Power from the sun
Load lines
Now they can carry on phoning
while you carry on testing.

If you are looking for the most efficient testing solutions for your Pulse Code Modulation system, come to the people with the most experience — mi. Over 4000 PCM systems have been installed by the U.K. Post Office using our PCM test equipment which meets all relevant CCITT Recommendations.

During this period, we have evolved many solutions to PCM test problems including in-service measurement of digital error rate, simulation of cable sections during installation of digital line systems, audio-to-audio performance testing and regenerator fault location.

In-service measurement capability means no loss of revenue through loss of traffic. And you get further substantial savings with mi equipment — the capital cost-saving can be as great as 50%, against competitive equipment giving equivalent performance. The mi name is, of course, a guarantee of quality recognised throughout the world.

Full information by return.

mi: THE PCM TESTERS

MARCONI INSTRUMENTS LIMITED

A GEC · Marconi Electronics company

WW—001 FOR FURTHER DETAILS
LEVELL PORTABLE INSTRUMENTS

LOW COST OSCILLATORS

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel. 01-449 5028 / 440 8686

FREQUENCY 1Hz to 1MHz in 12 semi-decade ranges. 0 to 1% fine control included on TG200DMP.

ACCURACY ±2%±0.03Hz

SINE OUTPUT 7V r.m.s. down to <200μV with Rs=600Ω

DISTORTION <0.1% to 5V, <0.2% at 7V from 10Hz to 100kHz

SQUARE OUTPUT TG200D, DM only. 7V peak down to <200μV. Rise time <150nS.

SYNC. OUTPUT >1V r.m.s. sine in phase with output

SYNC. INPUT ±1% freq. lock range per volt r.m.s

METER SCALES TG200M, DM & DMP only. 0/2V, 0/7V & 14/-6dBm.

SIZE & WEIGHT 260mm x 130mm x 180mm. 4.3kg.

TG200 TG200D TG200M TG200DM TG200DMP £69 £73 £84 £88 £92

FREQUENCY 0.2Hz to 1.22MHz on four decade controls.

ACCURACY ±0.02Hz below 6Hz

±0.3% from 6Hz to 100kHz

±1% from 100kHz to 300kHz

±3% above 300kHz

SINE OUTPUT 5V r.m.s. down to 30μV with Rs=600Ω

DISTORTION <0.15% from 15Hz to 15kHz

<0.5% at 15Hz and 150kHz

METER SCALES 2 Expanded voltage & 2/4dBm.

SIZE & WEIGHT 260mm x 190mm x 180mm. 5.6kg

TG66B Battery model £180 TG66A Mains & battery model £195

FREQUENCY 3Hz to 300kHz in 5 decade ranges.

ACCURACY ±2% ±0.1Hz up to 100kHz, increasing to ±3% at 300kHz.

SINE OUTPUT 2.5V r.m.s. down to <200μV.

DISTORTION <0.2% from 50Hz to 50kHz.

SQUARE OUTPUT 2.5V peak down to <200μV.

SYNC. OUTPUT 2.5V r.m.s. sine.

METER SCALES 0/2.5V & 10/-10dB on TG152DM.

SIZE & WEIGHT 260mm x 130mm x 180mm. 3.4kg.

TG152D Without meter £55 TG152DM With meter £69

Prices include batteries and U.K. delivery. VAT extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

WW-016 FOR FURTHER DETAILS
How every hi-fi dealer can increase his sales and improve his service

The Ferrograph RTS 2 is a complete, single-unit audio analyzer. Used by leading manufacturers and dealers throughout the world, it is the only single equipment available that can run exhaustive checks on hi-fi— including amplifiers, tape recorders, equalisers and mixers – making it an invaluable aid to sales and service.

Increase your sales!

By using the RTS 2 in your hi-fi store, your salesman can quickly prove to customers that the hi-fi system he is demonstrating is as good as it sounds. In a matter of seconds, up to ten different tests can be carried out, using just one pair of leads. (The push-button operation is so simple, even unskilled staff can make accurate measurements.)

Result? The customer is reassured, confident he is getting value for money. So you sell more, more easily.

Improve your service!

But the RTS 2 is much more than a cost-effective sales aid. Used in your service department, it quickly identifies faults, making your after-sales back-up more efficient. And more profitable. You don't need a variety of incompatible test gear – so there are fewer connections, no hum-loops, no time-consuming frustrations. All of which means you save money.

Ferrograph RTS 2

the complete, single-unit audio test set.

Wilmot Breeden Electronics
Ferrograph Rendar Wayne Kerr

Send me more information about the RTS 2 audio test set.
I would like a demonstration. Phone me to arrange an appointment.

Name: ___________________________ Address: ___________________________
Company: _________________________ Tel. No. ___________________________

Wilmot Breeden Electronics Limited
Durban Road, South Bersted
Bognor Regis, West Sussex PO22 9RL
Telephone: Bognor Regis 25811
(STD Code 02433)

Ask us for a demonstration of the Ferrograph RTS 2 before your customers ask you. Send off the coupon today!
ISOPHON
How do you advertise a Horn Tweeter?
We had thought of showing a picture of a French Horn—elegantly more pleasing than a Horn Tweeter—but instead decided just to proudly include a photograph of our NEW HORN TWEETER

We are excited about this new addition to the product line and feel sure that you will be too, when you examine the specification and listen to the sound. We are confident it will not be long before this Horn Tweeter joins our other successful products like the Dome Tweeters KK7, KK8 and KK10. There are, of course, many other drive units to choose from in the Isophon range including bass units, dome mid-range units and assembly kits.

Why not send for the Isophon catalogue containing 28 pages of useful information which we will be happy to send you, free of charge, on receipt of the cut-out coupon.

Hayden Laboratories Ltd
Churchfield Road,
Chalfont St Peter, Bucks. SL9 9EW
Tel: Gerrards Cross (02813) 88447
ENGLAND

Please send a free copy of the 28-page Isophon Catalogue.
Name

Address

Further Details
TRANSIPACK

NO BREAK POWER SUPPLIES
NEW 2000 SERIES — FOURTH GENERATION
1KVA TO 200KVA
24 HOURS WORLDWIDE SERVICE
2 YEARS' GUARANTEE AVAILABLE
BRITISH MADE
VISIT US AT HASTINGS AND SEE OUR STATIC INVERTER CENTRE

TYPICAL TRANSIPACK NO-BREAK POWER SUPPLY AS DELIVERED TO C.E.G.B.

TYPICAL TRANSIPACK U.P.S. FOR COMPUTER APPLICATIONS

INDUSTRIAL INSTRUMENTS LIMITED

Sales and Laboratories
STANLEY ROAD
BROMLEY BR2 5JF
KENT, ENGLAND
Telephone: 01-460 9861/5
Telegrams: TRANSIPACK, BROMLEY
Telex: 896071

Factory
THORNILLEN DRIVE
PONSEWOOD INDUSTRIAL ESTATE
HASTINGS, SUSSEX, ENGLAND
Telephone: Hastings 427254
Surprise.
The best industrial cathode ray tubes don't come from Japan, Germany, America or Hong Kong,

They come from Britain.

And go to most places in the world.
Which is what you would expect from the manufacturer of Brimar industrial cathode ray tubes – the largest in the U.K.
Range: 1 to 5-inch single gun, instrument tubes, 5-inch double-gun oscilloscope tube, flying spot scanners, 19 radar tubes, 34 data display and monitor tubes from 5½ to 24-inches, all made to the highest quality standards with a personalised sales and technical advice service to match.
Our catalogue is over 1 inch thick – ask for it.*

Thorn Radio Valves & Tubes Limited,
Mollison Avenue, Brimsdown, Enfield, Middlesex, EN3 7NS.
Telephone: 01-804 1201.

*Price £2. FREE to bona fide trade enquirers.
INTRODUCED TO MEET THE DEMAND FOR A SIMPLE, HIGH-
QUALITY, FOR TECHNOLOGIES WHO DO NOT REQUIRE FULL RECORDING
OSCILLOGRAPHY CAPABILITIES; THE FOR-7 HAS A RECTANGLE
CRT WHICH PROVIDES STRIP CHART, X-Y PLOT AND SINGLE
FRAME RECORDED ON LOW COST PAPER.

WIDEBAND BRILLIANCE MODULATION

FOR VIDEO IMAGING WITH GOOD GREY SCALE

HIGH FREQUENCY DEFLECTION AMPLIFIERS

FOR TRACE RECORDING WITH FAITHFUL TRANSIENT RESPONSE

VARIABLE SENSITIVITY AND POLARITY REVERSAL

FOR EASY INTERFACE WITH DISPLAYS AND SYSTEMS

BENCH, RACK OR BUILD-IN VERSIONS

FOR GENERAL PURPOSE LABORATORY OR OEM APPLICATIONS

For further information or a demonstration of the FOR-7 or any other Medelec unit please contact:

MEDELEC LIMITED Woking Surrey GU22 9JU
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

From the Leaders in
Fibre Optic Recording

meedelec

Hatfield’s versatile Test Team
Well established instruments from the Hatfield range include:

120 KHz Selective
Measuring Set 1015/1016
Comprising Selective
Level Meter,
Type 1015 and Level
Oscillator Type 1016.
Frequency range:
30 Hz to 120 KHz;
400 and 600 ohm inputs
and outputs.
Measuring range:
+25 dBm to −95 dBm.
Oscillator output:
+13 to −75 dBm.
Synchronous tuning
facility.

Milliwatt
Test Set 747
DC - 20 MHz; 75,
135/140 and
600 ohms inputs;
range +1 dBm
and −1 dBm.

Hand-held
Decibel Meter,
1008
20 Hz - 150 KHz;
75, 140, 600, 900
and 120 ohm inputs;
range +21 dBm
and −60 dBm.

Pophometer
Type 1000
30 Hz - 20 KHz with
weighting filters;
600 ohms through and
terminated and
30 Kohm inputs;
range 10 V - 300 V.

Wideband Flat Level Measuring
Set 1017 20 Hz - 200 MHz; 75, 140 and
600 ohm inputs
and outputs.
Input range: +26 dBm to −56 dBm.
Output range: +10 dBm to −40 dBm.

AF Selective Level
Measuring Set 1001/1003
Comprising Selective
Level Meter, Type 1001
and Level Oscillator,
Type 1003.
Frequency range:
30 Hz - 30 KHz; 140
and 600 ohm inputs
and outputs.
Measuring range:
+21 dBm to −105 dBm.
Synchronous tuning
facility.

HATFIELD TEST EQUIPMENT FOR VERSATILITY
The latest Selective Level Meters from Hatfield Instruments provide greater
versatility in the 2KHz to 20MHz range. The new sets provide both level
meter and oscillator, together with selective and wide band facilities in all
frequency range groupings. Plug-in modules allow variations of bandwidth,
upper and lower frequency limits. All instruments have a very high stability,
excellent frequency discrimination and synthesised frequency generation.
Basic frequency ranges covered are:
2KHz to 700KHz; 5KHz to 1.6MHz;
60KHz to 4.5MHz; and 60KHz to 12.5MHz. Further developments will
extend the frequency range to 100MHz.

HATFIELD INSTRUMENTS LIMITED
MOS: from Europe with authority

MOS technology, as everyone knows, is originally American. But here in Europe we at SGS-ATES have right from the beginning given it an industrial application which has helped us to achieve and maintain leadership in this field.

Let's highlight the main steps in a decade of progress.

1966 - setting-up of the MOS department
1968 - the first MOS calculator designed in Europe (10 chips)
1969 - technological innovation with the Planox® process
1971 - design of a multichip calculator system organised like the microprocessors we know today
1972 - a 2-chip calculator with printout
1973 - the first rhythm generator for electronic organs
1974 - the M38 8-bit microprocessor, a 4k ROM and a 1k RAM
1975 - new LSI circuits for musical instruments and a 30 channel remote control system for TV (M1024, M1025), the first results of a large undertaking by the company in this sector.

That is the history to date of our achievements in the MOS field. That is, in fact, the history of MOS in Europe.

And now a 4k RAM
The M340, a 1 x 4096-bit dynamic random access memory, as fast as any in the world: 200 ns max access time, 400 ns max cycle time.

It is produced with N-channel high-voltage technology and mounted in a 22-pin package.

Soon to be offered in a 16-pin version (M341).

And that’s why

SGS-ATES (UNITED KINGDOM) LTD.
News of the Decade

RESISTANCE CAPACITANCE INDUCTANCE

Over 60 different models available, many from stock.

Contact us if you need more information or demonstration.

Decade Boxes

"Junior" Series — Resistance — 1%

<table>
<thead>
<tr>
<th>Decades</th>
<th>Range</th>
<th>Ohms Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R4</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R5</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R7</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R9</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R10</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R11</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R20</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R21</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R22</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R30</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R31</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R32</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R41</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R42</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
</tbody>
</table>

"Point One" Series — Resistance — 0.1%

<table>
<thead>
<tr>
<th>Decades</th>
<th>Range</th>
<th>Ohms Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R400</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R401</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R402</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R403</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R600</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R601</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R602</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R603</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R701</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R702</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R703</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R802</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
</tbody>
</table>

"Hundred" Series — Resistance — 0.03%

<table>
<thead>
<tr>
<th>Decades</th>
<th>Range</th>
<th>Ohms Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R900</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>R901</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Decade Boxes Continued

High Dissipation — Resistance — 1%

<table>
<thead>
<tr>
<th>Decades</th>
<th>Range</th>
<th>Ohms Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD1</td>
<td>0—1,111</td>
<td>0.1</td>
</tr>
<tr>
<td>HD1/L</td>
<td>0—1,111</td>
<td>0.2 Approx</td>
</tr>
</tbody>
</table>

Capacitance Boxes

Models

<table>
<thead>
<tr>
<th>Capacitance Range</th>
<th>Accuracy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 1%</td>
<td>£50.53</td>
</tr>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 0.5%</td>
<td>£66.70</td>
</tr>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 1%</td>
<td>£73.60</td>
</tr>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 0.5%</td>
<td>£103.80</td>
</tr>
</tbody>
</table>

Decade Plus Variables

<table>
<thead>
<tr>
<th>Decade</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC1</td>
<td>50—1,111</td>
<td>± 0.5%</td>
<td>£61.00</td>
</tr>
<tr>
<td>VC2</td>
<td>50—1,111</td>
<td>± 0.5%</td>
<td>£66.30</td>
</tr>
<tr>
<td>VC5</td>
<td>50—1,111</td>
<td>± 0.05%</td>
<td>£128.80</td>
</tr>
<tr>
<td>VC500</td>
<td>50—1,111</td>
<td>± 0.5%</td>
<td>£574.20</td>
</tr>
</tbody>
</table>

Switched

<table>
<thead>
<tr>
<th>Capacitance Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>0.05 - 0.1 uF</td>
<td>± 0.05%</td>
</tr>
</tbody>
</table>

Price List

<table>
<thead>
<tr>
<th>Models</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC1</td>
<td>£61.00</td>
</tr>
<tr>
<td>VC2</td>
<td>£66.30</td>
</tr>
<tr>
<td>VC5</td>
<td>£128.80</td>
</tr>
<tr>
<td>VC500</td>
<td>£574.20</td>
</tr>
</tbody>
</table>

Additional Information

- Packing and Handling extra. Prices do not include VAT.

