Order 1980 which prohibits the flying of captive balloons or kites higher than 60m above ground level or within 60m of any vessel, vehicle or structure, and the flying of kites within 5km of an aerodrome. A number of amateurs have discovered that kites can form very effective “sky-hooks” for long-wire h.f. aerials.

Home computers can be “abominable polluters of the r.f. spectrum” according to Paul Cooper, N6EY, as they frequently emit “hash” covering the entire spectrum. Where a computer is installed in an amateur station, some alleviation of the interference is usually possible using mains filters etc., but he claims that to achieve anything like a complete solution may involve complete re-packaging of the computer, the installation of copper-foil screens beneath the keyboard, better shielded monitors, improved isolation, etc.—“an approach beyond the scope of the average amateur”.

In brief

A world record for 1.3GHz is being claimed for a 2290-km s.s.b. contact across the Great Australian Bight between VK6KZ/P at Cape Leeuwin, Western Australia and VK5MC at Hatherleigh, South Australia. An illegal broadcasting station in Miami, Florida—long a focus of Castro activity by Cuban exiles—has been closed down by US Marshals and FCC agents. High-power amateur radio equipment was being used on the 7MHz band to make broadcasts of a political nature directed at Cuba, resulting in interference complaints.

PAT HAWKER G3 VA

www.americanradiohistory.com
Multisection tone equalizer

Low-cost unit uses pre-set controls, quad op-amps

by C. Walker and W. Clinch, Plessey Semiconductors Ltd.

As a preset unit, this stereo equalizer has been designed primarily to cancel room resonances and equalize loudspeaker responses. Circuit fits standard diecast box and uses preset potentiometers to control the gain of eleven overlapping active filters in each audio-channel. Second-order active filters require one op-amp, two resistors and two capacitors; outputs are combined in a summing amplifier.

Unless you live in an anechoic chamber your rooms are bound to have resonances at certain frequencies. A rectangular room 4.2 x 3.4 x 2.5m has damped resonances at 40, 50 and 70Hz to begin with and alcoves and chimney breasts give rise to much higher frequencies. The Baxandall type of tone control normally used provides a smooth bass or treble lift or cut by allowing the movement of a single pole-zero pair. The peak of the bass response is normally at about 30Hz with still some effect at 600Hz. The treble peak is at about 20kHz with still about 10% of the boost or cut as low as 1kHz. Clearly such a tone control is of little use to compensate for a room resonance at 500Hz due to the gap between a chimney breast and a near wall.

The tone equalizer, Fig. 1, has been designed with enough filter sections to allow flexibility of amplitude frequency response. Filter sections are second order and require only two capacitors and two resistors and one operational amplifier. Fig. 2.

With a high gain operational amplifier assume that the inverting input is a virtual earth, and also that a negligible current flows into the amplifier. The signal currents will be as shown in Fig. 2. Equating the currents at node A gives

\[V_{in} + \frac{V_{out}}{R_2sC} + \frac{V_{out}}{R_1sC} + \frac{V_{out}}{R_2sC} = -V_{out} \]

Rearranging

\[V_{out} = -\frac{s}{s^2 \frac{2s}{CR_1} + 1 + \frac{1}{CR_3} + CR_R_2} \]

The general form of a second-order bandpass filter is

\[V_{out} = \frac{k}{s^2 + \frac{2s}{CR_1} + \omega_n^2} \]

Equating the coefficients of \(s \) gives

\[k = \frac{1}{CR_1} \]

\[\omega_n = \frac{1}{CR_3R_2} \]

and \(Q = \frac{\omega_n}{R_1} \)

at the resonant frequency when \(s = j\omega_n \).

\[V_{in} = -\frac{k}{s^2 + \frac{2s}{CR_1} + \omega_n^2} \]

\[V_{out} = -\frac{kQ}{Q} \]

Substituting for \(k, Q, \omega_n \)

\[V_{out} = -\frac{1}{CR_1} \sqrt{\frac{R_1}{R_2}} \times C \sqrt{R_1R_2} = R_2 \]

Centre frequencies of the filters are spaced logarithmically in the audio band with a multiplication factor of 1.866. This gives the centre frequencies shown in the components table.

Filter sections are deliberately overlapping to maintain a smooth characteristic and although the phase response of individual filters changes from +90° to -90°, filter crossover points will have roughly zero phase change. This is because the phase lead of one filter cancels with the phase lag of the next.

The equalizer is not intended for continual adjustment but rather as a "fit and forget" unit and preset potentiometers are perfectly adequate for this application and represent a considerable saving over the slider types normally provided on this type of unit.

The Q value of the filters to give the flattest response is 1.25 and this gives the 3dB cut-off frequencies at 18Hz and 21kHz. The overall flat-position amplitude response is shown in Fig. 3 together with the basic second-order filter response of the 1249Hz filter. The Q value of 1.25 gives a filter gain of 2R2/2R1 = 3 or approximately 10dB at resonance, and this is compensated for in the summing amplifier feedback resistor to give an overall equalizer gain of 0dB.

The low Q value used makes the filters very tolerant to component values, and with filter spacings of nearly an octave a 14% total frequency variation (made up of 9% on capacitors and 2% on resistors) is acceptable.
Gain range of each filter is designed to be ±12dB and \(R_3A + R_4 \) prevents the gain going higher than this. The value of \(R_3 + R_4 \) defines the signal current flowing into the virtual earth of the summing amplifier and this current will flow through \(R_3 \) giving a gain of \(R_3/(R_3 + R_4) \).

A supply voltage of ±9V allows signal handling of more than 0dBm (approximately 800mV) even with 12dB boost, i.e. 9.3V peak-to-peak at the output.

The TAB1042, made by Plessey Semiconductors, is particularly suitable for this application. It is an advanced bipolar integrated circuit containing four separate programmable operational amplifiers. The four amplifiers are programmed by current into a common
bias pin which determines amplitude response, slew rate and supply current. For example, with a bias current of 75μA the TAB1042 will perform in a similar manner to four amplifiers of the 741 type but with improved frequency response and input characteristics.

The high supply rejection of the TAB1042 means that a rudimentary stabilized power supply can be used with the transistors simply buffering the zener diode. High loop gain of the operational amplifier means any non-linearities it may introduce are proportionally reduced by the feedback and the harmonic distortion of the unit is negligible. The circuit diagram of the complete unit is shown in Fig. 4.

Construction and use

Filters and power supply fit on a single board 10.2 x 16.5cm and the 22 presets on a second board normally mounted on pillars above the main board. This allows the filters to be adjusted through holes in the lid of the box. The filter output impedance is low and normal spindle or slider potentiometers could be mounted separately in a remote box without fear of degradation of response due to filter crosstalk.

Mask for the printed circuit boards are shown in Fig. 5 and the component layouts shown in Fig. 6. If the boards are spaced using one-inch spacers with the preset potentiometer board attached to the lid of a diecast box using suitable spacers, it is easy to access the copper track of the main board for testing.

Connect the earth of the mains to the box itself and not to the earth on the printed circuit board as this may cause earth loops with other equipment. Take care that the solder joints connecting the mains to the transformer are clear of the bottom of the box.

The equalizer is best fitted between the preamplifier and the power amplifier. The 0dB gain position is with the presets set to about 10kΩ. There is no simple way to accurately position the presets by measurements for a flat equalized room and loudspeaker response but quite satisfactory setting can be done by ear by adjusting for the quality of individual instruments. Several different records, or preferably live broadcasts on v.h.f. should be used as source material, and overall sound balance judged. Listen particularly for lack of deep bass, bass resonance, “boxiness” caused by low output in the middle frequencies, and over-emphasized “tiz” or lack of transients. Constant reference to the un-equalized sound will prevent confusion during this operation which may take some time to complete.

References
2. Lancaster, P. Active filter cookbook. (Howard Sams).

Schools computer competition

A hundred microcomputers are prizes in a competition for schools, arranged by the Department of Industry, which is intended "to encourage awareness and widespread development of the basic skills in computing and microelectronics in schools".

The competition is directed at the 7000 or so secondary schools which have no computer - there are around 8000 secondary schools in all - and requires pupils to submit details of a proposal for the use of a microcomputer in their school, preferably not in science or mathematics. No computing experience is needed to enter the competition. Prizes are a hundred 380Z microcomputers in either of two versions - for data handling or graphics — each worth around £2000. The Dol hope that additional prizes will be forthcoming from industrialists with an eye to the future.

The department cannot be faulted on its patriotism, on this occasion at least. The 380Z is designed and made by Research Machines Ltd. of Oxford, and is currently used by schools and colleges in a data-processing role.

The competition closes on July 31, 1980; schools should contact The Department of Industry, Electronic Applications Division, Room 526, Dean Bradley House, 52 Horseferry Road, London SW1P 2AG.

Component values and centre frequencies

<table>
<thead>
<tr>
<th>Filter</th>
<th>R₁</th>
<th>R₂</th>
<th>C₁ = C₂</th>
<th>Preferred value</th>
<th>Capacitor type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 30Hz 12k</td>
<td>75k</td>
<td>180n</td>
<td>180n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B 56Hz 12k</td>
<td>75k</td>
<td>94n</td>
<td>100n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C 104Hz 12k</td>
<td>75k</td>
<td>50n</td>
<td>47n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D 194Hz 12k</td>
<td>75k</td>
<td>27n</td>
<td>27n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E 260Hz 12k</td>
<td>75k</td>
<td>15n</td>
<td>15n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F 671Hz 12k</td>
<td>75k</td>
<td>2.2n</td>
<td>2 x 15 in series</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G 1,249Hz 12k</td>
<td>75k</td>
<td>4.2n</td>
<td>3900p</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>H 2,325Hz 12k</td>
<td>75k</td>
<td>2.3n</td>
<td>2200p</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I 4,328Hz 12k</td>
<td>75k</td>
<td>1.2n</td>
<td>1000p / 220p</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>J 8,057Hz 12k</td>
<td>75k</td>
<td>0.65n</td>
<td>560p</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K 15,000Hz 12k</td>
<td>75k</td>
<td>0.35n</td>
<td>330p</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Resistors are 2% tolerance. Mains transformer is RS Components 3VA p.c.b.-mounting type. Die-cast box 12 x 17 x 5.5cm from RS Components.

1. Polyester or polycarbonate 5% with 10mm lead spacing.
2. Poly styrene 5%.
Off-resonance metal detector

Gives finer distinctions than simple ferrous/non-ferrous discrimination

by G. Wareham

Off-resonance detectors are insensitive compared with induction balance and pulse induction types, but they work well in the field. They are less sensitive to the ground than balanced types and score over pulse induction types in discrimination. From the amateur point of view they are easy to make and will accept a variety of coil shapes to suit different uses. As the precise search frequency is unimportant, coils of unmatched inductance may be interchanged without redesigning the circuit.

The off-resonance metal detector is a comparative newcomer to "treasure hunting". But its basic principle is familiar enough. Like the old-fashioned b.f.o. mine detector, the off-resonance detector senses the change in the inductance of the search coil produced by the presence of a conducting or magnetically permeable object. The difference lies in the way this change is sensed and in the exploitation of the properties of a parallel-tuned circuit to enable more information to be obtained about the physical nature of the object. This article gives a simple explanation of the principles, with more elaborate notes on recent developments which may be of interest to those who wish to experiment.

When metal detectors are used for "treasure hunting" – which frequently means beachcombing for lost coins – the user soon learns that for every object of interest there are dozens of objects of no interest. These are bits of "silver" paper and other kinds of aluminum foil, bottle caps, ring-pulls from drinks cans, the cans themselves, and so on. It is desirable to distinguish this junk from coins, rings and other objects of value. Another need which soon becomes apparent is to prevent the conductivity and permeability of the ground itself from upsetting the operation of the detector.

No detector yet produced performs these functions perfectly and simultaneously, but the off-resonance detector goes a long way in the desired direction. The essentials of the simplest form of off-resonance detector are shown in Fig. 1. A variable frequency oscillator drives an LC circuit through a high resistance (R). The L of the LC is the search coil. The voltage across the LC circuit is rectified and the resulting d.c. applied to a comparator where it may be offset by a reference voltage. Deviations from the reference voltage, caused by the effect of the target object on L, give an indication on a meter or, more usefully, modulate the amplitude or frequency of a tone.

The effect of the target object on L depends on its size, distance, orientation and its electric and magnetic properties. Size, distance and orientation affect the strength of the detector's response. The other properties produce a variety of effects and it is these which give the detector its power to discriminate between types of target object.

A target which was purely lossy would merely damp the LC circuit and reduce the amplitude. A target with appreciable magnetic permeability detunes it low, by increasing L. A highly conductive target acts like a loosely-coupled short-circuited turn or metal tuning slug: L is reduced and the circuit is tuned high. So in principle a distinction can be made between permeable objects such as pieces of iron and non-magnetic metals such as copper, gold and silver. As we shall see in a moment, finer distinctions can also be made.

If the frequency is set to the peak of the resonance curve all targets produce the same general effect – a reduction in amplitude. There is no way of telling whether this reduction is the result of damping or detuning or a mixture of the two. No distinction between types of target is possible.

To achieve the desired discrimination, the frequency is set off-resonance. Fig. 2. A target which alters L must now either move the operating point further from the peak, causing a fall in output, or closer to the peak, causing a rise. Permeable targets and conductive targets will produce opposite effects, making possible discrimination bet-

Fig. 2. With a working point set at P1, lossy and conductive metals reduce LC voltage, low-loss permeable metals increase voltage. With working point at P5, lossy and permeable metals reduce voltage, whilst low-loss conductive ones increase voltage. Finer discrimination is possible by choosing a working point where damping and detuning effects cancel.

Fig. 1. In the off-resonance detector, deviations from the reference voltage caused by the effect of a target object on the search coil L give an audible or visual indication.
true in practice because the surface of the ground is so much closer to the search coil than a buried object. The response of a metal detector falls off rapidly with distance (the law contains something like a sixth power) so a small coin 10cm deep may produce a change in L of only one part in a million. The ground, being closer and larger, has a much greater effect and some means of nulling it is desirable. Although lossiness is the dominant characteristic of most soils, it is always accompanied by ferrous or non-ferrous effects so it can be nulled, usually by setting the working point just off resonance. The detector then loses its power to make fine discriminations, but simple ferrous/non-ferrous distinctions are usually still possible. Ground effect balance, as it is often called by detector makers, is particularly useful on brine-saturated beaches and iron-ore laden or 'mineralized' soils.

Choice of search frequency

Old-fashioned detectors of the "a-f" mine-detector type generally used fairly high search frequencies, around 150kHz. This is much too high for good discrimination. Above about 100kHz, the skin effect limits current penetration to virtually the surface layer of an object. Thus all objects tend to look alike, irrespective of their real thickness, and coin/foil discrimination becomes difficult. Even ferrous objects are likely to appear non-ferrous because their conductivity prevails over their permeability.

For this reason the off-resonance metal detector, though it uses the same basic effect as the "a-f", is operated at a much lower frequency, to reduce skin effect and facilitate thin/thin target distinctions. Practical search frequencies range from 30kHz down to audio frequencies of a few kilohertz or even less. If the skin depth exceeds the thickness of commercial aluminium foils a measure of discrimination against these is automatically obtained. Unfortunately, the level of discrimination cannot in practice be raised to the point where all junk is rejected, because there is an overlap between the responses to junk and wanted objects. A highly conductive target such as a British two-pence piece, which is almost all copper, can readily be distinguished from even a large, thick aluminium foil cup cake. But the resistivity of metals is increased significantly when substantial amounts of alloy are incorporated. Cupro-nickel ("silver") coins have a much lower Q than copper ones. Similarly, a nine-carat gold ring is a relatively poor conductor compared with pure gold. Consequently, cupronickel coins and nine-carat gold rings may be rejected as junk by a detector set to reject thick foil.

A particular nuisance is caused by ring-pulls from drinks cans. These are aluminium and good conductors, and a detector set to reject them will certainly reject some coins and rings as well. Detector designers usually provide a wide range of discrimination settings, which covers ring-pulls, but experienced treasure hunters prefer to use only a little discrimination in the interest of not missing objects of importance.

The tracking problem

When the frequency is changed the rectifier output level is also changed. The rectified output from the tuned LC circuit no longer matches the reference voltage to the comparator so this too must be adjusted. It would be good to arrange the controls so as to keep the two in step automatically but so far nobody seems to have cracked this tracking problem. The result is that every time the discrimination (search frequency) is adjusted the detector is thrown off balance and a separate readjustment of the reference voltage is needed. This is tedious. It would be desirable to gang the reference voltage control with the frequency adjust control, or in detector makers' parlance, gang the tuning and the discrimination.

Self-oscillating detector

A way of side-stepping this tracking problem is to use a variant form of off-resonance detector which reverts to something like the old "a-f" technique. In Fig. 1 the v.f.o. is dispensed with and the LC circuit of the search head is used as the frequency-determining network of the search oscillator. Off-resonance operation is obtained by inserting a variable phase-shift network into the oscillator feedback loop; adjustment of the phase sets the working point.

Appearance of a target object now alters the frequency. To obtain a readable harmonic of the search frequency is heterodyned against an h.f. local oscillator, usually a fixed crystal oscillator. Target information is preserved in the beat tone. If, for example, the detector is set to accept coins but reject foil the beat frequency moves one way for coins and the opposite way for foil.

Heterodyne frequency selection

To obtain a useful range of discrimination, the search frequency has to be adjustable over a range which is about the same as the 3dB bandwidth of the
search LC circuit. As the search frequency is varied by adjusting the phase shift, successive harmonics come into zero-beat with the fixed heterodyne oscillation. It is important to select a heterodyne frequency high enough to permit an adequate number of harmonics to be tuned. Each beat point is associated with a different degree of discrimination, so discrimination is in effect adjustable in as many steps as there are zero-beat settings. In practice, to give a useful selection of discrimination settings, at least five steps are necessary. An estimate of the required h.f. heterodyne frequency is obtained from the empirical formula

\[f_s = (n-1)f_Q \]

where \(f_s \) is the heterodyne frequency, \(f_Q \) the search frequency, \(Q \) is the Q of the search LC circuit, and \(n \) is the number of zero-beat tuning points. For example, if the search frequency is 10kHz, the LC circuit has a Q of 20 and eleven tuning points are required, the heterodyne frequency must be 2MHz minimum. (Extra tuning points may be provided by harmonics but these are disregarded in the calculation.) In this example, search frequency harmonics around the 200th are required. In general they have to be generated deliberately.

Perhaps the easiest method is to square the search oscillator output in a circuit with a rise time at least as short as the reciprocal of \(f_s \) (e.g. 1µs for \(f_s \) of 1MHz), differentiate, and use the resulting pulses to shock-excite an LC circuit tuned to \(f_s \). The higher the heterodyne frequency the greater the sensitivity of the detector but the more vulnerable the system to drift in search frequency.

Search oscillator design

The frequency change produced by a target depends on the relative change of inductance of the search coil, not the absolute change. The sensitivity is therefore the same for any value of L, and the designer is left free to use whatever inductance he finds suitable. It is convenient to use coils with inductance of the order of 1mH. These require relatively few turns and can be made with fairly thick wire. The associated tuning capacitance for search frequencies in the region of 10kHz is an appreciable fraction of a microfarad, and this is big enough to swamp the effects of search head to earth capacitance, so the search coil need not be fitted with a Faraday shield. The precise frequency is unimportant so tuning capacitors of close tolerance are not needed. Stability is what counts, and of the cheaper types of capacitor polycarbonate film is the best, with terylene next best and polyester a poor third.

Two convenient search oscillator circuits are shown in Fig. 4. In the top circuit, a single-ended LC circuit is used, with no taps. The necessary phasing is accomplished by \(R_s \) and \(C_s \). At one end of \(R_s \) slider's travel \(C_s \) is effectively across \(R_s \) giving a voltage lag which the tuned circuit has to make up with a lead. The frequency is pulled low. At the other end \(C_s \) is across \(R_s \). This gives a lead, and frequency goes high. Resistor \(R_s \) sets the amplitude.

For use with c.m.o.s. inverters and gates the lower circuit is more convenient. Resistor \(R_s \) controls amplitude and \(R_s, C_s \) do the phasing.

Search coils

Greatest sensitivity is obtained with large coils. Pinpointing the position of a buried object is easiest with small coils. Most commercial detectors use a compromise coil size of about 18cm diameter, but a slightly smaller coil, of 13-15cm diameter may be preferable. Square coils are permissible, and rectangular ones if not too elongated. In any case it is easiest to begin by winding a circular coil on some suitable cylindrical former, such as a saucepan, then sliding it off and forming it to whatever shape is needed. Enamelled wire of around 26 s.w.g. is convenient, and 50 to 100 turns give a suitable inductance.

The finished coil should be water-proofed and fixed in some rigid, thermally insulating support. Sandwiching between sheets of Formica and filling the gap with resin is one possible construction. More convenient, but more difficult, is an open-centre form which enables the position of the buried object to be marked through the coil. The leads to the oscillator circuitry need not be screened; a twisted pair is good enough.

Graphical communication with computers

Pictorial input and output is an alternative to the more common alpha-numerical communication using keyboards. An article introduces the technology of interactive computer graphics and explains methods for putting in information and generating the displays in this form.

Constructing a transient recorder

This instrument captures one-shot events for later continuous display on an oscilloscope or chart recorder. Contents of the digital memory can be examined word-by-word to allow accurate measurement of the test signal. Interfacing to a computer is possible.

Solid state level meter

Using 20 l.e.d.s of any colour mix, this solid-state level indicator offers a.c. or d.c. and dot or bar operation. Design options include 60dB dynamic range by cascading i.c.s and a tape recording version for the range -20 to +3dB.

On sale 23 July
Military electronics—the Defence Estimates

The arms race, spurred by international tension, continues to provide a substantial and growing source of income for the electronics industry. According to the UK government's 1980 Defence Estimates, presented to Parliament in April, over 20% of the output of the UK electronics industry in 1978/79 was taken by the Ministry of Defence. This does not include the considerable exports of electronics and communications equipment to foreign military forces from the various companies in the industry. In 1979 these exports amounted to £41.9 million for radio and radar equipment and £23.6m for guided weapons and missiles. For example Decca Radar, now part of the Racal group, in the first quarter of 1980 received orders for radars from ten foreign navies — Argentina, Bahrain, Brazil, France, Germany, Greece, India, Malaysia, Portugal and Quatar. In 1978/79 the UK's military defence expenditure on radio, radar and electronic capital goods was £429.4m and on radio and electronic components was £56.5m.

Of the total 1980/81 estimated Defence expenditure of £10.785 million, the portion devoted to military equipment is £4,836m (the remainder being mainly pay for military and civilian personnel). Of this, the estimates identify £272.8m to be spent on electronic equipment, guided weapons and instruments for land weapon systems, and £370m on electronic equipment and guided weapons for air systems. Electronics for sea systems is not listed separately, but £361.1m will be spent on "weapon systems, etc." One of the maritime weapons now under development is the Sea Eagle missile, intended to be launched from Navy and Air Force aircraft against ships. Described with callous cheerfulness as a "fire-and-forget weapon," it has an active radar homing system (developed by Marconi) and a computer using microprocessor technology. Before being fired the computer is supplied from the aircraft with information about the target's position. The computer then controls the flight path of the missile until the radar homing system locks on to the target during the final part of the attack, in which the missile skims the surface of the sea. This weapon, being developed by British Aerospace Dynamics Group, is claimed to have a greater range and resistance to electronic countermeasures than the earlier Martel missile of a similar type.

Microprocessor technology is also being incorporated as a technical improvement in the Rapier missile system, with which the Army and Air Force are equipped as a defence against low flying aircraft. This improvement programme, during the mid 1980s, will cost £320m. Similar technical updating is being considered for the Blowpipe man-portable missile.

Research and development in fact accounts for a considerable part — actually £1.479m — of the total 1980/81 estimated military expenditure. Of this, £231m will be spent on electronics and £183m on guided weapons. Ministry of Defence R & D staff in these two fields amounts to 7,600 but of course there are also many such workers employed by the various contractors. The Estimates state that, as a whole, the "defence equipment programme sustains about 200,000 job opportunities within the major defence industries and about the same number again are sustained indirectly elsewhere in industry."

What is known as "electronic warfare" is basically information processing for military purposes. "Electronic warfare support measures" provide information for the tracking and target-acquisition parts of guided weapons and communication systems. These are vulnerable to "electronic countermeasures" such as radio jamming, but "electronic counter-countermeasures" can reduce this vulnerability. The Estimates state that "electronic self-protection equipment" will be fitted to the Jaguar, Harrier and Tornado GR1 aircraft. The Nimrod MR MK2 and AEW aircraft will be fitted with support measures, and a new system of this kind for passive surveillance is being installed in the Navy's Lynx helicopters. A new radar jammer and improved support systems are due in service this year on some frigates. Britain will be taking part in NATO electronic warfare projects and particularly the Sea Gnat anti-missile decoy system with a view to deploying it later in the 1980s. Satellite communications terminals used by the Navy are to be improved, and the Army will be introducing the Ptarmigan tactical trunk communications system in the next few years.

* A current development of military electronics, this "Electronic Warfare Engagement Simulator," made by Plessey Electronics Systems Research at Romsey, was a Ministry of Defence contract worth £750,000. The simulator is intended to aid development of "electronic countermeasures," which are used to protect aircraft against fire control radars. The simulator is to be used at the RAE, Farnborough, Hants.

Indian scientist wins Marconi award

Dr Yash Pal, Director of the Space Applications Centre of the Indian Space Research Organisation, has won the sixth Marconi International Fellowship, which takes the form of a 25,000 dollar grant; the recipient is expected to use the grant to undertake or complete a project of his own choice.

Dr Pal was honoured for his work on the Satellite Instructional Television Experiment (SITE) in India, a project run in conjunction with NASA, using the USA's OTS-6 to deliver this to rural villagers. The object of SITE was to bring instructional TV to the rural villagers of India and Dr Pal's contribution included the development of hardware as well as the development of the screened material. The initial target of the project was to reach 3,000 isolated villages and eventually all 500,000 of India's villages.

Dr Vikram Sarabhai had proposed the project at the UN conference on exploration and peaceful uses of outer space in Vienna in 1968. Dr Pal took over the leadership of the project following Dr Sarabhai's death.

The award will be presented on October 12, 1980, in Sydney, Australia, which was the receiving end of the first radio remote control experiment by Guglielmo Marconi fifty years ago in 1930.
405-line television to close

The BBC and IBA will start to close down their 405-line v.h.f. television services in 1982 and the closure will be phased over a period of about four years. This follows the international decision about the future of Bands I and III made at the World Administrative Radio Conference, Geneva, last year (see February issue, p.48, for details). As far as possible the two broadcasting organisations plan to close down their 405-line services in Bands I and III at the same time in particular areas, although this will not be possible everywhere since the BBC have 110 transmitters on 405-lines while the IBA have 47.

Stations to be closed earlier in the programme will be those in areas where there is good coverage from the u.h.f. 625-line services. The last stations to be closed will be some of the high-power main stations in areas where 625-line coverage is less complete. At least two years' notice will be given in any area before closedown, with wide publicity. The BBC and IBA engineering information services will advise those affected on alternative means of reception.

A further relay station building programme will extend u.h.f. coverage to groups of less than 500 wherever it proves reasonably practical for this to be done. In practice the broadcasters will try to provide stations for groups of 200 or more people and the first of these stations is expected to be built in 1984.

The Home Secretary has agreed that small groups who will not benefit from further relay stations will be able to set up small transmitters at their own expense. The broadcasters will give assistance to such groups to plan the small transmitting stations and will check that they will not cause interference to existing or planned stations.

Those schemes which receive approval will be licensed by the Home Office. To help such groups the BBC and IBA are jointly preparing a booklet "Self-help television for small communities" which will be available in July (contact BBC Engineering Information Department, Broadcasting House, London W1A or IBA Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA).

Government approves CB in principle

As we go to press a UK Government discussion paper on citizens' band radio is expected at any moment. Many readers will already know that the Government have announced that they are in favour of c.b. in principle. But they intend to call it Open Channel and the scheme they are at present considering will differ in some respects from that advocated by the c.b. campaigners in the UK. One thing is certain: any c.b. service introduced by the Government will not operate on 27MHz, the frequency at present used by most of the illegal operators.

Dame Nellie and Winifred share broadcasting anniversary

A couple in their 80s visited Marconi Communications Systems in Chelmsford in February as part of activities to commemorate the first wireless telephony transmissions, which took place there in 1920.

Mrs Winifred Collins, then Winifred Sayer, was the first woman to make such a broadcast. She sang on three separate occasions and was paid ten shillings (50p) for each performance.

In 1920 Captain H. J. Round of Marconi's Wireless Telegraph Co. was granted a licence to experiment with wireless telephony. Wireless telegraphy had been in use for some years: notably at sea where ship to shore Morse transmission was commonplace. The war of 1914-1918 increased the tempo of experiments and telephony had been shown as feasible.

Captain Round's transmissions were made on 2,808 metres for half-hourly periods, mornings and afternoons, beginning on February 23, 1920. Mrs Collins was certainly the first woman to make voice transmissions, although the significance of the event was somewhat overshadowed by transmissions in June, July and August of that year by stars such as Dame Nellie Melba. Lauritz Melchior, Jenny Lind and other well-known singers. Mrs Collins was present at one of the Melba broadcasts and recalls seeing Dame Nellie kick away the carpet because she feared the acoustic might be impaired by it.

Mrs Winifred Collins at the time when, as Miss Winifred Sayer, she made the 90th's first telephony broadcasts by a woman, from the Marconi Works in Chelmsford during February and March 1920.

Office market super-group formed

Four companies within the Philips group have been integrated to produce a single company, Philips Business Systems, which is aimed at the electronic office market.

The four companies brought together are Pye TMC Ltd, which has specialised in telephone equipment, Philips Data Systems, Pye Broadcast Communications Ltd and Philips Business Systems. According to Brian Manley, the new super-group's managing director, it has been formed to exploit Philips' 'unique position in the electronic business equipment market of today'. We have drawn together our strengths in manufacturing, marketing, systems engineering and support in order to make a unified attack on a market which is both expanding and converging.'

Philips see the rapidly-growing market developing in two distinct phases. For several years there will be an increase in the volume of stand-alone equipment installed, which more and more will possess its own "intelligent" communications capability. Phase two will see the integration of equipment forms until, in the 1990s, complete intercommunication facilities are achieved amongst terminals handling word and data processing, audio and message transmission, data and text storage and a wide variety of personal computing functions.
Wireless World, June/July 1980

Set makers grapple with technology

The uses and abuses of technology seem to be of particular concern at the moment to the UK manufacturers of consumer electronics equipment. At the annual general meeting of BREMA in April, Lord Thorneycroft, the postmaster general, said there was the growth of new electronic information techniques such as teletext, viewdata and home computers presented many new problems and opportunities to the industry. Britain had shown great skill in design and technology in these fields but in the past we had sometimes failed in manufacturing and marketing. “If we are going to make a success of this business we have got to match the manufacturing efficiency and standards of our competitors in the rest of the world... I am confident that the companies represented in this room can do this”, Lord Thorneycroft added that, in recognition of these new electronic techniques, the association’s name had been extended to The British Radio and Electronic Equipment Manufacturers’ Association.

One abuse of technology, according to BREMA, is the exploitation of technical legislation as a barrier to free trade. The association’s 1978/9 annual report says: “There are of course, good reasons for such safety, where legislation is appropriate and valuable to industry as well as to the general public. However, it does appear that legislation which emerges in some countries is devised to introduce, or at least results in, barriers to trade. This is particularly regrettable when it occurs in member states of the EEC and when the response of the EEC, in general, is to propose similar legislation throughout the Community. There is a danger that the only justification for mandatory technical requirements being introduced in the first place. BREMA has and will continue strongly to oppose technical legislation which is not justified on its own merits.”

One example of this activity, according to a BREMA official, was some proposed French legislation to make compulsory the fitting on colour TV sets of a 21-pin socket for connecting peripheral equipment such as TV games, video recorders and teletext terminals. While there was no need to do so, France had made known its objections than a draft EEC directive was received which embodied the French specified connector and forbade the use of any other interconnection device. BREMA informed the Department of Industry that whilst the very short notice did not allow for a detailed response, BREMA was totally opposed to the imposition of mandatory technical requirements which the only justification for mandatory technical requirements is where protection of the individual is concerned, for instance safety, or where matters of general environmental concern arise such as radio interference. From a technical point of view BREMA raised a number of criticisms of the connector. It is agreed that standardisation in this area is highly desirable but this must be through the relevant international standards bodies.”

On the possibility of a citizen’s band service in Britain, the annual report says that BREMA maintains its view that c.b. radio “would provide a valuable service and could be administratively self-financing. The recent World Administrative Radio Conference did not make any specific frequency allocations for this service. Instead, it considered the question of a terrestrial mobile radio service and subject to allocation by national administrations. In expectation of a favourable government announcement, the BREMA Citizens Band Radio Subcommittee is to investigate the expected performance of the range of products that might be associated with the various possible frequencies that might be authorized. This will permit the group to respond to technical and manufacturing questions and aid commercial planning”.

Another home computer

During April, Texas Instruments held a press conference to promote their new home computer, first shown at TV-Mex last January. Originally you buy the 99/4 without the 4K random access memory, the 99/4 computer r.m.m. was extended to 16K when plans for a “professional” computer — requiring more 4K of r.m.m. — were shelved some time back. Total memory of the computer is 72K bytes, with an internal 26K r.m.m. and up to 30K in plug-in “solid-state software” modules. It is sold with a Skantik 16 colour TV monitor/recorded for £395 and programmed modules cost £17 to £45. Those available now include pre-school early learning fun, beginning grammar, number magic, household money management, personal record keeping, statistics, video games, video chess, video graphics, phsical fitness, American football, plus others. Alternative programming uses T1 basic. For connections to other computer peripheral equipment an RS232 serial interface adapter is needed (£150). Also available is a 32-column thermal printer (£269), a speech synthesiser (£95 for 327 words) based on the Speak & Spell chips with floppy disc storage to follow.

The unit without the Skantik monitor/ receiver for £595 but you’ll need either an NTSC set or a dual standard set with mains isolation. According to their home computer manager, Mike Lunch. TI were using a 4K computer that offered a mains isolated set suitable for conversion to the NTSC standard, so they looked to European makers Luxor (Skantik in the UK), Barco and Grundig. Portapal Conversions Ltd of Sunbury-On-Thames — who do the Skantik conversion for about £85 — say they are unable to guarantee the convertibility of other sets. So if you want to use your own set you’ll need to contact them first.

The need for mains isolation appears to be because an r.f. output of the 9918 chips didn’t meet FCC radiation limits, which meant choosing a NTSC composite video output — in effect had to go to a converter rather than an un-isolated domestic set with its “live” chasis. Texas say they will have a PAL version of the 9918 graphics chip, which wouldn’t be subject to the same restrictions, by the end of July. However, are you in the market for another home computer? T1 were unable to comment. What then was the market expectancy of the product—the 99/4 brochure calls it a home computer a long-term investment? “That’s a forbidden subject,” answered Mike Lunch.

Coastal radio extended

With the opening of a Post Office v.h.f. radio station on the Isle of Skye in February, another stage has been completed in the PO’s five-year programme to improve communications for coastal shipping and pleasure craft. The May radio, controlled from Portpatrick, is the second remotely-controlled station the PO has opened this year, the first being on the Isle of Skye in February. At present, there are 23 v.h.f. maritime radio stations, 15 of them remotely-controlled, around Britain’s coastline.

In the last ten years the demand for v.h.f. maritime radio services has increased from an estimated 20,000 calls annually, to more than 250,000. Much of the rising demand has come from an increasing awareness in yachtsmen etc. that such a service not only maintains contact with the shore but offers an important safety aid.

News in brief

The North London Hobby Computer Club has joined up with several other London computer clubs, to form the Association of London Computer Clubs. The first major meeting of the new club, to be called the London Computer Fair, will be held at the Polytechnic of North London on July 11th and 12th. Interested parties should contact the Chairman, Robin Bradbeer, either at the Polytechnic or through his home telephone number, 0483 35711.

An American company specialising in analogue signal processing devices, as well as image sensors and microcomputer-based image processing systems, EG and G Reticon, has now opened a UK office at Doncastle House, Bracknell, Berks. Cameras, systems and technical data will be available from the Bracknell office, as will an “off the shelf” component supply service.

A Japanese company, Nippon Electric of Tokyo, has been given a 55,000 million yen contract by the national telecommunications agency of Argentina (ENTEL) for the construction of a digital telephone network in Buenos Aires. Digital switching and optical fibre transmission systems will link more than 60 telephone offices in the city, making it comparable to networks being planned by the American Telephone and Telegraph Co.

One of the best known companies supplying components in the South of England, Ambit International of Brentwood, wishes to it be made known that it is no longer operating from Gresham Rd, Brentwood, Essex, and is now established at 260 North Brentwood. Ambit International is the official distributor for the product ranges of Toho, Alps Electric, Hung Chang Meter Co., Micrometals and Falial Loudspeakers.

The annual meeting of the British Association for the Advancement of Science is to be held at the University of Salford from 1st to 5th September 1980. Registration forms and details of cost and accommodation are available from the Association for the Advancement of Science, Fortress House, 23 Savile Row, London W1X 1AB or telephone 01-734 6010.

www.americanradiohistory.com
Wideband audio power amplifiers

Ideas for class A designs with no overall feedback

by Y. Miloslavskij, Dipl. Ing. Institute of Constructional Physics, Moscow

Author suggests ideas for a wideband class A power amplifier (2-10 watts) without overall feedback using single-ended and/or push-pull circuits for his efficient loudspeakers and passive linear-phase filters with 6dB/octave slope. Input transistor is carefully selected for good linearity and Darlington pairs selected using a curve tracer. 10-20% instability in operating current can either be tolerated or reduced using thermistor biasing.

Nowadays it is not enough to possess only a good frequency response within an audio band; it is necessary to achieve more accurate reproduction of transients for which one needs extremely broadband systems. In many cases, the importance of accurate reproduction of transients in music reproduction can be explained by considering the sound reproduction process and the specific characteristics of individual musical instruments, as pointed out and explained, for example, in "The Physics of Musical Sounds" by C. A. Taylor. There are many serious problems, which can hardly be solved in complete form in audio monitors because of the presence of several loudspeakers and accompanying filters.

Use of one radiator within the audio band is out of the question because of intense intermodulation, because of an increase in radiation directivity with increase in frequency, and because of conflicting design requirements of the radiator within the low and high frequency ranges. Direct-cut recordings can eliminate the imperfections of tape recordings, provided great attention is paid to the quality of other units. But such recordings are not often possible.

But it is a more unpleasant thing if serious problems arise within preamplifiers and power amplifiers. And so we face the problem: what if we use broadband amplifiers both as audio preamplifiers and as power amplifiers? This article suggests single-cycle and push-pull versions of a broad-band power amplifier with a maximum power output of 10W. Such output power is quite enough to create a sound pressure level within the peaks of 100 to 108dB inside a room with the volume of 30 to 120m³ with high-output loudspeakers. Studies made in different countries show that such a level of sound pressure is plenty even for prolonged listening. This level of sound pressure is about the same as the peak levels in concert halls while listening to symphonic music somewhere in the centre of the pit at the fortissimo. Upper frequency limit of amplification of such amplifiers may be 20MHz and more.

Low frequency limit of amplification in the amplifiers depends only on the value of isolating capacitors. The output stages operate as emitter followers in class A. This helps to get low non-linear distortion, low output resistance and acceptable efficiency without negative feedback. Non-linear distortion of the emitter follower depends primarily on the ratio between resistor R6 and the input resistance of the emitter follower, as well as on transistor linearity. The smaller the ratio, the lower the distortion. Also, the smaller the ratio, the lesser is the shunting effect of R6 and the efficiency becomes greater, especially in the push-pull version.

In the push-pull version of Fig. 1, to reach the best linearity it is necessary to achieve maximum symmetry of arms.

Fig. 1. Example of push-pull class A amplifier without external feedback used in author's l.f. loudspeaker channel.

Output transistors have a Vout(max) of 120 to 400V, Iout(max) of 8 to 12A, Pout(max) of 50 to 120W, f1 of 3 to 20MHz and an heat dissipator of 1200 to 1800cm².

Darlington pair: current gain 5000 to 10,000, output device 60 to 90.

Maximum value of non-linear distortion is 0.1 to 0.2%. Non-linear distortion of the amplifiers is also determined by linearity of transistor Tr, and the local negative feedback of this stage. It is a good idea to choose the transistors, especially the complementary pairs, with an accurate curve tracer. At the same time, it is possible to estimate the value of current gain (β), Vmin, Imin, linearity, and the important dependence β = β(I, V, T). Output resistance in these cases is determined mainly by the following ratios:

\[R_5/|r_{12}| \times |r_{13}| \] and \[R_5/|r_{34}| \times |r_{14}| \]

For horn loudspeakers with high outputs exceeding 105 to 108dB (1m, 1W) one may use the single-cycle circuit of the power amplifier. Fig. 2, for outputs of 0.5 to 2W (and even for an l.f. power amplification channel up to 4 to SW). Efficiency of such a circuit is 4 to 5%. Maximum efficiency for the circuit on a sinusoidal signal is approximately 8.7% (reference 2) at \(R_e = 1.41 R_L \). The basic formulae are

\[I_{C(out)} = 2.41 \times P_{out(max)}/R_L + I_{min} \]

\[V = 4.83 \times P_{out(max)}/R_L + V_{min} + I_{min} \times R_6 + V_{BE(Tr)} \]

In the given circuit the resistor \(R_5 = 3 \times 8 \| R_e (R_e = 15 \times 20 \text{ ohm}) \) which leads to decreasing the power dissipated in \(Tr \), and allows the amplifier to be fed from the voltage source for the l.f. power channel.

Temperature of the transistor junctions must not exceed 70-80°C. Ignoring
this condition may lead to the increase of the coefficient a_0 to a_6 of the transfer characteristics and will worsen the stability of the operating current of the transistors. The instability of operating current (with a sufficiently high current running through the R_2/R_6 bias chain) is approximately 1mA. The circuit needs no adjustment, except for preliminary circuit calculations and selection of components with the required parameters. Subjectively, such a single-ended amplifier sounds no worse than the push-pull one.

The required operating current is obtained automatically. Calculation of the operating current and current of R_6 depends on the maximum output power and power supply voltage, and is not given here. Rearranging the formulae

$$I_{C(out)} = 1.1 \times 1.2 \times \sqrt{V_{out(max)} - V_{min}}$$

$$V_{cexa} = N(R_6 + R_5) \times I_{C(out)} + V_{min} + V_5$$

For good symmetry of arms of the push-pull stage, $R_5 \approx R_6$ and

$$\beta_{T3} \times \beta_{T5} \approx \beta_{T4} \times \beta_{T6}$$

and preferably $\beta_{T3} \approx \beta_{T5}$

Instability of the output current has the same quality as the current in the power amplifier by J. L. Linsley-Hood. It is desirable that the T_5 to T_3 transistors should be high-voltage ($V_{cexa} 100$ to 400V) and with optimum current margins. As a rule, this improves linearity.

Generally from the point of view of quality, total cost and total efficiency the combination of a 1W power amplifier plus high-output horn loudspeaker seems more rational than the choice of almost kilowatt power amplifier plus loudspeakers with 80 to 88dB (1m, 1W) output. For the last mentioned case it is essentially more difficult to build a high quality power amplifier. Moreover, the problem of heat drainage from the loudspeaker voice coil arises as well as the problem of stable and loudspeaker performance, not to mention distortion. Let R_6 be heated, for its heating influences absolutely nothing!

For an I.F. power amplifying channel with a loudspeaker output of 94-97dB

The push-pull ends is running at 50MHz, Power amplifying channel as high as 1W.

This improves linearity.

The maximum coefficient of performance of such a circuit is somewhat less than 50%. Basic formulae for calculation are

$$I_{C(out)} = \sqrt{V_{out(max)}/2R_1} + I_{Min}$$

$$V = 2\sqrt{2P_{out(max)}R_1 + V_{min} + V_{BE(573)}}$$

The instability of $I_{C(out)}$ can be reduced if necessary with the help of thermostats, used instead of R_4 and R_9.

Values should be calculated or experimentally chosen, and the thermostats must have a constant temperature coefficient.

Each arm of the amplifier is “trimmed” separately. Choose R_2 so that symmetrical clipping of the sinusoid is reached after applying voltage to the circuit for 15 to 20 minutes. Further, using the half value of the calculated supply voltage, the value of current $I = 0.9I_{C(out)}$ is set (using the initial ammeter reading) in the complementary Darlington pairs by adjustment of resistors R_4 and R_5, then the arms are connected.

This circuitry is adopted as the basis for a three-way power amplifier (0.5 to 1W) with passive (phase-linear) filters having 6dB/octave steepness at the power amplifier input. Capacitors C_2, C_3 serve also to attenuate low frequencies in the m.f. and h.f. power channels.

References

Fig. 2. Single-ended version of m.f. and h.f. horn loudspeaker channels uses 2 to 5A output transistors with V_{cexa} of 300 to 500V and $P_{out(max)}$ of 25 to 50W. Heat sink 150 to 200cm2. Darlington pair gain 3000 to 5000. Input transistors have V_{cexa} of 120 to 300V, V_{cexa} of 0.5 to 1A, f_2 20 to 50MHz, $P_{out(max)}$ of 0.6 to 1.5W and current gain 70 to 140. Capacitors C_2, C_3 have been chosen to attenuate I.F. gain.

Data sheets on the Telrex range (900 models) of aerials, aerial arrays, masts and rotators can be obtained from Telrex Laboratories, Ashby Park, 07712 New Jersey, USA.

An application note dealing with theoretical and practical aspects of charging high-voltage capacitors (resistive, constant-current and constant-power) forms one of a series, available from Hartley Measurements Ltd, Kenwood House, Hartley Wintney, Basingstoke, Hampshire.

Fibre-optic cables, connectors, receivers and transmitters made by Suhner are described in a brochure entitled 'Fibreoptic', which is obtainable from Suhner Electronics Ltd, Telford Road, Bicester, Oxford, OX6 1LA.

A catalogue of home computers, peripherals and accessories is produced by Microdigital, 25 Brunswick Street, Liverpool L2 OPI. The company runs a hiring system in addition to its sales operation.

IMS is the Industrial Microcomputer System developed by Mullard. It uses Signetics 2630 microprocessors and is associated with Modest, a development system. The whole system is modular in form, avoiding too-complex or too-simple solutions to specific problems. A booklet on IMS can be obtained from Central Enquiry Handling Unit, Tech. Publications Dept, Mullard Mitcham, New Road, Mitcham, Surrey CR4 4XY.

A booklet on the range of r.f. power meters and dummy loads, working in the frequency range 2-1000 MHz, manufactured by Dielectric Communications, is obtainable from the UK representative, Tony Chapman Electronics Ltd. 80a, High Street, Epping, Essex CM16 4AE.

The first of a range of digital transit recorders, Model VK-22, which has a 2K x 8-bit memory, has been announced by Prosser, who can supply a descriptive leaflet, Prosser Scientific Instruments Ltd. Lane Lane Industrial Estate, Hadleigh, Ipswich, IP7 3DQ.

Power supply modules for X-ray image intensifiers are described in a leaflet, available from Brandenburg Ltd. 93b London Road, Thornton Heath, Surrey CR4 OJE.

Switches of various types for printed-board mounting are marketed by Waycom, who have a brochure "EECO PCB Switches", which can be had from Waycom Ltd, Woolwich Road, Bracknell, Berks RG12 1ND.

Guides to the selection and use of Scotch liquid resin (potting resins) and Scotch electrical tapes are obtainable from 3M, PO Box 38, Yeomen House, 57-63 Croydon Road, London S.E.20 7TR.
Anologue computing techniques

Introduction to the electronic solution of differential equations

by David F. Dawe, B.Sc. Cornwall Technical College

This article fills a gap in the literature on analogue computing: there is little that is not too advanced or too elementary. Originally written for HND students, the article covers both modes of operation and programming techniques, as well as including an introductory section on basic modules.

Basically the digital computer does arithmetic, arithmetic that most people could do by the age of ten or so. It takes two or three simple types of decision, has an enormous memory, and works at high speed. It simply does arithmetic in a series of predetermined steps, but quickly. As someone has rightly said, "The digital computer is a high speed idiot!"

The analogue computer is any arrangement of equipment coupled together so that it models or analogues a real system. Early analogue computers were developed using mechanical computing devices such as differentials, cams, shafts and gears. (For example see Electronic Computers Made Simple, chapter 3 by Jacobowitz). These mechanical computers were built specifically for single-purpose operation such as the early gunnery control systems developed for use by the armed forces.

Large-scale analogue computers, which are capable of rebuilding to model many different systems and thus perform varied computations, have only come into use due to the introduction of the electronic operational amplifier. With this equipment models of proposed systems can be made at a fraction of the cost of the real system. Evaluation of system response for varying system parameters can be obtained and optimized before a real system is constructed. It is also possible to incorporate some real parts and some model parts into a prototype mock-up system for evaluation.

The accuracy of an analogue machine is seldom better than one part in 1000. This is better than the physical data for most problems. If this accuracy is not good enough then a digital solution becomes essential.

A fairly detailed comparative costing of the computation of some integrals involving Bessel functions has been performed (see Analogue Computing Methods by D. Welbourne). The analogue solution, accurate to two figures, took two hours to programme, 50 minutes to compute and was costed at $53. A digital solution of the same problem took two weeks to programme, 50 minutes to run and was costed at $1377.

With many analogue computers a large problem can tie up its use for weeks or even months until the final results have been obtained. On a digital computer the programme can easily be removed and other work done whilst the first programme is dormant. Generally the analogue computer has its application only in the solution of differential-type equations. It has limited storage facilities, if any, unless it is coupled to a digital computer, the overall installation then being called a hybrid computer.

Basic analogue computing modules

Operational amplifier. The op-amp is the basic building block of the electronic analogue computer. It can sum, multiply, integrate, differentiate and drive voltimeters, oscilloscopes, chart recorders and other such measuring devices. It is a high-gain, high-bandwidth amplifier with high input impedance and low output impedance. Typical values for the 741 series are

- gain 20,000, nom. ∞
- unity gain-bandwidth 1MHz
- input resistance 2MΩ, nominally ∞
- output resistance 75Ω nom. zero

The following sections indicate how an op-amp is connected to produce the basic circuits used in an analogue computer. The circuit analysis used is deliberately simplified; a more rigorous analysis may be found in most standard textbooks on the subject.

