F.M. transceiver
Distortion—no mystery

Van Allen Belt

Earth of GEOS (6.7Rₐ)
Core Radius = 6,378 km
The mi Signal Generator for vlf·lf·mf·hf·vhf bands

AM, FM Signal Generator TF 2016 is a general purpose instrument for receiver testing. Its facility for battery operation and its rugged construction make it ideal for field as well as factory use.

TF 2016 will deliver up to 6 V e.m.f. and yet has a leakage level that is so low that even receivers with a sensitivity of 0.1 µV can be tested without ambiguity. And the total output level accuracy of ±1 dB ensures confidence every time.

Fundamental frequency generation is used over the entire frequency range thus ensuring the total absence of non-harmonics. The good tuning discrimination makes narrow band receiver testing quick and easy.

Amplitude modulation up to 100% modulation depth and frequency modulation up to 75 kHz deviation are available using the internal 400 Hz and 1 kHz oscillators. External modulation can be applied and, if required, internal a.m. and external f.m., or internal f.m. and external a.m., can be applied simultaneously.

A version of TF 2016 will shortly be available equipped with a 150 Hz preset pilot tone f.m. for use on Clansman receivers.

Pulse Modulator, TF 2169, may be fitted to the signal generator to provide pulsed r.f. for radar i.f. testing. IF probes can be supplied to help tuning to receivers fitted with battery economizer circuits.

Digital Synchronizer
The addition of this clip-on unit (as shown in our photograph) converts the TF 2016 into a synthesizer. It provides a stability of ±1 part in 10⁶ and allows the frequency to be set in 10 Hz steps.

Full information gladly supplied on request.
Front cover is an imaginative painting by J. G. Dougherty, of the GEOS satellite in orbit, showing the natural phenomena it was designed to investigate. A report on GEOS appeared in the August issue, p.33. Picture by courtesy of British Aircraft Corporation.

IN OUR NEXT ISSUE

Telex decoder modifications. An article describing the circuit changes and additions needed to enable the Wireless World decoder design to decode the latest control characters — graphics hold, double height, separated graphics and background colour.

Ernie Lowinger describes how to make a thread-suspended pickup arm, as expected to be shown this month on Tomorrow's World. This one doesn't need a lathe!

ISSN 0043 6062
16 amp rocker choice?

Standard options from 1or2 pole
2or3 position

Single and double lens
pilot light

5 colour body/rocker choice

Window illuminated
rockers

All-illuminated
rockers

Take a look at these
standard options!

We know you'll like the 92 series. Right rating — 16A, 250V for AC duty. Right action — positive rocker lever in all-insulated nylon mouldings. Right fixing too — snap-in style, and push-on spade terminals for maximum time-saving. Not to mention their international approval capability. But the more popular a range, the more variations you look for. So, we've developed a variety of circuits, indicator variations etc — so that many of your 16A switch needs are very probably in the 92 series catalogue already, as standard.

It's a happy thought!

Check your needs
with the Arrow 92 series
catalogue. We'll send a copy.
LOW COST TESTERS

LEVELL PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9V internal battery.

RESISTANCE RANGES
- 10MΩ to 10Ω (10^13 Ω) at 250V, 500V, 750V and 1kV.
- 1MΩ to 1Ω at 25V, 50V and 100V.
- 100kΩ to 1000Ω at 2.5V, 5V and 10V.
- 1kΩ to 10Ω at 1V.

Accuracy ±15% + 800 Ω on 6 decade logarithmic scale.
Accuracy of test voltages ±3% ±50mV at scale centre.
Fall of test voltages <2% at 10µA and <20% at 100µA.
Short circuit current between 500µA and 3mA.

CURRENT RANGE
100µA to 100mA on 6 decade logarithmic scale.
Accuracy of current measurement ±15% of indicated value.
Input voltage drop is approximately 20mV at 100µA, 200mV at 100mA and 400mV at 100µA.
Maximum safe continuous overload is 50mA.

MEASUREMENT TIME
- <3s for resistance on all ranges relative to CAL position.
- <10s for resistance of 10G Ω across 1µF on 50V to 500V.
Discharge time to 1% is 0.1s per µF on CAL position.

RECORDER OUTPUT
1V per decade ±3V with zero output at scale centre.
Maximum output ±3V. Output resistance 1kΩ.

TRANSMITTERS

£120

LEVEll ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel.: 01-449 5026/440 8686

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2V to 150V. Current gains are checked from 1µA to 100mA. Breakdown voltages up to 100V are measured at 10µA, 100µA and 1mA. Collector to emitter saturation voltage is measured at 1mA, 10mA, 30mA and 100mA for Ic/Ib ratios of 10, 20, 30. The instrument is powered by a 9V battery.

TRANSISTOR RANGES (PNP or NPN)

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBCBO</td>
<td>10mA, 100mA, 1µA, 10µA and 100µA f.s.d. acc. ±2% f.s.d. ±1% at voltages of 2V, 5V, 10V, 20V, 30V, 40V, 50V, 60V, 80V, 100V, 120V, and 150V acc. ±3% ±100mV up to 10µA with fall at 100µA < 5% ±250mV.</td>
</tr>
<tr>
<td>VBE</td>
<td>10V or 100V f.s.d. acc. ±2% f.s.d. ±1% at currents of 10µA, 100µA and 1mA ±20%.</td>
</tr>
<tr>
<td>VB</td>
<td>10nA, 100nA, 1µA...10mA f.s.d. acc. ±2% f.s.d. ±1% at fixed Ic of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA, and 100mA acc. ±1%.</td>
</tr>
<tr>
<td>HPFE</td>
<td>3 inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert Ic into HPFE readings.</td>
</tr>
<tr>
<td>VBE</td>
<td>1V f.s.d. acc. ±20mV measured at conditions on HPFE test.</td>
</tr>
<tr>
<td>VCE(SAT)</td>
<td>1V f.s.d. acc. ±20mV at collector currents of 1mA, 10mA, 30mA and 100mA with Ic/Ib selected at 10, 20 or 30 acc. ±20%.</td>
</tr>
</tbody>
</table>

DIODE & ZENER DIODE RANGES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td>As</td>
</tr>
<tr>
<td>VZ</td>
<td>Breakdown ranges as VBCBO for transistors.</td>
</tr>
<tr>
<td>VDF</td>
<td>1V f.s.d. acc. ±20mV at Ic of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA and 100mA.</td>
</tr>
</tbody>
</table>

Prices are ex-works with batteries. Carriage and Packing extra. VAT extra in U.K. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

WWW. AMERICAN RADIOHISTORY.COM
This tuner must surely provide the best value for money available today. Combining the best of the modules shown below, it includes a full digital readout of frequency to a resolution of 0.1 MHz, so that exact station identification can be made. In addition, six pre-set stations may be selected by touch controls having internal solid state lamps while manual tuning allows easy searching for distant stations under the guidance of the digital meter.

A switchable mute system allows reception of the weakest stations while muting inter-station noise and spurious responses. Perfect reception is assured by not permitting any station to be heard which is far enough out of tune to cause distortion. The tuning indicator lamp provides a means of very fine tuning, and is automatically extinguished between stations.

A powerful A.F.C. system is also incorporated which holds all stations in tune, while not preventing manual tuning.

Good stereo reception is assured by the use of a phase locked decoder with full 'birdie' and spurious output filtering.

Finally, but not least, the external appearance and styling bring a fresh new look to Hi-Fi. The sturdy wooden cabinet is finished in mat teak veneer, housing an attractive gold and brown, anodised aluminium front panel, which carries black controls and inscriptions. The indicator lamps and digital displays are in red, giving the finishing touches to a tuner you will be proud to own.

MAIN RECEIVER MODULE M1

We have claimed before that this F.M. system is the most advanced on the market, and after nearly three years we repeat our claim. Some have borrowed ideas, some have not, but no other tuner gives you all the features of this unit. How many tuners mute the spurious tuning effects found at either side of a correctly tuned station? How many tuners fade the sound out as you tune too far off station for good quality sound? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How many offer you drift free tuning? We could go on. If you want a tuner that has been well thought out and engineered, start with this module.

TOUCH TUNE MODULE M5

This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button. No moving parts to go wrong, or contacts to get dirty. Internal illumination shows you which button has been touched, while the tuning adjustment is made using high reliability multi-turn cermet pots for repeatability selection of the most used stations, yet retaining the use of separate manual tuning. This module interfaces directly with the M1 above, being wired between the board and the normal manual tuning control. A touch of sheer genius!

DIGITAL FREQUENCY METER M6

We are very proud of this one. We don’t have to say it’s the best, as far as we know it’s the only one! On a board less than 4” square is all the electronics of a stable counter with i.f. offset (added) and a stabilized power supply! With the aid of a small daughter board (not shown) which fits neatly into the above module (M1), the exact station frequency is displayed to the nearest 0.1 MHz. It is a tuning scale 20” long with accurate calibrations every 0.1”! You get the transformer, daughter board (ready wired in), polarized filter, and a list of station frequencies. What more do you want?

ORDERING INFORMATION

All U.K. orders plus free plus 12.5% VAT. Export orders, allow extra for postage at cost, no VAT due. Credit will be refunded.

Payment by sterling cheque on London bank, or credit card, International M.O. etc.

Other items and kits available. Send for illustrated leaflets, price list and order form, etc. inc. 50p airmail, overseas from: Icon Design

33 Restrop View Purton, WILTS SNS 5DG
Throw some light on your frequency response

The RA200 Test Set quickly gives you accurate traces of audio system frequency responses. In just a few seconds, this self-contained instrument clearly displays response as a gain/frequency plot on a long-persistence CRT. Outputs are provided for operating an X-Y plotter. Whether you use the internal sweep oscillator, or an external signal, the RA200 requires no synchronisation and adjusts automatically to the incoming frequency. It covers 20Hz to 200kHz, with resolution down to 0.1dB over a very wide dynamic range.

Switched attenuators for output level and input sensitivity ensure fast and precise evaluation of all audio devices, whether having nominally flat response or a steep-cut characteristic. You can adjust the sweep rate, set upper and lower limits independently, and use one-shot or repetitive sweeps triggered electrically or manually.

The Wayne Kerr RA200

Fast. Accurate. And easy to use.
Send for full information today.

WAYNE KERR RA200.

Please send me information about the Wayne Kerr RA200

Name ____________________________
Position __________________________
Company __________________________
Address ____________________________ Telephone ____________________________

Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB, England.
Telephone: Burnham (06286) 62511 Telex: 847297

WW — 078 FOR FURTHER DETAILS
...The leaders through creativity

GR 1657 Digibridge

Automatically measures R, L, C, D and Q. Ranging from 0.001Ω to $99.999\,\text{M\Omega}$, $0.0001\,\text{mH}$ to $9999.9\,\text{H}$, $0.0001\,\text{nF}$ to $99999\,\text{µF}$. R, L, C, D range from 0.0001 to 9.999 and Q range from 0.001 to 999.9. Basic accuracy 0.2%. Five digit display for R, L and C, four digit display for D and Q.

Microprocessor - directed ranging. Selectable test frequencies of $1\,\text{KHz}$ and $100\,\text{Hz}$ ($120\,\text{Hz}$).

Series or parallel measurement selection. Built-in Kelvin test fixture tests radial and axial lead components. Other bridges from our range include:

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR1650</td>
<td>RLC Bridge</td>
<td>1%</td>
</tr>
<tr>
<td>GR1656</td>
<td>RLC Bridge</td>
<td>0.1%</td>
</tr>
<tr>
<td>GR1608</td>
<td>RLC Bridge</td>
<td>0.05%</td>
</tr>
<tr>
<td>GR1683</td>
<td>Digital RLC Bridge</td>
<td>Automatic, 0.1%</td>
</tr>
<tr>
<td>GR1685</td>
<td>Digital RLC Meter</td>
<td>Automatic, 0.1%</td>
</tr>
</tbody>
</table>

It is easy to test components with GenRad. Write or call for descriptive literature to GenRad Ltd., Bourne End, Bucks SL8 5AT. (06285) 26611

GenRad
The other day my assistant gets this call.

Here, she says, there are some people who don’t know the difference between getting buffered and not getting buffered.

Now this makes me a bit uppity, being a sweet old-fashioned thing. I don’t like to hear Lord Mayoring in the office—specially if it comes from someone who’s blonde and got legs up to the third floor.

That’s not ladylike, I says. No, she says—impatient like—COSMOS! That does it—wash your mouth out or explain.

She does, and I’ve quoted it word for word below. If you understand it you’re a better man than her.

The COSMOS 4000A series gates are unbuffered. But the COSMOS 4000B series gates can be buffered or unbuffered. If you want unbuffered gates, you add ‘U’ to the code—e.g. 4011UB. If you specify nothing, you get buffered automatically—e.g. 4011B.

The 4000B series devices are rated up to 20V, have a wider operating range, lower leakage current, symmetrical output and improved input current leakage ratings.

Have you ever heard anything like it? Personally, I reckon if you want to know more, you’d better buffer off and ask the smart alecs at Crellon.
A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.

Manufacturers of sound systems and electronics
Station Road, Wenden
Saffron Walden
Essex CB11 4LG
Saffron Walden
(0799) 40888

OS245A-a new, low price 10MHz multi-purpose scope

Audio, T.V., Test, Service, Laboratory, Education.

All of these applications, plus many more are met by the OS245A, the low price, high performance, professional oscilloscope.

5mV/div sensitivity and 10 MHz bandwidth, with full trigger performance make this excellent oscilloscope superb value — and every one is backed by the Gould Advance 2 year Guarantee.

Send for full details today.

Gould Advance Limited,
Roebuck Road, Hainault, Essex IG6 3UE.
Telephone: 01-5001000
Telex: 263785

Now! 2 YEAR GUARANTEE on all instruments

WW-049 FOR FURTHER DETAILS
A super stereo audio mixer. It can be equipped with up to 16 input modules of your choice and its performance matches that of the very best tape-recorders and hi-fi equipment. It meets the requirements of professional recording studios, FM radio stations, concert halls and theatres. Full construction details in our catalogue. A component schedule is available on request.

SWITCHES

We stock a wide range of switches including a really low-priced, high-quality interconnecting push-button switch system which is extremely versatile. We've got toggle switches, slide switches, push switches, rotary switches — there are dozens to choose from, but it's only a tiny part of our fantastic range.

PEDAL UNIT

A completely self-contained pedal unit. 13-note, 2-octave range, 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue — post the coupon below now!

10-CHANNEL STEREO GRAPHIC EQUALISER

A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for less than £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 40p.

SYNTHESISER

The International 4600 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than £500 including fully punched and printed metalwork and a smart teak cabinet. Far less than half what you'd pay for a ready made synthesiser of equal quality. Specification on request, full construction details in our construction book £1.50.

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices — our latest special offers — details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copy).

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE

PRICE 60p

Please rush me a copy of your 216 page catalogue. I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you will in 14 days and have my 60p refunded immediately.

NAME

ADDRESS
Low Power Schottky TTL cuts down on everything. Except performance.

Motorola Low Power Schottky TTL cuts down on supply current and noise. As well as the size, cost and weight of equipment.

But it additionally offers far more than that. Now you don’t have to choose between speed and power in performance terms. As the graph clearly shows, it dissipates eleven times less power than 74S, suffering a delay of only 1.7 times.

There are no problems with interfacing, as it is compatible with other TTL types and CMOS. It’s faster than CMOS, and due to the Bipolar technology, no special handling is necessary.

Reliability, economy and speed. These are the areas that Motorola Low Power Schottky TTL hasn’t cut back on.

Crellon Electronics Ltd.,
380 Bath Road, Slough, Berks SL1 6JE.
Tel: Burnham (06286) 4434
Telex: 847571

Please send me full information on the Motorola Low Power Schottky TTL.

Name __________________________
Company ________________________
Address _________________________
Tel: _____________________________

WW — 065 FOR FURTHER DETAILS
the best pick-up arm in the world

SME Series III

Write to Dept 0647 · SME Limited · Steyning · Sussex · BN4 3GY
Lots of people think ITT are the only people selling Fluke DMM’s

It’s true in one sense – ITT are the sole UK stocking distributors for the range of Fluke DMM’s. But of course, as the world’s leading DMM’s, Fluke really sell themselves. What we do is back them up with a streamlined, thoroughly dependable and quick-off-the-mark service that’s as much a No. 1 in its field as Fluke are in their’s.

Write or phone for more details.
Edinburgh Way, Harlow, Essex. Telex: 81525

ITT instrument services

The only way to buy.
Harlow (0279) 29522.
The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.

First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.

The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.

Today we present:

NEC CQ 110 E DIGITAL

All band HF, 300 watts transceiver, 160/80/40/20/15/11/10A/10B/10C/10D/WWW, modes FSK, USB, LSB, CW, AM, with separate 8 pole X-tal lattice filters for each mode fitted.

Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.

This feature alone makes of the NEC CQ 110 E a top rider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC CQ 301

All band HF, 3KW, linear amplifier: 160/80/40/20/15/11/10 meter, for modern amateur communication. Two EMAC 3-500Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110E or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course.

Sole distributor in Europe:

C E C

Corporation, Via Valdani 1 — CH 6830 CHIASSO — SWITZERLAND

Phone: (091) 44 26 51. Telex: 79959 CH

RETAILERS:

Do not hesitate to accept our offer. Join us in selling these bestsellers!

When we introduced the Super 30 last year it was the best general purpose soldering iron at its price in Britain — it still is, at only £2.95p. (plus 9% VAT) The ORYX Super 30 offers you all these features as standard. Neon safety light, Long life element, Iron coated screw-on tip, Stainless steel shaft, Stylish handle, Two minute element change and a stainless steel clip-on hook.

Industrial Distributors include:

- Electroplan Ltd. — Orchard Road, Royston, Herts SG8 5HH
- GDS (Sales) Ltd. — 380 Bath Road, Slough, Berks SL1 6.JE
- ITT Electronic Services — Edinburgh Way, Harlow, Essex CM20 2DF

Greenwood Electronics

Greenwood Electronics, Portman Road, Reading RG3 1NE

Telephone: 0734-599844. Telex: 848659

WW—026 FOR FURTHER DETAILS
A. D. BAYLISS & SON LTD.

Behind this name there's a lot of real POWER!

Illustrated right is a TITAN DRILL

Mounted in a multi-purpose stand. This drill is a powerful tool running on 12v DC at approx 9000 rpm with a torque of 350 g.m. cm. Chuck capacity 3.00 m/m.

The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in Hammer blue.

Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx speed 6000 rpm. 12v DC. torque 35 g.m. cm. Capacity 2.4 m/m.

TITAN DRILL & STAND

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITAN DRILL ONLY</td>
<td>£19.50</td>
</tr>
<tr>
<td>RELIANT DRILL & STAND</td>
<td>£16.27</td>
</tr>
<tr>
<td>RELIANT DRILL ONLY</td>
<td>£14.75</td>
</tr>
<tr>
<td>TITAN MINI KIT DRILL</td>
<td></td>
</tr>
<tr>
<td>Plus 20 Teeth</td>
<td></td>
</tr>
<tr>
<td>RELIANT MINI KIT DRILL</td>
<td>£12.00</td>
</tr>
<tr>
<td>Plus 20 Teeth</td>
<td></td>
</tr>
<tr>
<td>TRANSFORMER UNIT</td>
<td>£8.55</td>
</tr>
</tbody>
</table>

These are examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids.

To back up the power tools, Expo offer a comprehensive selection of Drills, Grinding Points and other aids.

SEND STAMP for full details to main distributors.

A. D. BAYLISS & SON LTD., Ptera Works, Redmarley, Glos. GL19 3JU

WW—024 FOR FURTHER DETAILS

HIGH POWER DC-COUPLED AMPLIFIER

★ UP TO 500 WATTS RMS FROM ONE CHANNEL
★ DC-COUPLED THROUGHOUT
★ OPERATES INTO LOADS AS LOW AS 1 OHM
★ FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
★ 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20,000Hz. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world’s leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Bandwidth</td>
<td>20kHz, 150 watts at 1db</td>
</tr>
<tr>
<td>Power at clip point (1 channel)</td>
<td>700 watts into 2.5 ohms</td>
</tr>
<tr>
<td>Phase Response</td>
<td>+0 -15 DC to 20kHz, 1 watt 80%</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>Below 0.5% DC, 20kHz</td>
</tr>
<tr>
<td>Intermod. Distortion</td>
<td>Below 0.5% 0.1 watt 150 watts</td>
</tr>
<tr>
<td>Damping Factor</td>
<td>Greater than 1000 DC at 1kHz at 82</td>
</tr>
<tr>
<td>Hum & Noise (20-20kHz)</td>
<td>At least 110db below 150 watts</td>
</tr>
<tr>
<td>Other models in the range:</td>
<td>D60 — 60 watts per channel</td>
</tr>
<tr>
<td>Slowing Rate</td>
<td>8 volts per microsecond</td>
</tr>
<tr>
<td>Load impedance</td>
<td>1 ghm to infinity</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td>15 V for 150 watts into 8J</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10K ohms to 100K ohms</td>
</tr>
<tr>
<td>Protection</td>
<td>Short, mismatch & open cct. protection</td>
</tr>
<tr>
<td>Power supply</td>
<td>120-256V, 50-400Hz</td>
</tr>
<tr>
<td>Dimensions</td>
<td>19 Rackmount. 7 High. 94 Deep</td>
</tr>
<tr>
<td>Dimensions</td>
<td>0150A - 150 watts per channel</td>
</tr>
</tbody>
</table>

Other models available from 100 watts to 3000 watts

WWW—039 FOR FURTHER DETAILS
If you use IMO or OMRON relays, you certainly know about the exceptional reliability and performance of these remarkable devices. What you may not know is that our reputation for switches is just as impressive.

The range covers: **Limit Switches** – New multi-plunger, metal enclosed and turret-head types.

Photoelectric Switches
Subminiature, metal enclosed and the unique bicolour switch.

Plus **Proximity Switches** – A new range covering AC/DC types to DIN standards.

IMO and OMRON products are compatible all along the line, which should gladden the heart of circuit designers everywhere. They are always available ex-stock at highly competitive prices – which will make buyers happy too. Plus of course, IMO’s helpful and unmatched service. All of which we hope you’ll find most impressive.

IMO. There’s more to us than you may know.
IMO Precision Controls Ltd, 349 Edgware Road, London W.2. Tel: 01-723 2231.

Something of interest if you’re impressed with our relays.

Limit Switches Photoelectric Switches Proximity Switches

WW — 061 FOR FURTHER DETAILS
LIKE HUNDREDS OF NEW DORAM KIT AND COMPONENT IDEAS FREE?

Britian's best-selling 64 page electronic kit & component catalogue from Doram.

Doram's new catalogue is one of the great events of the electronic year, 64 pages of new ideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

Doram

TAKE THE SHORT CUT.

Yes, please rush my free copy of the new Doram catalogue. I enclose 20p to cover post and packing.

Name

Address

Post to

Doram Electronics Ltd, PO Box TR8, Wellington Road Estate, Wellington Bridge, Leeds LS12 2UF

WW-018 FOR FURTHER DETAILS

When it comes to DIL and SIL

12 IS THE MOST SIGNIFICANT FIGURE

That's right. Erie Electronics have 12 years' experience in the design, development and production of thick film circuits. All this experience has been built into Erie's DIL and SIL resistor networks, to give you some of the most cost effective units available anywhere.

There's an extremely wide choice of standard circuit configurations available in 14-pin and 16-pin DIL Ceramic Sandwich packages, as well as a superb selection of standard SIL components with 2 to 14 elements.

If the precise resistor network you need is not in the standard range, for a nominal tooling charge Erie will custom-design it for you. Either way, you'll reap the benefits in reduced component handling, higher packaging density, and the possibility of automatic insertion techniques. For more information, contact:

ERIE ELECTRONICS LIMITED
Resistor Division, South Denes, Great Yarmouth, Norfolk NR30 3FX
Tel: 0493 56122, Telex: 97421, Cables: Resistor Components

WW - 017 FOR FURTHER DETAILS

How to generate confidence

Produce instruments with a high specification at a low price - put them in steel cases for rugged reliability and guarantee the results.

The G5 is a low distortion 10Hz to 1 MHz sine/square signal generator with a 600 ohm switched attenuator and a low impedance output of up to 3 watts. Coupled with the M2B millivoltmeter, with its 1.2 mV full scale maximum sensitivity, you have the ideal test set. Calibrated in true RMS on the a.c. ranges it will measure up to 400 volts a.c or d.c and has a db range from -70 db to +54 db.

Send your Order now to Linstead Manufacturing Co. Ltd., Roslyn Road, London N15 5JB.

Linstead

Telephone: 01-802 5144

WW - 007 FOR FURTHER DETAILS
Ferranti make it an all-British line-up for their family of RF Power Transistors.

Ferranti can now offer a popular range of RF power transistors to cover B and C Series—175 MHz and 470 MHz, for 12 volt and 28 volt applications. And there's a choice of three power outputs in each range—3 watts, 12 watts and 25 watts and a choice of ceramic stripline with stud or flange mounting.

They're competitively priced and can be used as plug-in replacements for other B and C Series transistors.

Of course our full product range covers 2MHz to 2GHz, and power outputs up to 70 watts. We can supply whole line-ups at VHF and UHF frequencies, for FM and AM systems and devices, for amplifiers, oscillators or frequency multipliers.

And don't forget Ferranti RF power transistors are ruggedised and 100% tested to withstand infinite VSWR at all phase angles. Ferranti are the only independent British supplier of RF power transistors. Our technology is all home based and we have an application team ready to help with design problems.

Send for a copy of our comprehensive shortform catalogue.

Ferranti Limited, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs, OL9 8NP
Telephone: 061 624 0515 Telex: 668038

FERRANTI
RF power. We can deliver.
BIMCONSOLES
BIMBOXES
BIMDRILLS
BIMDICTATORS

ABS & DIECAST BIMBOXES
5 sizes, in either ABS or Diecast Aluminium
ABS moulded in Orange, Blue, Grey or Black
Diecast Aluminium available in Grey Hammertone or Natural

All boxes incorporate guides on all sides for holding 1.5mm thick pcb's and stand-off bosses in base for supporting small sub-assemblies etc. Close fitting flanged lids held by screws running into integral brass bushes (ABS) or tapped holes (Diecast).

Moulded in Orange, Blue, Black or Grey
ABS with 1mm thick Grey aluminium front cover which is retained by 4 screws running into integral brass bushes. 1.5mm pcb guides are incorporated on all sides and as with all ABS boxes they are 85°C rated. 4 self adhesive rubber feet also included.

MULTI-PURPOSE BIMBOXES

All aluminium, 2 piece desk consoles with either 15° or 30° sloping fronts, sit on 4 self adhesive non slip rubber feet. Ventilation slots in base and rear panels permit efficient cooling.

DIL COMPATIBLE BIMBOXES

Bimboards accept all sizes of DIL packages as well as resistors, diodes, capacitors and LED's etc. They have integral Bus Strips running up each side for carrying Vcc and ground as well as Component Support Brackets for holding lamps, fuses and switches etc. Available as either single or multiple units, the latter mounted on 1.5mm thick, matt black aluminium back plates which stand on non slip rubber feet and have 4 screw terminals for incoming power.

Bimboard 1 contains 500 individual sockets whereas the multiple units containing 2, 3 or 4 Bimboards incorporate 1,100, 1,650 or 2,200 individual sockets, all arranged on a 2.5mm (0.1") matrix.

BIMDICTATORS

Remember we are also one of Europe's largest manufacturers of Filament, Neon and LED indicators. Send for our BIMDICATOR DATA

12 VOLT BIMDRILLS

2 small but powerful 12V dc drills, easily held in hand or used with lathe/stand adaptor. Both drills have integral on/off switches and 1 metre long cable. Mini Bimdrill with 2 collets up to 2.4mm capacity £7.56*

12 VOLT BIMDRILLS

Major Bimdrill with 3 collets up to 3mm capacity £12.96*

Mains to 12 Volts adaptor, lathe, stand and accessory kits also available. Details on request.

BIMDICATOR DATA

*All quoted prices are 1 off and include Postage, Packing and VAT. Terms are strictly cash with order unless you have authorised BOS account. For individual data sheets on all BOS products send stamped, self addressed envelope.

www.americanradiohistory.com

2 Herne Hill Road, London SE24 0AU
Telephone: 01-737 2383
Telex: 919693 Answer Back 'LITZEN G' Cables & Telegrams: 'LITZEN LONDON SE24'
A major international conference organised by Electronics Weekly.

Hilton Hotel, Park Lane, London. Thursday, December 8th, 1977

An opportunity to discover how developments in electronics will bring far-reaching changes to industry, commerce, leisure and society.

This major international conference is an attempt to create an awareness of what is happening in terms of the social and economic effects of the electronics revolution, which can only be minimised and turned to good account if all those concerned understand what is involved.

In a series of papers, leading figures in electronics from Britain and other countries will explain that while new technology may be disruptive, this can be lessened if long-term plans based on sound knowledge are made.

This conference can be your first step towards acquiring this knowledge—the key to choosing the right way ahead.

Subjects and speakers will include:

The Impact of Electronics—Past, Present and Future, by Dr J. Ackerman (Managing Director at Mullard Ltd., Chairman of the Electronic Component Industry Federation, and member of Electronics EDC).

The Impact of New Technology in Telecommunications, by Kenneth Corfield (Deputy Chairman and Managing Director of Standard Telephone and Cables Ltd., and Senior Officer of ITT in the United Kingdom).

The Microprocessor in the Home, by Dr Derek Forte (Managing Director of General Instrument Microelectronics Ltd, since 1971 and has many years of experience in the semiconductor industry).

The Microcomputer in Industry and Commerce, by Alex d'Agapeyeff, CBE, (Chairman of Computer Analysis and Programmers Ltd.)

The Impact of Microelectronics on Employment, by Dr. Alfred Prommer (Vice-President of Siemens AG, West Germany, and head of sales and marketing in the company's components group).

Lead-On-Eaving, CBE, C.Eng., (Chairman of Ultra Electronics Ltd), Sir Ian Maddocks, CB, CBE, FRSE (Deputy Chairman of the National Electronics Council) and Lord Thomson of Fleet (Chairman of a University of Cambridge Ltd have all agreed to chair the sessions.

The concluding Open Forum will feature a panel of experts which will include William C. Huttiger (Executive Vice President, research and engineering, RCA Corporation USA); Gerrit Jantzen (Chairman and Managing Director of Philips Industries UK); Derek Roberts (Managing Director of Texas Instruments Division) and Frank Chorley (Managing Director, Plessey Electronic Systems Ltd.).

The conference commences at 9.00am and closes at 5.30pm.

The fee is £60 plus 8% VAT (£ 68.00) per delegate.

To be sure of reserving your seat for this occasion, please complete the form on the right.
Two books from Wireless World

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful Circards—regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.

BOOK 1
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

BOOK 2
Basic logic gates
Wideband amplifiers
Alarm circuits
Digital counters
Pulse modulators
C d as—signal processing
C d as—signal generation
C d as—measurement and detection
Monostable circuits
Transistor pairs

ORDER FORM
To: General Sales Department
IPC Business Press Limited,
Room CP34, Dorset House,
Stamford Street, London SE1 9LU.

Please send me copies of Circuit Designs—Number 2 at £12.50 each inclusive. I enclose remittance value £.

(cheques payable to IPC Business Press Ltd.)

Name (please print)
Address

Company registered in England and a subsidiary of Reed International Limited. Registered No. 677128 Regd. office
Dorset House, Stamford Street, London SE1 9LU.

WW-122 FOR FURTHER DETAILS
www.americanradiohistory.com
WHY SETTLE FOR LESS—THAN A 6800 SYSTEM

MEMORY—
All static memory with selected 2102 IC’s allows processor to run at its maximum speed at all times. No refresh system is needed and no time is lost in memory refresh cycles. Each board holds 4,096 words of this proven reliable and trouble free memory. Cost—only £80.00 for each full 4K memory.

PROCESSOR—
"Motorola" M6800 processor with Mikbug® ROM operating system. Automatic reset and loading, plus full compatibility with Motorola evaluation set software. Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various baud rate outputs for the interface circuits. Full buffering on all data and address busses insures "glitch" free operation with full expansion of memory and interfaces.

INTERFACE—
Serial control interface connects to any RS-232, or 20 Ma. TTY control terminal. Connectors provided for expansion of up to eight interfaces. Unique programmable interface circuits allow you to match the interface to almost any possible combination of polarity and control signal arrangements. Baud rate selection can be made on each individual interface. All this at a sensible cost of only £30.00 for either serial, or parallel type.

POWER SUPPLY—
Heavy duty 10.0 Amp power supply capable of powering a fully expanded system of memory and interface boards. Note 25 Amp rectifier bridge and 91,000 mfd computer grade filter capacitor.

DOCUMENTATION—
Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer. This includes the Motorola programming manual, our own very complete assembly instructions, plus a notebook full of information that we have compiled on the system hardware and programming. This includes diagnostic programs, sample programs and even a Tic Tac Toe listing.

PRICE EFFECTIVE 1st OCTOBER, 1977

£275.00 (Kit form only)

Southwest Technical Products Co.
174 Ifield Road, London, SW10

Prices quoted do not include VAT
The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications. The range is made up of standard sub-assemblies which can be permuted to suit individual application requirements. Here are some suggested applications for these units.

- Train Control Systems
- Safety Barriers
- Intruder Alarms
- Road Vehicle Sensing Systems
- Proximity Alarms
- Process Control Systems
- Industrial Alarm Systems
- Small Object Counters
- Presence/Detectors
- Positioning Systems
- Level Controllers
- Door Opening Systems

Please write or telephone for further information and technical literature to:

JAMES SCOTT (Electronic Engineering) Ltd
CARNTYNE INDUSTRIAL ESTATE
GLASGOW G12 8AB
Tel 041 778 4266 Telex 775286

New The British Plot

The CR600 and CR700 Chart Recorders have been designed for the discerning user who requires a combination of fast writing speed, high accuracy plus versatility and good looks—

- 1000 mm/sec writing speed
- 0.05% Linearity
- 0.05% Repeatability
- 0.1% Accuracy
- 0.02 mm/min. - 20 mm/sec. Chart speed

Standard features include—18 electronically controlled chart speeds with forward/reverse and remote operation. Chart feed and take up for Z fold or roll chart paper. Two separate channels with full pen overlap, self calibrate stepped range attenuators and span controls, 1000% precisely calibrated zero suppression. Remote operated event marker, pen lift and chart control. Both recorders are suitable for mains or battery operation and may be mounted horizontally or vertically.

Write today for full illustrated specification.

J.J. LLOYD INSTRUMENTS LIMITED
Brook Avenue, Warsash, Southampton S03 8HP
England. Tel: Locks Heath 4221 (STD 048 951)
Telex: 47942 JAY JAY SOTON
Cables Eddymes, Southampton

WW—055 FOR FURTHER DETAILS
From Otari for uncompromising recordists.
MX5050-2SHD designed for peerless two-track quarter-inch masters.

It's an exception of compact recorders. Specially designed for critical professional applications from the ground up. It leaves nothing to be desired. 68dB signal-to-noise and greater-than-60dB crosstalk. Variable speed DC-servo capstan motor for less than 0.05% wow/flutter and ±7% pitch control. +19dBm headroom before clipping. Motion sensing control logic. Front panel edit and cue; stepless bias adjustability, built-in test and cue oscillator; all front accessible. 600 ohm, +4dBm or -10dBm fixed-level output and XLR connectors. Remote controllability for all transport functions. In short, it's a sheer professional masterpiece to produce desired 15 or 7-1/2 ips masters.

The performance and reliability have been fully proven since its original version was introduced in 1973, in more than one thousand practical applications by broadcasters, studio recordists, audio-visual professionals and musicians all over the world. For the full story of this unique and compact professional machine, ask anyone who uses it or get in contact with your nearest Otari distributor.

Please send me details on
MX5050-2SHD

Name

Company

Address

WW — 081 FOR FURTHER DETAILS
INSIST ON
VERSATOWER
BY PROFESSIONALS—FOR PROFESSIONALS

Designed for Wind Speeds from 85 m.p.h. to 117 m.p.h., conforming with CP3 Chapter V, part II.

First in the field with a fully interchangeable (versatile) telescopic, tilt over, tower system. Acclaimed as the world leader in the field of communications and lighting, both static and mobile.

Since the launching of the Versatower system early in 1968 we have operated a continuous development and applications programme. Consequently from inception right through to the present day, detail design, materials used and production techniques employed are continually updated. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

With many thousands of satisfied users throughout the world, coupled with our no nonsense guarantee and immediate spares availability, it makes little sense to settle for an alternative product.

STRUMECH
VERSATOWER SYSTEM
WW—033 FOR FURTHER DETAILS
Mini-priced breadboards for maxi-sized projects.

Experimentor low-cost solderless breadboards are the first in the world specially designed for 0.3" and 0.6" pitch DIP's. They clip together by an exclusive interlocking system in any configuration, (just like dominoes), so you arrange the breadboards to suit your circuit, not vice-versa.

They are precision moulded from durable, flame-retardant plastic, and feature alphanumeric coding for easy circuit building, and non-corrosive, pre-stressed nickel-silver alloy contacts — reliable for well over 10,000 insertions.

Contact resistance is a mere 0.4 mΩ and interterminal capacitance is typically less than 5 pF. The Experimentor is usable to over 100 MHz.

Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's (0.6" centre IC's) while the 300 and 350 models are for smaller DIP's (0.3" centres). All four models, of course, also take all standard components, the 0.1" grid being compatible with transistors, diodes, LED's, capacitors, resistors, pots — in fact any component with lead sizes between 0.015" and 0.032".

A useful quad bus strip (EXP4B) further expands the versatility of the system for the MPU user.

Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4-40 flathead screws or from the rear with 6-32 self tapping screws.

But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits. If you're working on IC's, MPU's, memories, displays or any other circuits, buy the breadboards that are designed for you.

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night.

Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.

Otherwise ask for our complete catalogue.
One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17Hz signalling circuits, the other with several voltage ratios also suits a 50Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Qr if you want to request a product spec of your own—we're always interested!

Surprising how often you’ll find Whiteley make it.

Whiteley Electrical Radio Co. Ltd
Mansfield, Notts NG18 5RW, England. Tel: 0623 24762.

"They want safety isolation for their voice band circuits"
Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .

Each of the 6 volumes of this self-instruction course measures 11¼ x 8½ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital Systems.

£7.10

plus 90p packing and surface post anywhere in the world

Overseas customers should send for Proforma invoice

Quantity discounts available on request.

VAT zero rated.

Also available — a more elementary course assuming no prior knowledge except simple arithmetic

Digital Computer Logic and Electronics

In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.60

plus 90p P & P

Offer Order both courses for the bargain price £11.10 plus 90p P & P

A saving of £1.50

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

NEW from Cambridge Learning Enterprises.

FLOW CHARTS & ALGORITHMS

£2.95

plus 45p p & p

Guarantee — If you are not entirely satisfied your money will be refunded.

To Cambridge Learning Enterprises, Dep COM FREEPOST
Rivermill House, St Ives, Huntingdon, Cambs PE17 4SB

*Please send me set(s) of Design of Digital Systems at £8.00 each. p & p included

or

*Please send me set(s) of Digital Computer Logic and Electronics at £5.50 each. p & p included

Name
Address

To: Cambridge Learning Enterprises

*Please send me set(s) of Design of Digital Systems at £8.00 each. p & p included

or

*Please send me set(s) of Digital Computer Logic and Electronics at £5.50 each. p & p included

Name
Address

*Delete as applicable

No need to use a stamp — just print FREEPOST on the envelope

WWW-45 FOR FURTHER DETAILS

WWW-11
Heard any good books lately?

Good listening begins with the right equipment — and the HI-FI Year Book gives you the low down on just about everything the market has to offer. With separate illustrated sections for every major category of equipment, it’s got descriptions, prices, specifications, who makes it, where to buy it — everything you need to know. And all this information is backed by authoritative articles on the latest hi-fi developments, including quadraphonic recording. But you’d better order your copy quickly — lots of people will be pricking up their ears at news of this latest edition.

HI-FI YEAR BOOK 1978

Available direct from the publishers @ £3.40 inclusive or from leading booksellers and newsagents price £3.00.

To: IPC Business Press Ltd., Room CP34
Dorset House, Stamford Street, London SE1 9LU

Please send me... copy/copies of HI-FI Year Book 1978 @ £3.40 a copy inclusive, remittance enclosed.

NAME (please print)
ADDRESS

Registered in England No. 677128
Regd. Office: Dorset House, Stamford Street, London SE1 9LU

ITT ELECTRONICS LIMITED
Multilayer Ceramics Division
South Denes, Great Yarmouth, Norfolk. NR30 3PX
Tel: 0493 56122 Telex: 97421

BULK ERASURE PROBLEMS?

If it’s personal we can only advise a diet or joining weightwatchers.
If it’s to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of 11½” and tape width of 1”, quickly and efficiently within the time it takes to read this advertisement.

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry. Moderately priced and available from:

LEEVERS-RICH EQUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL
Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley
The Quickest, Simplest Way of Punching Holes in Sheet Metal

Q-Max punches make clean, accurate holes every time, in no time. With no filing, no jagged edges, virtually no burns—with no hard work. And no holes are barred. Round or square, Q-Max punches are available in sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge.

No wonder they're used by all government services (Atomic, Military, Naval, Air, GPO, Ministry of Works) and all over the world by radio, motor and industrial manufacturers, plumbing and sheet metal trades and garages.

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMBOARD

The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins

Incorporates Bus Strips For Vcc And Ground

Includes A Component Support Bracket

Has Over 500 Individual Sockets

And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only £9.72 (cheque with order) Including VAT and P.P.

Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors

BOSS INDUSTRIAL MOULDINGS LTD

Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 0AU, England

Telephone 01-737 2383, Telex 819693

WWW—025 FOR FURTHER DETAILS

Beyer Dynamic (GB) Limited

1 Clair Road, Haywards Heath, Sussex.

Tel: Haywards Heath 51003

WWW—023 FOR FURTHER DETAILS

seen from the professional angle

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accoustical conditions.
The Allen and Heath Broadcast Feed Forward Delay Limiter.

The only limiter that makes it IMPOSSIBLE for a transient peak to pass through the unit, without the use of clipping devices. Included in its design is a revolutionary bucket brigade integrated circuit. This delays the main signal path by approximately one thousandth of a second. Thus gain reduction is fed forward before there is any increase in the programme level. The unit can be used with high powered equipment such as broadcast units and P.A. systems. Use it too in studios with effects units.

Try and test one at our demo. studio. Pembroke House, Campsbourn Road, Hornsey, London N8. Or, for more information, call Andrew Stirling at 01-240 3291.

Light in weight and low in cost, new Thermalloy heat sinks are designed specifically for plastic or metal case power devices.

They are remarkably simple to use, no extra mounting hardware is required—and they can be attached to the device after board assembly.

The slip on types have positive retention and can be supplied with locking tabs.

For full details of the range, simply return the coupon—cutting costs without cutting performance is a good idea you ought to know about.

Thermalloy
MCP Electronics Ltd., Alperton, Wembley, Middlesex
Tel: 01-902 5941

Please send me full details on Thermalloy heat sinks.

Name__________________________Tel:__________________________
Company______________________
Address________________________

WW—021 FOR FURTHER DETAILS
We know of only one other Power Amplifier Module superior to our JPS 100: The JPS 150

For starters, JPS Power Amplifier Modules are designed, manufactured and tested in England, yet sold throughout the world.

Incorporating comprehensive protection circuits including mismatch, short and open circuits, impedance and thermal protection, these Modules will ensure a high standard of both reliability and top performance.

Unlike other models, they offer an indefinite life-span! Should they ever require any attention or repair, all components on both Modules are easily replaceable. And, what's more, they both also carry a full two-year guarantee. That's confidence for you!

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>JPS 100</th>
<th>JPS 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
<td>110 watts RMS 8 ohms</td>
<td>170 watts RMS 8 ohms</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>10 kHz - 0 dB</td>
<td>10 kHz - 0 dB</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>8 V/μs</td>
<td>10 V/μs</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>0.04% / kHz</td>
<td>0.04% / kHz</td>
</tr>
<tr>
<td>Noise</td>
<td>115 dB below 100 kHz</td>
<td>115 dB below 150 watts</td>
</tr>
<tr>
<td>Damping Factor</td>
<td>Greater than 300 to 1 kHz</td>
<td>Greater than 400 to 1 kHz</td>
</tr>
<tr>
<td>Input Sensitivity</td>
<td>0 dB (0.775 volts) 100 watts</td>
<td>0 dB (0.775 volts) 150 watts</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>47kΩ</td>
<td>47kΩ</td>
</tr>
<tr>
<td>Power Ratings</td>
<td>48 Watts</td>
<td>55 Watts</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>-0.02 dB</td>
<td>-0.02 dB</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 dB</td>
<td>+0 dB</td>
</tr>
<tr>
<td>Hum</td>
<td>-30 kHz</td>
<td>-22 kHz</td>
</tr>
<tr>
<td>Noise</td>
<td>100 watts</td>
<td>150 watts</td>
</tr>
<tr>
<td>Rate</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Factor Greater than</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>-0.02 dB</td>
<td>-0.02 dB</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 dB</td>
<td>+0 dB</td>
</tr>
<tr>
<td>Hum</td>
<td>-30 kHz</td>
<td>-22 kHz</td>
</tr>
<tr>
<td>Noise</td>
<td>100 watts</td>
<td>150 watts</td>
</tr>
<tr>
<td>Rate</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Factor Greater than</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

*These parameters may be changed to suit particular requirements.

For industrial usage: frequency response can be extended DC to 30kHz + GdB - 0-2dB (+150 only)

Supplies

- **JPS 100 powers:**
 - 1 JPS 100 power: £15.51
 - 2 JPS 100 powers: £28.82

- **JPS 150 powers:**
 - 1 JPS 150 power: £32.51
 - 2 JPS 150 powers: £51.00

All Prices are subject to £8 + VAT

FYLDE

TRANSUDER and RECORDER

AMPLIFIERS and SYSTEMS

Fylde Electronic Laboratories Limited.

49/51 Fylde Road Preston PR1 2XQ
Telephone 0772 57560

ELECTRONIC INDUSTRIAL THERMOMETER

The modern way to measure temperature.

A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carry case, Probe and internal 1½ volt standard size battery.

Model "Mini-Z"
- Measures from -40° C to + 70° C. Price £26.00
- Measured from 5° C to 105° C. Price £26.00
- Model "Mini-Z Hi" measures from + 100° C to + 500° C. Price £27.50

(VAT 8% EXTRA)

Write for further details to

HARRIS ELECTRONICS (LONDON)

138 Gray's Inn Road, London WC1 X 8AX
(Phone 01-837 7937)

WW — 046 FOR FURTHER DETAILS

www.americanradiohistory.com
FAST RESPONSE STRIP CHART RECORDERS
Made in USSR

Series H3020

Basic error: 2.5%
Sensitivity: 8mA F.S.D.
Response: 0.2 sec
Width of each channel:
Single and three-pen recorders: 80mm
Five-pen recorders: 50mm

Chart speeds, selected by push buttons: 0.1-0.2-0.5-1.0-
2.5-5.0-12.5-25 mm/sec
Chart drive: 200-250V 50Hz
Recording: Syphon pen directly attached to moving coil frames.
Curvilinear co-ordinates
Equipment: Marker pen, timer pen, paper footage indicator, 10
rolls of paper, connectors, etc.

H3020-1 (Single pen): 285mm wide x 384mm deep x 165mm high
PRICE £108.00

H3020-3 (Three pen): 475mm wide x 384mm deep x 165mm high
PRICE £180.00

H3020-5 (Five pen): 475mm wide x 384mm deep x 185mm high
PRICE £295.00

Note: Prices are exclusive of VAT
Available for immediate delivery

Z & I AERO SERVICES LTD.
44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-727 5641
Telex: 261306

NEW for electronic design engineers!

UNIX PRINT for printed circuits

Invaluable for holding P.C.B's and other panels when inserting and soldering components. Can be adjusted to suit work up to 280mm, rotating to gain access to reverse side and locks in any position. All metal.

Price £10 inc. VAT P&P £1

Write or phone for full details

S2 Drill Stand

Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P1 & P2 drills

Price £18.50 inc. VAT P&P £10.60

P2 Drill £18.50 inc. VAT P&P £10.60

S1 Drill Stand

Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work

Price £5.13 inc. VAT P&P £8.00

P1 Drill £9.67 inc. VAT P&P £14.00

DIY EXHIBITION
Olympia Empire Hall
STAND

15-29 October

Sole UK Distributors
PRECISION PETITE LTD
119a HIGH STREET TEDDINGTON MIDDLESEX TW11 8HG
TEL: 01-977 0878

WWW.PETITE.COM

WWW.AMERICANKID.COM

P L LTD

WWW.AMERICANKID.COM
Sell Reditronics.

We make Public Address and Entertainment Systems and Audio Visual Equipment - amplifiers, disc and cassette players, tuners, speakers, mixers - the whole works, and we make them very well. They're soundly designed, ruggedly built and capable of the most arduous use with the minimum of maintenance. Our prices are keen, our deliveries are prompt.

Our equipment is used by such household names as Redifon, Carrefour, Rank Hovis McDougall, British Airways, Cunard, I.B.M., Grand Metropolitan Hotels and National Museums. And it's designed to interface with most other manufacturers' ranges. What more could we want? Well, right now we're looking for more overseas representation in those areas where we don't already have agents.

Interested? Turn the page.

A member company of the Redifon Organisation.

Total systems capability.

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - 'MUSICAL' - POWER AMP MODULES

* T.H.D. TYPICALLY..007%
* ZERO T.I.D. (SLEW-RATE LIMIT 16 V/s)

Module size: 120 x 80 x 25 mm, using glass fibre pcbs with ideal and order results. Illustrated with light duty heating.

CRIMSON ELEKTRIK power amplifier modules are fast gaining a reputation as the best sounding, most musical modules available. Developed by the world renowned Nicholas of Crimson ELEKTRIK, modules are available for listeners from modest budgets up to the most refined hobbyist and into the I.B.D. Hi-fi equipment is given intelligently and tested on real loads under ideal and hybrid, in fact, even impossible load conditions. Four transistors of a real sophistication. Square waves maintain their waveforms up to full power while time domain distortions are never heard. Modules are ready to hand wire with impinger-terminated and a setting limiter, if I.C. or other system 5.5. 100W Modules 80-20 watts/700V input. DC coupled 90 watts/1500V. 30W. 300W Modules 10-15 watts/750V input. DC coupled 60 watts/1500V. 300W Modules 10-15 watts/750V input. DC coupled 60 watts/1500V. 300W Modules 10-15 watts/750V input. DC coupled 60 watts/1500V.

Modules are attached to black celluloid transition blocks. 50ohm. 200w.

the indispensable

BIRD 43

THRULINE WATT METER

0.45-2300 MHz, 0.1-10,000 watts
The Standard of the Industry
What more need we say... Exclusive UK representative

CRIMSON ELEKTRIK

74 STATION ROAD
RALBY
LEICESTER, LE6 0UN
TEL: (0533) 388211

aspen electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UF
TELEPHONE: 01-868 1188 - TELEX 8812727

WW—000 FOR FURTHER DETAILS
We're right behind you.

The strength of Reditronics can be summed up in one phrase. Made in Jersey. It's here that the equipment is designed, it's here the tooling is made, it's here that virtually all component parts are manufactured and it's here that assembly and testing takes place. Self sufficiency maximises our performance and minimises your problem - we deliver. And we give full technical back-up.

Interested?

Well if your organisation is qualified to sell and install our products we'd like to hear from you soon.

REDITRONICS

REDDIFFUSION REDITRONICS LTD.
La Pouquelaye, St. Helier, Jersey C.I. Tel (0534) 30321 Telex 41341
A member company of the Rediffusion Organisation.

Total systems capability.

WW—108 FOR FURTHER DETAILS

NEW FACILITIES AVAILABLE FOR WW TELETEXT DECODER

'Board 3' is now available as an additional unit to update the 'Wireless World' Teletext Decoder to give double height characters, colour background, conceal/reveal, etc., as described in this issue of 'Wireless World'.

Our main kits contain all the printed circuit boards and components necessary to build the complete decoder.

A reprint of the series of articles is available at £1.50 + large 15p SAE (included free in complete kit).

PRICES INCLUDE VAT

Table: | Description | Price
|----------------------------|--------
| Original with tapes, post & packing | £121.70
| New version | £133.70
| Set of 5 PCBs | £21.70
| Component Kit (incl. PCBs) | £120.95
| Add-on Unit for lower case PCB | £2.70
| Component Kit (incl. PCB) | £13.75
| Cabinet | £14.85

- PLATED THROUGH HOLE PCBs for TExAS version only at additional cost of £1.50
- COMPONENTS ALSO AVAILABLE SEPARATELY: £281.87 + VAT
- DE LUXE VERSION WITH NEW FACILITIES: £282.50 + VAT

WW MATRIX H DECODER

Based on the design for a MATRIX H DECODER published in June issue of Wireless World, with subsequent corrections, this Catronics Decoder is now generally available from stock in two versions:

Kit comprising P.C.B.s, i.e. and all components to mount on the boards at £38.30.

