Digital capacitance meter
Colour graphics v.d.u.
Multipath distortion
To see how Multicore Oxide-Free Solder Creams offer you higher profits—just watch

Applications don't come much more critical than digital watch manufacture. Here, discrete deposits of Multicore Oxide-Free Solder Cream are screened onto the PCB. A precision job, with no risk of operator error or fatigue. And, a convenient temporary adhesive for the positioning of components.

Ordinary solder creams cannot match this profitable performance. Here's why...

Solder-flow is accomplished by simply passing the units over a hot plate. Fast. No oxide to contend with. No dirty residues. The manufacturer says Multicore Oxide-Free Solder Cream has reduced reject rate substantially and offers superior soldering quality.

Compare these electron-microscope enlargements at x240 magnification:

Ordinary cream solder powder reveals poor particle shape and size.

Multicore powder from Multicore Oxide-Free Solder Cream displays clean, uniform particles.

Digital capacitance meter
Colour graphics v.d.u.
Multipath distortion
The TM500 series

First select a mainframe, there are five basic models from which to choose, providing 1, 3, 4, 5 or 6 compartments, suitable for benchtop, portable or rackmountable applications. Each mainframe has its own integral power supply and that means just one mains lead irrespective of the number of compartments used. Now you can start to tailor your selection to suit your application.

The only limitation is your imagination

To find out more clip the coupon, ask your field engineer, circle the enquiry number, write or simply phone, we'll be pleased to help.

Tektronix UK Ltd, PO Box 69, Coldharbour Lane, Harpenden, Herts, AL5 4UP. Tel. Harpenden 63141

Please send me full information on the TM500...

Name: ____________
Position: ____________
Company: ____________
Address: ____________
Telephone: ____________

TM500

COMMITTED TO EXCELLENCE

WIRELESS WORLD, APRIL 1980

39 Science of the whole
40 Digital capacitance meter
by Adrian Ryan
45 How serious is multipath distortion?
by Pat Hawker
48 Literature received
49 Shared-memory, colour graphics visual display unit
by S. J. Marchant
55 Circuit analysis by small computer
by A. S. Beasley
58 Pulse-induction metal detector — 2
by J. A. Corby
60 World of amateur radio
61 Mercury switch for parallel-tracking pickup arm
by Rod Cooper
64 News of the month
Racal gets Decca
Digital telecine
Graphite transmitter valve grids
68 A.m. detectors
by S. W. Amos
75 Letters to the editor
Programmable notes for keyboard instruments / Poliotics and electronics
Displacement current

What's so natural about e? — 3
by J. C. Finlay
82 Books; Sixty years ago
85 Improving photodiode camera signals
by Daryl K. Green
89 Circuit ideas
Light controller
Improved tone control
Voltage follower
91 New products
"Comparisons are odorous"

We are often asked by audio enthusiasts how our amplifier compares with so and so's product, and they are surprised when we reply "we don't know, we have never tried!"

It is not that we are unwilling to learn from other people's mistakes, it is simply that at Quad we recognise only one standard for comparison, namely the original.

What we wish to know is how the output of the equipment under investigation compares with the original signal fed into it.

Over the years we have developed experimental techniques which enable us to investigate the audible contribution of a piece of equipment to a music signal, and as a result we can say with complete confidence that a Quad 405* contributes absolutely no audible degradation to the signal fed through it, and that's as close to the original as you need to get.

For further details on the full range of QUAD products write to:
The Acoustical Manufacturing Co. Ltd., Huntington, Cambs, PE18 7DB.
Telephone: (0480) 82861.

QUAD
for the closest approach to the original sound

*QUAD is a registered Trade Mark

FOR FURTHER DETAILS
Power to the Performer.

HI Acoustics Limited, Unit B, The Reddings, CW1X 0AP. Registered UK 904616 with VAT. Registered No. 85260355.

We wanted to push our technology to the limit and create the ultimate sound system for serious audiophiles. After all, our designers believed in passionately inspired by the sound, we set out on a quest to produce truly extraordinary audio equipment.

Our state-of-the-art technology is the best in its class, offering a wide range of features that exceed our competitors' offerings. With incredible sound quality and a sleek, modern design, our products are the perfect solution for high-end audio enthusiasts.

Send for our brochure, or you can order your own today.

WIRELESS
WWW.AMERICANRADIOHISTORY.COM

MICRO CIRCUITS

THE ULTIMATE SINGLE POWER SUPPLY

MEASURE RESISTANCE TO 0.1Ω...ONLY £55...At a price that has no resistance at all!

At a price that has no resistance at all!

New Digi-Multi-Tester M1200B

New 9 Digits 10Hz to 600 MHz

Model 2000 FREQUENCY COUNTER

New Digi-Multi-Tester M1200B

The Sound of Science.
BREMI ELETTRONICA
Via Pasubio 3/C
43100 Parma - Italy
Tel. 0521/72209 - 71533
Telex: 530259 ccla

DC POWER SUPPLIES a vast range
suited to meeting both amateur and
professional requirements
MEASURING INSTRUMENTS Digital
frequency meter, digital capacity
meter

WE ARE LOOKING FOR AN EXCLUSIVE IMPORTER
well introduced on the English market for all our articles and for some lines of our product.

NO WAITING FOR
THESE TOP PRODUCTS

DC POWER SUPPLIES

DC POWER SUPPLIES a vast range
suited to meeting both amateur and
professional requirements
MEASURING INSTRUMENTS Digital
frequency meter, digital capacity
meter

WE ARE LOOKING FOR AN EXCLUSIVE IMPORTER
well introduced on the English market for all our articles and for some lines of our product.

PHILIPS EGYPT

I say to you what I say to you:
We are living in a new era.

THE PM 2307 is a tough
oscilloscope which offers at a
low price the quality and technology you expect
from Philips Test and Measuring
Instruments.

Both these instruments are available of the shelf from the Philips Electronic Instruments Department, new address below or from the following distributors:

Philips
Tel: 01-806-4884

Philips Service Centres (25 throughout the country.
Tel: 01-686-0001

WIRELESS WORLD, APRIL 1980

BREMI

NO WAITING FOR
THESE TOP PRODUCTS

The PM 2307 - Super
Scope is a tough, general purpose
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.

The PM 2307 is a tough
oscilloscope which offers at a low price
the quality and technology you expect
from Philips Test and Measuring
Instruments.
Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a 5½-digit, full 5-function DMM with respectable ±2½% DC accuracy. Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is 30,000 hr. or about 10 years.

All 5 functions are fully protected – 1400V peak on DCV and ACV, 300V on Ω, 2A (250V) on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.

Cost-conscious case of maintenance is so thoroughly designed into the 169 that only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about £1.50.

When you factor in features like function and range announcement right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour-coded front panel, we think you’ll get the point. No analogue meter or DMM can match the price-performance of the new 169. It costs £99 (plus VAT).

For information on the 169 or any Keithley DMM call (073) 861287 Telex: 847047

Is this the end for Analogue meters?

KEITHLEY

Keithley Instruments Ltd.
1, Blantyre Road
Gil Road, Berkshire RG2 0NL
UNITED KINGDOM
(0734) 841287 Telex: 847047

Keithley Instruments GmbH
Neuehochstrasse 9
D-8000 Munich 70
(089) 714-40-65
Telex: 827180

Keithley Instruments SARL
44, Rue Anato France
F-81121 Palais/med Cedes
01-016-22-06
Telex: 8427 204188

Ex stock

Wa 84 for further details

Lateral Thinking

The perfect definitive power amplifier should run absolutely stable and completely undistorted across a full frequency range up to the highest power level with total dependability, we said. Our resolve was to make that ideal a reality.

Thus, our boffins at Cambridge donned their thinking caps and with typical panache sliced across convention with a radical new solution: MOS-FET technology. And the result? No thermal runaway. No secondary breakdown. Simpler circuits. Fewer components. Therefore, greater reliability under tough conditions. Whatever your application; variable frequency power supplies, servo motor systems, vibrator driving, or superior audio installations, our new MOS-FET amplifiers will deliver perfect waveforms right up to 50kHz at full power.

Now this technology is available to you, in 19" rackmount format with models from 150 to 800 Watts ... and upwards in multiples, using the X300 frequency dividing network.

So if you’re thinking that our thinking was along the right lines, then drop us a line yourself and we’ll tell you much more.

Graduate to the 80's, MOS-FET.

HVElectronic, Dept A5, Viking Way, Bexhill, Cambridge CB3 9EL. Telephone: Crafts Hill 89540. Telex: 817615 HH Elec G

WW - 009 FOR FURTHER DETAILS
Plan the 80's with the best

K1000 & K2000 SOLDERING IRONS
• 16w Producing 420°C
 (Helping the Save-it campaign)
• PUSH-IN TIPS
• 6 MONTHS GUARANTEE

ADCOLA
United Kingdom Leading Soldering Instrument Manufacturers
Tel.01-622-0291/4

ADCOLA PRODUCTS LIMITED
GAUDEN ROAD, LONDON SW4 6LH

WWW — 207 FOR FURTHER DETAILS

BEWARE! RADIO ACTIVITY

The new MK III FM tuner
sitting under the Gochester multiband AM/FM tuner

New 944378 2, the last word in classic designs
with the K94437/4/438

www.americanradiohistory.com

AMBIT INTERNATIONAL

200 North Service Road, Brentwood, Essex
PHONE: 0044 0277 230909 TELEX: 995194 AMBIT G POSTCODE: CM4 4SG
WWW — 409 FOR FURTHER DETAILS

Wireless World, April 1980

K1000 & K2000 SOLDERING IRONS

- 16w Producing 420°C
 (Helping the Save-it campaign)
- PUSH-IN TIPS
- 6 MONTHS GUARANTEE

ADCOLA
United Kingdom Leading Soldering Instrument Manufacturers
Tel.01-622-0291/4

ADCOLA PRODUCTS LIMITED
GAUDEN ROAD, LONDON SW4 6LH

WWW — 207 FOR FURTHER DETAILS

BEWARE! RADIO ACTIVITY

The new MK III FM tuner
sitting under the Gochester multiband AM/FM tuner

New 944378 2, the last word in classic designs
with the K94437/4/438

www.americanradiohistory.com

AMBIT INTERNATIONAL

200 North Service Road, Brentwood, Essex
PHONE: 0044 0277 230909 TELEX: 995194 AMBIT G POSTCODE: CM4 4SG
WWW — 409 FOR FURTHER DETAILS
THE CS1830 30 MHz + Sweep Delay

The CS1830 is a complete new 30 MHz dual trace oscilloscope employing a square wave format, essential for accurate delay setting. A new feature is the inclusion of calibrated sweep delay with a range of ±12.5-150 ms and time base range to show the delay position. As you can see from close-up of the photogaphy, the CS1830 has all the facilities you could require in a high performance instrument but for more details, simply ask us for a comprehensive leaflet.

Brief specification
- Rectangular Y-Cube (100-20 MHz).
- Sweep width 12.5-150 ms.
- Sweep 20 MHz.
- Sweep length 30 MHz.
- Overload less than 3%.
- Sweep delay 1-12.5-150 ms.
- Sweep bandwidth 20-30 MHz.
- Linearity better than 3%.
- 20 MHz sweep delay 1-5-100 m/s.

CS1830 only £455 + VAT includes 2 probes.

THE CS1572 30 MHz for the VTR Lab

If you are in Video, you need the CS1572.

The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any part in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as top specification dual trace wide band oscilloscopes for general lab use. The complete range of video facilities too great to mention in a small advertisement, so why not call us and ask for the full story on the CS1572.

Brief Specification
- CS1572 only £425 + VAT, includes 2 probes.

THE CS1577 30 MHz at 2mV + Signal Delay

The most popular scope in the range.

The CS1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry attest to this. The CS1577 combines a wide bandwidth DC-30 MHz performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.

Feed signal delay is provided by a helix delay line which allows viewing of the leading edges of fast pulses for accurate rise time measurement. The 120 mm TDA tube gives a bright, stable trace even at the highest sweep speeds (20 ±5 cm/um using X 5 magnification). Triggering, even at low levels has always been a problem, but we offer a unique solution to this and of TFO oscilloscopes and the CS1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH1 or CH2 or can be achieved with the low level trigger facility. Sensitivity of the scanning frequency will provide stable displays.

Truly an oscilloscope masterpiece. CS1577.

CS1577 only £410 + VAT, includes 2 probes.

THE CS1571, unique dual trace 4 function Audio Scope

The CS1571 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to 1 mV/cm but not only can it display the most signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to the dual triggering, the independent triggering from each channel to give stable displays even with widely differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS1571 is now in use all over the world. See it in action for complete details.

CS1575 only £235 + VAT.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER
- DC to 1000V
- AC to 1000V
- 0 to 20mA
- 1 to 2A
- Semi Auto Ranging

£70 + VAT

For further details and ex stock delivery contact

LOWE ELECTRONICS
CHESTERFIELD ROAD, MATLOCK, DERBYS.
0629-2430-TELEX 377482

PC756 500 MHz COUNTER
- 10 Hz-500 MHz
- 60V/cm
- Superb instrument

£225 + VAT

FOR FURTHER DETAILS
Tektronix 465 DC-100MHz Dual Trace 5mV-5V/Div 0.05μs-0.5μs Delayed T/Y DC 4MHz £1250

Tektronix 475A DC-250MHz Dual Trace 5mV-5V/Div 0.01μs-0.5μs Delayed T/Y DC 3MHz £1950

These instruments sold with One Year Full Guarantee.
For high quality electronic valves, semiconductors and integrated circuits - and the speediest service - specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron's export reputation and reliability are clearly confirmed. The product range is very, very wide. And Haltron's export expertise will surely meet your requirements. Wherever you are, you will get the best service. From Haltron.

Hall Electric Limited, Electron House, Craig Avenue, St. Mary Cray, Orpington, Kent BR5 3JL Telephone: Orpington 2799 Telex: 896141

The largest electronics retailer in the world.
Over 170 stores and dealerships nationwide.

WWW 813 FOR FURTHER DETAILS
Businesses have been built on our ferrites.
Ours included.

If you’re a manufacturer, even the most inexpensive components must be checked out—or they’ll let your product down. And it’s particularly true of ferrites. Apex are the sole UK agents for one of America’s largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from toroidal and pot cores to E cores, shield beads and baluns. Full data is available on request.

The most useful kit in the business. We’ve put together a kit of assorted ferrites that contains a veritable selection of ferrite cores that will enable designers of RF suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data. It costs just £10.00 (cheque or company order). It’s really too good to miss.

A Step Ahead in 3-Phase!
NEW from Anders.
Panel-mounting ammeters and voltmeters with clear, precise digital display. No peering at dials.

A single meter replaces three conventional meters and automatically steps to read each phase in turn.
Rugged, reliable and accurate.
Unique design—competitive with switchboard M.I. meters.
Range includes single phase standard types and ‘true R.M.S.’ versions.

WW—401 FOR FURTHER DETAILS

We’ll help you see infra-red and put you on target as well.

As manufacturers of the widest range of broadband infra-red detectors in Europe we offer designers an extensive range of devices to suit virtually all their project requirements.

So, whether you’re involved in infra-red detection for industrial, military or research applications in any of these fields, things are looking better for you:

• Gas analysis
• Laser detection and measurement
• Intruder and fire alarms
• Radiometry and spectroscopy

Plessey infra-red detectors feature a range of element materials: ceramic, lithium tantulate, triglycine sulphate; a choice of windows and filters for selecting spectral response and a choice of electronics to give the required signal response.

And, if your need is for fast photovoltaic detectors for CO2 laser range-finding applications, we can also offer lead telluride in the 10-11 micron region. High D* (4 x 10^-10 cmHz^1/2/W x p, 800, 1) bandwidth to 10MHz and beyond.

Whatever your requirements, ask for our latest catalogue to put you on target.

WW — 066 FOR FURTHER DETAILS

Plessey Optoelectronics and Microwave Limited
Wood Burcote Way, Trowell, Nottingham, United Kingdom NN27 7NJ.
Telephone: (0327) 555 400 Ext. 2344

Plessey Optoelectronics and Microwave Limited
341 Kaiser Avenue, Irvine, California 92714, USA.
Telephone: (714) 340 9934 TWX. 990 395 1930
Whatever it is, the \textit{HIH} S' range of power amplifiers will handle it

The \textit{HIH} S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

\begin{itemize}
\item \textbf{S 500D:}
 \begin{itemize}
 \item Dual Channel
 \item 19" rack mount 3\frac{1}{2}" high
 \item 500w r.m.s. into 2.5 ohms per channel
 \item 900w r.m.s. in bridge mode
 \item DC-20 KHZ at full power
 \item 0.005% harmonic distortion (typical) at
 \item 300w r.m.s. into 4 ohms at 1 KHZ
 \item 3KW dissipation from in-built force cooled dissipators
 \item Full short and open circuit protection
 \item Drives totally reactive loads with no adverse effects
 \end{itemize}
\item \textbf{S 250D:}
 \begin{itemize}
 \item Single Channel
 \item 19" rack mount 3\frac{1}{2}" high
 \item 500w r.m.s. into 2.5 ohms
 \item Retro-convertible to dual channel
 \item DC-20 KHZ at full power
 \item Full short and open circuit protection
 \item Drives totally reactive loads with no adverse effects
 \end{itemize}
\end{itemize}

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.

Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639 / 594

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR \textit{HIH} ELECTRONICS

Logic Probe...YOU! for only £11.92

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly—thanks to our very descriptive step-by-step manual—you have a full performance logic probe.

With it, the logic level in a digital circuit indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You’ll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.

Getting-or-got-your-own personal computer?

Then for your own personal satisfaction, get Practical Computing.

Month after month, it helps you cut the costs and yet get the utmost out of your personal computing. Choosing hardware, buying software, writing programmes, getting to know microcomputer terminology—here are the essential basics, crisp and clear. But that’s only the start. Going deeper Practical Computing gives you exhaustive test evaluations of leading microcomputers, programmes for computer TV games; dozens of possible new applications; expert advice on using Apple, Commodore Pet and Tandy; and valuable overall reviews of where computing is heading today.

Practical Computing

Guessed who builds this great

WIRLESS WORLD, APRIL 1980

Guessed who builds this great

WIRLESS WORLD, APRIL 1980
Britain's first complete computer kit.

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for £99.95

The Sinclair ZX80.

Until now, building your own computer could really cost around £300, and still leave you with only a bare board for your trouble. The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home. Packed, for instance, with ICs for all RAM, case, leads for direct connection to your own cassette recorder and black and white or colour television, everything you need to get up and running.

And yet the ZX80 really is a complete, powerful, full-featured system. It's not just an addition or upgrading other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to teaching yourself. Yet, at just £79.95 you get sockets for black and white or colour television; everything.

Until now, building your own computer could easily cost around £300, and still leave you with only a bare board for your trouble.

Sinclair ZX80 is less than all other personal computers.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete component set, including all ICs. All manufactured by selected world leading suppliers.
- New rugged Sinclair keyboard, touch-screen, plus joystick.
- Ready-assembled case.
- Lead-in wiring, including connection to domestic TV and cassette recorder. User manual, plus a hardware manual is included with every kit.
- Breakout cards in BASIC programming and user manual.

Optional extras

- Main kit of 600 mA at 9 V DC nominal unregulated available separately. see coupon.
- Additional memory expansion boards, allowing up to 8K bytes RAM. Extra RAM chips also available—see coupon.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter... offers remarkable programming advantages. Unique was the word used by aZX80 early customer, who exclaimed the ZX80 eliminates a great deal of time-wasting. Key words (READ, PRINT, I/F, END, etc) have their own single-key entry.

Unique syntax check. Only lines with correct syntax are accepted into programs. A compiler identifies errors immediately. This prevents entry of invalid and compilable programs with faults only discovered when you try to run them.

Excellent string-handling capabilities—takes in up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input; requests a line of text when necessary. Strings do not need to be dimensioned.

Many 26 single-character strings.

FOR/NEXT loops round up to 25. Available names of any length.

BASIC language also handles full Boolean arithmetic, conditional expressions, etc.

Exceptionally powerful edit facilities, allows modification of existing program lines.

Random numbers, useful for games and secret codes, as well as more serious applications.

Timer unit program control.

FORK and PEEK: enable entry of machine code instructions. FORK causes jump to a user's machine language sub-routine.

Two unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is the first machine to combine with BASIC in its price. You get a complete personal computer at an unbeatable price. And you can be sure of world-famous Sinclair quality.

The ZX80 kit costs a mere £79.95. Can't find a better value for your money. To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, CB2 1SN.

For further details, please send:

Name:
Address:

This kit comes with a free, more powerful and advanced LSI chips. All content, design, volume production—more power per pound! The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.

The ZX80 is so remarkable, it's tough to believe.
AT LAST THE ULTIMATE IN TONE CONTROL IS HERE!

When we decided to design a graphic equaliser to end all graphic equalisers—we had no idea exactly how long it would take. Not just to give more facilities than all the others—that wasn’t too difficult for us—but to outperform all the competition and at a reasonable price— took a little longer than we expected.

To our overseas agents and all our customers who have been so patient—we think it has been worth the wait.

- 2 stereo bands of 30 filters with centre dial knobs giving 20dB of control
- 300 stereo frequencies giving a total range of 25Hz-25kHz in 1/5 octaves
- Level control giving up to 20dB of gain
- 8 & 6-pole filters at each and for variable, autotune, and supercine release
- Terminations in balanced XLR and unbalanced jack connectors
- 63 precise inductions for maximum curve performance and minimum noise
- Unloose feedback design for minimum distortion
- 314 high rack mounting or free standing for 12-24 Volt operation
- All this and more for around £630-

FOR ALL DISTRIBUTION PANELS

COMPLETE WITH 6FT CABLE AND 13 AMP FUSED PLUG

6 sockets 13A £14.00
6 sockets 13A switched £15.95
6 sockets 13A switched + Post £16.45

PLUS £6.50 £2 + VAT

OLSON ELECTRONICS LTD., FACTORY NO. 6, 57 LONG ST., LONDON E2 8NJ
TEL. 01-759.2343

WIRELESS WORLD, APRIL 1980

HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?

It's easy to make mistakes when buying video equipment. Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.

Buy the most expensive and you could literally waste thousands on features never used.

Forging compatibility and the future and you could find yourself spending more money on extra equipment—or discarding equipment you've just bought.

WIDE CHOICE. GOOD ADVICE.

Through our network of Video Centres, we at Bell & Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"

We answer that question by first helping you to define how you're going to use a video system. We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes from libraries or other companies? Will you want a lot of duplicate tapes?

From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder. Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite. Whatever it is, we make this promise.

If you don't need something, we'll tell you so. If you do need it, we can supply it—all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD.

No matter what you buy from the Bell & Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop. Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.
Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM/AM Field Service Monitor
CE-50A-1: FM/AM Field Service-Spectrum Monitor

Exclusive representative:
Aspen Electronics Limited
Communications Equipment and Components
2 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR
Telephone: 01-888 1189
Telex: 8812727

It's an incredible price for a very credible frequency counter... Continental's MAX-100. It comes to you from a major American corporation and has one operating range, and one only: 20Hz to 100MHz, minimum. (Guaranteed.)

So we've pensioned off the range selector, and fitted the sharpest of LED displays. (Sheer brilliance.)

We've also designed the MAX-100 around the latest in LSI technology, and built-in high sensitivity, with a 30mV trigger level; protection against high transients; and an outstanding accuracy of 3ppm. (What performance!) But, most importantly, the MAX-100 is totally automatic — and available now. In fact, you could have one tomorrow.

Hesitating? Just take a look at the spec. Then, if you're ready to order immediately, call us on (0799) 21682. And your MAX-100 could be on its way, today! (Continental are great performers, too.)

For data, please use our enquiry number.

Specification: * Frequency range: 20Hz to 100MHz * Input impedance 1 megohm, industry standard * Sensitivity: 30mV to 300mV r.m.s., from 20Hz to 100MHz * Timebase accuracy 3ppm * Temperature stability 0.3ppm per °C * Max. ageing rate 0.1ppm per year * Overfrequency indication * Low battery power alarm * Operates from a.c. mains, dry or rechargeable cells, or 12Vdc auto battery * Dimensions 45 x 187 x 143 mm * Options: 12V auto, cigar lighter adaptor; battery eliminator/carger; r.f. antenna; low-loss r.f. tap; and carrying case.

Quality. At a low, low, price.

C.B.C. (MB) Limited
Tel: 01-340 4244
Stee Hill Industrial Estate,
Sutton-Walmer, Essex, CM1 1AQ
Tel: Sutton-Walmer (0799) 21682
Telex: 017277
It's never been easier or cheaper

50+ CASES FOR SPECIALISTS
referred by JENSEN

Recognise me?

If you do you should know your authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs
Large stocks of new AVOMETERS

Farnell International
Farnell International Instruments Ltd., Sandbeck Way, Wetherby, West Yorkshire LS22 4DH
Tel 0937 63541 Telex 557294 Farist G

Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of applications including churches, schools, restaurants, factories, shops and offices. Each amplifier is available with input facilities for microphones and music sources; six programme push button AM tuners or FM tuners and preannouncement chimes are available options.

One model incorporates automatic switching to a battery supply in the event of a power failure. Such a versatile system can confidently satisfy your exact requirements.