Inverting and summing amplifiers. The inverting amplifier consists of an op-amp plus two resistors R_1 the input resistor and R_f the feedback resistor

Resistors R_1 and R_f have precision values. I_{in} is zero because of the high input impedance, V_{out} will be finite and the gain is virtually infinite. Apply Kirchhoff's first law to SJ, the summing junction,

$$\frac{V_{in}}{R_1} + \frac{V_{out}}{R_f} = I_{in} = 0$$

hence

$$V_{out} = -\frac{R_f}{R_1} V_{in}$$

The amplifier now has a gain completely dependant on the choice of R_f and R_{in} and is always phase reversing (negative sign). A typical inverting amplifier would have a single feedback resistor of say 1MΩ and a choice of input resistors that can be used, say 10kΩ, 100kΩ and 1MΩ.

Thus input V_1 has a gain of -100, V_2 has a gain of -10, V_3 has a gain of -1. If some other gain is required a potentiometer is used before the amplifier. For a gain of -75.

If more than one input is used simultaneously the superposition theorem applies and the stage becomes a summing amplifier.

www.americanradiohistory.com
Summing integrator. To obtain an integrator a capacitor is connected in the feedback path.

\[
\frac{V}{R} + \frac{CdV}{dt} = 0
\]

hence \(V_o = -\frac{1}{CR} \int_0^t Vdt\)

in words, the arrangement integrates and also scales by the factor \(1/CR\).

The integrator as given is an indefinite one. In practice the integration must commence from some value and this is the initial condition or boundary value in a mathematical solution. An integrator circuit for use on an analogue computer is arranged so that an initial condition can be introduced. This initial voltage is sensed and the output of the integrator at the start of the computation becomes \(-1\) times this value. Immediately computation has commenced it is then ignored and the rate of integration depends on the input signal and the scale factor \(1/CR\). Thus the integrator produces

\[
V_o = -\frac{1}{CR} \int_0^t Vdt
\]

A typical value for \(C\) is 1\(\mu\)F, thus choice of \(R\) of 1MΩ gives unity gain; other gains are possible in similar fashion to that used for the summing amplifier. A diagrammatic representation of a typical integrator is

\[
V_o = -\int_0^t (V_1 + 10V_2 + 10V_3)dt - V_{IC}
\]

Generalised circuit for integrator or amplifier.

The capacitors and resistors are annotated not in their absolute values but in their relative values as these are less cumbersome to handle. To use the circuit as an amplifier link by external patching the summing junction to the feedback resistor. The op-amp can now be used as a summing amplifier with four inputs of gain 10, 1, 1, 1 by making the link A. Linking the summing junction to the 0.1 capacitor with link B gives four integrating inputs with gains of 100, 10, 10, 10. Using the 1.0 capacitor and link C gives integration with gains of 10, 1, 1, 1.

The initial condition voltage is applied to the input marked IC either directly from the machine voltage supply or via a potentiometer as required. When the initial condition required is zero the IC socket may be left unconnected, but it is preferable to connect the socket to earth: this ensures slightly quicker resetting times. The remainder of this section may be omitted on first reading.

Differentiator. To obtain a differentiator replace the input resistor of the amplifier circuit with a capacitor.

\[
Cd\frac{V}{dt} = \frac{V_o}{d} = 0
\]

hence \(V_o = -RC\int_0^t \frac{dv}{dt} dt\)

The arrangement differentiates and has a multiplying factor of \(RC\). The differentiating circuit is rarely used and is to be avoided if at all possible. (This is usually possible by re-writing the equations in integral form). The differentiator introduces unwanted noise into the solution. Any noise present at say, mains frequency, at the input of a differentiator will be amplified far more than any wanted signal at a lower frequency because its gain increases with frequency. Thus it is possible to have a differentiator output which has more noise than signal.

Multiplier. A four-quadrant multiplier will multiply together the instantaneous values of two inputs of either sign and produce the product at the output which is of the correct sign.

Analogue computers operate within certain prescribed voltage ranges, usually ±10V or ±100V depending on the type of the machine. As both of the inputs to the multiplier can lie within this range, to restrict the output to the same range the multiplier function is normally

\[
V_o = \frac{V_1V_2}{100}
\]

for a 100V computer

where \(V_1\) and \(V_2\) are the instantaneous values of the two inputs and \(V_o\) the instantaneous value of the output. (Use of a ±10V computer is assumed.) The symbol normally adopted for a multiplier is

The multiplier may be used for other functions, for example to obtain \(A/B\)

\[
\frac{A}{B} = \frac{V_0}{10R_2}
\]

and if \(10R_2 = R_1\) then \(V_o = -A/B\).

For correct operation as a divider the circuit must remain stable and hence the loop gain must be negative. This means that A and B must have the same sign. In addition B must not approach zero otherwise \(V_o\) can easily become outside the ±10V computing range.

For squaring the inputs to the multiplier are connected together

\[
V_o = \sqrt{V_1V_2}
\]

The square root uses an operational amplifier as well

\[
V_o = \sqrt{10RV_1V_2}
\]

and if \(10R_2 = R_1\) then \(V_o = \frac{1}{V_1}\).

Operational modes

There are various modes of operation the computer can be put through to obtain a solution to a previously obtained interconnection diagram. **Potset.** In this mode all the potentiometers are set up to the values allocated in the patching diagram.
output of the potentiometer is \(y = ax \) for \(a < 1 \), assuming zero loading on the potentiometer by the next stage. (The potentiometers are set electrically, not mechanically.)

Reset or initial conditions mode. Initial condition circuits can take various forms but the principle may be illustrated thus

At \(t<0 \), \(S_1 \) is closed and \(S_2 \) open. \(R_x \) and \(R_y \) of equal value establish the voltage \(-V_{IC}\) at the output of the op-amp and hence integration will start from this.

Compute, operate or normal mode. For this \(S_1 \) is opened, \(S_2 \) is closed and computation commences and continues until stopped by the operator.

Hold. The computation can be stopped at any time by switching to hold. This opens \(S_3 \) and the charge stored at the moment of switching is held on all capacitors. All points in the circuit remain at the voltage at the moment of switching. The hold may be sustained for some tens of seconds with most computers.

Repop or repetitive operation. With many problems the integration leads to a steady-state value after a few seconds of computing and there is no virtue in sustaining the computation. It is useful to be able to re-sense the initial conditions and repeat the solution. This can be done many times per second (variable control) by electronic operation of \(S_1 \) and \(S_2 \). The multi-computation may then be fast enough to display on an ordinary oscilloscope using the external triggering facility.

PROGRAMMING TECHNIQUES

An analogue computer programme consists of a drawing of the blocks required and the interconnections necessary between them to solve an equation. This diagram is often called the problem patching diagram as it gives details of the interconnecting patching links which are used on the actual machine. To illustrate its application firstly consider the first-order differential equation.

First-order equations

A parallel mechanical system which links together a spring and a dashpot consists of a bar B of negligible mass attached to a spring and a damper. The other ends of spring and damper are held fixed. The spring is initially unextended. If a steady force \(F \) is applied to the bar B, what will happen to the bar B as a function of time?

The equation of motion using Newtons second law is \(m \dot{x} + kx = 0 \). Assume that \(k/m = 1 \) to make things a little easier thus \(\dot{x} + x = 0 \).

The solution to this equation is \(x = A \cos t + B \sin t \) the values of \(A \) and \(B \) depending on the initial conditions of the problem. If \((x)_{0} = 0 \) and \((\dot{x})_{0} = 10 \text{m/s} \) i.e. initial displacement zero, initial velocity 10m/s then \(x = 10 \text{cost} \). We should be able to obtain these solutions by the analogue method.

Firstly, re-write the equation with the highest derivative on the left-hand side, \(\ddot{x} = -x \)

Two successive integrations gives \(x \) from \(\dot{x} \)

The circuit is completed to fulfil the requirements of the equation at the input to the first integrator. By addition of the initial conditions either the sine or cosine solution can be obtained; \(x = 10 \sin t \text{ for } P = 10 V, Q = 0 \) and \(y = 10 \cos t \text{ for } P = 0, Q = -10 V \).

By assuming \(k/m = 1 \) the angular frequency has been set at unity i.e. \(f = 1/2\pi \text{Hz} \).

Amplitude scaling

The arbitrary choice of scale factors in the previous problem \((1V = 1m \text{ and } 1V = 1m/s) \text{ must normally be avoided; it may lead either to the solution being outside the voltage range of operation or alternatively being so small as to be lost among the inherent noise.} \)

Two main types of analogue computer in use have the voltage ranges \(\pm 100V \text{ and } \pm 10V \). Assuming the last-mentioned value, an amplifier modelling velocity cannot cope with a maximum output of 20m/s if the scale for velocity is \(1m/s = 1V \). In such circumstances we are compelled not to compute \(v \) but \(v/2 \) and then the amplifier output will not exceed the specified limits. This restriction also applies to initial condition voltages. It may also be necessary to re-scale a problem to ensure that the initial conditions can be handled by the amplifiers.

Generally, scale factors 1, 2, 5, 10 are used, plus multiples and sub-multiples of these by a factor of 10. The factors are always chosen to make the maximum values of the problem lie within the operating range with maximum ease in interpreting results. For example if in a dynamics problem the expected maximum values were \(x_p \approx 0.1m, \dot{x}_p \approx 5m/s \text{ and } x \approx 100m/s^2 \) one would not compute \(x_p \), \(\dot{x}_p \) and \(x \) but 10x, 5x and \(x/10 \). These values are bracketed and called the computed variables \((10x), (2x), (x/10)\).
The task of obtaining the maximum values can be a difficult one. A first approach is to re-examine the original physical problem and see if there are any constraints which would lead to a choice in maximum values. If there are none, try mathematical analysis of the problem equation on one of the following lines.

Equations with r.h.s. zero

There are two types, the first of the form \(x + 9x = 0 \), i.e. second order but zero damping and the second, \(x + 5x + 9x = 0 \), with damping. The first case has a sinusoidal solution of the form

\[
x = A \sin 3t + B \cos 3t.
\]

The initial conditions given for the problem lead to the values of \(A \) and \(B \). The substitution and differentiation values for \(x_m, \dot{x}_m \) are obtained. So it appears one needs to know the solution before sensible values of scale factors can be chosen. This is true for the simple case, but it is necessary to compute the solution even though the answer is known, should \(x \) or its derivatives be required as inputs elsewhere.

In the second case, the maximum values will be no higher than those for the undamped version of this equation and would be taken for a first estimate, the problem run and re-scaled if necessary.

Equations with r.h.s. constant

If the constants in \(A \hat{x} + B \hat{x} + Cx = F \) form a monotonic series, i.e. gradually increase or decrease in amplitude from left to right, then the "equal coefficient rule" applies which states that the maximum value of \(x \) is no greater than \(2F/C \), if \(\hat{x} \) is no greater than \(F/B \). of \(x \) is no greater than \(F/A \); higher coefficients follow the same pattern. If the coefficients do not form a monotonic series this is still the best starting place, but it may be necessary to re-scale the problem after the first computing run.

Equations with r.h.s. = \(f(t) \)

Estimate the maximum value of \(f(t) \) and apply the equal coefficient rule. Re-scale if necessary. If the right-hand side is to be generated on the computer, rather than supplied as an external forcing function, then treat \(A\hat{x} + B\hat{x} + Cx = F \) and \(f(t) = F \) as separate circuits to be patched, taking \(F \) in each case as the estimated maximum value of the opposite side of the equation, and then making the interconnection. Re-scaling may be necessary.

Second-order equations with viscous damping

Consider the mass-spring system with viscous damping indicated

The free end of the spring is moved according to \(f(t) \) whilst \(x \) is the displacement of the mass \(m \). The equation of motion is \(m\ddot{x} = -R(x-f(t))-\alpha \dot{x} \) or \(m\ddot{x} + \alpha \dot{x} + kx = h(t) \)

Assume that the mass is initially at rest and measure \(x \) from this datum, hence \(x_0 = 0 \) and \(\dot{x}_0 = 0 \). Taking the values \(m = 100kg, \alpha = 30Ns/m \) and \(k = 100N/m \) gives

\[
10\ddot{x} + 30\dot{x} + 100x = 100f(t).
\]

Assume that \(f(t) \) is a step displacement of 0.1m. Thus \(x + 3\dot{x} + 10x = 1 \) is the equation of motion for this particular problem. Using the equal coefficient rule \(\dot{x}_{\text{max}} = 0.2 \), so compute \((50x) \), \(\ddot{x}_{\text{max}} = 0.35 \), so compute \((20\dot{x}) \), and \(\dddot{x}_{\text{max}} = 1 \), so compute \((10\ddot{x}) \). The initial conditions are now \((20\dot{x})_0 = 0 \) and \((50x)_0 = 0 \). Substitution of these variables into the problem equation, taking care to re-balance the equation, leads to

\[
\frac{10x}{10} + \frac{3(20\ddot{x})}{20} + \frac{10(50x)}{50} = 1
\]

Re-writing to obtain the patching or machine equation

\[
(10\ddot{x}) = 10-1.5(20\dot{x})-2(50x)
\]

which is implemented by first drawing the forward computing path without interconnections and labelling the outputs of the amplifiers and integrators according to the computing variables

Next choose the interconnecting potentiometers and integrator gains to suit, i.e. \(P_1 = 0.2 \), with gain of amplifier 2 as 10, and \(P_2 = 0.25 \) with gain of amplifier 3 as 10. This completes the forward path.

The machine equation is now satisfied, using feedback loops to the input of amplifier 1 and the initial conditions added.

Outputs for \(50x, \ 20\dot{x}, \) and \(10\ddot{x} \) can be obtained simultaneously. The machine equation summing could be performed at the input to integrator 2, thus dispensing with amplifier 1 and transferring the position of amplifier 4 to the other feedback loop. This would be the method usually adopted, but it does add an additional complication to the scaling procedure.

Two further worked examples follow which illustrate variations to the basic design procedure shown here.

Time scaling

The time occupied by the physical problem and the time over which it is convenient to look at it on the computer may differ enormously. One may require to compute in say 30 seconds a problem which in real life occupies only micro-seconds (a chemical reaction) or years (a biological or astronomical problem). It is then necessary to compute the equations not in real or problem time but in a scaled version of it, called computer time.

In addition it may be necessary to apply time scaling because of one's choice of ancillary equipment. Many of these, which are used to obtain a hard copy of the computation, cannot respond outside the frequency range 0 to 20Hz. Thus the solution may have to be slowed down to suit the equipment.

Let problem time be \(t_p \) and computer time be \(t_c \) then to scale up a solution to take place in a shorter time, and taking a scale factor of ten as an example,

\[
t_p = t_c = 10\times t_c = t_p = 0.1 \times t_p.
\]

Then \(\frac{dt_c}{dt_p} = 10 \) and \(\frac{dx}{dt_c} = 10 \frac{dx}{dt_p} \)

More generally, it can be shown that for the derivatives of \(x \)

\[
\frac{d^nx}{dt^n_p} = 10^n \frac{d^n x}{d t^n_p}
\]

There are two ways to implement time scaling, one could introduce the equations given above during the mathematical formulation of the machine equation. More simply, one could alternatively ignore time scaling initially and produce the machine equation as in previous work. Then to change the time scale alter the gains of all the integrators by the same amount.

Application of time scaling

Produce a solution of the problem shown in Fig. A, in one tenth of the real-time solution.

Machine equations is

\[
\begin{bmatrix}
\dddot{x} \\
\dot{x} \\
\ddot{x}
\end{bmatrix} = \begin{bmatrix} 10 & -1 & -0.5 \\ 1 & 0 & 0.25 \\ 0 & 1 & 0.1 \\
\end{bmatrix} \begin{bmatrix} x \\
\dot{x} \\
\ddot{x}
\end{bmatrix}
\]

When \(t = t_c \), \((x)_p = (x)_c = 0 \). To speed up the solution by ten times, make \(t = t_p / 10 \) and change integrator gains by the same factor.

\[
\dddot{x} = 100 \frac{d^2x}{dt^2_c} \quad \dddot{x} = 10 \frac{dx}{dt_c} \quad \dddot{x} = 10 \frac{dx}{dt_c}
\]

So the new machine equation is

\[
\begin{bmatrix}
\dddot{x} \\
\dot{x} \\
\ddot{x}
\end{bmatrix} = \begin{bmatrix} 10^3 & -10 & -0.5 \\ 1 & 0 & 0.25 \\ 0 & 1 & 0.1 \\
\end{bmatrix} \begin{bmatrix} x \\
\dot{x} \\
\ddot{x}
\end{bmatrix}
\]

www.americanradiohistory.com
WORKED EXAMPLES

1: Initial conditions too high. Produce a suitably-scaled patching diagram to solve

\[0.5y + 2z + 15y = 4 \quad \text{with} \quad (y)_0 = -3, \quad (z)_0 = 1.5 \]

Estimate maximum values: \(y_m < 8 \), use (y) for computation, \(z_m < 2 \), use (5y), and \(y_m < 8/15 \), use (10).

The initial condition inputs are (5y)_0 = -15 and (10y)_0 = 15 but both of these are too high for a 10V computer so the choice must be amended. For (y), (2z) and (5y) the initial conditions will be (2z)_0 = -6 and (5y)_0 = 7.5, well within the limits of the computer.

The scaled equation becomes

\[0.5 (y) + \frac{2}{2} (2z) + \frac{15}{5} (5y) = 4 \]

giving the machine or patching equations as

\[y = 8 - 2(2z) - 6(5y). \]

2: Second-order equation with r.h.s. zero. The equation of motion of a mass which starts from rest at a distance 5 cm, from a datum is

\[x + 9x + 64x = 0 \]

Construct an analogue computer solution to obtain \(x \) as a function of time. Estimate maximum values by assuming no damping; i.e. \(x + 64x = 0 \). This has a solution of the form \(x = \text{Asin} \theta t + B\cos \theta t \). Initial conditions are \((x)_0 = 5 \) so, by substitution at \(t = 0 \), \(B = 5 \) and \(A = 0 \), and the undamped solution is 5 cos \(\theta t \). Hence make \(x_m < 5 \), \(x_m < 40 \) and \(x_m < 200 \) and compute \((2x)_0 \), \((x)/5\) and \((x)/50\) with initial conditions \((x)/5)_0 = 0\), \((2x)_0 = 10\). The scaled equation becomes

\[50 \left(\frac{x}{50} \right) + 45 \left(\frac{x}{5} \right) + 32(2x) = 0 \]

and the machine or patching equation is

\[\left(\frac{x}{50} \right) = -0.9 \left(\frac{x}{5} \right) - 0.64 (2x) \]

Hence the equations are identical in magnitudes but the solution, Fig. B, is ten times as fast.

Ancillary equipment

The variation of voltages in an analogue computer circuit cannot be seen except by using them to drive some ancillary equipment. Very often, especially with electromechanical output devices, the operating speeds of this equipment severely limits the maximum frequency which can be present in the analogue solution. Thus time scaling becomes unavoidable.

An oscilloscope is useful because it can provide a visual presentation of computing variables with comparatively simple setting up procedures. A double-beam oscilloscope will display two analogue variables simultaneously in correct time relationship with each other. If the computation is slow then a storage oscilloscope with slow sweep speed is used with the computer in the compute mode. Faster computations can be displayed with increased sweep speed on an ordinary oscilloscope using the Repop mode and synchronizing the computations to the oscilloscope time-base sweep.

David Dawe studied for higher national certificate in electrical and electronic engineering at Devonport Dockyard Technical College. He then won a Ministry of Defence sponsorship at Southampton University to read electronic engineering and subsequently spent two years as design authority for new audio and recreational tv systems for the Navy at Ministry of Defence headquarters in Bath. He now lectures in electronics and computing at Cornwall Technical College.
RCA says “Video disc system has enormous potential”

Speaking at the 4th International Videodisc and Videogram Conference in New York city, Herbert S. Schlosser, RCA’s executive vice-president, claimed that the company’s “SelectaVision” video disc system will be “worldwide in scope and its potential for entertainment and education is enormous.” Although he did not disclose specific marketing plans for the system overseas, Mr Schlosser said RCA is committed to the development of a system for Europe and that technical development work has been under way for many months. He said “RCA intends to take a leadership role in developing the market for the video disc in Europe, both by direct participation and through licensing arrangements for both discs and players with other participants.

Development of the RCA system in Europe will be supported by a variety of programming and Mr Schlosser said that programmes produced in Europe will also find their way back to the USA. RCA has already obtained licenses to market in the US much European-produced material including Sir Laurence Olivier in “Henry V”, “Hamlet” and “The Merchant of Venice.”

One reason there will be a big demand for the video disc in Europe, he said, is that European viewers cannot receive the same mix of TV channels as their American counterparts. In the US, about 50% of households can receive nine or more stations with those in New York and Los Angeles capable of receiving 15 different broadcast stations and many more over cable systems.

In contrast, a household in the middle of London can choose from only three channels and this is also the case in Paris and Hamburg. Furthermore, in Britain and France, there is virtually no programme activity on weekdays until noon, while Germany has only limited morning programme activity.

“Thus”, Mr Schlosser said, “the video disc has great potential in Europe. It is a way for consumers to choose programmes they want and to play them when they want, day or night”. RCA’s catalogue will offer feature length films, popular and serious music, children’s programmes, television feature material, d.i.y. and highlights of sporting events.

The RCA Videodisc employs a “capacitance” technique in which a grooved disc is tracked by a diamond stylus and has been in development for 15 years. The re-play unit is attached to a colour or monochrome TV receiver and carries a suggested retail price under $500 in the US. Market introduction of the system in the US will take place in the first quarter of 1981 and first units will be delivered to distributors for demonstration in December 1980.

Construction of third satellite aerial begins

Work has started on another aerial to supplement the two already in use at the Post Office’s satellite earth station at Madley in Herefordshire. The new aerial will work to a satellite in geo-stationary orbit 23,000 miles above the earth. The first Madley aerial, in operation for more than a year, also works to a satellite over the Indian Ocean and the second, which went into operation earlier this year, beams telephone calls to a satellite positioned over the Atlantic.

Increasing telephone traffic has made the new aerial essential, with more than a million calls a month being made between Britain and 40 other countries. Call density to some countries is growing at a rate of 80% per year and this is matched by increases in telex and data traffic. Intercontinental telephone calls have reached 4 million a month with 60% going by satellite rather than Madley or the Goonhilly earth station in Cornwall.

The aerial project, which will cost £7.5 million, is due for completion by the contractors in mid-1981. £3 million worth will be completed by Marconi Communication Systems. The remainder being in the hands of Mitsubishi Electric Corporation via a British subcontractor, IDC Construction.

There are now eight satellites operating in the (International Telecommunications Satellite Organisation) global system and, in addition to transmitting telephone and telex calls, live TV programmes are carried. So far, the PO has spent £17 million at Madley, up to its £10 million a year programme of investment.

The “Madley Three” aerial will have a dish diameter of 105ft (32m) and will be capable of transmitting 2,000 telephone calls and two TV programmes simultaneously. A feature of the design is that the structure has been modified to withstand higher wind pressures than the previous two. Tubular steel is to be used instead of angle steel, making it resistant to winds gusting up to 45m a second.

Working will take place initially to an Intelsat IV A, moving later to an Intelsat V, capable of carrying 12,000 calls simultaneously.

- A co-operation agreement was recently announced by Thorn EMI and JVC, the Japanese Victor Company, to manufacture and distribute JVC’s video discs and the machines which will use them.

The JVC VHD-AHD (video high density/ audio high density) system is expected to be introduced into Europe and the US by late 1981 and the UK could well become a manufacturing base, with automation in Thorn-EMI being left to “standard” products and skilled labour being shifted to the video disc side.

Philips, whose system is scheduled for launch in mid 1981, plans to use a factory in Lancashire for the pressing of discs.

Computer watches the factory

Both temperature and ventilation in the petrol engine workshop of the Scania division of the Swedish Saab-Scania group in Stockholm, are now under the control of a minicomputer.

Drawing on real-time data supplied by a network of sensors, temperature and air flow are continuously monitored and compared with outside levels; the computer continuously adjusts the working of fans and air heaters in order to maintain optimum working conditions at minimum power consumption, with a claimed 10% reduction in heating oil consumption.

During the winter months indoor temperature can be held down when work is not in progress as well as during the night, at weekends and on public holidays, ready to be started up at just the right moment to ensure that premises are at a suitable temperature for human habitation.

In summer, the computer makes sure that cold night air is fed in to reduce the temperature, thereby postponing the switch-on of cooling systems in the daytime.

Gugliemo Marconi, with his personal radio operator Adelmo Landini, aboard the Elettra in Genoa Harbour, about to activate the switch which, by radio remote control, turned on the lights at the Electrical and Wireless Exhibition in Sydney City Hall. The event took place on 26th March 1930, and Marconi had designed the selector device himself. (See “Indian scientist wins Marconi award”)

Photo, courtesy of GEC-Marconi Electronics Ltd.
UHF CITIZENS' BANDS

Mr Hooper's account (February letters) of the success of the u.h.f. citizens' band in Australia (not the world's first by the way - that honour probably belongs to the United States, which had Citizens Radio Class A at 462.55 to 462.725MHz from well before 1973) is interesting in that once again it shows there are several sides to a story and some silver clouds have dark linings.

In Canada we have recently been discussing the possibility of a new citizens' band at 900MHz. In commenting on this, our Council made a suggestion that if such an allocation is made, the modulation system should be different from that used on other services on adjacent frequency bands.

Our reason for this was that we understand there is a problem in Australia in that certain equipment produced for the citizens' band is often used illegally on other nearby bands, instead of equipment meeting the proper type-approval specification applicable to those bands. Mr Hooper's comment about the "L"-or "T"-type equipment being used on the amateur bands reminded us of this.

This is not to say u.h.f. c.b. is a bad thing; it certainly is a better bet than 27MHz, if a frequency slot can be found which does not disrupt other bands, and if something is done to prevent the c.b. equipment from becoming the standard equipment for commercial services nearby.

Bob Fitting
Western Canada
Telecommunications Council
Burnaby
B.C., Canada

WET AERIAL INSULATORS AT SEA

It is not uncommon to find in text books of the spark transmitter era some reference to "salt and soot shorting out the insulators of ships' aerials". Designers of the day took heed, usually making the aerial an "L" or "T", slung between masts with insulators at either end and the down lead terminating at a feed-through insulator located at the highest point on the bridge, shielded from spray by a large brass bell. There were three points of possible leakage only, placed at maximum distance from the source of contamination.

Later text books ceased to dwell on "what everybody already knows" and gave the space to other aspects of a rapidly developing technology. As long as ships had the bridge masts and two masts, this style of aerial was traditional, but about 1960 the shape of ships began to change; accommodation began to move aft, masts were abolished or merged with funnels. Aerials had to be hung wherever they would fit, with insulators at each zig and zag. Optimum placement of feed-through insulators was abandoned.

There is evidence that some such aerials, when wet with spray, undergo such a large shift in characteristics that they will no longer match the transmitter pi-coupler, or put it in plain language, transmitters are rendered useless in bad weather. I refer readers to my article in the September 1979 issue of Nautical Review and my letter in your June 1979 issue.

Since modern "sophisticated" manuals on radio technique fail to even recognise the existence of the "wet insulator" problem, it is necessary, in seeking an explanation of the nature of the "leakage", to turn to the fundamental literature on the physics of electrolytes. Most of these books have long since been removed from library stacks as "obsolete", but can still occasionally be found in back street second-hand bookshops.

One of the most important of these books is "Electrolytes", published in 1932 by Prof. Hans Falkenhagen of the University of Cologne, dealing with the work of a number of German researchers into the conductivities of a wide range of electrolytes at radio frequencies, up to about 60MHz. Falkenhagen found that about above 1MHz, conductivity increases with frequency by up to 50, and Wien, whose work is also described, found a similar increase of conductivity with increased field strength. The methods used to determine conductivity were indirect, depending either on heat generated in a cell containing the electrolyte placed in an r.f. field, or on the damping of the amplitude of resonance peaks. Falkenhagen notes that "...most of the earlier methods used for determining conductivities with direct currents are inapplicable at high frequencies." (May government radio inspectors remember that when attempting to measure the quality of insulation of ships' aerials.)

In 1907 the Carnegie Institute of Washington published a report by Arthur A. Noyes on measurement of the conductivities of a vast number of aqueous solutions over a wide range of concentrations and temperatures. Noyes tells us that "The conductance was measured by the ordinary Kohlrausch-Wheatstone Bridge method, using the induction coil and telephone", and this leads us to "Electrochemistry and Electromechanical Analysis", by Dr. Henry Sand, who tells us that "...a difficulty inherent in the measurement of electrolytic resistances and conductivities is due to polarization of the electrodes. This difficulty was overcome by Kohlrausch in 1879 by the introduction of alternating current in which equal and opposite pulses neutralise each other, -- expressed in greater detail, each pulse may be assumed to produce a polarization proportional to the amount of current that has passed through the electrode, the latter thus acting as a condenser. The whole cell therefore behaves to alternating current as a resistance in series with a condenser capacity...".

In his "Text-Book of Practical Physics", 1919, Lt.-Col. W. Watson goes further: "The difference of potential between the electrodes of an electrolytic cell through which a current is flowing, when the resistance of the electrolyte is R is given by: -

$$E = R + \frac{P}{R^2}$$

where P is a constant which depends on the area of the electrodes... and the electrolyte. Suppose that alternating e.m.f. of frequency p/2z is applied to the terminals of the cell... if applied e.m.f. follows simple harmonic law it may be represented by E0sin pt...

$$R \frac{dE}{dp} + E = E_0, \ p \ \cos \ pt$$

Differentiating with respect to time

$$R \frac{dE}{dp} + \frac{dE}{dp} = E_0, \ p \ \cos \ pt$$

The integral of this equation is

$$E = E_0 \ e^{-Rt} + \int \left(E_0 \ e^{-Rt} \ \sin(pt) \ + \ \sin(p(t-0)) \ \frac{dE}{dp} \right) \ dt$$

Where tan h = \frac{p}{Rt}... p corresponds to \omega and P could be rewritten k/c. The equation can then be written:
A frequency of 1kHz was considered adequate for the measurement of conductivities of cells of a few hundred ohms between electrodes. If the capacitive reactance of the cell at that frequency introduces negligible error, then that implies a large capacitance. This might be the case for an electrolytic cell to behave as a capacitance might be called "The Kohlrausch Effect". An aerial insulator coated with a film of sea-water constitutes such a cell; the actual area of its electrodes is probably quite a bit less than the customary heavy corrosion of copper at sea. (Fis larger.) The presence of one or more such 'cells' on a ship's aerial may well alter the capacitance of that aerial to the extent that the pi-coupler of the transmitter connected to it, operating at about 500kHz, can no longer be dipped to resonance.

Sea water is certainly an excellent electrolyte. Its conductivity is so great that the front of the Atlantic Ocean there is dissolved 27.37 grams of sodium chloride, 3.36 grams of magnesium chloride, 2.24 grams of magnesium sulphate, and significant amounts of 8 or 9 other salts. The concentration on the insulator surface will possibly be greatly increased by evaporation by action of the wind.

John Wiseman
London E3

Further reading
"Electrolytes," Hans Falkenhagen, OUP, 1934 (English translation)
"La Concentration En Ions Hydrogene De L'Eau De Mer — Le Ph," R. Legendre, Paris 1925.

EDUCATION FOR INTEGRATION

Your leader in the March issue, "Education for Integration," left me wondering whether Wireless World is positive, neutral or negative about the 'chip', and its manifestations. I don't expect you to be totally polarised, but I did expect a more direct lead on the subject than this piece appears to offer. It is a great pity that its rhetorical force was not backed up by a coherent set of ideas rather than the tango which emerged from "doo-hi-ladon-prophesy" (the chip is O.K.) through "its lineage and capabilities do not warrant..." (the chip is unimportant) to "the microprocessor is not a work of the Devil" (a negative proposition, presumably from K.E.M.)

You accuse those 'non-engineering persons' who dare to venture an opinion of failing to appreciate that their technical ignorance renders them incapable of forming valid views on this subject. I feel that the chip in general and its eventual impact on employment in particular. This sentiment is enlarged upon in a piece of expert nit-picking which points out that these n.e. persons have not yet visited the factory shop where the chip is being manufactured. It seems that one needs to be told which is which and when to jump or stand at ease by the informed engineering club member.

The most glaring assumption is that which claims that a system cannot be recognised or its movement predicted unless the entire device is switched on. This is an unnecessary viewpoint. Surely if we don't need an engineer's intimacy with a London bus to know that unless I make the right moves when crossing the road I'm going to get flattened. In a similar fashion, it is becoming increasingly clear that those who can see the wood for the trees (without necessarily knowing how to measure the height of each pine), such as some of those who "walk out on strike whenever new technology is in the offing," are quite capable of foreseeing the shape of the juggernaut which might lumber its way across their jobs, if the decisions of the professional and business manipulator are allowed to forge ahead unchallenged.

It's now pretty certain that, unlike the sentiment you have expressed, the next decade will see the retention of a smaller workforce, especially in the clerical trades, whether such workers are technically informed on the use of the chip, or not. Wouldn't you save a single job! Your claim that those who know are better able to see that things will be O.K. and, if they aren't, everyone will simply have to change, qualifies as both red herring and "inevitable march of history," but doesn't really help in the debate.

The Conservative Party's working report of April 1979, "Proposals for Information Policy", suggests in a section on trades unions that further education and training, all telecommunications and some government publications and information services would be included among the limited category of vital services from which a lawful stoppage of labour would be illegal." This indicates the importance of the issue and supports my main point because those whom you accuse of rampant ignorance — cabinet ministers, trade unionists, the dying dinosaurs, whom you promise to ineffective or naive utterances on the subject, nevertheless do clearly appreciate the wider nature of the new systems even if they think Boolean Algebra is an odd modern language.

All the while you continue to carp about ill-informed comment in the media, i.e. that which concentrates on the "wonders of science" type of reporting, and fail to con-vince anyone that you have a better considered view of what will probably be one of western industrial society's most far-reaching professional and social upheavals.

J. B. Hurd
Farnham
Surrey

SCIENTIFIC COMPUTER

Like Mr Freeman (February letters) I too built the Adams scientific computer to gain experience in micro-computing, but I came to it from a programming background, wishing to become more acquainted with hardware and also programming at machine code level. I was attracted by the concept of two microprocessors interacting and in my view this would work well.

However, the machine has had scant, if any, mention in the micro-computing magazines. Why not? I venture to suggest that this is because (apart from only being available in kit form) there is almost no relevant software available. Effective software takes time and money to develop and most manufacturers adopt existing systems and programs, and encourage others to jump on the bandwagon. Although Mr Adams's BURP works well, with only 26 variables and primitive control statements the machine is no more powerful than a programmable calculator with video display. The expert should not expect nationally standard and existing machine code software would require extensive alteration to run under its operating system. Unless and until considerable effort is made modifying other microcomputer operating systems and interpreters to utilise the number cruncher (which ought to be perfectly feasible), Mr Freeman and others like him who want better computing facilities would be well advised to buy one of the more popular machines.

For my part, the machine has certainly fulfilled its original purpose, since the monitor is not at all difficult to understand, analyse or use. My main criticism was the automatic reset within the NM1 routine, which I am pleased to see has been removed in the new version. Perhaps one can now program some dynamic video games.

Machine code programming is, however, laborious; you have to write your programs on paper, assemble it on paper into machine code, then enter it. All screen listing is in machine code. So you can see what is there, but it is impossible to follow through the steps you are looking at. You may be able to actually think and program in the assembler mnemonics, not in the derived machine code. Furthermore if you used Mr Adams's boxed coding sheets there is no room for insertion of code to deal with, hence you have to physically move memory contents and check all jumps for altered addresses.

To overcome these difficulties I have written a disassembler/editor. This produces lines on screen, each showing memory address, up to 4 bytes of machine code comprising one instruction, the standard z80 assembler mnemonics and also, for relative jumps, the destination address with the memory offset. By using the disassembler as a part of your machine code programs under development.

In my view this method of development is ideally suited to this machine as it does not need the extent of the disassembler. You then have the assembler/editor would use in storing the assembler mnemonics and labels. I would be pleased to make it available to any of your readers who might be interested for, say, £5.00 to cover tape, magnetic tape, photocopying and postage.

Regarding hardware, I am considering expanding the capabilities to include RS 232c communication as an intelligent terminal, by adding u.a.r.s and using vectored interrupts. I also intend to add a further 1K r.a.m. as alternative development monitor with software select (by including the enable lines crotched by an output port latch); to extend the v.d.u. memory to 8 bits and adding read-back,
TRICKLE, TRICKLE LITTLE CHIP

The first page of Wireless World plays an important part in setting the status of the magazine and it is this which has made me a regular reader of the journal. As I write, the editorial page of your November 1979 issue lies in front of me. In the first paragraph of this piece ("Trickle, trickle little chip") your aim, if I am not mistaken, is to illustrate the large reduction in the cost of microprocessors by giving the example of an Indian peasant as a possible but unlikely possessor of one of these devices. As a first class electronics engineer of state level in India, I feel it is my responsibility to remove this type of misrepresentation.

I should explain that I am 20 years old and work as a junior engineer in a computer manufacturing company called Operational Research Group System. I am at present engaged in testing a microprocessor system using an 8080 device.

I have to agree that Europe is leading us in technology by one or two decades, but it doesn't mean you can write this kind of thing. It's a question of the credit of our country and, even more, your knowledge of India and its technical development. At present about a dozen organizations here are manufacturing products using microprocessors.

Mehta Subhash Vrajiall
Baroda
India

INTERFERENCE WITH MSF RECEPTION

With reference to MSF reception in the North-West (March letters), the following comments based on tests near Manchester over the past four years may encourage your correspondents.

Using a ferrite rod aerial assembly as the sole tuning element and a "t.f. amplifier" both derived from a design by Bateman1, followed by a detector designed by Cross2, reliable reception of the MSF signal has been achieved in the presence of strong signals centred on 61.835kHz. The measured loaded Q of the experimental receiver is 156, with a bandwidth of 385kHz and a rejection of 20dB at 61.8kHz. The signal level presented to the detector is set at 64dB above the trigger threshold, high enough to avoid output jitter yet not so high as to seriously degrade selectivity. Constant input to the detector also minimizes complications arising from unequal switching delays at the detector output, an aspect of performance which must be considered when designing the decoders.

Interference at 61.8kHz is some 3dB above the 60kHz Rugby signal in this area so the net rejection is about 9dB. Perhaps surprisingly, this has proved adequate for driving fast and slow format decoders, but I would not recommend such a limited margin for a personal receiver.

Further selectivity has been obtained by adding a single tuned stage (Q = 94) after the aerial (Q now raised to 168 because of improved loading), this reducing the bandwidth to 280Hz, giving 35dB rejection at 61.8kHz. This bandwidth is lower than that adopted by Hebsy3 but a c.r.o. display of the incoming code shows the 5ms pulse — the shortest in the MSF signal — to be clearly delineated. The code recognition function has been consistently reliable with this more selective circuit. If only the slow code is required, an even narrower bandwidth might be practicable but I have not tested this possibility.

The 61.8kHz signal from the 100KW transmitter in Fylde is certainly an interference hazard in this district since its reception direction is only 8° from that of the Rugby signal, so little is gained from directional properties of the typical ferrite rod aerial. Moreover, the hazard will increase if the whole of the transmitter's assigned bandwidth, centred on 61.75kHz, is brought into service.4 However, as a receiver with a 290kHz bandwidth can deliver the MSF data, reception in difficult areas such as Salford and even Preston seems possible. Like Messrs Izatt and Samain, I also wonder if commercial designs, which seem to ignore this, work successfully in the North-West, especially along the line joining the 60 and 61.8kHz transmitters.

D. J. Jeffers
Cheadle Hulme
Cheshire

References

4. Private communication.

I was interested to read the letter from Messrs Izatt and Samain in your March issue. We suffer a similar problem in the area of East Sussex, and have never achieved 100% reception of MSF fast code signals despite repeated attempts during the last four years, using various receiver designs.

As in the Manchester area, we are plagued by another transmitter using an adjacent frequency. This operates irregularly, and is at its most troublesome in the pre-dawn period. Could you or your readers help in identifying this transmitter?

Your correspondents may be interested to know that the most effective method found here for achieving usable MSF reception with the Mullard design is to add a second ferrite rod. In my case this is oriented on Rugby, overlaps the original rod by about 1/4in and is bound to it with string.

I imagine that NPL must now possess a considerable fund of information on MSF reception and the various problems encountered. A report from them would be of interest to many of your readers.

P. J. Thomas
Seaford
East Sussex

TELETYPETE COMPATIBLE TRANSMISSION PROTOCOLS

I am working on a project that involves using v.d.u. terminals in a page transmission mode and I am concerned at the lack of standardisation in Teletype compatible transmission protocols.

There appear to be two main methods of sending the information displayed on the screen. The first is to send literally everything stored in the display memory, a blank line being represented as the number of spaces (ASCII 32) in a full line (usually 80). The second is to compress the data by suppressing trailing spaces; they are represented by either space, carriage return, line feed or just carriage return, line feed. Using the first method the carriage return may not be inserted at the end of a line; this is generally controlled by a switch on the terminal. However, if carriage return, line feed is typed in, it is always sent.

A problem arises at the end of a transmission as there is no easy way of determining when the last character has been sent. Some v.d.u. manufacturers overcome this problem by arranging for the terminal to send an ETX character (ASCII 03), which can easily be decoded in software by the receiver. This is the solution I favour as it provides a positive indication of the end of page. Further, I favour sending an STX character (ASCII 02) before the actual information is transmitted. The reason for this is that, in framing the transmission, substantial immunity to random characters caused by noise is obtained. These characters must be sent automatically and the receiver should not rely on operator insertion as some manufacturers do. The reason for this is that if the operator forgets to insert characters, as will happen eventually, the system will either lose all the data or will be hung up awaiting a STX character. I know that some receivers can recover from this state the receiver would need to be reset. This presents severe problems if the receiver is remote from the transmitter.

Alternatively a timeout could be used but this again presents problems, especially in terminals that compress the data, as there are often long pauses between characters. Delays of up to 42 second character have been measured. This leads to inordinately long timeouts which are inconvenient and not very easy to implement.

The simplest and most satisfactory solution to these problems is to send an STX character before page transmission and ETX after. These characters are ignored by devices not requiring them, at the most being printed as a space.

I would be grateful for reaction from readers to the above suggestion.

S. A. Jackson
Plessey Communications
& Data Systems Ltd
Beeston
Nottingham

JAMMING AMATEUR REPEATERS

Many amateurs claim that "citizens' band" operators are really responsible for the jamming and abuse which takes place on GB3SL and other repeaters. The c.b.ers I have met show great contempt for jamming, both on the two-metre and their own illegal 27MHz band.

On Sunday February 17th. GB3SL was being jammed by a 'bug'. Other amateurs and myself were on the "parade" trying to locate the source. Although we have been unable to track down to within a few yards, it took the chairman of the Citizen's Band Radio Action Group to finally spot it.

While all the excitement was taking place a few amateurs and myself could still access the repeater gave graphic descriptions of their direction finding gear. With such equipment why were these amateurs not on the "parade" — they must have been within easy travelling.
distance of GBSSL, to be able to access it! Where was the FM Group?
So many amateurs use the illegal c.b. operators as a scapegoat for every irregularity that occur on repeaters. We need less bickering and more action. Only by ignoring the squeakies and the grandads, using effective and sound thinking procedures, the authorities will not do it: it is up to us all.
R. C. Kennedy, G8UMB
Orpington
Kent

PECTOBELS AND MILLIBELS
Peter Moncrieff's letter (March 1980, p 64) can be interpreted so as to unintentionally associate my name with a number of statements with which I disagree. I do agree that broadband frequency response differences of the order of 0.1dB (i.e. 10 millibell) can be audible under suitable conditions. My experience, however, does not confirm Mr Moncrieff's subsequent statements, and his use of the word "we" in the remainder of his letter should not be construed to imply my agreement therewith. For example, I picobell represents a voltage difference of approximately one part in 10^12, which is well below the noise level in any meaningful bandwidth. We doubt his ability to measure differences this small, even assuming they were audible!
Stanley L Lipshitz
University of Waterloo
Ontario, Canada

C-D IGNITION PROBLEMS
Your correspondent D. J. Bruyns raised some interesting points (March letters) on c.d. ignition problems. If indeed the intermittent misfire in some engines is caused by non-ignitable mixtures, the major, last-ditch test, at the time of the spark, then surely the way to solve the problem is to improve the carburation, gas swirl and flow, to provide ignitable mixtures. The c.d. ignition derives many of its advantages by reducing a short, sharp spark, and to prolong this would detract from these advantages, as the spark energy (area under the curve) would remain constant. It is significant that this has shown up in car engines as these have some of the worst gas-flow and porting arrangements of all internal combustion engines. It may not be found on 4-stroke motorcycle engines as these have generally far greater volumetric efficiencies and b.h.p./litre figures, achieved by careful design and tuning.
However, this may not in fact be the cause of these problems. The r.p.m. at which the misfire occurs (2000) is curiously close to the usual regulator cut-in and -out speed, when the supply line may be expected to show peculiar transients. This would explain why this does not occur with conventional ignition on Mr Bruyns's trials. At the test, he presumably used a battery to power the system with no charging circuit. More modern vehicle regulators, of the solid-state variety, sometimes exhibit deliberately or accidentally oscillatory tendencies, and this could also cause problems.
My motorcycles have monotonic regulator characteristics, and alternators, and have never shown any such effects with c.d. ignitions.
On a different tack. I am surprised at the catastrophic demise of s.c.rs and u.j.t.s when the h.t. lead falls out of the coil. My favourite demonstration is to run the engine (a single-cylinder motorcycle 4-stroke) at various r.p.m.s and carefully to pull the h.t. lead out of the coil, to show its ability to generate sparks up to one inch long in series with the sparking plug. In the limit, the spark will track down the outside of the h.t. coil and the engine will stop. Admittedly this will tax the coil h.t. winding insulation, but no failures of any components or h.t. coils have ever been sustained as a result of this practice. Maybe insufficiently conservatively-rated components are being used. (I now use 8A, 800V s.c.rs or triacs and a pre-trigger potential of 400V.) I consider that this over-rating is essential, and if a failure may cause an accident, e.g. during overtaking.
Graham McLeod, G8PHA
Old Headington
Oxford

COLOUR-GRAPHICS VISUAL DISPLAY
I was greatly distressed when reading the article by Mr S. J. Marchant in your April 1980 issue to find that he claims development of an opto-isolator interface for a 14-in Sony portable television set.
This interface was developed last July by myself while working in the same department as Mr Marchant and has subsequently been marketed by Keen Computers of Nottingham.
Clive Loughlin
Hull
Yorkshire

Mr Marchant replies:
I sincerely regret my omission to acknowledge Mr Loughlin for his part in the development of the tv interface circuit, which formed a small part of my recent article. This omission was a genuine oversight on my part and I am now happy to acknowledge Mr Loughlin as the originator of the idea to use opto-isolators in this application.
The particular circuit in question was included only for the incidental reason of illustrating a suitable tv interface, and therefore did not form an integral part of the v.d.u. design.
S. J. Marchant
Beeston
Nottingham

3D TELEVISION
I disagree with Mr Lott (March letters) when he says that the relationship between conjugate eyes is the same for a stereoscopic presentation as for perspective. In a 'normal' perspective illustration there is only one picture and the two eyes always converge on the same point in that picture. There is only one tree in the distant background and both eyes look at it.
In a stereoscopic presentation there are two pictures, and they only coincide at points in the plane of the screen. There are now two trees side by side in the distant background, each eye looks at one of them but both eyes must remain focused on the screen. This is an anomalous situation and to an unpractised viewer must cause some feeling of strain.
However, as Mr Lott points out, in practice this is small in comparison with the strain induced by inappropriate camera or projector geometry, or, worse, by vertical disparity or a relative twist between the two pictures caused by misaligned projectors.
It is important, if stereo television is to be acceptable, that the system be designed so that conditions for comfortable viewing are easily attained and, once attained, are held.
J. M. Adams
Guildford
Surrey

TRANSISTOR MUTUAL CONDUCTANCE
Mr Beasley ("Circuit analysis by small components", April issue) is almost, but not quite, correct in stating that the mutual conductance of a bipolar junction transistor is given by

$$g_m = \frac{1}{r_e} \times (g/\text{KT})$$

where q is the magnitude of the electronic charge, K is Boltzmann's constant, and T is absolute temperature. This reduces to

$$g_m = \frac{s \times 8 \times 10^{-3}}{\text{mA per m}\text{A of collector current}} \times 300^\circ\text{K}.$$

At very low collector currents Mr Beasley's formula, which involves the emitter current, will give appreciable error. It is proposed to consider some fundamental aspects of g_m in a future article.
B. L. Hart
School of Electrical and Electronic Engineering
North East London Polytechnic

CB RADIO AND POPULATION DENSITY
In reply to W. C. Ritson's letter in your April issue I would like to make the following comments. The c.b. system described by Mr Hooper is u.h.f./f.m. and therefore essentially limited in range. I cannot see the relevance of population density figures which are averages for areas far in excess of the range of the system. Mr Ritson's only other argument seems to be the vague and highly questionable statement that "in most of the UK one is within easy reach of a telephone". It is surely obvious that the telephone and c.b. radio would provide complementary and not alternative services.
Personally, I have if the familiar chaos/abuse/impossible-to-police argument is the real reason for Home Office opposition. This argument, if valid, must apply with equal or greater force to an illegal 27 MHz system, but no serious attempt to be made to stop the sale of such equipment. 27 MHz equipment of all types is widely and quite openly advertised. One would have to be naive indeed not to believe that there is already an extensive c.b. network in this country.
By refusing to consider the allocation of the relatively small amount of spectrum space needed for a system similar to that which was developed in Australia while turning a blind eye to the sale of 27 MHz equipment, the Home Office seems to have achieved the worst of both worlds, a situation where c.b. is denied only to the more responsible, law abiding section of the community.
W. J. Williamson, GM8MM
Yell
Shetland

www.americanradiohistory.com
Micro-soldering!

