The Morsemaker
Mobile radio bandwidths
Radiating cables
The better value box for mobile radio servicing.

By combining all mobile radio servicing instruments in one portable unit, Marconi Instruments' Mobile Radio Test Set, TF 2950, streamlines your testing and servicing operation. And it is realistically priced.

Signal generator, a.f. voltmeter, modulation monitor, power meter (in-line and absorption) and a.f. oscillator are housed in a compact and robust cabinet — measuring only 315 mm high, 420 mm wide and 230 mm deep, and weighing only 16 kg.

TF 2950 is suitable for all a.m./f.m. mobile radio equipment and is available in a number of versions to cover a wide frequency range.

For maximum convenience, the equipment operates from internal, rechargeable batteries or mains. A battery state meter is incorporated.

Marconi Instruments' TF 2950 gives you single-handed portability to meet all your mobile test needs.

Put it to the test.

Write or telephone for a full technical description and, if this whets your appetite further, we will be happy to arrange a demonstration.
they could formation, transmit tronics to mentions. The paperless revolution. Latest developments in the use of electronics to store, process, transmit and display information, and the effect they could have on our lives.

Valves vs. transistors. Is valve amplifier sound better than transistor amplifier sound? Report on tests from an independent professional laboratory.

Current issue price 40p. back issue (if available) 50p. at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm please contact editor. By post, current issue 55p. back issues (if available) 50p, order and payments to Room 11, Dorset House, London SE1 9LU.

Editorial & Advertising offices: Dorset House, Stamford Street, London SE1 9LU.

Telephones: Editorial 01 261 8620 Advertising 01 261 8339

Subscription rates: 1 year £7.00 UK and £23 40 overseas (£24 USA and Canada).

Student rate: 1 year: £3.50 UK and £6.50 overseas (£11.70 USA and Canada).

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01 837 3636

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH Telephone 0444 59188. Please notify a change of address.

USA mailing agents: Expediters of America, Inc., 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

IPC Business Press Ltd. 1978

ISSN 0043 6062

JUNE 1978 vol 84 No 1510

37 The spectrum and society

38 Current dumping — does it really work?
by J. Vanderkooy and S. P. Lipshitz

41 World of Amateur radio

42 Radiating cables
by R. Johannessen

45 News of the month

Microwave landing — the decision
Ideas for better spectrum use
Electret radioactivity dosemeter

49 The Morsemaker
by Murray Ward

53 Mobile radio bandwidths
by W. M. Pannell

57 Letters to the editor

Circuit action and programme signals
Long running C-D ignition
Spectra of tone bursts

61 Interconnection of logic elements
by I. Catt, M. F. Davidson and D. S. Walton

64 Circuit ideas

Modifying KB6 ASCII keyboard
Fold-back limiter
Linear v.c.o.

67 Loudspeaker system design — 2
by Siegfried Linkwitz

75 Viewdata optimisation
by S. Fedida

78 Logic design — 13
by B. Holdsworth and D. Zissos

85 Generating ultra-short microwave pulses
by A. G. Hood

87 How good are l.e.ds?
by J. Skinner

89 New products

92 Sidebands
by Mixer
GenRad's Top Trio...

...a low cost/high performance range of µP-based bridges

GenRad's new range of µP-based bridges make full use of advanced technology to meet tomorrow's testing needs today. Check the list of features, and contact us for further information, price and delivery.

1658 RLC Digibridge
- Automatically measures R, L, C, D and Q
- 0.1% Basic accuracy
- 10 Bins for sorting
- Autoranging
- IEEE 488 bus/handler interface option
- Three test speeds
- Selectable continuous, average or single component measurements
- Three types of display programmed bin limits, measured values or bin number
- Five-digit display for R, L and C
- Selectable test frequencies of 1 kHz and 120 Hz (100 Hz)
- Series or parallel measurement mode selection
- Built-in Kelvin test fixture tests radial and axial lead components

1657 Digibridge™ * Under £1,000

1658 RLC Digibridge™ * Under £2,000

1687 Megahertz LC Digibridge
- Automatically measures Ls & Q, Cs & D, Cs & Rs, Cs & Rs
- 0.1% basic accuracy for C
- 0.2% basic accuracy for L
- Automatic limit-comparison (10 bins)
- Autoranging
- IEEE 488 bus/handler interface option
- Two test speeds
- Selectable continuous, average or single component measurements
- Four types of display programmed bin limits, measured values, deviation measurement (Δ L or Δ C), or bin number
- Five-digit display for L and C
- Four-digit display for Q, D, R and G
- Optional Kelvin test fixture tests radial and axial lead components

The 1657 Digibridge
- Automatically measures R, L, C, D and Q
- 0.2% Basic accuracy
- Five-digit display for R, L, and C
- Four-digit display for D and Q
- Microprocessor-directed ranging
- Selectable test frequencies of 1 kHz and 120 Hz (100 Hz)
- Series or parallel measurement mode selection
- Built-in Kelvin test fixture tests radial and axial lead components

1687 Megahertz LC Digibridge
- Automatically measures Ls & Q, Cs & D, Cs & Rs, Cs & Rs
- 0.1% basic accuracy for C
- 0.2% basic accuracy for L
- Automatic limit-comparison (10 bins)
- Autoranging
- IEEE 488 bus/handler interface option
- Two test speeds
- Selectable continuous, average or single component measurements
- Four types of display programmed bin limits, measured values, deviation measurement (Δ L or Δ C), or bin number
- Five-digit display for L and C
- Four-digit display for Q, D, R and G
- Optional Kelvin test fixture tests radial and axial lead components

GenRad Ltd.
Bourne End, Bucks. SL8 5AT
Phone (06285) 2 6611, Telex 848321

WW—077 FOR FURTHER DETAILS
VERSATILE
RELIABLE
PORTABLE

120 BASIC RANGES

AC V., I & dB : 50μV/500V fsd, 50pA/500mA fsd, -90dB/+50dB mid scale. Acc.±1.5% fsd above 500μV & 500mA.
Response 3Hz/200kHz above 500μV and 500mA. Input R = 100MΩ on volts.

DC V., I & NULL : 150μV/500V fsd, 150pA/500mA fsd, polarity reversible. Acc.±1.5% fsd above 500μV & 500mA.
Input R = 100MΩ on volts. 5 Null ranges have centre zero lin/log scale covering 24 decades.

RESPxNCE : 0.2Ω/10GΩ in 7 ranges, polarity reversible. Low test voltage for solid state circuits.

LEAKAGE at 3V : Uses 3V source with current ranges to test capacitors, diodes and resistance up to 100GΩ.

VOLT DROP at 10mA : Uses 10mA source with voltage ranges to test diodes, LED's and resistance down to 10mΩ.

30 OPTIONAL RANGES

RF VOLTS : 0.5V/500V fsd, 10kHz/1GHz, using RF Probe. Price £22 + VAT.

HIGH VOLTS : 1.5kV/50kV fsd, AC/DC, using HV Probe. Price £16 + VAT.

HIGH CURRENT : 1.5A/50A fsd, AC/DC, using Current Shunt. Price £15 + VAT.

TEMPERATURE : -150°C/+500°C fsd in 7 ranges using Temperature Probe. Price £38 + VAT.

The instrument operates from a 9 volt battery, life 1000 hrs., or, AC mains when optional Power Supply Unit is fitted.
Size is 240mm x 150mm x 80mm. Weight is 1.75 kg. Meter scale length is 140mm. Leather case is available at £13 + VAT.
of research... "on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

STETOCLIP JUNIOR 60 HEADSET
STETOCLIP LIGHTWEIGHT HEADSET
SENIOR STETOCLIP HEADSET
STETOMIKE BOOM MICROPHONE HEADSET
STANDARD & SUB-MINOR EARPHONES
PLASTIC EARHANGERS
DANAMIC FIDELITY EARSET
STETOTUBE HEADSET
2.5 mm and 3.5 mm JACK PLUGS & SOCKETS
DANASOUND HEADSET
DANASONIC INDUCTION AUDIO LOOP RECEIVER
SUBMINIATURE SWITCHES

WWW—054 FOR FURTHER DETAILS
Get started with the best MPU KITS available ex-stock

A.M.D. 2900 KIT
Advanced Micro Devices has designed an educational tool, the Am2900 Evaluation and Learning Kit, to be used by the design engineer learning microprogramming.

The kit consists of one Am2901 Bipolar Microprocessor, one Am2909 Bipolar Microprogram Sequence, and several memories, registers, and multiplexers organized in a typical CPU (Central Processing Unit) structure.

This kit is NOT a four-bit computer. All components required in the assembly of the Am2900 Evaluation and Learning Kit are supplied in the kit package. The only item that need be supplied by the user of the kit is a +5V power supply capable of delivering approximately 2 amperes of current. The assembly diagram and assembly instructions in this book show the location of each of the components on the printed circuit board.

Price: £202.30
(add £16.18 V.A.T.)

MOTOROLA MEK6800D2 KIT
MEK6800D2 provides an expandable kit that is ideal for those who wish to develop systems using the 6800 microprocessor, but who do not want to invest in expensive terminals.

The kit includes a hexadecimal keyboard and display, 384-byte of RAM, 16 I/O lines, an ACIA, an audio cassette interface and 1K byte monitor with step-by-step and trace features, all built around the MC6800 MPU.

- 24 Key Keyboard
- 7 Segment Display
- Cassette Interface
- EROM Expandable
- RAM Expandable
- Wire Wrap Capability
- Parallel and Serial Interface Capability
- Single 5 Vot Supply Required
- Layout on Boards
- Documentation

Price: £175.88
(add £14.07 V.A.T.)

T.I. MICRO 99-16
(ASSEMBLED BOARD ONLY)
Micro 99 is a microprocessor PCB system which is designed to fulfill the dual roles of OEM microcomputer board and a low cost, limited-resource prototyping system for Texas Instruments microprocessors.

The first board in the system is the Micro 99-16 CPU board which consists of a TMS9900, static RAM, PROM, 15 levels of interrupt, 16 I/Os, TTY and RS232 interface.

Memory
RAM 256 x 16 bit words of STATIC RAM (TMS4042-2NL).
PRM sockets for 1536 x 16 bit words of FUSIBLE LINK PROM (SN74S472) or TIBUG monitor included.

Power Supplies
+12 volts ±0.6v - 100mA
+5 volts ±0.25v - 2.0A
-5 volts ±0.25v - 5mA

PCB
Double Euro-card-dimensions
233.3mm x 160mm

Price: £340.00
(add £27.20 V.A.T.)

ZILOG Z80 KIT
The Z80-EBC kit (kontron) is a combined development system for evaluating the third generation Z80 microprocessor.

It comes as a complete kit with a 5 slot motherboard and requires only a 5V power supply. The Z80-EBC boasts a cassette interface, along with a hexadecimal keyboard and six, seven segment L.E.D.s. The ZPROM monitor gives the user control via the keyboard from where he may dump, load alter and run his programs.

Optional boards (PROM, RAM, and I/O) give the user expansion capability for a total system at a competitive price.

- 27 Key Keyboard
- 7 Segment Display
- Cassette Interface
- EROM Expandable
- RAM Expandable
- Parallel and Serial Interface Capability

Price: £215.00
(add £17.20 V.A.T.)

Get kitted out with Cramer the leading MPU distributor in the U.K.

CASH WITH ORDER
Please send my MPU KIT by return (tick box)
AMD 2900□ MOTOROLA MEK6800D2□
TI 99-16□ ZILOG Z80□

Enclose my cheque/p.o for ____________________________ (including V.A.T.)

Signature:

Name:

Company:

Address:

WW—678 FOR FURTHER DETAILS

www.americanradiohistory.com
Stay ahead - follow this sign

GOULD ADVANCE INSTRUMENTS HAVE A WORLDWIDE REPUTATION. BUT THEY NEED NOT COST YOU THE EARTH.

OS245A AND OS250B OSCILLOSCOPES
Two dual trace oscilloscopes, with sensitivity of 5mV/div., and 2mV/cm respectively. The OS250B offers variable trigger level with or without bright line. The OS245A has a bandwidth of 10MHz, the OS250B offers 15MHz. Fully portable, these are the ideal instruments for servicing, educational and general purpose applications.

ALPHA III DIGITAL MULTIMETER
A tough, attractive, 3½ digit multimeter with 25 ranges and a basic accuracy of ±0.2%. A bright red LED display gives a clear reading even in high ambient light conditions, and yet power consumption is low enough for extensive field applications. A purpose built CMOS chip incorporates all analogue and digital circuitry, giving a low component count and increased reliability.

TC 320 TIMER COUNTER
This new, tough, 5-digit unit has an operating frequency of 35MHz. Plated through hole PCB construction keeps the component count down, for exceptional reliability. Frequency measurements up to at least 35MHz can be easily read from the clear 7-segment display. The TC320 offers outstanding performance - including "disciplined" triggering - at a remarkably modest price.

BETA DIGITAL MULTIMETER
A general-purpose multimeter, offering 29 ranges, including temperature (optional), and a basic accuracy figure of ±0.2%. A clear, 3½ digit Liquid Crystal Display, 0.5" high, gives a high-contrast read-out. Fully portable, with a minimum of 300 hours' battery life, the Beta has already established a reputation for accuracy and reliability.

For details of any of these instruments and the Gould Advance 2 year guarantee, write or phone today.

Gould Instruments Division,
Roebuck Road, Hainault, Essex IG6 3UE.
Telephone: 01-5001000 Telex: 263785.

WWW-025 FOR FURTHER DETAILS
How...Why...When?

Distress calls are made every day—hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messages—sometimes several at a time. In such instances a positive need for communications recording arises—a need for a system with instant message trace and replay—at the touch of a button—and at any speed to assist intelligibility.

All these facilities, and more, are available in the Racal-Thermionic 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

Callstore, from Racal-Thermionic, answers all the questions.

For details write to:
Racal-Thermionic Limited
Hardley Industrial Estate
Hythe, Southampton,
SO4 6ZH England.
Telephone: 0703 843265.
Telex: 47600.

RACAL
ABS & DIECAST BIMBOXES

5 sizes, in either ABS or Diecast Aluminium

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Code</th>
<th>Price</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100x50x25mm)</td>
<td>ABS mounted in Orange, Blue or Grey</td>
<td>BIM2002/12</td>
<td>£0.95</td>
<td></td>
</tr>
<tr>
<td>(112x62x31mm)</td>
<td>ABS mounted in Orange, Blue or Grey</td>
<td>BIM2003/13</td>
<td>£1.05</td>
<td></td>
</tr>
<tr>
<td>(120x65x40mm)</td>
<td>ABS mounted in Orange, Blue or Grey</td>
<td>BIM2004/14</td>
<td>£1.15</td>
<td></td>
</tr>
<tr>
<td>(150x80x50mm)</td>
<td>ABS mounted in Orange, Blue or Grey</td>
<td>BIM2005/15</td>
<td>£1.30</td>
<td></td>
</tr>
<tr>
<td>(190x110x60mm)</td>
<td>ABS mounted in Orange, Blue or Grey</td>
<td>BIM2006/16</td>
<td>£2.04</td>
<td></td>
</tr>
</tbody>
</table>

Also available in Grey Polystyrene (112x61x31mm) with no slots and self tapping screws BIM2007/17 £0.88

MULTI-PURPOSE BIMBOXES

Moulded in Orange, Blue, Black or Grey ABS with 1mm thick Grey aluminium recessed front cover which is retained by 4 screws running into integral brass bushes. 1.5mm pcb guides are incorporated on all sides and as with all ABS boxes they are 85°C rated, 4 self adhesive rubber feet also included.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM4003</td>
<td>(85x56x28.5mm)</td>
<td>£1.24</td>
<td></td>
</tr>
<tr>
<td>BIM4004</td>
<td>(111x71x41.5mm)</td>
<td>£1.56</td>
<td></td>
</tr>
<tr>
<td>BIM4005</td>
<td>(161x95x52.5mm)</td>
<td>£2.08</td>
<td></td>
</tr>
</tbody>
</table>

DIL COMPATIBLE BIMBOARDS

Bimboards accept all sizes of DIL packages as well as resistors, diodes, capacitors and LED's etc. They have integral Bus Strips running up each side for carrying Vcc and ground as well as Component Support Brackets for holding lamps, fuses and switches etc. Available as either single or multiple units, the latter mounted on 1.5mm thick, matt black aluminium back plates which stand on non slip rubber feet and have 4 screw terminals for incoming power.

Bimboard 1 contains 500 individual sockets whereas the multiple units containing 2, 3 or 4 Bimboards incorporate 1,100, 1,650 or 2,200 individual sockets, all arranged on a 2.5mm0.1" matrix.

BOSS INDUSTRIAL MOULDINGS LIMITED

2 Herne Hill Road, London SE24 0AU

Telephone: 01-737 2383

Telex: 911985 Answer Back LITZEN G' Cables & Telegrams: 'LITZEN LONDON SE24'

All quoted prices are 1 off and include Postage, Packing and VAT. Terms are strictly cash with order unless you have authorised BOSS account.

For individual data sheets on all BOSS products send stamped, self addressed envelope.
everything for the modern DIY electronics enthusiast and more.

THE 'DRUMSETTE' RHYTHM GENERATOR
Organic patterns generated on a dynamic drum set to accompany your most highly-realistic instrument play fifteen different rhythms. Fifteen rhythm-select touch switches and a touch plate for slapstart without rhythm change gives maximum creative operation. Build it yourself for under £20 including smart look-effect cabinet. See it and hear it in our shop! Send for full construction details now! MES40; price £12.

REVERBERATION SYSTEMS
High-quality spring-line, delay module uses 4 integrated circuits and two transistors. Built and tested circuit board with wiring instructions for spring line, XBD53; price £5.00. Power supply in self-drive model costs around £2.50 and construction details are in catalogue, or ask for leaflet MESS49: Mechanical spring lines: Short line (XBD65); £6.00. Long line (XBD4W); £16.30. All prices include VAT and p. & p.

E. CAME
A fascinating TV game kit that plays football, tennis, squash and practice for only £11.00. A great gift for construction enthusiasts. Price includes VAT and p. & p.

MASSIVE RANGE OF COMPONENTS
For instance the capacitor section in our catalogue includes non-polarized electrolytes and our resistor section includes carbon ±1% tolerance types. Get our fascinating catalogue now - you won't regret it.

IT'S A FANTASTIC BESTSELLER! 216 big (11" x 8") pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller! DON'T MISS OUT! SEND 60p NOW!

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE 60p
Please rush me a copy of your 216 page catalogue.
I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME ____________________________
ADDRESS ____________________________

WW-012 FOR FURTHER DETAILS
F.M. TUNERS, MODULES & UNITS by Icon Design

T3
Six touch tuned pre-set stations plus manual tune, with digital frequency readout, combined with 1.8 micro-volt sensitivity and anti-birdy stereo make this one of the finest tuners available. Intelligent tuning indicator, a.f.c. and interstation mute included for easy operation by all the family. Two tone gold and brown front panel with teak veneer cabinet will blend with any surroundings.

£149.00

M1
This module is the heart of the above tuner, giving a mono output with a.f.c., mute, and tuning indicator functions. Drift free tuning by 10 turn pot over the range 88 to 108 MHz. This module will not let you hear out-of-tune stations, and the fine tuning lamp is extinguished unless a station is received. The ideal basis for any High quality F.M. system.

£29.95

M2
The ideal choice for adding stereo to the M1 module or any suitable mono receiver, this module has anti-birdy filters and pilot tone output filters, together with a phase-locked decoder for stable performance.

£8.36

M4
An integrated circuit regulator supplies all the power for the M1, M2 and M5, in addition to being short circuit proof and having automatic thermal shut-down, and ensuring hum free reception.

£6.93

M5
The M5(mk2) touch module adds 6 touch selected pre-set stations to the manual tuning already provided by the M1 module. Illuminated buttons indicate the channel selected, while remote control using a single contact push button steps the channels in an endless loop, including the manual control channel. Auto power-up channel selection may be set to any of the seven available channels. Remote inhibit and a lamp test facility are provided.

£17.54

M6
Using the optimum selection of discrete, E.C.L., T.T.L., and C-MOS technologies, this module will add the luxury of digital readout to the M1 module above, or any other LP119B based receiver. The small (95 x 103mm) board contains all the logic, displays, and regulated power supply. Range is 60 to 95 MHz, resolution 0.1kHz, and stability better than 40 p.p.m. per deg. C. It comes complete with mains transformer, polarised filter, and list of station frequencies.

£44.40

PLUS TWO NEW ONES

M7
This new module is a 4 way touch select switch having illuminated touch buttons, and C-MOS logic level outputs. Features pre-set power-up selection, and remote step facility. Multiple units may be cascaded to give 8, 12 or more channels of switching, and two modules may be paralleled to give full remote control from two or more locations. The outputs may be used to control logic etc., or to drive the new M8 channel selector opposite.

£6.95

M8
Controlled from single pole switches, or the M7 module, this unit will switch 4 mono or two stereo audio channels. Two M8 modules will therefore switch 4 stereo signals driven by one M7 touch switch, or other combinations may be controlled by multiple touch switches, providing a flexible system of audio selection and control. The ideal module for pre-amplifier source selection, avoiding long signal wires to and from control panels, and their associated hum and cross-talk problems.

£4.95

KITS AND COMPONENTS

<table>
<thead>
<tr>
<th>KITS AND COMPONENTS</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL301</td>
<td>£1.87</td>
</tr>
<tr>
<td>SL3046</td>
<td>£0.94</td>
</tr>
<tr>
<td>TBA750</td>
<td>£1.71</td>
</tr>
<tr>
<td>SL1310</td>
<td>£2.15</td>
</tr>
<tr>
<td>TBA25SC</td>
<td>£1.65</td>
</tr>
<tr>
<td>UA78M20</td>
<td>£1.65</td>
</tr>
<tr>
<td>UA78M05</td>
<td>£1.65</td>
</tr>
<tr>
<td>SFJ1-7MA</td>
<td>£1.71</td>
</tr>
<tr>
<td>LP1186</td>
<td>£0.53</td>
</tr>
<tr>
<td>ZN3904</td>
<td>£0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC184</td>
<td>£0.15</td>
</tr>
<tr>
<td>2C214</td>
<td>£0.15</td>
</tr>
<tr>
<td>1N4001</td>
<td>£0.06</td>
</tr>
<tr>
<td>1N4148</td>
<td>£0.04</td>
</tr>
<tr>
<td>P.C.B. M1</td>
<td>£0.64</td>
</tr>
<tr>
<td>K112 (F3)</td>
<td>£1.65</td>
</tr>
<tr>
<td>Descriptive booklet</td>
<td>£1.65</td>
</tr>
<tr>
<td>10K 50K pot</td>
<td>£3.89</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

Small orders £5.00 plus 50p handling charge.
U.K. Orders post free, plus 12.5% V.A.T.
Overseas, send for Pro-forma invoice first, or send £3.00 airmail for small items.

SEND FOR ILLUSTRATED DATA PACK
(Reply coupons please overseas)
ACCESS MASTERCARD BARCLAYCARD VISA
CREDIT CARDS TAKEN
(Just quote number when ordering)

TO ICON DESIGN - 33 Restrop View, Purton, Wilts. SN5 9DG
Please supply data on (Circle as required)

<table>
<thead>
<tr>
<th>KITS</th>
<th>M1</th>
<th>M2</th>
<th>M4</th>
<th>M5 Mk2</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL3046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBA750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL1310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBA25SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA78M20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA78M05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFJ1-7MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP1186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZN3904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address label
Block letters

www.americanradiohistory.com
The amazing, automatic Logic Monitor LM-1.

Just clip it over your IC.
It instantly and accurately shows both static and dynamic logic states, on a bright, 16-LED display.
It finds its own power.
It cuts out guesswork, saves time, and eliminates the risk of short-circuits.
LM-1 is suitable for all dual-in-line logic ICs; DTL, TTL, HTL, CMOS; up to 16 pins.

LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

LM-1 will respond to signals up to 0.1 MHz when the input signal swing exceeds the threshold voltage by more than 0.5 volts.

Try the LM-1 and you won’t know how you ever managed without it!

Applications
Design, breadboarding, testing and checking new logic systems.
Direct real-time monitoring of logic function in operating equipment.
Long-term testing of individual ICs.
Identification of unused elements, to find room for an extra gate, clock etc.
Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You’ll find them.

Brief specification
- Input Threshold: 2V ± 0.2 volts
- Input Impedance: 10,000 Ohms
- Input Voltage Range: 4 volts minimum 15 volts maximum across any two or more input leads
- Maximum Current Drain: 200 mA & 10 volts
- Operating Temperature Range: 0°C to 50°C
- Weight: 3 ounces (85 grams)
- Maximum Dimensions: 4.0 x 2.0 x 1.8 mm

Applications
Design, breadboarding, testing and checking new logic systems.
Direct real-time monitoring of logic function in operating equipment.
Long-term testing of individual ICs.
Identification of unused elements, to find room for an extra gate, clock etc.
Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You’ll find them.

It’s Easy to Order
Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night.
Alternatively, send a cheque, or postal order (don’t send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

ONLY £28.70

CONTINENTAL SPECIALTIES CORPORATION (UK) LTD.
SPUR ROAD. NORTH FELTHAM TRADING ESTATE. FELTHAM. MIDDLESEX TW14 7J.

WWW.AMERICANRADIOHISTORY.COM
A pioneering electronics organisation with 51 years’ experience of high-technology engineering, JVC has been developing and introducing new and better video products for 21 years.

Now, for the first time in Britain, you can choose from a new and comprehensive range of JVC ¾” U-format colour-plus-monochrome video cassette units, up to 38% smaller than directly competitive equipment.

From the compact portable CR-4400E for location work to the versatile CR-8300E for production studios, these easy-to-use models meet every video cassette recorder demand. They give you exactly the same top-quality recording and playback throughout the range. Price differences simply reflect the number of facilities available, not the performance.

The range. For those needing NTSC as well as PAL playback (perhaps for shipboard entertainment), JVC has the new CR-5060ED.

If you’re looking for stop-action playback and PAL record/playback facilities, the new CR-6060E with its specially engineered still-frame system is the one for you. (Optional remote control available.)

PAL recording, plus PAL and NTSC playback, come together in the new CR-6060ED. Again, with optional remote control.

Full electronic editing facilities are built into the superb new CR-8300E, a PAL record/playback unit. For even more flexible editing, add the JVC RMB3 editing suite.

Where you must have portable video equipment, able to record cassettes that can also be replayed by a mains cassette unit without an adaptor, it’s got to be the new assembly-edit CR-4400E. This comes complete with built-in video/RF replay facilities. And, of course, there’s a colour camera to match.

Use the inquiry service to get the literature from Bell & Howell and the name and address of an audio-visual centre where you can test for yourself the versatility of these new JVC units. Admire the outstanding picture quality each provides. Seeing is believing. You’ll believe, as we do, that JVC U-format equipment is the best in the world.
Fuji Beridox tape
To get the optimum results from any U-format equipment use Fuji Beridox tape. Provably superior to conventional Cr02 tape, it's now available from every Bell & Howell dealer.

Beridox ¾" (19mm) video cassettes
KCA-10 (10 min. playing time)
KCA-15 (15 min. playing time)
KCA-20 (20 min. playing time)
KCA-30 (30 min. playing time)
KCA-50 (50 min. playing time)
KCA-60 (60 min. playing time)
1½" and 2" video tape also available.

Intel — the world's leading manufacturer of advanced integrated circuits — scores again. Using MOS technology they've produced memory and microprocessor devices which together provide powerful computing functions in just a few packages ... at low cost! All are fully supported with development systems, software and debugging aids. Like the complete range of Intel products, they're supplied, stocked and supported by us in depth. A phone call will bring all you need.

Your intelephone number
01-904 9303

This easy-reference descriptive price list contains over 2000 Intel products. We'll be delighted to send it to you by return of post with our latest up-date material. Just use the reader reply service or send this coupon to GEC Semiconductors Ltd., East Lane, Wembley, Middx HA9 7PP, Telex 923429.

Bell & Howell A-V Ltd.
Alperton House,
Bridgewater Road,
Wembley, Middlesex, HA0 1EG.

Bell & Howell

www.americanradiohistory.com
PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS

MSI 6800 with 8K Ram.
KIT £375

NEW SWTPC 6800 Level 2
KIT £300

FD8 FLOPPY DISC £935. BFD68 MINI FLOPPY £522
SOROC 10120 TERMINAL £699 ASS.
CASSETTE INTERFACE KIT £18.95

Send S.A.E. for full brochure

STRUMECH ENG. ELECTRONICS DIV. BROWNHILLS 4321
SOLE U.K. DISTRIBUTOR FOR MSI & SMOKE SIGNAL BROADCASTING

Autocrat
The absolute leader in its class

Farnell offer the only
DIGITAL MULTIMETER
with all these features
★ AUTORANGING (with hold) ★ AUTOPOLARITY
★ AUTOZERO ★ SIX RESISTANCE RANGES
★ LARGE DISPLAYS ★ A.C. & D.C. VOLTS & CURRENTS
★ TEMPERATURE MEASUREMENT

DM 131
(mains powered) £159
DM 131/B
(mains battery) £195

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937

Details from Farnell Instruments Limited - Wetherby - W. Yorks LS22 4DH Telephone 0937-63541 or 01-864 7433

www.americanradiohistory.com
Five Great Kits from DORAM

DISTORTION METER
Range 20Hz to 40KHz. T.H.D. down to 0.003%.

FUNCTION GENERATOR
Sine, triangle and square waves from 0.1Hz to 100KHz
Adjustable sweep (10:1) and burst facilities.

LOW DISTORTION OSCILLATOR
Extremely low distortion (0.005% @ 1kHz). Range
10Hz to 100kHz in 4 decades.

AUDIO MILLIVOLT METER
Measurement from 15Hz to 100KHz + 1% Db. Input
impedance 1MΩ with 500Ω switched load.

Please send me the following, I enclose
cheque/PO made payable
to Doram Electronics value £

DUAL BENCH POWER SUPPLY
Dual independent 3-20v dc.
Current limits are switched at 100mA and 1A.

Order Code Distortion Meter
60-612-1 Kit £79.95 + VAT
74-720-0 Ready Built £99.95 + VAT

Order Code Function Generator
60-638-9 Kit £79.95 + VAT
74-740-6 Ready Built £99.95 + VAT

Order Code Audio Millivoltmeter
60-614-5 Kit £69.95 + VAT
74-730-3 Ready Built £89.95 + VAT

Order Code Dual Bench Power Supply
60-631-0 Kit £59.95 + VAT
74-750-9 Ready Built £79.95 + VAT

Order Code Low Distortion Oscillator
60-610-7 Kit £79.95 + VAT
74-710-7 Ready Built £99.95 + VAT

Name
Address

Doram Dept W W
PO Box TR8, Wellington Road Industrial
Estate, Wellington Bridge, Leeds LS12 2UF

WW—091 FOR FULL DETAILS
there are **transformers** and **Drake Transformers**

A wide range of transformers manufactured in production quantities to customers' own requirements; prompt design and prototype service.

Drake Transformers Limited

South Green Works, Kennel Lane, Billericay, Essex CM11 2SP
Telephone: Billericay 51155. Telex: 99426
The compact PM 5127 function generator covers .01Hz to 1MHz in seven ranges with a facility for frequency offset. Waveforms available are sine, triangular and square, with adjustable duty cycle if required.

The comprehensive PM 5129 function generator incorporates an internal sweep generator. Single shot with variable start and stop level is included. In the burst mode a burst of pulses or a single pulse with variable width and frequency can be produced. Frequency range: 1mHz to 1MHz.

The general purpose PM 5108L function generator has such useful features as an output level meter, variable frequency offset, two simultaneous outputs (50Ω and 600Ω), 20 volts output and stepped and variable attenuators.

The table below shows the scope of Philips' LF coverage, while the scale of its test and measuring activity is indicated at the foot of the page. Because Philips is experienced in every major field of electronic activity it can produce a range of test and measuring instruments to meet the professional user's every need. It is the range of experience.

Low Frequency Instruments Survey

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type</th>
<th>Frequency range Hz</th>
<th>Output V</th>
<th>Waveforms</th>
<th>Variable duty cycle</th>
<th>DC off set</th>
<th>Output characteristics</th>
<th>Sweep</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC oscillators</td>
<td>PM 5106</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Function generators</td>
<td>PM 5106</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM 5107</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM 5108L</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM 5127</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM 5129</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM 5167*</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Digital generators</td>
<td>PM 5161</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sweep generators</td>
<td>PM 5165</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amplifier converters</td>
<td>PM 5171</td>
<td>1 10 100 1k 10k 100k 1M 10M</td>
<td>0 10 20 30 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Output waveforms also include pulse and ramp.

PHILIPS

Test & Measuring Instruments

WWW—017 FOR FURTHER DETAILS

www.americanradiohistory.com
FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Series H3020

- **Basic error**: 2.5%
- **Sensitivity**: 8ma F.S.D
- **Response**: 0.2 sec
- **Width of each channel**: Single and three-pen
- **Recorders**: 80mm
- **Five-pen recorders**: 50mm

<table>
<thead>
<tr>
<th>Chart speeds, selected by push buttons</th>
<th>0.10 0.20 0.5 1.0 2.5 5 12.5 25 mm/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart drive</td>
<td>200-250V 50Hz</td>
</tr>
<tr>
<td>Recording Syph</td>
<td>pen directly attached to moving coil frames</td>
</tr>
<tr>
<td>Curvilinear</td>
<td>co-ordinates</td>
</tr>
<tr>
<td>Equipment</td>
<td>Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc.</td>
</tr>
</tbody>
</table>

H3020-1 (Single pen): 285mm wide x 384mm deep x 165mm high
PRICE £108.00

H3020-3 (Three pen): 475mm wide x 384mm deep x 185mm high
PRICE £160.00

H3020-5 (Five pen): 475mm wide x 384mm deep x 185mm high
PRICE £295.00

Note: Prices are exclusive of VAT

Available for immediate delivery

Z & I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF

Tel. 01-727 5641

Telex: 261306

WW—082 FOR FURTHER DETAILS

After the introduction of the CQ 110 E and CQ 301, NEC have completed their CQ-Line with the CQ 201 Digital VFO, the SP 110 Speaker and the M110 SSB Microphone. The NEC CQ-Line represents the highest technical standard, with regard to design, quality, reliability and price which is available to the modern radio communicator today.

NEC CQ 110 E, 300 watts Digital transceiver Modes: FSK/USB/LSB/CW/AM, 100-240V AC/13.5DC handmike. Control speaker, VFO Sidetone, 3 Xtal filters, Blower, RCA 7360 RX mixer, 22 fix-channels, 60 Page Manual. 160-10 meter. 11 Ranges of 500 Khz

NEC CQ 301 2-3 KW SSB/AM Linear Amplifier 160-10 meter, 2 EIMAC 3-500Z, Handbook, 100-240 V AC, High Speed Blower, incop. Power Supply

NEC CQ 201 Digital Additional VFO for Split-Frequency Operation, containing 3 VFO systems, usable as frequency counter, 100-240V AC/13.5VDC, Handbook.

NEC SP 110 Communication Speaker with Electronical Digital Clock, timer etc, handbook 100-240VAC

NEC M 110 SSB Communications Microphone, designed for CQ — Line.

Colour of CQ line brown military sand-touch

* Dealer inquiries welcome
* **ASK ABOUT OUR UP TO 120 DAYS FINANCING FACILITIES**
* **ASK FOR OUR COLOUR CATALOGUE** against payment of SFR 16 — or any other equivalent currency.
* Shipments to EVERYWHERE

Sole distributor in Europe:

CEC Corp., Via Vaidani 1 — CH 6830 CHIASSO—SWITZERLAND

Phone: (091) 44 26 51 Telex 79959 CH

WW—042 FOR FURTHER DETAILS
The Wayne Kerr RA200 / ADS1 is undoubtedly unique. It gives fast, accurate frequency response measurements for any audio system – displaying up to five different curves as gain / frequency plots on a long-persistence CRT. The basic unit, the RA200, performs all the detector and sweep functions, requires no synchronisation, and will adjust automatically to the incoming frequency.

Four Channel Digital Store
The matching display store, the ADS1, is a fully compatible digital storage unit powered by the RA200, and can give continual updating of each curve stored to ensure fast, precise readouts. It incorporates rechargeable batteries to permit stored data to be retained for up to two weeks when the unit is switched off.

The RA200 / ADS1
This complete unit provides facilities for displaying the difference between any two stored curves, or comparison of any new input with a stored reference curve. Minor variations from a desired characteristic can be readily amplified, and departures from a linear response clearly shown as deviations from a straight line by use of the store `invert'. Slow-acting pen recorders can also be driven by the unit.

For more details fill in the coupon or contact your nearest distributor:

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tekelec-Airtronic, Cite des Bruyeres, Rue Carle-Vernet, 92310 Sevres, Paris, France, Tel: 027 75 35</td>
<td></td>
</tr>
<tr>
<td>Keithley Instruments GmbH, Heigghofstrasse 5, 8000 Munchen 70, West Germany, Tel: (089) 7144065</td>
<td></td>
</tr>
<tr>
<td>G & P Electronics AG, Bernerstrasse-Nord 182, Ch-8064 Zurich, Switzerland, Tel: (01) 643231</td>
<td></td>
</tr>
<tr>
<td>C N Rood BV, PO Box 42, 11-13 Cort van der Lidenstraat, Rijswijk ZH 2109, Holland, Tel: (70) 99 63 60</td>
<td></td>
</tr>
<tr>
<td>Unitronics SA, Torre de Madrid, Princesa 1, Piso 12 Oficina 9, Madrid B, Spain, Tel: 242 5204</td>
<td></td>
</tr>
<tr>
<td>Scandia Metric AB, Fack 171 19, Solna 1, Banvaktsvagen 20, Sweden, Tel: (08) 820 410</td>
<td></td>
</tr>
</tbody>
</table>

Please send me further information on the Wayne Kerr RA200 / ADS1.

Name
Company
Address
Tel:

Wilmot Breeden Electronics Limited
442 Bath Road, Slough, Berkshire SL1 6BB England

WW 096 FOR FURTHER DETAILS
This FM Mobile Radiotelephone has a voice that you can live with

Marconi Communication Systems Model RC625 gives you speech quality you can listen to all day.
Compact, lightweight, FM radio-telephone with 10-channel capability.
Outstanding reliability, with extended life and built-in ease of servicing.
Built to withstand agricultural and industrial use and hostile environments — vibration, heat, cold and dirt.
Quick and easy to install.
Full range of ancillary equipment and facilities available.
Ask for details of Model RC625 and of the full range of radiotelephones.

Marconi Communication Systems Limited
Mobile Radio Division
Marrable House, Great Baddow,
Chelmsford, Essex CM2 7QW, England
Telephone: Chelmsford (0245) 73331 Telex: 99201
A GEC-Marconi Electronics Company

FOR CLEAN HOLES FAST!

- Easiest and quickest way of punching holes in sheet metal (up to 1.625mm mild steel)
- Q-MAX stands for quality and reliability
- Holes are punched cleanly and no filing is necessary
- Continuous even load during punching
- No jagged edges. Burr freehole
- Specially heat treated to maintain keen cutting edge
- Used for years all over the world
- Simple operation, saving time and energy

57 METRIC & LINEAR SIZES

Q-MAX

SHEET METAL PUNCHES

Q-Max (Electronics) Ltd
40-41 Furnival Street
London EC4A 1JQ
Telephone: 01-242 7400
New from Thomson-CSF

the chip that converts any TV set into a low cost microprocessor interface display unit

625 line TV set or monitor

features:

- Low price - available as chip or display card
- Uses standard parts
- Full cursor control
- Multi-page capability
- Line erase
- Single 5V supply
- TTL/LSI compatible
- 16 lines, 64 characters
- Text scroll

Write or phone for full technical data

Thomson-CSF Components and Materials Ltd., Ringway House, Bell Road, Daneshill, Basingstoke RG24 0QG Telephone: 0256 29155
Available from these Thomson-CSF distributors: Barlec Ltd., 219 London Road, East Grinstead, Sussex (0342 24383); Lock Distribution, Neville Street, Middleton Road, Oldham, Lancs OL9 6LP (061 6520431); A Marshall (London) Ltd., 42 Cocklewood Broadway, London NW2, (01 452 0161); Omni Components Ltd., 59 Eastern Road, Reading, Berks, (0734 594834); Phoenix Electronics (Portsmouth) Ltd., 139 Havant Road, Drayton, Portsmouth, Hants, (070 18 73441); Semiconductor Specialists (UK) Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middx (08954 46415); Spenco Electronics (Phoenix) Ltd., Kelvin Industrial Estate, East Kilbride, Scotland (035 52 36311); Woolley Components Ltd., Tudor Road, Broadheath, Altrincham, Cheshire (061 941 1911).

WW—100 FOR FURTHER DETAILS

www.americanradiohistory.com
The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications. The range is made up of standard sub-assemblies which can be permuted to suit individual application requirements. Here are some suggested applications for these units:

- Train Control Systems
- Process Control Systems
- Safety Barriers
- Intruder Alarms
- Road Vehicle Sensing Systems
- Proximity Alarms
- Industrial Alarm Systems
- Small Object Counters
- Presence/Detectors
- Positioning Systems
- Level Controllers
- Vibration Sensing Systems
- Door Opening Systems

Please write or telephone for further information and technical literature to:

JAMES SCOTT
(Electronic Engineering) Ltd
CARNTYNE INDUSTRIAL ESTATE
GLASGOW G32 6AB
Tel: 041-778 4206
Telex: 778286

WWW-072 FOR FURTHER DETAILS
POWER AMPLIFIER CP2-15/20

Each CP2-15/20 contains two identical amplifiers, each of which can give 20 Watts rms into 4 Ohms (15W into 8 Ohms). Alternatively the module may be connected to give 40 Watts into 8 Ohms. Protection is provided against short and open circuit loads, reverse supply connection (as all Magnum Modules) and thermal overload. Transient performance is virtually unaffected by loading and free from overshoot and TIM distortion. THD is typically 0.03% @ 1 kHz. All this adds up to a versatile and robust amplifier of extremely 'clean' and 'musical' performance.

CP2-15/20 £14.46 inc. (U.K.)

Also Available: Pre-Amplifiers, Peak Programme Monitors, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies, Interconnection PCBs, plus all pots, switches, etc.

MAGNUM AUDIO Ltd.
DEPT W2, 13 HAZELBURY CRESCENT
LUTON, BEDS. LU1 1DF

SEND LARGE S.A.E. FOR DETAILS

WW—037 FOR FURTHER DETAILS

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand. Send 25p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chandlers Ford, Hants. S05 3ZR
Telephone Chandlers Ford (04215) 2956

WW—009 FOR FURTHER DETAILS

seen from the professional angle

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accouistical conditions.

Specifications:
Frequency Response: 40-18000 Hz.
Output Level at 1 kHz: 0.14 mV/µbar
-56 dbm (0 dbm = 1 mW/10 dynes/cm²), EIA Sensitivity Rating:
-149 dbm. Hum Pickup Level:
5 µ V/µ bar Tesla (50 Hz). Polar Pattern:
Hypercardioid. Output impedance:
200 Ω. Load Impedance: > 1000 Ω.
Connections: M 201 N (C) = Cannon XLR-3-50 T or Switchcraft; 2+3 =
200 Ω, 1 = ground, M 201 N = 3-pin
DIN plug T 3262: 1+3 = 200 Ω,
2 = ground. M 201 N (6) = 6 pin
Tuchel.
Dimensions: length 6", shaft Ø 0.95".
Weight: 8.60 oz.

BEYER DYNAMIC (GB) LIMITED
1 Clair Road, Haywards Heath, Sussex.
Tel: Haywards Heath 51003
WW—044 FOR FURTHER DETAILS

www.americanradiohistory.com
Coaxial Relay

for aerial switching

Pye Electro-Devices’ Series 951 coaxial relay is designed for high speed switching of signals up to 450 MHz. It can be used to advantage in applications requiring exceptionally low inter-contact capacitance.

Multi-position clamps enable UR43 type coaxial cables to be connected directly to the relay body. Connection is simple and efficient. And there’s no need for coaxial plugs and sockets. Consequently the relay is extremely compact, and weighs less than 100g.

The contacts are rated at 1A or 50W maximum, and coils are available for operation at up to 100V d.c.

Contact us today for further information.

Pye Electro-Devices Ltd.

INSIST ON VERSATOWER

BY PROFESSIONALS—FOR PROFESSIONALS

Designed for Wind Speeds from 85 m.p.h. to 117 m.p.h., conforming with CP3 Chapter V, part II.

First in the field with a fully interchangeable (versatile) telescopic, tilt over, tower system. Acclaimed as the world leader in the field of communications and lighting, both static and mobile.

Since the launching of the Versatower system early in 1968 we have operated a continuous development and applications programme. Consequently from inception right through to the present day, detail design, materials used and production techniques employed are continually updated. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

With many thousands of satisfied users throughout the world, coupled with our no nonsense guarantee and immediate spares availability, it makes little sense to settle for an alternative product.

STRUMECH VERSATOWER SYSTEM

WW—011 FOR FURTHER DETAILS

WWW.AMERICANRADIOHISTORY.COM
A. D. BAYLISS & SON LTD.

Behind this name there's a lot of real POWER!

Illustrated right is a TITAN DRILL

Mounted in a multi-purpose stand. This drill is a powerful tool running on 12v DC at approx 9000 rpm with a torque of 350 gmin cm. Chuck capacity 3.00 m/m.
The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in Hammer Blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx speed 9000 rpm, 12v DC torque 35 gmin cm. Capacity 2.4 m/m.

TITAN DRILL & STAND

- **TITAN DRILL ONLY**
 - £21.45
 - + 8% VAT = £23.17 + £1.80 P&P

- **RELIANT DRILL & STAND**
 - £18.44
 - + 8% VAT = £19.92 + £1.54 P&P

- **TITAN MINI DRILL KIT**
 - £6.34
 - + 8% VAT = £6.85 + £0.52 P&P

- **RELIANT MINI DRILL KIT**
 - £13.20
 - + 8% VAT = £14.26 + £1.02 P&P

- **TRANSFORMER UNIT**
 - £9.40
 - + 8% VAT = £10.15 + £0.79 P&P

These are examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids.

To back up the power tools Expo offer a comprehensive selection of Drills, Grinding Points and other tools.

SEND STAMP for full details to main distributors.

A. D. BAYLISS & SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU

VHF/UHF HEAD END AMPLIFIER (CM 7013)

- Very high output
- Cost effective design

Gain = UHF 37dB VHF 33dB
Output UHF 1000mV (60dBmV)
VHF 708mV (57dBmV)
(4 UHF TV + 2 VHF TV + FM)

CM 7013 is a split-band high level amplifier with its own stabilised power supply. The high level launch capability is ideally suited to medium sized MATV networks but the CM 7013 is especially valuable as a distribution amplifier in larger systems.

Labgear Limited Abbey Walk Cambridge CB1 2RO England
Telephone: 0223 86521 (ext 118) Telex: 81105 WM"3

PRE-AMPLIFIER CP-P1

Shown here mounted with its associated components (and the CP-TM1 Peak Programme Monitor) on the CP-MPC1 interconnection board, the CP-P1 is a complete stereo pre-amplifier and tone control module. Performance features >70 db S/N ratio and >30 db overload margin (both ref. 3mv) and distortion of 0.02%.
The internal R.I.A.A. feedback compensation around the low-level pre-amp may be replaced with external networks and the tone control circuits can be programmed to give different turnover frequencies if required (including separate bass and treble 'defeat' facilities).

CP-P1 £14.96 incl (U.K.)

Also Available: Power Amplifiers, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies plus all pots, switches, etc.

MAGNUM AUDIO Ltd.

DEPT W3, 13 HAZELBURY CRESCENT
LUTON, BEDS. LU1 1DF
TEL: 0582 28887
SEND LARGE S.A.E. FOR DETAILS

WW—014 FOR FURTHER DETAILS
WHY SETTLE FOR LESS—
THAN A 6800 SYSTEM

MEMORY—
All static memory with selected 2102 IC’s allows processor to run at its maximum speed at all times. No refresh system is needed and no time is lost in memory refresh cycles. Each board holds 4,096 words of this proven reliable and trouble free memory. Cost—only £80.00 for each full 4K memory.

INTERFACE—
Serial control interface connects to any RS-232, or 20 Ma. TTY control terminal. Connectors provided for expansion of up to eight interfaces. Unique programmable interface circuits allow you to match the interface to almost any possible combination of polarity and control signal arrangements. Baud rate selection can be made on each individual interface. All this at a sensible cost of only £30.00 for either serial, or parallel type.

PROCESSOR—
"Motorola" M6800 processor with Mikkbug® ROM operating system. Automatic reset and loading, plus full compatibility with Motorola evaluation set software. Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various Baud rate outputs for the interface circuits. Full buffering on all data and address busses insures “glitch” free operation with full expansion of memory and interfaces.

POWER SUPPLY—
Heavy duty 10.0 Amp power supply capable of powering a fully expanded system of memory and interface boards. Note 25 Amp rectifier bridge and 91,000 mfd computer grade filter capacitor.

DOCUMENTATION—
Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer. This includes the Motorola programming manual, our own very complete assembly instructions, plus a notebook full of information that we have compiled on the system hardware and programming. This includes diagnostic programs, sample programs and even a Tic Tac Toe listing.

PRICE EFFECTIVE 1st OCTOBER, 1977

£275.00
(Kit form only)

Please send me details of your full range of computer equipment and software.

Name
Address

Southwest Technical Products Co.
Unit 12, Tresham Rd.,
Orton Southgate, Peterborough

WW-075 FOR FURTHER DETAILS
Test Equipment

Here's a brand new multimeter from Eagle: 100,000 opv, 3-colour scale anti-parallax mirror, taut band movement, electronic protection, reversible polarity, 15 amps AC range. Complete with real leather carrying case, shoulder strap and probes.

And all that for a retail list price of under £47.00!

But that's not all – we've got a range of other meters to cover every possible need of the electrical or electronic engineer from about £6.50 upwards. Send the coupon now for the complete catalogue.

Please send me your catalogue with full details of all your test equipment.

Name
Address

Eagle International, Precision Centre, Heather Park Drive, Wembley HA0 1SU, Middlesex Tel: (01) 902 8832

WW—022 FOR FURTHER DETAILS

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation...

Each of the 6 volumes of this self-instruction course measures 11⅞ x 8½ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital Systems

£8

plus £1 packing and surface post anywhere in the world.

Overseas customers should send a bank draft in sterling drawn on a London bank.

Payment by credit cards accepted.

Also available — a more elementary course assuming no prior knowledge except simple arithmetic.

Digital Computer Logic and Electronics

In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits
4. Flipflops and Registers

£4.60

plus 90p P & P.

Offer Order both courses for the bargain price £12 plus £1 P & P.

A saving of £1.50.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

FLOW CHARTS & ALGORITHMS — The Algorithm Writer's Guide — Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, training, wall charts, etc.

Size A5, 130 pages.

£2.95

plus 45p P & P.

Guarantee — If you are not entirely satisfied your money will be refunded.

CAMBRIDGE LEARNING ENTERPRISES, Unit 3 Freepost RIVERMILL LODGE ST IVES HUNTINGDON CAMBS. PE17 4RF ENGLAND TELEPHONE ST IVES (0480) 67445 PROPRIETORS: DRAYBRIDGE LTD REG OFFICE RIVERMILL LODGE ST IVES GREAC No. 7188915 REG IN ENGLAND NO. 1328762.

Cambridge Learning Enterprises
SUMMER OFFER until 1st. August 1978

Just send this token with your order for a 10% discount which entitles you to books at the following prices

Digital Computer Logic & Electronics £4.95
Design of Digital Systems £8.10
Combined set £11.70
Algorithm Writer's Guide £3.06

Please send me the following books

1. Digital Computer Logic & Electronics @ £5.50 P & P included
2. Design of Digital Systems @ £9.00 P & P included
3. Combined sets @ £13.00 P & P included

Name
Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for £

Please charge my Access / Barclaycard / Visa / Eurocard / Mastercharge / Interbank number

Signature

Telephone orders from credit holders accepted on 0480 67445 (Anonphone)

Overseas customers should send a bank draft in sterling drawn on a London Bank.

www.americanradiohistory.com
Select a standard POTENTIOMETER from ITT
-of course

We make an extremely wide range of standard types, all available at low cost and on fast delivery. Based on years of experience in manufacturing potentiometers of all types, each of the units meets ITT’s high standards of design and manufacture.

For performance and quality at low cost we have a wide selection of hot-moulded-carbon units available in three styles — panel mounted, preset and edge controlled.

For greater stability, lower TCR, better power handling and lower noise, choose our 1W cermet presets.

To meet your special requirements, we have a custom-design facility. Find out more about ITT potentiometers for yourself — just contact:

ITT Components Group Europe
RESISTOR DIVISION
South Denes, Great Yarmouth, Norfolk NR30 3PX
Tel: 0493 56122. Telex: 97421

HARMSWORTH
070-681 2601

POWER DIODES & THYRISTORS
RECTIFIER STACK ASSEMBLIES
SEMICONDUCTOR FUSES

Westcode Semiconductors

International Rectifier

BBC British Brown Boveri BBC

GEC Fusegear GEC

Express delivery by our own transport or Securicor

HARMSWORTH, TOWNELEY & CO. LIMITED
HAREHILL TODMORDEN LANCs OL14 5JY
PHONE: TODMORDEN 2601 & 5246
TELEX: 635091 Attn. HARMSWORTH

HARMSWORTH, TOWNLEY & CO. LIMITED
HAREHILL TODMORDEN LANCs OL14 5JY
PHONE: TODMORDEN 2601 & 5246
TELEX: 635091 Attn. HARMSWORTH

HAND TOOLS
for lead forming

®

HARMSWORTH
070-681 2601

POWER DIODES & THYRISTORS
RECTIFIER STACK ASSEMBLIES
SEMICONDUCTOR FUSES

Westcode Semiconductors

International Rectifier

BBC British Brown Boveri BBC

GEC Fusegear GEC

Express delivery by our own transport or Securicor

HARMSWORTH, TOWNELEY & CO. LIMITED
HAREHILL TODMORDEN LANCs OL14 5JY
PHONE: TODMORDEN 2601 & 5246
TELEX: 635091 Attn. HARMSWORTH

HARMSWORTH, TOWNLEY & CO. LIMITED
HAREHILL TODMORDEN LANCs OL14 5JY
PHONE: TODMORDEN 2601 & 5246
TELEX: 635091 Attn. HARMSWORTH

WWW.AMERICANKICHIHISTORY.COM
The B424 is an easy-to-operate component meter, providing accurate measurements over an extremely wide range for under £600.

For every type of component: capacitor, resistor or inductor, the liquid crystal display shows the value in full. The decimal point is shown in position and the numerical readout is followed directly by the appropriate symbol for each range. No multiplying or scaling factors are ever needed, eliminating a prime source of operator error.

The meter automatically selects the test signal level and frequency, so that the operator doesn’t have to calculate and reset for each type of measurement. The range finder will indicate on the display when a higher or lower range could give a more precise readout.

In addition to the basic meter, a component jig, the CA4, is now available for rapid connection of components with axial, radial or pre-formed leads. The CA4 has built-in limits circuits for an automatic indication of ‘Low,’ ‘Pass’ or ‘High’ as each component is connected. Setting of the limits takes only a few seconds, no external equipment or standards being necessary.

These features, combined with the 0.25% accuracy over the wide measurement range, make the equipment equally valuable in Goods Inwards sections or design laboratories.

For more details fill in the coupon or contact your nearest distributor:

Please send me details of the Wayne Kerr B424/CA4
Name
Company
Address
Tel:

Wilmot Breeden Electronics Limited
442 Bath Road, Slough, Berkshire SL1 6BB
England

WWW-097 FOR FURTHER DETAILS
FREQUENCY COUNTERS

1/10Hz to 1GHz

Sensitivity 10mV

Stability 5 parts 10^-6

FREQUENCY STANDARDS

CRYSTAL 1Mhz 100kHz 10kHz

Stability 5 parts 10^-6

OFF/AIR 10MHz 1MHz 1part 10^-8

301M

30MHz 5 Digit £90

30MHz 6 Digit £138

50MHz 8 Digit £210

250MHz 8 Digit £395

1.2GHz 8 Digit £670

30MHz 8 Digit £182

80MHz 6 Digit £210

50MHz 8 Digit £395

1.2GHz 8 Digit £670

Type 101 1MHz 100kHz 10kHz Crystal Standard £98

Type 103 Off/Air Standard £98

Type 203 Low Frequency Generator £78

LOW FREQUENCY GENERATOR TYPE 203

R.C.S. ELECTRONICS, 6 WOLSELEY ROAD, ASHFORD, MIDDX, ASHFORD 53661

SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Crystal

Manufacturers and Electronic Laboratories worldwide

WW—029 FOR FURTHER DETAILS

CHROMASONIC ELECTRONICS

SEVEN SEGMENT DISPLAYS

LIGHT EMITTING DIODES

1.25v (acc. dip)

1.00v (acc. dip)

7.2v

25.0v

1.6v

1.2v

1.0v

0.8v

0.6v

5mA

5mA

25mA

25mA

100mA

100mA

1.0v

1.0v

2.0v

2.0v

5.0v

5.0v

10v

10v

100v

100v

You can combine C-MOS & TTL for quantity discounts.

25 plus less 5%. 100 plus less 10%.

FREQUENCY COUNTER TYPE 8018

VAT INCLUSIVE PRICES

WIRELESS WORLD, JUNE 1978

65A Fortis Green Road
Muswell Hill London N10 3HN
Telephone 01-883 3705

FREE! ADCOLA

SOLDERING EQUIPMENT

1978 32 PAGE

COLOUR CATALOGUE

RING NOW 01-622-02913

OR SEND TO

ADCOLA PRODUCTS LTD.

GAUDEN ROAD LONDON SW4 6LH

FOR YOUR COPY!

www.americanradiohistory.com
The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20,000Hz. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world’s leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
- DC 20kHz = 150 watts + 1db. 0db
- 500 watts RMS into 2.5 ohms
- = 0..15 DC to 20kHz 1 watt B2
- Below 0.05% DC to 20kHz
- Below 0.05% 0.01 watt to 150 watts
- Greater than 200 DC to 1kHz at B2
- At least 10db below 150 watts

Slowing Rate
- 8 volts per microsecond
- 1 ohm to infinity
- 1.75 V for 150 watts into 8Ω
- 10K ohms to 100K ohms
- Short mismatch & open cct protection
- 120-256V 50-400Hz
- 19 Rackmount. 7 High 9½ Deep

Dimensions
- D150A = 150 watts per channel

Other models available from 100 watts to 3000 watts
You'll do better at Martin Associates
we guarantee it!

METERS
- A to 400Hz Function Phase Meter - £175
- A to 20MHz Spectrum Analyzer - £185
- A to 400MHz/30KHz Spectrum Analyzer - £180
- A to 100MHz 30KHz Spectrum Analyzer - £185
- A to 300MHz/30KHz Spectrum Analyzer - £250

OSCILLOSCOPES
- Tektronix 564 150MHz Dual Beam - £130
- Tektronix 545A 10MHx 85MHz Dual Trace - £350
- Tektronix 81A 10MHx 85MHz Dual Trace - £425

POWER SUPPLY UNITS
- HP 4140 Universal Power Supply - £200
- HP 4180 Universal Power Supply - £200

SIGNAL SOURCES
- HP 1100A 450MHz Signal Generator - £125
- HP 1100A 450MHz Signal Generator - £125

RECORDERS
- HP 1020A 100PSY X-Y Recorder - £700
- HP 1020A 100PSY X-Y Recorder - £700

MISCELLANEOUS
- HP 545A Oscilloscope, 60MHz - £85
- HP 545A Oscilloscope, 60MHz - £85

OVENS
- 120WATT POWER SUPPLY - £150
- 250WATT POWER SUPPLY - £150

HARRIS ELECTRONICS (LONDON)
138 Gray's Inn Road, London, WC1X 8AX
(Phone 01-837 7937)

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE

A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal 1½ volt standard size battery.