Ready built, housed in attractive cabinet with integral power supply and stereo (Quad switching at £89.37)

These prices include Sageai Royalty Fees, VAT and P&P.

VHF FREQUENCY COUNTERS

Manufactured and guaranteed by Catronics Ltd.

Price only £137.50 + VAT

Write for illustrated leaflet.

FILTER OSCILLATOR 631 £108 + £2.50 P&P

631 LF £113 + VAT

631· O Hz to 100 KHz 631 LF 0.01 Hz to 10 KHz

Delivery is normally ex-stock - telephone for confirmation

Prices correct at time of going to press, subject to change without notice.

OMB electronics, Riverside, Eynsford, Kent. Tel 0322 863567

WW – 103 FOR FURTHER DETAILS
Demand for reprints of Wireless World constructional projects for audio equipment is so high that we have gathered 25 of the best of them together in High Fidelity Designs. These are the 'most requested' articles which you have asked for and all have been fully updated. Hurry for your copy — it's likely to sell out fast!

High fidelity designs

Tape/disc/radio/amplifiers/speakers/headphones

A BOOK FROM WIRELESS WORLD

£2.50 from newsagents and bookshops or £2.75 by post from the publishers

Contents:
- FM tuner design
- Novel stereo FM tuner
- Low-noise, low-cost cassette deck
- Wireless World Dolby noise reducer
- Wideband compressor/limiter
- An automatic noise-limiter
- Modular integrated circuit audio mixer
- The wallhenna
- Electronic piano design
- Advanced preamplifier design
- High quality tone control
- Multi-channel tone control
- Bailey-Burrows preamplifier
- 30-watt fidelity amplifier
- 30-watt amplifier modification
- Baxandall tone control revisited
- Active crossover networks
- Electrostatic headphone amplifier
- Class A power amplifier
- An I.C. peak programme meter
- Horn loudspeaker design
- Horn loudspeaker
- Transmission-line loudspeaker enclosure
- Commercial quadraphonic systems

To: General Sales Department, Room CP34
Dorset House, Stamford Street, London SE1 9LU

Please send me copy/copies of High Fidelity Designs at £2.75 each inclusive.

I enclose remittance value £
(cheques payable to IPC Business Press Ltd)

NAME
(please print)

ADDRESS

Company registered in England No. 671128
Regd office Dorset House, Stamford Street, London SE1 9LU

31

www.americanradiohistory.com
PROTECTION FOR YOUR TAPES!

R.B. ANNIS HAN-D-KITS NOW AVAILABLE IN EUROPE!

Valuable audio and video tapes can be damaged when played on equipment that is not thoroughly and regularly demagnetized. Magnetism can easily build up in capstans, tape guides or recorder heads at point where it will degrade the magnetically recorded signal on tapes passing over them. Tape damage is first apparent as a loss of recorded high frequencies, and a progressive increase in background noise each time they are played on magnetized equipment.

Until recently, there has been no easy way to tell when demagnetizing was needed, and most demagnetizers on the market were far too weak to be effective, particularly on0d offending hardened steel guides on capstans, etc. Now, with the introduction of the Audiophile Hand-D-Kit, both measurement and correction problems can be solved easily at modest cost.

Here is one convenient package is everything needed to measure magnet levels quickly, along with a handy, powerful unit to demagnetize components completely before they can spoil valuable tapes.

ONLY 19.90

ANNUAL POCKET MAGNETOMETER Measures level of magnetism in components. Calibrated so read directly in gauss. Model 20/85 shown.

TEST STRIPS One of these sensor strips is magnetically soft and the other magnetically hard. For experiments and testing your demagnetizing technique.

CLIP-ON EXTENSION PROBE Extension probe a 15/16” long. Can be formed with fingers, improves checking of magnets in reach components.

WANT TO KNOW MORE? WRITE FOR YOUR FREE COPY OF OUR 8-PAGE BROCHURE INCLUDING “NOTES ON DEMAGNETIZING”

Here’s What the Audiophile Hand-D-Kit Contains

ANNULE SPARES

Audiophile Hand-D-Kit

BROCHURE on SPARES

MAIL ORDER ONLY

APPOINTMENT

DIODES

<table>
<thead>
<tr>
<th>ODA1</th>
<th>ODA2</th>
<th>ODA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0D</td>
<td>1.1D</td>
<td>1.2D</td>
</tr>
</tbody>
</table>

RECEPTORS

<table>
<thead>
<tr>
<th>BY100</th>
<th>BY101</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8D</td>
<td>1.9D</td>
</tr>
</tbody>
</table>

THYRISTORS

<table>
<thead>
<tr>
<th>2N4443</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2D</td>
</tr>
</tbody>
</table>

Bridge Rectifiers

<table>
<thead>
<tr>
<th>BY164</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4D</td>
</tr>
</tbody>
</table>

HIGH VOLTAGE

<table>
<thead>
<tr>
<th>2N3051</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0D</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>MC3037</th>
<th>MC3038</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0D</td>
<td>6.0D</td>
</tr>
</tbody>
</table>

REPLACEMENT COMPONENTS

<table>
<thead>
<tr>
<th>Audiophile Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 each</td>
</tr>
<tr>
<td>Lorti Korting</td>
</tr>
<tr>
<td>BRC350 Cutouts</td>
</tr>
</tbody>
</table>

Valves

<table>
<thead>
<tr>
<th>QY86/77</th>
<th>QY86/78</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 each</td>
<td></td>
</tr>
</tbody>
</table>

EENT COMPONENTS

<table>
<thead>
<tr>
<th>2N4443</th>
<th>2N4444</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8D</td>
<td>1.9D</td>
</tr>
</tbody>
</table>

Distributor

FACK, S-132 02 SALTSJÖBO, SWEDEN

WWW FOR FURTHER DETAILS

Price List

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.00</td>
<td>49.00</td>
</tr>
<tr>
<td>49.00</td>
<td>59.00</td>
</tr>
<tr>
<td>59.00</td>
<td>69.00</td>
</tr>
<tr>
<td>69.00</td>
<td>79.00</td>
</tr>
<tr>
<td>79.00</td>
<td>89.00</td>
</tr>
</tbody>
</table>

For more information, visit:

www.americanradiohistory.com
PHILIPS
YOU & PHILIPS
HI-FI KITS

The top sellers for home assembly in Europe—now available in the U.K.

Now—read all about the Philips range of quality kits for home assembly—mixers, amplifiers, speakers, etc. etc. Send today to S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN.

Please send me, quickly, the new colour catalogue.

Name

Address

Postcode

S.S.T Distributors is a member of the Philips Group of Companies.

Wireless World, November 1977
Our forte

40,000 L series bench power supplies sold and 50% of the U.K. market is certainly a strong point in favour of buying Farnell.

The latest version provides either constant voltage or constant current, features large recessed meters, overload and short-circuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>L50-05</td>
<td>0-50V</td>
<td>0.5A</td>
</tr>
<tr>
<td>L30-1</td>
<td>0-30V</td>
<td>1A</td>
</tr>
<tr>
<td>L10-3C*</td>
<td>0-10V</td>
<td>3A</td>
</tr>
<tr>
<td>L30-2</td>
<td>0-30V</td>
<td>2A</td>
</tr>
<tr>
<td>L30-5</td>
<td>0-30V</td>
<td>5A</td>
</tr>
<tr>
<td>L12-10C*</td>
<td>0-10V</td>
<td>10A</td>
</tr>
<tr>
<td>LT50-05 twin output unit</td>
<td>2 x 0 - 50V</td>
<td>0.5A</td>
</tr>
<tr>
<td>LT30-1 twin output unit</td>
<td>2 x 0 - 30V</td>
<td>1A</td>
</tr>
<tr>
<td>LT30-2 twin output unit</td>
<td>2 x 0 - 30V</td>
<td>2A</td>
</tr>
</tbody>
</table>

*with adjustable overvoltage protection

For full specification and prices contact:

FARNELL INSTRUMENTS LIMITED - SANDBECK WAY - WETHERBY - WEST YORKS LS22 4DH - TELEPHONE 0937 635411 - TELEX 557294 - LONDON TEL. 01 864 7433

WWW.—074 FOR FURTHER DETAILS

Can you Display a Digit for £13.00

We can with our NEW "Mains Operated" XL30 3-digit high accuracy Panel Meter in D.I.N. size cut-out box of unusually shallow depth. Offering a very high specification.

1. Integral mains power supply
2. Auto Zero
3. 0.1% Accuracy
4. Box Depth 60.5mm
5. Large unambiguous led readout
6. XL31 version with isolated B.C.D. outputs, and lexie card facilities
7. £50'1 off quantity discounts available

*£39.100 off

Gas filled indicator tubes always available

character heights 8-135 mm.

KGM ELECTRONICS LIMITED

Clock Tower Road, Isleworth, Middlesex TW7 6DU
Tel: 01-568 0151. Telex 934120

WWW.—042 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors
Amphenol (Tuchel) miniature connectors with coupling nut
Muschmann Banana plugs and test probes
XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf

Future Film Developments Ltd.
36-38 Lexington Street
London W1R 3HR
01-437 1892/3

WWW.—044 FOR FURTHER DETAILS
They're here! For PAL.

Yes, actually available in Britain! It took a year due to unprecedented demand for NTSC. But the outstanding 3½" U-format colour video cassette recorders from JVC have now arrived.

Six brilliantly versatile models with the name that's known for innovation. You've heard about them. You've talked about them. Now see for yourself what's behind their global reputation. Whatever the brief - for boardroom or classroom, oil-rig or top-flight recording studio - there's a model that's right... flexible in operation... reliable in the extreme.

From JVC - the name worth its wait.
And for all U-format systems - famous for colour clarity, the Fuji video cassette, Beridox, is also available from Bell & Howell.

To Bell & Howell AV Ltd., Freepost, Wembley, HA0 1BR.
And I'm here! Please send me the literature.

Name
Organisation
Address

WWW-098 FOR FURTHER DETAILS
SEED

SWTPC 6800 £340.00 COMPLETED
Comprising:
POWER SUPPLY
C.P.U.
4K STATIC RAM
CASSETTE INTERFACE
CONTROL INTERFACE

MINI FLOPPY
BFD-1 single £522.00 ASS.
BFD-2 dual (as illustrated) £785.00 ASS.
BFD-3 triple £1045.00 ASS.

SOROC TERMINA
75 TO 19200 BAUD
WRITE PROTECT
HIGHLIGHT
SCROLL
BLOCK MODE ETC.
£699.00 ASSEMBLED

Send S.A.E. for full brochure

STRUMMECH ENGINEERING
ELECTRONICS DIVISION
PORTLAND HOUSE
COPPICE SIDE
BROWNHILLS
WALSALL
BROWNHILLS 4321

Send for the EGEN Product Summary

EGEN ELECTRIC LTD
CANEY RD, CANVEY ISLAND, ESSEX, SS8 OPG, ENGLAND.
TEL: 037 43 2214, TELEX: 99371

A member of the Pye of Cambridge Group.

Wilmslow Audio

THE Firm for Speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE
OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC.
AND DISCOUNT PRICE LIST

ATC • AUDAX • BAKER • BOWERS & WILKINS
• CASTLE • CELESTION • CHARTWELL •
• COLES • DALESFORD • DECCA • EMI •
• EAGLE • ELAC • FANE • GAUSS •
• GOODMAN • HELME • I M F •
• ISOPHON • JR • JORDAN WATTS • KEEF •
• LEAK • LOWTHER • McKEENZIE •
• MONITOR AUDIO • PEERLESS • RADFORD •
• RAM • RICHARD ALLAN • SEAS •
• TANNOY • VIDEOTONE • WHARFEDALE

WILMSLOW AUDIO [Dept. WW]
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street
Tel. Wilmslow 29599 for Speakers Wilmslow 26213 for Hi-Fi

Send for the World's Best Catalogue

WWW.AMERICANRADIOHISTORY.COM
The best wow and flutter meter your money can buy

The PM6307 is a new easy-to-use instrument that measures wow, flutter and drift with high accuracy and stability due to a unique X-tal controlled oscillator. It is a 'must' for the workshop that needs to measure and identify unwanted speed variations in audio and video tape recorders, record players and movie projectors. It adds to the highly successful range of Philips instruments (some of which are shown here) for the radio, audio and TV workshop. Write today for full information on the new PM6307 and a 16-page illustrated brochure on radio and TV service equipment.

1 PM5501 PAL TV Pattern Generator
Extremely light portable instrument for service in customer's home. Five different test patterns for colour and black/white installation and service.

2 PM5509 PAL TV Pattern Generator
The ultimate in pattern generators. Full IF coverage: bands I, III, IV & V. Electronic tuning with preset channels. 10 test patterns (colour and black/white).

3 PM6456 FM Stereo Generator
The PM6456 gives a complete stereo signal, L&R signal. Internal L.F. modulation: 1 and 3 kHz. External stereo modulation possibility.

4 PM5344 HF Generator
Frequency range 100 kHz-110 MHz. X-tal calibration. Special bandspread ranges. High frequency stability.

5 PM5334 TV Sweep Generator
Ideal for overhauling rental sets. 8 frequency ranges. 3 MHz-860 MHz. Sweep with continuously adjustable, 8-50 Hz. One variable and 3 fixed markers.

Pye Unicam Ltd
Philips Electronic Instruments Dept
York Street, Cambridge, England CB1 2PK
Tel: Cambridge (0223) 580646 Telex: 817331

The RANGE of experience

WWW-090 FOR FURTHER DETAILS
MAGNUM AUDIO MODULES

ENCAPSULATED AUDIO MODULES WITH UNIQUE FEATURES FOR BUILDING QUALITY HI-FI SYSTEMS.
BACKED BY FIRST CLASS APPLICATION DATA, INFORMATION SERVICE AND FULL RANGE OF ANCILLARY COMPONENTS—TWO YEAR GUARANTEE.

CP-P1
A fully encapsulated stereo pre-amplifier / tone control module incorporating four separate amplifiers and a stabiliser circuit which may also be used to power the CP-FG1. Equalisation networks associated with the low noise input stages may be switched in for disc replay and provision is made for optimum cartridge loading. The magnetic input noise level is > 70dB down on 3mV and distortion is < 0.02%. The 33dB overload margin is extended to > 40dB when used in conjunction with the CP-FG1. It only takes connection to a few pots and switches and to a +18V supply to make a complete 'state of art' pre-amplifier.

CP-FG1
This fully encapsulated audio function module incorporates some unique features. Two stereo filters ('rumble' and 'hiss') are provided, each with its own slope control and choice of three cut-off frequencies. A stereo separation control allows variation of the apparent image width to suit listening conditions. This can provide a degree of realism not possible from conventional systems. Signal to noise and distortion performance is in line with that of the CP-P1.

CP-TM1
A peak programme monitor circuit which, when used with a suitable meter movement, is capable of capturing the peak transient information in an audio signal and storing it long enough for it to be displayed by the meter movement and noted by the user. When used in any of the Magnum Systems, it can ensure that the available signal to noise and distortion performance is realised.

CP-DR1
This dynamic range controller has two main applications. Firstly it may be used to compensate for any compression or peak limiting which may have been applied to radio broadcasts or commercial gramophone recordings and thus restore lost realism. Secondly, it may be used to make 'noise free' tape recordings as an additional 30 - 40dB of dynamic range can be encoded and recorded onto most cassette recorders and then decoded and recovered on replay. The unit may also be used as a compressor for listening in high noise environments (the motor car!) or for the preparation of 'constant volume' background music.

CP-LX1 and LX2
Linear phase active crossover networks which may be used to replace any passive crossover network in an existing speaker or in your next 'creation' why not try an LX1 in the 'High Quality Bookshelf Speaker'. (WW Oct. '77 p.42) In addition to the advantages of improved loudspeaker damping, transient response and intermodulation performance, these crossovers are easily adjusted to your chosen frequency(ies) by selecting two resistors per crossover point. Should you wish, we will preset them for you.

CP2-15/20
Encapsulated into a generous heatsink are two 15/20 Watt r.m.s. amplifiers. By virtue of their configuration, a single module can give 20 Watts per channel using 4 Ohm speakers or 15 Watts per channel with 8 Ohm speakers. Alternatively, both the amplifiers in a module may be used to drive a single speaker, effectively doubling the power to 30 Watts r.m.s. with 15 Ohm speakers or 40 Watts into 8 Ohms. These amplifiers operate in 'Class A' up to 3-4 Watts before entering 'Class B', and hence give excellent crossover performance. Protection is provided against overload and short circuit operation and inadvertent reversed supply connection and each amplifier has its own thermal overload switch. Transient performance is virtually unaffected by loading and free from overshoot and 'T.I.M.' distortion. All this adds up to a versatile and robust unit capable of giving an extremely 'clean' and 'musical' performance.

Send SAE for details of all MAGNUM AUDIO MODULES

MAGNUM AUDIO LTD.

DEPT. W11, 13 HAZELBURY CRESCENT
LUTON, BEDS, LU1 1DF. Tel. 0582-288877

WWW.AMERICANRADIOHISTORY.COM
"EEV Triodes and Tetrodes coming through loud and clear"

High quality components from EEV are the best replacements in fixed station, portable or transportable radio transmitters.

EEV are one of Europe's leading manufacturers in this field with unparalleled experience and expertise.

Many types are available in the 50 to 1000 watt range, but only one standard of quality, the highest.

If you want to know more, please fill in the coupon and send it to us at Chelmsford.

To: EEV, Chelmsford, Essex, CM1 2QU, England.
Please send me details of EEV Triodes and Tetrodes. □
General information. □ Please tick.
Or information for equipment type
Name
Position
Company
Address
Telephone Telex

EEV/M-OV
Members of GEC - turnover £1902 million

ENGLISH ELECTRIC VALVE CO LTD, CHELMSFORD, ESSEX, ENGLAND CM1 2QU. TEL (0245) 61777. TELEX 99103. GRAMS ENELECTICO CHELMSFORD.
WWW-006 FOR FURTHER DETAILS
Microcomputers and Wireless World

Wireless World, November 1977

Editor:
TOM IVALL, M.I.E.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Projects Editor:
MIKE SAGIN
Phone: 01-261 8429

Communications Editor:
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

News Editor:
JOHN DASSER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
Phone 01-261 8622

LEO KEMBREY
Phone 01-261 8515

CHRIS PRIER
Phone 01-261 8037

Classified Manager:
BRIAN DURRANT
Phone 01-261 8308 or 01-261 8423

EDDIE FARRELL (Classified Advertisements)
Phone 01-261 8508

JOHN GIBBON (Make-up and copy)
Phone 01-261 8551

Publishing Director:
GORDON HENDERSON

Wireless World

Microcomputers and Wireless World

Computers, it has been said, are hard-working idiots. This means that they are ready and able to cope repetitively with masses of figures that a large company needs, or thinks it needs, to run its business efficiently. They can do this at high speed, without making mistakes, but have to be programmed to carry out the work and must be provided with the data on which to work.

All that seems a long way from the domestic use of computers. The amount of number-crunching going on in the average household is not, one would have thought, at a level which requires the assistance of a computer — even the Christmas-present four-tab calculator is usually grossly under-employed. But in spite of this, a growing number of private users are acquiring microcomputers and, presumably, using them.

The uses to which microcomputers are applied appear to be trivial when the cost of a useable machine is considered — "on the road", so to speak. But it is inevitable that not only will the cost of the electronics be reduced, but that worthwhile work for this still fairly expensive hardware to perform will emerge — perhaps in information retrieval or self-education.

To cater for this interest, a series will describe the construction of a set of equipment, preceded by a look at micro-computers in general. That being done, there will probably be a variety of interfaces and peripheral equipment to make and where this journal's involvement might be supposed to end.

After all, Wireless World is a journal for those interested in electronics and programming is scarcely a related topic, unless the programme is concerned with the design of circuitry or systems. As an analogy, television is our concern, in so far as the studio, transmitter, transmission path and receiver are of interest to engineers, but programmes are not the business of Wireless World.

Nevertheless, processors and computers are probably going to have a marked effect on our kind of engineering and to ignore the applications of these devices would be unrealistic. The boom in the use of private computers in America may or may not be repeated here, but there is evidently a degree of interest here already and in due course readers will be provided with the type of information that they need. It seems probable that the educational and small-company use of microcomputers will come first, followed by hobby applications, but this is mere guesswork. Observations from readers will be welcome and will help us to decide on the way the subject is treated.

As a start, the first of a series of articles describing a general-purpose microcomputer is published in this issue. The series is not "constructional", but is an introduction to the subject to familiarise readers with microcomputers, in general. At a later date, it is the intention to publish a set of articles on the assembly and use of a microcomputer.
Microcomputer design

1 — Introduction to digital hardware based on a microprocessor

by Phil Pittman, B.Sc. in association with NASCO Ltd

The low cost computing power of the microprocessor is now being used to replace not only other forms of digital electronics but also analogue electronics and electromechanical and pure mechanical control systems. It is not unreasonable to assume that within the next five years or so there will be hardly any companies engaged in electronics which are not using microprocessors in one area or another.

One implication of this technology is that engineers skilled in the design of more conventional electronic circuits and systems now have to acquire new disciplines — those of digital computer system design and programming. This series of articles will present the theory and application of microcomputers by reference to a particular commercially available microprocessor, and to its use in a particular microcomputer system available to amateur experimenters as a kit (see panel). This low-cost kit includes memory, input/output circuits and a keyboard, and can be used in the home with a domestic television set as a display unit and an audio cassette recorder for permanent storage of programmes. The first article examines the hardware components and principles of operation of such a general purpose computer system. Future articles will explore programming languages, the organization of the central processing unit, and practical design techniques for both the hardware and software of microprocessor-based systems.

In its most general form a digital computer system has the structure shown in Fig. 1. The central processing unit (c.p.u.), memory and input and output units are the essential hardware blocks which any computer must have. The c.p.u. does the work, manipulating data as directed by a programme stored in the memory. The memory may also be used for storing data. Information is transferred to and from the outside world by the c.p.u. via the input and output units.

The c.p.u. being the most complex part and the heart of all operations in the system, will be examined first. It

Fig. 1. Basic structure of a digital computer.

Fig. 2. A typical standard logic block, considered in the article as a step on the way to programmable logic.
for the use of the microprocessor, not only for the more usual computer type applications of data processing, but also for dedicated controllers and logic replacement devices. The low cost of microprocessors has now made them an economic solution for countless applications.

It is worth exploring this programmable logic concept further in order to understand more fully the operation and application of the central processing unit. Consider a standard quad 2-input multiplexer logic circuit as shown in Fig. 2. Here we see a standard logic block having a number of data input and output lines. The functions performed within the block are implemented with conventional logic gates. The exact function performed is dependent on the state of other inputs to the "system". The source of input data is determined by the state of the "select" line and the data is transmitted to the output under control of the "enable" line. Extending this concept further, we can arrive at the example of Fig. 3. The logic block has now been enhanced to include binary arithmetic functions. Also, there must be several more control lines available to select both the a.l.u. function and the data source and destination.

This programmable logic system now looks remarkably similar to the a.l.u. of a computer or microprocessor. In the processor the function control lines are derived, usually via decoding logic within the processor, from the binary instruction words which form the computer's programme. In order to control the sequential fetching and execution of the control codes or instructions, from the programme memory the processor has a counter called a programme counter. If we now add a memory unit to the system of Fig. 3, together with additional a.l.u.

operations to transfer data to and from the memory, the resulting structure is virtually identical to the general purpose computer of Fig. 1.

Internally the c.p.u. processes information as parallel rows of bits (binary digits) and so information usually flows in and out in the same format. The multiplexer circuit example given in Fig. 2 receives and issues data in 4-bit parallel form. Common microprocessor organisations are based on 4-, 8-, 12- and 16-bit word lengths. Of these, the 4-bit devices were the earliest types to appear commercially, partly because they were useful in calculators operating with binary coded decimal data, but also because the a.l.u., being only 4 bits "wide," was less complex, this allowing more circuit functions for a given cost on a semiconductor chip of given area.

Nowadays the technology has developed such that a complex 8-bit processor or even a complete microcomputer can be built on a single chip, resulting in the fact that hardly any manufacturers are introducing new 4-bit designs now. Eight bits has proved to be the most popular word length for microprocessing since the majority of applications can conveniently be dealt with by 8-bit quantities. Also, 8 bits represents the best cost/performance trade-off compared with other word lengths. Current 16-bit microprocessors offer surprisingly little increase in performance over 8-bit machines, even for applications requiring the manipulation of 16-bit quantities. Using a 16-bit processor where an 8-bit one will suffice will also inevitably incur higher system hardware costs.

Microprocessor systems

By adding more detail to the diagram of Fig. 1 we can evolve a block diagram of a practical microprocessor system. In this case it represents part of the commercial microcomputer kit referred to above, which uses a Mostek Z80 microprocessor, and is shown in Fig. 4. A microcomputer system is merely an l.s.i. (large scale integration) implementation of the basic computer structure. The c.p.u., or microprocessor, is usually a single integrated circuit containing the a.l.u. plus programme sequence control and instruction decoding logic. The internal structure of the Mostek Z80 c.p.u. is shown in Fig. 5. The memory may consist of anything from one to a great many components of various types of memory. The input and output circuits may transfer data in serial or parallel fashion, the number of bits in a transfer being determined by the design, or more specifically the word length, of the microprocessor. Broadly speaking, the majority of input/output circuits (commonly abbreviated to i/o) in a microprocessor system will be of a parallel nature. Each i/o block is commonly called a port, where again the number of bits constituting a port is given by the microprocessor's word length. Each i/o port may be a complete integrated circuit, although many microprocessor families, including the Z80, have circuits containing a number of i/o functions.

All microprocessors use some form of clock circuit as a basic timing reference for instruction executions, memory and i/o operations. In the case of the Z80 a single-phase square wave has to be supplied to the c.p.u. component. This is provided by a simple t.t.l. circuit in the kit.

In order to form a working system these components must, of course, be suitably interconnected. Herein lies the elegance of microcomputer hardware. The microprocessor has a number of external connections which may be used directly or indirectly to provide three categories of information for the remainder of the system. These information "buses", as they are called (shown by broad arrows in the diagrams), are connected in a standard manner to the memory and i/o devices regardless of the end application and regardless of the number of memory and i/o components to be used. Consequently a microprocessor system

![Fig. 3. A general purpose arithmetic/logic block.](image)

![Fig. 4. Organization of a general three-bus microcomputer system.](image)
may be usefully programmed and reprogrammed for a variety of applications. Similarly, a system with minimal hardware, if well designed, may be expanded at will to a more powerful configuration. This was the philosophy of the kit design.

Consider these three information buses which are shown in Fig. 4. They are the data bus, the address bus and the control bus. The data bus is a bidirectional one used for transfer of both data and instructions into and out of the c.p.u. The number of lines constituting the data bus is the same as the number of bits in the machine's word length. The Z80, being an 8-bit c.p.u., has an 8-bit data bus. This means that the system memory must also be organised as locations of 8 parallel bits. Similarly, i/o transfers will be to and from 8-bit ports. The data bus is connected around the components of the system such that all devices are placed on the common bus. All information transferred under programme control travels on this bus via the c.p.u.; for example, to transfer an item of data stored in the memory to a port, the data must first be fetched from the memory and passed into the c.p.u. and then sent from the c.p.u. to the output port.

Now let us consider the address bus. The number of bits constituting this bus has no direct relationship to the word length of the microprocessor. The address bus is used to select, or address, the location in the memory or the particular i/o port required for the current operation. The Z80 processor has an address bus of 16 bits, allowing the kit to be expanded to a maximum of $2^{16} = 65536$ memory locations (or 64K bytes, where 1K = 1024). The value placed on the bus by the processor depends on the operation being performed, e.g. at the beginning of the instruction cycle the processor must supply the address of the next instruction in sequence to be fetched from programme memory. Then, during the execution of the instruction, data may be required to be moved between the c.p.u. and either the memory or an i/o port. If this is the case then the data memory address or i/o port address must be placed on the address bus by the c.p.u.

The third bus is the control bus. This is slightly different from the other two buses in that it is really a collection of individual control lines for memory, i/o and c.p.u. control. For example, in the case of the Z80 the main control signals are a "read" strobe pulse used to strobe data on the data bus into the c.p.u. from memory or i/o, and a "write" strobe to indicate that valid data is on the data bus from the c.p.u. to memory or i/o. This may be used to strobe data into a port or memory. Also there is an "input/output request" signal to indicate that the address bus contains a valid i/o port address, rather than a memory address. Similarly, there is a "memory request" signal indicating a valid memory address on the address bus, rather than an i/o address. Other control signals include a "reset" to the c.p.u., interrupt control (a concept explained later) and signals for suspending c.p.u. operation and de-activating the buses (useful in more complex, e.g. multiprocessor, systems).

A complete microcomputer system has now been evolved which contains all the necessary functional blocks. In a future article the Z80 c.p.u. (Fig. 5) will be explained in more detail, along with the concepts which influence its design and use. For now it is sufficient to say that in addition to the a.l.u., the c.p.u. contains various register stores. In the case of the Z80 there are 18 eight-bit registers and 4 sixteen-bit registers which are accessible to the programmer via the various c.p.u. instructions. Some of these registers serve special functions and others are general purpose stores similar to the main memory locations.

Memory organisation

It has already been implied that the memory of a computer system is used for two things – remembering instruction sequences (the programme) and remembering data. Semiconductor memory components may be one of two basic types, i.e. fixed, non-alterable memory and alterable, read/write memory. In dedicated microprocessor applications it is desirable to have the application programmes fixed in permanent memory so that they are not lost when electrical power is removed. When power is applied, automatic operation of the system is then to be guaranteed. Such memory is called "read only memory" (r.o.m.). A true r.o.m. as such generally has its information fixed in it during the manufacturing process according to the particular customer's requirements. Consequently there is a minimum manufacturing quantity for this "customising" which is typically in the region of 100 to 1000 units. A popular alternative for lower volume and prototyping applications is the p.r.o.m. This is a programmable r.o.m. where the information may be fixed by the user by an electrical process which still results in permanent storage. A further development of this is the erasable p.r.o.m. or e.p.r.o.m. These devices may have their data erased by exposure to short wavelength ultra-violet light, thereby enabling them to be reprogrammed.

Strictly speaking all these memories have the feature of being "random access". This means that any memory location may be reached, or "accessed", with equal ease, at random, by applying the appropriate address. However, the term "random access memory", or r.a.m., has commonly come to mean a read/write, or alterable, memory, e.g. the type used as a data storage element in a microprocessor system. In a general purpose computer system this r.a.m. may also be used as a programme store, thereby enabling different programmes to be loaded and executed at will.

The microcomputer kit referred to above employs a combination of the memories just described. In order to allow meaningful user communications with this system there is a 1024-location

Fig. 5. Internal structure of the Mostek Z80 central processing unit.

www.americanradiohistory.com
for variable data required by this programme. However, the main purpose of this r.a.m. is to allow the system to function as a general purpose computer, i.e. the user may enter his own programmes to the r.a.m., via the i/o peripherals and under control of the e.p.r.o.m. programme, for subsequent execution.

Input/output organisation

Data may be transferred to and from a microprocessor system in several ways, some under programme control and some initiated by external events not under control of the processor. The most commonly used type of input/output operation is generally that which is initiated by programmed instructions. The 280 can transfer an 8-bit value to or from an i/o port with an instruction taking 4 microseconds for its execution. Alternatively, a single instruction may be used to transfer a complete block of data at a rate of 8 microseconds per byte. The i/o instructions are used to transfer the state of data existing on the lines of an input port into the c.p.u. or, conversely, data from the c.p.u. to the lines of an output port. The circuits of the i/o ports frequently have the capability of temporarily storing the i/o data. That is, incoming data may be latched on the port by the peripheral device until it is accepted by the processor executing an input instruction. Similarly, data output from the processor is often latched on the port until required by the peripheral. A subsequent output to the same port could then change the state of the output lines.

Other ways of implementing input/output in a system are by direct memory access (d.m.a.) or by programme interrupts. Programme interrupts are a method of initiating a data transfer independent of the normal flow. For example, suppose the processor has to interrogate several peripheral i/o ports to see if they have any data to be collected for processing. One way for the c.p.u. to handle such a situation is for the system programme to control a “polling” routine whereby each device is periodically examined in turn for data. The disadvantage of this is that a great deal of valuable processing time may be consumed by checking for valid data at a port when frequently there may be none ready. Interrupt operation overcomes this limitation. Now the c.p.u. does not have to periodically check for valid data; it is told, or interrupted, by the peripheral when this data is available. This interrupt, usually sent as a signal from a interrupt control circuit, has the effect of suspending the execution of the programme and then forced the c.p.u. to a new programme which services the interrupting device. Upon completion of the service programme the c.p.u. is allowed to resume the previous execution of the programme. Fig. 6 shows the interrupt sequence diagrammatically. In a system with a number of separate interrupt sources it is usual to assign a priority to each one to ensure a sequence of servicing if multiple interrupts occur.

Direct memory access is generally a faster method of transferring data than may be achieved under programme control. D.m.a. transfers occur directly between the system’s memory and the i/o device without involving the c.p.u. Consequently the speed of data transfer is limited essentially only by the speed of main memory. A typical d.m.a. transfer rate would be in excess of 1 megabyte/s. A special d.m.a. controller circuit initiates and controls the transfer in response to an external request. The c.p.u. operation must be suspended during the transfer and is allowed to resume operation when the transfer is complete. This is so that both c.p.u. and d.m.a. controller will not try to use the system buses simultaneously. D.m.a. is generally used in more complex systems when large blocks of data have to be transferred to or from peripherals at a speed greater than can be achieved by programme instructions. It is also possible to do single byte transfers under d.m.a. often without stopping the processor if the transfer can take place while the c.p.u. is not using the buses. This is often called “cycle stealing”.

The actual i/o parts of a microprocessor may be implemented with standard t.t.l. logic circuits, e.g. 8-bit latches or buffers, or with the more integrated members of a manufacturer’s l.s.i. microcomputer family.

Part 2 of this series will give a practical example of hardware and will also deal with software

SPECIAL TERMINOLOGY

- **Microcomputer.** A digital computer which uses a microprocessor as its central processing unit. The prefix “micro” does not mean literally “a millionth part of” but is derived from the word “microcircuit,” an early name for the integrated circuit.

- **Microprocessor.** A digital processing unit constructed as one or more integrated circuits, using l.s.i. manufacturing technology. Can be used as part of a microcomputer.

- **Instruction.** An expression that defines a computer operation and identifies its operands.

- **Programme.** A prepared list of instructions, written in a special “language” or code, to be carried out in sequence by a computer or other programmable device.

- **Bit.** Abbreviated form of binary digit. The basic unit of binary coding (1 or 0) used to represent numbers, instructions or addresses.

- **Byte.** Unit of binary information, normally consisting of eight bits.

- **Word.** A group of binary digits representing a number, instruction or any other item of information. Often specified by its length, e.g. 16-bit word.

- **K.** Abbreviation for 1024 (to be distinguished from the common lowercase prefix “k” that represents 1000).

- **Serial.** Representation of binary information in which the binary digits occur in time sequence (e.g. on a single wire).

- **Parallel.** Representation of binary information in which the binary digits occur simultaneously (e.g. 4 bits on 4 wires).

- **Bus.** Abbreviated form of “bus-bar” derived from “omnibus”. A group of conductors carrying words in parallel (one bit per conductor) in either direction; usually common to several devices and identified by function, e.g. address bus.
Television developments in Germany

A report from the Internationale Funkausstellung, Berlin

by Geoffrey Shorter

626,000 visitors/486 exhibitors from 27 countries/1000 new products/"reserved optimism" for entertainment electronics to 1980/8-10% increase for 1977/colour tv reaches 50% penetration/two techniques for picture inserts/microprocessors, in tv/set-makers sell r.o.m.-cartridge game/Videotext problems: publishers vs broadcasters/Viewdata plans/next IFA: Berlin 24.8-2.9 1979.

"There is justifiable reason for reserved short and medium-term optimism" was how Professor Dr H Jurgensen, director of the Hamburg Institute for European Economic Policy, assessed the immediate future of the entertainment electronics market in Germany. "Provided," he added, "the producers do not overestimate the doubtlessly available market potential..." a clear reference to the embarrassing over-production of tv sets, which occurred earlier in the year.

Isolating the main market factors he cited the increasing percentage of adults in the population. From 1975 to 1980 the number of people between 16 and 30 will increase by two million — and with it, the number of small households — the total population being due to fall by one million. The proportion of educated and highly skilled people with purchasing power is expected to increase and low income groups will become less significant, he said. (An income of 3000DM per month is already enjoyed by 90% of the self-employed and 10% of pensioners.) Expenditure on leisure and education, currently 10% in middle and higher income groups, is growing faster than incomes and has tripled in the decade from 1966. In addition, there are signs that consumers are getting more quality conscious, want greater participation and more variety in their entertainment, all trends which Prof Jurgensen argued will benefit entertainment electronics in coming years. "What all this adds up to," he concluded, are "well-above average" prospects to expand "with due caution."

Taking a wider view and putting numbers to their forecasts, Grundig, who are the colour tv market leaders, see business as "reasonably safe" in Europe and estimate a growth in demand of half-a-million sets a year. This would bring the total demand for colour tv in Western Europe up to 9.5 million units by 1980; an average rise of 5% per year, and giving a market penetration of 51%.

Manufacturing industry for entertainment electronics in Germany showed an increase in turnover last year of 1000 million DM or 20% (excluding record players) — a real revenue increase of 8.5% — mainly as a result of increased colour tv production. Production of black and white tv sets and radio receivers fell by 25% but was largely compensated for by increased production of portable radios, car radios and hi-fi systems.

Sales of German-made colour sets, 2.3 million, did particularly well (up to 24% in value, higher for exports which were a third of production) apparently at the expense of black and white sets, which sold 1.2 million units including exports (1975: 1.6 million). There is little doubt that the Olympic Games and Bundestag elections helped achieve this high level of sales, though there are underlying trends beneath that surface. Now that colour television is becoming the norm in Germany — one in two households have a colour set (1976: 46%) — there is a gradual change from black and white to colour, as well as colour renewals now that colour tv in Germany is a decade old.

The only other equipment to get anywhere near the colour tv growth is car radio, increasing sales from 2.5 million in 1975 to over 3 million. First half figures for 1977 show a 17% growth. More than half the vehicles in Germany now have car radio, though how many sales are due to the traffic information system isn't clear. 1977 does not appear to be off to a good start in tv with a fall of 4% in sales in the first half compared with the same period in 1976 — colour share in this is up only 1.2% — but it is argued that the majority of business is done in the second half of the year, especially an IFA year.

In addition to falling demand for black and white tv sales (15% first half of this year), market share for 67cm colour sets is falling whilst the share of smaller screen sizes is increasing. One forecast expects sales of 67cm sets to remain constant in Germany at around 1.7 million until 1982, when penetration would be 77%, with portables of 37 to 50cm increasing by 50% to give a share of 25%, and intermediate sizes increasing by 60%, the large screen slipping from 70 to 62% of the market. In Europe, the large screen size will have fallen from 64% in 1976 to 50% in 1980. In response to this manufacturers are fitting sales-attracting features on their portable sets, like remote control (half the sets in Germany now have remote control), automatic search tuning, and tv games.
The most significant aspect of receiver development in the decade of German colour television has been its conversion to semiconductor engineering. This has not only helped to keep prices steady, but our 1967 Berlin show report gave the price of a large-screen colour set as 2,300DM about the same as now and production costs of equivalent table-model colour sets have in fact fallen by 15%—when the retail price index has increased by 57%, but has had a major effect on reliability as measured by repair calls. "The owner of a colour set using valves could expect an average of one to three repair calls a year," recalls Gunter Kroll of the manufacturers association ZVEI, "whereas this need has been reduced to 0.15 to 0.5 calls in today's television sets."

Actually, the service technician has never had it so good. For as well as providing increased reliability, manufacturers have made diagnosis a very simple affair with their Servicefreundlichkeit aids and repair straightforward with the modul-technik, now almost universal following the lead of Körting, and Grundig. But it must be considered, comments Kroll, to what extent modular construction is important for servicing when frequency of repairs is that low. Highly integrated circuits could "usurp the role of the module completely." (Could they not have their own fault diagnosis and indication circuitry built in, we ask?)

The attractions of avoiding mechanical tuning contraptions were appreciated fairly early in European tv sets, for both geographical and mechanical reasons. Mechanically, the use of variable-capacitance diodes meant that the tuner could be situated on the same p.c. board as the rest of the circuitry, it made it much easier to tune and band switch remotely. It was also easier to price those were very expensive but there was so much difference between a continental 16-channel model for the border areas, and, say, a UK-only set of three or four channels capability.

In our last Berlin show report we said Philip's proposed an all-electronic m.o.s. tuning system that would encompass search and tuning with memory, memorized analogue control settings, on-screen displays and remote control. Now, the system is in use in Philips, Loewe-Opta and some other top-line sets and does away with the 8, 12, 16, or more tuning potentiometers, storing the station frequencies in a random access memory. In this setting, tuning is through digital, each bit to digital tuning the frequency of the local oscillator is measured directly. Digital information representing a desired channel is called up from a memory i.c. and compared, coincidence causing a control i.c. to lock the tuning.

The system, called TRD for tuning, remote control and digital, originally needed four i.c.s with an option of a further five for special functions like on-screen display and search tuning, but now Philips say they can provide all functions with seven. When a channel is ordered, a binary-coded oscillator frequency is recalled from a SAB2014 read-only memory and compared with the output from an SAB1078 e.c.l. prescaler, whose output is the oscillator frequency divided by 256. If the difference is more than a certain amount pulses are generated whose width is proportional to error and which are used to retune the oscillator until code parity is obtained. A further i.c. is a SAB2015 which can store b.c.d. information on 16 user-selected channels. The full technique permits direct channel selection without having to go through a fixed sequence, as well as automatic search and sequencing, and sets using it can be tuned without access to tv transmission. Cost is higher than the voltage-synthesis technique and is therefore only found on the luxury-class set.

Automatic search and elimination of tuning potentiometers were also primary aims with ITT Intermetall's open-loop voltage synthesis method. The tuning voltage is generated in steps and it is the number of steps required for accurate tuning that is stored. The two key m.o.s. i.c.s, a SAA1021 control circuit and an SAA1020 static shift-register memory, are both compatible with two others, one for handling ultrasonic remote control code SAA1130 and one for on-screen channel number display, an SAA1008 or a derivative that acts as an on-screen indicator for tuning voltage, tv band, and brightness, colour saturation and volume control movements.

The 66/67cm in-line c.r.t. dominates the German colour tv market, though 51 and 56cm sets are gaining a larger share and 36cm is the most popular size in portables. Precision in-line or PIL tubes have gained ground in medium-size sets, but "problems" in large screen sizes make the 20AX in-line variety the popular choice. By all accounts these two formats will be with us for some time to come. But while one industry spokesman was saying we couldn't expect "spectacular innovations providing visible advantages" in picture tubes, ITT Components were announcing a tube with a visibly brighter picture. By changing the glass colour, making some alteration to the slots in the mask, and improving the phosphor, they claim an increase in brightness of 70%. But production to date—half as much again at the same time in 1975—there were feelings that its introduction should have been delayed. Nevertheless both ITT brands, Schaub-Lorenz and Graetz, and Körting have taken up the new tube: "We know Mullard are working on something," confessed an ITT spokesman.

As market penetration of colour television passes the half way mark, set makers will need to rely more on "convincing innovations and the rationalization of production," as Gunter Kroll puts it, than on having tv sets in the right place, at the right time and in the right quantity. Already the German TV market has probably seen more market-oriented innovations than any other, starting with diode tuning and band switching, switched-mode power supplies, provision for connecting external equipment, high quality sound, large-signal p-i-n diode tuners, touch sensor channel selection, ultrasonic remote control, modular chassis construction, self-diagnostic service aids, infra-red sound links, permanent pre-set control settings, on-screen colour display of control settings, on-screen, display of time and channel numbers, infra-red remote control, and automatic search tuning systems with memory. You name it. And this year adds reduced power dissipation, built-in games, inset second program pictures and microprocessors to the list.

In competing for new features the makers with the large market shares (Grundig is biggest with around 30%, Philips next with 12-14%, followed by Telefunken and Saba with around 10% each) have a built-in advantage. They have the production to justify the "£1 to £1.5 million quantities that the i.c. makers need" points out Dr Böhme, chief of Körting, alluding to Grundig's latest "Vollbild-im-bild" scoop, in which a reduced-size picture of another programme is inset into the main picture. With their enormous production—a million sets or more—Grundig have

Synchronization of inset black and white pictures of a second tv programme relies on closeness of sync pulses from different transmitters. While small differences give rise to inset movement Banding is avoided by switching inset into different quadrants. Alternative is to read out the inset from a memory: when a huclet-brigade charge transfer device can store 1 in 4 lines.
been able to tie up the ITT-Intermetall ICs exclusively for a 6-month period. The tv manufacturing subsidiary of ITT, in Germany, Schaub-Lorenz, must be waiting to see how this expensive luxury goes down before committing themselves. They dropped the clock idea, which had added 200DM to the price of their tv sets, as a "silly gimmick". If they want to know the time, comments Charles J. Zsakovits, ITT's tv product manager, most people just look at their watch. And at an additional cost of 200DM for the Grundig/Intermetall inset picture approach, ITT must feel its appeal is fairly limited: "For that you can get another black and white set," muses Zsakovits.

In the face of such deals with semiconductor device manufacturers, firms with smaller shares of the market like Körting — Dr Böhme declined to give their share — had to think up ideas first.

On-screen colour display of control settings was a Körting idea of three or four years ago and their latest is the use of hi-fi loudspeakers as microphones and in tv, a set that speaks its channel number. They have other ideas anyway for implementing the picture-in-picture facility, including in-fitting a switch, the local oscillator at 700MHz. Dr Böhme told Wireless World, so that only one r.f., i.f. and demodulator sections would be needed.

With the i.c. approach, a stable second picture location is made possible by using a memory to store the readout of the memory. Video information is written in synchronism with a transmission to be inset but read out in sync with the main picture signal. Two new charge transfer devices, type UAA1000, of area or matrix format rather than line or row format, store and read the inset picture line-by-line under control of a third i.c., SAA3000. One of these memories is stored in information, while the other reading, both under read, write and shift direction from the SAA3000 i.c. Only every fourth scan is stored — the inset picture is quarter-height and horizontally the writing speed is limited to 1.5MHz with read out four times faster. The Belgian manufacturer Barco say they will also be using charge transfer devices in this application.

The other way of tackling the problem, adopted by Saba and Telefunken, relies on the l in 10^6 tolerance of the colour subcarrier and consequent closeness of sync pulses from different transmitters, making it possible to display part of a second programme with the reception circuits locked to a primary programme. The incomplete second picture with full resolution, measures 16 x 18cm on a 67cm tube. Snag is a horizontal wandering of the inset due to small errors in synchronization, but the marketeers are quick to point out that this gives a greater effective sampling area than would otherwise be the case! And these sync differences would also give rise to black horizontal or vertical bars some of the time; so logic circuitry is included that detects which corners of the screen to use for the inset so that the black bars do not show.

Nordmende had thought of it all before of course. Their Spectra Colour Studio with its three 20cm monitors beneath the main 66cm picture was wheeled out, as if to ask what all the fuss was about. Their set, or rather its predecessor, had simultaneous four-channel monochrome in 1967!

The combination of large-scale integration with digital signal processing enables developments to be made in TV sets the cost of which would otherwise be prohibitive. Though memories are coming to TV sets in increasing numbers and complexity — still full-picture stores will soon be in sets — there are differences of opinion about microprocessors. While some are dabbling with microprocessors, one engineer with the ZVEI asserts that in spite of intrusions into process control and data handling, it is certain not to find use in TV sets in its present form. "In most cases," says Gunter Kroll, it is "not a suitable component for the functions required of a tv set. Memory capacity is too large." Gunter Kroll argues that specific i.c.s for tv use yield a better price-performance ratio. Time will tell whether Blaupunkt's use of a microprocessor will be confined to its luxury-class set.

In the Blaupunkt PS19 set, a 30-key remote unit is used to select any of 19 channels. The tuner is a Fairchild F8 microprocessor allows storage of 20 switch-on, switch-off or switch-over commands, with or without date, selection of the desired channel, or switch off five minutes after transmitter close-down, as well as the other facilities common to digital tuning, remote control using the SAA1024 and on-screen display of carrier frequency, channel number and band. A non-volatile m.n.o.s. electrically alterable r.o.m. stores switching commands; coarse and fine tuning voltages and four standard values for the analogue controls of saturation, brightness, contrast and volume for up to 19 programmes.

The other European set maker to show sets using a microprocessor is Barco. A combination of Texas and National chips, enables a programme tuner to switch four pre-set programmes at chosen times, and to jump from one programme to another at eight-second intervals every minute or half-minute. The set uses the voltagessynthesis search tuning and storage technique.

A teletext version of their Gauguin set, which they say will be available next March, will switch to teletext at a pre-set time and is being made with reception of the French teletext system — Antiope — in mind.

Barco say their new tuner-amplifier incorporates a microprocessor. Using a frequency synthesizer technique for tuning in 1kHz, steps on the a.m. bands and in 25kHz, steps on f.m., up to 16 frequencies can be stored in the non-volatile memory. A set is available which can select only stereo stations if required. Such facilities have been available for some years on other digital f.m. tuners, though not with a "32-function" remote control unit as far as we know, and it's not altogether clear what additional benefits the microprocessor confers.

Notorious for inducing boredom fairly quickly, the first generation of television games born in 1972 were never really marketed extensively in Europe. The second generation types, using purpose-designed integrated circuits, some of which offer a choice of up to ten "ball and paddle" games, are now being built into TV sets and selling alongside the newer third generation programmable games. The Fairchild programmable unit, which they call a "video entertainment system," was introduced in the USA in June 1976 and approved by the FCC last November, (In the USA games for connection to TV antenna sockets require FCC type approval to keep r.f. radiation below 15µm at 1m from the set.) "Fairchild's entry of over 80 million in European tv games market seemed to come at a time when they were experiencing problems in their watch business. "We took a fairly big bang in losing $5 million in three months," explained R. H. Bohnet, international marketing director, who told how Fairchild had gone from zero to $8 million in digital watches in one year": They appear to have been successful in their European efforts. They cancelled a Berlin press conference, booked earlier in the year, because they "didn't need it." And Saba, now owned by General Telephone & Electronics, have the Fairchild game, so they kept it with their own. "Luxor too, who have taken a commitment in Sweden, and a "lot of companies at the show are evaluating" according to Fairchild.

In the U.S.A. the unit sells to retailers (as 'Channel F') because of established links, but in Europe it is sold to the set maker for resale: "a tv set would cost too much if it were built in," they say. The game is based on the F-8 microprocessor with a range of Videocart r.o.m. cartridges — 10 now, 15 by the end of the year — with up to four games per cartridge. They include things like blackjack, various races, shooting gallery, doodles, tank fights, and one can store thousands of different mazes. The player control sticks are described as having "eight degrees of freedom" (they mean four) and both colour and size changes can be made from it. There are options for playing the "machine" as well: "It's not very interesting playing backgammon with a machine," admits Mr Bohnet, "but we're working on chess."
operation, on the Telefunken exhibit. They are test marketing the unit this autumn at 500DM and 50DM per cartridge (with a maximum of 50 programmes): similar pricing to Fairchilds. The unit is too expensive to build into sets", said a Telefunken marketing executive "2,500DM is the magic barrier for colour tv".

But the biggest innovation that German colour television is likely to see in the near future are the text transmission systems and practically every European set maker at the IFA had to show their sets were text-capable. Some sections of the industry are setting their sights on 1982 as the starting year for a text service, assuming Medienpolitik problems are sorted out. "We don't want it before" Könting's boss told Wireless World. After the 2/3 penetration point has been reached and tv production falls off, he argues, is the time to introduce the system. Other interests may not agree, but it is difficult to see how there will be an early start to a broadcast system when there is no agreement over who should run it.

Different laws govern press freedom and broadcasters independence, neither having foreseen a hybrid service like teletext or Videotelex as it is called in Germany. The problem is that newspaper publishers do not take to the idea of broadcasters controlling the written word -- they say they should stick to the spoken word -- while the broadcasters say that as long as the programme comes from a transmitter it is certainly a matter for them. "The newspaper industry is afraid of teletext," admits Dietrich Ratze, managing editor of the Frankfurter Allgemeine and editorial consultant of Bildschirmzeitung, the publishers teletext. It's not that there is an immediate danger of newspapers disappearing, he explained, but that "it's not good for the long term health of newspapers." And who will say that an alternative source of on-demand information traditionally supplied by newspapers -- e.g. sports results, stock market data, entertainment guides and the like -- will not affect them?

In Germany the radio and television stations are not state-controlled but are self-governing non-profit public corporations, with their legal basis either on Law, legislation in a treaty between Länder. Most Länder do not appear to want to authorize a newspaper-run text-transmission service, presumably because as the law stands, programmes can only be provided by the station and not by a private organisation. There are some special situations recognized but the wording is vague. Obviously the exhibition was deemed a special case and the Berlin Land gave permission for trials only on a closed-circuit basis and only for the duration of the exhibition.