J.J. Lloyd Instruments Ltd

Brook Avenue, Warsash, Southampton SO3 6HP
Tel: Locks Heath 4221

WW-653 FOR FURTHER DETAILS
This turntable by Technics offers the mechanical excellence of the SL110 in a more compact form. Ideally suited to our precision pick-up arms, its use is detailed in information sheet No. 15, a copy of which will be sent to you on request.

Write to Dept 0638A · SME Limited · Steyning · Sussex · England

The best pick-up arm in the world

WW 064 — FOR FURTHER DETAILS
"He's asking for a reed relay assembly with a 30kV isolated coil"

People often bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly — one or two dry reed switches with a rating of 25W, housed in a mounting tube, with either 'normally open' or 'change-over' contacts. Around them, a coil operating from 8, 12, 24 or 50V supply, 30kV isolated from the contacts. The whole unit mounting on a 0.25" insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.

Whiteley
Whiteley Electrical Radio Co. Ltd.
Mansfield, Notts NG18 5RW, England. Tel: 0623 24762.

Wireless World, October 1976
DORAM'S NEW CATALOGUE HAS BEEN SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS & HI-FI ENTHUSIAST.

DORAM'S SERVICE ALSO INCLUDES:

- MANY PRICE REDUCTIONS – QUANTITY DISCOUNTS ON CAPACITOR, RESISTOR OR SEMI-CONDUCTOR ORDERS
- FREE – UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE
- ALL ORDERS SENT BY RETURN-OF-POST
- NO-QUIBBLE REPLACEMENT PART SERVICE
- POST & PACKING FREE FOR ORDERS OVER £1 (Only applies for Great Britain N.Ireland and B.F.P.O. Nos.- Overseas orders F.O.B.)

SEND FOR YOUR NEW CATALOGUE AND/OR KIT BROCHURE NOW!

If catalogue ordered (priced 60p) you will receive a refund voucher of 25p.

If catalogue and kit brochure ordered together, price 70p plus 2 x 25p refund vouchers.

DORAM ELECTRONICS LTD.
P.O. Box TR8,
Leeds, LS12 2UF.

NAME: .. ADDRESS: ...

POST CODE......................... I enclose Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for N.Ireland please add 30p for post and packing surface only.

An Electrocomponents Group Company
FAST RESPONSE STRIP CHART RECORDERS

Specification

<table>
<thead>
<tr>
<th>Type H3020-1</th>
<th>Type H3020-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pen</td>
<td>Three-pen</td>
</tr>
</tbody>
</table>

Made in USSR

Type H3020-1

- **Basic error**: 2.5%
- **Sensitivity**: 8mA F.S.D.
- **Response**: 0.2 sec.
- **Width of each channel**: 80mm
- **Chart speeds**, selected by push buttons: 0.1–0.2–0.5–1–2.5–5–12.5–25mm/sec.
- **Chart drive**: 200–250v 50Hz

Type H3020-3

- **Recording**: Syphon pen directly attached to moving coil frame, curvilinear co-ordinates
- **Equipment**: Marker pen, Timerpen, Paper footage indicator, 10 rolls of paper, connectors, etc.
- **Dimensions**: H320-1: 285x384x16.5mm, H320-3: 475x384x16.5mm
- **PRICE**: H320-1 £108.00, H320-3 £160.00

Available for immediate delivery

Z & I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF

Tel. 01-727 5641

Telex: 261306

WW — 001 FOR FURTHER DETAILS

SHEET METAL PUNCHES

QMAX

for quick, clean holes

- Easiest and quickest way of punching holes in sheet metal (up to 1.625mm)
- Simple operation
- 100% British
- Burr-free holes — no jagged edges
- 57 Metric and Linear sizes (Lists on application)

Used by Government services and most industries

Wholesale and Export enquiries to: ZETTLER (ELECTRONICS) LTD

44 PENTON STREET, LONDON N19QA Tel: 01728 2500

WW — 028 FOR FURTHER DETAILS

Switching problems?

Rely on Zettler.

Producing 30 basic types of relay and 15,000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

<table>
<thead>
<tr>
<th>Our product range comprises:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low profile (Platform)</td>
</tr>
<tr>
<td>Timing · Miniature · Low contact capacity · Hermetically sealed · Stepping</td>
</tr>
<tr>
<td>Mains switching · Latching</td>
</tr>
<tr>
<td>Contact stacks · Solenoids</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miniature Relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ 420 · 439</td>
</tr>
<tr>
<td>International standard relay</td>
</tr>
<tr>
<td>2, 4, or 6 change-overs</td>
</tr>
<tr>
<td>Plug-in type saves maintenance costs</td>
</tr>
<tr>
<td>Coil voltages: 12 to 180 Volts D.C. 6 to 240 Volts A.C.</td>
</tr>
<tr>
<td>Life expectancy to 100 million operations</td>
</tr>
<tr>
<td>Balanced spring held armature allows operation in any mounting position</td>
</tr>
<tr>
<td>Relay extends only ¼" from PC board when used with right-angle socket</td>
</tr>
</tbody>
</table>

We resolve your switching problems rapidly and expertly. Please contact us for further details.

ZETTLER

Zettler UK Division

Brember Road

Harrow, Middx. HA2 8AS Tel: (01) 422 0061

A member of the worldwide ZETTLER electrical engineering group, est. 1877

WW — 018 FOR FURTHER DETAILS
Build up the network you need with Barr & Stroud
Active Filter Modules

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment. Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732; ask for your copies today.

BARR & STROUD LIMITED
London Office: 1 Pall Mall East,
London SW1Y 5AU
Tel: 01-930 1541 Telex: 261877

Glasgow and London

EF10 Series - low pass, response down to d.c.
1Hz-30kHz cut-off.
12-36dB/octave stop-band attenuation.

EF20 Series - high pass response up to 1MHz.
1Hz-30kHz cut-off.
12-13dB/octave stop-band attenuation.

EF40 and EF41 Universal band-pass and band-stop with centre frequencies 0.1 Hz to 10kHz - band-pass Q up to 200 - band-stop Q up to 10. Supplementary operation in low-pass, high-pass and all-pass delay modes.

Do you really need a synthesiser?

The Eddystone 1830 series of general purpose HF/MF communication receivers is widely used in marine, military, police, broadcasting and other professional applications. Using the optional crystal control facility, stability is almost up to synthesiser standard - at a fraction of the cost!

Economy, simplicity and reliability are characteristics of the 1830 series. Continuous coverage is provided from 120 kHz to 30 MHz in 9 ranges, with reception facilities for CW, FMCW and AM signals. Variants are available providing SSB reception, modified coverage, and 50-channel crystal capability.

Eddystone Radio Limited
Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081
A GEC Marconi Electronics Company

WW—015 FOR FURTHER DETAILS

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation...

Each of the 6 volumes of this self-instruction course measures 11¾" x 8½" and contains 80 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital Systems.

£6.20

plus 80p packing and surface post anywhere in the world.

Payments may be made in foreign currencies.

Quantity discounts available on request.

VAT zero rated.

Also available — a more elementary course assuming no prior knowledge except simple arithmetic. Digital Computer Logic and Electronics.

In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.20

plus 80p P. & P.

Offer Order both courses for the bargain price £9.70, plus 80p P. & P.

Designer
Manager
Scientist
Engineer
Student

Guarantee — no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

To Cambridge Learning Enterprises, Dept COM, FREEPOST, St Ives, Huntingdon, Cambs. PE17 4BR.

*Please send me ..
Wireless World, October 1976

BIMBOARD

Stop Ruining Your I.C.'s And Wasting Time Soldering
Plug Into The Revolutionary New

BIMBOARD
The Only Professional Quality Breadboard That
Accepts All DIL Packages With 6 To 40 Pins
Incorporates Bus Strips For Vcc And Ground
Includes A Component Support Bracket
Has Over 500 Individual Sockets
And Allows You To Use And Re-Use
IC's, Transistors, LED's, 7 Segment Displays,
Diodes, Resistors, Capacitors

Only £9.72 (cheque with order) Including VAT and P.P.
Special Quantity Discounts Available For
Radio Clubs, Retail Outlets, Distributors

BOSS INDUSTRIAL MOLDINGS LTD
Hugo Industrial Estate, 2 Herne Hill Road, London, SE24 OAU, England
Telephone 01-737 2383
Telex 919693

Test Equipment

Multimeters

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about £6 to £58 (inc V.A.T.). There's at least one which suits your job precisely.

We have a lot of other test equipment too. Send the coupon and we'll send you our complete catalogue.

Please send me details of all your test equipment.

NAME
ADDRESS

Eagle International: Precision Centre, Heather Park Drive, Wembley HA0 1SU Tel: (01) 902 8832

Introducing the new Quick Charge Cordless Soldering Iron

- Solder heat in five seconds
- No wires to restrict use
- Completely recharges in only 4 hours!
- No need for earthing
- Capacity to solder up to 125 joints

This new rechargeable soldering iron from Greenwood brings added freedom to professional soldering. The Quick Charge recharges so fast that completely dead battery cells can be brought to full charge in about 4 hours - three times faster than before. In its stand the Quick Charge is, of course, being continually charged. A wide range of tips and now also a P.C. Drill attachment make this the most 'versatile' professional soldering iron available.

Greenwood Electronics
Greenwood Electronics, Parman Road, Reading RG3 1NE
Telephone: 0734-595844 Telex 848669

WW/3

WW — 087 FOR FURTHER DETAILS
“Where can I get a Universal Bridge that’s good enough for the labs, simple to use and tough enough for the shop floor and doesn’t cost a fortune?”

“Here—AVO’s Universal Bridge 8150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it’s battery powered. And anyone can use it, connections are simple and readings easy to take – with no calculations thanks to the mechanical in-line digital display and interlocking units selector.

The B150 Mk. 3—for use in production, quality control, development labs—even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy all at a price that’s a pleasant surprise From good distributors everywhere.

Ring us for the name of your nearest stockist or for fuller details of AVO’s Universal Bridge B150 Mk. 3.

Avo Limited, Archcliffe Road, Dover, Kent. CT17 9EN.
Tel: 0304 202620 Telex: 96283.

BULK ERASURE PROBLEMS?

LR71
MAX REEL SIZE 11 ¼”

LR70
MAX REEL SIZE 8 ½”

If it’s personal we can only advise a diet or joining weight watchers. If it’s to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of 11 ½” and tape width of 1”, quickly and efficiently within the time it takes to read this advertisement.

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry.

Moderately priced and available from:
Leevers-Rich Equipment Limited
319 Trinity Road, Wandsworth, London SW18 3SL
Telephone 01-674 8054
Cables: Leenage London SW18. Telex 923455 Wembley

1 CONSERVES YOUR CASH. 4 SOLVES BUFFER STOCK PROBLEMS.
2 SAVES TIME. 5 SIMPLIFIES ORDERING.
3 A PROTOTYPE SERVICE. 6 NO ORDER TOO SMALL.

So make United-Carr Supplies your SINGLE SOURCE for:-

CINCH Electronic Components

Some examples:— Barrier terminal strips. Printed circuit board edge connectors, D Subminiatures, Multi way plugs and sockets. Audio sockets.

United-Carr Supplies Ltd.,
112 Station Road, Ilkeston, Derbyshire, DE7 5LF
Tel: Ilkeston 328711 (STD 0602 328711) Telex 377117
Learn to use a microprocessor.

This portable computer teaches you how.

Low cost, battery operated
Intercept Jr. Tutorial System instructs you on
today's most advanced LSI semiconductor devices,
then serves double duty as an operating solid-state computer!

Learn microprocessors in hours.

With its detailed Owner's Handbook, Intercept Jr. teaches you basics of microprocessors, Random Access Memories (RAMs), Read Only Memories (ROMs) and input/output interfacing, all in less than 8 hours.

Contains everything you need.

Intercept Jr. is a complete all-CMOS computer on a 10- by 12-inch board. Contains batteries, entry keyboard, 8-digit LED display, RAM and ROM memory ... all controlled by an Intersil IM6100 12-bit CMOS microprocessor.

An inexpensive teaching computer.

For £196.39 you get both the handbook and the computer, plus provisions for expansion with 1024 words of additional memory, from 256 to 2048 words of added program, and input/output interfacing with terminals.

Intercept Jr.
is available off the shelf from
Intersil's distributors.

£196.39

Plug-in Expansion Modules available

RAM Module with 1024 words of added non-volatile memory

£96.51

P-ROM Module with sockets for 256 to 2048 words of program

£49.69

I/O Module for interfacing TTY

Keyboard/reader and printer/punch

£54.38

Coupon
Send this coupon for the latest brochure on Intercept Jr. to:
Intersil Inc. 8 Tessa Road Richfield Trading Estate
Reading Berks Tel 0734 595011 Telex 847227
or Intersil's UK Distributors:
Rapid Recall Ltd 9 Beterton Street Drury Lane
London WC2H 9BT Tel 01-379 6741 Telex 28752
Tranchant Electronics (UK) Ltd Tranchant House
100a High Street Hampton Middlesex TW12 2ST
Tel 01-973 0123 Telex 39615

name

company

address

tel
Why scrap good mono cameras?
Why change equipment which has many more years of useful life ahead?

EEV is still making image orthicons in very large numbers. And we’re constantly developing them with improved performance.

So you can be sure of continuity of supply of high-quality 3" and 4½" tubes.

Our prices are competitive. Our service backup is worldwide. All the knowhow and skill of 24 years production goes into every EEV image orthicon.

Our tubes are all you need – to keep on getting good pictures, colour or black and white, from older generation cameras.

Write for data and prices. If you have a specific requirement, contact your local EEV agent or call Camera Tube Sales at Chelmsford, England.

EEV and M-OV know how.
INTRODUCING
INTERLAB®

type MP51 low cost
PULSE GENERATOR

a new model in LI's INTERLAB® series
of versatile, economical, instruments for
laboratory, test and education

TYPE MP51 PULSE GENERATOR
- PRF 5Hz - 5MHz
- Delay 100ns – 100ms
- Width 100ns – 100ms
- Manual one-shot
- External trigger
- TTL compatible
- Mixing input for double/multi-pulse
- Price – only £55 ex works (plus VAT)

Also available in the INTERLAB® series:

TYPE SQ10 SINE/SQUARE OSCILLATOR
- 10Hz – 1MHz
- 10V p-p output
- 0.05% typical distortion
- 50Ω source impedance

TYPE D10 AF DISTORTION METER
- 0.1% – 10% THD
- Fundamental 10Hz – 100kHz
- Intrinsic distortion less than 0.05%

INTERLAB®

series from

LYONS INSTRUMENTS

Hoddesdon Herts EN11 9DX
Telephone 67161 Telex 22724
A Claude Lyons Company

wireless world, October 1976

breadboard power source

The Farnell Triple Output Power Supply – TOPS –
is an ideal utility power source for

- 5V, 1A and 15-0-15V, 200mA
- LED indication of overload
- Adjustable outputs
- Low cost, good performance
- Ideal utility IC/Op. Amp
- Power source for bench use

For details contact

FARNELL INSTRUMENTS LIMITED · SANDECK WAY · WETHERBY · WEST YORKSHIRE, LS22 4DH · TELEPHONE 0937 3541 or 01-864 7433 · TELEX 557294

WW-076 FOR FURTHER DETAILS

ELECTRONIC
INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal 1½ volt standard size battery.