Model "Mini-Z M" measures from -60°C to + 60°C. Price £50.00
Model "Mini-Z M" measures from -60°C to + 100°C. Price £50.00
Model "Mini-Z M" measures from -100°C to + 200°C. Price £75.00

(Additional EXTRAS)

Write for further details.

FREE SAMPLES
and catalogue showing full range of bushings on request.

WE ARE HIRING!

SALARY & REPAIRS

WW—053 FOR FURTHER DETAILS

KEEP HOLE NEAT OR STOP THEM UP!

WWW.AMERIكانRadioHistory.COM
It's easy enough checking this end, but what about the other?

... and that's where NEAL FERROGRAPH test sets come in. All of the professional measuring equipment necessary to test and calibrate a wide range of audio apparatus, compactly combined, and designed to function with minimum effort.

The RTS 2, a unique concept. Simplifies measurements of gain, noise, frequency response, input sensitivity, output power, distortion and the parameters relating to recording equipment, such as wow and flutter, cross-talk, drift and ageing. Its range of measurements can be extended even further by the addition of the Auxiliary Test Unit ATU/1.

Send today for full technical information relating to these instruments, and other high quality products in the combined NEAL FERROGRAPH range.

Introducing the new Quick Charge Cordless Soldering Iron

- Solder heat in five seconds
- No wires to restrict use
- Completely recharges in only 4 hours!
- No need for earthing
- Capacity to solder up to 125 joints

This new rechargeable soldering iron from Greenwood brings added freedom to professional soldering. The Quick Charge recharges so fast that completely dead battery cells can be brought to full charge in about 4 hours — three times faster than before. In its stand the Quick Charge is, of course, being continually charged. A wide range of tips and now also a P.C. Drill attachment make this the most 'versatile' professional soldering iron available.

Greenwood Electronics
Greenwood Electronics, Portman Road, Reading, RG3 1NE
Telephone: 0734 595844 Telex 848659
3 & 3½ DIGIT LCD DMMS

Non Linear Systems, the originators of the DVM in 1952, introduce two low cost LCD DMMS to their existing range of LED multimeters.

- Overload Indication
- Autopolarity
- Fully Protected on Ohms & Current Range
- Optional Rechargeable Cells & Adapter
- 12 Months’ Warranty

<table>
<thead>
<tr>
<th>TRACK</th>
<th>RANGE</th>
<th>OHMS</th>
<th>CURRENT</th>
<th>CAPACITY</th>
<th>VOLTAGE</th>
<th>VOLTS</th>
<th>STACKABLE</th>
<th>UNIT</th>
<th>OPTIONS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTAC</td>
<td>100</td>
</tr>
<tr>
<td>VOLTAC</td>
<td>1000</td>
</tr>
<tr>
<td>CURRAC</td>
<td>100</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

- LCD display
- Integral nulling
- Two-way Nulling
- Frequency up to 500 MHz
- Auto-ranging
- 12 digit, 7 segment LED display
- 4½" x 2½" x 1½"
(10.8 x 5.7 x 3.2 cm)

FROM £74 + VAT

Labgear Limited

Labgear Limited Abbey Walk
Cambridge CB1 2RQ England

Telephone: 0221-6851 (I lines)
Telex: 81105 LAB
Telegrams: Labgear Cambridge

RADFORD LABORATORY INSTRUMENTS LTD.

4 High Street, Nailsea, Bristol BS19 1BW

Tel: Nailsea 6637
U.S.A.: Patrick McVeigh. **Tel:** 201-746-5461

WWW—982 FOR FURTHER DETAILS

LABGEAR

Labgear Limited Abbey Walk
Cambridge CB1 2RQ England

Telephone: 0221-6851 (I lines)
Telex: 81105 LAB
Telegrams: Labgear Cambridge

NEW

3 & 3½ DIGIT LCD DMMS

Export Enquiries Invited!

500 MHz Frequency Counter

(CE7044)

for UHF/VHF or CB mobile radio

- ± 2 ppm accuracy
 (0.0002%)
- Overload protected
- Built-in Ni-Cad battery pack
- Exceptional value

Frequency Ranges

(Switched)

(a) 10 Hz - 50 MHz
(b) 40 MHz - 500 MHz

Sensitivity

50 MHz range, 30 mV
500 MHz range, 50 mV

Display

7 digit, 7 segment LED display

Dimensions

4½" x 2½" x 1½"
(10.8 x 5.7 x 3.2 cm)

Labgear Limited

Labgear Limited Abbey Walk
Cambridge CB1 2RQ England

Telephone: 0221-6851 (I lines)
Telex: 81105 LAB
Telegrams: Labgear Cambridge

WWW—981 FOR FURTHER DETAILS

Lawtronics

139 High Street, Ednbridge, Kent 0732 865191
Telex 95415

Trade enquiries invited

WWW—983 FOR FURTHER DETAILS

Stockists

AUDIO ELECTRONICS, 301 Edgware Road 01-724 3564
MARSHALLS, 40 Crickeledwood Broadway 01-452 0161
MARSHALLS, 325 Edgware Road 01-723 4242
MARSHALLS, 85 West Regent Street, Glasgow 041-3234133
MARSHALLS, 1 Strays Parade, Bristol 0272 654201
FENWICK ELECTRONICS, Maxwell Road, Glasgow 041-429 7155
HAVANT INSTRUMENTS, 20 Portsmouth Road, Horndean 596020
SEMICONDUCTOR SUPPLIES. Church Lane, Wallington 01-647 1006

or direct from UK distributors
Send Company Order or CWO
LM300 £80.50 inc. VAT P&P
LM350 £94.50 inc. VAT P&P
(Optional rechargeable cells and adaptor £8.64 inc.)

Send Company Order. CWO. ACCESS or BARCLAYCARD No

Audio Measuring Instruments

New Items

DMS4 Distortion Measuring Set. Precision
DMS5 Distortion Measuring Set. General Purpose.

The DMS4 is a precision instrument intended for laboratory use capable of measuring frequency harmonic distortion to better than 5 parts per million (0.0005%).

The DMS5 is intended for general purpose use in the studio, test department, or factory and can measure to 0.001% THD.

Both instruments cover the frequency range 10Hz-100kHz and are semi-automatic nulling.

The instruments will operate from any signal source. Nulling to zero is automatic after the DMS has been accurately tuned to the test frequency. The instrument will thus continually read distortion whilst adjustments are made to equipment under test providing the test frequency is not changed.

Existing Items

LD03 Low Distortion Oscillator

A continuously variable frequency laboratory oscillator with a range 10Hz to 100kHz having virtually zero distortion over the audio frequency band with a fast setting time.

LD03B Low Distortion Oscillator, balanced output

As LD03 but additionally fitted with output amplifier and screened transformer providing a 600 ohm floating balanced output and 150 ohms unbalanced.

Unbalance -80dB 1kHz —60dB 10kHz.

ANM1 Audio Noiseometer, Average sensing.
ANM2 Audio Noiseometer, True r.m.s. reading.
ANM3 Audio Noiseometer, Quasipeak/True r.m.s. reading.

The noiseometers have 15 measurement ranges from 10µV f.s.d. to 300V f.s.d. and incorporate a 5 mirror scale of excellent linearity calibrated in Volts and dBV or dBm. The instruments are in accordance with DIN 45 045 and include recommended weighting characteristics.

WIDE BAND (flat response voltmeter)
DIN AUDIO BAND
IEC/DIN CURVE A
CCIR

RADFORD LABORATORY INSTRUMENTS LTD.
4 High Street, Nailsea, Bristol BS19 1BW

Tel: Nailsea 6637
U.S.A.: Patrick McVeigh. Tel: 201-746-5461

WWW—971 FOR FURTHER DETAILS
How to generate confidence

G5 £76.14
M2B £76.14

Produce instruments with a high specification at a low price — put them in steel cases for rugged reliability and guarantee the results. The G5 is a low distortion 100Hz to 1 MHz sine/square signal generator with a 600 Ohm switched attenuator and a low impedance output of up to 3 watts. Coupled with the M2B millivoltmeter, with its 1.2 mV full scale maximum sensitivity, you have the ideal test set. Calibrated in true RMS on the 0-10 range it will measure up to 400 volts ac or dc and has a db range from -70 db to +54 db.

Send your Order from the mum
Coupled with The G5
in
Produce

ATONKIN LTD.
BELMONT HOUSE
STEELE ROAD
PARK ROYAL
LONDON NW10 TARI
Tel 01 061 1274 5

www.americanradiohistory.com
The creation of the new V15 Type IV is a tour de force in innovative engineering. The challenge was to design a cartridge that would transcend all existing cartridges in musical transparency, technical excellence, and uniformity.

The unprecedented research and design disciplines that were brought to bear on this challenge over a period of several years have resulted in an altogether new pickup system that exceeds previous performance levels by a significant degree—not merely in one parameter, but in totality.

In fact, this pickup system has prevailed simultaneously over several extremely difficult music re-creation problems which, until now, have defied practical solutions. Most of all, this is an eminently musical cartridge which is a delight to the critical ear, regardless of programme material or the rigorous demands of today’s most technically advanced recordings.

THE V15 TYPE IV OFFERS:

- Demonstrably improved trackability across the entire audible spectrum—especially in the critical mid- and high-frequency areas.

NEW!

Shure V15 Type IV

SUPER TRACK IV

Stereo Dynetic™ Pickup Cartridge

For more information on this remarkable new cartridge write for the V15 Type IV Product Brochure and read for yourself how far Shure research and development has advanced the state of the art.

Shure Electronics Limited, Eccleston Road, Maidstone ME 15 6AU—Telephone: Maidstone (0622) 59881

WW—019 FOR FURTHER DETAILS
The spectrum and society

While the Home Office’s judgements on the assignment of radio frequencies remain “classified” there is little chance of the public getting to know what the issues are and how they affect them and forming any opinions on the matter. Maybe the man in the street doesn’t really care. Satisfied with his one vote, he is content to leave such matters to parliament and the technocrats that advise it. But the opinions of those people who really do care, the socially responsible, are in fact badly needed for a task that can be accomplished from no other source of information — the assessment of social values. For more than a decade it has been recognized that the present “law of the jungle” method of carving up frequency space only between those who are powerful enough to make vociferous claims for it is not good enough in civilized societies — and that is what those who use the spectrum most intensively claim to be. It has also been recognized that very little is known about the effects of spectrum decisions on interests other than those of the claimants and on such important issues as energy, pollution and poverty. In 1970 a telecommunications panel of the US National Academy of Engineering declared: “The allocation of any national resource must finally be made in what is deemed to be in the public interest by those responsible for its management. As the physical resources are exhausted, the social and economic considerations will become paramount and the limited resources must be allocated with greater attention to these factors.”

Social factors of course are qualitative issues that deeply concern the community — about health, housing, education, amenities, racial harmony and so on — and are evident in its pattern of organization. They are often influenced by myths, religions or political ideologies. In some countries the social criteria are imposed arbitrarily by a totalitarian government, but elsewhere they seem to be derived from innate personal values (e.g. the idea of good) with no empirical basis. As such, social factors are extremely difficult to pin down and introduce into practical affairs, although they are in fact the criteria of many political decisions. Economic factors, on the other hand, being essentially matters of quantity, are comparatively easy to handle.

If portions of the spectrum are to be assigned fairly in accordance with social needs, and not merely in response to the emotional appeals of pressure groups, some objective method of measuring these needs, comparing them and establishing priorities will have to be found. And this is where the co-operation of an informed public is essential. The aim of such an objective method would be a rationalization of different types of service. It would be possible to establish, for example, that xMHz of bandwidth for a given time of television broadcasting in central Birmingham was equivalent to yMHz of bandwidth for a given time of mobile radio operation in the suburbs of London. Such precision may never be attained in practice, but this is the ideal towards which recent studies have been directed.

Some progress in this kind of investigation has been made in the USA, where of course the work of the spectrum managers is open for all to see and the public can take an interest in it. The British public should also be made aware of what the electromagnetic spectrum means to them, because it is only through the free expression of opinions on social issues which are affected by this resource that researchers can obtain the objective assessments they need.
Current dumping — does it really work?

Theory and practice

by J. Vanderkooy and S. P. Lipshitz University of Waterloo, Ontario

This article endorses the soundness of the current dumping principle, though querying whether it should be called feedforward error correction in the feedback loop. In several respects the distortion reduction appears due to a passive bridge balance. It shows that dumper β-variation results in distortion, fortunately very low, which cannot be balanced out in present circuits. Readers are challenged to produce a circuit which nulls out such current distortion as well.

Measurements, in part 2, show that the amplifier performs very well, and analyses of the distortion oscillograms and wave analyser measurements show that, qualitatively, much of this data can be understood. We both heartily agree that the current dumping principle as embodied in the Quad 405 amplifier has significantly advanced the state of the art in class B power amplifier design.

A flurry of excitement and controversy has occurred since the article on the current dumping amplifier by P. J. Walker1. A class B audio amplifier capable of low crossover distortion, with no quiescent current, seems too good to be true! We have followed the letters to the editor with great interest, and noted that the situation seems to be a stalemate as regards the conventional-feedforward versus feedforward argument. Each of us has changed his mind regarding the operation of the amplifier several times. It was in this framework that we decided a more careful analysis was necessary. We present first a view of the theory as we see it, and later on deal with some corroborating measurements made on a Quad 405 amplifier.*

Early letters have been adequately handled by Mr Walker2, and we feel there is value in the equivalent circuit of Peter Baxandall3. But we fail to see how the independence of output impedance under two limiting conditions (dumpers on with infinite mutual conductance, off with zero gain) can imply distortionless behaviour.

There seems to be an advantage in the circuit, but it is precisely in the region of output transistor turn-on that such arguments are inapplicable. Accordingly, we were sceptical of the results, not having really taken the pains to work out all the details presented in Mr Walker’s article and the letters. Referring to Fig. (d) of Mr Baxandall’s letter, we were led to conclude that the distortion voltage created by the dumpers must somehow find its way out of the otherwise linear components. Mr Olsson’s letter3 also requires an answer.

Simplified analysis

An illuminating but incomplete analysis of the amplifier is possible. The effect of the dumpers can be looked on as a distortion voltage applied between the input and output of the dumper stage. In Fig. I assume for now that A has zero output impedance and has infinite gain (both conditions are related later). Labelling v_1, v_2, e_0, v_3, i_1, and i_3 as in Fig. 1

$$v_1 + v_2 + v_3 = 0,$$

and summing i_3 and i_4 for the total current

$$\frac{v_2 - e_0}{Z_3} + \frac{v_1 - e_0}{Z_4} = \frac{e_0}{Z_L}.$$

These two equations are easily solved for e_0 in terms of v_1 and either one of v_2 or v_4 (we give both for didactic reasons):

$$e_0\left(\frac{1}{Z_3} + \frac{1}{Z_4}\right) = \frac{Z_2}{Z_3}v_2 + v_4\left(\frac{1}{Z_4} - \frac{Z_2}{Z_3}\right),$$

or

$$e_0\left(\frac{1}{Z_3} + \frac{1}{Z_4}\right) = -\frac{Z_1}{Z_3}v_1 + v_4\left(\frac{1}{Z_4} - \frac{Z_1}{Z_3}\right).$$

Either equation shows that e_0 will not depend on v_1 or v_2, which have distortion, if $Z_1Z_3 = Z_2Z_4$, just the Walker balance condition. Under this condition the output e_0 depends only on v_4 (with the same coefficient now) and not on the distortion voltage $v = v_2 - v_1$.

If the gain A is made finite, a balance condition will still follow (messy algebra) as long as the amplifier A has zero output impedance, so that the dumper input current can be ignored. This has been discussed by Bennett and Walker2.

Another slant on a simplified analysis is to consider the output of the class A amplifier to be a true current source, with infinite output impedance. Then the equivalent circuit can be redrawn as in Fig. 2, with the dumpers again approximated by a voltage source, which admittedly is not very realistic with the current source approximation.

The class A amplifier has been characterised by a transconductance G_m with the output connected to the point v_3. To avoid getting dumper voltage distortion (v) into the output, any signal due to v at the inverting input of the class A amplifier should be zero. This requires $Z_1Z_3 = Z_2Z_4$, independent of the value of G_m, because the criterion is simply a passive balance of the bridge. It

*For finite gain A, the dumper distortion v cannot be balanced to zero if the bridge is destroyed by shorting Z_1 in the circuit of Fig. 1. This fact also follows from our more general analysis below.
might be considered passive feedforward error correction in the amplifier with judicious feedback applied.

Naturally the effect of the dumpers is to amplify current, and then such a simple analysis is not warranted. Passive balance is lost and a more general analysis is necessary to establish if a balance condition still exists.

Balance condition

If the balance condition \(B = 0 \) can be achieved (see boxed item) the output \(e_o \) will contain no dumper distortion contributions. The condition \(B = 0 \) is the counterpart of the Walker balance condition \(Z_1Z_3 = Z_2Z_4 \) which followed from setting the coefficient of \(v_2 \) equal to zero in our earlier equation (1). This condition is analysed next in some detail as it really contains all the information we have been seeking.

Firstly, returning to a remark made earlier \(^4\) suppose that \(Z_1 \) is omitted (i.e. short-circuited), thus destroying the bridge. Solving the equation \(B = 0 \) for \(G_m \) in this case \(G_m = \)

\[
\frac{\beta Z_4}{(Z_1 + Z_2 + Z_3 + Z_4)R_S + Z_2(Z_2 + Z_3)} + Z_1Z_3
\]

which is negative. For d.c. stability, we must assume \(G_m \) to be positive so that the overall feedback around the amplifier be negative feedback. Thus no bridge balance condition is possible when \(Z_1 = 0 \).

Secondly the possibility of achieving bridge balance does exist in the general case. Rearranging the equation \(B = 0 \),

\[
Z_2Z_4 - Z_1Z_3 = \beta \frac{(Z_1 + Z_2 + Z_3 + Z_4)R_S + Z_2(Z_2 + Z_3)}{(Z_1 + Z_2 + Z_3 + Z_4)G_mR_S + 1}
\]

provided \(Z_2Z_4 > Z_1Z_3 \) and assuming these impedances to be real for the moment, balance can be achieved for finite transconductance \(G_m \) as long as \(\beta \) can be assumed to be constant. In fact, equation (3) gives the value of \(G_m \) relevantly stated otherwise, we assume that \(Z_1, Z_2, Z_3, Z_4 \) are real.

More detailed analysis

The Quad 405 contains a class A amplifier which has a current output. Referring to Fig. 4 of Peter Walker's article \(^1\), the collector of \(T_R \) is the output of this amplifier. The resistor \(R_{sb} \) is not a significant load as it is "bootstrapped away" by \(C_{ib} \). Other connections to this point are the dumper bases, \(Z_1 \) and \(Z_3 \). Capacitors \(C_a \) and \(C_{ib} \), presumably to prevent r.f. instability, are ignored. Hence in an improved modelling circuit we consider the class A amplifier to have a current output and a transconductance \(G_m \), from input (emitter of Tr_R) to output (collector of Tr_R). Capacitor \(C_a \) (\(Z_4 \)) does not really connect to the same point as \(R_{sb} \) (\(Z_1 \)), something about which more will be said later. Consider now the circuit shown in Fig. 3, ignoring \(Z_4 \) for the moment.

Dumper current gain is set at \(\beta + 1 \), but of course \(\beta + 1 \) will change from about 20 when \(T_R \) conducts to about 2000 when \(T_R \) and \(T_{sb} \) conduct.

The detailed equations and their meaning are given below.

- Setting amplifier input current to zero:

\[
\frac{v_1 - v_2}{Z_1} + \frac{v_2 - v_3}{Z_2} + \frac{v_3 - v_4}{Z_3} = 0
\]

- Setting class A output current equal to \(-G_m v_o\):

\[
-G_m v_o = \frac{v_4 - v_3}{Z_3} + \frac{v_3 - v_2}{Z_2} + \frac{v_2 - v_1}{Z_1}
\]

- If dumper output current is properly accounted for:

\[
(\beta + 1)s = \frac{v_1 - e_o}{Z_1} + \frac{v_2 - e_o}{Z_2} + \frac{v_3 - e_o}{Z_3}
\]

- Using the currents in \(Z_1 \) and \(Z_4 \) to calculate \(e_o \):

\[
\frac{v_1 - e_o}{Z_1} + \frac{v_2 - e_o}{Z_2} + \frac{v_3 - e_o}{Z_3} = \frac{e_o}{Z_1}
\]

Here there are six variables \((v_1, v_2, v_3, v_4, i_{eb}, e_o) \) and four equations, so three of our variables can be eliminated. Choosing to calculate \(e_o \) as a function of only \(v_1 \) and \(i_{eb} \) and manipulating gives

\[
\begin{align*}
&(Z_3 + Z_4 + Z_3 + Z_1 + Z_3 + Z_1 + Z_3 + Z_4)R_{sb} + (Z_1 + Z_2 + Z_3) + Z_3)R_{sb} + G_m e_o \\
&= (\beta + 1) \left(Z_1 + Z_3 + Z_1 + Z_3 \right) R_{sb} + (Z_2 + Z_3) - (Z_2 + Z_3)R_{sb} + G_m e_o \\
&\quad - \left(Z_1 + Z_3 + Z_1 + Z_3 \right) R_{sb} + (Z_2 + Z_3) \left(Z_2 + Z_3 \right) R_{sb} + G_m e_o \\
&\quad + (Z_1 + Z_3 + Z_1 + Z_3) - (Z_1 + Z_3 + Z_3) + Z_3 \right) R_{sb} + G_m e_o \\
&\quad \quad (2)
\end{align*}
\]

which we write as

\[
A e_o = BZ_1 i_{eb} + CZ_1 v_1
\]

where the coefficients \(A, B \) and \(C \) are represented by the expressions in square brackets \(^4\).

These equations are all linear, and it is good to pause awhile to ponder whether the distortion has been properly considered. The voltage across the dumpers \(V_L \sim V_1 \) will control \(i_{eb} \) for the output \((\beta + 1)i_{eb}\) in a complex way related to the turn-on curve of the dumpers. In choosing to eliminate \(v_1 \) and \(v_3 \), the distortion must appear in our equations as a distorted \(i_{eb} \) which is not a copy of \(e_o \) or \(v_2 \). We deliberately chose to eliminate \(v_2 \) and \(v_3 \) from our equations so that all the dumper distortion contributions to \(e_o \) occur in the single term \(BZ_1 i_{eb} \). Now \(e_o \) can still be made rigorously proportional to \(v_1 \), if the large bracket \(B \) multiplying \(i_{eb} \) can be set equal to zero for all signals. (The parameter \(\beta \) occurs only in the coefficient \(B \) in equation 2.) The balance condition for the new equivalent circuit of Fig. 3 is thus \(B = 0 \).

\(^4\)This is essentially a d.c. analysis of the circuit, and as such will remain valid only for frequencies low enough that time delay effects through the class A amplifier and bridge components can be ignored.

Fig. 2. Simplified equivalent circuit showing that passive bridge balance can remove dumper voltage distortion.

Fig. 3. Equivalent circuit for more complete analysis, see box.
This formula can be further approximated assuming (as in the Quad 405) that the bulk of the load current is furnished by the dumper, so that \(i_0 = e_0/Z_a \), and that \(Z_2 \) and \(G_m \) dominates the terms on the right-hand side. Then

\[
\Delta e_0 = \frac{1}{Z_1} \frac{1}{Z_2} + \frac{1}{Z_3} \frac{1}{Z_4} \frac{1}{R_1} + \frac{1}{Z_1} \frac{1}{Z_2} \frac{1}{Z_3} \frac{1}{Z_4} R_1 + \frac{1}{Z_1} \frac{1}{Z_2} \frac{1}{Z_3} \frac{1}{Z_4} R_1 G_m \]

This distortion has the shape of a half-wave-rectified sine wave. That due to changing dumper current gain can be reduced to insignificance by making \(\beta_m \) and \(G_m \) adequately large. This component of distortion then is being reduced by conventional feedback on account of the appearance of \(G_m \) in the denominator of equation (4). This distortion percentage is independent of the output signal provided it is large enough to cause both dumper to operate and is also frequency-independent. We comment later on the possibility of removing such distortion entirely.

In the Quad 405, where approximately \(Z_1 \approx 5000 \) \(\Omega \), \(R_1 = 180 \Omega \), \((R_1 \approx \text{in the circuit described on Fig. 4 or ref. 1} \) \(Z_1 \approx 85 \), \(\beta_m \approx 20 \), and \(G_m = 50,000 \Omega \), the distortion expected due to changing \(\beta \) is of the order of 10\% peak or about 132dB below full output and hence negligible.

Further interesting conclusions can be drawn from equation 2. For instance, it can be shown rigorously that for large \(G_m \), the output impedance of the amplifier is that of \(Z_1 \) and \(Z_2 \) in parallel. The voltage gain of the amplifier equivalent circuit \(e_0/v_c \) can also be shown to be approximately \(R_1/R_e \).

More interesting, perhaps, is an estimate of the effect of bridge unbalance on the output distortion. Returning to equation (2) to calculate the effect, \(\Delta e_0 \) on \(e_0 \) of a change \(\Delta Z_2 \) for any one of the bridge impedances \(Z_1, Z_2, Z_3 \), or \(Z_4 \) (assuming \(Z_1, G_m \) large), and considering that the dumper notch distortion (\(\Delta V \approx 1.5V \)) results in a peak-to-peak fluctuation \(\Delta j_0 \) in \(\delta \) of approximately 1.5/\(R_z \) amp.

\[
\Delta e_0 = \frac{1.5Z_1}{Z_2} \Delta Z_2 \]

The dumper distortion voltage approximates a square wave of amplitude 1.5 Volts, whose transition time is determined by the signal frequency and amplitude, the dumper and \(Z_3 \). Our formula for bridge error shows that if \(Z_3 = 1/\delta Z_c \), then the distortion seen from bridge unbalance will be the time derivative of this, which would appear as sharp spikes whose amplitude depends directly on the speed of the transition.

Further thoughts

Recapitulating on the operation and analysis of the current dumping amplifier, the dumpers produce a distortion voltage which is completely removed by a balance condition which approximates to \(Z_2Z_3 = Z_1Z_4 \), and which becomes progressively less dependent on the gain \(G_m \) of the class A amplifier, as it is made large. A second kind of distortion is the asymmetry of the dumper current gain, and any non-linearity of this gain with signal. This current distortion cannot be balanced out, and its effects vary as \(1/G_m \), so they are reduced by conventional feedback. In the Quad 405 amplifier this distortion appears to be low but perhaps not negligible.

In electronics, the concept of duality allows a voltage source to be transformed to a current source and vice versa. We feel it is possible that a bridge configuration exists such that the current distortion can be nullled as well as the voltage distortion. It may be possible to superimpose the two bridges with one class A amplifier. We have devised several theoretical methods for removing current distortion entirely, maintaining the normal bridge components, by applying positive current feedback to the class A amplifier to give it zero output impedance. The value of \(\beta \) then disappears from the analysis. However, the amount of feedback required depends on \(G_m \). We feel a better solution is possible and challenge the readers of this journal to produce one.

Results of measurements will appear in part 2.

References
2. Letters to the editor, Wireless World vol. 82. April 1976, pp. 54-55.
Pity the newcomer?
Comments from the Papakura Radio Club of New Zealand reprinted recently in Break-in show a concern with a problem for newcomers that is far from parochial. Only a decade ago, it suggests, newcomers could buy surplus military equipment and get on the air with c.w. or a.m. phone quickly, easily and economically — "even 17-year-old school-leavers" — and were made welcome. Before long, interference, receiver noise and weak signal reports would become annoying and the new amateur would often build, buy or modify equipment "learning as he did so." This process would continue until the amateur achieved an "adequate" station.

Then, the report continues, came the 1970s and good, reasonably-priced, off-the-shelf, Japanese s.s.b. equipment and "who could afford not to buy?" So now, it believes, "we have sold the amateur fraternity down the drain. The dealers may eat, drink and be merry for they have us over a barrel; they have created a need, a "status" that only commercial s.s.b. rigs fulfil. So now they (or the manufacturers or the currency rates) load the price on — over $1,000 New Zealand for a transceiver, what school leaver can afford that? What family can? What hope have they of getting on the air? And if they were to do so with a.m. who would work them? Why do perfectly good but valve-type receivers or v.h.f. radios get laughed off the table at junk sales? What have we done to our hobby? At age 32 I am one of the youngest (active) amateurs in our club." The writer concludes.

Is this an exaggerated, unduly pessimistic viewpoint that ignores the second-hand equipment market and the superior c.w./n.b.f.m. rigs and the considerable enthusiasm for direct-conversion receivers and low-power transmitters? Possibly, but very few amateurs in the UK or elsewhere would not recognise the problems described by the New Zealand club.

Examination woes
In a recent Amateur Radio Operator's Certificate examination in South Africa only one-third of the 242 candidates were successful, 66.9% failing. The PMG comments: "we gain the impression that candidates come ill-prepared and unable to answer the questions in the manner expected. They were very unenthusiastic, and could have earned them good marks in relatively short time. The descriptive questions were answered rudimentarily and important points missed ... candidates apparently do not read the questions carefully and do not answer what the examiner really requires ... time is wasted by the examiners in an effort to decipher ambiguous handwriting." One or more candidates received a total mark of 0 per cent; the highest was 80.6 per cent. The percentages of passes varied significantly at different centres, ranging from only 18% in Cape Town, 27% in Pretoria to 32% in Durban and, 40% in Johannesburg. The copy of the examination paper reprinted in "Radio-ZS" shows that the standard required is high — and that Part 1 of the paper on regulations is in Afrikaans, with Part 2 (technical) in English.

Up and down the bands
Following the successes in South America, 144MHz transsequatorial-mode contacts have been reported between Australia and Japan. Australian amateurs have also recently claimed two "world records" for u.h.f. contacts: between VK6KZ and VK3ZBJ on 432MHz during January, a distance of 2460km, and between VK5OR and VK6WG on 2.3GHz during February, a distance of 1185km.

European amateurs have been re-examining the opportunities for "moonbounce" (earth-moon-earth) working on 144MHz, despite the rigorous requirements for high-gain aerials. Douglas Parker, G4DZU has received signals from the West Coast of the USA and from Sweden using a 56-element array based on four 14-element Paraboom arrays. Dr Pierre Aubry, HB8XM, has had good moonbounce contacts with West Coast Americans W6PO and W7FN using a very large array providing about 21-22dB gain. Harwell & District Amateur Radio Society recently experimented with a 680ft rhombic aerial intended for 144MHz moonbounce operation. Vaughan Henderson, ZL2THG has reported that the VHF Coordination Committee of the New Zealand society has expressed concern at the "massive interference caused by scanning transceivers when transmitting with the equipment switched to the scan mode." The committee would like to see this type of transceiver modified so that they are incapable of transmitting in this way. One possibility, it is suggested, is to ground the scanner pulse generator output from the press-to-talk switch.

Radical changes introduced by FCC in American amateur callsign practices seem bound to blur the traditional "call-district" identification. Amateurs will be permitted to retain their callsigns when moving to a different call area. Other changes include: for new stations, call prefixes in the K1/K9 series for various US territories in the Pacific; KP1/KP4 in the Caribbean. The "N" prefix will be used for three-letter callsigns issued to general and technician classes.

It is hoped soon to extend the t.t.t.y. teleprinter news bulletins (GB2ATG) to include transmissions on 144MHz to provide coverage in Australia, New Zealand and North America. Two or three transmission periods on Sundays may be introduced, possibly at 0800, 1500 and 1600 GMT. Arthur Gee, G2UK, has become President of the British Amateur Radio Teleprinter Group.

In brief
A blind amateur, Ted John, G3EIJ, of Wallasey who lost his sight while serving with the Royal Navy in World War II and now works for the Metropolitan Police, has received the Wally Waldrop Silver Cup Award of St Dunstan's Amateur Radio Society in recognition of his services to war-blinded radio amateurs. The Society, with about 30 members, meets regularly at Ian Fraser House near Brighton where an amateur station is permanently installed. Many of St Dunstan's are now reaching the retirement age and St Dunstan's state that "radio work has proved to be an ideal occupation and means of communication with friends at home and abroad." . . . The RSGB has reported that a large amount of Japanese amateur-type 144-148MHz equipment is in use in the Middle East for defence purposes and is suggesting that amateurs may be asked not to buy equipment made by the firms concerned in view of the threat this poses to amateur frequencies. . . . The ITU callsign series J2A-J2Z has been allotted to the Republic of Djibouti. . . . The Norwegian beacon LA4HW is now operational on 432.89MHz. . . . Headquarters of the Royal Signals Amateur Radio Society has moved back to Caterick Camp in North Yorkshire from the School of Signals, Blandford, Dorset. . . . The Edgware society is holding a 40-year celebration dinner on May 20. The UKFM Group London is proposing that the GB2RS news bulletins should be broadcast over the GB3LO London Repeater on Sunday mornings.

PAT HAWKER, G3VA
Radiating cables

by R. Johannessen, B.Sc., M.I.E.E., Standard Telecommunication Laboratories Ltd

During the past ten years radiating cables have found increased use in a number of applications. Many aspects of their performance can be specified simply, once they have been derived either empirically or from theory. For the communications engineer with a problem either of coverage or of frequency spectrum conservation, the article sets out where radiating cables may be useful and the aspects to which he needs to pay particular attention.

In most mobile radio applications the base station aerial and the base station electronics are physically separated, so that the best possible coverage from the aerial is combined with easy access to the transceiver equipment. The link between the two is generally a coaxial cable, such as the UR67 and it is usually assumed that all energy transmitted from the base station goes to the transmitting aerial, no energy being transmitted from the coaxial cable. It is also assumed that the energy received by the base station has been picked up by the aerial, not by the coaxial cable itself. These assumptions are sufficiently valid where the mobile is some distance away from the cable, but are unacceptable if the propagation path between mobile and base station aerial is obstructed. If the obstruction is considerable and the mobile is only a few metres away from the cable, then the coupling between the mobile and cable could exceed the coupling between the aerials. In a radiating cable* system the cable is designed to couple with the surroundings and there are at least three ways in which this may be achieved: the outer conductor is made as a solid continuous sheet, but with a part missing in the form of a long slot, the edges of which run parallel to the cable axis; the outer conductor is constructed as a braid, woven loosely; or the outer conductor is constructed as a long sheet covering the entire cable circumference but with a series of holes or slots punched in the sheet.

Path loss components

In designing a communication system in which the base station aerial has been replaced by a radiating cable, the path loss between base and mobile can be conveniently split up into three components.

Coupling. This is the difference in dB between the power entering the radiating cable and the power picked up by a tuned dipole located some 2 to 5 metres from the cable's axis and close to the transmitter end. Due to the variations in the received power (see 'standing waves' below) the coupling tends to be the mean difference as the dipole is moved about in the region of the location indicated. Different sources quote coupling at different ranges, hence the 2-5 metres bracket. Cree and Giles tested eight different cables and gave the measured coupling in the region 50-110dB, depending upon cable type, carrier frequency and mounting method. The cable manufacturer will usually specify the coupling for his own cable, though care should be taken in interpreting the conditions under which that coupling is valid. In general, as the frequency is increased the coupling loosens, giving a weaker received signal. The results of Cree and Giles indicate a change of 6dB per octave over the range 420kHz-460MHz. Similar tests at STL over the range 60MHz-156MHz have given 4.8dB per octave, and tests on one particular cable at low and medium frequencies gave a relationship suggesting 3.5dB per frequency octave in the region 155kHz-760kHz with a very good fit to this curve, as shown in Fig. 1. Harms et al5 studied the effect on cable coupling as the method of cable mounting is altered. Based on two different cable types (one with five small slots per inch of cable, and the other a 64° slot running along the cable axis) the path loss relative to a cable suspended one metre above ground was found to increase by the following amounts:

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Path Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable laid on grass</td>
<td>4dB</td>
</tr>
<tr>
<td>Cable laid on concrete</td>
<td>6dB</td>
</tr>
<tr>
<td>Cable located in stone drain</td>
<td>7dB</td>
</tr>
<tr>
<td>Cable buried in soil inside a 3-inch plastic pipe</td>
<td>14dB</td>
</tr>
<tr>
<td>Cable buried in soil with protecting pipe (moisture dependent)</td>
<td>13-22dB</td>
</tr>
</tbody>
</table>

Tests have shown that as the degree of moisture in the ground increases, the coupling loss drops. A number of tests have been carried out to establish the rate at which the coupling loss increases as the radial range is increased. Typical values for v.h.f. are 5dB/distance doubling for ranges from 3 metres to 15 metres, increasing to some 10dB/distance doubling for 60 to 100 metres. At f.t./m.f. the rate of decay is greater, typical values being 8.5dB/distance doubling around 5 metres, increasing to 20.2dB/distance doubling around 10 metres. In all cases there is a fair spread between configurations, as shown in Fig. 2, the curves being based on some 63 v.h.f. combinations of cable type, mounting method, range and frequency.

Insertion loss. The definition and characteristics are as for standard coaxial cables. For radiating cables there is a wide choice, with typical values from 20 to 50dB/km at 100MHz. In general, the loss increases as the diameter is reduced, and cost is reduced. The loss increases with frequency at a rate which is similar to typical conventional cables such as the UR67. With some radiating cables the loss increases significantly when the cable is laid directly on a conducting or lossy surface such as concrete or iron. This is particularly so with some of the cables where the outer conductor is removed for more than 1/3 of the surface.

Standing waves. If the path loss is measured between a radiating cable and a mobile aerial which is moving in a direction parallel to the cable axis, a number of variations will be observed. Neighbouring path loss maxima are separated by a distance which is generally just under the free-space wavelength and the difference between such a maximum and the next minimum may be of the order of 30dB. The loss maxima are, however, very narrow and a small movement of the aerial will reduce the loss substantially. These standing waves are repeatable and can be found in different degrees with any frequency and on many sites. The author has studied many different cables but has never found a cable which is completely without them, although Yoshida suggests a that with a particular cable design this phenomenon may be removed. It is the presence of the standing waves which makes it imperative to average the coupling over some distance, as suggested above.
Modulation effects

The deep minima of signal level will give rise to an amplitude modulation which can be very noticeable in a moving a.m. receiver. It is sometimes assumed that this modulation effect can be completely bypassed by using f.m. transceivers and operating the receiver in the limiting condition. Recent work at STL has investigated the r.f. phase variation experienced by a receiver moving parallel to a cable energized at 105MHz. Figure 4 shows the result of some of this work, indicating large excursions from a linear phase relationship the average deviation being around 1.15°/metre. With a receiver moving at a speed of 150km/hour, this yields a modulation with a deviation of 0.013kHz. If the transceivers operate with a maximum deviation of ±2.5kHz this small f.m. noise still imposes an upper bound on the achievable s/n ratio. It is an improvement on the a.m. case, but may prove acceptable for some tone signalling applications where the broadening of the tone spectrum might introduce errors.

Applications

Propagation conditions in many tunnels are such that reliable v.h.f. or u.h.f. propagation is difficult to achieve with conventional base station dipole or Yagi arrays. A much better result can be expected with a properly designed radiating cable system connected to the base station transceiver and laid along the tunnel wall or roof. Such systems have been successfully designed in many cities. Breitenbach⁴ refers to the use of cables for the S-Bahn in Munich and for the U-Bahn at Hanover. Martin and Webster⁵ describe work done for coal mines in Britain, and Yoshiyasu et al⁶ describe test results from railways in Japan using radiating cables. Above ground a number of other applications exist. Harms and Martin⁷ show that the UK Transport and Road Research Laboratory have been considering the feasibility of using radiating cables as a means of achieving a well-controlled radiation field for transmitting information from the roadside to drivers.

Johannessen and Blair⁸ show how cables installed in a building can achieve a good coverage inside the building with minimum frequency spectrum distortion. In this building a freely radiating antenna was considered as an alternative, but it was found that a conventional aerial located on the roof and giving the same coverage inside the building would pollute the spectrum well outside the required geographical coverage area, by an amount which was in the region of 30-40dB stronger than in the radiating cable case. Deane has shown⁹ the remarkable feature of radiating cables, which is the rapid decay in signal beyond the cable end — one of the reasons for using the cables where pollution must be minimized. The cases quoted above substantiate the argument that a radiating cable can be used to advantage where it is known that the movements of the mobiles enable the cable always to be positioned within some 20-100 metres of them.

Power loss calculation

By way of an example of the kind of calculation necessary for an installation, consider a building with two floors and a ground floor layout as shown in Fig. 3. It is proposed to use a radiating cable with coupling at 3m of 80dB and insertion loss 50dB/km at 450MHz. The receiver is assumed to need —132dBW from an aerial which has a loss of 8dB relative to a dipole. Reasonable coverage should be achieved by locating the base station in the security area and locating a radiating cable in the ceiling of the ground floor with one arm towards each of the extremes of the building. In the factory area the cable is looped to overcome the extensive shadowing likely to exist with large machinery and extra shelving. Maximum distance from the cable becomes 25 metres, giving a coupling of around 100dB. Maximum cable length will be 150 metres, with an insertion loss of 0.15 x 50 = 8dB. From Fig. 1 of reference 8 is obtained a one-sigma variation of 6dB which must be increased to 12dB to give 90% probability of coverage. This factor is realistic, since extensive tests indicated that the distribution approximates closely to a normal distribution at least up to the 95% values. Allowing for a 3dB loss where the transmitter power is split into the two cable paths, we get a transmitter requirement of —132dBW + 8 + 80 + 6 + 6 + 8 + 8 + 12 + 3 = —1dBW, which is well within what a standard base station transmitter provides. A 10 watt transmission provides some margin for internal obstructions.

Measurement

Before measuring the performance of a radiating cable it is important to ensure that the transmitter connected to the cable is properly screened, so that the path between the transmitter and receiver is not bypassed. If it is bypassed, then the results will not allow extrapolation to other site conditions. It may be found convenient to derive the statistically best fitting straight line to a plot of received signal level against distance from the transmitting end of the cable, since the intercept of this line conveniently yields the coupling, and the slope approximates to the insertion loss. The paper in reference 2 indicates the weakness of this approach and outlines a more accurate method, using the probability distribution, which also includes an allowance for the standing waves.

Installation

Some cable manufacturers provide special connectors, since the cable dimension is likely to be different from standard coaxial cables. Where connectors are not available, small diecast...
boxes have been used. The end of the cable away from the base station may be terminated in a resistor to keep down standing waves on the cable itself. In some cases it is useful to connect the end of the cable to an aerial via a suitably large capacitance, such as a water tower or yard outside the building to be included in the coverage area. Many buildings will have an artificial ceiling to hide service ducts for feed cables to electric lights and gas pipes, heating pipes, etc., which can often be used for the radiating cables. If, after installation, it is found that a part of the building, for example, a field strength is low it will often be sufficient to break the radiating cable at the nearest point, form a T-junction and lay another arm of the cable into the area with the weak signal. A simple form of T is a hybrid, made up of standard cable with the same Z0 as the radiating cable and three arms at 0.15 and one at 0.65 times the cable wavelength.

Cable costs
Cable cost is highly dependent on insertion loss, and from some cable manufacturers the radiating cable sells at about the same price as a coaxial feed cable of similar insertion loss. 1978 prices quoted for cables with a loss in the bracket 20 - 40dB/km at 100MHz are generally in the range £500 - £2500 for one kilometre length.

The author
Mr Johannessen graduated from the University of St Andrews in 1962. For three years he worked with the Radio Division of Standard Telephones and Cables developing navigational aids for aviation. This was followed by a period at ICL, where he was particularly concerned with the efficient interfacing between computers and their peripherals. From 1968 he has been with Standard Telecommunication Laboratories where he is a principal research engineer. Recent responsibilities have included the study of more efficient use of communication and navigation systems, the development of low cost navigational aids and the evaluation of radiating cables for applications where spectrum conservation is of particular importance.

Much of the information presented in this paper forms part of a study carried out by STL for the Transport and Road Research Laboratory and is published by permission of the Director. The author also acknowledges the cooperation from many colleagues both at TRRL and STL have taken part in the work relating to this paper.

References
3. United States Patent Specification 3795915,

CHIP MAKERS GO UP-MARKET

SEMICONDUCTOR MANUFACTURERS have learnt their lesson from the collapse of the digital watch market over the past two years. Fairchild's latest annual report, just published, for 1977 shows that the company made a loss of $25 million on consumer products. National Semiconductor's last annual report, for the year to the end of March 1977, showed a similar picture, digital watches causing a fall in corporate profits to only $10 million on sales of nearly $300 million.

This may be an example of the effects of miniaturisation. The more devices are produced the cheaper they become, but the more have to be sold to bring in the same return. It's a fact of economics that the chip makers will have to learn to deal with.

National's new factory, just opened in Greenock, Scotland, has been built with the intention of better serving the European market which is, they estimate, going to become extremely important in the near future. By 1979, when it comes fully on stream, National will have spent more than $10 million on it. The markets they will be going for are telecommunications, which they believe has only been held back temporarily by economic circumstances and which is about to benefit from the need for a new generation of equipment, and the top end of the consumer market, including video recording. They estimate that the needs of the European consumer are, in equipment such as hi-fi and colour tv, many years ahead of those of his counterpart in the United States, and National want to be ready to pounce when the market improves. They are now making the M1011 Dolby noise reduction chip and expect to produce 300,000 of them a month by October, though most of them will go to Japan.

All eyes in hi-fi now seem turned to the upper end of the market. A recent new product launch by IIT made it clear that they are about to abandon the cheaper, mass market end with which they have been connected and go for the better-heeled customer. Renewed interest in home video recording, with launches of the Video Home Recorder from JVC and the Betamax from Sony following one another in quick succession, indicates that consumer product makers want to make products with a higher unit price that will sell to those less affected by changes in economic conditions. Allied with that, the benefits of North Sea oil, though perhaps less than had once been thought, will make the European market more attractive.

The colour tv market will become particularly important to National. European makers, they say, "incorporate up to ten times more value in integrated circuits that their US counterparts," because more digital functions are being put on the set. The Germans, for example, are interested in microprocessor control of tv sets to plan up to a week's viewing, and the display of time in one corner of the screen.

National also expect the European data processing industry to provide them with a lot of business from companies of all sizes.

National European marketing director Tom Reynolds told Wireless World, however, that the only market segment they did not expect much from is the military and communications market. "It's growing, but it's far slower, and we don't see that changing. The avionics sector may grow but it still has a boundary on how much it can grow."

National estimate that the European market and the Japanese market are about equal for semiconductor chips, but regard the market in Japan as closed. "We've broken a few fingernails trying to get into that market," said European general manager Charles Arkebauer. Both Japan and Europe are currently about half the size of the American market and growing at 12% a year.

Wire is extraordinary but the National plant at Greenock is that it produced the first known 4in linear bipolar wafer in the world last December, only eight months after a fire which completely destroyed the wafer fabrication area. The first wafers are said to make $40 million in sales last year. The capacity of the plant will, when it is fully equipped and manned next year, reach 30,000 to 40,000 wafers a month, amounting to between 40 and 50 million chips a month. One advantage of the increase in wafer size is that the yield, the number of chips per slice, increases because the number of wasted chips around the perimeter of the slice becomes a smaller proportion of the total. National intend to introduce 5in wafer production once the present investment programme has been completed but with each size increase above 4in the advantages have run out.

There is no mask production at Greenock. "That would mean another massive investment, and there are excellent mask-making resources in the UK already," said Tom Reynolds. The Greenock plant, already representing 30 or 40% of National investment programme. The chipes made in Greenock will be shipped out to various assembly plants around the world.
Microwave landing — the decision

The All Weather Operations Divisional meeting, held by the International Civil Aviation Organization in Montreal to decide on the microwave landing system to be used world-wide from the 1980s has recommended the international adoption of the Australian-American system — the time-referenced scanning beam. The British-developed Doppler system was voted out by 39 votes to 24, with eight abstentions. Voting was by means of a secret ballot, a French suggestion to reduce the possibilities of "horse-trading."

A statement issued by the British Civil Aviation Authority who had proposed the Plessey Doppler system, reads: "The UK delegation is naturally disappointed that the ... meeting did not select Doppler m.l.s., since it believes that this is the better and more mature system." It pointed out that the delegates had to plough through about 2000 pages of highly technical matter in a very short time — a task not easy for those who had not been directly involved with m.l.s. The statement goes on to say that by a good deal of work remaining to be done before m.l.s. can be used to full advantage and concludes "The delegation congratulates the USA and Australia, the joint proposers of the TRSB/Interscan system and wishes them every success in its continuing development."

This rather waspish valediction is explained by the feeling, held by the CAA and Plessey (and some Americans), that TRSB is not yet a complete system. The original proposal and relevant costing submitted to ICAO entailed the use of a Compact aerial (a "thinned," lower-cost type). Most testing has, however, been carried out using a "fully-filled" array and the results given to ICAO have been obtained using this aerial. Several other types, the AMSCAN, developed by Texas Instruments, a Rotman lens and Compact were all developed to reduce the cost of TRSB, but only the expensive fully-filled phased array seems capable of effective landing guidance.

In view of the fact that interest has, in the last few years, been almost exclusively concentrated on TRSB/Interscan and Doppler, it is surprising that the German DLS (D.m.e.-based Landing System) began to rally considerable support during the meeting. Its advantages are its relatively low cost, its simplicity and its use of a smaller spectrum allocation than the US/Australian/British systems, and it attracted a great deal of support from the smaller countries, some of which have not yet been able to install the much older instrument landing system (i.l.s.).

Electrets may reduce chances to hide radiation risks

A matchbox-sized warning device may make those living and working in areas where there is a risk of radioactive contamination less reliant on official, possibly self-interested, reports of contamination levels.

The equipment which measures radioactive dosage has, until now, been too expensive and cumbersome for the man in the street to use. Now the French Laboratoire d’Electricité Générale de l’Ecole Superieure de Physique at de Chimie Industrielles in Paris has developed and licensed a cheap device which will provide a pocket alarm once a given radiation dose has been exceeded.

There are two main types of radiation measurement device. One measures the equivalent doses received over a period by people in or near irradiated areas. These dosimeters may use photographic films sensitive to X, gamma and beta radiation which are developed at regular intervals. Radiographic, on the other hand, is fluorescent glasses whose fluorescent emissions are proportional to the absorbed ultra-violet dose, and stylosimeters with ionisation chambers, which are electrometers whose charge decreases as a function of the radiation dose. The first two cannot be read directly by the user and accidents may be detected only after a time. The third device provide instant readings but they are fragile, expensive and, if the electrometer is accidentally discharged, un reliabel.

The second type of device, called flow-
Engineering education may be the political battleground of the '80s

ANY RECOMMENDATIONS the Finnistone inquiry makes for the education of engineers will not be implemented if they do not meet the collective approval of the engineering profession and Britain's universities.

Although the Engineering Professors' Conference, which represents Britain's 500 professors of engineering in 55 universities, is unlikely to state this quite so baldly in its evidence, the Finnistone Committee inquiry into the engineering profession recently asked the 120 professors who attended the annual meeting of the conference at King's College, London, in early April seemed united on the need to present to Finnistone a unanimous view. The conference, which met in closed session for most of its three days, heard some tough talking, but the degree of willingness to do anything to achieve this was, according to some of those present, remarkable for a group of men not usually noted for either reticence or the ability to compromise.

Most of the arguments appeared to be about means, not ends, and true this means that Finnistone is likely to receive a submission from the elite of the science teaching profession that will burn a hole in his desk.

The chairman of the Conference committee, Professor of Salford University, seemed pleased with the way a meeting had gone, though he was unwilling to say what proposals they would put to Finnistone until they had approved a final draft submitted to it by the inquiry, probably in mid-May.

Nevertheless it appears that the evidence is likely to contain a proposal for increasing the length of engineering degree courses from three years to four. The extra year would be aimed especially at more able students. The degree should be retained as the qualification for entry to the engineering profession. There should be a greater contact between industry and the universities. Students should start periods of industrial training earlier in their courses than they now do, and university departments should be more willing to offer their skills to industry.

Students should have a trial period of industrial training before their degrees, and this should come early in the course, preferably between leaving school and going to university, and certainly before starting their third year. The experience would be valuable, say the professors, in teaching students the way industry is "organised, or disorganised," the way the trade unions operate and so on. It would, in effect, improve their design to students who have never seen anything manufactured.

The conference is aware that there are not enough training places in industry for the students who need them. But the university departments will have to make a greater effort to persuade firms, particularly the smaller and middle-sized companies, that it would be in their interest to provide the places. The trade unions should also realise that the students undergoing training must be allowed to try their hands at tasks normally done by others. The government, in its turn, must provide the money to make the four year courses both possible and worthwhile.

But the professors have laid greatest stress on their own part in the impoving of engineering education standards, which they see as the key to the rejuvenation of British industry and the economy. As well as acknowledging the extra work involved in greater contact with industry, the professors call for a halt to the freezing of university posts. Additional staff will be needed with considerable industrial experience, they say, if science and technology is to be reconciled with greater importance as a qualification for senior lectureships and even chairs in engineering than it now is. At the moment there is too much emphasis on research and published papers as qualifications for university posts. Higher pay would be needed to attract the talent the universities wanted.

The submission is also going to contain some strongly-worded proposals on secondary education. For example, Denis Healey's budget proposals for increased spending on the training of mathematic teachers is unlikely to go far enough for the professors, who think that maths teaching, as well as that of science and modern languages, is one of the first important if engineering is to be benefit. In addition, they support the Standing Conference for University Entrance in proposing a common core syllabus in sixth-form mathematics. They see no advantage in the proposed introduction of N and F level exams, and say that A level should be retained as the basis for entrance to university. Schools should have closer links with local industry, the universities and professional institutions to give a more informed picture of industry than pupils seem currently to absorb. There should be no common system of examinations at 16 plus.

More broadly, the professors were anxious to stress that they were keen to increase the quality of engineers, not necessarily the quantity. They identify three classes of engineers: "basic, creative or potential management"; who would benefit from the degree's extra year; the average engineer "with sound knowledge of engineering practice and responsible experience," who has been too academic; and the technician, who would not need a degree, but would provide vital, highly-skilled support for the others two.

More technicians need to be trained, they say.

The meeting was addressed by Sir Kenneth Berrill, head of the Government 'think tank', at one of the closed sessions. He told the meeting that the problems of industry in general and education in particular were so complex that no ready solutions could easily be found. But he urged that the professors arm themselves with a closely-argued case for putting their demands on the floor of the debate that would follow it, the Government. It appears that his off-the-record remarks revealed a rather gloomy future for the British economy.

The responsibility for implementing Finnistone will belong to the Government of the day. Those proposals affecting education will be the responsibility of the Minister for Education and Science, whoever that will be. There's little doubt that the professors have got the bit between their teeth. In the four years since the Engineering Professors' Conference succeeded an earlier 20-year old body it has grown from what one committee member described as a social club to a fairly militant, active and determined pressure group.

How effective they will be remains to be seen. One is reminded of the 1947 battle over the introduction of the health service, especially when delegates seem so self-conscious about their lack of numerical strength. But the degree is compared with that of the medical profession — in a single hour medicine or branches of it were mentioned half a dozen times.

In the late '40s, of course, the doctors lost. But there are important differences. Firstly the doctors had wanted to avoid change which, as they saw it, would erode status they had already attained. The professors want to institute changes which will bring them, and hence they believe engineering, a status it currently lacks. Secondly, the education ministry has never been the source and inspiration of much political ambition. The DES is something of a backwater for an aspiring Prime Minister. But even in the event that the Prime Minister of the day were to break with precedent and appoint as Secretary for Education the best of the talent available to him there seems no-one on either from industry or the universities who would remotely think of an Aneurin Bevan. The Professors' chances of getting their way look good.

Renewed attack on Hitachi

The electronic components working party of the National Economic Development Council has produced a report saying that, had Hitachi's application for a £500m factory to be built in the UK been successful, 5,000 jobs would have been lost in the UK electronics industry.

Largely repeating arguments put forward before Hitachi were forced to withdraw their application, the working party, whose members include Jack Akerman of Mullard and five representatives of trade unions, including the chairman, said that the plan would have added capacity to an industry which already had too much.

Particular attention is drawn to "Hitachi's operating methods." This would not keep promises to buy a certain proportion of British made components for its UK sets, and there were no indications which could be applied if the company did not keep its promises. The company would have pleased "technological problems" in reverting to its normal supplies of supply.

The party calls for greater management skills and greater capital investment to halt the rise in imports and increase exports. Imports must be reduced by 5 per cent a year, producing a trade surplus in the industry of £270m by 1980. The current deficit is £170m. Imports must be reduced to a quarter of the UK market. British output would need to double. Because of over-capacity this implies somewhat less than double the capital investment.

www.americanradiohistory.com
New signs of activity in the s.a.w. market

THE PARIS Electronics Components Show in April was the scene of some furore lobbying by the makers of surface acoustic wave (s.a.w.) devices. GTE, for example, seemed anxious to make it known that they were ahead in s.a.w. technology, while Plessey were stressing their ability to produce reliably in quantity. Others in the ring, include Philips/Mullard, Siemens and Plessey.

S.a.w. filters for use in tv sets are now cheap enough to compete with conventional LC filters. That is why most tv makers have started or are about to start using them in tv i.f. strips. Rank say they now use them in teletext decoders but, from July, they will be phasing Mullard and Plessey s.a.w.s into all their sets. Decca say they have just produced a prototype at various designs. They do not use the circuit other than within a year. Thorn are not using them yet but hope to start production within a month or so using Plessey devices.

GEC say they are unlikely to put them into any of their sets this year, though they are looking at various designs. New receivers will have provision for s.a.w. but they are waiting for newer devices to arrive which do not present such a great reflection problem. They say GEC is not in the GTE devices though they will have to wait for one that is suitable for use in British sets. The devices, says GEC, would be best suited to use in teletex decoders through their present decoders do not use them.

There have been a number of reasons for the expense until now: the low yields achieved from each batch of devices; the expense of the material used; and the cost of the equipment needed to produce the circuits. Now yields have improved, cheaper material is used and the equipment cost can be written off.

Suppliers admit privately that the s.a.w. market has not so far lived up to the hopes expressed for it when devices first began to appear a couple of years ago. Demand may be as low as half capacity, less in some cases. Philo claim the delivery of their millionth chip, to GTE subsidiary Saba, in Paris, but clearly they had expected to have sold the millionth device some time before that. Plessey, who independent sources agree seem to be up at the front of the field, began deliveries at the beginning of May, 1977.

There seems no clear reason why there should be a sudden rush for s.a.w. other than what one source described as a bandwagon effect. Once one maker begins to use them, as they have on the Continent, the others follow. The price is now competitive and there is the additional advantage that the sets do not need alignment either before despatch or, vitally important for our traditionally rental market, after they leave the factory.