Last autumn 24 newspapers belonging to the publishers association BDZV sent editors to form the Bildschirm Zeitung. They made numerous visits to London, consulting with GEC, and the BBC and IBA teletext units, preparing themselves for the two week competition with the broadcasters at the Berlin show. The editing team took current affairs information, e.g. via telex from Springer, transcribed and edited it on the GEC stand and sent it round the exhibition on channel 35. The broadcasters for their part formed a joint ARD/ZDF Videotelex unit and following test transmission during July (ZDF) and August (ARD) went on the air from the SFB transmitter on channels 7 and 39 for the duration of the exhibition.

"The publishers aim is clear" Alexander Kulpok of the joint Videotelex unit at SFB told Wireless World "but they don't know how to achieve it. They are only interested in getting into the business." The answer, thought Kulpok, depended on "a political solution and upon the future of commercial television." The situation could change "if the Christian Democrats get in or if there is cable television within say five years." And a service could come very soon, he said, "if it comes to a fight" and a Court of Law had to decide.

Now that the exhibition is over the publishers feel sure the ARD/ZDF unit at SFB will continue elsewhere, perhaps at Mann with ZDF or Munich with RT. And next move by the BDZV will probably be to seek permission to market a service from the respective Länderregierung. But it's difficult to see an outcome that will please everyone; Ratze plans that the publishers will be allowed to run a service, but it would have to accept the ultimate control of the tv stations. "And what of the law that forbids outside control of the free press?"

By comparison, the problems of the wired interactive version, given its first public showing in Berlin and which is identical to the UK Viewdata system even to the extent of using the same model of computer, are not so great. But until the question of whether viewdata, or Bildschirmtext as it is called, is purely telecommunications -- the Bundespost argue it is a federal matter as the telephone is used -- or whether it is also a broadcasting matter, the German postal office are not allowed to operate a full service. "In strict adherence to the principle of fair network utilization," said Bundespost executive Theodor Irmer at a press conference, "the post office has expressly refrained in its demonstrations from the reproduction of any information having a content which has not been legally established as germane to the medium".

A Viewdata trial is starting immediately after the exhibition, the basis of which, Herr Irmer later explained, was that it will use "bilateral" information only in a non-public way up until 1980, when it is hoped the issue will be resolved. This phase will be followed by a field test for 2000 private subscribers, in effort to get answers to the questions of who wants to know what and when, and who will provide input, by 1982 when it is hoped a full public service can begin.

On August 23, a "substantial" contract between the British Post Office and the Bundespost was announced in which the Bundespost gets a duplicate of the Viewdata programme and expertise (they already have an identical computer). Under the contract, the technical information passed on by the Bundespost to German electronics firms is restricted for use only in Germany for the next three years, and German firms are not permitted to compete with British firms in exporting Viewdata equipment to other countries until after March 1980. This is unlikely to worry the German manufacturers, as it's highly improbable that there will be any large scale use of Viewdata before then, even in the U.K.

www.americanradiohistory.com
Circuit Ideas

Measuring \(V_{CE_{\text{sat}}} \) in power transistors

To determine the saturation loss in power transistors it is necessary to measure the saturation voltage, which may be about 1 to 2V. The measuring circuit must also accommodate the high collector voltage which is present when the switching transistor is in the off state. A problem therefore arises if a d.c. coupled oscilloscope is used as it is often difficult to obtain adequate voltage resolution without overloading the deflection amplifier during the off state of the transistor. Furthermore, a very small disparity between a.c. and d.c. gain in the deflection channel can lead to a substantial error in the apparent saturation voltage.

The circuit shown is inserted between the switching transistor and an oscilloscope which may then be a.c. coupled. Output to the oscilloscope is a rectangular waveform with a low voltage state representing 0V and the high voltage state being the transistor saturation voltage. Errors in the circuit are typically less than 10mV, and may be established by d.c. measurements if desired. Accurate measurements of saturation voltage may be made simply by reading the peak to peak voltage of the displayed waveform. When the collector voltage of the power switch is below 4V, \(T_{\text{r}} \) is non-conducting. During the off state of the switch, its collector voltage is assumed to be greater than 10V in which case \(T_{\text{r}} \) is heavily saturated and the zero reference output is typically less than 10mV. Note that \(T_{\text{r}} \) is a large-chip transistor operating at low collector current. The same technique may be used to drive an integrating wattmeter which, by sampling collector current, will show saturation power loss directly.

D. R. Boit, Charlwood, Surrey.

Windscreen wiper controller

The delay between successive sweeps of self-parking wiper blades can be altered by a single variable resistor. Any delay between approximately three seconds and three minutes can be obtained with the values shown. The wiper blades can easily be made to perform two or more successive sweeps between the delays instead of one double sweep. When the delay is set to the minimum value, the wipers operate almost continuously.

The relay contacts are connected across the existing wiper switch and merely override the existing controls. J. B. Dance, Alcester, Warwick.
Resistance-capacitance meter

This circuit was designed as an addition to a six-digit frequency meter in which gate 5, with its following counters, drivers, and display, forms part of the instrument. It displays resistance in ohms up to 1MΩ or capacitance in pF up to 1µF. Gates 3, 4, 5 and the b.c.d. counters etc form a 200kHz stop-watch which is started and stopped by negative-going pulses at gate 4 and 3 respectively. Reset is achieved by applying a zero at the base of TR1. Resistor R5 or capacitor C5 is connected in series with capacitor C7 or resistor R5, according to the position of S1. When K1a is normal, the output of gate 2 is high. C is short-circuited, IC7 and TR7 are off and the counters are reset by TR2.

When operated, K1b removes the short from C, and K1a removes the reset condition from TR2 and applies a 0 at gate 4. Gate 4 receives a 0 from gate 2 and starts the stopwatch. Simultaneously, C starts to charge via R4. After time \(t = CR \log \left(\frac{R+R2}{R5} \right) \approx R4 \times 10^{-4} \), the voltage at IC1 pin 3 reaches that at pin 2 and the output goes high. Transistor TR1 then turns on and a negative pulse to gate 3 stops the timer. The meter, having counted 200kHz for \(t \) seconds, displays the value of R or C.

Although there are small errors developed in the circuit when measuring an unknown resistor or capacitor, this simple design is a useful addition to a frequency meter. G. Jackson, Creigiau, Cardiff.

Oscilloscope trace doubler

The 4011 forms an astable oscillator with a frequency of 53kHz. Two out-of-phase pulse trains are fed to the 4016 which alternately switches two inputs into the unity gain mixer amplifier. The output of the 741 is then fed to an oscilloscope. Input levels are controlled by VR1 and VR2, and the position is controlled by VR3 and VR4. The remainder of the circuit is used to blank the beam between sweeps by differentiating the oscillator outputs to produce spikes. Positive spikes are then mixed and inverted by the 741 which drives the flyback blanking amplifier. J. S. Paterson, East Lothian, Scotland.
Change-of-state detector

A conventional change-of-state detector uses the OR'ed outputs of two monostables triggering from opposite polarity edges. This circuit uses only one exclusive-OR gate i.e., and performs frequency doubling or change-of-state detection. The first three gates are connected as buffers and the final gate exclusive-ORs the output of the buffers and the input. An output pulse of width equal to the total propagation delay of the buffers is obtained, in practice about 100ns, from the CD4070B. This pulse may be extended if necessary by the addition of a < 5nF capacitor from point B to ground.

If the line shown tied to V_D is connected to V_DD, instead, the output polarity is inverted.

S. Roberts,
Sheffield.

Audio overload monitor

This circuit uses two of the four comparators in an LM339 package to provide detection of excessive positive or negative signal peaks. Pulse-stretching is used to ensure that a clear indication of short-duration peaks is given. Bidirectional peak measurement is important as positive and negative peaks may vary by up to 8dB.

Comparator A detects peaks of either polarity, and the two potential dividers hold the inverting input 400mV below the non-inverting input. If the audio input exceeds the trip point on a positive peak, D_1 conducts which pulls up the inverting input and causes the comparator to change state. Likewise, a suitably large negative peak will make D_2 conduct and pull down the non-inverting input, again causing the comparator output to go low.

When output A goes low, storage capacitor C charges rapidly through D_3 and R_4. When the peak is past, C remains charged and keeps the output of comparator B low so the l.e.d. remains on. The output goes high again after C has discharged through R_11, and the l.e.d. is extinguished.

With the values shown, the circuit trips at a peak level equivalent to a 5V r.m.s. sine wave. This is 3dB below the maximum voltage swing to be expected from an amplifying stage operating from a 24V rail. Note that the circuit should not be driven from a high impedance point because the diodes may cause distortion.

A stereo version may be conveniently made using a single LM339 package.

D. Self,
London E.17.

SR flip-flop

Using a c.m.o.s. dual D-type flip-flop and one exclusive-OR gate an SR flip-flop may be made which is triggered by a positive edge on either input, irrespective of the level of the other input.

A positive edge on the set input will force the two flip-flops into opposite states and hence one input to the exclusive-OR will be a 1 and the Q output will be a 0. A positive edge on the reset input will force both flip-flops to the same state, the two exclusive-OR inputs will be equal and the Q output will be a 0.

K. Dillon,
Epsom,
Surrey.
Wireless World, November 1977

News of the Month

OTS failure: “no sabotage”

Those involved in the Orbital Test Satellite (OTS) project are adopting a philosophical attitude to the rocket failure that forced NASA control to destroy the craft seven miles above the launch pad. NASA Engineers are still investigating the failure of the September 13 launch, but their report may be delayed if, as some suspect, the McDonnell Douglas Delta rocket turns out to be suffering signs of age or, as a Hawker Siddeley Dynamics spokesman put it, “shelf-lifting”.

When Geos went wrong (WW August p.33) experimenters were quick to point out that it was suspicious that so many failures had lately coincided with European projects. That may be because ESA had not insured the scientific projects, and so the loss to those involved was that much harder to bear. The comparative cheerfulness of the OTS workers may be because ESA had decided, since the satellite was its first applications project, that it should be insured. An ESA spokesman told Wireless World that the $30 million price tag included “the integration and launch of the second flight, so the relaunch will cost ESA nothing”. An earlier report in The Times had quoted Dr Roy Gibson, ESA’s director general, as saying that although the rocket and launch costs were insured, for $17 million, the satellite was not, and a spokesman for the prime contractors, Hawker Siddeley, part of British Aerospace, agreed: their contract was worth £25 million, but this includes some work on the back up satellite.

ESA point out that the Delta launcher’s success rate is over 90%. The OTS launcher, code named Delta 124, was the third launch of a Delta 3914, and the 3914’s first failure. There are two possible causes: either a fault in one of the nine strap-on Thiokol solid fuel booster rockets, or a leak in the liquid oxygen tank of the first stage itself.

A new timetable will not be set until the results of the NASA enquiry are known, but engineers expect the new launch date to be between February and April next year. The accident, is not expected to affect seriously the European Communications Satellite programme which OTS was to have forerunner, and which was to compete with communications projects by American firms like Hughes and Aeronutronic Ford. Had OTS been successful, a Hawker spokesman said, “it would have given us credibility, but we can’t identify any more concrete effect than that.”

ESA said: “If OTS could be launched in about April ’78 we don’t think that would affect the communications programme. The main aim of OTS was to test the system for launch in 1980 and this is just a six month delay. So if we worked harder we could still launch the 1980 project on time.” It also appears that some of the markets the contractors were hoping to sell to, in Brazil and the Middle East, are having delays of their own, either for financial or organisational reasons.

As to sabotage, mentioned in some reports of the accident, Hawkers will say nothing publically other than that it would have tarnished the reputation of NASA and the Americans, and given greater credibility to the Ariane launch vehicle which will launch the ECS programme in 1980. ESA concurs: “The rocket until now was all right. It’s bad for NASA, as well as us, bad for their image, and for McDonnell Douglas’s marketing. No-one benefits from this.”

The Panel investigating the failure are: George Hardy, manager of the Space Shuttle solid rocket booster project at Marshall space flight centre; Henry Plohr, associate chief of the space propulsion and power division, space systems and technology directorate, Lewis research centre, Cleveland, Ohio; Json Rigell, Space Shuttle payload director at Kennedy centre; Alton Jones, deputy director of engineering, Goddard space centre, Maryland; Joseph Thibodaux Jr, chief, propulsion and power division, directorate of engineering and development, Johnson space centre, Texas; Haggai Cohen, director, reliability, quality and safety, NASA HQ, Washington; Harvey Herron, metallic materials division, materials and processing lab, Marshall centre; and observers appointed by the air force and ESA. The panel’s first meeting was on September 16.

Consumer men split over controls

British leaders of the consumer electronics industry were recently given a good-natured but firm dressing down over their advocacy of protectionism. Mr James Goodson, vice president of ITT Consumer Products, told retailers and manufacturers at the Radio Industries Convention on September 14 that they should be directorating their energies to the industry as such rather than to countering the imports from other countries, notably Japan. Speaking of the increasing threat of foreign imports he said: “Of course it’s not fair. I’m not sure that the solution, however, is to go to the government. We can’t expect help from governments. We have to get our own house in order regardless of what competition does, and regardless of what governments do. . . . The answer isn’t going to Whitehall to ask for protection. The attitude should be to build this industry into what it can be, to ask which is the greatest promoter and catalyst of technological progress in world trade. The answer isn’t going to Whitehall to ask for this.”

It was a mistake to think that the best way to beat the competition was to cut corners: “The answer is not to make things cheaper, to cut costs. It’s to put a few bells and whistles on the thing and sell it for a higher price.”

On quality control he said: “The boys and girls on the line are the quality control. The Japanese don’t need quality control because they think that’s a duplication of effort.”

On industrial relations: “Industrial relations is a question of motivation of effort. The Japanese have motivated people to the point where they feel it’s their company.”

On investment: “I do believe investment is the name of the game, spread over various countries and over various activities.”

On protectionism: “If England starts cutting imports then they start cutting imports from the UK. We believe in free world trade so let’s believe in it. Let’s do our homework right, get our quality right and get the right features.”

Mr Goodson appeared saddened by the willingness of the industry to face both ways. Earlier speeches had attacked the Government for even considering Hitachi’s proposal to build a factory in Washington, Tyne and Wear, and for manipulating VAT rates to regulate demand without considering the consequences on the consumer industries involved. “We’re been suffering from years of government interference,” said Thorn chairman Sir Richard Cave. Yet he continued by saying: “The private enterprise system we all believe in and free trade all over the world don’t seem to have worked very well for the tv industry . . . We do support free world trade. We don’t believe the Japanese do. We see they can and do in times of world economic difficulty build up substantial world balances. Why? The answer is that if free world trade was encouraged in
Japan as it is in Europe, would it be possible for them to achieve these results? The answer must be ‘no’. We must either expect proper free trade to take place in Japan or we must realise that this is not happening and we must impose restrictions... We have got to go on lobbying government and explaining the position to them."

Mullard managing director Jack Akerman's view of his own industry was bluntly put: "The state of the British components industry is not good. In fact, if the lady at the back will forgive me, it's bloody awful." Ninety-two per cent of i.c.s, up to 75% of transistors and 60% of such components as capacitors were imported, said. In view of the massive investments being made in i.s.i. manufacturing being made in France, Germany and particularly Japan (£500 million over the next three years), the £25 million of government help for the industry was very small: "We're going to need to spend a lot more than that. We can't afford to go it alone." His proposal, echoed by other speakers, was for Europe to make joint efforts to defeat the Japanese and Americans. The electronic home, based around the colour TV set, Viewdata and teletext, would be here "in the late 1990s", and the industry must make ready for that.

Later James Goodson remarked that he had to disagree with that estimate. "It isn't the latter part of the 90s, and even if it were we would have to accelerate it... If you wait until the late 1990s then everybody will leapfrog you."

Mr Akerman was not entirely gloomy. Apart from predicting a glowing future for developments based on Viewdata and teletext, disagreeing, incidentally with the view that teletext would "fade away" as Viewdata came into general use, he said: "Our strike record is good and the workforce works extremely well." He also noted the view that British manufacturers would not sacrifice short term profit for long term advantage, where the Japanese planned and invested 20 years ahead. "This," he added, "is at the root of our problems."

Not so cheerful was Dr Ian Mackintosh, of the firm of European electronics consultants, who said that, for example, his firm had predicted the large rise in the music centre market, which had caused falls in other parts of audio, three years ago. "It's sad that people didn't pick it up in time... The music centre boom was more clearly foreseen and acted upon by the Japanese than any other national producers in the world." He also asserted that "the development of Viewdata and teletext owes as much to our entrepreneurial public corporations as it does to industrial companies... I fear there will be a further slow deterioration in Britain's ability to compete, and when in ten years' time the Japanese have made the same inroads into your market as they did into the American market, ten years ago, then I think my company may be asked to conduct a post mortem into what went wrong."

The British installed a system at Brussels, with the co-operation of the Belgian authorities. It seems that the British system worked, and that the Americans had fed incorrect data into their simulation: according to the CAA, they had put in a building that doesn't exist at Brussels airport. Learning a lesson from the Decca Navigator's failure to beat the American enroute navigation system many years ago, the CAA then took the gloves off. Until Brussels, they say, they had kept an open mind: "If it were proven that it was better then the British system should have gone to t.r.s.b." But when the one month trial at Brussels came to an end this summer the view was that "We have now proved that the Doppler system is the best system."

After that "We adopted tactics which would never have been dreamt of in the 1960s. We had the Russians over here, for example, and showed them every nut and bolt on the thing." In doing this the British were willing to run the risk of the severe disapproval of other countries since the Russians had
shown favour towards a German scheme based on the existing system, though it is no longer thought a serious contender.

The next step is to take the Doppler equipment to Norway as an example of what the system can do at airports whose terrain makes them "trouble-some". When the Air Navigation Commission which set up the All Weather Operations Panel reports to its parent, the ICAO council, in May 1978 the decision will, it is hoped, be a foreign one, conciliating avoiding the wrangling that has so far caused delays. And the CAA hopes they will have enough evidence to show that the t.r.s.b. is too expensive and inflexible to be adopted.

System X stirs

The Post Office's announcement of contracts worth £20 million for System X development, though following closely the criticisms by the Carter committee that the Post Office had been too slow to press ahead with the system, does appear to be a response to those criticisms. After preparatory work which, they say, involved 500 engineers, the Corporation had merely reached a point where they felt ready to move into the next phase of development.

The orders are for the design of electronic trunk, tandem and small to medium capacity local exchanges. System X will be based on a number of sub-systems or modules which includes: stored program control (s.p.c.) processors; digital switching modules which interconnect digital circuits connected to the switch; signal interworking modules, used on calls to existing exchanges; A/D and D/A convertors; message transmission modules to transmit control and management information between s.p.c. processors in different exchanges.

GEC will develop the digital trunk and small to medium capacity local exchanges, and the s.p.c. processors; System X will be based around the GEC 28L processor. Plessey will be responsible for digital switching, signal interworking with existing exchanges, A/D convertors, network timing and synchronisation, and maintenance and exchange management software sub-systems, all for the Tandem exchanges. It is believed that Plessey's seven contracts are worth some £10 million of the £20 million total and will employ around 80 people each at Liverpool, Taplow and Poole by the end of next year.

STC will develop the message transmission systems which connect the exchanges' computers and form the data network which carries control and signalling information. STC also have a contract to develop the local administration centre monitoring and logging information on a network of exchanges.

"Typically," say STC, "a centre will administer such tasks as recording maintenance information, keeping statistics on telephone traffic and recording call charges."

The Post Office says a large supply programme based on System X will begin in the 1980s, reaching a total of £100 million, though this will produce savings in capital and operating costs. The Post Office also emphasises that the three companies involved should be able to sell System X-based exchange equipment. The supplier noted that the Post Office-seems to be aware of the need for the telecommunications companies to make exportable equipment, as a result both of the Carter criticisms (WW September, p.72) and the strongly expressed views of the companies themselves.

News of the orders follows some delay in placing the contracts. In November 1975 the Financial Times reported that about a dozen major contracts were about to be placed but nothing has been heard until now. The entire development programme will cost at least £100 million of which between £50 and £60 million to be spent on development work outside the Post Office. This leaves roughly £30 million unaccounted for, although some contracts, notably for the processor, have already been placed. A large part of the missing element will concern the large capacity local exchanges.

Another element missing from the present equipment is transmission equipment. The contracts just announced are largely for modules and control functions, with the smallest number of the just over a dozen contracts, perhaps a couple, going to STC, who are dealing with some of the transmission development. Even then, according to a report in Electronics, Weekly STC will not be required to produce hardware when the first-prototypes emerge in 1979. The Post Office says, however, that many orders for digital transmission equipment have been placed over the last few years, though they have not been linked with the development of System X. Another sideline to the project is that Pye TMC, who recently installed electronic directors for the Post Office (WW September, p.73) were not offered any of the contracts. One reason for this is that they have not been involved in switching for as long as the other three and the big three companies have said in the past that Pye could not be included in the programme because, as a subsidiary of Philips, they could be in competition with their own parent company.

This ignores the fact that STC is a subsidiary of IIT. Pye have also a long history of supplying the Post Office, notably in telegram retransmission and 60MHz transmission equipment. With that the big three, who were first on the System X scene, feel that there is little enough to go round without a fourth party sharing the contracts.

However, that may be the final form of System X is still unclear, and it will remain so until the Post Office decides to give the project a name.

Libya buys British

Libya's £9 million order with Marconi for fast tuning systems at Tripoli and Benghazi airports, one of the largest ever, say Marconi, for civil aviation communications equipment, is but the latest in a series of orders that the Socialist People's Libyan Arab Jamahiriya has placed in Britain. In June Marconi announced one £3 million order for tv cameras, telelines, vision mixers, OB vans and other equipment, and another worth nearly £1 million for radio equipment for the Arab Revoluitory News Agency. Marconi had already supplied the news agency with its original equipment in 1974.

More surprising, though, in view of Libya's export of arms to various terrorist groups, including the IRA, is that our own Post Office should be helping the Libyans set up their telephone network. The consultancy contract, also announced in June, was worth £5.75 million to the BPO, and followed one a year before worth £550,000 to help build the telephone link between Tripoli and Benghazi. Such trade is usually excused on the grounds that communications equipment is "neutral" and the way it is used is none of the supplier's business. Even if it were not neutral, the argument goes, someone else would supply it, otherwise any less distasteful regime than that of Colonel Gaddafi would find itself without vital parts of its infrastructure.

Our dependence on Libya for oil is now decreasing. Last year we imported only £128 million of our £4.3 billion oil imports from Libya, compared with roughly a third some years ago, but the Marconi statement emphasises "the rapidly increasing importance of Libya as the gateway between Europe and Africa." The country is "of paramount importance for the future development of civil aviation in the area." Clearly exports to Libya could lead to substantial sales in other parts of Africa.

The present Marconi contract is for four communications services for the two airports: access to the aeronautical fixed traffic network to provide long-distance speech and teleprinter links to flight information centres in North Africa and the Mediterranean, an
aeronautical mobile service for ground to air speech traffic, a search and rescue communications service, and facsimile and teletype links between meteorological centres.

Two types of Marconi fast tuning transmitter will be used, the 1kW H1040 and the 10kW H1140, both powered by the H1540 synthesised drive. All the receivers are type H2540. Marconi say the aerials they will supply at Trippoli will be among the most complex they have ever installed, including resonant and wideband dipoles, single and double rhombics, confins and directional and omnidirectional, fixed and rotatable log-periodics.

New TV game generation by Christmas

Predictions about the "electronic Home", based around teletext and Viewdata, are now falling thick and fast and some of them are quite surprising. Those concerned with Oracle, for example, are now trying to play down a prediction made by Mr George Cooper, Oracle's chairman, at a press conference to announce the service's expansion from updating 42 hours a week to 90. He foresaw "a national air call service with small pocket sets."

Each set would have a code, and when the code for a particular pocket set were transmitted, the set would emit a bleep. Using the broadcast network, a set could be called anywhere in the country, and the user would then telephone a pre-arranged number.

Since press reports of this have appeared the IBA have been flooded with phone calls asking where the bleepers can be bought, and of course the service, if it overcame the inevitable opposition of the mobile radio and paging lobby, wouldn’t start until well into the next decade.

EMI and General Instrument Corporation have jointly applied for patents for a technique for storing up to 1.6 million bits on each side of a C60 cassette. GIM are to sell an electronic interface which can be used with standard cassette recorder heads to carry out data retrieval and error correction. The interface is to be part of a complete programmable television terminal microcircuit chip set, and GIM and EMI will collaborate in developing computer programs and voice and data cassettes which will be sold in tape and record shops.

GIMs decoder for teletext and Viewdata already contains a microprocessor, and they say they are developing a set of compatible m.o.s. circuits for interfacing the tv set with their CP1600 microprocessor family. These interface circuits could offer a wide range of extras to the standard tv culminating, say GIM, in a complete home computer system. The interfaces can decode teletext and Viewdata and the cassette mechanism can be connected through them to play back tv games and educational programs.

GI say the first of the home hardware will be available next summer, and EMI will make cassettes available for manufacturers to sell under their own names.

EMI say they have abandoned traditional error correction techniques to enable data to be stored on conventional audio cassette tape. The new method of error correction is to cope with dropouts which could otherwise destroy large chunks of data. They have not given further details but they say that very roughly 50,000 bits can be read from the cassette in 26s. EMI say they have duplicated the cassettes “above real time” without difficulty.

The new technique is necessary because of the use of ordinary audio tape, which is cheaper, and can store both data and sound through an ordinary mechanism and electronics. This makes the educational, language tuition and programmed learning market a natural target, with spoken commentaries matching text as it appears on the home TV screen.

EMI's target for the price of the hardware is between £100 and £200. When the first games appear on the American market next summer, probably five-move-ahead chess games, they should sell for around $5, a quarter to a third of the price of the equivalent r.o.m. cassette.

The r.o.m. plug-in cassettes will be on sale in Europe by Christmas. These are the next generation referred to by a new Macintosh report. NISC examples by Fairchild, RCA and Otari were seen at the Chicago Consumer Electronics Show this year.

From next year GI begin to supply chips to manufacturers wishing to serve the home data market and EMI will supply the programmed cassettes. The competition in the home data market is now fierce and bound to become even more so. One familiar problem may crop up yet again, that of standardisation. This is not just a matter of which physical links to use in the system. If cassettes don’t sweep the board the 16K r.o.m. attachment and associated electronics could be combined with a cassette mechanism to give the user the greatest benefit from his equipment. What is important is that the data contained in a r.o.m. can be understood by that on a cassette. The data must have been in a common data “language”, and it may be that, since the Post Office has a great influence on such matters in view of the importance of Viewdata to the whole idea, the programming language may be one that suits the Post Office. But what about the rest of the world? EMI stress they don’t want another standards battle.

News in brief

Soviet Scientists at the Lebedev Physics Institute, Moscow, claim that they have used a laser to move a 20,000 cm³ helium-filled balloon by laser operated on carbon dioxide and had an energy of “a few kilojoules”. Laser pulses pushed the balloon to speeds of up to 2m/s, each flight lasting about 30s.

In April next year GEC is to deliver £2 million worth of 30 channel p.c.m. equipment to the Post Office, the largest order, they say, since the tests on a trial link between Liverpool and Formby were completed. The equipment will carry telephone and data signals. GEC are also designing interfaces between p.c.m. links and exchanges.

We have had a number of enquiries about part three of “Multi-system ambisonic decoder”, by Michael Gerzon. The publication of this article has been delayed but we will publish it as soon as we are able.

Mr George A. Cooper, chairman of the Oracle board of Independent Television, announced an increase in the number of hours during which the service would be updated. It is now, like the BBC Ceefax system, updated seven days a week. See “Electronic home”.
Surveys of this kind have been say, turntables variable. It amount brief hearing, to players might, make worth protecting. player market, and "foothold" interesting by irregular intrusive other about which addresses engineer, who has come to rely recording, Another prevent and and discs, a lack too, Harrogate this year have become the the When as a sign Edison's original idea introducing new recording, shows signs of its spectacular, but which addresses development, of extensive market research. This target ever since the Ford Edsel, and it is little help to repeat Lord Reith's dictum that if you give people what they want they will want what they get. Garrard say their research has established that the punter wants an S-shaped arm, die-cast platter, a wood and metallic look, an acrylic dust cover, and an anti-static mat. So far so good, but it's a little worrying that Garrard should have been quite so ready, as they admit, to over-ride their engineers, who had good reason to object, for example, to plug-in headshells. It is sometimes better to temper the poll arithmetic with a little common sense. Does the product work, and is it well-finished? Some informed observers think Garrard haven't yet got it quite right, but it is good to see the new Garrard, under Derek Moon, keen to do battle with foreign competition.

Garrard's research also seemed to show that parallel or tangential tracking arms are not popular in the UK. Such an arm, which they were to sell here, is now available only in the United States, and may even be withdrawn from there. Yet Revox, who don't have a strong image outside the tape market, choose to launch themselves on the disc tide with a radial arm. It won't be available until early next year, but the prototype demonstrated at Harrogate performed very well even when thumped or tilted severely. The platter uses direct drive.

Some years ago Strathearn also launched itself on the turntable market with a parallel tracker. As far as one could tell the prototypes worked beautifully, but they couldn't make them reliably. Now, under chairman Graham Bish, they say they have solved the production problems, though the range is now confined to conventional arms, and intend to sell 30,000 ST4 and SMA2 pivoted arm turntables in the next year with a rejection rate of no higher than one in 100, compared with the more normal three or four per cent. "We only have two bites at the cherry," Bish said, "not three."

Another product Strathearn say they have high hopes for is the planar speaker, which has been seen in a number of forms in the last few years.

In the 100th year of sound reproduction Edison's original idea—a point thrown about in a moving groove — is still here, and even gaining ground. Why else would so many manufacturers still be introducing new turntables?

This might, of course, be interpreted as a sign of the disc's imminent demise: when the transistor became easy to get the valve improved astoundingly, and some of the turntables shown at Harrogate this year have become almost absurdly sophisticated. The disc, too, shows signs of improving to match the lack of breakfast noise that makes the cassette so attractive despite its disadvantages. A number of demonstrations at Harrogate used direct cut discs, a development whose results are very spectacular, but which a combination of its inconvenience to the studio engineer, who has come to rely on tape, and recording industry economics will prevent from coming into general use. Another disc development, the p.c.m. recording, is much more likely to succeed, though even here the improvement in sound quality is not one which addresses the main complaint about records. If music enthusiasts are turning to tape it is not because they do not like the tape hiss on records. The other improvements direct cutting brings do not compensate for the irregular intrusive noise caused by dust and scratches.

Perhaps that is why Garrard have sought to protect their turntable market by launching a scratch suppressor. It is interesting that they should do this just as they say they have established "a foothold" after a year in the cassette player market, and it would seem to show that the record market is still worth protecting. That market does not make Garrard reliant, as cassette players might, on buying mechanisms from abroad.

The scratch suppressor appears, on a brief hearing, to be very effective. The amount of suppression is continuously variable. It will be available towards the end of this year for just over £100.

Garrard have launched three new turntables this year, all the result, they say, of extensive market research. Surveys of this kind have been an easy
Now it has been separated from its bass units, and the combined mid and high frequency driver can be hung on a wall while the bass cabinet is hidden somewhere behind the furniture. Since bass notes appear to be non-directional the buyer could even get away with one bass unit and two planar speakers. JR’s “Super Woofer”, to be used with two of their cylindrical speakers, uses the same idea. The Strathearn speaker was demonstrated at Harrogate among an audience that seemed to become more and more enthusiastic.

BSR’s new pickup arm also contradicts Garrard’s research, since it’s carbon fibre and straight. It comes in two versions, with and without plug-in headshell. Thorens, too, have launched a new series of turntables with integral arms based on the principle, they say, that “the shortest distance between two points is a straight line.” It also results in lower mass. On the Thorens Isotrack arm the point of connection of the plug-in headshell is near the pivot, also to reduce the effective mass. When you change cartridges you also change about two-thirds of the arm.

The electronic control in the top Thorens turntable, the TD126, will allow pitch variations of 6% either side of the three main speeds: 33, 45 and 78, also electronically controlled. Like many of the more expensive turntables at Harrogate, this one has a separate motor to drive the automatic arm function. This operates when the increase in speed of the arm towards the middle of the record is detected. To work well this will have to have some pretty complicated electronics. Thorens also make versions of their turntables without arms.

Another comment offered on the Thorens stand was that, “direct drive is a undesirable trend. There’s a surge back to belt drive. . . . It’s not just a one way stream any more.” The competing arguments for the two systems were echoed in various forms all round the Harrogate show, the only point of agreement being that the idler wheel or rim drive was out for all except the low fidelity market. Direct drive is not a new idea. According to Thorens, both they and Garrard were using it 40 years ago, and Thorens also say they had a belt drive patent in 1924.

The power behind direct drive is Matsushita, who make many of the motors in other makers’ turntables, and there are some who believe that the growth in direct drive turntables, now 80% of the market, according to Garrard’s figures, has been as much the result of a skilful marketing exercise as of any intrinsic merit in the system. Certainly there is so much argument that whoever does have the advantage can’t be leading by very much. Thorens say their lab tests have “proved” that belt drive is less prone to rumble. A man on the Pickering stand agreed: “Direct drives were the first turntables made and belt drives were an improvement on them. Belt drive is preferred by the top end of the market, those who are interested in music, and not just buying because it’s expensive.” There was an audible difference at the top end, he said, which was “more detailed” on a belt drive turntable. If this is true, about which we make no comment, it may be attributed either to the notching effect, where the platter is driven round in tiny pulses of speed rather than smoothly, as from a synchronous motor, or by hum transferred to the cartridge by stray fields.

But Strathearn’s Graham Bish has no doubts: “Belt drive is on its way out, fast. That was very obvious in Berlin. Belt drive is dead.”

Along with speakers, turntables are one of the few things that British manufacturers are still selling well abroad, with a few exceptions. Even Collaro, now owned by Philips subsidiary Magnavox, is coming back into the battle with a range of cheap, idler-driven turntables for that part of the market that BSR exploited effectively. Goldring, too, is back, though they weren’t at Harrogate: Gerry Sharp has bought the assets, stock and goodwill of the company, now based at Bury St Edmunds. Connoisseur showed a large range of turntables, all belt-driven. Three-quarters of their production goes abroad.

Some aspects of the record player are changing. On many of them, such as the cheaper Pioneer models, the bias or anti-skating adjustment can be made while the record is playing, instead of lowering the stylus, lifting it, changing the bias, and lowering the stylus again. The thread and weight system seems to be losing ground.

Some decks were beyond the reach of most of us. Harman, now a subsidiary of the Beatrice Food Corporation since Sidney Harman joined the Carter administration, are agents for the Micro Seiki turntable, which costs £400. It is free-standing, having no plinth, and can take up to three arms. It looks, to say the least, captive, and, by contrast, the even more expensive Technics SP10 mk2, at £1,000 or so, looks plain. In between is the ADC Accutrac plus six, a belt-driven turntable which can be programmed to play, in any order, any number of tracks from six lps. The records are gently lowered on to the platter by an inner platter which spirals up through the centre of the turntable, and then they are raised back up to the starting position. The tracks are searched out and counted by a small beam of light which is reflected back to a detector between record bands, and scattered in the middle of bands. The functions can be controlled either at the deck or on a remote control unit, and the player also has a volume control.

ADC have also produced a new range of cartridges at the top end of which is the ZLM, available with an even tighter spec (10Hz to 20kHz ±0.5dB instead of within 1dB) for the lunatic fringe. At the Andromeda stand Wireless World was told, “The ADC Cartridge is superb. It’s the best cartridge here, and we’ve tried every one.”

Another amazing record player was the JVC Quartz-controlled QL10, which uses a digital speed readout, and has an electronic pitch control which adjusts in steps of IHz. That costs £680 including VAT. Pioneer’s PLC 590 had a fashionable look because there is no stroboscope round the rim of the platter. Pioneer say there’s no need because speed is “perfect all the time,” but other quartz-controlled decks in their range have strobos.

Andromeda have followed a philosopy of which perhaps Bose is the most well-known exponent, using four medium size speakers instead of one large bass unit. Farnell has the same idea, their speakers use one, two or four 5in. units.

Other underlying trends include the increasing use of separate amplifiers for moving coil pickup cartridges. Room equalisers may be one of the best sellers this year, and that bandwagon is carrying a number of manufacturers, including ADC again and JVC. One of the more notable things about the Harrogate show was the way electronic logic control is making it easier to use equipment, as in the Pioneer CTF1000 cassette deck. And Stag Audio appear to have found an answer to the surround sound system problem. They have an amplifier with a gap in it into which you can plug a decoding module of your choice, and they’ll even be offering H matrix models. Perhaps the BBC might like to buy some.

Silhouette of the ADC Accutrac plus 6, showing the inner platter spiralling up to receive the bottom disc in the stack. This will then be lowered on to the platter.
RADAR IN WAR

May I draw attention to the existence of a historical document of a unique character since it contains accounts of the doings of some 50 RAF ground radar stations in two-thirds of England and Wales between 1 December 1943 and 31 July 1944?

The country at this time was organised into four RAF radar “wings” each having a Senior Technical Officer with the rank of Wing Commander who was responsible for installation, maintenance and operations. Holding this post in 73 Wing I conceived the project of producing a brochure containing reports from official sources of the more important day-to-day work of the stations in defending Britain from air attack, directing our own outgoing and returning bombers, air-sea rescue work and what became probably the most useful work—the plotting of ships in the Irish Sea and North Sea. This was to be a tribute to some 4,000 officers, radar mechanics and operators (women and men) who did the work.

Our surveillance of the sea was a daily routine and involved shepherding convoys, plotting stragglers from these convoys, repelling the positions of individual units of the Royal Navy or ships of the merchant navy, reporting German E-boats which were engaged in attacking convoys or laying mines.

Although classic sea battles occurred, in most cases the E-boats engaged in mine-laying and by virtue of their high speed escaped unharmed. Nevertheless, by reporting their tracks, the naval authorities could send mine-sweepers to clear a channel and warn our surface vessels. Radar saved hundreds of vessels from following wrong courses and proceeding into mine-fields or even sandbanks. (Earlier in the war 400 vessels were wrecked on Hoppisburgh Sands.)

The brochure contains personal letters of appreciation and thanks from Admiral-of-the-Fleet Sir Jack Tovey (Nore Command), Admiral Sir William Whitworth (Rosyth Command) and Rear-Admiral J. S. M. Ritchie (I/C Liverpool).

All types of stations were involved in the radar activities of 73 Wing, some reporting aircraft, others being engaged in the exciting direction of our fighters against enemy bombers and 10cm “K” stations watching the sea. Before this confidential brochure was issued to our stations the overall work of the wing was generally unknown. Often a particular station was unaware of the degree that it had helped in a particular operation. Thus the bomber raid on Hull on 19 March 1944, which was supported with nine German planes shot down, is here recounted by several stations—a triumph for radar. What was originally a morale-building exercise has now become a unique historical account.

The original is officially stamped “Historical Document for Permanent Preservation” but it is now no longer confidential and photocopies may be obtained post free from the Public Record Office, Chancery Lane, London WC2A 1LR, by sending a remittance of £0.24 and quoting “73 Wing in Action” Air 16 – 914.

But for the publicity given by this letter this document would remain unknown in the misty recesses of the Ministry of Defence, Public Record Office. John Scott-Taggart, Beaconsfield, Bucks.

GMT / BST CONVERTER

I would like to point out that there may have been an error in Mr C. G. Armstrong’s Circuit Idea on a GMT / BST converter (August issue, p. 53).

The GMT/BST converter is required to add one hour to the transmitted code. The circuit given will work, but the “hours” converter needs to be a decade, not a binary, device, i.e. 74192 not: 74193, since the 193 will only produce a “carry” out of pin 12 at 15-16 hours, whereas we need a “carry” at 9-10 hours.

So either two 74192s should be used or the 74193 circuit changed over. Pin 4 of both devices must be fixed at a “1” for the system to work reliably.

Russel Greenberg
Tottenden
London N20

Mr Armstrong replies:
I would like to thank Mr Greenberg for noting the error in my article. It is entirely my fault and I am sure the types of ICs used is sufficient for satisfactory working. In retrospect it would appear I must have paid more attention to a satisfactory working model than to the correct identification of the ICs.

A logic “1” applied to pin four of both ICs is, of course, correct technique. Being somewhat sloppy I chose to leave the pins “floating” and have found that the system works quite satisfactorily without the need for the additional wiring.

The pole identification of the GMT/BST switch should be reversed, as my original note only intended to identify the function of the switch as a unit.

Because of the time delay between submission and publication of the Circuit idea it was not possible to state that the NPL have modified their code format to allow an automatic GMT/BST correction. By applying the bit immediately following the first rapid bit to the pin 5 of the 7408 and connecting the switch the automatic facility is enabled. C. G. Armstrong.

SURROUND SOUND

In his letter in the September issue Mr J. F. A. Fison bases his criticism of the stereo compatibility of Matrix H on one transmission. Having listened to several broadcasts, I have concluded along with Messrs Ratliff and Meares that “images may be localized outside the space enclosed by the loudspeakers”. Hence the sound completely fills the front quadrant.

Although 9dB may appear to be a poor figure for separation the phase difference is of the order of 45°. Since the human ear responds considerably to phase at mid band this factor is dominant. In addition, does Mr Fison realise that most stereo sources rarely have a separation exceeding 20dB? A typical pickup will have a separation of only 10dB at the limits of the spectrum. Similarly the acoustic separation when using a coincident pair of microphones is of this order of magnitude.

So I for one goes on to condemn Matrix H and praise Ambisonics. Since the two systems are almost identical except in detail how does he expect the 45° system to have a better separation? In listening to Matrix H in stereo I have concluded that in general the image width is satisfactory on loudspeakers and if anything is slightly too wide. Also, when listening on stereo headphones the effect is rather objectionable. For reason of economy the switch should be wise to reduce the front sector angle to 45° or less which would reduce the width of the stereo image.

On one point I agree with Mr Fison. The BBC would be wise to close down 45° which would result in only a minor alteration to the results on H decoders but which would allow for the introduction of a logical and expandable quadraphonic system. I fear, however, that the BBC may dig in its heels.

R. T. White
Lancing
West Sussex

TELEPHONE EXCHANGE TECHNOLOGY

With regard to your article “Telephones and new technology,” in the September issue, I suggest that Mr Dwyer examines his sources of information more closely. I quote from p. 72: “The Post office crossbar system does not use multifequency signalling, as the foreign market requires.” If this is so, then perhaps Mr Dwyer could tell me what I’ve been working on over the last few weeks. Although m.f. is by no means as venerable as Strowger equipment, or TXK, for that matter, I can unequivocally state that m.f. as an integral part of a Group Switching Centre signalling system, has been in operational use for some years.

I must also draw your attention to Mr Dwyer’s gib assumption that there are no common areas between the basic exchange systems in common use. In TXK, (son of Strowger, remember?) interchangeability of components seems to be its main asset. Many of its circuits are, in fact, adapted TXS circuits, the actual electro-mechanical hardware being identical. It is also increasingly commonplace to find adapted TXE shelves mounted in cross-bar racks; (one look inside a sector switching centre will verify the fact).

A. Graver
Birchanga
Herts

John Dwyer replies: The source was STC’s submission to the Carter committee, section five, paragraph 20, which STC have rechecked and say is correct. The Post Office at first agreed but, after we had asked Mr
Graver for more details, issued the following statement, "Technically the statement is incorrect in that both TXK1 and TXK4 do not (sic) provide multifrequency signalling facilities (SSMF2 which is the current UK national m.f. signalling system.) However in essence the article is probably correct because the context within which the statement appears refers to export possibilities and here the requirement is for the CCITT R2 m.f. signalling system and m.f. keystone processing not yet provided in the British Post Offices crossbar systems."

As to Mr Graver's second point, if he re-reads what I wrote he will discover that I did not even suggest the five systems had nothing in common.

AMPLIFIER DESIGN

While we do not want to join the present fashion of "knocking" audio amplifier designs, we do feel that we must make two comments, one specific and one general, concerning recent articles and correspondences.

First, Mr Taylor's RIAA pre-amplifier published in the September issue. Mr Taylor states his long-tailed pair input stage operates at an open loop current of 90 µA, which will, with low gain devices, result in a base current of approximately 0.36 µA. Owing to the difference in resistance between the 47kΩ resistor and the parallel cartridge most of this current will flow through the cartridge. If one now calculates the signal current from the cartridge at an average output of 5mV the current is 0.106 µA, a factor of 3.4 less than the d.c. flowing in the cartridge. This must offset the cartridge magnetic circuit and may result in a significant increase in distortion from the cartridge. We wonder if Mr Taylor has consulted cartridge manufacturers on this point.

Secondly, there seems to be an amount of mysticism regarding transient intermodulation distortion and slew rate, which has never been explained as we see it. Any amplifier will have an open loop risetime dependent on its open loop bandwidth and roll-off rate. If now under the closed loop condition the amplifier output is required to rise faster than the open loop risetime, the feedback is operating in a manner which speeds the amplifier up. This will result in an increased error within the loop, showing itself as a transient reduction in gain within the loop accompanied by a transient increase in distortion. Ultimately when the error stage saturates, the amplifier hits slew rate limit and its output will go no faster. From the point at which the closed loop output is required to rise faster than the open loop risetime to the point at which slew rate limit is reached, the t.i.d. obviously increases from zero to 100 per cent.

Mr Sundqvist's solution of making the first stage drive the open loop bandwidth is to some extent avoiding the point, as, unless the open loop bandwidth exceeds the audio range, at high audio frequencies, an increase in distortion and reduction in damping factor is inevitable. Thus wide open loop bandwidth and large internal error capability are necessary, together with low open loop distortion.

A. Dych and K. Bishop
Rugley
Staffordshire

CITIZENS' BAND AND SOCIETY

Mr Dwyer's remark (Wireless World, January 1977, p.36) that a written constitution makes a difference in the adoption of citizens' bands holds true for the UK's a reminder that the structures of societies make a big difference in the risks that technologies bring. Most of the US was not disturbed much by the blackout and looting of New York, and possibly many millions of commerce felt it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.

For instance, if cars and the ease of making Molotov cocktails might mean that with 15,000 c.b. sets loose, the South African police would have to contend with an army force more powerful than the tank, division engaged. As for the Soviet bloc may be more secure in terms of one ethnic group being outnumbered, but in terms of the number of languages is even more vulnerable. Since the Soviet bloc is so much bigger, and possibly many millions of commerce feel it was good news for their growth programmes. The results for the UK of the same thing happening in London would probably be far more catastrophic since London is the financial centre and a larger part of the country's gross national product. One might want to play with expectation formulae to establish a number and call it a Chaos Criterion, based on a country's economic value, per capita police ratio, number of languages, and other factors to find how many c.b. sets a country might expect to tolerate and not consider threatening to national security.
ation was intentionally to remove from active life unnecessary humans? Or the legal profession if it was concerned solely with removing from society the innocent as well as the guilty?

Your “appointments” column further undermines the engineering view of equipment. The finds in advertising for a “radio telegraphy operator” — (1) to receive and transcribe on a typewriter Morse code at 25 wpm; (2) make aural or visual recognition of signalling code; and (3) operate communications systems; (4) be able to operate complex modern communications receivers; (5) be able to operate radio teleprinter equipment; (5) understand radio propagation and frequency usage; (6) able to correct, log and identify incoming material; and (7) possess “perfect” hearing and be prepared to submit to entrance examinations in Morse typing and signal recognition.

Apparently, however, I am alone in regarding this as a demanding list of qualifications, since the basic salary offered is £2334 — or roughly some two-thirds of what appears to be the going rate for electronic technicians and less than about half that of those development engineers whose main purpose appears to be to eliminate “operator” jobs altogether!

Surely, to gain public esteem the electronic institutions should be prepared to prove that the engineer creates more socially-acceptable jobs than he destroys and does not regard those who use his equipment as so much electronic-fodder. Electronic automation, ergonomics and human-engineering were “sold” to society in such terms in the 1950s — were we only being conned?

Pat Hawker
London S.E.22

REQUEST FOR OLD SET

I am anxious to obtain a Romac personal radio receiver which is completely contained; the chassis, batteries and loudspeaker are housed in an all-metal body, camera shaped, finished in ripple black and polished chrome, and the aerial is contained in a flat p.v.c. covered black shoulder strap.

This receiver, the first miniature portable after the second world war, was manufactured by the Romac Radio Corporation Ltd., The Hyde, Hendon. London from 1946 to 1949.

Gordon Bussey
(Author, “Vintage Crystal Sets 1922-1927”)
19 The Pines
Parley
Surrey

I think the majority of the aviation community would endorse Mr Townson’s comments (October letters) on the desirability of retaining professional voice communications, although the rate of introduction of data link systems will be determined by cost and by the growth of confidence in them.

Regarding modulation standards, the relative merits of a.m. and f.m. in a 25kHz channel are debatable, but what is certain is that the vast amount of money which would be needed to convert all aircraft transceivers would contribute more to air safety if spent in other fields (e.g. improving navigation aids).

An important consideration is the operational requirement for some ground stations to use up to 5 transmitters on a single channel to extend the service area. The offset-carrier (Climax) system is used, with carrier offsets of 4kHz minimum. This requires the receiver audio bandwidth, 8kHz at the detector, to be low-pass filtered to 2.5kHz to avoid 4kHz heterodyne whistles. Offset carrier techniques cannot be used with f.m., and while synchronous-carrier f.m. might allow slightly increased audio bandwidth, it is doubtful whether distortion would be acceptably low. For further discussion of a.m./f.m. tradeoffs see Mr Drybrough’s articles in Wireless World, November and December 1976 issues, and March 1977 issue).

R. A. Keall
Hawker Siddeley Aviation Ltd
Hatfield
Hertfordshire.

RIAA EQUALIZATION IN PRE-AMPLIFIERS

I was very interested to read the comments of Mr de Paravicini (Letters, May issue) on passive RIAA pre-amps. From my own studies and limited time for possession and reading, I have reached the following conclusions on amplifier design:

1. The greatest contribution to sound quality of feedback RIAA pre-amps is to split the equalization into two stages.

2. The better the quality of the basic amplifier circuit, the less the advantage in using passive equalization.

3. Because equalization stages are not perfect, they introduce conflicting problems with high frequency phase response, low frequency phase response, input impedance at the inverting input (which may not be constant) and will include some capacitance, gain required to avoid stage overload or noise level of next stage. Careful design is needed at each stage to produce an amplifier capable of reproducing music.

4. The quality that each amplification stage can attain as a straight amplifier is an important factor in determining the overall sound quality. The nine transistor amplifiers described by Mr Self in his August pre-amps review are a few slight modifications are capable of better sound quality than any other amplifier stage I have tried.

5. The sound quality obtained by using passive equalization and the nine transistor amplifiers in each stage can only be maintained if the number of touching contacts are kept to a minimum (potentiometers, switches and plugs and sockets). Additional switches and connectors to facilitate A-B switching tend to make comparison between very high quality amplifiers difficult.

6. There is no sound quality can never be better than the weakest stage. If an amplifier is of such a quality that a simple emitter follower creates noticeable distortion 1 then that must be replaced by a stage comparable with the rest of the amplifier even if nine transistors have to be used.

7. The input capacitance to ground at the disc input should be kept to an absolute minimum. R.F. interference should be avoided by a series inductance and any high frequency response rise corrected by a lower input resistance. The purpose of the lower resistance is to avoid resonance which will impair the quality of sound produced by the cartridge. This point has been made by leading hi-fi reviewers. 1, 5

8. The sound quality of almost every commercial amplifier can be improved considerably at little extra cost. To turn to transient distortion, I fail to see
how the term "intermodulation distortion" can mean anything in the English language. To my understanding it is a description of a form of distortion to a transient waveform (musical signal) which occurs in passing through a circuit though that circuit introduces very little harmonic or intermodulation to a sine wave. Hence the term "intermodulation" is meaningless and confusing. No wonder that there is no one who understands it and can describe it in simple terms backed up by experimental evidence. In musical terms, it may seem like intermodulation between the sounds due to confused stereo images, but not in engineering terms.

Finally I feel that it is unfortunate that Mr Verekker (June letters) finds it necessary to introduce a new term "loss of information". This is really the true meaning of the word "distortion".

Graham Nalty
Borrowwash, Derby

References

DOPPLER RADAR

I was most interested in the article on Doppler radar by M. W. Hosking in the July issue. I was immediately reminded of a very simple set-up using mainly Government surplus equipment which a colleague and I put together in 1942. We were employed at the Royal Military College of Science, Shrivenham, somewhere in the period 1949/1950.

Separate small 12-inch paraboloids were used for transmitting and receiving. A low powered 3cm Klystron was used in the transmitter. This was of the type commonly used as a local oscillator in radar equipment of the period, as was also the crystal diode used in the receiving assembly. The object of the exercise was to demonstrate the principles of Doppler radar to young officers on degree courses.

We were not anticipating a lot of success, and time and equipment available were both limited. However, we were encouraged by most satisfactory noises from the loudspeaker made by personnel and vehicles passing in our beam. We were of course aware that the Doppler output was a function of the size and range of the reflecting object. Imagine our surprise and pleasure therefore when, on directive the beam down the cricket pitch, some 1500 distant, the flight of the ball towards the batsman produced most satisfactory squeals! It was not long after this that we added a simple frequency counter which also displayed the instantaneous velocity of the ball on a large meter. All arguments as to the fastest bowlers were subsequently scientifically settled! No doubt in these more enlightened days we would have fitted a digital counter with a stored maximum velocity read-out.