Please tick as required.
For further information on this product ☐ Complete range of sound equipment ☐

MILLBANK

ME

Name
Position

Attach this coupon to your letter heading and send to:
MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT, P.O. BOX 33, UCKFIELD, SUSSEX, ENGLAND.

WWW - 856 FOR FURTHER DETAILS
thandar
High Quality, Low Cost!

NEW

SC110 Single-Trace Portable Oscilloscope.
10 MHz bandwidth; 10 MHz sweep frequency. £90.00 + 15% VAT

DM 360
3½ Digit Multimeter.
34 ranges; 0.1% basic accuracy. £75.00 + £9.50 VAT

DM 460
4½ Digit Multimeter.
34 ranges; 0.05% basic accuracy. £95.00 + £14.85 VAT

DM 235
3½ Digit Multimeter.
21 ranges, 0.1% basic accuracy. £52.50 + £7.88 VAT

PDM 35 Pocket Digital Multimeter.
16 ranges; 0.1% accuracy. £35.00 + £6.15 VAT

PDM 200 Pocket Frequency Meter.
20 Hz-200 kHz; 1% basic accuracy. £66.50 + £10.47 VAT

GP Industrial Electronics Limited
(Flatal Sales), Sandkon Place, North Hill, Plymouth
PL4 8HA, Telephone: Plymouth (0752) 286272

WWW—805 FOR FURTHER DETAILS

www.americanradiohistory.com
EURO VHF FM TUNERSET 7252

The long experience of Larshott Electronics is reflected in this superbly engineered VHF Band II varicap FM tuner/modulor. (As used in the Signalmaster Mk 6.1.)

The four stage front-end employs dual gate MOSFET transistors for both IF and mixer stages, providing the 7252 with a 5uV sensitivity for 30dB S/B (ie). The IF stage uses a dual ceramic IF filter, and provides all usual IF functions, of tuning meter drivers, mixing, AFC and AGC. THD is only 0.1%.

LARSHOTT ELECTRONICS
UK 4622
HAYDON, DENMARK

AMBIT INTERNATIONAL
20 North Service Road
Bromley, ESSEX CM14 6SG
Tel. (0273) 230909

Write or phone for free brochure which gives full technical details and application notes for this and other Larshott products.

7252
1-8 £27.50
15% VAT (£4.12)

THE CRÈME DE LA CRÈME OF ELECTRONIC ORGANS
FOR YOU TO BUILD...

Yes, any one of these superior instruments can be built by yourself in the comfort of your own home. The unique WERSI Kit-pack system is designed around modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully illustrated instructions and preferred harnesses lead you to the final product which is now becoming accepted as the world's most advanced instrument. All cabinets come fully assembled in a wide range of veneers. Home construction enables you to build one of these fabulous organs at 45% below factory price.

All Electro-Voice showrooms have resident demonstrators so why not come along and hear for yourself the wonder of WERSI. Alternatively send £1 for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth, Herts RD3 6PF)

WIRELESS WORLD, APRIL 1980

THE COMMUNICATION CENTRE
248-256 TOTTENHAM COURT ROAD LONDON W1 TEL 01-637 1908

Eddystone at SONIC SOUND AUDIO
BRITAIN'S No. 1 AUDIO STORE

SONIC SOUND AUDIO
248-256 TOTTENHAM COURT ROAD LONDON W1 TEL 01-637 1908

THE Leaders in Short Wave

 Illustrated the S J 451 Millivoltmeter — pk-pk or RMS calibration with variable control for relative measurements, 50 calibrated ranges.

Price includes VAT

S452

calibrated Measuring Unit

15 Hz — 20 KHz — 01%

Price

60.00

COURT ROAD LONDON £78.00

Eddystone

Sonic Sound, the premier home entertainment store now added yet another big name in the field of sound equipment to further enhance their prestige in London's centre of the audio/visual and Hi-Fi field in Tottenham Court Road.

Eddystone, at the top of the tree since 1970, have now appointed Sonic Sound Audio as sole retailers in the United Kingdom.

Anyone even contemplating purchasing short wave equipment, should they be looking for the best possible available for their Embassy press department at home use, should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today.

Listen and choose in comfort at London's most up-to-date air conditioned sound demonstration studios. Full ranges of Hi-Fi, Video equipment, In-car and portablemuse etc., from leading manufacturers B & O, Sansui, Sony, Harman Kardon.

P.O.C. 7

WWW-045

Sonic Sound Audio

A Marconi Group Company.

J E S AUDIO INSTRUMENTATION

ORGAN and PIANO KEYBOARDS

Price

incl. VAT

4-Octave C.C

£32.20

F & P

£2.75

5-Octave C.C

£34.50

£2.75

5-Octave F.F

£34.50

£2.75

6-Octave C.C

£38.80

£3.00

DALSTON ELECTRONICS
40a Dalston Lane, Dalston
London, E8 2AZ TEL: 01249 5624

137 Standard Ranges in a variety of sizes and styles available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C.1
Phone: 01-837/7837

WWW-428 FOR FURTHER DETAILS
still the only catalogue of its kind

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids.

The product range has almost doubled in full colour. Products from over 100 top manufacturers are available from stock.

Over 60,000 catalogues are now in circulation. If you don’t have one simply write, telephone or telex Toolrange for your free copy.
Open your eyes to all that's available to TV users today

Prestel, Teletext, Video Tape Recording, TV microcomputing, TV games...

One journal—and only one—covers the whole TV information scene. Take Viewdata and TV User every quarter—and you'll be up-to-date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.

Viewdata contains the official Post Office Prestel Directory. It is published by IPC Electrical-Electronic Press Ltd., and is linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition.

For an eye-opening experience, post the date on all technical developments, and on just what is available on your screen.
fact: the PRO MASTER sound system is not an evolution... it's a full-blown REVOLUTION!

The PRO MASTER modular sound system ushers in a new generation of sound system versatility, reliability, and quality for today's entertainers, musicians, and speakers — for use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and schools. Its multitude of performance-proven features is the result of sophisticated computer design techniques, advanced materials, and countless hours of personal consultation with performers and sound technicians.

Revolutionary New Console

Finally! The best of both worlds. A console so easy to use that it won't overwhelm the beginning group, yet with the advanced features and capabilities required by experienced professional performers — such as p.a. fader monitor mixing, effects and/or built-in reverbs, with their own tone controls, LED clipping indicators with attenuators on each input, and full patching facilities for every system component. Superpower: twin 200-watt solid-state power amplifiers! Double as a stereo recording console for groups that want to "lay down a few tracks" without paying for studio time, or can be used as an ultra-sophisticated keyboard mixer with power. Utilized ARM-DU® stereo foam combination case and chassis makes it more durable than steel. Ultra-light: only 47 pounds.

Revolutionary: Variable Dispersion Sound System

Advanced new variable dispersion high-frequency horn system protects your sound — everywhere in the house, giving you a choice of "theater sound" or "theater sound" in "theater sound" all at the same time! Fully adjustable 120° wide-angle dispersion with the twist of a knob. Tailors the sound to the room — even L-shaped rooms.

Revolutionary New Loudspeaker

Every extra ounce — every unnecessary cubic inch — has been computer designed DUT of the PRO MASTER loudspeaker. Modern manufacturing techniques and materials accommodate a high-performance 15-inch woofer and high-frequency horn and compression driver in a startlingly small, efficient enclosure. Less than 28 inches high, 23 inches wide, 16 inches deep. Weighs an easy-to-handle 58 pounds. And the frequency response is 50 to 15 kHz.

PLUS... Revolutionary: FEEDBACK FINDER®/Equalizer PATCH BLOCK® Patch Panel LED Status Indicators

Science of the whole

The study of all creation and man's place in it was the only kind of science worthy of consideration, in Tolstoy's view. A school curriculum of sufficiently wide scope for such a purpose would take a little time to construct and a good deal more to practise, but at the conclusion of such a course of instruction a child would be well on the way to becoming a whole person, if not several. Newer to the modern scene, and considerably less ambitious in his requirements, was A. N. Whitehead, who remarked that wisdom is the fruit of a balanced development. In this context, the balance is not between the two specialisations in science or the arts, but between education and training.

One must recognise that, to a greater degree now than ever before, specialisation is necessary if potential engineers and scientists are to have a reasonably stable platform on which post-school training can be built. Merciless economics dictates that scientifically-aware youngsters are needed to enable this country to earn its living — even to stand still, let alone to grow. In the sixth form at school, and even earlier in some schools, the specialisation in science has been promoted for many years, with the result that university and technical colleges have received a steady stream of entrants, well grounded in the relevant disciplines. It is true that there is now a shortage of science teachers of the required level of competence, but that is a separate and more recent issue.

That is all as it should be. But while a pupil should be given a sound base of knowledge for his professional training (and there is no sexist meaning intended in that pronoun or succeeding ones) the 'balanced development' is unlikely to be obtained by an exclusive study of maths, chemistry, physics and a useful language, even though a token "art" (in the wider sense) may be tacked on for the sake of appearances. If one's entire two years of sixth-form experience is devoted to analysis that he cannot also perceive the pleasures of learning about life. Nor should one be excluded from the excitement of science. The whole of human experience outside the sciences is thus lumped together and labelled "supplementary subjects".

A tendency to segregate 16-plus pupils, and even younger ones in some cases, into science and arts groups has been evident for many years. C. P. Snow's Two Cultures is discernible long before the Second Law of Thermodynamics becomes a matter for discussion. But the balance is sought so that "other supplementary subjects as desired". The whole of human experience outside the sciences is thus lumped together and labelled "supplementary subjects".
The article describes the design and construction of a 3½ digit digital capacitance meter with six ranges of 195.9pF to 19.99mF full-scale. The maximum error of the instrument is ±1%, determined by the accuracy of the two calibration standards used. Accuracy is largely determined by the stability of the voltage or temperature variations, making battery power practicable. No voltage or temperature variations, ±0.1%, is inhibited for a time corresponding to the value of the strays.

Circuit operation
Turning now to the complete circuit diagram in Fig. 3, it will be seen that the counter used is the Motorola MC14553. This 16-pin, 3-digit b.c.d. counter with an internal digit multiplexer is an excellent choice for straightforward counting applications. The counter b.c.d. output is decoded by IC6 to provide a 7-segment display format. The requisite counting resistors are included in IC6, but normal 470Ω discrete components may be substituted. Digits 0 and 1 are provided by directly selecting resistors from IC6. Digit 2 is continuously driven, so that it is only required to display a 2 or a 3.

To explain the operation, assume that the unit is switched to Range 2 which has a full scale reading of 19.99 pF. In addition, assume that only a small capacitor is connected to the measuring terminals, for example, 500 pF. The last overflow/clear (OF/CLR) pulse will have reset IC6 to 000 and, at the end of the gate period, only 500 pF of the master clock will have been counted, thus no carry out (CY) pulse will have been generated and IC6 will remain in the reset state. The termination of the gate pulse will generate the latchable (LE) pulse, which will transfer the contents of the counter to the output registers within IC6. The positive edge of LE will, in turn, generate a 10µsec strobe pulse from IC7, which will store the current state of IC6 in the digit 4 of IC8. As an example, therefore, the contents of IC6 will be a 0, consequently Tr5 will be turned off and digit 4 will remain at 0.

Assume now that the capacitor connected to the input terminals is increased to 1200 pF. The positive edge of gate will enable the input to the counter, and after 1000 periods of the master clock a CO pulse will occur. This pulse will set IC6, and after a further 200 periods of the master clock, the gate period will terminate, generating LE, which will transfer the contents of the decade counters to the output latches. The positive edge of LE will generate the transfer strobe, and the state of IC6 will remain 1. Transistor Tr5 will turn on, and digit 4 will display the figure 1.

Power requirements
The choice of supply voltage for the unit was not entirely arbitrary, but was dictated by maximum count-rate considerations of the MC14533. I have used this device for a number of counting applications, and have obtained samples from many sources of these ICs, whilst meeting their guaranteed specifications, I had maximum counting rates which were somewhat lower than the "typical" figures given in the data sheets. To avoid the need to select devices, a supply voltage was chosen that would ensure sufficient speed margin, even with both a worst-case counter and a worst-case threshold voltage

Construction
The unit is constructed on two 4cm x 8cm printed-circuit boards with a shielding plate interposed. The plate was included only as a precautionary measure, and is not required in all cases. It will be noted that no precision components are called for in the design.
only good quality, high-stability, metal-film resistors for R_4, R_5, R_6, and R_7. See R28 for the input terminals to the p.c. board should be screened, and not laced in with the wiring loom. Otherwise, construction is uncritical.

Calibration and use

The unit may be calibrated as follows. Apply power, short TP 1 to ground, and observe that the display shows 888. Set R_{28} to mid-travel, and observe that the display reads 00.0, 00.1 or 00.2, and also displays correctly on Range 2. This completes calibration and adjustment.

In use, it is only necessary to connect the unknown, switch on and adjust the range switch for the desired resolution. Certain points should be borne in mind.

In order for an accurate reading to be obtained, it is essential that the equivalent leakage resistance of the device under test is much higher than the range resistor. For ranges 1-3, this would indicate a very leaky component. For example, if a nominal 1800pF capacitor displays correctly on Range 4, but shows as over-range on Range 3, this would be cause for regarding the component with considerable suspicion.

Modifications

After the instrument had been in use for some time, it was noted that it would always stabilize within about a second. This prompted me to replace the power switch with a three-position, centre-off

Fig. 4. General timing diagram.

Fig. 3. Complete circuit diagram of the meter. The instrument is build in two boards, equivalent to left and right-hand halves of the diagram.
the reading at +40°C was -0.7%, whilst at 0°C it was +6.7%, thus demonstrating the inherent stability of the instrument. With the push-to-read modification incorporated, the unit has indeed demonstrated its utility and ease of operation, and along with the ohms range of my digital multimeter has virtually replaced the LCR bridge. Now, if only there was a convenient analogue of inductance…

References
1. M.M34C14/M4MC4 Data sheet.

Printed circuit boards
A set of two single-sided p.c. boards is available for £7.50 inclusive of v.a.t. and UK postage from M. R. Sigini at 23 Kayes Road, London NW2.

Marconi and Airbus
Airbus Industrie has chosen a proposal by Marconi Avionics and the German firm of Liebherr Aerotechnik for the microprocessor control of flaps and slats on the new Airbus A310. The system is to provide a high degree of safety (flaps and slats are used in the takeoff and landing phases of a flight) by self-monitoring, by the use of two separate systems of different type and by the provision of a certain amount of autonomy in operation to avoid the effects of crew error. Should a crew member attempt, for example, to close the leading-edge slats at too low an airspeed, or to extend the trailing-edge flaps at too high an airspeed, the controls will prevent the command being carried out.

The microprocessors used are the 6800 and are being used to control the flying surfaces and the other in a monitoring function. Different designs are used in the expectation that a software fault would not affect each in the same way.

Marconi are now very experienced in automatic flight control, having supplied the computer and the highly-automatic system for the abandoned Boeing VC-14 military transport.

How serious is multipath distortion? Effect on sound quality and bit-streams in broadcast reception
by Pat Hawker, Independent Broadcasting Authority

According to one broadcaster, multipath distortion is "one of the major factors which de- 45
teriorate the received sound quality, though noting that for many years its effect has been sufficiently masked by the relatively high band width of the signals and the fact that the difficulties are not always present. It is particularly noticeable in the UK over twenty years. This arose during the period of co-channel interference in both conventional broadcasting and systems using digital information; outlines a recent Japanes analysis of how it affects stereo reception; and finally considers what can be done, if anything, to minimise the problem.

In introducing his article "Audible amplifier distortion is not a mystery. (Wireless World, November 1977) Peter Baxandall quoted Bertrand Russell: "Some things are believed because people feel as if they must be true, and in such cases an interest in the systems of different type and by the provision of a certain amount of autonomy in operation to avoid the effects of crew error. Should a crew member attempt, for example, to close the leading-edge slats at too low an airspeed, or to extend the trailing-edge flaps at too high an airspeed, the controls will prevent the command being carried out.

The microprocessors used are the 6800 and are being used to control the flying surfaces and the other in a monitoring function. Different designs are used in the expectation that a software fault would not affect each in the same way.

Marconi are now very experienced in automatic flight control, having supplied the computer and the highly-automatic system for the abandoned Boeing VC-14 military transport.

How serious is multipath distortion? Effect on sound quality and bit-streams in broadcast reception
by Pat Hawker, Independent Broadcasting Authority

According to one broadcaster, multipath distortion is "one of the major factors which de- 45
teriorate the received sound quality, though noting that for many years its effect has been sufficiently masked by the relatively high band width of the signals and the fact that the difficulties are not always present. It is particularly noticeable in the UK over twenty years. This arose during the period of co-channel interference in both conventional broadcasting and systems using digital information; outlines a recent Japanes analysis of how it affects stereo reception; and finally considers what can be done, if anything, to minimise the problem.

In introducing his article "Audible amplifier distortion is not a mystery. (Wireless World, November 1977) Peter Baxandall quoted Bertrand Russell: "Some things are believed because people feel as if they must be true, and in such cases an interest in the systems of different type and by the provision of a certain amount of autonomy in operation to avoid the effects of crew error. Should a crew member attempt, for example, to close the leading-edge slats at too low an airspeed, or to extend the trailing-edge flaps at too high an airspeed, the controls will prevent the command being carried out.

The microprocessors used are the 6800 and are being used to control the flying surfaces and the other in a monitoring function. Different designs are used in the expectation that a software fault would not affect each in the same way.

Marconi are now very experienced in automatic flight control, having supplied the computer and the highly-automatic system for the abandoned Boeing VC-14 military transport.

How serious is multipath distortion? Effect on sound quality and bit-streams in broadcast reception
by Pat Hawker, Independent Broadcasting Authority

According to one broadcaster, multipath distortion is "one of the major factors which de- 45
teriorate the received sound quality, though noting that for many years its effect has been sufficiently masked by the relatively high band width of the signals and the fact that the difficulties are not always present. It is particularly noticeable in the UK over twenty years. This arose during the period of co-channel interference in both conventional broadcasting and systems using digital information; outlines a recent Japanes analysis of how it affects stereo reception; and finally considers what can be done, if anything, to minimise the problem.

In introducing his article "Audible amplifier distortion is not a mystery. (Wireless World, November 1977) Peter Baxandall quoted Bertrand Russell: "Some things are believed because people feel as if they must be true, and in such cases an interest in the systems of different type and by the provision of a certain amount of autonomy in operation to avoid the effects of crew error. Should a crew member attempt, for example, to close the leading-edge slats at too low an airspeed, or to extend the trailing-edge flaps at too high an airspeed, the controls will prevent the command being carried out.

The microprocessors used are the 6800 and are being used to control the flying surfaces and the other in a monitoring function. Different designs are used in the expectation that a software fault would not affect each in the same way.

Marconi are now very experienced in automatic flight control, having supplied the computer and the highly-automatic system for the abandoned Boeing VC-14 military transport.
of sites, showed that even on standard receivers there were few sites where at least "just noticeable distortion" was not observed when using indoor aerials; distortion could be reduced by ensuring that the a.m. suppression characteristics of the receivers were good and by using the outside aerials. It was also shown that distortion becomes more serious as the difference in path length (long-term echoes) increases. The amplitude of reflected signal compared with that obtained at a typical site using a correctly represented by a distortion and the relevant multipath direct (D) and indirect (I) processing was applied. "This way," the report states, "the a.m. suppression characteristic of v.h.f. broadcasting is one of the factors making distortion on solo piano was found to be about 35 per cent for a path difference of 18 km, however, in recent years the BBC has introduced its p.c.m. digital transmission system which provides subjective stereo quality up to about 15kHz throughout the UK. At the same time, the ILR stations are able to provide good quality stereo since the transmitters are seldom more than a few miles from the originating studios. These developments have increased rather than decreased the importance of multipath distortion.

The current work by both IBA and BBC, to evaluate various matrix systems of "round-sound" such as MEC and "mixing", using "2", "0", or "1" transmitters, these results do not appear to have included any practical assessment of the effects of multipath on the different systems, although IBA engineers are hoping to undertake a study shortly using the MEC (Mono-Stereo-Compatible) system.

The possibility of using charge-coupled devices in reducing ghosting on television pictures has been reported, but it is thought they have been given the wrong Media techniques could be usefully applied to v.h.f./f.m. reception.

Minimising multipath distortion

Propagating v.h.f. signals is a fact of life: it would appear that even at equal p.c.m. digital transmission system networks of v.h.f./f.m. transmitters, the upper limit of audio frequencies was defined by the "music lines" of the Post Office distribution circuits, this meant that audio frequencies much above 9kHz could not be guaranteed. These circuits also presented problems in handling stereo over distances exceeding about 20 km. However, in recent years the BBC has introduced its p.c.m. digital transmission system which provides subjective stereo quality up to about 15kHz throughout the UK. At the same time, the ILR stations are able to provide good quality stereo since the transmitters are seldom more than a few miles from the originating studios. These developments have increased rather than decreased the importance of multipath distortion.

The current work by both IBA and BBC, to evaluate various matrix systems of "round-sound" such as MEC and "mixing", using "2", "0", or "1" transmitters, these results do not appear to have included any practical assessment of the effects of multipath on the different systems, although IBA engineers are hoping to undertake a study shortly using the MEC (Mono-Stereo-Compatible) system.

The possibility of using charge-coupled devices in reducing ghosting on television pictures has been reported, but it is thought they have been given the wrong Media techniques could be usefully applied to v.h.f./f.m. reception.

Minimising multipath distortion

Propagating v.h.f. signals is a fact of life: it would appear that even at equal p.c.m. digital transmission system networks of v.h.f./f.m. transmitters, the upper limit of audio frequencies was defined by the "music lines" of the Post Office distribution circuits, this meant that audio frequencies much above 9kHz could not be guaranteed. These circuits also presented problems in handling stereo over distances exceeding about 20 km. However, in recent years the BBC has introduced its p.c.m. digital transmission system which provides subjective stereo quality up to about 15kHz throughout the UK. At the same time, the ILR stations are able to provide good quality stereo since the transmitters are seldom more than a few miles from the originating studios. These developments have increased rather than decreased the importance of multipath distortion.

The current work by both IBA and BBC, to evaluate various matrix systems of "round-sound" such as MEC and "mixing", using "2", "0", or "1" transmitters, these results do not appear to have included any practical assessment of the effects of multipath on the different systems, although IBA engineers are hoping to undertake a study shortly using the MEC (Mono-Stereo-Compatible) system.

The possibility of using charge-coupled devices in reducing ghosting on television pictures has been reported, but it is thought they have been given the wrong Media techniques could be usefully applied to v.h.f./f.m. reception.

Minimising multipath distortion

Propagating v.h.f. signals is a fact of life: it would appear that even at equal p.c.m. digital transmission system networks of v.h.f./f.m. transmitters, the upper limit of audio frequencies was defined by the "music lines" of the Post Office distribution circuits, this meant that audio frequencies much above 9kHz could not be guaranteed. These circuits also presented problems in handling stereo over distances exceeding about 20 km. However, in recent years the BBC has introduced its p.c.m. digital transmission system which provides subjective stereo quality up to about 15kHz throughout the UK. At the same time, the ILR stations are able to provide good quality stereo since the transmitters are seldom more than a few miles from the originating studios. These developments have increased rather than decreased the importance of multipath distortion.

The current work by both IBA and BBC, to evaluate various matrix systems of "round-sound" such as MEC and "mixing", using "2", "0", or "1" transmitters, these results do not appear to have included any practical assessment of the effects of multipath on the different systems, although IBA engineers are hoping to undertake a study shortly using the MEC (Mono-Stereo-Compatible) system.

The possibility of using charge-coupled devices in reducing ghosting on television pictures has been reported, but it is thought they have been given the wrong Media techniques could be usefully applied to v.h.f./f.m. reception.

Minimising multipath distortion

Propagating v.h.f. signals is a fact of life: it would appear that even at equal p.c.m. digital transmission system networks of v.h.f./f.m. transmitters, the upper limit of audio frequencies was defined by the "music lines" of the Post Office distribution circuits, this meant that audio frequencies much above 9kHz could not be guaranteed. These circuits also presented problems in handling stereo over distances exceeding about 20 km. However, in recent years the BBC has introduced its p.c.m. digital transmission system which provides subjective stereo quality up to about 15kHz throughout the UK. At the same time, the ILR stations are able to provide good quality stereo since the transmitters are seldom more than a few miles from the originating studios. These developments have increased rather than decreased the importance of multipath distortion.

The current work by both IBA and BBC, to evaluate various matrix systems of "round-sound" such as MEC and "mixing", using "2", "0", or "1" transmitters, these results do not appear to have included any practical assessment of the effects of multipath on the different systems, although IBA engineers are hoping to undertake a study shortly using the MEC (Mono-Stereo-Compatible) system.

The possibility of using charge-coupled devices in reducing ghosting on television pictures has been reported, but it is thought they have been given the wrong Media techniques could be usefully applied to v.h.f./f.m. reception.
The BBC has investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.

References:
1. BBC Research Department investigations into television reception, 1977
7. "Life is just not like that. The aerial will not always give you the maximum pick-up. The optimum position of the aerial will normally be the position giving the best listening result, not necessarily the position giving the maximum pick-up."