Model “Mini-Z 1” measures from –40° C to + 70° C
Model “Mini-Z 2” measures from –5° C to + 105° C
Model “Mini-on Hi” measures from + 100° C to + 500° C

PRICED £20.00 each (VAT 8% EXTRA)

Write for further details to

HARRIS ELECTRONICS (LONDON),
138 GRAY’S INN ROAD, LONDON, WC1X 8AX (Phone 01-837 7937)

WW-046 FOR FURTHER DETAILS
Is there a mixing system versatile enough for your future requirements?

The **MIDAS P.R. total modular concept offers**:

Mainframe expansion in sections of six modules capacity at any future time, allowing a larger proportion of the budget to be used for modules instead of unoccupied mainframe.

This gives a cost effective solution with no compromise engineering, and a performance specification to meet critical live sound, recording and broadcast requirements.

The complete range of 21 standard modules are available from stock, together with assembled main frames in various standard formats.

MIDAS

54-56 Stanhope Street, London NW1 3EX. Tel: 01-388-7060

Louis De Potesta, ARC. S.P.R.L. Rue Th. Decuyper, 134. 1200 Brussels, Belgium. Tel: 7-71-30-63
The AEL 3030 is a compact, fully solid-state 150 watt PEP output Transmitter-Receiver covering 2.16 MHz on 4 or 6 channels.

Rugged construction for today’s tough environments. Easily accessible for simple maintenance. Ten plug-in modules give maximum insurance against loss of service.

The advanced technology used in the AEL 3030 provides unmatched efficiency in point to point or mobile communication, minimises size and cost and maximises reliability!

DESIGNED FOR RELIABILITY

For further information and colour brochure write to:

AEL GATWICK HOUSE
HORLEY, SURREY, ENGLAND
TELEPHONE HORLEY (02934) 5353
Telx 87116 (Aerocon Horley)
Cables Aerocon Telex Horlev

fault finding—no fiddle

With the AVO TT 169 in-circuit transistor tester. Co/No tests almost any transistor, diode or thyristor without de-soldering, without damage. Find out how it can save you time, save you money. You'll find the price is no fiddle either. Contact your local wholesaler, or us:

AVO Limited, Dover, Kent CT17 9EN
Telephone: Dover (0304) 202620

Electronorgtechnica

Carbon film RESISTORS

1/6 and 1/4w 70°C 5% tol. E.12
EX-STOCK
£4.50 PER 1,000 OF ONE VALUE
PLUS V.A.T.

Contact John Gingell

Z & I AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SF
TEL. 01-727 5641 TELEX 261306

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:
* very low distortion content—less than 0.03%
* output conorming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£60.00

Si451 Millivoltmeter
* 20 ranges also with variable control permitting easy reading of relative frequency response £60.00

Si452 Distortion Measuring Unit
* low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc. £48.00

ALL PRICES PLUS VAT

J. E. SUGDEN & CO. LTD., CARR STREET, CLECKHEATON, W. YORKS. BD19 5LA.
Tel. 0274-872501

WW — 030 FOR FURTHER DETAILS
the tubeless world

has been postponed for an indefinite period of time

Till then we will continue to serve you with the most extensive range of tube types as we did during the last 20 years.

Whether you look for receiving — transmitting — or special purpose tubes, we probably have it — right from the shelf.

We care for quality, quick service and — last not least — for a competitive pricing. It is good to have our new price list ERS—19. Please try us, we are standing by.

ULTRON

a good sound
a good address
when it comes
to radio tubes

Export through Dr. Hans Bürklin
Postfach 20 04 40
Schillerstr. 40
8000 München 2

Phone (89) 55 53 21
Telex 522456
Cables burklinelectric
F. M. TUNER MODULES BY Icon Design

The Electronic Design Specialists

These modules are fully assembled, tested and guaranteed units, as featured in our tuner designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.

M1 MAIN TUNER MODULE
including ten turh manual tuning pot

£25.30

M2 STEREO DECODER
including L.E.D. indicator

£6.36

M3 PUSH BUTTON PRE-SELECT UNIT
six channel & provision for manual tune

£14.50

M4 REGULATED POWER SUPPLY
20v, 100mA output, 240v input

£6.25

M5 TOUCH TUNE PRE-SELECT UNIT
A touch switched replacement for M3

£17.54

All items (except M5) are available in kit form, or as individual J.C.s, P.C.B.s, etc.

Full metalwork and teak cabinet is also available to complete the finest tuner on the market today.

WANT FOR FURTHER ADDITIONS TO OUR RANGE

Write for full lists today

To:

33 Restrop View
Purton, WILTS
SN5 9DG

F. M. TUNER MODULES BY

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University, Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both AC and DC Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05%, damping factor of at least 400 from DC to 1 kHz, and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads.

M600
RMS power out 750 watts into 8 ohms
1,350 watts into 4 ohms
DC to 20 kHz + 1 db — 0 db
+ 0° — 15° DC to 20 kHz
16 V / usecond
120 db below 600 Watts
19° std rack. 8¾” H. 16½” Deep

DC 300A
500 watts rms into 2.5 ohms (1 chan)
DC-20kHz + 1 db — 0 db
+ 0° — 15° DC to 20kHz
8 volts per microsecond
At least 110dB below 150 watts
19° Rackmount. 7° High. 9½” Deep

D150A
200 watts into 2.5 ohms (1 chan)
DC-20 kHz + 1 db — 0 db
+ 0° — 15° DC to 20 kHz
6 volts per microsecond
At least 115dB below 90 watts
19° Rackmount. 5¼” H. 8½” D.
XL99 – Standard features include:
- 100mV / 1 V fed
- BCD outputs
- Fast (100+ con/sec)
- ADC option
- Differential outputs
- 3″ leads (0.43″ optional)

XL36 – Standard features include:
- 1999 fsd
- Auto polarity
- Auto zero
- Isolated BCD outputs
- 0.05% accuracy
- 5V dc power

TITAN DRILL
ONLY Cat. No. 175
£9.61 + 35p & p inc. VAT

RELIANT DRILL
ONLY Cat. No. 0150
£5.64 + 18p & p inc. VAT

MULTI-PURPOSE STAND
ONLY Cat. No. 0200
£11.44 + 75p & p inc. VAT

ADAPTOR COLLAR
FOR RELIANT DRILL
Cat. No. 0201
£0.43 + 11p & p inc. VAT

These are only two examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids. To back up the power tools Expo offer a comprehensive selection of Drills, Grinding Points and other tools.

SEND S.A.E. (foolscap) for full details to main distributors:
A. D. BAYLISS & SON LTD.
Pfara Works, Redmarley, Glos GL19 3JU
Tel: Bromesberrow (STD 053 181) 273 and 364

Electronic Services and Products Limited
Cross Lane, Braunston, Near Daventry, Northamptonshire NN11 7HH
Telephone: Rugby (0788) 890672

A complete range of British-made instruments designed to simplify capacitance measuring
- Accurate and sensitive
- Requires no manual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Series 7 Amplifier Equipment
-sound investment

Since Grampian introduced the Series 7 range in 1971 hundreds of satisfied customers all over the world have found it to be a sound investment. The high technical specification has set a new standard in engineering and reliability and the modular construction offers the most comprehensive and flexible system available.

Series 7 – Sound investment

Grampian

Send for our illustrated catalogues:
J.J. LLOYD INSTRUMENTS LTD.
Brook Avenue, Warsash, Southampton
SO3 6HP, England.
Tel: Locks Heath 4221 (STD 048 95)
Telex: 477042 - JAY JAY - SOTON.

servos
synchronous
steppers
dc motors

gearboxes and
control systems

Stockists for McLENNAN ENGINEERING LIMITED
Kings Road Crowthorne Berks Telephone: Crowthorne 5757/8

Wireless World, October 1976
A NEW DIMENSION IN SOLDERING

Isotip Cordless Soldering Iron

Ideal for factory, field servicing, laboratory or home, the Isotip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand.

The Isotip is powered by long life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of 370°C. Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all soldering requirements.

Greenwood Electronics
Portman Rd, Reading RG3 1NE, England
Telephone Reading (0734) 595844.
Telex: 848659.

WW—654 FOR FURTHER DETAILS
wireless world, october 1976

teac

teac a3340(s) 4-channel recorder

Industrial version upgraded to studio requirements with increased head to noise performance and improved reliability. Four totally independent channels each with all sync, input mixing, switchable VU's and all the facilities for easy multitracking. This industrial model is in more studios than any other version.

Available only from ita
(Semi-pro version also available)
immediate delivery

revox

revox a-700 series

The new big Revox — ideal for all studio requirements. Highly sophisticated design features include speed servo, tape tension, full deck logic, crystal controlled servo electronics, 3 speeds, tape footage counter.

Ten balanced inputs, four output groups, 4 limiters, bass mud and treble EQ, modular construction, headphone monitoring. Extremely high quality construction only matched by mixers costing around £1,000.

ita

ita 10-4 modular mixer

The famous A77 has been constantly improved over the past 8 years and is now available in the latest Mk. 4 version. The wide choice of specifications includes versions for duplicating and logging applications. Backed by the world's largest sales force.

Available only from ita
immediate delivery

industrial tape applications

over 2,000 electronic components in a big new free 100 page catalogue

tandy

Nationwide supermarket of sound!

Please send for detailed literature and prices today to

lyons instruments

The NF range, Japan's premier electronic instruments for laboratory and production test applications, now available and backed in UK by NF service.

- Wave Memories (Transient Recorders)
- Function Generators
- Low Distortion Oscillators
- Auto-Ranging AC Voltmeters
- Variable Filters
- Automatic AF Distortion Meters

Exclusive UK Representatives:

lyons instruments
Hoddesdon Herts EN11 9DX
Telephone 67161 Telex 22724
A Claude Lyons Company

express component service

same day turn round

HIGH SPEC COMPONENT

fast* s.a.e stock

POST FREE ORDER SERVICE

NEW! SUPER EXPRESS PHONE SERVICE
Phone in by 4 p.m. Goods away by 5 p.m.

SHOP 6 DAYS A WEEK
EXAMPLE PRICE BC108 10p

orchard electronics

Please send me the 100 page Tandy catalogue

Name:
Address:

WW/3
Tandy Corporation (Branch UK): Bilton Road, Hoddesdon, Enfield, Essex. W5 57N.
Tel: (0993) 35292 Telex 82512608

express component service

same day turn round

HIGH SPEC COMPONENT

fast* s.a.e stock

POST FREE ORDER SERVICE

NEW! SUPER EXPRESS PHONE SERVICE
Phone in by 4 p.m. Goods away by 5 p.m.

SHOP 6 DAYS A WEEK
EXAMPLE PRICE BC108 10p

orchard electronics

Please send me the 100 page Tandy catalogue

Name:
Address:

WW/3
Tandy Corporation (Branch UK): Bilton Road, Hoddesdon, Enfield, Essex. W5 57N.
Tel: (0993) 35292 Telex 82512608

express component service

same day turn round

HIGH SPEC COMPONENT

fast* s.a.e stock

POST FREE ORDER SERVICE

NEW! SUPER EXPRESS PHONE SERVICE
Phone in by 4 p.m. Goods away by 5 p.m.

SHOP 6 DAYS A WEEK
EXAMPLE PRICE BC108 10p

orchard electronics

Please send me the 100 page Tandy catalogue

Name:
Address:

WW/3
Tandy Corporation (Branch UK): Bilton Road, Hoddesdon, Enfield, Essex. W5 57N.
Tel: (0993) 35292 Telex 82512608
The mixer which carries on When others are carried out

The Trident Fleximix System isn’t just another portable mixer which has to be discarded as your requirements grow. Fleximix is a carefully thought out expandable mixer which will meet your needs now and in the future. Any time you decide you need more channels you simply slot-in additional modules; if you run out of slots, just add another mainframe. Modules may be placed in any sequence you like. No factory rework is required and no rewiring necessary.

Fleximix is designed for high quality Public Address, Bands, Budget Studios and Theatre applications and many of its features are normally only to be found on expensive studio consoles.

For as little as £2,075 (excluding VAT) you can start with a 10 input 2 group output format and subsequently build it up to a system with 10 mixed outputs, any number of input channels and 24 track monitoring. Additional mainframes may be either rigidly or flexibly coupled to the original system. Flight cases are available to accommodate any format.

If you’re looking for a new mixer you’ve just found it! Write for details to:

TRIDENT AUDIO DEVELOPMENTS LTD.
Sales Office: 4-10 North Road
London NW 7 HN
Tel. 01-608 0087
Telex: Tritape 264773

PROFESSIONAL POWER AMPLIFIER MODULES

FEATURES:
SHORT & OPEN CIRCUIT, IMPEDANCE OVERLOAD, MISMATCH AND THERMAL PROTECTION. ONLY 5 EXTERNAL CONNECTIONS REQUIRED.
FULL 2 YEAR GUARANTEE.

• NEW 100w MODEL

Power Output

JPS5 Power Output Price
80 watt price £18.78
100 watt price £23.90
150 watt price £29.65

Freq. Response

10-30 kHz ± 0.5dB
10-30 kHz ± 0.6dB
10-30 kHz ± 0.6dB

Input Impedance

7.5 ohms
7.5 ohms
7.5 ohms

Damping Factor

20
500
400

Hum & Noise

116dB below 70
116dB below 70
116dB below 110

Input Sensitivity

0dB (0.775V) 70
0dB (0.775V) 110
0dB (0.775V) 170

Input Impedance

47k
47k
47k

Power Requirement

450W
450W
450W

Overall Dimens. Width x 1 1/2' High.

5.8' Long x 3' x 3 1/2
5.8' Long x 3' x 3
5.8' Long x 3' x 3

For industrial usage the frequency response of the amplifiers can be extended down to DC & ± 0dB ± 0.2% Input Impedance & Sensitivity can be modified to suit particular requirements.

POWER SUPPLIES

PS100 powers 1 JPS500 price £18.85
PS100/12 power 2 JPS150 price £18.85
PS100/15 power 2 JPS100 price £18.85
PS100/15 power 2 JPS100 price £18.85

BELMONT HOUSE - STEELE ROAD
PARK ROYAL - LONDON NW10 7AR
TELEPHONE 01-961 1274

WW — 095 FOR FURTHER DETAILS

DIGITAL FREQUENCY COUNTER

£45
+ 8% VAT

• FREQUENCY RANGE. 5Hz to 10MHz.
• TIMEBASE. 1 MHz CRYSTAL.
• 4 DIGIT + OVER SPILL, DISPLAY.
• F.E.T. INPUT.
• SIMPLE TO OPERATE.
• LOW PRICE.

As a special introductory offer we are selling these units for only £45, if your order is placed with us before the 10 October. After that date they will be sold for £54, so we recommend you order as soon as possible to avoid delay.

TAMAR ELECTRONICS, P.O. BOX 17, PLYMOUTH
WW 011 FOR FURTHER DETAILS
MADE IN BRITAIN?

You could be forgiven for being surprised.

After all, the market is flooded with Japanese equipment.