As may be imagined this proved for some time a most popular demonstration. It would be most interesting to hear from any young officers of that day who remember these events at Shrivenham.

K. J. Neighbour
Christchurch, Dorset

INTEGRATED CIRCUIT OF THE 1920s

Accompanying this letter is a photograph of a valve type JNF, believed to have been manufactured by the German company Loewe in the 1920s. In my experience this is the earliest attempt at integration for it contains in one envelope three separate triode valves and all RC coupling components for a simple wireless receiver. The only external components required are the aerial tuning circuit, loudspeaker and power supplies. The circuit diagram and operating data are given in this letter.

Each resistor and capacitor is separately encapsulated in glass, presumably to preserve the vacuum against outgassing of these components, and the circuit provides an object lesson in economy of components to enable the valve to be mounted on its 6-pin base. The base has sliding contacts (not plug in) and uses a bayonet fitting base with three staggered locating dowels.

I am indebted to a colleague, Mr R. F. Wright, for the opportunity to examine this valve and several other collectors pieces which he retrieved while clearing his family home in Australia. I retained it for long enough to find that it is still in working order and gives good loudspeaker reception on local stations on about 6ft of wire as an aerial, giving 600mV RF in the first grid. In operation the valve is quite isolated acoustically from the loudspeaker to prevent microphonic oscillation.

I would be very interested if any of your readers could provide any historical information on this device or on the Loewe company, which is unknown to me.

T. R. Thompson
Dungeness 'B' Nuclear Power Station
Romney Marsh
Kent

Editor's note: The firm Loewe Opta of Berlin, maker of radio and television sets, is of course well known in Germany.

HOTEL RADIO

If one makes use of the switchable radio installations which are provided in the bedrooms of modern hotels, the result is almost invariably disappointing. They are seldom in full working order. Typical faults are:

- Mis-tuning of all or some channels, with subsequent distortion and even, in areas of low signal strength, ignition interference, or some channels wholly missing.
- Faults in the amplifier and distribution network, resulting again in distortion and large variations in power level at the loudspeaker.
- Noisy switches (usually press-button) and volume controls.

These faults are found all over the world. I recall two satisfactory switched systems: one in West Germany where the audio signals are fed via a rotary switch to a valve amplifier and a modern push-button system in East Germany. The best all-round solution is found in many hotels in the USA — a simple continuously tunable f.m. receiver, firmly screwed to the wall. Why do European hoteliers not follow this practice?

John Want
Penner
Middlesex

TRAINING IN A DEVELOPING COUNTRY

I am writing to you on behalf of the International Voluntary Service in the Seychelles. We are part of the British Volunteer Programme, which is a voluntary organisation with a view to training technicians etc. in the developing countries. At present the college in which I am teaching has a City and Guilds of London 2335A and 235B electricians course, and we are trying to start a basic electronics course, which is (in the electrical industry) a vital part of training.

The island. I should explain, have just received independence, and of course have a limited budget, therefore we have problems in supplying texts for our students and component parts for building circuits. I would add that a lot of British technology is exported to the islands but only a limited training is available. Part of the plan is to expand on this training, so I would like to appeal to you and your readers to help in as many ways as possible. One very practical way would be with back issues of your magazines which I feel would be a tremendous help in the work. Also old school textbooks would certainly be gratefully received, and, of course, what we call "junk," old p.c.b.s, resistors, diodes, transistors (not too old), capacitors etc. The students are hard working and would be grateful for any help in developing the skills of our industry. My colleagues and I feel that the possibilities are excellent. The British people have given political independence to the Seychelles; we can give them economic independence by giving as generously as possible the technical training that they need.

Gordon Catto
Seychelles Technical School
P.O. Box 48
Victoria
Mahe, Seychelles

www.americanradiohistory.com
Audible amplifier distortion is not a mystery

Some things are believed because people feel as if they must be true, and in such cases an immense weight of evidence is necessary to dispel the belief.

by Peter J. Baxandall, B.Sc. (Eng.), F.I.E.E., F.I.E.R.E.

There is a very widely held belief that all amplifiers sound different, and that the reasons for this are so subtle and mysterious that no-one has yet properly understood them. I do not agree with these views, and confidently maintain that all first-class, properly designed, amplifiers, tested under completely fair and carefully-controlled conditions, including the avoidance of overloading, sound absolutely indistinguishable on normal programme material no matter how refined the listening tests, or the listeners, may be; and that when an inferior amplifier is compared with a very good one and a subjective quality difference is genuinely and reliably established, it is always possible, by straightforward scientific investigation, to find a rational explanation for this difference.

Subjective reactions

When people claim to have detected a difference in the sound of two amplifiers, the true explanation for this may be any of the following:

— the amplifiers actually did produce different audible distortions.
— there was a slight difference, probably unsuspected, in the test conditions,
— psychological factors were exerting an influence.

It is possible to be quite misled by some small physical effect, thought to be of no consequence at the time. I well remember a particular case some years ago when a friend claimed to be able to detect by ear the difference between a good valve amplifier and a good transistor amplifier. He invited me to his house and had a changeover switch which I was asked to operate, not knowing which position was which. I soon found I could indeed detect a slight difference, one position seeming just a little smoother and less “grainy” than the other. I supposed this to be the valve position, which was correct, and we were both pretty well convinced we were hearing a trace of crossover distortion. It then occurred to me to wonder just how accurately the volumes had been set to equality in the two positions, and the outcome of this was that we found that a reduction of not more than about 1dB in the volume from the transistor amplifier made it absolutely impossible for either of us to tell which amplifier was operating! More recently it was found that by choosing the moment of switchover in relation to the musical phrasing, to coincide with a change in sonority, one could produce the reaction that either one or the other of two systems was the better. This sort of thing can, of course, happen spontaneously, without anyone being aware of it. Another possible cause of deception is a trace of hum in one system but not in the other, due to insufficient care over earthing arrangements in the test set-up — this hum can get misinterpreted as a degradation in general quality.

With regard to psychological factors, I think it should be openly recognised that those of us claiming to have “golden ears” in matters of sound quality judgement can nevertheless be very easily led astray in various ways. For instance if, without being aware of it, we have listened for a long period to some equipment with, say, a 6dB dip in the frequency response at 3kHz, but otherwise of first-class performance, removal of the dip is very likely to produce the reaction, at least initially, that the reproduction has become too strident. However, if it was known to the listeners beforehand that a dip had been intentionally introduced, removal of it is then more likely to produce the reaction “Yes, now the violin tone is more realistic” or something of the sort! Such pre-conditioning and psychological influences are quite strong, and should be allowed for. Another psychological phenomenon, very significant I think, is that few of us like to admit that we “just cannot tell the slightest difference” in the presence of others who have professed to hear subtle differences. So most people will succeed in convincing themselves that they really have managed to notice small changes in sound quality. In properly conducted subjective tests, however, the participants should not know which system they are listening to at any given time, and the number of switchovers, some genuine and some not, should be large enough for a proper statistical interpretation of results to be made. Guesswork, maybe unconscious, is then largely prevented from influencing the results.

An amusing illustration of some of these psychological ideas arose on an exhibition stand by a well-known firm, who had arranged things so that visitors could listen, at precisely the same volume, to three of their amplifiers, being invited to identify the most expensive model. In fact it was found that voting for “the best amplifier” was about equally distributed between the three, so that, naturally, about a third of the visitors picked the right one. When told they had been successful, the almost universal reaction of these individuals was one of pleasure at their evident skill, whereas, of course, an equally logical reaction would have been to congratulate themselves on their good luck!

The BBC Research Department is well aware of the dangers of reaching quite wrong conclusions from subjective tests. Very careful precautions are taken to eliminate as many psychological and physical disturbing factors as possible, and even to derive, where appropriate, a quantitative estimate of the reliability of the results. It is very evident that in many other places such precautions are not properly taken.

Recording systems and amplifiers

Unlike amplifiers, conventional tape and disc recorders, even those of the highest professional grade, have distortion levels and signal-to-noise ratio which are only just about good enough subjectively. A very instructive experiment is to record the same mono programme source on both tracks of a good stereo tape recorder, with a level difference of, say, 10dB. The replay gains are then adjusted to give outputs of equal magnitudes, and these are subtracted one from the other to give, ideally, nothing but noise and distortion. The distortion is mainly that of the
more heavily recorded track, whereas the noise is mainly that of the weaker track. (In practice, a little h.f., and possibly i.f., phase correction may be necessary to get fully satisfactory programme cancellation.) With gains set to give normal listening volume when only one track is reproduced, the distortion heard with both tracks operating is quite horrible and is loud enough to be very easily audible all over the room, even in conditions of moderately high ambient noise level. This gritty, blasting, distortion is only somewhere about 40dB below the uncancilled programme level during loud passages, yet it is virtually unnoticeable when accompanied by the music. Tests with tone input show that the distortion is mainly third-harmonic, the percentage distortion being proportional to the square of the output voltage and reaching about 2% at peak recording level. The distortion is fairly independent of frequency over most of the audio band. Thus a first-class professional tape recorder gives distortion of about the same magnitude and character as a push-pull class A amplifier, giving a distortion figure of about 2%, assuming this also to be reasonably frequency-independent.

Experiments I have done with class A push-pull amplifier circuits, involving balancing out the programme and listening to the distortion by itself, do indeed show that it sounds much the same as that produced by a good tape recorder, and that 1 or 2% distortion is low enough for results of the highest quality, provided the amplifier performance is clean enough in all other respects.

Similar experiments with class B push-pull circuits, adjusted to give considerable crossover distortion, showed that, whereas the distortion is rougher and more unpleasant sounding, and tends to be nearly as loud during fairly quiet parts of the programme as during the loud parts – it appears as an almost continuous background buzz. For absolutely first-class quality, distortion of this type must be reduced to much less than 1% at all output levels and over most of the audio spectrum. This topic will be considered in greater detail later on.

In recording systems, unless very refined and expensive digital techniques are used, there is always the need for a careful compromise between signal-to-noise ratio and distortion. Considerer systems, of which ‘dbx’ is the latest, and very welcome, development, can achieve an impressive improvement in subjective signal-to-noise ratio, together with some reduction in peak distortion level, but they do not actually affect very greatly the signal-to-noise ratio existing during loud passages. Thus reliance is still being placed on the masking effect, whereby unwanted sounds, which would be very easily audible on their own, become virtually inaudible when accompanied by the wanted programme.

With amplifiers, on the other hand, it is comparatively easy to reduce the audible distortion and internally-generated noise to far lower levels than in any normal recording system, and this is what is done in equipment of the highest grade. Provided such amplifiers are tested under sufficiently carefully controlled and repeatable conditions, the results are free from faults such as hum and r.f. interference susceptibility, have insignificant differences in frequency response, and are not overloaded, the quite inevitable result is that one amplifier is absolutely indistinguishable from another, on normal programme material, no matter how ‘golden’ may be the ears involved.

Quad have shown that, with their transistor power amplifiers, if the amplifier distortion, including hum and noise, is reproduced by itself at its normal level, without the music, the result is total silence under ordinary listening conditions. This is enormously better than the result obtained when a somewhat similar test, as described above, is done on a high grade professional recorder.

But, to me, the most amazing thing is that Peter Walker tells me that few of the people who have witnessed this experiment seem able to appreciate its true significance, which is, quite inescapably, that such amplifiers are subjectively indistinguishable at the margin to spare and give an audible performance which can never be improved upon. Quad do not maintain, however, that theirs are the only amplifiers about which this may truly be said. Of course if, during the above experiment, such amplifiers are allowed to overload, even momentarily, the result is broken and the distortion fairly cracks forth. But amplifiers should not be allowed to overload, and if they do, the only proper solution is to turn the volume down or employ more powerful amplifiers.

A few people have raised the objection to the above experiment that though the distortion may be inaudible on its own, the ear and brain are exceedingly complex and subtle, and so the effect of the distortion might conceivably be perceived when it is accompanied by the music. This, however, is quite contrary to what is found to happen in the tape-recorder experiment referred to earlier, where the distortion is easily heard on its own, but is very well masked when accompanied by the music. Experiments I have done involving crossover distortion show that this too is fortunately subject to a considerable degree of masking in the presence of the associated programme.

A diagnostic tool
The technique employed by Quad for listening to amplifier distortion by itself, on programme input, provides a very useful tool for assessing the subjective goodness of amplifiers in a quantitative manner and for establishing criteria that should be met if an amplifier is to be totally free from audible distortion. The technique can obviously be implemented in various detailed ways, and Fig. 1 shows one arrangement which is suitable when the amplifier under test is of the phase-inverting type. Wherein distortion is more usual, then, to facilitate conversion, a very low-distortion phase inverter must be introduced into the circuit in one of several possible places.

For setting the circuit up, it is found in practice that an audio noise source is more suitable than normal programme input, since all frequencies are present all the time. Thus S1 and S2 are both closed, and P1 plus the several adjustments in the frequency-response and phase-balancing network are adjusted for minimum output from the monitoring system. The potentiometer P2 should initially be set to a low resistance value, the value being raised as the balance condition is made more and more nearly perfect. Potentiometer P2 should finally be set so that, with S1 or S2, or both, open, the voltage fed to the monitor system loudspeaker is the same as that fed to the load circuit of the amplifier under test. With both switches again closed, the distortion alone will then be reproduced by the monitoring system loudspeaker at its proper level. Having thus got the circuit correctly set up, a rather tedious process of making each of the number of adjustments involved – a little thought will show that a variety of interesting and very informative tests may then readily be done, such as:

- The gain of the monitoring system may be increased until the distortion does become audible by itself, thus obtaining a measure of the margin by which it was previously inaudible.
- The effect on the audible distortion of loading the amplifier under test with loudspeakers and/or dummy loads having various different impedance characteristics may be investigated. (When a loudspeaker load is used, it is necessary, of course, to prevent the sound from this loudspeaker from reaching the person listening to the distortion on the monitoring system loudspeaker. Rather than use well-separated rooms and very long leads, a more convenient procedure is to tape record the distortion and listen to it later.)
- The two loudspeakers of Fig. 1 may be placed next to each other, P0 then being adjusted to determine by how much the distortion may be increased above its “natural” level before a just-detectable degradation in music quality begins to become evident.
- With S1 only closed and then S1 only closed, P1 being set for a suitable listening volume from the monitoring-system loudspeaker, reproduction via the amplifier under test may be compared with that via the passive network. With a first-rate amplifier,
 absolutely no difference whatsoever should be detectable on any kind of music programme input, provided that no overloading of the amplifier under test is allowed to occur. The test may be extended to assessing the degree of unpleasantness of various degrees of overloading, with and without protective circuits in operation, etc.

When two amplifiers are found to sound genuinely different in ordinary subjective tests, they may then be tested in a circuit of the Fig. 1 type to see whether the distortion is audible when reproduced by itself. It may be found that the distortion is of an overloading type, though perhaps happening at a lower output level than the expected clipping level because of the operation of protective circuitry within the amplifier — or it may be that the amplifier has been badly designed with regard to its slew-rate capability. Such possibilities may then be looked into in detail. On the other hand, if both amplifiers give inaudible, or very unobtrusive, distortion, it is worth testing one amplifier in the Fig. 1 circuit with the frequency-response and phase-balancing values adopted for the other amplifier in place. Then, if there is a noticeable difference in quality when only S₁ or only S₂ is closed, the mid-frequency gains having been set to precise equality, it is likely to be because of the slightly different frequency responses — in particular, the response below the audio spectrum may be important in influencing the amount of rumble or other sub-audio-frequency signal reaching the loudspeaker, where it may cause large cone movements and thereby affect the loudspeaker distortion.

By using an oscilloscope with the Fig. 1 set-up, much can be learnt about the relationship between the type of distortion waveform observed and the corresponding subjective nature of the distortion. The system also has the great virtue, when used with tone input, that the true waveform of the amplifier distortion is displayed, unaffected by oscillator distortion or by slight harmonic phase shifts contributed by the notch filter that would normally have to be used.

The Fig. 1 type of arrangement can also be made the basis for an accurate and very satisfactory technique for harmonic and intermodulation distortion measurement, which has the advantage of not demanding a high degree of oscillator waveform purity.

Some conclusions

One of the conclusions to be drawn from tests such as those just outlined is that amplifiers do tend to differ somewhat in the degree of unpleasantness of the distortion they produce when allowed to overload, but, apart from this I feel sure that nobody who has actually himself used these largely subjective investigational techniques could possibly continue to believe that all amplifiers sound different or that the subjectively perfect amplifier has yet to be designed. This is why Quad have been prepared to stake their reputation and say without reservation that they would be prepared to accept a challenge to have their 303 or 405 amplifiers compared effectively, using the Fig. 1 type of set-up, with what they have called a ‘straight wire with gain’¹⁶. Provided certain quite reasonable test conditions are satisfied, their claim is simply that no-one will genuinely be able to detect the slightest difference in sound quality on any programme input derived from normal sources.

The unconvincing may well say “if subjective perfection has already been achieved, then why are amplifier manufacturers still devoting a lot of research and development effort to making better amplifiers”? The cynical reply might be “to produce even more impressive-looking figures for reviews”! But in fact the enlightened designer is probably spending most of his time struggling with far more difficult problems, such as how to achieve greater reliability, how to simplify the design and hence reduce the manufacturing costs, how to eliminate the need for preset adjustments, how to increase the maximum available output, how to improve the ability of the amplifier to cope with a wider range of load impedances, how to eliminate “switch-on plonks” etc. None of these problems directly involves the concept of subjective listening quality.

It is when problems such as those just mentioned are considered that the true nature of the enormous advances made in audio-amplifier technology becomes evident. In 1938, a British 14-watt high-quality amplifier sold for about £19, yielding a figure of 0.74 watt per £1. A recent 200-watt stereo amplifier, of smaller size and weight, sells at £115 and gives 1.7 watts per £1. Allowing for inflation, it is clear that the true cost per watt using modern solid-state techniques is down by a factor of the order of ten on what could be achieved in the valve era². This is undoubtedly a great engineering achievement.

As a designer of audio amplifiers and other equipment, of which some is currently in use in BBC studios and elsewhere, I must have spent many thousands of hours inventing, thinking about and experimenting with audio amplifier circuits, but I cannot recollect ever having carried out subjective quality-assessment tests as a direct part of the design and development process. Subjective tests have been done separately from the design work and for the purpose of helping to establish criteria which need to be satisfied by the equipment designed.

Fig. 1. The diagnostic set-up. A modified frequency-response and phase-balancing network may sometimes be required.
Without knowledge of such subjectively-derived criteria, it is natural to "play for safety" and make the performance far better than it actually needs to be. This is particularly the case with preamplifier or control-unit design, where the non-linearity distortion is usually of the simple smooth-curvature type, which does not need to be reduced anything like as far as it is possible to reduce it in order to become quite inaudible. To elaborate the design, with consequent increase in cost, is the belief that when the distortion is, say, a hundred times, or more, below the subjective detection limit — which it is quite possible to do — is surely not in the true interests of the customer. Needless to say, very great care indeed must nevertheless be taken with things that really do matter, such as leaving sufficient "headroom" to accommodate all potential sensitivity variations, achieving very low hum and interference susceptibility, etc.

Once the designer has freed himself from various quite irrational and unfounded beliefs, e.g. that there is an inherent subtle difference between valve and transistor sound, that transformers always produce detectable subjective distortion, that class B amplifiers can never sound quite as clean as class A ones, that feedback should only be used in small amounts, etc., he can then proceed in a proper scientific manner to develop designs of good economy and reliability, and immaculate subjective performance. He will appreciate that there are countless ways of designing equally good-sounding amplifiers, and concentrate his efforts largely on seeking the optimum engineering solution.

Amplifier reviews

The belief that all amplifiers sound different seems to be even more deeply rooted with the popular hi-fi press and their reviewing teams than it is with designers. I feel that a great disservice is being done both to the buying public and to some manufacturers by reports on amplifiers and control units of the type which have appeared, for example, in "Hi Fi for Pleasure"[11,12]. The reviewers claim to have been able to detect by ear specific deficiencies in virtually all units submitted to them, including differences between "cancel" and "tone controls flat" in all cases where such a comparison was possible. But one incredulity is surely stretched beyond the limit when one finds a well-known control unit, widely adopted by discriminating professional users, described as having a mid-range that is forward yet lacking in detail, with some compression of peaks and an unstable image, and a top end performance that is thin and rounded off, but with a splashy character imparted on cymbals, and similar explosive sounds, the overall performance being summarized as dull, with a great loss of presence and ambience and "seeming to make the music sound amateur"! Enquiries revealed that the unit in question was subsequently released for other manufacturers and found to be in perfect order. When descriptions such as the above, which could only properly apply to equipment with quite gross faults, are used in relation to items known to be first-rate, it is clear that either something was wrong with the test set-up or that the reviewers — not to question their sincerity — had fallen prey to their own imaginations.

Since the belief that all amplifiers sound different has become so widely accepted, it is natural for people to want to find technical explanations for it. Since little correlation with performance as ordinarily measured can be found, the notion has built up that something extrinsic and elusive is involved, to explain these supposed subtleties, those with more imagination than scientific understanding proceed to evolve a series of wilder and yet wilder pseudo-scientific hypotheses. New jargon is created — "musculation", "loss of information", etc. An article of French origin which has recently appeared in Hi-Fi News — accompanied, however, by an expression of editorial neutrality and non-commitment — says the quality of copper used in loudspeaker leads influences the quality of the information transmission, the best wires having a purity as high as 99.9995%. The alternating magnetic field generated by a loudspeaker cable is said to represent a significant loss of information. Even in the wiring of electric-bell circuits, the use of Litz wire is claimed to give "tintinabular superiority". How silly can we get? All this sort of thing, which seems to be encouraged by some of the hi-fi magazines, for whom it no doubt provides easy material for filing their pages, is probably good for the future of the audio industry, being liable to bring it to a state of disrepute with intelligent people.

Admittedly the subtleties and difficulties of many aspects of good sound reproduction are enormous, but it seems a pity that an atmosphere of quite irrational mysticism should be encouraged to invaginate even those parts of the field where things are properly understood and quite straightforward.

Finally, lest some readers may feel that the views here expressed are representative only of an engineering outlook, it may, perhaps, be relevant to add that I have a passionate interest in music, that I frequently go to concerts, do a good deal of recording of live music, and that much music making, some professional, goes on in my household.

The next article will discuss some detailed technical matters relating to amplifier design.

References

Harold W. Barnard

Many people in the electronics industry will be saddened to hear of the death of Harold W. Barnard, editor of Wireless World from 1965 to 1973. Although he held this post for only eight years he had in fact given a lifetime of devoted service to the journal. Starting in 1925 as an assistant to the production manager, he transferred in 1936 to the news side of the (then weekly) journal to become what was known as a "leg-man" — getting news the hard way without the assistance of today's information services and publicity organizations — and eventually took complete charge of the news section. During the 1939-45 war he was a member of a small team that kept the journal going under extremely difficult conditions. In 1959 he was appointed assistant editor, a fitting tribute to his journalistic abilities.

When he retired in 1973 we wrote of him: "Kindness, courtesy and dedication are three qualities not very much in evidence in the modern industrial scene. They are the three virtues which one would most likely pick if one were asked to characterize in a few words the retiring Editor of Wireless World, Harold W. Barnard. Readers may wonder what such a man can do with technical journalism, they don't seem to be relevant to the business of turning out good articles and news on radio and electronics. But technical journalism, like many other professional and industrial activities, runs on the fuel of human contacts. What is printed in each issue is the final result of much talking, listening, letter writing, discussion, argument, persuasion, joking, threatening, criticizing, and praising. All these are necessary functions, but it is the personal qualities an editor brings to exercising them that makes all the difference. It would not be fanciful to claim that kindness, courtesy and dedication have been significant factors in the making of Wireless World during the eight years of Harold Barnard's editorship."
QUAD-Quarter of a century of amplifier development

The Acoustical Manufacturing Co. Ltd. have been designing and producing amplifiers since 1936 but it was not until 1951 that the Q.U.A.D. 1 was introduced, the forerunner of the Quad series of Amplifiers which have earned an unrivalled reputation for originality of design, excellence of performance and reliability in the ensuing twenty-five years.

The introduction of the Quad 405 current dumping amplifier represents yet another contribution to the science of sound reproduction.

Current dumping successfully overcomes many of the problems associated with high power amplifiers, crossover, thermal tracking and matching of components, added to which the complete absence of adjustments or alignment requirements, ensures that performance will be consistently maintained.

For further details on current dumping and other Quad products write to Dept. WW

The Acoustical Manufacturing Co. Ltd.
Huntingdon, Cambs., PE18 7DB
Telephone: (0480) 52561

Design Council Award 1976

QUAD for the closest approach to the original sound for twenty-five years.

QUAD is a Registered Trade Mark

WW — 93 FOR FURTHER DETAILS

www.americanradiohistory.com
The world over -
You get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service - specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 3QJ,
Telephone: Orpington 27089
Telex: 896141
Microwave voice link — 2

10GHz unit uses Gunn oscillator

by M. W. Hosking, M.Sc., M.I.E.E., British Aircraft Corporation

This low-power communication link uses a similar type of receiver to that in the domestic intruder alarm circuit described in the July and August issues. This article completes constructional details of a 10GHz pulse-modulated voice link, including waveguide and horn antenna and a simple calibration procedure.

The receiver is in two parts: a microwave detector as the front end, followed by a combined filter and amplifier circuit. The detector is a Schottky-barrier diode in a waveguide assembly similar to the transmitter. The operation of this and other types of microwave diode were described in Realm of Microwaves, part 5, August 1973 issue. For use as a straightforward video detector, as opposed to a mixer, it is necessary to provide a small, forward d.c. bias of about 40μA to start efficient rectification. With this applied, the output impedance of the diode is about 900 ohm.

The rectified output from the detector, which consists of the 50kHz position-modulated pulse train is fed directly into the filter/amplifier circuit of Fig. 11. To keep the noise level to a minimum, the first section up to the base of Tr1, is a low pass filter which starts to roll-off at 50kHz. Transistor Tr1 has a fairly low noise figure of about 4dB and, together with IC1, gives a stage voltage gain of about 1000.

The first stages of the inverting and non-inverting inputs to the op-amp are bypassed, Fig. 11. These stages impose a relatively slow response on the amplifier and the present circuit provides a cheap means of obtaining both fast response and high gain. The normally low noise figure is maintained with Tr1.

In similar fashion, the second stage can also provide a voltage amplification of up to 1000, but this can be varied with R20. In practice, amplification of a few hundred only has been possible before the onset of self-oscillation. As mentioned earlier, no high power stage is provided, the output from IC2 going directly to a pair of high-impedance (4kΩ) headphones. Current drain is quite low at about 5mA per rail and thus the receiver can be operated quite conveniently from a pair of PP3 dry batteries.

Receiver construction

The microwave detector is mounted in a waveguide circuit constructed in the same manner and to the same dimensions as the transmitter. Positioning is not quite so critical as with
Fig. 11. Receiver/demodulator consists of a two-stage amplifier with two low-pass filtering sections. Output can be fed directly to high-impedance headphones or to an audio power amplifier for loudspeaker reception. Resistors are 14-watt, 5% types, capacitors 10% tolerance, except electrolytics.

the Gunn device and, as shown in Fig. 12, the tuning screw has been omitted. If you wish to experiment for optimum performance you can include this and also vary the position of the short circuit.

Remove the collet from the diode, taking care not to exert too much torque on the ceramic-to-metal joints, and solder a lead to the base, then insert the collet through the waveguide wall and bond into position with a bead of Araldite. It is important that a good electrical contact is maintained between the collet and the guide, so take care to ensure that no adhesive seeps between the two. In similar fashion to the transmitter, r.f. shielding is provided at the other end of the diode by forming a bypass capacitor from a layer of foil and adhesive tape. Ensure that the foil does not short out the diode directly to the mount. The detector diode junction is easily damaged by voltage spikes, so it should not be touched with the soldering iron. Forward biasing with a multimeter when checking resistance will probably burn it out.

A printed circuit board has been produced for the main receiver and the component layout is shown in Fig. 9. All parts of the receiver system have again been designed to fit into a 4¾ x 3¾ x 2in (150 x 120 x 50mm) die-cast box, the complete assembly being shown in Fig. 13. Additional mounting details are given in Fig. 14.

Antenna

Open-ended X-band waveguide, such as used for the transmitter and detector, has an acceptable impedance match when radiating into free space and a gain of about 4.5dB. However, the receiver signal-to-noise ratio can be greatly increased by using more directive antennas. The prototype used two pyramidal horns with a design aim of 20dB gain; measurement showed that 19.3dB had been achieved. The prototype horn was constructed from 0.013in (0.3mm) thick aluminium sheet, but this is not critical and may be varied up to the limits of easy fabrication. Fig. 15(a) presents the folded-out dimensions of the horn and Fig. 15(b) shows the final assembly. Flange size and circular hole positions are as given in Fig. 4(d) but the rectangular hole is slightly smaller, as indicated.

Hold a rigid straight-edge along the fold lines of the horn and carefully bend the aluminium into shape, trying to achieve as sharp and even a corner as possible. With the mating edges held together, run a bead of Araldite down the join, first ensuring that the metal is clean, dry and free from fingerprints. Bond the flange in place and heat-cure the adhesive. It is worth taking trouble to ensure that the narrow end of the horn matches exactly the rectangular
3.5 dia. Dimensions in mm.

BATTERY CLIP (2 off) 1mm. al. sheet
Central hole 3.5 dia.

Fig. 14. Hole positions on the receiver box, together with battery mounting details.

Fig. 15. Antennas are constructed from thin (0.3mm) aluminium sheet bent to the dimensions shown and give gain of about 19dB.

waveguide. Any overlap will have the properties of an inductance or capacitance, depending on which plane it's in and will affect the resonant frequency of the transmitter.

Frequency calibration
The Home Office transmission regulations require that a speech link with this particular modulation be operated within the frequency band 10.050 to 10.450GHz. Few readers will possess or have access to microwave frequency-measuring equipment and so the following technique is suggested.

When electromagnetic radiation is reflected from an object, the incident and reflected waves will combine with a phase difference dependent on the reactance of the object. This sets up a standing wave pattern having sharp nulls and smooth peaks, repeating every half-wavelength. Thus, a measurement of the standing wave pattern will yield the frequency. As indicated schematically in Fig. 16, place the transmitter and receiver side by side about 6in (15cm) apart and at least 6ft (1.8m) from the reflecting object. A convenient arrangement is to support the horns on a box on the floor of a room and pin a sheet of aluminium foil onto the wall. A constant amplitude signal is required for the test and this can be obtained by connecting the input to the diode.

Fig. 16. Experimental arrangement for measuring transmitter frequency by the free-space standing wave pattern produced by reflecting screen.

continued on page 92
The simplest type of shift register counter is the ring counter where feedback is provided from the last stage and feeds the inputs of the first stage as shown in Fig. 8(a). In this circuit there are ten stages: it can be used as a decimal ring counter, since the number of stages is equal to the number of counter states. The information contained in each stage is shifted to the next stage on the receipt of a clock pulse and the counter circulates a 1 which is initially preset in the first stage, all other stages being simultaneously cleared to 0. The counting sequence of the register is shown in Fig. 8(b).

The circuit of Fig. 8(a) can be modified so that it becomes self-starting as shown in Fig. 8(c). The input $J_\lambda = ABCDEFGHI$ and this can only be a 1 providing $A = B = C = D = E = F = G = H = I = 0$. Clearly if any section of the counter except the last one contains a 1, $J_\lambda = 0$, and the counter will now enter the required sequence within a maximum of ten clock pulses.

The ten outputs of this counter can be used directly to drive a decimal display without the need of decoding networks or alternatively it can be used to enable a group of circuits sequentially, as the 1 moves through the various stages of the shift register. The number of stages required in the latter case will be equal to the number of circuits that have to be enabled.

An obvious advantage of the decimal ring counter is its simplicity and since it requires no feedback logic or decoding circuits it uses fewer components. It does, though, have the disadvantage of not having a binary readout, and its counting sequence is radically changed if circuit misoperation occurs, as for example when a section other than that containing the counting 1 is, due to

Fig. 8. A basic ring counter (a) and the counting sequence for a decimal type. The two gates in (c) facilitate self starting and the circuit in (d) detects the presence of superfluous '1' states caused by malfunctions. The lack of a '1' in any stage is detected by the circuit at (e).
some circuit fault also set to 1, or alternatively when the counting 1 is accidentally set to 0. However, it is not difficult to introduce simple logical networks which detect the presence of additional 1's. A three-stage ring counter having this facility is shown in Fig. 8(d). Similarly, it is not difficult to introduce a network which will indicate whether all sections of the shift register contain 0's. A circuit which will provide this facility is shown in Fig. 8(e).

The function required for the detection of additional 1's in the three stage circuit is \(f_0 = (A + B)C \), and the function for indicating that all stages of the same circuit contains 0's is \(f_0 = A + B + C \).

Twisted ring or Johnson counter

As the name implies, the difference between the twisted ring counter and the ordinary ring counter is that the feedback connections are reversed and in this case the complementary output of the last stage is connected to the \(J \) input of the first stage, whilst the inverted form of this signal is fed to the \(K \) input. If all the flip-flops are initially preset to the same state, either 0 or 1, then the number of different states of the counter is equal to twice the number of stages in the shift register. Hence a decade counter can be constructed from a five-stage shift register as illustrated in Fig. 9(a). The counting sequence of the circuit, assuming that initially all the flip-flops are cleared to zero is given in Fig. 9(b).

This is a ten-state sequence which could have been selected from the universal state diagram of a five-state shift register. The feedback logic could have been developed by first tabulating the required value of the feedback function in the column headed \(f' \) in the table of Fig. 9(b) and then plotting this function in conjunction with the unused states on a Karnaugh map as shown in Fig. 9(c). Simplifying, using the normal techniques, gives \(f = J_4 = E \).

For this circuit, decoding logic is required to obtain a decimal count. This logic is obtained from a five-variable Karnaugh map on which the decimal equivalent for each of the states in the counting cycle has been marked as shown in Fig. 9(d). The unmarked states on this map represent the unused states. The simplifying adjacencies for decimal 0 and 1 have also been marked on the map and if the reader cares to continue the process of simplification he will find that it is always possible to combine seven unused states with each decimal entry.

There are also three other undesired and independent count sequences for this counter. They are:

1. \(S_2S_3S_5S_7S_9S_11S_13S_{25} \)
2. \(S_2S_3S_5S_7S_9S_{13}S_{21} \)
3. \(S_2S_3S_5S_7S_9S_{13}S_{25} \)

If the counter should enter any one of these sequences, due to circuit misoperation, it will remain in that sequence unless arrangements are made to return the counter to the required sequence. This could be done by using the logic of the unused states to clear all stages of the counter and if required the same logic could be used to raise an alarm and stop the counter. It is left to the reader to show that the Boolean function that represents the unused states is:

\[f_0' = ADE + ABC + ACD + ABC + ADE + ACD \]

If it is required to make the counter self-starting it is only necessary to choose three adjacent states on the Karnaugh map, such as \(S_6, S_{14} \) and \(S_{16} \).
each of these states being from one of the unwanted sequences. If the Boolean function that represents these three states, \(f = \overline{ABDE} + \overline{ABCE} \), is used to clear the five stages of the counter then within a maximum of ten clock pulses it will return to the desired sequence.

The Johnson counter has an even-numbered cycle length of \(2n \), where \(n \) is the number of stages in the register. However, with a suitable modification of the feedback it is possible to achieve an odd-numbered cycle length of \(2n - 1 \). For example, if the 00000 state is omitted the counting cycle becomes that shown in the Table of Fig. 10(a) and the value of the new feedback function required to produce this sequence is tabulated in the column headed \(\bar{f} \). Plotting this function in conjunction with the unused states on the Karnaugh map of Fig. 10(b) and minimizing leads to the revised feedback function \(f = \overline{DE} \). Similarly, if the 11111 state is omitted rather than the 00000 state the revised feedback function can be shown to be \(f = \overline{DE} \).

Shift registers with exclusive-OR feedback

The four-stage shift register shown in Fig. 11(a) has exclusive-OR feedback from stages \(C \) and \(D \) such that the input to the first stage \(J_A = C \oplus D \). To determine the sequence of states for the register it is assumed that initially the shift register is in the state \(D = 0, C = 0, B = 0 \) and \(A = 1 \) in which case \(J_A = 0 \oplus 0 = 0 \), and on receipt of the next clock pulse the register enters the state \(D = 0, C = 0, B = 1 \) and \(A = 0 \). The complete sequence of states for the register is shown in Fig. 11(b), the value of the feedback function for each state being tabulated in the column headed \(f \).

In all there are fifteen states and this is the maximum number of states a four-state register can have, so this sequence is termed the maximum length sequence. The \(S_n = 0000 \) state is not included in the sequence since this is a 'lock-in' state. If the register enters this state \(J_A = 0 \oplus 0 = 0 \), so that the register is unable to leave this state when the next and subsequent clock pulses arrive. In general the maximum length sequence for such a circuit is given by the expression \(p_{\text{max}} = 2^n - 1 \), where \(n \) is the number of stages in the shift register.

Not all exclusive-OR connections result in a maximum length sequence. The table in Fig. 12 gives the feedback functions which will give the maximum length sequence for values of \(n \) up to and including \(n = 10 \).

Clearly the circuit shown in Fig. 11(a) can be used as a binary sequence generator, the output sequence being taken directly from the output of one of the flip-flops in the register. In this case the binary sequence appearing at the output of flip-flop \(D \) is

![Fig 9(a)](image)

Fig. 9(a)

![Fig 9(b)](image)

Fig. 9(b)

![Fig 9(c)](image)

Fig. 9(c)

![Fig 9(d)](image)

Fig. 9(d)

method sequence with additional feedback. The designing of a generation function becomes quite complicated. It will be shown upon the initial state of the register.

Generation of long register sequences
For values of n greater than five it is difficult to develop the de Bruijn diagram and hence the problem of designing a generator having more than thirty-one states using this diagram becomes quite complicated. A possible method of approach is to start with a maximum-length sequence generator using exclusive-OR feedback and then, if it is required, reduce the length of the sequence with additional feedback. The method will be described for a four-stage shift register, but it can also be used for shift registers having a number of stages in excess of four.

It will be assumed that a maximum length sequence generator having four stages is in the state D = 0, C = 0, B = 1 and A = 1.

Hence:
\[S = A \times 2^8 + B \times 2^7 + C \times 2^6 + D \times 2^5 = 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 = 3 = S_3 \]

If when the generator is in this state, the feedback is 0 then the next state of the generator is D = 0, C = 1, B = 1 and A = 0. Then:
\[S = 0 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 = 6 = S_6 \]

Alternatively, if the feedback had been 1 then the next stage of the generator would have been D = 0, C = 1, B = 1 and A = 1.

Hence:
\[S = 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 = 7 = S_7 \]

Examination of the table for a four-stage maximum length sequence generator, given in Fig. 11(b), shows that the feedback D ⊕ C = 0 when in the state S_3 and the next state is therefore S_5, but if the feedback is modified so that it is 1 then the next state is S_7.

The state diagram for the maximum length sequence generator having four stages is shown in Fig. 14(a) and it can be seen that by modifying the feedback the states S_6, S_9, S_12, S_15 and S_18 will be omitted from the sequence thus reducing its length from fifteen to ten states.

The modified sequence for the generator is shown in Fig. 14(b) and the modified value of the feedback function for state S_3 is encircled. The feedback function in conjunction with the unused states S_6, S_9, S_12, S_15 and S_18 is plotted on the Karnaugh map and simplified in the normal way as shown Fig. 14(c). This gives a modified feedback function of:
\[f_m = C \oplus D + \overline{A \oplus B} \]

The complexities of designing a generator to produce a long binary sequence without computing aids are obviously formidable. However, a computer programme has been developed for shift registers using exclusive-OR feedback to give the maximum length sequence, which gives the following information:
- the present state of the generator,
- the next state of the generator,
- the jump state,
- the number of states excluded by the jump,
- the length of the modified sequence.

The designer has merely to scan the computer print-out to locate the length of sequence required and all the other
For the modification DCBA

Fig. 13

<table>
<thead>
<tr>
<th>n</th>
<th>f</th>
<th>n</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>E F</td>
</tr>
<tr>
<td>2</td>
<td>A B</td>
<td>7</td>
<td>F G</td>
</tr>
<tr>
<td>3</td>
<td>B C</td>
<td>8</td>
<td>D E F H</td>
</tr>
<tr>
<td>4</td>
<td>C D</td>
<td>9</td>
<td>E I</td>
</tr>
<tr>
<td>5</td>
<td>C E</td>
<td>10</td>
<td>H L</td>
</tr>
</tbody>
</table>

Fig. 12

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0 0 0 1 0</td>
</tr>
<tr>
<td>S2</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>S3</td>
<td>0 1 1 1 0</td>
</tr>
<tr>
<td>S4</td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td>S5</td>
<td>1 0 0 0 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>0 0 1 1 0</td>
</tr>
<tr>
<td>S7</td>
<td>0 1 1 1 0</td>
</tr>
<tr>
<td>S8</td>
<td>1 1 0 0 1</td>
</tr>
<tr>
<td>S9</td>
<td>0 0 1 0 1</td>
</tr>
</tbody>
</table>

Fig. 13

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>S2</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>S3</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>S4</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>S5</td>
<td>0 1 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>S7</td>
<td>1 1 1 0 1</td>
</tr>
<tr>
<td>S8</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>S9</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

Fig. 14(a)

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>S2</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>S3</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>S4</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>S5</td>
<td>0 1 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>S7</td>
<td>1 1 1 0 1</td>
</tr>
<tr>
<td>S8</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>S9</td>
<td>1 0 1 1 0</td>
</tr>
</tbody>
</table>

Fig. 14(b)

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0 0 1 1 1</td>
</tr>
<tr>
<td>S2</td>
<td>0 1 0 1 1</td>
</tr>
<tr>
<td>S3</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>S4</td>
<td>1 0 0 1 0</td>
</tr>
<tr>
<td>S5</td>
<td>0 1 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S D C B A</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>0 1 1 0 1</td>
</tr>
<tr>
<td>S7</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>S8</td>
<td>1 1 0 0 1</td>
</tr>
<tr>
<td>S9</td>
<td>0 1 0 1 0</td>
</tr>
</tbody>
</table>

Fig. 14(c)

Further reading

For further information on this subject the reader is referred to the following texts:

A catalogue of general electronic chassis hardware from Verospeed, the distributor company of the Vero group, is now available. Now this time are metal-glaze resistors, trimer pots, indicators and switches. Verospeed, 10 Barton Park Industrial Estate, Eastleigh, Hants. WW401

The Medilog electro-cardiogram analysis system is described in a 6-page brochure. The system provides hard copy of irregularities and variations from the set point. Brochiures can be obtained from Oxford Electronic Instruments Ltd, Ashville Industrial Park, Nuffield Way, Abingdon, Oxon OX14 1BZ. WW402

A catalogue giving full electrical and mechanical details of the Roband range of power supplies and regulators for both bench use and for use in equipment is obtainable from Roband Electronics Ltd, Charwood, Horley, Surrey RH6 0BU. WW403

A booklet describing the use of Marcon instruments to measure automatically the quality of television systems by means of insertion test signals is produced by M.T. The booklet describes the use of TF2914A analyzer and monitor TF2915, which will provide limits comparison, auto scanning and control. For remote operation, data selector TK2917 is used and is also described. Marconi Instruments Ltd., Longacres, St Albans, Herts AL4 0JN. WW404

The British Standards Institution has just published BS5373, which is concerned with the electrical safety aspect of room aerals for radio and television. It can be obtained from BSI Sales Department, 101 Pentonville Road, London N1 9ND at £1.20.

Proxe Distribution hold ranges of componts by Bulgin, ITT (semiconductors), Lorlin (switches and capacitors), Multimemch (switches) and Richco printed circuit hardware. A shortform catalogue has been produced and is obtainable from 303 Morland Road, Croydon CR0 6HF. WW406

High quality book-shelf speaker

The author has informed us that some dimensions in the parts list were incorrect. These have been amended below.

Front grille mounting frame

4 off 18½ x ½ x ¼in.
4 off 12 x ½ x ¼in.

Front grille

4 off 10¼ x ½ x ¼in. hardwrd square sec.
4 off 17¾ x ½ x ¼in. hardwrd square sec.
4 off 10¾ x ½ x ¼in. triangular section.
4 off 17¾ x ½ x ¼in. hardwrd triang sec.

In Fig. 9(c) the vertical dimension shown as 9in should be 94in. Dimensions for the two pieces of BAF wadding are 54 x 12in.

We understand that the T15 high frequency unit is no longer in production. Wilmow Audio, 10 Swan Street, Wilsnow, Cheshire SK9 1HF, have informed us that they still have a quantity of these devices and are able to supply them ex stock.

www.americanradiohistory.com
The Sinclair PDM35.
A personal digital multimeter for only £29.95
(+8% VAT)

Now everyone can afford to own a digital multimeter
A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter – quick clear readings, high accuracy and resolution, high input impedance. Yet at £29.95 (+8% VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailored-made for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35
3½ digit resolution.
Sharp, bright, easily read LED display, reading to ±1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA (0.0001 μA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 MΩ. 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 MΩ input impedance.

Compare it with an analogue meter!
The PDM35's 1½% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter – and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 MΩ is 50 times higher than a 200 kΩ/volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specification
DC Volts (4 ranges)
Range: 1 mV to 2000 V.
Accuracy of reading 1½% ± 1 count.
Note: 10 MΩ input impedance.
AC Volts (40 Hz-5 kHz)
Range: 1 V to 500 V.
Accuracy of reading: 1½% ± 2 counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA.
Accuracy of reading: 1½% ± 1 count.
Note: Max. resolution 0.1 nA.

Resistance (5 ranges)
Range: 111 to 20 MΩ.
Accuracy of reading: 1½% ± 1 count.
Note: Also provides 5 junction-test ranges.

Dimensions: 6 in x 3 in x 1½ in.
Weight: 6½ oz.
Power supply: 9 V battery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V 50 Hz power. De-luxe padded carrying wallet. 30 kV high voltage probe.

An unbeatable pedigree
The Sinclair PDM35 comes to you from the same stable as a whole range of electronic world-firsts – from custom large-scale IC's and laser-trimmed resistor networks, to programmable pocket calculators and miniature TVs.

Tried, tested, ready to go!
The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/PO for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return!
Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon,
Regd No: 699483.

Send to: Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ.
Please send me a Sinclair PDM35 at £29.95 plus £2.40 (8% VAT) and 65p P&P, total £33.00.
Please include (tick items required): De-luxe padded carrying case @ £3.00 (inc VAT). AC adaptor for 240 V 50 Hz power @ £3.00 (inc VAT).

I enclose cheque/PO for £____________________
(indicate total order value), made payable to Sinclair Radionics Ltd.

Name: _______________________________________
Address: _____________________________________

I understand that if I am not completely satisfied with my PDM35 in every way, I may return it within ten days for a full cash refund.

Sinclair
World leaders in fingertip electronics

WW—100 FOR FURTHER DETAILS
Your success is indicated by ISKRA Panel Meters

Series Q
Moving coils are carried on spring bearings. Special versions available with zero point anywhere on the scale. Versions for measuring other parameters.

Series N
Front panel 86 × 72 mm, or 115 × 96 mm, each with rear casing 65 mm diameter. Non-standard versions can have zero point anywhere on the scale. Ideal for modern measuring and test equipment.

Series O
Measure only 50 mm diameter. DC models finished in black lacquer, AC units in grey-green. Scale length approx. 37 mm. Ideal for arduous mechanical and climatic applications. Non-standard versions can have zero point anywhere on scale.

When you're in the market for panel meters, you are virtually certain to find the models you need in the comprehensive Iskra range. Here are just three different types from Iskra, one of Europe's leading names in electrical and electronic instruments and components, and automotive and consumer products.

Iskra Series Q panel instruments comprise over 350 versions. They are moving coil units for measuring AC and/or DC currents from 100mA to 250A, and AC and/or DC voltages from 100mV to 600V. Each meter is housed in a lacquered sheet steel case. Made in four internationally accepted DIN sizes, they are 90° reading models, accurate to ±1.5% FSD.

If you prefer a modern, easy-to-read range of meters, go for the Iskra Series N. Housed in a resilient plastic, with acrylic front, these panel instruments conform to IEC standards of mechanical and climatic conditions. There are 213 versions to choose from, covering AC and/or DC currents from 40μA to 40A, and AC and/or DC voltages from 100mV to 600V. Accuracy is ±1.5% FSD.

For more traditional meters, you need the Iskra Series O. Designed to measure AC or DC currents from 250μA to 6A, and AC or DC voltages from 100mV to 600V, these circular metal-cased units are available in over 200 versions. Accuracy is ±1.5% FSD.

For more information about these or other Iskra products, contact:

ISKRA Limited
Redlands, Coulsdon, Surrey CR3 2HT
Telephone 01-668 7141 Telex 946880

ISKRA – The big name in electronics, telecommunications and so much more.
A check on Fourier

With some sidelights on the controversy about phase shifts

by M. G. Scroggie

One of the things we are all taught is that there is no kind of repetitive waveform which cannot be constructed by adding together pure sine waves. This is known as the Fourier principle. The frequencies of the component sine waves are all whole-number multiples of the basic or fundamental frequency of the waveform concerned (although a sine wave of that frequency is not necessarily present), these multiples being the harmonic frequencies.

This idea is not hard to accept when the wave has a smooth flowing shape. It is easy to see that the result of adding together the fundamental and third harmonic shown separately in Fig. 1 (a) is the rather peaky distortion of a sine wave shown at (b), and that therefore waveform (b) can be truly said to consist of the two sine waves (a). The degree of peakiness in (b) is obviously determined by the amplitude of the harmonic relative to that of the fundamental.

Note that even if the harmonic has the same relative amplitude, but a different phase relationship to the fundamental (c), the resulting waveform is quite different (d). This example shows the opposite kind of distortion – flattening of the peaks, such as could be caused by an amplifier with an input/output (or transfer) characteristic like Fig. 2 (a), compared with the perfect linear characteristic, (b).

But what about the sort of waveforms in television and radar? Fig. 3 shows a few typical ones. Is it really believable that such shapes can be made up of sine waves and nothing else?

A long time ago, when I was teaching students the elements of radar, I found that it was rare for anyone to question what was taught. In the Forces, at least, it was generally accepted that such awkwardness could only lead to trouble. It was prudent to keep one’s head down. The teacher, on the other hand, could arrive at the alternative explanation that only the exceptional trainee had sufficient intelligence to ask a perceptive question. A more than usually perceptive one led ultimately to an article in the December 1945 issue of Wireless World. Current discussion on the subject of phase, sparked off by the controversy on “linear phase” loudspeakers, suggested to me that certain diagrams in that article might be worth repeating for present readers, many of whom would not even have been born in 1945.

The question, quite awkward when first put without notice, but welcome as evidence that intelligently inquiring minds had not become extinct, was something like this: “Sir; you know you...”
told us that all waveforms can be made up of sine waves? Well, how does that fit in with the way square waves are used to make pulses by passing them through short-time-constant circuits?" The technique to which he was referring can be seen in Fig. 4. The usual explanation of the process says nothing about the sine waves of which (a) is alleged to be composed. If these sine waves are followed separately through (b) will the results add up to the same as (c)?

The normal classroom treatment might say that at time t_1 in the cycle of the perfect square wave (Fig. 4 (a)) the circuit (b) instantaneously receives a certain positive voltage. It is impossible for a capacitor to acquire a new voltage instantaneously through a resistor, as it needs time to charge; and therefore the whole of the applied voltage momentarily appears across R, as shown at (c), causing a current to start flowing through R into C, charging it in the well-known exponential manner. The smaller R is, the greater the current; and the smaller C is, the quicker a given current will charge it; therefore if $C \times R$ is small the voltage across C will rise rapidly. Because the applied voltage is constant, that part of it which is across R will correspondingly die away, as shown by the exponential curve in (c) between t_1 and t_2. Such a circuit in which CR is small is described as having a short time constant; the time constant being the time during which the capacitor charges to 63% of the constant applied voltage. It is numerically equal to CR. At t_2 the process is repeated in the negative direction. And so on for successive cycles.