The original BBC investigations, if with respect one may say so, has been rather more complete than the investigations in conjunction with the maximum pick-up. This is because the BBC has systematically investigated the performance of a range of television aerials and found that the best results are obtained when the aerial is correctly positioned.

The investigation involved moving the aerial in a small arc around the position that gives the best reception and noting the improvement or degradation in the signal strength. The results showed that an improvement in signal strength of up to 10 dB could be achieved by careful positioning.

The investigation also found that the choice of aerial type and orientation can have a significant effect on reception. For example, a directional aerial may provide better reception than a omni-directional aerial in certain situations.

The BBC recommends that viewers should position their aerials carefully, possibly with a degree of experimentation, to ensure the best possible reception.
Table 1. Facilities included in driving software

<table>
<thead>
<tr>
<th>Control Code</th>
<th>Char.</th>
<th>Function Description</th>
<th>Control Code</th>
<th>Char.</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>@</td>
<td>NULL — routine returns carry set</td>
<td>16</td>
<td>P</td>
<td>BLA — black</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>DOT — graphic dot at X, Y (next two characters)</td>
<td>17</td>
<td>Q</td>
<td>RED — red</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>VCT — vector from X, Y, to X1, Y1 (next 4 chars)</td>
<td>18</td>
<td>R</td>
<td>GRN — green</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>CXY — positions cursor to X, Y (next 2 chars)</td>
<td>19</td>
<td>S</td>
<td>YEL — yellow — colour</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>BKG — next colour control sets background</td>
<td>20</td>
<td>T</td>
<td>BLU — blue control</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>EDL — erase to end of line</td>
<td>21</td>
<td>U</td>
<td>MAG — magenta</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>STS — define colour status byte (next char)</td>
<td>22</td>
<td>V</td>
<td>CYN — cyan</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>BELL — externally generated tone</td>
<td>23</td>
<td>W</td>
<td>WHIT — white</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>TAB — tabulate 8 cols</td>
<td>24</td>
<td>X</td>
<td>PRT — print page to list device</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>HS — cursor left</td>
<td>25</td>
<td>Y</td>
<td>RGT — cursor right</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>VT — cursor down</td>
<td>26</td>
<td>Z</td>
<td>HOME — cursor to home position</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>VT — cursor up</td>
<td>27</td>
<td>ESC</td>
<td>— routine returns cursor off, carry set</td>
</tr>
<tr>
<td>12</td>
<td>L</td>
<td>CLR — clear screen</td>
<td>28</td>
<td>INT</td>
<td>— re-initialize</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>CR — cursor to left-hand side</td>
<td>29</td>
<td>CON</td>
<td>— cursor on</td>
</tr>
<tr>
<td>14</td>
<td>N</td>
<td>BL — blink</td>
<td>30</td>
<td>COFF</td>
<td>— cursor off</td>
</tr>
<tr>
<td>15</td>
<td>O</td>
<td>BLO — blink off</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 1. Display logic converts 16-bit data from memory array into colour signals.](image1)

![Fig. 2. Memory array and management logic to interface array with microcomputer bus and display logic.](image2)
combined sync. signal which is then generated to a convenient fully interlacing, internal or external sync. (giving optional superposed displays) – text case (5 x 10 dot cell), – upper and lower case (5 x 10 dot cell), – R, G, B, black/white and sync. outputs – connects directly to a modified colour TV via opto-isolated buffer – teletext compatibility

Circuit design and operation

A sync-generator chip is employed to generate a convenient fully interlacing, combiner sync. signal which is then used to drive the timing and addressing logic, although any external sync. source may equally be used for this purpose. Addressing logic provides dot and character clocking pulses at a rate determined by the astable oscillator. The frequency determines the width of the sync. pulses and it also generates a four-bit line count which increments from zero to nine in the course of a character row, together with a character column count (0 to 63) and row character count (0 to 20). The row and column addresses are then passed to the memory array via the memory management logic. This is achieved via the microprocessor accessing the memory memory locations.

When the microprocessor accesses the memory locations the memory management logic will immediately transfer control to the processor bus. The display logic is informed that its incoming data is invalid when the display of the v.d.u. appears on the screen. A character word consists of 16 bits 0 to 7 dictate whether each character sub-cell is to be displayed in the foreground or background, and bits 8 to 15 dictate whether each character is considered to be a foreground or background. The foreground and background colour bits determine the character configuration of that character whether it be a character, foreground or graphic, and similarly the flash bit determines whether or not the character is to blink.

In the graphics mode the character cell is divided into eight sections and bits 0 to 7 dictate whether each picture sub-cell is to be displayed in the foreground or background, and bits 8 to 15 determine whether the character cell is to be displayed in the foreground or background. A 16-bit character word stores the ASCII code of the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

The display incorporates two character generators, one alphanumeric and one graphic. Bits 0 to 7 are sent to both generators but the value of bit 8 determines which output is displayed. The foreground and background colour bits determine the colour configuration of that character whether it be a foreground or graphic, and similarly the flash bit determines whether or not the character is to blink. In the graphics mode the character cell is divided into eight sections and bits 0 to 7 dictate whether each picture sub-cell is to be displayed in the foreground or background, and bits 8 to 15 determine whether the character cell is to be displayed in the foreground or background. A 16-bit character word stores the ASCII code of the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

Interfacing with the microprocessor

The objective is to make the v.d.u. appear on the processor as 4K x 8 bits of static r.a.m., although internally the r.a.m. is arranged as 2K words of 16 bits with each character represented by a 16-bit word. The processor can only access 16-bit words; only 4K x 16 memory addresses are used owing to the practical limitation of 28 character rows in a 625-line raster (each character row takes 10 lines per frame). A 16-bit character word length stores the graphic ASCII code, the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

The display incorporates two character generators, one alphanumeric and one graphic. Bits 0 to 7 are sent to both generators but the value of bit 8 determines which output is displayed. The foreground and background colour bits determine the colour configuration of that character whether it be a foreground or graphic, and similarly the flash bit determines whether or not the character is to blink. In the graphics mode the character cell is divided into eight sections and bits 0 to 7 dictate whether each picture sub-cell is to be displayed in the foreground or background, and bits 8 to 15 determine whether the character cell is to be displayed in the foreground or background. A 16-bit character word stores the ASCII code of the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

Interfacing with the microprocessor

The objective is to make the v.d.u. appear on the processor as 4K x 8 bits of static r.a.m., although internally the r.a.m. is arranged as 2K words of 16 bits with each character represented by a 16-bit word. The processor can only access 16-bit words; only 4K x 16 memory addresses are used owing to the practical limitation of 28 character rows in a 625-line raster (each character row takes 10 lines per frame). A 16-bit character word length stores the graphic ASCII code, the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

The display incorporates two character generators, one alphanumeric and one graphic. Bits 0 to 7 are sent to both generators but the value of bit 8 determines which output is displayed.

Interfacing with the microprocessor

The objective is to make the v.d.u. appear on the processor as 4K x 8 bits of static r.a.m., although internally the r.a.m. is arranged as 2K words of 16 bits with each character represented by a 16-bit word. The processor can only access 16-bit words; only 4K x 16 memory addresses are used owing to the practical limitation of 28 character rows in a 625-line raster (each character row takes 10 lines per frame). A 16-bit character word length stores the graphic ASCII code, the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

The display incorporates two character generators, one alphanumeric and one graphic. Bits 0 to 7 are sent to both generators but the value of bit 8 determines which output is displayed.

Interfacing with the microprocessor

The objective is to make the v.d.u. appear on the processor as 4K x 8 bits of static r.a.m., although internally the r.a.m. is arranged as 2K words of 16 bits with each character represented by a 16-bit word. The processor can only access 16-bit words; only 4K x 16 memory addresses are used owing to the practical limitation of 28 character rows in a 625-line raster (each character row takes 10 lines per frame). A 16-bit character word length stores the graphic ASCII code, the three-bit foreground colour field, three-bit background colour field, the flash and graphic flag bits, see Table 2.

The display incorporates two character generators, one alphanumeric and one graphic. Bits 0 to 7 are sent to both generators but the value of bit 8 determines which output is displayed.
Circuit analysis by small computer — 2

Programming and modelling techniques for common passive and active circuits

by A. S. Beasley, B.Sc. McMichael Ltd

The previous article (February issue) showed how an n-port analysis technique using the YF matrix could be translated into a simple loop procedure, which is ideal for small computer circuit analysis.

This article briefly outlines a program based on the YF matrix and then goes on to show the modelling techniques required for accurate analysis of common active and passive circuits. Examples and case studies, including microwave oscillators, power amplifiers and hybrid-s models, show that computer breadboarding of circuits represents a useful and versatile tool for those engaged in electronics, industry, education and at home.

The computer program used throughout this article for circuit analysis is called Dirac. Dirac runs a Commodore Pet, which uses BASIC and occupies 14K bytes of memory. The earlier version of Dirac could perform adequate circuit analysis for under 3K bytes. The current Dirac program is considerably more versatile than shown here.) The essence of the procedure that Dirac follows is shown below. Methodology for setting up the YF matrix, the equations for its reduction and the equations for the calculation of the gains and impedances of a circuit were discussed in the previous article, so this article is confined to examining the way Dirac manipulates the YF matrix.

Dirac sets up two matrices, one is used to store the real part of the YF matrix and the other the imaginary part i.e.

\[
Y_F = \begin{bmatrix}
Y_{R}(O,0), Y_{R}(O,1), Y_{R}(O,2), \ldots \\
Y_{R}(1,0), Y_{R}(1,1), Y_{R}(1,2), \ldots \\
Y_{R}(2,0), Y_{R}(2,1), Y_{R}(2,2), \ldots \\
\end{bmatrix}
\]

In setting up the YF matrix Dirac makes good use of the symmetry it possesses, this being greatest for passive components. By splitting the YF matrix into real and imaginary parts and by always choosing that mode 0 represents the input and that node 1 represents the output and node 2 the common rail, the reduction of the YF matrix becomes a few simple FOR NEXT loops i.e.

FOR X = 0 TO STEP -1
FOR P = 0 TO X - 1
FOR Q = 0 TO X - 1
A = Y_{R}(X,0) + jY_{I}(X,0)
B = Y_{R}(X,0) - jY_{I}(X,0)
Y_{R}(X,0) = \frac{Y_{R}(X,0) - B*Y_{I}(X,0)}{A}
Y_{I}(X,0) = \frac{Y_{R}(X,0) + B*Y_{I}(X,0)}{A}
NEXT X
\]

Table 1. Hybrid-s circuit elements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_e</td>
<td>35 x 10^3 (A)</td>
</tr>
<tr>
<td>V_e</td>
<td>0</td>
</tr>
<tr>
<td>\omega</td>
<td>0</td>
</tr>
<tr>
<td>\phi</td>
<td>0</td>
</tr>
<tr>
<td>Z_b</td>
<td>\frac{Z_b}{Z_b}</td>
</tr>
</tbody>
</table>

where \(Z_b \) is the gain-bandwidth product and \(\phi \) is the voltage at which \(C_b \) was measured.

The \(h \) parameters are low frequency \(h \) parameters, and so are purely real numbers.

Hybrid-s model

The simple approach of using the \(y \) or \(h \)-parameters of a transistor as given on a data sheet, ignores the fact that these parameters themselves vary with frequency and bias conditions. The hybrid-s model of a bipolar transistor, Fig. 1, provides a way of predicting the performance of transistor parameters, oscillator and v.c.o. design and large signal design.

Fig. 1. Hybrid-s transistor model can be used to advantage with computer analysis.

Guidance for Reading Stations

Many of our readers have been impatiently awaiting publication of the new edition of this long-established book and will consequently be glad to learn that it is now available. This 18th edition is in the familiar format, listing stations in the long, medium, shortwave and v.h.f. bands, in alphabetical order, by location and by frequency. There are also sections on receivers, antennas, signal propagation, station identification and reception reports.

The book costs £1.25, including postage, and can be obtained from General Sales Department, Room CPH4, Dorset House, Stamford Street, VDON SEI 9LU.

Stephen Marchant, at 25, is joining Nottingham University as manager of a new microprocessor applications laboratory in the electronics department. Currently studying for a Ph.D. in the business application of microcomputers, he has designed and constructed many microprocessor-based projects which - he assures us - will form the basis of future articles.

with the RGB isolation to provide extra flexibility should the u.h.f. link not be favoured.

Teletext and Prestel compatibility

Although the display format is not identical to that specified for Prestel/teletext use, it is compatible. Under the control of a microprocessor, the display can be made to support most teletext/Prestel specifications, certainly the important ones. I have built a compact teletext interface for a Z80 computer system which uses the display system most effectively with a 2K-byte software package to complete this teletext facility.

A double-sided glass-fibre p.c.b. for the colour graphics circuit inside TV chassis will be available from M. R. Sagem at 23 Keynes Road, London NW2 for £18.50 inclusive of v.a.t. and UK postage. Roller tuned and drilled board measures 235 x 305mm.

Fig. 4. Physical interface to TV
Small-signal oscillator and v.c.o. analysis

Using the YF matrix, from which we will ultimately derive gains and impedances, the criterion for oscillation is best viewed in terms of negative resistance. Referring to the diagram below oscillation occurs when $\frac{dV}{dI} < 0$, and the resulting amplified signal out power amplifier design

Large-signal design usually involves non-linear operation, e.g. classes AB, BC. When this is the case there is no simple YF matrix to describe the circuit. For power amplifiers we have to limit the analysis to considering only how to get the drive power into the transistor, and the resulting amplified signal out into a load. As an example take a v.m.o.s. power f.e.t. operated at 100W at 145MHz. To use it one must power-match its output to 50 ohms, see below. The input matching network does much the same job, but the output match is the

important of the two, as the higher power levels on the output can more easily destroy the 100 f.e.t. by mismatching. The model adopted assumes the input impedance of the f.e.t. is described by

$$V = \frac{R}{2\pi f C + \frac{1}{2\pi f M}}$$

where P_{o} is the rated output power of the f.e.t. and C_{o} the drain-to-source capacitance. (The f.e.t. input impedance is given in the data sheet.) Fig. 4 shows a network breadboarded on Dac and the network finally used, the amplifier having $100\$ gain when run in class AB.

Economics of small computer aids

The circuit in Fig. 5 shows a 3rd-order active filter, used as part of a sub-system in a satellite communication system. The filter was designed and checked using Dac. Having verified the designed circuit would give the required response, the program was re-run using practical resistor and capacitor values. Various practical values had to be tried until an acceptable response was obtained. The exercise in itself gives the engineer a feel for the network, and the relative sensitivity of cut-off frequency etc. to component values.

Finally the filter was breadboarded, and the filter response measured. Figure 6 shows the comparison with the predicted and the measured response. The response was judged close enough to the optimum not to need any adjustment. Hence engineering time and effort had been saved, not to mention possible burnt out components. Rental of the main frame computer the Company has access to would have cost £30 for the same amount of computing time.

For and against

The YF matrix provides a method of circuit analysis amenable to the computer. Other methods exist, but after a year of experience in industrial R&D the YF matrix has proved superior for all but passive ladder networks. For versatile usage of analysis programs modelling techniques become essential, although modelling ultimately is synonymous with a sound understanding of circuitry.
Pulse induction metal detector — 2

by J. A. Corbyn.

The bandpass amplifier in Fig. 11 extracts possible signals from background noise caused mainly by transients in the circuits. To permit a gain of up to 8000, a narrow pass-band from 0.2 to 0.6Hz is used with a high-order filter for sharp roll-off. The circuit also has a limited overshoot with a step function as shown in Fig. 12.

The output is displayed by a voltmeter, and an audible signal is provided by an oscilloscope and a loudspeaker to permit a gain of up to 900Hz. The output is displayed by a voltmeter, and an audible signal is provided by an oscilloscope and a loudspeaker to permit a gain of up to 900Hz.

Fig. 11. Bandpass amplifier. All op-amps are LM351 or similar and are shown in Fig. 14 which, with a BU 326A non-saturating common emitter output, can supply up to 1.5A. Two transmit coils were used in the prototype because a rugged high-voltage p-n-p transistor was not available at a reasonable price. The regulated power supply is shown in Fig. 16. As well as the capacitors shown, extra decoupling should be provided on each circuit.

Construction of the metal detector is not critical and the prototype was built in module form with jack plugs and sockets for interconnections. Selection of damping resistors for the transmit and receive coils is best carried out with an oscilloscope, although it was found that the values chosen were generally in agreement with the theoretical values.

Conclusion

This metal detector is essentially dynamic because it only responds to a target when it is moving in relation to it.

In practice this system is better than the static type because any maladjustments, in connection with the magnetic viscosity effects, are not important with a reasonably uniform ground. Slow variations of amplifier offsets are also unimportant.

Due to magnetic viscosity effects and possible feedback loops, metal detectors need to be tested in operation to determine their sensitivity. A 600 mm radius coil assembly, as shown in Fig. 5, satisfactorily detected a piece of brass 50 mm in diameter at a depth of 750 mm, and a 15 mm diameter brass target at a depth of 50 mm. In both cases a peak transmit current of 1A was used with a delay of 250 µs and a ground speed of 1 m/s.

Fig. 13. Analogue display and audible output. Both oscillators are based on 555 timers, and run continuously at 900Hz and 1400Hz.

Fig. 14. Generation of timing waveforms.

Due to availability, the prototype used c.m.o.s. and t.t.l. components with a single transistor interface. One logic family can be used and the interface omitted. The complete circuit is powered from the 7805 regulator and all outputs are protected by series resistors.

In practice this system is better than the static type because any maladjustments, in connection with the magnetic viscosity effects, are not important with a reasonably uniform ground. Slow variations of amplifier offsets are also unimportant.

Due to magnetic viscosity effects and possible feedback loops, metal detectors need to be tested in operation to determine their sensitivity. A 600 mm radius coil assembly, as shown in Fig. 5, satisfactorily detected a piece of brass 50 mm in diameter at a depth of 750 mm, and a 15 mm diameter brass target at a depth of 50 mm. In both cases a peak transmit current of 1A was used with a delay of 250 µs and a ground speed of 1 m/s.
Awards and certificates

Are the awards and certificates available to amateur operators who can show evidence of two-way contacts with stations in specified areas, countries, and even "squares"? A help or a hindrance to the hobby? Most of us, even those who seldom seek to acquire the many "parchments", tend to accept them as an inherent part of a hobby that sets great store in amateur contacts, whether in personality and h.f. and v.h.f. bands. There can be few h.f. operators who did not get a kick from claiming to have "worked all continents" on the DXCC (100 countries). But questions arise when every local club begins to issue awards.

One long-time critic of the furiously competitive "dx-chasing" that may be encouraged by awards has been Bill Scarr, GZS/2. In his presidential address to the RSGB in 1956 he claimed: "Much more would be achieved if the amateur could shake off his feverish thirst for "dx" which in its most sinistral form can transform him into a scarcely human animal devoid of all sense of time and utterly lacking in consideration for his family or his hobbies". That was 30 years ago but I see from Radio Communication that he is still as critical as ever of such practices, particularly of what he refers to as the new parlour game of "working squares" (squares on a map) which he compares to collecting the numbers of railway engines or catalogue cards! For those not convinced by his arguments, the RSGB has recently published a new edition of its book "Amateur Radio Awards" by C. R. Emary, GOGH. This provides details of almost 100 of the more significant certificates and awards.

From all quarters

A link with the pioneering says of the "short waves" has been severed by the death at the age of 87 of Miss Brenda Bell, sister of Frank Bell, Z4AA (later ZL4AA). A skilled telegraphist, she was considered the most dextrous operator of almost all the more significant "squares" on a map which she compared to collecting the numbers of railway engines or catalogue cards! For those not convinced by his arguments, the RSGB has recently published a new edition of its book "Amateur Radio Awards" by C. R. Emary, GOGH. This provides details of almost 100 of the more significant certificates and awards.

Propagation speculations

For several years, many of the most intriguing speculations on the forecasting of sunspot activity have been based on the belief that there was a "Maunder Minimum" during the years 1645-1715 when little or no visible sunspot activity was recorded; a period, as many have pointed out, which coincided with the mini Ice Age in Britain. Much of the evidence for this has stemmed from examination of the nacked-eye sunspot records kept over many centuries in China and the Far East. Now, however, a new concept has been challenged by Christopher Cullen in a letter to Nature. He points out that examination of new sources suggests that solar activity continued unabated during the entire 17th century and that the previous sources may either have been inadequate or reflected a period of political chaos and/or simple incompetence. He believes that the new evidence is sufficiently strong to advise that on the whole question of the Maunder Minimum "judgment must be suspended."

But if one theory is dented, two others are reinforced. Two years ago E. B. Dörting of Mullard Space Science Laboratory in a letter to Wireless World (Letters, April 1978) described the evolving theory of Sporadic E: tiny metallic particles caught up in descending wind shears becoming ionized in summer to form a highly reflective layer. He noted the belief that these metallic particles were "probably the remains of burned-up meteoroites". New evidence to support this view has been presented by G. Brown, GH4CD, in collaboration with the French amateur FRAI and the University of Dundee has shown from observations over the past two years a positive link between meteor showers and Sporadic E.

Awards and certificates

Are the awards and certificates available to amateur operators who can show evidence of two-way contacts with stations in specified areas, countries, and even "squares"? A help or a hindrance to the hobby? Most of us, even those who seldom seek to acquire the many "parchments", tend to accept them as an inherent part of a hobby that sets great store in amateur contacts, whether in personality and h.f. and v.h.f. bands. There can be few h.f. operators who did not get a kick from claiming to have "worked all continents" on the DXCC (100 countries). But questions arise when every local club begins to issue awards.

One long-time critic of the furiously competitive "dx-chasing" that may be encouraged by awards has been Bill Scarr, GZS/2. In his presidential address to the RSGB in 1956 he claimed: "Much more would be achieved if the amateur could shake off his feverish thirst for "dx" which in its most sinistral form can transform him into a scarcely human animal devoid of all sense of time and utterly lacking in consideration for his family or his hobbies". That was 30 years ago but I see from Radio Communication that he is still as critical as ever of such practices, particularly of what he refers to as the new parlour game of "working squares" (squares on a map) which he compares to collecting the numbers of railway engines or catalogue cards! For those not convinced by his arguments, the RSGB has recently published a new edition of its book "Amateur Radio Awards" by C. R. Emary, GOGH. This provides details of almost 100 of the more significant certificates and awards.

From all quarters

A link with the pioneering says of the "short waves" has been severed by the death at the age of 87 of Miss Brenda Bell, sister of Frank Bell, Z4AA (later ZL4AA). A skilled telegraphist, she was considered the most dextrous operator of almost all the more significant "squares" on a map which she compared to collecting the numbers of railway engines or catalogue cards! For those not convinced by his arguments, the RSGB has recently published a new edition of its book "Amateur Radio Awards" by C. R. Emary, GOGH. This provides details of almost 100 of the more significant certificates and awards.

Propagation speculations

For several years, many of the most intriguing speculations on the forecasting of sunspot activity have been based on the belief that there was a "Maunder Minimum" during the years 1645-1715 when little or no visible sunspot activity was recorded; a period, as many have pointed out, which coincided with the mini Ice Age in Britain. Much of the evidence for this has stemmed from examination of the nacked-eye sunspot records kept over many centuries in China and the Far East. Now, however, a new concept has been challenged by Christopher Cullen in a letter to Nature. He points out that examination of new sources suggests that solar activity continued unabated during the entire 17th century and that the previous sources may either have been inadequate or reflected a period of political chaos and/or simple incompetence. He believes that the new evidence is sufficiently strong to advise that on the whole question of the Maunder Minimum "judgment must be suspended."

But if one theory is dented, two others are reinforced. Two years ago E. B. Dörting of Mullard Space Science Laboratory in a letter to Wireless World (Letters, April 1978) described the evolving theory of Sporadic E: tiny metallic particles caught up in descending wind shears becoming ionized in summer to form a highly reflective layer. He noted the belief that these metallic particles were "probably the remains of burned-up meteoroites". New evidence to support this view has been presented by G. Brown, GH4CD, in collaboration with the French amateur FRAI and the University of Dundee has shown from observations over the past two years a positive link between meteor showers and Sporadic E.

Amateur satellite news

NASA has formally agreed to include the first British amateur satellite, UOSAT as a secondary payload on the Thor-Delta launcher for the Solar Members Explorer project, provisionally scheduled for September 30, 1981. UOSAT is being built at the University of Surrey with additional help from amateurs working in the space industry, the Science Research Council etc. A "breadboard" model is due to be completed by August to be followed by an "engineering" prototype by the end of this year.

The first Phase III amateur satellite is now due to be put into a highly elliptical orbit about the end of May. A Russian amateur satellite(s) has been predicted for early this year, possibly by the time these notes appear.