But now, for the first time, a tape deck, with full solenoid transport function is available from a British manufacturer.

It's the MK 7S from Brenell.

A sturdy machine of studio quality, that includes features like front panel bias accessibility and dual standard equalisation.

It can be seen and heard at our demo studio, Pembroke House, Campsbourne Road, Hornsey, London N8.

Or for more information call Andrew Stirling 340 3291

Also available - a complete range of multi-channel recorders, to customers own specifications.

brenell

FREQUENCY COUNTERS

Higher performance instruments from 1/10 Hz to 1.2 GHz measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery.

A selection of our products will be displayed at the MIPEL Exhibition in Budapest on the stand of Avionic Systems (Heathrow) Ltd.

TYPE 1001M

CRYSTAL OVEN OPERATING MANUAL

TWO TONE BLUE CASE

Sensitivity 10mV. Stability 5 parts 10.

<table>
<thead>
<tr>
<th>TYPE 1001M</th>
<th>£670 1.2 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>301M</td>
<td>32MHz 5 Digit £82</td>
</tr>
<tr>
<td>501</td>
<td>32MHz 8 Digit £178</td>
</tr>
<tr>
<td>801A/M</td>
<td>300MHz 8 Digit £305</td>
</tr>
<tr>
<td>801B/M</td>
<td>250MHz 8 Digit £262</td>
</tr>
<tr>
<td>301M</td>
<td>32MHz 6 Digit £121</td>
</tr>
<tr>
<td>501</td>
<td>80MHz 8 Digit £195</td>
</tr>
<tr>
<td>901M</td>
<td>520MHz 8 Digit £375</td>
</tr>
<tr>
<td>1001M</td>
<td>1.2GHz 8 Digit £670</td>
</tr>
<tr>
<td>Start/Stop versions plus £12</td>
<td>Memory versions available if not suffixed N</td>
</tr>
</tbody>
</table>

£25 extra

Type 101 1MHz 100kHz 10 kHz Crystal Standard £85

Type 103 D/A Air Standard £85

SUPPLIERS TO: Ministry of Defence, G.P.O., R.B.C., Government Dept., Crystal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS

6 WOLSEY ROAD, ASHFORD

MIDDX. TW15 2RB

Telephone: Ashford (Code 69) 53661/2

WW—982 FOR FURTHER DETAILS
Keep those contacts CLEAN
BY USING A DIACROM SPATULA

No other cleaner has all these advantages:
1. Only 100% pure natural diamond grains are used.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obtain lasting or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamonded blades are rigidly calibrated to ensure a perfectly uniform grain size of either 200, 300 or 400.
5. The blade gives a very weak to efficient friction and the rigidity of the metal handle is calculated to permit proper utilisation and yet prevent pressures on highly delicate relays.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556
As supplied to the M.O.D., U.K.A.E.A., C.G.B. British Rail and other Public Authorities; also major industrial and electronic users throughout the United Kingdom.
WW—073 FOR FURTHER DETAILS

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30, 300 & 1200 (30 and 120 cps)
Teleterm 1132 and 1200 series (portable /fixed 30 cps) with integral coupler and RS 232C
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance
* Other types and models available
* Refurbished units also available
* Short and long period rentals
* Minicomputer interfaces
* Quantity discounts
* Immediate delivery

TELEPRINTER EQUIPMENT LTD.
70-80 AKEMAN STREET,
TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring

WW—038 FOR FURTHER DETAILS

Now available in the UK

The NEW higher brightness indicator range

- HIGHER BRIGHTNESS - 8500ft lamberts
- Long life - 100,000 hours
- Exceptionally rugged construction, suitable for tough applications e.g. petrol pumps, weighing machines, taximeters as well as all normal electronic uses.
- Choice of 2 sizes - 2 types.
- ½ sign legends available.
- Fits standard 14 or 16 pin D.I.L. sockets.

Send at once for specification sheets of both the "high brightness" and standard ranges of 7 segment indicators.

KGM ELECTRONICS LIMITED
Clock Tower Road, Isleworth,
Middlesex TW7 6DU
Tel: 01-568 0151. Telex: 934120

WW 070 -- FOR FURTHER DETAILS
The proof is in the listening

A wide dispersion Hi-Fi loudspeaker system designed to deliver the maximum performance possible from a speaker system of average price (£60 M.R.P. V.A.T., per pair), the RA8 achieves its goal without any serious loss in sensitivity. Capable of handling up to 30 watts R.M.S. per channel rating, the RA8 is attractively finished in Teak or Walnut veneer.

Dimensions: 395x266x247mm (15½”x10½”x9½”)

Richard Allan

Please send me further information on the RA8 and RA range of speakers, plus a list of Richard Allan stockists in my area.

Name..

Address...

Richard Allan Radio Ltd.,
Bradford Road, Gomersal, Cleckheaton, BD19 4AZ
Yorkshire, England
Telephone Cleckheaton 872442

Richard Allan Radio Ltd.,
Bradford Road, Gomersal, Cleckheaton, BD19 4AZ
Yorkshire, England
Telephone Cleckheaton 872442
TPA 50 - D Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
<td>100 watts rms into 4 ohms 65 watts rms into 15 ohms</td>
</tr>
<tr>
<td>Freq Response</td>
<td>±0.1dB 20Hz to 20KHz into 15 ohms, ±1dB at 150KHz</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>Less than 0.04% at all levels up to 50 watts rms into 15 ohms</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td>OdBm</td>
</tr>
<tr>
<td>Noise</td>
<td>-100dB</td>
</tr>
<tr>
<td>Rise time</td>
<td>2 us seconds</td>
</tr>
<tr>
<td>Price</td>
<td>£77 plus V.A.T.</td>
</tr>
</tbody>
</table>

For full technical information contact:

H E W S H E T T O N
E L E C T R O N I C S
C A M B R I D G E R O A D, M I L T O N, C A M B S
T E L E P H O N E C A M B R I D G E 6 5 9 4 5 / 6 / 7

PPC E T I T E L T D.
1 1 9 A H I G H S T R E E T, T E D D I N G T O N, M I D D X.
T E L. 0 1 - 9 7 7 0 8 7 8

Now with the:

• NEW MK. II DRILL •

10,000 r.p.m. 120 cmg

“MORE POWER — MORE TORQUE”

12v - 14v. DC

DRILL ONLY £8.79
(p&p 35p)

STAND £4.40
(p&p 35p)

Incl VAT

(Together 50p p&p

SAE for illustrated leaflet and order form

VERSATOWER

Strumach Engineering Limited
Coppice Side, Brownhills, Walsall, West Midlands
Telephone: Brownhills 4321

WW—039 FOR FURTHER DETAILS
The easy to use, easy to buy, general purpose scope—the D61a

D61a dual trace Lightweight Oscilloscope

The 10 MHz 'scope that makes others seem expensive at any price!

It took years of Telequipment experience and intensive design effort to arrive at that unique combination of effortless higher performance and remarkable low cost which makes the D61a so outstanding for general purpose duties in the laboratory, the classroom and the TV service department.

Who else offers an oscilloscope with two 100mV vertical channels with a full 10MHz bandwidth, PLUS automatically switched, chopped or alternate display modes, PLUS automatically switched TV line or field triggering, PLUS an 8-10 cm display driven at 3.3kV and the choice of single trace, dual trace or X-Y presentation?

And who will send you full details on request?

Who else but Telequipment

Teletronics U.K. Limited,
P.O. Box 69, Beaverton House, Harpenden, Herts.
Tel: Harpenden 63141 Telex: 253559

Versatile—that’s our scope

WWW — 063 FOR FURTHER DETAILS
Contents
37 Business is business
38 Digital wristwatch — 1 by P. A. Birnie
42 H. F. predictions
43 News of the month
 Dolby and Capital, at last
 High-level compiler for microprocessors
 Smaller, more effective C.E.I.
47 Use your pocket calculator as a digital filter by V. J. Rees
49 Literature received
50 Electric power from the sun by G. L. Lawrence
55 NTSC simulator by R. C. Whitehead
56 Letters to the editor
 Future of television
 Communication theory
 Was Baird fooling the public?
59 Electronic systems — 5 by R. Ashmore
61 Thévenin, Norton and dependent sources by H. E. Stockman
62 Announcements
65 Variable pre-emphasis in f.m. broadcasting by L. Lewis
67 Projection television — 2 by Angus Robertson
73 Self-setting time code clock — 3 by N. C. Helsby
74 Circuit ideas
 Low voltage audio amplifier
77 Distortion levels in r.f. clipping by D. A. Tong
81 Sixty years ago
82 World of amateur radio
83 Characteristics and load lines — 3 by S. W. Amos
86 Books received
89 New products
92 Real and Imaginary by “Vector”
130 APPOINTMENTS VACANT
144 INDEX TO ADVERTISERS
EEV marine magnetrons?

++ + EEV MAGNETRONS FOR MARINE RADAR STOP.
EXPANSION COMPLETE STOP ALL TYPES NOW
AVAILABLE STOP FOR EX STOCK DELIVERIES
ORDER NOW. ENELECTICO /

Yes.

To meet increasing worldwide demand, we've stepped up production of EEV marine magnetrons.
Now you can order all EEV types and be sure of getting them from stock.
You’ll be sure, too, of getting the world’s best tubes. EEV’s unique metal/ceramic magnetrons can last 60% longer than other makers’ glass types.
Get the best. Fast. EEV/M-OV magnetrons, modulator tubes, duplexer devices, CRTs – in fact, all the tubes you need for marine radar.
From EEV/M-OV international stockists everywhere. Or if you’d like our equivalents list, contact Chelmsford.

EEV and M-OV know how.

WW—842 FOR FURTHER DETAILS
Business is business

To the ordinary observer it seems that in business anything goes as long as both parties agree about a transaction and are satisfied with it. It is even possible to have fair trading in an illegal commodity. But when the transaction crosses a national frontier other interests are affected, notably the economic and perhaps the military security of the countries concerned. Hence the recent calls in Britain for import controls on consumer electronics goods (reported in the August and September issues). Referring to Japanese competition in colour television sets, Mr Edward Lyon, the M.P. for Bradford West, said in the House of Commons recently "It is quite clear that we are facing unethical business practices with the long-range objective of destroying sectors of Western European industry."

Unfortunately there are no real ethics in business, beyond the basic agreement mentioned above, and the practice of knocking out a sector of somebody else's industry, whether at home or abroad, is an accepted part of business activity. As for the accusations of dumping, made against the Japanese now and the Americans earlier (on integrated circuits), it must be remembered that there are people in one's own country who are buying the dumped goods and that they are just as much to blame, for conniving in the practice, as the sellers in another country.

Leaving aside questions of right or wrong, it seems inevitable that protectionism must be applied, as it is, indeed, by nations all over the world. In itself it has become a part of business. There seems to be several types of protectionism in use. First of all there is the direct process of controlling imports to keep them at levels which are safe for one's own industry. Secondly there is export protectionism, such as the Americans are thinking of applying to "mechanisms that transfer key know-how" of strategic value to the Soviet Union. Thirdly there is a protectionism directed against foreign technological systems, for example in the discrimination applied in America against the Decca Navigator system to protect US electronics industry interests.

In Britain protectionism alone is not enough to get us out of trouble. If the government is to be called in to intervene in business affairs it should also be to support particular sectors of industry which are worth supporting because they have considerable export potential. This must be done selectively because, as a small nation, we have insufficient resources to be experts at making and selling everything. It is good to see that certain types of electronic products have been chosen for long-term economic planning by the National Economic Development Council as part of the government's "new industrial strategy" introduced last year.
Digital wristwatch

Single i.c. design using a liquid crystal display — 1

by P. A. Birnie

A dramatic increase in the availability of digital wrist watches over the past year has not been reflected in the build-it-yourself market, and only one well known (l.c.d. display) kit is currently available. This design uses one i.c. and, as shown in Fig. 1, represents a minimum component design as used in mass-produced devices. The watch uses a 3½-digit liquid crystal display (l.c.d.) operating in a 12 hour mode. A 32,768Hz quartz crystal offers a stability, after initial ageing of about four weeks, of better than a minute per year and, with careful adjustment, a few seconds per year. Power is supplied by mercury cells which give at least a year of continuous operation.

In the functional diagram of Fig. 2 the crystal uses an amplifier and integral feedback resistor in the i.c. to form, in conjunction with the fixed capacitor and trimmer, a stable frequency source for the watch. A field-effect l.c.d. is connected to 22-segment outputs and one back-plane or common output. Setting of the time is achieved by two single-pole switches. The terminal marked test-in allows high-speed operation of the device. Another terminal marked DDC is designed to drive a d.c. to d.c. converter for generating up to 6V for the display. In this design two cells are used instead of the last-mentioned output because it is more economical in space and cost. Those wishing to experiment with the converter can use a circuit similar to Fig. 3 which is designed to generate a 6V d.c. supply across the 20mF capacitor. This voltage must not exceed the 6V maximum for any input on the TA6478.

Multiplexing of the display is not possible because all of the segments have one common back plane connection. The l.c.d. consists of two pieces of glass sandwiching a thin chemical layer as shown in Fig. 4(a). This layer can be made opaque when an electric field is applied across it. Digit segments are deposited on the inner face of the front piece of glass using a virtually transparent conducting material. The inner face of the rear piece of glass has an overall back plane covering of the same material. A piece of highly reflective tape is fixed to the rear of the device which is less than 2mm thick. To reduce degradation of the cell an alternating voltage is used to drive the segments as shown in Fig. 4(b). A square wave of about 30Hz is directly applied to the back plane and the segments are connected to the outputs of exclusive-OR gates. Fig. 5 shows the square wave applied to the back plane, the 180° out-of-phase waveform applied to segment a, which turns it on, and the in-phase waveform applied to segment b, which turns it off. The actual waveforms applied to the display are shown in Fig. 6. Note that the alternating voltage effectively doubles the supply which greatly increases the contrast ratio. Current consumption of the display is about 3000nA under normal operating conditions.

Operation of the oscillator can be explained by reference to Fig. 7. Within the TA6478 a pair of complementary m.o.s. transistors form a simple inverter, and the trimmer capacitor allows a frequency change as shown in Fig. 8. The crystal is designed specifically for miniature time keeping applications and operates in the length-width mode of vibration. Mechanical characteristics of the crystal are carefully optimized to reduce ageing effects but, as Fig. 9 shows, a certain amount of drift occurs predominantly over the first six to eight weeks.

The batteries used in this design are not conventional watch types. Instead, two RM312H mercury cells are used which are cheaper and more readily available. As the voltage drops at the end of the cell life the oscillator will cease driving the colon correctly. At this point the cells should be replaced immediately because a direct voltage is being applied to the display.

Mounting and interconnections

Overall size of the TA6478 necessitates the use of a printed circuit board and an enlarged layout is shown in Fig. 10. Three large areas on the right of the board allow supply connections, and an additional VDD pad on the left terminates the earth sides of the two capacitors. This pad also provides an earth screen for the oscillator terminals. Two small rectangular pads from S1 and S2 allow flying leads to be connected to the
Fig. 2. Functional diagram of the TA6478. The DDC output can be used to generate up to 6V for the display.