Teletex is one reason for the change. It requires more stable circuitry, with better phase response which would be difficult to achieve using conventional i.f. strips. One reason for all the activity in Paris may have been that the German Bildschirmtext service may begin before the autumn. Many eyes were on Siemens, who might be expected to have an advantage in the German market, but it appears that their market will be fairly local, whereas Plessey and the rest will have their eyes on the world market, with all the complexity of different standards that that involves. Siemens were content to announce that they were now making their s.a.w. devices on lithium niobate, which the others are already using.

In general, four types of material are used: quartz, zinc oxide, bismuth germanium oxide and lithium niobate. The first is used, where temperature stability is of over-riding importance, bismuth germanium oxide offers a delay of around 6ns/cm, about twice that for other materials, and this makes it useful where the wavelength at the lower frequencies used would otherwise increase the size of the chip. Lithium niobate, however, has a much greater coupling coefficient than the others, around 3% compared with 1% or less.

Siemens originally intended to use a ceramic material with piezo-electric properties as the substrate for the comb-like filter structures. "However, the high cost of manufacture and low constancy of this material were put in keeping with the low price level demanded for television sets." LiNbO3; single crystals, in contrast, open the way to economical batch production with optimum filter characteristics and the highest possible frequency accuracy.

In addition the devices have not been easy to design into a tv set. The insertion loss of a conventional LC filter is around 3dB, while that for an s.a.w. filter is at least 10dB greater. They have usually had to be supplied with a preamplifier to supply the right level and preserve the signal-to-noise ratio, but the higher the gain of the preamplifier the more likely it is that breakthroughs will occur from the tuner's input to its output, diminishing the sharpness of the traps at either side of the fundamental frequency of the filter. The output impedance of the tuners is also complex, with frequency, it may vary with frequency from 30 to 40 ohms at angles of ±75° or so. This has made them difficult to match into the following i.f. i.c. causing reflections.

Plessey besides offering s.a.w. filters to suit NTSC and British and European PAL systems, have produced a new preamplifier, the SL1430, for their s.a.w. devices. It requires only an external capacitor, they say, and its balanced differential output couples straight into the s.a.w. filter, which then goes into the video i.f. i.c. input.

All the makers now stress that the techniques now in use make available devices which are consistent in performance in larger quantities. GTE are also stressing the importance of making the devices to CCIR PAL standards.

There seems no reason why s.a.w. devices should be confined to tv sets.

The military market for s.a.w. is well ahead of the consumer market. Cost is less of an object than performance, and s.a.w. is used, for example, in the British Airborne Early Warning System (AWACS) and other projects.

One outcome of the slow start has been that rival makers have been talking earnestly to one another when selling the idea of the technology to the outside, buying world, but are prepared to cut one another's throats now that orders can be landed. And once the customers start to get on the bandwagon we may expect to see further rapid improvements in their performance. The next stage will be to combine the preamplifier and i.f. stages in a single package.

MAVIS—assistance for the handicapped

At a recent colloquium on home television data systems, Julia Howlett of the National Physical Laboratory described MAVIS, which is a microprocessor/television set combination intended as an extremely versatile teletext display and aid for motor-handicapped children.

A Zilog Z80 micro, with 10k r.a.m. and 14K p.r.o.m. for short-term and programme storage, a baffle memory for bulk storage and a cassette facility, is contained in a small unit attached to a domestic television receiver.

The applications of the system are such that severely handicapped children and adults who are able to do hardly anything for themselves are able to play, draw, write, calculate, control peripheral equipment, operate toys, control fires, lights, etc., using a puff/puck tube, pedal, joystick or one of several arrangements of keys or switches.

The system is essentially a word processor with additional commands for the control of external equipment (fires, lights, etc.). In its application as a controller, a command can be "typed" on the screen, using any of the methods of input, and the word "command" selected from a matrix of available instructions, whereupon the desired action will be carried out.

Work is currently being carried out on the simulation of speech and many suggestions have emerged from demonstrations already given for further application, not only for the handicapped, but as a straightforward information system for domestic use.

MAVIS is the result of cooperation between the NPL and Loughborough University of Technology. Ferranti Ltd at Moston are currently building the second prototype.
FCC produces ideas for better spectrum use

Laboratory and field test results show that the existing mobile radio bands could hold seven to ten times more channels using technology that exists today, according to a study commissioned by the FCC. News of the still unfinished study, by Dr. Bruce Lusignan of Stanford University, came in a report. "Spectrum-efficient technology for voice communications" by Raymond M. Wilmotte, plans and policy co-ordinator of the FCC's task force (See WW News, February '77, p.12). The study was undertaken to see whether the existing US mobile radio bands could be used more effectively to allow greater traffic.

These test results have now given the force sufficient confidence to brief the Commission about a spectrum-efficient technology and its implications. The spectrum-efficient technology referred to is a narrow-band system which uses s.s.b. rather than f.m. It empowers the user to retransmit and a newly-developed frequency combinator which enable voice signals to be transmitted using a channel bandwidth of 2.9kHz, instead of the 15 to 30kHz currently required. Although s.s.b. is estimated to be up to $90 million per system than current f.m. systems, the signal quality is just about the same as that using current f.m. systems, and under high-interference conditions it is usable whereas f.m. systems and under high-interference conditions it is usable where the f.m. signal is unintelligible.

A result, as using the narrow band technology exclusively, the number of land mobile channels possible below 470MHz could increase from 1,586 to 12,390 and the channels above 800MHz could increase from 600 to 6,000. By interlacing the narrow band channels with the existing channels, these numbers could increase to 3,434 and 2,400 respectively. The 470 to 512MHz band was not included because of the relatively small areas available for use by land mobile services.

Currently, 56MHz is allocated for land mobile radio use, and if narrow band technology is used exclusively, the existing land mobile radio service could be accommodated in 5MHz, thus freeing 50MHz (not including the 800MHz domestic public land mobile or general reserves).

Wilmotte's reasons for the non-appearance of this technology until now is that current forces have required manufacturers to place a much higher emphasis on cost per unit than on spectrum efficiency and that, for the last two decades, attention and money for research has been largely focused on digital rather than analogue techniques. For these reasons, the task force focused its attention on analogue techniques.

According to Wilmotte, in introducing a new technology into the national communications system, the FCC will be entering areas in which it is relatively inexperienced. A procedure could be established by reserving spectrum space for each service, to be used exclusively by new technology having the specified frequency characteristics. This space would be gradually filled by the new users. Switching from operations using current, less efficient technology. The space vacated by the less efficient technology would then be available in which to introduce even more efficient spectrum-saving technology.

Sony close on Matsushita's heels in home video

Though Sony's Betamax was announced three years ago — six months before its VHS competition — its UK debut followed that of Matsushita's VHS by weeks. Obviously concerned at the timing of JVC's UK introduction of VHS at the end of February, Sony brought forth its "launch" (though not apparently its deliveries) from later in the year, staging a very professional show that was led by Sony chairman Akio Morita.

Betamax actually had a one year lead in the market, but Akira Hirada of Matsushita's overseas operations division told journalists some eight months ago that they were "catching up fast in Japan and especially in the U.S.," claiming a 40 to 50 per cent for VHS. By 1980 JVC recently said they expect VHS to have 65 per cent of the U.S. MARKET. Sony say they have already sold 500,000 Betamax units in the U.S.A. and Japan. (At the Berlin radio exhibition they quoted a figure of 300,000, which indicates a selling rate of around 25,000 per month.)

At the VHS launch at the end of February JVC put the UK market at 250,000 machines by 1980 and said that they expect the UK to absorb 100,000 units (all makes) in the next 12 months. Others are less optimistic. Marketing executive Joe Clarke of 3M reckons that "British reception" and at a recent press visit to 3M's tape manufacturing plant at Gorseinon estimated 15,000 VHS units will be in the UK by the year end. Peter Hutchings, director of the recording materials division at 3M, told Wireless World that while he saw a steady increase in video tape sales, that was in the educational market, and that current domestic sales are insignificant "and will stay so until the (recorder) price drops to around £500." Perhaps this will come sooner rather than later. Either way, 3M expects to have Betamax cassettes available — they are already a licensee in the US — when the machines arrive in June and is currently negotiating with Matsushita over VHS cassette manufacturing.

Main point of difference between these long-play machines and their predecessors is higher recording density, leading to longer playing time and lower tape consumption. At around £13 to £14 recommended retail for a three-hour cassette, tape cost works out at 7p per minute (if the tape is used once). It is in response to this situation that Philips dramatically cut the price of their cassettes in the UK — their N1700 plays for 2½ hours, earlier models one hour — so much that other tape makers say they can't make it at that price and make a profit: "margins are trimmed to dangerous levels," Peter Hutchings recently told journalists. The machines themselves are similar priced, the Sony SLV6000UB at £750 "expected" retail and the

News in brief

Scenic Sounds of London are now selling the Transamp L2 differential input-output amplifier module for recording console microphone input circuitry and medical and industrial use. Noise figure can be less than 1dB. Say Transamp. Fince say Scenic Sounds is £20.

The Recording Industry of America (RIAA) have suggested a new playback curve which reduces disc rumble. The present RIAA curve exaggerates rumble by lifting the bass, some 20dB at 20Hz. The new curve rolls off below 30kHz with a relative level of reference to 1kHz of — 0.2dB at 2Hz.

Voyager 2, launched last summer to fly past Jupiter in 1979, has developed a fault in its radio receivers. One of the two receivers may have failed and the other may have difficulty receiving communications from earth. The craft switches receivers if a command is not received from Earth for seven days. Engineers are trying to study telemetry from Voyager 2 (there are no transponders to simulate conditions and rectify the fault. By mid-April the two Voyagers were about 300 million miles from Earth.

The ESA Meteosat 1 has been transmitting meteorological data daily since the end of September to the European space operations centre at Darmstadt from the French naval vessel Henri Poincaré. Every three hours the ship's position, wind and sea temperatures, and other information is sent via satellite from special equipment which future ships may carry as standard.

The replacement for OTS 1, destroyed last year (WW News Nov. '77 p.53, Jan. '78 p.35) may now be launched on or after May 4. It has already been delayed because of technical problems with the Japanese communications satellite which had been due to precede it, and because of that old favourite, faulty cable connectors.

The Soviet Union launched its 1000th Cosmos satellite on March 31. Cosmos 1000 will supply navigational information, constantly sending out signals of fixed frequency to allow ships accurately to determine their position when weather conditions make this impossible using coastal and global ground systems, or the stars. The initial period of revolution is 104 minutes, apogee 978 km, and orbit inclination 83°.

According to Tass Correspondent Nikolai Zhelezov, writing in Soviet News, "In establishing the co-ordinates, use is made of the Doppler effect. The frequency of the signals changes because of the speed of the satellite. Using this data an electronic navigator can produce navigational information in a convenient form — geographical co-ordinates and precise astronomical time."

The principle appears to be similar to that of the Transit satellites used in the US Navy's navigation satellite system (M7 Feb. 1975, pp.52-57). Such satellites should make possible a large degree of automatic navigation.

Mr Ken Jolly, who retired as director of the British Radio Equipment Manufacturers' Association and the Radio Industry Council on March 31, has been succeeded by Mr Oliver Sutton CBE.

Continued on page 77
The Morsemaker
A digital instrument for producing random Morse signals

by Murray Ward, B.Sc., M.Sc. Ed.

This unit uses c.m.o.s. i.c.s powered from a 9V battery to produce a continuous and random string of Morse numbers or letters. Because the speed can be varied over a wide range, the instrument enables anyone learning Morse to practise at their own pace. A rotary switch selects numbers, short letters only, or any letter. Other controls are for pitch and volume. A key jack is also provided so that the instrument can function as an audio oscillator for sending practice.

Morse characters can be generated digitally with one clock pulse by making use of the time relations in the code. A dot is one unit of time, a dash is three units, the space between dots and dashes within a character is one unit and the space between characters is three units.

For numbers, the Morsemaker takes advantage of two characteristics. Each number contains five elements, and within each number there is at most one changeover from dots to dashes or vice-versa. Numbers are produced by selecting at random the first element, either a dot or dash, and one changeover point after the first, second, third, or fourth element, or no changeover for numbers 5 and 0. The number is then ended after the fifth element.

For letters a different strategy has to be used because they vary in length from one element to four, and most of them change over from dots to dashes more than once. Therefore, letters are generated by selecting at random the first element, the changeover points, and the end of the letter after the first, second, third, or fourth element. In this way all of the possible combinations of two elements taken 1, 2, 3, or 4 at a time are produced. Because only 26 combinations are required, the four extra groups have to be eliminated. A block diagram of the Morsemaker is shown in Fig. 1. The complete instrument only uses NOR gates and D type flip-flops as shown in Fig. 2. A tone oscillator, which is formed by two NOR gates, provides the audio output and also a means of

Fig. 1. Block diagram of the Morsemaker. All of the circuit operations are carried out by NOR-gates and D-type flip-flops.
“randomising” the sequence of characters. A similar circuit with a longer time constant forms the clock which operates at the dot frequency. In the randomising circuit a diode modifies the duty cycle of the oscillator by altering the charge and discharge time of the capacitor. This ensures that the string of characters is random.

The dash latch uses a D type flip-flop arranged to divide by two. The Q output is recombined with the clock pulses through an OR gate to fill the gap between alternate dots as shown in Fig. 3. This produces dashes that are 3 dots long and separated by the length of a dot. Any voltage spikes on the output of the latch are removed by a 10n capacity.

If clock pulses feeding the NOR gate are prevented from reaching the flip-flop, a string of dots is produced. This happens when both inputs to gate 4001/2b are low which in turn is dependent on the state of the dot/dash changeover latch. Therefore, the initial state of 4013/1a determines whether the character to be generated begins with a dash or a dot.

The output of the dash-latch is connected to a stepping chain composed of three divide-by-two flip-flops whose outputs form a six step binary count as each element in a character is produced. At the beginning of each character these flip-flops, together with the dash-latch, are reset so that outputs G, H, and K are high. In practice it is not necessary to use all of the 3 digits in the binary output, see table 1. For example, in step 6 which is used to signal the end of a number G H K is never reached, so H can be left out and step 6 defined by G K. Similarly, step 5 is used to end the longest letters and to effect the dot/dash changeover for the numbers 4 and 9. Steps 1 to 4 all contain K so K on its own will define step 5.

A second chain of four flip-flops forms the directing chain which determines the particular number or letter to be generated. Unlike the stepping chain whose state changes as a character is being generated, this one changes only

![Fig. 2. Complete circuit of the Morsemaker.](image)

Table 1

<table>
<thead>
<tr>
<th>Stepping chain</th>
<th>full version</th>
<th>short version</th>
<th>reset position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G H K</td>
<td>[G H]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G H K</td>
<td>[G H]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G H K</td>
<td>[G H]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G H K</td>
<td>[G H]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G H K</td>
<td>[K]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G H K</td>
<td>[G H]</td>
<td></td>
</tr>
</tbody>
</table>

End of number [G K]

Dot/dash changeover

Block letter combinations (V W X Y + V W X Y + V W X) [G H]

The square brackets have been included to make the stepping expressions easier to pick out; they have no mathematical significance.

[Diagram of circuit]

6013 Set & Reset

Unless shown otherwise, S and R pins are taken to earth
between characters and its state is “randomised” by a burst from the tone oscillator.

Production of characters
Table 2 shows the Boolean expressions for Morse characters. Number 2, which in Morse code is . . . — — , starts with a dot so at the beginning V must be low. At step 3 there is a changeover from dots to dashes, brought about by Y Z from the directing chain together with G H from the stepping chain.

Other numbers are produced in a similar way, except for 5 and 0 where W X prevents any changeover. The outputs of W and X can be combined in four ways, W X W X W X W X, so there is a 1 in 4 chance of a 5 or 0 in a long string of numbers. This is higher than the 1 in 5 needed for equal probability of all numbers, but in practice it is not noticeable. There is no particular reason for using WX as any one of the four combinations would serve equally well.

In the case of letters, for example X, the V output from the dot/dash changeover latch is high. Because X starts with a dash the change step from dash to dot is brought about by W [G H].

This produces a pulse at the C input of the changeover latch which changes state, and prevents dot pulses from the clock reaching the dash-latch. In this instance only two dots are produced because at step 4 the expression Y [G H] re-activates the changeover from dots to dashes. The letter X ends at step 5 with the term K.

Between characters
Several things happen in the period between one character coming to an end and the next starting as shown in the block diagram. While a number or letter is being produced the Q output of the control-latch is low. At the rotary switch that selects either numbers or letters, the character-end signal is a positive pulse. When this reaches the control-latch via two gates the latch changes state and four operations follow. One input of 4001/1c goes low to prevent any further pulses reaching the latch from the character-end circuits. The centre input of 4025/2c goes high to silence any audio output. The dash-latch and the latches in the stepping chain are reset. A burst of tone enters the directing chain via the “randomiser.” This burst continues until the next pulse reaches the control-latch via 4001/2a, resetting it to the Q high state ready for the next character to begin. There are short breaks in the tone supplied to the directing chain due to the diode in the “randomiser” oscillator. This prevents any possibility of the Morse-maker getting into a groove and repeating the same sequence of character. All of these operations take place on a period equal to three dots between the end of one character and the beginning of the next.

During this period the state of the changeover-latch is also made random so that the next character may begin with a dot or a dash. When the control-latch resets the stepping-chain, G and H go high. At various times during the “randomising” of the directing-chain, Y and Z are high and pulses reach the changeover-latch.

- [Diagram of circuit diagram]
Table 2 Boolean expressions for Morse characters

<table>
<thead>
<tr>
<th>Morse character numbers</th>
<th>Boolean expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: - - - -</td>
<td>Y Z [GH]</td>
</tr>
<tr>
<td>2: - - - -</td>
<td>Y Z [GH]</td>
</tr>
<tr>
<td>3: - - - -</td>
<td>Y Z [GH]</td>
</tr>
<tr>
<td>4: - - - -</td>
<td>Y Z [GH]</td>
</tr>
<tr>
<td>5: - - - -</td>
<td>WX inhibits changeover</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse character letters</td>
<td></td>
</tr>
<tr>
<td>1 element</td>
<td></td>
</tr>
<tr>
<td>E: T</td>
<td></td>
</tr>
<tr>
<td>2 elements</td>
<td></td>
</tr>
<tr>
<td>A: N</td>
<td>W</td>
</tr>
<tr>
<td>I: M</td>
<td>W</td>
</tr>
<tr>
<td>3 elements</td>
<td></td>
</tr>
<tr>
<td>R: K</td>
<td>W</td>
</tr>
<tr>
<td>U: G</td>
<td>WX</td>
</tr>
<tr>
<td>W: D</td>
<td>WX</td>
</tr>
<tr>
<td>S: O</td>
<td>WX</td>
</tr>
<tr>
<td>4 elements</td>
<td></td>
</tr>
<tr>
<td>(blocked)</td>
<td></td>
</tr>
<tr>
<td>E: C</td>
<td>W</td>
</tr>
<tr>
<td>P: X</td>
<td>WX</td>
</tr>
<tr>
<td>(blocked)</td>
<td></td>
</tr>
<tr>
<td>V:</td>
<td>W</td>
</tr>
<tr>
<td>L: Y</td>
<td>WX</td>
</tr>
<tr>
<td>(blocked)</td>
<td></td>
</tr>
<tr>
<td>J: B</td>
<td>WX</td>
</tr>
<tr>
<td>(blocked)</td>
<td></td>
</tr>
<tr>
<td>H:</td>
<td>WX</td>
</tr>
<tr>
<td>First element</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

From table 2 it can be seen that the expressions controlling the ends of letters are X Y Z [GH], X Y Z [GH], and Y Z [GH] for letters containing one, two and three elements respectively. Each of these contains the term Z. For letters of four elements Z is low. This enables the Morsemaker to output only short letters by preventing Z from going low. To do this the output of flip-flop 4013/3b is taken to +9V via a 1MΩ resistor.

There are four combinations of dots and dashes that are not used in Morse code for English. All of these consist of four elements. If one of them is generated by the randomising process, it is detected at step I and converted to a short letter by changing Z to Z.

As noted previously, the numbers 5 and 0 occur slightly more often than is required. There are some similar variations for letters. The proportions of 1, 2, 3 and 4 element letters is determined by the respective end-of-character expressions from the directing-chain. Letters consisting of just one element, E and T, are generated more frequently than the others. Furthermore, the blocked letter combinations are converted to E, U, O and M. In practice, however, this is not obtrusive.

Conclusion
The Morsemaker has been designed to supplement rather than replace other sources of Morse code, such as cassettes, discs and RSGB slow Morse transmissions. The device is useful for two reasons — it is always available, so a few moments’ practice can be taken at any time, and its speed is continuously variable so, together with the short-words-only mode, the unit has an effective “difficulty control.”

Acknowledgement
I am grateful to D. G. Martin, University of Reading, for his helpful comments on the first draft of this article.

References

Printed circuit board
A double-sided p.c.b. for the Morsemaker will be available for £3.85 inclusive from M. R. Sagin, at 23 Keyes Road, London N.W.2.
Mobile radio bandwidths
The case for 12.5kHz channels and a way of dealing with data
by W. M. Pannell, Pye Telecommunications Ltd

The article begins by showing the disadvantages of widening an existing bandwidth to accommodate new techniques which could easily change over the next decade or so. Many of the arguments advocating the use of wider band f.m. techniques are concerned with environments not typical of the UK and other countries, and include theories based on ideal situations. Similarly, arguments against the narrow band a.m. equipment used in the UK are often conditioned by tests in different environments. The article concludes by proposing a common channel bandwidth unit, a single unit which on its own is suitable for speech transmission but which can be used for high speed data by employing two or more adjacent units.

The systematic reduction of mobile radio channel bandwidths has been pursued vigorously in the United Kingdom over a number of years, resulting in a reduction of channel spacing — by successive factors of two — from 100kHz in the 1950s to the channel spacing of 12kHz currently in use in the v.h.f. bands. During the same period, amplitude modulation has been the predominant mode of operation, although more recently, the use of frequency (phase) modulation in the v.h.f. bands has been increasing. This trend has possibly been influenced by the exclusive use of f.m. in the u.h.f. bands which use, at the present, 25kHz channeling.

During the same period, bandwidths in the USA have also been steadily reduced, but have tended to stop short of those adopted by the UK. The difference in policy can be attributed to the almost exclusive use of f.m. in the USA, although the use of single frequency simplex may also have influenced the decision. Currently in use in the USA are v.h.f. bandwidths of 20kHz below 50MHz and 30kHz above. U.h.f. channels are now based on 25kHz increments.

As the channel spacings have become smaller, the adverse effects of such reductions on the performance of systems employing frequency modulation have been seen to increase, while with a.m. the reduction in the performance involving some parameters has been considerably less. It could be broadly stated, that, with frequency modulation, it is the channel bandwidth rather than the "state of the art" limitation, which restricts the performance, whereas with a.m. the reverse tends to be true. It is for these reasons that in the UK, with the predominantly a.m. market, the trend has been towards narrower channels, while the USA, and the other countries which use f.m. almost without exception, halted the channel splitting process when a measurable loss of performance using the f.m. mode became obvious.

There are, of course, some disadvantages or restrictions incurred by reducing bandwidths with both modulation modes, but certain of these can be overcome by improved techniques and by observing basic rules when planning systems.

One restriction made increasingly obvious by the introduction of narrower channels — f.m. or a.m. — is that of sideband radiation, on which the limits necessary to achieve adequate protection in the adjacent channel become much tighter as bandwidth decreases. Consequently, while normal speech can be accommodated with little difficulty, the transmission of high speed digital intelligence, with its attendant larger sideband spectrum, introduces limiting factors. Thus we now have a situation where, with high speed digital techniques, it may be necessary at the moment to increase channel bandwidths rather than to retain the existing spacings.

Arguments have also been advanced that even with speech modulation the wider bandwidth f.m. systems exhibit considerable advantages over narrow band systems, either a.m. or f.m.1, while it has been stated elsewhere that the use of less than 25kHz is a backward step.2

It may be concluded from these reports therefore that such opinion considers that mobile radio would appear to benefit from the use of a common channel bandwidth suitable for data and speech, and that the bandwidth should be of the order of 25kHz.

Against a common 25kHz channel plan
At this point it is as well to consider the implications of using, in the UK and many other countries, a common channel bandwidth plan for both speech and data and to examine why the arguments advanced for a minimum of 25kHz channeling do not necessarily apply in the real world.

First of all, it is as well to remember that the existing 12kHz channel bandwidth in the v.h.f. band has been in actual use for a considerable period of time. A paper was read by P.A. Webster3 at an IEE convention in 1966 on the subject of 12kHz operation and subsequently such equipments were being manufactured and operated well before 1970. Thus experience of such a band-

Fig 1. Re-use factor as a function of channel bandwidth, for two-frequency operation. For areas of equal coverage
fixed-site to fixed-site
distance equals operational
distance XY; alternatively
Y = I times larger operational
distance plus smaller
operational distance when areas are unequal.

(Arguments made:
12dB/octave of distance
signal reduction; plane earth
propagation; operational
distance is range achieving
20dB s/n ratio in mobile from
base, alternatively 20dB s/n
ratio in fixed receiver from
mobile on perimeter; 3dB
maximum degradation of s/n)
width in the UK extends over nearly 10 years and its success cannot surely be open to question.

On the other hand references still quoted in support of wider bandwidths include a theoretical paper by Buesing in 1970, previously written for FCC Docket 15398 (1965), both of these dates being prior to work in the UK which proved the feasibility of narrow channel systems.

Briefly therefore, the UK has the experience of 12kHz operation in the V.H.F. bands — both A.M. and F.M. — while the USA, apart from tests at 15kHz in the vastly different single frequency environment of the USA, have not ventured below 20kHz and in the main, consider 30kHz as the preferred bandwidth.

In addition, the use of F.M. has been universal in the USA and — possibly of greater significance — the experience of the USA has been coloured in the V.H.F. bands by the predominant use of single frequency simplex.

Capture effect and its advantages is the theme of many an argument supporting the use of F.M. and while it is agreed that substance for such an argument exists with the use of the wider bandwidths operating under certain ideal conditions, some of the gains derived by using 25kHz channelling can be disputed, particularly in a mobile environment.

Undoubtedly if ideal conditions — no fading — exist, then the capture effect obtained with 25kHz channelling when compared with narrower channel spacings could result in the theoretical (two frequency) re-use factors postulated by Magnuski and made possible by the improved protection ratio. However, the real world is not ideal and the presence of fading introduced over the circuit by various causes can reduce, or even eliminate, the so-called capture effect. Gans and Yeh state: "although co-channel interference without fading could be markedly reduced by increasing the modulation index, it remains approximately constant with index, for indices greater than unity when fading is present".

Summarising this statement, it means that with a 2.5kHz audio bandwidth, any greater deviation than 2.5kHz — the deviation associated with a 12kHz system — will not benefit the co-channel performance of the system under fading conditions.

Fig. 1 has been plotted to show the relative two frequency re-use distances based on the paper by Magnuski. It shows the constant re-use distance over plane earth which can be attributed to the use of A.M. operating in the two frequency mode: the improvement in re-use distance with bandwidth is shown for the ideal non-fading f.m. conditions also in the two frequency mode; whilst the dotted curve illustrates the effect of Rayleigh fading on the effective re-use distance as the capture effect is lost. It can be seen therefore that if fading is included, the re-use distances, based on the level of co-channel interference suggested by Magnuski, are not so appreciably different for A.M. and F.M. over the range of bandwidths shown.

It must be emphasised that the re-use distances shown in Fig.1 are based on two-frequency simplex operation. If we consider single frequency operation, the re-use distance must be related to the levels of signal between the fixed sites and consequently a different expression must be considered.

For example, in two frequency operation the level of unwanted signal (F.M. or A.M.) must be XdB down at the input of a mobile receiver located on the perimeter of the distant area, relative to the level of wanted signal into that receiver from its own fixed station. The required value of XdB determines the re-use distance, which, in turn, for two similar areas, can be expressed as n times the operational radius of either area (fixed to mobile). See Fig.2.

In the single frequency case we must consider the fixed receivers, their antennas being correspondingly higher than in the mobile case. Let us imagine therefore that the mobile antenna is elevated to a height equal to that used at the distant fixed station. The "operational" range is naturally extended from that obtained with the mobile antenna at vehicle height, and "C", shown in Fig.3 suggests a point where the same wanted signal level as received at the perimeter of area "A" in the mobile situation might be obtained.

Based on the average level of signal attenuation over plane earth following a "12dB per doubling of distance" law, the point where the signal level (now unwanted) should equal the noise level into the receiver at base station B will be at 4 times the "operational" distance (A to C). At this point the unwanted signal will therefore be 24dB below the wanted signal from a mobile receiver, and thus the signal-to-noise ratio at base B receiver will be 21dB, i.e. a degradation of 3dB relative to the s/n ratio without the interfering unwanted signal (A.M. case assumed).

As an example, if we take a typical situation involving fixed A.M. equipments with antennas at 100 feet and mobile units operating with antennae heights of 5 feet, it can be shown that over plane earth the "operational" radius will approximate to 17 miles. Thus, with the two-frequency re-use factor of 5, as shown in Fig.1, the distance between two fixed stations with similar coverage should be of the order of 5 x 17 miles (85 miles) apart.

If we now raise the antenna of a mobile to 100 feet from the original 5 feet, the "operational" radius will increase to 28 miles and, applying the factor of 4 previously discussed, we arrive at an equivalent fixed-to-fixed station re-use spacing of 112 miles.

Thus, in the example given, it can be seen that by using the single frequency mode the fixed-station to fixed-station re-use distance must be increased to 112 miles from the two-frequency re-use distance of 85 miles.

Reducing the re-use factor, however, for example by considering the ideal F.M. 25kHz case (Fig.1) decreases the difference between re-use distances for the single and two-frequency modes, and in fact at the re-use factor of 2.68, as given by Magnuski, the two modes show similar spacings at the antenna heights quoted above. However, increasing the antenna heights will again restore a spacing difference between single and two-frequency operation.

Where such a difference exists, the greater distance needed in the single frequency case must be implemented and this naturally improves the fixed-to-mobile performance. If not implemented then fixed-to-fixed interference
must necessarily be of a higher order, and the degradation of the mobile signal into the base receiver will consequently be greater.

The implication of the need to increase re-use distance when single frequency operation is employed is therefore obvious from the above.

Continuing, although capture under ideal conditions can permit a shorter re-use distance between co-channel users to be considered, the protection afforded by such capture is only present when a wanted signal is transmitting and its level relative to any unwanted signal is in excess of any protection ratio achieved by the capture effect.

When the wanted signal is not available then unwanted signals will be heard unless tone squelch is fitted. Thus the satisfactory use of the smaller re-use distance is based in the ideal case on the fitting of tone squelch to all systems.

Under fading conditions, when capture is virtually non-existent, unwanted signals will be heard when the squelch is opened by a wanted signal unless the re-use distances are extended to approximately those of a.m. Capture can also introduce other unwanted hazards in the communication circuit and there is, for example, a conflict between channel loading, in terms of busy hour occupancy, and capture effect.

Let us assume full capture is possible. As channel loading increases, and in particular in cases where coverage is required of, say, a town in which the greater proportion of mobiles operate, and surrounding rural districts where the number of mobiles may be low, the probability of a mobile on the perimeter of the coverage obtaining access falls sharply with traffic loading. For example, if it is assumed that mobiles awaiting access exceed one, then, if capture effect is present, the nearer mobile will always tend to gain access, and with signals having a difference considerably in excess of the 9dB postulated by Magnuski the likelihood of a weak station obtaining access is poor. A.m. will not suffer so markedly in this respect and weaker signals will have a better chance of accessing the channel.

Obviously as and when fading of the stronger signal occurs and capture becomes relatively non-existent, then the ability of a distant mobile to access the channel will improve. The effect of fading on such a circuit therefore will be to introduce an element of uncertainty into the ability to access the channel, an uncertainty which will worsen as channel loading increases.

Re-use in practice

The ideal degree of re-use as postulated by Magnuski is shown as a function of bandwidth in the graph Fig. 1. The dotted curve on the same graph indicates the limitation which is imposed on f.m. under fading conditions.

However, even if the greater deviation of 25kHz channels could always be accompanied by the ideal non-fading situation, and a higher protection ratio would therefore be made possible, the degree of re-use would, nevertheless, be much reduced from that indicated theoretically where the theoretical model assumes plane earth, uniform propagation and an infinite usable area. Regardless of the mode or bandwidth the reasons are:

The need for channels is not uniform in space: the areas of high demand being very bunched.

In countries having the general geographical configuration of the UK, many of the re-use areas would fall in the sea.

In London, the degree of re-use would be extremely limited — only small coverage systems falling into the desired category — and this limitation could tend to restrict any possible gains using 25kHz f.m. even under ideal conditions.

Propagation anomalies lead to irregularly shaped service areas and cause the actual packing of re-use areas to be less than theoretical.

It is therefore considered that 25kHz f.m. systems, operating with a normal degree of fading and located in areas having average geographical hazards, irregularly spaced areas of usage and with varying degrees of packing density, cannot take full advantage of the gains argued by the US sources, and the resultant gains postulated by them are unlikely therefore to be achieved with any marked degree of consistency.

Existing re-use parameters in the UK - for both a.m. and f.m. - have been determined, on the other hand, over many years of experience and have been developed bearing the foregoing shortcomings in mind.

Intermodulation potential

Busing indicates the order of increase in intermodulation products which will occur as the number of channels increase with decreasing channel spacing. Undoubtedly doubling the number of channels by halving the bandwidth will increase the number of third order products by a factor of some seven to eight times. Is this likely to be a major problem, however?

If one considers, say, 10 adjacent channels on a single site, then, as an approximation, there will be some 470 third order 2- and 3-signal products possible, although less than half will fall on-channel. Obviously this is a problem which, to eliminate, requires suitable planning and technical safeguards.

Doubling the number of adjacent channels on that site (by halving the channel bandwidth) would increase the third order products from 470 to some 3760, resulting in a formidable array of on-channel products to eliminate.

However, would such a situation be allowed to arise in a correctly planned environment? In practice, channels would be chosen from the total spectrum available and suitable well-known intermodulation precautions observed. Certainly off-channel radiated products would be reduced to a low level as a matter of course, whilst planning procedures would ensure that in the immediate vicinity where receiver overload could generate i.m. products, other systems were not allocated critical frequencies. It is submitted therefore that, far from increasing the intermodulation interference potential, the ability to be able to choose from twice
the number of channels would often enable freedom from interference to be practised with greater effect.

It is further submitted that this ability would be enhanced still further by our use of two-frequency operation in the UK as undoubtedly the single frequency environment encountered in some countries is often a major contributor to the high level of spectrum pollution, involving intermodulation, existing in the urban complexes of those countries.

Impulsive noise

The impulsive interference aspect of any argument often tends to be subjective. While the degree of interference worsens by some 3dB on each occasion the channel bandwidth is halved, there are conflicting views as to the actual degrees of annoyance value, in particular, where the equipments and systems involved are “tailored” to minimise this annoyance value.

Where the range extremes tend to be in electrically quiet rural areas, most interference present will only be high in high signal areas and thus the effect upon reception will be much less than if the reverse is true. Here the systems parameters dictate the result.

If the equipments are optimized to reduce the effects of impulsive interference, e.g. adequate noise limiting, tailored audio/loudspeaker responses, attention to phase response and filter ringing susceptibility in receivers, the actual effect upon the listener will be much less than if such points are not considered.

It is suggested that, although theoretically 25kHz f.m. systems, when correctly tuned, should be less affected by impulsive noise compared with narrower band systems, the different character of the noise pulse under aural conditions often makes the difference much less obvious. For equal orders of frequency stability, any frequency drift will worsen the interference effects with f.m. to a greater extent than with a.m.

Effect of bandwidth on effective range

The reduction in effective range as the bandwidth is reduced is necessarily affected by the type of modulation, degree of impulsive noise present and the minimum acceptable signal. Fig. 4 shows the effect of introducing such variations into the calculation. Variations in the parameters are likely to be as follows: (a) at threshold, there could be up to a 3dB gain in s/n in f.m. systems each time the bandwidth is halved; (b) impulsive interference will worsen at the rate of approximately 3dB each time the bandwidth is halved; and (c) signal/noise will drop by up to 6dB in the f.m. case each time the deviation (bandwidth) is halved. Calculations have been based, however, on 5dB which has been obtained in practical tests.

It must be highlighted at this point that the result shown in Fig. 4 must be interpreted in relation to the type of system used, and indications are that confusion often exists concerning the two quite different levels of signal required from mobile telephone service and private mobile radio. In practice, the tendency will be for private mobile radio levels to approach threshold at the service area perimeter and thus, for the present argument, the curves at threshold only should be considered.

In addition, the general results shown in Fig. 4 are, as is emphasised, theoretical, and in practice the results will be modified by a number of other factors, for example, geographical considerations, equipment and system design, degree of mandatory impulsive noise suppression, acoustic considerations. However, locating the base station so that the coverage perimeter is generally in an electrically quiet, rural environment tends to allow curves 2 and 6 to apply. Similarly, the implementation of suitable laws against the generation of excessive electrical noise will also favour results in the area of curves 2 and 6. Suitable suppression circuits and/or tailoring of the acoustic parameters — loudspeaker, listening environment — will reduce the actual effect of impulsive interference insofar as it affects the listener, and again the trend will be towards curves 2 and 6.

It is, therefore, strongly advanced that, although Fig. 4 indicates quite appreciable losses of range under certain “above threshold” conditions, these conditions are not necessarily so important in private mobile radio use. The curves tend to show that, at extreme range, a.m. will exhibit some advantages relative to f.m. and is possibly a point in favour of its use in private mobile radio.

Data transmission

Let us now consider mobile radio as a means of carrying data traffic.

First of all, we have the simpler data systems. In this category we can include conventional tone methods, on-off, sequential, f.s.k., d.p.s.k. etc, where the rate is relatively slow — effectively less than 1200bit/s. There is no difficulty in accommodating these systems in the normal radio audio pass band and, together, with the sideband radiation, such intelligence can be handled by a 12kHz system with little difficulty. Bit rates, in any case, will be limited by the characteristics of any normal telephone line feeding a radio system, and unless special grades of line are used the top limit handled would appear to be around 1200bit/s. Thus any system configuration employed for data transmission could well be affected by its associated land line.

Indications are, however, that 12kHz channels will readily support up to 4800bit/s and it is submitted that this speed is more than adequate for normal data needs.

A 25kHz channel, on the other hand, can support >9600bit/s, which is (i) not practical when fed by a normal telephone line owing to the limitations of that line; the use of radio links as a substitute for telephone lines in order to increase the bit rate is contrary to
CIRCUIT ACTION AND PROGRAMME SIGNALS

High fidelity enthusiasts claim to have heard differences in the performance of wide-range amplifiers. In recent issues Mr Peter Baxandall and Mr James Moir have tried to show that the claims are ill-founded; but mathematical physics suggests that this may not always be so.

If a potential difference \(V = E e^{-at} \) be applied across a capacitance \(C \), then the current flowing at time \(t = C dV / dt \)

is

\[
Z = \left\{ \frac{1}{E} \frac{dC}{dt} + j\omega C \right\}
\]

and so the capacitance's complex impedance

\[
Z = \frac{1}{E} \frac{dC}{dt} + j\omega C
\]

Hence, if the amplitude is small but rising rapidly, or if the frequency has a high rate of variation, then \(Z \) may differ considerably from \(1/j\omega C \) - a formula often used in the design of RC circuits for amplifiers and measuring instruments.

The complex impedance of an inductance contains somewhat similar terms with further complications arising from the non-linear relationship between current and associated magnetic flux.

I tried to take account of all this recently when designing variable high-pass and low-pass filters with a slope of some 40 dB per octave and a plateau variation within ± 0.5 dB, but the mathematics became impossible; and although I achieved my objectives, I cannot realise how little is known about the actual behaviour of electric circuits.

Variations from steady-state values depend upon programme material in ways that defy exact analysis. It has not yet been proved mathematically or otherwise that their effect upon the performance of wide-range amplifiers must always be inaudible. Until it has, the possibilities remain that the high-fidelity enthusiasts are right in their claims, that distorted sound from gramophone records and loudspeakers has characteristics that reveal this effect to a sensitive ear, and that specifications which appear to be unnecessary tend to cause its decline.

Peter Hannam
Colne
Lancs

DIGITAL ELECTRONICS THEORY

In reply to Mr Forcer (May Letters) my analysis of the digital electronics industry indeed contains "many sweeping statements" which at first glance do appear to be "unjustified". However, having spent over seven years in digital electronics, it does not need much awareness on my part to see that the majority of engineers are incompetent at putting together fast logic. The industry is littered with complex computer systems which crash regularly, service engineers not knowing the reasons why. Too many students and engineers do not have a coherent set of design techniques to apply to their work.

In an attempt to rectify this catastrophic, myopic situation I am working with two colleagues under the title of CAM Consult-

ants and we regularly give seminars on digital techniques and we have written the first volume of a book on the subject to be published in May 1978.

The proof of the pudding is always in the eating and I ask Mr Forcer to name projects or systems which do not suffer from catastrophic failures from time to time. I must repeat that engineers today use analogue techniques (taught by the colleges) to solve digital problems, and thus they cannot solve them in a scientific fashion. For example, no company I have ever visited knows how to lay out a p.c.b. for high-speed logic applications. Because of this systems suffer from data dependent faults which one can only see by the failure of the system itself.

Finally, I would like to see any Post Office course notes on mains filters and power supply decoupling. Also I would be interested in hearing from other engineers who (mis)believe that digital electronics is based upon an adequate set of scientific principles and mathematical techniques which lead to efficient reliable digital systems. If they exist show me!

Malcolm P. Davidson
CAM Consultants
South Mims
Herts

LONG RUNNING C-D IGNITION

I thought you might be interested to know that I have been operating R. M. Marston's capacitor-discharge ignition system (January 1970 issue) for eight years. It has been installed in a Ford Cortina, two Humber Sceptres, one Ford Capri, one Triumph Dolomite and now in a Citroen GS, and in that period I have done about 200,000 miles, which means that the 2N3525 thyristor must have fired about 1500,000,000 times. The system has worked faultlessly and no component has been changed.

In the early days I did have trouble with the contact breaker becoming dirty and so some extent it still tended to become pit. I decided to disconnect the distributor capacitor as I believed the instantaneous heavy current when it becomes short circuited was the cause. I soon found, however, that the contact breaker became much worse from the point of view of failure through dirty contacts. I decided, therefore, to adopt the old trick, very common in telephony, of wetting the contacts. On a negative earth system this was very easily achieved by the accompanying circuit.

Referring to Fig. 5 in the 1970 article, a diode is connected in series with the wire from the contact breaker and 400V d.c. is connected to the contact breaker via a 1000\(\Omega\) resistor.

Since doing this modification the contact breakers on all cars were never changed, cleaned or adjusted. Each car averaged about 30,000 miles. The only systems which were changed were due to wetting. The only maintenance was that at about 15,000 miles the plug gaps were reset to 0.30in purely to prevent overstress on the coil.

Incidentally, I have a switch for reverting back to the old system and, of course, it reconnects the capacitor, but I have never had to use it except in the early days before I carried out the above contact wetting.

S. S. Joseph
Felixstowe
Suffolk

BREATHTALYSER SUBSTITUTE

With reference to the first item by "Mixer" in your April issue - the breathalysers substitute. There may be people "who can knock back four or five doubles without turning a hair", but it wouldn't matter if the alcohol did have that peculiar effect. What does seriously matter is that it makes the drinkers quite sure they can drive better than ever, whereas the reverse is the case - a very dangerous state to be in. An investigation of motorists leaving pubs showed that even those who were clearly unfit to drive were quite sure of their capability.

But use of a reaction-time meter is a very interesting idea and worth looking into. Alcohol as a major cause of road accidents is already well established; probably greater than all the other causes. "Mixer" mentioned put together, though I admit that reliable figures on some of them would be difficult to obtain. Bad temper is certainly conducive to bad driving. But perhaps it is unreasonable to expect those who react too quickly? Old age is a doubtful starter. I am 76, and my wife and I have both been driving for 54 years. My driving has steadily become safer during that period. During the last 20 years I've had no police criticism, nor have I as much as dented our own or any other car, and rarely have to brake hard, though when the need arose one soporific afternoon, owing to a farm vehicle unpredictably turning across our path, I reacted swiftly and effectively; while a child owes her life to similarly quick reaction by my wife. By contrast, the young and inexperienced would have no difficulty with a reaction test, but apart from drinkers are perhaps the most dangerous class of drivers, as the insurance premiums testify. A combination of alcohol and youth is the worst of
Bexhill
Sussex

SPECTRA OF TONE BURSTS

Mr Coleman, in your October 1977 letters, tells us again how tone burst signal amplitude spectra of different shapes if the carrier phase or framing is varied, and that the phase spectra are also changed, "in a non-linear fashion." He avers that he is correct, questions my grasp of basic principles and suggests that I ask one of my (brighter) students "to check the calculations." What better way of answering him than by testing his own advice.

According to Mr Coleman, students have been considering the manner, and has now given me his results. His view, like my own, is that Mr Coleman's claim makes up in theoretical precision for what it lacks in practical significance. I think the student will go far, but let me now explain.

Suppose a carrier, \(\cos(\omega_c t + h) \), is modulated by a pulse function, \(P(t) \). Then the spectral amplitude density, \(C(\omega) \), of the function \(P(t) \cos(\omega_c t + h) \) will be

\[
C(\omega) = \int_{-\infty}^{\infty} P(t) \cos(\omega_c t + h) e^{-j\omega t} dt,
\]

giving precisely,

\[
C(\omega) = \frac{e^{j\omega P(\omega_c - \omega)} + e^{j\omega P(\omega_c + \omega)}}{2},
\]

where \(P(\omega) \) is the Fourier Transform of \(P(t) \).

Hence the spectral density of the modulated pulse is the result of two curves, and is not symmetrical about \(\omega_c \). In theory, both the amplitude and argument of \(C(\omega) \) will depend upon \(t \), the point which Coleman, without qualification, considers it important to make.

Now \(P(\omega) \) has a predominant maximum at \(\omega_c \); whereas \(P(\omega_c + \omega) \) does not, and if \(\omega_c > 0 \), this latter expression has an even more tangible value. This is so for a variety of forms of \(P(t) \); e.g. rectangular (as for the tone burst), triangular, parabolic or sinusoidal, or even a "wavy" function. When there are several cycles in each pulse (or when the period of the carrier is much shorter than the period of repetition, for a periodic function) the spectral density of the modulated carrier becomes very similar in form to the spectral density of its envelope, a fact known and exploited by communications engineers over more than 30 years past.

Mathematically, with the above provisions,

\[
\frac{e^{j\omega P(\omega_c - \omega)} + e^{j\omega P(\omega_c + \omega)}}{2},
\]

which shows that \(C(\omega) \) is essentially unaffected in amplitude by a change in \(h \) whilst the phase shift produced is almost exactly proportional to \(h \). This was the point taken for granted in my letters of December 1976 and July 1977.

It is, of course, important to demonstrate (as Coleman did not) the practical value of this result, and this my undergraduate has done. With the help of our digital computer, he obtained the amplitude and phase spectra of a periodic, 1kHz sine-wave burst, of unit height, with onset angles (h) 0°, 10°, 20° and 30° on for 8 complete cycles and off for the same interval. The fundamental spectral line is therefore at 62.5kHz; "no feature of (f) is the 16th harmonic, though all other terms are odd harmonics (due to half-wave symmetry) with a spacing of 125Hz.

To save space I have not listed, in the accompanying tables, the results obtained, but those shown are entirely representative of the whole spectrum. They confirm that the effect of changing \(h \) (by the amounts I used in my earlier work) on the amplitude spectrum is inconsiderable, whilst the phase spectra show essentially linear shifts to within a few tenths of a degree, or much less for most harmonics.

For example, the listing for \(h = 10° \) shows an additional 1.25° linear shift with increasing frequency for each neighbouring harmonic, i.e. \((2 \times 1\times16 \times 10)°\).

Note that these results are not invalidated if the off interval is increased so as to make each burst distinct. Mr Coleman would seem to have learned something here, for in answer to James Moir, in your September 1976 letters, he claimed, again without qualification, that the feature of a periodic waveform observed in a (normally lively) room can be a transient.

The trouble with Mr Coleman is that his arguments are either false or dead, and his naive concept of correctness is in keeping with the tone and content of all his earlier correspondence. We are not surprised, or advised, by his empty praise for the techniques of others, or by his impenent war-nings. An educationalist, however, does not reject those who do not understand, so I am always ready to answer him. Several of my students are just waiting to be called now, as I write.

Roger C. Driscoll
The Polytechnic of North London
London N7
final result (at least on my Sanyo) is better than that achieved with a converter unit.

If one doesn’t want to have to adjust the vertical hold control when switching back and forth from AFRTS to German standards, an extra trimmer pot can be inserted in parallel with the normal hold control and switched as required, (see Fig. 2). It is not recommended to have both hold control and sound control on the same switch as one then hears the sync/line pulses on sound. However, two relays could be used instead of switches and driven from the channel selector switch as shown in Fig. 3.

The end result of the conversion is that one has German first, second, and as many of the local (third) programme as are in the region, plus the original language AFRTS. Almost as good as being able to receive BBC1 and 2! — Robin A. Flood
Eastbourne
Sussex

AUDIO EQUIPMENT REVIEWS

A certain amount of attention has been paid in your pages of late to matters concerning reviewing in general and Hi-Fi Choice in particular, so an “official” comment from ourselves is perhaps overdue. The “British hi-fi scene drama” in the February issue is largely of your own making, and your sensationalist writing has merely succeeded in fomenting and fueling a very minor controversy. Certain of the parties mentioned in the report felt that they had been misrepresented, and this has had the no doubt desired effect of stimulating both correspondence and the "curiously bitter storm . . . raging in the hi-fi teacup." There has always been argument and debate within hi-fi circles and certainly equipment reviewing is one of the more sensitive areas; but to imply a conspiratorial boycott is a little far-fetched. Manufacturers and distributors have refused to submit equipment for an Hi-Fi Choice book in the past, and it then becomes an editorial matter to decide to what extent the absence of such equipment will reduce the value of the publication to its purchaser. If the product concerned is widely available, popular, and heavily promoted, we would not be doing our duty to our readership if we did not obtain samples by other means for inclusion.

However, the responsibility of a magazine is twofold, and the need to ensure fairness towards a manufacturer is equally important. The reviewer is best able to achieve a fair review of a product if he is aware of what the designer is trying to achieve. If he can discuss points arising from his investigations without fear of reprisal, the whole project is likely to benefit. All manufacturers and distributors submitting equipment are consulted as a matter of course if we feel we may have received a faulty sample, and the opportunity to inspect galleys to correct errors of fact is also made available. (This naturally does not imply that value judgements based on criteria qualified within the book are susceptible to change at a manufacturer’s behest.) Unfortunately, it is obviously not normally possible to extend these courtesies to a manufacturer who has declined to submit his product, and although extra care is taken to ensure that the review is fair and representative, things are inevitably made more difficult.

I do not propose to dwell at any length on the vituperative points raised in Mr Cooke’s letter in your April issue; suffice it to say that I regard them as the inevitable result of inadequate communication. I will, however, take issue on the matter of our name, which he criticises strongly on philosophical grounds. I can only speak for myself and the future editorial policy of the magazine, but my interpretation of our name and function is that we should try to provide comprehensive and comparable data on a significant proportion of the available products in whatever category we are examining, to enable the reader to make his own choice according to his particular needs. Despite many years of international standards bodies, this is something that manufacturers have singularly failed to achieve. Any attempt by an individual to compare simple performance specifications of several audio products is doomed to failure because of the lack of standardisation in manufacturers’ supplied data. As far as possible Choice will use “standard” measurements, as this will at least help in its own small way towards wider acceptance of such standards. But I don’t believe that anyone would seriously suggest that such “objective” testing on its own is all that is necessary to enable the consumer to formulate his own choice. The reviewer must assemble data and provide an interpretation for the lay reader. He must also place himself in the position of the consumer and examine the product in relation to its intended use, which may involve using new test methods or setting up controlled listening panels.

By the time this letter is printed the Loudspeaker book should have appeared, and I hope that interested parties will endeavour to form their own judgements and criticisms of the project. Although far from perfect, I do believe that we have succeeded in undertaking a daunting task at least as well as, and in many ways considerably better than, our contemporaries. One unfortunate result of the Hi-Fi Choice format is its inability to publish in the wake of publication, so it might be in the best interests of the industry as a whole if Wireless World, who are largely responsible for starting this controversy in the first place, could make space available for frank and open discussion of the results of the project.

Paul Messenger
Editor, Hi-Fi Choice
London, W1

PENNY-PINCHING IN AUDIO AMPLIFIERS

After following the running battle on types and relative importance of amplifier distortions, we have decided to release our own findings on this matter. Assuming that the source is of such characteristics as to avoid those problems caused purely by gross mismarking, we have examined much-discussed differences in sound fall into two simple categories: frequency response deviations, and penny-pinching. The first is the easiest to visualise and test, although surprisingly small variations in the points that can cause a significant difference in the perceived sound — and not always where one might expect. A slightly “fat” bass is often mistaken for muffled trouble, and weak bass for clarity.

The penny-pinching is the more insidious, however. One well-known American amplifier of 200 watts per channel has filter capacitors more appropriate to a 30 watt per channel amplifier. The power supply, as a result, is significantly modulated by the varying load placed upon it by the signal. If the input stages are in perfect balance, it has little effect; but if there is a mismatch in any of four long-tailed pairs, the sound becomes purulent mud. Many other amplifiers appear to have had their driver and output transistors selected purely on the basis of peak voltage and current into a resistive load, and a cost-conscious, hobbyist mindset (not unlike that the load won’t be a resistor, that the current gain of the transistor is not what the tiny little number in the catalogue says (except under those conditions) but varies wildly with collector current, or that the drivers and pre-drivers have to handle fairly high current themselves if they are to drive the output devices well enough to supply the heavy peak currents often needed. The worst offenders have cut down on these devices to such a point that their 250 watt per channel amplifier, when connected to a speaker, clips at only 70% of the peak voltage developed by class A. The Quad 303 benefited from this test as it had conducted again with the current limiting disconnected and with another amplifier from the same firm, with identical results.

Other pinchpenny dodges include aluminium electrolytic capacitors, which are notorious for characteristics that raise dramatically with frequency, cheap speaker switches that make better diode detectors than switches, crude output meters that merely put a series diode and the meter coil across the output, fuseholders and wire grippers that neither hold nor grip, and a special award to the selector who ordered 3-amp mains switches — for a 350 watt per channel amplifier. The distortions introduced defy all description!

Pre-amps and speaker cables are under test
and evaluation by this group now, and initial results are surprising. The cable that was supposed to "clear up transients" made the amplifiers ring severely on high slew-rate input signals. Impressive sound, but unreal. Back to the bench and listening room to sort this out further.

Keir Jones
California Audio Society
Covina
California, USA

F.M. TRANSCEIVER SYNTHESIZER

I have recently completed construction of the synthesizer portion of T. D. Forrester's F.M. transceiver (November and December 1977) which works very well now that the following modifications have been incorporated.

1. The v.c.o. was found to oscillate at a minimum frequency of 30MHz (i.e. 0V on D2, L1 slug fully in) with 10 turns on L1. Turns have been increased to 20 and D1 removed.

2. The 4059 was not being clocked by the 74LS74, even at 15V. Experiment showed that the 4059 required a pulse input of at least 70% Vcc before it would clock, which could not be directly supplied by the t.t.i. The accompanying buffer circuit was therefore introduced between the t.t.i. output and the 4059 input.

3. R5 has been reduced to 1kΩ (in my particular case). The sine wave input to IC1, was not dropping close enough to the 0V rail to properly trigger the t.t.i. Reducing R5 gave an input between 0V and 4V.

As soon as these interface modifications had been made the entire synthesizer was powered from a stabilized 12V supply and the v.c.o. locked to around the programmed frequency. A trimmer was then inserted in one leg of the crystal to set the v.c.o. to exactly the required frequency.

I hope these suggestions may help others constructing this project and would be interested to hear of other modifications. Also, thanks to G4DPM who assisted with the above work.

G. J. Hankins, G8EMX
Acorns Green
Birmingham 27

LOUDSPEAKER POLARITIES

Referring to "Mixer's" mention in Sidebands (January issue) of the Sheffield record sleeve, the inexplicable note suggesting reversal of polarities of both playback speakers may have a sound reason running directly along the lines of "Mixer's" thinking. In my research into fidelity and imaging of stereo systems I have noted audible differences between normal and reversed polarity. It seems that for impulsive sounds the ear prefers a negative pressure impulse. This has been noted by Madsen and Hansen1, and perhaps is the basis for Sheffield's note, although polarity in multi-way speakers is often not constant. So "Mixer" is half right, but the idea is to have the speakers such when the drum goes bang. Mark Logies
Master 1 Systems
Eastlake
Ohio, USA

References

"Mixer" replies: Well, I must say it's very nice to be told that one is even half-right. Sometimes, but, if the reason for Sheffield's sleeve note is to be discovered, maybe they should be asked -- it does save such a lot of theorizing.

BIRDS' GEOMAGNETIC SENSE

What an interesting contribution Professor Dawson and Dr Dawson have made towards the resolution of the mechanism of birds' geomagnetic sense (February Letters). Let me review some evidence for the "electrodynamic" model.

As M. Bookman (M.I.T.) has pointed out, the literature contains no evidence for avian geomagnetic sensing in the "wings restrained" configuration. There is evidence for absence of this sense when birds are tested with wings fixed1. Yet, there is good evidence for the sense in the "wings free" condition2. Hence a connection between wing movement and geomagnetic sense is likely.

Out of respect for the researchers who have taken pains to present the case for this avian orienting ability, using rigorous experimental technique and statistical tests for high probability (and for at least one who lost his life in the work), may I urge the verification of the Emperor Penguins' sense by experiment. I would be most interested to find the effect of a "strait-jacket" on the orientation of experimental subjects. The penguin apparently uses vigorous flipper movements during his characteristic "tobogganing" mode of cross-country movement.

Now, a response to the serious objection that physiological "noize" would mask the required signal. If we describe the logic element of biological systems (in computer jargon) as a wide fan-in, low-level analogue integrating gate with "inhibit" and "assert" inputs, sometimes with, sometimes without, a pulsed, regenerative, digital, variable repetition rate transmission line driver; then system design considerations demand that the low-level analogue element be shielded from the effects both of adjacent transmission lines and of activator noise. For, if this were not the case, the system would be dangerously unstable. Hence the nervous system seems to have the properties required to handle low-level signals in the presence of high-level noise.

In the standard demonstration of nerve action-potential transmission speed in the human arm, A. M. Brown (Open University) used a 200V, 50µs pulse in shocking electrodes spaced about 1cm apart, applied to the wrist, following S. Rose's method. This skin potential gradient of 2mV m⁻¹ indicates the effectiveness of the shielding.

In the context of flying birds, R. H. J. Brown (Cambridge) has suggested that after the high-energy take-off phase of flight the wing up-stroke may be largely passive (private communication). This would reduce the amount of masking noise, which is of course in "common mode" between the wings (or using the alternative jargon, is bilaterally symmetrical) in contrast to the electrodynamic signal which is unidirectional across the wings at any given time.

B. A. Whatcott
Addlestone
Surrey

References

PROGRAMMING MICROCOMPUTERS

If I may take the liberty of commenting on Mr Pittman's thorough and systematic approach to programming (March issue), I hope it will encourage potential programmers if I say that one soon learns to dispense with flow diagrams, but all but the trickiest operations. Also I take an essentially optimistic view of errors. The machinery will discover some of them. But with problems involving real data, if the programme produces correct answers on the first five runs, there is a good chance it will continue that way. If it doesn't, then one can then start to test for likely errors in likely places.