In brief

Transatlantic 50MHz signals continued to be well received in the UK during the first half of January... An Australian 50MHz two-way record has been confirmed between VK0K and XE1EG, Mexico, a distance of over 14,000km... George Cole, G4A... lost his sight on active service in Italy during 1943 has made a member of the First-Class Operators Club... The GB2RN station on board HMS Belfast, moored near the Tower of London, will be active on all h.f. bands April 13... The date for the North Midlands mobile rally at Drayton Manor Park, near Northampton has been changed to April 13... "East Suffolk Wireless Revival 1980" mobile rally is on May 25 at the usual site at Ipswich Area Civil Service Sports Association, Straight Road, Budleigh Salterton, or Ipswich... The Welsh amateur mobile rally will be held at the Barry Memorial Hall on April 20...
are held in exact position by a small magnet G which is attached to the tracking arm so that in the central position neither electrode touches the mercury spheroid. A small displacement of the electrodes caused by movement of the magnet to either left or right causes contact with the mercury and completes a circuit via electrode H. It is worth noting at this point that small vertical movements of the magnet do not affect the electrodes E and F, neither do small fore-and-aft movements. This is all to the good, as movement in these directions can only arise from play in the suspension of the arm.

If the tracking arm over-runs the proper position, i.e. the servo-motor does not correct the displacement quickly enough, then the electrodes E and F will roll the spheroid up the inclined plane. Further electrodes J are implanted in the path of the spheroid to operate a cut-out relay which stops both the turntable and the servo-motor.

The only forces acting on the cartridge with the switch in or near the central position are the minute lateral forces required to press the electrodes E and F into the surface of the mercury, and to overcome the friction of the arms. This is all to the good, as movement is only necessary to operate the cut-out relay which stops the turntable and servo-motor.

When a switch is operated, the servo-motor is driven by current from the servo-system to a position where the arm's pivot is in the region of 200 mg per 1 gm of tracking force, with an exceptionally low coefficient of friction. The long-term chemical properties are good — it does not decompose or turn gummy, and is unaffected by mercury.

Surface tension also poses problems where the electrodes come into contact with the mercury, and for this reason the electrode tips are sharply pointed.

The electrodes are made of nickel as this is the only commonly available metal with the necessary properties i.e. low solubility in mercury (only 2 x 10^-6% wt.%), strongly magnetic, resistant to oxidation, and easily worked into the required shape. Iron may be a satisfactory material, but has not been tried in practice.

Regarding the mechanical layout, this is very similar to that of the opto-electronic system already described, except that the reference arm is now attached to the lower part of the gimbal ring, and carries the mercury switch, Fig. 3.

The tracking arm carries a miniature magnet over the top of the switch. The reference arm inertia is added to that of the tracking arm in the vertical plane. However, the position is no worse from this aspect than that of the conventional arm, as the extra mass offset by the shorter length of the tracking arm, as previously explained. Of course, it will not provide a pure reduction in inertia as the opto-electronic system does, but it is envisaged that there are other applications for a switch with these properties, not necessarily in the field of record-players — proximity switching for example.

The switch is not difficult to construct, as the captured diagrams show. It is not necessary to have inclined pivots as shown in the diagrammatic representation, as vertical pivots offset by a small distance will perform just as well over small angles of operation, and are much easier to construct.

Care is needed in handling mercury, which is poisonous by skin absorption and when the vapour is breathed in. Mercury is surprisingly volatile and the lungs absorb its compounds. Mercury vapours are produced when the vapour. Work should be done out of doors and any spillage cleared up at once and dusted with flowers of sulphur.

Drill three holes to suit gauge of nickel being used. A filler hole 6BA is also made in approximate position shown. Polish swaged and round holes. Insert centre electrode to give mercury ball a stable 3-point suspension. Adjust outer electrodes so that they just project above surface. Araldite all three in place.

When resin has solidified, knock out brass pattern. File off excess resin to shape shown. A "gruzzy disc" attached to an electric drill does this in a few minutes.
According to a paper presented at the Society of Motion Picture and Television Engineers' 14th annual conference in Toronto, all-digital telecine machines may be a reality by 1985.

Richards sees the head of the Image Science Department at the University of Edinburgh as one of the key researchers who is working on the development of these machines. He and his team have developed an all-digital telecine machine which allows photographic images to be digitally processed, enabling high-speed storage and retrieval. The system is described as being exceptionally clear and uniform picture. The system is a 1024-element linear array which scans the film image in sequence to 34 or 24 frames to produce a single 625 or 525-line sequential television signal.

The new machine has the potential to revolutionize the film industry by allowing for faster processing and easier storage of footage. It is expected to be commercially available in the near future. More information on the topic can be found in the conference proceedings or by contacting the author for a more detailed explanation.
Citizens’ Band moves

The lobby for citizens’ band radio in the UK has been regrouping in the hope of putting stronger pressure on the government. One important move has been the formation of a National Committee for the Legislation of Citizens’ Band. This combines the efforts of all the smaller bodies (such as the Citizens’ Band Association) to make one large pressure group for the whole of the UK. Chairman is Theo Yard, a councillor at Lewisham, and treasurer in James Bryant, president of the CBA. Clubs with at least 100 members are encouraged to join. A meeting of the National Committee was held in Cheltenham on 16th March.

In conclusion, the Citizens’ Band Association has applied to the Radio Regulatory Department of the Home Office for a licence for a private mobile radio (p.m.r.) communication system — the kind of licence devoted to taxi firms, etc. Ostensibly it is for a self-help group of motorists, the principle being that it will help to save fuel, but the CBA was really intending to be a “foot-in-the-door” from which a larger system may grow. Initially it is intended for about 50,000 users, but the association hopes to get about a million users in 2½ years. According to James Bryant, lawyers have advised the CBA that the Home Office cannot refuse to give such a licence, but at the time of going to press the association had not even received an acknowledgement of its application.

Finally, the CBA has written to the Home Office Secretary, telling him that the government need not worry about appointing extra civil servants to administer a citizens’ band radio service. The association is willing to provide the staff to do this. The accountants have told them they would have no difficulty in raising the money to form a limited company to take on such a task.

Noogami Electric announce unique device

THE British subsidiary of the Japanese Noogami Electric Corporation has recently announced the introduction of a “Ford” line inverter line feed. The item results from a ten-year test programme which enquired into base-conducting material for inverter transformers. The resulting form of a current-controlled, bi-directional circuit element is virtually eliminating electrical problems.

Although the full method has not yet been revealed, Noogami believes that the heart of the forming process is the introduction of a unique solid state component. This component is the key to the new technology and has several advantages over its predecessors. The new device is claimed to exhibit extraordinary electrical properties such as a totally unique switching threshold, a form of a current-controlled, bi-directional circuit element and unimpeded current flow. The device is expected to be used in a variety of applications where the device is suited to applications where virtually unimpeded current flow is required.

The new conducting device undergoing extensive environmental tests in the manufacturing a “clean” room at Yokohama by English workers in training. Staff are checked for stray capacitance before entering the area.

NEWS IN BRIEF

A display of early wireless equipment, under the direction of Barry Collett, will be held at the pistol Museum, Bridgewater, Somerset, starting on 5th April 1980. The exhibition is intended to provide a view of some of the hardware of pioneering days in broadcasting.

The IEEE has a series of lectures and other events planned for the next few months. On 27th March the Fintimmon Report will be discussed at a meeting in the Ariel Suite, Royal Angus Hotel, Southampton at 7.30 pm. Tom Stonier will be introducing the audience. Also present will be a member of the National Physical Laboratory staff. The meeting will be confined to a senior post. Applications should be made to the London Regional Management Centre for free tickets for the session.

The Byte Shop assets have been acquired by Comert (Computer Mail Order and Retail) Ltd. and the original premises in Throgmorton Court Rd, Ilford, Ilford, Birmingham, starting at 7.30 pm. Tom Stonier will be introducing the subject of “The Byte Shop” and all branches are currently running turnkey microcomputers and systems for off-the-shelf computer assistance. The Byte Shop will operate as an entirely separate business within the Comert group and the company intends to retain its independent dealer network.

A new company, called Metrolog Systems, has been established in Guildford, Surrey. The company is in the process of developing a number of microelectronic subsystems for industrial and process industries for applications in the control and measurement of manufacturing systems.

The 10th European Solid-state Device Research conference will be held at the University of Loughborough, UK, under the auspices of the IEEE, on 17-20th September 1980. The main aim of this conference is that of bringing together scientists and engineers working in the broad field of solid-state devices and to provide a European forum for the presentation and discussion of the latest research and technology.

A conference on low-frequency noise and its applications will be held from the 7th to the 10th May 1980 in Aalborg, Denmark. The conference will be held under the auspices of the European Space Agency and will be attended by experts in the field of low-frequency noise.

The Department of Electrical Engineering Science at the University of Essex will be running its annual electronics Summer School for teachers between 7th and 11th July 1980. Three courses will be run simultaneously and each circuit design course is concerned with the use of transistors and operational amplifiers in electronic circuits, and the basic elements of the hi-fi amplifier. The courses are open to teachers and students, and the basic elements of the hi-fi amplifier are considered in the first course.

Kisukumi wire in UK

Kisukumi wire in UK

Two well known electronics giants, one well known in the UK, the other in the USA, have founded a joint venture company in the UK. The new company, called “Signal Technology Ltd,” will be based in Swindon, UK. The company will be involved in the design of software and the development of hardware for signal and control systems. The company will concentrate on the development of software and the development of hardware for signal and control systems.

Obituary

Cecil Goyder

Cecil Goyder’s death has occurred in Princeton, New Jersey, USA, of Cecil Goyder, who, until his retirement, was concerned with the United Nations communications and radio services. Previously he was engineer-in-chief of All India Radio but it was as a young P.E.T. student that he founded the Goyder, a highly-esteemed university centre.

The solicitor’s role will continue to develop into a legal service to assist clients and provide them with legal advice on their chosen field.

The proposed solar power satellite would convert solar energy into electrical energy and beam it by microwave to the Earth’s surface. The satellite would be launched from the ground station and then fed into the national grid.

Kisukumi wire and flat-tube meter

In addition to its activities in the field of shipbuilding, the company has also been involved in the development of a new type of flat-tube meter. The company is now running a series of shipbuilding projects in the UK and the USA.

A conference on low-frequency noise and its applications will be held from the 7th to the 10th May 1980 in Aalborg, Denmark. The conference will be held under the auspices of the European Space Agency and will be attended by experts in the field of low-frequency noise.
Amplitude-modulated signals

A survey of amplitude-modulation detectors, with a classification of types

by S. W. Amos, B.Sc., M.I.E.E.

Circuits used for the detection of amplitude-modulated signals may be classified into four main types, individual circuits in each group being examined in detail.

The word detector has been in use since the early days of radio and it was an unfortunate choice of term because it is by no means an attempt at classifying them. It doesn't detect the presence of a radio signal because the aerial and/or first tuned circuit of a receiver do that. It doesn't detect the presence of modulation because an a.g.c. detector is a circuit of amplification and modulation and to give an output related to unmodulated carrier amplitude. According to B.S. 4727 the job of a detector is to abstract information from a radio wave: the waveform of the audio modulated waveform as in a demodulator or it may be the information derived from a high-value capacitance as in the a.g.c. detector. Thus a demodulator is an example of a detector but a detector isn't necessarily a demodulator.

Since those early days the number of modulated waveforms and the complexity of the important characteristics has apparently grown enormously. It is possible to name 30 or 40 a.m. types without great effort. Terms such as envelope detector, square-law detector, envelope-detector and product detector are frequently encountered in electronics literature and examination of the various types can be greatly facilitated by the demodulator's output waveform: this can be a sine wave, a square wave or a pulse, and even in the latter case it is the nature of the output signal which is important and not the method of detecting it. The word detector may be defined as a circuit whose output voltage may be made to depend non-linerly on the amplitude of the input waveform: it is unnecessary for the circuit to amplify or distort the input waveform in any way. The term detector is therefore a useful one to use when considering the various types of demodulator and it will be used in this article.

We shall now examine this classification in detail.

Sampling detectors

Series-diode circuit

The simplest example of a sampling detector is the series-diode circuit shown in Fig. 1. It is similar to a half-wave rectifier circuit with the capacitor C1 able to be regarded as a reservoir capacitor. The output of the circuit relies on the charging rate of C1 through the low-value forward-resistance and the sub-sequent discharge through the high-value reverse-resistance of R1.

Diode D1 conducts during positive half-cycles of r.f. input and charges C1 to the peak value of the r.f. signal. The reverse-biased half-cycle of the input signal is cut off and C1 begins to discharge through R1. The ratio of the time constant RC1 to the period of the carrier is, however, so chosen that very little of the charge on C1 is lost before D1 begins to conduct on the next positive half-cycle of input and C1 is again charged to the peak value. Thus D1 maintains a constant DC voltage which depends only on the r.f. peak and is independent of the time instant when the input signal changes its sign. In r.f. circuits the period of the cycle is so much smaller than the time constant that the assumption is justified.

The circuit of Fig. 1 is known as an a.m. detector and is operated as a synchronously modulated carrier amplifier and peak detector. When the carrier frequency is modulated this circuit has a high degree of selectivity for the a.m. signal: it is not sensitive to any carrier-frequency components. The a.m. signal modulated carrier amplifier circuit has a high degree of selectivity for the a.m. signal: it is not sensitive to any carrier-frequency components.

A simple series-diode circuit or a sampling detector.

Fig. 1. The simple series-diode detector.

Fig. 2. Infnite-impedance detector.

Anode-bend detector

The infinite-impedance detector is a circuit in which the detector is replaced by two diodes and a high-value capacitance. The detector is a circuit in which the detector is replaced by two diodes and a high-value capacitance. The circuit is shown in Fig. 2. The anode-bend detector is a circuit in which the detector is replaced by two diodes and a high-value capacitance.
duce a grossly-distorted output. The synchronous detector operates strictly at carrier-frequency intervals and samples the positive peaks during one half-cycle of the modulating signal and negative peaks during the other half-cycle, thus correctly reconstructing the waveform of the modulating signal. The output has positive and negative swings and, for a symmetrical modulating signal such as a sine wave, has a mean value of zero. Thus, there is no d.c. component in the output of the prototype non-synchronous series-diode detector. This type of circuit can be used to demodulate the quadrature-modulated colour signals in a colour television receiver. Here the modulated signal has two carrier components in quadrature, each amplitude-modulated by a different signal. The circuit of Fig. 4 can demodulate one of these signals without interference from the other, because, during the time it is sampling the peaks of one signal, the other is passing through zero and so has no effect on the detector output. A second detector, with the second signal in quadrature with that of the first is required to demodulate the second colour-difference signal.

For some applications the components R_1C_1 and R_2C_2 can be omitted.

The diodes then connect C_1 to the source of modulated r.f. for the whole of one half-cycle.

A typical circuit is shown in Fig. 6. The modulated r.f. signal applied to the grid and the carrier signal, suitably phased with respect to the grid signal and of much greater amplitude, is applied to the cathode. The components R_1 and C_1 act as a d.c. load and hold the voltage cut off except during the negative peaks of the half-cycles of the signals applied to the cathode. When the voltage is conductive the anode current takes up a value determined by the amplitude of the signal and the grid at that instant. As the voltage is provided with an anode load, corresponding anode signals can be obtained from the anode.

Clamping detectors

Shunt-diode circuit. In the circuit of Fig. 6, the output of the detector is taken whole of the reservoir capacitor, but it could alternatively be taken from the detector circuit being replaced as shown in Fig. 7 to enable one leg of

Grid-leak detector. One well-known type of clamping detector which provides amplification is the grid-leak detector. In this version of the circuit, known as the shunt-diode detector or the reservoir capacitor circuit, the cathode is connected to the reservoir capacitor. The circuit diagram of which is shown in Fig. 8. The output is taken whole of the reservoir capacitor. The waveform of the grid voltage for a sinusoidally-modulated r.f. input signal (positive peaks being

Synchronous clamping detector. Figure 11 gives the circuit diagram of a synchronous clamping detector. It is much in common with the synchronous sampling detector of Fig. 4 except, of course, that the diodes are arranged to produce a short circuit once per carrier cycle. The diodes and the resistor in the base circuit form a balanced circuit chosen to minimise anode current in the detector output and the time constant of the output circuit can be minimised.

Additive (non-linear) detectors

In all the detectors so far considered, a reservoir capacitor has played an essential part: it is charged during part of each cycle of carrier component and discharges during the remaining part of the cycle. Thus the shape of the input-output characteristic is a consequence of the non-linearity of the I_{an} characteristic. In the more practical case, the anode voltage should be high to further the current through the detection less important. This variant of

The detector output characteristic is less critical and the a.f. component becomes anode-bend detection.

The way in which the detector demodulates a synchronous carrier signal is illustrated in Fig. 12, in which the vertical dashed lines indicate the conduction periods. For a synchronised carrier these coincide with positive peaks of the modulated-r.f. signal during one half-cycle of the modulating signal and with negative peaks during the other half-cycle. Thus the output signal has positive and negative swings as shown in Fig. 2C. For the prototype non-synchronous shunt-diode detector there is a very large r.f. ripple
a device with a linear characteristic, the output has only two components and these are at the frequencies of the two input signals. If, however, two such signals are applied to a device with a non-linear characteristic, the output contains components not only at the frequencies of the two input signals but also at multiples of these two frequencies and are given by

\[f_i \pm f_j \]

where \(f_i \) and \(f_j \) are the frequencies of the two input signals, \(i \) and \(j \) being integers. Perhaps the most interesting of the combination frequencies is \((f_i - f_j) \) — the difference frequency. Non-linear devices are often used as r.f. mixers in superheterodyne receivers, the inputs from oscillator and the r.f. circuit being connected in parallel or series and applied to the single input terminal: it is the difference term which is selected from the output of the mixer for amplification in the i.f. amplifier. An anode-bend detector the input, assumed amplitude-modulated by a single sinusoidal signal, has three components — the carrier, the upper side frequency and the lower side frequency. The difference term resulting from interaction between the upper side frequency and the carrier yields the required modulation-frequency output. But interaction between the upper and lower side frequencies yields an unwanted second harmonic of the modulating signal and interaction between the harmonics of the side frequencies and the carrier yields a complex of other unwanted terms. Thus the non-linearity of the characteristic on which the action of the detector depends inevitably causes considerable harmonic and intermodulation distortion.

Multiplicative (Product) Detectors

As shown in the previous section one method of achieving a.m. detection is by use of a nonlinear device which generates an output at the difference between the frequencies of two components of the input signal. An alternative method is to use a device with two output terminals and which in effect multiplies the two inputs to form the output. This process yields an output at the sum and difference frequencies directly as shown by the identity:

\[\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]

The difference term is thus obtained without need of non-linearity.

There are a number of r.f. mixers and synchronous detectors which use this principle in which, as the identity implies, current is assumed to flow in the device throughout each cycle of both input signals. In all these examples both input terminals control the current through the device and one of them can be regarded as controlling the mutual conduction of the device. The output current is given by \(g_n \Delta v \) approximately (where \(v_n \) is the signal applied to the selected input terminal) and is thus proportional to the product of the two inputs.

One of the earliest devices to be used in this way was the pentode, the two inputs being applied to the control grid and the suppressor grid. The screen grid, being effectively earthed at r.f., prevented any capacitive interaction between the two inputs. A better performance was achieved in the hexode which had an additional screen grid between suppressor grid and anode.

An alternative method of producing a circuit in which two inputs control the same current is by connecting two transistors in series across the supply as is indicated in Fig. 16. A number of circuits of this type are in common use, particularly in integrated circuits, and frequently the upper transistor is replaced by a parallel push-pull pair, the input being applied to their bases in push-pull, the output being taken from both of the transistors. The advantage of using push pull is that the current of the parallel transistors is in antiphase so that alternating currents at the frequency of the push-pull input being confined to the push-pull stage and do not stray into the supply circuits or to the lower transistor which controls the current to the push-pull pair.

A third type of multiplicative device is the dual-gate, field-effect transistor. Both gates control the channel current and thus if two signals are applied to the two gates, sum and difference signals are available in the drain current. To conclude this article the classification of a.m. detectors surveyed is summarized in the table.

Table of Detector Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Classification of a.m. detectors</th>
<th>Syntaxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping</td>
<td>Non-synchronous, series-diode, D.C.-impedance</td>
<td>—anode-bend with</td>
</tr>
<tr>
<td></td>
<td>mixer, anode-bend with anode bias, anode bias</td>
<td>cathode bias, anode bias,</td>
</tr>
<tr>
<td></td>
<td>(impedance)</td>
<td>anode bias,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>anode-bend,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(impedance)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>symmetrical transistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiplicative (product)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bias</td>
</tr>
</tbody>
</table>

See, for example, J. W. Herbert: “A Homodyne Receiver” Wireless World Sept. 1973.

Micro-soldering!

ANTEX

TCSU1 & CTC

...its the perfect kit

Model TCSU1

- Micro-Soldering Station
 - Accurate pin point temperature control between 65° and 400°C.
 - Heating element and sensor built in tip of the iron for fast response.
 - Interchangeable slide-on bits from 4.7 mm (3/16") down to 0.8 mm. Zero voltage switching, no spikes.
 - Magnetic field, no leakage.
 - Supplied with miniature (CTC-06-4Watt) iron or CTC-0911 Watt TCSU1 soldering station with XTC or CTC iron (6.44). Nall to industry.

Model CTC

- 24 volts Priced at £9.75 ($17.87)

Model XTC

- 24 volts Priced at £12.75 ($23.16)

Model TCSU1

- 24 volts Priced at £12.75 ($23.16)

Model XTC

- 24 volts Priced at £12.75 ($23.16)

Model SK3 Kit

- Contains the complete model XCT/CTC in a ceramic case, then in stainless steel virtually non-magnetic damping dampers fitted with a 3.25" bit. Priced at £29.99 ($54.30) Range of 5 other bits available. Also available in 240v.

Model SK4 Kit

- Contains both the model XCT/CTC and the model XTCU1 soldering iron and the XTCU1 stand. This kit is a must for the radio enthusiast. Price £59.99 ($107.87)

Model SK1

- 12 volts Priced at £29.99 ($54.30) Range of 5 other bits available. Also available in 240v.

Model MLX

- 12 volts Priced at £39.99 ($71.97)

Model ST3 Stand

- £39.99 ($71.97)

VAT P&P as shown in brackets ()

Please send me the适合 the Antex colour brochure. I enclose cheque Po/Do 15 $59 1000 £

Antex Ltd. Freetown, Plymouth PL1 1BB Tel. 0752 673177.
Look closely at the
SSG520 SYNTHESIZED SIGNAL GENERATOR

The SSG520 is a synthesized signal generator covering the range 10 to 520MHz and was designed for test measurement, test and alignment work in the V.H.F. and U.H.F. bands with particular emphasis on the needs of those servicing mobile communications equipment. It is astonishingly easy to use, exceptionally stable and has remarkably low leakage so it is also proving popular for many other specific or general applications too in broadcast radio and communications research and teaching.

Fast, error-free frequency selection by thumbwheel switches and automatic ranging eliminates the need for a frequency meter and glide synthesis in 100kHz steps brings maximum stability at all frequency settings. What's more the SSG520 needs no re-tuning after a power loss. An optional overhenn crystal version is available for even greater accuracy and stability. Sideband phase noise is better than -110dB for CW and harmonics are less than 25dB. Any combination of AM and FM modulation, internal or external is possible. Output is calibrated and automatically levelled over the whole frequency range and the attenuator is quickly set by adjacent 10 and 1dB attenuator switches giving direct reading of dBm and volts and enabling accurate mute/transmit settings.

A really useful extra feature on the Farnell SSG520 is the SINAD facility. This feature provides a simple, quick and unambiguous method of measuring receiver sensitivity. It may also be used as an alignment aid ensuring the reception of intelligible signals by providing a better band-pass alignment.

If the remote programming option is ordered then all major functions can be controlled via a multipin socket. These include frequency, attenuation, modulation and SINAD meter. A microprocessor based keyboard control unit with IEEE 485 will be available to special order.

Reverse power protection is now available as an internal option preventing possible attenuator burn-out for up to 50 watts reverse power. This protection automatically resets when the power signal is removed.

Use this magazine's reply system now to obtain your copy of a six page colour brochure on the SSG520 and we'll send you a useful pocket-size folder of telecommunications data, charts and tables.

NEW!
Transmitter Test Set
See it at
Communications 80

Farnell International
WETHERBY - WEST YORKSHIRE LS21 4DH ENGLAND
TELEPHONE 0973 53541 - TELEX 52734 FARRIG F

PROGRAMMABLE NOTES FOR KEYBOARD INSTRUMENTS

Regarding M. Robson's letter in the November 1979 issue, one way of overcoming the problems with key changes while allowing a "natural" scale to redefine the function of the keyboard. The following is a suggestion to overcome the limitations of current keyboard instruments, which are tuned to an "equal-tempered" scale. The letter is ready a compromise, basically due to the fixed number of physical notes available. If we had a much larger number, true musical intervals (i.e. subjectively correct) could be played in any key as fact early keyboard instruments had "split" notes to resolve this problem. For example, A) and G2 should strictly be different frequencies, depending on the scale key being played, but have now been "tempered" to give the same frequency (i.e. they are the same physical note), which has become acceptable in modern music.

However, if we consider a keyboard generating "intervals" as opposed to absolute frequencies, this situation should not arise. Imagine a keyboard where notes to the right represent positive intervals relative to the last note played, and notes to the left represent negative intervals (the middle note representing no change). This is shown in Fig. 1. If a piece of music is now reinterpreted as a set of intervals (e.g. major/ minor tones, thirds, fifths, octaves, etc.) the instrument will generate the exact frequencies required. For example, intervals of a fifth from any note will always be the exact ratio of 3:2.