ANTEX

TCSU1 & CTC

... its the perfect kit

Model TCSU1

Accurate pin point temperature control between 65° and 400°C. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from 4.7 mm (3/16") down to 0.5 mm. Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40watt) iron or XTC (50watt). TCSU1 soldering station with XTC or CTC iron £38 (7.71). Nett to industry Micro-Soldering Station Model CX 17watts - 230volts Model X25 25watts - 230volts

Model CX

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only 7 1/2" long. Fitted with a 3/32" bit. £4.40 (1.22). Range of 5 other bits available from 1/16" down to 3/32". Also available for 24 volts. Spare element Model CX230E

Model X25

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with 1/8" bit and priced at £4.40 (1.22). Range of 4 other bits available. Also available in 24 volts. Spare element Model X25/240E

Model SK3 Kit

Contains both the model CX230 soldering iron and the stand ST3. Priced at £6.00 (1.60). It makes an excellent present for the radio amateur or hobbyist.

Model SK4 Kit

With the model X25/240 general purpose iron and the ST3 stand this kit is a must for every toolkit. Priced at £6.00 (1.60).

Model SK1

This kit contains a 15 watt miniature soldering iron complete with 2 spare bits, a coil of solder, a heat sink and a booklet. How to Solder. Priced at £6.25 (1.68).

Model MLX

The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Priced at £6.80 (1.79).

ST3 Stand

A strong chromium plated steel spring screwed into a plastic base of high grade insulating material provides a safe and handy receptacle for all ANTEX models soldering irons. Priced at £1.60 (1.64).

Please send me the Antex colour brochure. Enclose cheque/P.O. or Giro No 258 1000. Name: ____________________________

Address: ____________________________

Antex Ltd., Freepost, Plymouth PL1 1BR Tel. 0752 673777

WW — 064 FOR FURTHER DETAILS
Bach-Simpson Quality test equipment now available at new LOWER PRICES!

- **464A** (240V. A.C.) £123
 - 3½ digit DMM - LED - basic accuracy ± 0.1% - range coverage to 1000V. D.C., 600V. A.C. 20 meg ohms and 10A A.C. and D.C.
- **464D** (240V. A.C. / Battery) £143
- **465A** (240V. A.C.) £169
 - The model 464 but is fully autoranging and has low power ohms ranges
- **465D** (240V. A.C. / Battery) £189

As the model 464 but is fully autoranging and has low power ohms ranges

- **460-3A** (240V. A.C.) £159
 - 3½ digit DMM - LED - basic accuracy ± 0.1% - range coverage to 1000V. D.C., 600V. A.C. 20 meg ohms and 10A A.C. and D.C.
- **460-3D** (240V. A.C. / Battery) £181
 - As model 465 but without autoranging, but does include a self-contained edgewise analogue meter for peaks and scanning trends

Small portable 3½ digit DMM - LED display - 23 ranges - basic accuracy ± 0.2% - transient suppression and overload protection - wide KHZ A.C. Voltage response

- **461** £123
 - Sound Level Meter - fully conforms to I.E.C. and B.S. specifications. Fast or slow response – full coverage 40-140 dB – A, B and C weightings selection

- **260-6P** £49
 - The world's largest selling AMM - sturdy construction - taut band movement - 33 ranges - D.C. accuracy ± 2% over a wide temperature range. Push button high speed circuit breaker together with additional fuses for excellent overload protection

- **260-6XLPM** £61
 - As the model 260-6P but includes high impact shock resistant case, mirror scale and extra low voltage and low power ohms ranges

Small portable 3½ digit DMM - LCD display - basic accuracy ± 0.2% - transient suppression and overload protection - wide KHZ A.C. Voltage response

- **463** £89

Small compact FREQUENCY METER covering 10 Hz to 60 MHz. Accurate to ± 1 count ± time base accuracy – switchable low pass filter

- **260-6XLPM** £81

And how have we managed this good news?

Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include Securicor delivery to your address and our product guarantee for one year. The only extra is VAT at the current rate. Existing customers need only send their purchase order direct to us. New customers - cash with order please. But first, why not write now for our multi-page catalogue and detailed price list. Remember you are looking at only a few of our instruments - there are many more plus a comprehensive range of accessories.

Bach-Simpson (UK) Limited,
Trenant Estate, Wadebridge. Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451

WW — 061 FOR FURTHER DETAILS
Designing with microprocessors

2 — Step-by-step operation of the microprocessor chip

by D. Zissos and Laurelle Valen Department of Computer Science, University of Calgary, Canada

This is the second article in a series which aims to help the electronics engineer understand and use the microprocessor as a down-to-earth component in the design of electronic systems. Last month's article dealt with the basic components of the microprocessor chip. The authors now go on to describe the chip's internal functioning from the designer's point of view, using the example of a character printing operation and the sequence of states needed to achieve it.

Although the circuit complexity and range of functions of microprocessors vary widely from chip to chip, their basic operation is essentially the same. It consists of repeating cycles during which instructions are fetched from memory and executed, as shown in Fig. 1. Some instructions contain only one byte, whereas others contain two or more bytes — see Fig. 2.

This description of microprocessor operation, although it may prove adequate for the user, is inadequate for the designer who, in addition, must treat the microprocessor chip as a circuit element which can perform a multitude of functions. Although at first sight treating the microprocessor chip as a circuit element may appear to be a formidable task, when viewed as a multi-state device, its step-by-step operation can be seen in fairly simple terms, as we illustrate next by means of an example.

In our example we shall trace the step-by-step activity required to print a character which has been previously loaded into the accumulator in Fig. 3 (which is a repeat of Fig. 7 in the previous article). The peripheral in Fig. 3 is assumed to be a printer. The software required for this purpose is stored in memory and consists of three eight-bit bytes, the op code followed by two bytes defining the address of the printer (An). To print the character, the microprocessor chip in our case goes through nine states as shown in Fig. 4 (a repeat of last month's Fig. 8). If we assume for the sake of convenience a 1MHz clock, our circuit will change states every 1µs. The action taken in each state is explained below.

State M1. T1. The microprocessor-end of the 16-bit address bus is connected to the program counter, which contains the address in memory where byte 1 is stored — see Fig. 3. At the same time a read (R/W) pulse is generated on the control bus by the timing and control unit, which causes the first byte (op code) to be released from memory and be made available on its output terminals. Note that during this state the data bus, d, is not being used.

State M1. T2. Let us assume that the memory takes less than 1µs to respond. This means that when our circuit enters state M1. T2, the first byte (op code) is available on the memory's data terminals. In this state the data bus is connected internally to the instruction register (i.r.) in Fig. 3. At this point the system designer also connects the memory chip to the data bus. This clearly establishes a direct link between the memory and the instruction register (i.r.). A suitably-timed pulse, generated during this state, causes the op code to be copied into i.r. Note that the address bus is not being used in this state.

State M1. T3. During this state the op code is decoded. The output of the instruction decoder in Fig. 3 determines the correct sequence of states the timing and control unit is to go through for the correct execution of the instruction. In our case M2.T1, M2.T2, M3.T1, M4.T1 and M4.T2 are the relevant states. Note that in this state the address and data buses are not being used.

State M2.T1. The action taken in this state is identical to the action taken in M1.T1, with the exception that the program counter (p.c.) has been incremented. Note again that during this state the data bus d, is not being used.

State M2.T2. In this state the second byte of the instruction (defining the high component of the address) is available at the data terminals of the

![Fig. 1. The basic cycle of operation of all microprocessors, in which an instruction is fetched, executed and succeeded.](image)

![Fig. 2. Fetch-and-execute cycles for (a) a one-byte instruction, (b) a two-byte instruction, and (c) a three-byte instruction.](image)
Fig. 3. Components and internal organization of an eight-bit microprocessor (repeat of Fig. 7 in last month’s article).

Fig. 4. Internal operation of a microprocessor chip (repeat of Fig. 8 in last month’s article).

Fig. 5. Components and internal organization of a sixteen-bit microprocessor. Note that it is similar to the eight-bit microprocessor in Fig. 3 except that the address and data buses are now put onto one set of conductors, labelled here a/d.
memory. It is copied into the 'high' section of the addressing register \(r \) in Fig. 3 by connecting the data bus to it (which takes place within the m.p.u. chip) and to the memory. This condition is indicated in our diagram by the closure of the two switches, labelled M2.T2 in Fig. 3, and application of a pulse to the high section of addressing register \(r \). Note that, as in the case of M1.T2, the address bus is not being used in this state.

State M3.T1. The action taken in this state is identical to the action taken in state M1.T1 and M2.T2, except that the program counter is pointing to the memory location holding byte 3, the 'low' component of the printer address. Note once more that data bus, \(d \), as in the case of states M1.T1 and M2.T1, is not being used.

State M3.T2. When the microprocessor chip assumes this state, the low component of the printer address is available from memory. The timing and control unit, as in the case of state M2.T2, generates appropriate routing signals that connect the data bus, \(d \), to the low section of the addressing register and a timing pulse, which allows the signals on the data bus to be copied into it. The system designer must therefore ensure that the memory is connected to the data bus during this state, by closing the external switch M3.T2 in Fig. 3. 'External' in this context means not in the microprocessor chip. Note again that, as in states T2 of machine cycles 1 and 2, the address bus is not being used.

Going through the sequence of states M1.T1 to M3.T2 constitutes the instruction fetch cycle in Fig. 1. At this point the microprocessor chip contains the op code defining the print operation, and the printer's address.

State M4.T1. The address bus is connected to the addressing register, allowing the printer's address to appear on it. This address is decoded by the printer's address decoder in Fig. 3, generating signal \(An \). Note again that the data bus has not been used in this state.

State M4.T2. In this state M4.T2, the data bus is connected to the accumulator and the printer, as shown in Fig. 3, establishing a direct link between them. Simultaneously, the interface monitors the microprocessor's status signals on the control bus, which it uses to generate the appropriate command signals needed to activate the printer, allowing the character in the accumulator to be printed. Note again that the address bus has not been used in this state.

16-bit microprocessors

Reference to Fig. 3 shows that the address lines carry signals only in state T1 of each machine cycle, and that the data lines carry signals only in state T2 of each machine cycle. No signals are carried by either set of lines in state M1.T3. It therefore follows that the same set of lines can be used for both the data and the address bus, as shown in Fig. 5. This is the basic configuration of 16-bit microprocessors.

In these first two articles we have shown that the microprocessor chip contains no special circuit, architectural or operational features that do not exist in conventional digital computers. The main difference is that in recent years the rapid development in technology has allowed more and more circuits to be accommodated in less and less space. This has created an access problem, which in practice is solved by time-sharing the microprocessor pins. A more efficient use of the time-sharing mechanism results in 16-bit microprocessors.

It follows that the design and implementation of microprocessor systems involves injecting and capturing data from the system lines at the correct time, that is, during the appropriate time slots.

The next article will deal with the need for different addressing modes. A concise description of the most commonly-used modes will be given.

BOOKS

It is comparatively rare to see an author taking seriously the subject of testing and fault finding of electronic equipment at technician level. G. C. Loveday, in his book *Electronic Testing and Fault Diagnosis*, is an exception, having written a worthwhile introduction to the art which covers the theory of operation, possible malfunctioning and fault diagnosis of a wide variety of circuits.

The first two chapters are extremely thorough examinations of specification and reliability. The first covers the raising of a specification, standard forms and testing to a specification, while the second chapter goes more deeply into the subject of reliability and failure than many, more advanced texts. There follows a chapter on active and passive components, which includes details of the construction of many types and their failure modes, and three chapters on circuitry, both analogue and digital, with a practical bias towards fault finding. A final chapter is devoted to system maintenance and fault location. Exercises in construction and written tests are provided throughout. The book is a valuable contribution to the education of technician engineers. It contains 212 pages, costs £5.00 and is published by Pitman Publishing Ltd, 39 Parker Street, London WC2B 3PB.

Electronic Devices, by F. R. Connor, is concerned solely with semiconductors and thermionic valves — devices using the properties of electronic motion — rather than with electronic equipment, as a loose interpretation of the title might imply. The book is small, having only 121 pages, and though the treatment is concise, it is not possible to go into much detail on the large number of devices described. For example, junction transistors are allotted only five pages, one of which is taken up with a specimen problem and its solution. Again, although the author points out in his preface that a knowledge of vacuum devices is still essential, thermionic valves are given five and a half pages, in which diodes, triodes and pentodes are described. The sub-title of the book indicates that it is an introductory text, which may account for the summary treatment of some devices.

It is wide-ranging and begins with a better-than-average look at atomic and semi-conductor theory. The rest of the text is devoted to solid-state and vacuum devices, finish, with descriptions of r.f.s., photo-cells, I.e.d.s and microwave tubes. The book is in paperback, costs £3.95 and is published by Edward Arnold (publishers) Ltd, 41 Bedford Square, London WC1B 3DQ.

Two paperbacks in the Macmillan Electronic Projects series are on projects around the home (No. 1) and for the car and garage (No. 2). The projects described are fairly elementary and are clearly intended for beginners, although in No. 1 there is a complete model radio control system and the second volume includes an electronic ignition design. The books are produced with a very welcome thoroughness which is of particular importance to the newcomer to the art. The components for each project are listed at the end of each book, with type numbers where necessary, and a list of suppliers is given. Printed-circuit layouts are given for the 'home' designs (those for the car are on Veroboard) and the boards are also obtainable ready made. As an introduction to practical electronics, these two books can be highly recommended. They are published in paperback by Macmillan Press, 4 Little Essex Street, London WC2R 3LF at £3.95 (No. 1) and £3.50 (No. 2).

ECIF Buyers' Guide, published by the Electronic Components Industry Federation of 7/8 Savile Row, London W1X 1AE, is in two distinct sections. The first part lists components alphabetically, with the relevant manufacturers and precise kinds of component in the broad type class, while the second part provides much information on manufacturers, including factory and sales office addresses, company contacts, together with cross-referencing to the product section. The Guide costs £1.
Programmable attenuator — 2

Logic control for remote operation

by J. M. Didden

Part 1 of this series covered the design of a programmable attenuator/line amplifier with gain switching. This concluding article describes a digital control which will drive two attenuators in a remote volume/balance system.

Because the gain of the programmable attenuator is set by a 6-bit word in steps of 1dB, a control word which increases or decreases linearly can be used to make a volume control with the desired log. slope. A simple way to achieve this is with a 6-bit binary up/down counter but, because conventional potentiometers have endstops, the counter must not overrun. An important feature of a potentiometer is the preset capability, and this can be implemented in the attenuator by using a presettable counter and preset-pulses at switch-on.

For balance control, the most straightforward system has one channel counting up or down. This method is not satisfactory because for every count the volume difference changes by 2dB, and in this design the problem is overcome by clocking each channel alternately.

Counter and preset circuit
To limit power consumption and to simplify connections to the 4007 switches, c.m.o.s. is used throughout. The counter and preset circuit in Fig. 19 uses two 4029 i.c.s, and signals TC1, TC2, B4 and B5 detect the terminal counts. Signals B6 and B7 are always preset to 1, and the all-ones terminal count at maximum attenuation is detected by TC2 going to 0. When all zeros are present at minimum attenuation, B0 to B5 are 0 but B6 and 7 are still at 1. This setting is detected by TC3 for the least significant counter, and by B4, B5 and the Up/Down signals for the most significant counter. Signals B2 to B7 were not used to drive the attenuator because there are problems in keeping the two channels synchronized when going from volume to balance changes and vice versa.

Counter drive circuit
The counter drive circuit in Fig. 20 comprises a 4047 clock generator which also provides a signal at half the clock frequency for balance control. Four signals control the enabling and direct-

Fig. 19. Counter circuit for one channel. Switches S1 to S4 preset the attenuator.

Components for one channel

<table>
<thead>
<tr>
<th>Resistors 1/4 W</th>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 56k</td>
<td>D1-D3 1N4148</td>
</tr>
<tr>
<td>2 220k</td>
<td>D4-D7 1N4002</td>
</tr>
<tr>
<td>3 1M (see text)</td>
<td>D8-D9 8.2V 400mW</td>
</tr>
<tr>
<td>3.3 1M</td>
<td>Tr1</td>
</tr>
<tr>
<td>4 4k7</td>
<td>Tr2</td>
</tr>
<tr>
<td>6 10k</td>
<td>Gate 1, 2</td>
</tr>
<tr>
<td>17 100k</td>
<td>Gate 3-5</td>
</tr>
<tr>
<td>18 1k5</td>
<td>Gate 6-9</td>
</tr>
<tr>
<td>20 24A 15k</td>
<td>IC1, IC2</td>
</tr>
<tr>
<td>21a 12k</td>
<td>IC3</td>
</tr>
<tr>
<td>21b 330k</td>
<td>IC4</td>
</tr>
<tr>
<td>22 27 28 5k6</td>
<td>IC5</td>
</tr>
<tr>
<td>23 2k7</td>
<td>A1-A4</td>
</tr>
<tr>
<td>24a 82k</td>
<td></td>
</tr>
<tr>
<td>25 26 1k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3nF</td>
<td>S1, S2 6 way d.i.l.</td>
</tr>
<tr>
<td>150pF</td>
<td>S1, S2 push button, momentary make</td>
</tr>
<tr>
<td>100nF (see text)</td>
<td>Transformer 2 x 15V, 100mA, c.t.</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
tion of the counters. Signal P1 enables the clock-generator and R1 C1 delay this command to ensure that the other control signals have settled before the first clock pulse occurs. Diode D1 ensures that the clock pulse immediately returns to 0 if P1 goes low, so that changes in the other control signals then have no effect. This precaution is necessary because the count-enable signal can act as a clock pulse if the clock input to the counters is a 1.

Gates 1 and 2 provide an AND function for the logic 0 signals that provide all-zeros terminal count detection, while TC2 detects the all-ones end count. These signals inhibit the clock pulses through gates 3 and 4. A half clock-frequency signal from the Q output enables the counters if necessary. If P2 and P4 are 0, CE-L and CE-R are low and both counters are enabled. This is the volume control mode and P3 determines whether the volume goes up (P3 = 0), or down (P3 = 1). Gates 6 to 8 are used as programmable inverters where, if one input is 0 the other input is not changed, and if one input is 1 the other input is inverted. If P2 becomes 1 and P4 remains 0, CE-L follows Q and the left-channel counters are enabled every other clock-pulse. The right-channel counters are enabled when the left-channel counters are not, which provides the balance mode, and P3 determines whether the volume will increase in the left channel (P3 = 1) or the right channel (P3 = 0). Signal P3 is inverted by gate 7 so that the counters count in opposite directions. Again, a delay network R2C2 is used to prevent the enable and clock signals from

Fig. 20. Counter control circuit generates enable and up/down pulses for left and right channels.

Fig. 21. Window-comparator interface provides four control signals from a two-wire remote control.
changing state simultaneously. The count-inhibit signals differ in the two modes because the TC signals only respond to the terminal count if CE is low. In the volume mode, when one channel reaches a terminal count, both channels stop counting. In the balance mode however, if one channel reaches the terminal count, clock-pulses for that channel only are inhibited and if the other channel is enabled it will continue to its terminal count. The count rate is determined by R_C and with the values shown it is about 5 dB/s. Maximum counting rate is limited by the switch response, but 100dB per second can be achieved.

A remote control unit can be interfaced to the circuit with a modified window comparator as shown in Fig. 21. Outputs P1 to P4 are normally at 0, but if V_{av} is lowered to below the junction voltages of the divider R_b to R_{ib}, one comparator output after the other goes high and control signals are generated as shown in table 3. The voltage is varied simply by connecting a resistor across ab as shown in Fig. 22. With this circuit the remote control facility only requires two wires.

A power supply for the complete system is shown in Fig. 23. The logic supplies are derived from the op-amp supplies and the total current consumption is about 50mA. To ensure maximum switching accuracy, the component values shown must not be altered.

<table>
<thead>
<tr>
<th>Pushbutton</th>
<th>Control signal</th>
<th>Command/direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>P1 P2 P3 P4</td>
<td>None</td>
</tr>
<tr>
<td>S_{10}</td>
<td>1 0 0 0</td>
<td>Volume, level decrease</td>
</tr>
<tr>
<td>S_a</td>
<td>1 1 0 0</td>
<td>Balance, right decrease</td>
</tr>
<tr>
<td>S_b</td>
<td>1 1 1 0</td>
<td>Balance, left decrease</td>
</tr>
<tr>
<td>S_c</td>
<td>1 1 1 1</td>
<td>Volume, level increase</td>
</tr>
</tbody>
</table>

Fig. 22. Remote control connections.

Fig. 23. Power supply.

Table 3. Remote control commands

Fig. 24. Prototype remote volume/balance control system with one attenuator board removed.
GET YOUR HANDS ON A KEITHLEY 130

The pocket Digital Multimeter by which others are judged.

£79 PLUS VAT

And generous discounts start at 10 units; 5%.

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:

- Only one calibration adjustment.
- One year guarantee on spec.
- 25 ranges and five functions: ohms, DC and AC volts and amps.
- 10 amp range.
- 100 µV, 1 µA, 0.1 Ω sensitivity.
- 20,000 hour M.T.B.F.

All this is backed by the immense know-how of a specialist company with an enviable reputation for test equipment spanning almost all requirements from 3½ to 5½ digits.

How do you get one?
Simple. Just send off the coupon enclosing cheque or postal order. And see for yourself how the 130 measures up.

The Keithley 130 – the D.M.M. that won’t stretch your pocket!

 KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 0NL
Telephone (0734) 861262
The 935

full-function DMM.

from

Data Precision

HANDY • VERSATILE • TOUGH • PRECISE

HANDY — easy to hold, to carry, to use, to read. Always at hand to make difficult measurements easy.

VERSATILE — all the functions and ranges you need...29 in all: volts and amps, a.c. and d.c., switchable Hi and Lo ohms.

TOUGH — built to take the rough and tumble of field service and survive normally disasterous overloads the 935 will stay in cal.

PRECISE — basic 0.1% d.c. accuracy — better than many bench models!

VISIBLE — big, clear, high contrast 3½ digit LCD display, readable anywhere. ½” characters.

EXPANDABLE — accessories extend measurements to 1000A, 40kV, r.f. at 700MHz or temperature from -60 to +150°C.

INEXPENSIVE — the 935 has the lowest price tag of any high performance hand-held DMM at £85 U.K. mainland delivered exc. VAT It uses a low cost PP9 battery which can give up to 200 hours use.

Get the leaflet now and see why your next multimeter should be a Data Precision 935!

Contact: Farnell International

sole U.K. agent

WETHERBY • WEST YORKSHIRE LS22 4DH • TEL: 0937 61961 • TELEX 557294 FARIST G OR LONDON OFFICE — TEL: 01 864 7433

WW — 624 FOR FURTHER DETAILS

www.americanradiohistory.com
I.E.E.E. bus standard

Controlling measuring instruments with minicomputers

by P. R. Ellefsen B.Sc. (Hons), M.I.E.E, Hendry Electronics

The variety of so-called “standard” bus systems in existence nowadays may at first seem confusing, but it is possible to categorize them in a number of ways. The most tangible division is to be made between what may be called “internal” and “external” buses. Internal buses tend to be “fixed” in nature, often taking the form of a system backplane. Examples of mini and microcomputer buses conforming to this description are Intel’s “Multibus,” Zilog’s “Z-Bus,” National’s “Microbus,” Altair’s “S-100,” and the recently proposed “Modbus.” External buses, by contrast, tend to be temporary or movable, the hardware normally taking the form of a flexible cable with a plug fitted to one or both ends. The bus described by the I.E.E.E. 488 standard is such a system. This article will attempt to acquaint readers with the fundamental philosophy and nature of the I.E.E.E. 488 interface bus standard, together with some of its physical attributes.

The first question to be answered must be: why do we need an interface bus standard? The answer lies in the rapid development during the last ten years of cheap and powerful mini-computers and microprocessors, together with versatile and accurate programmable measuring instruments. This development has led to the possibility of building “automatic” (i.e. program-controlled) measurement and test systems from separate instruments as in the example of Fig. 1. The benefits obtainable from such automatic systems are manifold and result largely from the ability of the system to perform repetitive measurement tasks swiftly and accurately without getting bored, or needing holidays. To realize this sort of system, a communication network is required and, to achieve uniformity in various programmable instruments from various manufacturers, the I.E.E.E. 488 standard was created and now has almost universal acceptance.

The interface standard is defined in the publication “I.E.E.E. 488-1975” which has also been adopted by the American National Standards Institute (A.N.S.I.) as “A.N.S.I. MC1.1-1975.” The International Electrotechnical Commission (I.E.C.) also intends to publish the standard, with a few minor differences, but it is still in draft form at the moment. Recently, the I.E.E.E. published a revision, I.E.E.E. 488-1978, which contains a few clarifying additions to the 1975 standard. The interface system is commonly known by many names: I.E.E.E. bus, I.E.C. bus, GPIB (General Purpose Interface Bus) ASCII bus (misleading), and HP-IB (Hewlett Packard Interface Bus, a trade mark). This last title refers to the fact that Hewlett Packard Limited developed the interface system, and hold a patent on the three-wire handshake protocol.

Of the five essential elements of a complete interface system, four are fully defined in the I.E.E.E. standard: – the mechanical features, e.g. connectors, cables; the electrical aspects, e.g. logic levels, loading; the device capabilities (called functions); and the communications protocol, i.e. the way in which information is transmitted and received. The fifth element, which is undefined in the standard, is the coding and interpretation of the data transmitted on the bus. To explain this omission, an analogy is possible with human communications, in that we communicate vocally by setting up air vibrations, and we do not all speak at once (protocol) but the meaning of the air vibrations is defined by language (or even sometimes by dialect). Thus data representing for example “R3” may be interpreted by a programmable meter as “set range 3 (2.000V)” and by a printer as “print the letter ‘R’ followed by the digit ‘3’.” Clearly, not all possible interpretations can be dealt with by this standard. An important concept to note is that the bus-to-device interface system may be divided into four functional elements, shown in Fig. 2; the device itself, the device interface, the bus interface, and the bus itself. The Standard

![Fig. 1. Typical automatic test configuration. Computer instructs power supply and scanner to connect various voltages to various points on equipment under test, and instructs d.m.m. to take readings and pass them to computer for processing.](Image)

![Fig. 2. Four elements of the bus-to-device interface.](Image)
covers only the latter two sections. In practice, the division between the bus interface and the device interface may be difficult to discern, but the important functional distinction to be made is between the device which performs its normal functions of measurement etc., and the bus interface whose job it is to connect the device to the bus.

Bus description

The tangible elements of the interface bus are the cable and the characteristic "piggy-back" connectors. The cable is a screened and sheathed cable containing 24 (or more) conductors terminated at each end in a standard connector, which comprises two elements, a plug and a socket, both 24-way, arranged so that the open (mating) ends of both point away from each other, as in Fig. 3. This enables the cables to be connected to instrument rear panel sockets, and attached using jack-screws integral to the piggy-back connector, and further cables to be connected in parallel ("piggy-backed"). This system ensures that all pins 12 (for example) are automatically connected together, to ensure that, using standard, readily available leads, the system builder can assemble a working set of equipment without having to do any soldering, or worry about which wire goes where.

The typical rear panel in Fig. 3 shows a miniature switch, which allows the instrument to be uniquely identified to the bus system by means of an "address" settable by the user. Occasionally, the address switches may be inside the instrument, and may even be wire links on a p.c.b.

Sixteen wires (lines) carry t.t.l. signals, the remaining eight ways of the 24-way connector being used for earths. The sixteen signal lines are all low active true (i.e. logic '1' is <0.8V), and can conveniently be divided into three groups; data, management, and data-byte transfer control (handshake), each being assigned a mnemonic, as shown in Fig. 4.

Since all the devices connected to the bus are in parallel, some means of allowing one device to control the state of a bus line has to be provided. The available options are twofold: three state logic, and wired-OR. The more universal, and cheaper, wired-OR system is used. To reduce the delaying effects of distributed line capacitances, every instrument connected to the bus has a resistive terminating network at its terminals, together with a receiver, or a driver, or both, depending on whether the instrument has to receive or transmit data, or both. Figure 5 shows the arrangement.

Boundary specifications

At this stage, one can now appreciate the boundary specifications set out in Table 1. The cable length restriction, 1 Mbyte/sec, although very few instruments will handle data at this rate, and careful layout of interconnecting leads is needed. A tacitly agreed limit of 250 kbytes/sec is therefore normally accepted. The limitation of 15 devices is imposed by fan-out considerations of the drivers but, again, this can be overcome by a bus buffer or bus extender.

Device functions

A device connected to the bus can be in one of three distinct states — inactive, receiving or transmitting. To enable the last two states to occur, two functions are defined in the standard; acceptor handshake (AH), and source handshake (SH) respectively. These functions, when active, ensure that data is successfully taken from or put on, the bus. The details of the actual data transfer process (handshake) are described later on.

The transition from, for example, an inactive state to a receiving state is achieved by commanding the device (using its address as set up on the switches on the device) to "listen": if the device can be addressed in this manner, it is said to be fitted with the listener (L) function. The transmitting counterpart is called, logically enough, the talker (T) function. Normally, a computer or desk-top calculator has overall control of the bus, and alone is able to address (assign) talkers and listeners. To enable
it to do this, it is fitted with the controller (C) function. Only one controller may be active at any time in a system. Note that the controller function does not imply any ability to make decisions, nor has it any intelligence: the sequential functioning of the system is executed by a software program which is in communication with the controller function, a difficult but important concept. These five functions are the main five described in the standard, a further five being shown in Table 2: remote/local — means of setting a device to be controlled by bus commands (remote), or by its own front panel controls (local); trigger device — devices fitted with this function can all be triggered (e.g. to start a measurement) simultaneously by the bus; device clear — a function to allow a device to be reset to a known condition (normally the power-on or idle state); service request and parallel poll, which are described later on in the section on polling. Various subsets of these functions are defined in the appendix to the standard, the number of subsets being shown at the right of Table 2 for each function. Note that “not fitted” is a valid subset, so that for example, T0 describes the absence of any talk capability.

Addressing
If it is required to make a particular device become a talker, its 5-bit address is put onto the data lines (in the least significant five bits) by the controller, which also sets DIO7 and DIO6 to logic 1 and logic 0 respectively to indicate that it is a talker address. While transmitting this address, the controller also sets ATN, one of the management lines, true to indicate that a command (as opposed to data) is present on the data lines. As soon as the controller sets the ATN line false, the addressed device will start to put data on the bus. If a device has both talker and listener functions, it still only needs one address and the distinction between addressing it as a talker and addressing it as a listener is provided by the controller, which sets DIO7 and DIO6 to 0 and 1 for a listen address. The address “11111” is reserved for use by the controller as an “unaddress” command. Hence “1011111” sent with ATN true means “unlisten...” and sets all existing listeners to their unaddressed state (i.e. not receiving data). Talker unaddressing has another aspect to it: obviously only one talker can exist on the bus at any one time, otherwise chaos would result, and two ways of unaddressing a talker therefore exist — the “untalk” command “0111111,” and also any talk address except that of the present talker. Thus if device A is currently a talker, and device B is addressed to talk, device A automatically unaddresses itself. Provision is also made in the standard for minimal systems to be constructed. To this end, devices may have ‘talk only’ and ‘listen only’, and a possible system comprises a ‘talk only’ instrument, one or more ‘listen only’ instruments and no controller.

Description of individual lines
Data lines. The data lines (DIO1 to DIO7) carry all the variable information on the bus; data addresses, and commands. As mentioned earlier, the coding and interpretation of the data on these lines is not defined, and is left to the user, and the instrument manufacturer. Normally, the ASCII 7-bit code shown in Fig. 6 is used, the last (most significant) bit, DIO8, being unused, or occasionally, at the user’s discretion, used as a parity bit. The 128 characters definable with this code include lower and upper case characters, digits, punctuation marks and symbols, and about 30 control characters (e.g. line feed).

Management lines. The five management lines allow the controller to perform all the management operations on the bus. The attention line (ATN) is used to inform the system that an interface message (e.g. address, or other command) is present on the DIO lines. Data transfer does not and indeed cannot take place while ATN is true. End or identify (EOI) is used, optionally, by a talker to indicate the end of a multi-byte transfer (e.g. at the end of a voltmeter reading), and is set during the transfer of the last byte. It is also used during parallel polling, described later. Service request (SRQ) is set by any device, assuming that it is fitted with the SR function, to indicate that it requires service. It is effectively a flag, analogous to a pupil raising his hand to attract the attention of the teacher (controller). It may be set for a number of reasons defined by the instrument designer; for example it may indicate the end of a long measurement period on a timer/counter, or over-range on a meter, or out-of-paper for a printer. Interface

Table 2

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>No of subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>acceptor handshake</td>
<td>2</td>
</tr>
<tr>
<td>SH</td>
<td>source handshake</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>listener</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>talker</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>controller</td>
<td>29</td>
</tr>
<tr>
<td>RL</td>
<td>remote-local</td>
<td>3</td>
</tr>
<tr>
<td>DT</td>
<td>device trigger</td>
<td>2</td>
</tr>
<tr>
<td>DC</td>
<td>device clear</td>
<td>3</td>
</tr>
<tr>
<td>SR</td>
<td>service request</td>
<td>2</td>
</tr>
<tr>
<td>PP</td>
<td>parallel poll</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 6. ASCII 7-bit code.

Fig. 7. Sequence of events during the handshake process.
clear (IFC) is used, by the controller only, to reset the interface to a known state, normally the idle state. Note that it has no effect on the device status, and so is distinct from and complementary to the device clear function. Remote enable (REN), when set true by the controller, sets all devices fitted with the RL function into a state where their information is derived from the bus rather than from their front panel controls. The instruments are returned to local operation by the controller sending the “go to local” message (0000001) with ATN set true.

Handshake lines. The set of three lines called data byte transfer control lines, more familiarly known as the handshake lines, operate in an interlocked manner according to a protocol which ensures accurate and successful transfer of data bytes. The three lines are designated “data valid” (DAV), “not ready for data” (NRFD), and “not data accepted” (NDAC). Data is transferred on the bus in a bit-parallel, byte-serial manner, that is, all eight bits of an eight-bit byte are transferred at the same time, followed by the next eight-bit byte. The bytes are transferred asynchronously; in other words, there is no system clock to determine transfer speed and timing, transfer occurring at a speed determined by the slowest (addressed) device on the bus. How this happens can be seen with the help of Fig. 7.

1. The addressed listeners set N RDF false (i.e. ready) as soon as they are ready to accept a data byte.
2. As soon as the slowest listener has set NRFD false, the NRFD line acquires a value of false (open collector drives used as wired-or). When NRFD is false, and the talker has valid data, the talker sets DAV true to indicate the authenticity of the data byte present on the DIO lines.
3. On seeing DAV go true, all listeners reset their NRFD line to true.
4. The listeners now accept, and probably latch, the data byte.
5. One by one, the listeners indicate their acceptance of data by setting NRFD, but as with NRFD, the NDAC line only acquires a value of false when all the listeners have accepted.
6. The talker, on seeing NDAC false, resets DAV to false.
7. The listeners reset NDAC to true immediately DAV goes false, and the talker can now place another data byte on the DIO lines. The cycle can now recommence.

Polling
Polling is the name given to a systematic invitation to instruments to inform the controller of their status. Two types of poll are provided for in the standard: serial poll and parallel poll.

Serial poll. Serial polling is a one-by-one interrogation of the devices on the bus by the controller, usually as a result of one or more devices having set SRQ true. The sequence of events constituting a typical serial poll is as follows:
- The control program (the software providing the sequencing information) notices SRQ is set true, and decides whether or not to take any action. The criteria for this decision are built into the control program by the program writer.
- If it decides to respond, it commences a serial poll by terminating, normally in an orderly manner, the current bus transactions, and unaddressing the current listeners and talker.
- The controller then transmits the “SPE” (serial poll enable command), by setting DIO7 to D101000.
- The first device in the list of devices to be polled (the list being contained in the software program) is addressed as a talker by the controller.
- On removal of the ATN signal by the controller, the addressed device, instead of putting data on the DIO lines as it would normally, puts onto the DIO lines a word containing its status information. In particular, DIO7 is set true if the device had set SRQ true. The other DIO lines may be used to signify other messages, but this is left to the instrument designer.
- If the addressed device was the one which had set SRQ, it now resets it, and the control program will normally exit the serial poll mode by sending the serial poll disable (SPD) message (0011001) on DIO7 to DIO1. Otherwise, it continues its search for the device which set SRQ by addressing the next device on the list.

Parallel poll. The parallel poll differs from serial poll in four major respects: it is not a function of, nor does it reset, the SRQ line; it is fast; it requires a commitment on the part of the control program to conduct the poll on a regular basis; and it can only ascertain uniquely the status of eight devices.

The speed advantage of the parallel poll derives from serial poll in four major respects: it is not a function of, nor does it reset, the SRQ line; it is fast; it requires a commitment on the part of the control program to conduct the poll on a regular basis; and it can only ascertain uniquely the status of eight devices.

At the beginning of the software control program is a configuration section whose purpose is to define, in the devices to be parallel polled, the manner in which they are to respond to the poll. This configuration comprises three steps:
1. The first device is addressed as a listener by the controller.
2. The controller then sends the parallel poll configure (PPC) message (0000010) on DIO7 to D101. The device is now prepared to receive its configuration information.
3. The controller then transmits the parallel poll enable (PPE) message which contains the information on how the device is required to respond in the event of a parallel poll: DIO7, 6 and 5 are set to "110," D104 is set to 1 or 0 according to whether a 1 or 0 is required as an indication that the device wishes to request service, and DIO3,2 and 1 are the inverse of the representation of the DIO line number on which the device is to place that indication. Thus “1101011” will configure the device to set DIO3 to logic 1 during parallel poll if it has requested service.

The controller unaddresses the device, and addresses and configures the next until all required devices have been configured. The parallel poll system is now ready for use.

To conduct a parallel poll, the controller simply sets ATN and EOI true, and all the configured devices respond within 200ns with their status. The restriction of eight instruments is imposed by the fact that there are only eight DIO lines. However, due to the open-collector drivers, more than one device can be assigned to a particular DIO line, and wired-OR or wired-AND configurations can be set up by configuring the devices to set a 1 (low, true) or a 0 respectively in response to parallel poll.

I.E.E.E. 488 realization
The simpler, basic functions, (AH, SH, L, and T), can be fairly simply realized using a few t.t.l. packages, but the package count increases rather swiftly as other functions are included. However, a number of devices are available, or will be shortly, which achieve the interface functions using a single chip with external bus transceivers. Among these are the HEF4738 from Mullard, and the Motorola MC68488 and Intel 8291, both of which are very suitable for use with microprocessors. All three provide talker and listener functions. The Intel 8291 will shortly have a companion, the 8292, the pair together providing talker, listener, and controller functions.

Apart from dedicated integrated circuits, modular bus interfaces are available in card form from Ziatech (USA) and Micrologic (Germany), and in cased, self-powered form from such manufacturers as Fairchild and Micrologic.

Another machine which is useful is the CBM “PET” which is fitted with the I.E.E.E. interface as standard, except that an edge connector, rather than the standard connector, is used. The PET enables the use to operate the controller function through a high-level language (Basic) or, with more flexibility, from assembler language.

References
2. “Système D'Interface pour Appareils de Mesure Programmables Bits Parallèle(s)/Mot. Série” 66 CO 22 International Electrotechnical Commission. (obtainable through B.S.I.)
Extending mobile radio coverage

Quasi-synchronous operation of two or more transmitters at u.h.f.

by W. M. Pannell, M.I.E.E. Pye Telecommunications Ltd.

To get good coverage for land mobile radio in areas with difficult topography, several transmitters on the same frequency can be used in quasi-synchronous operation. The author explains, however, that certain parameters in this method are rather critical, and that to achieve successful operation careful attention must be paid to site selection, signal level, oscillator stability, frequency response, phasing and group delay. However, although the method is more expensive than simple systems in some respects, two- or three-station quasi-sync systems are worth considering if only to simplify control.

In areas where coverage for land mobile radio systems is restricted by topographical features it is often necessary to install more than one base station to enable adequate signals to be received at all points. These additional base stations can, however, cause operational problems requiring the use of separate radio frequency channels, or additional control facilities, or specialised techniques involving quasi-synchronous operation. The third method of operation has been developed as a means of providing satisfactory coverage when two or more transmitters radiate simultaneously in the same radio frequency channel. The transmitters carry identical modulation intelligence and, by adhering to certain rules, satisfactory operation is possible in standard mobile equipment located anywhere in the areas covered by at least one of the transmitters.

Both amplitude modulation and frequency modulation have been studied at length and decisions reached as to the possibilities and/or shortcomings of these modes for operation using quasi-synchronous techniques. In general a.m. has been found to be much more tolerant insofar as phase errors are concerned, while the carrier beats are less objectionable than on f.m. 25kHz f.m. systems are easier to engineer than those on 12kHz.

At u.h.f. — 450MHz — it is possible to overcome some of the problems which arise at v.h.f. and thus systems using f.m. quasi-sync are easier to engineer. A.m., even at 450MHz, would possibly be even better for the purpose. However, the exclusive use of f.m. at these frequencies for land mobile operation precludes the use of a.m. systems.

Whether or not other modes of modulation — s.s.b. for example — would prove to be even more suitable must await the completion of any development of such techniques. Indications are that s.s.b. could show much greater tolerance and that quasi-synchronous systems using single sideband could prove to be appreciably easier to engineer. Until such work has been undertaken however, quasi-synchronous operation must be confined to existing modulation methods. The rest of this article is devoted to the main aspects of f.m. quasi-sync in the u.h.f. 450MHz band.

Advantages and disadvantages

Before examining the requirements for successful quasi-sync operation, let us consider firstly the advantages of using such a technique.

Instead of individual control of each transmitter, as would be the case with a conventional system, the total complement of transmitters can be modulated and switched from a single point if required. This ability, coupled with the use of voting techniques for the receivers, enables an extremely complex system to be operated from a simple single channel remote control unit.

As a direct result of using one channel instead of a number of channels to cover an area, the mobile unit channel switching requirement is simplified. Only the channels needed to enable a number of separate systems to be accessed are needed, while with each individual system the need for the mobile operator to switch channels as he or she moves between various parts of the area is eliminated. Thus loss of the vital message by failing to change channel at a critical point in the coverage area is eliminated.

Talkthrough operation becomes extremely simple. By merely feeding the received signal into the transmit pair at the control point, a mobile in any part of the area (assuming receiver voting is employed) automatically is heard throughout the total system area.

The result of using quasi-sync is a marked saving in channel requirement in the areas employing the technique. Channel re-use is not excessively affected by the use of quasi-sync, provided the coverage of each transmitter site is not abnormally extended. A more solid cover of an area can be achieved by virtue of the reception of signals in the mobile from different transmitter sites.

![Fig. 1. Simplest quasi-synchronous arrangement, using two transmitters, A and B.](image-url)
As well as the advantages, we must of course, consider the disadvantages. Quasi-synchronous techniques are used mainly for area cover systems where consistent, reliable communication is required. The engineering of such systems must allow sufficient signal strength over the area to take into account adverse factors normally encountered in area coverage systems plus an amount necessary to reduce “chopping” effects to an acceptable level.

Correct audio levels, frequency responses and phasing requirements are essential to the satisfactory operation of quasi-sync.

A more accurate and stable frequency source is required for each of the transmitters than with conventional systems. The order of frequency stability must be under $\pm 1 \times 10^{-9}$ per °C over a temperature range of -10 to $+55^\circ$C, while, more importantly, the ageing source should certainly not exceed the frequency stability figure over any period of 24 hours if frequent and costly adjustments are to be avoided.

Where overlap occurs between two areas, “chopping” and distortion of the signal can occur in quasi-sync areas, especially with stationary mobiles and where adequate signal levels are not available. Short sector multi-path fading will tend to modify this effect. With moving vehicles at frequencies in the u.h.f. bands, however, the fluctuations associated with multipath short sector fading will be quite rapid and thus the overall “chopping” may not be as marked as at the lower frequencies.

Indications are that the overlap achieved by three sites is optimum for f.m. systems and more overlapping sites should be avoided.

Site considerations

Fig. 1 shows the simplest quasi-sync transmitter configuration employing two sites. Typical overlaps of the operational areas are shown, based on the use of plane earth propagation. It can be seen that the signal received by the mobile can be predominantly from Station A, predominantly from Station B, through all intermediate signal ratios until a point is reached — shown by the broken line — where the signals received are exactly equal in amplitude.

It is at this point that one of the main disadvantages of f.m. compared with a.m. is highlighted. With a.m. two signals of equal strength, but with a small frequency offset, should provide the general precautions outlined later in this article are observed — be completely intelligible. Two f.m. signals of equal level, on the other hand could, unless the deviations of all transmitters are held to a close tolerance, result in distortion becoming excessive. If this occurs, not until the difference between signals exceeds 4 to 5 dB will the stronger signal start to exhibit capture and improved intelligibility results.

This problem, together with the noise bursts which occur when the carriers arrive in phase opposition, contribute to the fact that f.m. systems are much more difficult to engineer than their a.m. counterparts. These difficulties however, are eased considerably at u.h.f. by the faster multipath fading rate associated with an urban environment and the differing degrees of random coincidence of equi-signal areas.

The use of more than two overlapping areas can help further in producing an area of random and non-coherent signal levels.

Quasi-sync frequency

To ensure correct operation of a quasi-sync system there must be finite and controllable small differences in frequency between all the carriers concerned in an area of overlap. The differences must be based on several fundamental requirements. First, beat notes must be outside the range of audibility. Secondly, too low a separation will cause excessively long nulls produced by cancellation in equal signal areas between two stations. These nulls will cause the receiver squelch to “chop,” or alternatively produce bursts of noise if the squelch is rendered inoperative. Excessively long periods of distortion can also appear. Thirdly, too high a separation could start to produce audible effects, for example, speech break-up.

The optimum separation for a two-station system appears to be around 3Hz, while for a three station system the separations can, with advantage, be a little lower.

In order to maintain the offset requirements over the longest possible time period, the stability of the frequency source in each of the transmitters must be of certain minimum standard. By using proprietary high stability sources, these requirements can be met.

One has to consider first the ageing of the reference crystal in the frequency source and secondly the effects of temperature on the derived frequency. The first can be reduced by time and adjustment while the second is a function of the environmental changes, which in turn can be further controlled by temperature control if so desired. Fortunately, fixed equipments tend to be less subjected to violent excursions of temperature compared with mobile units and, therefore, with care, the effects of temperature changes can be minimised.

Let us examine the likely effects resulting from the use of a proprietary high stability source. Typically the ageing will be $\pm 5 \times 10^{-10}$ per day (averaged over a period of ten days) three months after the start of operation. The monthly ageing rate will therefore be $\pm 1.5 \times 10^{-7}$. This is equal to ± 0.225Hz per day at 450MHz (± 6.75Hz per month). The high quality 5MHz source used in the unit will tend to be reasonably well aged by the time it is incorporated in the equipment. Furthermore, this type of high-grade crystal can be selected to show an ageing characteristic in the same direction for all units. On this basis the frequency offset variation in any one system installed and adjusted at the same time should be considerably less than the above figures indicate.

Nevertheless, it is essential that, at least in the initial months of use, monthly checks should be made to establish the rates of ageing and to make adjustments correcting the frequencies to maintain the desired offsets. As the ageing rate improves, the check periods can be less frequent.

Let us now look at the shorter term changes caused by temperature. It is here that the importance of minimising

Fig. 2. Duration of a complete null is reduced, from t_1 in (b) to t_2 in (c), as the individual carrier levels of the transmitters increase. When two signals are approaching anti-phase, weak carriers are below the required threshold for longer than when two signals each with a higher individual level are present.
ambient temperature changes is emphasised. With a frequency stability of the order of ±0.6 x 10^-6 per °C, the high stability oscillator should be located in an constant temperature as practical to take advantage of high stability. In an area system it is to be expected that changes in the ambient temperature of the outside atmosphere will follow a cycle having a similar "phase" relationship throughout the area although not necessarily having identical absolute values.

It can be seen that suitable offsets must always exist if the nulls and therefore the noise bursts and any quasi-signal distortion are to remain acceptable. It therefore follows that the frequency sources must have had approximately the same degree of ageing if the offsets are to remain within acceptable limits between test periods. The explanation applies if, in the unlikely event of failure of a 5MHz crystal in the frequency source, a replacement unit is required. Such a unit should not be of recent manufacture but should be taken from a small stock of units which have been aged for reasonable periods. By so doing, the need for frequency adjustment at abnormally short intervals is avoided.

Signal levels

The direct result of chocking which can occur when equi-signal areas exist, in particular in the two carrier condition, is to introduce noise bursts as the individual signals arrive out of phase with each other. This tends to cause the squelch to switch on and off as well as contribute to a reduction in audio quality which is trying to the operator. The effective intelligibility reduction is worsened by excessive modulation levels and it is essential not to exceed the rated deviation.

Most important, the deviation of all transmitters must agree, by as close a degree as possible, to avoid excessive distortion in equi-signal areas.

The duration of a complete null is reduced as the individual carrier levels of the transmitters increase. This is explained by the fact that when two signals are approaching an anti-phase condition, weak carriers are below the required threshold for a longer period than when two signals each having a higher individual level are present. Fig. 2 shows how this occurs.

Tests have been made to ascertain the level of the signals necessary for the nulls between carriers to be acceptable, and the figure finally chosen as a compromise between performance and site economy is approximately 5μV p.d. The variations at this order of carrier level can be markedly improved upon if further signals are also received at the same time from other areas (systems with more than two sites) with these additional carriers at a level of around 1-2μV. The action of these extra lower level signals is to reduce the nulls by ensuring that signals other than those from equi-signal areas are available in the areas affected normally by chopp-

For example, two out-of-phase signals of 5μV and one or more of 1.2μV will not produce such a pronounced null pattern as would two signals only of equal amplitude.

At v.h.f., as the multipath reinforce-

ment and cancellation occurs at much faster rates owing to the use of a shorter wavelength, the probability of being in an exact location of two equal signals is much less, particularly at the higher carrier levels suggested. The nulls and distortion periods will therefore be much shorter in duration. In all quasi-

synchronous systems, the coverage of urban areas is much improved if the sites for transmitters are chosen to illuminate the likely blank areas from markedly different angles, avoiding whenever possible, however, the condi-

tions where two or more transmitters have a direct line of sight and, consequently, possible free space propagation to the mobile. It is in these situations that extended areas and periods of equi-signal are likely to occur.

Audio requirements

Reception of satisfactory speech at the mobile receiver over a quasi-sync sys-

tem depends on the intelligence from all transmitters arriving at the mobile receiver in phase and at approximately the same amplitude at all frequencies within the speech pass band.