As for the hardware, like W. Trapman writing in January Letters. I too have long nursed the hope that the naked microprocessor and its adjuncts will go away, and only return when properly dressed. The Department of Chemical Physics and Dr Shelton show only too clearly how primitive it all is compared with even a £5 pocket calculator.

However, one can take heart from the development of computers over the last fifteen years. Since I first wrote occasional blocks of machine code for a Ferranti Sirius (1000 words of storage, nine accumulators and less than 100 instructions) there have appeared with bewildering rapidity bigger stores, faster processors, more powerful languages, sophisticated operating systems, interactive facilities, remote terminals -- the list is endless. All these are intended to be user beneficial, though users contest this vociferously when something goes wrong.

Somewhere of course there still lurk expert programmers composing important software in machine code and assembly languages, but the user himself can be thankful that computers did go away and get properly dressed. It surely won't be very long before the microprocessor also matures.

D. P. C. Thacheray
Department of Chemical Physics
University of Surrey

60 WIRELESS WORLD JUNE 1978

www.americanradiohistory.com
Interconnection of logic elements

The transmission line, t.t.l. and tri-state devices

by I. Catt, M. F. Davidson & D. S. Walton, CAM Consultants † Icthus Instruments Limited

This article outlines the concepts required when designing a complex logic system and describes the fundamental principles of connection between basic logic gates.

A digital system is composed of logic gates and interconnections between them. To ensure correct functioning of the system it is important to consider a model of this connection. The simplest case is a logic gate driving another single gate with no fanout as shown in Fig. 1. It is impossible to consider the interconnection without a ground or Vss return path, and when this is present there is a distributed capacitance and inductance which forms a transmission line.

Properties of a transmission line
To characterise a transmission line a step propagating along a two-wire line is considered as shown in Fig. 2. Using Faraday’s law of \(\mathbf{V} = \mathbf{d} \mathbf{E} / \mathbf{d}t \) around loop abcd, \(L \) is defined as the inductance per unit length of the wire pair so \(L = \phi / i. \) In time \(t \), the step will advance a distance \(s = c t \), and the change of flux will be \(\phi = L s i. \) Substitution into Faraday’s law gives the voltage applied to the line to overcome back e.m.f. \(V_{AD} = L i \mathbf{d} \mathbf{E} / \mathbf{d}t = L i c. \) From \(Q = V C, i = \mathbf{V} / \mathbf{C} \) where \(C \) is the capacitance per unit length of the wire pair, so \(c = \pm 1 / \sqrt{LC} \) and \(\mathbf{V} / \mathbf{C} = Z_c = \sqrt{L/C}. \) Therefore, a step may propagate in either direction.

The two parameters which characterise a transmission line are the velocity of propagation \(c \), and the impedance \(Z_c \) which relates the voltage difference across the line to the current in the line. Thus, \(\mathbf{V} = iZ_c \), where \(Z_c \) is a property of the geometry, and medium, \(\mu \) and \(e, \) in which the wires are embedded.

To use the formulae for \(Z_c \) and \(c \) it is necessary to calculate \(L \) and \(C \) for any geometry that may be used. In general it is impossible to solve analytically for \(L \) and \(C \) and so other methods are used. Values for most practical cases are in the literature. It is common to represent a lossless transmission line as the model shown in Fig. 3 which allows the equations of step propagation to be derived. This method has little to recommend it especially as it appears to lead to a spurious high frequency cut-off. There is, of course, no high frequency cut-off inherent in any transmission line.

The transmission line, t.t.l. and tri-state devices

by I. Catt, M. F. Davidson & D. S. Walton, CAM Consultants † Icthus Instruments Limited

This article outlines the concepts required when designing a complex logic system and describes the fundamental principles of connection between basic logic gates.

A digital system is composed of logic gates and interconnections between them. To ensure correct functioning of the system it is important to consider a model of this connection. The simplest case is a logic gate driving another single gate with no fanout as shown in Fig. 1. It is impossible to consider the interconnection without a ground or Vss return path, and when this is present there is a distributed capacitance and inductance which forms a transmission line.

Properties of a transmission line
To characterise a transmission line a step propagating along a two-wire line is considered as shown in Fig. 2. Using Faraday’s law of \(\mathbf{V} = \mathbf{d} \mathbf{E} / \mathbf{d}t \) around loop abcd, \(L \) is defined as the inductance per unit length of the wire pair so \(L = \phi / i. \) In time \(t \), the step will advance a distance \(s = c t \), and the change of flux will be \(\phi = L s i. \) Substitution into Faraday’s law gives the voltage applied to the line to overcome back e.m.f. \(V_{AD} = L i \mathbf{d} \mathbf{E} / \mathbf{d}t = L i c. \) From \(Q = V C, i = \mathbf{V} / \mathbf{C} \) where \(C \) is the capacitance per unit length of the wire pair, so \(c = \pm 1 / \sqrt{LC} \) and \(\mathbf{V} / \mathbf{C} = Z_c = \sqrt{L/C}. \) Therefore, a step may propagate in either direction.

The two parameters which characterise a transmission line are the velocity of propagation \(c \), and the impedance \(Z_c \) which relates the voltage difference across the line to the current in the line. Thus, \(\mathbf{V} = iZ_c \), where \(Z_c \) is a property of the geometry, and medium, \(\mu \) and \(e, \) in which the wires are embedded.

To use the formulae for \(Z_c \) and \(c \) it is necessary to calculate \(L \) and \(C \) for any geometry that may be used. In general it is impossible to solve analytically for \(L \) and \(C \) and so other methods are used. Values for most practical cases are in the literature. It is common to represent a lossless transmission line as the model shown in Fig. 3 which allows the equations of step propagation to be derived. This method has little to recommend it especially as it appears to lead to a spurious high frequency cut-off. There is, of course, no high frequency cut-off inherent in any transmission line.
waves because these sinewaves would have to exist both ahead of and behind the step. Also, if the transmission lines were cut before the step arrived at P, any effect which was already at P would have to vanish instantaneously, again impossible. Mathematics indicate that if we superpose many sinewaves of appropriate amplitudes and phase relationships we would obtain a step waveform. This is undeniably true but its converse, that we can analyse a step into a superposition of sinewaves, does not follow logically and is in fact not true. The sinewave is responsible for much confusion particularly in the discussion of factors affecting the choice of capacitors for logic decoding. It is important to remember that a step is a shock wave, formed by a transverse electromagnetic wave front travelling at the speed of light, and all digital signals are combinations of either positive or negative-going edges. Any observer can only see the signal as it passes him on the transmission line.

The important parameter of the two digital signals in Fig. 5 is the time delay between the edges. Each edge a, b, c, or d must be considered as a separate event in time which is completely unconnected with any other transition. A logic gate cannot predict the arrival of any edge until the shock wave actually arrives. It then responds to the amplitude of the signal and by the time the next shock wave arrives it has settled down to the steady state condition.

Transistor transistor logic

Before discussing t.t.l. circuits it is worth considering the evolutionary process which lead up to them. In early d.t.l. transistors were only capable of sustaining a 10mA collector current which resulted in the circuit arrangement shown in Fig. 6 where a 10kΩ resistor was used in the collector. One problem with this circuit is its inability to drive stray capacitance. Consider the output waveform in Fig. 7 which is obtained when a pulse is applied to the input. The transistor switches on and the stray capacitance is discharged through the saturated transistor to produce a rapid falling edge. When the transistor switches off it cannot supply current so the stray capacitance charges through the 10kΩ resistor to produce an exponential rise which corresponds to a time constant of RC. Therefore, this type of gate is not very good at driving long signal lines. In practice the load is not strictly capacitive, but is a transmission line with a characteristic impedance of around 100Ω. However, in this case because R is much greater than 100Ω it makes very little difference and the slow edge masks any transmission line effects.

Logic designers attempted to circumvent this problem by using a "push-pull" output stage to give rapid transitions in both directions as shown in Fig. 8. Here the output is driven by a "phase splitter" so that while the top transistor

is on the bottom one is off and vice versa, but in practice there is an overlap of a few ns. This causes a low impedance across the supply rails which produces a current spike. This type of output was used in the unpopular 73 series of logic. The final step in the evolution of t.t.l. was the insertion of a series limiting resistor in the collector of the upper transistor.

Unfortunately, during the evolution of t.t.l the way impedance levels and device speeds have changed has not been considered fully. While d.t.l. worked initially with a 10kΩ output impedance we now have t.t.l. devices with an internal pull-up resistor of around 100Ω. This means that the transmission line behaviour cannot now be ignored. In fact, when the connection to a t.t.l. device is considered as a transmission line the upper transistor in the output is redundant and serves no useful purpose. A capacitive load requires a circuit as shown in Fig. 9 because, to produce a voltage across the capacitor, a charge must be fed into it via S1. Discharge of the capacitor must take place through S2. As already mentioned, a t.t.l. gate must drive a transmission line with an impedance of about 100Ω. The current and voltage are related by $V = iZ$, where V is the voltage applied to the line and i is the resulting current. In this case the load is essentially resistive and only one switch is required as shown in Fig. 10. When S is closed the output is low and when it is open the output is high. If the interconnection is terminated with a resistor $R = Z_o$ effects due to stray capacitance and inductance will not affect the output rise or fall times. Therefore, under certain conditions the t.t.l. "push-pull" configuration is unnecessary and an open collector gate will suffice.

Tri-state devices

Common data-bus structures are widely used in mini computer systems but because conventional t.t.l. cannot be wire-ORed it cannot be used. To overcome this limitation tri-state devices have been produced and are rapidly becoming standard components for bus drivers and memory outputs. A tri-state device has an additional control input which determines whether or not the device is enabled. When enabled, its outputs are in the high or low states as normal. When disabled, its outputs assume the high-impedance or off state and the device behaves almost as though its outputs are disconnected from the package pins. In this system only the device which is driving the bus is enabled, so active pull-up is achieved with the benefits of wire ORing. However, even with these apparent advantages it must be considered whether tri-state t.t.l. is necessary and desirable.

With regard to its necessity, the answer is definitely no. Any function which is possible with tri-state devices can be implemented more simply with

Fig. 6. Early form of logic, diode-transistor logic.

Fig. 7. Output waveform from d.t.l. in Fig. 6.

Fig. 8. Push-pull output stage to give rapid transitions.

Fig. 9. Basis of t.t.l. circuit required to drive a capacitive load.

Fig. 10. Only one switch required for a resistive load.

Fig. 11. Tri-state devices connected to a bus.
frequency conservation; and (ii) unnecessary except for digital speech, which in turn should be justified on its own merits; it is not a reason for making all channels broad and thus wasting spectrum.

Any trends in technique which are likely to be developed in the future and which may enable higher bit rates to be achieved within the limitations of a normal speech band, line and radio, are not within the scope of this article. The rate of progress over the past two decades, however, indicates a real possibility that before the 1999 World Administrative Radio Conference we could be well in possession of techniques which could require a totally different approach to frequency planning. Is it therefore wise at this stage to put all our eggs in one basket and use a common, and probably wider bandwidth, for high speed data or speech?

Such a move not only reduces channel availability within the spectrum, it implies the exclusive use of frequency modulation and tone squelch. Furthermore it implies a period of chaos whilst the various existing systems and users are "sorted out."

Use of the split channel technique - 25kHz equipment allocated on a 12kHz channel basis but relying upon geographical separation - would tend to restore the channel availability insofar as quantity is concerned, but in practice, owing to the geographical separation requirement, could result in a small increase in availability - particularly in the type of urban area associated with the United Kingdom.

Alternative data/speech possibility

Let us now consider the inevitable. Speech systems will be with us for a long time and will tend to predominate for some time. The use of data technique will, however, increase. Existing "state of the art" high speed data techniques, where justified, will require a minimum of 25kHz channel width to accommodate the sidebands etc associated with existing techniques.

The solution proposed for this situation is quite simple, it merely advocates remaining with 12kHz channel allocation and using the channels in the same manner for speech as at present. The channels would also be suitable for the simpler data transmission systems of 1200bit/s and up to 4800bit/s if suitable lines are used. Above this speed, where high speed is justified two or more adjacent 12kHz channels would be allocated, possibly from a discrete section of the spectrum to simplify sideband cut-off problems. Such a wide band system could be required for digital speech.

As techniques improve, it would be a simple matter to insert conventional narrow band users into vacated 12kHz slots, thus making full use of the available spectrum.

It may well be that technical changes involving, for instance, 64kHz operation for speech, would enable further channel allocations to be made available in the future. In this case the allocation of channel units would be in 64kHz multiples with data possibly requiring up to three or four such units.

By such a technique we are not positing the situation for a user requiring speech communication only, neither are we limiting the data user to bandwidths which could be restrictive.

References

5. Microwave Mobile Communications, edited by Wm. Jakar
6. Spectrum engineering - the key to progress, the Joint Technical Advisory Committee 1968.
Modifying the K.B.6 ASCII encoded keyboard

This keyboard does not have a lower case character output and fails to provide the parity bit required for some applications. Although it is quite easy to sense the seven bits of the ASCII output, the TMS 5000 NC encoder chip provides the parity bit on pin 6 which can be hard-wired to the redundant segment 2 on the outlet.

Cut the track leading from switch "P" to the plated-through hole near pin 20 of the TMS 5000 r.o.m., close to the switch. Trace the track from pin 22 of the r.o.m. to the contacts of the ";+" switch, and hard-wire this to the disconnected contact of the "P" switch. Lower case characters will now be obtained by simultaneously pressing the "shift" and "ctrl" keys together with the requisite character key. The keyboard however contains sufficient hardware to implement a separate lower case key, and the redundant "here is" key may be used for this purpose. Wire the non-earthly side of the "here is" key to pins 4 and 5 of the 7400 marked ×4, and connect a 5.6kΩ resistor from these pins to pin 14 of the 7486 marked ×5. Connect a wire from pin 6 of the 7400 to pin 4 of the 7486. Finally, cut the connection between pin 4 of the 7486 and the ground line on the key side of the printed circuit board. The consequential loss of the "@" character and the "NUL" ASCII output from the "P" as previously connected, can be made good by borrowing another redundant key and wiring it into the r.o.m. lines which previously yielded the "P" and "@" characters.

Dr. F. Schild.
Fortis Green,
London.

Earth referenced V-to-I

The circuit idea for Earth referenced V-to-I which appeared in Wireless World December 1977, required one op-amp and three transistors. This simpler circuit uses one op-amp to produce a current source referenced to ground.

It can be shown that the load current \(I_L = \frac{V_{in}}{R} \). If \(R \) is replaced by a capacitor, a ground referenced integrator is formed and the resulting voltage ramp may be taken via a buffer stage across \(C \) or alternatively from the output of the op-amp. For the last mentioned connection, the output ramp is modified to become

\[V(t) = V_{in} \int \frac{2}{CR} dt \]

The maximum load resistance that may be used is \(\leq \frac{V_{in}}{2I_L} \) where \(V_{in} \) is the peak output or the op-amp before saturation commences.

M. Applebaum,
Chubb Alarms Manufacturing,
Middx.

www.americanradiohistory.com
Standby battery for dynamo lighting

An a.c. bicycle dynamo can be provided with standby battery power by using the circuit shown. The battery supplies current via Tr3 which should have an hfe of greater than 40 and a VCEO below 100mV at 0.5A collector current. The circuit is activated when the peak dynamo output falls below the battery voltage. The 100µF isolating capacitor, C2/C3, provides power factor correction for the dynamo by cancelling its internal inductive reactance. The correction covers a large speed range because the internal inductance falls with increasing dynamo speed. This raises the typical output of a bicycle dynamo, around 4.5V r.m.s., to about 5.5V r.m.s. The optimum value of C2/C3 should be found by experimentation.

Brian J. Pollard, Coventry.

Fold-back current limiter

This design has been found useful when supplying series regulated circuits from a wide range of input voltages. By choosing suitable values for the current limiting components, R1, R2, R3 and R4, fold-back current limiting characteristics can be achieved that will protect the series regulating transistor from over dissipation when V1-Vo is high, and allow higher values of load current to flow when V1-Vo is low. Current limiting takes place when Tr1 conducts. With the values shown and the Vbe of Tr1 assumed to be 0.65 volts, the current limiting characteristics will be similar to those in the graph.

A. J. Ewins, North Harrow, Middx.
High a.c. loads

A shortage of high-current loads presented a problem when it was necessary to soak-test two identical mains transformers. The test conditions were satisfied by using a reflected load technique with the two transformers back-to-back as shown. Readily available 240V domestic lamps provided highly suitable loads. With a little care and adaptation this principle can be applied to dissimilar transformers. Also, suitable resistors can be used in conjunction with the lamps for fine load trimming.

Geoffrey T. Edwards, Woodley, Reading.

Linear v.c.o. operates from 5V

When designing hybrid analogue/digital systems, it is often necessary to use a voltage controlled oscillator operating from a 5V supply rail. This circuit uses a standard current differencing amplifier IC_1 together with t.t.l. monostables to achieve this. The amplifier is biased as a voltage follower so that a current V_{in}/R flows through Tr_1. Because Tr_2, Tr_3 and Tr_4 are connected in a current mirror configuration, equal currents I_1 and I_2 are injected into the monostables. The monostables, which are connected back to back, oscillate at a frequency defined by the current in Tr_1. Care should be taken in choosing the current defining resistor R because thermal considerations limit the current to 2.5mA. The centre frequency may be chosen by $f_c = 1/(4CR)$ for $V_{in} = 2.5V$. Nonlinearities in the emitter base junction of Tr_1 are removed by feedback. In practice the main deviations in V-to-F occur because of a mismatch between the current mirror transistors. This mismatch is most significant at currents above 1mA.

Divide by three

This circuit uses only three t.t.l. i.c.s to divide an input signal by three and provide an equal mark-to-space ratio output. The monostable is adjusted to produce an equal mark-to-space ratio from any input signal.

D. J. Eaton, St. Leonards on Sea, E. Sussex.
Loudspeaker system design

Three-enclosure system with active delay and crossovers — part 2

by Siegfried Linkwitz Dipl. Ing.

This is not the "ultimate loudspeaker", but in the first part of this article in the May issue Mr Linkwitz says that "the recording is the next weak link in the chain." The equalized system incorporates electronic crossovers and delay compensation. Part one describes the enclosure design and this article gives sufficient information for the experienced constructor to duplicate or to adapt the electronic design to other needs.

This speaker design project was started with the idea of mounting the boxes flush with the surrounding wall. Positioning the box in front of a wall causes a severe dip in amplitude response when the distance from the front of the box to the wall equals a quarter wavelength. For a typical 300mm enclosure depth the dip occurs around 250Hz, Fig. 2 (ref. 7).

If one imagines the walls near the speakers to be made of mirrors then one can easily visualize the images of the box in these mirrors. At frequencies where the radiation from the box is omnidirectional, each of these images can be thought of as a separate sound source, whose output will add or subtract from the original source, depending upon how far the image source is removed in terms of wavelengths. For a half wavelength distance to the image source, corresponding to a quarter wavelength distance from the speaker to the mirror, the output from the real and the imagined source will cancel each other.

This description of virtual sound sources is valid provided that the speaker is radiating sound towards the walls and that the walls, floors and ceiling act as acoustically reflecting surfaces, i.e. mirrors. Mounting the boxes flush with the reflecting surface eliminates the virtual image behind the speaker and produces a smooth frequency response. The completed system with flush mounted boxes performed very satisfactorily. In particular it gave a good sense of depth perspective for some stereo material.

It was discovered later that by moving the speaker out into the room and at least 0.5-1m away from walls and floor, a significant improvement in sound perspective was obtainable, see photograph in part 1. On appropriate program material it now became quite easy to pinpoint the location of individual instruments both laterally and in their distance behind the speaker plane. It might be said that the whole sound stage moved into focus.

Furthermore, tape hiss and record surface noise became spatially separated from the musical material. The noise originated definitely at the speaker boxes while the musical instruments assumed their own space between and behind the boxes. In this sense the noise and ticks from a record surface are comparable to the coughing and shuffling of people at a live concert where one can concentrate on the performance and not be side-tracked by unrelated acoustical events.

It is not clear why the placement only a relatively short distance away from the walls should give such a marked improvement, particularly in light of the just-mentioned frequency response interferences from virtual images. It might be that the ear-brain combination performs a time domain analysis and is able to allocate the wall reflections which occur 4 to 6ms later than the direct sound to the characteristic of the listening room and to the program material.

Mounting of the speakers away from the walls was accomplished by hanging them from the ceiling with a nylon monofilament. Electrical connections run from the back of the enclosure to the wall behind it and also serve to keep the speaker aiming forward. The small hanging units might be appropriately called satellites to the woofer box. The woofer itself is located halfway between the satellites, which are 2.5m apart.

The listening room is 5 x 8 x 4m (w x l x h), with the speakers in front of the narrow walls and the typical listening positions 5 to 6m away from the satellites.

Crossover design

The simplest crossover network is the \(-6dB\) per octave slope filter of Fig. 7. Assuming idealized components, the current from the generator will split in such a way that the vector sum of the voltages across the low and high frequency driver terminals is equal to the source voltage at all frequencies \(V_1 + V_{1h} = e\).

Correspondingly the vector sum of the sound pressures \(p_1\) and \(p_{1h}\) generated by the drivers will be directly proportional to the generator voltage \(p_1 + p_{1h} = k_e\) and independent of frequency, provided that the distance from the listener to each of the drivers is identical. The B110 and T27 drivers though are a wavelength apart, which means that equidistance is obtained only for a plane in space, Fig. 8. For points outside this plane the sum of the two driver outputs will vary with frequency.

Furthermore, because the two drive voltages already have a 90° phase difference the summation will be different for symmetrical points above and below the plane of equidistance. In the crossover frequency region where both drivers contribute equally the system will radiate its maximum pressure at a 14-degree angle below the plane, Fig. 9. This simple dividing network has a wide

Fig. 7. Schematic network with \(6dB\) per octave slopes and voltage phasor diagram at the crossover frequency.

Fig. 8. Plane of points are equidistant from the high frequency and low frequency drivers. The sum of the sound pressures is proportional to the sum of the electrical drive signals only in this plane.
range of overlap between the two drivers and therefore a tilted radiation pattern over at least two octaves.

A seemingly attractive feature of this network is its complete lack of phase distortion for points which are equidistant from H and L. Fig. 8. At these points perfect square-wave reproduction is achievable under free-field conditions or in an anechoic chamber. In a living room the increased radiation towards the floor and the reduced radiation upwards will produce a coloration in sound due to the frequency-selective change of the reverberant field. The ear is more sensitive to the amplitude response than to phase shift. Therefore this filter and related designs with even greater than 90° phase difference between the drive signals and correspondingly greater off-axis intensity peaks are not used for the satellite system9.

A 24dB per octave slope filter was chosen which has no off-axis peaks in the radiation pattern10. Fig. 9. The steep filter cut-off narrows the overlap region where the B110 and T27 interact. The T27 has its fundamental resonance at 1.4 kHz and the highpass provides 27dB of attenuation at this frequency. At 5kHz where the B110 exhibits a cone resonance the filter has reduced the drive voltage by 18dB, Fig. 10. A 6 or even 12dB per octave filter would have insufficient attenuation to minimize exciting these resonances. The 18dB per octave filter was not considered because it tilts the polar pattern.

All these filters, with the exception of the 6dB per octave network, have a frequency-dependent phase shift and consequently some phase distortion. Only a network of linearly increasing phase shift with increasing frequency will have no phase distortion. The slope of the phase curve is constant in this case. Any deviation from the constant slope indicates that some amount of phase distortion is present. The question arises how much slope variation can be tolerated before it becomes audible and not merely visible on an oscilloscope. The slope of the phase curve, usually referred to as envelope delay or group delay, has been plotted for typically used Butterworth crossover networks and the new network function10, Fig. 11. Merely changing the polarity to one of the drivers drastically changes the group delay for the summed driver outputs as in the case of the first and third-order Butterworth crossovers. Their on-axis amplitude response is unchanged, unless the drivers are separated some distance from each other. Then the polar pattern will tilt either up or down with the change in driver polarity.

To investigate the audibility of phase distortion an all-pass network was built which duplicates the group delay of the new second and fourth-order crossover networks (12 and 24dB per octave curves in Fig. 11). Listening with headphones to stereo and mono program material, no audible difference could be detected with either one of the all-pass networks switched in or out.

Therefore it seemed safe to use the fourth-order filter with its sharp cut-off behaviour which minimizes the overlap between drivers.

Crossover and equalizer circuits

The crossover networks and equalizers consists of a variety of active filter circuits. The overall block diagram of Fig. 12 gives an indication of the system complexity. Design formulas are presented for each functional block so that the experienced constructor should be able to duplicate the circuits of Fig. 13 or adapt the design to particular needs.

3kHz crossover networks

The fourth-order high and low-pass filters are made up from cascaded second-order Butterworth sections, Fig. 14. The outputs \(V_H \) and \(V_L \) are in phase with each other at all frequencies and the voltage sum is equal to \(V_{VH} \). At the crossover frequency \(f_c \), therefore, the output from each filter will be \(V_{H} / 2 \) or 6dB down, which is different from the typical 3dB crossover point for filters where \(V_H \) and \(V_L \) are in phase quadrature10.

Delay compensation

The B110 and T27 drivers do not radiate from the same acoustical plane even though they are mounted on the same
Fig. 12. System block diagram. Design formulas for each functional block are given to allow adaptation of the circuits of Fig. 13.

Fig. 13. Circuit diagram of crossover networks and equalizers incorporating delay compensation. Broken lines show optional h.f. boost components.
baffle. The electrical signals arrive at each voice coil at the same time but because the T27 voice coil is located in front of the B110 voice coil the sound pressure wave generated by the T27 will be advanced relative to the B110. The 40mm driver off-set may seem insignificant unless it is related to the 144mm wavelength of a 3kHz tone where it corresponds to a 100° phase difference between the two driver outputs.

The effect of driver off-set on the on-axis frequency response can be quite significant, particularly if both drivers contribute almost equally over a wide frequency range. Fig. 15. The frequency region of overlap is significantly narrower for higher-order filters because of their steeper cut-off.

The driver offset can be compensated for by adding electrical delay to the tweeter drive signal, or by mounting the tweeter in a different plane.

Mechanically moving the tweeter back is feasible provided care is taken to avoid sharp cabinet edges and their associated scattering of sound. For electrical delay an all-pass network has been used. Fig. 16. Its delay varies with frequency from \(+6dB \) at low frequencies, approaching zero delay at very high frequencies. To reduce the frequency dependency in the crossover region of around \(f_c \) the component values should be chosen such that \(RC < 1/20 f_c \). Several delay stages are cascaded to obtain the required total delay. This delay has to be determined experimentally, but the spatial driver offset gives a reasonable starting point.

70Hz crossover network

The transition between the woofer and the satellite uses 24dB per octave slope filters similar to the 3kHz crossover. A transition frequency of 70Hz was chosen because the B110 output is 3dB down at this frequency due to the small internal volume of the satellite enclosures. The output continues falling off at a 12dB per octave rate below this frequency with approximately second-order Butterworth response shape. Therefore the driver in the closed box can be used as one half section of the required high-pass filter. The other half is implemented with an active second-order Butterworth filter section — the first stage in the centre channel of Fig. 13. The low-pass filter for the B139 is again the two amplifier fourth-order network design — the second and fourth stages of the lower channel in Fig. 13.

Woof er equalization

The response of the woofer does not extend sufficiently far down in frequency. The fall-off in acoustic output will therefore be compensated with a properly increasing drive signal. Over the frequency range where the driver acts like a rigid piston its frequency response when mounted in a closed box (ref. 11) is

\[
F_w = \frac{1}{\sqrt{\left(\frac{f}{f_0}\right)^2 - 1} + \frac{1}{Q \cdot f_0}}
\]

This is a high-pass function with a corner frequency near the closed box resonance \(f_0 \) and some peaking depending on \(Q_0 \). Fig. 17. The two parameters \(f_0 \) and \(Q_0 \) can be conveniently determined from the frequency response of the driving point impedance of the speaker system, Fig. 18. If the system is driven from a generator with an internal impedance much larger than \(R_{max} \), then the terminal voltage becomes proportional to the system impedance and \(Q_0, f_0 \) can be determined from the voltage response as in Fig. 19.

For the two B139 woofers in their closed box, the resonance occurs at 54Hz with a \(Q_0 \) of 1.2. The response can now be compensated with a network which exactly complements the woofer roll-off and extends it to a lower cut-off frequency, Fig. 20. This design approach can be used to equalize other speaker systems if careful attention is given to

Fig. 14. Fourth-order 24dB per octave crossover filter sections are made up from cascaded second-order sections in both high and low-pass forms.

Fig. 15. On-axis response when the tweeter is positioned acoustically in front of the midrange by \(0 \) with 6dB per octave crossover, and 24dB per octave crossover.

Fig. 16. Several all-pass phase shift networks are cascaded to obtain the required delay compensation.
The corrected response of the woofer can be verified by placing a microphone about 1 cm away from the cone to determine the near-field sound pressure which for a uniformly moving piston is proportional to the far-field sound pressure.

System equalization

As active networks are already used for the crossover filters it seems attractive to also use them to equalize the complete speaker system for a flat amplitude response at the preferred listening location. A microphone at that position will pick up the direct sound coming from the speakers and a large number of reflections from various objects and the walls of the room. The microphone cannot distinguish between the different sources. The microphone output voltage which corresponds to the direct sound from the speakers will be masked by the voltage due to the reverberant sound field. The ear-brain combination seems to be taking its clues for locating the details of the stereo image from the direct sound even when the reverberant sound energy is much larger than the direct sound. This might explain why attempts to equalize for a flat response at the listening location gave unsatisfactory results.

The response at one metre from the speaker in the room appears to be a better starting point for equalization. But even for this location a completely flat response does not seem to give the most natural-sounding reproduction. Some form of shelving or sloping response seems necessary.

In this design a 3 DB low-frequency boost is applied to the B110 signal to obtain flat acoustic output over its range (last stage in the centre channel of Fig. 13). The T27 is allowed to follow its own gradual roll-off, but if a flat high-end response seems desirable then the simple network shown with broken

![Diagram](image)

Fig. 18. Schematic response of the woofer driving point impedance measured as in Fig. 19 from which f_0 and Q_0 of Fig. 17 are derived (ref. 11).

The cone excursion capability and the power amplifier output voltage swing limitations. Both increase by a factor of four when the cut-off frequency is lowered by an octave.

For the playback of records much of the linear excursion range of the woofer is used to reproduce the large amplitudes of record rumble. This wastes driver linearity. Fortunately the left and right-channel vertical rumble outputs from the pickup are out of phase and therefore cancel when the left and right channels are summed for a center channel woofer, as in this design. Separate left and right channel woofers can easily be tied together electrically to eliminate the unnecessary movement of air at subsonic frequencies from one speaker box to the other.
An analogy might help to describe the subjective impression of a properly designed and equalized system by comparing it to the colour photograph of a familiar scene. A fair sound system might correspond to an out-of-focus picture, possibly with the wrong reds and blue or an overall colour tint. Comparing two such systems to each other is like looking at two blurry pictures of reality, where one might prefer one over the other because of its colour balance but there is no question of either being a realistic reproduction. A high accuracy sound system corresponds to a photograph which is focused and without unnatural emphasis on any colour. When a high standard of reproduction is being approached it becomes possible to hear clearly areas of slight imperfection like in a picture which is not exactly focussed or has just a slight colour tint. For the high-frequency equalization of the speakers this means that too much output shifts the sound image out of focus. The image depth becomes blurred because the high frequency overtones seem to be less distant than the virtual sources which generated them.

The chosen speaker equalization appears to match the greatest variety of program material. A properly functioning treble control in the pre-amplifier is needed though to correct for differences in recordings. The final response of the drive voltages for the three speaker units, Fig. 21, could have been generated or approximated with passive networks. The practical implementation might prove to be difficult though and no attempt has been made to design a priori passive crossover/equalizer. The design flexibility of active networks clearly outweighs the possible cost saving of passive networks when only a single system is being built.

Conclusion
It is hoped that some of the design techniques and ideas expressed here will stimulate a more rational design of loudspeaker systems. Certainly the drivers will be continuously improved for reduced spurious resonances but even more so the enclosure design, materials and shapes will need further study and development. Nevertheless it is possible to design a highly satisfactory system even with today's standard components.

References
8. Heyser R.C., Geometry of sound perception, 1st AES Convention, Los Angeles, May 1975.

System X speed-up

An Integrated Systems Development (ISDD) has been set up by the Post Office to accelerate the development of System X, the electronic exchange equipment "that will revolutionise the nation's phone system." (Wireless World, passion.) The department is to be headed by Mr John Martin, who has worked on electronic exchange equipment for 15 years, and on System X for four.

In a statement the BPO said they intended to place contracts for the first production exchanges before the end of the year. The first exchanges would come into service by the early 80s. The new department is an offshoot of the TSSD (Technical Systems Strategy Department), set up in 1974 which, under Roy Harris, has been responsible for the overall design of the system. ISDD will liaise with Plessey, GEC and STC, who are developing System X with the PO, and other Post Office departments.

The Carter Committee on the running of the Post Office criticised the slow development of System X, which it feared would arrive too late to be competitive in world markets.

The Post Office revealed some of the ideas underlying System X at the Communications 78 exhibition and conference at Birmingham. System X will use integrated digital transmission and switching, stored programme control and common channel signalling. The devices used would be based on low power Schottky t.t.l., c.m.o.s. and n.m.o.s.

IERE hits out at "degree obsession"

"The national obsession with education to 'degree standard' has deprived the traditional technician engineer training pattern (ONC/HNC) of both its status and much of its best raw material; this, coupled with the inflexibility of CEI's qualification rules and procedures which has robbed the technician engineer of the facility to proceed by practical achievement to chartered engineer status, has divided the electronic engineering profession into a rigid two-class structure to the detriment of the profession and of the national interest."

The broadside was delivered in the IERE's evidence to the Finniston Committee on the future of the engineering profession. In other respects, however, the IERE seems to agree with the views of the Engineering Professor's Conference that degree courses should be longer and that there should be more cooperation with industry. The IERE recommends that there should be an extensive publicity campaign aimed at raising degree course entry standards to restore the status of ONC, HNC, HND and TEC courses and the associated work levels, to stimulate recruitment and to boost the morale of "this vital element of the engineering workforce."

* This, as we said in our September, 1977 leading article, is more like it.

Nabbed by satellite

American GEC has demonstrated a system for preventing drugs being smuggled over remote parts of the Mexican-US border which uses mobile radio and a geostationary satellite.

Siegfried Linkwitz became interested in sound reproduction as a hobby, recognizing the many dualities between the propagation of microwave and acoustic fields. "A 1GHz electrical wave and a 1kHz acoustical wave have about the same wavelength." After modifying and equalizing several commercial loudspeakers, he set about designing his own system — out of frustration with available units. He is program manager for a high performance microwave spectrum analyzer with Hewlett-Packard, and he's been involved with the design of signal generators, a vector-voltmeter (IVS) and was project leader for a spectrum analyzer (8554A). Joined Hewlett-Packard Company in California as a development engineer for r.f. test equipment following graduation in 1961 from Darmstadt University.
KEEP YOUR COOL

WITH ANTEX SOLDERING IRONS...

THIS UNIQUE SAFETY STAND:
PART OF THE ANTEX SOLDERING KITS
SK'3 and SK'4

With the new Antex soldering stand you have the assurance that with the iron tucked neatly into the strong angled spring coil you have maximum safety when preparing or waiting for the iron to heat. Moulded into this stand is provision for six alternative bits, and two small sponges for cleaning bits.

This sturdy plastic stand is a useful addition to any household or workshop. The SK3 and SK4 kits comprise of a full instruction card mounted with either the CX miniature soldering iron or the larger X25 general purpose iron. Included in both of these kits is the safety stand.

All the range of Antex soldering irons are made on the principle of putting the heating element inside a shaft, then the desired bit is eased over the shaft, giving maximum heat transference, this why so often a small Antex iron can do the job of a larger conventional iron. The precision made slide on bits are slotted to make them easily interchangeable.

Our comprehensive range is sure to meet your needs.

Model CX-17

3 watts

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only 7½" long. Fitted with a 3/32" or 1/4" bit and priced at £3.91 inc. VAT & P&P. Range of 5 other bits available from 1/32" down to 3/64".

Model X25 - 25 watts

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with 1/4" bit and priced at £3.91 inc. VAT & P&P. Range of 4 other bits available.

B.E.A.B. APPROVED

Model SK3 KIT

Contains both the model CX soldering iron and the stand S-3. Priced at £5.62 it makes an excellent present for the radio amateur, model maker or hobbyist.

Model SK4 KIT

With the model CX general purpose iron and the S-3 stand and the B.E.A.B. safety label, this kit is a must for every tool kit in the home. Priced at £5.62 inc. VAT & P&P.

Model SK1 KIT

This kit contains a 15-watt miniature soldering iron, complete with 2 spare bits, a coil of solder, a heating link and a booklet. How to solder Price £6.18 inc. VAT & P&P.

Model MLX KIT

The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15-feet flexible cable and battery clips. Packaged in a strong plastic envelope, it can be left in a car, a box or a caravan, ready for soldering in the field. Price £4.59 inc. VAT & P&P.

Please send the following... I enclose cheque P.O. No 258 1000

Name...

Address...

Please send the ANTEX colour brochure...

ANTEX LTD., FREEPOST, PLYMOUTH PL1 1BR TEL. 0752 67377

WW -- 104 FOR FURTHER DETAILS
THE FRG7 Synthesised General Coverage Communications Receiver

The FRG7 is a solid state mains and 12v. receiver offering continuous coverage 0.5—30 MHz with specifications unparalleled in its price range.

Its advanced circuitry provides superb performance for professional or amateur alike: search, monitor, test, amateur or broadcast band applications.

The use of a Wadley loop (using the same VHF oscillator to mix up, then after pre-mixing with a stable crystal source down again (this cancelling all drift from the variable oscillator). It provides equivalent performance to 30 crystal controlled converters feeding a low IF, but without the image problems of such an arrangement.

The signal path starts with the choice of 3 antenna connectors: for 1.6-30 MHz, a 50/75 ohm feed (to a SO239 (UHF) coax socket and a binding post) and for 0.5-1.6 MHz (medium wave) a separate high impedance binding post. A 3 position 0-40dB switchable attenuator aids reception of very strong signals and reduces adjacent channel interference.

A low noise MOSFET RF amplifier provides a SSB sensitivity of 0.25uV (for 10dB N+5 at 10.5 MHz) and is sharply tuned by a well calibrated "pre-selector" capacitor with 4 band switched coils. Its output is low pass filtered (fc=35 MHz) removing VHF image problems from the following mixer. This comprises a pair of JFETS, driven by the "MHz set" 5.5—84.5 MHz oscillator, which converts the signal to the band pass first IF for 55 MHz ± 500 kHz where it is MOSFET amplified. The second IF of 2-3 MHz is produced by a FET mixer by heterodyning with the synthesiser derived 52.5 MHz signal.

A 1 MHz crystal oscillator and diode harmonic generator produces a 3-32 MHz comb spectrum. This, with the first heterodyne oscillator (MHz set) is fed to a dual balanced, i.e. pre-mixer. The output is expurred by a multiple stage selective amplifier producing the 52.5 MHz second oscillator. A small fraction of this is rectified, DC amplified and lights the 'lock' LED (having power when the MOSFET oscillator is on). The 2-3 MHz signal is MOSFET amplified and fed to the third mixer (a JFET whose input and output are tuned by capacitors ganged to the main tuning control) where it is heterodyned to the final IF by the main VFO which covers a 1 MHz range (2.455-3.455), is clearly calibrated, to 5 kHz (or better), well buffered and highly stable. The third (455 kHz) IF starts with two stages of bipolar (the first in the signal path) amplification before the choice of detectors; twin diodes for AM, or a 4 diode product detector, with well buffered switched frequency (for selectable sidebands) B.F.O. A diode rectifies, a fraction of the output from the final IF, this is boosted to drive the illuminated "S" meter and automatically gain control the MOSFET amplifier in the RF, second and third IF stages, reducing fading and distortion. Immediately following the demodulator is an automatic noise limiter, highly effective in suppressing pulse type interference on AM signals, and a three position "tone" switch a (high, low or band pass) audio filter, reducing the bandwidth to that required. A transformerless AF amplifier delivers a generous 2W to the internal 5" x 3" (or external speaker), drives a phone jack, and a "volume" independent output for tape recorder. The receiver is mains (234VAC), external (12V DC) or internal dry cell powered, the most economic source being automatically chosen. This is reduced to a stable regulated 10v. (or 9v for oscillator and the harmonic generator). A dial lamp switch is provided to conserve power on battery operation.

CONSERVATIVE SPECIFICATIONS

FREQUENCY RANGE 0.5-30MHz
AUDIO DISTORTION less than 10% at 2W output
AUDIO OUTPUT more than 2W.
ANTENNA IMPEDANCE 50-75 ohms. Unbalanced for 1.6-30MHz. High impedance for 0.5-1.6MHz.

MODES SSB (selectable USB&LSB) AM, AM/ANL, or CW.
CIRCUITRY 13 bipolar and 9 field effect transistors.
SIZE 13½" W x 6" H x 1½" D.
POWER REQUIREMENTS 13.5V DC Neg ground or 8 off HP11 or 100/110/220/234V AC 50/60 Hz.

FREQUENCY STABILITY within 500HZ during any 30 mins after warm up.
SELECTIVITY ± 3KHz at 6dB (nominal) and ± 7KHz at ± 60dB down.
WEIGHT 15lb/s without batteries.
SENSITIVITY 0.25 uV for 10dB N+S+N ratio for SSB and CW. 0.7uV for 30% modulated AM at 10.5 MHz.

OUR AGENTS

Amateur Electronics
508-514 Alum Rock Road
Alum Rock
Birmingham B8 3HX

South Midlands Communications Ltd.
S. M. House. Osbourne Road
Totton
Southampton. Hampshire S04 4DN

Western Electronics (UK) Ltd.
Fairfield Estate
Louth
Lincolnshire LN11 0JH

WW—095 FOR FURTHER DETAILS
Optimising Viewdata
Determining the maximum number of simultaneous users of the system

by S. Fedida B.Sc(Eng.), M.Sc., F.I.E.E., A.C.G.I., Post Office Research Centre

For the Viewdata information retrieval system to operate economically it has to deal with as many simultaneous users as possible. This article explains how the characteristics of the computer (April and May issues), and in particular the moving-head disc store, place a limit on this number, and how simulation studies have been made to establish the maximum rate of user requests the disc store can satisfy.

In an earlier article it was mentioned that one of the criteria used for the selection of a computer and its associated software for Viewdata was its ability to support as many simultaneous users as possible in order to reduce the cost per user per unit time. Two approaches were considered. In the first, the computer would poll and service the users in turn, any spare time remaining being used for "housekeeping" duties or to support interactive services not related to information retrieval, e.g. calculations and messages. This scheme introduced the complications of interleaving a polling algorithm, involving many unnecessary computer enquiries, with random scheduling. The alternative approach uses a wholly interrupt-based mechanism, with a fast hardware micro-programme.

Fig. 1. Graph of cost per port plotted against number of simultaneous users.

For all work. Also, in order to facilitate the information retrieval process, a direct correlation was established between the numbered prompt and the physical address of the data required on the random access storage medium.

In order to assess the capability of the Viewdata computer to support a number of simultaneous users, assumptions were made regarding the number of requests per minute a user was likely to make in the information retrieval mode and the size of the data page in terms of the number of characters which a computer response might involve. For the purpose of the study a cycle time of 12 seconds was selected, 2 seconds of which were accounted for by the maximum response time of the computer which was initially imposed as a desirable constraint. The size of the data page was settled at 960 characters maximum to ensure compatibility with teletext.

With these premises a study was carried out to find out which features of the computer place a limit on the number of simultaneous users. Three features were considered: c.p.u. power; amount of internal store; and disc store access. The result of the study is illustrated in Fig. 1. This shows that, as the number of simultaneous users increases, the cost per port is reduced until a limit is reached at about 200 users when the internal store limit of the GEC 4080 computer is reached and precludes further increases. This is because each user requires about 1 kbyte of buffer storage in the main memory.

If one assumes that the internal store limit is overcome in some way, it is possible to increase the number of simultaneous users and at the same time reduce the cost per port. In the GEC 4082 the maximum internal store is 1 Mbyte. The next limit to be reached is that of disc throughput, at about 700 users, given that the whole data bank is stored on a single disc. The amount of c.p.u. mill-time per user is only about 1ms, thus placing the c.p.u. limit well beyond 700 users if they are all engaged in information retrieval.

There are a number of ways which may be used to overcome the core limit and the disc limit, but one has to keep in mind a further limitation which so far has not been introduced explicitly, i.e. that of the network. Clearly a computer centre with a 1400-line telephone capability (assuming working and standby equipment are used to support users) is a major centre and it may well be questioned whether it is desirable to go much beyond this point. The internal storage limit of the computer used may be easily overcome by taking the users' buffers outside the main frame and

Fig. 2. Seek time of moving head disc.
using the direct memory access channel of the machine to transfer data frames at high speed from internal memory directly into buffers. Indeed this may be more economic than increasing internal memory.

We have seen above that the major item of equipment placing a limit on the number of simultaneous users is likely to be the moving-head disc, once the limit imposed by the main frame memory is removed as indicated above. Taking average values for the parameters of the disc currently tested as: 12.5ms average latency; 6.0ms for the transfer of 1kbyte page from disc to internal memory; and 33.0ms average seek time (see April issue for definition of these terms); we find that the average access time is about 52.2ms, thus giving a rate of acceptance of requests of 19 per second.

The rate at which users are likely to make requests is clearly highly variable and statistics will have to be taken on a sampling basis, at least in the initial stages of the current trials of Viewdata, and possibly subsequently at regular intervals, to ascertain the distribution of user response times and establish long-term trends. Nevertheless it is possible to derive some figure on which to build a number of likely scenarios.

Given that the transmission rate from computer to terminal is at 120 characters per second (1200 bit/s) a full page requires about 8 seconds to be transmitted. The time taken by the user to read a full page and to respond with a further request depends obviously on the reader, but a good average time is about 30 seconds. Thus the build-up of one scenario is as follows:

<table>
<thead>
<tr>
<th>Transmission time</th>
<th>8s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading and response time, say</td>
<td>30s</td>
</tr>
<tr>
<td>Maximum user waiting time</td>
<td>2s</td>
</tr>
<tr>
<td>Total</td>
<td>40s</td>
</tr>
</tbody>
</table>

The time to transmit a 1-character response from terminal to computer (133ms), the time to return the first character at 1200 bit/s (9ms) and the c.p.u. processing time (1ms) have been neglected.

A count of a number of typical data pages and lead-in pages on Viewdata has shown that on the average the page content is about 500 characters. Thus the average cycle time for the average user is probably about 20 seconds. The initial system design process has tended to err on the conservative side and has assumed an average cycle time of about 12 seconds, thus allowing 10 seconds for disc retrieval for all the users connected to the computer at any one time. In fact this time could be between 10 and 18 seconds. Given these assumptions it would appear that a Viewdata computer using a single moving-head disc with the specification mentioned above would be able to service between 190 and 350 users within the stipulated maximum response time of 2 seconds.

While the use of average disc access time gives a rough approximation to the maximum rate of requests the moving-head disc can satisfy, it is necessary to do a computer simulation to establish the disc capability with a higher degree of accuracy, under different assumptions than complete randomness of disc searches. Accordingly a model of disc access time versus number of tracks traversed, obtained from the manufacturers, was approximated to by a number of straight line segments giving the relationship in an explicit form. The form of the model (which relates to the seek time) is shown in Fig. 2. It shows the seek time as a function of the number of tracks to be traversed and reflects the design of the head movement servomechanism which provides a measure of anticipation in feeding head movement acceleration according to the total track number to be traversed.

The disc latency (the delay incurred while the reading head waits until the sector required rotates to a position where it may be read) is also simulated randomly in steps of 1/6 of a disc revolution, each complete revolution taking 24ms in the model studied. The arrival of requests is assumed to take place at random times, each request specifying a track number in the range 1 to 400 and a frame number within the track in the range 1 to 12, also selected randomly. Two disc retrieval strategies were simulated. In the first, the "saw-tooth" method, it is assumed that the moving-head traverses the disc from the centre to the periphery. As each request arrives it is placed in an ordered list of increasing track numbers. The first request to be satisfied having a track number higher than the track numbers 2, 15, 25, 72 arrives while the head is moving towards track number 17, requests 25 and 72 are placed in the lists of next requests, while requests 2 and 15 are held to await the next traverse of the head. This continuous update of the request-ordered lists implies that the head satisfies requests at progressively higher track numbers as it sweeps across the disc surface. When the head reaches the last track, track number 400, it returns to track 0 and repeats the procedure, no attempt being made to satisfy requests on the return journey.

In the "triangular sweep" method, which was also simulated, the head satisfies requests both on the outward journey and on the return journey according to the same method.

The results of the disc simulation are shown in Figs. 3 and 4. The performance criterion selected to compare the two methods is defined as: \(N = \text{arrival rate of requests} \times 99\% \) of which are satisfied within 2 seconds of arrival. It may be seen from these figures that the saw-tooth method is capable of coping adequately with an arrival rate of 30 requests per second, while the triangular method can only manage about 26 requests per second. It is interesting to
note that the triangular method gives better mean service times than the sawtooth method at all arrival rates up to 30 per second. Clearly the performance criterion is important in selecting the optimum search strategy.

Assuming that the sawtooth disc search algorithm is chosen, we see that the system performance is now upgraded to a capability of 30 requests per second. Thus a Viewdata system using this strategy is capable of supporting a simultaneous user population of between 500 and 540 depending on the user response time.

The current Viewdata system uses improved double density discs, capable of storing about 70Mbytes per disc drive, distributed on five surfaces, each surface containing 823 tracks. There are 34 sectors per track and 512 data bytes per sector. The average cylinder seek, latency, and transfer times are also improved to 27.5ms, 8.3ms and 2ms respectively, giving an improvement in total average access time from 52.5ms to 38ms.

A new disc technology is now in progress to assess the maximum request arrival rate that may be satisfied by this disc, within 2 seconds. However, on the basis of the average values quoted above it is anticipated that arrival rates of approximately 30 x 52.5/38 = 40 per second may be satisfied. This is equivalent to supporting 400 to 720 simultaneous users.

Conclusion
This series of articles (February-May 1977, April-June 1978) has described in some detail the various aspects of the Post Office's Viewdata system, including the terminal, the computer and the associated software, the network and communications systems, and most importantly how the whole system has been designed as an entity to meet the needs of a potentially huge user population.

As already reported in Wireless World the Viewdata market trail is due to begin in the middle of 1978, and so the sector of the public which will be involved to participate and represent the silent majority will be able to make its views known and, it is hoped, confirm the enthusiasm of the professional and business communities for this new and potentially immeasurably powerful and beneficial medium. The full public service will start early in 1979.

Acknowledgements
The author wishes to thank the Director of Research, Post Office Research Centre, Marlesford, for permission to publish this series of papers and the Director of Marketing, GEC Computers Ltd, for permission to publish information on the GEC4080. Thanks are also due to the members of the Viewdata research development teams who have all contributed to make this design a success. Particular thanks are due to the helpful advice of Mr S. Crammond, who has been primarily responsible for the design of the terminal, and to Mr G. Turner, who has been responsible for the design of Viewdata software (jointly with Mr W. Izzat, until about the end of 1975).

Futher reading
1. Fedida S. (1975), Proc European Computing Conference on Communications Networks, 261-262
2. Fedida S. (1976), IEE Colloquium on Broadcast and Wired Teletext Systems - Cefax, Oracle, Viewdata
3. Fedida S. (1976), Screened Information at the touch of a button, PO Telecommunications Journal, Winter 1976/76, vol. 27, p.4

Sony close on Matsushita's heels in home video

Continued from p48

JVC HR3300 EK £710 recommended retail. exclusive of V.A.T
Sony's two-channel European-standard Betamax, first previewed at last year's Berlin exhibition as a two-hour version (Toshiba, Sanyo also announced models) began life as a one-hour NTSC machine three years ago. The decrease in capacity could result from the fact that if the Sony U-matic cassettes - was achieved mainly as a result of eliminating guard bands between tracks on the helically-scanned tape and also by improving the U-wrap tape transport mechanism particularly the tape guides. The better mechanism meant that both tape thickness and track width could be reduced. Increasing coercivity of the (chromium dioxide) tape from 500 to 600 oersteds improved the h.f. characteristics of the tape.

At high frequencies azimuth loss is relatively high and Sony engineers found that tilting the two heads +7 and -7° respectively, led to a high loss between adjacent tracks to reduce crosstalk sufficiently, at the frequency of the f.m. luminance carrier anyway. (Crosstalk is at least 30dB down at 4MHz for a 15° error.) Crosstalk reduction at the lower frequency of the chrominance carrier relies on reversing the colour phase polarity on alternate lines and only on alternate tracks. On playback the video signal is added to, or subtracted from, a one-line delayed version of itself, cancelling crosstalk from the adjacent tracks.

Then JVC, a Matsushita subsidiary, launched the two-hour VHS parallel-loading or "M" format in 1976, developed with the assistance of its parent. Sony were forced to extend their playing time for Betamax, especially in view of the televised sports events and films that last over an hour. This they did by halving and reducing video head width from 60 µm to 40µm (NTSC).

To keep things easily interchangeable, tracks were "overwritten" using a 40µm head, the tracks overlapping by 1µm to give a 30µm track width. In this case, when standard-format normal-speed tape is played on a long-play machine the long-play head traces the standard track with a good inter-trackability allowance, and with a signal drop of 2.6% per track. There is also a small reduction with playing a standard format tape made on a long/normal-play machine, some recording zone remaining unused. A recording made with a long-play head but at normal speed can be played back by a normal-play machine, gaps remaining between tracks.

Of course the same technique can apply to VHs and indeed last year Matsushita introduced a four-hour version, perhaps more in a game of marketing one-upmanship than in response to a real need developed.

For the new PAL versions of Betamax and VHs, playing time, tape speed and track width are different from the earlier versions. A European-system prototype from Matsushita (and Hitachi) in the Berlin show advertised a 33.4mm/s tape speed - the same as the NTSC version - giving a playing time of two hours. But speeds and widths were changed for both formats.

LassOctober, a few of the half of Matsushita, Mitsubishi, Hitachi, Akai and Sharp announced agreement on the new format with a 23.39mm/s tape speed, giving three hours playing time with their £180 cassette, and a track width of 49µm. Betamax now has a 33µm track width, a tape speed of 18.7mm/s and a maximum playing time of 3½ hours with the new thinner L750 tape (750 feet).

VHS uses an azimuthal slant of 8° to reduce h.f. crosstalk to 8°-7° for successive 8° shifts for each line on alternate tracks is adopted for i.f. crosstalk. Then on playback a two-line delay is used to bring about crosstalk cancellation, instead of the one-line delay of Betamax. Present models improves signal-to-noise ratio which, by itself, could run into trouble when limiting in the presence of large-amplitude low-frequency components by losing h.f. detail. To avoid this JVC band-split and limit the h.f. portion separately from the i.f. component, which is then added back prior to further limiting.

Thor Hire VHS, Home video recorders are to be available on a rental basis from Thorn in the UK. Announcing this at the May trade radio shows are Thorn Consumer Electronics whose VHS rental will be £18 a month (a figure which could make sense with frequent use, but which might prove excessive after the novelty has worn off).

Also marketing VHS are Akai (already in the UK), General Electric, GTE-Sylvania, Hitachi, Mitsubishi, Magnavox, Saba, Sharp, Thomson-Brandt, as well as the Matsushita brands. Behind Beta format are Aiwa, NEC, Pioneer, Zenith, Sanyo, Toshiba, the last two reportedly dropping their V-cord machines for Betacord models.

Also at the May radio shows, Grundig are expected to announce a four-hour version of the Philips VCR system. www.americanradiohistory.com
Logic design — 13

Flags and flag sorters

by B. Holdsworth* and D. Zissos†

*Chelsea College, University of London
†Dept. of Computing Science, University of Calgary, Canada.

When a student in a classroom environment wishes to ask a question, he raises his hand, and waits for the teacher to ask him to speak. On being told to go ahead, the student lowers his hand and proceeds to ask his question. Similarly when a device wishes to communicate with another device in the same system, it raises a flag in order to attract attention.

A simple communication system is shown in Fig. 1 where f represents a flag signal, which is, in this case, equivalent to the student raising his hand in the classroom. If and when the called device is able to communicate with the calling device, it sends back, as in the case of the teacher, a ‘go-ahead’ signal. The calling device then clears its flag and the two devices communicate.

A typical example of the use of flags occurs when a peripheral device such as a paper tape reader is ready to transfer data to another device, such as the c.p.u. of a digital computer. Firstly, it makes the data available for transfer and secondly, it generates a signal — the flag — to inform the c.p.u. that the data is available for transfer.

If device 2 in Fig. 1 is dealing with a situation during which it must not be interrupted, the flag of device 1 is disabled, that is, it is prevented from being raised. When the restriction is removed, the circuit is enabled. In the classroom analogy this corresponds to the teacher first not allowing his students to interrupt him to ask a question and then at some later time removing this restriction.

Summarising, a flag is a signal generated and used by a device to inform some other device that it wishes to communicate with it. A disable signal prevents the flag from being raised and an enable signal allows it to be raised. A clear signal turns the flag off without disabling it.

Flag circuits

The block diagram of a flag circuit with turn-on, clear, enable, and disable facilities is shown in Fig. 2. A signal on terminal e enables the circuit, whereas a signal on terminal d disables the circuit. Clearly, the two signals must not be applied simultaneously. When the circuit is enabled, a signal on terminal p generates a flag, which is cleared by a signal on terminal c. When the circuit is disabled, the presence of signal p does not turn the flag on. If enable and disable facilities are not needed, terminals e and d are omitted.

Flag circuit 1. The simplest circuit consists of a single JK flip-flop, which uses signal p as its clock pulse and signal c as the reset signal, as shown in Fig. 3(a). Since J = 1 and K = 0 a pulse on terminal p will set the flip-flop, whilst a signal c on the reset terminal resets the flip-flop unconditionally. The state diagram for this circuit is shown in Fig. 3(b).

Flag circuit 2. The flag circuit in Fig. 4 is basically the same as circuit 1, with the addition of a second flip-flop, the function of which is to enable and disable the flag flip-flop. If the second or E flip-flop is set, the circuit reduces functionally to that in Fig. 3. When E = 0 the flag flip-flop is unconditionally reset and cannot be turned on. The E flip-flop is set by the enable pulse on its clock line and reset by a disable signal d on its unconditional reset terminal r.

Flag circuit 3. Alternatively a flag circuit can be described by the two state diagrams shown in Figs. 5(a) and 5(b). From the state diagrams, the following equations are obtained.

\[
\begin{align*}
\text{turn-on set of } E &= e, \\
\text{turn-off set of } E &= d, \\
\text{hence } E &= e + Ed.
\end{align*}
\]

\[
\begin{align*}
\text{Turn-on set of } A &= BE, \\
\text{turn-off set of } A &= pB, \\
\text{hence } A &= BE + A pB = BE + A (p + c + B).
\end{align*}
\]
Turn-on set of $B = \bar{pA}$,
turn-off set of $B = \bar{Ac}$,
therefore $B = pA + B \bar{Ac}$,
$I = pA + B(\bar{A} + \bar{C})$.