In practice, frequencies have to be generated which are proportions of the previous frequency. This could be done using multiplier circuits or digital techniques, but a simple method which springs to mind is to use a basic synthesizer concept. In these instruments a keyboard generates a linear scale of voltages which control logarithmic voltage-controlled oscillators. Using this idea, the frequency multiplication/division we require is easily obtained by adding/subtracting d.c. voltages. Operational amplifiers can be used for this, as we still have the last note played in a sample-and-hold arrangement.

The circuit in Fig. 2 (albeit crude) illustrates the basic idea, but has not been tested as it is only a suggestion for those readers with more time and patience to try a feasibility study. It may not in fact be practical due to drifting unless highly stable circuits are used. It is analogous to an infra-red based navigation system which is reset only once, and from then on everything is calculated relatively, thus accumulating errors. The instrument may be physically difficult to find the ratio required for musical notation. It is also monophonic, as chords have not yet been considered.

But for those who are interested, the operation is as follows: The key contacts are labelled K1 to K4, and must operate in that order. IC1 and IC2 hold the current note in their "hold" capacitors. When a key is pressed, S1, S2, opens and isolates IC1, IC2, closes, selecting the interval required (plus/minus or zero) which is added to the previous note from IC3, using the summing amplifier IC1, S1, S2 closes storing this new note on IC3, which produces the required frequency from the oscillator. S1 triggers the note envelope shaper, S2 in the reset required at switch-on.

P. A. Ting
Chipping
Manchester

C.B. RADIO AND POPULATION DENSITY

R. B. Hooper's letter in your February issue is interesting. He's perhaps forgotten about the density of population here. England comes second, after the Netherlands, with 900 people per square mile. Scotland, from where I write, is No.22 on the world's list, with 170, but even that is heavily concentrated, in its central area. A lot of the rest is mountainous. Victoria, Mr. Hooper's home-state, is Australia's most densely crowded: This happy region has 37 people per square mile, almost the same as Finland! His island-continent is itself at the end of the world's list. As it's roughly the same area as the continent of Europe it can well afford the "luxury" of citizens' radio, without "mutual interference". With these facts in front of him, Mr. Hooper must realise that the authorities here, with a population of around 20 million, view with enjoyment the prospect of 40 million people within easy reach of a telephone. Our communications system has, fairly recently, been extensively modernised and is quick and effective.

King Canute would have been gratified!

W. C. Rixon
Stromness
Orkney

THE INTELLIGENT PLUG

Two points regarding The Intelligent Plug mains communication system described in your December 1979 issue: (a) it could be lethal: (b) it would need a licence, which would not be granted.

The danger arises from the 1A capacitor in the transmitter circuit, practically between the neutral and earth lines (originally the authors state "for maximum safety"). However, if the neutral and earth connections at the wall socket were dirty and not making very good contact, the live mains would pass through the primary of the mains transformer at least, making the neutral wire also live, and then pass through the I.A., mixing the earth and hence the case and microprocessor live.

In most of the UK this is with in easy reach of a telephone. Our communications system has, fairly recently, been extensively modernised and is quick and effective.

King Canute would have been gratified!

W. C. Rixon
Stromness
Orkney

www.americanradiohistory.com
important of all, freedom is never 'granted' (that would be like being dark with light). It must be taken away for struggling for it. That is one of the main reasons why political and natural culture we can help young people in the true sense of it—see Wireless World making a small contribution.

Mr Frost could have added words from Germain Winstanley to his list. 'We have seen what it takes to struggle for freedom. Also people interested could very well read Henry Thoreau's 'Civil Disobedience'. Finally on this point, one should not forget the important things: how many things about lawyers and doctors -- and more of the same state, but you would not manage after centuries of oppressive and professionalised thought. directly after Mr Frost's letter you print the flaccid letter by Mr Greenwood. It is an easy response to see that an intelligent man like him could still offer the public some open questions. Notice that I imply that Wireless World should be 'above' all this. There is no need to consider the 'apologies'.owell. A flux's time-rate quantity that exists or is, it does not flow. It reflects a point or a state, not a directional quantity that moves. It is perfectly valid to consider current 'flowing' when it is a displacement current, appearing where there is no moving charges. In the accompanying diagram charge moves between points A and B for anywhere between the two capacities.

The displacement current is no current at all. It is a mathematical entity that needs to be introduced into the mathematics of Maxwell's equations in order to make his displacement current in a capacitor begs for an explanation. One possible explanation is that the original term 'displacement current' was used to describe the current in a capacitor since it is a current that occurs inside a transmission line, it need not become visible as a conventional current. The displacement current in a transmission line is used to represent the current that flows to the capacitor, such as a copper wire, because it is a current that flows to the capacitance and then makes it clear and to the point. So, in this case, the displacement current in the wire is the only one that is not only futile, it is also indirected. The displacement current is not a flow of electric charges, but an electromagnetic wave generated from an antenna, and if we get a number of wavelengths away from it, then

\[
\frac{d}{dt}\left(\sum \frac{E}{H}\right) = \frac{dE}{dt} + \frac{dH}{dt}
\]

The expression of this is really a formal one, and it is not necessarily normal to each other, nor is it only a result of the understanding of Maxwell's displacement current. It is not only futile, it is also indirected. However, it is perfectly valid to consider current 'flowing' when it is a displacement current, appearing where there is no moving charges. In the accompanying diagram charge moves between points A and B for anywhere between the two capacities.

From the authors' illustrations, it is hard to work out how the ' magnetic field lines are drawn'. Furthermore, this is a quite a complex one, with the boundaries not necessarily normal to each other. As to para. 2, where Dr Stockman suggests that 'displacement current' should be renamed 'displacement entity', we would prefer to use the term 'displacement current' itself.

With regard to para. 3, we object to Maxwell's lumped capacitance model, the other point is the quantity D is not the electric flux. The quantity D is the flux density, which is the magnetic field lines, to which the old Maxwell capacitor presents a conditional approximation. But, what kind of a transmission line is Maxwell's equation (1) in its

\[
E = \frac{d}{dt}B = \frac{d}{dt} \int \text{Magnetic flux density} \, dV
\]

Here we get the magnitude of the displacement current. The magnetic field lines, i.e., the condition of the displacement current, equation shows that \(\mathbf{E} \) has a magnetic field, which is the displacement current in Maxwell's capacitor, turned 90° with reference to Maxwell's field situation is usually a complex one, with the understanding of extending to right-angle bends, and the edges of the plates located inside the demarcation line of the magnetic field lines, which are not necessarily normal to each other, nor is it only a result of the understanding of Maxwell's displacement current. Therefore substituting in (3),

\[
\sum \frac{E}{H} = \frac{d}{dt}H = \frac{dH}{dt} + \frac{dE}{dt}
\]

That is one of the most vital messages of a society", as c.b. radio should well's lumped capacitance model, the other point is the quantity D is not the electric flux. The quantity D is the flux density, which is the magnetic field lines, to which the old Maxwell capacitor presents a conditional approximation. But, what kind of a transmission line is Maxwell's equation (1) in its

\[
E = \frac{d}{dt}B = \frac{d}{dt} \int \text{Magnetic flux density} \, dV
\]

Here we get the magnitude of the displacement current. The magnetic field lines, i.e., the condition of the displacement current, equation shows that \(\mathbf{E} \) has a magnetic field, which is the displacement current in Maxwell's capacitor, turned 90° with reference to Maxwell's field situation is usually a complex one, with the understanding of extending to right-angle bends, and the edges of the plates located inside the demarcation line of the magnetic field lines, which are not necessarily normal to each other, nor is it only a result of the understanding of Maxwell's displacement current. Therefore substituting in (3),

\[
\sum \frac{E}{H} = \frac{d}{dt}H = \frac{dH}{dt} + \frac{dE}{dt}
\]

That is one of the most vital messages of a society", as c.b. radio should however, we recommend that the Irf capacitance transmitter circuit is reduced as Mr Williams suggested, and that the Irf capacitance has a significant loss of signal to noise ratio. Therefore, we recommend that the Irf capacitance may need to be increased or reduced transmission systems used to combat the accompanying degradation of the channel. The latter raises the difficult question of whether we can or cannot work with optical fibres for transmission. After carefully reconsidering the issue, we still feel that there is no use in hiding behind the facts that science needs to be publicised in the 'pure' or 'beyond politics'. That science, and by implication its relative, is a highly public and messy human activity. Like a magician, one is not only dirty, nor is it only a result of the understanding of Maxwell's displacement current. It is not only futile, it is also indirected. However, it is perfectly valid to consider current 'flowing' when it is a displacement current, appearing where there is no moving charges. In the accompanying diagram charge moves between points A and B for anywhere between the two capacities.

The displacement current is no current at all. It is a mathematical entity that needs to be introduced into the mathematics of Maxwell's equations in order to make his displacement current in a capacitor begs for an explanation. One possible explanation is that the original term 'displacement current' was used to describe the current in a capacitor since it is a current that occurs inside a transmission line, it need not become visible as a conventional current. The displacement current in a transmission line is used to represent the current that flows to the capacitor, such as a copper wire, because it is a current that flows to the capacitance and then makes it clear and to the point. So, in this case, the displacement current in the wire is the only one that is not only futile, it is also indirected. The displacement current is not a flow of electric charges, but an electromagnetic wave generated from an antenna, and if we get a number of wavelengths away from it, then

\[
\frac{d}{dt}\left(\sum \frac{E}{H}\right) = \frac{dE}{dt} + \frac{dH}{dt}
\]

The expression of this is really a formal one, and it is not necessarily normal to each other, nor is it only a result of the understanding of Maxwell's displacement current. It is not only futile, it is also indirected. However, it is perfectly valid to consider current 'flowing' when it is a displacement current, appearing where there is no moving charges. In the accompanying diagram charge moves between points A and B for anywhere between the two capacities.
WHAT’S SO NATURAL ABOUT e?

In Mr Finlay’s interesting article “What’s so natural about e?” (October 1980) y = e^x and y = e^x are drawn and it is shown that for every (x,y) on one it is such that for every (x,y) on the other.

This method is easy to understand, but another method avoids drawing the interpolation curves altogether. I suspect that Euler would have known it so.

We thus want to calculate this distance. The normal procedure would involve differentiation, but as a result of an inspired thought, Mr Finlay wants to avoid this, let us use his values of k. Let us take the graph y = e^x, for which k = 1.1. At the point of contact for this curve (F in my diagram) dy/dx = e . Thus we can use k = 1.1. At y = P = PQ; this gives y = e^x.

The author replies: I thank Mr Palmer for his kind remarks and several ways, including its historical value and elegant one of drawing tangents from the origin against any number of curves. This transfers the curve bodily by 1 unit. This transfers the point of contact is the same for all the curves.

We have already worked out that for natural growth, where dy/dx = e and for natural decay, where dy/dx = -e

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.

We have y = e^x and y = e^-x. A closely related kind of natural growth, not explosive like e^x and therefore (fortuitously) more common, is expressed by y = 1/e^-x. To see what this means, consider the following account, based on recent physical experience may be.
filters and attenuators (and we mustn't forget that attenuation can be measured in nepers — yes, the CIEB isn't any more successful with the Grid cables between the pylons, and yet both of them, like the rest of us, haven't doubted the admired graceful lines of a suspension bridge over the Forth, the Forth Road Bridge.

The first two cases are examples of curves produced by gravity pulling an evenly-forming line in a horizontal shape — a catenary (from the Latin ‘catena’ = chain) — and the others, which have the added complication of an almost horizontal roadway along below, are pretty near it in shape.

The catenary is formed by adding a formula such as Fig. 17, namely e^{-x} and e^{x}, and halving the result, i.e.

$$\frac{e^{-x} + e^{x}}{2}$$

which looks very similar after what we have said about the complex of the relationships between $\cos x$ and $\sin x$, and which is a useful generalisation which always results in a curve that is the inverse of the hyperbolic tangent hyperbolic equivalent of $\tan x$.

Now that last factor alone is not unfamiliar to electrical engineers since we represent it by j and use it a lot in a.c. work. As we have known long ago that this brighter a star is, the bigger is its magnitude, and today the brightness can be accurately measured, and vary according to the angle of the star. Now why should this be so? Of what possible practical value is an imaginary number? How can we deal with it? The answer is that, usually, it is generally introduced as a mathematical trick, a sorcerer's device that will unlock the door to several mysteries, and so it does.

The last two examples are just one case of the human sense responses, in which the eye is primarily concerned, and the ear to sound volume and to pitch (frequency), all in a logarithmic scale, making it possible for us to distinguish very weak sensations and to be mercifully protected against excessively strong ones. The same law discovered by the 18th century physicists, Weber and Fechner, applies to other senses, too, as of touch or pressure in comparing weights in the two hands.

I earlier mentioned the shape of a grand piano, determined by the varying requirements of its strings, as an interesting comparison between it and the FA Cup rounds as a knock-out competition. The shape is arrived at by the frets in fingering a guitar following an exponential curve, as does the corresponding way in which a fiddler handles his strings or a trombonist moves his slide. What about a guitar? The neck of a guitar, born of age-fitting hurdy-gurdy, in the somewhat colder world of statistics, gantry such matters as the distribution and normal distribution curves and various aspects of probability.

Another class of differential equations, the second order, such as

$$\frac{dy}{dx} + 2 \frac{dy}{dx} + y = 0$$

is of great importance to engineers. We meet them most commonly in dealing with natural vibrations, with mechanical or electrical, and it is then a time variable. The general solution is

$$y = e^{-x} (A \cos x + B \sin x)$$

The first natural step turns out to be the series for calculating cost, and the second line for times sin x (in radians), which is how we have known all those years ago!

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots$$

This is usually attributed to Euler, that master-builder of series, and so is known as Euler's Trigonometric Identity. Interestingly, though, this formula (1748) was anticipated by an Englishman, Roger Cotes, who in 1714 published a theorem which appeared in modern form

$$\log (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

This is that is, which is the most mystical relation of the three w e r e d , e and π that I mentioned earlier. How wonderful is it to see that it all flows through by τ, for a good reason that will appear in a moment, so that

$$e^{i \phi} = \cos \phi + i \sin \phi$$

This trig. side shouldn't bother anyone because it is a clear instruction to build up a phase diagram from $\cos \phi$ and $\sin \phi$, horizontally to the right followed by wind vertically upwards, as in Fig. 18.

For the first formula, we use Euler's identity, and then from $e^{i \phi} = \cos \phi + i \sin \phi$, and

$$\cos \phi = \frac{e^{i \phi} + e^{-i \phi}}{2}$$

and

$$\sin \phi = \frac{e^{i \phi} - e^{-i \phi}}{2i}$$

This trig. side shouldn't bother anyone because it is a clear instruction to build up a phase diagram from $\cos \phi$ and $\sin \phi$, horizontally to the right followed by wind vertically upwards, as in Fig. 18.

For the first formula, we use Euler's identity, and then from $e^{i \phi} = \cos \phi + i \sin \phi$, and

$$\cos \phi = \frac{e^{i \phi} + e^{-i \phi}}{2}$$

and

$$\sin \phi = \frac{e^{i \phi} - e^{-i \phi}}{2i}$$

This trig. side shouldn't bother anyone because it is a clear instruction to build up a phase diagram from $\cos \phi$ and $\sin \phi$, horizontally to the right followed by wind vertically upwards, as in Fig. 18.
Finals

Have you, like me, ever had a hangup about? Maybe you refused to believe in the existence of this peculiar number, or even took a physical dislike to the formula in which it appeared? If so, I hope that by now your feelings towards 2.718... will have softened and indeed, much as they may do in real life towards a man of, as I have tried to do here, and as the very greatest of mathematicians have always done.

Finally, a request. Does anyone know a simple mechanical model which brings out the value of e? I have looked for a list of sections on the operation of all sections of the equipment under dis-

22. M.G. Senare-Marconi was in trouble with the newspapers and popular science publications in the early part of 1910. Many operators learned to explain "V" or atmospheric and Marconi expressed the view that, since identical "signals" were received with great

18. To anyone's satisfaction) that no missing link, as has so often happened which the infants could use (in place of buttons), will be found easy to read by British service technicians. Circuit diagrams may be a bit more difficult, since they are drawn in the 'upside down' transatlantic fashion. The book contains 583 pages, £16.20 and is published in hardback by George Philip & Son International, 66 Wood Lane End, Hemel Hempstead, Herts. HP2 8RG.

Complex Digital Control Systems, by Gutli-Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include

have contributed to its understanding, smiling from their golden clouds in Paris. Could I make a special plea to any teacher of (or lecturer in) mathematics who has taken the trouble to read through these articles? Please try to enliven your subject; make it worth cultivating to his own satisfaction, to the average student an incentive by revealing to

Barrie & Jenkins Ltd. £15.10-

22. M.G. Senare-Marconi was in trouble with the newspapers and popular science publications in the early part of 1910. Many operators learned to explain "V" or atmospheric and Marconi expressed the view that, since identical "signals" were received with great separation on the earth, the most likely explanation is that there is a great distance and possibly well outside the earth, meaning natural sources, of course. This remark was joyfully seized on by Fleet Street, who interpreted it as meaning that "playful Marconi" was transmitting to us, Marconi denied that he meant anything like that, but it was too late and the controversy was well under way. The initial head of steam was maintained by those who wanted to see a reply to worry much about the facts.

A succession of articles appeared, and the claim in our April 3, 1920 issue (we were then fortnightly) carried a piece by Philip Courbet and the report of the presidential address to the Wireless Society of London by A.A. Campbell Swinton, F.R.S. His remarks on the subject went as follows:

"Perhaps it might with advantage be pointed out that the intensity of received wireless signals varies inversely more or less according to the square of the distance between the source and the point of reception; so if we suppose the mysterious signals in question originate on the planet Mars, the power of the sending apparatus must be of prodigious dimensions.

And now how have we managed this good news? Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include

20. Ref. 22, Ch. 8 pp. 73-8 (e).

Improving photodiode camera signals

Shading correction for array scanner used in chromosome analysis

by Daryll K. Green MRC Clinical and Population Cytogenetics Unit, Edinburgh

The circuit described corrects signals for the shading effects which occur in a photodiode array camera used for detecting stained chromosomes in dividing blood cells. Correction is needed because both the differences in photodiode sensitivity in the array and the illumination shading are greater than the chromosome image contrast. Cost of components is a fraction of the cost of the photodiode array camera.

Most photodiode array scanners show some non-uniformity of diode sensitivity. Quite often subjects which are imaged onto any type of scanner are non-uniformly illuminated. Where the illuminating light level is high, giving rise to a high signal-to-noise ratio, and the image contrast is greater than either diode or illumination shading effects, the detection and measurement of subject features with a photodiode scanner presents no problem. The difficulty which prompted the building of the shading corrector described here is the detection of stained chromosomes imaged through a microscope where both the differential diode sensitivity and the illumination shading are for the most part greater than the chromosome image contrast. A circuit for correcting the photodiode signals for these shading effects is explained. The corrected photodiode scanner forms part of a machine used for automatically detecting dividing blood cells on a microscope slide preparation.

Fig. 1. Chromosomes in a blood cell are shown on this microscope slide in the circled area, which has a diameter of about 50μm. The drawn horizontal line represents a scan traversing the image on the photodiode array. Large dark objects in this field of view are nuclei of blood cells which are not dividing.

Fig. 2. Oscilloscope trace of the 256-diode array scanner signal corresponding to the scan line marked in Fig. 1. Vertical scale is 200mV/cent, horizontal scale is 30μm/cm.
microscopes. The microscope slide is at the same time driven back and forth under the control of a stepping motor at 90° to the scanner direction and at a speed of 3,000 microns per second.

The major component of the non-uniformity of diode array signal voltages arises out of the slide illumination and primary optics. At each stage in the microscope light path there is a loss of intensity due to the imperfect transmission of the optical components across the entire field of view. Maximum transmission is usually along the optical axis. A lesser component of signal non-uniformity is the differential photodiode sensitivity, which is specified as 8% by the manufacturers, though in practice only one or two diodes differ in sensitivity from their neighbours by this amount.

The magnitude of signals from large chromosomes exceeds the 8% sensitivity variation of the diodes but is much less than the observed 2:1 illumination variation. Small chromosome signals are obscured by both. In the absence of shading correction, therefore, detection of chromosomes and the measurement of their transmissivity is very nearly impossible.

Shading correction theory

When there is no object on the microscope slide imaged onto the 100W quartz halogen light source, only the background signal is detected by the photodiode in the array. Each diode voltage therefore must be processed to form:

\[V_{i} = V_{i0} + V_{i\text{corrected}}. \]

Each diode voltage therefore must be multiplied by a factor \(V_{i0}/V_{i} \)

where \(V_{i} \) is the constant voltage representing the flat response of a perfect system. Comparing these two equations we see that the shading corrected voltage \(V_{i} \) is given by

\[V_{i} = V_{i0} + V_{i0} \left(V_{i} / V_{i0} \right) \]

or

\[V_{i} = V_{i0} \left(1 + \frac{V_{i}}{V_{i0}} \right) \]

Detailed circuit

In practice the correction factors \(E_i/V_i \) will always be greater than or equal to unity, which would cause most analogue divider circuits to overflow. There are several ways of overcoming this problem such as the following:

1. Reducing \(V_{i0} \) by a fraction \(f \), store correction factors \(E_i/V_i \), then multiply the corrected diode signals with a factor \(1/f \) to form:

\[V_{i} = f \left(V_{i0} + V_{i0} \left(E_i/V_i \right) \right) \]

2. Store correction factors \(V_{i0}/E_i \), then divide diode signals with these factors to form:

\[V_{i} = V_{i0} \left(E_i/V_i \right) \]

The actual method adopted is the last of these options. Fig. 5 shows the complete shading correction circuit. Diode zero timing signals occur at the start of each scan and the diode clock signals occur each time a diode video signal is ready for processing. Both pulses are approximately 500ns which is half the duration of each diode signal. The start circuit is designed to begin accumulation of correction factors at the second...
during the start button is pressed, thus giving a clean start. Correction factors tally full twice before the correction diode zero pulses are blocked and the register at the rate of one per scan.

Fig. 6. The corrected diode array signal for the scan line shown in Fig. 1.

Mercury switch for parallel-tracking pickup arm

J. Cut two lengths of nickel wire and turn one end of each to a 60° point. Flatten other end in a vice and file square to 1.2in. and 1.3in. Drill a hole in the flat end of wire (e.g. 22swg) in flattened portion. Insert short pieces of nickel wire with one end turned to 60° point. Comp. into place, and apply a spot of Araldite to secure. Bend the ends of the electrodes as indicated. Hold both electrodes together side by side in a small vice or pliers. Twist into final shape. Glue temporarily with "superglue". Test for electrical isolation.

K. Assemble pivot cups in switch case and rear part of lid. Try cut electrode assembly for size and freedom of movement. If necessary dismantle electrode assembly and pivot cups and file bend until acceptable. Introduce mercury ball into trial basis and check that correct action takes place. The electrode assembly can then be permanently fixed with Araldite instead of "superglue".

Now remove pivot cups and solder 12in. length of Litz wire to them. Also solder 12in. of Litz wire to three-channel electrodes taking care not to disturb their position. Re-assemble switch, with some rapid-setting Araldite on the lid. This gives you about 3min to manoeuvre the lid. Give a final mechanical and electrical check before gluing on the front part of the lid, using Araldite.

Inject the mercury ball via filler hole with 1ml syringe. Flush with propane gas and plug filler hole with BBA steel screw.

Switch is now ready for testing. If too sensitive, shake mercury out until there is a larger clearance between electrode tips and ball. Extra mercury can be injected to reverse this process.

Finally, fix the completed switch to the lower arm with liberal amount of Araldite.

L. Shape rear pole for magnet by trial and error to give no lateral force on tracking arm over 1° each side of the central position. Radius shown is nominal.

Material: mu-metal transformer laminations.

The author wishes to thank Roy Bayley and Denis Rutovitz for their helpful contributions to this article.

Improved tone control

Many audio amplifiers use a Baxandall tone control network around a single transistor as shown. With this arrangement the gain is adequate when the controls are flat but, if bass or treble boost is required, noticeable distortion often arises. This problem can frequently be overcome by providing the original transistor with a bootstrap collector load. With an inverted emitter follower, the increase in gain is around 3.5. The base-emitter resistor should be 3k and the bias resistors must be adjusted to restore the original d.c. conditions.

G. Hibbert
Blacksfriars
Oxford

Continuous a-to-d converter

After several months experience with the a-to-d converter published in March 1979, we have found that timing is less critical if only one output of the MC1407 is used and clocked through two multivibrators in series rather than both outputs each clocked through one multivibrator. The circuit shows a modification from the output of the MC1407 to the counter inputs. Data appearing at the output of the counter is only correct near a specific phase of the clock. For recording the data under certain conditions, such as maximum amplitude, or at specified times, always AND the clock through a variable delay with the sampling pulse, so that correct data is recorded.