Now for the synthetic method. The sine waves needed for constructing certain definite waveforms, such as those in Fig. 3, can be defined by a simple formula or prescription for each shape. The set of harmonics so defined is called a Fourier series. For a perfect square wave it consists of the fundamental and odd-numbered harmonics only— all of them; to infinity—the amplitude of each harmonic being inversely proportional to the number of the harmonic. Each starts off from scratch, with no phase delay. It is this mass start of an infinite number of sine waves that adds up to make the infinitely steep front of the square wave. Expressed mathematically, and assuming for simplicity that the peak amplitude of the fundamental sine wave is 1, the series is therefore

$$\sin \omega t + \frac{\sin 3\omega t}{3} + \frac{\sin 5\omega t}{5} + \frac{\sin 7\omega t}{7} + \ldots \text{to infinity}$$

where ω is 2π times the frequency of the square wave and t is time. As tables of sines are in terms of angles, it is more convenient to express the series as

$$\sin \theta + \frac{\sin 3\theta}{3} + \text{etc.}$$

each whole cycle of the square wave, or fundamental, being divided into 2π radians or 360 degrees. Fig. 5 shows the series plotted up to and including the 15th harmonic, for half a cycle. Adding up the ordinates at frequent intervals along the half-cycle gives the waveform drawn in heavy line. It is obvious from the way the harmonics come into phase again at the end of the half-cycle that if they were continued for the second half-cycle they would make the same pattern, but inverted; and so the complete waveform has been repeated upside-down to complete the cycle. You will see that it fits fairly closely around a square wave drawn in heavy broken line with amplitude $\pi/4$ (nearly 0.8) times that of the fundamental sine wave. The frequency of the superimposed ripple is the same as that of the highest harmonic included. You can either take my word for it that the difference between the ripple waveform and the perfect square wave is due solely to the limited number of component sine waves I had the patience to draw and add up (and that was quite a lot of patience), or else keep on drawing more of them yourself until belief sets in.

Incidentally, the diagram shows the amount of distortion that would be suffered by a perfect square wave in passing through a low-pass system having a sharp cut-off just above 15 times the frequency of the square wave. Since each harmonic in the series is reduced in scale from the fundamental by the same factor in both horizontal and vertical dimensions, it has the same.
Fig. 6 Familiar graphical method for determining relative amplitudes and phase angles of output and input sine waves.

Fig. 8 A CR circuit that attenuates the fundamental of a square wave by only 1dB is accompanied by a phase shift that distorts the square wave as shown here.

Fig. 7 (below) Recombining the separate harmonics at the output gives a waveform (heavy line) approximating to that (broken line) obtained by the usual method (or by including all the harmonics to infinity).

slope as the fundamental and the other harmonics at all corresponding parts of their cycles. The 1,000,001th harmonic starts off just as steeply as the fundamental, and as all start together the slope of the combined wave is infinitely great. It is only at half-cycle intervals that all the harmonics come into phase to form the vertical parts of the square wave; everywhere else the increasing values of some harmonics are offset by decreasing values of others, and the total remains constant to form the flats of the square wave.

Having pondered this sufficiently for the manufacture of sharp corners using only smoothly curved ingredients to look less like a confidence trick, one can turn to consider the simple device through which it is proposed to pass the mixture: the short-time-constant circuit, Fig. 4 (b). Again there is absolutely no deception; only well-understood basic principles of simple sine-wave a.c. are to be used.

There are several methods for finding the amplitude and phase of the voltage at the output of this circuit, relative to the input. In all of them it is necessary to know the ratio of the capacitor's reactance, X, to the resistance, R; and this is derived from the time constant. For the sake of a nicely proportioned diagram and simple numbers I have chosen a time constant equal to one tenth of a cycle of the fundamental. As the duration of a cycle is the reciprocal of the frequency, this relationship can be written as

$$CR = \frac{1}{10f_1}$$

where the suffix 1 indicates that f_1 is the frequency of the fundamental (and other suffixes will distinguish the harmonics). The reactance, X_1, of the
capacitor at the fundamental frequency is
\[X_1 = \frac{1}{2\pi f c} \]
which, from the foregoing,
\[10R = \frac{100}{2\pi} \approx 1.6R \text{ (very nearly)} \]
Similarly
\[X_2 = \frac{1.6R}{3}, \quad X_3 = \frac{1.6R}{5} \]
and so on.

A graphical method for deriving the output phase and amplitude for each harmonic is shown in Fig. 6. The lengths of \(V \) and \(V_3 \) respectively represent to the same scale the input and output voltages, and \(\phi \) is the angle by which the phase of the output is advanced by the circuit. For the fundamental, \(V_C \) is drawn 1.6 times as long as \(V_1 \) (that is to say, in proportion to \(X_1 \) and \(R \) respectively) and at right angles to it; and, if the drawing is accurate, the amplitude ratio \(V_1/V_2 \) is found to be 0.53, and \(\phi \) is 58°. For the third harmonic, \(V_C \) is drawn one-third as long, so \(\phi_3 \) is much less and \(V_{33} \) (third harmonic voltage across \(R \)) is more nearly equal to \(V_3 \). But it is really \(V_3/\sqrt{3} \) (ratio of third-harmonic output to fundamental) that we want for plotting, and of course this is one-third as much. Similarly the phase shift in terms of the fundamental cycle is one-third of \(\phi_3 \).

The graphical method necessitates an accurate large-scale drawing, and as \(\phi_3 \) is the angle whose tangent is \(X_3/R \), \(V_{33}/V_1 \) is \(\cos \phi_3 \); \(n \) it is easier to get them from tan and cos tables. Here are the results tabulated up to the 15th harmonic:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(X_n/R)</th>
<th>(\phi_n)</th>
<th>(\cos \phi_n)</th>
<th>(\cos \phi_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>58°</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>3</td>
<td>0.5333</td>
<td>28°</td>
<td>0.88</td>
<td>0.53</td>
</tr>
<tr>
<td>5</td>
<td>0.3294</td>
<td>17.6°</td>
<td>0.96</td>
<td>0.19</td>
</tr>
<tr>
<td>7</td>
<td>0.2356</td>
<td>12.9°</td>
<td>0.95</td>
<td>0.14</td>
</tr>
<tr>
<td>9</td>
<td>0.1777</td>
<td>10.1°</td>
<td>0.98</td>
<td>0.11</td>
</tr>
<tr>
<td>11</td>
<td>0.1445</td>
<td>8.7°</td>
<td>0.98</td>
<td>0.09</td>
</tr>
<tr>
<td>13</td>
<td>0.1230</td>
<td>7.0°</td>
<td>0.99</td>
<td>0.06</td>
</tr>
<tr>
<td>15</td>
<td>0.1067</td>
<td>6.0°</td>
<td>0.99</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Columns 4 and 6 give the data by which each harmonic that emerges from the “peaker” was plotted in Fig. 7. Reassembling these mangled bits by adding ordinates again, we get the heavy-line curve. Comparing this with the heavy broken line, which is the exponential curve obtained by the “classroom” method, one must admit that the resemblance is too close to be dismissed as (in the film sense) “purely coincidental”. In the geometrical sense it would actually coincide if all the (infinite number of) harmonics were included.

Some of us, oppressed by experience of our own fallibility, are never very confident about the correctness of our calculations, be they financial or scientific, unless the same result is arrived at by at least two entirely different routes. So the recognizably similar results achieved by such diverse approaches as the exponential charging of a capacitor, and Fourier analysis and synthesis combined with plain a.c. theory, should enhance confidence in both these methods.

Some may consider all this to be merely academic, or even antiquarian. But now that the audio world is a battlefield between the forces of the establishment who contend that phase distortion, however drastic to the eye (compare (b) and (d) in Fig. 1), is imperceptible to the ear, and the revolutionaries who challenge this easy option for audio designers and claim that “linear phase” loudspeakers make all the difference to the discriminating listener, any sidelights on phase may be helpful. I don’t intend to be caught in the crossfire, nor of course do I suggest that the gross distortion in Fig. 7 has any close connection with hi-fi, but one or two facts emerge in passing.

Phase shifts are inevitable in the audio chain, and, as James Moir has emphasized more than once, phase distortion can only be avoided if they are confined overall to equal time shifts at all frequencies. This condition is fulfilled in the direct sound path between loudspeakers and ears (but not necessarily in indirect paths) and in general it tends not to be fulfilled by electrical and mechanical circuits. This is exemplified in the fourth column of the table. True, this is an exaggerated case. But it also illustrates another fact, that even when what used to be called frequency distortion is kept within acceptable limits the accompanying phase distortion is much larger — numerically, that is to say; I refrain from assessing its impact, if any, on the listener!

For example, a CR circuit that reduces amplitude at a certain frequency by only 1dB causes a phase shift of 27°; enough to distort the waveform visually more than might be expected. Working on the same lines as with Fig. 7, but making \(R = 2X \) (which gives 1dB loss of fundamental), we find that what the circuit does to a square wave input turns out as Fig. 8. And this assumes perfect representation of all frequencies above the fundamental. In practice there is bound to be a fall-off from some higher frequency upwards (as in Fig. 7, heavy line) with inevitable further distortion. And Fig. 8 is based on the assumption that the 1dB fundamental loss is due to one CR circuit; in practice it is likely to be split up among several of them in the audio system. With only two CR circuits, each causing 0.5dB loss, the total phase shift is more than 38°, which would make Fig. 8 look even less like a square wave. And so on for more CR circuits. There are countermeasures, of course; but it makes one think, perhaps.
Russian amateur-radio satellites

The long-rumoured Russian intention of setting up an amateur satellite system ("RS") has now been confirmed with the registration by the USSR of details with the ITU. RS will be based on three or four satellites carrying active transponders (up-link 145.8-145.9MHz, down-link 29.3-29.4MHz) with "maximum" communication distances of 6000km. The intended orbit has an inclination of 82° and will be circular at about 9500km height with a period of 102 minutes. 144MHz transmissions should be possible with powers of about 10-15 watts to aries of 10-12dB gain. The system is due in 1977-78 and the first launch could be as early as October.

The next Amsat-Oscar launch may be February 23, 1978. The ARRL has recently introduced a "DXCC" award for Oscar operation. Pat Gowen, G3IOR, with over 90 countries worked through Oscar, appears nearest to qualifying.

"A. J. Alan", G2ST

Pre-war radio listeners will remember "A. J. Alan" as arguably the most polished radio storyteller of all time, who combined the writer's craft of a "Saki" (H. R. Munro) with an entirely original grasp of broadcasting techniques.

When he died, in December 1941, his true identity — Leslie Harrison Lambert — was at last revealed and he was said to have been a senior civil servant. He was also known as the holder, since the early 1920s, of the amateur call-sign G2ST.

In a recent radio tribute to A. J. Alan, Tony Billow, aided by the researches of Norman Duret of Bristol, filled in a number of missing details — for instance his early career as a professional entertainer — but curiously failed to follow up the clues that suggest Lambert's real occupation throughout the inter-war years.

The programme noted that in 1915 Lambert was at the Admiralty's secret radio interception station at Hunstanton. This was one of the network of receiving stations throughout the world, including R. Baytun Hipperse (H.L.X. later G2CW), a prominent Somerset landowner, after he and E. Russell Clarke (THX), a barrister, had proved to the Admiralty that experimental amateurs were able to receive, in the UK, German naval traffic at ranges much greater than had been supposed. This in turn led directly to the setting up of the Room 40 code-breaking unit at the Old Admiralty Building in Whitehall, with its many triumphs under Sir Reginald Hall, and working jointly with the early d.f. stations built by H. J. Round of Marconi's.

It would seem Lambert stayed with this organisation as a signals expert when in 1919 it was renamed as a "Code and Cypher School" and again later in 1928 when it came under M16 and moved to that organisation's head-quarters near St James's Park. Yet Tony Billow, misled by the "cover name", described this as "Certainly no longer secret work"! In 1939, as GCCS, the codebreakers moved to Bletchley Park and became what has been called "possibly the most crucial factor in enabling the Allies to defeat Germany" as a result of cracking the Enigma and other German codes. The cryptographers included Alastair Denniston, Alfred Dilwyn Knox and the still largely unrecognised genius of the tragic Alan Turing, whose dream of a "universal machine" led directly to the first electronic computers, such as "Colossus" built by T. H. Flowers of Post Office Research and used for codebreaking from about 1943.

"A. J. Alan" may thus, throughout the time he was a highly popular radio "star", have been not only G2ST, but also — without the BBC knowing it — a key figure in the most successful department of the British secret intelligence service!

In the air

The G3LER beacon station on Lizard, The Shetlands, has been re-activated after an interval of many years; it transmits on 145.965MHz with a power of 10 watts to two aerials, beaming south and north-east. The new 10GHz beacon on Alderney, Channel Islands (Gunn oscillator with 15dB horn aerial) has been heard by amateurs along the south and southeast coast of England at distances up to 170km. 144.2MHz c.w. signals from TU2EF (Ivory Coast, West Africa) were heard in Sao Paulo, Brazil by PY2OB during June, possibly the first Atlantic crossing for two-meter signals.

From January 14 to 22, 1978, a special event station, KMICC, will mark the 75th anniversary of the first two-way radio transmission by Marconi between the USA and England. KMICC will operate on all h.f. bands from the original site of station "CC" (later MCC and WCC) in the Cape Cod National Shearwater Park in South Wellfleet, Mass, although part of the site is now submerged in the Atlantic Ocean due to soil erosion. It will be permitted to use A2 c.w. to reproduce the sound of the old 240Hz rotary spark gap. The Cornish Radio Club will similarly operate a special station at Poldhu, Cornwall. A message from President Carter will be transmitted from KM1CC.

Mercury, the journal of the Royal Signals Amateur Radio Society, has published what may be the first account of the use of a 725Hz transversal filter (based on 741 op-amp all-pass filters) to provide coherent addition of amateur c.w. signals, while filtering out non-coherent static and electrical interference without the "ringing" of conventional sharp filters. One model, described by F. J. H. Charmian, G6CJ, uses four all-pass-filter sections, with each section introducing 180° phase shift with outputs added in a different amplifier and with a bandpass filter to reduce side lobes.

Reg Patrick, G2BBX, acting on the advice of W. B. Whalley of California, author of the popular "Radio-frequency eradication of tumours" (IEEE's Electronics & Power, May 1977) recently successfully treated one of his geese, using a few watts of 14MHz r.f. power. This improved technique for r.f. diathermy uses electric-field coupling rather than the conventional electromagnetic field coils used over many years for r.f. diathermy.

The sixth National Amateur Radio Exhibition, organised by the Amateur Radio Retailers' Association, is being held at the Granby Halls, Leicester, on October 27, 28 and 29 (10a.m. to 6p.m. daily).

In brief

The RSGB has set up an ad hoc committee to consider the geographical coverage, frequencies, modes, times and contents of the GB2RS weekly news broadcasts. The FCC has postponed for the time being the introduction in the United States of a phone-only "communicator licence" for the 220 and 420 MHz bands which would not have required a Morse test. The ten-metre beacon station GBSX has changed frequency to 28.215MHz. The IEEE's report "Report on the use of the radio spectrum" comments that "the allocations of frequency spectrum for the use of amateur communicators and experimenters should be preserved in view of their significant contribution to the radio art". The report also notes that "interference from non-conforming broadcast stations has rendered some amateur h.f. allocations almost unusable".

The ARRL is to have a full-time staff lobbyist at Washington, DC.

PAT HAWKER, G3VA
Synthesized f.m. transceiver—1
A simple 40-channel, two-metre design
by T. D. Forrester, G8GIW

This article describes the design and construction of a two-metre (145 to 146MHz) f.m. transceiver. The two main design considerations for the unit were ease of mobile operation and low power consumption for portable operation. To comply with the former criterion, channelized operation was chosen, the appropriate channel being selected by means of thumbwheel switches.

Standard and well-proven circuitry is used in the receiver section of the transceiver and it requires little alignment to achieve maximum performance. The selectivity of the receiver is determined by the bandwidth of the 10.7MHz crystal filter. In the prototype a 25kHz filter was used to accommodate some of the wider n.b.f.m. stations, again to minimize i.f. alignment.

The transmitter section uses conventional Class C frequency multipliers and, to obtain maximum efficiency, the driver and p.a. stages are also run in the Class C mode. The transmitter, which is a modified Mullard design, has been used by the author for several years in various applications and should present no difficulties in alignment.

Operation
The operation of any radio equipment while mobile is hazardous, so in an attempt to lessen the danger, all controls are kept simple and easy to operate.

The synthesizer has only two controls; mode and channel selection. The mode switch selects normal transceiver operation, repeater opera-

Fig. 1. Block diagram of the transceiver. Synthesizer provides the frequency source necessary for each selected channel and automatically shifts its outputs according to the mode and transmit/receive switching.

Fig. 2. Block diagram of the 24MHz synthesizer.
tion (where the transmitter operates 600kHz below the selected channel), or inverse repeater operation (where the receiver operates 600kHz below the selected channel).

Two thumbwheel switches are used to select any channel between 00 and 40; channel 00 corresponds to S0 (145MHz), channel 20 corresponds to S20 (145.500MHz), and so on, enabling easy channel identification. See Fig. 2.

The receiver has a volume control and a squelch control. The squelch control serves its normal function of muting the receiver in the absence of a signal. It may be adjusted once for one channel and then left, requiring no further adjustment for any other channel.

The volume control requires little comment, as it serves its usual purpose of controlling the audio output power, in this case up to a maximum of 200mW. This audio level may seem rather low, but it has been found to be sufficient under all but the noisiest of environments.

The heart of the synthesizer is the integrated circuit (IC2), which is a programmable five-stage divider type.

The synthesizer
To avoid using a costly v.h.f. prescaler, a 24MHz generation system was chosen for the synthesizer. The 25kHz channel spacing in the 145MHz band then becomes 4.1666kHz with respect to 24MHz. Also, by employing a generation frequency of 24MHz on transmit and 22MHz on receive, as in Fig. 1, it enables the synthesizer to be used separately with most commercial transceivers with little or no modification.

The synthesizer is shown in Fig. 4.)
4059. However, only four of these stages are used. Unfortunately, because the 4059 is a c.m.o.s. device, it has a maximum frequency of 6MHz, so a divide-by-four prescaler is required to accommodate the 24MHz generation frequency. This function is achieved by a 74LS74 dual-D-type flip flop.

This further division of four reduces the channel spacing to 1.041666kHz at 6MHz, and also sets the phase-comparison frequency at 1.041666kHz. The 1.041666kHz reference frequency is derived by dividing a 1MHz crystal oscillator by 960. This division is accomplished by IC4, IC5, IC6 and IC7, IC8 also functions as the 1MHz oscillator, as shown in Fig. 3.

For the synthesizer to generate the appropriate frequencies, for channel 00 operation for example, the divide-by-N divider (ICN) must divide by 5800 for normal transmit. 5776 for normal receive. 5776 for repeater transmit, and 5348 for inverse repeater receive.

Since the 5 is common to all of the above, this is hardwired on the 4059. The '800, '372, '776 and '348 are added to the selected channel in IC4, IC5 and IC6, which are four-bit binary-coded-decimal (b.c.d.) adders.

Consider the normal transmit case above, where the 4059 must divide by 5800 to generate 145MHz. In the 24MHz region, 145MHz is represented by 24.1666MHz, and for this to be phase locked to 1.041666kHz it must be divided by 23,200. As the 4059 is preceded by a divide-by-four prescaler, it has only to divide by 23,200/4, which is 5800.

If channel 21 (145.525MHz) is selected, this number is added in b.c.d. form to the appropriate shift in the b.c.d. adders. Therefore, on transmit, the 4059 would be programmed to divide by 5821, and so on.

The 4046 (IC9) serves as the phase comparator and source follower, which then feeds the error signal to the v.c.o. (see Fig. 4). The low pass filter is needed to remove the 1.041666kHz ripple from the phase comparator and is formed by the RC network associated with the 4046. The v.c.o. used conventional transistor circuitry and operates between approximately 22 and 24.5MHz, depending upon which mode and channel is selected.

(to continue)

Components list

| Resistors (all 10% 1/4W unless otherwise stated) |
|---|---|---|
| 1 | 1M | 49 | 82 |
| 2 | 18k | 50 | 120 |
| 3 | 4k | 51 | 10 |
| 4 | 2.7k | 52 | 3.9k |
| 5 | 4.7k | 53 | 10k |
| 6 | 2.2k | 54 | 3.3k |
| 7 | 2.2k | 55 | 1k |
| 8 to 25 | 220k | 56 | 33k |
| 26 | 12k | 57 | 100 |
| 27 | 5.6k | 58 | |
| 28 | 680 | 59 | 100 |
| 29 | 3.9k | 60 | |
| 30 | 220 | 61 | 100 |
| 31 | 5.6k | 62 | 390 |
| 32 | 3.9k | 63 | 1 |
| 33 | 330 | 64 | 1 |
| 34 | 100 | 65 | 18 to 47 (see text) |
| 35 | 39k | |
| 36 | 39k | 66 | 120k |
| 37 | 470 | 67 | |
| 38 | 470 | 68 | 470 |
| 39 | 3.3k | 69 | 1.8k |
| 40 | 47k | 70 | 3.3k |
| 41 | 4.7k | 71 | 180 |
| 42 | 220 | 72 | 47 |
| 43 | 100 | 73 | 10k |
| 44 | 10k | 74 | 150 |
| 45 | 3.3k | 75 | 10 |
| 46 | 470 | 76 | 100 |
| 47 | 680 | 77 | 1 |
| 48 | 470 | 78 | 27k |
| 49 | 79 | 220 |

Capacitors (uF unless otherwise stated)

1	56p	30	100n
2	22p	31	2.2n
3	1.35V tent 32	32	10n
4	220n	33	10n
5	220n	34	100
6	2.2n disc 35	35	10n
7	68p	36	3n
8	15p	37	1n disc
9	2.2n disc 38	38	33p
10	2.2n disc 39	39	1n disc
11	2.2n disc 40	40	10p
12	2.2n disc 41	41	1n disc
13	10p	42	1n disc
14	2.2n disc 43	43	470, 16V
15	15p	44	220, 16V
16	15p	45	1.35V tent
17	2.2n disc 46	46	1n disc
18	2.2n disc 47	47	2.2n
19	2.2n disc 48	48	2.2n
20	1n disc 49	49	15p
21	1n disc 50	50	1n disc
22	1n disc 51	51	10
23	10n	60	4.7n
24	10n	61	2.2
25	2.2n	62	50
26	56p	63	100n
27	10p	64	73
28	22n	65	3.3p
29	10n	74	1000p

Diodes

1 to 16	1N914	20	7.5V zener
17	8A121	21	6.1V zener
18	8A122	22	6.1V zener
19	1N914		

Pcb

A full set of p.c.b.s will be available from M. R. Sagin. Further details will be given in part 2.
To mark the 32nd year of service to Telecommunications Authorities throughout the world

BRITISH SAROZAL LTD.
INTRODUCES

A new Range of Low Cost - Energy Saving SOLID STATE Plug-in Replacements for British, American and European ELECTRONIC VALVES!

THE B.S.L. RANGE COVERS:

JEDEC types: In-1150A, 1287, 1238, 1239, 1262, 2398, 2632, 2634.

1X24, 2X104A/100R, 2G/402A, 2G/4758, 2H28, 2H66, 2V/404A, 3B24, 3B24W, 3B24WA, 3B25, 3B28, 4B31, 4B32, 4H32, 4H72, 4H73, 4H88, 4R20, 5A4U, 5A4W, 5A24, 5G105, 5A4, 5K04, 5K105, 5K20, 5K40, 5L40, 5L40/1, 5L54, 5L60/5, 5L60/7, 5L70/7, 5L20, 5L20/7, 5L40.

ELECTRONIC WORLDWIDE
VT216, W-816, DQ4C, CV1K24, ALL SOLID STATE.

575A, G4H73, 8008, RR3, 816, MANUFACTURED.

These solid state replacements are mounted on standard valve bases, providing exact pin-for-pin correspondence and eliminating the need for changes in existing circuitry.

They provide cooler, more stable operation, fast warm up, longer equipment life, reduced maintenance costs and the capability of modernising older systems to conform to present up-to-date standards.

<table>
<thead>
<tr>
<th>SS TYPE</th>
<th>ABSOLUTE MAXIMUM THERMAL DROP AT 75°C</th>
<th>NOMINAL DC VOLTAGE</th>
<th>OUTLINE (MM)</th>
<th>BASE DIAM. (MM)</th>
<th>BASE TYPE</th>
<th>CAP TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV636-SS</td>
<td>1000</td>
<td>500</td>
<td>12.0</td>
<td>A</td>
<td>35</td>
<td>140</td>
</tr>
<tr>
<td>B166-SS</td>
<td>800</td>
<td>250</td>
<td>12.0</td>
<td>A</td>
<td>35</td>
<td>105</td>
</tr>
<tr>
<td>B66A-SS</td>
<td>1000</td>
<td>300</td>
<td>14.0</td>
<td>A</td>
<td>35</td>
<td>140</td>
</tr>
<tr>
<td>3B24-SS</td>
<td>2000</td>
<td>500</td>
<td>28.0</td>
<td>A</td>
<td>35</td>
<td>140</td>
</tr>
<tr>
<td>RR3-1250-SS</td>
<td>1000</td>
<td>1250</td>
<td>14.0</td>
<td>A</td>
<td>48</td>
<td>208</td>
</tr>
<tr>
<td>DG5/5000GB-SS</td>
<td>1000</td>
<td>1500</td>
<td>14.0</td>
<td>A</td>
<td>48</td>
<td>208</td>
</tr>
<tr>
<td>8008-SS</td>
<td>1000</td>
<td>1250</td>
<td>14.0</td>
<td>A</td>
<td>56</td>
<td>198</td>
</tr>
<tr>
<td>WK-575A-SS</td>
<td>10000</td>
<td>1750</td>
<td>20.0</td>
<td>A</td>
<td>56</td>
<td>246</td>
</tr>
<tr>
<td>4H73-SS</td>
<td>15000</td>
<td>1750</td>
<td>20.0</td>
<td>A</td>
<td>56</td>
<td>246</td>
</tr>
<tr>
<td>8020-100R-SS</td>
<td>40000</td>
<td>600</td>
<td>60.0</td>
<td>A</td>
<td>35</td>
<td>105</td>
</tr>
<tr>
<td>8020W-SS*</td>
<td>parameters available on request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWL1/W2-SS</td>
<td>10000</td>
<td>250</td>
<td>14.0</td>
<td>A</td>
<td>35</td>
<td>194</td>
</tr>
</tbody>
</table>

*Per Section
+Temperature cycle tested

ALL TYPES ARE MANUFACTURED UNDER RIGID QUALITY CONTROL METHODS TO MEET OR EXCEED ORIGINAL VALVE SPECIFICATIONS.

FULL LONG-LIFE WARRANTY
2 years - 10,000 hours
WARRANTED AGAINST DEFECTS IN MANUFACTURE UNDER NORMAL OPERATING CONDITIONS WITHIN PUBLISHED RATINGS.

The phenomenal growth of our electronic express service — so vital for continuous operation of telecommunications, radar and missile systems, broadcast and research — necessitated the formation of a separate administration to serve more efficiently the urgent needs of subscribers. B.S.L. Express Service Ltd. will now automatically cover all registered subscribers and extends a FREE OF CHARGE subscription to new customers for a limited period. An application form will be sent to new subscribers upon request.

Further information from SOLE DISTRIBUTOR:

B.S.L. EXPRESS SERVICE LTD.
Handrail House, Maygrove Road, London NW6 2EN
Tel: 01-328 2111. Telex: 298655
ITT make more types of Crystal Oscillator than anyone else.

And ITT make them better.

If we don't blow our own trumpet, no-one else will. The first point is a matter of record. The second you can prove to your own satisfaction—if you haven't done so already.

The fact that ITT Components quality control extends to individual testing of every single unit, is your guarantee of high stability under all conditions.

ITT's experience in the field of quartz crystals, oscillators and filters is literally unrivalled, starting with our setting up the first commercial synthetic quartz growing plant in Europe.

The extended product range comprises:

- **OCX031** — High stability oven controlled oscillator—Stability 0.005-0.015 ppm
- **OCX09** — Oven controlled oscillator—Stability 0.03-0.2 ppm
- **TCXO** — Temperature compensated oscillator—Stability 0.5-5.0 ppm
- **TCX029** — Standard Frequency Temperature Compensated Oscillator—5 & 10Mhz Stability 1.0 ppm
- **SPXO** — Simple package oscillator—Stability 10-100 ppm
- **DIL** — Dual in line oscillator—Stability 100 ppm upwards

If you want to know more, just fill in the coupon and send it to us.

Oscillators from ITT Components. Enough said.
Antennas for mobile communications via satellite

Design considerations for aircraft and ships

by D. I. Spooner B.Sc. British Aircraft Corporation Limited

This article is concerned with the design of antennas for use on aircraft and ships for communication to shore stations via satellites. Some of the problems encountered in these applications are discussed, and solutions are described for a range of gain level options.

Although the basic principles relating to a particular antenna design remain the same for both aircraft and ships, much of the design and installation differs considerably.

Antenna polarisation

Antennas can be designed for either linear polarisation (horizontal or vertical) or circular polarisation (left-handed or right-handed). In reality the radiation from an antenna is elliptically polarised, the ratio of the major-to-minor axes giving an indication of the polarisation purity or ellipticity. When an electromagnetic wave passes through the various regions of the ionosphere, its plane of polarisation rotates. This is known as Faraday rotation.

When circularly polarised radiation passes through the ionosphere, the worst-case polarisation degradation that could occur is from circular to linear. When this signal is received on earth by a circularly polarised antenna (of either hand) the signal loss resulting from this worst-case polarisation degradation is 3dB. However, if a linearly polarised antenna is used to receive the radiation, it is possible that the signal arriving at the antenna will be linear but orthogonal to the plane of polarisation of the receiving antenna. In this situation the loss would be enormous and in theory no signal would be received. It is for this reason that extensive use is made of circular polarisation in satellite communications. Where two-way communication is required with an object within or beyond the ionosphere, circular polarisation is used at both ends of the link. However, where one-way communication is required, for example telemetry transmission from a satellite or missile to a ground station, linear polarisation is used on the satellite or missile and circular polarisation at the ground station. In fact, many ground stations have the ability to select any polarisation they require, circular or linear, in order to optimise the communications link. However, this is a luxury not normally available on mobile stations such as aircraft or ships.

Fig. 1. Prototype circularly-polarised Quadslot antenna, designed for 1600MHz, consisting of four folded slots which are inductively loaded at each end and are spaced one half-wavelength apart. The slots are photo-etched from a single-sided, copper laminate board.
One of the many differences between a mobile and a fixed ground station is that the former has three axes of possible rotation, and that in many cases there is extensive divergence from the straight and level in operation. For example, civil aircraft and container vessels can have roll angles of ± 30 degrees. Consequently, the mobile satellite-communications antenna should provide circular polarisation over a wide angle. It is this requirement that presents such a problem. Even if the coverage/ellipticity requirement could be met by the antenna in isolation, the installation of the antenna on an irregular shaped body, such as an aircraft, can produce different antenna radiation characteristics from those that are predicted. This problem does not exist to the same extent on maritime installations. However, there are other problems that serve to tax the antenna designer's ingenuity and these will be discussed later.

Printed circuit techniques

The manufacture of antennas using printed circuit techniques allows quantity production of complex antennas and their associated feed networks, cheaply and with great accuracy. The printed-circuit type of antenna, which is often used for aerospace applications, has the advantages of being lightweight and of rugged construction, because the radiating elements and feed lines are in intimate contact with the board material (a substrate), so eliminating soldered connections. The resulting antenna normally has a small cross section allowing, for example, the antenna to be packaged between spacecraft structural members, or mounted externally on an aircraft fuselage without the penalty of excessive drag.

The choice of a suitable board material is a compromise between the requirements of good electrical and mechanical characteristics. Since the antenna is normally required to work over a wide temperature range, typically -65°C to +95°C, the material should not creep or warp over this range. For most applications the material must also be machine workable. In addition, its electrical loss must be low and the peel strength of the copper, bonded to the board, must be high over the whole temperature range. Typical materials used in microwave antennas are p.t.f.e. - fibreglass laminates (Fluorglas and RT-Duriod), a cross-linked styrene copolymer (Rexolite), and for prototype use, a high density polyolefin laminate (Polyguide).

Fig. 1 shows the Quadslot, a circularly polarised antenna designed for a frequency of 1600 MHz, in prototype form. It consists of four folded slots which are inductively loaded at each end and are spaced one half wavelength apart. The slots are mounted above a shallow cavity and are photo-etched from a single-sided copper laminate board; the board material being p.t.f.e.-impregnated fibreglass. They are fed from a stripline phasing network mounted at the rear of the cavity, which produces a phase progression of 90 degrees from one slot to another. The Quadslot has a peak gain (relative to an isotropic radiator) of 9dBi, and an ellipticity of better than 3dB over a beamwidth of 70 degrees.

The use of printed circuit antennas allows active circuits to be integrated with antennas on a common substrate. This is of particular value in phased array antennas because distributed amplifiers can be constructed. In this concept, every antenna element in an array, which may have thousands of elements, has its own miniature amplifier and phase shifter, resulting in a high, total radiated power without the problems associated with high-power microwave sources. In addition, circuit losses are reduced to a minimum. This gives improved efficiency and greatly increases system reliability.

Satellite communication antennas for aircraft

The problems involved in designing an antenna for use on an aircraft are severe and extensive. There is a growing demand for antennas that are, at best, to be flush mounted on an aircraft or, at worst, of low profile in order that the resultant aerodynamic drag is minimised. Aircraft manufacturers and operators require antennas that are suitable for retrofitting, are lightweight, require little modification of the aircraft fuselage, are simple to install and maintain, resulting in a minimum "down time" of the aircraft, and yet are, of course, cheap.

Electrically the antenna must have a low v.s.w.r. over the operating band (1.3:1 or less), good circularity (better than 3dB over a large proportion of the coverage), adequate gain over the complete upper hemisphere and good multipath rejection.

An aircraft flying over a reflecting surface, for example the sea, will receive a direct signal from the satellite, and a reflected signal. If the path length of the reflected signal is such that it arrives 190 degrees out of phase with the direct signal, then cancellation will occur. This results in a significant drop in the received signal quality and possibly a complete break in communications. In addition, at low angles of incidence with a reflecting surface, a circularly polarised signal is reflected with the opposite hand of polarisation to the incident wave. One can see from these comments that in order to minimise multipath effects the antenna should have low level sidelobes, good circularity at low elevation angles and a sharp cut-off below the horizontal plane.

For many years the subject of an aeronautical satellite (Aerostat) has been a controversial one. During the discussions on such a satellite system, various gain levels for the aircraft terminal antenna have been proposed, ranging from the low-gain 4dBi solution to the high-gain 10dBi solution. If virtually complete coverage of the upper hemisphere is required, with a gain level of 4dBi or above, a single antenna will not comply. Accordingly, antenna designers have proposed solutions that utilise a phased array concept. By taking a number of low gain antennas and feeding them with the correct phase and amplitude, one can control the position and, to a lesser extent, the shape of the resulting beam. If the phase relationship between one antenna and another is varied, the beams can be steered to almost any point in space. As the gain of the array is increased, the beamwidth becomes...
progressively narrower, requiring a greater degree of accuracy in beam-pointing. This in turn leads to the need for a larger beam steering computer. A compromise is therefore needed between the costs and reliability of a large satellite and the need to keep the aircraft terminal as small and as cheap as possible.

Fig. 2 shows a schematic of a system designed and developed by the British Aircraft Corporation in conjunction with the Royal Aircraft Establishment, Farnborough. This system has been designed for use with the Aerosat communications satellite. It consists of two antenna groups, each mounted on a shoulder of an aircraft, fed by two switch units. Each switch unit is linked to the antennas by a set of three phase-matched cables. Each antenna group consists of two arrays of three antenna elements, one transmit array and one receive array. The antenna element is a cavity-backed, slot-dipole having a folded dipole within and in the plane of a slot. Since the dipole and slot are complementary (Babinet's principle) their radiation patterns are identical but with orthogonal polarisation. From this it can be seen that, with suitable phasing between the slot and the dipole, the antenna element inherently has circularly polarised radiation having good ellipticity over a large solid angle.

Separate transmit and receive arrays are used to allow optimisation of pattern and ellipticity over the respective frequency bands. Also, the use of separate arrays provides additional isolation between the transmitter and the receiver. Each antenna group of six elements is printed on a flexible double-sided, copper laminate board. This board is bolted to an aluminium casting, which forms the backbone of the antenna and also provides the cavity for each element. This casting is curved to the radius of the aircraft fuselage. A p.t.f.e. fibreglass radome covers the group of elements. The completed antenna group is 3\(\frac{1}{2}\)in thick, 15in long and 7in wide.

Fig. 3 shows a production antenna group fitted to an RAE Comet aircraft, used for experimental purposes. The antenna is designed for mounting on a blaster, as shown, or flush with the aircraft skin. Each antenna group provides coverage of one half of the hemisphere, the beam being steered to one of three overlapping positions. By using three elements in each array, the system gain level is maintained at or above the minimum requirement of 4dBi over the complete hemisphere.

This antenna system was used in an extensive series of experiments sponsored by the European Space Research Organisation (ESRO), which is now the European Space Agency (ESA), with the satellite ATS-6 in the spring of 1975. The tests proved the reliability and performance of the antenna system, with an aircraft-satellite voice link to America of a standard well in excess of land-line sound quality.

A possible development of this type of antenna is to integrate the phasing circuits into a common printed circuit board with the antenna, so providing a solution having a smaller profile and an increased efficiency. However, at the present time, it is unlikely that the required input power of 200W c.w. could be handled, due to power dissipation within the circuit board itself.

Satellite communication antennas for ships

A satellite, dedicated to marine communications, is expected to be launched early in 1976. This event has prompted the design and development of many shipborne terminals. The various antenna options that have been considered fall into two broad categories; those using parabolic dishes, and those based on multiple phased elements.

Although the motion of a ship at sea is extremely complex, the antenna is required to be accurately pointed towards the satellite at all times. Not only must the terminal cope with the motion of the ship but also the change in elevation of the satellite as the ship moves in latitude, because the satellite is in geostationary orbit over the equator.

The first generation of satellites will have a low radiated power and will require a shipborne antenna having a gain of 23dBi. Since the cost of a phased array having this gain is high, solutions have been proposed which use a parabolic dish as the antenna. In this situation the design of the antenna is straightforward and either a crossed dipole or a spiral is used as the dish feed. The problem lies in the design of the stabilised platform that the dish is to be mounted on. The conventional solution is to use a servo-driven platform, designed to compensate for movement in roll and pitch by minimising error signals generated by gyroscopes and accelerometers. Movement in azimuth is compensated for by slaving the platform to the ship's compass.

Alternatively, compensation can be obtained by using a pendulum attached to the platform. However, a simple pendulum gives damping problems due to the complex motions involved. This can be overcome by using a double momentum wheel\(^2\), in place of the

simple pendulum, to stabilise the platform in the roll and pitch axes. This technique has the advantage of eliminating the precision rate sensors and associated servo control electronics and torque motors. This in turn makes it a highly reliable system. Fig. 4 shows a diagrammatic representation of this system. The severe environment necessitates the use of a dielectric cover over the dish, its stabilised platform and the above deck electronics. Warm air heaters can be used to control the temperature within the cover and to prevent the formation of ice, which can lead to an unacceptable loss in signal quality.

If a parabolic dish having a gain of 23dBi is used, at least one voice channel and one teletype channel can be received aboard the vessel. For smaller ships, requiring only teletype facilities, or for the second generation of satellites having a higher radiated power, it is feasible to use ship terminals of lower gain.

With the present state of technology, phased arrays having gain levels of 15dB or less become a possible alternative to parabolic dishes. Fig. 5 shows the prototype of a ship terminal based on a planar array, which does not require a stabilised platform. The array has twelve crossed-dipole elements printed on a single-sided copper, laminate board which is bonded to a low-dielectric foam block, rigidly positioning the elements above a ground plane. The beam formed by the array is scanned electronically in elevation, with overhead coverage provided by the Quadslot, described earlier. Rotation in azimuth is achieved by mounting the array on a turntable driven by a stepping motor. The use of electronic scanning in a single plane only, considerably simplifies the beam-steering computer and lowers production costs, since fewer phase shifters are required. This terminal, which has a peak gain of 12dBi, eliminates the need for mechanical stabilisation and provides circularly polarised coverage over a section larger than a hemisphere.

A lower gain solution has been proposed which uses a vertical stack of horizontal crossed dipoles mounted on a simple stabilised platform. This solution removes the need to slave the antenna to the ship's compass since it radiates omnidirectionally in azimuth. By varying the phase difference between the crossed dipoles, the toroid of radiation is steered in elevation, resulting in a cone-shaped radiation pattern. This type of antenna, which requires a stabilised platform with its accompanied servos and gyros, suffers the disadvantage of poor circularity, particularly at low elevation angles. It has a peak gain of nearly 10dBi.

Acknowledgements
My thanks go to Mr. R. A. Burberry for his help and advice and to the British Aircraft Corporation for allowing this article to be published. The aircraft antennas described were developed under contract to the Royal Aircraft Establishment, Farnborough.

Microwave voice link
continued from page 71

A movement through 40 nulls of the standing wave pattern will be a distance of 585.4mm. Assuming that this can be measured to an accuracy of 2mm, then the transmitter frequency can be determined to an accuracy of 35MHz; a value well within the allocated band.

Components
Mullard microwave devices CXY11A and BAY46 with collet are obtainable from Townsend Coates Ltd., Lonford Road, Leicestere LE5 0HH. IC, Fairchild type 4175DC, is obtainable from Macro Marketing Ltd., 396 Bath Road, Slough, Bucks SL1 6JD. Printed boards for modulator and receiver are available from M. R. Sagin, 23 Keynes Road, London NW2 costing £4 inclusive.

Appendix — range performance
The power density at a range R from a transmitter radiating power P, from an antenna gain G, is $P/G/4\pi R^2$. A receiving antenna at R having an effective area A, will capture some of this power, leading to a received level, P_r. Antenna gain and effective area are related by $A = kG/4\pi$ where k is the wavelength. Thus, the received power is $P_r = PG/4\pi^2 / (4\pi R^2)$. The ability of the receiver to detect a signal is governed largely by the sensitivity of the detector diode. A subjectively measured parameter called the tangential sensitivity is used, which roughly corresponds to a level 4dB higher than the minimum detectable signal. For this particular system, after allowing 3dB loss in the input filter, the minimum detectable signal is about 5×10^{-6} watt. Gains G and G are both equal at the measured 19.3dB and $\lambda = 2.93cm$, P_r can be taken as 5mW.

Inserting these values into the above equation gives a theoretical range of about 400m. This is for a s/n ratio of unity and would not be expected in practice without more elaborate signal processing. The prototype gave a very satisfactory performance over 100m but with the transmitter and receiver being hand-held. A more stable alignment of the antennas would be expected to improve this.

Transmission regulations
In common with the regulations governing other frequency bands, the operation of a speech link at these microwave frequencies requires an amateur radio licence. Annual fee is £3, subject to passing an examination and further details can be obtained from:

- Home Office
- Radio Regulatory Department
- Licensing Branch (Amateur and Special)
- Waterloo Bridge House
- Waterloo Road
- London SE1 8UA.

![Fig. 5 Prototype phased-array maritime terminal. This unit does not require a stabilised platform, instead it scans electronically in elevation and provides overhead coverage by using a Quadslot.](image-url)
Economical time-mark generator

Simple time and frequency comparator

by S. Roberts

In any establishment where oscilloscopes are in use, a time-mark generator can be a valuable tool when assessing time-base accuracy. Unfortunately, commercially-produced generators are usually too expensive for small workshops, laboratories and enthusiasts. The device to be described combines modest cost with accuracy, and may be easily constructed using readily available parts. Although described here as a complete unit, the generator could well be incorporated into a digital frequency counter, where the clock oscillator and decade divider chain would already be available, or even into an oscilloscope as part of the calibrator function.

A time-mark generator is essentially a pulse generator where the time between pulses has been accurately specified. The pulse width is made sufficiently small compared to the spacing between pulses that when looking at the output on an oscilloscope, only a single vertical line for each pulse is evident. Thus, the time-base frequency may be adjusted until the pulses are coincident with the appropriate graticule lines.

Circuit description
A 1MHz crystal-controlled oscillator, Tr1 and Tr2, provides an accurate frequency source. Transistor Tr3 acts as an output buffer and its collector switches between OV and 5V at a 1MHz rate. This is connected directly to the input of a series of SN7490 decade dividers, IC1-IC7, whose outputs will be 100kHz, 10kHz, 1kHz, 100Hz and 10Hz respectively.

The desired frequency, and hence time-mark interval, is selected by means of S1a, and fed to IC7 either directly or via IC6. The SN7472, IC6, provides further frequency division if selected by means of S2, so doubling the number of time-mark intervals available.

It was found during experimentation that for the output marker pulses to be sufficiently narrow to ensure that accuracy was not degraded, yet wide enough that the pulses were easily

Fig. 1. Time mark generator circuit diagram.
visible, different pulse widths were necessary for different mark intervals. The optimum pulse widths, derived experimentally, range from 50ns to 35µs, as may be seen from Table 1.

<table>
<thead>
<tr>
<th>Range</th>
<th>Frequency</th>
<th>Pulse width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µs</td>
<td>1 MHz</td>
<td>50 ns</td>
</tr>
<tr>
<td>2 µs</td>
<td>500 kHz</td>
<td></td>
</tr>
<tr>
<td>10 µs</td>
<td>100 kHz</td>
<td></td>
</tr>
<tr>
<td>20 µs</td>
<td>50 kHz</td>
<td>150 ns</td>
</tr>
<tr>
<td>100 µs</td>
<td>10 kHz</td>
<td>500 ns</td>
</tr>
<tr>
<td>200 µs</td>
<td>5 kHz</td>
<td></td>
</tr>
<tr>
<td>1 ms</td>
<td>1 kHz</td>
<td>4 µs</td>
</tr>
<tr>
<td>2 ms</td>
<td>500 Hz</td>
<td></td>
</tr>
<tr>
<td>10 ms</td>
<td>100 Hz</td>
<td>10 µs</td>
</tr>
<tr>
<td>20 ms</td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>100 ms</td>
<td>10 Hz</td>
<td></td>
</tr>
<tr>
<td>200 ms</td>
<td>5 Hz</td>
<td>35 µs</td>
</tr>
</tbody>
</table>

The various widths are determined by IC7, which is a monostable multivibrator. The "Q" output at pin 6 goes high when the input (pins 3, 4) changes from high to low. The length of time for which it remains high is dependent upon the values of the timing components R3 and the capacitor selected by means of S5.

The values of the timing capacitors are calculated from the formula:

\[t_{\text{p(out)}} = \frac{C_T R_T \log(2)}{\log(2)} \]

where \(t_{\text{p(out)}} \) = output pulse width in ms,
\(C_T \) = timing capacitor in µF
\(R_T \) = timing resistor in kΩ

\[R_S = 6.8kΩ \]

\[\log(2) = 0.7 \]

Pin 1 of IC7 is the "Q" output and will be the inverse of the "Q" output. One of the two possible outputs is selected by means of S3 ("NORM/INV") and taken to the output buffer, Tr4, which serves to isolate the output from IC7 and to provide a low impedance source. The resistor R6 is included to limit the current should the output be shorted.

The R.S. Components MVR5V voltage regulator has been used for the power supply, which simplifies construction. Other regulators such as the LM309 could of course be used, or a supply using discrete components could be constructed. About 500mA at 5V is required. Any low-voltage transformer with a secondary of around 9V at a sufficient current rating is suitable, such as the R.S. Components Type 633.

Construction
The layout of the generator is not critical, although adequate decoupling of the supply lines and good earthing is essential for a clean output pulse. The prototype was constructed with the ubiquitous Veroboard, and no problems were encountered with stray capacitance. For switch S5, a Doram miniature Maka switch was used, with two 1-pole 12-way wafers. The mechanical stop was adjusted to limit the movement to seven positions, the extra position being used to control a mains switch also mounted on the spindle. If desired, a separate mains switch could be used, in which case a single 2-pole 6-way wafer would suffice for S1 since only six positions would then be necessary.

When constructing the oscillator portion, some adjustment of R5 may be necessary to ensure that the oscillator remains reliably locked to the crystal frequency. If desired, a 10MHz oscillator could be constructed, which, in conjunction with an additional divider stage, would provide 100ns and 200ns markers.

Applications
Figure 2 is a photograph of the output on an oscilloscope screen. By adjusting the oscilloscope sweep speed, the markers can be made to coincide with the vertical graticule lines with each setting of the time-base switch. The markers then serve to show the accuracy of the time-base and the horizontal linearity. Selection of a suitable marker pulse width will permit the vertical geometry to be checked — the pulse should be parallel with the vertical graticule lines.

With dual-trace oscilloscopes, the generator provides a quick and accurate means of checking the oscilloscope internal calibrator frequency — usually 1kHz if not derived from the a.c. mains. A 1ms time-mark is displayed on the upper trace, the calibrator on the lower trace, and with the oscilloscope time-base synchronised with the generator, the calibrator frequency may be adjusted until the lower trace is stationary on the screen. Other oscillators may be calibrated by the same method.

An unknown frequency may be measured on an oscilloscope with a non-linear or uncalibrated time-base by displaying the frequency and time-marks simultaneously, and counting the number of time-mark intervals in one cycle. Figure 3 demonstrates this possibility. In this case, the time-mark generator was set for 1µs pulses. 13.3 time-mark periods can be seen over the duration of one cycle, indicating a frequency of:

\[f = \frac{1}{13.3 \times 10^6} = 75.2kHz \]

In this application, the time markers may be considered to be an "electronic graticule".

These ideas represent the more obvious uses of a time-mark generator – other applications may well occur to the ingenious user.

It should be borne in mind that this design is probably the simplest possible. There is therefore scope for improvements, further facilities or modifications to suit the requirements of individual users. In its present form, however, the generator is a most useful device and sufficient for most purposes.

Fig. 2. Time and linearity checking of an oscilloscope sweep.

Fig. 3. Measuring frequency by means of the time-pulses.
Opto-couplers

A range of photo-couplers, from National Semiconductors Ltd, utilize gallium phosphide i.e.d.s and fast-responding cadmium-selenide photocell detectors. The couplers, in the 55 range, are a.c.-compatible and enable emitter-to-detector isolation voltages of up to 10kV to be achieved. They are rated up to 320V with 250mW dissipation and an i.e.d. current of 25mA, giving maximum on, and minimum dark resistances of 2kΩ and 100MΩ respectively. The devices are available in either four-pin TO-5 size cans, 0.625in long by 0.32in diameter cylindrical packages, or in 0.75in square modules. National Semiconductors Limited, Stamford House, Stamford New Road, Altrincham, Cheshire WA 141DR.

WW 304

Plastic solder

Eccobond Solder 56C is a plastic adhesive which, when cured, has an extremely low electrical resistance (its volume resistivity is typically 2×10^4 ohm-cm). It can be cured at temperatures as low as 49°C in 2h, or in a few minutes at much higher temperatures. The adhesive, which is supplied in paste form, bonds to metal, glass, ceramic and plastics. It may be used for making electrical connections where hot soldering is impractical, for example, to nichrome wire or conductive plastics, and at locations which cannot be subject to high temperatures. Other specifications include a lap shear strength of 56Kg/sq.cm., flexural strength 857Kg/sq.cm. and thermal expansion 36 x 10^{-6} per degree Centigrade. Emerson and Cuming (UK) Limited, Colville Road, Acton, London W3.

WW 305

Magnetic film recorders

Sondor Libra M03a magnetic film recorders have been designed to handle acetate or polyester films. They have straight-line facing paths, small size and combination pinch-wheels and sprocket-drives. Models available range from simple single-channel replay only types to three-channel record/replay types. The machines are pre-wired to take extra amplifiers and can therefore be converted to the full three-channel record/replay specification. Type M03a uses the standard Sondor method of synchronization and can therefore easily be locked to projectors, telecine machines and time-code interlock equipment. This machine is also available in a video version containing a hologoscope prism system. Hayden Laboratories Limited, Hayden House, Churchfield Road, Chalfont St. Peter, Bucks., SL9 9EW.

WW 306

Tantalum capacitors

A family of resin-coated, solid tantalum capacitors has been introduced by Sprague for the low-cost, domestic equipment market. The components are in six case sizes with a variety of lead shapes for several different printed-board spacings. Values are in the 20% tolerance decade values between 0.1µF and 680µF and work at voltages from 3V d.c. to 50V d.c. up to 85°C. Sprague Electric (UK) Ltd, 159 High Street, Yiewsley, West Drayton, Middlesex.

WW 301

Spectrum analyser

A 50MHz spectrum analyser from Parametron is intended for general and field operation in addition to work in the laboratory. Centre frequencies of 200kH to 50MHz are continuously tuned at dispersions of 100kHz to 50MHz and sweep speed is 20ms to 10s. Spurious responses are said to be -66dB and intermodulation products are at -50dB. The tuning range can be extended to 380MHz by means of a converter. Wessex Electronics Ltd, Stovley Trading Estate, Yate, Bristol BS17 5QP.

WW 302

Thumbwheel switches

Plessey's Series 33 thumbwheel switches are said to have up to ten switching positions and mount from either the front or rear of a panel. Black with white legends, they have a number of switching codes. Extended printed circuit boards can be provided to mount extra components, and the switch can be illuminated by a 5V 60mA lamp. The contacts are rated at 100mA at 50V d.c. with a temperature range from -20°C to 70°C. G.E. Electronics (London) Ltd, Eardley House, 182 to 184 Campden Hill Road, Kensington, London W8 7AS.