The first requirement, phase relation-

ship, is a function of the design of the equipment and the group delay perfor-

mance of the various media bearing the intelligence to the different transmitters, e.g. the delay characteristics of the path of the radio links and, to a lesser degree, of the paths between the different transmitters and the undefined positions of all or any of the mobiles. The second requirement mentioned above has relatively fixed characteristics and, once adjusted, should remain constant.

As some of the phase considerations are to a certain extent dependent upon certain aspects of the frequency response characteristics, it is as well to start with the latter. Normal speech is of adequate and acceptable intelligibility if the overall response over any pair of transmitter and receiver (fixed to mobile) equipments is reasonably flat from 300 to not less than 2500Hz. The response characteristic of the quasi-

sync transmitters should avoid resonances wherever possible and any filters used to obtain the desired cut-off should not cause any marked phase change at the points immediately prior to cut-off.

Now let us consider the bearer circuits. The major problem with land-

clines is that they are not normally under the control of the radio system

user or supplier. Consequently, any rerouting or line reversal can cause a sudden change in operating conditions and the appearance of distortion in equi-signal areas as a result of modifications to the delay, equalisation and/or frequency response. Although preferably avoided, therefore, they can however be used under certain controlled circumstances.

Where radio links are used, it is essential that the frequency response is corrected for maximum flatness without sharp cut-offs at low and high frequencies. This proviso greatly simplifies the delay setting and equalisation as both frequency response and phase change are inter-related.

Derived circuits should not be used unless suitable equipment is employed to ensure that both phase and frequency are locked over the circuit at all times.

In the multi-transmitter quasi-sync system the individual frequency response characteristics of each path should be checked to see if they conform generally with the foregoing. Taking the frequency response of the worst link as the base limit, each other path should be adjusted by the addition of relevant constants to approximately the same response characteristics.

Phase and group delay

Probably of even more importance to adequate intelligibility than frequency response is the need to maintain correct phase relationships throughout the total system. As these can be of a variable nature and caused in part by variable propagation paths within the system — in particular those affecting the fixed to mobile paths — it can be seen that some compromise is necessary. The acceptable delays are a function of the audio bandwidth accepted.

Group delay is the period of time by which a band of audio frequencies is retarded during its passage through a network or medium. A given delay will affect the phase of different frequencies over the audio band at a constant increasing rate as the frequency is raised and it is essential that there should be substantially similar delays between the audio source and each quasi-sync transmitter output. Fig. 3 shows how various audio frequencies are affected by different values of group delay.

The individual equipments must have identical phase parameters, starting with the essential need that no conflicting phase reversals should exist in any of the units. At the same time delays existing through each of the equipments must agree if at all possible. Equipment interconnections must also be such as to ensure overall phasing compatibility. Errors can be considerably reduced if the broadcast method of linking is used. Here a single transmitter broadcasts to all link receivers thus minimising equipment differences.

Having ensured that all equipments

www.americanradiohistory.com
have similar characteristics, we now have to equalise the group delay caused by the differing path lengths between the link transmitter(s) and their associated receivers. Path delay can be taken as equal to 5.4µs/mile or 3.34µs/km. Thus, if the delays associated with the link paths are calculated, it is easy to appreciate that additional delays must be added to all but the longest path to equalise the path delay throughout.

Systems using multi-hire radio links, although feasible, introduce many more problems associated with delays than single hop systems and, therefore, if possible should be avoided unless common elements can be included. If landlines fulfilling the essential requirements are available then systems can be engineered taking into account the group delay characteristics of the landlines used.

The delay produced by the path between any of the transmitters and the mobile receivers will obviously be of an appreciable and varying amount. Unfortunately, the position of any mobile is random and therefore it is extremely difficult to introduce delays which can compensate for this ever-changing situation. However, provided the coverage areas of the individual quasi-sync transmitters are similar, the areas of quasi-sync will tend to follow a common pattern throughout and therefore path delays will be approximately equal under the majority of circumstances.

In the isolated case where one station is situated on a high site and has a large coverage area, there will, however, be a different path delay between that station and others at the equi-signal points. Thus in this particular case it may be necessary to increase the delay at all the stations where the coverage is considerably less than that of the single high site. Generally, all sites should have a similar area of coverage in order to avoid these difficulties.

Work has indicated that usually, if group delay compensation is adjusted to less than 10% of the delay at the highest audio frequency, then performance will be adequate. Assuming 2.5kHz as the top audio frequency — duration of a single cycle equalling 400µs — then if the individual quasi-sync transmitters radiate in phase within 40µs in intelligibility will be acceptable. However, u.h.f. systems are likely to be used in urban areas where there is a likelihood of weak signals in certain locations (within buildings, etc) and it has been ascertained that it is preferable to improve the delay tolerance at u.h.f. to better than 5%. This means a maximum delay at 2.5kHz of 20µs.

Deviation levels

Over deviation and excessive limiting can cause a marked reduction in intelligibility in quasi-sync systems. In addition care should be taken during adjustment to ensure all transmitters have a similar level of deviation held to close tolerances to avoid an unnecessary high level of distortion in equi-signal areas.

Talk-through

One type of system which benefits from the use of quasi-synchronous operation is that employing talk-through. Whereas with conventional systems talk-through is fairly simply applied to discrete sectors of a wide area system, the application where total wide-area talk-through is required introduces many more difficulties, some of which can prove insuperable in certain configurations.

With quasi-sync operation, however, the system layout is such that, provided the receiver path problems are solved by the use of voting, the application of talk-through exhibits no major difficulty. The talk-through switching path, together with the audio feeds, are routed by the control operator via the control unit and any incoming signal on the receive path is fed to all transmitters for total area coverage.

One difficulty with any two-frequency system is to prevent mobiles calling simultaneously, particularly during a message sequence. In a wide area system using receiver voting this effect can be particularly frustrating and a method to reduce the problem has been devised. Where a calling mobile is routed by the voting equipment to the control unit at the same time switches on the transmitter chain modulated by an interrupted audio tone. This signal warns all other mobiles that the circuit is in use.

Test equipment

An essential requirement when operating a quasi-sync system is that adequate and suitable test equipment should be available. First, we must be able to measure accurately and quickly the exact frequency being radiated from each transmitter. For this purpose a digital counter type of frequency measuring equipment is needed, capable of determining the output frequency to within 0.1Hz. The use of Droitwich 200kHz, MSF 60kHz, WWV 5, 10 and 15MHz as “off air” standards is considered essential to enable the counter to be checked and adjusted.

The critical system parameter is the frequency difference between stations. A method of checking this is to make use of a continuously powered (by batteries) high stability oscillator which can be transported between sites. This unit can be used as a main reference with which to adjust the local oscillator. Taking the “standard” source as the nominal frequency and assuming a transmitter has a frequency multiplication factor of 32 times, then a 1Hz carrier offset will show up as a beat between the two oscillators of 1/32Hz. Seen on the oscilloscope, the oscillations will coincide once every 32 seconds.

To enable the various phasing adjustments to be made, it helps to use a special tone generator with a gated output. This output consists of 4Hz on, alternating with 4Hz off, capable of being swept over the audio band. The device can consist of an external unit in association with a conventional oscillator/t.m.s.
Now-highest quality copying at low cost

OTARI DP4050 C2 cassette duplicator

The first low cost copier to give you reliability and performance to professional standards. No other copier can match its precision engineering, and it is the only budget copier suitable for music programmes.

* One master, 2 slaves.
* Add on units available up to 11 slaves.
* * Automatic rewind.
* Ferrite heads.
* 16:1 duplicating ratio.
* Modular slave decks with DC servo motors.

Also available: Reel to Reel cassette version with 6 slaves.

OTARI from ITA

1-7 Harewood Avenue, Marlebone Road, London NW1 Tel: 01-724 2497 Telex: 21879

WW — 889 FOR FURTHER DETAILS

How's this for size?

THE SOUNDex 'AUDIO MULTIMETER' is actionpacked to measure audio signal levels right down to -72dB using Peak Programme Meter measurement technique (as BS 5428)

- Rechargeable battery powered
- Mains adapter built-in
- Tough plastic case
- Broadcast quality meter movement
- Alternative Scales
 - 12dB to + 12dB (E.B.U.)
 - 1 to 7 (BS 5428 type 2A)
- HI/LO impedance balanced input
- Headphone monitor output
- Low drift, high reliability
- Calibrated to 0.1dB accuracy
- Individually tested and certified

Input

<table>
<thead>
<tr>
<th>Range</th>
<th>Impedance</th>
<th>Protection</th>
<th>Level</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>-72dB to +22dB</td>
<td>100k ohms</td>
<td>Short circuit protected</td>
<td>0 to -10dB</td>
<td>Miniature telephone jack, 3-pole</td>
</tr>
<tr>
<td>Variable</td>
<td>50 ohms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Protection</th>
<th>Level</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10dB</td>
<td>50 ohms</td>
<td>0 to -10dB at same reading</td>
<td>1/4" jack, 3 pole wired mono</td>
</tr>
</tbody>
</table>

Power Requirements

240V A.C. nominal at 5VA operates meter and recharge batteries. 3 hours continuous use on full-charged batteries

Bulgin Electronics

Park Lane, Broxbourne, Hertfordshire, EN10 7NQ Telephone: Hoddesdon 64455

WW — 892 FOR FURTHER DETAILS
Switch on. Connect Component. Read Answer.

The Sullivan AC555 Automatic component analyser is a mains operated, fourteen range digital capacitance, resistance and inductance measuring system. It is capable of automatically choosing the correct range and function for any two-terminal component and measure the parallel capacitance and conductance or the series inductance and resistance over a wide range at a test frequency of 1kHz.

The Sullivan AC555 can be used by unskilled operators for quality control of goods inward or during production processes. There are no adjustments required and no special knowledge about the component capabilities is needed. The instrument does it all for you.

The unit is competitively priced and backed by the unbeatable reputation of Sullivan. Get in touch with us today for the full facts.

Sullivan makes component analysing child's play

HW Sullivan Ltd
Archcliffe Road, Dover, Kent, CT17 9EN
Tel: (0304) 202620. Telex: 96283.
Thorn Measurement & Components Division
Colour tv receiver design

Circuit and construction techniques for a single-panel chassis

by R. Wilkinson, B.Sc. (Hons), M.I.E.E. Decca Radio & Television Ltd

After outlining the general criteria which have to be considered in producing tv sets for today's mass market, the author starts in this article to describe the circuit and construction features of a PAL colour chassis introduced by his company last year, for initial use in a 14-inch portable. It includes a surface acoustic wave filter for the i.f., a fully isolated switched-mode power supply, an adaptive sync separator and field sync count-down. Most of the circuitry is on a single printed circuit panel.

The design of a complex piece of electronic equipment for mass production, and subsequent sale to the consumer, involves the skills and decisions of many people. In the particular case of a television receiver the end product is affected by numerous requirements at every stage of its history from initial conception to operation in the customer's home. Some of the more important factors which affect the design are (not in any particular order of preference):

Overall performance
External appearance
Cost
Advances in technology
The customer
Serviceability

Manufacturing methods
A chassis recently introduced by the author's company in a 14in portable receiver is the basis of a new range of sets and, as such, has been designed to be as adaptable as possible. Before going on to describe some of the innovations in this chassis in detail, and to show how the above factors have influenced its design, I shall consider each factor in a more general way.

Overall performance
Most customers seem to buy a television set because it gives a pleasing picture; or because the cabinet looks nice; or because the price is reasonable; or, perhaps, because the set has a good record of reliability; or possibly a combination of all these.

The more controls there are which affect the displayed picture and sound, the greater the likelihood that something could be adjusted wrongly or knocked out of adjustment. So for good, consistent performance there should be a minimum number of adjustments. Cathode-ray tube developments in recent years have helped this trend and modern tubes with in-line guns and fixed yokes do away with the need for factory or dealer adjustment of purity and convergence.

Recent developments in the r.f. section, notably the surface acoustic wave filter, have helped to achieve great stability and repeatability of the r.f. and video performance. Channel tuning for the customer can be helped by careful use of a.f.c., and improved tuner design together with the well-established techniques of a.g.c. and a.c.c. ensure acceptable pictures with a wide range of aerial signals.

Increasingly advanced timebase circuitry, particularly in the line and field synchronising areas, is ensuring more stable pictures and a greater tolerance of poor signals.

Higher efficiency scan coils and careful power supply design (as well as careful consideration of the power consumption of each section of the receiver) have dramatically reduced the overall power consumption of the latest tv sets.

Fig. 1. The 70 series receiver chassis.
The external appearance
It may be thought by the layman that the electronic design department of a tv manufacturer presents a working prototype chassis to a stylist with the instruction, “There, put a box around that!” Alternatively, that the stylist presents an attractive cabinet to the electronics engineer, saying “Put your chassis in there!” Of course, the truth lies between the two extremes and there is a good deal of adaptation and modification to both chassis and cabinet size and shape before the result is agreed to be satisfactory.

The objective is usually a compact, slim, pleasing cabinet and unobtrusive back with a clean arrangement of controls, in a reasonable size of loudspeaker and a well ventilated chassis. Although the power consumption in modern sets is low, some heat is still produced. In this respect care must be taken in placing potentially warm components well away from heat-sensitive components; for example, it is good practice to keep a “watty” resistor away from a power transistor or an electrolytic capacitor.

The requirement to combine compactness with good ventilation can cause some headaches to the designers. This problem is particularly acute in the case of a portable set. The principles established with and previous designs of chassis have been incorporated in the present chassis, whose normal vertical position in the set aids convection.

Cost
The final works cost is principally made up of components, labour and overheads. All three elements can be reduced by cutting down the number of components and this can also improve the reliability. However, indiscriminately reducing the number of supposedly inessential components or using apparently equivalent but cheaper components without adequate testing or appraisal can lead to a reduction in reliability.

The keyword for this aspect of design is that jargon phrase — cost-effectiveness. Each section of the receiver must be designed to be as inexpensive as possible, but performance, quality and long-term reliability must not be sacrificed to achieve this.

Integrated circuits have helped this aim by providing improved or equivalent performance with a greatly reduced component count. However, the partitioning of the circuitry, i.e. which sections of the circuitry are incorporated in which ic’s, has to be done with careful consideration of the whole receiver to avoid duplication.

Apart from the effect of reducing the number of components, labour costs can also be reduced by careful design of the chassis itself. For example, the way the printed panels are arranged or connected; the way various wires and cableforms are arranged; the way components are fitted; the way the chassis fits in the cabinet; the way the tube and the control assemblies fit in the cabinet; the number and complexity of test and adjustments required.

Advances in technology
Every time a new range of products is planned the question inevitably arises: which selections of circuitry should be retained and which sections should be considered for the introduction of new technologies.

If a particular section of the receiver had proved to be reliable and to perform well over a number of years, there would be little point in changing it if the components continued to be readily available. If the older technology becomes unavailable or expensive or if the new technologies can be shown to give improvements in performance, reliability or cost then the time is right for a change. In fact, Decca continued manufacturing a factory-chassis (i.e. semiconductors and valves — remember them?) for some time after many setmakers had gone over to full “solid-state” sets, for the simple reason that the 30 series chassis had proved to perform well and reliably (by the standards of the day) and was popular with the trade and public alike.

The solid-state 80 and 100 series chassis were introduced when improved c.r.t.s were becoming available — the s.s.i. o.p.p.i. and 20AX tubes have simpler tube adjustments and more efficient scan coils and by that time, of course, valves and valve-bases were becoming increasingly more difficult to obtain. In addition, ic’s were becoming more standardised and the partitioning of their functions more clearly defined; and, most important, the critical area where valves had retained their superiority, the line output stage, could now be transistorised with reliable components.

After 3½ years of production of the 80/100 series sets, the present chassis, known as the 70 series, was introduced last year. The first model, as already mentioned, is a 14in 90° portable (Fig. 1) but the chassis has been designed to drive all sizes of tube up to 28in 110° with a minimum number of changes.

As will be seen, new circuitry and techniques have been used alongside well-established ones. The chassis is much more compact than its predecessors and the latest manufacturing techniques have been provided for in its design.

Random flashover in the c.r.t. has had destructive effects, in the past, on semiconductors. In recent years extensive studies have been made into the mechanism of flashover and into ways of simulating and monitoring it reliably and ways of designing the circuitry to prevent destruction of semiconductors. The results of work along these lines using advanced equipment became apparent in the reduction of failures during the production of 80 to 100 series receivers. This work has continued during the development of the 70 series.

The techniques used seek to contain the high currents (hundreds of amps), generated during a flashover, within a closed loop around the c.r.t.; and to ensure current paths around i.c.s are kept very short. In some cases resistors or small chokes are used to buffer off potentially vulnerable points. Recent developments in c.r.t.s have produced “soft-flash” tubes in which the flashover current is considerably reduced. However, it is felt preferable to use this development as extra protection rather than relax any of the above circuit techniques.

The customer
The general public’s opinions on good performance are not always predictable; indeed it is remarkable how poor a picture some people will tolerate. On the other hand, it is almost as remarkable how critical other people are regarding (to others) insignificant details of performance or operation. All that the poor design engineer can do is to provide the best picture, reliably, at a reasonable cost (cost effectiveness again).

However, there is one aspect of operation in the customer’s home which is of paramount importance, and this is safety. Fortunately the catastrophic fires which beset some early colour sets are now a thing of the past. In a modern receiver every component which can be so specified is flameproof or flame retardant. The reduction of power consumption helps considerably too, since hardly any components get more than appreciably warm. (The 70 series takes about 60W from the mains with an average picture, compared with the 80 series 130W and 100 series 200W.)

The requirements of BS415 and IEC 65 and the various Chas, VAL, SEMKO, VDE etc. discipline the designer to achieve a very high standard of safety. The designer must consider numerous potential faults such as short-circuit or open-circuit capacitors and resistors; faulty semiconductors; open or short-circuit coils and transformers; voltage breakdown between components or across copper tracks on printed panels; the temperature of all components at the highest ambient temperature in which the set is expected to operate. These are just some of the conditions which must be analysed during the design to ensure that no fault will cause a hazard of any sort to the customer. Combinations of worst-case tolerance components have to be considered when calculating for maximum voltage or power conditions in any part of the set. The use of fusible resistors helps in cases where a fault could leave a component overheating permanently without the customer being aware of it.

Serviceability
We all hope the receiver will never go wrong. But we live in an imperfect world and no matter how carefully a set
is designed, built and tested faults will occur from time to time. Service calls are costly, so it is worth while designing the set for ease of servicing. Too many service aids, however, can make the cost of the set prohibitive and a careful balance has to be maintained considering the greatly increased long term reliability of modern receivers.

Some servicing features are relatively easy to provide; for example, the fixing of the cabinet back. This is normally the first thing a service engineer will need to remove if something has gone wrong with the set. It is such a simple thing and yet there are sets which need as many as eleven screws removing before the back comes off.

The 70 series receivers retain the feature introduced nearly four years ago with the 80 series: the cabinet back is retained by two fasteners which are disengaged by the use of a coin. The chassis, too, is retained by two similar fasteners and, when released, hinges up to lock in a convenient position which gives access to both sides of the printed panel (Fig. 1).

The 70 series chassis has most of its circuitry on a single printed panel (Fig. 2) with the i.f. and decoder circuitry on two sub-panels. This means that servicing by substitution of printed panels is only possible with faults in the i.f. or decoder area. However, the remainder of the chassis is sectioned into blocks of circuitry which can be isolated by means of pluggable test links.

Most of the i.c.s and the tuner(s) are fitted in sockets to ease servicing and aid testing and fault-finding in the factory.

Manufacturing methods

If a set is designed to be easy to make and straightforward to test and set up, the factory will take a greater pleasure and pride in producing it. Their greater concern will be reflected in the quality and reliability of the finished product. The introduction of automatic component insertion and automatic test equipment in certain areas also aids consistency and reliability. These methods have to be considered during the design. Automatic component insertion demands greater accuracy of printed panels and the physical characteristics of the machine puts certain constraints on the positioning and size of components.

Automatic testing can ensure that many more tests, both component checking and functional measurement, can be done on each chassis in a shorter time. Reliability is improved and fault-finding and inspection are made much easier.

The 70 series chassis

Fig. 3 shows how the various blocks of circuitry interconnect while Fig. 2 shows their relative positions on the chassis. As can be seen, in block form much of the circuitry appears straightforward and conventional. For example, the progress of the signal from aerial to tube follows the same course (at least in block form) as in most receivers although, as will be seen, some details are far from conventional.

The way the timebases and their by-products such as e.h.t. and focus supplies and pincushion correction circuitry, cluster around the tube will be recognised by all familiar with tv receivers. However, the way the power supply is intimately connected with the line timebase is somewhat unconventional.

The major part of the chassis is isolated from the mains and the stabilised power supply is a switched mode type with its operating frequency locked to that of the line timebase. Since the chassis is intended for use in a variety of models, this isolation helps with features such as sockets for headphones or video or audio recorders; video monitors; and certain markets which require isolated chassis.

A switching power supply is, of course, much more efficient than a linear stabiliser and a high operating frequency enables the output electrolytics to be reduced in value. Also, the presence of a transformer increases the flexibility of the various supply voltages required. The main disadvantages with this system are the more stringent requirements on the insulation of all the transformers which bridge the isolation barrier; the need to have at least a 6mm gap on the printed panel all round the 'live' area of the chassis; and the greater care needed in the choice and parameter specification of the power supply output device. The fact that the supply is locked to line frequency means that any interference spikes are locked to the picture and will not cause variable beat patterns all over the screen. It also means that the supply must be within the phase control loop of the line timebase. As can be seen from Fig. 3 a line sync signal from the line oscillator and a reference flyback signal

Fig. 2. Identifying the various sections of the 70 series chassis and control unit.
Fig. 3. Block diagram of the complete television receiver.
from the line output transformer are fed into the supply and the base drive for the line output transformer is taken from it. This removes the need for a separate line driver transistor and transformer.

The switched mode power supply (s.m.p.s.) provides three stabilised supply lines, of 12V, 195V and 18V. The 12V supply to the line output stage must be stabilised because the scan current, and hence picture width, is directly proportional to this supply; moreover, the derived voltages of e.h.t., focus, and field timetube h.t. are also dependent on this supply and so the whole picture size and focus will depend on its stability.

The 18V supply voltage was chosen to provide an adequate level of audio output power and yet maintain a low dissipation in the i.c. stabiliser which provides 12V for most of the signal processing circuitry.

The audio output stage uses the 18V supply directly from the s.m.p.s. to give approximately 3.5W r.m.s. into 8Ω.

The extra stabilisation down to 12V helps to buffer off any disturbances on the 18V line caused by large current pulses drawn by the audio stage during busy sections. Also, the tolerances on the output of the 12V stabiliser i.c. is closely specified by the manufacturer under all conditions (11.4 to 12.6V) and ensures that the circuitry driven from the 12V line is always operating within its design limits. One of the major problems of circuit design for mass production is to ensure that for all combinations of tolerances the circuitry will work within specification and safely (i.e. will not over-dissipate nor produce too high a voltage). With thousands of receivers leaving the factory every week the chance of any combination of adverse tolerances occurring is fairly high. It’s probably exaggerated by a well known triangle. (L. W. W. Sept. ’59) which ensures that a batch of, say, resistors at the top end of their tolerances will be delivered at the same time as a batch of, say, i.c.s at the bottom end of their tolerances.

In cases such as this the laws of chance fly out of the window and the tolerances add up statistically instead of statistically. It is thus important to investigate, at the design stage, as many combinations of tolerance extremes as possible.

In the smaller models the chassis drives a 14n or 16n c.r.t. with an e.h.t. of 22.5kV which is sufficiently high to give good focus performance whilst maintaining a safety margin from the tube’s maximum limit of 25kV. In the larger models the e.h.t. is 25kV and slightly different line output and power supply transformers are fitted.

For the British market a u.h.f.-only tuner is required but for CCIR or Eire standards both u.h.f. and v.h.f. tuners are needed and a modified i.f. sub-panel (which includes the luminance delay line – also different for these transmission standards) is fitted. Both tuners and i.f. sub-panel are pluggable, so a stock of standard chassis can easily be changed in the factory from one version to another.

The basic 14n portable has four push-buttons for channel selection. Three positions are tuned by multi-turn presets and are intended for setting to the normal channels viewed in the home. The fourth button selects a multi-turn control (called Varitune) available on the front panel which can be easily set to another channel if, for example, the set is taken to another part of the country during a holiday. There is then no need to disturb the “home” settings.

Since the tuning is effected on the chassis by a variable direct voltage applied to the appropriate pin on the tuner it is easy to provide a range of tuning methods at the control panel and thus cater for a wide range of models.

The customer controls are also d.c. operated and are applied, like the tuning voltage, to a plug on the main panel. Thus the addition of features such as remote control, touch tuning and memory tuning is easily catered for without the need to alter the main panel.

The next article will look at new features of the circuitry in more detail.

WIRELESS WORLD, JUNE/JULY 1980

SIXTY YEARS AGO

The first London newspaper to receive news by wireless was the Daily Mail, taking a message from Marconi’s at Chelmsford, on May 28, 1920. The June issue of Wireless World carried an article on the Mail’s station and took the opportunity to do a bit of crystal-gazing.

“The Daily Mail installation consists chiefly of a six-foot frame aerial of the solenoid type with turns of wire, used in conjunction with Marconi 7-valve high frequency amplifiers and detectors. Types S5A and S5D, which have been previously described in our pages and are familiar to all readers. Type 55 is one of the most sensitive receivers in existence and is particularly suitable for use with a loop aerial. The tuning arrangements permit of reception on wavelengths of from 600 metres to 15,000 metres. Damped and undamped waves and wireless speech can be equally well received on this apparatus, which is a far from perfect but an instrument which has been thoroughly proven both in war and commerce, and is capable of detecting signals from any high-power station within a radius of 3,000 miles. In a vision of the future one sees the inside of a newspaper office, where reporters are busy receiving “copy” from their colleagues in provincial towns, whilst automatic receivers click out tape records of news messages sent at 100 words a minute from the world’s high-power news-distributing stations. From this it is quite clear that this future newspaper does its electrical power from some huge Wireless Power Station, why then - we shall have really begun in earnest to use that incomparable, universal medium, the ether. “A visit to Carmelite House and a conversation with Daily Mail officials revealed that the latter intend to lose no time in assisting wireless and journalism to join hands. They look forward to the time when a reporter shall start for the scene of his “story” in an aeroplane—and arrive,” one of them humorously interpolates—and deliver his “copy” to headquarters by a system of linked wired and wireless telephony, the message being received at the paper’s own wireless station. They intend to make as much use of wireless as possible and entertain no doubt but that present day apparatus can fulfil all the demands likely to be laid upon it by Fleet Street in general. The idea of an “exclusive” message being flung out on an indis- criminating, generous aether, and inter- cepted by rival papers, created a disturbing ripple in the flow of conversation. Knowing that a similar objection has been levelled at wireless telegraphy for twenty years we do not view this question in quite such a serious light. There is this point, too, which must be taken into account—directive wireless is probably not far distant.”

Acoustics conference

Ray Wilkinson, the author, is Decca’s assistant head of television receiver design, working in the development laboratory at Bradford. He got his degree at Northampton College of Advanced Technology (now City University) and his first job was with Siemens Ediswan, which later became Thorn-AEI Radio Valves and Tubes. In the Thorn-AEI applications laboratory at Brimsdown he worked on colour tv circuitry and colour demonstrations, then in 1969 joined Rank Cintel to work on studio slide scanners and telecine machines. He moved to Decca in 1972. Among Ray’s other interests are music and model railways.
Educational micro kit

Although there are several microcomputers and kits available, most are offered as "useful" computers which can be expanded to form a complete system. Edukit, however, is aimed at beginners who want to learn the basics of computing as cheaply as possible and do not want to be left with a redundant piece of expensive hardware.

The kit is supplied with a comprehensive manual which describes construction, basic theory, initial use, machine code programming, hardware and troubleshooting. An appendix covers soldering and provides a bibliography and a list of op-codes. Edukit, which is based on the 1802 and has 256 bytes of addressable r.a.m., is priced at £29.95 plus v.a.t. Modus Systems Ltd., 29A Eastcheap, Letchworth, Herts SG6 3DA.

WW301

Speech synthesizer

All the computation required to synthesize speech is performed by its own dedicated microprocessor in the Microspeech 2, manufactured by Costronics Electronics. This is a stand-alone speech synthesizing unit which converts phonetic code or any text (which is fed in via a standard RS232 connection) into a speech output, and "loop-through" connections permit the unit to be plugged "in line" to any v.d.u. with RS232 capabilities. It is possible to run the unit solely from an ASCII keyboard and up to 1,000 phonetic characters, representing about one minute of speech, may be assembled in the unit's internal buffer before it is commanded to speak. The controlling microprocessor has a spare r.o.m. capability of 4K bytes which can be used to store an optional text-to-phonetics translator program, the phonetic equivalents of standard symbols allowing operation directly from English text. Additional musical phonemes and an exponential frequency control on the glottal pulse generator allow the unit to add musical sequences to speech. The complete unit, which contains loudspeaker and power supply, costs £875 for the phonetic model and £950 for the

WW302

English-to-phonetics model.

Costronics Electronics, 13 Field Heath Avenue, Hillingdon, Middlesex.

WW303

Micro-based oscilloscope

Fast, automatic signal processing is the result of adding a TMS 9900 microprocessor to Tektronix' latest 7100 Series oscilloscope. Many measurements, such as rise and fall time, pulse width r.m.s., peak-to-peak values, energy, are all reduced to single-button operation. The instrument can be programmed to calculate specific answers and check for errors; keystroke programs of 1000 lines can be written for repetitive testing of instruments automated. Digital storage allows signal averaging and recovery, integration and differentiation, while more complicated routines -- correlation, Fourier transformation, convolution high resolution graphics -- are possible by adding 300K byte model 4052 graphics computing system. A separate keyboard prevents overcrowding of the front panel which in its program mode displays on the c.r.t. instruction mnemonics and results of computations. A general purpose interface bus is provided for the additional processing, data storage, co-ordination and program transfer. At a cost of £19,000 with four plug-in units and keyboard, the market for this kind of instrument is limited to "high technology R & D". Tektronix UK Ltd., Beaverton House, PO Box 69, Harpenden, Hertfordshire.

WW304

Static charge locator

Noise generated by dust on the surface of a record is a perennial problem, much of the dust being attracted to the surface by a static electrical charge. The TechnoTrend Staty-Control is designed to operate as a simplified charge locator, using an i.e.d. as an indicator rather than the more common meter. The locator indicates electrostatic charges down to a field strength of 50V/cm and measures 150 x 35 x 20mm; battery life is claimed to be 150 hours in normal operation. The makers quote many other uses such as the detection and elimination of charges affecting
Digital flow and speed sensors

A range of flow and speed sensors which provide an output signal suitable for digital processing can be fitted to most standard speedometer cables for indication of fuel flow or speed. The sensors are manufactured from a plastics material, give a 5V square wave output dependent upon speed and flow and are intended for use in automotive applications. The flow sensor provides a linear output in the range 0.3 to 22g/h and can be used with liquids of viscosity in the range 1-10cS. Connections are made to hoses with an internal diameter of 4 to 8mm and each sensor is supplied with 2m of co-axial cable. The speed sensor is an optoelectronic device and can be fitted to standard speedometer cables with an inner core diameter up to 3.2mm and is claimed to be independent of cable fittings. Speed sensors for an inner core diameter of 4mm can be supplied on request; speed sensors provide an output of 10 pulses per revolution. Flow sensors are available ex stock at £12.65 and speed sensors at £9.95, both prices including v.a.t. Enviroystems Ltd, Hampsfell Rd, Grange-over-Sands, Cumbria LA11 6BE.

Language translator

Using the same techniques as the company’s Speak & Spell machine, the Texas translator gives a pronunciation of foreign words and phrases as well as a visual indication of spelling. Plug-in language modules, French only available, but English and German are shortly to follow at £50 — feature visual translation in three languages plus one spoken language. Vocabulary is 699 words, of which 550 are spoken. Five modes of operation are possible: access to 75 commonly used expressions, use of enter-word phrases, translation of entered words, vocabulary scan in 16 categories, and selection of words for both pronunciation and translation. With the French module Spanish, English and German words can be translated into French, but only French is spoken. With this module price is £180 including v.a.t. "Vowel power" module at £15 is now available through W. H. Smith & Sons. Texas Instruments Ltd., European Consumer Division, Manton Lane, Bedford.

High voltage Hexfets

Further devices have been added to the International Rectifier range of high voltage m.o.s.f.e.t.s, extending the range to include 200V and 300V devices. In addition to the well known performance features of f.e.t.s such as high input impedance, fast switching, low drive current requirements and absence of secondary breakdown features, the devices also include power amplifiers, converters, fractional horsepower motor controllers, r.f. amplifiers and audio amplifiers. (from WIRELESS WORLD).
“Bethumped with words...”

There is no doubt about it, buzz words are useful little devils. Faced with a pressing need to say something bright and not having too much time for thought, a marketing man (for example) has a great long list of beautifully turned words and phrases, polished by use, from which to draw. If someone came up to me and asked my opinion of the Budget, I would probably utter some such penetrating, masterly exposition as “Well, er, it, er, depends, dunnit?” Not so your practical purveyor of froth. I, too, could instantly summon to mind page 26 of “Speech without Thought” and make a random selection of useful phrases, stitching them together as he went on. “In today’s economic climate, an on-going liquidity situation is the only fiscal scenario that can be validated, in a global context, particularly in a recessional period. And as for the Green Pound, well, need I say more?” Collapse of questioner, who was only wondering about the price of a pint, anyway.

You can do this sort of thing with technical articles, of course, very successfully, the reasons for using them being (a) to make the article look longer, (b) because the writer thinks you have to write in a peculiar, stilted manner to make an article look respectable, and (c) to impress you with his brain power.

We’ve all suffered. All the way from the relatively innocuous “It can be shown that...”. without reference to who has shown it and where, to the really humiliating “Clearly...”, preceding a clump of unutterable verbiage which is anything but clear.

From the above, it will be clear that it can be shown to be self-evident that I’m all for the direct way of writing. The only excuse for going into print at all is because you have something to say; to prevent readers understanding your message is perverse, to put it mildly. If there really is something to write about it doesn’t make a lot of sense to camouflage it in an imitation of Civil Service jargon. I thought I might start a movement called CLEAR (Council for Lucidity, Elucidation And Readability) but I decided the words were too long.

Take a note

I have no idea how composers think of a tune — or rather, thought of one, because modern composers don’t seem to bother much about tunes. Did Beethoven wander about muttering “di di di dah, no; di di dah, damn!”, getting peculiar looks from passers by? It seems unlikely. All right for ‘On Ilkla Moor B’wick At’ maybe, but not really on for the Fifth.

We know how it’s done in films, of course. The chap writing the music sits sideways-on to the piano, a pencil between his teeth, tie loosened and a cigarette burning the varnish off the piano top, and churns out a masterpiece while waiting for his bath to run.

All this is a thing of the past, because of Alf. That isn’t Alf Oakroyd, the nippy champion and trombone blower with the Pog Moore and Gawber brass band, but Alf the synthesizer — a new gadget for the Apple computer. The circular doesn’t say why it’s called Alf, but the device lets you enter notes on v.d.u. staves, adjusting envelope, sustain, volume, etc. through eight octaves. It will then play your creation through the hi-fi. It say it will do very well for musicians and educators, which may be true, for all I know, but it also claims that businessmen can have it as a “bonus” for their Apples.

So! It’s all coming out now. I can easily see how playing with those little steel balls can get a bit boring and I suppose after a morning of 7 iron chip shots into the w.p.b. a chap needs a change, but I do honestly feel that this is going just a teeny bit far. Perhaps it could be reserved as a prize for sales reps who exceed their targets.

“Congratulations, Golightly, you’ve done it again! I need hardly stress that we’re all absolutely delighted with your performance and we have decided that instead of a boring old wodge of money as a reward we’d go one better this time. Here it is, the new type of bonus for businessmen — Alf. You can play it just as long as you like, so long as it’s free when the Chairman comes in after lunch; say around 4 o’clock.”

Damn clever, these Chinese

I am reliably, if unexpectedly, informed by the people responsible for telling us all about Hong Kong and its capabilities that a firm in HK have produced “a uniquely-design electronic musical toy”. Turns out to be an electronic organ in the shape of a guitar.

I suppose there’s no reason why electronic versions of established instruments should look anything like them, since they don’t work in the same way, but I can’t make out why they should look like any other instrument either. I mean, why a guitar? I should think that an organ keyboard is pretty well unbeatable for playing the organ, and you don’t have to sling it around your neck.

Having made this giant leap forward, though, there seems to be any point in stopping there. If you can make an organ look like a guitar, it ought not be too difficult to make a grand piano resemble a mouth organ and to do something about those monstrous tubas, which would be a lot more convenient to cart about if they were slightly remodelled into Jew’s harps. The whole thing is wide open.

Far and wide

From the correspondence we get in these offices you might assume that radio and electronics is carried on almost exclusively by youngish men inhabiting the south east corner of England. Occasionally a middle-aged man or woman comes up to Manchester, a Finn or two, Americans who write extremely long letters as if atoning for the break with the old country, and of course our Russian contributor in Moscow. But on the whole what seems to be shaping up very much as the British equivalent of Silicon Valley is the sleepy old Thames Valley, the only difference being that ours has rather more water and less silicon in it. So it’s quite refreshing to discover that we do actually have a reader who lives south of Guildford and another to the east of Clacton-on-Sea — in fact even further from Yuri Miloslavskiy in Moscow.

The one beyond Guildford is a gentleman who resides at King Edward Point, South Georgia, Antarctica. He wrote to enquire about an article we published in 1928 on wireless telephony in whale fishing in that area. As I have not yet been as far south as Antarctica for my summer holidays and my engineering activities in 1928 were still confined to the possibilities of coloured wooden bricks, I found this particular conjunction of time and place exceedingly difficult to take in. It might just as well have been something out of J. R. R. Tolkien.

Equally beyond my horizons was the letter from the easterly direction. This was an application for a vacancy on Wireless World’s editorial staff. It came from a young man in Canton who wrote in a flowing copper-plate hand and thoughtfully enclosed a snapshot of himself smiling and waving from the middle of a public park. Fraternal as the message was, I gather from the editor that our accountants took a rather dim view of the idea that we should invite the Chinese applicant here for an interview and pay his return fare from Canton out of the petty cash.
Electronic Brokers give you a lot more scope with the Hameg range

HM 307-3
Single Trace, Display Area 6 x 7cm, Built-in Component Tester, Bandwidth DC-10MHz, Risetime (approx.) 35ns, Defl. Coefficients 5mV-20V/cm, Timebase, Time Coefficients 0.5µs-0.2s/cm.

£149.00

HM 412-4
Dual Trace, Display Area 8 x 10cm, Sweep Delay Overscanning, Bandwidth DC-20MHz, Risetime (approx.) 17.5ns, Defl. Coefficients 5mV-20V/cm down to 2mV/cm. Timebase, Time Coefficients 0.5µs-2s/cm.

£350.00

HM 312-8
Dual Trace, Display Area 8 x 10cm, Full X-Y Op., Magnifier x 5, Bandwidth DC-20MHz, Risetime (approx.) 17.5ns, Defl. Coefficients 5mV-20V/cm, Timebase, Time Coefficients 0.5µs-0.2s/cm.

HM 512-8
Dual Trace, Display Area 8 x 10cm, After Delay Trig. Single-Shot, Bandwidth DC-50MHz, Risetime (approx.) 7ns, Defl. Coefficients 5mV-20V/cm up to 50V/cm, Timebase, Time Coefficients 0.1μs-2s/cm.

£580.00

Electronic Brokers
49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

Prices do not include VAT or Carriage.
Sarel have THOUSANDS of boxes!

To serve your needs

EX-STOCK!

Sizes 98 x 98 x 54mm. to 267 x 207 x 150mm.

with clear lids, high lids, chassis and

sealing facilities

and in a wide

variety of materials-
P.V.C., Polycarbonate

Noryl, Makrolon and

Glass Fibre Reinforced Polyester.

Telephone or write for a catalogue to:

SAREL ELECTRIC LIMITED,
COSGROVE WAY, LUTON, BEDS. TELEX 826551 SAREL G.

PORTABLE MAINS DISTRIBUTION — NEW WITH CIRCUIT BREAKERS

New! Slim Jim

Dim. 1¾" x 2½" x 18¼"

£13.50 P&P £1 + VAT

Fitted with M.K. 10 amp C.B. — 13/45 SW.CB £29.50 + post £1 + VAT

3½" x 19" Rack Mounting Type 13A/4SW/R £18.50 P&P £1 + VAT

10 amp C.B. — 13A/4 SW.CB £25.95 + post £1 + VAT

TR6 — 6 sockets switched £23.65

TR9 — 9 sockets switched £28

Plus P&P £2 + VAT

MAINS ISOLATING UNIT

The Olson mains isolating unit is an essential bench item for safety when testing and repairing mains-operated equipment. The isolating transformer has an earthed screen and is rated 250VA.

£38 + P&P £2 + VAT

Type 13A/10SW £29.50. P&P £2 + VAT

COMPLETE WITH 6FT. CABLE AND 13-AMP FUSED PLUG

4 sockets 13A £14.00

6 sockets 13A £16.50

4 sockets 13A switched £15.90

6 sockets 13A switched £18.45

+ Post £1 + VAT

ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS & PLUG

Send for details of complete range

WWW.OLSON.CO.UK

WIRELESS WORLD, JUNE/JULY 1980

OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 SHJ
TEL. 01-739 2343

WWW.087 FOR FURTHER DETAILS
S-2020A STEREO TUNER/AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low-heel Toroidal transformer. Mag. input. Tape In (Quiets factory for noise reduction unit etc.) THD less than 0.1% at 20W into 8 ohms. High Slew Rate. Low noise op-amps used throughout. Power on/off FET transient protection. All sockets, fuses, etc. are PC mounted for ease of assembly. Tuner section uses 3302 FET module including no RF alignment. Ceramic IF INTERSTATION MUTE and phase-locked IF stereo decoder, LED tuning and stereo indicators. Tuning range 88-108MHz, 30dB mono S/N @ 1kHz, THD 0.3%. Pre-cooler blurry filter.

PRICE: £59.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: £69.95 + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Intruder for this British NRDC backed surround sound system which is the result of 3 years research by the Ambisonic team. W.W. July Aug '77

The unit is designed to decode not only UHJ but virtually all other quadraphonic systems (Not CD4) including the new BOC HI. 10 input selections. The decoder is linear throughout and does not rely on listener-fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 8 output signals are provided in this versatile unit Complete with mains power supply, wooden cabinet, panel, 10 arms.

Complete kit (including licence fee £49.50 + VAT) or ready built and tested £67.50 + VAT

S-5050A STEREO AMP

50 watts RMS channel x 2. 0.01% THD. S/N 90 dB. Mains 80 V Output device rating: 260V per channel. Tone cancel, manual switch, 2 tap monitor switches. Metal case - comprehensive heatsinks

Complete kit only: £63.80 + VAT

(Also available our 20w/ch BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original Wireless World pub. Intruder 1 has been re-designed by Intruder to incorporate several new features along with improved performance. The kit is easy to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240V ac mains or 12V battery operated. Disguised as a hard backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells, etc.

Complete kit: £49.50 plus VAT or ready built and tested £64.50 plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Complete Kit: **PRICE:** £43.80 + VAT (Head model available)

Also available: ready built and tested.

Calibration tapes are available for open reel use and for cassettes (specify which)

Single channel plug-in Dolby PROCESSOR BOARDS (92 x 47mm) with gold-plated contacts and all components.

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free

Please send SAE for complete lists and specifications

Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT

Telex 377106

www.americanradiohistory.com
LINSLEY HOOD CASSETTE RECORDER 1

We are the Designers Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and kit expense and experience guarantees the engineering design of the kit. Advanced features include: High quality separate VU meters with excellent ballistics. Control switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded dustshield for cassette aperture and removes the need for the cassette transport to be on back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a space-saving, easy build and tested layout. All these features added to the high quality metalwork make this a most appealing kit to build. Also included at no extra cost is our new HS15 Sendust Alloy record/play head; available separately at £7.60 plus VAT. But included FREE as part of the complete kit at £81.90 plus VAT.

REPRINTS of the 3 articles describing this design 45p No VAT.
REPRINT of Postcript article 30p No VAT.

CASSETTE HEADS

HS15 SENDUST ALLOY SUPER HEAD. Sirens R/P. Longer life than Permalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data. £7.60
HC20 Stereo Permalloy R/P head for replacement use in car players, etc. £4.25
HM90 Stereo R/P head for METAL tape. Complete with data. £7.20
HS1 Special Erase Head for METAL tape. £4.80
HS24 Standard Ferrite Erase Head. £1.50
4 Track R/P Head. Standard Mounting. £7.40
R184 2/2 Double Mono R/P Head. Std Mag. £4.90
MEL151/2/2 Ferrite Erase. Large Mag. £4.25
CCE 8M 2/2 Erase Std Mag. £7.90

We are the actual importers of these heads and invite Trade/quantity enquiries.

All prices plus VAT

We regret that due to the latest increase in postal costs we must now charge for carriage. Please add as follows:
Order up to £10 - 50p
Orders £10 to £49 - £1 P&P
Over £50 - £2.50

Export Orders - Postage or shipping at cost plus £2 Documentation and Handling

Please send 9x4 SAE for lists giving fuller details and price breakdowns.

Instant easy ordering. telephone your requirements and credit card number to us on Oswestry (0691) 2894

Personal callers are always welcome but please note we are closed all day Saturday.

LINSLEY HOOD CASSETTE RECORDER 2

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical hysteresis mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful metering and damped arrangement used on our Linsley Hood Cassette Recorder.

This latest version has the following extra features. Ultra low wow and flutter of 0.9% - easily meets DIN. High spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley Hood circuits and the quality of the components used makes this new kit compatible with built-up units of much higher cost than the model £84.80 + VAT we ask for the complete kit.

SUPER BARGAIN OFFER

LENOI FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer Brand New Lenco FFR Decks complete with motor speed and auto stop control board fitted and tested. These will operate with any supply between 9 and 16 volts. This deck can be used for both record and playback applications and is fitted with an erase head. A mono record/play head is fitted and we can supply an extra stereo head if ordered with the deck at the very special price of £2 plus VAT. We also supply each deck and completely FREE, one of our specially moulded re-couplings. This deck would normally cost about £25 but we are able to offer them while they last. At only £9.99 plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our redesign of this popular amplifier to make it as easy to build as our latest kits. The power amplifiers are complete modules plugging into a power supply master board. All possible wiring has been eliminated but faith has been maintained with the existing metal work to enable owners to update if they wish. Send for full details in our next.

LINSLEY HOOD 30-WATT AMPLIFIER

Advanced new cost-effective amplifier of impeccable specification from the master. Published in the January and February issues of Hi-Fi News. We are supplying full kits to our usual professional standard.

STUART TAPE CIRCUITS

(For high end decks)

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free. No VAT.
TRANSCENDENT 2000
SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL:

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. It is a portamento pitch bending, a VCO with shape and pitch modulation; a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.

The kit includes fully finished metalwork, fully assembled solid state cabinet, front panel sweep pedal, professional quality components (all resistors either 2% metal oxide or 1% metal film) and it really is complete — right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality toughglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily, in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with readily-built kits selling for between £500 and £700.

COMPLETE KIT
ONLY £168.50 + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears.

WE'VE MOVED!
NEW FACTORY UP!
PRICES DOWN!

TRANSCENDENT DPX
DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

ANOTHER SUPERB DESIGN BY SYNTHESIZER EXPERT TIM ORR! AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL AUGUST, SEPTEMBER, OCTOBER 1979 ISSUES

The Transcendent DPX is a really versatile new 5 octave keyboard instrument! There are two audio outputs which can be used simulatneously. On the first there is a beautiful hardvoiced need sound — fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be straight forward piano or a honky tonk piano or even a matured of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or you should prefer — strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds — just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate control for the brass sounds and a vibrato circuit with variable delay control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

COMPLETE KIT ONLY £299.00 + VAT!

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD charge coupled device analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The complete circuitry can be switched in with either strong or mild effects.

As the system is based on digital circuitry and digital data can be easily taken to and from a computer for storage and playing back accompaniments with or without pitch or key change, computer controlling, etc., etc., and an interface socket (25 way 5 pin type) is provided for this purpose.

Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit cards which are connected with multi-way connectors, four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes fully finished metalwork, solid state cabinet, professional quality components (all resistors 2% metal oxide, 1% metal film, etc.) and even a 13A plug — you need buy absolutely no more parts before plugging in and making great music! When finished you will possess an instrument comparable in performance and quality with really built units selling for over £1,200.

ORDERING INFORMATION AND MORE KITS
INCLUDING THE BLACK HOLE ON NEXT PAGE
THE COMPLETE SOLUTION
TO
STRAIN GAUGE AMPLIFICATION

- COMPLETE WITH BRIDGE SUPPLY
- COMPLETE WITH ALL ADJUSTMENTS (SPAN ZERO BRIDGE VOLTAGE)
- COMPLETE (NO EXTERNAL COMPONENTS NEEDED)

The series SGA700 (based on our well-proven SGA 300) provides the complete solution to Strain Gauge Amplification. Simply connect the bridge, connect the power supplies (±11V to ±15V) and the SGA 700 does the rest. It also offers high stability (up to 1µV/°C). Miniature size (above is actual size), good supply rejection — in fact a specification as good as many instruments many times the price and size.

© WORLD PATENT APPLIED FOR

CIL Electronics Ltd
14 Willowbrook Road,
Worthing, Sussex BN14 8NA.
Tel: Worthing (0903) 204646
Telex: 67515 WISCO G ATT CIL

NEW FROM BARMECO
Introducing a new 3-element H.F. Tribanda with proven performance and reliability

THE WORLD RANGER TRIBANDER

SPECIFICATION:

- Frequency: 10, 15 & 20 metres
- Impedance: 52 ohms
- R.F. Power (max.): 1 kW (AM)
- VSWR (at resonance): 2 kW (PEP)
- Forward gain: Less than 2.0:1
- Front-to-back ratio: Up to 8.0 dB
- Mast diameter: 31.75mm to 41.30mm
- Wind survival: 80 mph
- Turning radius: 14' 10"
- Longest element: 26' 0"
- Boom length: 12' 0"
- Net weight: 21 lbs.