J. E. Dahl
J. D. Whitfield
University of Queensland
Australia
Battery charger protection

The rectifiers in an unprotected battery charger can be destroyed by shutting the connecting clips or incorrectly connecting them to the battery. Although a fuse is effective it has to be replaced to restore protection. This circuit prevents current flow unless a correct voltage is present at the terminals. The s.c.r. is fired by the collector current from the transistor as each half cycle of the rectified voltage rises above the battery voltage. If no voltage is present, due to an open or short circuit, or a low voltage because a 6V battery has been connected, or a wrong polarity, the transistor is not switched on and the s.c.r. does not conduct. Reasonable overvoltages will not cause damage because the base current will be low below the maximum rating, and the s.c.r. will become reverse biased. The circuit can be added to an existing charger but the transformer needs an extra IV to compensate for the voltage drop across the s.c.r. By switching to a lower value of R, together with a lower transformer voltage, the circuit can be used with dual-voltage chargers.

R. H. Bennett
Christchurch
New Zealand

Voltage follower with adjustable zero-offset

In the circuit, R, is bootstrapped by the complementary J.F.E.T. source-followers, so that signal amplitude and waveform are preserved along the track. Therefore, any d.c. level can be selected between the gate-source voltages. Voltage gain is virtually unity and the distortion is negligible. Large-signal bandwidth is several megahertz, which makes the circuit superior to conventional op-amp voltage-followers. Output impedance is high, but this can be reduced by adding a bipolar emitter-follower.

R. D. Smith
Gallowgate
Aberdeen

Divide by three

A circuit idea in June 1978 uses only three l.c.s to provide a divide-by-three circuit. This number can be reduced still further with the circuit shown. A divide-by-six output with an equal mark-to-space ratio is also available at (b) and, by connecting this output to the first flip-flop in the 7492, a divide-by-twelve output at (c) is obtained.

M. Rocha
University of Porto
Portugal

Data channel error recorder

Measurement of bit and block error rates on data communication systems, such as those employed by the Post Office and private service users, is the central function of the DF-64 measurement set made by Wandel and Goltermann. The set features a real-time printer which permanently records error rates in 20 columns tabulated print-out, which includes symbols for "no signal" and "out of sync," as well as the identification number for the signal-pulse pattern and error evaluation. Where an optional plug-in timer is used, the date and time in hours and minutes may be recorded and the timer allows print-out intervals to be preset for automatic operation. The equipment also incorporates a sender and receiver section, the seed side being crystal-controlled. After the receive section has synchronized to the correct frequency, the data-channel pulse pattern under test is compared bit-by-bit with the reference sequence to enable hit and block error rates to be derived. Fault tracing on sub-assemblies of data communication equipment is also possible with the DF-64, making use of additional digital and timing signal inputs and outputs located on the back panel; a further connector on the back panel provides positive and negative supplies of 12V d.c. and a 5V d.c. supply. Wandel and Goltermann (UK) Ltd, 40-48 High St, London W3.

For every input frequency select C and output 1 to equal mark-to-space ratio

(a) (b) (c) (d) (e)

V.h.f. automatic d.f. set

A portable receiver, indicator unit and antenna array constitute the ADFS-320 v.h.f. automatic direction finder, intended for the location of narrow-band f.m. or a.m. signals in the 148 to 174MHz range. The unit is manufactured by the American T.R.C. Company and is distributed in the UK by Technology Ltd; the receiver/indicator unit consists of a c.r.t., signal strength meter, internal loudspeaker and 10 plug-in crystal points. A standard Adcock antenna array is fitted for shipboard or fixed-location installations and comprises four vertical dipole elements, a central whip section for sense reference and signal pre-processing circuits, all contained in one integrated assembly. A signal is instantaneously displayed as a relative compass bearing on the circular c.r.t., where it is shown as a thin line trace running from the centre of an indicated compass head at the outer edge. The makers say that information displayed in this way is easily interpreted, even by inexperienced operators. The circuit technique employed eliminates the need for a manual "sense" function to resolve 180° ambiguity and results in automatic readout of bearings.

Technation Ltd, 58 Edgware Way, Edgware, Middlesex.

Relay with push-button actuator

Push-button actuation, permitting manual operation of the relay without the need for an energizing voltage to be applied, is a main improvement which Pyo Electro-Devices Ltd, quotes for its new range of Series 12 relays. These are general purpose two and three-pole changeover types for both a.c. and d.c. operation; they have octal base connections and contact ratings of 16A maximum. Options include tropicalization and neon indicators for coil energization. Mounting sockets complete with sensing clip are also available.

Pyo Electro-Devices Ltd, Exning Road, Newmarket, Suffolk.

Programmable v.h.f. receivers

The Bacroset range of programmable receivers, made in the USA by Electra, are now available in the UK from Com-Tek. The receivers are programmable synthesizers, v.h.f. units permitting monitoring of frequencies in the ranges 66-83MHz, 119-130MHz, 146-148MHz, 148-174MHz, 420-470MHz and 470-512MHz. Bacroset model 220F permits up to 26 channels in any combination of the stated frequency ranges to be keyed in and monitored continuously. Power supplies required are either 240V a.c. or 12V d.c. and prices start at £280. Com-Tek (Mid) Ltd, 506, Alum Rock Road, Birmingham B8 3DX.

Tool kit

Out of the largest manufacturers of tools for use in electronics applications in the USA, Vaco, are now offering a comprehen-
Conductive rubber pads

Semi-conductive rubber pads are already used extensively on the continent of Europe in keyboard applications, according to G. English Electronics Ltd, and this company is now producing a fully conducting form which in itself is suitable as a replacement for normal metal contacts.

Display tube analyser / restorer

The model 407 c.r.t. analyser manufactured by the American company B & K/Dynascan Corporation, is intended for the on-site testing of computer terminal displays. The analyser is intended for the display tubes. A characteristic of the unit include which is a replacement for cathode "poisoning," and this process is timed automatically in order to prevent cathode stripping. The complete tester is fully equipped with an array of pin configurations as well as a comprehensive set-up chart which the makers say makes the unit virtually fool-proof.

Miniature photoswitch

The E3S photoswitch is claimed by the makers, IMP Precision Controls, to be the world's smallest. The unit has a sensing range of 3mm (max) and can switch 5mA when operating from a 24V d.c. supply. Main specifications are:

- Frequency range from 0 to 10 MHz.
- Propagation delay: 100 ns.
- False switching rate: 100 per second.
- Voltage supply: 12V d.c.
- Accuracy of measurement: ±0.1%.
- Temperature range: -40°C to +70°C.
- Humidity: 95%.
- Dimensions: 25 x 25 x 15mm.
- Weight: 15g.

Shrink-on tubing and terminals

Test piece materials manufactured in p.v.c. or polyolefin for use as shrinkable tubing or as shrink-on terminals and covers is available from Suhner Electronics Ltd, 27 Warrispie Rd, Woolwich, London SE18 5NL.

Digital readout for antenna rotor

Clasped by the makers, Monitor, of Canada, as "accurate to one degree," the DS-3 digital readout module, which is supplied in kit form, can be used to provide visual information on the orientation of a rotatable antenna. The makers also say that the unit may be used as a workbench digital voltmeter and the price is $19 (money order) from Monitor, Box 55, Agincourt, Ontario, Canada M1P 1A8.

ccr and controls include store, hold, and reset, while various outputs enable all functions to be monitored externally. A 10MHz quartz crystal controls the timebase, with a temperature stability error of ±30 p.p.m. Lascar Electronics Ltd, Unit 1, Thomas Rd, Burnt Mills, Basildon, Essex SS13 3LA.

Flush mounting proximity switch

A proximity switch, which the makers, Hamlin Electronic Ltd, have designed for use in intruder alarms, counting, "brushing" and warning equipment, can be flush mounted in a hole drilled in a door frame. The RP11 is a read-switch device and the operating magnet can be similarly fitted to the door. Four options are available, the standard form A (normally open), standard form B, higher power form A and standard form C (single pole/ double throw). The switch measures 28 x 7.62mm and is supplied with two pairs of leads, one being provided for looping back into the circuit. Hamlin Electronics Europe Ltd, Dene, Norfulke IP2 5AY.

Miniature photoswitch

Designed as an answer to the problems of high density component packing, the E3S range of flat-bodied i.d.s. manufactured by Rastoria Electronics, measure 0.15 in or 0.2cm to centre. They are available in the standard colours of red, green, orange and yellow. Rastoria Electronics Ltd, 275-281 King St, Hammersmith, London W6 9KF.

DC-18GHz Components

Since 1967, Merrimac has developed sixty seven different items designed for more than twenty five space and missile applications.

Many other Merrimac signal processing devices are being used in all kinds of military aircraft - high reliability has been a common denominator.

As UK agent for Merrimac, Pascal can offer the most comprehensive standard product line of signal processing components in the industry - over seven hundred and fifty catalogue items from DC to 18GHz.

We can offer the most comprehensive standard product line of signal processing components in the industry - over seven hundred and fifty catalogue items from DC to 18GHz.

The success of Pascal is based on prompt deliveries, excellent technical and advisory back-up and expertise on application problems.

Get the facts on Merrimac today from:

Pascal Electronics Limited
Havlie House, Green Street, St Albans, Hertfordshire, AL1 4RA
Telephone: (0922) 67148 Telex: BB14536

Write or ring today for details of the dynamic range!
Yet another new development with E.L.P.

SIMPLY AHEAD — and staying there

Enquiries to:

THE TRANSFORMER DIVISION
I.L.P. ELECTRONICS LTD
Graham Bell House
Roper Close, Canterbury, Kent CT2 7EP
Telephone: (0227) 84778. Telex: 966780

ELF II BOARD WITH VIDEO OUTPUT

FEATURING THE RCA COSMAC 1802 cpu

STOP reading about computers and get your "hands on" an Elf II and Tino Parnis's short course. Elf II demonstrates all the 81 instructions which an RCA 1802 can execute, and the full hands-on course includes everything you need to use them.

Elf II video output makes it easier seeing computers selling at such a budget price. The required Elf II is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION KITS

- **Power Supply** for Elf II £43.50
- **512K Data Flash Memory** £17.50
- **Game Board** £15.00
- **Input/Output Expander** £12.50
- **Expansion power supply, regulated-24V (£10.00)
- **LED indicators for expansion card states (£4.75)
- **Preset button circuit (£2.50)
- **Programming analog circuit (£5.25)
- ** fares 2SD102T relay (£1.25)
- **74LS74 flip-flop (£0.25
- **500ns 5V TTL IC (£0.50)
- **Elf II Top case on a Tray £5.75
- **Elf II Board, fitted with system motherboard (£17.50
- **Elf II programming software (£25.00)
- **16k RAM Kit (£189.50)
- **64k RAM Kit (£359.50)
- **256k RAM Kit (£989.50)
- **800k Memory Kit (£1489.50
- **Expansion power supply (£10.00)
- **Expansion power supply (£10.00

BREAKTHROUGH IN THE EEG
da-p-shock systems since the 1970s.

Video 100 12" Professional Monitor

Ideal for home, personal and business computer systems. 12" diagonal video monitor. Complete video input and output compatible with many systems. Send-Mano-Decker for a stacker & sharp picture. Video bandwidth £280 plus VAT. £302

NEWTROCKS KEYBOARD TERMINAL

Kit £114.20 + VAT

Send for full details on how you can fit this terminal to your computer system.

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates and performs exactly the same as a complete basic computer system.

Explore/85 Professional Computer Kit

STANDARD COMPATIBLE SYSTEM

FEATURES INTEL 8085 CPU

16k Dynamic RAM Kit

£275 with Microsoft Basic

£295 with Basic in ROM

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals). P&P £3. Please make cheques and postal orders payable to NEWTROCKS or phone your order quoting BARCRO quarry, ACES, 255 ARCHWAY ROAD, LONDON, N6

TEL: 01-348 3325

WWW.WIRELESSWORLD.COM
Simply ahead...

I.L.P.'s PROVEN RANGE OF HIGH

Chosen in more countries throughout the world than any other U.K. make

I.L.P. constructional modules are different. Whereas most others come with components neatly arranged on open P.C.B.s with little else, I.L.P. modules are encapsulated within totally adequate heatsinks and have circuitry which masses further components unnecessary. As a result, I.L.P. power amplifiers, pre-amp and matching power supply units are infinitely more rugged, impervious to extremes of temperature in use and they can be positioned to requirements. Not a metal work needed to take away heat completely. I.L.P. modules are made for endless years of optimum service. Circuity, workmanship and performance are of the highest standards, equal to the demands of the finest loudspeakers, pick-ups, tuners, digital sound sources, etc.

Tomorrow's equipment is likely to be even more exciting than today's so that any amplifier system less than the best will be completely inadequate. Now study the tested and guaranteed specs. for I.L.P. That is why more people in more countries prefer these British designed and made modules.

PRODUCTS OF THE WORLD’S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED DEALERS

Why toroidal?

Toroidally wound transformers are more compact than their conventionally laminated equivalents, being only half as high and heavy. Their circular profile ensures greater operating efficiency and as such they are particularly valuable in heavy duty transformer applications. We have our own production section for winding and making toroidal transformers, enabling us to offer this much sought-after type at competitive prices. Four of the larger models in our range are now supplied with this type of transformer.

PRODUCES OF THE WORLD’S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

The HYS pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm, and provides multi-function equalization for Magnetic/Ceramic Tuner/Mic and Aux (Fafal) inputs, all with high overload margins. Active tone control adjusts 500 mV out. Distortion at 1kHz -0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HYS's connect easily in stereo. With easy to follow instructions.

£4.84 & 74p VAT

Today's sectional for winding and performance are of the highest specs. for I.L.P. Modules are made for endless applications. We have our own production section for winding and making toroidal transformers, enabling us to offer this much sought-after type at competitive prices. Four of the larger models in our range are now supplied with this type of transformer.

THE POWER AMPLIFIERS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally laminated transformers, the other with toroidal transformer, having half the weight and height of conventional types.

THE POWER SUPPLY UNITS

The PSU series is available in 50W, 100W and 200W versions.

VALUABLES OF COMPONENTS FOR CONNECTING TO HYS

Volume - 10K Ohm, Bass/Treble - 100K Ohm linear. Balance - 8K Ohm linear.

THE POWER SUPPLY UNITS

PSU 30 £19.95 at 100mA to drive up to five HYS pre-amps £8.40 + £0.95 VAT for 1 or 2 HY50's £21.95

PSU 50 £18.10 + £1.22 VAT for 1 or 2 HY50's £30.72 + £2.77 VAT

PSU 70 Toroidal for HY50's £12.31 + £1.49 VAT

PSU 90 with toroidal transformer for HY200 £13.61 + £2.04 VAT

PSU 180 with toroidal transformer for HY50's £23.02 + £3.45 VAT

NO DISCLAIMER

5 YEAR GUARANTEE

7 DAY DESPATCH ON ALL ORDERS

INTEGRAL HEATSINKS

BRITISH DESIGN AND MANUFACTURE

FREEPOST SERVICE - see below

* ALL U.K. ORDERS DESPATCHED POST PAID

WWW = 800 FOR FURTHER DETAILS
NEW BOOKS
The $100 and other Micro-buses... Software development... Computers and Communication... Architecture of Small Computer Systems Principles of Data Base Management Control for Beginners 16-bit Microprocessor Architecture 6502 Assembly Language Programming Introductory Experiments with the 6800 Microcomputer Handbook 8080 and 8085 Microcomputer Handbook Electronic and Robotics Book 1 Electronic and Robotics Book 2 Microcomputers for Business Applications Handbook of Microprocessors, introduction to Microprocessors

The VQR Concise Encyclopedia of Mathematics

COOKBOOKS
Airco Filter Cookbook Lancaster £19.45 CMOS Cookbook Lancaster £6.95 DC Bias Cookbook Jun £9.50 DC Timer Cookbook Jun £7.50 TV Tuners Cookbook Lancaster £7.50 TTL Cookbook Lancaster £6.50 The Chip Video Cookbook Lancaster £6.50 IC Converter Cookbook Jun £9.40

INTRODUCTORY BOOKS
The Mighty Microcomputer Intro. to Personal & Business Computing A Dictionary of Microcomputing

MAIL ORDER
49 Bartholomew New Street, Birmingham, Tel: 0635 30505 MANCHESTER: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 061 491 2300 BIRMINGHAM: 1st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 021 707 1710

WIRELESS WORLD, APRIL 1980

If you are looking for reliability in an inductor, consider Delevan. Close involvement with military programmes means that most types meet the stringent MIL-C-15255 specification - yet you will find that price is competitive. The wide range includes axial and radial unsheilded coils, shielded versions, variable coils for p.c.b. or chassis mounting, low-profile chips for thick film packages, toroids and a new range of power chokes. At Mercator we aim to see that our back-up service is as reliable as Delevan RF coils themselves. MTT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3PV. Tel: (0493) 4911. Telex: 97421.

LOCK-IN AMPLIFIER

EDT Research has introduced a new low-cost Lock-in Amplifier (LPA) 450 specifically designed for incorporation into instrumentation which is required to measure small signals in the presence of large amounts of noise. The phase-sensitive detector incorporated into the module has a frequency response from less than 50Hz to 75kHz and an input sensitivity better than 1µV per cell. This is required to measure signals on a single PCB with a standard 0.1 inch pitch dual-in-line edge connector and requires only 900mA and ±18v supplies to operate. A remote programming of both gain and phase-adjustment controls is provided.

At a basic price of £360 (plus VAT) the module will offer some significant advantages to instrument engineers and designers. For full specification sheet please write or call EDT Research 14 Trading Estate Road, London NW10 2AJ. Tel: 01-881 1477. Telex 8811956

SINGLE BOARD

FFURTH ER

If you are looking for reliability in an inductor, consider Delevan. Close involvement with military programmes means that most types meet the stringent MIL-C-15255 specification - yet you will find that price is competitive. The wide range includes axial and radial unsheilded coils, shielded versions, variable coils for p.c.b. or chassis mounting, low-profile chips for thick film packages, toroids and a new range of power chokes. At Mercator we aim to see that our back-up service is as reliable as Delevan RF coils themselves. MTT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3PV. Tel: (0493) 4911. Telex: 97421.
The NEW Marshall's 79/80 catalogue is just full of components
and that's not all

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's. These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Dips, Diods, Displays, Heatsinks, I.C.s, Knobs, LEDs, Multimeters, Plugs, Sockets, Pubs, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transformers, Voltage Regulators, etc. etc.

Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers their own credit-card facility.

Plus — Twin postage paid order forms to facilitate speedy ordering.

Plus — Many new products and data.

Plus 100s of prices cut on our popular lines including 1 Cs. Transistors, Resistors and many more.

If you need components you need the NEW Marshall's Catalogue.

Available by post 65p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0181/2. Also 325 Edgeware Road, W2. Tel: 01-723 4242. Glasgow: 68 West Regent Street, G2 2DO. Tel: 041-332 4133. And Bristol: 108A Stokes Croft, Bristol. Tel: 0772 428801/2.
RESISTANCE BOXES

"Centaur" Instrument Cooling Fans

Edinburgh Radio Limited cordially invites you to visit us at

COMMUNICATIONS 80

National Exhibition Centre, Birmingham, April 16th/18th 1980

to view communications and noise measuring equipment on display covering the spectrum 10kHz to 1000MHz.

A new series of AM/FM and general purpose models, the 1570 and 1590, designed for the radio enthusiast, will be introduced. A range of our well known boxes will also be on display. Please write for details of our comprehensive range.
NEW LOW PRICES

NEWLOWPRICES

S-100 bus (Hiraka Intersistems)	Assembled	Base
IA100 | Front Panel | £225.00 | N/A
IA1010 | Z-80 CPU 2MHz | £105.00 | £21.00
IA1020 | Z-80 CPU 4MHz | £212.00 | £21.00
IA1030 | Video 50/60Hz | £199.00 | £15.00
IA1050 | Z80E/2716 EPROM | £57.00 | £15.00
IA110 | 8K Static RAM 250ns | £211.00 | £15.00
IA1110 | 8K Static RAM 450ns | £299.00 | £15.00
IA1020 | Prototype | N/A | £15.00
IA2010 | 16K Static RAM 250ns | £259.00 | N/A
IA2016 | 16K Static RAM 450ns | £275.00 | N/A
IA210 | Single Board Processor | £289.00 | N/A
IA110 | 4PS/I/O, interrupts | £210.00 | N/A
IA120 | 4PS/I/O, no. interrupts | £210.00 | N/A
IA2050 | 64E Dynamic RAM 50ns | £615.00 | N/A
IA1170 | 8PS/8A, 8 Channel, 64I | £329.00 | N/A

All boards come with manuals.

DPS-1 Front Panel S-100 mainframe from £695.00

Commodore TUART I/O board | £80.00
Motherboards (George Morrow)

8 slot - active terminations | £32.00
12 slot active terminations | £38.00
20 slot active terminations | £65.00
Miscellaneous floppy disc controller board | £280.00

SOFTWARE

EF570 TFA02 - CPM Version | £165.00

DISC CONTROLLER AND 6809 BOARDS

NOW AVAILABLE FOR 77-86. SEND FOR DETAILS OF THIS LOW COST RANGE OF KITS:

SPECTRONICS UV Eeprom-Erasing Lamp

PE14 Erases up to 6 chips. Takes approx. 19 mins. £56.00

PE14T Erases up to 6 chips. Takes approx. 7 mins. £76.58

PE24T Erases up to 9 chips. Takes approx. 15 mins. £111.72

PR25S* Erases up to 6 chips. Takes approx. 7 mins. £357.84

PR25ST Erases up to 36 chips. Takes approx. 7 mins. £384.99

PC1000* Erases up to 72 chips. Takes approx. 7 mins. £412.83

*Includes a 60 mins. timer.

TERMS:

- Minimum Order £10.00
- Barcaldon & Access Welcome. Please add 15% V.A.T.
- SEND FOR OUR BOOK LIST AND COMPONENTS CATALOGUE.

COMPONENTS

- Single board components
- Double sided 16 & 32 hole single sided 32 hole
- cheapest quality double sided or please inquire P/C B.
- N/A

FLOPPY DISK DRIVE

- 5K Memory, memory mapped
- © Spectronics Limited
- £50/60 KHz
- £111.72
- £76.58
- £56.00
- £357.84
- £384.99
- £412.83

KANSAS CITY

- Solo error rate tape interface

A new generation of cases...

The latest additions to the Bocon range of instrument cases are a masterpiece of modern tools. The Bocon Desk series is made in black a.b.t. in four sizes. These beautiful mouldings combine highly polished surfaces with flat, textured areas on the top. The front panel is natural anodised aluminium, angled to provide three separate surfaces.

The Bocon Commander is a large keyboard and display enclosure made in black foam plastic. The housing is designed to accept most proprietary keyboards. The front and rear panels are satin anodised aluminium. There is a second smaller Commander constructed as two clip-together halves in black a.b.t. again with anodised panels.

For further information on these superb cases please write, telephone or circle the enquiry card.

THE BIGGEST SELECTION OF CASES IN EUROPE

WIRELESS WORLD, APRIL 1980

POWERTRAN

2K ON BOARD MEMORY

- £6.99
- £9.99
- £17.99

2 KEYBOARDS!

- £10.50
- £20.00
- £40.00

GRAPHICS!

- £24.99
- £19.99

ECONOMICAL OPERATION

- £39.99
- £29.99

SINGLE BOARD DESIGN

- £49.99
- £39.99

THE PSI COMP 80 MEMORY EXPANSION SYSTEM

- £24.99
- £19.99

SOLDERLESS CARRY Case FREE

POWERTRAN COMPUTERS

(division of POWERTRAN ELECTRONICS)

PORTWAY INDUSTRIAL ESTATE

ANDOVER HANTS SP10 3NN

WWW. AMERICAN RADIOHISTORY.COM

UK Carriage FREE
Read all about home entertainment ideas for the nineteen-eighties in the new Hi Fi Yearbook and Home Entertainment. Still the leading reference book on Hi Fi it's now bigger and better than ever with over 550 pages and new sections covering other types of home entertainment equipment; native, electronic organs, colour TVs, video recorders and electronic TV games. There are specifications, prices and illustrations for the equipment covered, as well as informative articles written by experts. Plus directories of manufacturers, suppliers and dealers.

Hi Fi Year Book and Home Entertainment 1980 available at leading newsagents and bookshops from November 1st. Price £3.75.

If in difficulty order direct from the publishers @ SA 25 inclusive.

To General Sales Manager: Room CP04
IPC Business Press Ltd., Dorket House,
Stamford Street, London SE1 9LU

Please send me______ copies of the Hi Fi Year Book and Home Entertainment 1980 @ £3.75 a copy inclusive, remittance enclosed
Cheque [p.o.] should be made payable to IPC Business Press Ltd.

Name: ____________________________

Cash with order. Cheque [p.o.]: payable to Bi-Pak at above address

Registered in England No. 677128
Registered Office: Dorket House, Stamford Street, London SE1 9LU
PCB's & CONTACTS CLEANSER WITHOUT WATER OR POWDER USING FLYBRYGLASS BRUSHES

RUSH

Specifications:
- Strong, yet gentle cleaning action
- Effective yet safe on most contacts
- Easy to use, no mess

Application:
- For printed circuit boards, connectors, relays, switches, etc.

Usage:
- Simply apply a small amount of RUSH to the brush and gently brush the contacts until clean.