Diagrams corresponding to these equations are shown in Fig. 5(c).

Identification of flags
In a computer system, each of the peripherals can communicate directly
with the computer. As explained earlier, every device generates its own flag
when it needs to communicate with the central equipment. These flags are
ORed to generate a master flag: when the central device is a computer or a
microprocessor the master flag is called an interrupt request because it is used to
request the computer or the microprocessor to interrupt its current activity
and service the peripheral’s needs. The master flag or the interrupt request simply informs the central
device that one of the peripherals in the
system wishes to communicate with it. It is the function of the called device to
identify which of the peripherals wishes to communicate with it.

There exists two basic methods for
identifying flags — the polling method
and the vectored method.

Polling method. In this method, also
known as the rest and skip method, the
central device, when it receives an
interrupt, sequences through the
peripherals looking for the individual
device that needs servicing, as illustrated in Fig. 6. When it finds such a
device, it stops sequencing and calls the corresponding service routine, at the
end of which the polling of the devices
continues until they have all been pol-
ilized. At this point the main programme is
resumed.

The flow chart of a polling routine for
n devices is shown in Fig. 6(b). The
counter in the flow chart is an internal
counter in the central device. In this
system no hardware assistance is provided
for determining which device is
requesting service. Whilst this method
saves in hardware cost, considerable processor time is used in test loops and
system performance is degraded.

Vectored method. In this method, the
presence of a flag is automatically de-
tected and identified by means of a
circuit known as a flag sorter. The basic arrangement of the system incorpo-
rating the flag sorter is shown in Fig. 7.

Flag sorters
A flag sorter (alternatively called a
priority encoder) is defined as a device
that automatically detects the presence
of a signal at its input and identifies it,
producing an interrupt signal I, and the
identity of the signal being automatically generated on address lines A and
B. The interrupt signal I is the OR function of all the input signals,
$I = f_0 + f_1 + f_2 + f_3$
Fig. 8. Block diagram (a), truth table (b) and circuit (c) for a two-flag sorter.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>f_1</td>
</tr>
<tr>
<td>f_2</td>
<td>f_3</td>
</tr>
<tr>
<td>f_4</td>
<td>f_5</td>
</tr>
<tr>
<td>f_6</td>
<td>f_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>t_1</td>
</tr>
<tr>
<td>t_2</td>
<td>t_3</td>
</tr>
<tr>
<td>t_4</td>
<td>t_5</td>
</tr>
<tr>
<td>t_6</td>
<td>t_7</td>
</tr>
</tbody>
</table>

Fig. 9. Four-flag sorter.

Fig. 10. Eight-flag sorter.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>l_1</td>
</tr>
<tr>
<td>l_2</td>
<td>l_3</td>
</tr>
<tr>
<td>l_4</td>
<td>l_5</td>
</tr>
<tr>
<td>l_6</td>
<td>l_7</td>
</tr>
</tbody>
</table>

The implementation of these equations is shown in Fig. 8(c).

The block diagram of a combinational four-flag sorter is shown in Fig. 9(a). In the case of the four-flag sorter shown in Fig. 7. For convenience, the address signals are generated in the binary (8-4-2-1) code, although any other code may equally well be used.

The design and implementation of flag sorters is straightforward, using conventional methods, either combinationally or sequentially. There are practical situations where a given flag signal must be given priority over the others. If it is present with other flag signals, its address must be given at the output, regardless of the state of the flag sorter: this is particularly the case in automatic plants, where certain alarm signals are given priority over other alarms. Unless it is otherwise specified, the higher the suffix of a flag the higher its priority.

Combinational flag sorters. The block diagram of a simple two-flag sorter is shown in Fig. 8(a). This circuit is required to generate an interrupt signal I to indicate one or more flags are present and an address signal A which can have the value 0 or 1 and is able to identify the two flag signals f_2 and f_1, where f_1 is the flag signal with the highest priority.

A truth table for the circuit is shown in Fig. 8(b). In this table the X entry is used to denote a 0 or a 1, and its use in the second row indicates that $A = 1$ if $f_1 = 1$ irrespective of whether flag signal f_0 is present or not.

From the truth table the logic equations for A and I can be derived. They are:

$I = f_2 + f_1 + f_0$

$A = f_2 + f_0$

The implementation of these equations is shown in Fig. 8(c).

The block diagram of a combinational four-flag sorter is shown in Fig. 9(a). In
this case, to identify the four flags, two address signals are required. A truth table for the circuit is shown in Fig. 9(b), and the logic equations for I, A and B are derived directly from the entries in this table. The equations are:

\[
I = f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7
\]

As the number of flags to be sorted increases so does the complexity of the logic equations for the address signals. In the case of an eight-flag sorter three address signals A, B and C are required. The block diagram of the sorter is shown in Fig. 10(a) and the corresponding truth table is shown in Fig. 10(b). The logic equations for I, A, B and C derived from the truth table are:

\[
I = f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7
\]

\[
A = f_1 + f_2f_3 + f_2f_3f_4 + f_2f_3f_4f_5
\]

\[
B = f_2 + f_2f_3 + f_2f_3f_4 + f_2f_3f_4f_5
\]

\[
C = f_2 + f_2f_3 + f_2f_3f_4 + f_2f_3f_4f_5
\]

Sequential flag sorters. The main disadvantage of the combinational flag sorter is that the address signals may change whilst being read by the central device. For example, in the case of the eight-flag sorter, if the interrupt signal is raised by flag 3, and flag 4 subsequently arrives, the output of the flag sorter will be changing from ABC=110 to ABC=001. During the change signal C has to turn on whilst signals A and B have to turn off. If C changes more rapidly than A and B the output is momentarily ABC=111 and, assuming this occurs when the central device is reading the address of the flag sorter, address ABC=111 will be recorded in error, resulting in circuit misoperation. It is for this reason that sequential flag sorters have been introduced.

The sequential circuit, whose block diagram is shown in Fig. 11(a), has to generate an interrupt signal if any of the three flags f_1, f_2, or f_3 are raised and in this case it will be arranged that the flag signals are serviced in cyclic order. The flag signals may be regarded as if they are arranged in a circle which is scanned whenever a flag signal is raised. When there is no flag signal present, the circuit rests in a homing state.

A suitable internal state diagram is shown in Fig. 11(b) where the addresses corresponding to flag signals f_1, f_2, and f_3 are AB=01, AB=10 and AB=11. In order to avoid races between secondary signals, it is convenient to take these addresses in an order in which only one secondary signal changes at a time, allowing the use of the secondary signals directly as the address signals, and stipulating the cyclic order of the flags as f_1, f_2, and f_3.

Assuming there are no flag signals present, the circuit takes up the homing state S_0 and the circuit outputs are I=0 and AB=00. If one or more flag signal is present at the input, I=f_1+f_2+f_3=1 and the circuit makes a transition from state S_0. For f_1=0 the circuit assumes state S_1, I=1 and AB=01. On the other hand, if f_1=0, the circuit assumes state S_2, I=1 and AB=11. Similarly if f_3=0 the circuit makes a transition to state S_3. AB=10 and I=1. The circuit will then return to the homing state when f_2=0.

Turn-on set of A=\(A_Bf_5\).

Turn-off set of A=\(\overline{A_B}f_5\).

Turn-on set of B=\(A(f_1+f_2+f_3)\).

Turn-off set of B=\(\overline{A_B}f_5\).

\[I = f_1+f_2+f_3\]

The implementation of these equations is shown in Fig. 11(c).
If it is stipulated that the flag \(f_3 \) must always be given priority, then to satisfy this requirement, the internal state diagram must be modified as shown in Fig. 11 (d). An examination of this state diagram indicates that the modifications only change the turn-off conditions of the secondary signal \(A \) which now becomes:

\[
A = BF_f + A(B + f_3)f_1 + Bf_1
\]

The implementation of this equation only requires an additional signal \(f_1 \) at the input of gate 3 in Fig. 11(c). A suitable arrangement for the detection of four flags is shown in Fig. 12(a) and the corresponding internal state diagram in Fig. 12(b). The presence of any incoming flag signal causes signal 1 to be generated. If flag \(f_3 \) is raised, the circuit remains in state \(S_0 \) and the flag sorter outputs are \(I = 1 \), \(A = 0 \) and \(B = 0 \).

State \(S_0 \) is a homing state, because the flag sorter automatically assumes this state when the incoming signals \(f_0, f_1, f_2, f_3 \) are cleared. The order in which the signal addresses are generated depends on the current state of the sorter. For example, when address \(AB = 00 \) is at the output, with \(I = 1 \), the incoming signals have the following priorities: priority \(1 = f_0 \), priority \(2 = f_3 \), priority \(3 = f_2 \).

The flag sorter logic equations which can be developed from the internal state diagram are:

\[
I = f_0 + f_1 + f_2 + f_3
\]

\[
A = BF_f + A(B + f_3)f_1
\]

\[
B = \bar{A}B_f + B(A + f_3)
\]

and the implementation of these equations is left to the reader.

Clearly, the state diagram and implementation of an eight-flag sorter can be developed in a similar manner, the state diagram being shown in Fig. 13.

Modular expansion

In the case of flag sorters for more than eight flags, it is more convenient to use a modular construction, which allows any number of flag signals to be identified. The design principle will be demonstrated for the case of 64 flags.

The incoming flags are arranged into eight groups of eight flags each, as shown in Fig. 14, the flags in each group being connected to an eight-flag sorter. Each flag sorter generates a signal \(g \) independently of the other sorters. Thus \(g_0 = 1 \) if any of the flags in group 0 are present, similarly for group flags \(g_1, g_2, g_3, g_4, g_5, g_6 \) and \(g_7 \). Individual flags are identified by six binary suffixes, the first three indicating the flag number and the second three the group number, for example, \(f_5(001) \), refers to flag 2 in group 7. The second set of three digits is generated directly by the group selector, while the first three digits are generated by the flag sorter, whose

Fig. 13. State diagram for eight-flat sequential sorter.

Fig. 14. 64-flag modular sorter.

www.americanradiohistory.com
The new Sinclair DM235 is yet another example of outstanding Sinclair value-engineering. Developed from the Sinclair DM2 and world-beating PDM35 (already outselling all other digital multimeters), the DM235 provides full facilities for every application, including field servicing, testing and laboratory work. At a price no comparable digital meter can approach.

A new dimension in styling
Up till now, choosing a meter suitable for use on the bench and in the field hasn’t been easy. Either you bought a bulky bench instrument (awkward to carry around) or a hand-held portable (difficult to use on the bench). The Sinclair concept is different. By keeping the thickness down to only a fraction over 1½ in, and the weight down to under 1½ lb, we’ve produced an instrument that has all the advantages of conventional bench meters, but that packs neatly into any tool kit or brief case.

A big, bright, unambiguous display
The DM235 has a full 3½ digit display reading to ±1999. Large, high-brightness 8 mm LEDs give clear, unambiguous readings with an ultra-wide angle of view. An LED display means proven lifetime reliability.

Six functions in 26 ranges
DC Volts............. 1 mV to 1000 V
AC Volts............. 1 mV to 750 V
DC Current........... 1 µA to 1 A
AC Current........... 1 µA to 1 A
Resistance........... 1 Ω to 20 MΩ
Diode test........... 0.1 µA to 1 mA
10 MΩ input impedance

High accuracy
Basic accuracy of 0.5% (2 V DC range), other DC ranges and Resistance 1.0%, AC ranges 1.5% 30Hz-10 kHz.
Temperature coefficient <0.05 of applicable accuracy per °C.

Easy to use by anyone, anywhere
Automatic polarity operation, automatic placement of decimal point, and automatic out-of-range indication. Unambiguous reading of function and range selected from a single input terminal pair.

A rugged construction giving total portability
Very rugged mechanical construction using all solid-state components.
Protected against accidental overload.
Size only 10 in x 5.8 in x 2.5 in, weight less than 1½ lb.
Basic operation from four standard C size disposable cells, providing complete independence of AC supply.
Line operation available via optional AC adapter/charger.

A full range of optional accessories
DM235 meter complete with test leads and prods........... £49.80
Eveready carrying case with lead stowage compartment........ £8.50
Rechargeable battery units........... £8.00
AC adapter/charger 240 V 50 Hz........ £3.50
30 kV high voltage probe........... £15.00
(All prices subject to VAT)

The Sinclair credentials
Sinclair have pioneered a whole range of electronic world-firsts from programmable pocket calculators to miniature TVs – holding a world lead in innovative electronics. The DM235 embodies six years’ experience in digital multimeter design, in which time Sinclair have become one of the world’s largest producers.

Like every other Sinclair product, the DM235 comes to you with a full 12 month repair-or-replacement guarantee.

Find out more!
If you’d like full details of the DM235, its operation and its performance, and a complete distributor list, just send the coupon below. We’ll send you all the facts by return.

The DM235 has all the performance you need – at around half the price of its competitors. Send the coupon for the full story.

Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs, PE17 4HJ.

World leaders in fingertip electronics

To: Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs, PE17 4HJ.
Please send me full illustrated details of the new Sinclair DM235.

Name__
Position__
Company__
Address__

WW—061 FOR FURTHER DETAILS

www.americanradiohistory.com
Now... the next generation of bench DMMs!
Two New Keithley Models offer uncompromising performance and outstanding value!

- Accuracy 3½ s can’t match 0.4% + 1 digit on dc volts and ohms
- Large, bright, 20,000-count LED display that’s quick and easy to read
- Convenient bench size that won’t get “lost” yet doesn’t crowd
- Exceptional reliability

Model 178 offers functions and ranges for most measurement needs 100 µV to 1200V dc. 100 µV to 1000V ac. 0.1Ω to 20MΩ.
Model 179 is a full-function, multi-feature model offering the same advantages as the 178 Plus

TRMS AC, 10µV Sensitivity, Hi and Lo Ohms; AC and DC Current Yet it’s still half the price you’d expect. Only £199.

Both models feature designed-in reliability
Rugged circuits use a minimum of parts — high quality, off-the-shelf parts — carefully assembled and tested by Keithley.
Outstanding overload protection and rugged mechanical design keep both units going even after severe abuse. One-year accuracy specifications minimise recalibration costs.
A battery option, user-installable, gets you off “line” for critical measurements or for field use.

For complete specifications on the 178 and 179, call Keithley Instruments, 1 Boulton Road, Reading. Phone 0734 861287

KEITHLEY
The measurement engineers.

WW—031 FOR FURTHER DETAILS

A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.

Manufacturers of sound systems and electronics
Station Road, Wenden
Saffron Walden
Essex CB11 4LG
Saffron Walden
(0799) 40888

Wenden range modular amplifiers

www.americanradiohistory.com
Generating ultra-short microwave pulses

Cancellation technique using readily-obtainable components

by Alan G. Hood M.Sc., M.I.E.E.

During an investigation into the behaviour of microwave radar receivers in the presence of high energy leakage spikes from the transmitter via the duplexer, a generator of very short pulses of microwave energy was needed. Standard magnetrons and modulators are not capable of producing directly the six to seven nanosecond pulses available by the method described.

The problem of generating consistent-energy pulses at microwave frequencies a few nanoseconds long was approached by employing a pulse cancellation technique. The frequency employed was in X-band (8.2 to 12.4GHz), but the technique is also applicable to other microwave bands. A 160ns-long r.f. pulse was split in a "magic T", and the two halves recombined in antiphase after travelling different path lengths. Fig. 1 shows how this was achieved by using two short-circuited arms of different lengths on a magic T. The result was that the centre portion of the magnetron pulse cancelled leaving short pulses corresponding to the leading and trailing edges of the original pulse. The trailing edge pulse was removed by means of a pulsed p-i-n diode switch. A CV370 magnetron supplied 5kW peak pulses at 1,000 pulses/sec.

The electric field of the magnetron pulse may be represented by

\[E(t) = 2A(t)\sin(\omega t + \theta) \]

where \(2A\) is the amplitude of the magnetron pulse, and \(\omega\) is a function of time, \(\omega\) is the angular frequency, and \(\theta\) is an arbitrary phase angle. After travelling different path lengths, the two cancelling pulses are displaced in time by \(\Delta t\), and the cancelled pulse is then

\[
\frac{1}{2}[E(t + \Delta t) - E(t)]
\]

where the factor \(\frac{1}{2}\) allows for the 6dB loss of power in the magic T. Substitution gives

\[(A + \alpha)\sin(\omega t + \theta + \alpha) - A\sin(\omega t + \theta) \]

where \(\alpha\) is the instantaneous amplitude difference between the two pulses and \(\alpha\) their phase difference, nominally 2\(\pi\) radians but which varies over the pulse length due to phase and frequency modulation. By appropriate manipulation this can be shown to be of the form

\[B = \sqrt{4A(A + \alpha)\sin^2(\alpha/2) + \alpha^2} \]

and \(B = \theta + \tan^{-1} \left(\frac{(A + \alpha)\sin\alpha}{A(\cos\alpha - 1) + \alpha\cos\alpha} \right) \)

All the terms \(A, \alpha, \pi, \theta\) and therefore \(B\) and \(\theta\) are functions of time. The situation is illustrated in the diagrams of Fig. 2. The trailing edge pulse is longer and of lower amplitude than the leading edge pulse because the magnetron fall time is much slower than its rise time. The amplitude of the short pulse is given by the expression for \(B\) and in the

Fig. 1. Waveguide layout for generating ultra-short pulses by cancelling differentially delayed pulses.

www.americanradiohistory.com
The ideal case of no phase or frequency modulation, \(a = 2\pi \) and then \(B = a \); otherwise \(B > a \). In the region where \(a = 0 \), cancellation may be incomplete due to phase differences and the output will then be \(B = 2A\sin(a/2) \).

For high amplitude and minimum pulse length a fast rate of rise and minimum phase modulation of the magnetron pulse are required. The short pulse is centred on the region of maximum rate of change of the magnetron pulse's electric field. This is likely to be near the 50% field (25% power) level and there will not be a simple relation between the magnetron rise time from 10 to 90% power levels and the length of the short pulse.

In practice the apparently simple cancellation technique was complicated by significant direct leakage between the decoupled arms of the magic T, the phases of both reflected pulses had to be adjusted so that all three signals cancelled. The poor match of the magic T for the reflected pulses in the short circuited arms made the first reflected pulses significant, and modified the pulse shape.

It should be possible by the use of suitably placed mismatches to change the magnetron output coupling during the build-up of oscillation and hence modify the leading edge of the pulse. This was tried but results were inconclusive and the matter was not pursued.

Among the problems encountered were the elimination of the second or trailing edge pulse, and the reduction of the spread of pulse energies. A varactor diode switch was initially tried for the attenuation of the trailing edge pulse and behaved well at low levels. However it proved to have inadequate attenuation at the power levels required and was replaced by a p-i-n diode switch which has proved satisfactory. The switching pulse for this was obtained from the magnetron output via a CV2155 negative polarity crystal detector and a suitable delay.

A filter was added to guard against the possibility of "moding". If the magnetron generated power at different frequencies, proper cancellation would not be achieved. By selecting manetrons and modulators the energy spread was reduced so that one pulse in \(10^6 \) exceeded the mean level by 1.25dB. A further improvement to 0.5dB was obtained by using a servo-controlled stabilizer for the supply voltage. Previously a slight drop in supply voltage (240 to 230V) changed the shape of the generated pulse and introduced noticeable jitter in addition to varying the magnetron output level.

A sampling oscilloscope is necessary to view pulses of such short duration. A tracing of an oscilloscope photograph showing the leading and trailing-edge pulses resulting from cancellation is shown in Fig. 3 (top) and the effect of the p-i-n switch is shown middle. The bottom trace is the short pulse on a reduced time scale.

Fig. 2. Diagrams show two r.f. pulses with a time difference \(3\tau \) and the resulting leading and trailing-edge short pulses due to cancellation. (Diagrams show rectified envelopes of r.f. pulses.)

Fig. 3. Sampling oscilloscope displays showing leading and trailing-edge pulses resulting from cancellation (top, time scale 20ns/div), removal of trailing-edge pulse by p-i-n switch (middle trace, time scale 20ns/div), and the short pulse on expanded time scale (4ns/div). Diagrams show rectified envelopes of r.f. pulses.

The short-pulse energy was measured as follows. The sampling oscilloscope was calibrated in amplitude using rectangular pulses of known duration together with an average power measurement using a thermistor bridge. The short pulse amplitude was then measured by means of this amplitude calibration. An accurate rotary-vane waveguide attenuator brought the short pulse amplitude on the oscilloscope to the reference level, thus eliminating any errors due to detector non-linearity. Amplitude was then calculated knowing the reference level power, and the number of dB difference in waveguide attenuation. The short pulse energy was then the product of short-pulse power and pulse width at half power (−3dB level).

The pulse generator had a useful output of 6 to 7 ns pulses with an energy of 1,000nJ and, on average, one pulse in \(10^6 \) had an energy of 0.5dB above the mean.

This article reflects a small part of the work that led to a degree thesis at Dundee University. Alan Hood studied for his M.Sc. part time whilst working with Ferranti Ltd on microwave radar system components. He became a part-time lecturer at Dundee College of Technology in electrical engineering and is now a lecturer at Kingsway Technical College, Dundee and a tutor/counsellor with the Open University.
How good are l.e.ds?

Ageing characteristics of infra-red emitters

by J. Skinner Leafields Engineering Ltd

The GaAs infra-red emitter has been in use for over ten years, and is now widely used throughout industry. Because the author wanted high performance from a relatively simple system it was decided to examine several devices to find out how their degradation characteristics behaved.

The size of paired modules such as opto-couplers made them impractical to test so discrete emitters with light outputs from 1 to 10mV were used. Tests were also carried out on suitable sensors but the results from these showed no significant variation with age.

The amount of forward current is important in practical applications and in tests. A report from NASA¹, which describes an exhaustive examination of the TIL31 device, confirms that degradation is reduced by conservative operation, and shows that no degradation occurs at 25% rating. A paper produced by Hafo² contains this interpreted statement.

"A substantially more rapid result of the operational test could be obtained if the l.e.ds were measured at a current lower than the operating current. The deterioration could occur somewhat faster with a low operating and measuring current than with a high one. This result had hardly been expected."

A second statement concludes, "the rate of deterioration may be greater at low rather than high currents." Hafo is one of the few manufacturers who have openly admitted that ageing of l.e.ds is a problem although they now claim to have eliminated the problem completely but have not explained how this has been achieved.

The rated current for a device under consideration is usually specified as 100mA. Because our application required a forward current of around 20mA, burn-in tests were run at 50mA and the tests run at 20mA per device, thus accelerating the running life. The NASA report suggests that light output increases for a period and then falls off continuously. It is therefore necessary to operate for a period which will contain any peak that may occur. Devices were tested for periods up to 1000hrs with a minimum burn-in period of 200hrs. The results obtained are summarized in the tables.

As the tests have been carried out over a 1000hr period it is important to know whether the degradation process continues. In the light of our field experience it does, apparently at a logarithmic rate, similar to that in the short period. Therefore, a device having low degradation during a short period will continue to degrade at a low rate for a long time. These remarks can only be taken as generalisations; nevertheless, short term burn-in can raise q.a. confidence enormously. Measurements of output, before and after burn-in, are however tedious and expensive. We have found that an acceptable compromise is to measure the output after a 200hr burn-in period. A minimum threshold is determined for each application and devices are graded accordingly. Both output and degradation characteristics thus require consideration in selecting suitable devices.

Fig. 1. l.e.d. outputs prior to burn-in. The outputs were measured with an Optron light standard type OP66 mounted in a blackened tube at a fixed distance from the emitter. Forward current in all cases was 20mA.

² Hafo

¹ NASA
Further notes from the Paris Show

There was a great deal of emphasis at the Paris Components Show on opto-electronics, particularly for the secure transmission of data. Well over 100 of the 1,100 exhibitors were showing fibre-optic or opto-electronic devices of some kind. When the notorious urban Parisian telephone system begins to reach saturation, between 1981 and 1985, optical fibre will be used to increase capacity, and the authorities expect that they will be using 10,000 km a year by the end of the decade for that purpose.

Displays seem to be getting bigger and more detailed. Thomson CSF are now offering plasma panels for alpha-numeric and graphic displays. The larger of the two ranges has 256 by 256 dot and 512 by 512 dot matrices with 0.64 mm pitch. All elements are addressable individually. The electronics and character stores are built into the devices, though they could hardly be described as flat. The French Commissariat a l'Energie Atomique appear to have developed a liquid crystal matrix display which can show pictures with 16,384 elements and an eight level grey scale which can be changed from five to ten times a second. Each line is scanned sequentially with an alternating voltage of 50V. The video signal is 6V applied to the columns in parallel, the relative phase of the column voltage to that of the line signal determining the grey level.

The Zyklomat universal tachometer caused quite a bit of interest. It is a light gun with a meter on the back. You fire it at a piece of rotating machinery whose speed is read immediately on the meter.

Logic design 13 continued from page 82

group number is that specified by the output of the group selector.

The operation of this flag sorter will be explained by direct reference to Fig. 14. Since more than one group signal may be present at any one time, an eight-flag sorter is used to lock out all but one of the group signals. This flag sorter is called the group selector. It will be assumed that two flags in group 1 (say f_1 and f_3) and one flag (say f_5) in group 4 are raised, that is g_1 = 1 and g_4 = 1. By direct reference to Fig. 13 it can be seen that the group selector leaves the homing state S_0 and assumes state S_3. When in state S_3 the group selector's output is 100. This output is decoded, causing signal e_i to assume 1, thus enabling the group 4 flag sorter. The output of flag sorter 4(110) is connected to lines A, B and C of the data bus, whilst the output of the group selector 100 are connected to lapes D, E and F of the data bus. The signals on these six lines ABCDEF = 110100 will identify the flag to be served, namely flag 6 in group 4. At the same time the group selector will also generate the interrupt signal I.

References
NEW PRODUCTS

Dual-trace oscilloscope

One of the products introduced at the Instruments, Electronics and Automation Exhibition earlier this year was the LBO-508 dual-trace oscilloscope. This instrument, which has a bandwidth of 20MHz and a sensitivity of 10mV/cm, uses a display screen measuring 8 x 10cms and its stabilized power supplies ensure a measuring accuracy of ±3%. Fixed and variable controls on the instrument provide a sensitivity range from 10mV/cm to 50V/cm, and an add function and a second-channel trace invert facility enable the inputs to be added or subtracted. Triggering may be selected from both channels and the circuit will extract sync signals from tv line and frame signals. The timebase allows adjustment from 0.5µs/cm to 0.25µs/cm and includes a variable control and a times-five magnification. Other features include automatic and normal triggering, an external trigger input and a function switch for changing one input to the horizontal axis for X-Y display.

Martron Limited, 20 Park Street, Princes Risborough, Bucks.
WW 301

Noise and exposure time meter

At a push of a single switch the maximum-permissible noise exposure time for employees is shown direct on the scale of the Pulsar 8SE, an industrial sound level meter. The maximum time for which an employee may be safely exposed to high noise levels in a working day is defined by the Department of Employment's code of practice. At 90dBA an employee may work a full eight hours but if the level increases to 93dBA, a barely audible increase, the energy content is doubled and hence the safe working time is reduced to only four hours. Similarly, the time is halved for every further increase of 3dBA. At a typical discotheque level of 110dBA, the exposure limit is under five minutes per day. The main feature of the Pulsar 8SE is its measuring range of 85dBA to 114dBA with the Code of Practice exposure times shown on the same scale from 8h at 90dBA to 3.75 min at 111dBA. To ensure measuring accuracy the electret condenser microphone is mounted on a pull-out boom to minimise case reflections. The 85E meets the requirements of not only IEC 123 and BS 3489 but also the more stringent American ANSI S1.4 Type S2A. Price is £125. Pulsar Instruments, 40-42 Westborough, Scarborough, North Yorks YO11 1UN.
WW 302

Universal bridge

The Marconi TF2700 is a self-contained battery-powered bridge for testing resistance, capacitance and inductance. Although traditional bridge configurations are used, with an internal 1kHz source, provision has been made for the connection of many external facilities, enabling more specialised measurements to be undertaken. It has eight ranges for each of the three parameters and includes a separate, loss balance-control giving indications of D and Q values. The capacitance ranges are from 100pF to 1000µF full scale, the inductance ranges are from 10µH to 100H full scale, and the resistance ranges extend from 1Ω to 10MΩ. External sources of between 20Hz and 20kHz may be used for all measurements, and resistance may also be measured with direct current. In addition, the bridge may be biased for measurements that require polarization. Electroplon Limited, P.O. Box 19, Orchard Road, Royston, Herts SG8 5HL.
WW 303

Minature frequency standards

Oven crystal oscillators in the PM1T5 range, from CEPE, have ageing rates down to 5 x 10⁻¹¹ per day and retraceability characteristics which ensure that the frequency is within 5 x 10⁻⁸ sixty minutes after switching on from cold. Nine varieties of ageing rates and ambient temperature ranges are available, five which function at 5MHz, and the remainder which function at any specified frequency between 4 and 6MHz. All of the oscillators are the same size, 67 x 60 x 40mm, and weigh approximately 180g. Frequency adjustment is provided by external potentiometer and by a control voltage permitting recalibration for at least seven years. The oscillators, which are powered by a 12V ±5% negative-earth supply, consume 8W at switch-on and 1.5 to 2.4W at 25°C. Thomson-CSF Components and Materials Ltd, Ringway House, Bell Road, Daneshill, Basingstoke, Hants RG24 0QG.
WW 304

Intrinsically safe pocket phone

The PF2UBIC, a personal radiotelephone introduced by Pye Telecommunications Ltd, is the first two-way private mobile radio to receive the BASEFA certificate of approval to SFA3012. This standard, which is for equipment used in hazardous atmospheres, replaces the older
BS1259/1958 standard and is considerably more stringent — in particular, the risk of auto ignition is considered for the first time. The introduction of this standard brings the British intrinsic safety standard into line with IEC groupings and markings. The PF2UBIC, which is designed for three-channel working in the 405 to 470MHz U.H.F. band, is certified for use in zones 1 and 2 with gases in groups IIA, IIB and IIC. It measures only 194 × 85 × 36mm. Pye Telecommunications Ltd, St. Andrews Road, Cambridge CB4 1DP. WW 305

Sound-system i.c.
The TDA 11902 i.e. incorporates the functions of two devices in one chip. It is designed for use in televisions and provides the i.f. amplifier, the low-pass filter, the f.m. detector, the audio preamplifier, the power amplifier and the d.c. volume control. The system is sensitive to an input limiting threshold voltage of 40kV. Its harmonic distortion is typically 0.75% for an output power of 50mW and its carrier frequency is 4.5MHz (for a 3f of ± 7.5kHz), with a modulating frequency of 400Hz. The signal-to-noise ratio is typically 65dB for an input threshold of greater than 1mW and an audio voltage of 4V. It may be supplied from a 9 to 28V supply and drives a 160 loudspeaker. Motorola Limited, Semiconductor Products Divi- sion, York House, Empire Way, Wembley, Middlesex HA9 0PR.

WW 306

Electric screwdriver
An electric screwdriver, called the Electrodriver DMS1, is claimed to be unique in that it is the only model on the market to combine continuously-variable speed control, direction reversal, and preselectable torque settings. The tool, from Klippon Electricals Ltd, is suitable for applications throughout industry where the fast repetitive insertion and removal of screws up to M4 size is required. The Electrodriver is mains operated and weighs only 1.35kg, enabling it to be held in one hand, leaving the other free to support components. Power consumption is only 45W and the speed is continuously variable up to 700rev/min. Klippon Electricals Ltd, Terminal Works, Power Station Road, Sheerness, Kent ME12 3AD.

WW 307

Protective pads
Small-profile, self-adhesive pads, which will protect items from scuffing, sliding or vibrating, have been added to the Bumpon range of products available from 3M. The pads, designated as SJ5008 Bumpers, are 12.7mm square by 3mm high and are made from resilient elastomeric material. They are available in black, white or grey colours in boxes of 1000. Industrial Special- ies Group, 3M United Kingdom Limited, 3M House, P.O. Box 1, Bracknell, Berkshire RG12 1JU.

WW 308

Sinad meter
The Sinadder 3 combines the well-known Sinadder, from Helper Instruments, with an audio voltmeter. In addition, it has an internal loudspeaker for audible monitoring in both the sinad and audio volts modes of measurement. An internal 1kHz tone is provided for modulating the operator's signal generator in the sinad mode, or as a test tone for setting transmitter modulation and remote control levels. A 115/230V transformer and a 12V plug are supplied as standard. Lyons Instruments Limited, Hoddesdon, Herts EN11 9DX.

WW 309

Alphanumeric keyboards
The Model EA alphanumeric keyboard, which is the latest add- ition to Steatite's Chomerics range of keyboard systems, has 50 keys and a space bar. Its keys have a "soft-touch" feel, according to the makers, and a 3.18mm key travel. This model is based on long-life (10 million operations) screened Mylar switch technology, and it is suitable for data

Typical TV sound system using TDA11902

TYPICAL TV SOUND SYSTEM USING TDA11902

WIRELESS WORLD, JUNE 1978

www.americanradiohistory.com
entry terminals and house computer systems. It has two flex-tail terminations with 18 output lines encoded in an 18 x 10 matrix (basically an 8 x 8 matrix plus two extra rows for shift and control outputs) allowing it to be directly connected to an ASCII encoder chip or a programmable keyboard interface chip. As such, the standard EA model is particularly suitable for microprocessor systems designed around an 8-bit bus structure. Steatite Group of Companies, Hagley House, Hagley Road, Birmingham B18 7QW.

WW 310

Analyser store

The ADS5 is a digital store which has been introduced by Wayne Kerr to complement their RA200 a.f. response analyser. The RA200/ADS5 provides a continuous response curve which is continuously updated so that there is no chance of missing a sharp spike at one point and there is no need for internal filters or integrators which can distort the response pattern. Up to four complete curves may be recorder by the store, and retained for at least two weeks, even with the RA200 switched off. The contents of any store can be updated at any time, either wholly or in selected parts of the spectrum, without interrupting the display. Any two stores can be selected, and their difference displayed, and if necessary amplified and stored. Wilmot Breeden Electronics Ltd, 442 Bath Road, Slough SL1 6BB.

WW 311

Viewdata module

Two p.c.b.s. constituting a viewdata module for inclusion in tv sets have been introduced by GEC Semiconductors. One is a self-displaying page store, comprising four i.s.i. circuits (one MA406 display circuit, one MA401 store address and control circuit, and two MA441 r.a.m.s) and is designed with address, data and control buses. The 11-bit address bus determines any store location to be accessed while the 7 bit data bus carries the content of the store location determined by the particular address. The control bus is a 5-bit bus. Outputs from the page store include red, green and blue video and blanking signals. The MA406 display circuit is an n-channel silicon gate device and generates outputs at 14MHz. The Viewdata system can be controlled via a standard keypad or a hard wired teletypewriter keyboard and is fully compatible with the GEC Viewdata Line (LTLU1). GEC Semiconductors Ltd, East Lane, Wembley, Middlesex HA9 7PP.

WW 312

Synchronous stepping motors

Synchronous stepping motors in the All-Square series, from Memotrace Controls Ltd, range in size from 48 to 78mm square and produce torques from 80 to 3000g.cm without gearing. All of the motors can be stalled against an end-stop without risk of overheating, and reversed without switching when used in the random mode. The motors will operate synchronously at 250, 375 or 500 rev/min on 50Hz supply and start using a capacitive input. When used in the d.c.-hold and stepping mode, for variable-speed operation, steps per rev of 24, 32 or 48 are available up to 250 steps per second. Memotrace Controls Ltd., 13 The Avenue, Spinney Hill, Northampton NN3 1BA.

WW 313

Fibre-core resistors

A range of low-cost, wirewound fibre-core resistors, the FC series from The CGS Resistance Co. Ltd, specifies the range 0.332 to 125k, with standard tolerances of ±10%, and power dissipations from 2 to 10W. The resistors are available with two different heights of tag for use in printed circuit boards giving a maximum back-of-board temperature, of the FCB type, of 60°C. They meet the flammability requirements of BS 412, clause 29.1, and the solderability test of IEC 68-2-20, 1A. The temperature coefficient is ±200ppm, and the maximum change in 1000h is ±3%. After 10 times nominal wattage loading for five seconds the change is ±2%. The CGS Resistance Company Limited, Marsh Lane, Gosport, Hampshire SO4 9YQ.

WW 314

Storage cabinets

A range of component storage cabinets has been introduced by Quiller Components Ltd of Bourne- memouth. The standard cabinets, which can be wall-mounted or stacked, consist of a robust steel frame and a choice of three sizes of transparent plastic trays. There are seven types, ranging from an all-plastic 9-tray unit, to the standard metal-and-plastic 50-tray unit. Prices range from £3.45 to £15.80 and, according to the makers, their appearance makes the cabinets suitable for office, home or workshop. Quiller Components Ltd, Cardigan House, Winton, Bournemouth, Dorset BH9 1AU.

WW 315

Pocket terminal

Based on the Intel 8048 device, this pocket terminal from GR Electronics is an improvement on their existing hand held keyboard which was announced in 1976. The new unit, which has been designed for use by computer engineers and programmers, contains 40 keys and is capable of sending/receiving data in eight-bit serial ASCII code. The terminal has eight 16-segment displays which can generate all 64 ASCII upper case alphanumeric. Selectable baud rates are also provided and a 30-character internal memory may be accessed for display in blocks of eight adjacent characters.

Two versions of the terminal are available; one is interfaced for operation with a 20mA current loop, the other is interfaced for V24/RS232 levels. Both types are fitted with an internal beeper for an audio response to the "BEL" code.

The complete terminal requires a regulated power supply of +5V ± 5% with a current rating of 400mA. G.R. Electronics Ltd, Fairoak House, Church Road, Newport, Gwent NP7 7EJ.

WW 316

Soldering bits for thick film

At the request of a Marconi company, Light Soldering Developments Ltd have developed two long-life soldering bits specially for soldering thick-film circuits. Long, thin extensions on the bits overcome the access problem in high density applications. The bits will fit Litesold ETC/2 and PC/2 soldering systems and the Conqueror soldering iron. Light Soldering Developments Ltd, 97-99 Gloucester Road, Croydon, Surrey.

WW 317

100A transistors

Devices in the 100SC series, announced by GPD, are claimed to be the first single-chip power transistors with collector current ratings of 100A. The design is based on an unusually large germanium junction — a 0.475in. diameter chip. Typical applications for the transistors, which are available with various operating voltages, are in inverters, switching regulators, power amplifiers and similar high-current circuits. Wintronics, Southon House, Edenbridge, Kent.

WW 318

Correction

The Mk IX family of colour television cameras recently announced by Marconi Communications Systems Ltd as a successor to the Mk VIII uses three lead-oxide camera pick-up tubes, of which several varieties can be fitted, and not four Plumbicons as stated in our last issue. The quantity and quality of integrated circuits used in the Mk IX family has been increased over those in the Mk VIII range, which did not use any thin-film circuits.

www.americanradiohistory.com
Big is beautiful

Has anyone noticed how enormous some of the latest portable radio receivers are? Funny how fashions change, isn’t it? When transistors were first used to make life miserable the idea was to make the radios as small as possible or to make them look like something else. (I remember a dog, with a speaker in its mouth, a tuning knob for its left eye and the volume/on-off control as its right. It didn’t wag its tail much, if memory serves me.)

The newer ones, though, seem to get bigger every time I look in a shop window, which isn’t very often because I get this pain in the head when I see the prices. Some recent designs are nearly as big as the “table wireless sets” we used to have before the war, which had to be that size because of the valves, big electrolytics and transformers they used. That necessity was a blessing in disguise, because it meant that a decent-sized loudspeaker could be used, and the cabinet was big enough to handle it.

Transistors need no large components and tended, at first, to be used in a gimmicky way simply for a size reduction — and to blazes with the sound. So I see it as encouraging that radio designers are overcoming this imagined need for small, tinny trannies and are trying to provide a decent sound at last. At least, I hope they are. Doubts are raised, though, by the description of some of these sets as “stereo” receivers. Given a pair of headphones and a jack on the receiver this is fine, but some of them have two speakers, indicating that one is intended to sit there, solemnly gazing at the set about a foot away. I haven’t checked, but if any of these sets don’t provide headphone listening, there could be a violation of the trade descriptions regulations.

Peel me a grape

These youngsters go too fast for me. Once again I have to report a conversation which took place in our brainstorm generation department — the Dorset House canteen. The talk deviated slightly, from rhetorical enquiry into the precise nature of the late animal we were coping with, to a demand for information on computer programming from our gadgeteer (he’s the only man I know with a laser in his living room, and now he wants a computer).

It isn’t that he doesn’t understand it, but he does feel that the “stupid great list” of instructions is far too much like work to be tolerated. Instead of feeling immeasurably grateful that several pages of algebra and arithmetic can be reduced to a few computer instructions, he feels that the instructions ought to be done away with. Well, that’s youth for you! What he wants to do, it seems, is to write the question out, in

Avos into space

There are times when a leaning towards the technical can be a drawback and can also gain you a reputation as a know-all wet blanket, if you can visualize such a creature. Film-makers are much better at maintaining accuracy than they used to be, but one can still see the odd Messerschmitt 108B masquerading as an Me 109E. and nothing is more liable to release carefully built-up tension than a squadron of sinister Mitsubishi Zeros being revealed as innocent Harvard trainers in wolf’s clothing.

As I have already mentioned, I am a pushover for sci-fi series on the box; and I become very annoyed with myself when a character is desperately trying to activate a rocket’s main drive motor by means of a highly technical-looking piece of gear which I immediately recognize as a Marconi audio signal generator. I once saw an alien life form being held at bay by a small grid-dip oscillator — a procedure only marginally more effective as a deterrent than a soldering gun with its bit missing. All this is very distracting and I do wish the producers of these series would begin to draw on some other discipline for their hardware. I should think any decent toolmaker’s workshop could supply a few menacing-looking gizmos and chemical laboratories are full of highly entertaining bits of gadgetry. Knowing little of these black arts, I could then experience a full measure of horror without wondering how a BC109 with its legs bent up is going to work as the heart of an anti-gravity machine.

More haste — more speed

That the imminent arrival in one’s island home of a million or so gentlemen singing the Horst Wessel song is quite enough to concentrate the mind has been made very clear by the BBC “Secret War” television series. Once our physicists and engineers had got the idea that it was largely up to them there was no stopping them; the inventions came forth in a steady stream. The astonishing feature, though, was not the amount of stuff churned out, but the sheer speed of development from the nutty idea stage to the point where the Heinkels didn’t know whether they were coming or going.

In an age in which gestation periods of electronic equipment designs extend into years it is truly remarkable that complete systems were conceived, developed and bolted into aircraft in a matter of weeks. The radar bombing aid which probably influenced the course of the war more than any other, H.S, was taken from bright idea to prototype in eight months. A further seven months sufficed for the production of enough sets to enable Pathfinders of Bomber Command to flatten Hamburg.
The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.

A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.

The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.

The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 Watts per channel into 4Ω
Distortion 0.2% at 1KHz at 15 watts
Frequency response 50Hz - 30kHz
Input Impedance 8Ω nominal
Input sensitivity 2 volts R.M.S. for 15 watts output
Power line 10 - 18 volts
Open and Short circuit protection
Thermal protection
Size 4 x 4 x 1 inches

C15/15 Price £17.74 + £2.21 VAT P & P free

S15
6" Diameter
5 1/4" Air Suspension
2" Active Tweeter
20oz Ceramic magnet
15 Watts R.M.S. handling
50 Hz - 15KHz frequency response
4Ω Impedance

Data on S15
6" Diameter
5 1/4" Air Suspension
2" Active Tweeter
20oz Ceramic magnet
15 Watts R.M.S. handling
50 Hz - 15KHz frequency response
4Ω Impedance

S15 Price per pair £17.74 + £2.21 VAT P & P free

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

WWW—028 FOR FURTHER DETAILS
THE \textbf{baker} QUALITY

150 watt mixer amplifier £85.32

- All purpose Bass Lead Rhythm Guitars Discotheque Vocal Public Address etc.
- Amplifier ‘Mains switch’ for instant sound or muting
- Three loudspeaker outputs for 4 8 or 16 ohms operation
- Four high gain inputs each 28 mv 50K ohm for full output
- Individual volume controls with four channel mixing facilities
- 150 watts into 8 ohms R M S Music Power
- Distortion less than 1% at full output
- Slave output 500 M V 25 K ohm
- Accepts loudspeakers from 4 ohms upwards Standard jack sockets
- Frequency Response 25 Hz - 20kHz ± 3dB integral Hi Fi preamp
- 326B Variation on wide range separate Bass & Treble controls
- Fully Short and Open circuit proof electronic and fused
- Compact - 16" x 8" x 5½" approximately
- Lightweight - Only 14½ lbs - approximately
- Blue wording on Black face
- Made in England 12 months guarantee
- 200-250v A C mains or 120v to order
- All transistor and solid state devices

Distributors required in certain countries and parts of UK.

Baker Loudspeakers Limited

337 Whitehorse Road, Croydon, Surrey, England

Telephone: 01-688 1665

GROUP 25 12 inch £12.96
Voice Coil Impedance 4 or 8 or 16 ohms
Maximum Power 30 watts (60 watts U.S.A.)
Bass resonance 55 c.p.s
Useful Response 30-13,000 c.p.s.
Flux Density 12,000 lines
Voice coil 1 1/4" /38 mm
Overall diameter 12 1/4" /310 mm
Overall depth 4 1/4" /120 mm
Fixing holes diagonal 13/130 mm
Baffle aperture 11 1/8" /280 mm
Nett weight 5 lbs /2.3 kg

GROUP 35 12 inch £15.12
Voice Coil Impedance 4 or 8 or 16 ohms
Maximum Power 40 watts (80 watts U.S.A.)
Bass Response 55 c. p. s.
Useful Response 30-13,000 c. p. s.
Flux Density 14,000 lines
Voice coil 1 1/4" /38 mm
Overall diameter 12½" /310 mm
Overall depth 4 1/4" /120 mm
Fixing holes diagonal 13/130 mm
Baffle aperture 11 1/8" /280 mm
Nett weight 6 lbs /2.7 kg

GROUP 50/12 inch £22.68
Voice Coil Impedance 4 or 8 or 16 ohms
Maximum Power 60 watts (120 watts U.S.A.)
Bass Resonance 55.c.p.s
Useful Response 30-16,000 c.p.s.
Flux Density 15,000 lines
Voice Coil 1 1/4" /38 mm
Overall diameter 12½" /310 mm
Overall depth 4 1/4" /120 mm
Fixing holes diagonal 13/130 mm
Baffle aperture 11 1/8" /280 mm
Nett weight 10 lbs /4.5 kg

GROUP 50 15 inch £28.08
Voice Coil Impedance 4 or 8 or 16 ohms
Maximum Power 75 watts (150 watts U.S.A.)
Bass Resonance 45 c. p. s.
Useful Response 30-13,000 c. p. s.
Flux Density 15,000 lines
Voice coil 2½" /64 mm
Overall diameter 15½" /390 mm
Overall depth 6¾" /153 mm
Fixing holes diagonal 16¼" /417 mm
Baffle aperture 11 1/8" /280 mm
Nett weight 15 lbs /6.8 kg

NEW! Star sound
A high power full range quality loudspeaker produced to give exceptional reproduction. Ideal for electronic guitars, organs, public address or discotheques. This loudspeaker is recommended where high power handling is required with quality results. The high flux ceramic magnet assembly ensures clear treble response so necessary for today’s musician.

HAVE YOU DONE IT LATELY!

Monolith QUALITY REEL TO REEL AND CASSETTE TAPE HEADS

Please enclose 20p P&P with order

A new tape head and transform the performance of your tape recorder

Full Catalogue 25p

B24–RP stereo cassette glass/ferrite record/playback £9.84
B12–01 mono cass. playbk. £1.60 B24–01 stereo cass. playbk. £2.80
A26–05 stereo 8tk cartridge £1.80 E12–09 stereo/mono cass. erase £1.80

Z & I AERO SERVICES LTD.
42-44A-46 Westbourne Grove
London W2 5SF
Tel: 01-727 5641 Telex 261306

INSTANT CIRCUIT CONSTRUCTION

THE SK 10 BREADBOARDING SOCKET OFFERS THESE ADVANTAGES:

- Multi-power busses
- 64 pairs of nickel silver contact
- 5 million hard contact resistance
- 20-26 gauge wire
- All SK 10 sockets carry a lifetime guarantee. If a unit ever fails in normal usage, return it to us for a free replacement.
- No questions asked
- Ask for full catalogue of E & L digital learning products

Special offer to cash with order customers £12.50 inc VAT P&P

E & L INSTRUMENTS UK.
62, Queen Anne St, London W1M 9LA, Tel: 01-486-3569

carbon film RESISTORS
ON BANDOLIERS OR PREFORMED 12.5mm AT NO EXTRA COST

WW—066 FOR FURTHER DETAILS

WW—084 FOR FURTHER DETAILS

www.americanradiohistory.com
Audax HD12 9 025 £7.50
Audax HD13 034H £12.50
Audax HD15 024 £4.85
Audax HD10B25J £10.95
Audax HD11 P25EB £6.95
Baker Storm £45.50
Casse RS/ DD £11.95
Chariwell CCA205 B bass matched £59.90
Coles 4001 £6.25
Coles 3000 £6.25
Cleton HF1300 II £8.25
Cleton HF2000 £9.75
Dalesford D100.105.4 £10.95
Dalesford D30.110.5 £10.95
Dalesford D50.1/53.6/1 £11.95
Dalesford D50.2/200 £11.95
Dalesford D70.250.10 £24.95
Dalesford D100.310.12 £34.95
Decca London £37.25
Decca DD /1000 /8 £7.95
Decca D/K30 £24.50
E.M.I. type 350 4 ohm £9.25
E.M.I. 14A 770 14 8 £12.50
E.M.I 8 x 5 d/c watt £3.95
Isophon KK110-8 £8.25
Isophon KKB 8 £7.50
Jordan Warns Module £17.95
Jordan 50mm Unit £22.50
Jordan 25mm Crossover £22.50
KEF 127 £8.50
KEF 175 £10.75
KEF B110 £10.95
KEF B200 £11.95
KEF B119 £24.95
KEF DN1 £4.95
KEF DN1 £2.25
Lowther PM6 £43.75
Lowther PM6 MKI £45.90
Lowther PM7 £79.75
Peerless DT10HF £9.50
Peerless KO10DT £6.25
Peerless K04/3RF £10.10
Redford BD25 II £26.95
Redford MD9 £14.50
Redford MD6 £17.95
Redford FN8 /FN831 £19.95
Richard Allan GBT £8.95
Richard Allan HP8 £13.50
Richard Allan HP8 £19.95
Richard Allan LP8 £9.25
Richard Allan HP128 £21.50
Richard Allan HP2/20 £6.75
Richard Allan DT30 £6.95
Shackleton Electrostatic C/Wpopulation £99.95
Tannoy HPO 29SA £91.50
Tannoy HTG 315A £78.95
Tannoy HPE 385A £119.95

Baker Group 25 £13.00
Baker Group 35 £14.50
Baker Group 50/12 £21.00
Baker Group 50/15 £25.75
Celestion G12M £12.95
Celestion G12H £16.95
Celestion G18C £41.95
Celestion G12 /75 £22.50
Celestion G12 /75 (p/d/cone) £24.50
Celestion G21M /50 (cambic edge) £16.95
Celestion G15 /100 £32.50
Celestion MX1000 £13.50
Celestion Powercell 12 /100 £45.95
Celestion Powercell 15 /100 £48.95
Celestion Powercell 15 /125 £51.95
Fane Pop 40 £10.95
Fane Pop 50H £12.50
Fane Pop 76 £16.95
Fane Pop 65 £19.95
Fane Pop 80 £21.95
Fane Pop 100 £35.95
Fane J44 horn £6.50
Fane J104 horn £13.75
Fane J73 horn £7.95
Fane Guitar 80L £19.95
Fane Guitar 80B £19.95
Fane Disco 80 £21.50
Fane PABO £19.50
Fane Bass 85 £28.95
Fane Crescendo 12A £42.95
Fane Crescendo 12B £42.95
Fane Crescendo 15 /100 £54.95
Fane Crescendo 15 /125 £64.95
Fane Crescendo 18 £75.95
Fane 920 II Horn £45.95
Fane HPX1 /HPX2 £2.50
Fane PH50 £6.50

Goodmans BPA £3.95
Goodmans 10P £6.65
Goodmans 12P £16.95
Goodmans 12PD £19.95
Goodmans 18P £19.50
Goodmans 50HIX £18.95
McKensie Forte 12 £22.95
Monoprice Perion Horn £29.95
Richard Allan HD8T £12.95
Richard Allan HD101 £13.25
Richard Allan HD12T £18.75
Richard Allan HD10 £35.95
Richard Allan HD105 £30.50

WILMSLOW AUDIO KITS FOR MAGAZINE DESIGNS etc.

Kits include drive units, crossovers. BAF. Long fibre wool, etc. for pair of speakers.
Carriage £35.00

Practical Hi-fi & Audio PRO9 TL (Rogers) £18.00
10 pair cables (PRO9 T) £5.50 + £1.50 per pair
Hi-fi Answers Monitor (Rogers) £123.95
Hi-fi News State of the Art (Atkinson) £161.00
Hi-fi News No Compromise (Frisby) £126.00

Populair Hi-fi Mini Monitor (Coles) £63.00
Populair Hi-fi Round Sound (Elephants) including complete cabinet kit £65.00
Practical Hi-fi & Audio Monitor (Giles) £119.00
Practical Hi-fi & Audio Triangle (Giles) £76.00
Practical Hi-fi & Audio BSC3 (Rogers) £60.00

Hi-fi News Tabor (Jones) £57.75
Hi-fi News Tabor (with H4 bass units) £65.00

Wireless World Bookshelf (Wilkinson) £56.50
Wireless World T-L KF (Bailey) £112.00
Wireless World T-L /Radford (Bailey) £150.00

SMART BARGES FREE with all above kits (to give that professional touch to your speakers)
Send 3 x 7p stamps for reprints/ construction details of any of above designs

CARRIAGE & INSURANCE

Carrige / Crossovers 40p each
Speakers up to 10 75p each
Speakers 11 to 25 1.25 each
Speakers 26 to 49 2.00 each
Speakers 50 to 99 2.95 each
Speaker Kits 2.50 per pack
Mag. Design kits 3.50 per pack

Prices per pair Carriage £2.50
Dalesford System 1 £57.50
Dalesford System 2 £54.75
Dalesford System 3 £41.00
Dalesford System 4 £139.00
Dalesford System 5 £93.00

Eagle SK210 £13.90
Eagle SK215 £23.50
Eagle SK320 £33.90
Eagle SK325 £59.00
Eagle SK335 £79.90

Goodmans DN20 £31.50
Goodmans Mezzo Twinkit £51.95
Lowther PM6 Kit £91.75
Lowther PM6 MKII Kit £96.50

Peerless 100 £66.95
Peerless 1070 £115.00
Peerless 1120 £129.50
Peerless 2050 £45.95
Peerless 2060 £60.95

Radford Studio 90 £154.00
Radford Monitor 270 £208.00
Radford Studio 270 £275.00
Radford Studio 360 £390.00
Richard Allan Twin £28.90
Richard Allan Triple £45.50
Richard Allan Double £55.90
Richard Allan Triple Super £65.95
Richard Allan RA8 £42.75
Richard Allan RA82 £67.75
Richard Allan RA82L £235.00

Seas Minis £17.90
Seas 203 £35.50
Seas 302 £48.90
Seas 303 £73.90
Seas 503 £111.90

Wharfedale Denton 2XP £26.95
Wharfedale London 3XP £41.95
Wharfedale Grendale 3XP £56.95

Everything in stock for the speaker constructor!
Baf, long fibre wool, foam, crossovers, felt panels, etc. (send 15p in stamps for fabric samples) (prices correct at 12/4/78)

Send 15p stamp for free 38 page catalogue Choosing a Speaker

Telephone: Speakers, Mail Order and Export: Wilmsslow 29599 Hi-Fi: Wilmsslow 28213

Lightning service on telephoned credit card orders

www.americanradiohistory.com
S500-D

It is unique. Meet the new leader from H.H.

- High Power capability, up to 500 watts per channel output.
- Two channel stereo, or bridged output.
- Superb audition performance, ultra low intermodulation and T.I.M. distortion.
- Modular construction, integral force cooled dissipators (FCD).
- High efficiency Toroidal Power Supply.
- Compact size, only 3½" high x 19" rack mounting.

Send for detailed information:
H.H. ELECTRONIC,
Viking Way, Bar Hill,
Cambridge, CB3 8EL.
Telephone: Crafts Hill (0954) 81140
Telex: 817515 HH ELEC G

a fully built & tested microcomputer system ONLY £159 + VAT

KIM-1 CARD

* COMPLETE WITH KEYBOARD & DISPLAY
* AUDIO CASSETTE INTERFACE FOR PROGRAM STORAGE *TELETYPE INTERFACE
* PROGRAM DEVELOPMENT SOFTWARE
* R6500 PROGRAMMING MANUAL
* R6500 HARDWARE MANUAL

IDEAL FOR THE HOME USER, STUDENT AND ENGINEERS

Fully built & tested, with keyboard & display for editing, de-bugging and running programs. Complete with 1K bytes of RAM and 2K bytes of ROM—resident monitor and executive software controlling operation & de-bug modes. Interface circuitry for program storage on a cheap audio cassette and teletype connection with baud-rate determined automatically.

An additional 15 unused 1/0 lines for use as inputs or outputs and 8 bit programmable interval timer. De-bug facilities to 'single-step' the program and trace the actions of the registers, 16-bit address bus, data and control buses brought to an edge connector for extending the system to 65K memory locations. Comes complete with full Rockwell R6500 programming and user manuals for only £159 + VAT. Available Ex-Stock.

Pelco (Electronics) Ltd
Enterprise House,
83-85 Western Road, Hove, Sussex BN3 1JB
Telephone: Brighton (0273) 722155

Buy it with your Access or Barclaycard

WWW—093 FOR FURTHER DETAILS
WWW—088 FOR FURTHER DETAILS

WWW—070 FOR FURTHER DETAILS

TWO NEW SUPERMODULES:
170W INTO 4 OR 8 OHMS

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Power Output</th>
<th>Module Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008</td>
<td>100W</td>
<td>91 x 170x 100mm</td>
</tr>
<tr>
<td>1108</td>
<td>110W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1208</td>
<td>120W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1308</td>
<td>130W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1408</td>
<td>140W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1508</td>
<td>150W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1608</td>
<td>160W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1708</td>
<td>170W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1808</td>
<td>180W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>1908</td>
<td>190W</td>
<td>100 x 170x 100mm</td>
</tr>
<tr>
<td>2008</td>
<td>200W</td>
<td>100 x 170x 100mm</td>
</tr>
</tbody>
</table>

CRIMSON ELEKTRIK

For full details, contact;
Pelco (Electronics) Ltd
Enterprise House,
83-85 Western Road, Hove, Sussex BN3 1JB
Telephone: Brighton (0273) 722155

WWW—093 FOR FURTHER DETAILS
TRUE PROFESSIONALS

ACKNOWLEDGE

That ITA has more to offer:

- **Location.** In Central London - easy parking.
- **Delivery.** Large stockholding covering 500 versions for immediate delivery.
- **Servicing** By ITA factory trained staff. Quickest turnaround time. Machines supplied or rebuilt for special requirements.
- **Pricing.** Check our prices - you will find them lowest ALWAYS.