Price: £135.00 complete with Balun, plus carriage @ £3.50. High quality 50 ohm coaxial cable available @ 50p per metre. Balun available separately @ £12.50 each. All items subject to current VAT

COMING SOON: A range of HF Monobanders and a 2 metre base station vertical

Orders to:
BARNET METAL & CAR CO. LTD.
Tewin Road, Welwyn Garden City, Herts.
Telephone: Welwyn Garden 24327. Telex: 28125. Cable: BARMECO

WWW - 005 FOR FURTHER DETAILS

WWW - 009 FOR FURTHER DETAILS
CHROMATHEQUE 5000

WIRELESS WORLD, JUNE/JULY 1980

Panel size 19.0" x 3.5" Depth 7.3"

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it store all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 5000W as and the kit is a single board design wiring is minimal and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc... Complete right down to the last nut and bolt.

DE LUXE EASY TO BUILD LINSLEY HODD
75W STEREO AMPLIFIER £93.90 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit based upon circuit boards interconnectioned with gold-plated contacts resulting in minimal wiring and construction design. Fully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, variable tone controls and rare-masking while distortion is less than 0.01%.

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality rack version: cabinet, cable, nuts, bolts, etc, and full instructions — in fact everything!

BLACK HOLE

MUSIC EFFECTS DEVICE — AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a space feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches included in the frequency response give up and down as the tone delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is fully standing with foot switch control. LED effect selection indicators have variable sensitivity. No high signal distortion made by an audio amplifier and it emits powered — no batteries to change! Like all our kits everything is provided including a highly finished wood veneer cabinet, cable, nuts, bolts, etc and full instructions — a fact everything!

COMPLETE KIT ONLY £49.80 + VAT (single delay line system)

De Luxe version (dual delay line system) also available for £59.80 + VAT

MPA 200

100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in E/T, the MPA 200 is an exceptionally low priced — but professionally finished — general purpose high power amplifier. It features adaptable input level which accepts a wide range of sources such as microphone, guitar etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.

The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc... complete down to the last nut and bolt.

COMPLETE KIT ONLY

£49.90 + VAT!
MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

ANDOVER (STD 0264) 64455

NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONE NUMBER UNCHANGED

PRICE STABILITY Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until Sept. 30th 1980...if this month's advertisement is missprinted with your order Errors and VAT (rate changes are excluded

EXPORT ORDERS: No VAT. Postage charged at actual cost plus £1 handling and documentation.

U.K. ORDERS: Subject to 15% surcharge for VAT. No change is made for carriage at current rate if charged.

SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50 (VAT inclusive) per kit.

SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter: Open 9 a.m. to 2.30 p.m. Monday - Thursday.

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and effect circuitry at very low cost. A complete to all the normal facilities found on quality amplifiers. A 30 watt version of this kit (T30 + 30) is also available for £38.40 + VAT

MATCHING TUNERS — See our FREE CATALOGUE!
TEST INSTRUMENTS

THE RANGE HAS INCREASED —
THE PRICES ARE DOWN

THE CS1830 30 MHz + Sweep Delay
The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticule, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of 1ns-100 ms and trace bright up to show the delay position. As you can see from close study of the photograph, the CS1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.

Brief Specification
- Rectangular PDA tube 120 x 96 mm. P31 phosphor
- Bandwidth DC-30 MHz
- Sensitivity 5mV/cm (30 MHz)
- 2mV/cm (20 MHz)
- Input RC 1 M/23 pF
- Rise time 11.7 nS

CS1830 only £455 + VAT includes 2 probes

THE CS1572 30 MHz for the VTR Lab
If you are in Video, you need the CS1572
The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS1572.

Brief Specification
- As for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS1572 only £425 + VAT, includes 2 probes

THE CS1577 30 MHz at 2mV + Signal Delay
The most popular scope in the range.
The CS1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS1577 combines a wide bandwidth DC-30 MHz performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.

Fixed signal delay is provided by a helix delay line which allows viewing of the leading edges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds (20 nS/cm using x 5 expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH1 or CH2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays.

Truly an oscilloscope masterpiece CS1577.

CS1577 only £410 + VAT, includes 2 probes

THE CS1575, unique dual trace 4 function Audio Scope
The CS1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to 1 mV/cm but not only can it display the input signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.

CS1575 only £235 + VAT.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER
DC to 1000V
AC to 1000V
Ω to 20MΩ
1 to 2A
Semi Auto Ranging

£70 + VAT

FC756 500 MHZ COUNTER
10 Hz-500 MHz
50mV
Superb instrument

£225 + VAT

For further details and ex stock delivery contact

LOWE ELECTRONICS
CHESTERFIELD ROAD, MATLOCK, DERBYS.
0629-2430 - TELEX 377482

WW — 067 FOR FURTHER DETAILS
NEW FACTORY UP! PRICES DOWN! INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN ALL OTHERS FROZEN!

WIRELESS WORLD, JUNE / JULY 1980

POWERTRAN

PSI Comp 80. Z80 Based powerful scientific computer Design as published in Wireless World.

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2K Basic and 1K monitor in EPROMs and, of course, wire, nuts, bolts, etc.

Value Added Tax not included in prices

PRICE STABILITY. Order with confidence irrespective of any price change we will honour all prices in this advertisement until Sept. 30th, 1980. This month's advertisement is mentioned with your order. Errors and VAT rate change excluded.

EXPORT ORI. RS. No VAT. Postage charged at actual cost plus £1 handling and documentation.

U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage. If current rate is changed.

SECCURICOR DELIVERY. For an optional service £1 (UK mainland only) and £2.50 (VAT inclusive) per kit.

SALES COUNTER. If you prefer to collect your computer from the factory call Sales Counter: Open 9 a.m. - 12 noon, 1-4.30 p.m., Monday - Thursday.

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND TELEPHONE NUMBER UNCHANGED

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
ANDOVER (0264) 64455
Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pick-ups, tuners, etc. using digital or analogue sound sources.

ILP Pre-amps are compatible with all ILP Power Amplifiers and PSUs

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's - in the other, for large PSU's, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU 30 ± 15V at 100mA to drive up to 12 x HY6 or 6 x HY6 £4.50 + £0.68 VAT
PSU 36 for 1 or 2 HY30’s £8.10 + £1.22 VAT
PSU 50 for 1 or 2 HY50’s £8.10 + £1.22 VAT
PSU 60 with toroidal transformer for 1 HY120 £9.75 + £1.46 VAT
PSU 70 with toroidal transformer for 1 or 2 HY120’s £13.61 + £2.04 VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 + £2.04 VAT
PSU 180 with toroidal transformer for 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

Load impedance - all models 4 Ω - ∞
Input sensitivity - all models 500 mV
Input impedance - all models 100K
Frequency response - all models 10Hz - 45KHz - 3dB

THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS

PSU 36 for 1 or 2 HY30’s £8.10 + £1.22 VAT
PSU 50 for 1 or 2 HY50’s £8.10 + £1.22 VAT
PSU 60 with toroidal transformer for 1 HY120 £9.75 + £1.46 VAT
PSU 70 with toroidal transformer for 1 or 2 HY120’s £13.61 + £2.04 VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 + £2.04 VAT
PSU 180 with toroidal transformer for 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

Available also from Watford Electronics, Marshalls and certain other selected stockists.
When ILP add a new design to their audio-module range, there are to be very special reasons for doing so. You expect even better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY6-6 for stereo. We have simplified connections, and improved performance figures all round.

Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.

Sizes - HY6 - 45 x 20 x 40 mm.
HY6-6 - 90 x 20 x 40 mm.

Active Tone Control circuits provide ±12dB cut and boost. Inputs Sensitivity - Mag. PU - 3mV Mic. selectable 112mV All others 100mV Tape O/P - 100mV

Main O/P - 500mV. Frequency response - D.C. to 100KHz - 3dB

HY6 mono £5.60 + VAT 84p

HY6-6 stereo £10.60 + VAT 11.59

Connectors included
B6 Mounting Board 78p + 1.2p VAT
B6-6 Mounting Board 99p + 1.5p VAT

* ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPOST SYSTEM

Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

ILP ELECTRONICS LTD.

FREEPOST 5, Graham Bell House, Roper Close.
Canterbury, Kent CT2 7EP
Telephone (0227) 54778 Telex 965780

www.americanradiohistory.com
NEW
HANDLE PROFILE
MAKES LIFTING AND
CARRYING EFFORTLESS

The Mod-1 type U series, an addition to the AKA Mod-1 range, is a free-standing instrument case with one very important feature. In each side of the case there is a unique handle profile, making it easy to grip, lift and carry, however heavy the contents.

These distinctive cases are made of anodised aluminium extrusions with attractive blue top and base plates, and side panels. Type U cases are manufactured in three widths, two depths, and heights of 3, 4 and 6U. Front handles, folding feet and a rear panel are provided; the front panels, card guides, edge connectors and other accessories are ordered separately. Send for free catalogue and price list.

THE BIGGEST SELECTION OF CASES IN EUROPE

WEST HYDE DEVELOPMENTS LIMITED, UNIT 9, PARK STREET INDUSTRIAL ESTATE, AYLESBURY, BUCKS TEL 0296 20441

WW — 085 FOR FURTHER DETAILS

Hi Fi Year Book and Home Entertainment 1980 available at leading newsagents and bookshops from November 1st. Price £3.75. If in difficulty order direct from the publishers @ £4.25 inclusive.

ORDER FORM

To: General Sales Manager, Room CP94, IPC Business Press Ltd, Dorset House, Stamford Street, London SE1 9LU

Please send me copy/copies of Hi Fi Year Book and Home Entertainment 1980 @ £4.25 a copy inclusive. remittance enclosed. Cheque/p.o. should be made payable to IPC Business Press Ltd.

Name (please print)
Address

Registered in England No 677128
Registered Office: Dorset House, Stamford Street, London SE1 9LU

WWW
<table>
<thead>
<tr>
<th>Price</th>
<th>Stock</th>
<th>Order</th>
<th>QU37</th>
<th>Y365</th>
<th>10.35</th>
<th>MX161</th>
<th>MX152</th>
<th>8.62</th>
<th>2.88</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Terms of Business: C&VO. Postage and packing valves and semiconductors 30p per order. CRTs £1. All prices include VAT.

Price ruling at time of despatch.

In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press.

Account facilities available to approved companies with minimum order charge £10. Carriage and packing £1 on credit orders.

Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.

Open to callers Monday-Friday 9 a.m. - 5 p.m.
New Bear Books

BOOKS

<table>
<thead>
<tr>
<th>Books</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>The S100 and other Micro-buses</td>
<td>Poe</td>
<td>£1.15</td>
</tr>
<tr>
<td>Software Development</td>
<td>Jones</td>
<td>£1.45</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>Lippiatt</td>
<td>£3.95</td>
</tr>
<tr>
<td>Architecture of Small Computer Systems</td>
<td>Martin</td>
<td>£12.99</td>
</tr>
<tr>
<td>Principles of Data Base Management</td>
<td>Dobuff</td>
<td>£16.70</td>
</tr>
<tr>
<td>8065 Assembly Language Programming</td>
<td>Osborne</td>
<td>£6.96</td>
</tr>
<tr>
<td>Introductory Experiments with Digital</td>
<td>Barden</td>
<td>£5.80</td>
</tr>
<tr>
<td>Electronics and 8080A Book 1</td>
<td>Ron</td>
<td>£2.40</td>
</tr>
<tr>
<td>Book 2</td>
<td>Rony</td>
<td>£2.40</td>
</tr>
<tr>
<td>Microcomputers for Business Applications</td>
<td>Rony</td>
<td>£2.40</td>
</tr>
<tr>
<td>Handbook of Microprocessors & Microcomputers</td>
<td>Lenk</td>
<td>£9.65</td>
</tr>
<tr>
<td>The VNR Concise Encyclopedia of Mathematics</td>
<td>Gelert</td>
<td>£15.35</td>
</tr>
<tr>
<td>Micro Program Software Development</td>
<td>Duncan</td>
<td>£13.45</td>
</tr>
</tbody>
</table>

GAMES

<table>
<thead>
<tr>
<th>Games</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 Basic Programs for the PET</td>
<td>Rugg</td>
<td>£8.90</td>
</tr>
<tr>
<td>Game Playing with Computers</td>
<td>Spencer</td>
<td>£10.20</td>
</tr>
<tr>
<td>Game Playing with Basic</td>
<td>Spencer</td>
<td>£4.20</td>
</tr>
<tr>
<td>Star Ship Simulation</td>
<td></td>
<td>£5.10</td>
</tr>
<tr>
<td>BASIC</td>
<td></td>
<td>£9.50</td>
</tr>
</tbody>
</table>

250 BOOKS

<table>
<thead>
<tr>
<th>Books</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z80 Instant Programs (book) for Nascom</td>
<td>Hopton</td>
<td>£7.50</td>
</tr>
<tr>
<td>Z80 Instant Programs (Cassette) for Nascom</td>
<td>Hopton</td>
<td>£10.90</td>
</tr>
<tr>
<td>Z80 Assembly Language Programming</td>
<td></td>
<td>£8.15</td>
</tr>
</tbody>
</table>

MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 0635 30505

MANCHESTER: 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 061 491 2290

BIRMINGHAM: 1st Floor Offices, Tivoli Centre, Coventry Road, Birminham. Tel: 021 707 7170

INTRODUCTION BOOKS

<table>
<thead>
<tr>
<th>Books</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Microprocessors, Vol. 0</td>
<td>Osborne</td>
<td>£5.95</td>
</tr>
<tr>
<td>Introduction to Microprocessors, Vol. 1</td>
<td>Osborne</td>
<td>£3.95</td>
</tr>
<tr>
<td>Introduction to Microprocessors, Vol. 2</td>
<td>Osborne</td>
<td>£4.95</td>
</tr>
<tr>
<td>Introduction to Microprocessors, Vol. 3</td>
<td>Osborne</td>
<td>£10.45</td>
</tr>
<tr>
<td>Introduction to Computers in Business</td>
<td>Awad</td>
<td>£6.50</td>
</tr>
</tbody>
</table>

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

Enables YOU to produce perfect printed circuits in minutes!

Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight/darkroom. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.

FOTOLAK £2.00

Pre-coated 1/16" Fibre-glass board

Developer £0.30

Ferric Chloride 50p

204mm x 114mm £1.50

204mm x 228mm £3.00

467mm x 305mm £6.00

Plain Copper-clad Fibre-glass

Approx. 3" x 0.015" thick sq ft £2.00

Approx. 2.00mm thick sq ft £1.50

Clear Acetate Sheet for making master. 260mm x 260mm £1.75

Quantity discounts available. Overseas enquiries welcome. Prices exclusive of VAT. All inclusive of postage and packaging.

A.R.O. MILKWARD ELECTRONIC COMPONENTS LIMITED

369 Alum Rock Road, Birmingham B8 3DR. Telephone: 021 327 2339

ALUMINIUM BOX CASES

(for the professionals)

ARO aluminum box cases now have a new design to enable simple fitting of your circuit boards without the complexity of drilling the case.

Although a low-cost case, it is exceptionally well finished and is enhanced by the proportion of anodised aluminium to leatherette for the aluminium top and bottom plates. The design of these cases enable them to be un-assembled and reshaped with speed and ease. All cases are supplied unassembled and shrink-wrapped for your convenience.

Example of the competitive prices of Aro Box Cases

<table>
<thead>
<tr>
<th>Width x Height</th>
<th>L</th>
<th>W</th>
<th>H</th>
<th>L</th>
<th>W</th>
<th>H</th>
<th>L</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1/2" x 5 1/2" x 2 1/4"</td>
<td>£7.25</td>
<td>£9.75</td>
<td>£14.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12" x 5 1/2" x 2 1/4"</td>
<td>£8.75</td>
<td>£11.00</td>
<td>£13.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17" x 5 1/2" x 2 1/4"</td>
<td>£11.00</td>
<td>£13.75</td>
<td>£12.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.R.O. DYNAMICS LIMITED, Westmorland Road, Kingsbury, London NW9 9RR. Telephone: 01-204 7220. Telex: 9235477

WWW - 063 FOR FURTHER DETAILS
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4313</th>
<th>U4315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity D C</td>
<td>20,000 o.p.v</td>
<td>20,000 o.p.v</td>
</tr>
<tr>
<td>Sensitivity A.C.</td>
<td>2,000 o.p.v</td>
<td>2,000 o.p.v</td>
</tr>
<tr>
<td>D.C. Current</td>
<td>60A-1.5A</td>
<td>50A-2.5A</td>
</tr>
<tr>
<td>A.C. Current</td>
<td>0.6mA-1.5A</td>
<td>0.5mA-2.5A</td>
</tr>
<tr>
<td>D.C. Volts</td>
<td>75V-2000V</td>
<td>75mV-1000V</td>
</tr>
<tr>
<td>A.C. Volts</td>
<td>15V-600V</td>
<td>150V-600V</td>
</tr>
<tr>
<td>Resistance</td>
<td>1K-1M</td>
<td>300(2), 500(2)</td>
</tr>
<tr>
<td>Capacitance</td>
<td>0.5uf</td>
<td>0.5uf</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1.5% D.C.</td>
<td>2.5% D.C.</td>
</tr>
<tr>
<td>Price complete with pressed steel carrying case and test leads</td>
<td>£10.50</td>
<td>£10.50</td>
</tr>
<tr>
<td>Packing and postage (U.K.)</td>
<td>£1.50</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

TYPE U4324

D.C. Current	0.06-0.6-6/600mA-3A
A.C. Current	0.3-3-30-300mA-3A
D.C. Voltage	0.01-2-200-200V
A.C. Voltage	0.01-2-200-200V
Resistance	500-500-5000
Accuracy	DC 2.5%, AC 4% (of F.S.D.)
Price complete with test leads and fibreboard storage case	£9.50
Packing and postage (U.K.)	£1.20

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity	20,000 o/p/v
Voltage ranges	2.5-1000V A.C / D.C
Current ranges	0.05-50mA A.C / D.C
Resistance	5(1-1M)
Accuracy	1/5 F.S.D.
Oscillator output	1kHz 50/50 squarewave
PRICE, in carrying case, complete with leads and manual	£6.00
Packing and postage (U.K.)	£1.00

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

Sensitivity	16.7000V / V D.C. / 3.3000V / V A.C
Current	0.06-0.6-6-60-600mA D.C. / 0.3-3-30-300mA A.C
Voltage	0.1-1.5-10-150-300-900V D.C
Resistance	1.5-6-30-150-300-750V A.C
Transistors	Collector cut-off current 60mA A max
Collector current gain 100-350 m² range	
PRICE, complete with steel carrying case, test lead, battery and instruction manual	£9.50
Packing and Postage (U.K.)	£1.50

This offer is valid only for orders accompanied by remittance which should include delivery charges as indicated and 15% VAT on the total.

Our 1980 catalogue/price list of valves, semiconductors and passive components is available. Please send your copy for £0.60 for your copy.

WW — 043 FOR FURTHER DETAILS

CB RADIO ACCESSORIES

The largest distributors of CB accessories in the UK.

Come and see the biggest and best selection of CB radio accessories including:

- SWR METERS including HANSEN
- MICROPHONES by TURNER-K40 G.C.ELECTRONICS
- SUPPRESSION EQUIPMENT PLUS MUCH MUCH MORE
- ANTENNAS by HY-GAIN SIRTEL & HMP
- NV.RAMA CORPORATION SA

Mura Electronics (UK) Ltd.,
79 Church Road, Hendon, London NW4
Tel: 01 203 5277/8

WW — 086 FOR FURTHER DETAILS
Toroidal transformers have only half the weight and height of their laminated equivalents and are appreciably more efficient. Fields of radiation are far more restricted. Having our own manufacturing division, we are able to offer 25 types in a useful range of outputs at competitive prices. A 240VA 15s + 110V + 140Vpac FREEPOST is supplied with each transformer.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VA</th>
<th>SECONDARY RMS VOLTS</th>
<th>SECONDARY RMS CURRENT</th>
<th>DIMENSIONS DIA x HT</th>
<th>WEIGHT KG</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X010</td>
<td>50</td>
<td>6 + 6</td>
<td>2.04</td>
<td>70 x 40mm</td>
<td>0.9</td>
<td>EACH £5.40 + £1.10 PA & 30% VAT</td>
</tr>
<tr>
<td>2X011</td>
<td>75</td>
<td>6 + 9</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2X012</td>
<td>100</td>
<td>12 + 12</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2X013</td>
<td>125</td>
<td>15 + 15</td>
<td>4.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2X014</td>
<td>150</td>
<td>18 + 18</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2X015</td>
<td>200</td>
<td>22 + 22</td>
<td>6.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2X016</td>
<td>250</td>
<td>25 + 25</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X010</td>
<td>80</td>
<td>6 + 6</td>
<td>2.04</td>
<td>90 x 30mm</td>
<td>1.0</td>
<td>EACH £5.76 + £1.20 PA & 30% VAT</td>
</tr>
<tr>
<td>3X011</td>
<td>90</td>
<td>6 + 9</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X012</td>
<td>100</td>
<td>12 + 12</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X013</td>
<td>150</td>
<td>15 + 15</td>
<td>4.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X014</td>
<td>200</td>
<td>18 + 18</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X015</td>
<td>250</td>
<td>22 + 22</td>
<td>6.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X016</td>
<td>300</td>
<td>25 + 25</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- For 110V Primary please insert 0 in place of X in type number.
- For 230V Primary please insert 1 in place of X in type number.
- For 240V Primary please insert 2 in place of X in type number.

Example 120VA 240V 15s + 110V + 110Vpac FREEPOST

Types to customer specification can be supplied to order in quantity. Enquiries invited.

Radio Shack Ltd for Drake

Ham Bands with 1-30 MHz receive with built-in 150 MHz frequency counter plus option of 0-1 MHz receive and/or any transciving application 1-830 MHz

Radio Shack Ltd

For Communications equipment including Trio products and Trio testgear.

We are situated just around the corner from West Hampstead Underground Station (Borough Line). A five minute walk away in West Hampstead Midland Region station and West End Lane on the Broad Street L1. We are on the following Bus routes 28, 59, 159. Hours of opening are 9.5 Monday to Friday. Closed for Lunch 1.2. Saturday we are open 12.30 only. World wide exports.

DRAGHE + SALES + SERVICE

Radio Shack Ltd

188 Broadhurst Gardens, London NW6 3AY

Giro Account No. 588 7151. Telephone: 01-624 1734

WW — 025 FOR FURTHER DETAILS
Around the world some thousands of radio stations are sending signals. If you're receiving, this standard guide will tell you who's where. It lists stations broadcasting in the long, medium, short wave and vhf bands, dealing with them by frequency, geographical location and alphabetical order. Sections are helpfully cross referenced. The Wireless World Guide to Broadcasting Stations is the eighteenth edition of a publication which has sold over 270,000 copies. In addition to the stations data, it includes much useful information on radio receivers, aerials, propagation, signal identifications and reception reports.

£3.25 inc. postage.

To: General Sales Dept., Room CP34
Dorset House, Stamford Street, London SE1 9LU

Name: ________________________
(please print)
Address: ______________________

Registered in England No. 677128
Registered Office: Dorset House, Stamford Street, London SE1 9LU
SHARP MZ80K

- Z-80 based CPU *4K bytes monitor ROM
- Internal memory expansion up to 48K bytes of RAM
- 14K extended BASIC (occupies 14K bytes of RAM)
- 10” video display unit — 40 characters x 25 lines
- 80 x 50 high resolution graphics
- 78 key ASCII keyboard alphabet (capital and small) plus graphics
- Fast, reliable cassette with tape counter — 1200 bits/sec.
- 50 pin universal BUS connector for system expansion-printers, floppy discs, etc.

FROM

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine code tape and manual</td>
<td>£19.00</td>
</tr>
<tr>
<td>Assembly code tape and manual</td>
<td>£45.00</td>
</tr>
<tr>
<td>Sharp monitor Listing (fully commented)</td>
<td>£15.00</td>
</tr>
<tr>
<td>Sharp basic manual</td>
<td>£7.00</td>
</tr>
</tbody>
</table>

MAIL ORDER & CALLERS: 40 Bartholomew Street, Newbury, Berks. Tel: 0635 30505.
CALLERS ONLY: Mersey House, 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: (061) 491 2290.
CALLERS ONLY: 1st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 021 707 7170.
TERMS: Official Orders (min. £10) Access & Barclaycard welcome. Please add 15% VAT. Send for book list & components/kits catalogue.

8300 RM PRINTER

- 80/132 ch. per line (switchable)
- 125 c.p.s.
- 2K Buffer
- V24 RS232/Current Loop interface
- Speed switchable between 110-9600 baud
- Double width char. available under software control
- Sprocket feed
- 7 x 9 dot matrix
- Paper width: From 4.5” to 9.5”

PRICE £525

Industrial Heavy Duty Heat Guns

FOR SHRINK TUBING — SURFACE DRYING — SOLDERING ETC.

- Fast convenient heat source
- Continuously rated
- Meshed nozzles to prevent entry of debris into element
- Elements easily replaced
- All spare parts available

Model 10009

Rugged Ultra light plastic case weighs only 1.75 lbs.
Three snap-in interchangeable nozzles to give different temperatures 500-650-800°F.
Silent in operation. Will free-stand on bench.

Model VT752

Electronic Temperature Control ambient to 750°F.
Hobust Diecast Casing Bench Stand with 90° rotation.
Double-jacketed nozzle for cool running.

TELEPHONE FOR A FREE DEMONSTRATION

Eraser International Ltd. Unit M, Portway Industrial Estate, Andover, Hants, SP10 3LU
Tel: Andover (0264) 51347/8 Telex 477291
WASP SYNTHESISER

DREAM PLANT ELECTRONICS

IN ASSOCIATION WITH ELECTRONIC DREAM PLANT LIMITED

PRESENT THE FAMOUS DIGITAL WASP SYNTHESISER

NOW AVAILABLE IN KIT FORM FOR ONLY

£149.50, including VAT + P&P

FEATURES INCLUDE:
- TOUCH SENSITIVE DIGITAL KEYBOARD
- 2 OSCILLATORS
 - CONTROL OSC. WITH RANDOM SAMPLE & HOLD
 - WHITE NOISE
- FULLY COMPREHENSIVE 3 BAND FILTER
 - WITH FREQUENCY & Q CONTROLS FOR
 - LOW/BAND/HIGH PASS
- 2 ENVELOPE GENERATORS WITH
 - REPEAT & DELAY CONTROLS
 - OUTPUT JACKS TO CONNECT TO
 - OTHER WASPS USING A SIMPLE TO
 FOLLOW CODE FOR CONNECTION TO
 - ANY INTERFACED MICROPROCESSOR,
 - BUILT IN SPEAKER & 9 VOLT ADAPTOR INPUT
 - LINE & HEADPHONE OUTPUTS
- THIS SYNTHESISER IS ENTIRELY SELF-CONTAINED
 - IN A TOUGH PLASTIC CASE COMPLETE WITH
 - BATTERY COMPARTMENT FOR SIX 'C' SIZE BATTERIES

THE COMPLETE KIT COMES WITH AN EASY TO
FOLLOW ASSEMBLY GUIDE AND PLAYING MANUAL

ID: DREAM PLANT ELECTRONICS
 RED HABBS,
 STUNESFIELD ROAD,
 COMBE-ON-OXFORD OX7 2ER

PLEASE SEND ME WASP SYNTHESER KITS
AT 149.50 EACH INCLUDING VAT & P & P.
(£ 5 EACH FOR ORDERS OUTSIDE D.G. & NORTHERN IRL.)

PLEASE SEND ME FREE INFORMATION BROCHURE(S)

(PLEASE ENCLOS S.A.E.)

NAME ____________________________
ADDRESS __________________________
ACCESS/BARCLAYCARD NO: __________

PLEASE MAKE CHEQUES PAYABLE TO 'DREAM PLANT ELECTRONICS'
AND ALLOW 28 DAYS FOR POSTAGE.

WWW.AMERICANADIOHISTORY.COM
The finest amplification kits from Crimson Elektrik

CPR 1 — THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superb quality of the CPR 1 is probably in the disc range. The overload margin is a superb 40dB; this together with the high screening ensures clean top even with high output cartridges tracking heavily modulated records. Common mode distortion is eliminated by a unique design. RIAA is accurate to 1dB; signal to noise ratio is 70dB relative to 3.5mV. Interceptors operating at 0.005% at 30dB overload 2kHz. Following the stage is the hi-fi gain/balance stage up to bring tape, tuner, etc., up to power amp. Signal to noise ratio 86dB, stowlate 3V/s. T.H.D. 0.02%, 2kHz-20kHz at 0.005%. A further point is that the flat response is maintained throughout the range. The CPR 1 is one of the most versatile of our kits and is available at a very moderate price. It is supplied with full instructions, complete with pre-cut heatsinks and metalwork, and our amp modules are known for their reliability. CPR 1 is available as a kit with comprehensive instructions, at £40.50. CPR 1 is a superb upgrade to our earlier CPR models. CPR 1 has been proved a leading instrument manufacturers offer. CPR 1 incorporates an improved subjective quality which proves that advanced technology can offer improved subjective qualities which prove to the discerning listener that our earlier CPR models were ahead of the curve.

Power Amplifier Kit. The kit includes all metalwork, heatsinks and hardware to house any two of our amp modules plus a power supply. It is contemporary styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours. Pre-amp kit

This includes all metalwork, pots, knobs, etc., to make a complete pre-amp with the CPR 1 (S) module if required.

NEW ISSUE 5

Power Amplifier Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR 1</td>
<td>£38.80</td>
</tr>
<tr>
<td>CPR 2</td>
<td>£38.80</td>
</tr>
<tr>
<td>CPR 3</td>
<td>£38.80</td>
</tr>
</tbody>
</table>

Power Supply Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR 1</td>
<td>£38.00</td>
</tr>
<tr>
<td>CPR 2</td>
<td>£38.00</td>
</tr>
<tr>
<td>CPR 3</td>
<td>£37.50</td>
</tr>
</tbody>
</table>

Pre-Amplifier Kit

<table>
<thead>
<tr>
<th>Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR 1</td>
<td>£24.00</td>
</tr>
<tr>
<td>CPR 2</td>
<td>£24.00</td>
</tr>
<tr>
<td>CPR 3</td>
<td>£23.50</td>
</tr>
</tbody>
</table>

Crimson Elektrik

1a STAMFORD STREET, LEICESTER LE1 6NL. Tel. (0533) 553508

U.K. — Please allow up to 21 days for delivery

Write for free literature or send 50p for application/user's manual.

WW — 060 FOR FURTHER DETAILS

CROPICO: A CERTAIN MEASURE OF PERFECTION

Crapico, established as one of Britain's leading manufacturers of precision electrical measuring equipment, offers a wide range of instruments which have been proved for accuracy and performance throughout the world.

Resistance Boxes

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£45.00</td>
</tr>
</tbody>
</table>

Resistance Standards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£45.00</td>
</tr>
</tbody>
</table>

D.C. Voltmeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Resistance Bridge Standards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£50.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£45.00</td>
</tr>
</tbody>
</table>

D.C. Potentialmeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Thermocouple Standards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Thermocouple Switches

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Pi 100 Switches

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Pi 100 Simulators

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR2</td>
<td>£45.00</td>
</tr>
<tr>
<td>CPR3</td>
<td>£40.00</td>
</tr>
</tbody>
</table>

Cropico - Britain's leading manufacturer, exporter and importer of precision electrical measuring equipment.

Request full details — Visitors Welcome

CROPICO LTD., Hampton Road, Croxton CR9 2RU

Telephone: 01-684 4025 and 4094

Cables: CROPICO-CROYDON

Telex: 945632 CROPICO G

WW — 037 FOR FURTHER DETAILS
of research...

"on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

STETOClip
JUNIOR 60 HEADSET

STETOClip
LIGHTWEIGHT HEADSET

SENIOR
STETOClip
HEADSET

STETOMIKE BOOM
MICROPHONE HEADSET

STANDARD &
SUB-MINOR
EARPHONES

PLASTIC
EARHANGERS

DANAMIC FIDELITY
EARSET

STETOTUBE
HEADSET

2.5 mm and 3.5 mm
JACK PLUGS &
SOCKETS

DANASOUND
HEADSET

DANASONIC
INDUCTION AUDIO
LOOP RECEIVER

SUBMINIATURE
SWITCHES
Topvalue test equipment from TANDY

LCD DIGITAL MULTIMETER.
Low-cost hand held digital multimeter with a full 3½ digit LCD display, 0.5% basic accuracy, auto polarity operation, 10 Mohm DC input impedance. Reading to ±1999.

LOW-COST LCD MULTIMETER
A portable, compact sized multimeter with a full 3½ digit LCD display, Auto polarity operation, low battery indicator, 10Mohm Input impedance.

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8MHz version of last year's winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

COMPONENTS AND PARTS

<table>
<thead>
<tr>
<th>CAT No.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>276-032</td>
<td>LED Material Detector Probes</td>
<td>4 for 69p</td>
</tr>
<tr>
<td>276-033</td>
<td>LED Material Detector Probes</td>
<td>2 for 48p</td>
</tr>
<tr>
<td>276-034</td>
<td>LED Material Detector Probes</td>
<td>2 for 59p</td>
</tr>
<tr>
<td>277-003</td>
<td>12V DC Power Supply Digital Lock-In Amplifier</td>
<td>£17.52</td>
</tr>
<tr>
<td>276-0910</td>
<td>Power Transformer 220V - 220V</td>
<td>40p</td>
</tr>
<tr>
<td>276-1373</td>
<td>Power Transformer 220V - 220V</td>
<td>50p</td>
</tr>
<tr>
<td>276-1363</td>
<td>10 - 200 Hz Sine Wave</td>
<td>81p</td>
</tr>
<tr>
<td>276-1364</td>
<td>10 - 3 Mode Sine</td>
<td>81p</td>
</tr>
</tbody>
</table>

PRICE

- **53-19**
- **39-93**
- **137-36**

TANDY DEALER

The largest electronics retailer in the world. Offers subject to availability. Instant credit available in most areas.

OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

WW—134 FOR FURTHER DETAILS
ELECTRONIC TEST AND MEASURING EQUIPMENT

SEND FOR THE RENT BOOK

OUR NEW 1980 CATALOGUE GIVES YOU 3 TIMES MORE CHOICE OF EQUIPMENT THAN ANY OTHER RENTAL COMPANY IN EUROPE.

LIVINGSTON HIRE 01-267 3262

No.1 in Europe — by any measure
Associate companies in West Germany, Benelux, France and Sweden
Is your name last on the Electrical Times circuit?

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events & new products.

Regular features are included on: contracting & installation, repair & maintenance, distribution plant & operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An annual subscription costs £10.00 - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit.

To: Subscription Dept., IPC Business Press (SD) Ltd., Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH, England.

Please send me ELECTRICAL TIMES every week for a year. I enclose cheque/P.O. for £10.00 (inc. postage) payable to IPC Business Press Ltd.

Name
Address

Position
Company
World-wide conversation piece

... for local, national, international and intercontinental systems.

Transtel's ASR teleprinter and data terminals are fitted with the proven memory package, providing easy editing and storage facilities. Transtel's printers are small, reliable and quiet, and are built to withstand heavy-duty operation. Many thousands are in service with PTT's and major international carriers, as well as in many large private-wire systems. Manufactured in the UK, technical support and service facilities are available nationwide.

- Microprocessor control.
- High quality dot matrix printout.
- Full message editing, up to 8k memory.
- Speeds up to 30 cps.
- 5000 hr MTBF, 300 million characters.
- Telex or Private Circuit operation.

Transtel Communications Limited,
Mill Street, Slough, Berkshire SL2 5DD, England
Telephone: Slough (0753) 26955, Telex: 849384.
IDEAS + IDEALS

An ideal cartridge would weigh nothing. Its stylus would have zero effective tip mass and infinite compliance. An ideal arm would have zero effective mass and infinite compliance. These are properties of a ray of light and movement towards this goal has continued since the earliest days of reproducing machines with their massive sound boxes and tone arms.

The extent of departure from these ideals is the measure of unwanted mechanical energy reacted in the record, turntable and pick-up arm.

The effective mass of the Series III precision pick-up arm is a mere 5.25 grams and it will deflect under a force of less than 20 milligrams applied at 9″ radius.

A pick-up arm has physique but not personality. It is as happy with a moving coil as a moving magnet or moving iron but mass and compliance are another matter.

With a high mass arm you are permanently committed to a low compliance cartridge, with a Series III you always have freedom of choice. Its mass can be raised by the addition of a neat weight which we can supply to place in the shell and lowered again when desired by removing it or using another interchangeable CA-1 carrying arm.

Low compliance cartridges can be thought of as high compliance cartridges in an earlier stage of development. History and design logic establishes this as progress, anticipate it with

SME

the best pick-up arm in the world

Write to Dept 0659
SME Limited, Steyning
Sussex, BN4 3GY
England
The AVO RM290 is a bench type megohmmeter with a resistance range that goes up to $10^4 \Omega$, making it ideal for those applications where there is a need to measure the electrical resistance of non-conducting materials...accurately!

You can use the RM290 for tests on insulating components in electronic assemblies or on capacitor dielectrics. Resistance measurements can be made at test voltages of 100, 250, 500, or 1000 V. Readout from the single resistance scale on the meter is direct, irrespective of the test voltage selected.

You'll find the AVO RM290 a great asset. Get in touch with us today and we'll let you have the full facts.

You'll never meet a better meter

WW—120 FOR FURTHER DETAILS

AVO Limited, Archcliffe Road, Dover, Kent, CT17 9EN
Tel: 0304 202620 Telex: 96283

Audix Limited, Station Road, Wenden, Saffron Walden, Essex CB11 4LG
Tel: Saffron Walden (0799) 40888; Telex: 817444
Peace and quiet

The quietest sound the ear can hear moves the eardrum about 10^{-9} cm, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*

But the distortion contribution from a QUAD 405 amplifier in normal use (say 85dBA) moves the eardrum less than this amount:

Perhaps sitting in a very quiet room at -100°C and without the music we might nearly hear them, but "'tis bitter cold."

For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd.
Huntingdon, PE18 7DB. Tel: (0480) 52561.

*Sensitivity is never made more acute by the presence of other sounds.

QUAD
for the closest approach
to the original sound

QUAD is a Registered Trade Mark
The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available. Many frequencies can be supplied from stock.
Wireless Division

Radio & TV Service Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZX61</td>
<td>0.18</td>
</tr>
<tr>
<td>BZY88</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Special Capacitors

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRC 3000/1000</td>
<td>0.72</td>
</tr>
<tr>
<td>BRC 150/150/350V</td>
<td>1.70</td>
</tr>
<tr>
<td>BRC 150/150-150-150/350V</td>
<td>2.00</td>
</tr>
<tr>
<td>BRC 150/150/150/350V</td>
<td>2.30</td>
</tr>
</tbody>
</table>

Integrated Circuits

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E024</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Ex-stock items dispatched same day

TERMS OF BUSINESS:

C.W.O. Postage & packing 50p per order

All prices inclusive of VAT.

Elocamatic Limited

Kirktownfield Road, Neilston, Glasgow, G78 3PL

Telephone 041-881-5825 Telex 77241
The 'System One' series of micro computers is probably the most flexible series of micro computers available today. Flexibility of hardware coupled with a wide range of software, allows the user to choose the most cost effective hardware/software configuration to solve his/her problem.

HARDWARE CONFIGURATION

- Internal storage from 32 to 64K
- 1 or 2 single-sided 5 1/4" or 8" floppy disks
- 1 or 2 double-sided 5 1/4" or 8" floppy disks
- Support for most popular makes of printers, 1 or 2 terminals.

SOFTWARE FROM

- FORTRAN Compiler
- BASIC Compiler
- STRUBAL Compiler
- LABEL BASIC
- Assemblers
- PILOT
- Text Editor
- Text Processor
- Basic interpreter both sequential and Random Access Versions
- Plus full development and debugging software

You even have a choice of two Operating Systems: SSBDOS or FLEX.

With all this to choose from you might begin to think you could not afford it — well a 32K storage system one with dual-single sided 5 1/4" floppy disks, SSBDOS and a basic interpreter would cost you £1.650.

If you require a terminal as well, the above system together with the ACT-1 keyboard and 9" video monitor would cost you £1.970.

Call SEED at our Brownhills office for further details of demonstration.

STRUMECH ENGINEERING ELECTRONIC DEVELOPMENTS LTD.

Portland House, Coppice Side, Brownhills, Walsall
West Midlands. Telex 335243 SEL. Tel. No. 054-33 78151

WW — 111 FOR FURTHER DETAILS

OLSON INSTRUMENT CASES

- 8 Different sizes
- Wall mounted in 4 sizes

- 24 Different sizes
- Advanced design
- High Quality
- Rigid Construction
- Low Price

Panels and cases punched to customer’s requirements at very low cost. Please write for details.

OLSON ELECTRONICS LTD.

Factory No. 8, 5-7 Long St., London E2 8HJ
Tel. 01-739 2343

WW—114 FOR FURTHER DETAILS

FYLDE TRANSUDER and RECORDER AMPLIFIERS and SYSTEMS

- Reliable high performance & practical controls
- Individually powered modules—mains or dc option
- Single cases and up to 17 modules in standard 19" crates
- Small size—low weight—realistic prices.

FYLDE Electronic Laboratories Limited.

49/51 Fylde Road, Preston
PR1 2XQ
Telephone 0772 57560

WW—129 FOR FURTHER DETAILS
TYPE 80 SERIES UNITS

RF PREAMPLIFIERS, FREQUENCY CONVERTERS
SIGNAL SOURCES, ETC.

TYPE 8025 STRIPLINE RF PREAMPLIFIER

TYPE 8026 STRIPLINE RF CONVERTER

TYPE 8027 RF PREAMPLIFIER

TYPE 8028 RF CONVERTER

TYPE 8029 WIDEBAND RF PREAMPLIFIER

TYPE 8030 VMOS LINEAR POWER AMPLIFIER

TYPE 8031 VMOS LINEAR POWER AMPLIFIER

TYPE 8032 HIGH STABILITY PHASE-LOCKED SIGNAL SOURCE

TYPE 8033 UHF TELEVISION PREAMPLIFIER

TYPE 8034 100 MHz - 500 MHz WIDEBAND MIXER

TYPE 8035 10 MHz - 1500 MHz WIDEBAND MIXER

TYPE 8036 MASTHEAD WEATHERPROOF UNIT

TYPE 8037 POWER SUPPLY/OUTPUT SPLITTER UNIT

RESEARCH COMMUNICATIONS LTD.
43 Court Street, Faversham, Kent, ME13 7AL
ENGLAND

RESEARCH COMMUNICATIONS EUROPE
Germeville, Oradour, 16140 Aigre
FRANCE
Tel: 010 33 (45) 93 36 39

WWW—123 FOR FURTHER DETAILS

HAMEG

OSCILLOSCOPES

TOP PERFORMANCE,
QUALITY AND VALUE

HM 307 £149
Single Trace DC-10MHz
Plus Built-in Component Tester

HM 312 £250
Dual Trace DC-20MHz
5mV/cm, Full X, Y, 30MHz
Trigger, plus TV Trigger

HM 412 £350
Dual Trace DC-20MHz
2mV/cm, X-Y, 40MHz Trigger,
plus Sweep Delay

HM 512 £580
Dual Trace DC-50MHz
5mV/cm, X-Y, 70MHz
Trigger Sweep Delay, plus Single
Shot, Sweep Delay and After Delay
Trigger

HM 812 £1,458
Dual Trace as per HM 512 plus
Storage, Automatic Storage and
Variable Persistence

Prices U.K.
List Ex. VAT

For
FULL DETAILS and
DISTRIBUTOR LIST
contact:

HAMEG LTD.
74-78 Collingdon St.
Luton, Beds LU1 1RX
Tel. (0582) 413174
VIDEO TAPE RECORDERS, Philips type LOL1000. We have a small stock of these items. standards mains, 1/P approx. ext. size with cover 20 x 14 x 8” reel-to-reel type supplied with one reel of tape, copy of service h/bk. Good cond. complete, untested. £185.

RECEIVER ASS., small HUf guard chan. Rx on 243 Mc/s, dual conversion with crystals. IFs 20.5 and 2 Mc/s 11 min. valves with o/p stage reqs. ext. HT and LT. £165.50.

AUDIO TEST SET CT373, bench test sets. 3-function Audio Osc 17c to 170Kc AF VTM and Dist. meter. Fuller spec. on request. 240v/1P. new condition. £65.

SELECTIVE CALLING UNITS Rx and Tx, preset 4 digit codes. Will only respond to code set on front of unit by 3 rot switches. 240P/1P transis. New condition with circons and notes. £22.

MOTOR & VARIAC 115c 15 amp variac driven by 115v motor. 50/60c. Good condition. £35.

H.D. ROT SWP ST 250V ACDC. 100 amp. £15.

HELIPOT DIALS, two type Beckman 15 Tr. £2.50, and Colvern 10Tr £1.50. Also 30 or 100K pots, 50p ea.

H.F. TRANS/RX small Army unit Rx tuners 2.5 to 20Mc/s in 8 bands 7 min. valves inc. RF stage 1N5 BFO o/p for phones. Tx section crystal controlled 2-5/20Mc/s, two valves, 15/25 watts. CW only, built-in morse key, RF O/P meter and Ae loading swt. set inc. mains P.U. 30 x 9 x 14. Cm also lupplex-72 DC P.U. Inventor, connecting cables. H/P, rad/techn. book, tested. £54. Also for these Hand Gen sets with accts. 110v 40/80x 100c/s. £25.

HIGH RESISTANCE test set, mains operated, will measure up to 200 million mgs with 10v test voltage or 3000 with 10v. work by measuring time taken to charged conds of known value. stopWatch readout min. inc. 100K. in transit cases. £35.

SMALL Rx and TX ass. battery-operated 50Mc/s 2 to 8 Mc/s with 5 min. valves inc. BFO 1x 2/8 Mc/s crystal cont. about 1 watt, power req. 135v and 1.5v with circons. £13. Tx £5.50.

POWER UNITS CT379 var O/P to 500v DC 100Ma up to 350v to 6.2v AC ct 3 amp with Volt/MA meter, tested with circons. £20. Also 0 to 500v 150Ma stab 3.5 amp. 19” rack mounting with meter. £35. Also small stab 135v 20Ma 6.3v 1 amp 240v 1/P. Next unit made for BC221 range of fraud meters. £15.

UPM-6 IFF Test Sets. multi-function 115v 50c 1/P, comprises W.M. Sig. Gen. demod. unit, peak reading voltmeter nom. operating freq. 960 to 1150Mc/s with circons. £/bk. sample cat. charts, leads, etc. Fuller disc. on list. £45. We can supply from these Sig. Gen. ass. with vari atten and valve. £12.50. Wavemeter Ass. will go to 1.35 Gr. £8.50. Demod. Ass. with det. and 50 ohm 5w load. £4.50. Rx Preselector 4-section tunes. 1080/1130Mc/s with 1N21 New. £4.50.

DEVIATION METER, Army No. 22.5 to 100Mc/s in 8 bands. Dev. ranges 9/25/75Kc FSD mains 1/P with conn. in transit case £35.

POWER SIGN. GEN. 240v 1/P VF0 osc. 1 to 12Mc/s in 3 bands RF O/P nom. 20 watts into 70 ohms. This can be varied over wide range by variac control of PA plate voltage, anode current and O/P voltimeters fitted. Good cond. £45.

MORGANITE NON IND. carbon res. 150 ohm 2vstat. 40 watts, size 6 x 11” with mt clips. 3 for £4.50.

RF meters. 3” dia. 6 amps. £5.50.

METERS, matching pair. 0 to 35v and 0 to 35 amps. DC. 4” dia. £10 pair.

MONITOR UNIT metering unit for Tx power amper. comprises 7 MC meters, all 4” dia with FSDs as follows all DC, 35V, 5 amps. 25mA 100Ma. 600V, 250Ma and 2 5Kv. All on 19” panel. New cond. £25.

TRANSFORMER AUTO/200/250v. 3 taps, nom. 115V 560 watts, fully enclosed with conn. size 8 x 5 x 4”. New American. £13.50.

AMP MODULE, size 14 x 5 x 2”. with mains trans. with two seesiggin + 8 — 20v DC stab 100Ma eq. Good selection of 1% res. trim pots etc. DC coupled with swt. gain to 500. £65.50.

RECORDING TAPE, Ampex 1/4”. Audio type 3600 ft. on 10½” grey plastic spools. Mil spec. new. £7.50.

H.D. BLOWERS, 240v. single ended outlet 2¾” x 3½”, new, unused. £11.50.

X BAND NOISE SOURCE with noise tube. W.G 15 WG reps 116v DC 500Ma int. rated. in fitted case. £5.50.

The following available as one lot for callers. Four assorted 16mm Proj. some sound by RCA B H seven ass. slide proj 2x loop proj. Fair cond. Price £230 the lot.

One only PHILIPS CCTV system transis. with high grade lens. c/u 19” mon. cables. etc. £144. Collect.

Above goods are ex. equip unless stated new. S.A.E. for enquiry or 2 x 10p stamps for list 24/1. Price includes carriage and V.A.T.

A.H. SUPPLIES
122 HANDSWORTH ROAD, SHEFFIELD, S9 4AE
TEL: 444278 (0742)
WIRELESS AUDIO
The firm for Speakers

HI-FI DRIVE UNITS

WILMSLOW AUDIO

PA GROUP & DISCO UNITS

WILMSLOW AUDIO

SPAKER KITS

WILMSLOW AUDIO

WIRELESS WORLD, JUNE/JULY 1980

127

HI-FI DRIVE UNITS

WILMSLOW AUDIO

The firm for Speakers

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625 529599 for MAIL ORDER & EXPORT OF DRIVE UNITS, KITS, ETC.

Tel: 0625 526213 (SWIFT OF WILMSLOW) FOR HI-FI & COMPLETE SPEAKER SYSTEMS.

www.americanradiohistory.com
The SBC-100 Board is additionally suited for industrial and process control as its all-in-one design reduces secondary board requirements. The eight thousand bytes of PROM/ROM sockets (2716) provided on-board allow the SBC-100 to perform most complex control functions. The Z-80CTC can function as a vectored interrupt controller to prioritize the interrupts when necessary. When desirable, the internal CTC interrupts may be prioritized with the external interrupts in order to create an interrupt daisy chain between various boards within the system. The SBC-100 is jumper-selectable to begin execution after reset at any 4K boundary.