Fig. 3. Converter suitable for use with the DDC output.

setting switches. Two pads on the left of the board connect to the oscillator terminals and allow mounting of the crystal, and ends of the capacitors. Attachment of the TA6478 to the board is made relatively easy by using the following method.

Spread a thin layer of Multicore Solders type XM27330 cream over the i.c. pads and place the i.c. in position. Secure a piece of aluminium at least 6 in square in the horizontal position and place the board in the middle. Precisely line up the i.c. on the board and then heat the underside of the metal plate with a gas blow torch. At 179°C the paste becomes liquid and at this point raise the temperature very slowly until the liquid turns to solder which will flow over the tinned pads. After a few seconds remove the heat and leave the board to cool. If all of the pins have not been soldered correctly, the process can be repeated. Remove surplus flux and paste using cellulose thinners. Normal c.m.o.s. handling practice should still be adopted even with the i.c. mounted on the board.

The crystal is mounted as shown in Fig. 10, taking care to insulate it from the board and the i.c. Crop the trimmer capacitor leads and mount it in place making sure that the lead which is electrically connected to the adjusting screw is soldered to the VDD pad. Finally mount the fixed capacitor in place.

Initial testing
Testing can be carried out by using fine flexible wires. Make connections to the
Fig. 5. Signal applied to the backplane with the in and out of phase signals for turning segments on and off.

Fig. 6. Actual signals applied to the display.

Fig. 7. Integral m.o.s. transistor inverter of the TA6478.

Fig. 8. Change in frequency for change in trimmer capacitor value.

Fig. 9. Ageing effects of the crystal. Most of the drifting occurs within the first 6 weeks of operation.
battery terminals V_{DD}, V_{SS}, V_{EE}, the display common and colon, and also the DDC point if an oscilloscope is to be used. Connect two 1.5V dry cells as shown in Fig. 1, with a 0.50mA ammeter in series with the V_{DD} supply. This cell should supply between 3 and 5mA, readings outside this range indicate a circuit fault. If an oscilloscope is available check the DDC waveform shown in Fig. 3. If an accurate method of measuring frequency is available adjust the trimmer to give exactly 256kHz.

Testing without an oscilloscope is performed by using the display to indicate correct outputs at display common and colon terminals. Fig. 11 shows the display connections from the front of the device. Using two flying leads from common and colon, a display of a segment should occur when the wires are lightly touched onto the display contacts. Because each segment has a resistance of several hundred megohms, it is virtually impossible to electrically damage either display or driver, but it is easy to physically damage the contact areas on the display. If a weak display appears, the oscillator is not running and a direct voltage is being applied to the terminals. This can be checked with a voltmeter which will give no d.c. reading when the basic module is functional and about 3V if it is faulty.

A further test uses a pulse generator to inject a 32kHz square wave of 1.4V pk-pk (reference to V_{DD}) into osc in, after removing the quartz crystal. If, on repeating the previous tests, correct results are obtained then it is almost certain that the crystal is faulty or has been incorrectly connected. If the tests still do not result in the correct display conditions, the i.c. has been incorrectly connected or damaged during assembly.

Display mount

When the display is on top of the p.c.b. module, the i.c. output directly aligns with the display inputs. Connection is made by two small printed wiring boards and a conductive rubber material. The rubber is necessary because the contact material of liquid crystal displays is not suitable for soldering, and it allows easy replacement of the display. An end view of the basic module and display mount is shown in Fig. 12. The two display mounts are small printed wiring boards with twelve tracks 29 “thou” wide and spaced 29 “thou” apart. The two small boards are aligned with the basic module so that twelve tracks on each are directly aligned with the corresponding tracks on the module.

After ensuring that the display fits into the mount, the boards are glued, using Araldite, onto the module. Interconnection is achieved by soldering fine wires between the relevant pads. To
avoid solder spreading onto the display contacts, it is essential to mask these areas with adhesive tape before soldering. Fig. 13 shows how this is done and also gives dimensions for the two mounts. It is also essential to use tinned copper wire of very small diameter such as 0.1mm. All connections are straightforward except the one labelled d_{AP} in Fig. 10 which drives two display segments rather than one. From the d_{AP} output on the module a wire connects directly up the side of the display mount to segment a_1 and another wire is taken over the surface of the integrated circuit, using the spare pad between outputs c_2 and e_2, and then up the side of the display mount to segment d_2. If this wire is kept taut there is no danger of a short to other pads. Although it is possible to connect the display by placing it on top of the display mount pads, conductive rubber is necessary to take up irregularities. Small pieces of conductive foam, as used to protect c.m.o.s. devices, may be glued to the solder connection on each display-mount pad using conductive adhesive. The adhesive must be kept away from the display contacts. A better solution, however, is to use a material called Cho-Nector which is designed for this application and has unique conductive properties best explained by reference to Fig. 14. The material contains carefully controlled conductive areas which have a maximum dimension of not greater than 60% of the material thickness. When contacts are placed on opposite surfaces the overlap of conductive areas forms a connection. Provided the contact separation across the surface of the material is greater than the specified minimum, resistance between contacts on the same surface is greater than 10^8 ohms. In practice, material of 10 "thou" is used which permits contact spacings down to 12 "thou" and a minimum area of 12 "thou" square. Two strips 3 x 24mm are secured to the display mount by a spot of adhesive. The Cho-Nector should not be contaminated with grease or sweat. The pads can be cleaned but should not be treated with an abrasive substance. The Cho-Nector can also be treated with an alcohol based cleaner but petroleum or chlorinated solvents will damage the material.

Testing the assembled module

The completed module should be tested to ensure that all segments operate correctly, and trimmed for initial adjustment. Connect flexible wires to the two V_{DP} pads, V_{SP}, V_{TE} and S_1, S_2 pads. Using two 1.5V cells connect the supplies. Connect wires from S_1 and S_2 via single pole switches to V_{DP} place the display in the mount, ensuring correct orientation. If the viewing surface is breathed on and examined under a strong light the orientation can be checked. If a correct display is not obtained two possibilities exist. Either

Fig. 14. Operation of the Cho-Nector. Conductive areas in the rubber make contacts through the thickness of the material but not across the surface provided the contacts are far enough apart.

The display is not aligned with the mount in which case move it from side to side until the display is correct, or the integrated circuit is in an incorrect display condition. This can be remedied by carrying out a time-setting sequence as in the table. When a correct display is achieved, two scraps of perspex should be glued in the mount to prevent side movement of the display. Using scraps of plastic or perspex, construct a temporary clamp to hold the module together for a few days while the trimmer is adjusted with the help of the GPO clock.

To be continued

Time setting sequence

<table>
<thead>
<tr>
<th>Colon state</th>
<th>Function after switch closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>with switch open</td>
<td>normal operation</td>
</tr>
<tr>
<td>with switch closed</td>
<td>hours change at</td>
</tr>
<tr>
<td>1Hz rate while</td>
<td>1Hz rate while</td>
</tr>
<tr>
<td>S_2 closed</td>
<td>S_2 reset,</td>
</tr>
<tr>
<td>S_2 now controls</td>
<td>minutes reset</td>
</tr>
<tr>
<td>minutes</td>
<td></td>
</tr>
<tr>
<td>closed</td>
<td>on</td>
</tr>
<tr>
<td>minutes change at</td>
<td>1Hz rate while</td>
</tr>
<tr>
<td>S_2 closed,</td>
<td></td>
</tr>
<tr>
<td>hours</td>
<td>not affected</td>
</tr>
<tr>
<td>not affected</td>
<td></td>
</tr>
<tr>
<td>set time held</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td></td>
</tr>
</tbody>
</table>

Parts list

Integrated circuit TA6478 (RCA)
Display 330W (Hamlin Electronics Ltd)
Crystal 32.768Hz subminiature type (Sintel, 53 Aston Street, Oxford)
Trimmer CT-5, 5-30pF (Pulsar Developments Ltd)
Fixed capacitor 10pF
Mercury cells RM3121H (two off)
Three p.c.b.s (see text)
Display connector two off 3 x 24mm
pieces of 12 thou thick
Cho-Nector conducting sheet (Steatite Insulations, Hagley House, Hagley Road, Birmingham B16 8GW)

We understand that Pulsar Developments Ltd, Spracklen House, Dukes Place, Marlow, Bucks, are organizing a kit of parts for a digital watch based on the published design.
Wireless techniques were being developed in the UK. Capital chief engineer Gerry O'Reilly had approached the IBA with the proposal for lengthy announced and unannounced tests.

After discussions between the IBA and the Home Office, however, the present proposal emerged: from October 1 to 14 all Capital transmissions will be Dolby B encoded, and from October 19 to November 1 they will be passed through a prototype variable pre-emphasis system made by Audio and Design Ltd. Other stations were also invited by the IBA to participate in the experiment and BRMB, the Birmingham commercial station, responded. The BRMB experiment will take place on the same dates but the variable pre-emphasis broadcasts will come first.

Answering questions from journalists as to why there would be no unannounced "control" experiment, Mr James Slater of the IBA said: "We don't really know what a satisfactory response would be. We just want to get the information in. The experiment is regulated by the Home Office, and it is not even guaranteed that if it proved successful that we would use it."

Although the IBA are not admitting to having wanted unannounced tests, it is clear that they had to change their minds. No-one would say who had decided that Capital should accept "a modified form of tests", or to whom the information obtained from them would have to be submitted for a final decision. No-one from the Home Office was present to answer questions, but the IBA's statement says the IBA would have to seek Home Office approval for the permanent use of either system.

Both the Dolby and the A&D system will allow a 2dB improvement in signal to noise ratio on conventional receivers, say the IBA, more if the Dolby signal is decoded on reception. The increased high frequency content of broadcast material since the 50µs time constant was adopted 20 years ago has meant a compression of the rest of the spectrum. Both systems modify the pre-emphasis characteristics to improve matching with programme material, reducing the need for the 2dB guard band currently allowed when lining up the transmitters.

The Dolby B system has frequently been described elsewhere, but the Audio & Design system (see article in this issue) is so new that only one unit is available for the experiments, hence the alternate dates between Capital and BRMB.

Electronics industry progress

At 613,000, deliveries of British and foreign colour TV sets for the six months to the end of June have fallen by a quarter compared with last year, according to figures issued by the British Radio Equipment Manufacturers' Association, but exports of colour TVs in the same period were up £8.8 million to £20.4 million. Monochrome deliveries were up 10% to 490,000. Deliveries of audio stereo systems fell 24% during the six months to 259,000, and radio sets fell 18% to 1,853,000.

Mr Jack Akerman, managing director of Mullard has at last said, in an interview with The Times, that he wants government aid for the British electronics industry. In a previous encounter with Wireless World he had said that earlier remarks he had made about wanting government money as well as import controls had been mistaken, but he told The Times, "At the beginning of August that the industry should have £100 million each year for the next ten years. Akerman now seems to be turning his undoubted gifts for proselytising to the whole of the electronics industry rather than just that small sector of it involved in television manufacture. Though unavailable for comment, Mr Akerman is said to be taking his example from other governments, notably those in Germany and Japan, who are assisting their industries. At a meeting on August 10 between management and unions in the industry and Mr Edmund Dell, Secretary of State for Trade, the industry was assured by Mr Dell that the Japanese had assured him there would be no sudden increase in colour TV imports for the rest of the year. The importing of monochrome sets, a more sensitive issue, was still being discussed.

Garrard have designed and patented this cyclical turntable mechanism, used in the new G 155 series, to provide an integrated unit independent of the drive assembly. It is driven by a flexible belt connected to the turntable and is capable of functions from the fully automatic playing of one record (six on American models) to manual override for individual record track selection. The moulded plastics mechanism is highly durable, needs little maintenance and is quieter than earlier ones, say Garrard.
In March, when manufacturers first became seriously concerned about the importing of colour TV tubes and sets, Whitehall also expressed an interest in the audio industry, and the manufacturers were asked to submit a report. The civil servants take the view that British audio is in much the same state as the motor cycle industry was before it was destroyed by foreign competition. The industry's report was not submitted until the end of July, however, and more delays may be expected before the Department of Industry takes any action since not all the information Whitehall needed had been submitted.

After a BBC TV news story on the representations by the British manufacturers, Lasky's managing director Derek Smith issued a statement in which he said that Japanese products "sell principally because of their high quality, reliability and technical leadership." Many products they wanted to sell are no longer made in the UK, such as cutters, sander and decks. On the call for import controls he said that if the government were to reconsider their opposition to import controls he would strongly argue that controls should only be on specific products and not just a blanket attack on anything Japanese "... we have no evidence that the hi fi we buy from Japan is being sold to us at dumped prices."

Cabled sound

After the generally admitted failure of the cable television experiment the Home Office has said it is prepared to licence up to six experimental local cable radio stations in the period to July 31, 1979. In reply to a question from Mr. Eric Moonman, Labour MP for Basildon, Mr. Brynmor John, Minister of State at the Home Office, said that the issue of the experimental licences would be conditional on the form and content of the programmes, the need to pay a licence fee to the Home Office to cover expenses in setting up and supervising the experiments, and the need for applicants to consult the local community in the area to be served about the operation of the service. The Home Office said in a statement that the Annan Committee, which will report next spring, had been consulted and had said it would welcome the experiments. Experimental cable television stations were licensed in January 1972, and five were set up at Bristol, Greenwich, Sheffield, Swindon and Wellingborough. Only the Greenwich and Swindon experiments are operating, though another experiment is due to start in Milton Keynes later this year. Advertising was allowed on the stations from February last year after a recommendation by the Annan Committee, but Bristol, opened in May 1973 and the largest of the five, closed in March last year. Wellingborough shut around the same time and Sheffield, potentially the largest station, closed on December 31, having started to take ads from September 1.

At a meeting held on July 21, Swindon Viewpoint, who operate the Swindon cable TV experiment, said their service could continue definitely for three more years until the licence expired in July 1979. "Though the target has not yet been fully reached," they said in a statement, "it was felt that some applications still outstanding and more local contributions would soon close the gap."

Swindon Viewpoint needs £60,000 a year to continue the service. The local authority provides £2,000, the Arts Council £3,000, but local industry £15,730. EMI is providing £15,000 in the first three months of the year as well as offering equipment, vehicles and tape stock worth £72,000 as a gift if Swindon can raise the rest of the money. EMI acquired the cable television equipment interests of Thorn Automation in June, 1973. A proposed increase in Home Office licence fees of £1,500 was scrapped after intervention of Swindon's MP, Mr. David Stoddart.

Commenting on the Home Office decision to allow cable radio experiments the assistant secretary of the Cable Television Association, Mr. Anthony Brittain, told Wireless World: "Naturally the cable companies welcome any move capable of extending what can be done on cable and showing its capabilities." Any further commitment to cable radio, however, would have to be made by individual companies and it was not for the Association to comment, he said. We understand that Swindon Viewpoint and others have already applied for licences.

High-level compiler for microprocessors

GEC Semiconductors claim to have developed the first commercially available high-level language compiler to run resident on a microprocessor. The RCC80 which compiles Coral 66, the first major government and defence approved real-time computing language, was developed for Intel's 8080A microprocessors and may be run on an MDS800 development system. In addition to the standard features of the Coral 66 language, the compiler includes functions necessary for microprocessor work and options such as recursion and bit manipulation that are not always available on much larger machines. The compiler package is available ex-stock for £1,500 and consists of a 2002-block floppy disc, a programming manual and an operator's manual. Hardware required includes a micro-computer development system, 48k of r.a.m., a floppy disc system and console and output devices. GEC claim that the Post Office, which already runs a Coral switching system, is among several prospective customers who have shown interest in the compiler.