REVOX

A wide range of two channel recorders from this famous manufacturer, with tape speeds from 15/16 ips to 30 ips. Options include variable speed and sel-sync. Models include A77, B77 and 377 with 3 speeds and editing (designed and modified by ITA specifically for professional applications).

TEAC

Recorders for logging and studio use — tape speeds from 1½ to 15 ips. 2, 4 or 8 channel. A range of mixers is also available.

ITA

4 and 8 channel recorders for studio use. Any tape speed from 1½ ips for logging and data recording.

OTARI

Duplicating equipment for high speed cassette copying, including the DP4050 model — the world's finest in-cassette copier, with 6 slave units.

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879.
TAUT SUSPENSION MULTIMETERS
Made in USSR

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4313</th>
<th>U4315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity DC</td>
<td>20,000 pV</td>
<td>20,000 pV</td>
</tr>
<tr>
<td>Sensitivity AC</td>
<td>2,000 pV</td>
<td>2,000 pV</td>
</tr>
<tr>
<td>D C Current</td>
<td>60 A</td>
<td>50 A</td>
</tr>
<tr>
<td>A C Current</td>
<td>0.6 mA</td>
<td>0.5 mA</td>
</tr>
<tr>
<td>D C Volt</td>
<td>75 V</td>
<td>75 V</td>
</tr>
<tr>
<td>A C Volt</td>
<td>15 V</td>
<td>15 V</td>
</tr>
<tr>
<td>Resistance</td>
<td>1 kΩ</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>Capacity</td>
<td>0.5 F</td>
<td>0.5 F</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1 % D C</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Price complete with pressed steel carrying case and test leads: £17.50

P. F. RALFE ELECTRONIC ENGINEERS LTD.
10 CHAPEL STREET, LONDON, NW1
TEL: 01-722 8753

ADVANCE CONSTANT VOLTAGE TRANSFORMERS
Input 190-260V AC; Output constant 220V, 250W, 5% (2 carriages)

POLAROID TYPE TZA: SPECTRUM ANALYSER
C/w type TZA/2M plug-in
unit covering from 950 to 4500 MHz

EVEREADY NICAD BATTERY
Size F 7.0 Ah. 12 Vats. £2.45 (1975 price)

P. F. RALFE ELECTRONIC ENGINEERS LTD.
10 CHAPEL STREET, LONDON, NW1
TEL: 01-722 8753

ADVANCE PM51 0.3 V ± 5 Amps...£36
ADVANCE PM52 0.1 V ± 20 Amps...£39
Both brand new, boxed, with book
AP1 1045£ 11.15 £ 7.5 A...£25
AP1 1054£ 13.12 24V Vari-5A...£25

BECKMAN TURNS COUNTERS UNITAL
Miniature type (22mm diam 1 Counting up to 15 turn indices). Brand new with mounting instructions. Only £2.50 each

Wand & Gatterman Equipment
Leveo Meter 0.2 kHz...£25
Leveo Oscillograph 0.2 kHz...£25

BMW M4369/34/52 1500VA...£35

FULLY GUARANTEED

LIMITED Stocks of the following items:

ROHR & SCHWARZ EQUIPMENT
Hilf Field Strength Meter 4.725-225MHz
AMT Vibrator Demodulator 470-90MHz
Selectronic UFH; type meters £100, UFHV £150
Selectronic LF Voltmeters 1800V BN 5212. £450
Standard attenuator 0.1-1000p 0.3-0.3m Hz DPB
UFH Sign generator type SCH £175
UFH Test receiver type USDA £325
POLYSKOP SWOBI

PAPER TAPE READERS
Tally model 1960 £195
NCR with sound-proof case £55

TEXTRONIX TYPE 561A OSCILLOGRAPHS
Supplied in fast-class condition complete with types 3A1 and 3B3 plug-in units DC-10MHz
Dual-beam 100mV/div. Calibrated sweep delay and single-shot Time base 500µs/div £350.00

MUFFIN INSTRUMENT COOLING FANS
Made by Brown Holland. These are very high quality, quiet running fans, specially designed for the cooling of various types of electronic equipment. Measures 4.5x4.5x4.5. £10 each

500 VOLTS TRANSISTORIZED INSULATION TESTER
Lightweight; smallest size (3.5x4.25cm) Reads insulation from 0.1-10000 MΩ; all test pressure. £50.00 Standard VPI £325 Brand new

TELEVISION MONITORS
Philips studio quality precision monitors and Pyle Quality Monitors of various sizes

PAGE ELECTRONICS VARIPOLITORE
Type 1100E £175

MUHRN DECADE OSCILLATORS type 390A.
1Hz-110kHz in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator.

WW—083 FOR FURTHER DETAILS
The indispensable

WIRELESS WORLD, JUNE 1978

THRU LINE WATTMETER
0.45-2300 MHz/0-100000 watts
The Standard of the Industry
What more need we say...

aspen electronics limited

2 KILDARE CLOSE. EASTCOTE. MIDDX. HA4 9UW
TELEPHONE: 01-868 1188 - TELEX 8812727

WWW-008 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

AA pencil (HP7) £1.32, Sub C £1.64, C (HP11) £2.43, D (HP2) £3.56, PFP £4.98. Matching chargers £6.98 each. except PFP charger £5.82. Charging holders £3.50, 4.5 or 6 pencells. 50p, C and D size holders. 4 cell only 80p. Prices include VAT.
Add 10% post-package and insurance orders under £20 (over £20)
SAC for full details plus 75p for Nickel Cadmium Power' booklet.
Mail orders to:

SANDBELL PLANT LTD
Dept W/ W., 201 Monmouth Drive, Sutton Coldfield
West Midlands. Tel. 021-354 9764
Callers to TLT 37 Fulton Street, Charing Cross, London, WC2

WWW-002 FOR FURTHER DETAILS

Audio Connectors
Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors
Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banan plugs and test probes. XLR compatible in-line attenuators and reversers.
Low cost slider faders by Ruf.

Future Film Developments Ltd.
36-38 Lexington Street
London W1R 3HR
01-437 1892/3

WWW-003 FOR FURTHER DETAILS

STRENGTHS

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

AA STRONGBAND WAVES

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.

A. STRONGBAND WAVETRANSMITTERS
B. STRONGBAND WAVERECEIVERS
C. INTHE-UNIT ISSUE. E. ALL HAM RADIOL. CLASSIC DRIVING RECEIVERS
D. ...the speed of light.
As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have therefore spent a little more money on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory, electrical layout to be achieved. Particularly around the very critical input areas of the replay preamps. The kits are manufactured with this in mind and require to be tested by stabilising components. Other advantages also come from this system which has separate record and replay amplifiers for each channel. The assembly is finished with a master board with gold-plated sockets. The most obvious is the reduction of cross-talk and interaction which could cause trouble on a single plane board. With our modular system the layout is compact and there is no component crowding. Testing is very easy with separate identical modules and tuning with the aid of our component-by-component instructions is straightforward, but the finished result is a unit designed to the normal domestic standards but to the best professional practice.

All printed circuits are of glass-epoxy material; fully drilled with a fried finish for easy and reliable soldering. Component lithations are printed on the reverse side of the board and are arranged so that all identification numbers are still visible after assembly.

1. Complete set of parts for Mayfair Model includes bias oscillator relay controls, etc. £8.95 + 1% VAT

2. Parts for Motor Speed and Synchronised Control for Lenco CRV packs. This is the proper board layout as given in the articles £3.52 + 4% VAT

3. Complete set of parts for stereo high-quality and VU Meters dr 1.6 £1.02 VAT

4. Complete set of stereo Record Amps £6.74 + 84p VAT

5. Complete set of parts for Stabilised Power Supply to suit all given in Article. This uses a special low hum high transformer with better characteristics than the commonly used toroid. £8.79 + 6% VAT

700M2 Individual High Quality VU Meters with excellent qualities £4.88 + 11% VAT & P&P

700C/2 High Quality Custom built steel Case Complete with Brushed aluminium front-plate, mains switch, record microswitch, turntable record level-knob, microphone, cabinet feet, all bolts, nuts and mounting hardware. All necessary hinges are polished and all surfaces are electroplated with front-accessible assembly instructions are included. Cover is finished in a dark chrome finish. £18.50 + 2% VAT

LENO CRV CASSETTE MECHANISMA - Now fitted with Super Quality Sendust Alloy Head. High Quality robust cassette transport for Linsley-Hood recorder. Features fast forward, fast reverse, record pause and full auto stop and cassette ejection function. Fitted with Record / play and erase heads and supplied complete with dual VU microcassette and for above horizontal use. Price £20 60 + 2% VAT

Total cost of all parts £83.58 Special offer for complete kit £81.50 + 1% VAT

Complete with data and set up notes to achieve best results with the Super Quality extra long-life read heads. £3.07 + 38p VAT

Return of 3 Linsley-Hood Cassette Recorder articles, 450 past and VAT free.

OTHER CASSETTE SPECIALITIES - LENO CASSETTE MECHANISMA For domestic or domestic use. We have in stock SFRP, FFR and CRV with DC and AC motors. Min. £1850. 50. 500 and Min. £130.00 for each of the 50, 500, 5000 and £20.00 for each of the 10,000, 20,000, 30,000. Send for details. Super Quality Sendust Alloy R/P Stereo Head for replacement use. (60 85p VAT)

Set of components and data for obtaining L-H Cassette tone arms for use with this model. £27.00 + 6% VAT

Standard Quality Stereo R/P Head, £12.00 + 3% VAT

Economy, Cassette Stereo R/P Head. £6.00 + 3% VAT

TEST CASSETTE to enable the user with no instruments to easily set up the Head Assembly to best speed and VU level £1.50 inc VAT

Blank casettes, reliable machines and Super Ferro Low Noise tape £38.80 inc VAT £10.38 inc VAT

The Trico CS 11500 series oscilloscopes offer the best performance in moderate cost. The specifications show the performance features that have made them leaders in the field of oscilloscopes of the world, with a selection of bandwidths from 30 MHz to 200 MHz. Prices are vet much, and are set so that the grade would make a full list with VAT at £1O 15-20 double if single to suit all applications.

SPECIFICATION

- **Bandwidth:** 30 MHz x 100, 60, 30, 15, 10, 6, 3, 1
- **Timebase:** 100, 50, 20, 10, 5, 1
- **Vertical Gain:** 100, 50, 20, 10, 5
- **Horizontal Gain:** 100, 50, 20, 10, 5
- **Triggering:** Internal, external, auto
- **Input Impedance:** 1 MΩ x 100 kΩ
- **Power Supply:** 115/220 V, 50/60 Hz
- **Dimensions:** 300 x 300 x 100 mm
- **Weight:** 15 kg
- **Price:** £159.00

hmoral:

- **VAT:** £35.00
- **Delivery:** £50.00

Notes:

- **VAT:** £35.00
- **Delivery:** £50.00

- **Contact:** trico@ampl.com
- **Website:** www.ampl.com

Penylan Mill, Oswestry, Salop
Personal callers are always welcome but please note we are closed all day Saturday.

TIME PEACE

£9.45

Display area 75 x 20 mm. Total size 335 x 82 x 2 cm. The MA1012 is non-strobed, with direct drive to the display LEDs, thus causing none of the bandwidths of RF noise associated with earlier clock IC designs. It is suitable for any timer or radio timer applications, plus all the usual electronic applications. Help reduce the noise pollution with our MA1012 clock module! The module requires only switches and mains transformer. A suitable 24Vdc AC input transformer is available for £1.50 + VAT.

REFERENCE SERIES TUNER MODULES

EF5803 2 MOSFET AGC RF stages, with low noise selected MOSFETS, MOX mixer, Bügelwinding local oscillator output for counter and synthesizer purposed, 6 tracked tuned coupled IF, and image £1000 down. £19.75

Ref. FMF Selectable 2 or 3 pole linear phase IF filters, two MOS IF preamps, twin detector coil for 0.075 THz 83.25kHz. Noise mute, deviation, adjustable range AFC, meter output. £16.25

Ref. MPX With the incompatible MA1196 PLL low noise, wide range detector IC, preamp and LC low pass filter on input, low LC pilot and baseband filters on the output. With 2 x LM380NC ICS for monitor amp purposed available on the board. £18.45

**COILS FOR LW, MW, SW 1.2, and 3 now listed in catalogue 30 & 33p ea.

TOKO, this series coils now come in 700W, 3000W and 10,000W giving a true average of coils.

Low cost meters: Internally illuminated megawatt meters 200A, and backlit flat face meters 200A. A wide choice of scales - or material to DIY.

Equipment BONNERS. These must be the best value in ABS (black) equipment boxes with close fitting (flanged) lids. 8x6x5 (cm) 5pc £10.25, 10x5.4x1cm 65p ea., and 12x10x5.4 (cm) 75p ea. Also new stackable component storage boxes and trays.

DETEKNOLOGY: theory and practice of metal detector principles including UFO, phase angle, pulse induction. A unique reference for users and constructors. £1.00

Our usual unique range of coils, filters etc for ratio: from TOKO; 350,000 in stock. The best in quality for IF, HA1137 (£2.20; HA1196 £4.20; HA1197 £1.40), plus all condition ratio and multiplex devices, audio ICs (TR8010AS £1.09), MOSFETs, a unique line in varicap the last word in tuning ... see the latest catalogue for £4.65. Postage 25p per order, VAT 12.5%, except where otherwise indicated (19%). Send to 2 Gresham Road, Bristow, Essex, tel (0227) 21629. Only 200ms from station!

LOWE ELECTRICALS LTD.

119 CAVENDISH ROAD, MALCOLM, DERBYSHIRE.

WWW/056 FOR FURTHER DETAILS

TRIO OSCILLOSCOPES

- The Trio CS 11500 series oscilloscopes offer the best performance in moderate cost. The specifications show the performance features that have made them leaders in the field of oscilloscopes of the world, with a selection of bandwidths from 30 MHz to 200 MHz. Prices are very much, and are set so that the grade would make a full list with VAT at £1O 15-20 double if single to suit all applications.

CS-1570

130mm DUAL TRAWE TRIGGERED SWEEP OSCILLOSCOPE

£430 + 8% VAT

- **For Bandwidths:**
 - 30 MHz x 100, 60, 30, 15, 10, 6, 3, 1
- **Timebase:**
 - 100, 50, 20, 10, 5, 1
- **Vertical Gain:**
 - 100, 50, 20, 10, 5
- **Horizontal Gain:**
 - 100, 50, 20, 10, 5
- **Triggering:**
 - Internal, external, auto
- **Input Impedance:**
 - 1 MΩ x 100 kΩ
- **Power Supply:**
 - 115/220 V, 50/60 Hz
- **Dimensions:**
 - 300 x 300 x 100 mm
- **Weight:** 15 kg
- **Price:** £159.00

Notes:

- **VAT:** £35.00
- **Delivery:** £50.00

Contact:

- **trico@ampl.com**
- **www.ampl.com**

TEL. 0629 2430 OR 2817, TELEF 377482 LOWLEC G

WWW/064 FOR FURTHER DETAILS

www.americanradiohistory.com
HY5 Preamplifier

The HY5 is a mini hybrid amplifier ideally suited for all applications. All common input functions - (Hi-Fi, Mixed, Disco), and output functions - (Guitar and Organ, Public address) are catered for internally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone controls merely require a simple potentiometer and (where relevant) volume control potentiometer. The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease connection and mounting a P.C. connector is supplied with each pre-amplifier.

FEATURES: Complete pre-amplifier in single pack. Multi-function equalisation. Low noise - Low distortion - High power to load - Two simply combined for stereo.

APPLICATIONS: Hi-Fi - Mixed - Disco - Guitar and Organ - Public address.

SPECIFICATIONS:
- INPUTS: Magnetic Pack-up 30V/300V Ceramic Pack-up 30V/300V Tuned 100V/110V/120V Microphone 10V/100V/110V Auxiliary 3/100V/input impedances 470 ohms at 1kHz.
- OUTPUTS: Tape 100V/110V/120V Main output 500V/650V M.S.
- ACTIVITY TONE CONTROLS: Tone 1 - 12kHz bass - 1kHz signal Noise Ratio 65dB.
- OVERLOAD: 3dB before Magnetic Pack-up.

SUPPLY VOLTAGE: 16-50V.

Price £5.25 + 65p VAT P.P. free.

HY5 mounting board 81 x 48p + 65p VAT P.P. free.

HY30

15 Watts into 8Ω

The HY30 is an exciting new I.L.P. feature. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C. heatsink, P.C. board, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is specially tuned to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protection - Easy to Build.

APPLICATIONS: Upgrading audio equipment - Guitar practice amplifier - Test amplifier - Audio appliance.

SPECIFICATIONS:
- OUTPUT POWER: 15W RMS into 8Ω.
- DISTORTION: 0.1% at 15W.
- INPUT SENSITIVITY: 500V/1000V/1500V 10MΩ - 16kHz - 3dB.
- SUPPLY VOLTAGE: 16V.

Price £5.22 + 65p VAT P.P. free.

HY50

25 Watts into 8Ω

The HY50 is the new I.L.P. 100% integration approach to power amplifier design. The amplifier features an integral heatsink, together with the simplicity of no external components. During the past three years the amplifier has been referred to the extent that it must be one of the most reliable and robust Hi-Fi power modules in the World.

FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors.

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier.

SPECIFICATIONS:
- INPUT SENSITIVITY: 800mV.
- OUTPUT POWER: 50W RMS into 8Ω (LOAD IMPEDANCE 4.16Ω) DISTORTION 0.4% at 25V at 1kHz.
- SIGNAL/NOISE RATIO: 35dB FREQUENCY RESPONSE 10kHz – 45kHz – 3dB.
- SUPPLY VOLTAGE: 25V SIZE: 105 x 250 x 50mm.

Price £8.82 + 85p VAT P.P. free.

HY120

60 Watts into 8Ω

The HY120 is a baby of I.L.P. new high power range designed to meet the most exacting requirements including lead line and thermal protection. This amplifier sets a new standard in modular design.

FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection - Few components - No external components.

APPLICATIONS: Hi-Fi - High quality disco - Public address - Monitor amplifiers - Guitar and amplifiers.

SPECIFICATIONS:
- INPUT SENSITIVITY: 800mV.
- OUTPUT POWER: 60W RMS into 8Ω (LOAD IMPEDANCE 4.16Ω) DISTORTION 0.4% at 60V at 1kHz.
- SIGNAL/NOISE RATIO: 90dB FREQUENCY RESPONSE 10kHz – 45kHz – 3dB.
- SUPPLY VOLTAGE: 35V.

Size 114 x 50 x 85mm

Price £15.84 + £1.27 VAT P.P. free.

HY200

120 Watts into 8Ω

The HY200, now improved to give an output of 120 Watts has been designed to stand the most severe conditions, such as disco or group events still retaining true Hi-Fi performance.

APPLICATIONS: Hi-Fi - Disco - Monitor - Power Slave - Industrial - Industrial address.

SPECIFICATIONS:
- INPUT SENSITIVITY: 800mV.
- OUTPUT POWER: 120W RMS into 8Ω (LOAD IMPEDANCE 4.16Ω) DISTORTION 0.5% at 100W at 1kHz.
- SIGNAL/NOISE RATIO: 96dB FREQUENCY RESPONSE 10kHz – 45kHz – 3dB.
- SUPPLY VOLTAGE: 40V.

Size 114 x 100 x 85mm

Price £23.32 + £1.87 VAT P.P. free.

HY400

240 Watts into 4Ω

The HY400 is a big Daddy of the range producing 240W into 4Ω. It has been designed for high power disco or public address applications. If the amplifier is to be used as continuous high power level amplification a recommended device is a heatsink. At the quality of the end of the family to lead the market as a true high power high fidelity power module.

FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external components.

APPLICATIONS: Public address - Disco - Power slave - Industrial.

SPECIFICATIONS:
- POWER OUTPUT: 240W RMS into 4Ω (LOAD IMPEDANCE 4.16Ω) DISTORTION 0.1% at 240W at 1kHz.
- SIGNAL/NOISE RATIO: 96dB FREQUENCY RESPONSE 10kHz – 45kHz – 3dB.
- SUPPLY VOLTAGE: 40V.

INPUT SENSITIVITY: 500mV. SIZE: 114 x 100 x 85mm

Price £32.17 + £2.57 VAT P.P. free.

Power Supplies

- PSU08 suitable for HY200 £5.22 + 65p VAT P.P. free.
- PSU10 suitable for HY50, HY5 £5.52 + 65p VAT P.P. free.
- PSU12 suitable for HY30 £7.17 + £1.47 VAT P.P. free.
- PSU14 suitable for HY120 £12.85 + £1.27 VAT P.P. free.
- PSU18 suitable for HY200 £10.90 + £1.85 VAT P.P. free.
- PSU19 suitable for HY400 £13.40 + £2.00 VAT P.P. free.

Two Years Guarantee on all of our Products.
NEW PRODUCTS!

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug., '77.

The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (not CD4), including the new BBC HJ 10 input selections.

The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £45.00 + VAT
or ready built and tested £61.50 + VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval

As in "Wireless World", designed by Mike Hosking. 240V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet.

Complete exclusive designer approved kit £46.00 + VAT
or ready built and tested, £54.00 + VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Featuring:
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which)

Single channel plug-in Dolby PROCESSOR BOARDS (92 x 87mm) with gold plated contacts are available with all components

Single channel board with selected fet

Gold Plated edge connector

Selected FETs 60p each + VAT, 100p + VAT for two, £1.90 + VAT for four

Please add VAT @ 12½% unless marked thus*. when 8% applies (or current rates)

We guarantee full after-sales technical and servicing facilities on all our kits. Have you checked that these services are available from other suppliers?

Complete Kit PRICE: £39.90 + VAT
Price £54.00 + VAT

INTEGREX LTD.

Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

Please send SAE for complete lists and specifications
S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc.). THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88—104MHz. 30dB mono S/N @ 1.2µV. THD 0.3%. Pre-decoder 'birdy' filter.

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range 88—104MHz. 20dB mono quieting @ 0.75µV. Image rejection — 70dB. IF rejection — 85dB. THD typically 0.4%.

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

Compare this spec. with tuners costing twice the price.

STereo Module Tuner Kit

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £31.95 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Power 'on/off' FET transient protection

PRICE: £33.95 + VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT £14.28 + VAT
BASIC MODULE TUNER KIT (stereo) £16.75 + VAT
PHASE-LOCKED IC DECODER KIT £4.47 + VAT
PUSH-BUTTON UNIT £5.00 + VAT
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT £8.00 + VAT
NUTS AND BOLTS

BA BOLTS — packs of BA threaded cadmium plated screws and washers, chased head
Supplied in multiples of 50

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BA</td>
<td>889</td>
<td>£0.20</td>
<td>10 BA</td>
<td>881</td>
<td>£0.25</td>
</tr>
<tr>
<td>2 BA</td>
<td>886</td>
<td>£0.25</td>
<td>11 BA</td>
<td>880</td>
<td>£0.26</td>
</tr>
<tr>
<td>4 BA</td>
<td>883</td>
<td>£0.47</td>
<td>12 BA</td>
<td>879</td>
<td>£0.50</td>
</tr>
<tr>
<td>8 BA</td>
<td>882</td>
<td>£0.50</td>
<td>15 BA</td>
<td>878</td>
<td>£0.56</td>
</tr>
<tr>
<td>16 BA</td>
<td>881</td>
<td>£0.58</td>
<td>20 BA</td>
<td>876</td>
<td>£0.62</td>
</tr>
<tr>
<td>24 BA</td>
<td>875</td>
<td>£0.64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BA NUTS — packs of cadmium plated full nuts in multiples of 50

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BA</td>
<td>855</td>
<td>£0.07</td>
<td>10 BA</td>
<td>851</td>
<td>£0.10</td>
</tr>
<tr>
<td>4 BA</td>
<td>854</td>
<td>£0.11</td>
<td>15 BA</td>
<td>848</td>
<td>£0.14</td>
</tr>
</tbody>
</table>

BA WASHERS — flat cadmium plated plain stamped washers supplied in multiples of 50

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BA</td>
<td>859</td>
<td>£0.14</td>
<td>10 BA</td>
<td>855</td>
<td>£0.17</td>
</tr>
<tr>
<td>4 BA</td>
<td>858</td>
<td>£0.17</td>
<td>15 BA</td>
<td>851</td>
<td>£0.20</td>
</tr>
</tbody>
</table>

SOLDER TAGS — hot formed supplied in multiples of 100

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BA</td>
<td>851</td>
<td>£0.40</td>
<td>10 BA</td>
<td>853</td>
<td>£0.44</td>
</tr>
<tr>
<td>10 BA</td>
<td>852</td>
<td>£0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>Description</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPST single pole</td>
<td>1973</td>
<td>£0.15</td>
</tr>
<tr>
<td>DPDT single pole</td>
<td>1973</td>
<td>£0.15</td>
</tr>
<tr>
<td>Toggle switch SPST</td>
<td>0 amp</td>
<td>£0.25</td>
</tr>
<tr>
<td>Toggle switch SPDT</td>
<td>0 amp</td>
<td>£0.33</td>
</tr>
<tr>
<td>Toggle switch SPDT</td>
<td>0 amp</td>
<td>£0.16</td>
</tr>
<tr>
<td>Rotary switch on off</td>
<td>1 amp</td>
<td>£0.35</td>
</tr>
<tr>
<td>Rotary switch on off</td>
<td>1 amp</td>
<td>£0.42</td>
</tr>
<tr>
<td>Push switch with Lock</td>
<td>1 amp</td>
<td>£0.15</td>
</tr>
<tr>
<td>Pull switch — push to break</td>
<td>1 amp</td>
<td>£0.16</td>
</tr>
</tbody>
</table>

SOLDER TAGS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7uf</td>
<td>£0.26</td>
</tr>
<tr>
<td>1uf</td>
<td>£0.26</td>
</tr>
<tr>
<td>0.1uf</td>
<td>£0.26</td>
</tr>
</tbody>
</table>

MIDGET WAFER SWITCHES

<table>
<thead>
<tr>
<th>Description</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pole single throw type</td>
<td>0.25s</td>
<td>£0.65</td>
</tr>
<tr>
<td>Dual pole single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
<tr>
<td>3 pole single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
<tr>
<td>5 amp single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
</tbody>
</table>

VOLUME CONTROL

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50k</td>
<td>£0.45</td>
</tr>
<tr>
<td>22k</td>
<td>£0.45</td>
</tr>
</tbody>
</table>

FILTERS

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15k</td>
<td>£0.25</td>
<td></td>
</tr>
<tr>
<td>10k</td>
<td>£0.25</td>
<td></td>
</tr>
<tr>
<td>6.8k</td>
<td>£0.25</td>
<td></td>
</tr>
<tr>
<td>4.7k</td>
<td>£0.25</td>
<td></td>
</tr>
</tbody>
</table>

TRANSFORMERS

<table>
<thead>
<tr>
<th>MINIATURE Mains 240V</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>250mA</td>
<td>£0.60</td>
<td></td>
</tr>
<tr>
<td>350mA</td>
<td>£0.65</td>
<td></td>
</tr>
</tbody>
</table>

MIDGET WAFER SWITCHES

<table>
<thead>
<tr>
<th>Description</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pole single throw type</td>
<td>0.25s</td>
<td>£0.65</td>
</tr>
<tr>
<td>3 pole single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
<tr>
<td>5 pole single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
<tr>
<td>3 amp single throw type</td>
<td>0.25s</td>
<td>£0.70</td>
</tr>
</tbody>
</table>

SELECTOR SWITCH

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>£0.25</td>
</tr>
<tr>
<td>2M</td>
<td>£0.25</td>
</tr>
<tr>
<td>3M</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

ROCKER SWITCH

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M</td>
<td>£0.25</td>
</tr>
<tr>
<td>3M</td>
<td>£0.25</td>
</tr>
<tr>
<td>4M</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

AIRLINE AUDIO LEADS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5mm jack</td>
<td>£0.25</td>
</tr>
<tr>
<td>3.5mm jack</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

1-AMP MAINS 240V

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>18V</td>
<td>£0.75</td>
</tr>
<tr>
<td>24V</td>
<td>£0.85</td>
</tr>
</tbody>
</table>

STANDARD MAINS 240V

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>240V</td>
<td>£0.90</td>
</tr>
<tr>
<td>250V</td>
<td>£1.00</td>
</tr>
<tr>
<td>300V</td>
<td>£1.10</td>
</tr>
</tbody>
</table>

AVDEL BOND CYANOACRYLATE G2

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1G</td>
<td>£0.25</td>
</tr>
<tr>
<td>0.5G</td>
<td>£0.30</td>
</tr>
<tr>
<td>1G</td>
<td>£0.40</td>
</tr>
</tbody>
</table>

BI-PAK CATALOGUE

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500p</td>
<td>£0.60</td>
</tr>
<tr>
<td>1G</td>
<td>£0.70</td>
</tr>
</tbody>
</table>

CAGES AND BOXES

<table>
<thead>
<tr>
<th>Instrument Case</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>150mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>200mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>300mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>400mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>500mA</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>600mA</td>
<td>£0.80</td>
<td></td>
</tr>
</tbody>
</table>

MIDGET WAFER SWITCHES

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>£0.15</td>
</tr>
<tr>
<td>2M</td>
<td>£0.16</td>
</tr>
<tr>
<td>3M</td>
<td>£0.17</td>
</tr>
<tr>
<td>4M</td>
<td>£0.18</td>
</tr>
</tbody>
</table>

AUDIOPHILE AUDIO LEADS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1G</td>
<td>£0.25</td>
</tr>
<tr>
<td>0.5G</td>
<td>£0.30</td>
</tr>
<tr>
<td>1G</td>
<td>£0.40</td>
</tr>
</tbody>
</table>

ORDERING

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1G</td>
<td>£0.25</td>
</tr>
<tr>
<td>0.5G</td>
<td>£0.30</td>
</tr>
<tr>
<td>1G</td>
<td>£0.40</td>
</tr>
</tbody>
</table>

WIRELESS WORLD, JUNE 1978
POWERTRAN

AUDIO KITS OF DISTINCTION FROM
DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER

The standard model of our kit, Mr. Linsley-Hood's 75 watt design has for a long time offered exceptional performance and a party package with high quality high-power genuine transistors of comparable quality generally three times the price.

Features of the amplifier include very low distortion less than 0.1%, 750 mW per channel output power, neurological and sparking-free output, high impedance hum and noise rejection, low crossover distortion and individual adjustable peaks. This model is based on 5 circuit boards which not having the controls mounted on them so it can be mounted in the exactly desired or separate in high qualityBonus kit systems for use in our laboratories.

Our new De Luxe kit uses 14 boards which a complete kit, designed to have the components and switches mounted upon them. This system allows virtually immediate wiring, making installation after two assembly, straightforwardly straightforward, and all boards can be safely removed from chassis checking and maintenance is so simple that even beginners to electronics will be able to cope consistently with the kit. Add to this feature of our new model are the specified and fine circuit improvements, specifically heat sinks for heavy duty use even in tropical climates and metal oxide resistors throughout for long term stability and reliability.

PACK PRICES FOR COMPLETE KIT

PACK PRICES FOR STANDARD KIT

PACK PRICES FOR COMPLETE KIT

PACK PRICES FOR COMPLETE KIT

WIRELESS WORLD WM TUNER

SPECIAL PRICE FOR COMPLETE KIT

LINSLEY-HOOD CASSETTE DECK

SPECIAL PRICE FOR COMPLETE KIT

SPECIAL PRICE FOR COMPLETE KIT

EXPORT A SPECIALITY!

Our Export Department can readily dispatch orders of any size to any country in the world. Some of the countries to which we sent kits last year are shown in this advertisement. To assist in estimating postal costs our catalogue gives the weights of all packs and kits. This will be sent free on request by air mail together with our Export Postal Guide which gives current postage prices.

T20+20 and T30+30 20, 30W AMPLIFIERS

SPECIAL PRICES FOR COMPLETE KITS

T20+20 KIT PRICE £33.10
T30+30 KIT PRICE £38.40

EXPORT ORDERS: No minimum order charge. Prices are the same for all customers. No Added Value added tax charged. Postage charged at actual cost plus 50p for documentation and handling. Please send payment with order by Bank Draft or Postal Order. International Money Order or cheque drawn on an account in the U.K. Alternatively for orders over £500 we will accept Irrevocable Letter of Credit payable at sight in London.

www.americanradiohistory.com
INTERNATIONAL POWERSLAWE 200 + 200 watt AMPLIFIER

NEW!

COMPLETE KIT AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL

Super-Fi performance for studio/monitoring/head use with the inherent reliability and ruggedness for the most demanding group/ disco applications.

- **Features:**
 1. over 200W rms continuous from each of 2 totally independent DC coupled amplifiers — over 800W peak power!
 2. highly organically complementary, high linearity design using the inherent symmetry of no less than 4 differential pairs!
 3. ultra low feedback loop gain thoroughly tested to 14dB overall, together with superior high frequency response 20V / w 10V, bass 1000Hz and 1kHz.
 4. distortion only 0.03% at full power; kilowatts to only 0.03% at 1kHz]
 5. independent stabilized power supplies driven by custom designed TORSOL/TRANSFORMER transformers.
 6. inherent reliability — mixer net inputs for cool running at the hottest venues — electronic open and short circuit protection — a rugged power transistor/ amplifier — each 250W rating.
 7. professional quality — metal sub-panel, crystal controls, fibre glass boards sturdy 19" rack mounting cabinet complete with shelf and feet for free standing work too.
 8. beautiful — plenty of working space with ready access to all components. Minimal wiring. Extensive insulations available for both experienced constructors and newcomers to electronics — can be purchased on channel at a time.
 9. value for money — quality and performance comparable with ready built amplifiers costing over £600!

SPECIAL OFFER PRICE FOR COMPLETE KITS

<table>
<thead>
<tr>
<th>Kit</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 4001 SLAVE MODEL</td>
<td>Complete kit for 800W peak power</td>
<td>£205.00</td>
</tr>
</tbody>
</table>

SPECIAL OFFER PRICE FOR COMPLETE KITS

<table>
<thead>
<tr>
<th>Kit</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 4002 STUDIO MODEL</td>
<td>Complete kit for 800W peak power with professional quality meter</td>
<td>£220.00</td>
</tr>
</tbody>
</table>

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE,
ANDOVER
ANDOVER HANTS SP10 3NN

(0264) 64455

FOR FURTHER INFORMATION PLEASE WRITE OR TELEPHONE FOR OUR FREE CATALOGUE

DEPT: VIN

QUALITY All components are British and new from first grade full specification manufacturers. All resistors except where stated as metal oxide are low noise carbon film types. All printed circuit boards are high quality, double sided coated, epoxy coated, insecticide impregnated with circuit diagram and construction layout.
THE NEWBEAR COMPUTING STORE

MSI 8800 Microcomputer kit
(2MHz clock BX byem RAM)
Flipoist box, fully built and tested $135.00

S-100 bus
Components 2.24
I C P & CARD FRAME 2.80 basis

NEWBURY LABORATORY Visual display units from £520.00
Demonstrations by appointment only during June. The above items are cash with order or pro forma invoice only. VAT 8%.

SOFTWARE AND LITERATURE

COMPUTER DESIGNS

Price p. No.

HARDWARE COMPONENTS SECTION

MICROPROCESSORS

SC 9626M $18.20 VDU 81585 $0.75
MC 1488P $18.20 81587 $0.75
75150 $18.20 VDU 8223 $0.75
75150N 38 $18.20 8223 $0.75

LOW POWER SOTCHotty TTL PRICE LIST

7XL500 .18 71430 .18 71430 .28 71430 $1.18
7XL501 .18 71430 .28 71430 .28 71430 .28
7XL502 .28 71430 .28 71430 .28 71430 .28
7XL503 .28 71430 .28 71430 .28 71430 .28
7XL504 .28 71430 .28 71430 .28 71430 .28
7XL505 .28 71430 .28 71430 .28 71430 .28
7XL506 .28 71430 .28 71430 .28 71430 .28
7XL507 .28 71430 .28 71430 .28 71430 .28
7XL508 .28 71430 .28 71430 .28 71430 .28

CONNECTORS & SOCKETS

Subminiature D Type
6 way plug .50 25 way plug .22
8 way socket .50 25 way socket .10
10 way plug .50 50 way socket .10
10 way socket .50 50 way socket .10
14 way socket .50 50 way socket .10
15 way socket .50 50 way socket .10
15 way clip .50 50 way socket .10
0.50 25 way clip .10

EDGE CONNECTORS

0.50 plug .26 0.24 24 pack £9.00
0.50 plug .26 0.24 24 pack £9.00

SCOTCHFLEX CONNECTORS

40 pins plus $2.40 30 way socket £2.40

PRINTED CIRCUIT BOARDS

For 77498A 9 x 1 edge 78 pins £10.00
CPU board
Bertboard loader board
Perfing board
Consult board
89 pins £1.78 (90 pins £2.02). £1.78
£1.78 £1.78
£1.78 £1.78

WIRELESS WORLD. JUNE 1978

www.americanradiohistory.com
NEW FROM PITMAN FOR TEC STUDENTS

AND FOR THOSE SERIOUS ENTHUSIASTS WHO WISH TO CONSOLIDATE AND EXTEND THEIR KNOWLEDGE

Telecommunication Systems

P.H. SMALE

Explains and describes the fundamental make-up of the line and radio communication systems used in all telecommunication processes. 120pp/113 line figures/ISBN 0 273 01123 5/Cat. No.0010:12/£2.50

Transmission Systems

D.C. GREEN

A complete introduction to the principles of both line and radio communication systems. 120pp/121 line drawings/ISBN 0 273 01124 3/Cat. No.0012:12/£3.20

Radio Systems

D.C. GREEN

A basic course in the fundamentals and practice of radio communication systems. 120pp/103 line figures/ISBN 0 273 01126 X/Cat. No.0014:3/£3.00

Electronics

D.C. GREEN

The coverage is based on the syllabuses of the Technicians Education Council and completely covers the requirements of the units, offering coherent and complete treatment of the subject topics.

Further Principles and Systems for Radio and TV Mechanics

K.F. IBRAHIM

A good textbook for all radio, television and electronic technicians who desire to learn more and consolidate their practical knowledge with a theoretical basis.

PLACE AN ORDER WITH YOUR BOOKSELLER TODAY.

In case of difficulty available from Pitman Publishing Limited, 39 Parker Street, London WC2B 5PB

adding 20p as a small order surcharge.
NASCOM 1 Z80 MICROCOMPUTER Starts at £197.50 + VAT

Immediately a Market Leader. Greater expansion potential announced in April.
RAM Boards up to 32K.
Special I/O Boards.
High-level Language Boards.
Proposed Mini Floppy Disc.
Centronics Printer at NASCOM Price.

TRANSISTORISED 3cm RADAR AMPLIFIER SWITCH: with 24v waveguide switch, 9 x 4 cm ins with crystal CV.2355 and spark gap VX.1046. £16.20 + £1.00 post.

TRANSISTORISED VIDEO INDICATOR (used with above amplifier): 1½" C.R.T. £10.80 + £1.00 post.

VALUUM & PRESSURE SEAL TEST EQUIPMENT: Complete with 3 x 4" gauges indicating 0-30lbs p.s.i., 9-30lbs vacuum. With stand, hand pump, etc., £32.40 + £3.00 carr.

INSULATION TEST SET 0 to 10 KV, negative earth. with Ionisation Amplifier, 100/230 Volts. £45.90, carr. £3.00.

RACAL RA-17 RECEIVER 500KHz—30MHz, s/hand, good condition. £36.00 (including VAT 12½%).

AYO TRANSISTOR ANALYSER CT.146 £37.80 carr. £2.20.

MARCONI FREQUENCY METER 1026/4: 2000-4000mHz 'as new' condition. £32.40 or secondhand condition £24.30.

1056/2: 100-160mHz. £32.40 'as new' or s/hand £24.30. Carriage for all type £2.00.

BURGLAR ALARM BELL 6-8v. d.c. £3.24 + £1.00 post.

MUIRHEAD ATTENUATORS: 75 ohms 0-8Mc/s 3MAK 3 ranges 0-5, 0-25, 0-50db. £3.24 + 75p post.

AUTO TRANSFORMER: 230v, 50c/s. 1000 watts. Mounted in strong steel case 5½" x 6½" x 7½". Bitumen impregnated. £12.96, carr. £2.00.

CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range 3.000-10,000KHz. Mains 230v. 50hz. Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter £27.00, carr. £2.00.

ELECTROLYTIC CAPACITOR REFORMING UNIT NO. 1, 230v a.c. input 0-500mA and 6 to 450 volts in 10 ranges complete with leads and plugs. £13.00, Carrige £3.00.

FIELD FLUID SAMPLING SET TYPE TP/SKP/10000 with thermal control millipore oil sampling kit £125.00, Carrige £4.00.

JERROLD VC12 Voltage Comparator £85.00, £3.00 carriage.

JERROLD MODEL 707 FREQUENCY METER. 7.5mHz to 39mHz. £85.00, carriage £3.00.

RING TOROIDAL DUST CORES: Size 2½" outside, 1½" inside, 5/16" thick. Box of two £1.00 + 30p post.

ROTARY INVERTERS TYPE PE-218E: Input 24-28v. d.c. 80 amps, 4800rpm. Output 115v. a.c. 13 amp 400 c.s./1ph. P.F. £11.00 + £3.00 carr.

RECTIFIER UNIT: 200-260v. a.c. input. 24v. d.c. at 26 amps output continuous rating. £37.80, carr. £5.00.

MARCONI SIGNAL GENERATOR 801/DS: 10-480mHz. £318.60.

ROTARY CONVERTER: 24v. d.c. input. 230 volts, 100 watts output. £27.50, carriage £4.00.

SIEMENS POWER METER 0-12kWmHz 1mW to 500mWw. 6 ranges 0-17dB 50 ohms. £65.00. Carriage £3.00.

RCA TELETYPE TERMINAL SET SG1A 115 volts a.c. £17.50, carriage £3.00.

TELEGRAPH DISTORTION TEST SET TYPE SCBV: 230 volts a.c. £25.00, carriage £3.00.

RESONATOR PERFORMANCE CT.424 8.5 to 9.0 kmc/s 3cm. £75.00, post £2.00.

ALUMINIUM TRIPOD (extra strong) will support 50lb. Extends to 56in. £10.00, carriage £3.00.

INVERTER 24v. d.c. input 400 cycles 1600 r.p.m. 200 volts peak. £7.50, 150p post.

OXYGEN BOTTLE 1800lb. w.p. £16.00, carriage £3.00.

VOLTAGE REGULATOR 120 volts 62 amps. £17.50 each or two for £32.50, carriage £4.00 each.

NOISE SOURCE UNIT with CV.1881 noise source mount. Produces thermal noise 15.5dB 206/250v a.c. £75.00.

LOW SPEED TAPE COMPARATOR (Datronic) ¼" tape. £45.00, £5 carr.

ADDI 1" TAPE REPRODUCER: £65.00, carriage £5.00.

MUIRHEAD DS14 T.M.S.: 12v. d.c. or 100-250v a.c. volts input. Range 100-40,000Hz. £15.00, carriage £4.00.

AUTOTUTOR MARK IV: (Viewer Training Aid) 230v a.c. Designed for use in intrinsic programming method, info stored on microfilm and projected through optical system onto viewing screen. £120.00.

BARGAIN MAPS
Large stocks of unused U.S.A.F. surplus maps, weather charts, etc. including—

INC. 1:1 — U.K. in full and part N.W. Europe. Scale 1:1.000.000.
INC. 2:1 — E. Europe, U.K., Scandinavia. Scale 1:2.000.000.
INC. 3:1 — Europe, U.K., Scandinavia. Scale 1:2.000.000.
INC. 4:1 — Mediterranean Sea (including East Mediterranean). Scale 1:2.000.000.
INC. 25:1 — World. Scale 25 miles to 1 inch. Scale 1:2.000.000.
INC. 1:10000—Size 38 x 42 colour. Many others. Please send S.A.E. for list.

Price each £7 (inc. p+p).

25 x Maps (either same type (R) assorted) £18.00 + £1.00 p+p.

25 x Maps (either same type (R) assorted) £20.00 (inc. n+n).

Above prices include VAT at 8% (except where stated)

Carriage quotes given are for 50-mile radius of Herts.

W. MILLS
3 & 3a BALDOCK STREET, WARE, HERTS. SG12 9DT
WARE 66312 (STD 0920)

92 BROAD STREET
CHESHAM, BUCKS.
Tel: Chesham (02405) 75154
Telex: 837571
DIY HIFI
From the USA

THE AUDIO AMATEUR magazine, now eight years old, is totally dedicated to good sound for the do-it-yourself audiophile. TAA's thoroughly tested construction articles range from simple overload indicators to hand-made electrostatic speakers with their own direct drive power amplifiers to mixers and much, much more. Our authors include Reg Williamson, B. J. Webb, and Alan Watling.

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 5 ohms.

Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts. less than 0.02% at rated output (Typically 0.01% at 1 KHz)

Hum and noise: Disc -83dBV measured flat with noise band width 23KHz (ref 5mV): -86dBV "A" weighted (ref 5mV)

Line -85dBV measured flat (ref 100v): -88dBV "A" weighted (ref 100v)

Hear the HD250 at
SWIFT OF WILMSLOW
Dept. WW, 5 Swan Street, Wilmslow, Cheshire
(Tel: 26213)

Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel: 29599)

Now available ZD100 power amplifier and ZD22 pre-amplifier

WW-980 FOR FURTHER DETAILS

The SEMICON INDEXES
INTERNATIONAL SEMICONDUCTOR DEVICE DATA

VOLUME 1
TRANSISTORS
ISBN 0 904944 00 0

VOLUME 2
DIODES/SCRs
ISBN 0 904944 02 6

VOLUME 3
ICs (including μPs)
ISBN 0 904944 03 4

MAKE SURE YOU FIND OUT ABOUT THE NEW INDEXES BEFORE JULY.

SEND AN ENQUIRY OFF-TODAY.

Each volume has a unique easy reference alpha-numeric listing of the maximum ratings and essential characteristics of more than 25,000 devices of international origin-European, USA & Japanese. Accepted worldwide by Engineers, Technicians and Buyers. 12 months guarantee of validity. Descriptive folders available.

SEMICON INDEXES LIMITED
7 King's Parade, King's Road, Fleet. Hants. GU13 9BW
Tel: Fleet (02514) 28526 Telex: 85885G
WWW-693 FOR FURTHER DETAILS

ASTONISHING
STereo DISC Amplifier 2
FOR BROADCASTING, DISC MONITORING AND TRANSFER WITH THE HIGHEST QUALITY. Stereo Disc Amplifier 2 is a self contained mini power unit which accepts cartridge inputs and produces balanced line level outputs. Permanent rumble filtering and switched scratch filtering is included.

FURTHER SPECIFICATIONS: (For THD IMD etc see February advertisement) 1KHz at 10% set for 0dBV 7 output. Loaded 4000 ohms.

Frequency Response RIAA Accuracy 30Hz/20kHz

Cartridge impedance interaction on frequency response. High Inaccuracy cartridge 1%. Low frequency response

188Hz/1kHz

Group Delay relative to 1KHz

H.F. Filter

Front panel switch

Change in response of 1kHz or below

Sensitivity @ 1KHz

Outputs - electronically balanced

SURREY ELECTRONICS
The Forge, Lynes Green, Cranleigh, Surrey GU6 7BG (STD 0486) 5997

RADFORD HD250
High Definition Stereo Amplifier

DOWNLOAD ELECTRONIC COMPONENTS
(EAST GRINSTED LTD)
67 Meppen Road, Ashurst Wood, East Grinstead, West Sussex RH19 3AB
Tel: 0403 723111

WWW-924 FOR FURTHER DETAILS
TEN GOOD REASONS FOR BUYING THE NEW FLUKE 8020A DMM.

1. 26 ranges of AC/DC volts and amps, ohms and conductance.
2. 0.25% vdc accuracy over 10°C range for 1 year.
3. 'High power' ohms for diode testing.
4. 'Low power' ohms for in-circuit resistance measurement.
5. Conductance ranges allow leakage measurement to 10,000 MΩ.
6. 9v battery gives typically 200 hrs. life.
7. Protected to 250v dc or rms on any range, any function.
8. Protects to 6kv for 10µs on any range, any function.
9. 2 year warranty on parts and labour.
10. Large liquid crystal display.

Harlow (0279) 29522

The only way to buy.

STOP the SEARCH!

3% Measuring Accuracy
Stabilised Power Supplies
10 MHz Dual Trace
10 mV Sensitivity

Price £180

UK ex VAT

For YOUR Personalised Demonstration.
Scopex Instruments Ltd, Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Hertfordshire. SG6 1JJ. Letchworth 72771 (STD 046 26).

WW — 099 FOR FURTHER DETAILS

® Regd Trade Mark

www.americanradiohistory.com
'UL6 the best budget loudspeakers I've heard' says Philip Mount

Celestion's UL6s

Up to this point you could say the products described are competent by present standards, or even very good. Celestion's UL6 loudspeakers hooked up to the end are probably the best budget loudspeakers I have heard. Had the qualities of one. Around the time of their introduction a small group of audioraphists was asked by an importer of a certain well-known Japanese brand to check out the sound quality of a loudspeaker they were about to import. For comparison, about a year popular British loudspeakers were assembled and connected to a comparable set at the end of the week, with no hint which everybody had assigned it. And next was the fact that, on the other hand, UL6s appeared to have been significantly shock-free and more even, balanced than any of the others. Since the difference appeared so great even against a goodly number of sensible wires, at least warranted within the particular listening conditions (as by some that claimed the UL6s as an unusually large speaker).

Now about the year after that, it wasn't only their appearance, and that the speaker was well into most others into second place by operating. It was suggested to me for further information and I think this information, that it isn't necessarily the best (Celestion Ltd., 27-29 Ditton Road, IP3 8JP. Tel: 0794 273 331). The fact that they should be mentioned in part, however, that is so complete an almost in any musical balance or imbalance is a fundamental property that few really want to be attached. It is common when describing the product in a loudspeaker to split the band into bass midrange and treble regions. This is often provided by the loudspeaker itself, because the same thing and don't present a coherent picture but a fractured programme where bass output might be say salt and distant whilst treble is bright and forward. This split quality and relative events is as usual fairly well compensated for by the brain after a short learning and adjustment process. Since it is so common the effect is also tolerated and one does expect to adjust to a speaker's own peculiar sound quality. The most immediately striking feature of the UL6 is and the one that caused it to sound superior to all others in that group listening test described earlier is the fact that adjustment rarely seems necessary or called for. True it may split back out or instabilities. The on-by-one element leap out or disappear and you don't have to decide whether they are started by an effect of the end. At a broad but mindful level the UL6s just sound right; there is no better way that behind the equipment imaging in clearness and immediacy that the UL6 certainly transmits to you singing as you cannot be assured of how the budget loudspeakers will sound.

If you want to hear a speaker with a whole reproduction present and transform it into a programme. There is nothing like a set of UL6s. It is a long-term plan as the best loudspeakers but it isn't necessary for the Ul6s to be the only instrument of the reproduction. At the end of the year we still have something like that, UL6s are not very expensive and don't produce anything like bass quality. The speaker was good when some other problems were present and the one form of trouble. It is remarkable to find instruments with an astonishingly pleasant and well-delineated speaker. The different instruments with a well-delineated speaker.

Extremely good, it was the feedback room around the end. It was a great pleasure to listen to with its own peculiar sound but they were still in evidence. If you prefer a loudspeaker that can split the sound because they can be produced by their own extremely good

We don't expect you to take everything in the second picture. We are not experts and sensitive as Philip Mount's - isn't quite the same as getting the "message" first hand! But we're more than confident that you will find very little to disagree with once you've heard the UL6 demonstrated.
R.C.S. SOUND TO LIGHT KIT Mk. 2

Kit of parts to build a 3 channel sound to light unit. 1,000 watts peak. Easy to build. Full instructions supplied. Cabinet £4. Will operate from 240V to 100 watt signal.

- **Price:** £17
- **Availability:** Post 35p

R.C.S. LOW VOLTAGE STABILISED POWER PACK KIT

Ideal for small to medium sized groups. Bass, treble and volume control. Printed circuit rectifiers and double wound 200/240 V.c.a. microtransistor. 1/24 or 15V. Output voltages available, 6 to 7.5 V, or 12V up to 100 volts. Must be used with a small valve or transistor. Please state voltage required.

- **Price:** £2.95
- **Availability:** Post 45p

R.C.S. POWER PACK KIT

2 VOLT. 750 WATT. Output 480/240 V.c.a. Printed circuit board and assembly instructions. Two outputs for dual power. £3.35

- **Availability:** Post 30p

R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE

Ideal for Mike, Tape, P.U. Guitar, etc. can be used with battery 1/24 or 15V. Can be used in summer and winter. Size 15 x 12 x 7.5 cm. Response 25 cm to 25 k.c. 26 dB gain. Complete with valve or transistor. Full instructions supplied. Details S.A.E.

- **Price:** £1.45
- **Availability:** Post 30p

R.C.S. DRILL SPEED CONTROLLER / LIGHT DIMMER KIT

Easy to build kit. Will control up to 500 W.A.C. mains. £3.25

- **Availability:** Post 35p

STEREO KIT 59

Post 35p

BRITISH MADE CERAMIC MAGNETS

For use in the R.C.S. C.A.T. speaker cabinets. £6.95

- **Availability:** Post 75p

STEREO BOOK SHELF SPEAKERS

Tape or Volume £16 pair

- **Price:** £16
- **Availability:** Post £1.30

EXTENSION SPEAKERS

For groups, disco, P.A., where high quality sound is required. £1.95 per unit.

- **Price:** £1.95
- **Availability:** Post 45p

MARSHALL CERAMIC MAGNETS

Large 12in. £21.50. Extra 12in. £2.75. Suitable for today’s domestic audio reproduction. £2.50 per unit.

- **Price:** £2.50
- **Availability:** Post 25p

VOLUME CONTROLS

- **Price:** Various prices
- **Availability:** Post 15p - £3.15

ELAC 9 x 5in Hi-Fi SPEAKER TYPE 59R

- **Price:** £3.45
- **Availability:** Post 35p

BOOK SHELF SPEAKERS

Tape or Volume £16 pair

- **Price:** £16
- **Availability:** Post £1.30

LOW VOLTAGE ELECTROLYSIS

- **Price:** £4.95
- **Availability:** Post 15p

ALUMINIUM HEAT SINKS, FINNED TYPE

Sizes 5/8in. x 5/8in. 100 W. £2.40. 2 x 10in. 200 W. £2.95

- **Price:** Various prices
- **Availability:** Post 15p - £3.15

RCA-800 COAXIAL SPEAKERS

- **Price:** £8.50
- **Availability:** Post 45p

MOTOROLA PIEZO ELECTRO HORN TWEETER

- **Price:** £7.95
- **Availability:** Post 15p

BLOODY DISEC SPEAKERS

- **Price:** £15.95
- **Availability:** Post 50p

12INCH BASS WOOFER

Standard 12in. diameter fixing. Two 10in. speakers and P.A. speakers. £2.75 each.

- **Price:** £2.75
- **Availability:** Post 15p

PARLON CARTRIDGES

- **Price:** £1.50
- **Availability:** Post 50p

MOUSEMACHINES

- **Price:** £1.50
- **Availability:** Post 50p

RADIO COMPONENT SPECIALISTS

Radio Books and Components Lists 10p. (Minimum posting charge 30p). Cash prices include VAT. (We accept Access or Barclaycard. Phone your order) 01-684 1655
BENTLEY ACOUSTIC CORPORATION LTD.
7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX, Tel. 6743

ALL PRICES SHOWN INCLUDE V.A.T. AT 12 1/2%.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M221</td>
<td>200</td>
<td>617.50</td>
</tr>
<tr>
<td>M205</td>
<td>180</td>
<td>617.50</td>
</tr>
<tr>
<td>A105</td>
<td>160</td>
<td>617.50</td>
</tr>
<tr>
<td>A102</td>
<td>130</td>
<td>617.50</td>
</tr>
<tr>
<td>6AR5</td>
<td>105</td>
<td>617.50</td>
</tr>
<tr>
<td>61U8A</td>
<td>105</td>
<td>617.50</td>
</tr>
<tr>
<td>6AN8</td>
<td>105</td>
<td>617.50</td>
</tr>
<tr>
<td>6A15</td>
<td>105</td>
<td>617.50</td>
</tr>
<tr>
<td>6AK8</td>
<td>105</td>
<td>617.50</td>
</tr>
<tr>
<td>M228</td>
<td>220</td>
<td>617.50</td>
</tr>
<tr>
<td>M221</td>
<td>220</td>
<td>617.50</td>
</tr>
<tr>
<td>M226</td>
<td>220</td>
<td>617.50</td>
</tr>
<tr>
<td>4GK5</td>
<td>50</td>
<td>617.50</td>
</tr>
<tr>
<td>3Q5GT</td>
<td>50</td>
<td>617.50</td>
</tr>
<tr>
<td>3D6</td>
<td>0.40</td>
<td>617.50</td>
</tr>
<tr>
<td>3137</td>
<td>40</td>
<td>617.50</td>
</tr>
<tr>
<td>3A4</td>
<td>30</td>
<td>617.50</td>
</tr>
<tr>
<td>T4</td>
<td>0.25</td>
<td>617.50</td>
</tr>
<tr>
<td>G6</td>
<td>0.25</td>
<td>617.50</td>
</tr>
<tr>
<td>D6</td>
<td>0.25</td>
<td>617.50</td>
</tr>
<tr>
<td>122</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>85</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>GLO</td>
<td>20</td>
<td>617.50</td>
</tr>
<tr>
<td>UCESTER</td>
<td>20</td>
<td>617.50</td>
</tr>
<tr>
<td>025</td>
<td>20</td>
<td>617.50</td>
</tr>
<tr>
<td>035</td>
<td>20</td>
<td>617.50</td>
</tr>
<tr>
<td>0.75</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>6F15</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>1.40</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>085</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>035</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>050</td>
<td>10</td>
<td>617.50</td>
</tr>
<tr>
<td>05</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.40</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>095</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.70</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.35</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.21</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.12</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.14</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.23</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.26</td>
<td>5</td>
<td>617.50</td>
</tr>
<tr>
<td>0.28</td>
<td>5</td>
<td>617.50</td>
</tr>
</tbody>
</table>

Prices increase Please add 8% to all prices except Glass Polyester cases, to which add 3%. then add V.A.T.

All PRICES include V.A.T. NOTHING EXTRA TO PAY

WEST HYDE
Best Selling BOPLA range

- The Bocon is a two-tuned high impact polyethylene case to IP44. In dark (light grey, red, black, or clear covers) (see cat.)
- Bopla handles, mounting brackets and aluminium panel versions are also available

Note New Addresses

West Hyde Developments Limited, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. HP20 1ET. Phone: Aylesbury (0296) 20341. Telex: 83570

WW - 11+ FOR FURTHER DETAILS
NOW — AN X-Y PLOTTER ASSEMBLY

Due to a large purchase we have an assembly consisting of frame with X & Y assemblies (no pen — but provision provided), 16' wood aid cords, and YES two high quality stepping motors, these alone are worth £420. For the entire basic sets are available, with various stepping motor options. All motors 200 steps per rev: 20oz. inch torque.