Benefits:
- No water or powder required
- Quick and efficient cleaning
- Suitable for a variety of electronic components

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

APPLE II + ENTERPRISE SYSTEM £350. Sale price £150.
SPACE AGE SERIES transistorized amplifier, etc. £143.75.
MAGNETIC CORE MEMORY Drive Head £425.00.
 Apple II Computer System £350. Sale price £150.

WIRELESS WORLD, APRIL 1980

S-2020TA STEREO TUNER/AMPLIFIER KIT

NOW WITH BITFEP OM PS

- A high-quality push-button FM Varicap Stereo Tuner combined with a 240W +m. power channel Stereo Amplifier.
TRANSCENDENT 2000

SINGLE BOARD SYNTHESIZER

As featured in Electronics Today International

Kit includes fully wired & tested, 3-layer printed circuit board, fully populated with all necessary resistors, capacitors, transistors. All components are fully tested and operational.

COMPLETE KIT ONLY

£166.50 + VAT!

CHROMATHEQUE 5000

5-CHANNEL LIGHTING EFFECTS SYSTEM

This system features a comprehensive array of effects suitable for DJ, disco, nightclubs, and event lighting. The kit includes all necessary components and instructions for assembly. The system is compatible with standard stage lighting devices.

COMPLETE KIT ONLY

£49.50 + VAT!

MPA200 100W MIXER/AMPLIFIER

A compact and powerful 100W mixer/amp designed for use in small venues and studios. The unit features a 3-band EQ, aux input, and大臣 output.

COMPLETE KIT ONLY

£49.90 + VAT!

T20+20 AND T30+30

20W, 30W AMPLIFIERS

These amplifiers are designed for use in small PA systems and are ideal for venues with limited space. They offer a wide frequency response and are easy to use.

SPECIAL PRICE FOR COMPLETE KIT

£34.00 + VAT

EXTRA CIRCUIT BOARD - £16.90 + VAT

WE’VE MOVED!

NEW FACTORY UP!

PRICES DOWN!

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

The Transcendent DPX is a versatile synthesizer suitable for a wide range of applications. It features a comprehensive library of sounds and a user-friendly interface.

COMPLETE KIT ONLY

£299.00 + VAT!

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

As featured in Electronics Today International August, September, October, 1979 issues

EXPORT A SPECIALTY!

Our Export Department can assist you with orders to any part of the world. Send us your requirements and we will do our best to meet them.

Value Added Tax not included in prices

UK Carriage FREE

Price includes VAT. All prices are subject to change without notice. Orders can be placed by phone or fax. For further information, please contact us.

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER

HANTS SP10 3NN

ANDOVER

(0264) 64455

www.americanradiohistory.com
TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK
WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER

POWER AMPLIFIER MODULE

PREAMP KIT

CRIMSON ELEKTRIK
1A STANFORD STREET, LUTON LE16 1BH. Tel (0522) 62508

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s).

© 1980 CRIMSON ELEKTRIK

PRE-PAIR. Suitable three way.

·capacitors/bridge rectifier). amps sat isfactorily for quite some time. We have a reputation for the h1ghest quality at the lowest

drives any

Telephone:

studios, educational and government establish,nents, etc., who have been using

OdB;

Cables:

manufacturer, exporter and importer

0.1V.

thick modulated records .

MC 1 -

F.E.T. muting. No controls are fitied. There is no provision for tone controls.

inputs}.

0.01

levels. Signal at30dB

switchable on the p.c.b. This module brings signals from the now popular

signal up to

OdB;

only 50mm

O.D. is accurate to 1 dB;

high output cartndges. Sensitivity '1

range 1s

primary and single

stereo.

to noise ratio B6dB; slew-rate

The best pre-amplifier in the U.K.

moving - coil cartridges. Sensitivity '1

all

modules

the high slewing rate ensures

0.005%

.005%

levels.

Frequency response

overload
to noise ratio

1 is probably the disc stage. The overload margin

will

input.

0.01V.

70/170uV

Common-mod;

X03 -

0.01V.

Slope

(1 dB)

slew-rate

20kHz.

40dB, this

A. is accurate to 1 dB;

20kHz.

CPR

1 size is

45-0-45v

.005%

High output cartndges

for nearly

all

unusual modulated signals . Sensitivity

1

Primary

25V

1

1

(1 dB)

.005%

20kHz.

w1th

high with a

primary and single

stereo.

.01V.

0dB;

trackng heavily modulated records . Common-mode rejection is arbitrary for an annual

discharge, 3 A.D.A. s, 15W

senses. This module

0.01V.

.005%

45-0-45v

90p

.01V.

3

5-0-3 5v

.01V.

240v

.01V.

608

.01V.

5-0-3 5v

.01V.

170W

.01V.

3

.01V.

.01V.
Enquiry Service for Professional Readers ONLY.

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Position in Company

Name of Company

Address

Telephone Number

Nature of Company/Business

No. of employees at this establishment

POSTAGE WILL BE PAID BY LICENSEE

Enquiry Overseas

Please return the coupon for full details of the range that gives you a lot more scope.

UK subscription rates

1 year: £9.00

1 year: £31.00

Overseas 1 year: £12.00

Please enter my subscription to Wireless World for 1 year

I enclose remittance value

made payable to IPC BUSINESS PRESS Ltd.

Name

Address

*Also subscription agents

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mr. Edi Szej, Hungaposz Advertising Agency, Budapest XIV, Vareliget 1/1059 - Telephone: 22 325 008 - Telex: Budapest 22 4525 INFORE

Italy Sig. C. Epic Etas-Kompass, S.p.a., Servizio Estero, Via Montecchio 8, 20164 Milan - Telephone: 347 0901 - Telex: 37342 Kompass

Japan Mr. Motsumi, Trade Media - IBPS, Telephone: (03) 585 0531

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 364 2269

Tel: (04626) 72771.

Please send me full details of the Scopex range.

Name

Company

Address

* UK list price excluding VAT.

There's a range of answers.

There's something everyone of our scopes has in common. Great accuracy, tremendous reliability and keen price, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives $3% accuracy. There's a XY facility using CMOS ICs for extra reliability. 2 modulation for brightening or dimming the trace. 10MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £210.00 it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and 10mV/cm sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £480.00.

Plus the 456 single beam 6MHz bandwidth model with easy to use controls. 10mV sensitivity and timebase range of 1 us to 100ms/cm. Lightweight, compact and a very good price, £144.00.

Return the coupon for full details of the range that gives you a lot more scope.
I 00
01-723
30 v
5 8 - 9 v
tw ice
7 12 v
tw ice

19-25.-33-40-50 v
12-24 v
tw ice
tw ice

ADD
OR 25 -0 -25 v OR 20 -0 -20 v
OBTAINED FROM

2 amps
30A,
ST.,
NEW L.T.

£9.25
£2.25
£2 . 95
£3.25
£2.95
£31.50
£10.50

£1.00
£2 .00
£1 . 75 .
£2.00
£1 .25
£2.50 carr. £5 . Both types ex equipment .

£25 carr. £4 . High tension type Pri

£22.50. Carr. £3.

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.

£200. £25 carr. £4 . High tension type Pri

£200.
Remote control is seeing red. Infra red with Ferranti BPW 41.

BPW 41 is the new infra red detection response photodiode, from Ferranti. The important news is that we've built in a narrow band infra red transmissive filter that eliminates the need for separate filters and gives a very selective spectral response. Take a look at the curve, you'll see it peaking at 925 nm.

BPW 41 offers a narrow spectral band width combined with broad directional response, low junction capacitance for fast response, voltage variable response times, a 7.5 mm² active area for increased sensitivity and virtual immunity to extraneous visible radiation.

With the kind of improved performance BPW 41 gives you, you could do more with your remote control system. Whatever you're into—cassette tape recorders, TVs, stereo units, VCRs, remote control for your home, remote control for your car, remote control for your garage—BPW 41 is the answer.
You will not be too late

For most of the bargains listed in the newsletter reported below, even though it is our JAN./FEB. issue, because the part of the newsletter with the items in short supply is not
reprinted. However, you will receive the whole of our MARCH/APRIL newsletter if you
send us an order this month and as an extra inducement we will send you our MAY/JUNE newsletter direct if it is printed, which is usually about two months before it is in print in
this magazine.
For those who missed our recent bargain, this kit is now available in the following three parts:

- **Basic Kit** for £25.00, which includes the main board and all the necessary components.
- **Complete Kit** for £35.00, which includes all the components and assembly instructions.
- **Advanced Kit** for £45.00, which includes all the components and advanced assembly instructions.

In addition to the kits, we also offer a **Service Kit** for £5.00, which includes all the necessary parts for service and repair.

For further information and pricing, please contact us at 01-837 2986.
Electronic No.1 in Second User

A.C. VOLTMETERS
FLUKE
AC/DC Differential Voltmeter 883A £79
HEWLETT PACKARD
True R.M.S. Voltmeter 3400A £415
MARCONI INSTRUMENTS
Voltsmitter TF 2500 £175
Valve Voltmeter TF 2604 £250
R.F. Millivoltmeter TF 2003 £25

ANALYSERS
BIOMATION
Logic Analyzer 1650D £3900
GENERAL RADIO
Scope Analyzer 1417 £520
HEWLETT PACKARD
Spectrum Analyzer 8552A & 8564L £1850
Wave Analyzer 310A £950
Network Analyzer System 8407A/8412A £3500
MARCONI INSTRUMENTS
Wave Analyzer 2350A £725
SOLATRON
Frequency Response Analyzer 1172 £325

BRIDGES
GENERAL RADIO
Invarance Bridge 1607A £750
LCR Bridge 10.05% 1608A £1195
MARCONI INSTRUMENTS
Universal Bridge TF 1313 £790
Universal Bridge TF 1313A £790
In-Bridge Bridge TF 2701 £225
Q meter TF 1245A, c/w TF 1264 £712
WAYNE KERR
Universal Bridge B 642 £695
V H F Admittance Bridge B 8018 £750
Source and Detector 9R 268 £1500
A.C. Testaricat A 60 £1500
Universal Bridge B2S (1%) £275

D.V.M.'S AND D.M.M.'S
DATRON
3½ digit D.M. M. 1051 £95
FLUKE
3½ digit D. M. D. 8023A (New) £89
3½ digit D. M. D. 8020A £99
4½ digit D. M. D. 8800A-01 £235
4½ digit D. M. D. 8800A-00 £285
5½ digit D. M. D. 8800A £325
5½ digit D. M. D. 8800A-01 £335
HEWLETT PACKARD
5½ digit D. M. D. 8800A £399
Auto-trimmer D. M. D. 2404A £650
PHILIPS
Auto-trimmer D. M. D. PM 2514 £125
3½ digit D. M. D. PM 2522 £175
4½ digit D. M. D. PM 2524 £299
Auto-trimming D. M. D. PM 2527 £400

PHILIPS AC
Millivoltmeter PM 2454B £299

TEKTRONIX
Storage Scope 434 Dual Trace. 25MHz £1600

BOONTON TRUE R.M.S.
Voltmeter 93A £375

SCHUMBERGER
5½ digit D. M. M. A243 £595
Microprocessor D. M. M. 7065 £1150
Microprocessor with processor option £1450

OSCILLOSCOPES
HEWLETT PACKARD
75MHz Dual Trace 1707B £925
MARCONI INSTRUMENTS
X-Y Display TF 2213/1 c/w Memory Unit £780
TEKTRONIX
10MHz Dual Trace Battery / Mains 326 £790

FREQUENCY COUNTERS
ADVANCE
500Hz Counter TC 15 & TC 15 F £495
FLUKE
250MHz Multifunction Counter 1911A-01 £250
250MHz Multifunction Counter 1912A £275
125MHz Multifunction Counter 1925A £405

PHILIPS
Counter Tracer 1953A opt. 15 & 16 £850
128Hz Timer Counter PM 6615 £795
80MHz Universal Counter PM 6611/02 £350

RECORDERS
BRUSH
8 Channel Multipoint Recorder B16 £695

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 2986949

BROKERS

WIRELESS WORLD, APRIL 1980

VECTOR IMPEDANCE METER 4815A £1950
LYONS
Pulse Generator PG 22 £225
MARCONI
M.T. Attenuator TF 2162 £135
A.F. Power Meter TF 893A £185
Transmission Test Set TF 2332 £600
Transmission Test Set TF 2333 £600
MODULATION MODULATOR TF 2200B £150
P.C.M. Regenerator Test Set OA 2805A £3500
P.C.M. Multiplexer Test TF 2807 £1800

PHILIPS
Pulse Generator 2101 £495
Time Mark Generator 184 £200
Time Mark Generator 2901 £395
TEXSCAN, etc. £650

THE DIRECTOR
WANDEL & GOLTERMANN
ANDIAM Complete P.C.M. System £550

SPEIEMER
PESLEMAC Complete P.C.M. System £550

Also large stock of Wandel & Goltermann and Siemens Level Oscillators, Receivers, test Equipment etc. Phone us with your requirements.

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE — SEND FOR LATEST CATALOGUE

Electronic Brokers unique catalogue contains 62 pages plus update of second Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC. Computers, VDUs, etc. Otherwise stated.

LARGEST STOCKS — most cost effective.

LATEST EDITION, SENT FREE IN UK
Airmail to overseas addresses £2.00

WIRELESS WORLD, APRIL 1980

Vector Impedance Meter 4815A £1950
LYONS
Pulse Generator PG 22 £225
MARCONI
M.T. Attenuator TF 2162 £135
A.F. Power Meter TF 893A £185
Transmission Test Set TF 2332 £600
Transmission Test Set TF 2333 £600
MODULATION MODULATOR TF 2200B £150
P.C.M. Regenerator Test Set OA 2805A £3500
P.C.M. Multiplexer Test TF 2807 £1800

PHILIPS
Pulse Generator 2101 £495
Time Mark Generator 184 £200
Time Mark Generator 2901 £395
TEXSCAN, etc. £650

THE DIRECTOR
WANDEL & GOLTERMANN
ANDIAM Complete P.C.M. System £550

SPEIEMER
PESLEMAC Complete P.C.M. System £550

Also large stock of Wandel & Goltermann and Siemens Level Oscillators, Receivers, test Equipment etc. Phone us with your requirements.

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE — SEND FOR LATEST CATALOGUE

Electronic Brokers unique catalogue contains 62 pages plus update of second Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC. Computers, VDUs, etc. Otherwise stated.

LARGEST STOCKS — most cost effective.

LATEST EDITION, SENT FREE IN UK
Airmail to overseas addresses £2.00

WIRELESS WORLD, APRIL 1980
NASCOM-2+ FREE 16K RAM

Here's an offer you can't refuse:

Because of the lack of availability of MK 4118 RAMs, Nascom Microcomputers are supplying its Nascom 2 without the spare 8 spare 4118s. So, for £295 plus VAT this is what you get:

- £16K RAM board (expandable to 32K)
- 8X Microsoft BASIC.
- 12X 64K RAM.
- Video RAM.
- Switched RAM.
- Monitor.
- Brackets.
- Mounting equipment for the B4X115 or 2706 EPCMCIA.

£225 inc. VAT

Full manual available.

MEMORIES

<table>
<thead>
<tr>
<th>Models</th>
<th>£</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>3102</td>
<td>112</td>
<td>120</td>
</tr>
<tr>
<td>4102</td>
<td>118</td>
<td>125</td>
</tr>
<tr>
<td>4115</td>
<td>174</td>
<td>185</td>
</tr>
<tr>
<td>4116</td>
<td>178</td>
<td>185</td>
</tr>
<tr>
<td>5102</td>
<td>300</td>
<td>315</td>
</tr>
<tr>
<td>4118</td>
<td>285</td>
<td>295</td>
</tr>
<tr>
<td>5105</td>
<td>300</td>
<td>315</td>
</tr>
<tr>
<td>5106</td>
<td>430</td>
<td>450</td>
</tr>
</tbody>
</table>

FERRANTI COMPUTER KEYBOARDS

- **Solid State Case**
- **Size:** 9" x 3.25" folding front
- **80 columns**
- **Centronics P1 Printer**
- **£75 inc VAT**

NEW NASCOM IMP PLAIN PAPER Printer

Fully tested and guaranteed envelope axis. For just £235 plus VAT. Interfaces with Nascoms, Delivers £42.00.

- Optional tractor feed.
- Bi-directional printing.
- 10 line per minute.
- £85.00 inc VAT
- £50.00 inc VAT

SEWIND WORLD'S ELECTRONICS CENTRE

DATA STORAGE MEDIUMS

- **4K x 12 RAM Static Memory card**
- **£45 inc VAT**
- **100 rows x 50 characters**

OPTO SMASH

- **£185 inc VAT**
- **2K 20-pin DIP Z80A**
- **£385 inc VAT**
- **100 rows x 50 characters**

OPTO USB

- **£35 inc VAT**
- **100 rows x 50 characters**

FREE POWER SUPPLY UNIT

- **5K 24V 0.1A TRIAC INVERTER**
- **£35 inc VAT**
- **100 rows x 50 characters**

SEWIND WORLD'S ELECTRONICS CENTRE

CENTRONICS P1 Printer

- **£12 inc VAT**
- **£25 inc VAT**
- **£40 inc VAT**

CUMMINS ELECTRONICS

- **£15 inc VAT**
- **£25 inc VAT**
- **£40 inc VAT**

MUFFIN FANS

- **£6 inc VAT**
- **£12 inc VAT**
- **£20 inc VAT**

ELECTRONICS

- **£15 inc VAT**
- **£25 inc VAT**
- **£40 inc VAT**
CASIO

We now stock a full range of Casio watches and calculators at all discount prices. Please visit 207 to pick up any watches or calculators or both.

IC TEST CLIPS, slip over IC while still soldered to or in socket. Gold plated pins, ideal for every terminal or circuitry. W30p each. £1.75 for 10, £2.00 for 50. 3 for £5.50. Only buy one pair of each for O3.

AC AUDIO AMP, PCB, Output sits into 3 speakers, 12V DC supply. Size approx 3/4" x 1/8" x 1/8", with integral heat sink, complete with crocs. £2.00 each.

MICROCOAXIAL AUTOMATIC PCs, low wattage power supply, 150VA at 24V DC. Include output for plugging your projects. £5.00 each. Requires 150VA PC, and can only have one output per power supply. £21.00 each.

BATTERY PACKS. For use with automatics or other power sources. 12V 500mA each, £1.00. 2 for £1.50. 3 for £2.00.

REMOTE CONTROL UNIT

A remote control system makes fitting easier. Aerial length, 71.1 MHz (ideal for four to six rooms). 12" or 14" battery and reflector with universal clamp. £8.00 each. 2 for £15.00. 3 for £21.00. Size approx 300x200x50mm. Packaged to suit 12" aerial only.

The VERSATER range of telescopic and tilt-over towers cover a range of 25ft to 120ft (7.5M to 36M).

Designed for Wind Speeds from 85mph to 117mph conforming with CP3 Chapter V, part 11.

Functional design, rugged construction and total versatility make it first choice for telecommunications.

TRAILER MOUNTED OR STATIC

The VERSATER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous development product has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

SEE US ON STAND 340 AT COMMUNICATION'S '80
It's easy to complain about advertisements...
GOVERNMENT OF DUBAI
DUBAI RADIO & COLOUR TELEVISION
TELEVISION ENGINEERING DEPARTMENT

Applications are invited from suitably qualified Engineers with several years proven experience in the field of Television Engineering to fill future vacancies in the Engineering Division of Dubai Radio & Colour Television. This young and expanding broadcasting service has been equipped with the most modern, sophisticated and up-to-date broadcasting equipment, and candidates will be expected to be familiar with all aspects of modern analogue and digital circuit techniques employed throughout their respective fields.

STUDIO ENGINEERS (Two)

To be responsible to the Chief Engineer for the maintenance of all equipment within the Television Studio complex. Candidates should have some knowledge of Memory, Modular Lighting, Systems, used extensively throughout the Studios. All Studios are equipped with EMJ 2005 Cameras and Richmond Hill Laboratories Muter Desks. LDK 14 Cameras are used for electronic news gathering.

TRANSMITTER ENGINEERS (Two)

To be responsible to the Chief Engineer for the maintenance of VHF and UHF medium and high power transmitters and ancillary equipments. Candidates should be familiar with routine testing procedures to ensure the continual good performance of equipment under their control. Extensive use is made of SHF microwave links, and candidates should be familiar with the operation and testing of such equipments.

APPLICATIONS which will be treated with strictest confidence. Should be sent accompanied by a resume in the University of Surrey, Department of Music and Television Engineering, 4635-4639. Applications will be considered on receipt. Closing date 31st January 1980.

UNIVERSITY OF SURREY DEPARTMENT OF MUSIC TECHNICAL STAFF for Recording and Mobile Recordings Salary up to £5400 depending on experience from 1st April 1980 under review.

Salary £4080 p.a. (including London Weighting). May be higher for candidates with exceptional qualifications. Extra payments for weekend and shift working.

For full details and an application form, please complete and return the coupon below, enclosing a self addressed envelope at least 9" x 4".

Senior Test Engineer

£4605-£5952 + £398 L.W.) rising to £4605 plus £398 London Weighting per annum.

The holder of the first post will assist in the planned preventative maintenance and first line call-out servicing of supervisory and ancillary equipment. He/she will work in collaboration with the Lecturer in Recording Techniques on the Television Course and should have radio or recording industry experience. Salaried grade 5 scale, 232.

The successful candidate will take part in studio operations and will be responsible for the maintenance, radio and location installation, testing and maintenance of professional recording equipment in the Music Department's studio. The salary will be one of the Technical Grade 5 scale, starting at £4080 and rising by £252 per annum. The posts are holiday arrangements, superannuation related and help with relocation expenses. Application forms can be obtained from the BBC Professional Staff Department, 26-28 Portland Place, London W1A 1AA or by telephone, Monday to Friday 9:00-5:00, ext. 1211. The closing date is 31st January 1980.

Technical Assistants

Like a challenge?

A stimulating future awaits you if you can prove yourself capable of being trained as a BBC Television Engineer. Joining as a Technical Assistant is the first step along this road, and vacancies now exist for you to become a trainee member of an expert operations and maintenance team working in one of the four principal Technical Departments in Television which comprise Studios, News, Video Tape Recording and Outside Broadcasts. In each of these areas you will be engaged on operational or maintenance work and will receive full training whilst at work with the BBC Engineering Training Centre at Evesham, which will equip you to qualify as a BBC Engineer within approximately 2 years. Most of the jobs are shift working and involve a 12 hour day, 7 days a fortnight shift pattern.

We are looking for young people with a good general education - 'O' Levels in English, Maths and Physics essential, 'A' Levels in the latter two subjects preferred, alternatively an O.N.C. in Electronics, OR Part I & II Telecommunications Course (No. 277). In addition you should be able to relate your theoretical knowledge to practical application. You must be at least 18 years old and have normal hearing and colour vision.

Minimum starting salary £4080 p.a. (including London Weighting). May be higher for candidates with exceptional qualifications. Extra payments for weekend and shift working.

For full details and an application form, please complete and return the coupon below, enclosing a self addressed envelope at least 9" x 4" to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA quoting reference 80.E.4016.WW.
Installation and Maintenance Engineers for shipborne electronics equipment

Marconi Avionics at Welwyn Garden City are leading the world in the development of complex shipborne digital signal processing equipment and we now require additional electronics engineers, men and women, to join teams in the following specialist areas of our Project Services Department.

Ship Fitting

In this area responsibilities will cover all aspects of shipfitting from an early stage in design, including definition of the interfaces between the signal processors and other on-board equipment; installation specifications; connector schedules; participation in installation; setting to work and acceptance testing to customer satisfaction.

Maintenance

This covers in-service maintenance and post-design services with some involvement in setting to work and acceptance testing activities. While these positions are based at Welwyn Garden City, travel will be necessary throughout the UK and possibly overseas.

A high level of practical skill is required together with experience of working on computer-based equipment, possibly as an electronics Technician/Fltser in the Services. An ONC/HNC qualification or equivalent in-service training would be preferred.

Good salaries and an attractive range of benefits will be offered. Please write with details of experience to Rod Cook, Marconi Avionics Limited, 26-28 The Hydway, Welwyn Garden City, Herts. Telephone Welwyn Garden 28511 extn. 15. Please quote reference MAW 8002.

University of St. Andrews

Chief Technician

Department of Psychology

Applications are invited for the above post in the Department of Psychology. The post is to be responsible for the running of the Psychology Department laboratory and the provision of technical services to it and to the Experimental Psychology Unit as well as the teaching of technical staff.

For further details please contact the Deputy Head of Department (telephone 01-333-5111 extn 222) or the Department of Psychology, University of St Andrews, Fife KY16 9AJ. Applications should reach the Director of Personnel, University of St Andrews, St Andrews, Fife KY16 9JZ by 6th December 1980.

University of Oxford

Department of Psychiatry

Electronics Technician

required for Medical Research Council supported project in the Department of Psychiatry to design, develop and maintain analogue and digital equipment and to provide technical support to other specialists in the team.

Applications to be received by 4th January 1981. Salary negotiable.

Applications, a full curriculum vitae, names and addresses of references, should be sent to the Establishment Officer, Department of Psychiatry, University of Oxford, Headington, Oxford, OX3 7JX.