Features
- 1024 Bytes of Random Access Memory
- Provision for up to 8K Bytes of PROM On Board using 2716 EPROM
- Auto Start on Reset to any 4K Boundary
- Parallel Input and Output Ports
- Z80 Central Processing Unit
- Four Channel Counter/Timer (Z80-CTC)
- Software Programmable Baud Rate Generator
- Serial Input/Output Port with Asynchronous and Synchronous Operation
- Optional Vectored Interrupts
- No Front Panel Required for Operation

OUR PRICE:--
£159.00 + VAT (Kit Form)
£208.00 + VAT (Built + Tested)

For further information on this board, or any other boards in our comprehensive range, ie:— Expanderam I I, Versafloppy I + II, VDB 3024, Z80 Starter Kit etc.
Please write or telephone.

UK Distributor:
AIRAMCO LTD,
Unit A2, 9 Longford Avenue,
Kilwinning Industrial Est, Kilwinning,
Ayrshire KA13 6EX
Tel: 0294 57755 Telex: 778808

WWW — 109 FOR FURTHER DETAILS

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER
MODEL 1900A

- Autoranging in both frequency and period measurement modes
- Wide frequency range—0 Hz to 80 MHz
- Low frequency—25 kHz (Typically 1 kHz)
- True digital display providing trace suppression, automatic calibration and operation
- Universal battery supply including 2 hours continuous operation
- Autonomous or auto gate timing function switched
- Four manually selectable gate times providing resolution to 1 Hz
- Event counting to 10^9 with overflow indication
- Amplitude input conditioning with selectable 3 MHz low pass filter and alternate high pass filter
- Resolution gated with coinventor timing
- Programmable filter settings via software
- Testable with Fluke 2800A

£195.00 Carriage and insurance £3

RY900 EN
25,000 D.P.V.
AC, DC, 1000V 5000V
0.05% + 0.005%
 DC, Current 0.01%
 Magnetic field 0.005%
 Frequency 0.005%
 DC Voltage 0.005%
 Temperature 0.005%
 Reliability 99.9%
 Dimensions 6.5 x 6.5 x 2.0 in 202 x 165 x 51 mm
 Weight 0.4 lb
 £15.95 plus VAT

TMX5000 MULTITESTER
30,000 D.P.V.
AC, DC, 1000V
0.05% + 0.005%
 DC, Current 0.01%
 Probes included in kit
 DC volts 0 to 30 V
 DC milliamp 0 to 30 mA
 Resistance 0 to 100 M
 Temperature 0.005%
 Dimensions 6.5 x 6.5 x 2.0 in 202 x 165 x 51 mm
 Weight 0.4 lb
 £20.50 plus VAT

BENDIX MAGNETIC CLUTCH

£47.50 per unit

Electro-Tech Components Ltd.
364 Edgware Road, London, W.2. Tel: 01-723 5667
REALISM
4096 STAGE DELAY

New model SAD-4096 Bucket Brigade Delay Line offers:
- Delays of 250 mS to 1 mS
- Wide Dynamic Range 70 dB
- Full wave output
- No insertion Loss
- Up to 200 KHz Bandwidth

Typical Applications:
- Reverberation/echo effects
- Time Base Conversion
- Voice Scrambling/Pitch correction

For complete details on this broad line of standard delay lines and how they can improve your product and reduce costs, call your nearest RETICON field office now.

EG&G RETICON

5 THE COURTYARD, DENMARK STREET, WOKINGHAM, BERKS.
Tel. WOKINGHAM (0734) 788666. Telex: 847510

WWW - 106 FOR FURTHER DETAILS
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BAKER LOUDSPEAKERS

SPECIAL PRICES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SIZE</th>
<th>OMS</th>
<th>POWER</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJ 4</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>DECKHEU II</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>SUPER</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>AUDITOR</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>TWIN</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 50</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 100</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
</tbody>
</table>

BAKER 50 WATT AMPLIFIER

£69 Post £2

Ideal for small hi-fi's or as a power amplifier for smaller hi-fi's.

BAKER 150 WATT AMPLIFIER

£95 Post £2

Professional 8 ohm amplifier. Requires volume controls. Will mix with any normal commercial speakers.

FAMOUS LOUDSPEAKERS

SPECIAL PRICES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>WATTS</th>
<th>OMS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAS</td>
<td>100</td>
<td>4</td>
<td>£4.00</td>
</tr>
<tr>
<td>SEAS</td>
<td>250</td>
<td>4</td>
<td>£7.50</td>
</tr>
<tr>
<td>SEAS</td>
<td>500</td>
<td>4</td>
<td>£15.00</td>
</tr>
</tbody>
</table>

BAKER TWIN AXEON 6 inch dual cone loudspeaker. 8 ohm. £5.00 Post £1.50

CROSSTASTIVE CABLES. Two-way, 3-way etc. £15.00

WIRELESS WORLD, JUNE 1980

Baker loudspeakers and accessories.

BAKER LOUDSPEAKERS

SPECIAL PRICES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SIZE</th>
<th>OMS</th>
<th>POWER</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJ 4</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>DECKHEU II</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>SUPER</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>AUDITOR</td>
<td>12</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>TWIN</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 50</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
<tr>
<td>GROUP 100</td>
<td>12-15</td>
<td>4-8-16</td>
<td>Hi-Fi</td>
<td>£12</td>
</tr>
</tbody>
</table>

BAKER 50 WATT AMPLIFIER

£69 Post £2

Ideal for small Halls/PA systems, Discos and Groups. Two inputs.

BAKER 150 WATT AMPLIFIER

£95 Post £2

Professional 8 ohm amplifier. Requires volume controls. Will mix with any normal commercial speakers.

FAMOUS LOUDSPEAKERS

SPECIAL PRICES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>WATTS</th>
<th>OMS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAS</td>
<td>100</td>
<td>4</td>
<td>£4.00</td>
</tr>
<tr>
<td>SEAS</td>
<td>250</td>
<td>4</td>
<td>£7.50</td>
</tr>
<tr>
<td>SEAS</td>
<td>500</td>
<td>4</td>
<td>£15.00</td>
</tr>
</tbody>
</table>

BAKER TWIN AXEON 6 inch dual cone loudspeaker. 8 ohm. £5.00 Post £1.50

CROSSTASTIVE CABLES. Two-way, 3-way etc. £15.00

WIRELESS WORLD, JUNE 1980

Baker loudspeakers and accessories.
NEW KIT

5 WIRE BAND SHORT WAVE KIT. Bandspread covering 13 to 52 metre waves. Complete kit includes cases, microphones, test transmitters, headphones, etc. D.C. operated. Perfect kit for beginners. £9.95. Phone 01-742 6391.

SIREN OR SLEEPER
American Delta mechanical type. Works on 6 or 12 volt D.C. Price £2.85. Phone 01-624 2170.

CASSETTE PLAYER/RECORDER
With microphone, earphones and remote control, new from computer boards as well as for professional work. Price £3.58.

FRUIT MACHINE HEART
4 options - game, 10 cent machine, withx statistics for steering the wheels, with a note ingeniously you can defray your friends getting the `jackpot'. £9.95 - £4 cartridge.

DESOLDERING PUMP
Ideal for desoldering printed circuit boards from computer boards as well as to service work generally. Price £6.38.

4 CORE FLEX CABLE
With plug for telephone extensions, clock lights etc. 10 metres £2.10. 100 metres £15. Other multicore C.P.W.WAX.

HEADPHONE AMPLIFIER (STEREO)
With volume, tone and balance control by operation. As made up ready to go. Price £4.90.

MUGGER DETERRENT
A high note stethoscope, push button switch, plastic case and lanyard which will scare away any villain and bring help. £2.50 complete kit.

ELECTRONIC JIGSAW PUZZLE
One of the many things you can make with this microphone is a complete radio. £3.46.

SAFE BLOCK
Main block converter will save you valuable time. Features include: spring connectors, heavy plastic case and auto on and off switch. Complete kit £1.70 - 25p or made up £3.00 - 4ip.

VERISA DRILL
A 12 volt battery operated drill, not adaptable for normal circuit boards but will do all the job. Both size are standard and complete with all functioning and operating switches. Black & Decker and other mains drills available. 150 watts 1500rpm, 50mm. Price £18.75.

MISCELLANEOUS WAVEFORMS
Over 50,000 in stock in 250 AC working, with 3 altert components for power - 10 am. to 25p each or £10. 15 am. 50p or £30 per 1000.

MINIATURE MAGNETIC CIRCUIT BREAKERS
Guardian from short term. 1 amp, 2 amp, 5 amp, 10 amp, 15 amp and 25 amp types. All £3.20 each.

PLEASE NOTE: The "-" before the token amount shows the amount of VAT. The posting of an item is based upon the article costs to include both a form of a larger description. Details include: 10 600, 10 P.S.U. 2.50. BARCLAYCARD & ACCESS WELCOMED. Phone 01-683 1883.

TERMS: Cash: with order or before delivery. Orders under £10 must add 50p to offset postage and packing charges. BULK ENQUIRIES INVITED. PHONE: 01-683 1883. ACCESS & BARCLAYCARD ACCEPTED

MUFFLARD UNIFLEX
A new compact, variable rate muffler. Available in 1" and 2" sizes. Ideal for models, minis, light sports cars. For both exhaust and inlet. Complete kit includes: mufller, exhaust pipe, inlet pipe, clamps, etc. Price £2.50.

V-CORE NI-TO DRILL
Electronically changes speed from 10,000 to 20,000 rpm. Ideal for lacing, trimming, etc.

CONTROLL DRILL SPEEDS
Made up model. £1 00 extra

DUMMIE MICROPHONE
Size only "V" or "X" - 2" X 2" as snug enough for abugging device. Perfect for models, minis, etc. £1.50 per each. Phone 01-674 1883.

TRANSMITTER SURVEILLANCE
Two year guarantee but all transmission parts are to be purchased with the kit. Can be made in a variety - all electronic parts and circuit. £5.00. Phone 01-674 1883.

FITTINGS
All ideal for slacks and garden paraphernalia. Allow complete freedom of movement. Play through FM radio to tune in. £8.95.

CONSTRUCTOR'S SNIP!
A snip transformer with 230v mains primary. This will drop down to mains voltage with 120v/240v mains secondary. £2.50. Phone 01-995 8803.

BURLINGTON ALARM CONTACT KIT
Contacted labelled connection block, Heavenly wire, test switch and terminal, key control switch. Simplifies the whole installation. All you have to do is take wires to come in and out and to alarm. £5.00 - 50p. With complete instruction.

PRECISION MAINS OPERATED CLOCK
For only £1 50 - 25p. Sounds unbelievable, but what's the use if you can have it send your order right now. The clock which has large clock cases were made for the time. Suits the cell for use with their domestic cooker switch and are brand new and guaranteed. £1.00 - 50p.

15-0-15v = 2 AMP MAINS TRANSFORMER

25-0-25v = 750 MA MAINS TRANSFORMER
Make up kit. Operates ordinary primary and secondary winding on separate bobbin with fixing clips. £3.75 - 45p. Post 50p.

20 WATT MID-RANGE SPEAKER

10 WATT TWEETER
Made by Goodmans. 3.5. square. £4.10. £4.00. Post £3.00.

ROTARY SOLENOID
As an example we know that we have solenoids of the normal type for 12 volt D.C. This kit costs out of the box. £1.50. The supplied switch which has a rolling action. D.C. operated. £1.75 - 60p. Post £1.00.

FLUORESCENT TUBE INVERTER
For camping, wrapping, emergency lighting, illegal battery you can't fluoroqenic you will offer plenty of safety and economical. We offer Phillips inverters for 12v, 3 watts. Price £1.85. 6 watts. £1.95 only. 25 watts. £1.95. For these makes a ideal controller for the inverter. Price of adaptors kit £2.30.

LONG WAVE CRYSTAL RADIO
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

SHORT WAVE CRYSTAL RADIO
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

35 WATT CRYSTAL RADIO
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

SOUND AMP MAINS TRANSFORMER
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

30 WATT POWER AMPLIFIER
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

FIBRE OPTIC LIGHTING
This kit enables you to make the radio from scratch. Price £2.85 - 50p. Post £1.00.

RECOMMENDED KITS
All the kits are available from all our dealers. Phone 01-674 1883 for details.

www.americanradiohistory.com
Microprocessor board (Nascom 2)

4MHz Z80 CPU, TV or Video + 1200 baud Kansas City + Serial RS232 printer.

Keyboards

128 character ASCII plus 128 Graphics 2 in X 2 in ROM; free 16-way parallel port; BX BASIC; NAS SYS operating manual, 1280 built in routines.

Firmware & MOS ICs

Zap Assemblers (4, 1X8 EPROMS) £50 Nas Pen text editor (2, 1X8 EPROMS) £30

Floppy disc system

Double sided, double density 5¼ in disc giving 280k bytes formatted, including controller board/PSU/Housing and interconnects £480 Controller board £127 50. Second Disc £240 CP/M £30

System 80 housing

High strength GRP moulding.

Accepts 12 X 8 Nascom 2 CPU board, four 8 X 8 expansion boards, 85 incl frame interconnecting and motherboards.

Expansion Boards *(in kits)*

16K RAM £27 50 + 32K RAM £175 48K RAM £220 High Resolution Programmable Graphics £90 High Resolution Graphic colour add on £37 50 Colour Board Kit £140

All prices subject to VAT

COMPUTER KEYBOARDS

TAS1 56 key touch sensitive keyboard. All ASCII characters including control keys. Parallel output with snail 30ul lines. Keys cased in 3 colours to indicate function 18 V DC or 35 mA. 15” X 6” X 25” X 385” thick back glass encapsulated £45.50 + VAT

Star Devicess 65/2: 31 key touch sensitive keyboard. With numeric pad. All ASCII characters including control keys. Auto key repeat. Parallel output with snail 30ul lines. Indicator LED. Built in beeper with level control 5 V DC at 300 mA 15” X 7” X 25”. Gray case with white keys on blue £43 50 + VAT

Cardex 115 key ASCII keyboard. Commercial keyboard. 128 ASCII characters including control keys. Parallel output with snail 30ul lines. Indicator LED. Built in beeper with level control 5 V DC at 300 mA 15” X 7” X 25”. Black case with white keys on blue £39 25 + VAT

Ferranti — "SIZE 14 x 6 x 3" SLOPING FRONT

55 Key ASCII coded in steel case. Compatible with Plug and Cable with converter to T/T line levels. In good condition at only £25 + VAT P/P £20

CENTRONICS QUICK PRINTER

LIST PRICE £45.00 incl. VAT

OUR PRICE £39.95 incl. VAT

EXCLUSIVE TO HENRY'S 50% OFF MAKER'S PRICE

for

- Software selectable 20, 40 and 80 character, taking 120mm aluminium paper. 1 roll supplied
- TANDY PET
- NASCOM Centronics parallel data interface for Nascom Tandy etc.
- 240 wall mains input. ASCII character
- Paper feed and off switch selections. BELL signalling
- Weight 118 lbs. Size 17” X 12” X 6” 4 lb price £400.
- New boxed and guaranteed

POST PAID Price £195.00 + VAT

See Computing TODAY Recommendations

Match May issues

TANGERINE

Computer Kit Division

404 Edgware Road. London W2 1ED. England I.E.D. 01-402 6822

TANGENT DISTRIBUTORS

Computer Systems

Microcaton 65 Kit incl. VAT £79.35

Microcaton 65 Assembled, incl. VAT £90.85

Tanex (min. con) Kit, incl. VAT £49.45

Tanex Assembled, incl. VAT £60.95

Lower case pack incl. VAT £10.90

Chunky Graphics Pack incl. VAT £7.50

12 Way Keyboard incl. VAT £11.90

Mini-mother board incl. VAT £9.95

Complete Tangerine range available

NASCOM-2 MICRO-COMPUTER

FREE 16k RAM

IMPROVED MODEL

ONLY £325

+ VAT

IMMEDIATE DELIVERY

780A. 8 bit. This will run at 4 MHz but is selectable between 2 / 4 MHz.

On-board addressable memory 2K 2K Monitor — Nas-sys 1. 1K Video RAM (MK 4118) 1K work space / User RAM (MK 4118) (8K Basic McK 3600 ROM). 8K Static RAM + 2708E Pr.

Power Supply £29.50 + VAT

Microprocessors 2B0A. 8 bit CPU. This will run at 4 MHz but is selectable between 2 / 4 MHz. This CPU has now been generally accepted as the most powerful 8 bit CPU on the market.

INTERFACE

T.V. The tv peak to peak signal can drive a monitor directly and is also used to the on-board modulator to drive the domestic T.V.

I.O. On-board UART (68420) which provides serial handling for the on-board cassette interface or the RS232/20mA interface type.

The cassette interface a Kansas City standard at either 300 or 1200 baud. There is also a line option on the N1

The RS22 and 20mA loop connector will interface directly into any standard telemetry.

The input and output sides of the UART are independently switchable between any of the options — i.e. it is possible to have input on the cassette and output on the printer.

PIO — There is also a totally uncommitted Parallel I/O (MK 3881) giving 16 programmable I/O lines. These are addressable as 2 X 8 ports with complete handshake controls.

Documentation. Full constructional article is provided for those who buy a kit and an extensive software manual is provided for the monorom and Basic.

Basic. The Nascom 2 contains a full Z80 Microsoft Basic in one Rom chip with additional features like oex, doex, set-reset for simple programming.

PLAIN PAPER PRINTER

Fully built and housed in a stylish enclosure for just £325 plus VAT. Interfaced with all micro computers.

The Nascom IMP (Impact Matrix Printer) features:

- 60 lines per minute
- 80 characters per line
- 10 directional print buffers
- Automatic CR / LF
- 96 character ASCII set loaded
- Case T, A, E
- Accepts 9½” paper (tractor feeding)
- 5½” tractor feeding
- 6 baud rate from 110 to 9600
- External signal for optional synchronisation of baud and paper

IDEAL FOR WORD PROCESSING

NO MORE SAVING OVER A HOT SOILING IRON. THE NASCOM 1 IS NOW SUPPLIED BUSTY.

Britain's biggest small system is available fully complete for you to slot into your own housing for the individually low price of £140 plus VAT (kit price still only £125 plus VAT)

**12" X 8" PCB CARRYING 5LS / MOS packages. 16K Z80 MEMORY package and 33 TTL packages.

There is an on-board interface for UHF or unmodulated video and cassette or teletype.

The 4K memory block is assigned to the operating system, video display and Eprom option socket. Leaving a 1K user RAM.

The MPU is the standard Z80 which is capable of running a number of 15B software instructions including the 8008 code.

NASCOM IMP

COMPUTER KEYBOARD

TAS1 56 key touch sensitive keyboard. All ASCII characters including control keys. Parallel output with snail 30ul lines. Keys cased in 3 colours to indicate function 18 V DC or 35 mA. 15” X 6” X 25” X 385” thick back glass encapsulated £45.50 + VAT

Star Devicess 65/2: 31 key touch sensitive keyboard. With numeric pad. All ASCII characters including control keys. Auto key repeat. Parallel output with snail 30ul lines. Indicator LED. Built in beeper with level control 5 V DC at 300 mA 15” X 7” X 25”. Gray case with white keys on blue £43 50 + VAT

Cardex 115 key ASCII keyboard. Commercial keyboard. 128 ASCII characters including control keys. Parallel output with snail 30ul lines. Indicator LED. Built in beeper with level control 5 V DC at 300 mA 15” X 7” X 25”. Black case with white keys on blue £39 25 + VAT

Ferranti — "SIZE 14 x 6 x 3" SLOPING FRONT

55 Key ASCII coded in steel case. Compatible with Plug and Cable with converter to T/T line levels. In good condition at only £25 + VAT P/P £20

CENTRONICS QUICK PRINTER

LIST PRICE £45.00 incl. VAT

OUR PRICE £39.95 incl. VAT

EXCLUSIVE TO HENRY'S 50% OFF MAKER'S PRICE

for

- Software selectable 20, 40 and 80 character, taking 120mm aluminium paper. 1 roll supplied
- TANDY PET
- NASCOM Centronics parallel data interface for Nascom Tandy etc.
- 240 wall mains input. ASCII character
- Paper feed and off switch selections. BELL signalling
- Weight 118 lbs. Size 17” X 12” X 6” 4 lb price £400.
- New boxed and guaranteed

POST PAID Price £195.00 + VAT

See Computing TODAY Recommendations

Match May issues
THREE FOR FREE FROM CSC

Available from selected stockists

ELECTRONICS BY NUMBERS

RAIN ALARM
You need never be caught out by the weather again. The rain alarm will emit a warning sound whenever there’s rain or moisture in the atmosphere. The current drawn from the battery is negligible so it can be left switched on for up to a year!

WOBBLY WIRE GAME
All the fun of the fair, in your own home! Test your skill at building and playing this version of the popular game, where a ‘wand’ has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY TESTER
An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.

Want to get started on building exciting projects but don’t know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE “Electronics by Numbers” leaflets, ANYBODY can build electronic projects. Look at the diagram, select R1, plug it in to the letter numbered holes on the EXPERIMENTOR BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project.

YOU WILL NEED
e.g., LED Bar Graph (previous project component EXP500 or EXP550)

DT10 D15 — Silicon Diodes
R1 to R5 Resistors
LED 1 to 6 Emitting diodes

For the full detailed instructions, including “Electronics by Numbers” circuit diagrams, simply take the coupon to your nearest CSC stockist or send direct to us and you will receive “THREE FREE PROJECTS FROM CSC”.

PROTO-BOARDS

The ultimate in breadboards for the minimum cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PROTO-BOARD 6 KIT £3.20

PB100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.

PROTO-BOARD 100 KIT £11.90

Just clip the coupon
For immediate action
The C.S.C. 24 hour, 3 day a week service.
Telephone 0799 21682 and give us your Access, American Express or Barclaycard number and your order will be in the post immediately

EXPERIMENTOR BREADBOARDS

CONTACT IC CAPACITY 14 PIN DIP UNIT PRICE INC. VAT (P/P & 15% VAT)
EXP 525 130 £2.70
EXP 350 270 £4.40
EXP 300 550 £7.76
EXP 800 £8.39
EXP 650 £8.69
EXP 4B £5.00

PHOTO-BOARDS

PB6 630 £11.73
PB100 100 £14.72

For free catalogue tick box

C.S.C. (UK) Ltd. Dept. 7EE2 Unit 1 Shire Hill Industrial Estate Saffron Walden Essex CB11 3AQ
Tel: Saffron Walden 0799 21682 Telex: 817477

WWW—147 FOR FURTHER DETAILS

WIRELESS WORLD, JUNE/JULY 1980

www.americanradiohistory.com
SERVICE TRADING CO.

FT3 NEON FLASH TUBE
High intensity, multi-turn, high voltage neon glow discharge forming a 60Kv peak output. 3000VAC, 25P & 25Sp (20£ inc. VAT). 3 for £3.50 P&P (£4.03 inc. VAT & P). WHY PAY MORE?

MERCURY SWITCH 27.5 £5.00 P&P inc VAT. Total listing £10.50 P&P inc VAT. MERMERrored Types MFM5, YM11, AC DC 1050 250, 500, 1050, 2500, 5000 2000V, 24 range dimensions 135x9x6.4mm Price £7.00 plus 50P P&P (£7.50 inc. VAT & P). MERMERrored Types NN SMITH ARROW -HART

230 VOL AC FAN ASSEMBLY Powers a wide range of applications. 12V, 50mm x 70mm x 10mm Minimum quantity 10 £7.50 post paid (£8.30 inc VAT & P). N M S

A.E.G. CONTACTOR Type 135-111. Cell 240V 50Hz. Contacts 3 make 600V. 20 amp, 1 break. 600V AC. Price £5.60 & 50P P&P (£6.00 inc VAT & P). ARROW-HART MAINS CONTACTOR Cell 300V. Cell 250V or 500V AC. Contacts 3 make 50 amp up to 400VAC. £7.50 post paid (£8.00 inc VAT & P).

SMITH BLOWER Type FB1 1070. Small quiet smooth running. 240V AC operation. Overall size 135 x 165 x 165mm. Flange mount. Price. £4.25 P&P 7sp (£4.60 inc VAT & P). N M S. Other types available SAE for details.

24V DC BLOWER UNIT USA made 24V DC. 0.8 amp blower that operates with 195V DC peak. Producing 30 amps at min. pressure. Maximum housing dia 110mm, depth inc motor 90mm. £12.00 inc VAT & P. N M S. Other types available SAE for details.

BLOWER / VACUM UNIT 1 phase AC motor. 220/250v or 380/440v. 145 rpm 1/2 HP. Overall size 225 x 225 x 375mm. Ideal for cooling mobile equipment, car. caravan, etc. £60.00 P&P 7sp (£64.00 inc VAT & P). N M S.

MINIATURE UNISELECTOR Sub Min. 12000. Lead in 1.35mm. Lead out 1.65mm. Price £5.00 post paid (£5.30 inc VAT & P).

MICRO SWITCHES Sub Min. Honeywell Lever m's type 3115m 500g, 10 for £3.50 post paid (£3.65 inc VAT & P).

Bערton Type (Pun) 10 for £3.00 (£3.43 exc VAT). Short lever Type. lever arm length 95mm (85mm exc VAT & P)

Rider Type (Minib) 10 for £3.50 (£3.83 inc VAT & P).

HEAVY DUTY SOLENOID Mg2 by Magnetic Devices. 240V AC. 125V DC. 20 amp. Contact at 15000v. Price £7.50 & 50P (£8.00 inc VAT & P). Reed Switch

12V DC SOLENOID Heavy duty Solenoid 4 Kgf pull. Easily removable from plate. All bases containing 4 x 24V DC Push Solenoids (10 x £4.85 approx). 5kg Out. 5mm photo cells. Size 80mm dia. Price £2.40 P&P (£2.60 inc VAT & P).

RELAYS 230/240V AC RELAYS Available 15A, 8A, 5A, 3A, 2A Contact combinations. Contact held for 10s after power is removed. £11.50 inc VAT & P. (2A 10s 7.50 inc VAT & P).

WIDE RANGE OF DISCO LIGHTING EQUIPMENT LIGHTING ACCESSORIES XENON FLASH GUN TUBES Range of Xenon tubes available from stack with sizes for each. Phone or write in your enquiries.

All Mail Orders — Callers
Ample parking
Showroom open Monday-Friday.

www.americanradiohistory.com
TELEPRINTER TYPE 78: Papepringer 24 c.p.s. power supply. Speed 50 bauds per min. S/hand good cond. (no parts broken) £29 or GPO model. All above except monitor £27. GPO model also available in new unassembled condition £18.25. GPO model with 5-hole perforator attachment 'as new' cond. £65. carriage all types £4. Send S.A.E. for list of Teleprinter spares available.

PLUG-IN FOR TELETRONIC OSCILLSCOPE: Type 383 Time Base £65. Type 3A6 Delay Card £16.50.

AUTO TRANSFORMER: 220/380 V 50 c.s. 1000 watts. Mounted in strong steel case 5" x 8" x 11". Rs15.00. Includes 7254 transformers £17.55 + carriage.

TRANSISTORISED 3cm RADAR AMPLIFIER SWITCH: With 24v waveform switch. 3 cm scope output 12v. £35 + £1 post.

INSULATION TEST SET: 0 to 10kV. negative earth. with Ionisation Amplifier. £55 + post.

MARCONI PLUG-IN TIME BASE UNIT T208E3 647.

RESPONISOR PERFORMANCE CTC 424 8.5 to 89 kcm/s £59.00 + post £2.

INVERTER 220/240V input 400 cycles, output AC 24v + £2 post.

WIRELESS FOR COMPUTER CONNECTOR KIT 1.50QQ + £5 post.

NOISE SOURCE 741 £2.60.

MINIMA 50+ new colour version of Superbossrd £49.50.

RECTIFIER 741 50+.

TEST SET 24v c.p.s. output 65000 counts. £15 + post.

ANTICIPATES "MINIMA" unit with crystal 16.19.

UNIT with 80mA - hole mount. Produces thermal noise 1000mV. £5.35 + carriage.

CV 1506 CATHODE RAY TUBE: 900.9k £4 screen, green electronic arc base 19272.17 volts, heater 40 volts. £1.18.86.

RADAR RECEIVING ANTENNA TYPE 343 Mk D: Suitable for detecting signals on X, K, and Q bands. 5g Hz-6g Hz. Complete with waveform horns, associated crystals, Radiotronised amplifier and geared motor. £143.75.

VACUUM & PRESSURE DETECTORS: complete with 2 x 4 gauges indicating 0.2mbar p.s.i. 0.3-mbar vacuum. With stand. hand pump. etc £34.50 + carriage.

[Table of prices and descriptions of various electronic components and devices]

BARGAIN MAPS: Large stocks of unused U.S.A. surplus maps, weather charts, etc.

35 x Maps (either same OR assured). £16 + £40 P&P. 10 x Maps (either same OR assured). £85.60 (in P&P).

All prices include VAT at 15%.

W. MILLS

The Maltings, Station Road, SAWBRIDGEWORTH, Herts. Tel: Bishop's Stortford (0279) 72872.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries. SAE for lists and prices £1.45 for booklet, 'Nickel Cadmium Power', plus catalogue.

Write or call at

SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands B76 1EN. 021-354 9764

See full range at T.L.C. 32 Craven street, Charing Cross, London WC2

WW — 128 FOR FURTHER DETAILS

Barrie Electronics Ltd.
3, THE MINORIES, LONDON E3N 1BJ

TELEPHONE: 01-488 3316/8

NEAREST TUBE STATIONS: ADLINGTON & LAVERTON

WW — 035 FOR FURTHER DETAILS

WWW.americanradiohistory.com
there are transformers and...

OEM — let Drake Transformers advise you on a component specification and design to solve that special problem. Pre-production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane
Billerica Essex CM11 2SP
Telephone: Billerica (02774) 51155
Telex: 99426 (prefix Drake)

SNAP!
3000 times an hour.

No need for plated-through holes.

Using Harwin's patented strip-form track pins, a single operator can insert the pins, by hand, at speeds up to 3000 per hour. This without any tooling aids.

For those who prefer it, a semi-automatic air operated single-point insertion machine can be supplied. The pin is pushed into the hole in a double-sided pc board, then detached by snapping off. It is then hand or flow-soldered to complete the through connection. Available to fit various hole sizes and pc board thicknesses.

Now available! HAND HELD INSERTION TOOL
Send for details, and a sample strip of track pins to:

HARWIN
Harwin Engineers SA,
Fitzherbert Road, Farlington,
Portsmouth, PO6 1RT, Hants.
Tel: 070 18 70451, Telex 86125
There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £210.00* it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and 10mV/cm sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £360.00*

Plus the 4S6 single beam 6MHz bandwidth model with easy to use controls. 10mV sensitivity and timebase range of 1 us to 100ms/cm. Lightweight, compact and a very good price. £144.00*.

Return the coupon for full details of the range that gives you a lot more scope.

*UK list price excluding VAT.

Scopex Sales, Pixmore Avenue, Letchworth, Herts SG6 1JJ. Tel: (04626) 72771.

Please send me full details of the Scopex range.

Name

Company

Address

Tel:
We are old established specialist electronic component distributors carrying a very wide range of quality stock. We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue. Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crystal Ekliyk High Fi Modules; Rechargeable Nickel/Cadmium Batteries; Send S.A.E. for details.

Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

DC POWER SUPPLIES

@APT 1045/9. 12-14V. @ 5 Amps. £25. (£2 p.p.)
@APT 1045/8. 24V. @ 5 Amps. £25. (£2 p.p.)

We can supply the above power supply at any fixed voltage between 5V and 36V at 5A. £25.
Mullard Dual supplies. Brand new with hang book. 5V & Neg 12V at 1A and 0-4A respectively. Dimensions 9x5x4in. £10.00 + (£1 p.p.)

FARNELL Current limited. Dimensions 7x5x4in. Following types available. 5 Volts @ 3A. £15. 13-17 Volts @ 2A. £15. 27-32 Volts @ 1A £15. Plus £1.50 each postage. All the above power supply units are 230V. AC input and are stabilised and regulated and fused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a money-back guarantee if not completely satisfied.

MODULATION METERS

AIRCME 210-3.300MHz. AM/FM.
RADIOMETER AFM / 1.5 3-320MHz. AM / FM.
RACAL 403 3-600MHz. AM / FM.

‘CENTAUR’ INSTRUMENT COOLING FANS

Made by Rotron Holland. These are very high quality, quiet running fans, specially designed for the cooling of all types of electronic equipment. Measures 4x5x4 1/2in. Airflow. 90 cu./ft./min. These are exclusive equipment fans supplied in excellent condition, fully tested before despatch. Prices as follows. 115V AC. £4.50, 230V AV. £5.00, Small type fans as above but measures 8x3.2cm. 26 cu./ft./min. 115V AC £4.00, Carriage on any of the above fans is 35p ea. Finger guards available for larger type at 50p each. (RS price for these fans is £12.50 each!)

MEASUREMENT COMPONENTS

NEW, GUARANTEED, FULL SPEC. COMPONENTS

L.E.D.s .125 and .2

1N4148 Diodes

RED YELLOW or GREEN

1 100+ 100+ 1000+ 1000+

11 1 1

Prices per 100. Larger and Mixed Quantity prices available.

CARBON FILM RESISTORS

E12 SERIES

TF675F TM6936R etc.
such trum Analyser with type instructions. Only TF1400 TF1041 UHF
UHF Selectomat Voltmeter USWV.

T.I. LOW PROFILE I.C. SOCKETS

Input 190 Volts.

-Graph model RESISTANCE BOXES

RANGE TESTED BEFORE DESPATCH and 3 months guarantee. Calibration and certificates can be arranged at cost. Overseas enquires welcome. PLEASE ADD 15% V.A.T TO ALL PRICES.

P. F. RALE ELECTRONICS

10 CHAPEL STREET, LONDON, NW1
TEL: 01-723 8753

AIRMEC Dual Beam oscilloscope £165.
AIRMEC 314A Voltmeter 300mV(FSD)-300V.
LEVEILL TG661A-1 Debake oscillator.
DEEPRITON 1KW Power Amplifier with control equipment for vibration testing etc.
SOLARTRON CDI 740 Double Beam Oscilloscope. £475.
GERTSCH Frequency Meter and Dev. Meter. 20-1000MHz. £350.
HEWLETT PACKARD 320A Wave Analyser.
HEWLETT PACKARD 695A Sweep Oscillator £350.
BOONTON 202H AM/FM Signal Generator £175.

SE Labs Dual Beam oscilloscope type EM102 c/w EM515 plug-in unit DC-15MHz. Mains or 12V Battery operated. Solid state. 8x14x18ins. £250 + V.A.T.

SOLARTRON LM1420 2 DVM. 6 ranges to 1KV.
MUHRHEAD KE-134 A Wave Analyser. Portable.
RADIOMETER AFM / 1. Dev./Mod. Meter. 3.5-320MHz £185.
HEWLETT PACKARD 608C Signal generator. 10-480MHz.
WEINHEL Power supply Modulator type MW3.
BRUEL & KJÖRER type 1504 Deviation Bridge.
HEWLETT PACKARD 608C Signal generator. 10-480MHz.
BRUEL & KJÖRER Vibration equipment 1018.
BRUEL & KJÖRER Frequency analyser 2105.
BRUEL & KJÖRER Microphone amplifier 2803 £105.
BRUEL & KJÖRER type 3301 Automatic frequency response recorder 2000c. £750.
MUHRHEAD-PAMETRADA D489EM Wave Analyser.
TEKTRONIX 555 scope with plug-in types CA (2 off). 21, 22.
TEKTRONIX 515A Oscilloscope.
TEKTRONIX 585A oscilloscope with B2 P.I. DC-80MHz.
NOTICE: All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months guarantees. Calibration and certificates can be arranged at cost. Overseas inquiries welcome. PLEASE ADD 15% V.A.T TO ALL PRICES.
It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

The Hitachi range of Low Cost Portable Oscilloscopes

Dutchgate offer the full range of Hitachi innovative Oscilloscopes each with a two year warranty. These easy to operate oscilloscopes featuring wider width band and integrated circuitry offer increased stability, improved reliability and excellent performance.

The vast experience gained by Dutchgate as specialists in servicing and maintaining test and measurement instrumentation will be used to effect a fully reliable and efficient after sales service.

Test Dutchgate today — by asking for details of the Hitachi Low Cost Portable Oscilloscopes and then measure the result.

Dutchgate Ltd

Authorized Agents for @ Hitachi Denshi (UK) Ltd.

TIMEBASE 94, ALFRISTON GARDENS

SHOLING, SOUTHAMPTON Telephone: (0703) 431323

WW 146 — FOR FURTHER DETAILS
Getting-or-got-your-own personal computer?

Then for your own personal satisfaction, get Practical Computing.

Month after month, it helps you cut the costs and yet get the utmost out of personal computing. Choosing hardware; buying software, working programmes; getting to know microcomputer terminology — here are the essential basics, crisp and clear. But that's only the start. Going deeper Practical Computing gives you exhaustive test evaluations of leading microcomputers, programmes for computer TV games, dozens of possible new applications, expert advice on using Apple, Commodore Pet and Tandy, and valuable overall reviews of where computing is heading today.

This Month:

As part of a continuous programme we show you how to write the assembly language for the 6502 and 8080 . . . and much, much more.

June issue out now, 50p.

From your newsagent, post this coupon now.

To Subscription Servicing, IPC Business Press Ltd., Oakfield House, Perymount Road, Haywards Heath, West Sussex, RH16 2HD

I've decided to subscribe to Practical Computing every month for a year I enclose cheque/postal order for £6.00 (inclusive) payable to IPC Business Press Ltd.

Name

Address

WWW.WIRELESS WORLD JUNE/ JULY 1980

www.americanradiohistory.com
LIKE TO GET STUCK IN?

Joining HORIZON EXPLORATION LIMITED — the wholly British and rapidly expanding oil exploration company—in the electronics field, will let you do just that!

Do you have plenty of drive, a preference for the less conventional work routine and common sense to add to your B.Sc. H.N.C. or equivalent qualifications?

If so we can offer plenty of job satisfaction in the U.K. and Overseas with our Land Crews who work as small units enjoying considerable independence. Good starting salaries based on experience and qualifications, (with promotion graded to performance) are offered to engineers wishing to apply their knowledge in a highly practical environment. Land Crew vacancies would possibly be more suitable to the single person in view of the mobile and sometimes unpredictable nature of the work.

If you have a current driving licence, are young, healthy and enthusiastic and don’t want a 9-5 job, why not apply for an application form to the Personnel Supervisor, Horizon Exploration Limited, Horizon House, Azalea Drive, Swanley, Kent. Telephone: Swanley 68011.

CHILTERN ELECTRONICS
B.C.M. BOX 8085
LONDON WC1V 6XX
TEL: 0494 714483

PDP8 COMPUTERS
Latest version PDP8E with 16K Core memory and teletype card .. £700
PDP8L Processors with 4K Memory and teletype cards ... £250
PDP8L Processors with 12K Memory and teletype cards .. £400

All above are complete computers ready to use, software includes BASIC, FORTRAN and other languages. All use standard TTL logic, and are compact table-top machines. We hold a full range of spare modules for all DEC PDP8 computers, please telephone your requirements.

TERMINALS

Receive only .. £300
ASR33 Teletypes in excellent condition £320
Card readers — Brand new 600 cards/min £350
Quine model Q-30 Daisy wheel printer £425
Elliott 250 ch/sec tape readers, 5-6-7-8 Level £40
INCOTERM SPD 10/25 Intelligent Terminals £650
Magnetic Tape Data Logger — records data from RS232 port onto Computer Standard 7-track tape £200
INCOTERM Terminal processors — These are in superb instrument case and have 5 and two 12 volt power supplies and are ideal for putting your micro system in. Hundreds of useful parts — cost over £700. Brand new £65

Prices exclude VAT.

AP DIP Jumpers Lowest Prices in the UK!

Compare These Prices!

FLAT RIBBON CABLE ASSEMBLIES WITH DIP CONNECTORS

AP DIP Jumpers are the low-cost, high quality solution for jumpering within a PC board; interconnecting between PC boards, backplanes and motherboards; interfacing In-out/Output signals; and more.

All assemblies use ribbon cable. Standard lengths are 6, 12, 18, 24 and 36 inches.

SINGLE-ENDED DIP JUMPERS

DOUBLE-ENDED DIP JUMPERS

<table>
<thead>
<tr>
<th>PINS</th>
<th>36"</th>
<th>14</th>
<th>£1.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>£1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>£3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>£5.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOUBLE ENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINS</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

(* Ex stock delivery
** Ask for free catalogue
*** All prices for 1 off. Huge discounts for quantity

AP PRODUCTS INCORPORATED
PO Box 19
SAFFRON WALDEN ESSEX
Tel: (0799) 22036

WWW.AMERICANADIOHISTORY.COM
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4010</td>
<td>74HCT04 Octal 3-State Schmitt-Trigger IC</td>
<td>£1.55</td>
</tr>
<tr>
<td>4011</td>
<td>74HCT08 Dual 2-Port Schmitt-Trigger IC</td>
<td>£1.70</td>
</tr>
<tr>
<td>4012</td>
<td>74HCT09 Dual 2-Port Schmitt-Trigger IC</td>
<td>£1.85</td>
</tr>
<tr>
<td>4013</td>
<td>74HCT10 Triple 2-Port Schmitt-Trigger IC</td>
<td>£2.00</td>
</tr>
<tr>
<td>4014</td>
<td>74HCT11 Quad 2-Port Schmitt-Trigger IC</td>
<td>£2.15</td>
</tr>
<tr>
<td>4015</td>
<td>74HCT12 Quad 3-Port Schmitt-Trigger IC</td>
<td>£2.30</td>
</tr>
<tr>
<td>4016</td>
<td>74HCT13 Triple 3-Port Schmitt-Trigger IC</td>
<td>£2.45</td>
</tr>
<tr>
<td>4017</td>
<td>74HCT14 Quad 4-Port Schmitt-Trigger IC</td>
<td>£2.60</td>
</tr>
</tbody>
</table>

Low Profile DIP Sockets by Texas Instruments

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74504</td>
<td>BOP 40p 74500 DIP-40</td>
<td>£0.10</td>
</tr>
<tr>
<td>74505</td>
<td>BOP 40p 74510 DIP-40</td>
<td>£0.15</td>
</tr>
<tr>
<td>74506</td>
<td>BOP 40p 74520 DIP-40</td>
<td>£0.20</td>
</tr>
<tr>
<td>74507</td>
<td>BOP 40p 74530 DIP-40</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Antennas

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9302</td>
<td>175p 74551 9302 175p</td>
<td>£5.00</td>
</tr>
<tr>
<td>9314</td>
<td>165p 74530 9314 165p</td>
<td>£5.50</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>100 ohm 1% 1/8W 1001 100p</td>
<td>£0.10</td>
</tr>
<tr>
<td>1002</td>
<td>100 ohm 5% 1/8W 1002 50p</td>
<td>£0.15</td>
</tr>
<tr>
<td>1003</td>
<td>100 ohm 5% 1/8W 1003 50p</td>
<td>£0.20</td>
</tr>
<tr>
<td>1004</td>
<td>100 ohm 5% 1/8W 1004 50p</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005</td>
<td>100µF 10V 1005 100µF</td>
<td>£0.10</td>
</tr>
<tr>
<td>1006</td>
<td>100µF 16V 1006 100µF</td>
<td>£0.15</td>
</tr>
<tr>
<td>1007</td>
<td>100µF 25V 1007 100µF</td>
<td>£0.20</td>
</tr>
<tr>
<td>1008</td>
<td>100µF 35V 1008 100µF</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Transistors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1009</td>
<td>1N4001 2N3055 1009 0.1A 400V</td>
<td>£0.10</td>
</tr>
<tr>
<td>1010</td>
<td>1N4002 2N3056 1010 0.1A 500V</td>
<td>£0.15</td>
</tr>
<tr>
<td>1011</td>
<td>1N4003 2N3057 1011 0.1A 500V</td>
<td>£0.20</td>
</tr>
<tr>
<td>1012</td>
<td>1N4004 2N3058 1012 0.1A 500V</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Loudspeakers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013</td>
<td>15W 8ohm 1013 15W 8ohm</td>
<td>£0.10</td>
</tr>
<tr>
<td>1014</td>
<td>30W 8ohm 1014 30W 8ohm</td>
<td>£0.15</td>
</tr>
<tr>
<td>1015</td>
<td>50W 8ohm 1015 50W 8ohm</td>
<td>£0.20</td>
</tr>
<tr>
<td>1016</td>
<td>100W 8ohm 1016 100W 8ohm</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7401</td>
<td>1N4001 2N3055 7401 0.1A 400V</td>
<td>£0.10</td>
</tr>
<tr>
<td>7402</td>
<td>1N4002 2N3056 7402 0.1A 500V</td>
<td>£0.15</td>
</tr>
<tr>
<td>7403</td>
<td>1N4003 2N3057 7403 0.1A 500V</td>
<td>£0.20</td>
</tr>
<tr>
<td>7404</td>
<td>1N4004 2N3058 7404 0.1A 500V</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Small Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7411</td>
<td>BOP 20p 74110 20p</td>
<td>£0.10</td>
</tr>
<tr>
<td>7412</td>
<td>BOP 20p 74120 20p</td>
<td>£0.15</td>
</tr>
<tr>
<td>7413</td>
<td>BOP 20p 74130 20p</td>
<td>£0.20</td>
</tr>
<tr>
<td>7414</td>
<td>BOP 20p 74140 20p</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7415</td>
<td>BOP 20p 74150 20p</td>
<td>£0.10</td>
</tr>
<tr>
<td>7416</td>
<td>BOP 20p 74160 20p</td>
<td>£0.15</td>
</tr>
<tr>
<td>7417</td>
<td>BOP 20p 74170 20p</td>
<td>£0.20</td>
</tr>
<tr>
<td>7418</td>
<td>BOP 20p 74180 20p</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Special Offers

- **555** £18.10
- **74HC14** £4.00
- **2N2222A** £2.75

Contact Information

Technomatic Ltd.

17 Burnley Road, London NN10

Tel: 01-452 15000/01-450 6597

Telex: 922800

Visit us online at:

www.americanradiohistory.com
TRANSMISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3879</td>
<td>2N3879</td>
<td>£0.58</td>
<td>2N3882</td>
<td>2N3882</td>
<td>£0.61</td>
</tr>
</tbody>
</table>

THYRISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N5088</td>
<td>2N5088</td>
<td>£0.21</td>
<td>2N5091</td>
<td>2N5091</td>
<td>£0.23</td>
</tr>
</tbody>
</table>

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N735</td>
<td>1N735</td>
<td>£0.10</td>
<td>1N738</td>
<td>1N738</td>
<td>£0.10</td>
</tr>
</tbody>
</table>

LEDS

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5050</td>
<td>5050</td>
<td>£0.10</td>
</tr>
</tbody>
</table>

CLIPS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5mm</td>
<td>£0.17</td>
</tr>
<tr>
<td>10mm</td>
<td>£0.26</td>
</tr>
</tbody>
</table>

OPTO-ISOLATORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4N24</td>
<td>£0.84</td>
</tr>
</tbody>
</table>

SOCKETS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x15</td>
<td>£0.14</td>
</tr>
</tbody>
</table>

SILICON DIODES G.P.

300V 400V 500V 1500V 3000V HIGH VOLTAGE SILICON DIODES

METAL FOIL CAPACITOR PAK

Ceramic type 0.01 µF to 100 µF

G.P. SWITCHING TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3819</td>
<td>£0.44</td>
</tr>
</tbody>
</table>

BI-PAK SEMICONDUCTOR

Visit our Shop at 3 Baldock Street, Ware, Herts.

GIRO NO: 388 7008 TEL: 0920 3182 TELEX: B78168

All prices include VAT. Add 50p per order. Just quote your Access or Barclaycard number.

Terms: Cash with order, cheques, POs, payable to Bi-Pak at above address. Access and Barclaycard also accepted.

LED CLIPS

- 1.5mm: £0.17
- 2.5mm: £0.26

DISPLAYS

- 30V: £0.85
- 50V: £0.92
- 40V: £0.84

OPTO-ISOLATORS

- Single-channel: £0.22
- Multichannel: £0.36

MAMMOTH I.C. PAK

- 1623: £0.10
- 1624: £0.14

Sockets

- 1x7: £0.14
- 1x9: £0.14

Silicon Diodes G.P.

300V 400V 500V 1500V 3000V HIGH VOLTAGE SILICON DIODES

Metal Foil Capacitor PAK

Ceramic type 0.01 µF to 100 µF

Jumbo Pak Semiconductor

Visit our Shop at 3 Baldock Street, Ware, Herts.

GIRO NO: 388 7008 TEL: 0920 3182 TELEX: B78168

All prices include VAT. Add 50p per order. Just quote your Access or Barclaycard number.

Terms: Cash with order, cheques, POs, payable to Bi-Pak at above address. Access and Barclaycard also accepted.

Battle of Britain Wings Appeal

During September

Please help us maintain our home for the permanently and severely disabled and our convalescent homes for those Ex R.A.F. men and women who are in need of giving all you can for an emblem during Wings Week or please send us a donation.

Give for those who Gave

Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
(Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960).

Space donated by:

Good discounts and free postage on U.K. orders over £5.75.
Computer-controlled service aids prompt delivery.
128-page catalogue free for the asking.

ELECTROVALUE LTD., 28 (W5), St. Jude's Road, Englefield Green, Egham, Surrey TW20 0HB. Phone: 33603 (London 87) STD 0784. Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only): 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone (061) 432 4945.

SPECIAL OFFERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>Ex AVIONICS 76 key KEYBOARD</td>
<td>£5.99</td>
</tr>
<tr>
<td>2716</td>
<td>(5v) POWER RESISTORS</td>
<td>£18.50</td>
</tr>
<tr>
<td>4116</td>
<td>(5v) KEYBOARD</td>
<td>£5.50</td>
</tr>
</tbody>
</table>

NewBear Computing Store, 40 Bartholomew Street, Newbury, Berks.
Tel: 0635 30505

Stepping Motor XYZ & Rotary Position Machines

Mass sampling, PCB drilling, engraving, etc. Under microcomputer control. Software available.