WW 303

Wireless World, November 1977
A.m. transmitters and receivers

A range of fixed-station amplitude modulated transmitters and receivers have been introduced by Pye Telecommunications Ltd. The transmitters, type T401, are 25W solid-state modular designs suitable for simplex or duplex operation in the frequency range 68 to 174MHz. They have been designed using low intermodulation products specifically to make them usable on multiple transmitter sites, and they may also be fitted with tone-lock encoder (c.t.c.s.s. - continuous tone controlled sub-audio squelch) devices to ensure that only mobiles fitted with the appropriate decoder receive the message.

The receivers, type R401, use phase-lock-loop synchronous detectors so that they can receive high modulation signals with low distortion. To reduce spurious responses the receivers are based on a single-conversion design, which also results in simpler, more-reliable circuits. Helical resonators and f.e.t.s in the r.f. section give the receivers high selectivities (typically 0.5µV p.d. input for 1W min. output and 30% modulation with 1kHz tone), with a signal-to-noise performance of 12dB SINAD at 0.5µV p.d. signal input (at 60% mod. with 1kHz tone). Blocking and intermodulation figures, measured to MPT1302, are in excess of 100dB and 60dB respectively. Both units can be supplied for standard 19in rack mounting and operate on a.c. or 24V d.c. supplies. Pye Telecommunications Limited, Newmarket Road, Cambridge CB5 8PD.

WW 307

ESR meter

Equivalent series resistance of capacitors is indicated digitally by the Clarke-Hess 273A meter. Capacitors in the range 5000pF to over 1F can be tested and subjected to less than 10mV d.c. and 100mV r.m.s. at 100kHz. Resolution of the e.s.r. measurement is 0.1 milliohm up to 200 milliohms, 1 milliohm up to 2 ohms and 10 milliohms up to 20 ohms. Measurement time is normally 0.5s, but when externally clocked this is reduced to as little as 20ms, a b.c.d. output being provided for automatic test. The instrument is available in the UK from Lyons Instruments, Hoddesdon, Herts.

WW 308

Multiplier

An eight bit multiplier from Monolithic Memories Inc is claimed to generate a 16-bit product in around 100ns. Two versions of the multiplier are available, the 67558, suited to signal processing in radar, fast Fourier transforms, sonar, speech processing, and speed multiplication in brain and body scanners, and a military version, the 57588 which extends the 67558's temperature range from between 0 and 70°C to between -55°C to 125°C. Memory Devices, Central Avenue, East Molesey, Surrey KT8 6SN.

WW 309

Power transistors

Two complementary power transistors, types BD135 and BD136, are silicon n-p-n/p-n-p devices having the following absolute maximum ratings: the total power dissipation for a 70°C case temperature is 8W, the collector current is 1A and the collector-emitter voltage is 45V. These transistors show a gain bandwidth product of 50MHz, a d.c. forward current transfer ratio voltage of 40 to 250 and a collector-emitter saturation voltage of 500mV. The devices are packaged in a TO126 case. Norbain Semiconductor Division, Norbain House, 2 Arkwright Road, Reading, Berks.

WW 310

Sequence timer

The RST rotary timer from Appliance Components has been extended with the introduction of a new unit which is capable of taking twenty switches of either the rotary wafer or the cam-operated microswitch variety or a combination of both. A common shaft drives all the switches and is operated by a synchronous motor. The rotary switches consist of a wiper and silver contacts and the cams can be shaped to provide up to 24 microswitch operations per revolution. Appliance Components Ltd, Cordwallis Street, Maidenhead, Berks SL6 7BQ.

WW 311

Cam switches

Rotary cam switches, in a modular form for assembly by the user, are available from Entrelec. Up to twelve contacts can be operated on a single shaft, which can be 90° or 45° indexed, key-operated, spring return, limited rotation and front or rear mounted. Switches in this V range are rated at up to 55A and are said to be suitable for motor control and as isolator switches. The units can be obtained from Triscott Electrical Ltd, 23 Wansford Way, Felpham, Sussex PO22 7N6.

WW 312
Frequency synthesizer
A fully-programmable frequency synthesizer, the Model 601, has a frequency range from 10kHz to 180MHz with a resolution of 1Hz. Built-in modulation facilities are a.m. up to 99% and f.m. in two ranges to 9.9kHz and 99kHz at modulation rates to 100kHz. The signal output level is 2V (e.m.f.) from 5051. A built-in step attenuator has a range from 0 to 139.9dB in 0.1dB steps and a sweep facility, having a maximum range of ±1MHz, is available as an option. The frequency reference is a 5MHz crystal oscillator with a daily ageing rate of less than one part in 10⁹ and a long-term stability of one part in 10⁷ over a period of six months. All functions are b.c.d.-programmable via multiway connectors on the rear panel. Sayrosa Engineers Limited, Wey River House, High Street, Alton, Hants.

Rechargeable batteries
Lead-acid batteries in the Varley range, stocked by Electroplan Ltd, are low-cost and offer high power-to-weight ratio and safe spill-proof operation. These batteries are available in 2V cells and 6 and 12V packs, in capacities from 4.5 to 90Ah. They are constructed from compressed layers of highly-absorbent separator material and thin lead plates. This construction enables high capacities to be achieved in a small volume and also removes the risk of plate material becoming detached and bridging between plates. Since the electrolyte is completely absorbed by the porous separators, the batteries can be charged and used in any position without spillage, and will need topping up less often than a conventional free-acid battery. Electroplan Limited, P.O. Box 19, Orchard Road, Royston, Herts., SG8 5HH.

15MHz battery oscilloscope
The D34 dual-trace portable oscilloscope, from Telequipment, has all the features of the model D32, but it has been given a greater bandwidth and a higher sensitivity (the maximum deflection sensitivity has been raised to 2mV/division up to 15MHz). To match this increased performance, the maximum switch speed is now 0.2μs/division, and a signal delay has been included to facilitate the observation of fast leading edges. This oscilloscope may also be used on a mains supply. Electroplan Limited, P.O. Box 19, Orchard Road, Royston, Herts SG8 5HH.
Wall of words
Why is it, I wonder, that the average bank clerk, boiler maker or mole exterminator is so quick to claim total and passionate ignorance of anything electronic? Mention, in passing, the fact that you work in electronic engineering and see his face register the "Well, how interesting! But of course all that sort of thing is above my head" expression. But talk to him about his car and he will instantly be away into a discussion of steering geometry, carburation and the advantages of limited-slip differentials.

Next time the company chairman is wheeled round the lab on his annual tour of inspection, just watch the pent-up surge of indifference glaze his eyes as you explain to him what you've been about during the last year. This is not to say he's a fool — anyone who gets to be chairman of a company has to have something upstairs — but it does seem that many such, otherwise rational, people experience this automatic switch off at the mere mention of electronics. I think most of the blame lies with electronic engineers themselves: we have built up this carefully-guarded mystique over the years by cloaking even the most straightforward statements in the most grotesque jargon ever heard outside a marketing and advertising office. We talk about large-scale integrated t.t.l., ceemoss bucket brigades, intelligent terminals and jungle chips without a thought for the hapless individual with a head full of nothing more complicated than running a film a-year company. No wonder they all think we're too way out to be taken seriously.

A breath of fresh air
He has a good aim with a bucket of icky water, has Peter Baxandall. If, as is only proper, you turned to this page first, I insist that you must now read his article on fog-dispersal. He doesn't call it that, of course, because it would look peculiar in the index, but that's what it is about.

The writings of some of those who describe audio equipment for magazines has ascended (or descended, according to your point of view) to the level of the argot used by art and music critics. But while there are reasons for not being able to describe a painting by Lowry or a concerto by Vivaldi in precise language, there can be no excuse for disguising a lack of information in a flurry of adjectives such as "chesty", "forward", "relaxed" or, as in a recent review, "boring". Critics don't, as a rule, talk about indefinable agencies at work in paintings or music; indeed, they are usually only too willing to explain in detail just what it is about the brushwork or the violinists' fingers that gives a work its character. Perhaps now, after Baxandall, we can drop all this pseudo science about amplifiers and stop believing in fairies.

PR piddin
a breakthrough . . . the same as all the others except it uses l.c.s.
years of research three days looking through the competition's catalogues.
professional . . . has a lot of knobs and it's too dear for most people.
sophisticated expensive. A recent favourite — "sophisticated genuine wood."
computerised . . . has a transistor in it.
symposium . . . marketing managers' jamboree.
new low price . . . cheaper than it could be; dearer than it should be.
indispensable . . . dispensable.
high-density ABS . . . plastic.
the ultimate . . oh! come now.

Not cricket
We get some funny letters to these offices. They cover the field from "My radio has gone wrong; can you tell me how to mend it, please?" to requests for an explanation of the workings of computers "... if you could spare a few minutes of your time". We had a man who used to write in and say that being from space were following him around and could we let him have a circuit to jam their 'detection beams', and the number of people who have invented stereoscopic television displays must be well into the double figures.

But we have now received the classic communication. A letter came from an official who is responsible in some way for the welfare of inmates of H.M. prisons, wanting to know the value of a certain type of radio receiver. It appears that the governing body of the chokey in question are being given the roundup by one of their flock who, much to his indignation, had had his radio stolen!

Now, this will not do. It is quite definitely the sort of thing that gives dishonesty a bad name, and if you can't leave things lying around in a government establishment, well, it's no wonder the country's going to the dogs.

Apart from which, there's the question of honour among . . . er . . . wealth redistribution operatives — is there no sense of shame among these people?

What I can't work out — where on earth have they hidden it?

Sound control
I suppose the knobs, switches, meters and assorted decorations are built on to audio equipment because the makers have found that their customers want them. The nearer in appearance to precision control the better for the image, so to speak. Indeed, there is even a demand for a "military look" in some portable radios and a "laboratory look" in much recent high-fidelity sound gear. All these controls and indicators presumably have a function, but one wonders whether they are ever used.

I must point out that I'm not being patronising, because I have some equipment like that myself, although the gimmicks did come with the performance, which was why I bought it. It has a loudness button, which serves to ruin the frequency response, no less than three "on" switches and a separate "off" switch, a useless signal level meter, a scratch filter and a rumble filter, neither of which has ever been used in anger, and any amount of satin chrome. It all looks very technical and my wife won't touch it. I think she's a bit puzzled about the red pilot light, which only comes on with certain programmes.

I dare say she isn't alone, either — the days when you could "turn on the wireless" with one flick of the wrist are long gone. There must be thousands of middle-aged and elderly people who are as fastidious about sound quality as anyone else, but who simply do not want to know about bass and treble boost and cut, balance, loudness contours, tape bias and equalisation, noise-reduction controls and peak-programme meters. And yet only one NAIM springs to mind. There may be others (QUAD equipment is not excessively self-conscious) which do not attempt to impress except by way of performance, but most gear that you buy seems to have the young and technically-minded at heart rather than the person who wants to hear music without being reminded that it's all very clever.

Would it not be possible and desirable to market very high quality units with a minimum of controls, especially for people who aren't able, for any reason, to use them to best advantage?
KEEP YOUR COOL

WITH ANTEX SOLDERING IRONS...

THIS UNIQUE SAFETY STAND: PART OF THE ANTEX SOLDERING KITS SK3 and SK4

Stand S.T.3

has a chromium plated steel spring and is suitable for all our models. Priced at £1.40 excl. of VAT

With the new Antex soldering stand you have the assurance that with the iron tucked neatly into the strong angled spring coil you have maximum safety when preparing or waiting for the iron to heat. Moulded into this stand is provision for six alternative bits, and two small sponges for cleaning bits.

This sturdy plastic stand is a useful addition to any household or workshop. The SK3 and SK4 kits comprise of a full instruction card mounted with either the CX miniature soldering iron or the larger X25 general purpose iron. Included in both of these kits is the safety stand.

All the range of Antex soldering irons are made on the principle of putting the heating element inside a shaft, then the desired bit is eased over the shaft, giving maximum heat transference, this is why so often a small Antex iron can do the job of a larger conventional iron. The precision made slide on bits are slit to make them easily interchangeable.

Our comprehensive range is sure to meet your need.

Model CX-17 watts

...a miniature iron with the element enclosed first in a ceramic shaft then in stainless steel. Virtually leak-free. Only 7½ long. Fitted with a 'w' bit £3.40 excl. of VAT. Range of 5 other bits available from 't' down to 'w'.

Model X25-25 watts

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with a 'w' bit and priced at £3.40 excl. of VAT. Range of 4 other bits available. B.E.A.B. APPROVED.

Model SK3 KIT

Contains both the model CX soldering iron and the stand S.T.3 priced at £4.80 excl. of VAT. Makes an excellent present for the radio amateur, modemaker or hobbyist.

Model SK4 KIT

With the model X25 general purpose iron and the ST3 stand and its B.E.A.B. safety label, this kit is a must for every toolkit in the home.

Model SK1 KIT

This kit contains a 15 watt miniature soldering iron complete with 2 spare bits, a coil of solder sheet and a booklet. How to solder. Price £3.95 excl. of VAT.

Model MLX KIT

The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car, a boat or a caravan ready for soldering in the field. Price £3.95 excl. of VAT.

Please send the following:

<table>
<thead>
<tr>
<th>Please send the ANTEN colour brochure</th>
<th>I enclose cheque P.O. Giro No 258 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please send the following</td>
<td>Name:</td>
</tr>
<tr>
<td></td>
<td>Address:</td>
</tr>
</tbody>
</table>

ANTEX LTD., FREEPOST, PLYMOUTH PL1 1BR TEL. 0752 67377

WW - 892 FOR FURTHER DETAILS
TEN GOOD REASONS FOR BUYING THE NEW FLUKE 8020A DMM.

1. 26 ranges of AC/DC volts and amps, ohms and conductance.
2. 0.25% d.c. accuracy over 10°C range for 1 year.
3. 'High power' ohms for diode testing.
4. 'Low power' ohms for in-circuit resistance measurement.
5. Conductance ranges allow leakage measurement to 10,000 MΩ.
6. 9V battery gives typically 200 hrs. life.
7. Protected to 250 V d.c. or r.m.s. on any range, any function.
8. Protects to 6 kV for 10 μs on any range, any function.
9. 2 year warranty on parts and labour.
10. Large liquid crystal display.

Harlow (0279) 29522

The only way to buy.
NEW PRODUCTS!

NRDC-AMBISONIC 45J

Surrond Sound DeCorder

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team, W.W. July, Aug. and Sept. '77.

The unit is designed to decode not only 45J but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC Matrix H.10 input selections.

The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques.

Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £45.00 + VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval.

As in this issue of "Wireless World", designed by Mike Hosking, 240V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet. Complete kit. Exclusive designer approved kit £46.00 + VAT, all ready built and tested £54.00 + VAT.

Wireless World Dolby™ noise reducer

Trademark of Dolby Laboratories Inc.

Typical performance

- Noise reduction better than 90dB weighted.
- Clipping level 16.5dB above Dolby level (measured at 1% third harmonic content)
- Harmonic distortion 0.1% at Dolby level typically 0.05% over most of the band, rising to a maximum of 0.12%
- Signal-to-noise ratio 75dB (20Hz to 20kHz, signal at Dolby level at Monitor output
- Dynamic Range >90db
- 30mV sensitivity.

Calibration tapes are available for open-reel use and for cassette (specify which) Price £2.20 + VAT

Single channel plug-in Dolby™ PROCESSOR BOARDS (92 x 87mm) with gold plated contacts are available with all components Price £8.20 + VAT

Single channel board with selected fet Price £2.50 + VAT

Gold Plated edge connector Price £1.50 + VAT

Selected FETs 60p each + VAT, 100p + VAT for two, £1.90 + VAT for four

Please add VAT at 12½% unless marked thus*, when 8% applies (or current rates)

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LTD.

Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

Please send SAE for complete lists and specifications

www.americanradiohistory.com
S-2020TA STEREO TUNER/AMPLIFIER KIT

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88–104MHz. 30dB mono S/N @ 1.2µV. THD 0.3%. Pre-decoder 'birdy' filter.

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range 88–104MHz. 20dB mono quieting @ 0.75µV. Image rejection — 70dB. IF rejection — 85dB. THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

Compare this spec. with tuners costing twice the price.

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £31.95 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Power 'on/off' FET transient protection.

PRICE: £33.95 + VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

BASIC NELSON-JONES TUNER KIT £14.28 + VAT

BASIC MODULE TUNER KIT (stereo) £16.75 + VAT

PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT £8.00 + VAT
Get a great deal from Marshall's

Our range covers over 8,000 items. The largest selection in Britain. Top 200 ICs, TTL, CMOS & LINEARs.

NEW CATALOGUE 77

2nd addition for Autumn with over 8,000 line items. Plenty of new products and deals. 35p post paid (2hp to callers).

POPULAR SEMICONDUCTORS

[List of components with prices]

NEW CATALOGUE

[List of components with prices]

ORDER NOW!

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

RATED POWER OUTPUT: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

MAXIMUM POWER OUTPUT: 90 watts av. per channel into 8 ohms.

DISTORTION, PREAMPLIFIER: Virtually zero (cannot be identified or measured as it is below inherent test equipment.)

DISTORTION, POWER AMPLIFIER: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 kHz).

HUM AND NOISE: -83dBV measured flat with noise bandwidth 23 kHz (ref 5mV). -86dBV "A" weighted (ref 1mV).

Price: £9.95.

TBA500 2.21 2N2366 0.20 2N2222 0.15 2N4285 0.36 2N2926 0.75 2N364 1.45 2N4916 0.55 2N5458 0.33 2N5387 0.15 2N4119 0.75 2N5459 0.35 2N5457 0.33 2N5456 0.33 2N5388 0.15 2N4120 0.75 2N5455 0.33 2N5386 0.15 2N4118 0.75 2N5454 0.33 2N5385 0.15 2N4117 0.75 2N5453 0.33 2N5384 0.15 2N4116 0.75 2N5452 0.33 2N5383 0.15 2N4115 0.75 2N5451 0.33 2N5382 0.15 2N4114 0.75 2N5450 0.33 2N5381 0.15 2N4113 0.75 2N5449 0.19

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

RATED POWER OUTPUT: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

MAXIMUM POWER OUTPUT: 90 watts av. per channel into 8 ohms.

DISTORTION, PREAMPLIFIER: Virtually zero (cannot be identified or measured as it is below inherent test equipment.)

DISTORTION, POWER AMPLIFIER: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 kHz).

HUM AND NOISE: -83dBV measured flat with noise bandwidth 23 kHz (ref 5mV). -86dBV "A" weighted (ref 1mV).

Price: £9.95.

TBA500 2.21 2N2366 0.20 2N2222 0.15 2N4285 0.36 2N2926 0.75 2N364 1.45 2N4916 0.55 2N5458 0.33 2N5387 0.15 2N4119 0.75 2N5459 0.35 2N5457 0.33 2N5456 0.33 2N5388 0.15 2N4120 0.75 2N5455 0.33 2N5386 0.15 2N4118 0.75 2N5454 0.33 2N5385 0.15 2N4117 0.75 2N5453 0.33 2N5384 0.15 2N4116 0.75 2N5452 0.33 2N5383 0.15 2N4115 0.75 2N5451 0.33 2N5382 0.15 2N4114 0.75 2N5450 0.33 2N5381 0.15 2N4113 0.75 2N5454 0.33 2N5380 0.15 2N4112 0.75 2N5453 0.33 2N5389 0.15 2N4111 0.75 2N5452 0.33 2N5388 0.15 2N4110 0.75 2N5451 0.33 2N5387 0.15 2N4109 0.75 2N5450 0.33 2N5386 0.15 2N4108 0.75 2N5449 0.19

WHAT IS A MICROPROCESSOR? A COMPLETE TEACH YOURSELF COURSE WITH Cassettes + Brochure - £9.95 inc. of VAT & P&P

SWANLEY ELECTRONICS

DEPT WW, PO BOX 98, 32 GODFREY RD, SWANLEY, KENT BR7 8QO

Mail order only. No callers. Send a cheque for free data on kits. Post and packing 35p. Prices include VAT. Official orders welcome. (Overseas customers deduct 7% VAT on orders mailed) and 11% on others.

www.americanradiohistory.com
OLSON MINICASES

NEW OLSON SLOPING CASES

Cases made from 200 steel.
Front panels made from 200 aluminum.

<table>
<thead>
<tr>
<th>Type</th>
<th>Overall Dimension</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
<th>Case no vents</th>
<th>Case with vents</th>
<th>Chrome leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>6 1/2"</td>
<td>4 1/4"</td>
<td>4 1/4"</td>
<td>4.75</td>
<td>4.75</td>
<td>1.00</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>8 1/2"</td>
<td>5 1/4"</td>
<td>5 1/4"</td>
<td>5.35</td>
<td>5.35</td>
<td>1.05</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>10 1/2"</td>
<td>6 1/4"</td>
<td>6 1/4"</td>
<td>6.35</td>
<td>6.35</td>
<td>1.05</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>12 1/2"</td>
<td>7 1/4"</td>
<td>7 1/4"</td>
<td>7.65</td>
<td>7.65</td>
<td>1.05</td>
</tr>
<tr>
<td>25A</td>
<td></td>
<td>6 1/2"</td>
<td>4 1/4"</td>
<td>4 1/4"</td>
<td>4.60</td>
<td>4.60</td>
<td>1.05</td>
</tr>
<tr>
<td>25B</td>
<td></td>
<td>6 1/2"</td>
<td>4 1/4"</td>
<td>4 1/4"</td>
<td>4.60</td>
<td>4.60</td>
<td>1.05</td>
</tr>
<tr>
<td>26A</td>
<td></td>
<td>8 1/2"</td>
<td>5 1/4"</td>
<td>5 1/4"</td>
<td>5.65</td>
<td>5.65</td>
<td>1.05</td>
</tr>
<tr>
<td>26B</td>
<td></td>
<td>8 1/2"</td>
<td>5 1/4"</td>
<td>5 1/4"</td>
<td>5.65</td>
<td>5.65</td>
<td>1.05</td>
</tr>
<tr>
<td>27A</td>
<td></td>
<td>12 1/4"</td>
<td>7 1/4"</td>
<td>7 1/4"</td>
<td>7.10</td>
<td>7.10</td>
<td>1.05</td>
</tr>
<tr>
<td>27B</td>
<td></td>
<td>12 1/4"</td>
<td>7 1/4"</td>
<td>7 1/4"</td>
<td>7.10</td>
<td>7.10</td>
<td>1.05</td>
</tr>
<tr>
<td>28A</td>
<td></td>
<td>14"</td>
<td>10 1/2"</td>
<td>6 1/2"</td>
<td>8.40</td>
<td>8.40</td>
<td>1.05</td>
</tr>
<tr>
<td>28B</td>
<td></td>
<td>14"</td>
<td>10 1/2"</td>
<td>6 1/2"</td>
<td>8.40</td>
<td>8.40</td>
<td>1.05</td>
</tr>
<tr>
<td>29A</td>
<td></td>
<td>17 1/4"</td>
<td>10 1/2"</td>
<td>6 1/4"</td>
<td>9.13</td>
<td>9.13</td>
<td>1.05</td>
</tr>
<tr>
<td>29B</td>
<td></td>
<td>17 1/4"</td>
<td>10 1/2"</td>
<td>6 1/4"</td>
<td>9.13</td>
<td>9.13</td>
<td>1.05</td>
</tr>
<tr>
<td>30A</td>
<td></td>
<td>19 1/4"</td>
<td>11 1/2"</td>
<td>6 1/2"</td>
<td>9.88</td>
<td>9.88</td>
<td>1.05</td>
</tr>
<tr>
<td>30B</td>
<td></td>
<td>19 1/4"</td>
<td>11 1/2"</td>
<td>6 1/2"</td>
<td>9.88</td>
<td>9.88</td>
<td>1.05</td>
</tr>
<tr>
<td>31A</td>
<td></td>
<td>21"</td>
<td>12 1/4"</td>
<td>7 1/4"</td>
<td>7.35</td>
<td>7.35</td>
<td>1.05</td>
</tr>
<tr>
<td>31B</td>
<td></td>
<td>21"</td>
<td>12 1/4"</td>
<td>7 1/4"</td>
<td>7.35</td>
<td>7.35</td>
<td>1.05</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>15 1/2"</td>
<td>7 1/2"</td>
<td>9 1/2"</td>
<td>10.60</td>
<td>10.60</td>
<td>1.05</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>17 1/4"</td>
<td>8 1/4"</td>
<td>9 1/4"</td>
<td>12.35</td>
<td>12.35</td>
<td>1.05</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>16 1/4"</td>
<td>9 1/2"</td>
<td>9 1/2"</td>
<td>12.35</td>
<td>12.35</td>
<td>1.05</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>15 1/2"</td>
<td>7 1/2"</td>
<td>9 1/2"</td>
<td>12.35</td>
<td>12.35</td>
<td>1.05</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>17 1/4"</td>
<td>8 1/4"</td>
<td>9 1/4"</td>
<td>14.00</td>
<td>14.00</td>
<td>1.05</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>16 1/2"</td>
<td>9 1/2"</td>
<td>9 1/2"</td>
<td>14.00</td>
<td>14.00</td>
<td>1.05</td>
</tr>
</tbody>
</table>

PORTABLE POWER CASES

FOR INSTANT MAINS!

COMPLETE WITH 6FT. CABLE AND 13 AMP FUSED PLUG

<table>
<thead>
<tr>
<th>Type</th>
<th>Panel Dim</th>
<th>Depth</th>
<th>Height</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150 m/m × 100 m/m</td>
<td>95 m/m</td>
<td>95 m/m</td>
<td>£1.39</td>
</tr>
<tr>
<td>2</td>
<td>200 m/m × 100 m/m</td>
<td>95 m/m</td>
<td>95 m/m</td>
<td>£2.25</td>
</tr>
<tr>
<td>3</td>
<td>250 m/m × 100 m/m</td>
<td>95 m/m</td>
<td>95 m/m</td>
<td>£2.75</td>
</tr>
</tbody>
</table>

Send for details of complete range.

OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ
Tel: 01-738 2343

WWW-083 FOR FURTHER DETAILS

Better instruments. Better service.

We have established a nationwide network of approved service organisations to deal with the repair and maintenance of our instruments. Every repair is backed by a full 12 month guarantee. Here's where to find them.

ENGLAND London Instrument Repair Centre, Acton Lane, Chiswick, London W4 5BU Trade Reception, Cumnongton Street Tel: 01-955 9212 London Instrument Repair Centre, Archciffe Road, Dover, Kent Tel: Dover (033) 206229 Farrell International Instruments Ltd., Sandbeck Way, Wetherby, West Yorkshire LS23 4DN Tel: Wetherby (0754) 295411 E.R.K. Instruments Ltd., Pake Lane, Ashtead, Epsom, London SM2 7AH Tel: Ashwood (0353) 276275 or 5611 Midland Instrument Repair Centre, Thorn Automation Ltd., Horntye Road, Radley, Ashtead Tel: Ashtead (0353) 276275

SCOTLAND Falcon Electronics, 92 High Street, Johnstone, Scotland Tel: Johnstone (0505) 23577

WALES Electro Services, 25 Chestow Street, Newport, Gwent NP8 8BX Tel: Newport (0633) 211245

The manufacturer's joint service organisation.

WWW-090 FOR FURTHER DETAILS
SWITCH TRIGGER MATS

So far so understandable under certain but will need as before.

MILLMANN UNILUX

- A mains operated 4 + 4 sound system. It can provide excellent performances in the stereo field. It has a unique circuit that will simulate any one of the ten or more stereo systems of which you may have more than one. It runs on the mains phase only. (in 15 amp rating).

SHORTWAVE CRYSTAL SET

- Although this uses no battery it fairly well picking up radio stations. It will miss mor stor radios stations and can be used as a receiver for any of the 15 or 30 sets. It consists of the same parts used in the sets of all the parts, £1.80 - crystal set £2.75.

DISTRIBUTION PANELS

- Just what you need for each bench £1.15. Use a plastic box to see strength and £1.35 for any other do-it-yourself work.

25A ELECTRIC PROGRAMMER

- In your shop live to be at the right on 7 am or 9 am and leave the rest to the programmer. It can be set on the mains phase and can be used for any of the manufacturer's work.

MOTORMISED DISCO SWITCH

- With a 10 amp changer switch, Motorised disco switch, 240V, £2.25. There is a good selection of 10 amp changing switch and the price is £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MERCURY BATTERIES

- Wire one of Mercury batteries, £1.50 and add voltage. Work station, £1.50. Oil bath (32/2 in.) is a highly polished and smoothened surface, £1.50. Work station, £1.50.

TERMS

- Cash in order - under £5 must add 50p to order price.

J. BULL (ELECTRICAL) LTD.

(Dept. WW), 103 TAMWORTH ROAD

CRODYN 6G8

MILLMANN UNILUX

- A mains operated 4 + 4 sound system. It can provide excellent performances in the stereo field. It has a unique circuit that will simulate any one of the ten or more stereo systems of which you may have more than one. It runs on the mains phase only. (in 15 amp rating).

SHORTWAVE CRYSTAL SET

- Although this uses no battery it fairly well picking up radio stations. It will miss mor stor radios stations and can be used as a receiver for any of the 15 or 30 sets. It consists of the same parts used in the sets of all the parts, £1.80 - crystal set £2.75.

DISTRIBUTION PANELS

- Just what you need for each bench £1.15. Use a plastic box to see strength and £1.35 for any other do-it-yourself work.

25A ELECTRIC PROGRAMMER

- In your shop live to be at the right on 7 am or 9 am and leave the rest to the programmer. It can be set on the mains phase and can be used for any of the manufacturer's work.

MOTORMISED DISCO SWITCH

- With a 10 amp changer switch, Motorised disco switch, 240V, £2.25. There is a good selection of 10 amp changing switch and the price is £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MERCURY BATTERIES

- Wire one of Mercury batteries, £1.50 and add voltage. Work station, £1.50. Oil bath (32/2 in.) is a highly polished and smoothened surface, £1.50. Work station, £1.50.

TERMS

- Cash in order - under £5 must add 50p to order price.

J. BULL (ELECTRICAL) LTD.

(Dept. WW), 103 TAMWORTH ROAD

CRODYN 6G8

MILLMANN UNILUX

- A mains operated 4 + 4 sound system. It can provide excellent performances in the stereo field. It has a unique circuit that will simulate any one of the ten or more stereo systems of which you may have more than one. It runs on the mains phase only. (in 15 amp rating).

SHORTWAVE CRYSTAL SET

- Although this uses no battery it fairly well picking up radio stations. It will miss mor stor radios stations and can be used as a receiver for any of the 15 or 30 sets. It consists of the same parts used in the sets of all the parts, £1.80 - crystal set £2.75.

DISTRIBUTION PANELS

- Just what you need for each bench £1.15. Use a plastic box to see strength and £1.35 for any other do-it-yourself work.

25A ELECTRIC PROGRAMMER

- In your shop live to be at the right on 7 am or 9 am and leave the rest to the programmer. It can be set on the mains phase and can be used for any of the manufacturer's work.

MOTORMISED DISCO SWITCH

- With a 10 amp changer switch, Motorised disco switch, 240V, £2.25. There is a good selection of 10 amp changing switch and the price is £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MERCURY BATTERIES

- Wire one of Mercury batteries, £1.50 and add voltage. Work station, £1.50. Oil bath (32/2 in.) is a highly polished and smoothened surface, £1.50. Work station, £1.50.

TERMS

- Cash in order - under £5 must add 50p to order price.

J. BULL (ELECTRICAL) LTD.

(Dept. WW), 103 TAMWORTH ROAD

CRODYN 6G8

MILLMANN UNILUX

- A mains operated 4 + 4 sound system. It can provide excellent performances in the stereo field. It has a unique circuit that will simulate any one of the ten or more stereo systems of which you may have more than one. It runs on the mains phase only. (in 15 amp rating).

SHORTWAVE CRYSTAL SET

- Although this uses no battery it fairly well picking up radio stations. It will miss mor stor radios stations and can be used as a receiver for any of the 15 or 30 sets. It consists of the same parts used in the sets of all the parts, £1.80 - crystal set £2.75.

DISTRIBUTION PANELS

- Just what you need for each bench £1.15. Use a plastic box to see strength and £1.35 for any other do-it-yourself work.

25A ELECTRIC PROGRAMMER

- In your shop live to be at the right on 7 am or 9 am and leave the rest to the programmer. It can be set on the mains phase and can be used for any of the manufacturer's work.

MOTORMISED DISCO SWITCH

- With a 10 amp changer switch, Motorised disco switch, 240V, £2.25. There is a good selection of 10 amp changing switch and the price is £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.

MERCURY BATTERIES

- Wire one of Mercury batteries, £1.50 and add voltage. Work station, £1.50. Oil bath (32/2 in.) is a highly polished and smoothened surface, £1.50. Work station, £1.50.

TERMS

- Cash in order - under £5 must add 50p to order price.

J. BULL (ELECTRICAL) LTD.

(Dept. WW), 103 TAMWORTH ROAD

CRODYN 6G8

MILLMANN UNILUX

- A mains operated 4 + 4 sound system. It can provide excellent performances in the stereo field. It has a unique circuit that will simulate any one of the ten or more stereo systems of which you may have more than one. It runs on the mains phase only. (in 15 amp rating).

SHORTWAVE CRYSTAL SET

- Although this uses no battery it fairly well picking up radio stations. It will miss mor stor radios stations and can be used as a receiver for any of the 15 or 30 sets. It consists of the same parts used in the sets of all the parts, £1.80 - crystal set £2.75.

DISTRIBUTION PANELS

- Just what you need for each bench £1.15. Use a plastic box to see strength and £1.35 for any other do-it-yourself work.

25A ELECTRIC PROGRAMMER

- In your shop live to be at the right on 7 am or 9 am and leave the rest to the programmer. It can be set on the mains phase and can be used for any of the manufacturer's work.

MOTORMISED DISCO SWITCH

- With a 10 amp changer switch, Motorised disco switch, 240V, £2.25. There is a good selection of 10 amp changing switch and the price is £2.25 per switch.

MOTORISED DISCO LIGHTS

- Motorised disco lights, 10 amp changing switch, £2.25 per switch.
High quality modules for stereo, mono and other audio equipment.

PUSH-BUTTON STEREO FM TUNER

Our Price ONLY **£20.45**

Fitted with Phase Loop-lock Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set cursors. Used with your existing audio equipment or with the BI KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.

The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

STEREO PRE-AMPLIFIER

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two fully effective filters for high and low frequencies, plus tape output. MK. 60 AUDIO KIT: Comprising 2 x AL60's, 1 x SPM80 1/2 BTM80 1 x PA100. 1 front panel and knobs. 1 kit of parts to include on/off switch, neon indicator, stereo head as plus instruction booklet. COMPLETE PRICE **£34.90** plus 85p postage.

TEAK 60 AUDIO KIT

Comprising: Teak veneered cabinet size 16¼" x 11¼" x 3/4". Other parts include aluminium chassis, heatsink and front panel socket. Kit price **£13.25** plus 85p postage. ONLY £3.65

NEW AL30A

10w R.M.S. AUDIO AMPLIFIER MODULE

The AL30A is a high quality audio amplifier module replacing our AL20 & 30. The versatility of its design makes it ideal for record players, tape recorders, stereo amps, cassette and cartridge players. A power supply is available comprising a PS12 together with a transformer T538 also for stereo, the pre-amp PA12.

SPECIFICATION

- Output Power 10w.
- Input Impedance 8 ohms.
- Sensitivity: 50mv for full output.
- Frequency response 50Hz - 20KHz.
- Max. Heat Sink Temp 30°C.

Dimensions: 90 x 64 x 33mm.

AL 60

25 Watts (RMS)

- Max Heat Sink temp 90°C.
- Frequency response 20Hz to 100KHz.
- Distortion better than 0.1% at 1KHz.
- Supply voltage 15-50v.
- Thermal Feedback.
- Latest Design Improvements.
- Load - 3, 8, or 16 ohms.
- Signal to noise ratio 80db.
- Overall size 63mm x 105mm x 30mm.

- Especially designed to a strict specification. Only the finest components have been used and the latest true solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F.

BI-PACK

Improved Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the mains Transformer BMT80, the unit will provide outputs of up to 1.5A at 35V. Size 63mm x 105mm x 30mm. Incorporating short circuit protection. Transformer BMT80 **£5.30** plus 86p postage. **£3.75**

STEREO COMPLETE AUDIO

NEW PA12 Stereo Power Amplifier completely redesigned with AL30A Amplifier Modules. Features include on/off volume, balance, bass and treble controls. Complete with tape output.

ONLY **£6.70**

MPA 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. It is provided with a standard DIN input socket for ease of connection. Full instructions supplied.

OUR PRICE **£2.85**

STereo complete Audio

7+7 WATTS R.M.S.

NEW PA12

Power supply for AL30A, PA12, SA450, etc.

OUR PRICE **£1.30**

PS12

Input voltage 15-20v A.C. Output voltage 22.30v D.C.

Transformers T538 **£3.20**

Stereoforce 30

Stereo separation 30db. Supply required 20-30v at 90 Ma meas.

ONLY **£16.25**

VAT ADD 12½%

Postage & Packing add 25p unless otherwise shown. Add extra for airmail. Min. £1.00

COMPLETE AUDIO

NEW: Audio Kit complete. The new kit has been carefully designed to enable you to complete your own audio installation.

PA100

OUR PRICE **£13.75**

PA100

NEW COMPLETE AUDIO

AL60

25 Watts (RMS)

NEW COMPLETE AUDIO

BI-PACK

P.O. BOX 6, WARE, HERTS.
Instrument cases

All dimensions in mm. Weight in kg.

<table>
<thead>
<tr>
<th>Case Type</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD 1</td>
<td>170 x 130 x 90</td>
<td>4.5</td>
</tr>
<tr>
<td>MOD 2</td>
<td>200 x 150 x 100</td>
<td>5.0</td>
</tr>
<tr>
<td>MOD 3</td>
<td>250 x 180 x 120</td>
<td>6.0</td>
</tr>
<tr>
<td>MOD 4</td>
<td>300 x 200 x 150</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Aluminium cases

- Black PVC
- Grey PVC
- Grey and black

Steel cases

- Black steel
- Grey steel
- Grey and black

PVC cases

- Black PVC
- Grey PVC
- Grey and black

All cases come with gaskets and screws. Discounts available on quantities.

A range of display cases in blue textured acrylic. Panels are normally white, black, or grey.

West Hyde cases are available in a variety of finishes. Discounts are given for quantities. Steel cases are available in black or grey finishes. PVC cases are available in black, grey, or grey and black finishes.

West Hyde cases are available in a variety of finishes. Discounts are given for quantities. Steel cases are available in black or grey finishes. PVC cases are available in black, grey, or grey and black finishes.

These unbeatable offers cannot last!

T.V. GAME MODULES

Play six games!

- Colour (as illustrated left): £16.50
- Black and white (below): £10.50
- Colour converter for black and white games: £6.60

T.V. GAME I.C.'s

- AY-3-8500: £6.00
- AY-3-8550: £8.50

TELETEXT DECODERS

- As illustrated below right:
 - TIFAX XM11: £99.90

Application drawings supplied with all items and technical assistance available.

TELECRAFT

53 Warwick Road, New Barnet, Herts EN5 5EQ

Personal callers and trade enquiries welcome.

Cheques and Postal Orders to be made payable to Telecraft.

Prices include VAT, postage and packing.

WEST HYDE

Theatrical cases

A prestige theatrical case, black PVC steel top and bottom which can be supported (mounted at no extra cost) three handling or rack mounting, available in rack or half-width assembled in various configurations for sale purposes.

Minos cases in 3 sizes. In black or grey. Available in different finishes. Discounts are given for quantities.

West Hyde cases are available in a variety of finishes. Discounts are given for quantities. Steel cases are available in black or grey finishes. PVC cases are available in black, grey, or grey and black finishes.

Case Specialists

Available in 3 sizes. Heavily constructed in steel, welded corners with heavy hinges. 2 screw fixing and foam around the corners in the base, a gain plate with gasket and a chassis with screws provided.

Save you more pounds—these unbeatable offers cannot last!

WWW—109 FOR FURTHER DETAILS

WWW—100 FOR FURTHER DETAILS
DIY SPEAKER KITS 15-WATT KIT IN CHASSIS FORM When you are looking for a good, innovative speaker, you need to look for the kit itself. The kit is the unit which we supply with the two-way crossover. The crossover consists of a 2-way cross-over. The main basic tools are supplied complete with the kit. Each cabinet will cost you less than £100. The kit is supplied complete with 4 basic tools. Supply complete with 4 basic tools. You can build your own stereo unit with this kit. The kit is supplied complete with 4 basic tools. You can build your own stereo unit with this kit. The kit is supplied complete with 4 basic tools.

COMPACT FOR TOP VALUE This kit comprises of a tape transport mechanism, ready built and tested recording/playing electronics with two V.U. meters and level control ready for matching together with the mechanism. Specifications: Sensitivity... 40 microvolts. 20K OHM. Input... 300mV at 2K OHM. Source... Disk, Tape.

SPEAKERS Wire woven, 20 watts peak, 30 watts rms. 30 watts rms. 30 watts rms. 30 watts rms.

BSR TURNS TABLES BSR MP40 TURNTABLE Single play record player (Chassis form) £19.95

DECCA 20 WATT STEREO AMPLIFIER This unique design makes use of a 2-Watt amplifier and the 2-Watt amplifier and the 2-Watt amplifier and the 2-Watt amplifier are supplied complete with the kit. Each amplifier will cost you less than £100. The kit is supplied complete with 4 basic tools. You can build your own stereo unit with this kit. The kit is supplied complete with 4 basic tools. You can build your own stereo unit with this kit. The kit is supplied complete with 4 basic tools.

PARLOR MONO DISCO with built-in pre-amplifiers Here's the big value portable disco console from RT-VC. Features a pair of BSR MP60 tape autorewind recorder, all professional series record decks. Plus all the controls and features you need to give fabulous disco style performances. Simply connects into your existing slave or external amplifier.

PORTABLE MONO DISCO

45 WATT MONO DISCO AMP £35.00

DECCA 20 WATT STEREO AMPLIFIER

Special Offer

STEREO CASSETTE tape deck (Chassis form) £19.95

Stereo Tape Cassette deck (Chassis form) £19.95

30 x 30 WATT AMPLIFIER KIT

Special offer designed for RT-VC for the experienced constructor. This kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready packed, delivered and formed cabinet is finished in 2-way crossover. Silver fascia and easy-to-handle aluminium knurled knobs. Output 30 = 30 watts rms, 60 = 60 watts peak

BSR TURNS TABLES BSR MP40 TURNTABLE Single play record player (Chassis form) £19.95

Complete with speaker, baffle and facing strip. The loudspeakers are for the experienced constructor only. The loudspeakers have a free push button, four push button and one for long wire baffle. The baffle is of impact and attractive sound quality. The baffle is of impact and attractive sound quality.

CRUZ CABLES

Wireless World, November 1977

www.americanradiohistory.com
POWERTRAN AUDIO KIT SUPPLIERS TO THE WORLD

NEW! DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER

SPECIAL PRICE FOR COMPLETE KIT £99.30

The standard model of our kit for Mr. Linsley-Hood is a 75 watt design has for a long time been acclaimed exceptional performance for a very modest cost (just a few pence to provide a high-quality, high-power readily built unit! Features of the amplifier include very low distortion (less than 0.01%) 75W into channel power output) further variable tone control, variable tuning frequency bands, tape input) and individually adjustable gain. The model is based on 5 circuit boards which, when the potatoes are maxed on to the tanks, can be moved up to effectively suitably high performance audio systems not based on our own pre-amplifiers. This unit is an ideal kit for amateur and budget-minded hand to those. More on 3 or 4 tubes to power amplifiers for 1 board for the power supply and 7 integrated regulators. This technique alleviates direct wiring, making construction straightforward and as each board can be made up in circuits from the chassis. Stabilising and feedback is so simple that no expensive or specialized equipment is needed to put the kit together completely with the kit. Additional features of our new model are multiple units of circuits and understandments, generally found associated with bulky art use. This is not a complete design for the LUXE EASY KIT.

PACKAGES FOR STANDARD KIT

Pack	Price
1. Fibreglass printed circuit board for power amp	£1.15
2. Set of resistors, capacitors, pre-sets for power amp	£2.50
3. Fibreglass printed circuit circuit for pre-amp	£1.10
4. Pair of 2 diode, tuned heat sinks	£1.10
5. Selection of components including 500 ohm. mains input set, fuse holder, interconnecting cables, control knobs	£6.20
6. Selection of metalwork parts including silk screened tins, fuse panel and after sales service kits	£2.50
7. Handicrafts (free with complete kit)	£10.00

INTERNAL VIEW OF DE LUXE KIT

LINSLEY-HOOD CASSETTE DECK

SPECIAL PRICE FOR COMPLETE KIT £79.60

LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER

STANDARD LINSLEY-HOOD 75W AMPLIFIER

PACKAGES FOR COMPLETE KIT £79.80

WIRELESS WORLD FM TUNER

SPECIAL PRICE FOR COMPLETE KIT £70.20

Designed in response to demand for a tuner to complement the world-wide acclaimed Linsley-Hood 75W Amplifier, this kit is the perfect match. The Wireless World (Skingley and Thompson) published original circuit has been developed further for inclusion into this outstanding little unit and features a pre-aligned front end module, excellent a m. temperature and temperature compensated variable tuning, which can be modified et al. through push button pre selection. Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each channel selector preset. The PLL stereo decoder incorporates active filters for body suppression and power is supplied via a torrod type transformer and integrated regulator. For long term stability metal oxide resistors are used throughout.

EXPORT A SPECIALITY!

Our Export Department can facilitate delivery of any kit or every country in the world. Some of the countries to which we send kits last year were shown in this advertisement. To assist in our minimum cost kit our price list gives the weights of all packs and kits. This will be sent free on request, by airmail to our Export Postal Guide, which gives current package prices.

EXPORT ORDERS No minimum order charges! Prices same as for U.K. customers but no Value Added Tax charged. Please charged at actual cost plus 50p documentation and handling. Please send payment with order by Bank Draft, Postal Order, International Money Order or cheque drawn on your account in the U.K. Alternatively for orders over £500 we will accept Irrevocable Letter of Credit payable at sight in London.

OUR CATALOGUE IS FREE JUST SEND YOUR NAME AND ADDRESS TO WHICH YOU WOULD LIKE YOUR copy.
T20 + 20 AND T30 + 30
20W, 30W AMPLIFIERS

**

SPECIAL PRICES FOR COMPLETE KITS
T20 + 20 KIT PRICE £33.10
T30 + 30 KIT PRICE £38.40

WWII TUNER

**

SPECIAL PRICE FOR COMPLETE KIT £47.70
AVAILABLE AS SEPARATE PACKS — PRICES IN OUR FREE CATALOGUE

POWERTRAN S.F.M.T. TUNER

**

PRICE FOR COMPLETE KIT £35.90
AVAILABLE AS COMPLETE KIT ONLY

Wireless World Amplifier Designs. Full kits are not available for these projects but component packs and PCBs are stocked for the highly regarded Bailey and Mawson all transistors and triode valve amplifier design. Suitable for driving these preamps by the Bailey Preamplifier and an optional 800 V庆幸 range of transformers, a variety of components, and wide range of control, which may be either rotary or slider operating. A 15W output with two of these PCBs has been prepared for the integrated circuit version. High performance stereo Switch design details of component packs are in our Free Catalogue

30W Bailey Amplifier
B410 PA 1 x Glass PCB
£1.90
B410 PA 3 x Component packs + Transformer panel £3.70
B410 PA 3 x Component packs + Transformer panel £4.70
B404 PA 1 x Glass PCB £1.90
B404 PA 2 x Component packs + Transformer panel £2.20
B404 PA 3 x Component packs + Transformer panel £3.35
B404 PA 3 x Component packs + Transformer panel £4.05
G410 PA 2 x Capacitors pack £2.20
G410 PA 3 x Capacitors pack £3.30
G406 PA 6 x Tantalum capacitors (for use with Bailey) £8.80
G406 PA 6 x Tantalum capacitors (for use with Bailey) £17.35
Birdy Borne Stereophonic Pre-Amp
BB410 PA 1 x Glass PCB £4.30
BB410 PA 3 x Component packs + Transformer panel (stereo) £8.60
BB410 PA 3 x Component packs + Transformer panel (stereo) £11.50
BB410 PA 3 x Component packs + Transformer panel (stereo) £13.50
Smart Tape Recorder
TRC101 PA 2 x Glass PCBs (stereo) £2.50
TR210 PA 1 x Glass PCB £1.70
TR210 PA 1 x Glass PCB £1.70
MS01 PA 1 x Glass PCB £3.90
MS01 PA 1 x Glass PCB £3.90

SQ QUADRAPHONIC DECODERS
These state of the art circuits designed by CSR are allowed as kits of support quality with close reference to power supply voltages and other PCB design for various connection variations. Further information on these kits is given in our FREE CATALOGUE

1 x Full logic decoder £11.20
1 x Full logic decoder with variable balance £12.40
1 x Full logic decoder with high performance discrete component front end £30.10
1 x Full logic decoder with high performance discrete component front end £32.90
1 x Full logic decoder with high performance component front end £34.20
1 x Full logic decoder with high performance component front end £36.50
1 x Full logic decoder with high performance component front end £38.80
1 x Full logic decoder with high performance component front end £40.70

Value Added Tax not included in prices
UK Carriage FREE

PRICE STABILITY: Orders with confidentially of anticipated of any price changes we will honour all prices in this advertisement until December 31st 1977. Any change in our advertisement is announced with your order. Errors and VAT rate changes excluded.

U.K. ORDERS: Subject to 12½% surcharge for VAT (i.e. 15% of the price). No charge is made for carriage. Or at current rate if changed.

SECURITY DELIVERY: For this optional service £1.00 (mainland only) and add 2.50 (VAT inclusive) per kit.

SALES COURIER: If you prefer to collect your kit from the factory call at Sales Courier (at rear of factory) Open 1 p.m. to 4.30 p.m. Monday-Thursday

NEW PROJECTS

LINSLEY-HOOD LOW DISTORTION OSCILLATOR
A Wide bridge audio oscillator (10Hz, 10kHz, 1000Hz) with sine to square wave output (1mV 1V) published in Wireless World September, October 1977
Pack 1 Fibreglass PCB
Pack 2 Capacitors, 7% metal oxide resistors
Pack 3 Transistors, IC, IC socket, thermometer
Pack 4 Potentiometers and switches

£6.25
£2.60
£2.60
£2.80

ERIC F. TAYLOR PRE-AMPLIFIER
A low noise, low distortion (0.005%) stereo pre-amplifier for use with magnetic pick-up (RIAA equalization)
Pack 1 Fibreglass PCB (Stereo)
Pack 2 Metal oxide resistors, capacitors (Stereo)
Pack 3 Transistors, ICs, IC socket, thermometer
Pack 4 Potentiometers and switches
£1.45
£2.20
£4.20

FOR FURTHER INFORMATION PLEASE WRITE OR TELEPHONE FOR OUR FREE CATALOGUE

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN
64455
A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS, etc., on view at LOW COST

TEKTRONIX OSCILLOSCOPES
S51A with 0-Plugin £160; S545 with GA Plugin £200; S47 Front Panel £85; S58 with 82 Plug in £425; 681 with £51 £350.

TEKTRONIX 100MHZ Oscilloscope £185.

MARTONI OSCILLATOR TF0101D 20H/20KHz £180.
J.C. ELECTRONICS FREQUENCY METER type 331 3.0 - 1000KHz £50.
MARCONI SIGNAL GENERATORS. Freq. range 10-470MHZ £250.
MARCONI FM/AM MODULATION MODULATOR TF0101. Only one available £950.
MARCONI AIRMEC MODULATION.

MARCONI TO MARCONI I.C. TESTER.

MARCONI Special price POLARAD RECEIVER £200.

TEKTRONIX OSCILLOSCOPE 105A £500.

SOLARTRAN OSCILLOSCOPE CD1212 S8 40 MHZ £100 DB 24 MHZ Twice £135.

EX-MINISTRY OSCILLOSCOPE CT436 Double Beam DC 6 MHZ £120.

MARCONI SIGNAL GENERATOR TF8018/3/S Freq. range 10-470 MHZ £185.

PACK-A-PIECE - 50 PENCE A POUND

From our "Pack-A-Piece" area weigh up your own requirements. No restrictions on what you take away.

NEW STOCK OF EX-MINISTRY GENERATOR 0-20KHz.

TRIPods with PAN and TILT HEAD will take 56lb load £27.50 ea.

MARCONI VALVE VOLTAMETER TF428B £150.

DEC. MODULES

M3875 M7264 M7847BJ
M8655 M8311BY MMV11
H214 M7228 M7228

Prices and other Modules available on application.

TRANSISTORS/DIOES/ RECTIFIERS, etc.

Guaranteed all full specs, devices. Manufacturers Markings.

At 5p each:
BC147 2N3072 2N4033 2N7261 2C251B 2C8486
10 each: 2N3072 2N4033 2N7261 2C251B 2C8486

BC117 2N4070 2C121 2B133 1N9197

BA102E BA102X 2X7107/1

At 10p each:

BC195B 1N4733A TP102 20p each TP134A 50p each BD303 - 40p each BD304 - 40p each

40p each: Heavy Duty Bridge Rectifier - 20p each 7B104 7B105 - 75p each CA132E - 10p each BD105 - 15p each BU104 - 10p each BD305 - 40p each

2N5876.5 each with 2N5881 Motorola 1500 Comp par. £2 pr BD507 BD538 Comp par. - 75p pr. Linear Ampl 709 - 29p each. High Speed Voltage Comparator 710 - 15p each & P & P Extra on all items.