120V Stepping Motor
750 1.150 steps at 50V
Bed Size 6 x 4 1/4 £26.50 ea
Bed Size 12 x 9 £53.50 ea
120V Stepping Motor
1000 1.1000 steps at 24V
Bed Size 6 x 4 1/4 £33.50 ea
Bed Size 12 x 9 £66.50 ea

STEEPING MOTORS ONLY
120V Stepping Motor
1000 steps £25 ea
Can be changed with 12V. Data Supplied
£8 each & P & P £1
For 12V 24V operation, £15 each & P & P £1
Just think about the useful.

DON'T MISS
THE TELEFUNKEN D14-131 REPLACEMENT TUBES FOR SOLARTRON (SCHLUMBERGER)
CD 1740
COSOR CDU 150
S.E. LABS SM112
and the GE/C/MOV 1474 TUBE

These tubes were offered in one of the above oscilloscopes, but were removed on the authority of the British Ministry because they were needed for British manufacture. They are withdrawn at our own request.

PRICE £55 ea. P & P £1.75

ALSO BRAND NEW TUBES FOR THE FOLLOWING SINGLE OSCILLOSCOPES TELEQUIPMENT

BRADLEY 200 @ £85 ea
ADVANCE OS2000 @ £85 ea
P & P all types £2.75 ea.

AND MULLARD & BRIMAR OSCILLOSCOPE TUBES BRAND NEW — BOXED — ALL RECTANGULAR
D13 46GM F7 £35 ea
D1351HG Green £65 ea
D10 200C £32 £85 ea
P & P all types £2.75 ea.

NOW — INCREASED AREA GIVEN TO PICK-A-PACK AT 50p per lb

Large volume of new components you can afford to miss.

TEKTRONIX SCOPES
541A with 5M1 CRT £160. 545 with 5A CRT £200. 547 Main Frame £41. Main Frame 585 with 5B Plug £425. 625 £435. 625 £635.

EXTRA LARGE SIGNAL GENERATOR
552 £10 ea
532A £20 ea
452 £10 ea
531 £10 ea

BRADLEY 200 @ £85 ea
ADVANCE OS2000 @ £85 ea
P & P all types £2.75 ea.

WIRELESS WORLD JUNE 1978

TOOLING TUBES FOR SWITZERLAND 12V.

NOW — INCREASED AREA GIVEN TO PICK-A-PACK AT 50p per lb

Large volume of new components you can afford to miss.

TEKTRONIX SCOPES
541A with 5M1 CRT £160. 545 with 5A CRT £200. 547 Main Frame £41. Main Frame 585 with 5B Plug £425. 625 £435. 625 £635.

EXTRA LARGE SIGNAL GENERATOR
552 £10 ea
532A £20 ea
452 £10 ea
531 £10 ea

BRADLEY 200 @ £85 ea
ADVANCE OS2000 @ £85 ea
P & P all types £2.75 ea.
MERCURY MULTI RANGE METERS

Type TRAIC. & P)

Operation approx 60 minutes.

- **1/18 amp**
 - Price £2.50 (Inc. VAT & P).
- **5/15 amp**
 - Price £4.50 (Inc. VAT & P).
- **10/30 amp**
 - Price £15.00 (Inc. VAT & P).
- **15/50 amp**
 - Price £35.50 (Inc. VAT & P).
- **20/60 amp**
 - Price £60.00 (Inc. VAT & P).

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230 - A.C. 50/60

- **OUTPUT VARIABLE 0/260V. A.C.**

BRAND NEW. All types.

- **200W (1amp) fitted A/C**
 - Price £18.50
- **5 KVA (Max. 25 Amp.)**
 - Price £15.00
- **12.5 KVA (Max. 40 Amp.)**
 - Price £30.00
- **25 KVA (Max. 80 Amp.)**
 - Price £65.00
- **40 KVA (Max. 160 Amp.)**
 - Price £110.00

CONTRACTORS and SPECIALISTS

230 VOLTS A.C. FAIR YALE ASSEMBLY

Suitable transformer for side - by - side metres. Rated 2000 Volt.

21-WAY SELECTOR SWITCHES

suitable for commercial type.

The ingenious motor - mechanical device can be employed in any position by energising the reverse circuit.

- **300 amp**
 - Price £30.00
- **500 amp**
 - Price £50.00
- **800 amp**
 - Price £80.00
- **1000 amp**
 - Price £100.00

VORTEX BLOWER AND VACUUM UNIT

- **Suction to 1500 mm**
 - Price £9.00
- **Suction to 2000 mm**
 - Price £12.00

CENTRIFUGAL BLOWER

- **Suction to 250 m**
 - Price £10.00

RELSYS

- **230/240V A.C. Relays.**
 - Price £1.00
- **230/240A. Voltmeter.**
 - Price £1.50
- **230/240M. Meter.**
 - Price £2.00

NEW HEAVY DUTY SOLENOID

Rated by Magnetic Devices 240v. A.C. 100 AMP.

- **10 AMP**
 - Price £10.00
- **20 AMP**
 - Price £20.00
- **50 AMP**
 - Price £50.00
- **100 AMP**
 - Price £100.00

240 VOLT D.C. SOLENOIDS

- **10 AMP.**
 - Price £10.00
- **20 AMP.**
 - Price £20.00
- **50 AMP.**
 - Price £50.00
- **100 AMP.**
 - Price £100.00

240 A.C. SOLENOID OPERATED FLOODLAMP

- **Price £25.00 (Inc. VAT & P).**

HIGH PRESSURE SOLENOID VALVE

- **Price £25.00 (Inc. VAT & P).**

POWER RHEOSTATS

- **New design construction.**
- **20WATT**
 - Price £1.00
- **50WATT**
 - Price £2.00
- **100WATT**
 - Price £4.00
- **250WATT**
 - Price £10.00
- **500WATT**
 - Price £25.00
- **1000WATT**
 - Price £50.00

600 WATT DIMMER SWITCH

- **Price £25.00 (Inc. VAT & P).**

GEARED MOTORS

- **100 R.P.M. 115 lbs. ins.**
 - Price £40.00 (Inc. VAT & P).

BODINE TYPE GEARED MOTOR

- **Type BODINE 015.**
 - Price £20.00 (Inc. VAT & P).

PARVALUX GEARED MOTOR

- **Type PARVALUX 015.**
 - Price £25.00 (Inc. VAT & P).

A.E.G. WATER PUMP

- **Type A.E.G. W.P 2000.**
 - Price £30.00 (Inc. VAT & P).

METERS

- **90mm Diameter**
 - Price £10.00 (Inc. VAT & P).

FRAMCO

- **58mm 500A.**
 - Price £10.00 (Inc. VAT & P).

- **85mm 800A.**
 - Price £10.00 (Inc. VAT & P).

1000A. 2 Amp.

- Price £10.00 (Inc. VAT & P).

- Price £15.00 (Inc. VAT & P).

CITENCO 19 RPM

- **Motor type C1223 - 115 2240 14 - 19 50/60V.**
 - Price £15.00 (Inc. VAT & P).

REVERSIBLE MOTOR 230V A.C.

- **Sealed motors.**
 - Price £15.00 (Inc. VAT & P).

METERS

- **90mm Diameter**
 - Price £10.00 (Inc. VAT & P).

VENER TYPE

- **3 Amp.**
 - Price £15.00 (Inc. VAT & P).

WIRELESS WORLD, JUNE 1978
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMICONTROLLORS</td>
<td></td>
</tr>
<tr>
<td>A1017</td>
<td>1.20</td>
</tr>
<tr>
<td>A1018</td>
<td>1.30</td>
</tr>
<tr>
<td>A1020</td>
<td>1.50</td>
</tr>
<tr>
<td>A1021</td>
<td>1.65</td>
</tr>
<tr>
<td>A1022</td>
<td>1.70</td>
</tr>
<tr>
<td>A1023</td>
<td>1.80</td>
</tr>
<tr>
<td>A1024</td>
<td>1.90</td>
</tr>
<tr>
<td>A1025</td>
<td>2.00</td>
</tr>
<tr>
<td>VALVES</td>
<td></td>
</tr>
<tr>
<td>A1030</td>
<td>4.00</td>
</tr>
<tr>
<td>A1031</td>
<td>4.10</td>
</tr>
<tr>
<td>A1032</td>
<td>4.20</td>
</tr>
<tr>
<td>A1033</td>
<td>4.30</td>
</tr>
<tr>
<td>BASES</td>
<td></td>
</tr>
<tr>
<td>A1040</td>
<td>1.00</td>
</tr>
<tr>
<td>A1041</td>
<td>1.10</td>
</tr>
<tr>
<td>A1042</td>
<td>1.20</td>
</tr>
<tr>
<td>A1043</td>
<td>1.30</td>
</tr>
<tr>
<td>INTEGRATED CIRCUITS</td>
<td></td>
</tr>
<tr>
<td>A1050</td>
<td>10.00</td>
</tr>
<tr>
<td>A1051</td>
<td>10.50</td>
</tr>
<tr>
<td>A1052</td>
<td>11.00</td>
</tr>
<tr>
<td>A1053</td>
<td>11.50</td>
</tr>
</tbody>
</table>

*Terms of business: C/W. Postage and packing valves and semiconductors 25p per order. U.K.’s 75p. Items marked * add 12% VAT. Others 8%. P&P at 8%.*

†Indicates cheap quality version or surplus, but also available by leading UK and USA manufacturers. Price ruling at time of catalogue. Details on request.

Account facilities available to approved companies with minimum order charges £10. Carriage and packing £1 on credit orders.

Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.
We have for sale the components set out below. All items are new surplus, and are available at a discount at today's date. We invite you to make an offer for the whole of part in writing or by telephone (and would intimate that offers made on the basis of prompt payment will be accorded preference).

Transistors
- Qty
- Silicon BD 135
- 9303
- Silicon BD 562 Motorola
- 965
- Silicon BD 561 Motorola
- 965
- Silicon BD 165 Motorola
- 537
- Silicon BF 394B Motorola
- 12810
- Silicon TE 00626 N-P-N BD165 EG
- 59556
- Silicon BC 486 Motorola PNP
- 4180
- Silicon BC 328 PNP
- 12450
- Silicon BC 204
- 760
- Silicon BC 183
- 6023
- Silicon BF 273
- 19150
- Silicon BF 274
- 6210
- Silicon BC 207
- 550
- Silicon BC 348A
- 4700
- Silicon MPSA 4.2 Motorola 133918
- 14700
- Silicon BF 394
- 41209
- Silicon 16083 RCA
- 7014
- Silicon BC 109C
- 4900
- Silicon BC 132
- 38236
- Silicon BC 115
- 780
- Silicon BC 318B Leads to 18364
- Silicon TIS92
- 9950
- Silicon BC 267B
- 8930
- Silicon BF 156
- 1306
- Silicon BC 267B
- 2650
- Silicon BC 208B/L
- 4600
- Silicon BC205
- 2400
- Silicon BC 205B
- 40595
- Silicon 209
- £820
- Silicon BC 205
- 2920
- Silicon PNP BD 436
- 3488
- Silicon BC 209
- 18882
- Silicon BF 259
- 18550
- Silicon MPS H.55 (UHF AMP)
- 5473
- PNP RF
- 14456
- Silicon BC 349
- 6722
- Matched MF1 131
- 7705
- Matched MF1 132
- 1813
- Matched MF11 133
- 51000
- BF 451
- 18500
- BF 154
- 18500
- Silicon Diodes
- BA 164
- 82955
- BA 202
- 12900
- Power XK 3017
- 3350
- Rectifier B400
- 2650
- Rectifier ES 325 B40C
- 3281
- 1N 4816
- 2900
- Power 388F
- 30300
- 1N 5400 Microelectronics
- 19600
- Rectifier Silicon Bridge Semikron
- 1750
- Rectifier Selenium TV1 16K70V
- 415
- Rectifier Selenium TV11 2KT1190

Diodes
- Varicap MV 104
- 42379
- Silicon BZ61 /C18
- 400
- Zener BZX79C6V2
- 1259
- Zener OF 2299 in POS N 405 185
- Zener ZF7.5
- 700
- Zener Z527
- 1800
- Zener 6.2V IN 753A
- 14600
- Zener 1N4750A Motorola
- 1820
- Zener 1N5266B (68V)
- 28736
- Thyristor Xf750
- 584
- Thyristor SCR 2N6399
- 27016
- Transistor MOS FET 40823
- 1704
- Transistor Field Effect
- G1 MEM30.008
- 4957
- Transistor Field Effect
- G1 MEM32.005
- 5070

Integrated Circuits
- TBA 271B
- 1100
- MC 1352P
- 948
- MC 1350P
- 2835
- µA706BPC 5w Audio Amp
- 7762
- Stereo Decoder MC1307P
- 9132

The above advertisement is a fraction of our stock holding. Trade & Export welcome. No Mail Order other than trade. VAT extra 8% or 12%. P&P dependent on article, etc.
EASY BUILD SPEAKER DIY KITS
Specially designed by RT VC for cost conscious but enthusiastic, these kits incorporate two each unique style enclosures, two EM 13" x 8" approx woofers, two tweeters and a pair of matching crossovers. Finished complete with an easy to follow £2800 circuit diagram and crossover components.

STEREO PAIR: Input 15 watts rms. 30 watts peak, each unit. $ 3.00 £15.00. Cabinet 20" x 11" x 8" approx.)

- SPEAKERS AVAILABLE WITHOUT CABINETS
It is possible to order the enclosures illustrated. Price: 113" x 8" tower (£6.40). £79.00 per pair, and matching crossover components: stereo pair Power handling 15 watts rms, 30 watts peak $45.00 $b 0.40.

COMPACT FOR TOP VALUE
These home baffle enclosures come to you ready milled and professionally finished. Each cabinet measures approx. per stereo pair 12" x 8 x 5" deep and is in wood varnish finished. Complete with two 8" woofers for maximum power handling 3 watts + p & £3.20.

SPEAKERS Two models: Duo lnb, treble 12 watts rms, 24 watts peak. £3.13 x 11" x 5" (approx.)
Duo III, 20 watts rms, 40 watts peak. 27 x 12 x 11" approx. Duo lnb £17.00 p & £6.50 Duo III £52.00 p & £7.50.

DEC 20 WATTS STEREO SPEAKER
The function of the crossover network is to make a system dynamic and to compromise for a wide frequency range. It is built around a pair of four medium-bass woofers, four medium-bass and one for low frequency. The tuning is spaced and attractive small aluminium control knobs for manual tuning and volume control. 12 watts peak, 60 watts rms (stabilized internal) see approx. £1.25.00.

A MOTOR TOP 10 ACCESSORY WINNER: p & £6.50
FREE TO PERSONAL SHOPPERS BUYING CAR RADIO KIT (why ELECTROMATIC Rear view mirror, heated, modern line element £3.00.

PORTABLE DISCO CONSOLE
Here is the big value portable disco console from RT. Compact, easy to use, features a pair of BSR HMP 60 type woofers, boxes made of two 8" diameter approx. base drive unit, with heavy duty cast chassis laminated core with nickel P.C.B. output. Two 30" diameter approx. woofers with crossover networks. £40.00 p & £6.00.

PERSONAL SHOPPERS
UNIX electronic digital alarm clock menacingly large, bright LED digital display fits inside a broad window. £115 x 115mm x 50mm approx. £7.95.

16V16 VOLTS MAINS TRANSFORMER 2amp. £2.50.

BSR Record automatic deck on plinth with stereo cartridge ready fitted £11.95.

LED 5-function men's digital watch stainless steel finish £5.95.

LCD 5-function men's digital watch stainless steel finish £5.95.

STEREO CASSETTE record/ replay fully built G.P. £13.95.

AM FM TUNER P.B.V. with Mullard P. 1180, 1185, 1188, 1190, 1192

1000 Multifunction Vanscap tuning sets, 6 for £1.00.

MUSIC CENTRE CABINET with hinged smoke acrylic top, finished in natural lacquered veneer. size 30" x 14" x 14" approx.

MULLARD Built-in power supply £1.50.

DECCA DC1000 Stereo Cassette P.B.C. £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed. 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.

MULLARD Built-in power supply £1.50.

DECCA 1100 Stereo Cassette P.B.C £2.95.

Complete with switch assorted cassettes and tape heads.

FEGUSON 3 speed, 7" HiFi tape transport mechanism, £5.95.
BARGAIN OF THE MONTH

GR Pocket Terminal

Midget duplex unit with man-sized facilities

Until you've tried it, you won't believe how much capability we've packed into the new Pocket Terminal. We've gone all-out to make it the most practical and useful hand-held data communications device available.

Here's just a few of the facilities:

- Transmits 128 ASCII codes
- Displays full 64 character ASCII set clearly
- 30 character memory accessible through display
- Single 8V supply required at 400mA max
- 110 or 300 baud transmission, selectable
- 20mA loop or V24/RS232 level versions available
- Parity codes and stop bits settable to your standard
- Reacts to bell, cursor and formatting control codes

Pocket Terminal is a convenient, versatile, totally portable tool for anyone who needs to communicate with computers or their peripherals. Send for details now from:

GR ELECTRONICS LTD.
Fair Oak House, Church Road, Newport, Gwent NP17 7LJ, UK
Telephone: Newport (0633) 67426 Telex 28604 Ref 1796

WWW—FOR FURTHER DETAILS

FANTASTIC GOLDRING SAVINGS

GOLDRING G103 Belt Drive Turntable
Famous name turntable Slashed to near half price. Complete with plinth, cover and leads. Accepts any standard cartridge (not included)

FULL 12 MONTH GUARANTEE

OUR PRICE

SAVE OVER £24

R.R.P £54 (+p.p & Ins £2.50)

FOR DETAILS WRITE: Sonic Sound Audio
248/250 TOTTENHAM COURT ROAD, LONDON W1. TEL: 01-637 1908
WWW—992 FOR FURTHER DETAILS
From the representatives in Europe... for America's leading Micro-computer magazines and books, for the hobbyist, educator and professional alike, we bring you a little light browsing!

Reading maketh a full man... Francis Bacon (1561-1626)

Tick here or indicate quantity ordered.

From Adam Osborne Associates

INTRODUCTION TO MICROCOMPUTERS

Volume 0: The Beginners Book £5.95
Volume 1: Basic Concepts £5.95
Volume 2: Some Real Products (Revised Late 1977) £11.95

6800 Programming for Logic Design £5.95
8080 Programming for Logic Design £5.95
Z80 Programming for Logic Design £5.95
(Available May 78 approx)

8080A/8085 Assembler Language Programming £6.95
Some Common BASIC Programs £5.95

BUSINESS PROGRAMS IN BASIC

Payroll With Cost Accounting £6.95
Accounts Payable & Accounts Receivable £6.95
(Originally from June 1978)

General Ledger (Available August 78) £9.95

From Scebi Computer Consulting Inc.

6800 Software Gourmet Guide & Cookbook £7.95
8080 Software Gourmet Guide & Cookbook £7.95
8080 Programmers Pocket Guide £2.25
8080 Hex Code Card £2.25
8080 Octal Code Card £2.25
8080 Guide and One 8080 Code Card £4.20
8080 Guide and Both Code Cards £6.00
SCELBAL High Level Language for '6808/6808 Systems £39.25
SCELBAL String Handling Supplement £6.95
SCELBAL Extended Math Supplement £4.00

Understanding Microcomputers & Small Computer Systems £7.95
SCELBI BYTE Primer £9.95
8080 Standard Assembler (In Block Format) £15.95
8080 Standard Editor (In Book Format) £9.95

From Peoples Computer Company

Reference Books of Personal & Home Computing £4.95
What to Do After You Hit Return £7.00
Dr. Dobbs Journal Volume 1 £10.00

From Kilohoud/72 Magazine Inc.

Hobby Computers Are Here £3.95
New Hobby Computers £3.95

From Dymax Inc.

Instant BASIC by Jerald R. Brown £4.95
Your Home Computer by James White £4.95
My Computer Like Me... When I Speak BASIC By Bob Albrecht £1.65

Games With A Pocket Calculator by Thijgraanen & Stimvitch £1.75
Games, Tricks and Puzzles For A Hand Calculator by W Judd £2.49

From BYTE Publications Inc.

Paperbytes: Tiny Assembler for 6800 Systems £5.75
Bar Code Loader for 6800, 8080, Z80 & 6502 Micros £1.75
Best of BYTE Volume 1 £8.95

FROM DYNAMICS

Tick here or indicate quantity ordered.

From Creative Computing Press

Best of Creative Computing Volume 1 £6.95
Best of Creative Computing Volume 2 £6.95
101 BASIC Games (Revised & Reprinted Feb. 78) £5.50
The Colossal Computer Cartoon Book £3.95
Computer Rage (A New Board Game) £6.95
Artist and Computer £3.95
Three Binary Dice £1.00

From Everyone Else

TV Typewriter Cookbook by Don Lancaster £7.95
Magazine storage boxes (Holds 12 minimum) £1.75
Sybex: Microprocessors £7.95
Sybex: Microprocessors Interfacing Techniques £7.95
Dilithium: Home Computers Volume 1: Hardware £9.50
Dilithium: Home Computers Volume 2: Software £5.95
Getting Involved With Your Own Computer £4.75

Computer Programs That Work (in Basic) £2.55

From Basic Software Library

(from Scientific Research Instruments)
Vol 1: Business and Personal Programming £17.50

Vol 2: Maths and Engineering Programs £17.50
Vol 3: Advanced Business Programs £26.95
Vol 4: General Purpose Programs £7.95

Vol 5: Experimenters Programs (General Purpose) £7.95
Vol 6: General Ledger Program £32.50
Vol 7: Professional Programs £28.95

MAGAZINES: Back Issues

Personal Computing £1.75

Interface Age £2.25

Dr. Dobbs Journal £1.60

Computer Music Journal £2.25

People's Computers £1.50

BYTE £2.25

Creative Computing £1.75
calculators & Computers £1.75

ROM £1.50

Kilohoud £2.25

73 £2.00

MAGAZINES: Subscriptions

Personal Computing (Twelve Issues Yearly) £16.00 £17.00

Interface Age (Twelve Issues Yearly) £20.00 £20.50

Dr. Dobbs Journal / Ten Issues Yearly £13.00 £13.50

Computer Music Journal (Four Issues Yearly) £8.50 £9.00

People's Computers (Six Issues Yearly) £8.00 £8.50

Kilohoud (Twelve Issues Yearly) £20.00 £21.00

BYTE (Twelve Issues Yearly) £15.00 £15.50

Creative Computing (Six Issues Yearly) £8.50 £9.00

Calculators & Computers (Seven Issues Yearly) £10.00 £10.50

ROM (Twelve Issues Yearly) £16.00 £17.00

73 (Twelve Issues Yearly) £20.00 £21.00

Send to address above for the att'n. of David, Room W6

All orders must be Prepaid

Indicate Payment Method: Total Enclosed £

My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank

Charge to Barclaycard/Visa/Diners/American Express/Access

Credit Card No.

Expiry date

Name

Address

POSTCODE

Signature

TRADING ENQUIRIES WELCOME

Due to fluctuations of the dollar prices are subject to change. Please mention Wireless World when ordering.

How to order

Please note our prices include postage and packing, but not insurance. If wanted add 1/2p for every £1.00 of Books ordered. Make cheques, P.O.s etc payable to L.P. Enterprises

Credit cards accepted

Barclaycard Visa/Access

Diners club/American Express

Phone 01-553 1001 for Credit Card orders (24-hour service)
COMPUTER APPRAISAL

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

PDP 8M microcomputer with 16K memory. MS840 power supply & MS850 interface. £1950.00.

MOTOROLA 6800 microcomputer system with 28K c.p. memory. VDU CENTRONICS matrix printer, plastic tape punch, plastic keyboard, dumb display, printer, p.a.s.

PDP 8B Microcomputer with 12K memory and TVT interface. £590.00.

PDP 8S Microcomputer with 4K memory. TVT interface and software incl. BASIC and FOCAL. £350.00.

IBM 1130 comprising BX 16 processor. E D U selective keyboard printer and terminal. Includes IBM card reader/punch & IBM 1131 CRT. £2750.00.

INTERSCAN 6 microcomputer with VDU, twin floppy disc drives and LOGABAX matrix printer. p.a.s.

LOGABAX Model 18 1280x dot matrix printer. 120 c.p.s. in extreme cond condition. £750.00.

DIGITAL EQUIPMENT DECwriter II Model LA36. Terminal with matrix printer. New. £400.00.

REPCO 120, p.s. mem. card reader with parallel TIL interface. £225.00.

IBM model 735 / 0 & Sertek 1500D (no box or adapter, refurbished & £225.00).

TELETEXT model BBF 110 high speed paper tape punch. £95.00.

TELEFAX 500 c.p.s. tape punch with all electronics, splicing etc & fully documentd. £285.00.

DIGITAL COMPUTER CONTROLS Model D112 4x 12 memory substantially PDP 8B. £750.00.

DIGITAL EQUIPMENT CO Model DF 32 fixed disc & controller for PDP B. £250.00.

TESTEC model D16/ B 128K RAM microcomputer with PDP B interface. £1400.00.

TELETRONIX Model 10B 1000 Mf. per second. £1600.00.

GOULD ADVANCE model 3232 oscilloscope double beam DC-10 Mf. As new £1100.00.

SALTRON model LS8030 DC (AC) 10 1000 Mf. £500.00.

SEFRAN main recorder, 8-channel £750.00.

FERRANTI argon laser with p.s. accuracy to 2.5 nm range. £750.00.

SPEAKERS

MONITOR

MIXING CONSOL

PHONES

CABLES

USE OUR CATALOGUE*

VAT RATES. All items at 8% EXCEPT where marked ** which are at 12.5%.
Electronic Brokers Ltd
The Test Equipment People

GOULD ADVANCE

Module Pulse Generator PG.52, System 5 of signal generating & processing units. Repetition rates up to 20MHz & output pulses to 20V (500) Rise & Fall times 5 nsec. Its versatility the enables production of complex pulse & ramp waveform not obtainable from conventional pulse generators.

£425.00

Double Pulse Generator PG002D. Multiple pulse width 0 to 1sec. Rise time 12nsec. At 20 MHz repetition rate automatically reduces to 120 MHz. Cost £950.00

£950.00

Digital Pulse Generator PG.55. Pulse Amplitude-1 kV & wave shape. Rise Time 10nsec (typically). £100.00

£100.00

Pulse Generator PG59 (Type CE600). Provides pulse width, amplitude, delay and rise time. Repetition rate 1Hz to 1kHz. MAX rise time 250nsec. Rise time and fall time 12nsec to 1 sec. Delay 25sec to 1sec. Trigger, Internal, external and single shot. £95.00

£95.00

LR100X Y Plotter. Specification. Main frame. Frequency response 1Hz Plug-in amplifiers. LR120 general purpose amplifier. LR121 time base. Full specification on request £235.00

£235.00

R F Signal Generator BAG7 30MHz. O/p 1V to 100V. Output 2 sec & 10 sec. 400Hz BDB. Plug in modulation for Ext Mod Audio 0-10V at 400Hz into 600Ω.

AF Signal Generator H17, Specification. Frequency range 15Hz-50kHz. Audio Output. Sine Wave 200V to 20 V rms ±1dB. Square Wave 1.4mV to 14V peak approximately. £80.00

£80.00

Signal Generator J3, Frequency range 9kHz to 100kHz. Sine & Square wave £140.00

£140.00

Timer Counter TC18. Specifications: Frequency measurement Input 1kHz to 10MHz Input 2 10MHz/512MHz. Both inputs AC or DC coupled. Sensitivity 35mV/m to 400MHz. 50mV/m to 400MHz, Input 2 5V/m to 512MHz. Display Digit 7 digit LED £245.00

£245.00

Timer Counter TC22. Measures frequency DC 150MHz. 6 digit time period, period average, count, totalise, pulse width, rise time. £275.00

£275.00

Digital Multimeter DMM3, 3 digit Maximum reading 1999.25 ranges of measurement. AC & DC volts, AC & DC current. Resistance, Polar Element, Ramp hold. £116.00

£116.00

STRIPE CHART RECORDER OMNISTRIP. Serial range from 0.02 to 2 sec. Freq. As Condition. Full specification on request. £120.00

£120.00

VHF Square Wave Generator SG21. 10MHz-100kHz £60.00

£60.00

A F. Signal Generator J26. 15Hz-50kHz O/p 10kHz 1mV to 1V. £120.00

£120.00

A C. Millivoltmeter VM770. 0-1000V ±1% at 1kHz £5.00

£5.00

Timer Counter TC14. 9 dig. Display, storage DC-250MHz. Time gate selectable 0-1000μs. Multiple periods of 10-500s. 0.1ps, £400.00

£400.00

Timer Counter TC15. 19 dig. Freq. measurement. DC-250MHz. Sensitivity 10mV to 100V, 500V £50.00

£50.00

Plug in Unit TC15 P1. 1MHz-500MHz 10MHz V/div full scale. DC-250MHz with 19 digit resolution in 2 seconds. £350.00

£350.00

Portable Oscilloscope OS245A. Dual trace DC-10MHz 5mV/div £410.00

£410.00

Tektronix

Bench Oscilloscope Type 321A, dual trace vertical plug in unit. DC-12.5MHz. Sensitivity 50mV/20V D/div. Time base range 100ns to 55 s/div. Timebase modes, A, 5kHz internal voltage calibrator 0.2mV to 100V, (kHz square wave £280.00

£280.00

Bench Oscilloscope Type 627A. Dual trace vertical plug in unit. 10A2A delayed time base. 112MHz, DC-500MHz. Sensitivity 50mV/20V D/div. Time base ranges 5ns to 10s/div & B, 10MHz 5ns to 10s/div. £1200.00

£1200.00

Bench Oscilloscope Type 55A, dual trace vertical plug in unit. Type B: DC-80MHz Sensitivity 10mV/20V D/div. Time base ranges 100ns to 50s/div on A & B. 8x time base modes A, only, intensified, delayed sweep. X10 Inten. voltage calibrator 0.2mV to 100V 1kHz square wave £775.00

£775.00

Bench Oscilloscope Type 545A, dual trace vertical plug in unit. A1 & A2. £775.00

£775.00

Tektronix

Bench Oscilloscope Type 55B (c) dual trace vertical plug in unit. DC-24MHz. Sensitivity 50mV/20V D/div. Time base ranges A: 50ns to 55s/div. B: 2x50ns to 5s/div. Time base modes A, 8x time base, intensified delayed sweep, X2-10. Inten. voltage calibrator 0.2mV to 100V 1kHz square wave £1400.00

£1400.00

Constant Amplitude Signal Generator 181, 1MHz-100MHz. Time wave £5V. 5V constant amplitude 50MHz Amplitude reference £350.00

£350.00

Cohu

Precision DC Voltage Standard 304, 0.1 ±kv in 3 decades 0.50% at any voltage setting. Accuracy 10V range 0.003% ±10V 100V range 0.007% ±20V, 1kHz range 0.003% ±40V £450.00

£450.00

Wayne Kerr

Universal Bridge 8221A = C1530. 105/88-8781 0.1% accuracy for use at 80 ppm to 8 converters C11 (159324) Source frequency (1592Hz min.) 50Hz-500kHz ±5% Max input level 11kg £275.00

£275.00

Low Impedance Adaptor O221A £35. Use with 8221A permitting impedance measurements over a range of from 10 kΩ to 100 kΩ. £45.00

£45.00

Component Bridge 8521 (Ministry Type C133). A general purpose component bridge for measuring L, C, R & combinations of L, C & R. Combination is used to measure components in situ. Sensitivity 1pA to 51, Resistance 10 ohms to 1000Meg ohms Inductance 1μH to 500μH £115.00

£115.00

Electronic Brokers Limited
49-53 Pancras Road, London NW1 2OB Tel. 01-837 7781. Telex: 298694

Hours of Business: 9 a.m.-5 p.m. Mon.-Fri.; closed lunch 1-2 p.m. Carriage and Packing charge extra on all items unless otherwise stated.

www.americanradiohistory.com
ROHDE & SCHWARZ
Stereocorder Type MSC. BN4192/2
Specifications £1,200.00
Stereocorder MDSCL. BN4193. Super £850.00
Zig Digitograph ZDU £650.00
Selective Level Voltmeter — USWV.
30kHz 10V 6 2.5V £400.00
U.H.F. Millivoltmeter. URV. 1KHz 1.6
Hz £235.00

HEWLETT PACKARD
True R.M.S. Voltmeter 3400A. 1 mV-300V
127 ranges dB range — 72 + 52
60mV Frequency Range 1Hz to 10MHz
£415.00
D.C. V.M. 3430A. 3 digit 5 ranges
100mV-100V Input Resistance 10MQ
£500.00
Bench Oscilloscope 347A. C.W 347A
display 4-10 digit. Range of A.C. & D.C.
& 6 ranges of units. A.C. = 45MHz.
£350.00
U.H.F. Signal Generator 612A. 450-1200MHz in 1
band. Distal Voltage 0V to 5V. Output impedance
50O A 0.9% 5 A.M facility. Move mod facility
£900.00-£1250
Frequency Doubler 10515A £75.00
A.M. Signal Generator 608A. 50MHz
£550.00
Bench Oscilloscope 175A. C.W Plug in
175A & 175B. 4 trace 40MHz bandwidth
£550.00
Programmable Stop Attenuator 355E.
DC 1000MHz 0.12 dB in 1dB steps. Un-
used £60.00
Distortion Analyzer 332A. 5Hz 500MHz
Distal levels 0.1% 100% are measured
full scale in 7 ranges. A.M. Detector
operating from 50kHz-65MHz. £495.00
DC Standard/Differential Voltmeter
746B. Designed for calibrating digital
and differential voltmeters. Poten-
tionometers, voltage dividers and for general
standard lab application 6 digit resolution
with discrete range of 1p to 10MHz. £1,850.00
A.C. Voltmeter 400F. 100V to 300V ±
14 ranges. Frequency range 20Hz-4MHz.
£150.00
Microwave Power Meter 430C. C.W Thermometer
recorder 4727 100MHz-100GHz
Full scale range 0.1 0.3 1 3 6 10W.
Portable Scopemeter 1700B. 100
35MHz 10mV/div sensitivity Dual Channel.
£750.00
A.C. Voltmeter 400E. 1 kHz 200V
12 ranges 10MHz 10MHz BRAND
£235.00
S.H.F. Signal Generator 618A. £495.00

FLUKE
Multifunction Counter 1900A-01. Same
spec as 1900A but with battery pack
£215.00
Multifunction Counter 1900A-02. Same
spec as 1900A but with BCD output
£230.00
Frequency Synthesizer 6011A. Performs
functions of an oscillator, counter and
clock meter 10kHz.11MHz. Output 0.4mV 5V
rms 7 digit LED display. Accuracy ±3
parts in 10 for 1 year. First stock! Full speci-
ification on request £2950.00

GENERAL RADIO
Frequency Meter & Discriminator
1142A. Frequency Range 3Hz to 1MHz
Accuracy ± 0.2% Can be used with a
recorder to produce records of frequency
change and drift £235.00
Standard Frequency Multipliers. Type
1112 series. Producing microwave range
standard freqs. Output 20mW. Output
impedance 50O A 0.9% for new 5MHz
£520.00
A.C. Voltmeter Type 1112
£95.00
Radio Frequency Bridge 1860A. 400kMHz
to 60MHz ±2% & generator & detector is
required £380.00
Wave Analyser 1900A. C.W. Graphic
Waveform Recorder 1521B. Spect. 1900A
250MHz-500kHz 3 band widths. 3.10 and
50kHz Tracking averages 30mV 300V 4s
£95.00
VHF. UHF Telecomm. Frequency
Counter 1900A. C.W. Sweeps Pack. 5Hz
±151MHz. 6 digit LED display. 50mV sen-
tivity over whole range £400.00

AVO
Multimeter model 7 £60.00
Lights. stairs & crockpits for 100V £4.50 set

PHILIPS
100MHz Single output Pulse Generator
PM5775. Specification on request £800.00
100MHz Double output Pulse Genera-
tor PM5776. Specification on request £900.00

RACAL
Freq. Period Meter 5925S 10kHz £110.00
Universal Counter Timer 8938. Single and
multipliers with time interval Freq range 10MHz
£285.00
H.F. Communications Receiver
RA117E. 1-30MHz. Full specification on
request £350.00
Modulation Meter 2104. 25MHz-300MHz
A.M. range 0-100%. F.M. range 0 to
100%. £245.00 £285.00
A.M./F.M. Modulation Meter 405. band
3-150MHz A.M. 0-100% F.M. 0-
600kHz £345.00

T.E.S. (Milan)
L.F. Signal Generator G1165L. Solid
State. 10Hz-10kHz 1mV-10V. 6000
impedance. Square Wave facility £195.00
Wow & Flutter Meter W5791. DIN &
IEC. ± 1% r.m.s. 25-50kHz. ± 1% r.m.s.
impedance 10kHz £130.00
A. F. Power Meter M1664. 1mV-10W.4
input 25-50kHz. Lagged input sensitivity
40 Ks £175.00
All ex-demonstrators as new condition

DUMONT
Portable Scope 1100P. DC-100MHz at
5mV/cm. Dual Trace 5mV/cm. Sweep rate
0.1mV/cm to 100MHz. £825.00

49-53 Pancras Road
London NW1 2QB
Tel: 01-837 7781. Telex: 298694
WW—112 FOR FURTHER DETAILS

www.americanradiohistory.com
MARCONI INSTRUMENTS

Signal Generator TF805, 15kHz-30MHz 2.5V/3mA, 20kHz-2.2MHz in five bands. Output 0-1V, 2V. 1MHz. Output Impedance 75Ω. Modulation 0-1%. Normal deviation continuously variable in two ranges: 2MHz & 2.75MHz on all bands. Greater deviation is available on most bands, Modulating Frequency: Intern. FM 1kHz, 2kHz, 5kHz External. FM 50kHz to 15kHz. Modulation: (A) Int. sine 0.5% up to 3kHz 1% up to 30kHz. Int. Crystal 2kHz 5kHz. Output Impedance 50Ω to 50MHz. £185.00

A.M./A.M. Signal Generator TF905B/2. Frequency Range 0.05p to 1000kHz in five bands. Output 0-1V 2V 20V. Output Impedance 75Ω. Modulation 0-1%. Normal deviation continuously variable in two ranges. 2.5kHz & 2.75kHz on all bands. Greater deviation is available on most bands, Modulating Frequency: Internal FM 1kHz, 2kHz, 5kHz External. FM 50kHz to 15kHz. Modulation: (A) Int. sine 0.5% up to 3kHz 1% up to 30kHz. Int. Crystal 2kHz 5kHz. Output Impedance 50Ω to 50MHz. £185.00

U.H.F. Signal Generator TF1060. Frequency range 450-1250MHz (1 band). Output 0.15V 445V. Output Impedance 50Ω. £35.00

A.M. Signal Generator TF144H & H/S. Frequency range 10kHz to 72MHz in twelve overlapping bands. Output 2V to 2V. Output Impedance 50Ω. Modulation: Internal AM: 400Hz & 1kHz to 0 to 80%. External AM: 20kHz to 20kHz. 0 to 80%. £275.00

A.M. Signal Generator TF144H/4. A later version of TF144H with similar spec. £275.00

A.M. Signal Generator TF801D/1. Frequency Range 10kHz to 72MHz in five bands. Output Oscillator 0-1V to 1V. 10kHz. Output Impedance 50Ω. Modulation: Internal: AM: 400Hz & 1kHz to 0 to 80%. External: AM: 20kHz to 20kHz. 0 to 80%. £400.00

Carrier Deviation Meter TF791D. Carrier freq. range 4 to 1024MHz. Deviation range up to ±125kHz. Modulating Frequency range: Up to 35kHz. Line mode Ω. £285.00

20MHz Sweep Oscillator TF1099. Video sweep output. Lower limit 10kHz fixed 50kHz. Upper limit 0.5% variable up to 20MHz. 0 to 3pr f 5 to 15kHz square wave & output detector probes. Markers to 1kHz intervals Ω. £285.00

Oscillator TF1247 can be used with J Metc TF245. 20kHz 300MHz £350.00

A.M. Signal Generator TF801D/85. Same spec as TF801D/15 + five counter e/p facility £695.00

F.M./A.M. Signal Generator TF985A/2M. 1 to 20MHz. 2kHz to 200V. int. & Ex. A.M. int. F.M. at kHz deviation 0.75kHz. £350.00

Sensitive Valve Voltmeter TF2800. 12 ranges: 1mV-300V 1% accuracy up to 500kHz. Usable up to 10kHz. £175.00

R.F. Electronic Voltmeter TF2804. 7 ranges: 300mV-300V 1% from 20Hz-150MHz. B ranges: 300mV-1V 1% DC. 7 ranges: Resistance 50Ω to 500Ω. £25.00

U.H.F. Signal Generator TF1060/3A. Frequency range 50Hz to 1200MHz. Remainder of spec. on TF1106 £575.00

R.C. Oscilloscope TF1101. Frequency Range 20kHz to 200kHz in four bands. Output Attenuation 1mV to 20V. Maximum Output 20V external 600Ω load. Output impedance 600Ω. £120.00

Phase A.M. Signal Generator TF2003. 0-1.2kHz £150.00

F.M. Transmission Measuring Set TF2333. Frequency range 30kHz to 500kHz. The TF2333 is a transmission measuring set of the conventional type that normally forms part of the test gear for audio and baseband equipment of multi-channel telecommunications systems. Signal Source, oscillator frequency, range 30kHz to 500kHz in five ranges. Attenuator Range: 70dB in 10dB and 1dB steps. £800.00

F.M. Signal Generator TF1086/6. 10. 47.5MHz. R.F. output 0.2x20V +2kHz External. Output Impedance 50Ω. Modulation: Internal AM: 1kHz & 5kHz 0-40%. External AM 30Hz to 15kHz 0-40%. Internal FM 1kHz & 5kHz deviation 0-1kHz as up to 300kHz according to carrier freq. External FM: 30Hz to 100kHz deviation ±1kHz as int. Crystal Calibration facility £685.00

Variable Attenuator TF338C. 0-400Ω. Freq. up to 100kHz. £80.00

M.F. Attenuator TF2112. DC. 1Ω to 0.11Ω in steps of 0.1Ω. £105.00

Also TFD342. Spectra A/2S £55.00

Portable Scope TF2203. Single channel. DC 15Mhz. Rise time 23 nanoseconds. 50V/cm 2 modulation available. 5x magnification £90.00

10-West A.F. Power Meter TF893A. Frequency range 20kHz to 35kHz. Five power ranges: 1mA 100mA full scale, Peak 2.5kHz to 20kHz in 48 steps. Balanced or unbalanced inputs. Direct calibrated for 30Hz to 800Hz. £150.00

10-West Power Meter TF6520R. Range 3 and 10W 1Ω to 10kHz. DC. £150.00

In Situ Universal Bridge TF2701. Measures capacitance, inductance, resistance, and phase angle. £95.00

R.F. Power Meter TF1020A/4M1. 15 ohms: 1.5 watts & 2-100 watts. DC 250MHz £135.00

R.F. Power Meter TF1020A/5M1. 50 ohms: 1.5 watts & 2-100 watts. DC 250MHz £135.00

Output Test Set TF652A. Range Power 10µW to 3W (5 ranges). Freq. Range 250kHz-100kHz. RF Power 5-25W. £150.00

Notas Generator TF1106. 1200MHz 1Ω spec impedance £150.00

DYNAMCO

Portable Solid State Scope 7500. DC 40MHz 10V/div sensitivity x 10 gain extends sensitivity to 1mV/div (3dV). 5MHz. £495.00

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

Carriage and packing charge extra on all items unless otherwise stated

Hours of business: 9am-5pm Mon.-Fri. Closed lunch 1-2pm.

WW-112 FOR FURTHER DETAILS
Power Supply Units

Specifically designed for supplying power for up to 4 diskette (floppy disk) drives.

INPUT:
90, 100, 110, 120, 220, 230, 240 v
50/60 Hz

OUTPUTS:
1. 24v 6A Unregulated (± 5%)
2. 5v 5A Regulated (± 2%) (3)
3. 5v 1A Regulated (± 0.2v) (2)
4. 12v 1A Regulated (± 0.5v)

All regulated supplies are protected against short circuit and thermal overload.
Indicators (LED) are provided for all outputs.
Cabinet size is 5½ x 12½ x 6¼.

PRICE: 1 off £85 (includes carriage and VAT)
2-10 less 5% 10-50 less 10%.

We shall be pleased to quote for supply units for particular applications.

MERLIN COMPUTER PRODUCTS LTD.
18 ABLION WAY, KELVIN IND. ESTATE, EAST KILBRIDE G75 OHY. Telephone 0355 46621

WW 120 FOR FURTHER DETAILS

Tools that fit the job

Upson Ball Ended Drivers — for use on recessed socket head hex screws, the ball end allowing for the removal of screws from awkward positions, i.e. up to approx.

madly 30° from any angle — as illustrated.

Upson Hold-4-Zee Screwdrivers have a springclip which fits over the socket head holding the screw in position on the driver so that it can be positioned without difficulty in awkwardly placed positions.

These screws have a patented Lok-Block Handle which makes it virtually impossible, in any circumstances, for the blade to turn independently within the handle.

UPSON

SPECIAL PRODUCT DISTRIBUTORS LTD 81 Piccadilly London W1 V0H. Tel: 01-629 9506

WW — 114 FOR FURTHER DETAILS
STOP PRESS
Do you want a teletype and a quiet environment? New stocks of the ever-popular ASR33 teletype with special acoustic cover.

MARVELLOUS VALUE AT £675.00
(fully overhauled with 3 months warranty).

Mini-Computer Exchange
SPECIALISTS IN DIGITAL EQUIPMENT, PROCESSORS PERIPHERALS, FEATURES ETC.

PDP8A PROCESSOR with PDP8A SYSTEM
KM8 ETC.

SPECIALISTS
- MMII

Large stocks of NEW
PDP11 SERIES
RK11
PDP11 -10, PDP11-34, PDP11-35
Parity floppy drive. Mountable in integral carrying case. Gross weight 35lbs. Dimensions 21 1/4" x 19" x 6 1/2".

LARGE STOCKS OF ASR33 AND KSR33 TELETEYPE TERMINALS
- ASCII keyboard
- Hard-copy unit (recording or printer paperfed)
- Paper Tape punch and reader (ASR33 only)
- Line Unit (20mA/6V/80V)

Overhauled in our own workshops to the highest standards and sold with a 90-day warranty.

Prices from £425 (KSR33) and £675 (ASR33)

CENTRONICS 101 and 101A MATRIX PRINTERS
5 x 7 dot matrix, 132 point positions. 165 cps. ASCII 64 character set. Prices from £125.

CASE CM120 RS Printer. 120 cps. RS232C/RS422. 5 x 7 dot matrix. Standard ASCII 64 character set. CCITT V.24 Compatible Interface. £725

HAZELTINE Thermal BD Printer. 30 cps., for use as hard copy attachment to Hazeltine 2000 Visual Display unit. £495

HAZELTINE VISUAL DISPLAY UNITS
Dynamic new system on a further bulk purchase of these top quality CRT terminals. Fully tele typewriter compatible with switch selectable transmission up to 9600 baud. No sound card. CCITT V.2a. Interface (current loop adapter also available if required.

H-1000 12 lines x 80 characters
H-1200 24 lines x 80 characters
H-2000 27 lines x 74 characters with full edit facilities detachable keyboard comprising background data

Please phone for details.

SAVE OVER 1/3 of list price on mese superb Tektroxnik 611 STORAGE DISPLAYS
Sticker-free baseplate storage of combinatorial and graphic information from digital computers and other data transmission equipment. Small size. LCD Vertical sensitivity. 1V/16 ECM (5" by mail or 1V/24CM (5" by mail) within 2% of FG5. Maximum input voltage ± 50V DC and peak AC swing 3.5 microamps/ECM. Selected resolution 4000 clearly legible characters in 7x39 matrix variable time 15 minutes or less. Recommended for specialisations.

OUR PRICE ONLY £950, WITH FULL THREE-MONTH WARRANTY

ELECTRONIC BROKERS LIMITED (COMPUTER DIVISION)
49-53 Pancras Road. London NW1 2QB. Tel. 01-837 7781. Telex: 296694

Hours of business: 9 a.m.-5 p.m. Mon.-Fri. Closed lunch 1-2 p.m.
ADD 8% VAT TO ALL PRICES
Carriage & Packing charge extra on all items unless otherwise stated
A complete technical service to assist you with your latest project from its conception, through production to site commissioning of high industrial special purpose electronic equipment.

Our design team has considerable experience in the development of a wide range of process control equipment using the latest technology in the fields of digital and analogue circuitry.

To back up this knowledge we have extensive development capabilities for microprocessor systems which include powerful software aids, high level language capabilities and “in circuit emulation” to rapidly blend the hardware and software together to produce the equipment to your specific requirements as quickly and smoothly as possible.

We offer a complete service under one roof, no more co-ordinating the activities of multiple sub-contractors and suppliers. All this and the most competitive prices around. Let us quote for your next project.

Despro Electronics Ltd.
Dore House, Industrial Estate
Orgeave Crescent, Handsworth
Sheffield. Tel: 0742 697361/3
T.L. 74 I.C.'s By Texas, National, I.T.T., FAIRCHILD ETC.

<table>
<thead>
<tr>
<th>7410</th>
<th>14p</th>
<th>7424</th>
<th>20p</th>
<th>7430</th>
<th>20p</th>
<th>7400</th>
<th>20p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7412</td>
<td>16p</td>
<td>7428</td>
<td>20p</td>
<td>7432</td>
<td>20p</td>
<td>7404</td>
<td>20p</td>
</tr>
<tr>
<td>7414</td>
<td>16p</td>
<td>7434</td>
<td>20p</td>
<td>7402</td>
<td>20p</td>
<td>7438</td>
<td>20p</td>
</tr>
<tr>
<td>7416</td>
<td>16p</td>
<td>7436</td>
<td>20p</td>
<td>7408</td>
<td>20p</td>
<td>7440</td>
<td>20p</td>
</tr>
<tr>
<td>7420</td>
<td>16p</td>
<td>7444</td>
<td>20p</td>
<td>7418</td>
<td>16p</td>
<td>7448</td>
<td>20p</td>
</tr>
<tr>
<td>7422</td>
<td>16p</td>
<td>7450</td>
<td>20p</td>
<td>7424</td>
<td>16p</td>
<td>7452</td>
<td>20p</td>
</tr>
<tr>
<td>7426</td>
<td>16p</td>
<td>7454</td>
<td>20p</td>
<td>7428</td>
<td>16p</td>
<td>7456</td>
<td>20p</td>
</tr>
<tr>
<td>7430</td>
<td>16p</td>
<td>7458</td>
<td>20p</td>
<td>7432</td>
<td>16p</td>
<td>7460</td>
<td>20p</td>
</tr>
<tr>
<td>7434</td>
<td>16p</td>
<td>7462</td>
<td>20p</td>
<td>7436</td>
<td>16p</td>
<td>7464</td>
<td>20p</td>
</tr>
<tr>
<td>7438</td>
<td>16p</td>
<td>7466</td>
<td>20p</td>
<td>7440</td>
<td>16p</td>
<td>7468</td>
<td>20p</td>
</tr>
<tr>
<td>7442</td>
<td>16p</td>
<td>7470</td>
<td>20p</td>
<td>7444</td>
<td>16p</td>
<td>7472</td>
<td>20p</td>
</tr>
<tr>
<td>7446</td>
<td>16p</td>
<td>7474</td>
<td>20p</td>
<td>7448</td>
<td>16p</td>
<td>7476</td>
<td>20p</td>
</tr>
<tr>
<td>7450</td>
<td>16p</td>
<td>7478</td>
<td>20p</td>
<td>7452</td>
<td>16p</td>
<td>7480</td>
<td>20p</td>
</tr>
<tr>
<td>7454</td>
<td>16p</td>
<td>7482</td>
<td>20p</td>
<td>7456</td>
<td>16p</td>
<td>7484</td>
<td>20p</td>
</tr>
<tr>
<td>7458</td>
<td>16p</td>
<td>7486</td>
<td>20p</td>
<td>7460</td>
<td>16p</td>
<td>7488</td>
<td>20p</td>
</tr>
<tr>
<td>7462</td>
<td>16p</td>
<td>7490</td>
<td>20p</td>
<td>7464</td>
<td>16p</td>
<td>7492</td>
<td>20p</td>
</tr>
<tr>
<td>7466</td>
<td>16p</td>
<td>7494</td>
<td>20p</td>
<td>7468</td>
<td>16p</td>
<td>7496</td>
<td>20p</td>
</tr>
<tr>
<td>7470</td>
<td>16p</td>
<td>7498</td>
<td>20p</td>
<td>7472</td>
<td>16p</td>
<td>7500</td>
<td>20p</td>
</tr>
</tbody>
</table>

83 KEY KEBOARD OVEN- COOLED, SUITABLE FOR M.P.U PROJECTS ETC. £30.95

T. POWELL
306 ST. PAUL'S ROAD
HIGBURY CORNER, LONDON N.1
Telephone: 01-226 1489

easy access to Highbury via Victoria Line (London Transport) British Rail

SINTROM MICROSHOP

- Has your chosen Microprocessor system
- and Supplie these Unique features

- Motorola 6800 by Southwest Technical
- Plug in expansion for memory and I/O
- Proven software: Assemblers, editors, floppy disc operating system and BASIC from 4K to 4 user.
- Kansas City cassette tape and Shugart minifloppy fully supported
- New, system oriented, documentation
- Walk-in hobbyshop with experienced staff
- Demonstrations always available
- Hands-on selection of software
- Manuals, Magazines and Data to browse or buy
- Ten years experience in minicomputers, disks, cartridge tapes and VDUs

www.americanradiohistory.com
FULL ASCII KEYBOARD

- Board has space for small low-cost DC/DC converter so that entire unit operates off single 5 V rail.
- User selection of positive or negative logic data and strobe output.
- Alpha lock.
- Extra loose keys available.
- Supplied complete with gold-plated PCB connector and full technical data.
- Rugged mil spec. G–10 PCB with plated through holes.
- 2 key roll-over.
- DC level and strobe signal for easy interface to any 8-bit input port microprocessor system, video display or terminal board. Strobe pulse width 1 ms.

PRICED LOWER THAN SURPLUS KEYBOARDS

Please write for full technical details and price, and for names and addresses of our UK and European stockists.

LOW COST!

* Model 756 Full ASCII Keyboard

<table>
<thead>
<tr>
<th>Device</th>
<th>Transistors</th>
<th>Device</th>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1K7</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>1K8</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>1K9</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>2K48</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>2K38</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>3K1</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>1.89</td>
<td>7.80</td>
<td></td>
</tr>
</tbody>
</table>

SINE WAVE INVERTERS

120–300 VA, 50/60 Hz

HIGH QUALITY YET ATTRACTIVELY PRICED A.C. POWER SUPPLIES FOR MOBILE, INDUSTRIAL, COMMUNICATIONS, MARINE AND MANY OTHER USES

- Ruggedly built in welded steel cases
- Stabilised low distortion output
- Closely controlled frequency
- Full overload and short-circuit protection
- Battery protection by low voltage warning and automatic cut-out
- Automatic standby and remote options

CARACAL ENGINEERING

42–44 SHORTMEAD ST., BIGGLESWADE. BEDS. Tel: 0767-81361

ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR TONY FAYERS

01-261 8353
B. BAMBER ELECTRONICS

Dept. WW, 6 STATION ROAD, LITTLEPORT, CAMBS. CB6 1QE
Tel: ELY (0353) 660185 Tuesday to Saturday

B-TRACK CARTRIDGE PLAYER UNITS
With internal mains plug and 25 watt mono amplifier (100V line) To play standard B-track cartridges. All contained in a smart veneered wood cabinet. Size approx. 14" wide x 5½" high x 11" deep. Supplied with circuit board and blow. SPECIAL OFFER £35.00 each + 12½% VAT

Smart woodgrain Formica type finish with nylon grille. 15" high x 14" wide x 7" deep. Packing: 10 round 15 ohm full range speaker + 100V line transformer. £7.00 each + 12½% VAT

Smart woodgrain Formica type finish with nylon grille. 15" high x 14" wide x 7" deep. White faced salt with Laurin, 15 ohm full range speaker + 100V line transformer. £4.00 each + 12½% VAT

TYPE 6 PORTABLE SPEAKER CABINET

White maroon finish cabinet with white sprayed cloth range speakers 11" dia. approx. 14" wide each. £15.00 each or 2 for £24.00 + 12½% VAT

TYPE M704 CEILING SPEAKERS

White plastic fascia 10 square. For recess mounting into ceiling with 8" dia. 15ohm full range speaker + 12½% VAT

TYPE 807 FULL RANGE SPEAKER

10" dia. 15 ohm. 5.50 each or 2 for £9.60 + 12½% VAT

MAINS ISOLATING TRANSFORMERS

Tapped primary, output 240V at 6A. ex-priv in metal case £20.00 each + 8% VAT

PHILIPS LDH2202/00 22" COLOUR MONITOR

VGA input with PAL decoder, unused, but shop-soiled £220.00 + 5% VAT. Buyer collects

QTY. OF NEW PYE WESTMINSTER PCBs

S/A FOR LIST. Range of Paper Block Capacitors. S.A.E. 10c.

10.7 MHz SSB XTL FILTERS

12 Volt Bandwidth (low type). Carrier and unwanted sideband rejection min. -40dB (10.69835 & 10.70185 kHz for US/LSB. NOT SUPPLIED) S.A.E. approach £1.10 x 1 = £11.00 each + 8½% VAT

CELESTION 8" x 5" ELLIPTICAL SPEAKERS

Minimum 3 units required. £15.00 each + 12½% VAT

All above speakers with 100V line transformers are suitable for use with our 8-track cartridge players.

We stock tools, electronics books, soldering equip., multimeters, and many surplus items at bargain prices. S.A.E. for lists.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER £2. ALL PRICES INCLUDE POST & PACKING (UK ONLY). SAE WITH ALL INQUIRIES. Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN. CALLERS WELCOME BY APPOINTMENT ONLY.

WIRELESS WORLD, JUNE 1978

PEOPLE WHO KNOW QUALITY AND NEED RELIABILITY

(Military, Industry, RCC's) Demand

Pipo Communications For Trouble Free
Touch Tone Encoders

WANT TO KNOW WHY?

Send for descriptive brochure and dealership details to:

STEVE MILLER % INTERNATIONAL SALES
or Telex: 18-1059 ELMATEXINT. LSA

Qualified International Dealers and Distributors Wanted!