Depolarising investigation

Intelsat will begin a 12-month investigation into the depolarising effects of rainfall on communications satellites this winter. They have awarded a $34,284 dollar contract to Canadian telecommunications carrier Teleglobe Canada. Heavy rainfall causes a reduction in polarisation parity between orthogonally polarized microwave signals and impairs the ability of a communications system to re-use frequencies. The object is to design systems which minimise the effect, and to measure it on the 4GHz down link and the 6GHz up link and the correlation between the two at the Mill Village 1 earth station, Nova Scotia. Intelsat are sponsoring a series of projects on depolarisation around the world.

PO waveguide network

A new waveguide system capable of carrying up to half a million simultaneous two-way telephone conversations or 150 television circuits may be installed between Britain's principal towns and cities. The Post Office estimate that the system, in the form of two inch pipes buried four feet underground, would be £25 million cheaper than alternatives using existing techniques or fibre optics. The Post Office has already spent £3 million in developing the system and, with BICC Research & Engineering, has set up a waveguide manufacturing unit in Alperton, Middlesex. BICC have installed a trial length of 14.2 km between Martlesham and Wickham Market in Suffolk.

The waveguide consists of a hollow tube 50 mm in diameter of helically wound fine copper wire encased in a glass fibre reinforced jacket incorporating a dielectric. The whole is then wrapped in aluminium foil to exclude oil or water and coated in a protective finish.

The use of a lightweight waveguide instead of the more conventional steel types was recommended in a report by Plessey and BICC commissioned by the Post Office in 1970 to survey various waveguide designs, their performance and economics. In the early 60s British Telecommunications Ltd, jointly owned by the two companies, had made a test length of a waveguide developed by Bell Laboratories, but the BPO's interest was stimulated by the improvement in high frequency solid state devices and the need to plan for future growth in telecommunications traffic.
New laser video pickup

A semiconductor laser pickup one twentieth of the volume of conventional optical videodisc pickups has been developed by Hitachi. The pickup uses a semiconductor laser source instead of the conventional helium neon source, which needs a bulky optical system. In addition, Hitachi say they have simplified the optical system by bringing the laser beams for the servo and video signals into one axis. Tests carried out with the pickup at 0.5 mW output power produced images with a 40dB signal to noise ratio, they say. The pickup is compatible with the conventional HeNe laser pickup.

Motoring news

A group has been set up to study the case for a public experiment of the BBC’s proposal for broadcast traffic information, demonstrated to the press in mid-March. The group, which will also study “the role of area broadcasting in driver information systems,” has been set up by representatives of the Association of Chief Police Officers, the BBC and the Transport and Road Research Laboratory, and follows a seminar held by the TRRL and the BBC at the end of July. The seminar was attended by about 40 delegates from the IBA, the Home Office, the Department of the Environment, police, motoring organisations and radio manufacturers.

The BBC, having departed from the EBU’s view that such a service ought to be on v.h.f., are particularly anxious to win the police over to their system. The police, for their part, were concerned that the BBC system, described in May Wireless World, only gave information every eight minutes. They were assured that the interval could be shortened. The IBA are sceptical of the value of the scheme, which they do not regard as providing much more than is already available on local radio, with the additional disadvantage that it uses up a whole UK medium wave channel. The BBC’s use of the word “area” instead of “local” may be a reflection of this criticism. On the other hand, unlike the EBU continental motoring network, the BBC motoring announcements can be heard on a cheaper radio, and unlike some TRRL proposals for using radiating loops on motorways, they can be heard by the motorist before he reaches the motorway or even leaves his garage.

Measuring pollution

The Water Pollution Research Laboratory has developed an instrument which records the dissolved organic content in water. The organic pollution monitor, as it is called, is designed for use in sewage treatment plants as a continuous automatic monitoring instrument, but can test samples in the laboratory. Tinsley, who make it, say the device is based on the principle that the absorption of ultraviolet light at an appropriate wavelength can be correlated with the organic carbon content of both river water and effluents. There is a relationship between ultraviolet absorption and the chemical and biological oxygen demands of samples of sewage at various stages of treatment. “There seems no immediate prospect of an automatic equivalent of the biological oxygen demand test, and automatic measurement of the permanganate value or chemical oxygen demand involves elaborate wet chemical procedures entailing reagent supply and waste disposal problems.” The monitor overcomes these difficulties by recording the dissolved organic content, which is related to both these quantities.

Marconi have developed a similar device for measuring fog thickness consisting of an optical transmitter receiver unit and a reflector unit mounted facing each other. The light source is an electronically modulated I.E.D. and the reflector returns radiation to the transmitting lens which focuses it on to a silicon photodiode. The receiver has a phase sensitive detector, say Marconi, to provide good analogue signal to noise ratio. Analogue signals are converted to digital form for visual readout. The instrument is self-calibrated to take account of contamination and component drift. The Royal Aircraft establishment will use the instrument, say Marconi, to measure the vertical profile of visibility from a balloon raised and lowered from 1000 ft. The Marconi system was developed for use on airfields, motorways, ships and ports, industrial areas, tunnels and underpasses or any area where there is smoke or dust.

A portable device now marketed by Carboeglen, the RDM-101, measures atmospheric dust particle levels by measuring the radiation from a 100 microcurie beta source which is absorbed by dust particles collected on an impactor. The device is battery operated and gives a digital readout of the dust concentrations in mg/m. If the sampling interval, some minutes, is altered different sensitivity ranges from the factory preset range can be obtained.

Electronic organ pioneer

Leslie Bourn, joint patentor of the first electronic organ and builder of the first organ in the Royal Festival Hall, has died at the age of 77. He took an idea for an electronic organ to John Compton, and in 1927 joined the Compton Organ Company, filing joint patents for the first electronic organ in the 1930s. At the time of his death on June 1 he was building an organ for one of his grandsons. “His friends and colleagues,” writes Laurie Fincham, “remember him as an inventive man with a fine grasp of the fundamentals of electricity, and he was both an amiable and stimulating colleague.”
On the way to a smaller, more effective CEI

It is possible to say, with as much accuracy as such assertions usually command, that the two year dispute over the future and composition of the Council of Engineering Institutions has passed over the heads of many professional engineers. As the outgoing president of the Institution of Electrical Engineers, Mr. R. J. Clayton, told Wireless World in a recent interview, "About a third of the engineers I know who join the Institution do so because they think it worth joining, and the rest join so that they can keep up with developments in their own field."

Depending on your point of view, the argument can be viewed as another exsiccation of the Middle Class Revolt, or a sign of insecurity among an important and productive group that sees its standing in the community, not least as measured by the amount the community seems prepared to pay it, falling ever lower. A CEI survey published last year showed that the real income of Britain's 250,000 chartered engineers had fallen by more than 7% in two years. Some older engineers were worse off now than nine years ago. The survey also reflected growing concern shared by the Government, the CBI and the Science Research Council about the lack of new entrants into the profession. Low recruitment, it has been said, is another sign of the falling status that the professional engineer enjoys.

While many engineers don't think about status — Mr. Clayton confessed that he wasn't altogether sure what it meant — the one-third of activists seem concerned enough about raising it to want their collective voice heard where they think it matters: in Whitehall and Westminster. Originally this was one of the tasks entrusted to the CEI when it was formed in 1965, replacing the Engineering Institutions' Joint Council set up by the Mechanical, Civil and Electrical Institutions, the Big Three, in 1924.

Linked with this, and ostensibly even more important, was the CEI's duty to establish a common, and high, standard of entry into the engineering profession. Thus the title "chartered engineer" was created in 1965, but it was not until January 1, 1974 that a degree or its equivalent became the required academic standard.

But in the minds of those worried about such things, the larger failure of the CEI has been that the official and public idea of engineers does not measure up to the engineers' idea of themselves. At an IEE meeting in January last year Mr. A. G. Milne, past president, succinctly explained: "I do not wish to deny or denigrate the success of the CEI in establishing, albeit late in the day, a reasonable standard of academic qualification, but we must recognise that the founders of the organisation were looking for much more than that. One of the main functions hoped for was, to use a trite phrase, that it should become the 'voice of the profession.' It was hoped that it would become the body to which Government could turn for ready and reliable advice, and which could focus the attention of the public generally upon the existence and achievements of professional engineers, and so create a better understanding of the contributions which they make to civilised living. Regrettably, the CEI has failed to make any significant progress in this direction.

Another source of irritation was that the CEI was looked on as something of an exclusive club. Of the forty or more institutions and societies which represented engineers only 15 were in the CEI. Engineers who were quite well qualified for the title "chartered engineer" could not use it unless members of one of the 15, a kind of engineering closed shop.

Each of the 15 had three members on the CEI board of 48. None of them felt empowered to act without consulting the institution which had delegated him and two colleagues, and this federal structure was blamed for much of the failure of the CEI. What was needed, argued the militants, was a body which could act for engineers without reference to the institutions. Thus the board should be elected directly by the engineers themselves, whose representatives could then act without fear of retribution by the institutions.

This seems, on the face of it, an attractive argument, yet if the Big Three had felt two years ago that they already had greater influence in the affairs of the CEI than the others there might have been no attempt to reform the council. The IEE vice-president Professor Rawcliffe was perhaps more explicit at the January 1975 IEE meeting than some of his colleagues might have wished. "65% of the corporate membership of the CEI is in three major institutions (Civil, Mechanical and Electrical) and everyone knows that these institutions are higher in average status and standard than most of the others. But action is inhibited by the structure and bureaucracy of the CEI. In my view the proper first remedy for our troubles is that the three major institutions should insist that there should be some form of proportional representation in the CEI, so that they are not frustrated by smaller institutions."

The smaller institutions protested that the effect of this would have been to increase representation of the Big Three on the CEI board at their expense. With pressure at Westminster and in Whitehall growing for a public inquiry into the engineering profession, a CEI meeting on July 24, 1975 agreed, with the Big Three institutions predictably dissenting, on a compromise proposal whereby one representative would be elected for three years by the chartered engineers of each member institution. Individual chartered engineers could become members of the CEI provided they were members of an institution affiliated to the CEI.

In a statement issued in September the then IEE president, James Merri- man, said the election proposal "would not, in our view, dissociate the CEI from the overriding influence of the institutions... In these circumstances our council thought the only proper course was to give notice of resignation." The IEE said it would leave at the end of 1976. They were joined in November by the mechanical engineers, though the mechanics did not go so far as to give notice. It is difficult to compute membership figures because of cross-membership among the institutions, but had these two carried out their threat the CEI might have lost roughly half its 170,000 chartered engineers.

By January, 1976 however, things looked hopeful enough for the electricals and mechanics to submit a joint proposal to the CEI chairman, Tony Dummet. They suggested that the TUC and the CBI should be represented as lay members of a reformed CEI, and that membership should also be open to non-chartered institutions which met certain standards, provided their chartered engineer membership was large enough. The CEI differed from the I Mech E and the IEE on these matters at an informal meeting in May, but otherwise there was substantial agreement.

Mr. Clayton said he was not adamant about who the lay members should be: "Nobody has said that I must have what I asked for." He merely feels that the CEI should include "a couple of men who are not engineers who can give the outside world's opinion of engineers."

After a more formal meeting of the board in July, 1976, it emerged that outsiders might be invited from the legal profession, from the engineering services or from the United Kingdom Association of Professional Engineers. As to non-chartered membership, the CEI felt that the joint proposal would have made the new board as cumbersome as before, but agreement was reached that there should be one representative from each institution, plus a number of individual members, up to two per institution, elected nationally by the single transferable

Continued on page 72.
Digital filter design

Programming a microprocessor to act as a digital filter

by V. J. Rees, M.B.E., M.A., B.Sc., D.U.S., Army School of Signals

This article has three aims. The first is to answer in simple terms the question, "What is a digital filter and why use it in place of a classical filter?". The second is to show one way in which filters can be designed; the process is unfortunately rather mathematical, but even if you do not wish to follow the mathematics in detail you should grasp fairly quickly the philosophy behind it. The third aim is to show that digital filters actually do what is expected of them; a low pass filter is designed, a triangular wave of voltage applied, and the output is seen to be what one would expect from the equivalent classical filter.

 Filters are a very necessary part of communications, and have been with us for a long time. They started out as LC circuits, heavy and bulky at low frequencies; some then graduated to active types, where the inductors were discarded and replaced by integrated circuits. But they still had their limitations in modern communications systems. For one thing they were not very flexible; a different set of hardware was required for each filter and if the characteristics required changing a lot of soldering had to be done. For another communications is going "all digital"; no longer is an attempt made to preserve the electrical analogue of a signal from microphone to speaker. A few samples per second of the microphone waveform are taken and we are content to send these samples, in binary form, off down the communications link.

The recipient is left with the job of reconstituting the original signal from the samples. Typical of such systems is pulse code modulation; its advantages are well known to communications engineers. In retrospect we are doing no more than the man who is asked to plot a graph. He will ask for a number of numerical samples from the information available so that he can plot these as points on a graph; provided he is given enough samples he can interpolate between the points and produce his own continuous function. Signals down a communications link will therefore be at only 2 levels, a 1 or a 0, representing binary numbers. This is the second reason why classical filters are not entirely happy, they are required to work in a strange world of 1s and 0s.

Two reasons have been given for considering ordinary filters unsatisfactory: their inflexibility and their dislike of a digital signal processing environment. Something which is quite happy with digits and can respond rapidly to change is the digital computer. The question now arising is whether a computer could be placed in a communications link so that it accepted samples of a signal, processed them in real time by instructions from its software, and sent them on their way "filtered." If this can be done, and it can, the process being called digital filtering, the two objections to classical filtering are overcome. Changing the frequency response of the filter is merely a matter of changing the programme; no soldering required. And of course it is happy in a digital environment, always provided, it can process the sample fast enough to work in real time: the sampling theorem says we must have at least two samples per cycle of the highest frequency we transmit, say 6k samples per second for speech.

To fix our ideas on digital filters consider Fig. 1 and Fig. 2. Fig. 1 shows the classical concept of a filter; a continuously varying input signal is processed so that the voltage/time waveform of the output is different. The relation between output and input is usually expressed as a transfer function $G(s)$; in Fig. 1 the Laplace transform of this function is shown. Transforms will be needed later to explain how digital filters are designed. Fig. 2 shows how a digital filter could be used to replace the classical filter. Note the requirement of some form of sampler and analogue to digital converter to produce the digital samples for the computer to work on, and the need to convert these samples back to an analogue waveform. Remember we are now working on the "points in a graph" concept.