DESKS with Punch Reader, Printer and Keyboard. Some ASCI. Various modes from £200.

1/2" MAG TAPE
Alphac 7.000. NOW £25 each. P&P £1.

FOR THE VDU BUILDER tube type CME 120/2 45mm £6 ea. Basic connections supplied.

SUPERB PROFESSIONAL VDU CASES, size 24 x 16 x 15" on stands. Hammer grey BRAND NEW SCHULMAYER. £50 surplus £20 each.

L.P. DISK DRIVES, TWIN E.D.S. £240 each.

TELETYPE ASR 33 from £450.

TELETYPE KSR13 £325

NOTE: STANDARD 110BA mod. basic ASCI. 120BA loop - but small print 0-9 above standard 0-9. Some of the symbols being has been reprinted to £250.

TELETYPE 3500 - no case £120 each.

TELETYPE 3500E £110 each.

TELETYPE 3500E (cased) - with remote electronic keyboard. £370 each.

VITRON PROCESSOR consisting of VDU, twin cassette. Information £425.

WELCOM 83 System with information £600.

MINIMUM ORDER £2.

EXCESS postage refunded. Unless stated - please add £2.75 carriage to all units.

VALUE ADDED TAX not included in prices - Goods marked with * 12 1/2 % VAT, otherwise 8%.

Official Orders Welcomed. Gov./Educational Dists., Authorities, etc., otherwise Cash with Order.

Open 9 a.m. to 5 p.m. Mon. to Sat.

BACK IN STOCK - CREED 7B TELEPRINTERS

THE CHEAPEST WAY OF GETTING A FULL ALPHA/NUMERIC PRINTOUT FROM YOUR MICRO.

Large Ministry purchase enables us to offer these at £25 each.

In good working condition. Requires 240 volts DC.

Requires ASCI or BAUDOT converter for coupling to your micro-processor. These Units are Processor tested before dispatch. Circuits included. Adequately protected to guarantee safe arrival for £3.25.

Minimum Order £2.

Excess postage refunded. Unless stated — please add £2.75 carriage to all units.

VALUE ADDED TAX not included in prices — Goods marked with * 12 1/2 % VAT, otherwise 8%.

Official Orders Welcomed. Gov./Educational Dists., Authorities, etc., otherwise Cash with Order.

Open 9 a.m. to 5 p.m. Mon. to Sat.

MINIMUM ORDER £2.

Excess postage refunded. Unless stated — please add £2.75 carriage to all units.

VALUE ADDED TAX not included in prices — Goods marked with * 12 1/2 % VAT, otherwise 8%.

Official Orders Welcomed. Gov./Educational Dists., Authorities, etc., otherwise Cash with Order.

Open 9 a.m. to 5 p.m. Mon. to Sat.
SCOOPE — up to 45% OFF manufacturer's list prices

Exclusive Purchase from Hazeltine — World Leaders in CRT Terminals

- Teletype-compatible 13" Diagonal Screen
- 56 ASCII Character Set
- Dot Matrix
- Switch-selectable Transmision Rate up to 9600 baud
- Switch-selectable Parity Standard CCTC V.24 Interface

HazelTINE 1200

As the features of the Model 1000 but with double screen capability of 1920 characters (24 lines of 80). Reverse block image Cursor

New List Price £941.
OUR PRICE £725.00.

ALL UNITS FACTORY-REFURBISHED TO AS-NEW STANDARD AND COVERED BY 90-day warranty.

Electronic Brokers Limited (Computer Sales & Services Division)
49-53 Pancras Road, London NW1 2QB. Tel: 01-837 7781. Telex: 298694

Hours of business:
9 a.m.-5 p.m. Mon.-Fri. Closed lunch 1-2 p.m.

Add 8% VAT to ALL PRICES
Carriage & Packing charge extra on all items unless otherwise stated.

Ww — 106 FOR FURTHER DETAILS
www.americanradiohistory.com
Our range of bench power supply units covers a wide choice of general purpose and specialised units, carefully chosen to meet the needs of design and production - testing applications, at highly competitive prices.

“Hercules” P.G. 312
- 10-15 V @ 12A maximum
- Ripple less than 10mV
- Stability 0.3% for 10% mains variation, or zero to 100% load current change
- Short-circuit protected PLUS automatic cut-out

P.G. 160N
- 0-25V @ 5A
- Constant current, or constant voltage, with floating output
- Ripple, less than 10mV
- Stability 0.2%
- Full short-circuit protection

P.G. 160N
- 0-25V @ 5A
- Constant current, or constant voltage, with floating output
- Ripple, less than 10mV
- Stability 0.2%
- Full short-circuit protection

H.S. 73 & 76 Series
- H. S. 73 15
- 0-150V @ 3A
- £47.50
- Constant current, or constant voltage, with floating output
- Ripple, less than 2mV
- Stability, 0.02%
- Full short-circuit protection, no transients on switch on/off

P.G. 77
- 3-15V @ 2.5A maximum (80% duty cycle)
- Ripple, less than 10mV
- Stability, 0.1%
- Short-circuit protection

P.G. 116
- 12.6V @ 2A
- Ripple, less than 2mV
- Stability, 1%
- Short-circuit protection

P.G. 76
- 6.14V @ 2.5A
- Ripple, less than 3mV
- Stability, 1%
- Short-circuit protection

“Taketete” Digital Tachometer Model 1704
- Complete with leather carrying case

NEW WIDE RANGE MULTIMETER UM.11
- Features 38 colour-coded ranges with high input impedance
- D.C. Volts, 150V to 1500V f.s.d. at 100KΩ/V
- A.C. Volts, 1 to 1500V f.s.d. at 316KΩ/V
- D.C. Current, 10mA to 15A f.s.d.
- A.C. Current, 15A
- Mirror-scale, rugged taut-band suspension, db scale, diode and fuse protection
- Supplied complete with test leads and leather carrying-case

“STROBETTE” Stroboscope Tachometer Model 964
- 200-6000 flashes/minute
- Directly calibrated in r.p.m.
- Xenon lamp

NEW FUNCTION GENERATORS!

G.430 (Illustrated)
- Frequency: 1 Hz to 1 MHz
- Output: Sine-wave, 0-10V r.m.s. from 600
- Square-wave 0.20V p.p. from 600
- 0-60 dB step attenuator

G.432
- Frequency: 1 Hz to 11 MHz
- Sine, square and triangle
- 5V from 0-60 dB 50 attenuator
- Also simultaneously 10V from three independent 600 outputs
- D.C. offset

Electronic Brokers Limited (New Products Division)

49-53 Pancras Road, London, NW1 2QB - Tel: 01-837 7781

Hours of business:
- 9 a.m.-5 p.m. Mon.-Fri.: closed lunch
- 1-2 p.m.

ADD 8% VAT TO ALL PRICES

Carriage and Packing charge extra on all items unless otherwise stated
FREQUENCY COUNTERS
1/10 Hz to 1.2GHz
High performance instruments measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

TYPE 801B
£280 250 MHz
Sensitivity 10mV. Stability 5 parts 10^-10
Resolution ± 1 Count

CRYSTAL OVEN
OPERATING MANUAL
TWO TONE BLUE CASE

NEW PRODUCT
PRECISION LOW FREQUENCY GENERATOR
SINE AND SQUARE WAVE

FEATUREING
WIDE FREQUENCY RANGE 10 Hz to 100 KHz in 4 RANGES
SINE OUTPUT MAX T.H.D. 0.3%
AMPLITUDE LEVEL TO WITHIN 1% OVER ENTIRE FREQUENCY RANGE
SQUARE OUTPUT MAX RISE TIME 20 ns
OUTPUT LEVEL 2.5 V R.M.S. SINE AND SQUARE
ATTENUATOR 80 dB RANGE
POWER 2 P Ps OR OPTIONAL MAINS POWER UNIT (£12 EXTRA)

R.C.S. ELECTRONICS
6 WOLSEY ROAD, ASHFORD
MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

R.C.S. ELECTRONICS
6 WOLSEY ROAD, ASHFORD
MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

KEEP UP TO DATE

COURSES:

☐ Field Effect Transistors (written in 1970)
☐ Pulse Code Modulation
☐ Digital Instrumentation
☐ Modern Control Theory
☐ Colour Television
☐ Minicomputer Systems
☐ Integrated Circuits, techniques and applications
☐ Industrial Process Heating and Electroheat
☐ Certified Diploma in Accounting & Finance
send for your copy now!

Eurasian Electronics Suppliers Guide

Companies classified by country
Products and manufacturers
Trade associations
American firms in Europe

The second edition of this valuable three-language (English, French and German) directory gives details of 2,800 firms, including 130 from Eastern Europe. 890 products are grouped into 26 chapters, covering cables, components, computers, materials, production equipment and 21 fields of specialisation application from aerospace to underwater engineering. Comprising 730 pages (A5 format), the new edition includes cross-referencing from products to manufacturers — for the first time — from firms to products. Special attention has been paid to the indexing which is separate for each of the three language sections. European Electronics Suppliers Guide is published jointly by Verlag Fur Wirtschaftsverlag GmbH (Zurich) and C. G. Wedgwood & Co. (London) and is available only through IPC Electrical-Electronic Press Ltd.

£18.50 including postage and packing.

Available only through IPC Electrical-Electronic Press Ltd.
Electronics: The Test Equipment People

Type 5059 Pulse Generator 2 Channel, double pulse. Functions: Frequency, Rise & Fall Time, Amplitude. Offset, Delay. Pulse width 1ns to 20ms, Width 25 ns to 1 sec. Full specification on request

£625.00

Type SG67A Wide Range Oscillator, Frequency Range 15Hz-1MHz. Sine, square, Output: Amplitude up to 2.5V, Battery operated

£185.00

Type J1 Audio Signal Generator 15Hz-500KHz. Output 0.25V to 25V at impedance 600 ohms or 6 ohms.

£50.00

R.F. Signal Generator 50kHz-30MHz. Output 2 - 7V. Int. modulation 0.001%. Provision for Ext. Mod. Audio output 0.1V to 400V into 600Ω or 6 ohms.

£165.00

AVO R.F. Signal Generator HF134. 100kHz-240MHz. 150mA full scale. 1kHz. Ext. Mod. 1kHz. @ Ext. Mod. facility £150.00

HEWLETT PACKARD 1051A Frequency Doubler. Extends the usable frequency range of signal generators. Operating on input frequencies 0.5MHz to 500MHz it provides a doubled output in the range of 1MHz to 1GHz. The frequency response of this 50 ohm device is very flat (-2.26dBrdb) over the entire frequency range and underdamped harmonics are well suppressed.

£75.00

F.M. / A.M. Signal Generator 2021 F M A.M. C.W. & pulse coverage 54 to 216 MHz R.F. output 0.1µV to 2.5V, 250kHz Impedance

£495.00

Audio Signal Generator 2018A 200kHz-20MHz ±2% accuracy. Distortion ≤ 0.15%

£180.00

612 A.U.H.F. Signal Generator 450-1200MHz. 0.1µV to 5V (5ohms).

£200.00

AM Internal & external. Pulse mod. facilities. SUPERB CONDITION

£125.00

MARCONI INSTRUMENTS Type T1600D U.H.F. Signal Generator 1450-250MHz. Sine wave and pulse

£350.00

Signal Generator T667. 15kHz-300MHz. 0.1µV to 4V, 4V Int. Ext. mod. Supplied with Terminating unit.

£150.00

Solid State Generator 605BB. Frequency range 8-12GHz. Int. & Ext. mod. Inst. Spec. 0.003%. 500kHz Impedance £50.00

A.M. Signal Generator P86013-15 Military version 10-485MHz

£1600.00

R.C. Oscillator T1370A. 10kHz-10MHz. Square wave up to 100kHz High Outputs

£285.00

Pho/PhA M Signal Generator TF 2003 0-12MHz

£150.00

F.M. / A M Signal Generator TF 9925. 3MHz-300MHz. 5MHz 2200MHz. R.F. output 0.1µV to 200mV, Int. & Ext. mod. Facilities. B/A r condition

£385.00

A.M. Signal Generator TF8010D. 1 Freq. range 10-470MHz R.F. output 0.1µV. From attenuation 500mV Impedance

£195.00

DC & AC. Volts, 100mV-1KV 1µs/div. Resistance 100 ohms-10MΩ. OHMs & DC Current 1µA-1A f.s

£85.00

SIGN/ROGERS A.F. Voltmeter AM234 £50.00

SOLARTRON A.C. Current Sensor LM 1219 30mV-300V mean reading. Freq. range 10Hz-1kHz

£35.00

D.C. Digital Voltmeter LM 14182. 2 µA-1K in 8 ranges. ±0.005% DC accuracy

£235.00

D.V.M. Type LM1420 28A DC. Ultra R.M.S. and mean A.C. sensing. Accuracy ±0.03% 5% ±0.05% reading

£125.00

D.V.M. Type LM1440 3 Autogating range of LM 1440.3 Max reading 39999 Freq. 20Hz-200kHz.

£2,900.00

D.V.M. Type LM 1604 DC only. sensitivity 0.01%. 0.05% Max reading 19999 Freq. 20Hz-20kHz Remote and Autogating. 100dB series mode rejection. No remote Mod. error

£875.00

Oscilloscopes Cossor

£485.00

Dual Trace Scope 4000. 50MHz 7nsac. Fast Time Scale/Div sensitivity. Coupled sweep delay. Gated trigger. x8 display. 8 x 10cm display.

£95.00

FM/DVD Scope 130C. 50kHz bandwidth. Gated X and Y signals. 10x50mA Stabilised. .5µV to 100kHz

£205.00

MARCONI INSTRUMENTS Portable Scope TF 9203. Single Beam DC-150MHz 50cm. 2 Channel

£400.00

40MHz TF 2200 series supplied with 3 plugin units

£125.00

V12 TM 6455 (single trace)

£85.00

TM 6457 (dual trace) 10x50mA display. £25.00

£85.00

Full scan on request. 6 MONTH WAR

£265.00

PHILLIPS PM6507 Transistor Curve tracer. Solid State tubes - 10 x 12cm. Full scan on request

£475.00

PHILIPS PM6507 Transistor Curve tracer. Solid State tubes - 10 x 12cm. Full scan on request

£265.00

PROBES X1 Part No. 90 £6.50

X10 Part no. 91 £8.50

X1 and X10 (swappable) Part No. 170 £10.50

SOLARTRON CG1740 50MHz Scope System. c/w CK1721 & CK1744. Dual traces. DC-50MHz 10 x 8cm display. Sensitivity 5mV/cm to 200mV. Delayed sweep Solid State

£485.00

Portable Scope DC-6MHz Dual trace. Ext. £105.00

TERNOXIC DC30MHz Oscilloscope 545A c/w B Amp. £455.00

£445.00

Electronic Analogue Multimeters PM2503

£485.00

Type 485 350MHz Portable. Dual Trace
Brokers Ltd
49-53 Pancras Road, London NW12QB
Tel: 01-837788

New Catalogue just out. Send for your copy now - POST FREE

MISCELLANEOUS

ADVANCE
Digital Panel Meters. DPM 102, 103, 112, 201, 204, 301, 302, 303, 308, 343.
Price and specs. on application

AVANTER
Unit Amplifier Type UF 101. Gain control modules designed for use with amplifiers or other systems. Weight Viz. 500g. Power Consumption. Frequency response 10-5000MHz. Unit Amplifier Type UA 103. Frequency response 10-500MHz. 100-1000Hz gain by cascading modules 500 impedances.

TELEQUIPMENT
Bank Mounting Peaks SPARE. Used for F. P. long persistence CRT. Single trace DC 10MHz. Multiplier Unit. Unipolar supplies.

SProc Pulse Generator Model 2101 c / w loads and connectors
Time Mark Generator 2901
Pulse Generator Model 110 £85.00

SCOPE TEST EQUIPMENT
Time Mark Generator 184 £275.00

TRANSMISSION EQUIPMENT
AIRMEC/RACAL
Wave Analyser V8A. 3-500MHz £250.00-£300.00
Wave Analyser 248. Frequency Range 5MHz-500MHz £145.00
Modulation Monitor 409 £295.00
Type 210 Modulation Meter. Limiter input 90MHz £240.00
Type 210A. Modulation Monitor. 5-500MHz. AM Range 0-100%. FM Range 0-100kHz @ 500kHz £185.00-£245.00

GEOGRAPHICAL
Type 1900A Wave Analyser c / w Graphic Level Recorder 1521 £275.00
Spec. 1900A. 20kHz-50kHz. 3 band widths 1 3 and 10kHz Tracking averages 30mv/30mv/30mv 0.05. Input Impedance 1MHz 3mm signal speed 3 5m per inch.
Spec: 1521B. 4.5Hz-200kHz. 1mV sensitivity. Linear dB plot of r.m.s. ac voltage level 20. 40 or 80dB range £100.00-£300.00

HEWLETT PACKARD
Stabilising Local Oscillator 3595A Plug-in for use with 3590A Wave Analyser Free Range 50kHz to 1GHz £95.00
MARCONI INSTRUMENTS
MF Transmission Test Set TF2233 Free range 30kHz to 550kHz. Measures response of servos and sensitive transmis-

sion network Full spec is requested.

Distortion Factor Meter TF427 Fundamental Frequency Range 100kHz-80kHz. DC stimulus measuring 0.5% 0.5mV. Measures all spurious components up to 30kHz £69.00-£89.00
A.F. Transmission Measuring Set Model TF2232. Frequency Range 50Hz to 20kHz £400.00

RADIOMETER
Wave Analyser BAK 2 3 Special version of 2A 3 with which for time resolution measurements and selective measure-

ments of frequencies transmitted. Free range 30kHz to 16kHz. Interpolated frequency resolution 0.1kHz - 10kHz. Satellite 3 curves with following l.p.d points 1. 25kHz ± 1.5kHz ± 0.63khz ± 0.3kHz ± 0.2kHz. £115.00

HEWLETT PACKARD
R.F. Millimetre. Model 410A 10MHz - 100MHz £185.00
Hewlett-Packard
R.F. Voltmeter. Model 3402A 20Vrms sensitivity. Average response 1mV sensitivity: 0.5V 5V ± 0.5V ± 0.25V and 0.1V ± 0.025V. £95.00

Rhode & Schwartz
Scope Monitor 4617A. VHF BN £152. 1kHz - 20kHz 0.2mV ± 0.05mV at lowest range 0.005V £95.00

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated.

Showed on these pages is just a few samples of our stock. If the item you require is not shown please give us a ring.

Tele: 01-8377781

Carriage and packing charge extra on all items unless otherwise stated.
Hours of business: 9a.m.-5p.m. Mon.-Fri. Closed lunch 1-2p.m.

WWW - 115 FOR FURTHER DETAILS.
TELECOMMUNICATIONS
ANTENNAS

The PU900 is a fixed station broadband antenna with a gain of 15dB over a dipole, front to back ratio average 20dB. In the lower part of the band from 400-700MHz the bandwidth is 150MHz and from 700 to 1500MHz it is 250MHz with a VSWR better than 1.5:1.0 with reference to 50 ohms. The antenna can be operated in either the horizontal or vertical mode.

We not only design and manufacture antennas, but also a wide range of structures, both guyed and self-supporting towers. This enables us to offer a complete package to customers.

You will find our prices are very competitive, and our deliveries are exceptionally fast, including overseas shipments.

Are you satisfied with your present deliveries? Why not drop us a line or telex for a quotation.

Radio Masts Ltd.
Pond Wood Close.
Moulton Park Industrial Estate.
Northampton.
Cables: RAMAR, NORTHAMPTON
Telex: Headship (Npton) 31355 (Ramar)
Telephone: 0604 43728 & 491572
Manufacturers & Erectors of Radiotelephone Masts. Towers & Antennas

WW—102 FOR FURTHER DETAILS

NEW PRODUCTS
FROM ITA

Here are just some of the products stocked by THE UK's BIGGEST EQUIPMENT CENTRE, ITA:

Revox Teac Otari
Itam Quad H & H

For further information write or phone: ITA
1-7 Harewood Avenue, Marylebone Road
London NW1. Tel: 01-724 2497; Telex: 21879

WW—112 FOR FURTHER DETAILS

ORBAN
PARASOUND from USA

Dual channel multispring reverb unit. Each channel features four springs — far smoother than single spring systems. "Twang" and "boing" are virtually eliminated by incorporating a floating threshold limiter. Bass, mid-range EQ and bandwidth controls. The best compact reverb unit available.

ITAM Compliment

£247 + VAT

For further information write or phone: ITA
1-7 Harewood Avenue, Marylebone Road
London NW1. Tel: 01-724 2497; Telex: 21879

WW—112 FOR FURTHER DETAILS

124 Wireless World, November 1977

www.americanradiohistory.com
G.T. ELECTRONICS (ACTON) LTD.

Trade: 270 Acton Lane, Chiswick, W4 5DG
Retail: 267 Acton Lane, Chiswick, W4 5DG

Registered in England 1179820

★ TRADE SPECIAL OFFERS ★

9 volt 10 watt Stud Zeners 15p each. Min. order 50 pcs.

Astralux 12 volt Dual Reed Relays 50p each.

Preh T.V. 6 Button Tuner Unit £1.00 each.

10K PCS Rendar Jack Sockets in stock. Mono & Stereo Switched Unswitched, etc. Callers only. Papst Motor size 3.5cm x 6.0cm. Shaft length 2.0cm. Shaft diameter 4mm. 42 volt A.C. (10µF paper cap required). Price £1.80.

Stackpole Centre Off Slide Switch 20p.

Pressac Pins, part No’s 11/3125 & 11/1893. available in large qty. Phone for details.

CRT Base Plessey Type 411/1/05000 5p each in qty. only.

Telescopic Aerials. 2’ 0” chrome swivel 25p. 2’ 6” chrome swivel 30p.

2mm Plugs, red, green or blue. £20/1000.

2N1303 by Texas Instrument marked 2G1303. £60/1000.

T.V. Can Electrolytic 200 + 400 + 50µF 325v. D.C. wkg. by CCL 60p + 12½ VAT.

Edge Connectors: 24-way .1” UECL 30p.

32 way .15” 40p.

40 way .1” BICC Burndy 50p.

Microswitches. various styles, i.e. lever pip roller, etc. Callers only (a fraction of the normal price).

We have very large stocks of

- Ceramics and Polystyrenes in stock, average 1000 off. Price £10/1000. For low values, phone for details. Last stock count 2 million PCS plus.

- Metal Oxide Resistors by Electrostatic & Welwyn. Last stock count 2 1/2 million pcs. plus. Phone for prices & availability, etc.

- Transformer 18v 2 1/2 amp primary 240v £1.60. Size 2 3/4 x 1 1/2 x 2 1/2”.

- Miniature Mains Transformer PRI 240v SEC 12v 100mA. Manuf. Hinckley. Size 36 x 45 x 40mm. Price 1-65p, 100-60p ea., 1000-50p, 10,000-35p.

- Miniature Mains Transformer Primary 115/240v SEC 18v/250mA 80p each.

- Miniature Mains Transformer Primary 115/240v SEC 32v/250mA 80p each.

- 24v D.C. Solenoid by Magnetic Devices 60p each. 2 1/2 long x 3/4in x 1/2.

- 240v A.C. Solenoid reversible operation twin coil, size approx. 2 1/4 x 1 1/2 x 1 1/4 75p.

- Mullard Core Type 3187 price 20p each.

- Mullard Pot Core FX2241 price 50p each.

- Mullard ex-computer Electrolytic 20,000µF/45v 40p each.

- Piher Presets Type PT15 ex-stock. 200,000 pcs. various values, horizontal & vertical. £20/1000.

- 5oz P.C. Convergence Pot (i.e. Television) £30/1000.

- 1KΩ Pot by Egen. Price £60/1000.

2K2Ω Pot by Egen. Price £60/1000.

The above Potentiometers are standard.

- Plastic Shaft 100mF 10v Radial £20/1000.

- 10mf 35v Radial £20/1000.

- 4.7mf 16v Radial £20/1000.

- 220mf 10v Axial £20/1000.

- 400mf 30v Axial £40/1000.

- 470mf 25v Axial £30/1000.

- 100mf 25v Axial £80/1000.

- 1000mf 63v Axial £90/1000.

- 4.7mf 10v Tant Bead £30/1000.

1µF Polyester 600v Axial £90/1000.

150mf 16v Axial £25/1000.

150mf 25v Axial £30/1000.

- Mains Filter Unit by A.H. Hunt, Type FS109BS8. 250v A.C. 3 amps continuous. Price £2.00 each.

- Vero Pin D/S .15” pitch. £2/1000.

- P.C. Fuse Clips Cinch. Part No. R70/75974/0000/HCW, sixty thousand to clear.

- 10 turn Trimpots by Burns, MEC, Painton, etc. All values in stock. 50p each. Discount on qty.

- Belling Lee Panel Fuseholder, 1½ size. £25/1000, £20/1000.

- Transformer PRI 240, split sec 12v 1amp 24v 1amp, size 2 1/2 x 1 x 2 3/4. Price £2.00 each.

- CMOS & TTL, etc., in our retail shop, all standard No’s at the usual retail prices.

The above advertisement is a fraction of our stock holding. Trade & Export welcome. No Mail Order other than trade. VAT extra 8% or 12%. P&P dependent on article, etc.
HY5
Preampifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (e.g., Cartridge, turntable, etc.) are catered for internally, the desired function is achieved either by a multi-way selector or by direct connection to the appropriate pins. The internal valve and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all L.P. record players and power supplies. To ease construction and minimizing a P.C. connection is supplied with each preamp.

FEATURES: Complete preamp in a single pack - Multi-function equalization - Low noise - Low distortion - High overload - Two simply combined for stereo.

APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ. - Public address.

SPECIFICATIONS:

- INPUTS: Magnetic Pick-up 3mV/ Ceramic Pick-up 30mV.
- Toner 100mV. Microphone 10mV.
- Auxilary 3100mV input impedance 47kΩ at 1kHz.
- OUTPUTS: Tape 100mV. Main output 500mV R.M.S.

ACTIVE TONE CONTROL: Treble - 12dB at 1kHz. Bass - at 1kHz.

DISTORTION: 0.1% at rated Power, Signal Noise Ratio 80dB.

OVERLOAD 38dB at Maximum PUT SUPPLY VOLTAGE = 16 50V.

Price: £5.22 + 65p VAT P&P free.

HY30
15 Watts into 8Ω

The HY30 is an exciting new kit from I. L. P. It features a virtually indestructible I.C. with smart output and thermal protection. The kit consists of I.C. heatsink, P.C. board, 4 resistors, 6 capacitors, 2 signal I.H. together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Only 4 components - Low Distortion - Short, Open and Thermal Protection - Easy to Build.

APPLICATIONS: Uploading audio equipment - Guitar practice amplifier - Tape amplifier - Audio oscilator.

SPECIFICATIONS:

- OUTPUT POWER 15W R.M.S (into 8Ω). DISTORTION 0.1% at 15W.
- INPUT SENSITIVITY 500mV. FREQUENCY RESPONSE 10kHz - 15kHz - 3dB.

SUPPLY VOLTAGE = 16 50V.

Price: £5.22 + 65p VAT P&P free.

HY50
25 Watts into 8Ω

The HY50 leads I. L. P's social integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust Hi-Fi fidelity modules in the World.

FEATURES: Low Distortion - Integral heatsink - Only five connections - 7 Amp output transistors - No external components.

APPLICATIONS: Moderate Power Hi-Fi systems - Low power disco - Guitar amplifier.

SPECIFICATIONS:

- INPUT SENSITIVITY 500mV.
- OUTPUT POWER 25W RMS in 8Ω. LOAD IMPEDANCE 4.1Ω DISTORTION 0.04% at 25W at 1kHz.
- SIGNAL/NOISE RATIO 70dB. FREQUENCY RESPONSE 1kHz - 45kHz - 3dB.

SUPPLY VOLTAGE = 25V. SIZE: 100 x 60 x 25mm.

Price: £6.82 + 65p VAT P&P free.

HY120
60 Watts into 8Ω

The HY120 is the baby of I. L. P's new high power range, designed to meet the most exacting requirements including load line and thermal protection. This amplifier sets a new standard in modular amplifiers.

FEATURES: Very low distortion - Integral heatsink - Load line protection - Thermal protection - Five connections - No external components.

APPLICATIONS: Hi-Fi - High quality disco - Public address - Monitor amplifier - Guitar and organ.

SPECIFICATIONS:

- INPUT SENSITIVITY 500mV.
- OUTPUT POWER 60W RMS into 8Ω. LOAD IMPEDANCE 4.1Ω DISTORTION 0.04% at 60W at 1kHz.
- SIGNAL/NOISE RATIO 90dB. FREQUENCY RESPONSE 1kHz - 45kHz - 3dB. SUPPLY VOLTAGE = 25V.

Size: 114 x 50 x 85mm.

Price: £15.84 + £1.27 VAT P&P free.

HY200
120 Watts into 8Ω

The HY200, now improved to give an output of 120 Watts, has been designed to stand the most rugged conditions, such as disco or group while still retaining true Hi-Fi performance.

FEATURES: Thermal shutdown - Very low distortion - Load line protection - Integral heatsink.

APPLICATIONS: Public address - Disco - Monitor - Power Slave - Industrial - Public address.

SPECIFICATIONS:

- INPUT SENSITIVITY 500mV.
- OUTPUT POWER 120W RMS into 8Ω. LOAD IMPEDANCE 4.1Ω DISTORTION 0.05% at 100W at 1kHz.
- SIGNAL/NOISE RATIO 96dB. FREQUENCY RESPONSE 1kHz - 45kHz - 3dB. SUPPLY VOLTAGE = 25V.

Size: 114 x 100 x 85mm.

Price: £23.32 + £1.87 VAT P&P free.

HY400
240 Watts into 4Ω

The HY400 is a very high fidelity of the range producing 240W into 4Ω. It has been designed to give high power into that all output. A cooling fan is recommended. The amplifier includes all the features of the rest of the family to meet the market as a true high power, high fidelity power module.

FEATURES: Thermal shutdown - Very low distortion - Load line protection.

APPLICATIONS: Public address - Disco - Power slave - Industrial.

SPECIFICATIONS:

- INPUT SENSITIVITY 500mV.
- OUTPUT POWER 240W RMS into 4Ω. LOAD IMPEDANCE 4.1Ω DISTORTION 0.1% at 240W at 1kHz.
- SIGNAL/NOISE RATIO 94dB. FREQUENCY RESPONSE 1kHz - 45kHz - 3dB. SUPPLY VOLTAGE = 25V.

INPUT SENSITIVITY 500mV. SIZE: 114 x 100 x 85mm.

Price: £33.17 + £2.57 VAT P&P free.

Power Supplies

PSU1 suitable for HY30. £5.22 plus 65p VAT P&P free.
PSU2 suitable for HY50. £6.82 plus 65p VAT P&P free.
PSU7 suitable for HY120. £13.75 plus £1.10 VAT P&P free.
PSU12 suitable for HY200. £23.10 plus £1.85 VAT P&P free.
PSU41 suitable for HY400. £48.40 plus £3.33 VAT P&P free.

I. L. P. Electronics Ltd.
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

Please Supply
Total Purchase Price
Enclose Cheque Δ Postal Orders Δ Money Order Δ
Please debit my Access account Δ Barclaycard account Δ
Account number
Name & Address
Signature

WWW—118 FOR FURTHER DETAILS

www.americanradiohistory.com
THE DYNAMIC DUO

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.

A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.

The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.

The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 Watts per channel into 4Ω
Distortion 0.2% at 1kHz at 15 watts
Frequency response 50Hz - 30kHz
Input Impedance 8Ω nominal
Input sensitivity 2 volts R.M.S. for 15 watts output
Power line 10 - 18 volts
Open and Short circuit protection
Thermal protection
Size 4 x 4 x 1 inches

Data on S15
6" Diameter
5 ¼" Air Suspension
2" Active Tweeter
20 oz Ceramic magnet
15 Watts R.M.S. handling
50 Hz - 15kHz frequency response
4Ω Impedance

C15/15 Price £17.74 + £2.21 VAT P & P free

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

Please Supply
Total Purchase Price
I Enclose Cheque □ Postal Orders □ Money Order □
Please debit my Access account □ Barclaycard account □
Account number:
Name & Address
Signature

WW — 119 FOR FURTHER DETAILS
FROM THE WORLD'S LARGEST MANUFACTURER OF QUALITY WOUND COMPONENTS
A COMPLETE RANGE OF VERY COMPETITIVELY PRICED

DC-DC CONVERTERS
Quick reference table of TOKO DC-DC converter modules:

<table>
<thead>
<tr>
<th>Input Voltage V in (V)</th>
<th>Output Voltage V out (V)</th>
<th>Rated Output Po (mW)</th>
<th>Input/Output Isolation</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+6, +9, +12</td>
<td>+6, +9, +12</td>
<td>250, 500, 1000</td>
<td>F, M & K series</td>
<td>F: 17 x 35 x 8</td>
</tr>
<tr>
<td>+15, +20, +24</td>
<td>±15, ±20</td>
<td>250, 500, 1000</td>
<td></td>
<td>M: 17 x 32.5 x 10</td>
</tr>
<tr>
<td>−5, −6, −9,</td>
<td>+12 or −12</td>
<td>1,500</td>
<td>E series Isolation</td>
<td>K: 17 x 32.5 x 12</td>
</tr>
<tr>
<td>−12, −15, −20</td>
<td>+15 or −15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+24±20%</td>
<td>±12 ±15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOKO (UK) Ltd., Ward Royal Parade, Alma Road, Windsor, Berkshire, Windsor (07535) 54057

P. F. RALFE ELECTRONICS
10 CHAPEL STREET, LONDON, NW1
TEL: 01-723 8753

WIRELESS WORLD, NOVEMBER 1977

MARCONI TEST EQUIPMENT
TF329G circuit magnification meter £125
TF455E Wave analyser, Nov. £135
TF111111 RC oscillators £65
TF1109 8MHz sweep generators
TF1041B C. V. Voltmeters
TF1102 Amplitude modulator, 500MHz
TF1030A Power meter, 100W, 250MHz, £85
TF1152A/1 Power meter, 25W, 500MHz, £75
TF890A/1 RF test set £425
TF8018/3 Signal generator, £175
TF1417 200MHz counter (imperf.)
TF1402 Pulse generator
TF675F Pulsit generator
TF1370 Wide-range RC oscillator £125
TF2163 UHF attenuator DC-1GHz, £85
TF2200 Oscilloscope
TF2994 Colour gain delay test set
TF1058 UHF / SHF signal generator

ALL EQUIPMENT IS AVAILABLE FOR HIRE AT VERY REASONABLE RATES. PLEASE TELEPHONE YOUR REQUIREMENTS

POLARAD TYPE TSA, SPECTRUM ANALYSER. C/w type STU/2M plug-in unit covering from 950 to 4500 MHz

EVER-READY NICKEL-Cadmium BATTERIES.
Size D (HP2) 1.25V, 3.5 AH. Only small quantity available at £2 + 10p post.

APT POWER SUPPLIES. Stabilised and regulated. 6V (variable) at 3A. Brand new £35.

BECKMAN TURNS COUNTER DIALS
Miniature type (22mm diameter) Counting up to 15 Turn 'Heilots'. Brand new with mounting instructions Only £2.50 each.

Wandel & Gotterman Equipment
Level Meter 0-2.1600kHz
Level Oscillator 0-2.1600kHz
Level Transmitter 3.1350 kHz
Carrier Frequency Level Meter

P. F. RALFE ELECTRONICS
10 CHAPEL STREET, LONDON, NW1
TEL: 01-723 8753

P. F. RALFE ELECTRONICS
10 CHAPEL STREET, LONDON, NW1
TEL: 01-723 8753

TEST EQUIPMENT
ADVANCE SG628 signal gen. 150KHz-220MHz £65
AIRMEC 399 Video oscillator 15Hz-15MHz £75
AIRMEC 354 High-power oscillator/amplifier £105
BOONTON 80 Signal generator, 2.4-400MHz £125
BOONTON 230A RF Power Amplifier £325
BPI Capacitance decade (5) CD113 100p-1UF £45
GERTSCHE Frequency meter and deviation meter 20-1000MHz £250
GR Standard sweep generator. 400KHz-230MHz £485
HEWLETT PACKARD 893D sweep oscillator £350
HEWLETT PACKARD 432A Power meter £110
DURRITRON Digital Wheatstone Bridge
MIURHEAD K-134 A Battery-operated wave analyser £125

MIURHEAD K-134 A Battery-operated wave analyser

RADIO CORPS P61 pulleu & Bar generator £45
SIEMENS Level oscillator 12-160kHz £45
SCHNEIDER type 1252 100MHz counter (red) £200
SCHOMANDL type F10 frequency meter £125
SOLARTRON type CD1212 oscilloscope £145
Bruel & Kjær type 3301 Automatic Frequency Response Recorder 2000v-20kHz £125
Armec 201A Signal Generator 30kHz, 30MHz, µW
MIURHEAD-PEMTRADA D489EM Wave Analyser £125
HEWLETT PACKARD 5096B recording receiver £125
TEKTRONIX type 575 transistor curve tracer £50
TEKTRONIX type 585A oscilloscope with 82 HP 1-D6-80MHz £580
TEKTRONIX type 526 Vectoroscope £580
TEKTRONIX type 180A Time-mark generator £110
WANDEL & GOTTERMAN Signal Gen. 10Hz-30MHz £110

NOTE, All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries welcome. Prices quoted are subject to an additional 8% VAT

ROHDE & SCHWARZ EQUIPMENT
H2U Field Strength Meter, 47-225MHz £110
AMF TV Demodulator 470-790MHz £125
Selectivac UHP v/meter, bands 4-6S, USVF £250
Selectomat. RF Voltmeter, USW £250
BN1522 £140
Standard attenuator .0-1000 .0-3000MHz £150
UHP Sig. gen. type SDR 0.3-1GHz £750
UHP Signal generator type SCH £175
UHP Test receiver type USVD £325
POLYSKOP SWOB 1 £325
POLYSKOP SWOB II £325
SBTF. T.V. Signal generator, vision-sound modulator and transmitter.

ICL type 2640 Paper tape reader £95
New Western 8-hole pape-reader punches £10
Sound printed case available £15

500V TRANSISTED INSULATION TESTER
Lighweight, small size (3x7¾ x4¾) Reads insulation from 0-1000MT at 500V pressure Runs from standard 5V PP3 Brand new £150

ROTARY INVERTERS. 24V, DC Input, 115V AC Output, 400Hz 2.5KW. £65
Collection only

PACE ELECTRONICS VARIPLANNER
Type 1100 £175

MIURHEAD DECADE OSCILLATORS
Type 890A £925
1Hz-110kHz in four decade ranges, Scope monitored output for high accuracy of frequency. Excellent generator. Reduced to £75.

MUFFIN INSTRUMENT COOLING FANS
Made by Rarden Thailand. These are very high quality, quiet running fans, specially designed for the cooling of all types of electronic equipment. Models 4x3, 5x3, 5x5, 115V AC-110V. The list price of these £110. Each. We have a quantity available brand new for only £4.50 each.

WIRELESS WORLD, NOVEMBER 1977

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Hi-Fi Drive Units</th>
<th>PA Group & DISCO Units</th>
<th>Wilmslow Audio Kits for Magazine Designs etc.</th>
<th>Speaker Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>Model</td>
<td>Price</td>
<td>Price</td>
</tr>
<tr>
<td>Audax HD12 9 D25</td>
<td>£7.50</td>
<td>Baker Group 25</td>
<td>£13.00</td>
</tr>
<tr>
<td>Audax HD10 9 D34</td>
<td>£9.95</td>
<td>Baker Group 35</td>
<td>£14.50</td>
</tr>
<tr>
<td>Audax HD11 P25BC</td>
<td>£6.95</td>
<td>Baker Group 50/12</td>
<td>£21.00</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Baker Group 50/15</td>
<td>£22.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Baker Auditorium 12</td>
<td>£25.00</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Baker Auditorium 15”</td>
<td>£25.75</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12 M</td>
<td>£12.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12 H</td>
<td>£16.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G15 C</td>
<td>£27.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G18 C</td>
<td>£39.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12/50 2244/5</td>
<td>£31.65</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12/50 2235/6</td>
<td>£18.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12/50 2238/9</td>
<td>£20.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston G12/50 2241/2</td>
<td>£21.60</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston Powercell 12”/100</td>
<td>£43.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston Powercell 15”/100</td>
<td>£48.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Celeston Powercell 15”/125</td>
<td>£49.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 33T</td>
<td>£5.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 50</td>
<td>£12.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 55</td>
<td>£16.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 60</td>
<td>£19.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 70</td>
<td>£21.75</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Power 100</td>
<td>£35.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Graphite 80</td>
<td>£19.75</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Graphite 80B</td>
<td>£19.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Disco 80</td>
<td>£21.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane P200</td>
<td>£18.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Bass 95</td>
<td>£29.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Crescendo 12A</td>
<td>£42.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Crescendo 12B</td>
<td>£44.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Crescendo 15/100</td>
<td>£46.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane Crescendo 15/25</td>
<td>£66.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane 920 II Horn</td>
<td>£45.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane HPX1 / HPX2</td>
<td>£25.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Fane PH50</td>
<td>£6.50</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans BPA</td>
<td>£3.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 10P</td>
<td>£6.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 12P</td>
<td>£6.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 12PDG</td>
<td>£6.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 15P</td>
<td>£24.00</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 18P</td>
<td>£39.95</td>
</tr>
<tr>
<td>Carriage Free</td>
<td></td>
<td>Goodmans 50HX</td>
<td>£18.95</td>
</tr>
<tr>
<td>Motorola Faze Horn</td>
<td>£8.80</td>
<td>Richard Allan HD8T</td>
<td>£12.95</td>
</tr>
<tr>
<td>Richard Allan HD8</td>
<td>£19.50</td>
<td>Richard Allan HD10T</td>
<td>£13.25</td>
</tr>
<tr>
<td>Richard Allan HD12</td>
<td>£18.75</td>
<td>Richard Allan HD15</td>
<td>£29.95</td>
</tr>
<tr>
<td>Richard Allan HD15T</td>
<td>£30.50</td>
<td>Mag. design kits</td>
<td>£3.50 pair</td>
</tr>
</tbody>
</table>

Kits include drive units, crossovers, BAF long fibre woofer for pair of speakers. Carriage £3.50

Practical Hifi & Audio PRO5 TL (Rogers)
- Felt panels for PRO5 TL £5.50 + £1.50 p&p
- Hifi Answers Monitor (Rogers) £129
- Hifi News State of the Art (Atkinson) £161
- Hifi News No Compromise (Firth) £126

Popular Hifi Mini Monitor (Colloms)
- £63

Practical Hifi & Audio Monitor (Giles)
- £119

Practical Hifi & Audio Triangle (Giles)
- £76

Hifi News Tabor (Jones) £57.75
Hifi News Tabor (with 4 bass units) £65

Wireless World Book: Hell (Wilkinson)
- £56.50

**Wireless World T. L./Kef (Rale)
**
- £112

Wireless World T. L./Radford (Baird)
- £154

Send 3 x 7p stamps for reprints / construction details of any of above designs.

<table>
<thead>
<tr>
<th>Prices per pair. Carriage £2.50.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalesford System 1 £51.50</td>
</tr>
<tr>
<td>Dalesford System 2 £52.75</td>
</tr>
<tr>
<td>Dalesford System 3 £99.75</td>
</tr>
<tr>
<td>Dalesford System 4 £106.00</td>
</tr>
<tr>
<td>Dalesford System 5 £131.00</td>
</tr>
<tr>
<td>Dalesford System 6 £91.00</td>
</tr>
<tr>
<td>Eagle SK210 £13.90</td>
</tr>
<tr>
<td>Eagle SK215 £23.50</td>
</tr>
<tr>
<td>Eagle SK320 £33.50</td>
</tr>
<tr>
<td>Eagle SK325 £51.00</td>
</tr>
<tr>
<td>Eagle SK335 £68.90</td>
</tr>
<tr>
<td>Goodmans D1N20 £31.50</td>
</tr>
<tr>
<td>Goodmans Mezzo Twintik £51.95</td>
</tr>
<tr>
<td>Lowther PM6 Kit £75.00</td>
</tr>
<tr>
<td>Lowther PM6 MK1 Kit £81.00</td>
</tr>
<tr>
<td>Peerless 1060 £61.50</td>
</tr>
<tr>
<td>Peerless 1070 £109.80</td>
</tr>
<tr>
<td>Peerless 1120 £123.00</td>
</tr>
<tr>
<td>Peerless 2050 £43.95</td>
</tr>
<tr>
<td>Peerless 2060 £58.50</td>
</tr>
<tr>
<td>Radford Studio 90 £154.00</td>
</tr>
<tr>
<td>Radford Monitor 270 £208.00</td>
</tr>
<tr>
<td>Radford Studio 270 £275.00</td>
</tr>
<tr>
<td>Radford Studio 360 £390.00</td>
</tr>
<tr>
<td>Richard Allan Twin £28.90</td>
</tr>
<tr>
<td>Richard Allan Triple B £45.50</td>
</tr>
<tr>
<td>Richard Allan Triple 12 £85.90</td>
</tr>
<tr>
<td>Richard Allan Super Triple £65.90</td>
</tr>
<tr>
<td>Richard Allan RAB £42.75</td>
</tr>
<tr>
<td>Richard Allan RAB2 £67.75</td>
</tr>
<tr>
<td>Richard Allan RAB2L £73.50</td>
</tr>
<tr>
<td>Sees Mini £17.90</td>
</tr>
<tr>
<td>Sees 203 £35.50</td>
</tr>
<tr>
<td>Sees 302 £43.90</td>
</tr>
<tr>
<td>Sees 303 £73.90</td>
</tr>
<tr>
<td>Sees 503 £111.90</td>
</tr>
<tr>
<td>Wharfedale Denton 2XP £26.95</td>
</tr>
<tr>
<td>Wharfedale Linton 3XP £41.95</td>
</tr>
<tr>
<td>Wharfedale Glendale 3XP £56.95</td>
</tr>
</tbody>
</table>

Everything in stock for the speaker constructor!
BAF long fibre woofer, foam, crossovers, felt panels, components, etc.
Large selection of grill cloth fabrics.
(Give 15p stamps for samples)

Send 15p stamp for free 38 page catalogue 'Choosing a Speaker'

Telephone: Speakers, Mail Order and Export: Wilmslow 29599 Hi-Fi: Wilmslow 26213

Lightning service on telephoned credit card orders!

www.americanradiohistory.com
Bargain Time!

TO INTRODUCE THE new 7th edition of

THE SEMICON

INTERNATIONAL TRANSISTOR INDEX
AND THE DIODE/SCR INDEX

WE HAVE

A SPECIAL OFFER

FOR NEW AND EXISTING SUBSCRIBERS

SEND FOR DETAILS • DON'T DELAY

AVAILABLE FOR A LIMITED PERIOD ONLY

SEMICON INDEXES LTD.

7, KING'S PARADE, KING'S ROAD, FLEET, HAMPSHIRE, GU13 9AB, U.K.
TELEPHONE: FLEET (0251) 28526
TELEX: 858855 Barmer G

WW—111 FOR FURTHER DETAILS

Leaders in mixers for many years

• Developed at our German Plant
• Produced at our Far East factory
• 9 different types: from the amateur to the professional

THE TTI 1050B

The world’s most sold mixer
Introductory price £63.00 (+ VAT & Freight)

• monitoring from PU1, PU2, AUX1 and AUX2
• dubbing possibilities on both AUX inputs
• microphone connection, high/low impedance
• power 110/220V
• built-in model (for DJ purposes)

Ask for TTI’s Mixer Catalogue free of charge

TTI HEAD OFFICE
114 BRUSSELBAAN, B.9402 MEERBEKE BELGIUM
Tel: 054/33.45.04-33.58.21 Telex 11 697

WW—123 FOR FURTHER DETAILS
A NEW 60 WATT R.M.S.
AMPLIFIER FROM
Stirling Sound

- NEW DESIGN
- 60 WATTS RMS (+-1dB)
- INTO 4 OHMS USING 50V
- WILL OPERATE FROM 20 - 65V
- FREQUENCY RANGE 10 to 50,000Hz
- OUTPUT TRUNKED @ 10Hz - -3dB at 5kHz
- T.H.D. BETTER THAN 0.3% (TYPICALLY 0.1%)
- INPUT - 300mV FOR FULL OUTPUT

Coming between Stirling Sound Power Amplifier Modules SS.140 and SS.1100, the SS 160 fills a well recognised need for this intermediate rated unit. It will appeal to those wanting a not-so-large disco or P.A. system as well as where there are loudspeakers needing plenty of power to drive them. With circuitry developed around a self-centering rail, SS 160 may be operated from as little as 18 volt supplies (output will vary accordingly). Because we use heavy-duty components capable of operating beyond claimed specifications, you can buy and build with confidence. We have also produced a mains power supply unit, SS.360, for this new amplifier.

£8.50 POST FREE inc VAT
Large fitted heatsink, SS.360 Power Supply Unit
(post free inc VAT £7.95)

SPECIAL OFFER

£21.00

THE POWER SUPPLY UNIT YOU WANT IS HERE
All except SS.312 and SS.320 are with
line volt (115/230V) take-off points for
pre-amps turn-on &

£5.00

SS.312
12V / 1A
£6.50

£5.50

SS.318
18V / 1A
£6.95

£6.75

SS.324
24V / 1A
£6.85

£6.95

SS.334
32V / 1A
£7.65

£7.98

SS.345
45V / 1A
£9.95

£11.75

SS.350
50V / 1A
£11.75

£12.65

SS.360
60V / 2A
£12.95

£14.50

SS.370
70V / 2A
£14.75

£17.75

SS.310 /50 Stabilised unit variable 10V
to 50V, 2A

£17.75

SS.360 Add-on Stabilising unit, 100V
to 50V adjustable

£5.50

PAY ONLY THE PRICE YOU READ AND NO MORE
All prices quoted include VAT and Goods are sent post free in U.K. Owing to the time between preparing this ad and its appearance to the public, prices may be subject to alteration without notice £ 60 E

STIRLING SOUND
37 VANGUARD WAY, SHOEBOURNE, ESSEX
Telephone: Shoeburyne (05708) 5543
-351048
To: STIRLING SOUND, 37 Vanguard Way, Shoeburyne, Essex.
Please supply
For which items (or pay by Access or Barclaycard)
Name
Address

WWW

WWW—116 FOR FURTHER DETAILS
HART ELECTRONICS

The Only Firm for Quality Audio Kits

Are proud to offer the only
DESIGNER APPROVED kit for the

J. L. Linsley-Hood High Quality
Cassette Recorder

As these circuits are capable of such an
excellent performance we feel that it is
not sensible to sacrifice the potential by
designing a kit down to a price. We have
therefore spent a little more on
professional hardware allowing us to
design a very advanced modular system.
This enables a more satisfactory
chemical layout to be achieved, particularly
around the very critical input areas of
the replay preamps. These are totally stable
with this layout and require no extra
stabilising components. Many other
advantages also come from the system
which has separate record and replay
amps for each channel. To achieve
these results, each circuit is
arranged on a single plane board,
with our modular system the layout is
compact but there is no component
crowding. Testing is very easy with
separate identical modules and building
the kit out of our component-
component instructions is childishly
simple. The finished result is a unit designed
to normal domestic standards but
suitable for professional practice

All printed circuits are of
glassfibre material, fully drilled with a
oxidised finish for easy and reliable soldering. Compon-
ent locations are printed on the reverse side of the board and are arranged so that
all identification numbers are still visible
after assembly.

714 Complete set of parts for Master
Board, includes bias-oscillator relay, bias,
circuitry, etc, £1112 + £17 VAT

72 Parts for Motor Stopped and Soldered
Cassette for Linsley CRV deck. This is the
proper board layout as given in
the articles £3.52 + 44p VAT

73 Complete set of parts for stereo
Replay Amps, and VU Meters drive
£8 12 + £1 02 VAT

74 Complete set for stereo Record
Amps (£ 7 4 + £ 84 VAT

75 Complete set of parts for Stabilised
Power Supply to circuit given in
Arcade. This uses a special low hum
field transformer with better charac-
teristics than the commonly used
recoil (£ 7 9 + £ 1 VAT

700M2 Individual Quality VU
Meters with excellent ballistics
£8 48 + £1 06 VAT Per Pair

700C/2 High Quality Custom built steel
Case. Complete with Brushed
aluminium front panel, mains switch, record
microswitch, turned record fader, plastic
Cabinet front panel, all bolts, nuts and
mounting hardware. All necessary holes are punched and
all surfaces are electroplated. Complete
step-by-step assembly instructions are included. The
cover is finished in an attractive black/coke finish. £16 50 + £2 06 VAT

LENC0 CRV CASSETTE MECHAN-
ISM
High Quality, robust cassette transport for
Linsley-Hood recorder. Features fast
forward, fast rewind, record pause and
cassette ejection spring for
above, horizontal use Price £1 50 + £1 70 VAT

Total cost of all parts £83 58

Special offer for Complete Kits £81 50 +
£10 19 VAT

Optional extra solid state end cheeks. £3
pair + 38p VAT

Reprint of J. Linsley-Hood Cassette
Recorder articles. 450 pages and VAT free.
We also supply complete kits to make a
fully integrated 30 watt stereo amplifier using the Bailey Power Amplifier circuit and the Bailey
/ Burrows Pre-amplifier with the Quilter Tone Control modifica-
tion
Printed circuits and components are available for the Stuart tape circuits. These
articles described a high quality tape link
circuit for use with a read-out deck.
Reprints of the three articles are available
from us price 40p Post Free (No VAT).