Capital House

28-30 Windmill Street

LONDON WI P 1H8

TEL: 01-637 5551

SALES TO £12,000 + Car

Ask for Brian Cornwall

FIELD SERVICE TO £8,000 + Car

Ask for Paul Wallis

We have vacancies in ALL AREAS of the U.K.

Telephone 01-637 5551 (3 lines) 1228

SUMLOCK BONDAIN LTD.

MICRO-COMPUTER SPECIALISTS

to advise on hardware and software, to test compatibility of various equipment: to modify and construct small items of equipment. Extensive experience not necessary but sound electronic and micro knowledge and ability to drive essential. preferably with N.C.C. or City and Guilds. Salary negotiable. Pension scheme.

Apply Mark Warratt, Sumlock Anika House, Cralkenwell Close, London EC1. Phone: 01-250 0503.

SEFEL Geophysical (UK) Ltd.

A GEC-Marconi Electronics Company

ELECTRONICS ENGINEERS

Careers in Oil Exploration

We are looking for young electronics engineers with degree or equivalent qualifications to join our marine seismic acquisition company.

This is a field position, with the successful applicants joining the technical crew of one of our exploration vessels for on-board training in seismic techniques. They will start as Assistant Technicians with a salary of £7,000 + p.a. and one month's leave after each 2 months on the crew.

The seismic industry offers an interesting career with worldwide travel and rapid promotion for the right person.

Sefel Geophysical is a member of the Sefel group, which has seismic processing centres in Houston, Denver, Calgary, London, and land exploration in North America.

Please write with full curriculum vitae to:

Keith Byrne
Sefel Geophysical (UK) Ltd
Turnbull Building
Great West Road, Brentford
Middlesex, TW8 9B7
or telephone: 01-585 2373 quoting reference T102

Seeley

University of St. Andrews.

Chief Technician

Department of Psychology

Applications are invited for the above post in the Department of Psychology. The post will be responsible for the running of the Psychology Department laboratory and the provision of technical services to it and to the Experimental Psychology Unit as well as the teaching of technical staff.

For further details please contact the Deputy Head of Department (telephone 01-333-5111 extn 222) or the Department of Psychology, University of St. Andrews, Fife KY16 9AJ. Applications should reach the Director of Personnel, University of St. Andrews, St Andrews, Fife KY16 9JZ by 6th December 1980.

University of Oxford.

Department of Psychiatry

Electronics Technician.

required for Medical Research Council supported project in the Department of Psychiatry to design, develop and maintain analogue and digital equipment and to provide technical support to other specialists in the team.

Applications to be received by 4th January 1981. Salary negotiable.

Applications, a full curriculum vitae, names and addresses of references, should be sent to the Establishment Officer, Department of Psychiatry, University of Oxford, Headington, Oxford, OX3 7JX.

Capital House.

28-30 Windmill Street.

LONDON WI P 1H8.

TEL: 01-637 5551

SALES TO £12,000 + Car

Ask for Brian Cornwall

FIELD SERVICE TO £8,000 + Car

Ask for Paul Wallis.

We have vacancies in ALL AREAS of the U.K.

Telephone 01-637 5551 (3 lines) 1228.

SUMLOCK BONDAIN LTD.

MICRO-COMPUTER SPECIALISTS

to advise on hardware and software, to test compatibility of various equipment: to modify and construct small items of equipment. Extensive experience not necessary but sound electronic and micro knowledge and ability to drive essential. preferably with N.C.C. or City and Guilds. Salary negotiable. Pension scheme.

Apply Mark Warratt, Sumlock Anika House, Cralkenwell Close, London EC1. Phone: 01-250 0503.

SEFEL Geophysical (UK) Ltd.

A GEC-Marconi Electronics Company

ELECTRONICS ENGINEERS.

Careers in Oil Exploration.

We are looking for young electronics engineers with degree or equivalent qualifications to join our marine seismic acquisition company.

This is a field position, with the successful applicants joining the technical crew of one of our exploration vessels for on-board training in seismic techniques. They will start as Assistant Technicians with a salary of £7,000 + p.a. and one month's leave after each 2 months on the crew.

The seismic industry offers an interesting career with worldwide travel and rapid promotion for the right person.

Sefel Geophysical is a member of the Sefel group, which has seismic processing centres in Houston, Denver, Calgary, London, and land exploration in North America.

Please write with full curriculum vitae to:

Keith Byrne
Sefel Geophysical (UK) Ltd
Turnbull Building
Great West Road, Brentford
Middlesex, TW8 9B7
or telephone: 01-585 2373 quoting reference T102.

RF Engineers

London & Exeter.

£6,000-10,300

Multitone lead the world in the design and manufacture of sophisticated radio paging systems.

Continued success in this advanced technology industry has led to expansion in all sectors of our operation.

This overall growth creates the need to expand our development potential by appointing the following:

Transmitter Development Engineers

Based at our modern plant in Exeter, you will be responsible for the development of AM, PM & FM transmitters in the 25MHz to 520MHz utilising the components of today's technology.

Development Engineers

Working in our well-equipped Research and Development Laboratories, you will be actively involved in the design of miniature personal communications systems. This will entail integrating RF technology with "state-of-the-art" control devices.

When you join Multitone, you will be given early project responsibility and enjoy a stimulating working environment where individual achievement is a basic objective.

We offer you an excellent initial salary in the range of £6,000 - £10,300, according to qualifications and experience.

Fringe benefits include pension and life assurance plans, assistance with relocation where appropriate and, for the London vacancies only, local housing may be available and flexible working hours.

If you are looking for better rewards and a brighter, more challenging future, come to Multitone.

Please write to, or better still telephone, Brian Young at the address below.

Personnel Department.

Multitone Electric Co. Ltd.,
6-28, Underwood Street, London, N1 7JT. Tel: 01-253 7811.

www.americanradiohistory.com
Put us to the test
For a challenging electronic career.

In the last 50 years Kelvin Hughes have played an increasingly vital role in the development of radar and sonar to their present level of sophistication.

As the marine division of Smiths Industries—an important large company with multiple interests in new technology—we now supply the world.

You should be educated to degree/HND level, and have at least 3 years relevant design experience. Salary will depend upon experience, and will range from £6,000 to £8,200 per annum.

These positions are open to both men and women, and generous relocation assistance where appropriate.

Applications including curriculum vitae and the names of two professional referees should be sent for the attention of The Personnel Officer, at the address given, quoting the appropriate reference number.

If you are interested in, or have experience of, developing microprocessor-controlled electronic equipment, and instrumentation and electronic equipment, and would like to work in a dynamic company, please contact us now!

- Hand portable or mobile equipment design.
- AM or FM, in the VHF or UHF range.
- Transmitter and receiver design.
- Digital control, Encoding and Decoding.
- Low power microprocessors and RF synthesizers.

Pye Telecom

WIRELESS WORLD, APRIL 1980

URGENTLY REQUIRED TRANSMITTER ENGINEERS

SHORT WAVE, MEDIUM WAVE LOW & HIGH POWER

We have several vacancies for U.K. based installation engineers for overseas projects in AFRICA and the FAR EAST with periods at manufacturing plants in the U.S.A.

For further information please telephone TONY OWERS.

Would previous applicants please reconfirm their interest.

PERSONNEL & ELECTRONICS LTD.

Triumph House, 1096 Uxbridge Road, HAYES, Middlesex UB4 8QH

Tel: 01-573 8333, Telex: 934271

ELECTRONICS ENGINEER

Digital ComputerTechnics for Holland

We are growing fast, both at home and abroad, and this continuing expansion means that we need an Engineer who will work worldwide for new interesting products that fit in our sales policy. At this moment we are one of the most important companies in the field of computers, printers, data communications, and storage equipment. We are currently looking for new products for the initial market for consumer and industry. Applicants should have a thorough technical education, be familiar with English, French and German. Excellent flair and the ability to travel widely when it is necessary. Experience of working in an equal job would be pleasant, but is not essential.

We offer an attractive salary plus the usual fringe benefits you may expect for this job. A house in Holland will be available.

If you are interested in this offer, please apply in writing giving details of age, education, experience and qualifications.

Please write with brief personal and career details to: Lesley Backland, Kelvin Hughes, New North Road, Haselwood, Warrington, Or phone 06 500 1020.

Pye Telecom

ELECTRONICS ENGINEER

Digital ComputerTechnics for Holland

We are growing fast, both at home and abroad, and this continuing expansion means that we need an Engineer who will work worldwide for new interesting products that fit in our sales policy. At this moment we are one of the most important companies in the field of computers, printers, data communications, and storage equipment. We are currently looking for new products for the initial market for consumer and industry. Applicants should have a thorough technical education, be familiar with English, French and German. Excellent flair and the ability to travel widely when it is necessary. Experience of working in an equal job would be pleasant, but is not essential.

We offer an attractive salary plus the usual fringe benefits you may expect for this job. A house in Holland will be available.

If you are interested in this offer, please apply in writing giving details of age, education, experience and qualifications.

Please write with brief personal and career details to: Lesley Backland, Kelvin Hughes, New North Road, Haselwood, Warrington, Or phone 06 500 1020.

Pye Telecom
Diagnostic Programmers

Burroughs Machines Ltd. at Croydon are currently engaged in designing and developing a new range of microprocessor based terminals. Our continuing expansion has created opportunities for applicants with a good knowledge of hardware and software, and preferably with an active interest in microprocessors. Using these skills you will develop diagnostic routines and programmes for our Systems Support Personnel and Evaluation and Quality Assurance Departments.

Ideally you will be qualified to HND/degree level in electronics, or you should have considerable related experience. In either case we offer a progressive environment with good future prospects.

Salary will relate to individual experience and circumstances but will not be a limiting factor. Relocation expenses will be given where necessary.

For further details please contact:
Don Buckland, Product Reliability Manager, Burroughs Machines Ltd., 512, Purley Way, Croydon, Surrey, CR0 4NZ. Tel: 01-686 0355.

Radio Technicians

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in this field. You will have good knowledge of the principles of telecommunications and radio; together with experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.

Registered disabled people may be considered.

Pay scales for Radio Technicians start at £3900 per annum; rising to £5500 and promotion will put you on the road to professional grade with further opportunities for overtime and on-call work, paying good rates.

Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0262) 21819, Ext. 2266, or write to him at GHQ, Oakley, Priors Road, Cheltenham, GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

Communications Foremen

Libya

Occasional, one of today's most progressive and rapidly expanding international oil companies, require communications experts to supervise the installation, maintenance and repair of communications equipment in the field production areas in Libya, including VH/FM/FM equipment, HF-SSB Transceivers, LF radio beamcom, TDM alarm systems, teleprinter etc.

Candidates must have at least 5 years experience in the field of communications; have other centres in the Middle East.

Please send your full details to: Logan-Sinclair, Tel: (248) 296 0000, Ext 2191, or write to them at Logan-Sinclair, Oakley, Priors Road, Cheltenham, GL52 5AJ.

OxyLibya

Tax free salary

These desert based positions are on single status with a continuous work schedule of 33 days working, 21 days leave and airfare paid to point of origin for each fieldbreak. Other benefits include BUPA cover for employee and eligible family members, laundry and meals on site plus the usual benefits associated with a large established company.

Please send your full details to: John Logan, Personal Officer, OxyLibya, PO Box 16, Palace Street, London SW1E 5BQ. Tel: 01-828 5600.

DAXK AGENCY

A General Manager permanent/contract, high paying career opening, U.K. or U.S.

Send CV and details to: DAXK LTD (WA) 26 Queen Victoria Street, Reading, Berkshire, RG1 3PB.

BROMPTON HOSPITAL

Medical Electronics Technician

required to undertake work involving maintaining, installing and developing medical electronics equipment. Applicants should have a good general knowledge of electronics. Previous hospital experience not essential. Salary, which will depend on experience, will be within the range £4200-£6500 inclusive.

Further information available from: Logan-Sinclair, Tel: (248) 296 0000, Ext 2191, or write to them at Logan-Sinclair, Oakley, Priors Road, Cheltenham, GL52 5AJ.

JHPI

VIDEO RECORDING EQUIPMENT SERVICE MANAGER

With the outstanding success in marketing a new range of airborne and high speed video tape equipment we need to appoint a new video service engineer. Full product training will be given in either America or Japan to a suitably qualified or trained person.

The successful applicant will probably be aged between 25 and 35. A Company car will be provided. After probationary period, as extensive travel within the UK may be necessary.

We pay top rates and the salary will be commensurate with experience and ability. We offer 4 weeks holiday, free life assurance, sick scheme and free car servicing facilities.

For further details and application form please apply to:

John Jones
Personal Officer
John Holland (P.L.) Ltd
Newhouse Laboratory
Newhouse Road, Bovington
Warminster
Hampshire, HR6 0DL

www.americanradiohistory.com
Radio Officers
When the ship comes home, why not settle down?

We're the Post Office Maritime Service and we have everything in a job that you'd want: the kind of work you're trained to do, good pay, job security and all the comforts of home wherever you really count - at home!

Vacancies exist at several coast stations for qualified Radio Officers to carry out a variety of duties that range from Morse and teleprinter operating to traffic circulation and radio telephone operating. And for those with ambition, the prospects of promotion to senior management are excellent.

You must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.

The starting pay at 25 or over will be about £5,381 after 3 years service (this figure rises to around £20,877. If you are between 20 and 24 your pay on entry will vary between approximately £4,229 and £4,937). Overtime is additional, and there is a good pension scheme, sick-pay benefits and at least 4 weeks' holiday a year.

For further information, please telephone Kathleen Watson on Freefone 2381 or write to her at the following address:

Post Office Telecommunications
GPO, St. Martins-le-Gran, London EC1A 1AR.

Ann Oakes, Personnel Manager

Thank heaven for Einstein.

Einstein, our office computer, is a gem. He can't match people to jobs but he can help. He's pretty hot on geography - after all he has digested the Greater London Streetfinder. He should know quite a bit about what the companies manufacture, sell or service. We employ a full-time computer system manager to keep up with all the fast changes in the field. So with the help of Einstein we can give you a good idea of the areas you may want to work on. Then you can call at the office and we can give you all the facts and figures.

Young Flexible Engineers to work in an industry-sponsored university group engaged on a wide variety of projects including Visual communication and advertising; microprocessor control and equipment; for the headquarters, control equipment for glass cutting, central heating, etc. etc. Experience in the design of control systems particularly in the areas of plastics, packaging, airflow systems, process control procedures is an advantage.

Junior Draughtsman £5,000-£6,000

Our company specialises in both sales and servicing of Discophonic Sound and Lighting equipment. We currently have vacancies for entry level employees who have had previous experience of either Hi-Fi, Studio PA or similar equipment. Basic salary plus quarterly bonus. Full training. Please telephone or write to Andree Mead, Personnel Director for further details.

Roger Squire's
Barber Trading Estate, Park Road, Bannister, Hereford, HR4 8SA
Telephone 01-441 1919

Thank you Einstein!
Take your pick

HF-VHF-UHF Microwave Optics & Acoustics
A challenging and full career in Government Service. Minimum qualification — HNC. Starting salary up to £6,737. Please apply for an application form to the Recruitment Office (Dept:W1), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

DEVELOPMENT ENGINEERS
To work on the design of new broadcast TV studio products. Applicants should have some knowledge of television studio techniques and be qualified to HND or Degree level.

TEST ENGINEERS
At senior and intermediate level to work on our range of advanced broadcast television studio products, including colour and monochrome television studio cameras. Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

SYSTEMS ENGINEER
You would be involved in all stages of product management on the design and building of studio and mobile TV systems and should be prepared for occasional world-wide travel. The appointment requires someone with a background in this type of work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative.

Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

All the others are measured by us...
At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.

If you are interested to hear more, please fill in the following details:

Name ____________________________ Age ____________________________
Address __________________________
Telephone Work/Home (if convenient) ____________________________
Years of experience 0-1 1-3 3-6 Over 6 ____________________________
Present salary £3,500-£4,500 £6,500-£7,500 £8,500-£10,000 __________
Qualifications None C & G HNC Degree ____________________________
Present job ____________________________

Return this coupon to John Proctor, Marconi Instruments Limited, FREEPOST ST. Albans, Herts. AL4 0BR. Tel: St Albans 59292.
Electronics Engineers

Salaries up to £7,000

Livingston Hire, Livingstone’s leasing rental company of sophisticated electronic test equipment, urgently require the following electronics engineers.

SALES ENGINEERS (Internal and External)

Sales Engineers are required to join our developing sales teams.

We want people with a wide knowledge of proprietary test and measuring equipment and an intelligent appreciation of its applications.

We offer the opportunity for people who have initiative to us.

Write or telephone to David Kennedy

SENIOR TEST ENGINEERS

Applicants must have a good all round knowledge of electronic test equipment. Engineers with experience of the following equipment types are particularly invited to apply:-

R & B Test Equipment including Spectrum Analysers Acoustic Equipment (B & K, CEL etc.)

Whilst academic qualifications are desirable, emphasis will be placed upon ability. Generally suitable applicants will have had substantial exposure on a directly related experience.

Vacancies are internal and based at our modern, fully equipped premises in N.W. London.

The test equipment we stock is the finest in the world and our engineers always have the latest and most correct instruments to repair and calibrate these equipments.

Write or telephone to Bernard Elliott

Company benefits include:-

- Free lunches in our canteen
- Free coffee, tea etc.
- 2 weeks + holidays per annum
- Performance Bonus twice per year
- Pension Scheme

Target Field Industrial

Address

Livingston Hire

Not in Europe by any measure

Lansdowne

SITUATIONS VACANT

ELECTRONICS TECHNICIAN (Grade B) required by Physics Labs Dept. for the design and construction of minicomputer instrumentation. Applicants should have a good A levels in Physics and Mathematics. Also a good general knowledge in electronics and computer interfacing desirable. Must be able to work as part of a small team. This is a great opportunity for someone in the early stages of their career. Applicants should apply in writing to: Personnel Officer, Target Field Industrial, Holme Lacy Road, Upton upon Severn, Worcestershire WR6 3DD.

Target Field Industrial

SITUATIONS VACANT

UNIQUE OPPORTUNITIES FOR

Havant, Hampshire

up to 7.1k

We are currently establishing small teams within our Laboratory to carry out development, test and field trial on military communication equipment from our wide range of sophisticated high technology electronic products. It is essential that these teams are well balanced and we are looking for someone who can take on these roles as Technical Engineers.

The work will be extremely varied, involving the development, evaluation, debugging, design and proof testing of advanced radio communications equipment, with extensive analog and digital circuits, using the most up-to-date techniques, including the use of microprocessors.

Modem. Applicants will be qualified to C&G, HNC or equivalent level, have had several years’ experience of radio communications equipment and be familiar with both analog and digital engineering. Applicants will be currently under considerable pressure and we welcome applicants with alternative experience, who wish to broaden their knowledge.

Salaries offered will be highly attractive and there are excellent prospects for career progression, both within the technical engineer grades and the Company, with potential being recognized and rewarded accordingly.

If you feel you can meet the requirements please write or telephone now, with brief details of qualifications and experience to: Tony Caiger, Technical Recruiting Officer, Plessey Avionics and Communications Limited, Martin Road, West Leigh, Havant, Hampshire, PO9 6US (0705) 48831 ext. 423
You won’t believe it until you see it –
So you’d better come and have a look

Do you have experience working on VHF/UHF telecommunication equipment?

If you have, then this might be the opportunity for you! We are looking for skilled Service Engineers who can troubleshoot and fix various electronic issues. If you’re interested, please apply for the position.

 OPPORTUNITIES FOR VHF/UHF SERVICE ENGINEERS

Application Instructions:

• Submit your resume and cover letter to HR@company.com
• Include a brief description of your work experience in the application
• Interviews will be scheduled for candidates who meet the requirements

Phone: (123) 456-7890
Email: HR@company.com

Note: This advertisement is valid for the next 30 days.
Republic of Botswana

Telecommunications Radio Engineer

Up to £10,550 plus allowances

Candidates should be qualified as Radio Engineers (eg. HNC, C & G Radio Craftsmen) and have several years' experience in the installation and maintenance of ground navigation aids and (VOR/DME/NO) air ground communication system (VHF/HF) and communication equipment using: Fixed telephone networks (Radio telephony) HF transmitters. Duties will include the installation and maintenance of equipment and on-the-job training of staff of the Civil Aviation Department.

Salary includes a substantial tax-free allowance reviewed annually paid under Britain's overseas aid programme. Basic salary attracts 25% tax-free gratuity.

Benefits include free passages, generous paid leave, children's holiday visits and excellent educational opportunities, appointment grant and interest-free car loan.

The terms on which civil and public servants may be released if selected for appointment will be subject to agreement with their present employers.

For full details and application form write quoting MA22/WD.

TELECOMMUNICATIONS Radio Engineer

Twenty-four hour duty working may be involved.

The successful candidate must be prepared to travel to all regions of the country.

The radio engineer is required to be responsible for all aspects of radio communication systems.

Salary: £10,550 plus allowances.

The successful candidate will require a substantial degree of experience in all aspects of radio communications systems.

Telephones, telegraphs, satellites, VHF, HF, VORs, DMEs, etc.

For full details and application form write quoting MA22/WD.

2 ELECTRONIC ENGINEERS

To work on system design, in close cooperation with customers at the European level. The successful candidates will work together with A.C. design groups and marketing, to create new circuit concepts using Motorola products. Customer support and associated experience in products and systems will also be part of the job.

Education to degree standard or equivalent in Electronic Engineering and a good command of the English language is required

SENIOR APPLICATIONS ENGINEER (Radio & TV)

The engineer we are looking for will have had a minimum of 3 years experience in the design of Radio and TV circuits.

A knowledge of digital techniques would be a definite advantage.

SENIOR APPLICATIONS ENGINEER (Microprocessors)

An engineer with extensive experience of microprocessor (soft and hardware) design is required, to support the design of consumer oriented control systems in the TV, radio and domestic appliance industries.

Opportunities for travel exist with both of the above positions. If you are interested in joining a rapidly growing division of a major international company, and can satisfy the above conditions, please send your Curriculum Vitae to:

Tecnofonika,
MOTOROLA (SUISSE) S.A.
Lugano-Cremona, Via Canso 1211
CH-2612, Switzerland

Tel: 022 99 14 76

WANTED!

We need a person to join a small group offering engineering support to research workers in pharmacology and related departments.

The work involves the maintenance and development of electronic equipment and some light mechanical tasks.

Applicants should have a good general education with technical qualifications to HNC level. They will be practical people who enjoy solving problems and undertaking constructive projects.

Experience in analogue and digital electronics is essential together with the ability to use a lathe and milling machine.

We have experience in biological research, or whose hobbies include electronics, radio, modelling, etc. would be at an advantage.

We are in a position to offer an attractive salary plus all other benefits, as above.

For full details and application form write quoting MA22/WD.

SERVICES

REBUILDING!

We offer the complete range of services, on various types of equipment, (eg. television sets, sound equipment, power amplifiers, etc.) a complete service can be provided upon request.

We also offer equipment for testing and calibrating (eg. oscilloscopes and wave form analysers) on request.

For a quotation write:

3200 545 94

Equipment

WANTED!

We are always looking for surplus electronic components, TV and other ancillary items. We are prepared to pay reasonable prices for: TRF 86B TF 137019 oscillator £100.

TECHWELLCOMB LEADERSHIP Course

Encompasses training in many management areas: business leadership, management development, technical management and management of innovation.

For full details and application form write:

Crown Agents for Overseas Government and Administrations, Recruitment Division
4 Millbank, London SW1P 3FF

聘任

TELECOMMUNICATIONS

Radio Engineer

Twenty-four hour duty working may be involved.

The successful candidate must be prepared to travel to all regions of the country.

The radio engineer is required to be responsible for all aspects of radio communication systems.

Salary: £10,550 plus allowances.

For full details and application form write quoting MA22/WD.
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-151

PAGE

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-151

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-151

PAGE

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-151
Applications don’t come much more critical than digital watch manufacture.
Here, discrete deposits of Multicore Oxide-Free Solder Cream are screened onto the PCB. A precision job, with no risk of operator error or fatigue. And, a convenient temporary adhesive for the positioning of components.

ordinary solder creams cannot match this profitable performance. Here’s why...

... because ordinary solder creams or pastes contain rosin-based flux mixed with solder powder produced by atomisation. This means that every particle of the powder is covered with a layer of oxide—slowing down the soldering process, leaving a dirty flux residue and causing solder globules to stick to the flux and possibly fall loose into the equipment after shock or vibration. But, Multicore have developed a very special method of producing solder powders that are virtually oxide-free.

These can be used in cream form—comprising an homogeneous stable mixture of pre-alloyed powder and flux, designed specifically for hybrid microcircuits, PCB’s and critical component joints.

When heated, Multicore Oxide-Free Solder Creams melt and flow as quickly and cleanly as rosin-core solder wire, leaving a pale clear flux residue without solder globules.

The in-built quality of Multicore Oxide-Free Solder Creams make them the ideal specification for almost any application calling for low cost yet high reliability.

They are available in a wide range of combinations of solder alloys, fluxes, particle sizes, flux contents and viscosities—often replacing solder preforms.

However, if you have an application that specifically requires preforms, remember that Multicore supply a wide variety of those as well.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-5-S7E of U.S. Defense Supply Agency for solder creams and preforms.