Fuses: Quick acting. Anti-surge. Ceramic, from £2.80 per 100.

Wirewound Power Resistors: 5w, 17w. OR5-39K from £8.50 per 100.

PCB Guides, self-fixing from £4.86 per 100.

C.F. Resistors, AEL & Iskra 1w-2w. from £4 per 1,000.

ELMA knobs & accessories. Crimp (solderless) TERMINALS.

Cable Sleeves & Markers from £1 per 1,000.

Sleeving, Neoprene, PVC, Silicone rubber—all colours.

Special Reduced Prices for C.F. resistors, Polystyrene Capacitors etc. for valves on which we are overstocked. Special list available.

Write, phone or call for lists required.

PBRA LTD. Hopfield 345 (073274)
Golden Green, Tonbridge, Kent TN11 0LH
Member of Crystalate Group.

Please wear this emblem.

Give for those who Gave.

Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
(Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960).

Space donated by:

Will you be getting a Data Converter Kit on September 17th?

Data Conversion Seminar '80

This one day seminar is for Engineers, Managers and Technicians and will convey the important aspects of designing data acquisition systems. Roy Wells, Head of Data Acquisition at Ferranti Electronics Limited, leads a team of experienced engineers who will present a programme of six papers each giving detailed applications information for a variety of data converter systems.

There will be plenty of opportunity to talk to the team of experts and examine the working demonstrations on display.

In addition, each delegate will receive a Data Converter Kit worth more than £30 plus a copy of the papers and accompanying slides.

Complete the booking form below or if you require further details ring 061-624 0515, Extension 320.

Data Conversion Seminar
The Data Conversion Seminar, including coffee/tea, lunch and your Data Converter Kit costs just £55.00 each + £8.25 VAT (£63.25 total).

Please send me ticket(s) for your Data Conversion Seminar at £55.00 each + £8.25 VAT (£63.25 total).

Name

Position

Company

Address

Telephone

I enclose a cheque/postal order (No) for £

Signature

Date: September 17th 1980.

Lectures include:

- The Principles of Data Conversion
- Applications of a Single-chip, Charge-balancing DVM
- High Speed 10-bit Monolithic Data Conversion Systems
- Analogue Interfacing to Microprocessor Systems
- Testing Data Converters
- A Multi-purpose Data Conversion System

FERRANTI Semiconductors

Send this form to:
Ferranti Electronics Limited,
Data Conversion Seminar, Fields New Road,
Chadderton, Oldham OL9 8NP

WW — 148 FOR FURTHER DETAILS

www.americanradiohistory.com
GENERAL AUTOMATION SPC-16/65 system comprising 16 bit 9600 b/s processor with 32K words. Twin CAELUS Model 303-5 megabyte disc drives. Twin WANGCO Model 10-9 track read-after-write tape drives, GENERAL INSTRUMENT Model S0DFR fixed disc, REMEX paper tape reader (400 cps) and punch (75 cals). DOCUMENTATION M4000, 400 cpm card reader, DATA PRINTER CORP. Model V-132 600 lpm line printer. DATA DYNAMICS Model ASR 390 teletype. Equipment is 5 years old and has been used for evaluation purposes only. £875.00

APPLE Micro computer system comprising APPLE II + processor with colour graphics facility, single floppy disc drive. CENTRONICS Model 10LA 165 cpm matrix printer, and black and white monitor £1500.00

TELETYPE Model ASR 33 with 20 mA current loop interface. 110 baud, remote reader control (which may be disabled by insertion of a jumper), paper tape reader/punch and stand (when available).

£295.00

TELETYPE Model KSR 33. As above, but without paper tape facility.

£175.00

DATA DYNAMICS Model ASR 390. Mechanically identical to ASR 33 but with addition of 240cps operation, motor cut-out feature, reader single stop, stand and silencing cover. RS 232 interface. With low hours and in immaculate condition.

£375.00

DATA DYNAMICS Model ASR 390. As above but BRAND NEW in original cartons, etc. One only.

£475.00

DATA DYNAMICS Model KSR 390. As above, but without tape reader and punch. RS 232/24V 110 Baud.

£175.00

DI/AN Model 9030. Desk-top terminal similar to DEC writer LA36. Upper/lower case matrix printer, up to 300 Baud. Features switchable baud rate, parity, keyboard and duplex options.

£375.00

G.E. TERMINET terminal. Compact KSR unit operating at 10, 20 and 30 cps and with correspondence quality upper/lower case. All ASCII control etc. RS 232, (RO version also available at £275.00).

£350.00

TEXAS SILENT 700 terminal. 30 csp dot matrix terminal using thermal paper. With 20 mA current loop interface.

£395.00

IBM 735 SELECTRIC terminal. IBM "Golfball" typewriter fitted with contacts and solenoids for remote operation. (Also available refurbished at £225.00).

£175.00

ODIN System accounting machines. These include 5 standard office SELECTRIC typewriter and are BRAND NEW. Ideal for conversion to terminal use.

£175.00

ITEL Model 841 word processor. Compact table top machine operating with paper tape and using the "IBM Selectric" (Golfball) typewriter. With full editing facilities, margin control, etc. £350.00

ITEL Model 1031 terminal. Similar to Model 841 but with addition of RS 232 interface. Available in either SELECTRIC or EBCDIC code.

£375.00

OLIVETTI Model 328. ASCII coded terminal with tape reader/punch. Producing correspondence quality print-out. Interface is timed for standard 110 baud operation, but construction of a simple circuit (1 transistor and 3 resistors) is required for 20 mA operation.

£235.00

DIABLO SERIES 30 DISC DRIVES. These are offered fully refurbished and may be viewed operating online at our premises prior to purchase. 2.5 megabyte removable cartridge version is directly compatible with the DEC DK0 drive for PDP/LSI 11.

£650.00

As above, but with cartridge removable by engineer rather than operator.

£495.00

VERMONT Model 1004-5E memory drum.

£75.00

CALC/COMP Model 180 Disc Drive. 80 megabyte capacity with all documentation and 3 disc packs. Used for evaluation only.

£750.00

CDC Disc Drive. Further information awaited, but probably 30 megabytes. BRAND NEW and with trilly if required but WITHOUT heads.

£275.00

PERTEC Model 6840-9-25 9 track PE and NRZI tape drives usually available from stock.

£475.00

CYPHER 7 track NRZI tape drive.

£225.00

R.D.L. Model MTD 10.510 tape drive. 7-track, NRZI, 4 to 50 cps.

£375.00

PERTEC Model 4311 Key to 9-track magtape encoder. 800 bpi. Portable unit.

£195.00

TREND Model PTS incorporating TREND Model HSR350 350 cps optical reader and GMT Model 34 punch. Compact unit complete with all power supplies suitable for desk top use or rack mounting.

£375.00

TREND Model HSR350. 350 cps optical reader with TTL interface.

£225.00

CDC Model CP CL 892 300 lpm line printer.

£250.00

POTTER Model LP-3000 High Speed (300 lpm) line printer.

£400.00

'BC' Matrix printer. 120 cps with dual tractors and long platen (excess of 300 col) Unused.

£650.00

RENA Model 431 matrix printer.

£225.00

STELLAVOX Model SP-7 portable stereo tape recorder. With accessories incl. power supply, NiCd batteries and ABP large reels adapter.

£1200.00

Please note:
- VAT and carriage extra all items.
- Visitors welcome, but by appointment please.
- We are keen to bid competitively for all good used equipment.

COMPUTER APPRECIATION

86 High Street, Bletchingley, Surrey 0883 (Godstone) 843221

NEW PRICES ON MEMORIES

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102L-450ns 1K X 1 SRAM</td>
<td>£0.55</td>
</tr>
<tr>
<td>2114-300ns 1K X 4 SRAM</td>
<td>£3.51</td>
</tr>
<tr>
<td>2114-200ns 1K X 4 SRAM</td>
<td>£3.86</td>
</tr>
<tr>
<td>4116-200ns 16K X 1 DRAM</td>
<td>£4.50</td>
</tr>
<tr>
<td>276-450ns 1K X 8 EPROM</td>
<td>£4.39</td>
</tr>
<tr>
<td>276-450ns 2K X 8 EPROM</td>
<td>£11.50</td>
</tr>
<tr>
<td>CARTER ASCII Keyboard</td>
<td>£39.50</td>
</tr>
<tr>
<td>AY-5-1013 UART</td>
<td>£2.60</td>
</tr>
<tr>
<td>2102L X 8 450ns SRAM</td>
<td>£3.85</td>
</tr>
<tr>
<td>2114 X 8 300ns SRAM</td>
<td>£24.45</td>
</tr>
<tr>
<td>2114 X 8 200ns SRAM</td>
<td>£26.89</td>
</tr>
<tr>
<td>4116 X 8 200ns DRAM</td>
<td>£31.35</td>
</tr>
</tbody>
</table>

Please add 50p Postage and 15% VAT to all orders.

STRUTT LTD.
(ELECTRONIC COMPONENTS DISTRIBUTORS)
3C Barley Market Street
Tavistock, Devon PL19 0JF
Tel. Tavistock 0822-5439
Telex 45263

TELECOMMUNICATIONS & PROCESS CONTROL + MICROPROCESSORS = NICOMTECH

Microprocessor Consultants and System designers.

We'd like to solve your problems — however small or large they might be.

NICOMTECH
Tel: (07555) 2066
212 St. Stephen's Road, Saltash
Cornwall PL12 4NL

WWW-118 FOR FURTHER DETAILS
TELETEXT DECODERS DRASTICALLY REDUCED!
Ready-updated decoders based on a "Wiring World" design from £130.00 + VAT. Other decoders available at £145.00 + VAT. Many introductory kits from £110.95 + VAT.

MANY, MANY PRICE REDUCTIONS including 15% off CSC Breadboarding Equipment, 10% off all Jeybeam Antennas, 10% to 20% off selected Test Equipment, 25% off Vero Boards etc. 50% off some discontinued items.

A FEW EXAMPLE BARGAINS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M200 2m PA kit</td>
<td>£20.00</td>
</tr>
<tr>
<td>1TR2000X 2m</td>
<td>£10.00</td>
</tr>
<tr>
<td>CD644000 Transistor</td>
<td>£75.00</td>
</tr>
<tr>
<td>Mux-H Decoder</td>
<td>£220.00</td>
</tr>
<tr>
<td>F2277B 2m</td>
<td>£70.00</td>
</tr>
<tr>
<td>TBA 120</td>
<td>£1.60</td>
</tr>
<tr>
<td>M914</td>
<td>£6.50</td>
</tr>
<tr>
<td>2N6834</td>
<td>£3.20</td>
</tr>
<tr>
<td>2N5245</td>
<td>£12.50</td>
</tr>
<tr>
<td>707P each</td>
<td>£5.00</td>
</tr>
<tr>
<td>RS13 Antenna Rx</td>
<td>£145.50</td>
</tr>
</tbody>
</table>

All prices include VAT except when stated but add carriage. £4.50 Securicor, min. 50s post.

DON'T DELAY — ALL ITEMS ARE OFFERED SUBJECT TO AVAILABILITY AND WHILE STOCKS LAST ONLY.

Phone or wire for complete list. Pay by Bank Transfer, Travellers Cheques, Access, Eurocard, Master Charge inc. Cash, Cheque, H.P. or the New Catronics Credit Card.

CATRONICS LTD. (Dept. 24) COMMUNICATIONS HOUSE 20 WALLINGTON SQUARE WALLINGTON, SURREY SM6 9BP Mon, Fri, Sat 9 a.m. - 11 p.m. Thurs 9 a.m. - 5 p.m. Closed lunch 12.45-1.45 p.m.

WW — 24 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacturer a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spare servive backed by a strong technical team.

Full training courses are individually tailored to customers' requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD. Willis Road, Croydon. CRO2XX. 01-684 1422. 01-689 8741

WW — 594 FOR FURTHER DETAILS

PPM3 A FULL SPECIFICATION PEAK PROGRAMME METER DRIVE CIRCUIT FOR UNBALANCED INPUTS

- Matts IEC288-10A, BS5428.9. Accurate law all and between all PPM marks
- Aarts and decay matching allows use with TWI movement without peaking
- Provides significant economies on mixers, with PPM3s used for the channel meters and PPM2s for the main balanced outputs. All types will provide identical readings.
- Aligned and peak tested ten days on the same equipment as PPM 2
- Gold plated edge connector compatible with PPM 2.
- 24 Volt supply reverse polarity protected
- With two movements may be driven and slugged operation can be added
- Three 20 turn pots for zero, f.s.d. and gain
- Built and aligned as a kit.

High quality Ernest Turner movements 640, 642, 643 and TWI with flush mounting adaptors and illumination sunk from stock, photograph in April advertisement.

PPM2 drive boards for balanced lines: manufactured under licence from the BBC and approved by the IBA. EBU, BPO and broadcasting organisations overseas for critical programme monitoring. True and Difference switch boards to suit PPM2 or BBC ME12/9 available.

Exhibiting at INTERNATIONAL BROADCASTING CONVENTION, Brighton. Sept. 20-23.

SURREY ELECTRONICS. The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG, Tel. 0486 5987.

Who makes what? And where can you find them? The Trader Year Book tells you. It's the essential guide to buying and selling for busy retailers as well as an invaluable reference work for everyone in the audio/TV/domestic electrical business. Separate sections cover Products, Trade Addresses, Proprietary Names, Wholesalers, Service Agents and Depots, Trade Organisations and Electricity Board Offices. There’s lots of technical and legal information too. In short, a book that's good for trade.

ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1980/1

MAIL THIS COUPON NOW
To IPC Electrical and Electronic Press Limited, General Sales Department, Room CPS4, Dorset House, Stanford Street, London SE1 9LU

Please send me copies of the Electrical and Electronic Trader Year Book 1980/81. I enclose cheque/p.o number to the value of £5.50 per copy inclusive.

Cheques made payable to IPC Business Press Ltd.

Name: ________________________
Address: ______________________

Company registered in England. Registered address Dorset House, Stanford Street. SE1 9LU. Registered number 677128

www.americanradiohistory.com
Z80 MICROPROCESSORS AT UNBEATABLE PRICES

2.5 MHz 50+
Z80 CPU 3.60
Z80 CTC 2.27
Z80 P10 2.27
Z80 S10 11.51

4.0 MHz.
Z80 CPU 4.34
Z80 CTC 2.81
Z80 P10 2.81
Z80 S10 16.94

Prices exclude V.A.T.
Delivery 6 weeks from order

Midwich Computer Co. Ltd.
Hillsborough House
9 Churchgate Street, Old Harlow
Essex CM17 6JS
Tel: (0279) 412605

www.americanradiohistory.com
Electronic Brokers
No.1 in Second User Minis & Peripherals

ASR 33 Teletype
Teletype/Dis/terminal incorporating touch paper tape punch and reader. SANS text, upper case character set. 110 baud operation, built-in keyboard. 115200 interface. PRICE £395.00

CENTRONICS 101A
Heavy duty Matrix Printer with 64 ASCII upper case character set. 180 cpm operation. 120 print positions with adjustable feed. 7x9 dot matrix, parallel input. PRICE £395.00

HAZELTINE THERMAL PRINTER
80-column 30cps. Receives only printer with parallel TTL input. Ideal hard copy attachment for Hazeltine 2000 VDU. PRICE £395.00

NEW ASCII KEYBOARDS — NEW LOW PRICES
KB 771 Superb 71-station ASCII Keyboard incorporating separate numeric/cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions 17¾” x 7½” x 3¼”. Total weight 4kg. PRICE £89.50

TERMPRINTER 7075 RO
Typewriter quality output printer providing full upper and lower case characters. Switch-selectable print speeds of 60, 60 and 120 cpm. Parallel print position with adjustable feed. tractor. Full upper and lower case ASCII character set. Current-loop (120mA). Interface. PRICE £145.00

TEXAS INSTRUMENTS
Portable/terminals incorporating twin cassette drive for high-speed transmission. Silent operation at 10, 15 and 30 cpm. 64 station ASCII character set. R5232 Interface. PRICE £425.00

PRINTERS & TERMINALS
BALL MIRATEL 9” Monitor with case including space for keyboard. PRICE £95.00

EMI PM15/3A 15” Monitor. BRAND NEW. PRICE £100.00

HAZELTINE MODULAR ONE SERIES VDUs
Basic Model. PRICE £425.00
Edit Model. PRICE £695.00
Lower Case Option. PRICE £35.00
Printer Port Option. PRICE £70.00
(Offer price available on request)
NOW AVAILABLE further large stocks of the popular Hazeltine H1000 and H2000 VDUs.
H1000 (from) £225.00
H2000 (from) £395.00

MISCELLANEOUS
AMPEX 1” x 3000 Video Tape. PRICE £115.00
DATA GENERAL NOVA 1210 4K CPU. PRICE £795.00
DIGITRONICS P135 Paper Tape Punches. PRICE £195.00
SHUGART SA400 Minifloppy. PRICE £195.00
SHUGART SA800 8” Floppy. PRICE £395.00
CLARE KEYBOARD SWITCHES. Special Purchase of top quality Clare SF-Style Reed Switches. 25p each

149/53 Pancras Road, London NW1 2QB. Tel: 01-837 7781. Telex 298694

WWW.americanradiohistory.com
Electronic
No.1 in Second User

A.C. VOLTMETERS
BOONTON
True RMS Voltmeter 93A
£375
BRUEL AND KAER
Electronic Voltmeter 2409
£225
FLUKE
AC/DC Differential Voltmeter 883AB
£975
HEWLETT PACKARD
True RMS Voltmeter 3400A
£415
MARCONI INSTRUMENTS
Log Voltmeter / Amplifier 7656A
£445
A. C. Voltmeter 400E
£225
A. C. Voltmeter 400F
£195
A. C. Voltmeter 400EL
£225
Valve Voltmeter TF 2600
£175
Valve Voltmeter TF 2604
£250
R.F. Millivoltmeter TF 2603
£525
PHILIPS
A.C. Millivoltmeter PM2454B
£299

ANALYSERS
BIOMATION
Logic Analyser 1650D
£3600
GENERAL RADIO
Video Analyser 1911A
£1750
HEWLETT PACKARD
Spectrum Analyser 1411T
£4350
C/w B552A & B554L
£1350
Logic Analyser 1600A
£725
MARCONI INSTRUMENTS
Wave Analyser TF2330A
£3900
SOLARTRON
Frequency Response Analyser 1172
£995

BRIDGES
A.V.O. / B.P.L.
Capacitance Bridge C2164/5
£995
BOONTON
VHF 'Q' Meter. 280AP
£650
(210-610 MHz)
Inductance Bridge 63H
£2750
GENERAL RADIO
Inittance Bridge 1607A
£750
LCR Bridge (0.05%) 1608A
£1195
MARCONI INSTRUMENTS
Universal Bridge TF 1313
£395
'Q' meter TF1245 c/w TF 1246 and TF 1247
£950
ROHDE AND SCHWARZ
Inductance Meter LRT
£475
Conductance Meter KRT
£475
WAYNE KERR
A. C. Testomatic A60
£1500
Universal Bridge B221 (0.1%)
£275

D.V.M.s AND D.M.M.s
DATRON
5½ digit D.V.M. 1051
£995
FLUKE
3½ digit D. M. M. 8022A (New)
£89
3½ digit D. M. M. 8020A
£99
4½ digit D. M. M. 8060A
£285
5½ digit D. M. M. 8080A
£599
5½ digit D. M. M. 8000A-01
£650
5½ digit D. V. M. 8300A
£199
HEWLETT PACKARD
5½ digit D M M 3490A
£550

LEVEL OSCILLATOR W2007

LEVEL METER D2007

SIEMENS
Carrier-Frequency Level Test Set.
6kHz-18.6MHz
W2007 + D2007
£1750

PHILIPS
Autoranging D. M. M. PM 2514
£125
3½ digit D. M. M. PM 2522
£175
4½ digit D. M. M. PM 2524
£225
Autoranging D. M. M. PM 2527
£400
SCHLUMBERGER
5½ digit D.M.M. A243
£595
Microprocessor D.M.M. 7065
£1150
As above with processor option
£1450
Microprocessor D.M.M. 7055
£975
As above with processor option
£1300

FREQUENCY COUNTERS
ADVANCE
500MHz Counter TC 15 & TC 15 P1
£495
FLUKE
250MHz Multiplication Counter 1911A-01
£380
500MHz Multiplication Counter 1912A
£480
125MHz Multiplication Counter 1925A
£405
Counter Timer 1953A opt. 15 & 16
£850
PHILIPS
1GHz Timer Counter PM 6615
£695
80MHz Universal Counter PM 6611/02
£350
520MHz Universal Counter/Timer PM 6614
£450
80MHz. Freq. Counter PM 6664
£305
RACAL
520MHz Freq. Counter 9915
£390

HEWLETT PACKARD
Network Analyser System.
8407A + 8412A (110MHz)
£2500

OSCILLOSCOPES
COSSOR
35MHz Dual Trace CDU 150
£395
HEWLETT PACKARD
75MHz Dual Trace 1707A
£725
High Sensitivity Single Trace 130C
£250
75MHz Dual Trace 1707B
£925
MARCONI INSTRUMENTS
X-Y Display TF 2213/1 c/w Memory Unit TK
£790
2214

PHILIPS
25MHz Dual Trace PM 3212
£625
25MHz Dual Trace PM 3214
£700

S.E. LABS
6 Channel Monitor SM121
£395

TEKTRONIX
200MHz D. Trace Portable 475
£1790
35MHz Dual Trace T932
£550
W. Diff. Plug In
£295
1A6 Plug In
£199

RECORDERS
PHILIPS
Single Channel Recorder PM B110
£225

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.

WW — 145 FOR FURTHER DETAILS

www.americanradiohistory.com
Brokers
Test Equipment

HEWLETT PACKARD
1707B Scope. 75MHz Dual Trace and Sweep Delay

COSSOR
4100 Scope. 75MHz Dual Trace Sweep Delay. (With new C.R.T. Invaribly)

SHANDON SOUTHERN
Two Tone Source

YOKOGAWA
Chart Recorder

WANDEL & GOLTERMAN
Level Measuring Set-up. PSM 5. 10kHz-35MHz

4111.

WATANABE
U.H.F. Signal Generator

ADVANCE
Sweep Delay

MARCONI INSTRUMENTS
A.F. Oscillator TF 2100

DATALABS
Power Line Disturbance Monitor DL019

TEKTRONIX SCOPES
Model 455A
100MHz Dual Trace Portable

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

Heventt PACKARD
Sweep Amplitude Analyser

SHANDON SOUTHERN
6 Channel U/V Recorder 10-650

YOKOGAWA
Chart Recorder 2047

SIGNAL SOURCES

HEWLETT PACKARD
Variable Phase, Sine and Signal Generator 203A

PHIIPS
Function Generator PM 5108

TElONIC
R.F. Sweeper 8601A

MISSCENIOUS

ADVANCE
Pulse Generator PG 59 (CT 600)

FLUKE
DC Differential Voltmeter 895A

BRUEL & KJEAR
Sound Level Meter 2203 & Microphone 4145

DATALABS
Power Line Disturbance Monitor DL019

GENERAL RADIO
Sound Level Meter 1933

www.americanradiohistory.com
SEASTREME ENGLAND’S ELECTRONIC CENTRE

OLIVETTI TE810

ONLY

£130

+ CARR

+ VAT

The cheapest way to tie to your computer, 80 columns, high contrast, improved ASCII in and out, RS232, feather-light keyboard, and robust 8 bit paper tape punch and reader. Supplied in good condition with interface and cables, complete with the usual instructions but unguaranteed. What more could you ask for?

1 Payer tape 15p per roll + pop 40p

HURRY WHILE STOCK LAST

DYNAMIC RAM SCOOP!

ONLY

£6.99 + pop 8.99

32 x £8.50 64 for £13.99

18 pin DIL sockets £1.60

VENTEK WORD PROCESSOR VDU TERMINALS

Still a few available. The VDU with the green screen. Made by the VENTEK 20 with the following specs: 12" monitor, 24 lines, 80 characters, upper and lower case with descending, 60 - 1080 keyboard, auto reset, ASCII, RS232 interface, adjustable baud rates, full cursor control, on line punctuation, function keys, etc. Latest technology used, mostly 74LS with some 7415s.

Support in 2 grades.

Grade 1: Complete set and working £250 + VAT

Grade 2: Condition as described £225 + VAT

Carrage £115

Almighty

 Grade 1 sold tested and working no guarantee offered. Anyone with menus, characters, or support a offer.

HYGRADE SMOOTHING CAPS

MULLARD PLESSY MALLORY SPRAGUE

100µF 330µF 630µF 1000µF 220µF 470µF 680µF 10µF 15µF 22µF 33µF 47µF

£2.50 £3.50 £6.00 £10.50 £12.00 £21.00 £30.00 £2.00 £2.50

Ex equipment tested

SEMODELIC TV/O DIO GOLF BALL TYPWRITERS

IBM selectric IV DIO golf ball typewriter. Ideal for use in the office or on the golf course. Includes paper, ribbon, and typewriter. Supplied with a 2 year guarantee. £425.00

Available in stock now! Test equipment: microprocessors, televisions, etc.

SOLARSCOPE

TTL 32/37/77 segment LED readout cardynn simply plug and play into your TTL, with no extra power supply required. £1.00 each

TL 115023 Dagington electronic scope for £1.00

DIE CAST & RUBBER BARGAIN GEMS

We've done it again! We've found a large quantity of CPLAIRE top quality keyboard switches plus old TTL TTY typing sets and thrown in a PCB for £2.00. Enables you to customise the keyboard just as YOU want them, just add and wire them up.

Let us know if you can use them. Quality keyboard which would normally cost around £100. Supplied with keyboard and assembly instructions. £29.99 + VAT

POWER SUPPLY UNITS

5 VOLT 2.5 A MPD. Made for TTL, this compact computer is used for 10 volt outputs of 5 watts @ 2.5 amps and 7.5 volts @ 5 amps are available. The 5 volt output is fully isolated and smothered with electrolytic current limiting. May be easily modified for 5 volts @ 7 amps. So compatible with circuit, believed working but untested. £25.00 + VAT

5 VOLT 5 AMP An extremely compact unit measuring only 12.5 x 13 x 25mm. It is not to be confused with other similar type connection units. Features such as adjustable output and current limiting make it a factory for an MPU system.

This is now £14.99 + VAT

- 12.5v @ 250 mA ITT Powercard measuring only 12.5 x 13 x 25mm. A precision floating isolated PSU should meet your memory and negative power supply requirements. Power supply over adjustment of both the plus and minus supply rails.

Sold with new circuit and edge connector only £12.75 + VAT

KEYBOARDS

76 KEY ASCII CASED

At last a coded 75 key ASCII cased keyboard at the right price in an attractive lightly grey case, this unit was originally made for IC. Now with additional space for the usual 100% of bargains. Supplied complete with circuit and edge connector. Costs £1.50.

LOW PRICE CHASSIS

A special bulk purchase enables us to offer the above keyboard at a lower price. We had lots less interest in a compact complete computer, the basic board is included and is 100% of bargains. This also includes all the TTL parallel to serial converter circuit etc 10 "for the same price as last year. Several different types.

TOROIDAL TRANSFORMERS

SNR PWR 280

£20.00 + P.P. £1.60

SUPER CASED VERSION

Same as above but housed in a metal case. A special offer on this type includes all the TTL parallel to serial converter circuit etc 10 "for the same price as last year. Several different types.

BARGAINS GALORE

In our walk round Warehouse: NOW open Monday to Saturday 9.30 to 5.30

BARGAINS GALORE

In our walk round Warehouse: NOW open Monday to Saturday 9.30 to 5.30

NEW X 5

£4.55 + P.P. £1.60

Efficient Smiths Radial Blowers

Are your hot parts sweating? Then keep them cool with our high efficiency radial air blower units. Made in England, these units provide cool air for circuit boards and electronic equipment very powerful and quiet. Guaranteed as far as it is possible to provide components that are effective and reliable. Easily mounted an air outlet. In a huge range. Click here for more info.

Please state £240 or 240v (operation) 50Hz only

NEW X 5

BRAND NEW

£4.55 + P.P. £1.60

WIRELESS WORLD JUNE JUly 1980

WWR — 999 FOR MORE DETAILS
MONEY SAVING BARGAIN
EX-STOCK FROM US

J.V.C. BELT DRIVEN TURNTABLE
WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE

LIST PRICE OVER £50
J.V.C. turntable supplied complete with an Audio Technica AT10 stereo magnetic cartridge.
- 5" shaped tone arm. Belt driven.
- Full-size 12" platter.
- Calibrated counter balance weight (0.3 grams).
- Anti-skate (bias) device.
- Size 12¼" x 15¾".
- Modern design.

AT ONLY
LIMITED STOCKS £25.99
PLUS VAT £3.89 Post (2 50

GEC HIGH QUALITY STEREO
10 + 10 watt AMPLIFIER WITH AM/FM STEREO TUNER
IDEAL FOR THE HOME

A cancelled export order brings you this offer from the world-famous firm of G.E.C.
AM/FM stereo Tuner Amplifier Ready built, Tuner (FM-AM), board and separate power supply, power amp, board.
Rotary Controls: Tuning, on/off volume, balance, with bass, treble and overall indicator.
Push butdon controls,Mono Tape,Disc,A.F.C.
- 14 W RMS L/R £5.

WIRING DIAGRAM SUPPLIED

Power Output: 7 watts RMS per channel, at better than 7% THD into 8 ohms, 70 watts speech and music.
- Frequency Response: 50Hz-15kH in. ± 3 db.
- Taped Sound Quality: Excellent - typically 120 db Signal/Noise (30mV per rated output)
- Disc Sensitivity: 100 mV (1mV stereo cartridge)
- Radio: FM (VHF) 87.5-108MHz.
- Long Wave: 153kHz-160.5kHz.
- Short Wave: 1,550-16MHz.
- Size: Tuner - 9½ x 5½ x 7½ in. Power Amp - 9½ x 7½ x 4½ in.

LOW PRICE OFFER
ON-OFF BALANCE, TWEETER, BASS, MONO TAPE, PHONO AFC FM LW SW Tuning

Fully Guaranteed Ex-Stock

SUITABLE SPEAKERS IN CABINETS PAIR £19.95 INC, VAT POST £23.95 Pair

ONLY £19.95 + VAT £23.95 CARRIAGE £2.50

CAR STEREO CASSETTE MECHANISM made for MOTOROLA

* Front loading 12-volt transistorised
* Speed and voltage control
* Ex-equipment tested – guaranteed

Limited stocks
Superb Value
Don’t delay
Order one today

PHILIPS W25 Professional capacitor four-arm microphone by Eagle.
A grille-hooded omni-directional microphone system using a carbon fibre. A high standard of finish for in-studio use, yet robust enough to withstand long periods between maintenance. Supplied complete with 1 red and 1 black windshield and 5 metres of twin screened cable c/w terminating of the microphone end in an XLR connector.

LIST PRICE £37.40
OUR PRICE £19.95
INC VAT POST £21.95

LEEDS ELECTRONICS EXHIBITION
1st, 2nd, 3rd, July 1980.
Tues, Wed, Thurs
Daily 10am to 6pm

WRITE FOR YOUR FREE CATALOGUE

Department of Electrical & Electronic Engineering
University of Leeds.

Henry's
Phone (01) 723 1008/9
404 Edgware Road, London W2, England I.E.D.
Program yourself with the latest facts on management techniques

That is, in effect, what happens when you subscribe to Data Processing. It is the only journal concentrating on the problems and concerns of running a data processing department – and running it with the maximum of efficiency and cost-effectiveness. Subjects to be covered in the coming year include:

Security of computer files and programmes
The latest paper-handling equipment
The computer-room environment
Software Services
Filing and furniture
Hardware and maintenance

There is an important bonus, too. Data Processing brings you the news of events and new-product developments much more fully than other computer journals – with the big difference that the products are selected, reported and reviewed from the standpoint of the D.P. Manager. In the context of how they can be applied to help you.

Post this coupon – with your cheque – today.

FREQUENCY COUNTERS—OFF/AIR RECEIVERS

250MHz
801 B
£250
Crystal oven
3 parts 10°

401A
50MHz 6 Digit £150
801B/M
250MHz 8 Digit £250
901M
520MHz 8 Digit £325
1001M
1-2GHz 8 Digit £550

20 models available including LED versions

RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX.
Phone 53661

HIGH PERFORMANCE BUT LOW COST—AUDIO SIGNAL GENERATORS
SINE/SQUARE WAVE

Model A017 Sine
Frequency 25MHz, $250.00
Model A625 Sine
Frequency 625MHz, $500.00

To send this coupon to:
IPC Electrical Electronic Press Ltd., 79-80 Blackfriars Rd., London SE1 8HB.
Please send me Data Processing for a year (ten issues). I enclose Cheque P.O. for £15* (incl. post and packing).

Name
Address

*Cheques, etc., should be made payable to IPC Business Press Ltd.

EPROM PROGRAMMERS

WHY BE EXTRAVAGANT

We offer new and economic solutions for use in:

- Production
- Inspection
- Development
- Field Support

4k to 32k EPROMS
Displays errors
and contents
Self-tests

MODELS INCLUDE: GANGED-P20 & P30, SINGLE-P35, SIMULATOR-S50

ELAN DIGITAL SYSTEMS LTD.
16-20 KELVIN WAY, CRAWLEY, WEST SUSSEX RH10 2TS
Telephone: CRAWLEY (0293) 510448/9

DISTRIBUTORS PLEASE ENQUIRE

WW 143—FOR FURTHER DETAILS
UNITED NATIONS
Invites applications for the following positions at New York Headquarters

1. CHIEF, TECHNICAL SERVICES SECTION (P-5)

Supervises and specifies arrangements for the installation, operation and maintenance of equipment associated with the United Nations conference servicing and radio and television programming operations. This includes a wide range of broadcast standard audio and video equipment, simultaneous interpretation installations and electronic voting equipment.

Responsibilities include directing the work of some 100 personnel, design of and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.

Should have advanced university degree in relevant engineering discipline, good electronic knowledge, computer experience and management skills particularly in the fields of budgeting projection and cost control, with 13 years’ professional experience.

Level P-5 carries net base salary per annum from US $24,298 (single) and US $26,298 (with dependants) plus post adjustment from US $11,627 (single) and US $12,584 (with dependants) per annum.

VA. 80-D-DAM-109-NY.

2. CHIEF, TELEVISION AND FILM UNIT (P-4)

Controls the technical aspects of the United Nations television and film unit which works to full professional broadcast standards.

Is responsible for system development and specifying operational and maintenance techniques and for assessing needs and making recommendations for purchase of equipment.

Supervises the operations in the technical areas and maintains contact with outside TV networks and operators.

Should have advanced university degree in electrical engineering with eight years’ professional experience in the operation and maintenance of television and film equipment.

Level P-4 carries net base salary per annum from US $20,209 (single) and US $21,755 (with dependants) plus post adjustment from US $9,779 (single) and US $10,527 (with dependants) per annum.

VA. 80-D-DAM-108-NY.

3. ENGINEER (TELECOMMUNICATIONS) (P-4)

Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment.

Responsible for system development and design and for the installation of these facilities both at Headquarters and for conferences away from headquarters.

Should have advanced university degree in an engineering discipline, with eight years’ professional experience.

VA. 79-D-DAM-357-NY.

APPLICATIONS: Please complete two copies of United Nations Personal History Form (P.11) or send detailed curriculum vitae to: Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number.
PERSONNEL & ELECTRONICS LIMITED

Provide BROADCASTING and TELECOMMUNICATIONS staff on contract to work worldwide.

WE REQUIRE

Qualified and experienced Engineers and Technicians for installation and/or operations and maintenance of Radio and Television Studios and Transmitters and Telecommunications Projects.

Programme and Administration Staff for Radio and Television Services.

The positions are interesting and varied and usually require Bachelor Status working.

For further particulars contact:
PERSONNEL & ELECTRONICS LIMITED, TRIUMPH HOUSE
1096 UXBRIDGE ROAD, HAYES, MIDDLESEX UB4 8QH
ENGLAND

Telephone 01-573 8333. Telex 934271

LOMA ENGINEERING

A young and dynamic Company specialising in the field of metal detection and checkweighing equipment, seeks to recruit an

ELECTRONICS DESIGN ENGINEER

to work on interesting microcomputer projects.

Applicants should preferably be recently qualified in electronics engineering to H.N.D./B.Sc. standard. The opportunity exists in an expanding environment for the successful applicant to take part in the initial development of new products, and also to become involved in their application to suit particular customer requirements.

An appropriate remuneration package will be negotiated.

Please phone or write for application form or send c.v. to:
The General Manager
LOMA ENGINEERING LTD.
Invincible Road
Farnborough, GU14 7SX
Tel: 0252-40346

Radio Communications
Electronics Engineers and Software Designers

Mid-Sussex—S.W. London Salaries up to £8,000
To join our expanding R&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navads and radio monitoring remote computer-controlled systems.

Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broenhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).
A CAREER IN ELECTRONICS?

Electronics can offer a career with a great future. And this is your chance to train for work as an Electrical/Electronics Technician for the Electronics Industry.

HOW DO I TRAIN? By taking one of our special one-year, full-time courses which start in September 1980. They are run throughout England and Wales under TOPS, the Training Opportunities Scheme.

WHAT WILL I LEARN? A wide range of essential subjects including electrical/electronic principles and practices, microelectronics and communication studies. With the possibility of six to eight weeks spent in an industrial attachment. And additional subjects will be included to meet the needs of local industry.

On successful completion of the course, you'll be awarded the Technician Education Council's Certificate in Electrical/Electronic Engineering.

AM I ELIGIBLE FOR TRAINING? You should be at least 19* and ideally passed the City and Guilds Electronic Technician Intermediate Certificate, or the City and Guilds Part II Certificate in electrical or electronic craft subjects or their equivalent. If you have a knowledge of maths or physics to O level or CSE grade I standard you will also be considered.

HOW AM I PAID? During training you'll receive a weekly tax-free TOPS allowance, and travelling and/or lodging allowances may also be paid. All tuition fees are met by TOPS.

WANT TO KNOW MORE ABOUT A COURSE IN ELECTRONICS? All you need to do is contact the Manpower Services Commission, Training Services, District Office that is nearest to your home, quoting (ww)

WE'LL PAY YOU TO QUALIFY.

An expanding challenge in Test Engineering

At our new manufacturing centre located in pleasant surroundings at Dunstable, Bedfordshire, we're producing some of the world's most advanced real-time computers for major commercial and industrial users.

It's a fast growing, high technology environment in which we now need additional men and women to join us as-

Test and Commissioning Engineers

To carry out fault diagnosis, repair, test, installation and commissioning of processors, peripheral and microprocessor-based controllers. Experience of digital electronics is essential.

Quality Test Engineers

For test and quality control on peripherals from initial receipt to final test of systems prior to delivery to customer. A sound electronics background is essential preferably including quality test work.

Test Development Engineers

To develop test programmes for PCB assemblies using the latest GEN-RAD ATE. Good test programming experience, especially on modern ATE is essential preferably coupled with a good general electronics or logic engineering background.

Starting salaries are competitive and relocation assistance will be given where necessary. So to find out more contact Keith Halliday, Personnel Officer at GEC Computers Limited, Eyncourt Road, Dunstable, Beds. Telephone: Dunstable (0582) 600122.

GEC Computers Limited

APPOINTMENTS IN ELECTRONICS

£5-£10,000

Take your pick of the personnel positions.

ARMS MISSILES MEDICAL COMPUTERS RADAR COMMS MICROPROCESSOR HARDWARE - SOFTWARE

For free expert advice on immediate action or career advancement, please write to Mike Goff, GEC Recruitment Department.

A EXPERIMENTAL OFFICER

Post No. 254

Experimental Officer required for duties in the above laboratory, offering calibration of a wide range of electrical equipments. The laboratory has British Calibration Service approval and provides facilities for offering approved reference standards or for local industries. The Experimental Officer is responsible to the Head of Laboratory (a senior member of the laboratory staff) for the daily running of the laboratory. The ability to work unsupervised is essential.

Salary Scale: £ 0 to a maximum of £3,000 for 32-hour week

Application form and further details are available from Staff Office, Portsmouth Polytechnic, Alexandra House, Museum Road, Portsmouth or by telephoning Portsmouth (0239) 27681, ext. 317 and to be returned as soon as possible.

PORTSMOUTH POLYTECHNIC

Department of Electrical & Electronic Engineering

(Electrical Standards Laboratory)

EXPERIMENTAL OFFICER

Post No. 254

Experimental Officer required for duties in the above laboratory, offering calibration of a wide range of electrical equipments. The laboratory has British Calibration Service approval and provides facilities for offering approved reference standards or for local industries. The Experimental Officer is responsible to the Head of Laboratory (a senior member of the laboratory staff) for the daily running of the laboratory. The ability to work unsupervised is essential.

Salary Scale: £0 to a maximum of £3,000 for 32-hour week

Application form and further details are available from Staff Office, Portsmouth Polytechnic, Alexandra House, Museum Road, Portsmouth or by telephoning Portsmouth (0239) 27681, ext. 317 and to be returned as soon as possible.

GEC Computers Limited
Sony Broadcast continues to expand its Basingstoke H.Q.

During the last year we have sold professional broadcast television equipment and systems to more than 90 organisations in 20 countries. Now further planned expansion of both our domestic and international markets has created the following vacancies:

Regional Sales Managers
Although we have now recruited Regional Sales Managers for Africa, the Middle East and Eastern Europe, we still have vacancies for similar posts in other parts of our market area, in particular, South and South East Europe.

The successful applicants for these positions will be qualified television engineers with several years’ experience in sales, marketing and other relevant commercial activities.

Extensive travel will be necessary and a knowledge of at least one European language apart from English is desirable. These positions offer the opportunity for substantial career development as part of a talented and highly motivated team.

Manager Audio Department
Reporting to the General Manager, Sales, the successful applicant will be responsible for giving product planning advice to the various international design groups. Qualifications to degree level or equivalent in electronics or a related discipline and several years’ experience in the development of professional audio products are desirable. Experience in digital audio processing would be a great advantage.

Travel to Japan and Europe for product briefing and technical support would be necessary.

Lecturer
This successful candidate would conduct theoretical and practical training courses on our major products, be able to write circuit descriptions and produce training manuals with lucid block diagrams.

Ideally, candidates should have in-depth experience of video tape recording, digital circuitry and a practical up-to-date knowledge of the broadcast industry, especially measurement techniques, plus an ability to present ideas clearly and answer the most difficult and unexpected technical questions. Knowledge, or an ability to master the technique of video cameras, digital audio equipment and the application of microprocessors to broadcast equipment will be an advantage, although we are prepared to provide the necessary additional training. Promoting young graduates will be considered.

Assistant Product Managers and Product Engineers
We have vacancies for Assistant Product Managers and Product Engineers in each of our four equipment groups; TBC and Editing Systems, Cameras, 1 inch VTR’s and U-matic VTR’s.

Candidates for the Assistant Manager posts will ideally be Graduate engineers with some years of experience in video technology, whereas as applicants for the Product Engineers vacancies will probably be less experienced. However, at both levels, we are willing to consider the right kind of experience in lieu of formal qualifications.

Successful candidates will receive suitable in-house training to enable them to provide technical product support both within Sony Broadcast and externally to customers.

Marketing Promotions Manager
The successful candidate will be responsible for formulating and implementing all aspects of corporate and product image. In particular, this will include mounting effective product advertising campaigns, organising Sony Broadcast’s presence at major international exhibitions, preparing product literature and press liaison.

The post will also involve collaboration with other Sony companies in jointly promoting broadcast equipment products throughout the market area.

Candidates will need to demonstrate a sound knowledge of the broadcast industry, a keen organisational ability, initiative and a degree of artistic flair.

Sales Engineers
We require competent engineers who are experienced in video cameras and/or VTR’s to supplement our sales force. A considerable amount of travel overseas and in the UK will be involved. Experience in selling would be an advantage, but the main requirements are a pleasant personality, dedication and ability. Promoting young graduates will be considered.

Senior Proposals Engineer
Reporting to the General Manager, Marketing, the successful applicant will have a technical background, preferably in the broadcast industry, and be able to demonstrate an overall systems capability. He/she will enjoy working with the minimum of supervision and will function happily under pressure.

The work will include the making and assessment of technical proposals to meet specific customer requirements, and will hence require an understanding of Contract Law. A knowledge of foreign languages would prove useful, though not essential.

Service Engineers
Two openings exist, one at a more senior level, for engineers with broadcast television engineering experience in operations and maintenance.

The positions will entail responsibility for the repair and test of sophisticated broadcast television equipment, together with minor development work. Some travel will be necessary.

Candidates for the senior appointment should preferably be qualified to HNC, or equivalent in a related discipline, and be conversant with modern digital techniques.

The second position should appeal to engineers with limited appropriate experience now seeking a progressive environment in which to broaden their knowledge.

Q.A. Engineers
Candidates should be experienced in the repair of modern television equipment and also be familiar with digital circuitry.

Activities will include the testing and commissioning of advanced broadcast television equipment for which occasional travel may be required. A relevant HNC level qualification is desirable.

All these posts carry excellent salaries and fringe benefits normally associated with a large international company, in some cases a motor car and relocation expenses where appropriate. The above appointments are open to both male and female applicants.

Write in strict confidence to Barry White, Personnel Manager giving full details of qualifications, experience and present salary.
Radio Telecommunications Engineers

£6,500 TO £8,500

An international company, involved in the provision of sophisticated communications systems, is able to offer stimulating careers to engineers in the United Kingdom in our Telecommunications Division.

Are you experienced in the installation and testing of broadband radio link and associated equipment, and/or have you spent time in a planning/estimating office? We are looking for:

INSTALLATION PLANNING ENGINEERS

To translate systems design concepts into detailed practical terms, to produce drawings, charts and schedules of equipment installation and testing instructions to brief the field engineer.

INSTALLATION ENGINEERS

UK-based field engineers to manage the installation and commissioning of telecommunications systems overseas or in UK. You would be working as a member, or take charge of, a team translating the efforts of the planning engineer into working systems.

Applications are invited from engineers with several years' relevant experience, three of which have been in a supervisory capacity.

Academic qualifications are an advantage.

Salaries are negotiable and dependent upon experience and qualifications. Overseas travel is necessary, and excellent allowances are paid for such duties.

Benefits include 4 weeks' holiday plus bonus, relocation expenses where appropriate and a pension and life assurance scheme, restaurant, social club and free car park being some of the amenities.

To apply phone or write quoting ref. K/174 to Sue Dillon, IAL, Acordio House, Hayes Road, Southall, Middx. Tel: 01-574 5134.

THE HIGH TECHNOLOGY TASK FORCE

COMMUNICATIONS SYSTEMS

COMPUTER SYSTEMS AND SERVICES

AVIATION SYSTEMS AND SERVICES - WORLDWIDE

ONE IN A MILLION?

Among the million or so leaving school or university this year there is a chance that one — perhaps two — is destined to make a significant development in audio.

That person's first decision might well be to join QUAD in Huntingdon. At school, he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will have come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM"... "Regulate the power supply for better imaging".

Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the third row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will, nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple 1 in 10?!

Well, drop us a line anyway.

Mr. P. J. Walker

THE ACOUSTICAL MANUFACTURING COMPANY LIMITED

30 St. Peters Road, Huntingdon, Cambs. PE18 7DB

ELECTRONIC NEWS GATHERING

A Major Overseas Television News Organisation based in London has a vacancy for a Suitably Qualified Assistant to work with a Senior Cameraman covering Worldwide News Events.

ESSENTIAL QUALIFICATIONS

A good understanding of the principles involved in Electronic Picture Generation and Recording, together with a proven background in "NEWS" or similar operations. The ability to work with a small team under pressure.

CONDITIONS OF SERVICE

GOOD SALARY with excellent employee benefits including non-contributory pension scheme. London-based with a considerable element of foreign travel.

Please reply to Box No. WW380
Electronic Engineers

Important new projects in the defence field have created a number of interesting vacancies for engineers in our laboratories at Bracknell.

You could work at the forefront of new technology on equipment for combat aircraft, helicopters, tanks and other applications if you have experience in:

- Digital and/or analogue circuit design
- Real-Time microcomputer control
- Microwave techniques in the short centimetric wavelengths
- Flight control

We would particularly like to hear from engineers with a working knowledge of MSI, LSI and CMOS circuits design.

Vacancies are open to male or female applicants at all levels, some to form the nucleus groups being set up to meet the challenge of developing entirely new equipment.

We also have vacancies for graduate engineers seeking their first appointment this year.

We believe that we can offer exceptional opportunities for you to exercise your technical skills in an unusually attractive working environment. The laboratories are situated within Lily Hill Park in surroundings well suited to research and development.

Bracknell is in rural Berkshire and offers an extensive range of housing and facilities in and around the new town. Relocation assistance will be provided where appropriate.

Please write giving brief details, or asking for an application form, to Mrs Josie Hunt, Ferranti Instrumentation Limited, Aircraft Equipment Department, Lily Hill House, Bracknell, Berkshire. Telephone: Bracknell 24001. Please quote reference number A/236/WW.
You're formally qualified in radar displays, that experience could earn you a key place in one of Lockheed's maintenance teams — and at least £16,500 tax-free over the next two years.

In addition, you'll enjoy the full Lockheed benefits package — free food, laundry and bachelor accommodation, free medical care and life insurance, excellent recreational facilities, three paid leave periods a year with free flights home together with local leave.

To join Lockheed, you'll need at least three years' experience in radar display systems which use both CRT digital, and scanning displays. If you have some knowledge of radar transmitter/receiver and signal processing equipment, that's a big advantage.

If you'd like more information on working in Saudi Arabia with Lockheed, drop a line, giving brief details, to the Senior Recruitment Executive (Lockheed), IAL, Personnel Consultancy, Aeradio House, Hayes Road, Middlesex. Or phone him on 01-574 5000. Please quote ref. L164. (346)

TRENT POLYTECHNIC
LECTURER GRADE II/SENIOR LECTURER IN ELECTRICAL/ELECTRONIC ENGINEERING

Candidates should preferably possess teaching and/or industrial experience. Research experience and a continuing interest in research work are desirable requirements for the post. Some knowledge of the application of computing to electrical engineering is desirable.

Salary: £5229-£9822 (salary award pending).