Digital filters would have their limitations if every receiver requiring a filter had connected to it a large and expensive computer, though in some static systems the time sharing capability of the computer might make it an economic proposition if it replaced several filters. However the arrival of the microprocessor has changed all that. This is, essentially, a cheap, single chip processor programmed by an,
Digital filter design

Before proceeding to the detailed design of digital filters, a look at the problem in broader terms might help. If a computer programme is to act as a filter it must ask for a sample, process it, and send it on its way. Clearly filtering cannot be achieved without the process involving reference to previous samples; for example, a low pass filter must ensure that the rate at which sample amplitudes change is not too great to exceed the cut-off frequency of the filter. Therefore the programme must hold previous samples for comparison with new samples, and we shall be looking for a programme which does this. Fig. 4 is just such a circuit and is capable of being written in computer programme form as is shown in Fig. 5. The circuit takes a sample and adds it to the sum of all the previous samples multiplied by a constant related to the filter characteristic (D) and the sampling rate (1/T); it is in fact a digital low pass filter. Fig. 4 is the heart of digital filtering. In the next section will be shown in detail how to obtain this algorithm relating input and output samples. If we accept that this can be done, filter construction has been reduced to writing the correct algorithm to represent the filter characteristics, leaving the hardware design to the computer or better still the microprocessor designer. Of one thing you may be sure; you will be seeing a lot more of digital filters now microprocessors are with us.

And now to show that Fig. 4 is a digital filter. This is where problems arise. An elementary knowledge of Laplace transforms and impulse functions must be assumed; furthermore the modulation process involved in sampling a waveform should also be understood. You will be pleased to hear that the concept of Z transforms has been avoided.

Even if you do not follow through the mathematics, but are prepared to accept Fig. 4, the section starting “Verification of the programme” should be intelligible, and the detailed working of a low pass digital filter understood from the worked example.

Obtaining an algorithm

Consider the transfer function of an analogue filter; in Laplace notation this is given by:

\[G(s) = \frac{V_{ou}}{V_{in}} \]

Now if \(V_{in} \) is an impulse function at time \(t = 0 \), \(V_{ou}(=1) \), and \(G(s) = V_{ou} \)

Thus the problem of determining \(G(w) \) can be reduced to obtaining the output of the filter when the input is an impulse. This is of course “old hat” for analogue filter designers. How does it help with the design of digital filters? The argument, which is fundamental to obtaining the algorithm, is as follows:

“In digital filtering the inputs to the filter are weighted impulse functions (actually coded in binary). Furthermore, output from the filter is only provided at the sampling times. Therefore we have constructed the digital equivalent of an analogue filter if they have identical outputs at the sampling times when an impulse function is used as an input.”

An example being easier to understand than generalisations, consider the design of a digital filter to replace the simple analogue low pass filter of Fig. 3. \(G(w) \) can be written down by inspection, which is also \(V_{ou} \) for an impulse input at time \(t = 0 \); \(V_{ou} \) can be converted to \(V_{ou} \) by inspection. Since we are only interested in \(V_{ou} \) at the sampling times, by obtaining this, the output of the equivalent digital filter will be obtained. Proceeding on these lines we obtain:

\[\frac{1}{sC} = \frac{1}{1 + sCR} \]

where \(a = \frac{1}{CR} \)

Solving \(G(w) \) by inspection, for an impulse input, we have:

\[G(w) = V_{ou} = ae^{-at} \]

Now we are only interested in \(V_{ou} \) at the sampling intervals 0, \(T \), 2\(T \) etc. Thus \(V_{ou} \) will be:

\[\begin{align*}
 a \text{ volts at } t = 0 \\
 ae^{-at} \text{ volts at } t = T \\
 ae^{-2at} \text{ volts at } t = 2T \\
 \text{etc.}
\end{align*} \]

Turning these output samples \(V_{ou} \) into \(V_{ou} \) will give us \(G(w) \) of the identical digital filter. Using the transformation

\[F \{ B(t-T) \} = e^{-at} \]

we have:

\[G(w) = a + ae^{-at}e^{-at} + ae^{-2at}e^{-2at} + \text{etc.} \]

This is a geometric progression of ratio \(e^{-at} \), and the sum is given by:

\[G(w) = \frac{a}{1 - e^{-at}e^{-at}} - \frac{a}{1 - e^{-at}e^{-at}} \]

Thus we have obtained an algorithm, in the \(s \) plane, for our digital low pass filter. The problem remaining is to write it in such a form that it is clearly amenable to programming.

The computer programme

We have:

\[G(w) = \frac{V_{ou}}{V_{in}} = a \]

\[= \frac{1}{i-e^{-at}e^{-at}} \]
Wireless World, October 1976

\[V_{nf}(1-e^{-ae^{-\beta n}}) = aV_{nb} \]

or \[V_{nf} = aV_{nb} + e^{-\beta n}(aV_{nf}e^{-\beta n}) \]

Remembering that \(V_1 \) and \(V_0 \) are impulses and that \[J V_{nf}(t-T) = aV_{nf}e^{-\beta n} \] it should be clear that Fig. 4 has the above relation between \(V_{nf} \) and \(V_{nb} \), and is therefore the required digital filter. There is no need to build this filter as the relation between \(V_{nf} \) and \(V_{nb} \) can be written as software for a computer. The simple programme for this filter is shown in Fig. 5. This would of course normally be run in real time, with the sampling rate determined by parameters outside the control of the filter. Intuitively it can be seen that filtering is achieved by comparing one sample with a modified version of the previous output, a process similar to delta modulation; it is ironing out the rapid changes which would be outside the filter bandwidth.

Verification of the programme.

Confidence in the ability of digital filters to fulfili their purpose can best be obtained by specifying a function \(V_{nf} \) and obtaining the corresponding \(V_{nb} \). The programme is so simple that this can be carried out (not in real time!) by the following process:

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Time} (\text{ms}) & V_{in} (\text{volts}) & \sigma V_{in} & e^{-\beta n} & V_{out} (\text{volts}) \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1.05 & 0 \\
2 & 0 & 0 & 1.87 & 0 \\
3 & 0 & 0 & 2.72 & 0 \\
4 & 0 & 0 & 3.63 & 0 \\
5 & 0 & 0 & 4.57 & 0 \\
6 & 0 & 0 & 5.52 & 0 \\
7 & 0 & 0 & 6.48 & 0 \\
8 & 0 & 0 & 7.45 & 0 \\
9 & 0 & 0 & 8.43 & 0 \\
10 & 0 & 0 & 9.43 & 0 \\
\hline
\end{array}
\]

(a) Draw a graph of the analogue waveform \(V_{nf} \) which you wish to filter

(b) Decide on a sampling rate, i.e. determine \(\tau \), and obtain from your graph \(V_{nf} \) at the sampling times 0, \(\tau \), 2\(\tau \) etc.

(c) Decide on the filter 3dB frequency; this determines the product CR and \(\alpha \). If you know nothing about the spectrum of a sampled waveform you will need to do some further reading to understand the limitations set on the relative values of filter bandwidth, sampling rate and input signal bandwidth.

(d) Put your weighted impulse functions (samples) through the programme manually to obtain \(V_{nb} \) at the sampling times.

(e) Multiply the output samples by \(\tau \), plot them on the same axes as the input and interpolate between them by hand to obtain the analogue output signal. In practice, interpretation would probably be achieved with a sample and hold circuit. The requirement to multiply by \(\tau \) needs justifying. Without doing this the shape of the output version would be correct, but the amplitude too large. It is necessary to multiply by \(\tau \) because in sampling the input signal, much of the sampled spectrum lies outside the filter bandwidth, and an adjustment must be made for this, which can be shown to amount to multiplying by \(\tau \). However, in practice absolute values of output are not important; gain can be built into the system.

(f) Ask yourself whether the output you have obtained is what you would expect from the filter. This check can be carried out either by considering the Fourier series for the input, or in the case of pulse inputs by considering the application of “step functions” to RC circuits.

The above process has been tried by the author for different forms of input signal. A worked example, the results of applying the triangular wave of Fig. 6 is shown in the table and Fig. 7. The 3dB frequency of the filter and the repetition frequency of the triangular wave have been chosen so that one would expect the output to be almost entirely the fundamental component of the Fourier series, and this is seen to be so. It is suggested that serious readers of this paper try a square wave input (check the output by “step function” approach), and also produce the algorithm and programme for a simple CR high pass filter.

Literature Received

Microprocessor Series 8000 users’ manual is now available. The manual gives a general description of the 8000 family, details of the hardware available, and assistance with interfacing and programming. The users’ manual costs £3 from General Instrument Microelectronics Ltd, 57-61 Mortimer St, London W1N 7TD.

Procedures under the Health & Safety at Work Act are outlined in a short leaflet, “Regulations, Approved Codes of Practice & Guidance Literature,” available free from local offices of HM Factory Inspectorate, HM Inspectorate of Mines & Quarries and HM Alkali Inspectorate.

Wire-wrap boards, designed for microprocessor chip sets, are described in a brochure from Nimrod Electronics Ltd, 85 High Street, Billingshurst, West Sussex W402

Harris operational amplifiers, a-to-d converters and associated devices, memories, and digital ics are briefly described in a short catalogue, distributed by Memec Ltd, The Firs, Whitchurch, Aylesbury, Bucks W402

Intersil tell us that they have published a guide to their range of discrete semiconductors, which contains application guidance and a cross-indexed list of devices. Intersil Inc., 8 Tessa Road, Richfield Trading Estate, Reading, Berks. W403

A book entitled “Thick-film Conductor Survey” is now obtainable from the Electrical Research Association. The book seeks to rationalize the huge amount of commercial data and presents information on formulation, characteristics, product lists, detailed data in various categories of characteristics, prices and sources. The material presented is international and is claimed to be independent. The 200-page book costs £45 (£41 to Association members) and is available from ERA at Cleeve Road, Leatherhead, Surrey KT22 7SA.
Electric power from the sun

One answer to the energy problem

by L. George Lawrence, Sc. D. Ecola Institute, California

Proposals to harness the power of the sun have enjoyed a long and continuous history. It is only in recent years, however, that advances in high-energy electronics and power engineering have brought tentative ideas into the hardware stage. In this article a profile is drawn on what has been and can be done in this critical field.

The sun

Solar radiation is so plentiful that energy arriving on only 0.5% of the land mass of the United States, for example, is more than the total energy requirement of that country projected to the year 2000. Today, as oil supplies approach depletion and arguments against the use of nuclear power and its massive waste problems increase, hopes are high — literally — for tapping the sun's abundance.

Technically, as summarized in Table 1, the sun presents itself as a thermonuclear proton-proton reactor capable of delivering 38 × 10^22kW at a continuous rate. Most of the star's high-quality energy is wasted in space. The total radiation continuously intercepted by our planet amounts to 173 × 10^12kW, or 23212hp. The mean power or solar constant available for engineering use is 1.395kW/m². This is light energy; radio energy is not as intense or dominant. However, it was the latter type of energy that stimulated scientific hypotheses.

In 1893, shortly after Heinrich Hertz's discovery of radio waves, it was assumed that the sun's corona could emit this type of radiation and, pending development of suitable converters, the energy could be distributed via domestic power lines. It was foreseen that Edison batteries would be employed to store energy for night-time use.

Fundamentally, there is nothing wrong with the elegant simplicity of this scheme. Such techniques might be in fashion within the realm of postulated galactic super-civilisations (Von Däniken's "gods," et alia) who have to control and modify power outputs and spectra of selected stars. Unfortunately, our mundane situation offers little knowledge beyond the fact that wavelengths longer than 50cm are tremendously weakened by ionized gases of our local star's atmosphere. Only those from the sun's corona can escape into space, to be detected by terrestrial radiotelescopes. In addition, only those solar radio waves featuring wavelengths between 1 and 15cm are capable of penetrating the Earth's "admittance window" in the atmosphere. However, with solar dynamics being imperfectly understood, it is likely that major phenomena have been overlooked.

Thus, because of the enormous benefits that would result from direct high-power radio wave interceptions from the sun, electromagnetic and other properties are carefully re-examined.

The search for special energy-generating and deep-space power transfer mechanisms is reflected in the solar magnetogram, a magnetic map showing the location, field intensity, and polarities of magnetic fields for a given day.

Extended magnetic areas on the sun's sphere are typically bipolar and usually produce sunspots plus other solar activities. A powerful ultrasonic phenomenon was discovered recently, its waves ebbing back and forth at extremely high energy levels. Drs Schatzman, Ulmschneider and Kopp, among others, have considered acoustic waves to be of primary importance as heating agents for the solar corona. Better insight was provided by the NOAA Space Environment Laboratory (Boulder, Colorado), where Dr C. Sawyer employed time-lapse filter photography to measure the frequencies, or periods, of the "galloping" wave motions in the sun's chromosphere (atmosphere). Through joint research with Dr Sara Smith-Martin of Lockheed's solar observatory, it was determined that chromospheric wave crests advance at about 96 km/s and that a wave crest recurs in a given place about every 5 minutes.

However, contemporary solar models — and observations — cannot explain the sun's pulsation cycle of 2 hours 40 minutes. Where too are the "neutrinos" — the massless, chargeless particles which must exist to tally with accepted

<table>
<thead>
<tr>
<th>Table 1: Characteristics of the sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Absolute bolometric magnitude</td>
</tr>
<tr>
<td>Apparent visual magnitude</td>
</tr>
<tr>
<td>Energy mechanism</td>
</tr>
<tr>
<td>Magnetic field strength</td>
</tr>
<tr>
<td>Conversion rate</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Distance from Earth</td>
</tr>
<tr>
<td>Total radiation released constantly</td>
</tr>
<tr>
<td>Radiation incident upon Earth's outer atmosphere</td>
</tr>
<tr>
<td>Radiation incident upon Earth's surface</td>
</tr>
<tr>
<td>Solar radiation constant</td>
</tr>
<tr>
<td>Total radiation continuously intercepted by Earth:</td>
</tr>
</tbody>
</table>
theories on the sun's nuclear-fusion process? To that end Dr Raymond Davis, Jr. from Brookhaven National Laboratory and Dr John N. Bahcall from Princeton University mounted a three-year search for solar neutrinos using a detector buried deep in a goldmine in Lead, South Dakota. The team recently announced that fewer of the particles "than is consistent with standard ideas of stellar evolution" have been discovered.

Thus, a new question disturbs the scientific community: Is the sun controlled by -- or acquiring the properties of a "black hole"? The concept of the black hole, as the final stage of aging stars, was developed theoretically in the late 1960s by Dr John Wheller of Princeton, among others. According to the theory, the black hole is produced by the gravitational collapse of a dying star, and is so dense that a spoonful of material from its center would weigh over 1000 million tons. The hole's gravitational pull permits neither matter or radiation to escape, yet attracting matter as if it were a cosmic garbage disposal. In terms of solar-energy engineering, one fascinating question is, of course, whether black holes could be utilized as electromagnetic "energy sinks" for the purpose of planetary power generation, perhaps in a bipolar, electrostatic sense.

Today, unfortunately, the immensity of such dynamics and possibilities remains ill-defined. Magnetic mapping of the sun's features is but one diagnostic aid for solving the riddle of solar-power transmission over astronomical distances. Practical results can be expected from photovoltaic or option-al-wave devices -- solar cells currently in use.

Solar cells

Recent improvements in solar-cell fabrication have stimulated novel proposals for utilizing solar energy on a large scale. New and unfamiliar manufacturing techniques are not required, since photovoltaic cells were among the first semiconductor devices to be developed. Most noteworthy is the fact that efficiencies of up to 21 percent have been achieved, with higher power-output rates feasible in the near future.