ALL PARTS ARE POST FREE

Please send 9 x 4 SAE for lists giving fuller details and Price breakdowns

Penylan Mill, Oswestry, Salop
Personal callers are always welcome
but please note we are closed all day Saturday

If you still think
we're like this

you must be missing this

Today's Electronics Weekly has more news. More new
products. Invaluable technical teach-ins on major
innovations—the current series features
Microprocessors. A new feature, 'Perspective', which
turns a penetrating and impartial eye on leading topics
of the day... these are just some of the ways in which it
is constantly increasing its depth and scope. If you
haven't seen a copy for some time, find out how behind-
the-times your ideas about Electronics Weekly are.
Post this coupon now!
To make way for massive new purchases of current manufacturers items.

THE BARGAINS OF THE CENTURY

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC PDP8L 4K PROCESSOR</td>
<td>£99.50</td>
</tr>
<tr>
<td>KSR 35 TELETYPES</td>
<td>£2.000</td>
</tr>
<tr>
<td>ASR 35 TELETYPES</td>
<td>£25.00</td>
</tr>
<tr>
<td>I.B.M. OUTPUT TYPEWRITERS</td>
<td>£25.00</td>
</tr>
<tr>
<td>COSSOR VDU TERMINALS</td>
<td>£25.00</td>
</tr>
<tr>
<td>ADVANCE OS2000 OSCILLOSCOPE</td>
<td>£49.00</td>
</tr>
<tr>
<td>MARCONI TF2200 OSCILLOSCOPE</td>
<td>£20.00</td>
</tr>
<tr>
<td>HEWLETT PACKARD 175 OSCILLOSCOPE</td>
<td>£25.00</td>
</tr>
<tr>
<td>SOLARTRON CT 436 OSCILLOSCOPE</td>
<td>£15.00</td>
</tr>
<tr>
<td>TEKTRONIX 531 OSCILLOSCOPE WITH PLUG IN</td>
<td>£35.00</td>
</tr>
<tr>
<td>TEKTRONIX 541 OSCILLOSCOPE WITH PLUG IN</td>
<td>£50.00</td>
</tr>
<tr>
<td>AVO VALVE TESTERS</td>
<td>£10.00</td>
</tr>
<tr>
<td>I.B.M. POWER SUPPLY</td>
<td>£3.50</td>
</tr>
<tr>
<td>ADVANCE J1 OSCILLATOR</td>
<td>£12.50</td>
</tr>
<tr>
<td>FURZEHILL OS10 MONITOR OSCILLOSCOPE</td>
<td>£10.00</td>
</tr>
<tr>
<td>ADVANCE H1 OSCILLATOR</td>
<td>£10.00</td>
</tr>
<tr>
<td>AUDIO ¼" TAPE 3600 FT. MYLAR ON 10¼" REELS</td>
<td>£1.50</td>
</tr>
<tr>
<td>MEGGERS</td>
<td>£2.50</td>
</tr>
</tbody>
</table>

Plus many other bargains too numerous to mention.

Sale starts at 10.00 a.m. on Saturday, 5th November

No sale goods will be sold prior to sale. No cheques, cash only.

The following Saturday, 12th November, all items not sold will be substantially marked down further. 10.00 a.m. until 5.00 p.m. Everything must go. Positively last day.

ELECTRONIC HOBBIES 91 Pancras Road, London NW1 2QB
Tel: 01-837 7781
Telecommunications Planning Engineers

International Aeradio is a major company operating world-wide in the broad sphere of telecommunications. Our activities include contracts covering mobile radio systems, point-to-point radio links in the VHF to SHF spectrums, marine VHF ship to shore, tropo scatter and HF systems, carrying voice and digital traffic. We now require several senior Engineers, male or female, able to demonstrate a sound knowledge of the latest techniques used in these systems and experience of HF propagation and preparation of path performance calculations.

Planning Engineers

Radio & Line
- **Up to £6,000**

These appointments require relevant experience in systems design and planning, field surveys, report writing and path performance estimates. A knowledge of telecommunications power supplies would be a distinct advantage. Age is likely to be in late 20s or early thirties and a suitable qualification is expected.

Planning Engineers

Data & Telegraphy
- **Up to £8,000**

The Engineers appointed to these roles will be experienced in the planning, specifying and procurement monitoring of modern telegraph and data facilities such as teleprinters, telex, modems, networks, switching and multiplexing equipment. Age is likely to be in late 20s, early thirties, and a suitable qualification is expected.

All these roles may engage the engineers in some limited overseas travel. In addition to the salary, the company provides a number of worthwhile benefits including generous relocation expenses and pension scheme. Attractive long-term prospects exist in this progressive and expanding company.

If you want to be considered for these interesting roles then telephone our Engineering Manager for a brief discussion or write with full personal career details, quoting ref: 407 to John Callow, International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex.

Telephone 01-571 0678 or 01-572 9894

TECHNICAL SALES REPRESENTATIVE

Required by a long-established Radio and Electronic Component Makers dealing direct with manufacturers. The successful applicant should live in the Greater London area preferably north of the Thames and following a period of product familiarisation will be required to operate a large well-established area.

This is a permanent position with excellent prospects and a contributory pension scheme. A company car would be provided.

Applicants between 25/35 years of age should write stating education, age, experience and previous experience to: Wingrove and Rogers Limited, Domville Road, Liverpool L13 4AT.

LUXMAN DISTRIBUTORS

HI-FI ENGINEER

Must be experienced and capable of servicing high-quality equipment. Good prospects.

Apply to: Sales Manager, HOWLAND-WEST LTD., 3/5 Eden Grove, London N7 8EQ. Tel: 01-609 0293

CITY OF LONDON POLYTECHNIC DEPARTMENT OF MODERN LANGUAGES

TECHNICIAN GRADE 4

Salary in the range of £3,024 to £4,005 including London Weighting plus Par Supplement £151 minimum - £208 maximum.

The Modern Languages Department requires for its language laboratories a Technician to be responsible for the maintenance, servicing and setting up of the wide range of equipment used. Ability to catalogue and organise the huge volumes of cassettes and tapes is desirable. Some knowledge of French or German or Spanish would be an advantage.

For further details and application form please apply in writing to The Assistant Secretary, City of London Polytechnic, 117/119 Mount St, London E5 3A782 as soon as possible.
Headlines like these are only possible when you're acknowledged internationally as one of the world’s leaders in avionics. To keep us at the forefront we need highly motivated design / development engineers keen to make their mark. And at Ferranti there’s plenty of opportunity to do just that. On projects like the Tornado, Sea Harrier, Jaguar and Lynx.

And headlines like these also mean expansion. Which explains why we’re looking for more graduate mechanical and electronic engineers to join our airborne radar and inertial navigation teams. They must have the design / development experience to spearhead the progress of equipment from drawing board through to production.

We are particularly interested in talking to engineers with backgrounds in the design of:

- Digital / analogue circuitry.
- Microwave and laser techniques.
- Small digital computers.
- Advanced instruments.
- Optics.
- Airborne structures and light mechanisms.

So if you’re keen to make your mark on avionics, you’ll find you’re very much on our wavelength.

Think about it. Then ask the family how they’d like living in Edinburgh, freely acknowledged as one of Europe’s finest cities.

Salaries are negotiable and, of course, we operate a contributory pension and life assurance scheme and pay realistic relocation expenses.

For an application form, write to John McPhee at the address below:

Ferranti Limited
Ferry Road
EDINBURGH EH5 2XS
Tel: 031-332 2411.

These posts are open to both male and female candidates.
Land a good job

Your Radio Officer's qualifications can mean a lot here on shore

If you're thinking of a shore-based job, here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

The Post Office Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone operating.

To apply, you must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of Proficiency in Radio-telegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic. And, ideally, you should have some sea-going experience.

The starting pay at 25 or over works out at around £4,000; after three years' service this figure rises to around £5,000. (If you are between 19 and 24 your pay on entry will vary between approximately £3,200 and £3,700.)

Overtime is additional, and there is a good pension scheme, sick pay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.

For further information, please telephone Andree Tronfi on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (L690), ET17.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Electronic Test Engineers

We manufacture and market professional audio noise reduction equipment which is widely used by major recording companies, recording studios and broadcasting authorities throughout the world and have enjoyed successful growth since incorporation in 1968.

Because of continuing expansion we need to recruit a number of experienced Test Engineers who will be responsible for testing, calibrating and trouble-shooting our sophisticated professional audio electronic equipment.

The successful candidates, probably with degrees or HNC's, will have practical knowledge and experience of electronic testing and must enjoy the challenge of quality and delivery pressures.

Excellent pay and conditions.

Dolby Laboratories Inc.

Write or telephone
Dan Bleakey
Dolby Laboratories
346 Clapham Road
London SW9 01-720 1111

REDIFFUSION

TEST EQUIPMENT MAINTENANCE ENGINEER

Due to impending retirement, a vacancy has arisen for an experienced engineer to be responsible for the maintenance and calibration of general electronic test equipment used in our research laboratories at Kingston-upon-Thames. This equipment is mostly commercially manufactured but includes some specialized instruments designed for applications associated with cable television distribution systems.

Applicants must have a sound engineering background with previous experience in electrical maintenance work and be qualified to H.N.C. or equivalent level.

A good salary with excellent working conditions will be offered to the successful applicant.

Apply to:
I. R. Budgen
Head of Test Section
Rediffusion Engineering Limited
187 Coombe Lane West
Kingston-upon-Thames
Surrey KT2 7DJ. Tel. 942 8900

(7603)
Appointments

H. F. Instrument Development
A mature imaginative

ENGINEER
is required to expand our development activities in high frequency instruments.

Our present product line includes automatic modulation meters, frequency synthesizers, scanning receivers, etc. Applicants should have experience or an interest in this type of instrumentation.

A top salary, with other benefits are offered, with eventual progression to board level management.

Applicants should apply in writing giving brief career history.

SAYROSA ENGINEERS LTD.
Wey River House
Alton, Hampshire
Alton 84500
(17570)

TELEVISION ENGINEER
A vacancy occurs with an old establishment retailer.

The post requires someone with a wide range of experience in Televisions and Audio equipment. A clean driving licence is essential. Large flat available for suitable applicant.

HYDOS OF CHERTSEY LTD.
56/80 Guildford Street, Chertsey
Telephone: Chertsey 63243
(17650)

CLIVEDEN CONSULTANTS
CHIEF TEST ENGINEER
up to £5550

SENIOR TEST ENGINEERS
up to £4200 + O.T.

TEST EQUIPMENT DESIGN ENGINEERS
neg. + O.T.

For interesting work on computer peripherals and advanced electronic instruments, W. Middx. Surrey. Berkshire.

The Polytechnic of North London

ELECTRONICS TECHNICIAN

We are looking for a well-qualified electronics technician with a keen interest in video, audio and audio-visual. As a member of the Educational Development Service, the technician would be responsible for:

- Establishing servicing routines and records
- Establishing technical standards and assisting production staff in video and audio recordings
- Training and supervising technical staff
- Developing and building ancillary equipment

HNC or equivalent qualification required and minimum of nine years' relevant experience.

Salary scale: £362 - £427 (including London Weighting) plus 5% earnings supplement (minimum £250 per week, maximum £4 per week).

Application form from Educational Development Service, Polytechnic of North London, Holloway Road, N7 8DB.

139

Engineer Programmers - A Company that will keep you interested

Exciting things are happening to this country's telephone network and STC is, as ever, at the forefront. As leaders in our field we are continually pushing forward the boundaries of electronic switching technology.

Test programming plays a vital part in the on-going development of our systems. The job involves preparing test programs using a high level language and deriving test-generation techniques to control the testing of PCB assemblies on ATE. An experienced Engineer (male or female) will advise designers on the 'testability' of their designs.

If you have a background in testing, fault-finding, commissioning or a similar field using modern electronic techniques, we will broaden your experience. And remember, a Company like ours is big enough to KEEP YOU INTERESTED.

For further information telephone Mike Batsch on 01-2357030 Ext. 233 or write to Mike Randel, Electronic Switching Products Division, Standard Telephones and Cables Ltd., Oakleigh Road South, New Southgate, London N11 1HB.

Standard Telephones and Cables Limited
A British Company of ITT

Devon Area Health Authority
Exeter Health Care District

Royal Devon and Exeter Hospital (Wonford)
Barrack Road, Exeter EX2 5DW

Medical Physics Technician IV
(Salary: £2346 - £3267 p.a. plus phase 1 & 2 pay supplements)

Required for general duties in the Physics Department concerned with Radiotherapy, Radioactive Isotopes, Radiation Protection and Instrumentation.

Further information obtainable from the Principal Physicist, Mr. C. F. Walker, tel. Exeter (0392) 77833 ext. 2262.

Application form and job description obtainable from the Personnel Officer, Royal Devon and Exeter Hospital (Wonford), Barrack Road, Exeter EX2 5DW.

139
Closed Circuit Television
(Video Workshop) Engineer
£3349 - £4910
Garnett House
Downshire House, Roehampton Lane SW15 4HR

Applications are invited for this post at Garnett College which trains qualified mature students for teaching careers in Further and Higher Education. Duties will include maintenance of television equipment in use throughout the college, production work and participation in training. Applicants should be qualified and experienced in the use and maintenance of CCTV equipment. Excellent conditions of employment. Starting salary will be dependent on qualifications and experience. Salary includes London Weighting and pay supplements for 1976 and 1977.

For further details and application forms contact the Chief Technician at the College. Tel. 01-789 6533.

GLC Mechanical & Electrical Engineering (7652)

REPAIR/ CALIBRATION ENGINEERS
We are looking for additional Repair/Calibration Engineers for servicing and calibrating electronic test equipment in our Repair Laboratories. We welcome DVM, Oscilloscope and RF specialists together with others having a broader background. We would also welcome Engineers with more limited experience who wish to improve their knowledge to cover some of the other equipment that we handle.

We offer salaries in range £3,300 to £4,000 according to grade, with overtime, service awards and profit sharing bonuses in addition. Our working conditions are very good and our staff enjoy the benefit of the friendly atmosphere of a small company. We are one of the leading repair and calibration companies. We have a B.C.S. Approved Standards Laboratory, hold Ministry Approvals to DEF.STAN. 05/24 and 05/26, and are also Defence Contract and CAA listed.

Having told you about ourselves, why not contact us and discuss where you could fit into our Company.

For more details and application form, write or telephone:

Technical Manager
CALIBRATION SYSTEMS LIMITED
Blackwater Station Estate, Camberley, Surrey
Telephone Camberley 33922 (7635)

REDIFUSION
REDITUNE LIMITED
the world's leading music service, require the following staff:

STUDIO MAINTENANCE SUPERVISOR
This position involves the technical and administrative control of a small team of qualified technicians responsible for the maintenance of dubbing and high speed duplicating equipment. A thorough knowledge of studio equipment and techniques, and previous experience of the control of technical staff, is essential.

STUDIO MAINTENANCE ENGINEER
The successful candidate will carry out maintenance of dubbing and high speed tape duplicating equipment and associated ancillary equipment. A thorough knowledge of studio equipment and two years' experience in a similar capacity is essential. Candidates with academic qualifications to ONC level will be preferred.

SERVICE WORKSHOPS SUPERVISOR
To assume technical and administrative control of a base workshops concerned with trouble-shooting, repair, and maintenance of tape players and associated public address equipment. A thorough knowledge of audio equipment and previous experience of the control of technical staff is essential.

SERVICE TECHNICIAN
For trouble-shooting and repair of tape players and associated audio equipment. Some previous experience is essential and on the job training would be given to suitable candidates.

Please apply stating age, qualifications, and previous experience to:

Chief Engineer
Rediffusion Reditune Ltd.
Cray Avenue
Oprington
Kent BR5 3QP (7643)

www.americanradiohistory.com
Test Technicians

Do you ever get that feeling?

Then why not earn up to £5,000pa with a company who can offer bags of opportunity for promotion and a variety of work?

Can you test/repair digital equipment—VDUs—MINIs—INTERFACES etc?

Live around London/Home Counties?

Then phone or write (no stamp needed) Mike Gernat

Technomark (FREEPOST) LONDON W2 4BR
TELEPHONE: 01-229 9239

Electronics Engineers

There’s only one person who can get you a good job... ...and that’s you.

But we’ve already made the right contacts.

They’re yours — and we don’t need to interview or to see you first.

All you have to do is to complete our special — highly confidential — application form.

Then we’ll simply pass on your particulars to those — and only those — companies really keen to meet a man or woman with your credentials and, aged between 20 and 45 years.

And they’ll approach you direct. We guarantee to safeguard all your correspondence and never to get in touch with any company you specify — from among our list of clients.

Like all good ideas — ours is very simple. It’s simply the best way to find a new job.

Try it and see...

Phone us today for an application form or, clip the coupon for our comprehensive and confidential information pack.

Lansdowne Appointments
Register, Design House,
The Mall, London W5 5LS.
Tel: 01-579 2282 (24 hour answering service).

FREEPOST LONDON W2 4BR
TELEPHONE: 01-229 9239

Advertisements from Wireless World, November 1977
OPPORTUNITIES IN TELEVISION

We are Link Electronics Limited, a successful, expanding company with room for individual ability to make itself felt.

We make a full range of TV studio broadcast equipment, including colour cameras for studio and O/B applications.

We need a **Commissioning Engineer** to work closely with the buyers of our equipment, assisting them in their acceptance checks of our products; training their staff and visiting them as required to see new equipment into service.

a Senior Test Engineer to undertake work on advanced and complex TV cameras and associated equipment, including our new multi-mode colour camera recently announced. These appointments are at a senior level and so direct experience of similar equipment is a must.

We offer salary above average, according to ability and not a rigid grade structure. Benefits, generous holidays, free life and health insurance, pension scheme, staff restaurant, relocation expenses.

Location a modern factory in a very pleasant part of Hampshire with no traffic problems and easy access to London, the South Coast and many major towns.

Housing a wide choice. Prices from about £10k upwards if you want to buy.

TO APPLY either phone Jean Smith at Andover (0264) 61345 and ask for an application form or write to Mic Comber with enough information to make a form unnecessary.

ELECTRICAL/ ELECTRONIC ENGINEERS

Design unique computer/communication systems

This is an opportunity to design, plan and manage the implementation of a wide range of interesting and unique computer/communication systems. The computer systems range from the use of microprocessors for specific applications, through mini computers to large main frame systems employing the whole range of peripheral devices. The communication systems range from line communications through the full spectrum of radio communications including satellite communications.

Most posts are designated project officer/manager, and involve the interpretation of internal customer requirements, and the preparation of project studies, designs and plans which provide technical solutions and define and cost all resource requirements to implement the solution.

Candidates must have passed, or been exempted from, examinations qualifying them for corporate membership of IEE or IERE, and have an aggregate of at least 5 years' recognised study, professional training and experience. Project management experience in the computer/communication field is an advantage.

Starting salary between £3950 and £5240, depending on qualifications and experience. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 10 November 1977) write to Civil Service Commission, Abingdon, Basingstoke, Hants RG21 1J.B., or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote T(C) 85/1.

GCHQ Cheltenham

The Polytechnic of North London

Department of Chemistry

LABORATORY TECHNICIAN

(Grade 5)

is required in the Spectroscopy Laboratory of the Department either to operate the Mass Spectrometer or to be actively involved in the electronic and mechanical maintenance of spectroscopic instruments.

Experience at fault-finding, repair and maintenance of electronic and scientific instruments would be a special advantage.

Candidates should normally hold HNC, C and G Advanced certificate and have at least 8 years' experience inclusive of the training period.

Salary scale: £2216-£3672 (inclusive of London Weighting) plus 5% earnings supplement (minimum £150 per week, maximum £5 per week).

Apply for further details and application form to the Head of the Department of Chemistry, The Polytechnic of North London, Holloway Road, London N7 8DB.
ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton.

Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/calibration of all manner and types of test instruments.

Attractive salaries and, where appropriate, relocation are offered for the right candidates.

Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts. tel St. Albans, 59292

A GEC-MARCONI ELECTRONICS COMPANY

TV TRANSMITTER ENGINEERS

If you would like to work on some of the most modern TV Transmitters in the world why not join Pye TVT Limited, the Broadcast Company of Philips?

We are looking for engineers with several years experience of commissioning or maintenance or design of VHF or UHF TV Transmitters.

The job is to commission and carry out performance tests on the equipment at our customers' sites and will involve extensive travel overseas.

HNC or equivalent is desirable, but it is more important that applicants have experience in the setting up and adjustment of TV Transmitters and are conversant with up to date TV colour measurements and techniques.

STUDIO ENGINEER

We also require an Engineer to commission studio equipment. Several years experience of commissioning, maintenance or design of TV broadcast equipment is essential.

Attractive salaries will be paid plus overseas allowances and expenses where relevant. We also offer all normal benefits and in approved cases relocation expenses to this pleasant part of East Anglia.

Please write or telephone: Dave Barnicoat, Personnel Officer, Pye TVT Limited, PO Box 41, Coldhams Lane, Cambridge CB1 3JU.

Telephone: Cambridge (0223) 45115.
ELECTRONICS ENGINEER

Our Research Central Services Unit at Greenford requires an Electronics Engineer to strengthen the team involved in the design and development of electronic equipment needed for experimental work in the Research Group. It is anticipated that the post will be filled by a graduate or an engineer with equivalent qualifications and some experience of electronics design. A knowledge of analogue and digital circuitry is essential and some experience in computer applications would be advantageous.

The appointment will be made in our Scientific Officer grade, the scale for which is £3147 p.a. to £5047 p.a. (including supplement and London Allowance). The starting salary will be according to qualifications and experience.

There are pension and bonus schemes and 20 days annual holiday. Assistance with relocation expenses will be paid where appropriate.

Please write or telephone for an application form to: R. E. Nolan, Personnel Officer (Research), Glaxo Research Ltd., Greenford Road, Greenford, Middx. Tel. 01-422 3434, quoting reference No. ZH179.

RADIO HALLAM

We require an experienced

BROADCAST ENGINEER

who’s primary responsibility will be for maintenance, design and construction of equipment, but will also be involved with outside broadcasts.

If you are qualified to at least HNC level, send a written application, with brief details of experience to:

Derrick Connolly
Chief Engineer
RADIO HALLAM
PO Box 194, Sheffield S1 1GP

Decca Radar Limited offer highly interesting career opportunities for Electronic Engineers to work in the Environmental Laboratories. The work includes component and equipment evaluation and development together with design of special test equipment for Marine Radar and Government Contracts.

Applicants, men or women, with a knowledge of components and analogue/digital circuitry and possessing HNC/HND or equivalent should apply. General conditions of employment are consistent with a large progressive organisation with benefits which include a Pension and Life Assurance Scheme. Please write or telephone G. A. Betts, Decca Radar Limited, Davis Road, Chessington, Surrey. Telephone 01-397 5281.

MANAGEMENT TRAINEE

A young technically orientated self-starter is required to train for management in Fields, based initially with our Aircraft Instrument and Ancillaries Division at Croydon.

The successful candidate is likely to be in his early to mid-twenties with a basic Engineering knowledge, probably gained in an indentured apprenticeship. A year or two's experience in purchasing or production management in the Engineering Industry would be a distinct advantage.

Prospects are excellent and the starting salary is negotiable in the region of £2,650.00.

RADIO ENGINEER/TECHNICIAN FOR THE CARIBBEAN

Needed to work as technical adviser to the Radio Schools in Haiti, a non-governmental literacy development programme. Responsibility for the training of local counterparts.

A British Volunteer Programme Post. Volunteer terms of service include free accommodation, living and other allowances, return air travel, language and orientation courses.

Write with details of curriculum vitae to:- CIR Overseas Volunteers, 1 Cambridge Terrace, London NW1 4JJ.
HI-FI — IS IT YOUR SUBJECT?
We are looking for someone young (up to 30), literate and interested enough in Hi-Fi to want to join the technical staff of our Hi-Fi Magazine. A knowledge of models and the market is essential in this post which might suit someone either in the trade or with a technical background.
Salary range commences at £3,500.
Apply to Sharon Giles, Haymarket Publishing Ltd., Regent House, 54-56 Regent Street, London W.1.

TELEVISION BENCH ENGINEER
R & L Services (London) Ltd. require a Television Bench Engineer with experience of working on all makes of sets including English, Japanese, continental, etc., to work in the west 10 area. Salary negotiable.
Telephone: 696 4781 or 960 4239

AVIONICS ENGINEER
Licensed 12.1 12.2 12.3 required to help organise and run repair workshop at Dublin Airport. Salary negotiable in the £4,000 - £6,000 range.
Apply to Mr. P. CAHILL
IONA NATIONAL AIRWAYS LTD.
CLOGHRAN
CO. DUBLIN
Telephone: Dublin 378323

FIELD & BENCH ENGINEER
required for work on radio telephone equipment
573 4541

The opportunity to travel the world and be well paid for it is just part of the big package we are offering to Electronic Installation and Service Engineers.

AVIONICS ENGINEER
Licensed 12.1 12.2 12.3 required to help organise and run repair workshop at Dublin Airport. Salary negotiable in the £4,000 - £6,000 range.
Apply to Mr. P. CAHILL
IONA NATIONAL AIRWAYS LTD.
CLOGHRAN
CO. DUBLIN
Telephone: Dublin 378323

FIELD & BENCH ENGINEER
required for work on radio telephone equipment
573 4541

TELEVISION BENCH ENGINEER
R & L Services (London) Ltd. require a Television Bench Engineer with experience of working on all makes of sets including English, Japanese, continental, etc., to work in the west 10 area. Salary negotiable.
Telephone: 696 4781 or 960 4239

AVIONICS ENGINEER
Licensed 12.1 12.2 12.3 required to help organise and run repair workshop at Dublin Airport. Salary negotiable in the £4,000 - £6,000 range.
Apply to Mr. P. CAHILL
IONA NATIONAL AIRWAYS LTD.
CLOGHRAN
CO. DUBLIN
Telephone: Dublin 378323

FIELD & BENCH ENGINEER
required for work on radio telephone equipment
573 4541

AVIONICS ENGINEER
Licensed 12.1 12.2 12.3 required to help organise and run repair workshop at Dublin Airport. Salary negotiable in the £4,000 - £6,000 range.
Apply to Mr. P. CAHILL
IONA NATIONAL AIRWAYS LTD.
CLOGHRAN
CO. DUBLIN
Telephone: Dublin 378323

FIELD & BENCH ENGINEER
required for work on radio telephone equipment
573 4541

RADIO - TELEPHONE ENGINEERS
Experienced in V.H.F. mobile equipment. Top salaries for top ability. We are a young, progressive company currently the busiest, and fastest expanding radio-telephone firm in London. Ring London Communications on 01-288 3444 and ask for Mike Rawlings or Bill Clarke.

RECORDING STUDIO NEEDS experienced maintenance engineer. Must be conversant with radio production techniques and equipment as well as all aspects of installation work. £2,500 - bonuses. Telephone Mike Farrell, day 01-457 6432, night 01-385 7461.

The ideal man or woman will have served as a Radio or Electronics Officer at sea and will have three or more years sea service.
A company vehicle is provided for business and personal use.
If you are interested and would like to know more please write or telephone (reverse charges) to:
Jonathan Smith, International Marine Radio Co., Ltd., Pearl Road, Croydon, CR9 3AX.
Telephone 01-684 9771.

Depot Engineers
Due to continually expanding commitments, we need to increase our shore based engineering staff at our Service Depots in Tilbury and Glasgow.
The work is concerned with installation and service of our world famous communication equipment on board commercial vessels of all types.
In some instances opportunities may exist for overseas travel.
The ideal man or woman will have served as a Radio or Electronics Officer at sea and will have three or more years sea service.
A company vehicle is provided for business and personal use.
If you are interested and would like to know more please write or telephone (reverse charges) to:
Jonathan Smith, International Marine Radio Co., Ltd., Pearl Road, Croydon, CR9 3AX.
Telephone 01-684 9771.
Train as an Electronic Technician Engineer

The Chelmer Institute of Higher Education (Chelmsford), in conjunction with the Training Opportunities Scheme (TOPS), is running a 12 month full time course starting in January 1978, leading to the Higher National Certificate in Electrical and Electronic Engineering.

WOULD IT SUIT YOU?

The course is based on an electronic systems approach with particular emphasis on electronic duties and signal generation, transmission, processing and display. It is intended to cover the knowledge and practical abilities for employment as an electronic technician engineer in a wide variety of functions such as development, diagnostic testing, commissioning or installation of electronic equipment and systems.

ARE YOU SUITABLE?

You must have had full time experience for a total of three years and should be ideally aged 25 years or over. You should have had experience in electrical or electronic engineering in industry or the Services, but should be unemployed or willing to give up your time to take the course. You must have at least an appropriate ONC, OND or City & Guilds technician certificate.

EARN AS YOU LEARN

Tuition is free and a weekly TOPS tax free allowance will be paid whilst in training, enough to keep you at a reasonable standard of living.

FURTHER INFORMATION

If you are interested write to or telephone:

Mr. John Powell, Training Services Agency, District Office, 93 Southchurch Road, Southend-on-Sea, Essex SS1 2NX Tel: Southend (0702) 613134.

(7973) HO9

Manpower Services Commission
Training Services Agency
Technical Authors—Look Forward with us to an Improved Telephone Network.

The Electronic Switching Products Division of STC is developing the sophisticated electronic switching equipment of the 1990's. We need people who can help us in exploiting up-to-the-minute technology with a view to continually improving a vital public service.

You will liaise with design engineers to establish detailed information for the production of all kinds of technical literature. Involvement covers initial authorship through editing and composition to the production and distribution of material.

The job will interest Technical Authors with a background in electronic engineering or qualified engineers with a literary talent. If you want to be in on something worthwhile, look forward to meeting you.

For further information, telephone Mike Batsch on 01-235 7030 Ext. 233 or write to Mike Randall, Electronic Switching Products Division, Standard Telephones and Cables Ltd., Oakleigh Road South, New Southgate, London N11 1HB.

Standard Telephones and Cables Limited
A British Company of ITT

(757)
If you are self-motivating and have an enquiring mind - keen to get to the root of a problem, you may be just the person we are looking for.

This job involves progressing and validating proposed modifications, including considering design problems and redesigning circuits as necessary. As well as being a practical engineer, the person appointed must be able to communicate effectively, particularly in relation to drafting modification instructions which are important to the overall efficiency of our service.

Applicants (male or female) should be qualified to HNC or equivalent level in Electrical/Electronic Engineering and have a sound knowledge of transmitting equipment. A current driving licence is essential as there is a requirement to travel to our sites throughout the United Kingdom.

Salary will be within the range £4266-£5106 (inclusive of supplement). Relocation expenses will be paid, if appropriate.

Please write or telephone for an Application Form quoting Ref. No. WW/56GC to Glynis Powell, Personnel Officer, Independent Broadcasting Authority, Crawley Court, Winchester, Hants. SO21 2QA. Telephone No. Winchester 822270.

Articles for Sale

VHF Test Set RF

RF 20 to 88Mcs in 4 bands, approx 10 Mill/ V/gp C.W. or pulsed, works up to 30 Mc unit also as int noise generator with 50ka meter. 2 Mcs int calibrator. These units have int P.U. but this is not suitable for WACS (req 250W MT & 6.3v) supplied in case with charts, copies of circ & notes £15.00 PANEL METERS all new American surplus, 100uA scale 0 to 10mV dia 0.78. 500uA scalar marked red, green, red 2fin dia £1.78. 300-600uA scalar special marked "rad & lag" 1bin dia £1. ATTEN X band variable approx 4000 Hz. WG.16 new £4.50. FREQ METERS vib reed type for 680cs new £3. VALVE TESTER adapters type MX949 for use with American 1-177 valve testers CABLE miniature 25 way new 19 mts for £2. CRYSTAL COUNTER 6/12/18/24. Two HCB type new £1. DIODES 200 PIV 150, amps new for £1.

Heaters

Tubular flat 240V 15watt size approx 6x 1in were used for film drying new £1. SOLID STATE POWER SWT opto coupled control volts 5 to 15Dc £4.25/amp 240V at 5 amp or 13 amps on heat-stick ok for sound to units £2.40. FILTER UNITS for TV set AC cire high pass approx £2.50 cut off in case with conn new for £1.40.

Meters

BATTERIES hdb red lead acid type 6v by Drystl 1.8 A/hr size 2 x 2in £5.60 £4.25 A/15hr size 5 x 2in £1.20 £1.00 new rechargeable.

Coax

COAX LEADS all 1.5 Mts 50 ohm BNC to BNC for UHF to BNC to UHF all £2.60 ea. Test leads BNC or UHF £1.60 ea. all new. RADIO STATION KITS for use with AS1 monitors, hands set, hand & mike set, mic type key, 2 x TFT whip ae, Coax tuning unit for whip, 136MHz long wire tw, 4 x 60ft long wire to form dipole, twin feeder, capacitor etc incase £15. INFRARED T.S. used for testing infra Red Convter converts mains P.U. to 24v at int 12v 100w inc. infra Red light source, 100us meter etc in carrying case £15. AERIAL SYSTEMS for use on 183.6mc/s 8 element approx £111 new £11.60.

Transistor

TRANSISTOR prism 230V sec 1153-5112v at 515ma new £3.80 AERIAL X band with 1in dinh w.g. ass inc feed rj45 etc £15. Also 4 drive motors 11v 490/s etc few in cases at £25 ea or £10 to £15 ea for callers. Good quality untested new prices incl carr & VAT for list or separate.

Situations Vacant

Modification Engineer

Radio and Television Transmission Equipment

Independent Broadcasting Authority

Please write or telephone for an Application Form quoting Ref. No. WW/56GC to Glynis Powell, Personnel Officer, Independent Broadcasting Authority, Crawley Court, Winchester, Hants. SO21 2QA. Telephone No. Winchester 822270.

IBA INDEPENDENT BROADCASTING AUTHORITY

Standards Engineers

for Electronic Test Equipment

Decca Radar Limited have immediate vacancies for Standards Engineers to be responsible for the Company measurement standards, for developing calibration techniques and procedures and for advising on the purchase of test equipment.

Applicants, men or women, should be educated to Degree or H.N.D. standard and possess several years previous experience in this field.

A knowledge of Government calibration requirements would be an advantage.

These appointments offer highly interesting career opportunities and benefits which include a Pension and Life Assurance Scheme and general conditions of employment consistent with a large progressive organisation.

Please write or telephone G. A. Betts, Decca Radar Limited, Long Road, Chessington, Surrey. Telephone 01-397 5281.

Decca

The Queen's Award for Export Achievement 1976 to Decca Ltd 1976 (15998)

Solitaire

Electronic Voltage Regulators

For Car Alternators

- Operating Range 55-175 V C.S.
- Full Warranty for 5 Years (£9 30)
- Avonite Material
- Made in Britain
- £19.50

Solid State Development Company

- P.O. Box 108, Eton, Berkshire, S.A.S.
- £44 4728

Exponential Horn Loading

Most MW readers will know of the superb realism attained by horn loading the mouth of a broadside horn. Such apertures are most effective when the horn is driven with a broadside horn. This can be achieved by using a different size horn for the data sheet to which this article refers. James Cooper Electronics Ltd. 706 Castle Lane, Soho, B. Wolverhampton.

(15628)
Racal Communications Systems Limited, leaders in professional communications systems are seeking an Assistant to the Head of Product Liaison. The person appointed will:
- help to prepare equipment design specifications to C.C.I.R. or similar standards;
- liaise with engineering staff on technical aspects of equipment applications;
- assist generally in commercial activities related to marketing and development of H.F. communications equipment and systems.

Applicants, men or women, should have operational, installation or planning experience in telecommunications with emphasis on radio systems; they should be capable also of contributing to the administrative activities of the department, including writing notes of meetings. An attractive salary is offered and the benefits are those of a large, forward-looking Company. Please write with brief details of age and experience to:
Personnel Manager,
Racal Communications Systems Limited,
Western Road,
Bracknell, Berkshire.
or telephone Bracknell 3244.

CHelsea COLLEGE
University of London
Physiology Department
Basic Medical Sciences Group
Applications are invited from candidates with appropriate qualifications and experience for the following posts:

TECHNICIAN — GRADE 6: This is a senior position and we are looking for someone who can plan an important part in the development and maintenance of electrophysiological instrumentation. The successful candidate should therefore have a sound knowledge of practical electronics and an interest in its application to Physiology with 9-10 years' experience.

TECHNICIAN — GRADE 3: To take part in the teaching and research work of the Department. Applicants should have a basic understanding of electronics gained through 3-5 years' experience and (preferably) some experience of physiological techniques.

Salary Scales — Grade 6 £3802 - £4435 p.a.
- Grade 3 £2930 - £3276 p.a.

Application forms are obtainable from: The Personnel Officer, Chelsea College, Frieze Green House, Chelsea Manor Street, London SW3 3TW, to be returned by 3rd November, 1977.

LOW COST TRANSFORMERS

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Secondary volts</th>
<th>Amp</th>
<th>Price</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 1</td>
<td>6.0</td>
<td>100</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>AT 2</td>
<td>6.0</td>
<td>500</td>
<td>1.00</td>
<td>25</td>
</tr>
<tr>
<td>AT 3</td>
<td>6.0</td>
<td>1000</td>
<td>0.50</td>
<td>65</td>
</tr>
<tr>
<td>AT 4</td>
<td>6.0</td>
<td>1500</td>
<td>0.50</td>
<td>65</td>
</tr>
<tr>
<td>AT 5</td>
<td>6.0</td>
<td>5000</td>
<td>0.50</td>
<td>65</td>
</tr>
<tr>
<td>AT 6</td>
<td>6.0</td>
<td>50000</td>
<td>0.50</td>
<td>65</td>
</tr>
<tr>
<td>AT 7</td>
<td>6.0</td>
<td>500000</td>
<td>0.50</td>
<td>65</td>
</tr>
</tbody>
</table>

Orders in:
AIR LINE TRANSFORMERS
1 CLEDENDON HOUSE, HIGH STREET
NEWMARKET, SUFFOLK

Tyrrell Electronics the mail order division of Birt Electronics UK offer a wide range of components for the amateur enthusiast. Large SAE or 29p brings list, Grenfell Place, Maldenhead, Berks, SL16 1HL.

200,000 HULLARD C380 & 282 capacitor kit for sale, values from Oluf to above list, £249/W. Price per unit 39¢. Price per rack (190/$15.00. 280/£7.00. P&P £6.00 (export 50p). Electronic Mailorder Ltd., Ramsholt, Suffolk. (7512)

100 watt guitar/PA music amplifier, superb treble, bass, overdrive, vibrato, tremolo, effects, solid state, 12 months guarantee, unbelievable offer at £10, money returned if not absolutely delighted within 7 days, send cheque or PO to William Am. (7512)

VHF Monitor Receivers, air, marine or business radio bands, all crystal controlled. £24 to £200. Send 15p PO, no stamps. Radio Communications Ltd, S.C. Sampson, Guernsey, C.I. (7434)

Racal RA177E £340 o.m.n. Racal RA177T £390 o.m.n. both as new. Tel: West Drayton £3694 after 6.00 p.m. (7484)

Valuex. Current and obsolete types, complete stock with Ako TV tubes, Res. Capacitors. Transistors, etc. Farnborough (Hants) £4138. (7484)

Hewlett Packard S511T logic troubleshooting kit complete, as new. Conditions, manuals, £320. Branshol, 111 Park Road, Peter- (7467)

The TLL Data Book for Design Engineers
By Texas Instruments
Price: £5.50
RADIO, TV & AUDIO TECHNICAL REFERENCE BOOK
by S. W. Amos. Price £34.70.
MICROPROCESSOR / MICROPROGRAMMING HANDBOOK by W. Bard.
Price: £4.00
WORLD RADIO TV HANDBOOK. J. M. Frost. Price £5.00
BUILD YOUR OWN WORKING ROBOT by D. L. Heiserman. Price £3.70.
SOUND RECORDING PRACTICE by Borowick, J. Price £16.60.

The Modern Book Co. specialists in scientific & technical books
19-21 PRAED STREET LONDON W2 1NP
Phone 723 4185
Closed Sat 1 p.m.
WILMSLOW AUDIO
The firm for Speakers

Swan Works, Bank Square, WILMSLOW, Cheshire.
Tel: Lighting service in telephoned credit card orders!

POINTS
Every stock in stock for the speaker constructor! BAF, long fibre wool, foam, flat panels, crossovers and components. Large selection of grille tiles. Send 15p stamps for samples.

Send 15p stamps for free 38-page catalogue "Choosing a speaker!"

ARTICLES FOR SALE

WILMSLOW AUDIO

Classified

WILMSLOW AUDIO
The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

150

Wireless World, November 1977

ARTICLES FOR SALE

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!

CLASSIFIED

WILMSLOW AUDIO

The firm for Speakers

Swan Works, Bank Square. WILMSLOW, Cheshire.

Tel: Lighting service in telephoned credit card orders!
TWICE the information in HALF the size

The I.C.E. range of multimeters provides an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. This is a complete range of addition-on accessories for more ranges and more functions. All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50+ page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write of free for list or for details of direct mail order service.

Supertester 680R

20k/1V 2% hyst on d.c. 4k/1V 2% hyst on d.c. 60 Ranges – 10 Functions 140 x 113 x 37 mm £19.95 + VAT

Electronic Brokers Ltd. 49.53 Pancras Road, London NW1 2QB
Tel. 01-837 7781

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 136-151

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall Electric</td>
<td>68</td>
</tr>
<tr>
<td>Harmsworth Townley & Co. Ltd.</td>
<td>23</td>
</tr>
<tr>
<td>Harris Electronics (London)</td>
<td>22, 27</td>
</tr>
<tr>
<td>Hart Electronics</td>
<td>132</td>
</tr>
<tr>
<td>Icon Designs</td>
<td>4</td>
</tr>
<tr>
<td>IEE</td>
<td>120</td>
</tr>
<tr>
<td>IPP Electric Ltd.</td>
<td>136, 127</td>
</tr>
<tr>
<td>IMO Precision Controls Ltd.</td>
<td>15</td>
</tr>
<tr>
<td>Industrial Tape Applications</td>
<td>124</td>
</tr>
<tr>
<td>Integrals Ltd.</td>
<td>102</td>
</tr>
<tr>
<td>Isska Ltd.</td>
<td>78</td>
</tr>
<tr>
<td>ITT Instruments, Inc.</td>
<td>12, 101</td>
</tr>
<tr>
<td>ITT Quartz</td>
<td>88</td>
</tr>
<tr>
<td>JPS Associates</td>
<td>27</td>
</tr>
<tr>
<td>KGM Electronics</td>
<td>34</td>
</tr>
<tr>
<td>Langrex Supplies Ltd.</td>
<td>11</td>
</tr>
<tr>
<td>Ledon Electronics Ltd.</td>
<td>18</td>
</tr>
<tr>
<td>Leevers-Rich Equipment Ltd.</td>
<td>24</td>
</tr>
<tr>
<td>Level Electronics</td>
<td>3</td>
</tr>
<tr>
<td>Linsead Mfg. Co., Ltd.</td>
<td>16</td>
</tr>
<tr>
<td>Lionhouse Ltd.</td>
<td>110</td>
</tr>
<tr>
<td>Lloyd, J. J. Insts. Ltd.</td>
<td>100</td>
</tr>
<tr>
<td>Logic Leisure</td>
<td>110</td>
</tr>
<tr>
<td>London Instrument Works Ltd.</td>
<td>105</td>
</tr>
<tr>
<td>Lowe Electronics</td>
<td>133</td>
</tr>
<tr>
<td>Lynx (Electronics) Ltd.</td>
<td>133</td>
</tr>
<tr>
<td>Macinnes Laboratories Ltd.</td>
<td>14</td>
</tr>
<tr>
<td>Magna Audio</td>
<td>20</td>
</tr>
<tr>
<td>Marconi Instruments Ltd.</td>
<td>26</td>
</tr>
<tr>
<td>Marshall & Sons (London) Ltd.</td>
<td>104</td>
</tr>
<tr>
<td>MCP Ltd.</td>
<td>26</td>
</tr>
<tr>
<td>Multicore Solders Ltd.</td>
<td>5</td>
</tr>
<tr>
<td>OMC</td>
<td>30</td>
</tr>
<tr>
<td>Otari Electric Co. Ltd.</td>
<td>19</td>
</tr>
<tr>
<td>Olson Electronics</td>
<td>105</td>
</tr>
<tr>
<td>Phab EUE (PHD) Ltd.</td>
<td>32</td>
</tr>
<tr>
<td>Powertron Electronics</td>
<td>114, 115</td>
</tr>
<tr>
<td>Precision Petits Ltd.</td>
<td>28</td>
</tr>
<tr>
<td>Pyle Unicam Ltd.</td>
<td>37</td>
</tr>
<tr>
<td>Japan</td>
<td>68</td>
</tr>
<tr>
<td>Harmsworth Townley & Co. Ltd.</td>
<td>23</td>
</tr>
<tr>
<td>Harris Electronics (London)</td>
<td>22, 27</td>
</tr>
<tr>
<td>Hart Electronics</td>
<td>132</td>
</tr>
<tr>
<td>Icon Designs</td>
<td>4</td>
</tr>
<tr>
<td>IEE</td>
<td>120</td>
</tr>
<tr>
<td>IPP Electric Ltd.</td>
<td>136, 127</td>
</tr>
<tr>
<td>IMO Precision Controls Ltd.</td>
<td>15</td>
</tr>
<tr>
<td>Industrial Tape Applications</td>
<td>124</td>
</tr>
<tr>
<td>Integrals Ltd.</td>
<td>102</td>
</tr>
<tr>
<td>Isska Ltd.</td>
<td>78</td>
</tr>
<tr>
<td>ITT Instruments, Inc.</td>
<td>12, 101</td>
</tr>
<tr>
<td>ITT Quartz</td>
<td>88</td>
</tr>
<tr>
<td>JPS Associates</td>
<td>27</td>
</tr>
<tr>
<td>KGM Electronics</td>
<td>34</td>
</tr>
<tr>
<td>Langrex Supplies Ltd.</td>
<td>11</td>
</tr>
<tr>
<td>Ledon Electronics Ltd.</td>
<td>18</td>
</tr>
<tr>
<td>Leevers-Rich Equipment Ltd.</td>
<td>24</td>
</tr>
<tr>
<td>Level Electronics</td>
<td>3</td>
</tr>
<tr>
<td>Linsead Mfg. Co., Ltd.</td>
<td>16</td>
</tr>
<tr>
<td>Lionhouse Ltd.</td>
<td>110</td>
</tr>
<tr>
<td>Lloyd, J. J. Insts. Ltd.</td>
<td>100</td>
</tr>
<tr>
<td>Logic Leisure</td>
<td>110</td>
</tr>
<tr>
<td>London Instrument Works Ltd.</td>
<td>105</td>
</tr>
<tr>
<td>Lowe Electronics</td>
<td>133</td>
</tr>
<tr>
<td>Lynx (Electronics) Ltd.</td>
<td>133</td>
</tr>
<tr>
<td>Macinnes Laboratories Ltd.</td>
<td>14</td>
</tr>
<tr>
<td>Magna Audio</td>
<td>20</td>
</tr>
<tr>
<td>Marconi Instruments Ltd.</td>
<td>26</td>
</tr>
<tr>
<td>Marshall & Sons (London) Ltd.</td>
<td>104</td>
</tr>
<tr>
<td>MCP Ltd.</td>
<td>26</td>
</tr>
<tr>
<td>Multicore Solders Ltd.</td>
<td>5</td>
</tr>
<tr>
<td>OMC</td>
<td>30</td>
</tr>
<tr>
<td>Otari Electric Co. Ltd.</td>
<td>19</td>
</tr>
<tr>
<td>Olson Electronics</td>
<td>105</td>
</tr>
<tr>
<td>Phab EUE (PHD) Ltd.</td>
<td>32</td>
</tr>
<tr>
<td>Powertron Electronics</td>
<td>114, 115</td>
</tr>
<tr>
<td>Precision Petits Ltd.</td>
<td>28</td>
</tr>
<tr>
<td>Pyle Unicam Ltd.</td>
<td>37</td>
</tr>
</tbody>
</table>

OVERSEAS ADVERTISEMENT AGENTS:

France: M. D. Souloumyn, Compagnie Francaise d'Editions, Duquesnoy International, 49 Rue de Couers, Paris 8e Telephone 227 117 50 – Telex 280274

Hungary: Mrs. Edith Bajtals, Ungipress Advertising Agency, Budapest XIV, Vorosmarty 131, Budapest 22-4425 INTFORE

Italy: Sig. G. C. Form, Form-Komp. S.p.a. – Servizio Estero Via Marenghi 8, 20154 Milano, Telephone 347 305 1 – Telex 377436 Kompas

Japan: Mr. Inakari, Trade Media – IBPA (Japan), B.212, Asahi Heights, 5-15-10 Roppongi, Minato-ku, Tokyo 106.

Telephone: (03) 432 22381

Mr. Jack Menden, The Farley Co. Suite 650, Rama 4 Building, Cleveland, Ohio 44115 – Telephone (216) 621 1919

Ray Ricks, Ray Ricks & Co. P.O. Box 29038 Miami Beach, Fl 33145 – Telephone (305) 532 7301

Mr. Jim Parks, Ray Ricks & Co., 3316 Maple Drive N.E. Atlanta, Georgia 30305. Telephone (404) 237 7432

Major Lindsey, IPC Business Press, 15055 Memorial Ste 119, Houston, Texas 77070 – Telephone (713) 783 8674

Canada: Mr. Colin H. MacIsaac, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 – Telephone (416) 364 2259

*Also subscription agents.

Printed in Great Britain by U.K. Builders and Published by the Proprietors at ELECTRICAL ELECTRONIC PRESS LTD., Dyer's House, Stockmans Mews, London, E11 1LL. Telephone 01 861 9000. Wonders World can be obtained abroad from the following: AUSTRALIA AND NEW ZEALAND: Gordon & Gotch Ltd. INDIA: A. H. Wheeler & Co. CANADA: The Win. Dawson Subscription Service Ltd, Gordon & Gotch Ltd, SOUTH AFRICA: Central News Agency Ltd; William Dawison & Sons (S.A.) Ltd. UNITED STATES: Eastern News Distributors Inc, 14th Floor, 1118 Avenue, New York, N.Y. 10011.
This...protects your most expensive hi-fi investment.

A worn stylus could irreparably damage your valuable record collection. Recognizing that a penny saved is a penny earned, may we suggest that trying to economize by putting off the replacement of a worn stylus could be like throwing away several pounds every time you play a record. (Multiply that by the number of records you own!) Since the stylus is the single point of contact between the record and the rest of the system, it is the most critical component for faithfully reproducing sound and protecting your record investment. Insure against this, easily and inexpensively, simply by having your local hi-fi dealer check your Shure stylus regularly, or take advantage of our free stylus inspection service. When required, replace it immediately with a genuine Shure replacement stylus. It will bring the entire cartridge back to original specification performance.

Shure Electronics Limited
Eccleston Road
Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

TECHNICORNER
Every Shure stylus undergoes eight standard production line inspections: visual and mechanical inspection, tip configuration, traceability, vertical drift, 1,000 Hz output level measurement, channel separation at 1,000 Hz, channel separation at 10,000 Hz, and frequency response.

Only genuine Shure stylus have the name SHURE on the stylus grip and the words "This Stereo Dynetic™ stylus is precision manufactured by Shure Brothers Inc." on the box.
The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years.

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints – always – your labour costs will be reduced and subsequently savings in overall costs of solder may be possible.

There are well over 1,000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture:

Savbit Alloy – dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits.

96S Silver Solder – highest strength soft solder. Melting point 221°C. Bright and non-toxic. Replaces high temperature brazing alloys.

95A alloy – Melting range 236–243°C. For electrical connections subjected to peak temp. of approx. 240°C.

H.M.P. alloy – Melting range 296–301°C. Highest melting point soft solder for high service temperature applications.

T.L.C. alloy – Melting point 145°C. Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components.

L.M.P. alloy – Melting Point 179°C. For soldering silver plated surfaces such as ceramic capacitors and soldering gold.

Alu-Sol Multicore Solder – for soldering aluminium.

Arax acid-cored solder – for non-electrical applications or pre-tinning of parts of difficult solderability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder.

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to:

Multicore Solders Ltd.
Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636
Telex: 82363

Why have leading USA manufacturers specified British made Ersin Multicore solder for over 30 years?