Further details and form of application from The Assistant Director (Administration), Trent Polytechnic, Burton Street, Nottingham, NG1 4BU. Forms to be returned as soon as possible. (448)

CAMBRIDGE AREA HEALTH AUTHORITY (TEACHING)

AUDIO VISUAL ENGINEERING TECHNICIAN

An experienced technician is required to provide engineering and technical support to a wide range of audio-visual equipment in the Cambridge Health District and the Cambridge University School of Clinical Medicine. The successful applicant will have experience in the service of colour and black and white CCTV systems, including cameras and VCRs and be competent to support a wide range of AV equipment. Applicants must be able to work without supervision and should, for preference, have an appropriate HNC or equivalent qualification.

Salary scale £4605-£5952.

Further information, application forms and job description available from:

P. E. Ward
Medical Physics Department
ADDEBROOKE'S HOSPITAL
Hills Road, Cambridge, CB2 2QG
Telephone: 0223-45151, Ext. 606 (457)

WIRELESS WORLD, JUNE/JULY 1980

ROYAL NATIONAL INSTITUTE FOR THE BLIND

ELECTRONICS ENGINEER

Circa £7000+ p.a. (review July)

This post is for a practical, creative man or woman, genuinely interested in keeping abreast of rapid development in electronics with a lively appreciation of their application rather than high academic credentials. You should have had experience in semiconductor technology in order to design and construct prototype aids for use by blind people, to initiate projects in external research establishments and manufacturing concerns, and to maintain familiarity with international research in this specialised field of work. Ability to provide accurate verbal and written reports essential. Staff receive free lunch in our own restaurant, and there is an excellent RNIB Pension Scheme with transferability. Applications giving full c.v. including present post and salary to: Personnel Officer, RNIB, 224 Great Portland Street, London W1N 6AA. (8129)

UNIVERSITY COLLEGE CARDIFF

Applications are invited for the post of

TECHNICIAN

(Grade 5)

in the

FACULTY OF SCIENCE

Applicants should possess an HNC or equivalent and have a good knowledge of analog and digital techniques, experience with microprocessor controlled instruments and interface equipment. Applications are also invited for the post of Technical Assistant (Grade 3) in the same Department. Salary range £4257-£4974 p.a. Duties to commence as soon as possible.

Application, together with the names and addresses of two referees, should be forwarded to the Vice-Principal (Administration) and Registrar, University College, P.O. Box 78, Cardiff, CF1 1XL, closing date: June 30, 1980. Reference 2052. (1492)

INNER LONDON EDUCATION AUTHORITY

Learning Materials Service, Television Centre, Thackery Road, London SW8 3TB

The Televison Centre produces a range of educational programmes distributed in the form of 'film-ina-35mm', video cassette and sound cassettes. The sound section of film involves workshops with professional personnel. News, Shorter, Senior IFC etc. to provide a variety of components of high standard.

Salary: £12,500.

Graduate in film, audio or visual fields may be considered.

(1) HEAD OF SOUND (ST4)

To head the sound section and to assist in producing most of the programmes. He/she will be responsible for training staff, and with the aid of other persons and systems will be responsible for the organisation of this section and for its purchase and maintenance.

Applicants should have suitable theoretical knowledge, and at least 10 years' experience in some aspect of sound work. Knowledge of all sound organs associated with television and film is essential.

Salary: £14,500 to £17,000 p.a.

(2) SOUND ASSISTANT (ST2)

This post is for a man, with some experience in studio engineering, in boom operation, tape and gramophone. Working hours are based on a flexible 35-hour week exclusive of meal breaks. Full training is provided. Occasional overnight stays are required.

Although applicants should have experience of television sound techniques, work in this post requires a thorough knowledge of loudspeakers and a film and television environment. Your application will be given to all those who are suitable. A detailed job description is available on request.

Salary: £8275 to £11,000 p.a.

Closing date: 14 days after the advertisement of this advert. (463)

VIDEO ENGINEERS

DUPLICATE SHOWBIZ FOR TOP MONEY

Europe's largest distributor of pre-recorded video entertainment programmes requires top-class operators for our multi-format video cassette duplicator facility located in West London. Must have experience with ¾", ¾" and 1" C format systems. Front line maintenance experience an advantage.

Shift working.

www.americanradiohistory.com
AMPEX
SYSTEM MAINTENANCE ENGINEER

to join a resident team at a site of EXCEPTIONAL INTEREST situated in the St. James’s Park area of London. The team is responsible for round the clock maintenance of a large INFORMATION STORAGE AND RETRIEVAL SYSTEM WHICH COMBINES both VIDEO AND COMPUTER TECHNOLOGY.

Ampex requires an Engineer with:
- Sound knowledge of Electronics/HNC or equivalent
- At least 3 years’ experience of maintaining ANALOGUE and/or DIGITAL electronic equipment
- Preferably, specific experience with: VIDEO equipment, such as cameras, VTRs, etc, and/or DIGITAL equipment such as disk/tape drives, mini computers.

Good salary plus generous shift allowance.
Company car plus travel allowance.
Pension and Life Assurance and Permanent Health Schemes.

Please write or phone for an application form from Clive Legg or Maureen Brake, Reading (0734) 85200, Ampex Great Britain Limited, Acre Road, Reading, Berkshire

TEST ENGINEER
To £6,500 p.a. Middlesex

We make an extensive range of environmental test systems, covering every application from strain measurement to the vibration of vehicles and buildings. If you are:
- self-motivated and self-reliant;
- qualified to HNC or equivalent in electronics/Radio and TV, and also interested in mechanics;
- experienced in analogue and/or digital work;
then we can offer you a wide variety of testing experience, working with newly-developed modular control systems.

Please call or write to the Personnel Manager

SERVOTEST LIMITED
14 Aintree Road
Greenford, Middx. UB6 7AA
Telephone: 01-998 1552
Broadcast Transmission Engineers

Through our network of Transmitting Stations, the IBA is responsible for the transmission of all Independent Television and Local Radio services throughout the United Kingdom. Vacancies now exist for Shift Engineers to be employed in the operation and maintenance of high-power UHF television transmitters, transposers and MF, VHF radio transmitters. The successful applicants will be required to carry out monitoring duties, performance test measurements and preventive and corrective maintenance on all transmitting station equipment. This will include scheduled and emergency mobile maintenance work at unattended stations. Some weekend and evening work will be required. Candidates should be holder of HNC (or equivalent) level in Electrical of Electronic Engineering and have at least three years experience with broadcasting equipment. A valid, full driving licence is essential. Starting salary will be within the range £5,880-£7,280 with provision for movement, subject to qualifications and experience. On a higher range rising to £8,202. Salaries will be reviewed on 1st July 1980. Employment benefits include free Life Assurance and Personal Accident Scheme, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.

IBA INDEPENDENT BROADCASTING AUTHORITY

If you are interested in the above, please write or telephone for an application form to Personnel Officer - Engineering Regions, IBA, Crawley Court, Winchester, Hants. SO21 2QA. Tel: Winchester 822273.

Electronic Marine Systems Field Engineers

Hunting Surveys & Consultants Limited requires Electronic Engineers to work on both theoretical and practical aspects of a variety of instrumentation systems associated with Marine Surveys. They must be qualified to at least HNC with emphasis on modern digital circuitry, but having also a broader electronics background. Some software experience would be advantageous. Applicants will need to be physically fit and must be prepared to undertake periods of operational work in the North Sea and Overseas.

Applications to

The Personnel Manager, Hunting Surveys & Consultants Limited, Elstree Way, Borehamwood, Herts, WD6 1SB.

Prototype Wireperson

To build analogue and digital automatic test equipment and prototype PCBs. We design and make intrinsically safe instrumentation for the petrochemical and allied industries and need someone with a good knowledge of electrical, electronic and mechanical engineering practice plus the ability to work from engineering drawings and sketches.

Salary range £5,000-£5,700, depending on age and experience

Apply to Janet Hitchen

Measurement Technology Ltd.
Power Court, Luton, Beds.
Tel: 0582 23633
Radio Technicians
Work in Communications R&D
and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise — positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel — we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas.

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.

Registered disabled people may be considered.

Pay scales for Radio technicians start at £4640 per annum, rising to £6525, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.

Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext 2269, or write to him at GCHQ, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

GCHQ
Recruitment Office
Government Communications Headquarters
Oakley, Priors Road, Cheltenham GL52 5AJ

ELECTRONIC
SERVICE ENGINEER

In order to maintain our current growth rate we urgently need an additional Service Engineer.

Lee Engineering market high technology equipment employing digital and analogue technique and for the vacancy a Service Engineer with broadbased practical experience and initiative is required. The positions will be primarily based at Walton-on-Thames but periodic service visits to customers is envisaged.

Please apply, by phone or in writing, to:

C. E. Welsh
LEE ENGINEERING LIMITED
Napier House, Bridge Street
Walton-on-Thames, Surrey KT12 1AP
Tel: Walton-on-Thames 43124/5/6

CAPITAL APPOINTMENTS LTD
CAPITAL HOUSE
29-30 WINDMILL STREET
LONDON W1P 1HG
TEL: 01-637 5551

THE UK's No. 1 ELECTRONICS AGENCY

Design, Dev. and Test to £9,000
Ask for Brian Cornwall
SALES to £12 000 plus car
Ask for Ken Sykes
FIELD SERVICE to £8,000 plus car
Ask for Maurice Wayne

We have vacancies in ALL AREAS of the UK
Telephone: 01-637 5551 (3 lines)
SENIOR R.F. DEVELOPMENT ENGINEER

UP TO £9000 P.A. NORTH KENT

Our client, a well-known electronics manufacturer, requires a Senior Development Engineer to participate in, and to co-ordinate, the development of a new generation of two-way radio equipment right through from specification to production stage.

Age is not important and some 'trade-off' between qualifications and experience is acceptable but, for guidance, the ideal candidate will have:

- A degree, or equivalent, in electronic engineering or a related discipline.
- A minimum of 5 years experience in R.F. design.
- A thorough working knowledge of contemporary techniques in circuit design from audio through to U.H.F.
- Plus an understanding of digital techniques.
- Sufficient familiarity with manufacturing methods to appreciate the effects of design philosophy on ease of production, test and service.

The company, which was established nearly sixty years ago, is situated in North Kent and is within easy reach of London, the countryside and the coast Career prospects are excellent. Additional benefits include a first class pension scheme and, where necessary, assistance with relocation.

All applications will be treated in the strictest confidence and will be acknowledged immediately.

Apply in writing or telephone for an application form (you are welcome to reverse the charge) to:

RONALD C. SLATER
TJB ELECTROTECHNICAL PERSONNEL SERVICES
12 MOUNT EPHRAIM, TUNBRIDGE WELLS, KENT TN4 8AS
TELEPHONE TUNBRIDGE WELLS (0892) 39388

SOUTHERN ELECTRICITY
Littlewick Green, Maidenhead

SECOND ENGINEER (TELECOMMUNICATIONS)

CHIEF ENGINEER'S DEPARTMENT
HEAD OFFICE
Salary within the range £8,231-£10,846 per annum

Applications are invited for the above post in the Technical Services Section of the Chief Engineer's Department.

The successful applicant will be part of a team engaged in the design, commissioning, and subsequent maintenance of telecommunications systems throughout the Southern Electricity Board, and must be able to spend periods away from Head Office when carrying out these duties.

Schemes in progress include telecontrol, data communications, medium capacity microwave links, multi-channel line circuits and radio and line telephony systems. Applicants should have had experience in some of this work and preferably be in possession of suitable technical qualifications.

The successful candidate will be required to drive a motor vehicle which may be either a private car or a Board owned car.

Relocation assistance will be provided in appropriate circumstances.

Applications on forms obtainable from the Secretary, Southern Electricity, Southern Electricity House, Littlewick Green, Maidenhead, Berkshire SL6 3Q8 and returned to him quoting 31/80 by not later than July 4, 1980.

AMPEX

World leader in Magnetic Recording, seeks

ENGINEERS

to join small teams responsible for designing and producing Mobile and Studio Broadcasting Television Systems in an expanding international market.

The key requirement is to demonstrate experience and achievement in the design of Television Systems. A valuable additional qualification would be a degree or HNC in electronics or a related discipline.

Good Salary, Pension, Life Assurance and Permanent Health Schemes. Staff Restaurant.

Please write or phone for an application form from Clive Legg or Maureen Brake, Reading (0734) 85200, Ampex Great Britain Limited, Acre Road, Reading.
Test Engineers & Test Gear Engineers
Move into new areas of Electronics Development and an assured quality of life...

EMI Electronics Ltd. builds quality and reliability into every product. Our reputation for excellence is long established and is a major factor in generating new orders.

The growth of our business here in historic Wells creates the need for more Test Engineers to take us through the 1980's.

As one of the world's leaders in specialised defence electronic systems - particularly the fields of radar, proximity fusing, telemetry and radio modelling we maintain stringent quality standards. You will join one of our professional teams responsible for ensuring that our wide range of "State of the Art" electronic systems on test equipment meet our exacting standards.

We are looking for people with either ONC or HNC Electronics and varying levels of experience of testing or servicing modern detection systems in the electronics industry or armed forces.

We offer competitive salaries, comprehensive benefits and assistance with your relocation to this beautiful part of Somerset.

For further information fill in the coupon and send it to F. M. Taylor, Assistant Personnel Manager, EMI Electronics Ltd., Penleigh Works, Wookey Hole Road, Wells, Somerset, BA5 1AA or phone him for more information on Wells (0749) 72081.

Name __

Address __

Tel.: __________________________ Age: __________

Current position __________________________________

Qualifications ___________________________________

Ref. W.W. 158

Take your pick

HF-VHF-UHF-
Microwave Optics & Acoustics

A challenging and full career in Government Service.

Minimum qualification — HNC.

Starting salary up to £6,737.

Please apply for an application form to the Recruitment Officer (Dept.ww), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.
Sultanate of Oman
TELEVISION ENGINEERING VACANCIES

Due to expansion of the service, several vacancies have arisen and applications are invited from suitably qualified persons.

Those applying for the Engineering vacancies should have full C and G certificates, Dip. Tech. or HNC and not less than five years' relevant experience. In most cases a knowledge of Arabic — although not essential — would be useful.

Contracts of employment will be for two years in the first instance and renewable for one year at a time by mutual agreement.

Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.

Applicants should state age, nationality, qualifications and full details of experience.

TRANSMITTER ENGINEERS
For maintenance of high power VHF TV transmitters and low power UHF transponders. The work will involve travel and in some cases overnight stops away from base. The Transmitters operated within the Sultanate are manufactured by Siemens and Philips.

VTR ENGINEERS
For maintenance on Ampex VR 1200 B and Bosch Fernseh BCM40 machines. There will also be some operational work. In addition some planning and installation work is likely as during the forthcoming year it is intended that 11" VTR machines will be installed.

STUDIO ENGINEERS
For maintenance on cameras vision mixers, S.P.G.S., vision distribution systems, telecine machines and video monitors etc. There will also be operational work, particularly on outside broadcasts and some occasional planning and installation work during the course of the year.

The equipment employed are Philips LD15 Cameras, Bosch Fernseh, Telecine by rank Consel and Bosch Fernseh.

MAINTENANCE ENGINEERS
To maintain a wide range of high quality sound broadcasting equipment. Some planning and installation work will arise as new equipment is installed.

LIGHTING ELECTRICIAN
To carry out maintenance on TV studio and film lighting equipment including Dimmers, Luminaries, Batteries, etc. Some lighting work might be involved.

FILM CAMERA MECHANIC
To carry out maintenance on eclair and ARRI 16 MM cameras and other film equipment including Synchronisers, Steenbeck Editing Tables, Tripods, etc. Applications should be sent to:

Director General of Radio and Television
Ministry of Information and Youth Affairs
P.O. Box 600, Muscat, Sultanate of Oman

Computer Maintenance Engineers

The Job covers the installation and maintenance of a wide range of computer equipment which includes:

- 3 large scale (B6800) computer systems and peripherals
- 4 medium scale (B1000) computer systems and peripherals
- 24 small scale (B90) computer systems and peripherals
- over 150 terminals linked to the above.

Qualifications should ideally be to Degree level but emphasis will be on ability.

Salary will not be a limiting factor in the selection of suitable candidates.

Burroughs is an international computer company with world-wide activities. The high technology of its products designed and manufactured at Cumbernauld demands the extensive use of computers as shown below.

All necessary training on mainframes and peripherals will form part of the successful candidates personal development.

For Further Information:
Write or phone
Recruitment Manager, Ref WW2
Burroughs, Cumbernauld G68 0BN.
Telephone 023-67-35457.
Men or women may apply.

Electroniic Field Service
To £10,000 + car

If you have worked with Mini Computers (D.E.C., Data General, Hewlett Packard etc.) or Similar Complex Logic Circuits and are prepared to travel to advance your career, we have a variety of Highly Attractive Service Opportunities available in the UK and Overseas.

For an interesting and remunerative new appointment contact Grant Wilson Ref. GW 57B.

TECHNOMARK, 11 Westbourne Grove, London W2 4UA. Tel. 01-229 9239 (01-229 4218 - 24 hrs.) Engineering Recruitment Consultants.
VIDEO AREA MANAGERS
U.K. or Overseas
c.£10,000 p.a. incl. Bonus + car

Our Video business is growing - both at home and abroad. To meet further demand we need ENGINEERS, with qualifications and or experience in electronics who have a flair for selling and who want to develop their careers in sales.

U.K.: Due to internal promotion we are looking for a capable man or woman to manage our rapidly expanding video business in the London area. Sales are promoted through a network of Video Centres and Video Dealers.

INTERNATIONAL: This appointment involves the planning, development and control of sales, in assigned overseas territories including the

TELEPHONE: (0993) 73601

Please send full career details to: Jeremy Forty, Personnel Manager, Bell & Howell Ltd., Alperton House, Bridgewater Road, Wembley, Middx. 01-902 8812 Ext.: 231.

BELLE HOWELL

ELECTRONIC SERVICE ENGINEERS
LONDON - BRISTOL - MANCHESTER - GLASGOW

Our Company specialises in both sales and servicing of Discotcheque Sound and Lighting equipment. We currently have vacancies for engineers who have had previous experience of either Hi-Fi, Studio PA or similar equipment.

Excellent salary plus quarterly bonus and P P P.

Please telephone or write to Andree Mead, Personnel Director for further details.

Roger Squire's

TECHTEST LTD., a small but rapidly expanding company engaged in the design and production of R F TEST INSTRUMENTATION has vacancies for:

SENIOR DESIGN ENGINEERS
JUNIOR DESIGN ENGINEERS
TEST ENGINEERS

We are at present situated near Oxford but will be moving to new premises in the Hereford area within the next few months. Attractive salaries and relocation expenses will be available to suitably qualified applicants.

Please phone (0993) 73601, or write to:

TECHTEST LTD.
NEW MILL, CRAWLEY ROAD
WITNEY, OXFORDSHIRE OX8 5TS

KINGSTON POLYTECHNIC
SENIOR TECHNICIAN
School of Chemical and Physical Sciences

A senior electronics technician is required to be responsible for the building and maintenance of electrical/electronic equipment. The complexity of the equipment requires the person to be familiar with high level analytical instruments and should have the ability to diagnose faults accordingly. The post offers the possibility of designing and building equipment and of bringing new ideas and technology into the department.

Salary range 13/4 £4971 £6174 inclusive

Further details and application forms from Assistant Registrar (Personnel), Kingston Polytechnic, Ferryhne Road, Kingston-upon-Thames, 01-549 1366

INDEPENDENT TELEVISION
TECHNICAL AUTHOR

The Independent Television Companies Association, the trade association of the ITV Programme Companies, is looking for a Technical Author experienced in electronics or communications, whose work will include writing reports in conjunction with research and development engineers, originating material for publication in broadcasting journals and the occasional preparation of minutes of technical meetings. Although based in London, some short business visits within the U.K. will be necessary.

The successful candidate, preferably educated to H.N.C. standard and aged 35-50, will have a good understanding of analogue and digital video and sound broadcasting techniques, be familiar with logic and microprocessor circuitry and be able to give clear expression in both speech and writing to complex technical subject matter.

Salary according to age and experience, but not less than £8,750; contributory pension scheme. 4½ weeks’ holiday.

Applications marked “Strictly Confidential” with full c.v. should be sent to:

The General Secretary (TA)
Independent Television Companies Association
Knighton House, 52-68 Mortimer Street, W1N 8AN

ELECTRONIC TEST ENGINEER

New position in a rapidly expanding Company. Analogue and some digital experience essential. The work includes testing, calibration and occasionally some final assembly on a new range of cardiac monitoring equipment.

Applicants will be expected to show responsibility, practical ability in addition to being able to design and construct special items of test equipment. Current driving licence an advantage.

Salary negotiable dependent upon experience. Company Bonus Scheme in operation. Write or telephone 01-874 4441.

JEREMY LORD

3 Charterhouse, Eelingsham Street, London SW1 1TD
All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:

Name ___________________ Age ___________________
Address ___________________
 Telephone Work/Home (if convenient) ___________________
 Years of experience 0-1 1-3 3-6 Over 6 [] [] [] []
 Present salary £3,500-£4,500 £5,500-over 4,500 5,500 6,500 £6,500 [] [] [] []
 Qualifications None C & G HNC Degree [] [] [] []
 Present job ___________________

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts. AL4 0BR. Tel: St Albans 59292

Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a range of studio products from colour cameras to simple D.A.s. We are also one of the largest suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in Andover for a worldwide market.

Due to continuing Company growth the following vacancies have been created:

PRODUCT DESIGN AND DEVELOPMENT ENGINEERS

Experienced and recently qualified graduates are required to join our research and development team. You will be involved in the design of new studio products including a new range of colour cameras using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the 80's.

Applications are invited from engineers who are qualified to degree or HNC level and who preferably have some knowledge of video engineering and/or microprocessor techniques.

TEST/QUALITY ASSURANCE ENGINEERS

We require engineers at senior and intermediate level to assist in the management of our new range of products for the Broadcast studio television market.

Applications are invited from engineers with an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment, or similar sophisticated products, and qualified to HNC, HND, or TEC level. Opportunities also exist for recently qualified engineers who are interested in developing skills in the studio broadcast engineering field.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept through manufacture to delivery and installation.

Our custom-built systems require a high degree of customer contact at engineering level from the initial design to customer training after completion of the contract, both within the UK and overseas.

Applications are invited from engineers with a knowledge of TV studio engineering gained from experience in this type of work or from experience on the operational side of television. Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

(331)
Electronic Engineers

What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Please send me a TJB Appointments Registration form:

Name ____________________________
Address __________________________

Tel: 0892 39388

TJB ELECTROTECHNICAL PERSONNEL SERVICES.
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

To apply, please fill in the form below and return it to TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

UNIVERSITY OF OXFORD

ELECTRONICS TECHNICIAN

An electronics technician is required for work on mass spectrometers and other equipment in the Department of Geology and Mineralogy, under the technical direction of the Electronics Group in the Physical Department. Applicants should have wide experience in fault-finding and building of modern electronic equipment.

Appointment is for five years from the date of appointment. Salary Range £4894 to £6592 under review. Application with full personal and professional details as soon as possible to The Administrator, Department of Geology and Mineralogy, Parks Road, Oxford OX1 3PR.

BRIGHTON POLYTECHNIC

LEARNING RESOURCES

VIDEO RECORDING & STUDIO ENGINEER

£6636-£7722

To be responsible for a newly established production centre equipped with state of the art facilities, including Plumbicon studio and telecine cameras, a wide range of video recorders and a video editing area based on Ampex one-inch broadcast VTRs. The two studios cover straight production, multi-track audio and advanced video post-production facilities. Active participation in related engineering developments is required. Operational experience of sound and colour video systems (preferably in a broadcasting or educational institution) and a degree or equivalent educational qualification are desirable.

UNIVERSITY OF OXFORD

ELECTRONIC ENGINEER

£5268-£6381

To work with a team of experienced engineers and technicians developing colour television and other audio visual facilities throughout the Polytetcnic. The systems developments range from simple sound and T.V. production equipment to video recording and editing to near broadcast standards. The Electronics Engineer will apply digital and analogue techniques to develop and install new equipment, upgrade existing facilities and assist with its maintenance. Formal training to degree or equivalent standard will be expected but proven ability and experience in electronic design and construction (preferably including television) will be rated even more highly.

Further details and application forms from the Personnel Officer, Brighton Polytetcnic, Moulscoomb, Brighton BN2 4AT. Telephone: Brighton 693655 Ext. 2536. Closing date: June 27th.

FREE 1980 AMBTRON CATALOGUE

With new range of kits and equipment cabinets. Send S.A.E. to Amtron UK Ltd., 1 Hughesden Road, Hastings, Sussex TN34 3TG. Tel. Hastings 469994.
With Plessey Semiconductors

Discover the difference between doing alright and doing really well

Design/Product/Test/QA Applications/Development

Are your talents fully utilised? Is your job really holding your interest? And are you properly rewarded?

Consider a job with Plessey Semiconductors at Swindon now. Currently we are manufacturing and developing products for telecommunications, radio communications, radar systems, television and power control.

To expand this activity, we seek electronic engineers with ONC through to BSc (Hons) qualifications for a variety of opportunities. We have openings for both junior and senior engineers. You don’t need specialist IC experience, a good general electronics background or interest is sufficient.

We are as keen as you are to ensure that your ability is not only utilised to the full but properly rewarded.

We are the largest British semiconductor company by a wide margin. Disregard anything you may have been led to believe about IC manufacture being exclusively an American operation. We have invested heavily in our future. We are growing rapidly. Over 50% of production is exported. Our product and market spread offers a considerable scope for individual men and women.

Opportunities also exist for surface acoustic wave engineers, particularly those with previous experience.

Salary parameters are 5k and 10k.

Design Engineers analogue or digital experience for bipolar, MOS and surface acoustic wave technologies.

Product Engineers analogue or digital experience in design or test engineering, with an interest in production.

Test Development Engineers broad knowledge of electronics, with a real interest in test method concepts – hardware and/or software.

Applications Engineers experience in IC applications, radar IF’s, use of ECL or high speed A-D conversion.

Development Engineers MOS IC design or digital design including CMOS and TTL logic design experience.

QA Engineers to work on approval of devices to BS9000 specifications.

Apply to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon SN2 2QW. Swindon (0793) 36251.

PLESSEY
NEW OFFER!! MICROPHONE TRANSFORMERS
2 x 300 ohms input for 200 balanced microphone
47k output — 7:1 ratio
Mumetal can with fixing bush and 6⅛" leading leads
Maximum input level 700mv RMS (200 ohm). Response 10Hz—
20kHz ± 2.50 db
PRICE £3.40 inc. VAT.
DIRECT INJECT BOXES . .
Jack input XLR output isolate switch and level control
PRICE £19.00 inc. VAT.
XLR CONNECTORS . .
High quantity connectors most popular models at very low prices
QUANTITY DISCOUNTS GIVEN
TRADE AND EXPORT ENQUIRIES WELcomed
MWM Co.
158 Park Road, Kingston, Surrey KT2 6BX
01-549 9130
Please add £1 00 postage

NEW 1980 Ed.
WORLD RADIO
TUNEBOOK
COMPLETE DIRECTORY OF IN-
TERNATIONAL RADIO & T.V.
1980 THE RADIO AMATEUR'S H/B
For APRIL. Price £8.00
UNDERSTANDING MICRO-
PROCESSORS
A PRACTICAL INTRO. TO
ELECTRONIC CIRCUITS
by M. H. Jones
Price £5.25
PRINTED CIRCITS H/B
by F. C. Goobie
Price £2.50
INTRODUCTION TO VLSI SYS-
TEMs
by C. Mead
Price £12.00

THE MODERN BOOK CO.
Specialist in Scientific & Technical Books
19-21 PRAED STREET
LONDON W2 1NP
Phone 01-937 9176
Closed Sat. 1 p.m.

THE SCIENTIFIC WIRE COMPANY
P.O. Box 30, London, E.4
ENAMELLED COPPER WIRE
SWG
14 to 20 6 oz. 25l.
14 to 26 2.75 1.50 .80
30 to 40 4.85 2.90 .70
35 to 40 3.40 2.00 1.10 .80
41 to 40 4.75 3.15 1.50 .85
41 to 50 3.87 2.50 1.20 .80
47 to 50 8.37 3.25 1.50 .80
47 to 60 6.85 3.05 1.00 .75
18 to 20 6.50 3.75 2.20 1.40

Tinned COPPER WIRE
14 to 30 2.39 2.36 1.34 .90
Prices include VAT and wire box. VAT for list. Special inquiries welcome
Ring Office: 52 Commodity Gardens.

ENCAPSULATING, coils, transform-
ers, components, degassing, sil-
cone, rubber, resin, epoxy. Lost wax casting for brass, bronze, si-
ter, inpregnating coils, transform-
ers, components. Vacuum equipment for cost, used and new.
Also for CRT regenerating mix
silizing, Research & Development.

WIRELESS WORLD, JUNE / JULY 1980

SMALLFIELD SY RH6 9JE
Tel: (0342) 841 2157

DO YOUR OWN SHEET-METAL WORK
For Shearing, Notching, Aper-
ture cutting, Punching, Box-
folder, etc. you need the con-
centrated versatility of only 3 Gabor Machines.
For well illustrated literature —
GABLE BROS. (ENGINEERS) LTD.
HATHERSHAM CLOSE
SMALLFIELD SY RH6 9JE
Tel: (0342) 841 2157

With 38 years' experience in the design and manufacturing of every type of TRANSFORMER YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Splitter/Combiner trans-
formers, input transformer, output transformer, Gutters, Multi-Secondary output transformers. Bridging transformers.
Low impedance matching transformers. Gramophone Pickup trans-
Low noise transformers. Ultra low frequency transformers. Ultra linear and other transformers for Valve Amplifiers up to 500 watts Inductive Loop Transformers. Synchronous D.c. Filter Inductors. Amplifiers to 100 volt line transformers from a few watts up to 1000 watts.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.

SOWTER TRANSFORMERS
Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullington Road, Ipswich IP1 2EG
Suffolk. Main 36 Transfair Transformers. A.G.W. Contractors, LOWEST possible prices. Send for our catalogue to prospective clients in the COMMONWEALTH E.C., USA, MIDDLE EAST etc.

Send for our catalogue which, when completed, enables us to post quoyation by return.
ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS & BULK BUYERS ONLY

Large quantities of Radio, TV and Electronic Components

BUY LOW COST CARBON & C/C 1/4, 1/2, 1. 1 Watt from 1 ohm to
10 meg.

RESISTORS WIREWOUND. 1/2, 3, 5, 10, 14, 25 Watt.

CAPACITORS. Silver mica, Polystyrene, Polyester. Disc Capes,
Metalized, CER, etc.

Convergence Pots, Slider Pots, Electrolytic condensers. Can Types,
Axial, Radial, etc.

Transformers, chokes, hapots, tuners, speakers, bending wires,
connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc.

All at Knockout prices. Come and pay us a visit. Telephone 445 2713,
445 0745.

BROADFIELDS & MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner.

BURGLARS
Safeguard your home, shop, etc., from burglars and vandals with the
best D.I.Y. equipment available.

Send S.A.E. for comprehensive price list. e.g. £6 for one of our fully
weather-proofed steel Bell-Boxes the professionals use.

Lawrence, 42/45 New Bond Street, London, EC2M 1QY.

Don’t buy in Kits

in Bits

TELETEXT, TV SPARES & TEST
EQUIPMENT. TELETEXT. Latest
Mk2 external unit kit incl. Mullard decoder 6610VM, fitted with
remote control £255, p/p £2.50 further.

Mk3 external unit kit incl. Texas XM11 decoder, fitted with
remote control £335, p/p £2.50. Both kits incl. UHF aerial plug,
stereo aerial socket. SPECIAL OFFER TEXAS XM11 Decoder, new and
tested, looks identical at a price £185, p/p £1.40. Stab. power supply
(5v), new £10. P.P. £1.10. Thorne design XM11 Inter-
terface unit £1.80, p/p £0.85. NEW SAW FILTER IF AM PLUS TUNER
-complete & tested (for colour & vision). £25.50, p/p £1. COLOUR
BAR & CROSS HATKit GENERATOR KIT (MK4 PAL). UHF aerial input
 type, 8 vertical colour bars, 1-k. V, -7k V. bargains £1.50. Price
controlled £1.35. Batt holders £1.50 or stab. mains power supply £1.00.

BIKE CASE £25 or alumn. case £2.90, p/p £1.40. Built and tested in
Exeter case £1.25, p/p £1.50. CROSS HAT Smooth UHF aerial in-
put type also gives 8k white & black levels, batt. off, £11.00 45/7.

SPECIAL OFFER 1000 kHz -68k. £1.00. BUSH 2715BC100 Line Image
Receiver £45.00, p/p £43.00. SWIVEL STAND £10.00. De-luxe case
and base £2.95. CRT and BALUN REACTIVATOR KIT for colour

Mayors, 45 (WF) Old School Lane, Milton, Cambridge.

STC 4001 TWITTERS bargain clear-
ance offer, for £4, £4 for £10.50. p/p. - Seastim Ltd. The Paddock,
Prithe. 10-12 Kingsway. London NW.1. £5.00. 19032.

MICROWAVE EQUIPMENT, wave
guides, attenuators, all used but in.
good condition. Balfour, 10532.34.35. Mays Road. Croydon. CR2 2QP.
£01 844 9317.

HEWLETT-PACKARD 130 C, Oscillo-
scope. New manual, new vases. £20.00.
£200. Ring 050 86. Pringham Earl 2412. 1440.

WRONG TIME?
MSF CLOCK is ALWAYS CORRECT—
ever gains or loses. 8 skins show Day
Hours, Minutes and Seconds. Auto QMT
BST and Leap Year, also second-in-a-month
STOP CLOCK and paralel.
BCO output, ideal for navigation, synchron-
izing events, security, etc. receives flag
time signals: 10000 km range. ABSOLUTE TIME.
600HZ RUGBY RECEIVER, as MSF
Clock. Synch antenna, serial data and audio
outputs. £13.70. V.L.F. 10-150kHz Receiver £10.70.
Each Tuned filter, complete with all parts,
printed circuit, case, postage etc. money
back assurance £29.50 only N.C.W.
Cambridge Kits, 45 (WF) Old School
Lane, Milton, Cambridge.

OPERATIONAL 625 line PAL colour
system, for TV. The system includes,
camera, camera lenses/ cables. Vision mixer, Monochrome/color
monitors, sync pulse generator. £13. £900.
Lincolnshire ETV. Tel: 0231 273477.
1983 ASSELY TESTBEN with pedalist,
good condition. £350. NOVA 829
Minicomputer with 32k word R.A.M.
spare boards, £450. Phone 01-9853
7385. £145.

"VERO 19" CARD FRAMES as
used. Height 5'. With case plus extra.
£25 Inc postage. Edge
conns. £1.50. Phone (0499) 3555.

WANTED!
all types of scrap and
REDUNDANT ELECTRONIC
and COMPUTER
materials with precious metal content

WANTED!

ANGIENAL INDUSTRIAL
Auctions

We sell by auction. all radio and
electronic components and
equipment. Why not let us
sell your surplus and end of produc-
tion materials. All entries must be
received at least 2 days prior
to sale.

For entry forms or catalogue of next auction contact

B. BAMBER ELECTRONICS
STATION ROAD
LITTLEPORT
CAMBS. CB6 1OE
TEL. (0353) 860185

DEAD OR ALIVE

SPOT CASI

paid for all forms of electronics equi-
ment components.
F.R.G. General Supplies
Tel: 01 440 5650. Telex: 24224 Quote Ref 3165

WANTED!

RECORDING equipment of
difficulties and age groups. (California,
U.S.A.) Tel. (415) 232-9834. (914)

WANTED! WANTED! WANTED!

COMMERCIAL SELLING &
REFINING Co. Ltd.
171 VICTORIA ROAD
LONDON EC1R 3AL
Tel: 01-837 1475
Cables: COXSMETL EC1
Works: RECKETT, M. LEICESTER

ARTICLES WANTED

We will purchase your surplus and obsolete Team Equiment and
Electronic Components. Anything considered from Relays to Compoete
Exchanges. Contact

TELECOMM. SPARES
Lee Valley (0922) 716945

WANTED:

TURN YOUR SURPLUS Capacitors, transformers, into cash. Contact
COLES-BARDING & Co Ltd. 193 South
Jrnrk, Wulbecch, Cambs. 949410.
Immediate settlement. We also wel-
come the opportunity to quote for complete factory clearance.
(099)

STORAGE SPACE is expensive, why
store redundant and obsolete equiment?
Our fast efficient clearance of all test gear, power
supplies, PC boards, components, etc., regardless of condition or
disposal. Call 01-771 9413. (099)

WANTED: Semicocomponents
and clean new surplus components.
Tel: 01-440 5650. 52 Barkly Road, Syston,
Leicester.

WANTED!

SPECIAL PURPOSE and high power
valves of Eimac and Varian wanted.
304CL, 4CX1000A. 6L6, 747, 777 valves also desired.
The W8KXW, 10 South Avenue, North Arlington.
New Jer-
sey 07092 -USA. (329)

www.americanradiohistory.com
A COMPLETE SERVICE
prices. Prototypes undertaken.

WIRELESS WORLD, JUNE/JULY 1980

TELECOMM RIGGING SERVICE

EURO CIRCUITS
Printed Circuit Boards - Master layouts - Photography - Legend printing - Roller turning - Light (Etching) - Flexible films - Concentrators - Prototyping.

EURO CIRCUITS LTD
Highfield House
New Road
Nr. Cramlington
Kent. WI2344

PRINTED CIRCUIT MANUFACTURE. On the job estimate, competitive prices. Prototypes welcome. Inhouse photography. Phone Mr. M. Dobson - 445 2654 or write to ATRICKONICS Ltd, 42/44 Ford Street, Moretonhamstead, Devon.

SMALL BATCH PCB's produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. BLACK TURNAROUND. Details - Winchester Promotions, 9 Hatfield Rd, London EC1N 8W. Telephone 01 402 4127/8198.

A COMPLETE SERVICE to manufacturers, Assembly, cable forming and testing projects. No task too small - service and component scheduling at competitive prices. Small or large scale, with quick turn-round to high standards. Contact the professionals in Electronic, Telecommunication, Services, Stainton Mills, Dewsbury, W. Yorks. Tel: 09241 404044. TX 56567.

MICRO ELECTRONICS with years of experience in software and hardware, seek independent design and development projects. No task too small. Phone: in the strictest confidence to Box No. W.W. 418.

- STRUCTURES FOR RADIO -

WE SUPPLY AND ERECT TOWERS, MASTS, ETC., THROUGHOUT THE U.K.

- Antennas
- Surveys, inspections and maintenance
- 48-hour emergency service (0604-63730)

A guarantee on all installations.

If you like to plan well ahead phone us now for information on our Inflation-proof fixed-price ordering.

Ask for Steve Faulkner on 0604-21930.

TEST EQUIPMENT CALIBRATION AND REPAIR
Quick turn round. attractive rates. ring for details. Southamptom (0703) 431293

DUTCHGATE LTD.
94 Aldermaston Gardens, Slough, Southamptom

SMAALL BATCH FLOW SOLDERING. Up to 500 per week. PCB boards, components, transmitters and receivers for control of any function at any time. Telephone 01 402 4127/8198. Introductions. - EES Ltd, Clifford Rd, Monks Rd, Exeter, 34966. 0890.

SMALL BATCH FLOW SOLDERING. Up to 500 per week. PCB boards, components, transmitters and receivers for control of any function at any time. Telephone 01 402 4127/8198. Introductions. - EES Ltd, Clifford Rd, Monks Rd, Exeter, 34966. 0890.

COLOURED FLUORESCENTS, all prototypes of fluorescent lighting effects. Reduce your costs, use our custom-design service, assemble your own units. Box No. 427.

ONE OFFS' A SPECIALITY. Small batch PCB assembly. Quality hand soldering and wire-wrapping. Collection/delivery service available. Contact Roy Associates on Bedford (0254) 218926 or reply to Box No.

PRINTED CIRCUIT BOARDS. Single or double sided from circuit diagrams to assembled and tested boards. Any intermediate stages at manufacturer undertaken. Quick turn-round on prototypes. Phone Maldon 44517465 or write to W.1.1. Electronics, 4 Dr Theke, Maylandsea, Essex CM30 1B2.

DESIGN DEVELOPMENT MANUFACTURE. We can offer a high quality, professional service, covering all aspects from original design to small batch production. Digital/Analogue prototypes welcome. For competitive pricing and quick delivery phone Mr. Flavey, Digitalis Ltd., 9 Milford Road, Gorringe, Thames, Oxfordshire. Tel: 089 14 2162.

INTERESTED IN A TECHNICAL CAREER IN TV/RADIO/RECORDING?

The best way to achieve this is to take a concentrated industry recognised 2 year course with Ravensbourne College and Bromley College of Technology. Subject grants are available and the course leads to the HNC, Diploma in Communications Engineering. Supported by a number of TV companies, the course is a mixture of academic and practical work.

To find out more about this unique opportunity to secure a worthwhile absorbing career in a well-paid expanding industry (200 of our students now have responsible jobs in Communications) write or telephone The Secretary, Department of Television, Ravensbourne College, Wharton Road, Bromley, Kent BR1 3LE (Tel 01 894 30950).

West Midlands Passenger Transport Executive UHF/FM
TRANSMITTER/MICROPHONE TRANSFER/RECEIVER SETS
The Executive invite applications from manufacturers who wish to be included upon the Executive's list of tenderers who may be invited tenderer for up to 20 sets of equipment for hovercraft equipment.

Specifications and tender details can be obtained from: B. Evans, Purchasing Controller, West Midlands Passenger Transport Executive, 15 Summer Lane, Birmingham B19 3SD.

Closing date for tenders 12 noon, July 1 1980.

The Executive does not bind itself to accept the lowest or any other tender.

E.A.R. ELECTRONICS LTD
50 Flinton Road
Urmston, Manchester
Tel: 061-748 3878

F.A.R. ELECTRONICS LTD
50 Flinton Road
Urmston, Manchester
Tel: 061-748 3878

CIRCOLET
for Electronics/Electro-Mechanical Assembly. We offer the following versatile and quality service for small to large batches.

PCB and Final Assembly, Repairs and Servicing, Inspection and Functional Test, Prototypes and Associated Services, and modifications.

For competitive prices and fast turnaround, contact
Circolet, Tel: 01 817 1222, 1 Franswater Street, Tonbridge.

PCB ASSEMBLY CAPACITY AVAILABLE
Low or high volume, single or double sided, we specialise in flex line assembly.

Using the Zevation flow soldering system and on line cutting, we are able to deliver high quality assemblies on time, and competitively priced.

Find out how we can help you with your production. Phone or write. We can be pleased to call on you and discuss your requirements.

CIRCOLET LTD
120 NEWMARKET ROAD
BURY ST. EDMUNDS,
SUFFOLK IP33 1LE

Sub-contract assemblers and writers to the Electronics Industry...
Here’s why you should buy an I.C.E. instead of just any multimeter.

INDEX TO ADVERTISERS JUNE/JULY

| Acoustical Mfg | 121 | Ferranti Semiconductors | 1, 145
Acrolab Products	29	Field Tech	31
Adcom Products	29	Fluke (GB)	30
A.E. Kodak	29	FYlde Electron Labs	124
A. H. Supplies	126	G.M. Electronics	118
Ambit International	29	Gould Institute Div.	Cover 4
A. O. Smith	65	G.P. Industrial Elec. Ltd.	16
A. P. Products	141	Greenwood Electronics	15
Apex	32	Guide to Broadcasting Stations	105
Aresco	128	Hampe	125
Aro Plastics Dev Ltd	106	Hall Electric Ltd.	2
AVI	19	Harris Electronics (London) Ltd.	22
Baskin	66	Harrison Brothers	138
Barkway Electronics Ltd	28	Hart Electronics	98
Basket Metal	98	Harwin Engineering	136
Barrie Electronics Ltd	135	Harwood	132, 139, 148, 154
Bell & Howell	23	Hi-Fi 9	104
BIB Hi-Fi L180 Cover iv	141	Hilmast	16
Bi-Pak Semiconductors	143	Horizon Exploration	97
Bremsi		ILP Transistors Ltd.	108
Buijin Electronics Ltd	83	Industrial Tape Applications	83
Bull	131	Integrex	95
Cartronics Ltd	6, 7	Interface Comps	122
Catronics	146	Interface Quartz Devices	112
Chilten Electronics	141	ITT Instrument Services	9
Chlimes Ltd	151	ITT Mercury	106
Codan Electronics Ltd	38	Keithley Insts.	73
Codexis	108	Kirkham Amplifier	8
Collette	136	Langrext	105
Computer Appreciation	146	Laser Electronics	109
Continental Specialties	9, 14, 133	Level Electronics Ltd.	3
Cray (UK)	133	Livingstone Hire Ltd.	110
Cropico	112	Lowe Electronics Ltd.	100
Crystal Reading	114	Maplin Electronic Supplies	Cover iii
Crimson Elektrik	112	Marshall, A & Sons (London) Ltd.	138
Dalston Elec	29	MCP Electronics	35
Danavox (GB Ltd)	113	Microcircuits Ltd.	5
Display Electronics Ltd	112	Midland Instruments Co.	148
Drake Transformers	136	Mills, W	138
Dream Plant Electronics	111	Milward, G. F.	106
Dutchgate Ltd	139	Monolith Electronics Co.	109
Edicon	26	Mullard	10, 11
Elekon Systems Ltd	155	Multicore Solder S. Ltd.	Cover iv
Electro Ltd	118	Mura Electronics	135
Electrical Times	116	Newbear Comp, Store	106, 110, 114
Electronic Brokers Ltd	93, 149, 150, 151, 176	Electro-Technology Comp Ltd	128
Dutchgate Ltd	139	Electrovalue	144
Edicator	28	Fairler Radio	133
Ediskan Systems Ltd	144	Fairlerts	130
Edylock	144	Farnell Instruments Ltd	22, 74, Readers card
Elco - Radio Ltd	145	Field Controls	107
Elco Printed Wire	142	FM Electronics	28
Electromedica	144	OMR Electronics	27
Elmy Electronics Ltd.	144	Orme Scientific Equipment	27
Elsan	144	Passwords	27
Elsevier Ind. Ltd.	144	Pastime	27
Fairgreen Ltd	144	Pecialty Oils	27
Fairway Engineering	144	Perkin-Elmer	27
Fairview Mfg	144	Plessey	27
Fairview Mfg	144	Pointers	27
Fairview Mfg	144	Polaroid	27
Fairview Mfg	144	Polystyrene	27
Fairview Mfg	144	Polyurethane	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27
Fairview Mfg	144	Porcupine	27

OVERSEAS ADVERTISEMENT AGENTS:

Telephone: 225 008 - Telex: Budapest 24 4525.

Telephone: 347051 - Telex: 37324 Kompass.

PRINTED IN GREAT BRITAIN BY QB LTD. SHEPPERS PLACE. COLCHESTER. AND PUBLISHED BY THE PROPRIETORS IPC ELECTRICAL- ELECTRONIC PRESS LTD, DORSET HOUSE, STAMFORD STREET, LONDON SEI 8LU. TELEPHONE: 01 621 2920. WIRELESS WORLD can be obtained abroad from the following: AUSTRALIA AND NEW ZEALAND: Gordon & Gotch Ltd. INDIA: A. H. Wheeler & Co. CANADA: The Wm. Dawson Substation Service Ltd. Gordon & Gotch Ltd SOUTHERN AFRICA: Central News Agency Ltd. William Dawson & Sons (S.A.) Ltd.

UNITED STATES: Eastern News Distribution Inc. 14th Floor. 111 Eighth Avenue, New York, N.Y. 10011.

www.americanradiohistory.com
STEP INTO A NEW WORLD WHEN YOU DISCOVER MAPLIN

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components — from resistors to microprocessors — clearly described and illustrated.

Send the coupon for your copy and STEP UP TO MAPLIN SERVICE NOW

Post this coupon now for your copy of our 1979-80 catalogue price 70p.
Please send me a copy of your 280 page catalogue. I enclose 70p (plus 46p p&p).
If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send £1.35 or ten International Reply Coupons. I enclose £1.16.

NAME
ADDRESS

Catalogue now available in all branches of WHSMITH Price £1.00
Toolbox Reels
Three solders that cover all your electrical applications
40/60 Tin/Lead size 3
60/40 Tin/Lead size 10
Savbit Alloy size 12
£3.91 each

Savbit Dispenser
Contains Erbin Multicore Savbit solder which increases life of copper bits by 10 times
Size 5 90p

Solder Cream
For joining most metals
Easy to use and ideal where solder wire cannot penetrate

Handy Dispensers
Size 19A All electrical work £1.45
Size PC115 For small components £1.15
Size SV130 Use with copper bits and wires £1.61
Size AR140 Metal repairs £1.38
Size AL150 Aluminium £1.93
Size SS160 Stainless Steel £2.53

Economy Pack
This convenient dispenser contains enough general purpose solder for about 200 average joints. Suitable for all electrical work.
Size 6 58p

Cassette Editing Kit
Make editing simple with the Bib splicer, tape cutter and splicing tape, with 5mm adaptor.
Ref. 56 £2.88 inc. VAT

Groov-Kleen Automatic Record Cleaner
For single-play turntables. Removes harmful dust that protects records and stylus. Fashions on chrome, bright anodised aluminium and shiny black.
Ref. 42 £2.99 inc. VAT

Cassette Fast Hand Tape Winder
The Bib Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a 90 minute cassette in 60 seconds—faster than most recorders.
Ref. 78 £1.66 inc. VAT

Groov-Kleen Automatic Record Cleaner
For single-play turntables. Removes harmful dust that protects records and stylus. Fashions on chrome, bright anodised aluminium and shiny black.
Ref. 42 £2.99 inc. VAT

Record Valet
Soft bristle brush on leading edge removes dust and hum from turntable. The advanced cleaner is engineered in a fire shiny black finish and is supplied with dust cover and a 2mm double brush for anti-static cleaner.
Ref. 47 £3.29 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative. Following years of research, Bib laboratories have developed Groov-Guard XL-2 Anti-static Record Preservation. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable. Non-toxic.
Ref. 27 £2.48 inc. VAT

USA Pat No. 4067563 (splicer)
Brit Pat No. 1907583
Brit Pat No. 1262280 (method of splicing)

Bib Tape Head Maintenance Kit
Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders. Cleaning and polishing pads, cleaning liquid and brush included.
Ref. 25 £2.48 inc. VAT

All prices shown are recommended retail inc. VAT