Pipo Communications

P.O. Box 3435
Hollywood, California U.S.A.
90028
213/933-1519

WWW—11” OR FURTHER DETAILS

240V Plug in Relay 3 pole c/w a 10amp contacts £5.50

COAXIAL CRYSTAL DETECTORS. (Marcon-Saunders) 200 MHz 12 GHZ
£7.50 (Dode C09B £5.00)

FIBREGLASS COPPER CLAD BOARD
9x 9½ x 16½x 105p each
6 x 6 x 16½ 50p each
4-way and 4-way + off switch £7.50 each or 2 for £11.50 + 12½% VAT

MAGNETIC COUNTERS
3 Digit Readout (40V A V) £17.50 P & P 25p
6 Digit Readout (24V. D.C.) £4 P & P 25p
4 Digit Non-Reset (4A. D.C) £15 P & P 25p
6 Digit Non-Reset (240V. A.C) £10 £10 P & P 25p

MULTICORE CABLES
4 CORE RIBBON (RAINBOW) CABLE 4—10/2m £4.00 25p per metre
Forming 9½ wide strip 10/75p 50cm £3.00 min. £6.00— £6.00 P & P 1per metre
8 CORE RIBBON (RAINBOW) CABLE 4—14/75
Forming 9½ wide strip 10cm £5.00— £6.00 £7.00 £7.00— £8.00 P & P 1 per metre
10 CORE CABLE 10/75—110 colours 1⁄4 of 1 metre £8.00 £8.00— £10.00 £10.00 £10.00 P & P 2 per metre
12 CORE SCREEND CABLE 12x 14/75 with outer screen 5⁄8 P & P 25p per metre

E.H.T. MODULES (Resin encapsulated in metal box)
Input 240/50 Hz TYPE 3/0 P BU 15 watts £9.75 P & P £1
Type 2/0/1/3/7 5 watts £10 P & P £1
STABILISED POWER SUPPLY (APT) 5.14 volts @ 6 amp Pre Set (with manual)
150 P & P £1

P.C. EDGE CONNECTORS
32 way 1 pin Instructor 40p £10p
56 way 1 pin instructor 65p £15p
84 way 1 pin instructor 75p £15p
144 way grid printed £15p £15p per metre

DIP/DIP RECHARGEABLE BATTERIES (Lead Acid)
6 x Equip. Good condition £1.00
5 x Ex-Bicycle £1.50

BLEEPTONE AUDIO ALARMS (Ex-Bicycle) 12 v. 5C £7p £10p
EMERGENCY LIGHTING UNITS (Automatically switches to standby battery power) £2.50 each Full battery pack fully charged on normal supply £4.00 ex-works PP £1.50

VARLEY LEAD-ACID BATTERIES: £6 Ex-B. £10 P & P £1.50

J. B. PATRICK

191 /193 London Road
Romford, Essex RM7 9DJ
Romford 44473

www.americanradiohistory.com
WANTED

ENGINEERS

HIGH REWARDS OFFERED

We're a private company with ever increasing worldwide sales in high technology equipment, including HV power supplies, nuclear instrumentation, medical electronics in use throughout the world as teaching aids and a range of static invertors for airborne applications.

To maintain our forefront in the electronics industry, we wish to create a new generation of products, we are therefore expanding our team of development engineers and are looking for:

Project Engineers (Analogue)
We need experienced Project Engineers, holding a degree in electronics, ideally with a knowledge of civil and military aircraft industry, a flair for solving problems and co-ordinating with our design and production teams.

Design Engineers (Analogue)
We need engineers with a degree in electronics. Previous experience of the industry is not essential, but the successful candidate - who should be enterprising and ambitious - will be involved in the design and development of new products and equipment.

In addition to salary, we offer four weeks paid annual holiday, non-contributory pension scheme and bonus incentives.

CAN YOU FIT THE BILL?

If so, please contact Ian Andrews today. He'll tell you more about us and arrange a meeting.

brandenburg

Brandenburg Limited,
939 London Road, Thornton Heath, Surrey CR4 6JE. Tel: 01-689 0441. Telex: 946149.
Advertisements accepted up to 12 noon Monday, June 5, for the July issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: £7.50 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £1.10 per line, minimum three lines.
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.)
PHONE: Barry Leary on 01-261 8508

Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Communications Foremen

Libya - over £9000 tax free + bonus

Occidental, one of today’s most progressive and rapidly expanding international oil companies, require communication experts to supervise the installation, maintenance and repair of communications equipment in the field production areas in Libya, including VHF/AM/FM equipment, HF-SSB Transceivers, LF radio beacons, TDM alarm systems, teleprinters etc.

Candidates must have at least five years experience in installing, maintaining and repairing radio, telephone and microwave systems, some of which should be at supervisory level.

The positions are on single status and carry initial annual salaries of not less than £9,000, tax free, and a signature bonus for direct hire applicants equivalent to 25% of the first year’s salary, before tax. The salary is accompanied by comprehensive benefits programme and an attractive field break scheme of 33 days working followed by 21 days off, with air fare paid to your point of origin.

Please send your resume with full personal and work experience to Patricia Connell, Occidental of Libya Recruitng, Gillingham House, 38-44 Gillingham Street, London SW1V 1HU. Telephone 01-828 7711.

THE BRITISH COUNCIL

invites applicants for the following posts:

2 ENGINEER/SUPERVISORS (Germany)
British Council Language Centres, Munich and Hamburg. Required preferably by June, 1978. To be responsible for the operation and maintenance of Colour TV Equipment and audio recording studios and to assist teachers in the technical aspects of producing programmes for CCTV and the language laboratory.

Qualifications: Candidates should have HNC or Final City and Guilds (Telecommunications) Certificate and have at least 5 years general all-round working experience in broadcasting or CCTV engineering and production. Colour TV experience desirable. Some knowledge of German useful.

Salary: £5,210-£7,054 p.a. tax free.

Benefits: Personal and children’s allowances, accommodation allowances at £2,300 (single) or £2,900 (married accommodated), employer share of national insurance and superannuation, travel and baggage allowances, 2 year contract, renewable.

Return fares are paid. Local contracts are guaranteed by the British Council. Please write briefly stating qualifications and length of appropriate experience, quoting 78.00045 reference number and title of post, for further details and application form to The British Council (Appointments), 65 Davies Street, London W1V 2AA

LONDON WEEKEND TELEVISION

have vacancies for

ELECTRONIC ENGINEERS

The successful applicants will be deployed in the Electronic Maintenance section where they will be responsible, as part of a team, for the maintenance and performance of the latest video, sound and control systems and systems utilising analogue and digital techniques.

One of the vacancies is for a Substantive Engineer working initially on the routine maintenance of the Company’s sound equipment. This work will encompass not only studio sound desks and equipment but also the latest digital video and audio machine interlocking systems as well as the performance of two purpose built multitrack dubbing theatres.

Other vacancies are concerned with maintaining an extensive range of video equipment and control systems where an interest in or knowledge of computer techniques could be advantageous.

Working knowledge of broadcast equipment is desirable though due consideration will be given to C.C.T.V. or other related experience. Academic qualifications to H.N.C. or equivalent preferred.

Starting salary will be in the range £3,951 per annum to £5,310 per annum inclusive.

Please telephone 01-261 3237 for application form.

ELECTRONIC TECHNICIAN

Can you use your engineering knowledge to serve society by building and maintaining astronomical instruments, using the most up to date techniques and experience? We are looking for someone with an ONC or equivalent who has served a recognized apprenticeship to join our Engineering Group of Edinburgh.

Applicants should have experience of construction and tuning electronic equipment to the highest standards. Some knowledge of microprocessors and microcomputer uses would be an advantage, but training could be given. The successful candidate must be willing to work abroad in the support of astronomical observatories using advanced microelectronics, both on detached duties for a few weeks at a time and on postings of two years or more.

Salary on an incremental scale starting at a point between £3,840 and £4,770 depending on age, with non-contributory pension scheme. Closing date 5 June, 1978.

Application forms from Personnel Officer, Royal Observatory, Edinburgh.

ELECTRONIC ENGINEER

(Technician Grade 6)

required to design circuitry for, and to supervise operation of, analogue and digital equipment concerned with a wide range of applications including X-ray fluorescence, gamma-spectrometry, SQI/QI interferometry, magneto-resistance and eventually induction mass spectrometry. Qualifications: H.N.C., H.N.D. or equivalent plus 9-10 years experience.

Salary scale £3,656 to £4,365.

Apply in writing to: Professor E. T. Hall Research Laboratories for Archaeology 6 Kebsa Road Oxford OX1 3LD
MANAGEMENT AND SALES OPPORTUNITIES IN RF SEMICONDUCTORS

TRW RF Semiconductors form a major part of MCP Electronics sales in the United Kingdom.

MCP Electronics, part of a major group of companies, is sole UK agent for TRW Semiconductor devices. In order to maintain the momentum of increased sales into the mobile and military markets, applications are invited to fill two important vacancies in the MCP Electronics sales team, as follows:

1. PRODUCT MANAGER TRW RF Semiconductors. This is a technical/administrative job and will involve liaison with TRW and major U.K. users. The Product Manager will work in Wembley but some time will be spent in customer visits. There will be occasional opportunities for visits abroad.

2. SALES ENGINEER RF Products. This is also a senior appointment and would be ideally suited to an Engineer wishing to make a long-term career in technical sales. Ideally, applicants should live North East of London, but relocation expenses would be offered where appropriate.

MCP Electronics operate a Group Bonus Scheme in addition to an attractive salary scale, for these interesting job opportunities, which both include a Company Car.

By joining us you will become an important part of TRW’s worldwide team and will be working for a recognised Industry Leader.

Interested? Then phone or write to:

Ron Adams
Sales Manager
MCP Electronics Ltd
Alperton, Wembley, Middx HA0 4PE
Telephone: 01-902 5941

SULTANATE OF OMAN

Air Force Appointment

Applications are invited from suitably qualified Senior N.C.O.s of the British Armed Forces, who have recently left the Services or shortly complete full-time service, to fill an immediate vacancy for a

Rapier Squadron
Signals N.C.O. (Sergeant)

He will be responsible for the continuation training of all radio operators and Command post radio personnel in a Rapier Missile Squadron and for advising on the setting up and operation of Command posts at Squadron Base and detachment locations.

Applicants must be signals trained and have had wide experience in the training of Command post personnel associated with weapons systems control (artillery or missiles). Some first-hand knowledge of working in a Command post in LLAD systems (L.40/70 guns or Rapier) is desirable.

This is a uniformed contract appointment of 3 years duration initially unaccompanied (although short family visits to Oman are possible), and the age limit is strictly 49. Conditions of service include:

(a) tax free annual emoluments commencing at Rials Amani 4062 (equivalent to approx. £0320 at the rate of exchange prevailing on 12/4/78); an attractive end-of-contract gratuity;
(b) normal Service mess facilities with bachelor accommodation and services free of charge; and
(c) 50 days home leave annually (usually taken in two periods of 30 days) with air passages paid.

For further details, write immediately quoting reference 27/D, to:

Senior Personnel Officer (WW/6/78)
AIRWORK SERVICES LIMITED
Bournemouth (Hurn) Airport
Christchurch, Dorset BH23 8EB

Airwork Services Ltd.
Electronics Engineers on the move

INVEST 5 MINUTES IN YOUR FUTURE

DESIGN, TEST, Q.A; FIELD SERVICE, MANAGEMENT, ETC.

Take advantage of the best opportunities being offered in the Electronics Industry from amongst over 3000 jobs, Companies with whom we deal. We are seeking all categories of Electronics Engineers for equipment ranging from computers to communications.

By returning the application form below, your job requirements will be matched against our clients' numerous vacancies, many of which are not advertised. Your application will be treated in strict confidence and no approaches will be made to existing employers or to any other companies you care to specify. Please remember, our service is completely FREE to applicants.

So don't delay - act now to give yourself the best chance of finding the perfect job.

If you wish to discuss any aspect of the Electronics job market, you are welcome to phone anytime. Please ask for Brian Cornwell.

Capital Appointments Ltd. 29/30, Windmill St, London, W.1. Tel. 01-637 5557

Please write in black ink:

NAME: ..

Address: ..

Tel. (Home): ..

Date of Birth: ..

To: ..

From: ...

To: ..

From: ...

Type of Position required: ...

Approx. Salary level:

Please indicate areas in which you are prepared to work:

Are you a house owner? ..

Are you willing to relocate? ...

Are you prepared to travel - In U.K.? ...

State of health: ..

Native Period required: ..

Availability for Interview: ..

EDUCATION:

Secondary School Qualifications: ...

College or University Qualifs.: ...

Any Professional Membership: ...

INDUSTRIAL EXPERIENCE:

Period of Employment: ..

Company & Location: ...

Products: ...

Job Title: ...

Responsibilities: ..

Reason for leaving: ...

Final Salary: ..

Radio/Hi-Fi/T.V. .. Data Recorders Components-Active

Broadcast Eqpt. .. Analogue Eqpt. Components-Active

Minis/Microprocessors .. Test Gear/ATE. Components-Active

Power Supplies .. Microwave Components-Active

Medical Electronics ... Security Eqpt. Components-Active

Simulators .. Scientific Eqpt. Components-Active

Photocopiers .. Test Equipment Components-Active

Components-Passive .. Servo-Mechs. Components-Passive

Please indicate any Companies you do not wish us to contact.

If you wish to detail further aspects of your experience or job requirements, please enclose on a separate sheet. WW2
The job you’re now looking for
we’ve probably already found.

We’re in touch with over 3000 major companies who are continually looking for key personnel like you – but who don’t always advertise.
Instead, they send us a brief which we compare to the requirements of candidates on our register. Then we draw up a shortlist.
The next time we’re asked, we could mention your name.
All you have to do is clip the coupon, we’ll send you a confidential application form… consider it an interview and give us relevant details about yourself. There’s no risk, no cost, no obligation and no time-wasting. Simply send us the form and we’ll do the rest.
We’ll find you one of those jobs you usually hear about after they’ve been filled.

Foreign and Commonwealth Office
has a vacancy for an

Electrical/Electronic Draughtsman/Woman

Based at Kingsstanding, near Crowborough, Sussex

The work is involved in Sound Broadcasting and associated services, including Power Supply Systems at HV and LV.
The successful applicant will have abilities in solid state and vacuum tube circuitry, PCB design, electrical control and power distribution systems.

Qualifications required:
ONC in Electrical or Electronic Engineering or an equivalent or higher qualification acceptable to the Civil Service Commissioners.
All candidates must have served an apprenticeship, or have had equivalent training of at least 3 years’ appropriate to the duties of the post. In addition, they must have had not less than one year’s full time experience of drawing office work.

SALARY: Starting salary is according to age: eg, age 21—£2425 per annum; age 25—£2785 per annum and age 27 (or over on entry)—£3970 per annum. The maximum of the scale is £3450 per annum. In addition, all points on the salary scale attract Pay Supplements of £313.20 per annum and 5% of total salary with a minimum of £10.98 per month and a maximum of £17.40 per month.

Please apply to:
Recruitment Section, Foreign and Commonwealth Office
Hanslope Park, Hanslope, Milton Keynes MK19 7BH

WE’VE TRIED SEX
facelessness, flamboyant statements, and downright vulgarity to attract attention to our company’s advertisements

WHAT HAS IT BROUGHT US??

- The nickname “Charlie’s Angels”
- Considerably more applicants and vacancies than before.
- Unsolicited praise from the Sunday Times, Sunday Telegraph, Observer and Times for our seductive prose and eye-catching panache.
- Charlie’s Angels don’t play; they mean business. Try us.

Like those illustrious ladies, we don’t reveal all (our vacancies) — just sufficient to whet the appetite.

1 PROJECT DESIGN ENGINEER
RF equipment particularly frequency synthesizers and spectrum analyzers. To £7,000.
South Coast

2 COMPUTER ENGINEERS
Vacancies throughout UK for field service, permanent site, systems test or technical support. Salaries vary enormously but up to £11,000 for IBM 360/370 experience.

3 SYSTEMS APPLICATIONS ENGINEERS
Modems and multiplexers for dynamic market. Group marketing experience. To £6,500.
Middlesex

4 DESIGN DEVELOPMENT ENGINEERS
For advanced projects group working on application of advanced technology to the widest range of communications imaginable. DC-Blue Light. To £7,000.

Berkshire

Always in demand
TEST ENGINEERS, COMMISSIONING ENGINEERS, TRIALS ENGINEERS, TECHNICIANS.
Also:
NEW GRADUATES, COLLEGE LEAVERS and H.M. FORCES PERSONNEL.

For further details of qualifications and experience required, salary levels and precise geographical locations, telephone 01-581 0286, or write to

Charles Airey Associates
RESTRICTED CONSULTANTS IN THE INDUSTRY 15b Kingsbridge, London SW1. Tel: 01-436 2218

www.americanradiohistory.com
Interested in Electrical/Electronic Engineering

The Electrical/Electronic Function of Leyland Cars designs and develops a complete range of installations and components for our current and future models, ensuring they stringently adhere to performance and reliability standards and comply with company and world market legal requirements. Our existing engineers are involved with vehicle lighting, switchgear, fascia instruments, in-car entertainment and photometrics.

Do you have the qualifications or relevant experience to complement our existing team? Our need is for

Design and Development Electrical/Electronic Engineers

As we are prepared to consider "on the job" training applications are invited from people who have a fundamental knowledge of electrical circuitry, wiring installation design, automotive electrical/electronic systems or similar technologies practised in other fields.

Appointments are available at...
Longbridge (a) Solihull (b) and Coventry (c) establishments in the Birmingham area.

Current rates of pay...
salaries will be in accordance with academic background and experience. Excellent prospects for promotion. We do have a few vacancies at the more senior level for which exceptional candidates may be considered.

How to apply...
Please write for an application form or post the coupon to me. Local interviews can then be arranged.

Leyland Cars

Name: .. Age: ..
Address: ..
Area: a b c
Electrical/Electronic Design/Development *
*Please delete as appropriate. ..

M. D. Ray, Recruitment Co-ordinator, Product Engineering Division, Leyland Cars, Broad Oaks, 550 Streetsbrook Road, Solihull, West Midlands B91 10X.

These vacancies are open to both male and female applicants.
Radio Officers

Sea Sick?

If you've seen quite enough of the sea, and are thinking now of a shore-based job that suits your qualifications, the Post Office Maritime Service can offer you interesting work, job security, good pay, plus the pleasure of enjoying all the comforts of home where you appreciate them most — at home!

Vacancies exist at several coast stations for qualified Radio Officers to carry out a variety of duties that range from Morse and teleprinter operating to traffic circulation and radio telephone operating. And for those with ambition, the prospects of promotion to senior management are excellent.

You must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telephony or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic. And, ideally, you should have some sea-going experience.

At 25 or over, salary starts around £4093 and after three years, rises to around £5093. (Starting salary for those between 19-24 varies between £3222-£3732.) Overtime is additional, and there is a good pension scheme, sick-pay benefits and at least 4 weeks' holiday a year.

For further information, please telephone Andree Trionfi on Freefone 2281 or write to her at the following address: ETE Maritime Radio Services Division (), ETE17.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Office Telecommunications

Service and Test Engineers

As aircraft and electronics equipments become more sophisticated and our servicing programme expands, the need for experienced Service and Test Engineers increases.

At Stanmore, we are involved in the provision of spares and the repair, maintenance and overhaul of a variety of British and American airborne electronic equipment.

We need Engineers who can successfully maintain the high standards and efficiency required both in the aircraft and the workshop.

It's skilled work, calling for sound practical experience of radio and electronics theory, ranging from audio to microwave and including the use of advanced test equipment for fault diagnosis. Training in this field will be given to suitable, less experienced engineers.

The Company offers excellent salaries and benefits together with first-class working conditions in well-equipped workshops. This Unit is conveniently situated in pleasant surroundings within easy reach of the A1 and M1.

If the job sounds interesting and you'd like to put us to the test, write with details of experience to:
Mrs. E. Wagg
Marconi Avionics Ltd.
22-26 Dalston Gardens, Stanmore, Middlesex
HA7 1BZ.
Tel: 01-204 3322

MARCONI AVIONICS
A GEC-Marconi Electronics Company

We pay top salaries for the right engineers Starting at £4000 p.a. for Bench Engineers Increasing appreciably for Field Service Engineers

London's largest independent radio-telephone company is expanding fast! We have built a reputation for reliable efficient service. If you have the capability we need you urgently.

Knowledge or experience of mobile V.H.F. equipment is what we're looking for. Call Mike Rawlings or Bill Clarke on 01-328 5344 Now! (7994)

London Communications
(Equipment) Ltd.
70 Borderway, London NW4 0JL 01-328 5344

IMPERIAL COLLEGE TECHNICAL STAFF Grade 5 Electronics

Vacancy for a competent technician in a university computing department. Candidates should have ONC or City and Guilds Electrical Technician Part 1 Certificate or equivalent and have experience with construction and maintenance of computing equipment and peripherals. Salary in the range £398-£4185 per annum. Five-day week 9.00 am to 5.00 pm. Four-weeks paid annual leave plus additional days at Christmas and Easter.

Please apply in writing with full details of qualifications and experience to Mr. M. D. Crisp, Department of Computing and Control, Imperial College, London SW7 2BZ, as soon as possible. (8129)

www.americanradiohistory.com
We like to think we’re perfect.
With your skills we could keep it that way.

As the ICL success story continues our Spares Division Operations Centre in Stevenage becomes even more important. We provide a computerised spares service for some 126,000 live line items to customers and engineers worldwide, along with our nationwide network of stores and workshops. Essential to our operation are the following people.

Project Leader Test System Software
c£5500

We have an elite team of young graduates writing test programs for our Computer Aided Repair System EILs. This is a unique opportunity for a logic or circuit designer who is seeking a first management appointment in the field of microprocessor test equipment development. You will have a degree in physics, electronics or electrical engineering, understand the concepts of microprocessor techniques and have the ability to comprehend the hardware and software requirements in this field. Probably around 26 with good communication skills you should be able to motivate and work with the team already established. Ref. WW1785/A.

Spares Analyst
c£5200

Your main responsibility will cover forward planning for equipment. As well as having a formal electrical engineering qualification, your experience will have equipped you to handle the long-term strategic planning and logistics of spares within economic constraints. We will be looking for someone with initiative and a high standard of literacy and accuracy, and preferably experience in the electronics industry. Ref. WW1785/B.

In addition to the salaries (which are due for review in June) you will be eligible to participate in our 1978 Productivity Bonus Scheme. We’d also like to tell you about our first-class training schemes, our subsidised canteen and our thriving local sports and social activities. Relocation assistance will be given in appropriate cases.

Interested? Send brief career details, quoting the appropriate reference, to: Jeff Neal at ICL Spares Division, Cavendish Road, Stevenage or telephone him on Stevenage (0438) 3361 ext 555.

International Computers

think computers – think ICL

WAREHOUSE MANAGER

Experienced in the electronics industry, required by small export company, to supervise usual warehouse activities, particularly branding, boxing, packing and testing of electronic values. Salary dependent on experience. Minimum £4,000 p.a. plus possible use of car. Please ring: 01-348 2458.

MEDICAL PHYSICS TECHNICIANS (ELECTRONICS)

2 vacancies exist in the Electronics Workshop of this new major Teaching Hospital. Applicants should hold the City and Guilds Full Technologist Certificate or an equivalent qualification. Experience in analogue and digital circuit techniques essential. Salary on scale £3,776-£4,108 dependent on qualifications and experience and including all allowances. Application form and Job Description from the Personnel Department, The Royal Free Hospital, 21 Pond Street, Hampstead, London NW3 2PF. Tel: 01-794 0431. Please quote refs. 0758 and 0760. Camden and Islington A.H.A. (T).

THE ROYAL FREE HOSPITAL

VTR ENGINEERS

for Africa and Middle East
Up to £24,000 p.a.
Box No. WW8177

www.americanradiohistory.com
POSTDOCTORAL AND PREDOCTORAL OPENINGS

INTERDISCIPLINARY RESEARCH IN VISION, HEARING AND SOMATOSENSATION APPLIED TO MEDICAL AND AVIATION PROBLEMS

There are postdoctoral openings for candidates with a Ph.D. in physics, electrical (electronic) engineering, physiology or psychology (psychophysics).

There are predoctoral openings (M.A. and Ph.D. research for candidates with a strong quantitative background in one or more of the following areas: psychology (psychophysics), physiology, physics, electrical (electronic) engineering, medical physics, computer science.

Working within a Research Unit of Applied Psychology attached to the Medical School, postdoctoral fellows and graduate students learn to combine the skills of psychophysics, physics, electronics and physiology. They have the opportunity to work with patients, applying the results of basic research in vision, hearing and somatosensation to solving practical problems in neurology, ophthalmology, and otolaryngology. Contrasting research is directed towards identifying the ways in which the eye and visual pathway in skilled flyers, drivers and gamers are better than average.

The three available areas of research are:

1. Applying sensory psychophysics and techniques for recording electrical brain signals (evoked potentials) to aiding the diagnosis and management of organic diseases that affect sensory pathways (e.g., multiple sclerosis, squint, deafness).

2. The development of psychophysical and evoked potential methods to detect damage to the sensory nervous system caused by exposure to toxic environmental pollutants.

3. The application of fundamental research on visual psychophysics to improving safety and performance in aviation and road transport.

Further details from Dr. D. Regan, Research Unit of Applied Psychology, Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada. Telephone: (902) 424-2552

Electronics Research and Development with Ferranti

Expansion and re-organisation within the Aircraft Equipment Department has created a number of interesting positions in the R & D laboratories at Bracknell. The Department which is active in both Civil Aviation and Defence fields, with airborne and ground based equipment, covers a broad range of activities extending from medium / high power electronics to work with low power microcircuits. The following positions have arisen:

SENIOR ENGINEER to lead a small group associated with light current equipment. The candidate should have at least two years experience in industry with a good knowledge of signal processing and use of digital techniques in the communications field.

Ref: A/174 WW

SENIOR ENGINEER to work with control systems. The candidate should have proven design experience with low power circuits. A knowledge of the use of microprocessors would be an advantage.

Ref: A/175 WW

The above positions are open to professionally qualified Electronics Engineers.

IN ADDITION we have a number of other interesting vacancies for candidates of graduate experience. These posts should be regarded as stepping stones to higher positions within a technically orientated company. Highly competitive salaries will be paid. The laboratories are located in a pleasant manor house situated on the outskirts of Bracknell.

Application forms may be obtained by writing to Mrs. J. Hunt, Ferranti Limited, Lily Hill House, Lily Hill Road, Bracknell, Berkshire, or telephoning Bracknell 24001 ext. 8.

Ferranti Selling technology

(8152)
Marconi Instruments

ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton.

Work situations range from fault finding on PCB’s and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/calibration of all manner and types of test instruments.

Attractive salaries and, where appropriate, relocation are offered for the right candidates.

Further information may be obtained in confidence from John Proctor

Marconi Instruments Limited,
Longacres, St. Albans, Herts. tel St. Albans, 59292

A GEC-MARCONI ELECTRONICS COMPANY

UNIVERSITY OF SUSSEX
School of Engineering and Applied Sciences

RESEARCH VACANCIES

involving
Microprocessors
Displays
Software Engineering
Control and Instrumentation
Distributed Computing
Electrical Machines
Control of Magnetic Suspension

A small number of research studentships are available for well qualified applicants. Application forms and further details from

P. Cooke
Postgraduate Admissions Tutor
School of Engineering and Applied Sciences
University of Sussex
Falmer, Brighton, Sussex BN1 9QT

THE BRITISH COUNCIL

The British Council is seeking an English Language Centre Manager

King Abdul Aziz University, Jeddah, Saudi Arabia

English Language Centre

ELECTRICAL ENGINEER

To help service the language classroom and beyond.

The English Language Centre, which is fully established with its own graphics, photogaphic, typing, photostat and audio-visual facilities and two language laboratories, finds itself at a crossroads in its evolution.

Salary scales depend on family circumstances. The following outline applies to single and to double status.

Single: SA 38,000 to SA 38,400
Married with one child to SA 39,300 to SA 41,000
Married with two children to SA 40,200 to SA 43,000

At the end of the first year’s service a car is available for an experienced Electrical Engineer.

Further information is provided in the job specification and application forms are provided at the time of writing.

The British Council is an equal opportunities employer.

Please quote reference number 30-043 in your application letter.

Appointments are subject to the candidate obtaining the necessary visa and work permit for Saudi Arabia.

Send application forms to The British Council, 65 Diana Street, London W1T 4HJ

Teaching Telecommunications in Saudi Arabia

can earn you at least £14,400 tax free per two year contract.

Lockheed Aircraft International are responsible for a large number of major contracts covering telecommunication services throughout Saudi Arabia. There is now a requirement for a Technical Instructor to provide classroom, laboratory and on-the-job training covering a broad telecommunications spectrum with particular emphasis on SHF, line of sight links and associated multi-channel equipment. Other areas will include HF, VHF and UHF land equipments and FSK, VFT and message switching equipment.

Responsibilities will include preparation of all course material, syllabuses, training aids and student handouts as well as evaluation of student performance.

It requires an HNC or equivalent qualification with a good practical broad based telecommunications background and a minimum of three years’ technical teaching experience.

There are excellent prospects of employment beyond the contract period. Benefits include:

- free bachelor accommodation, food and laundry
- free medical care and life insurance
- good recreational facilities
- two free flights home to the UK annually

Write with brief details, quoting Ref. 184, to International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex. Telephone: 01-574 5000.
AUTOMATIC TEST EQUIPMENT PROGRAMMER

Crosfield Electronics Limited, a division of the De La Rue Company Limited, design, develop and manufacture a wide variety of sophisticated printing press control products and the Magnasonic range of Electronic Colour Scanners for the printing industry.

This Company is due shortly to take delivery of a GENRAD GR1799 ATE which will supplement the existing MEMBRAIN ATE operation. As a direct result of this expansion an additional Programmer, who should ideally have at least one year's previous experience in ATE programming, is currently sought. However, applicants with a background in Test Equipment Design or Electronic Testing that has involved some degree of Software Application would also be of interest to the Company.

The responsibilities of the successful candidate, either male or female, will include involvement in generating Test Programmes for Analogue and Digital Hybrid PCB's and the design of Interface Adaptors, all of which will require close positive liaison with the Research and Development Department. The position also entails providing a supporting role to the overall Test function.

In addition to an excellent salary, there are attractive fringe benefits and relocation costs will be met by the Company, where appropriate. Good career development prospects also exist in this rapidly growing Company.

Please write or telephone for an application form to:— Mrs. A. Ellis, Personnel Department, Crosfield Electronics (Westwood) Limited, Bretton Way, Bretton, Peterborough PE3 8YB. Telephone Peterborough (0733) 267504

Appointments

Senior Engineers
VTR Operations
Salary £5920 per annum

Independent Television News Ltd. has vacancies for Senior Engineers in the ITN Facilities Centre in Central London. Applicants should have several years experience of broadcast VTR operation including editing and preferably maintenance.

The work covers a wide variety of programmes including news, commercials and feature material.

Contributory pension scheme and free life assurance.

Please telephone the Personnel Office

01-637 3144

for an application form quoting reference number 8302
TELEVISION ENGINEERS

The Media Department of the British Council has two vacancies for broadcast engineers in its studios in Tavistock Square, London. The studios are used to train personnel from countries overseas in broadcasting techniques and for the production of videotapes, films and other audio-visual programmes.

For the more senior post we are looking for someone who will be responsible for the operation and maintenance of the TV studio and its associated equipment. Experience in TV studio operations, vision control and camera line-up is essential, and experience in quad videotape and lighting operations desirable. Applicants should have broadcast engineering training, or be in possession of a full City and Guilds Telecommunications Certificate, Higher or equivalent. Annual starting salary is £4787 rising by three annual increments to £5202. (Pay rise pending.)

For the less senior post we require someone with some studio experience who will be responsible for the operation and maintenance, under supervision, of the TV sound area. Experience of camera, videotape and lighting equipment would be an advantage.

Applicants should have the City and Guilds Telecommunications Intermediate Certificate. For this position, £4767. Annual starting salary is £4498 rising by three annual increments to £4767.

Some of the training takes place overseas and there may be occasional opportunities for travel. Annual leave for both posts is 22 days plus 2½ privilege days and there is a non-contributory pension scheme.

For further details and an application form telephone 01-499 3028 or write to Staff Recruitment Department, The British Council, 85 Davies Street, London W1Y 2AA, quoting reference HS/7.

(8132)

ORBIRION ELECTRONICS LTD. require an AUDIO ENGINEER

Small Audio Manufacturing Company requires young electronics engineer with interest in Audio effects and amplifiers, capable of taking projects from prototype through to production. The Company is growing and requires someone to grow with it. Salary negotiable.

Apply in writing to ORBITRON ELECTRONIC PRODUCTS LTD., 4458 Alexandra Avenue, South Harrow, Middx. (8158)

THE DECCA NAVIGATOR, one of the Decca Group of Companies specialising in sophisticated avionic navigation systems, require experienced ENGINEERS for repair and overhaul of airborne, avionic equipments. To be based West of London.

Applications will be considered from engineers with experience of complex Electronic equipment.

These positions provide a support to customers both in UK and abroad and successful applicants may be required to travel within the UK and for short visits overseas.

Generous remuneration depending upon experience and qualifications.

Please write, giving details of age, experience and present salary to:

Miss B. J. Etily-Hunt
DECCA NAVIGATOR COMPANY LIMITED
Spur Road, Feltham, Middlesex

Microprocessor Development

An Engineer with Microprocessor and CMOS/TTL design experience is required to undertake the development of an automatic batch weighing system. It is intended that the successful candidate will be uniquely responsible for this particular project within the development team.

Control Systems Engineers

Iscia Electronics is an expanding Company in the field of automatic batch weighing and process control. Vacancies exist for Project Engineers and Assistant Project Engineers with an electronics background. The positions offer good salary, interesting and varied work and include some travelling.

Please contact Mr. P. Avon.

(8153)
We are broadening the scope of the technical services to our engineering laboratories and need to appoint an additional

STANDARDS ENGINEER

The Job
To provide a total component selection service to our development engineering staff from a well established standards base.

Our immediate objective is to publish internally a range of catalogues of preferred components and the control of working party activities in this role is important.

A working knowledge of BS9000 and CECC specification systems is required and success in the job may lead to representation in appropriate Trade Association and BSI activities

The Person
Applicants (men/women) should have a sound engineering background and a thorough knowledge of electro-mechanical components and their applications, allied to experience and understanding of the role of standards in engineering. Formal qualification to HNC level in electronics is desirable, although this is secondary to the main attributes outlined.

The Company
Designs and manufactures a wide range of capital electronics equipment for both civil and military environments. We are based in Chelmsford, the county town of Essex, which is situated within easy reach of London, the coast and countryside. Locally there are good facilities for education and recreation and housing is relatively plentiful.

For more information concerning the job please ring TED ELLIS on CHELMSFORD 53221 Ext. 80.

Application forms are available from M.R. STANNARD, Personnel Officer, Marconi Communication Systems Ltd., New Street, Chelmsford, Essex. CM1 1PL. Telephone Chelmsford 53221 Ext. 474.

A N.E.C. Marconi Electronics Company

SEISMIC ENGINEERS

We are looking for two young electronics engineers with degree or equivalent qualifications, to join our marine seismic acquisition company.

This is a field position, with the successful applicants joining the technical crew of our exploration vessel M/V GOEL EGEDE for on-board training in seismic techniques. They will start as Assistant Technicians with a salary of £6,000+ per annum, and one month's leave after each two months on the crew.

The seismic industry offers an interesting career with world-wide travel, and rapid promotion for the right person.

Geophysical Offshore Exploration is a member of the Sefel Group, which has seismic processing centres in Houston, Denver, Calgary and London.

Please write with full curriculum vitae to

General Manager
Geophysical Offshore Exploration
Turriff Building
Great West Road
Brentford
Middlesex TW8 9HY

TECHNICIANS

Skilled staff required for the workshop overhaul of electronic equipment installed in civil aircraft.

Applicants not familiar with aircraft equipment should have experience with industrial electronics. City and Guilds or O.N.C qualifications desirable.

Apply: Mrs. E. J. Bramley,
Canford Aircraft Equipment,
Stansted Airport, Stansted,
Essex.

AUDIO VISUAL ENGINEER

A.V. Service incl. Systems Form Electrosonic, Wollensak, Revox, Kodak, Teac, JVC Video, etc.

Phone or write
Ian Cuthbertson
Sound And Vision Communications
23 Redan Place
London W2
Tel: 01-229 4408
Senior Electronics Service Engineer

A SENIOR MAINTENANCE ENGINEER IS REQUIRED FOR THE REPAIR AND CALIBRATION OF PROFESSIONAL EQUIPMENT USED IN THE EXECUTION OF RESEARCH PROGRAMMES AT THE LABORATORY.

This involves the maintenance of oscilloscopes, pulse generators, counters, digital voltmeter, precision high power magnet controller and analysers of various kinds. Experience in fault finding on some of the equipment is necessary.

It is hoped to gradually extend the maintenance capability to include microprocessors, computers and associated peripherals.

Please send for an application form to M. L. Malpass, Personnel Manager, Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey, quoting reference 113.

WIRELESS WORLD, JUNE 1978
SITUATIONS VACANT

VICKERS SHIPBUILDING GROUP LIMITED
Barrow Shipbuilding Works
Barrow-in-Furness

(A member company of British Shipbuilders)

INSTRUMENT TECHNICIANS

Instrument Technicians are required by the Barrow Shipbuilding Works Instrumentation Laboratory.

Candidates should be qualified to at least O.N.C. standard in Electrical Engineering or Physics, and will have suitable technical background.

They will have experience in the setting to work and operation of multichannel data recording systems, signal conditioning equipment and transducers, and/or the repair of electronic test and measuring equipment.

Applicants, of either sex, should apply in writing, giving relevant career and personal details to:

Personnel Officer
Vickers Shipbuilding Group Limited, (S280/IT/DQ), Barrow Shipbuilding Works, P.O. Box 6.
Barrow-in-Furness, Cumbria LA14 1AB.

Recruitment Division
Lovell & Rupert Curtis Limited
30 Bouverie Street, London EC4Y 8DQ

c. £5000 pa for DESIGN DRAUGHTSMEN

Our clients are a major British company in East Anglia with advanced Development Laboratories and extensive overseas markets. They are currently seeking PRINTING CIRCUIT DESIGN DRAUGHTSMEN (male and female) who can convert a circuit diagram into a printed circuit of the analogue nature. To the level required in product development for the specialised market of professional broadcast equipment.

Applicants should have an up to date knowledge of electronic component technology and H.V. and S.W. test equipment. Salaries and increments will range around £5000 per annum. In addition generous relocation expenses are available plus the benefits normally associated with a progressive multi-national company.

To obtain an application form, please write in the first instance, stating any companies to whom your application should not be forwarded to.

Recruitment Division
Lovell & Rupert Curtis Limited
30 Bouverie Street, London EC4Y 8DQ

ARTICLES FOR SALE

WE INVITE ENQUIRIES FROM ANYWHERE IN THE WORLD. WE HAVE IN STOCK SEVERAL MILLION CARBON RESISTORS 1, 3, 5 and 10 watt 5 million wire wound resistors 0.1 and 1 watt ~ 1 million capacitors - 3 million electronic components - 4 million transistors and diodes. Thousands of potentiometers and hosts of other components. Write, phone or call at our warehouse - Broadfields and Mayes Disposals Ltd., 21 Lodge Lane, North Finchley, London, N.12. 01-445 0749, 445 2712.

OSCILLOSCOPE TETKRONIX 545

Time delay, Two phototubes, £60

THE UNIVERSITY OF MANCHESTER
TECHNICIAN IN THE DEPARTMENT OF PSYCHOLOGY FOR AN ELECTRONICS INSTRUMENT TECHNICIAN (Graduate) A vacancy exists in the Department of Psychology for an Electronics Technician (Grade 3). The successful applicant will be required to develop and maintain electronic equipment for research and teaching purposes. He/she will also be expected to maintain a wide range of electronic and optical equipment and assist in the training of junior staff. Applicants should have an equivalent qualification and at least two years relevant experience. Salary scale £2,086-£2,760. Applications with full details of age, qualifications and previous experience should be sent to Professor J. T. Reason, Department of Psychology, The University, Manchester M13 9PL.

EXPERIENCED TECHNICIAN

13 years experience. HP/VDI, comm.,

digi/analog, field/prod. sciences,

competent in design, supervi-
sion, training. CG qualifications. 31 yrs.

UR national, radio amateur. Afri-
can contract expires Sept. 78. Open to

offers Middle East/Europe. etc. £146.

V.H.F. SERVICE TECHNICIAN

Required by London Car Telephones to work on base station and mobile radio equipment. Very well equipped busy workshop in Croydon. But also field service engineers required in the Home counties. Angles opportunities for unlimited overtime. Experienced persons only. Salary and benefits commensurate with ability. Contact J. S. CLARK, 01-890 1018.

BUSINESS OPPORTUNITIES

BOARD OF BUSINESS OPPORTUNITIES
elective, anyone the East Midlands and with some spare capital, in the radio, television, computer or electronics field, is welcome to contact an interested partner.

Any sphere of electronics considered - stereo, video, audio. Write, in confidence to W. E. Brown, 2 Clibbon

son Walk, Peterborough PE3 7EJ.

UNIVERSITY OF CAPE TOWN

UNIVERSITY OF CAPE TOWN

ELECTRONIC INSTRUMENT MAINTENANCE. An electronic Technical Officer is required to maintain and to work on the electronic equipment both in the laboratory and at sea. Experience in this field would be a recommendation. The successful applicant will operate several 2.3 weeks cruises per year aboard the University's research vessel "Thomas B. Dawson". The salary will be on the scale £3,030 - £3,500 plus £200 - £250 of travel per year, and the Port eighth of salary (i.e. maximum sal START with at least £1,411. In addition, the University offers a housing subsidy, plus medical and personal schemes.

Further details may be obtained from the Professor of Marine Geoscience, Department of Geog. University of Cape Town, Rondebosch, 7700 South Africa.

Applications, giving names of two referees, must reach the Registrar, University of Cape Town, Private Bag. 1, Rondebosch 7700 by 30th June, 1978.

The University's policy is not to discriminate in the appointment of staff or the selection of students on the grounds of sex, race, religion or colour. Further information on the implementation of this policy is set out in a memorandum which is obtainable from the Registrar.

(176)

SITUATIONS VACANT

WIRELESS WORLD JUNE 1978

SITUATIONS VACANT

"This is an internationally well-known TV organisation, backed by the world's most experienced research and development establishments, extending from Chester to Dundee and from London to Edinburgh. (28x94)

Applications are invited for the following posts.

Applications will be received until 1st September, 1978.

DEPARTMENT OF SCIENCE AND TECHNOLOGY

SENIOR LECTURER

To be responsible for the running and continuing development of the College's high quality GIBSON CIRCUIT TELEVISION UNIT. Someone with adequate technical knowledge and experience is sought who is able to develop the College's practical teaching and training programme in electronics. An M.Sc. or Ph.D. in a relevant field would be an advantage. The College expects to appoint a Senior Lecturer within two weeks of the appearance of this advertisement.

(8186)

Vickers Shipbuilding Group Limited
A member company of British Shipbuilders

UK

www.americanradiohistory.com
Electronic Instruments
Test & Service
To £5,000 +
N. London

- Bonus
- Day Release
- Job Variety
- Regular Salary Reviews
- Fast Promotion
- Free Lunch

These are just some of the benefits you could receive working with our client, a really progressive Company dealing with almost every test instrument on the market - from a 'simple' DVM to computer based ATE and Integrated Circuit test systems.

If you have experience in the Test/Calibration or Field Service of analogue and digital test instruments, and are interested in a progressive job with a great future, then contact Mike Garnett (Ref. MB3).

CALIBRATION ENGINEER

We require an experienced Calibration Engineer to calibrate and repair proprietary and special purpose test gear.

Previous experience of microwave calibration would be useful.

If you are interested in furthering your career in the marine electronics field with the excellent benefits a large company group can offer, please write giving brief details of your career to Lesley Buckland, Personnel Officer, Kelvin Hughes, New North Road, Rainault, Ilford, Essex.

SENIOR VIDEO ENGINEER

A vacancy will shortly occur at the Distributive Industry Training Board’s Knutsford Video Centre for a Senior Video Engineer answerable to the Technical Manager.

The Knutsford Centre is a custom-built television studio equipped with Philips LDH 20 cameras and RCA 2 quad TR600 VTR’s. Its function is to produce training programmes for the Board and films within the distributive industry.

The successful applicant will have a sound knowledge of the operation and first line maintenance of broadcast television equipment with several years’ experience in one or more of the following specialised fields:

- Studio Lighting
- Sound or Rack Engineering

The commencing salary is £3873 per annum rising to £4989 per annum by annual increments.

Please write for an application form quoting REF: ID /25 to the Personnel Manager, Distributive Industry Training Board, Maclaren House, Talbot Road, Stratford, Manchester M32 0FP, within the next SEVEN days.

LOGIC PROBE suitable T11/CMOS
9-15V indicates logic states and trigger pulse: Elf Inc. CN
22 Oakwood Road, Croydon, Surrey, CR0 21A.

 NATIONAL BLS55 OCTAL TRISTATE BUFFERS, One-up Usd, Tel-
 up 95p. Postage 28p/order. J. Hawthorne, 23 Iver Lane, Cowley, Middx. Usb 64.

DYMAR "LYNX" RADIO-TELE-
PHONES, brand new, with fitting kit and six month warranty £29 each (H.B. 20 watt). Nolton Communications, Cheshunt, Phone Wald-
 thom Cross 33555.

PHILIPS EL3400A 11n VTR VID/RF
output. 24 tapes, spares, £12 each. Tel: 05434-207 business hours only.

BATTERY INDICATOR/level meters
moving coil, Bush mounting. Large
quantity surplus. £5 each. Sample 1. Also quarter ton new /feet Nichrome resistance wire nick hard HNS, per foot. Offers all or part. E and E Ltd, Clifford Road, Monks Road. Easter Phone 8266.

OSCILLOSCOPE, tel equipment D65
£340. Waveform generator, feedback PR 2 WD, £6. Dual power supply only, advance FMD 13-1. £3. All as new. privately used only. - Tel 0116
S1396.

www.americanradiohistory.com
SOTTER WANDERS
MAKE YOUR OWN MICROPHONE SPLITTER WITH THIS TWIN NEWBOX, IN YOUR TELEPHONE PERFORMANCE. INCLUDING TEXAS SABER. Aerial input, complete external unit, no further connections. Built-in power supply, mixed television and stereo equipment. Nova-toscope and many special features not found in other units. Demonstration model in operation at 172 West End Lane. N.W. Phone for write further information.

TEXAS TIPAX X MMU Decoder module...

NEW COMBINED COLOUR BAR GENERATOR PLUS CROSS HATCH KIT (MK4) UHF Aerial Input. Eight different colour bars plus a Y, B, V, Luminance combinations, Grey Scale, Fine or coarse. Multiband Battery operated 135 De Luxe case. 15.5.1/4 aluminium case.15.5/8. battery holders. £1.95. 12V cross Supply kit. £1.75, p/p 1.00. Built and tested in the U.K. 20 CROSS HATCH KIT, UHF Aerial Input. 2.5V, 5V, 15V, and black levels. Battery, operated, 12V 40, Addon Grey Scale kit £1.50.
ENAMELLED COPPER WIRE

T-wg 18 20 22 24 30
10 x 19 2.65 1.60 1.25 1.00 0.80
20 x 19 2.65 1.60 1.25 1.00 0.80
30 x 34 2.45 1.90 1.40 1.40 1.25
40 x 34 2.45 1.90 1.40 1.40 1.25

All the above prices are inclusive of postage.

COUPLER SUPPLIES

102 Parrwood Road, Withington, Manchester M20 1JY
Telephone 061-687 6753

OLIVETTI PROGRAMMA calculator - all programmable models with card switches. Lowest prices. AVOL $125. Small photocopyer 2M, cost $185. Accept orders. Tel. 0792 3814632 on Thameg, 49087. Buyer collects. ($180)

FILM RECORDER 16mm or 16mm film, 40v DC motor with cassette used to record from gun sight, or as stereo sound film camera. £20. (£18)

HANDBETS No. 3 M.C. type rubber covered with tape to test suit 19 or 62 set, elect. elec. More soiled. £2.50. DYNAMOTOR UNIT 27.5v to 220/400v DC, can be used to sette up or repair. £10. (£5)

OLIVETTI HANDSfree, £25. (£5.40. 1.8 A IF cost 4AE. Ph 4110070)

BASSETT VHF STATE moving from £5.95, to 220/400 V, stabs at 6v DC, with 0.5% TOL. (£25. (£5.40. 1.8 A IF cost 4AE. Ph 4110070)

THE SCIENTIFIC WIRE COMPANY

PO Box 3 London E.4

WANTED IN LARGE QUANTITIES

Electronic components, resistors, capacitors, potentiometers, chassis loudspeakers, semiconductors, diodes, TV tubes, especially colours, etc., etc. First or second grades. Finished or incomplete projects, record players, amplifiers, radios, tuners, tape recorders, enclosures, etc. Elements. We will buy complete factories and pacs.

TEN. 01-491 4636

£25. E.C.V. AVON HOUSE 360/366 OXFORD STREET, LONDON, W.4 (7950)

INVERTERS

Highest quality DC-AC. Also "no break" (2ms)

CHARGE CONTROLLER

Variable 2.25v per cell to max v 2 v. £25. Intersport-Mains Ltd. Intersport-Mains Ltd. Tel. 01-722 7064 or 0225 310196 (81472)

CIRCUIT DESIGN and prototype construction. Instr and instrumentation rigs, production run designs to your requirements. Professional audio, analogue, digital, SC/Microprocessor circuits our specialities. HAMILL ELECTRONICS LTD., Box BCM-3995, London WC1X 7XX, Tel: 01-942 9203. (7984)

VIDEO EQUIPMENT

May we assist in your purchase or disposal? We specialise in the sale and purchase of all Video equipment both new and second hand. We maintain a register in order to quickly and efficiently cross reference both buyers and sellers. Ring Derek Pattinson now and discuss your requirements.

Crofton Electronics Ltd.

35 Grosvenor Road, Twickenham, Middlesex. Tel. 01-881 1923

EURO CIRCUITS

Printed Circuit Boards: /-N.S. 100/-t.t. /-N.S. 100/-

1 pin 2 pin 3 pin etc.

Spots, trimmers, say, t.rimp, s.w. longer number of high grade parts. £20. £16. £10. £7. £4. £2. £1. £0. £0.

All the above prices are inclusive of postage. £18. £14 £16 £18. £10. £7. £4. £2. £1. £0. £0.

A fuller description of these test sets is given on our stock list. For a more detailed description for callers sold is with its cirrus SAG Genera O!114E with SAG main. Ex British Telecom. £33. Advance. Freq Counters (100/1000 MHz), £5. ESI, 10 MHz, 20 MHz, £42. Marconi spec analysers 3/30 MHz D3104. D2-200 MHz, purpose K band Rx units with tv wave tube etc £145. Equipment listed ex equipment unless stated new, prices include carr. and VAT. For list 19 and 20.$50.

24S2 HANDSWORTH RD, SHEFFIELD, S9 MAE. Ph 44278/46271. £1822

THE FABULOUS O2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA featuring 24 key keyboard 'Seven segment display', Carbonite interface from 9Rn. Expandable 'Interface Capability'. Full Documentation. Great power. £175 (free). One year's FREE membership of The American Computer Club with every purchase! £175 + £5 P&P + 6% VAT.

ENAMELLED COPPER WIRE

20 x 32 2.45 1.90 1.40 1.40 1.25
30 x 32 2.45 1.90 1.40 1.40 1.25

The Polytechnic of Central London

School of Engineering and Science

Part-time MSc Course

linked with Industry in

Communications

Students attend on one day a week for two years and undertake a detailed study in which the fundamental theoretical topics are considered alongside their practical implementation involving both traditional and newly-emerging new technologies.

Further details and application forms from The Registry, School of Engineering and Science, P.O. Box 115, New Cavendish Street, London W1M 8JS. Tel. 01-486 5811.

ARTICLES WANTED

SURPLUS WANTED

Fasteners — nuts, bolts, screws, threaded inserts, washers, cable clips, plastic fasteners, all kinds of rivets — Pop, Avex, etc.

Small components — Terminal strips, terminal blocks, capacitors, ball races, counters and other — mechanical and electrical

Small materials — off-cuts and short lengths of metal and plastic sheets, tubings, etc.

Small engineers’ tools — taps, dies, dividers, screwdrivers, etc.

Small hand tools — all kinds.

A. C. TOWNEY LIMITED

Harshill, Todmorden, Lancs. OL1 2S

Telephone: 0701 8511 070 61 5246

WE PURCHASE ALL FORMS OF ELECTRONIC COMPONENTS AND MATERIALS ETC.

SPOT CASH

CHILMTLD LTD.

9, 11 Arthur Road

Reading, Berks. Tel: (0734) 582 605

MINICOMPUTERS

For fastest, best CASH offer phone

MINICOMPUTERS PERIPHERALS INSTRUMENTATION

CHILMTLD LTD.

Reading (0734) 586149

WILL YOU ANYTHING, QUANTITIES if price is right. Bing Stan Williams, West Bromwich, 021 621 0186. (7813)

WANTED

all types of communications receivers and test equipment. Diego Electronics (UK) Ltd., Ashville Old Hall, Ashville Rd., London, E.I. Ley 4908. (01)

ELECTRONIC SCRAP, Components, etc. Receivers, Transmitters Test Equipment wanted. Ferrographs from Il on stock. Contact M B & H, 30 Baylis Street, Leeds 1, Tel. Leeds 35669. (9011)

WANTED SEMICONDUCTORS and clean new components. Quotations by return. — Bertex, 52 Bakery Road Syston, Leics. LET 5AF. (8210)

WANTED

all types Pye radio telephone equipment. Top prices paid with 360/366 valves. £100. (7944)

TO YOUR SUPLUS Capactors, Resistors, etc. into cash. Contact COLES-HARDING & Co., 103 South End Street, Bradford, 5221. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. (7439)

B.D. ELECTRONICS offer prompt settlement for surplus electronic components, TV/Audio, etc. for special interest. Contact Miss Hughes & West, Breton Peterborough. Tel 26519. 1763

WE PURCHASE, FOR CASH the following: B. F. Power Transistor Varistor Diodes, and all special components normally used in VHF/UHF Transmitter equipment. MODULAR GRAB/261/NICS, 95 High Street, Sidley Sussex. P029/QL. Tel. Sidley 9916. (7216)

MINICOMPUTERS PERIPHERALS INSTRUMENTATION

For fastest, best CASH offer phone

1.8 A IF cost 4AE. Ph 4110070)

MINICOMPUTERS PERIPHERALS INSTRUMENTATION

For fastest, best CASH offer phone

ELECTRONIC SCRAP. Components, etc. Receivers, Transmitters Test Equipment wanted. Ferrographs from Il on stock. Contact M B & H, 30 Baylis Street, Leeds 1, Tel. Leeds 35669. (9011)

WANTED SEMICONDUCTORS and clean new components. Quotations by return. — Bertex, 52 Bakery Road Syston, Leics. LET 5AF. (8210)

STORAGE SPACE is expensive, why not to redundant and obsolete equipment with fast and efficient clearance of all test gear, power supplies, laboratory boards, Assemblies, etc., regardless of condition or qualities. Call 01-771 9413. (8209)

WANTED

— up to ten EC8) or 6t 4U4 valves, Harri, 2 Glementon Avenue, Bournmouth BH4 9ND. (8132)
that's the new, highly accurate RF signal generator from Philips which offers everything you've ever asked us for.

Precise frequency selection between 100 kHz and 125 MHz has never been easier than with the new PM 5326 RF signal generator. Its built-in five digit display allows spot-on frequency setting to one part in 10,000 in nine push-button ranges. Specially designed for everyone involved with receiver sensitivity and selectivity measurements, this exceptionally well screened instrument also provides four wobulator ranges for the alignment of IF amplifiers and FM receivers and even enables the counter to be used on its own for measuring external signals. It adds yet again to the highly-successful range of Philips instruments (some of which are shown here) for the radio, audio and TV workshop. Write today for full information on the new PM 5326 and a 16 page brochure on radio and TV service.

1 PM5509 PAL TV Pattern Generator
The ultimate in pattern generators. Full IF coverage: Band I, III, IV and V. Electronic tuning with preset channels.

2 PM5501 PAL TV Pattern Generator
Extremely light, portable instrument for service in customer's home. Five different test patterns available.

3 PM6456 FM Stereo Generator
The PM6456 gives a complete stereo signal, L and R signal. Internal L.F. modulation: 1 and 5 kHz.

4 PM5324 HF Generator
Frequency range 100 kHz-110 MHz. X-tal calibration. Special bandspread ranges. High frequency stability.

5 PM5334 TV Sweep Generator
Ideal for overhauling rental sets. 8 frequency ranges. 3 MHz-860 MHz. Sweep width continuously adjustable. One variable and three fixed markers.

6 PM6307 Wow and Flutter Meter
High degree of accuracy and stability from X-tal controlled oscillator. Very easy to use.

PHILIPS
Test & Measuring Instruments

WWW—002 FOR FURTHER DETAILS

[Checkboxes for different equipment categories]

PHILIPS
www.americanradiohistory.com
Ersin Multicore—the international solder

Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and rigorously tested before and after manufacture throughout this period.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

Needle fine gauges

In addition to our standard range of wire diameters (10-22 swg: 3.2-0.7 mm) supplied on 24 kg and 1 kg reels we also mass-produce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications—still with 5 Cores of flux.

<table>
<thead>
<tr>
<th>ALLOY Composition (nominal major elements)</th>
<th>Grade</th>
<th>Melting Temperature Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/32/18 Sn/Pb/Cd</td>
<td>TLC</td>
<td>Solids: 145 °C Liquidus: 145 °C</td>
</tr>
<tr>
<td>62/36/2 Sn/Pb/Ag</td>
<td>LMP</td>
<td>170/170</td>
</tr>
<tr>
<td>63/35/7/7/0.3 Sn/Pb/Ag/Sb</td>
<td>Sn62</td>
<td>179/179</td>
</tr>
<tr>
<td>63/35/7/0.3 Sn/Pb/Sb</td>
<td>Sn63</td>
<td>183/183</td>
</tr>
<tr>
<td>60/40 Sn/Pb</td>
<td>KP</td>
<td>183/188</td>
</tr>
<tr>
<td>60/39.7/0.3 Sn/Pb/Sb</td>
<td>Sn90</td>
<td>183/188</td>
</tr>
<tr>
<td>50/50 Sn/Pb</td>
<td>F</td>
<td>183/212</td>
</tr>
<tr>
<td>50/49.7/0.3 Sn/Pb/Sb</td>
<td>Sn50</td>
<td>183/212</td>
</tr>
<tr>
<td>50/48.5/1.5 Sn/Pb/Cu</td>
<td>Savbit 1</td>
<td>183/215</td>
</tr>
<tr>
<td>45/55 Sn/Pb</td>
<td>R</td>
<td>183/224</td>
</tr>
<tr>
<td>40/60 Sn/Pb</td>
<td>G</td>
<td>183/234</td>
</tr>
<tr>
<td>30/70 Sn/Pb</td>
<td>J</td>
<td>183/255</td>
</tr>
<tr>
<td>20/80 Sn/Pb</td>
<td>V</td>
<td>183/275</td>
</tr>
<tr>
<td>96/4 Sn/Ag</td>
<td>965</td>
<td>221/221</td>
</tr>
<tr>
<td>15/85 Sn/Pb</td>
<td>W</td>
<td>225/260</td>
</tr>
<tr>
<td>Pure Tin</td>
<td>P.T.</td>
<td>232/232</td>
</tr>
<tr>
<td>95/5 Sn/Sb</td>
<td>95A</td>
<td>234/241</td>
</tr>
<tr>
<td>5/93.5/1.5 Sn/Pb/Ag</td>
<td>H.M.P.</td>
<td>296/301</td>
</tr>
</tbody>
</table>

Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5 Cores ERSIN 362 flux has received special Ministry approval—under DTD 900/4535A for Military applications.

For full information on these and any other MULTICORE products please write on your Company’s letterhead direct to

Multicore Solders Limited. Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex: 82363