Of particular interest are the AlGaAs type cells developed by Varian Associates in Palo Alto, California. According to the firm the starting material for their high-efficiency cells (21%) is a wafer of bulk n+ type GaAs, on which a liquid epitaxial layer of n-type material is grown. The latter has a longer hole diffusion length than bulk material. The n+p junction provides some carrier refinement, again increasing efficiency. An AlGaAs layer is grown on top of this layer and doped with a p-type source such as zinc, which diffuses a small distance into the n-type GaAs layer during the AlGaAs growth -- thereby producing the p-n junction across which the photovoltage appears.

According to R. L. Moon, one of the project engineers, the p-GaAs, p-AlGaAs heterojunction "confines" the electrons generated in the p-GaAs layer. This restriction results in a low velocity surface recombination and greatly increases the efficiency of what is normally possible with a "straight" GaAs solar cell. The aforementioned layer is a window for photonsthat have energies below the AlGaAs band gap.

The development of the 21-percent solar cell, which brought Varian Associates into a leading position in the American stock market, breaks away from conventions in other ways too. Rather than using a customary flat-panel array for grouping cells together, the firm uses a sunlight concentrator or mirror to increase light on cells by as much as 1,000 times. Fig. 1 shows a test rig which has a mount with cooling fins and a package where the solar cell's power is metered. With this rig efficiencies as high as 23% can be achieved using simple concentrators. A 10MW power plant constructed of these cells would require only 80m² of gallium arsenide. Using an equivalent system comprised of silicon cells with 12% efficiency would require an array covering 24.5 acres. It is prudent, however, to contrast cell efficiencies against costs and the availability of raw materials: gallium is nearly as abundant as lead, and silicon is nearly as abundant as sand. Both materials require complex refining processes and assembly operations, which determine costs per kWh to the end-user of solar power plants.

At present it is safe to assume that solar cells of the GaAs type will be used in initial power plants of the ground-mounted or terrestrial type. However, a given installation must have an additional means of storing energy for night-time operations. Electrochemical energy storage of the battery type is one possibility, but batteries of ample capacity and the ability to withstand heavy charging and discharging cycles have yet to be developed. Other more adventurous energy-storage schemes include huge flywheels coupled to motor-generator sets and hydrosstorage inverting lakes and turbines. Probably the most attractive proposal is that of converting surplus electrical energy into hydrogen, which could be reconverted to electricity in fuel cells. Unfortunately the problems of storing gaseous hydrogen and securing a source of inexpensive, long-lasting catalysts for fuel cells have not yet been solved.

Some of the above and other problems have directed attention to special heat exchangers combined with thermoelectric cells or energy-extraction devices. Thin, flat, glass-covered basins and glass tubes, filled with heat transfer fluids such as water or ethylene glycol, hold a special position in the solar energy industry because of their commercial attractiveness. Because heat stored in liquids can easily be circulated through conventional radiators installed in homes of factories, demands for electrical power are reduced to the small amount required for re-circulation pumps and blower motors. The same is true -- mainly due to the sun's energy is applied to coolants used for interior air conditioning.

Advanced solar energy collectors of the above type are exemplified by the Sunpak system, developed by Owens-Illinois. The unit, shown in Fig. 2, consists of a series of 24 glass tubes featuring special optical characteristics for maximum efficiency. Fig. 3 details the coaxially arranged interior parts.
Using a heat transfer fluid, the tubes maintain excellent thermal insulation due to a high-vacuum interface (10^{-4} torr). The tubes' round shape permits a better light-ray interception angle than can be obtained with basins, and is two to three times better than that of flat-plate solar energy collectors. A Sunpak can raise the temperature of the heat transfer fluid to $240^\circ F$, or $28^\circ F$ above the boiling point of water. Here, as in related situations, the hot working fluid may be fed through heat exchangers, or low-pressure steam can be generated for operating piston- or turbine-type power plants. The required vacuum levels can be provided by conventional re-condensation schemes.

Gigawatt systems

By the year 1980 the world's annual consumption of electrical energy will have climbed to 6.3×10^{12}kWh. A consumption rate of 20 to 30×12^{12}kWh is projected for the year 2000. Clearly, unless living standards of the highly industrialized nations are dramatically reduced, the power needs cannot be met by generating systems of conventional design. The small supply of oil left must be set aside for the production of petro-chemicals, without which no synthetic materials and other basic chemicals can be produced.

Perhaps the most ambitious proposal for drawing electric power from the sun is that of the orbiting power satellite, "Powersat" for short. It is proposed that powersat be placed in a geostationary orbit $35,786$ km above the Earth where it is feasible to generate approximately $13,500$MW of electricity from incident solar energy. This energy would then be transmitted to Earth by a phase-coherent microwave beam, where it would be received and re-converted into electricity by suitably equipped antennae farms. Fig. 4 depicts the powersat system evolved by the Boeing Aerospace Corporation. Here, an array of solar energy collectors covering 57.3 km2 would be kept in constant sunlight to generate constant power. The Earth's rotation and night (or shadow) state would not interfere. Fig. 5 shows the operational concept.

Allowing for system losses of 3.5GW, $10,000$MW of power would be delivered to the terrestrial distribution network as useful power. The system is considered safe to biological organisms on Earth because of precautionary measures at the power receiving end. If, as per Fig. 6, a number of radiation spill detectors detect anomalous radiation outside of the assigned beam channel, control transmitters would beam a shut-off signal to the powersat. In addition, the powersat's synchronous position and/or angle of radiation incidence can be corrected by metering the microwave energy arriving at the rectifying diode panels. The possibility of the powersat cutting a "swath of death" across Earth is very remote because the ground receiving system has full control over the orbiting system.

Technically, two candidates for the powersat's electric generating system have emerged: (1) systems using photovoltaic devices, (2) systems using thermal concentrator/heat engines.

In space, a concentration ratio of 2 is about the maximum that can be used with AlGaAs solar cells without cooling them and therefore the size of cell arrays must be increased accordingly.

Heat engines for powersat use are far more complex than photovoltaic...
devices, but their high development make them suitable for in-space applications. The most attractive closed-cycle designs are the Rankine (liquid/vapour) and Brayton (gas) turbo-machines. The Brayton cycle offers some advantages in that it does not require two-phase devices such as boilers and condensers which must operate under zero-gravity conditions. The reliable simplicity of the Brayton cycle is shown in Fig. 7. Using standard formulae, we find that a heat engine producing 100MW of electricity, at 96% alternator efficiency, 40% thermal cycle efficiency and radiator temperature of 360°K (188°F), needs about 1km² of radiator. In this design it is assumed that the powersat's solar panels act as optical light-wave reflectors focused upon the engine's heater cavity.

However generated, the electricity will be beamed to Earth in the form of microwave energy using klystron (or similar) travelling-wave amplifiers. Designs close to 90% efficiency are close to realization. A leading worker in this field, Peter E. Glaser, envisages a wavelength of 10cm for 'energy transmissions to Earth. A dish antenna about 2km in diameter could handle 2.5 × 10^7kW and would irradiate a region about 3km diameter, the latter being the effective size of the antennae farm or receiving station on Earth, with a power density of less than 1 W/cm². Choice of the 10cm wavelength would minimize - if not eliminate - atmospheric absorption. Since passing microwaves through the planet's upper atmosphere produces a travel of less than 100V/cm, it is unlikely that the atmosphere would be ionized.

Tapped together, the various engineering groups share the conviction that one powersat could be realized with present-day technologies. Impetus will be added once reusable space shuttles have been developed, plus special shuttles for transporting and/or providing living quarters for personnel.

Another breakthrough is expected from the semiconductor sector, pertaining to hyper-efficient microwave power receiving diodes, see Fig. 8. These development diodes are of the thermoelectric type: a part of the rectified microwave energy (d.c.) is fed back into a thermo-substrate cooling the diode's point-contact region and enhancing conductance. Ideally, if feedback could invoke low temperatures at cryogenic levels (0°K or -273.16°C), the device would provide zero electrical resistance during microwave half-cycles and maximum power transfer.

The diode lattices, which are still in their patent pending stages, are expected to feature exceptionally wide bandwidths. Other improvements seal with mounting and admittance apertures.

Organic solar energy converters

The search for high-efficiency energy converters has directed attention towards organic semiconductors, including those innate to living biological systems. Nine primary processes are under investigation: electro-nuclear mechanisms of photosynthesis, formation of free radicals, Hall-mode stream patterns, electron transfer, intramolecular rearrangement, photionization, photoisomerization, carbon-carbon bonds supporting electron conduction, and photophysical processes involving electro-biological effects such as phosphorescence, fluorescence, and the like. Examples of hyper-efficient organic semiconductors are found in nerve complexes, brains, and other biological matter.

Much hope is based upon the "Hill reaction", named after the British biochemist Robin Hill who, in 1937, discovered that chloroplasts in green plant cells evolve oxygen from water when exposed to light rays in the presence of selected ferric compounds. When water is placed under ultra violet light, hydrogen and oxygen are separated, giving rise to the formation of free basic-element atoms and the transfer of electrons. Solar energy acts as a "pump", with certain end-effects resembling the quantum-mechanical processes found in c.w. laser systems.

Because of the promise of large-scale
electric power production from living systems, some special attention has been directed at the electrophysiological properties of large plants, including trees and other species.

Fig. 9, for example, depicts an experiment on a yucca, a hardy specimen that is common to the Mojave Desert in Southern California. The test set-up was designed to ascertain an electron-flow law under varying intensities of solar illumination (day-night cycles), magneto-biological effects, psychogalvanic sensitivities to environmental stress, and changes in electricity production following electron replenishment from artificial current sources (batteries). Other experimental series are augmented by weak radio-frequency fields applied to plant organs to investigate changes in current densities. Special catalysts may also be used.

The purpose of these and related experiments is to increase current flow to usable levels. At present, typical power outputs of plants are in the low milliwatt range — barely sufficient to operate a small transistor radio. However, the promise is there.

High-energy power transmission

Technically, the achievement of obtaining large amounts of electricity from the sun cannot stand alone. The availability of solar power would require low-loss terrestrial distribution systems in order to insure quality service and adequate returns on the massive financial investment required to achieve this aim.

Planners are considering using transmission cables insulated with compressed gas, cryoresistive transmission lines (cables cooled to the temperature of liquid nitrogen), and deep-cooled cables having super-conductive properties. Existing overhead lines may be augmented where international service grids are involved. The advantages of cables are that heat dissipation can either be reduced (as in the case of compressed gas cables), or effectively controlled (as in cases of cryoresistive and superconducting cables). Even with improved cooling, oil-filled cables will probably have only twice their present capacity. Unfortunately the immediate disadvantage of cooled long-distance cables is the much higher requirement for refrigeration. Typically, a refrigeration station would use about 9.5 watts of power to pump 1 watt of heat away from a cable of conventional design.

However, progress in superconductivity has now taken a big leap forward with the development of a new superconducting cable by the US Naval Research Laboratory (NRL). The highest critical current density yet observed in superconducting material was demonstrated using vanadium-gallium (V₁₃Ga) composite wire. At 4.2°K, the V₁₃Ga-composition has shown a current density of 10⁹A/cm² in a transverse magnetic field of 100KG. This density is about 40 per cent greater than any previously reported. The improvement resulted from raising the percentage of gallium in the alloys used to form the superconductor. Increasing this percentage increased the growth rate for the superconducting thin film, which forms between the two components of the wire, resulting in smaller grain size and higher critical current densities. NRL plans to develop 19-filament and 361-filament cables of the V₁₃Ga type, with ever better efficiencies expected in the near future.

Tentatively, it is expected that no more than one refrigeration station will be needed for every 11km of high-efficiency superconducting cable. Of course, the high cost of these very expensive service systems will be avoided if solar power plants, including suitable energy storage facilities, can be installed — at low cost — for individual communities.

Physical limits of sun power

For all terrestrial engineering purposes, the sun can be regarded as an infinite power source. Technically, the innate limits confronting our ability to draw maximum power from the star decrease in proportion to our developing knowledge in solar-energy engineering. For example: The solar radiation constant is 1.95kW/m² on the Earth’s surface. Assuming an overall solar-energy converter efficiency of 50%, approximately 700 watts of usable power per square metre of collector area could be generated by a ground-based system. Therefore multiples are algebraic ones: for example, 10,000 m² of effective collector area would render 7000 kW of electricity, and so on. Optical concentrators could multiply this further.

Legal aspects of solar power

Who has the legal rights to energy from the sun? As history demonstrates, asserting property rights to the sky is nothing new. Even with solar energy in its development stages, battles will not be theoretical ones while tall office buildings rise to overshadow smaller neighbours, thereby keeping sunlight from rooftop solar energy collectors.

There is a “doctrine of ancient lights” (and rights!), but what has served in past centuries might be unworkable in the era of solar power.

Solar power is a young field, legally ill-defined. It would be prudent to suggest, perhaps, that impartial “solar energy masters” be appointed by courts. Thus, energy disputes can be handled in a manner similar to that of “water masters” in water rights cases.

Summary

Earth’s ecological capabilities and supply of raw materials are adequate for supporting 600 million people comfortably, but not the current census of 3,800 million individuals. Whether or not our civilization will continue to develop depends upon our ability to secure alternate energy sources. Solar energy is one answer. Drawing power from the sun is less speculative gambling than landing men on the moon or searching for life on Mars.

Further reading

Clearly, future problems will be in obtaining better converter efficiencies and a sensible system of land management, i.e. the setting aside of “sunshine regions” — such as deserts with minor overcast profiles and low precipitation — for power generation and network distribution systems. Peripheral problems can be solved as well. Alkaline water, for example, which one frequently finds in deserts but is unsuitable for direct domestic consumption, can be electrically distilled. Good water of pH 7.0 can also be used for on-site agricultural purposes and in the growing of structural timber. Further, the new abundance of electrical energy would permit mining of bauxite from low-yield regions and manufacture of aluminum cables and parts for power-grid systems.

In short, limits are set only by the creative imagination and the degree of farsightedness of executive planners.
NTSC simulator

Simple design suitable for teaching

by Roy C. Whitehead, M.I.E.E.

This design can be used to demonstrate the basic character of the original N.T.S.C. colour TV system and its main limitation. The modulator circuit is shown in Fig. 1. Three generator symbols shown in Figs. 1 and 2 represent the three outputs from one generator (variable phase oscillator). The frequency used is 1590 Hz, ω = 10000, and all amplitudes are set to maximum. Two potentials in quadrature are produced across C1 and R2 to represent the U and V components of the N.T.S.C. subcarrier. Because the generator outputs are unbalanced it is necessary to introduce transformers T1 and T2 to produce balanced operation. The addition of the potentiometers results in the secondary circuits taking the form of bridges.

When the sliders of these potentiometers are at their midpoints the bridges are balanced, corresponding to a picture signal of zero saturation. The outputs of R3 and R4 represent the U and V signals respectively and are displayed by the double-beam oscilloscope which must have its timebase triggered directly from the generator. Ideally, the addition of these two signals should be displayed by the balanced-input oscilloscope, c.r.o.2, but in fact the instrument displays their difference. This oscilloscope also needs to have its timebase triggered directly from the generator.

A circuit for the two synchronous detectors is shown in Fig. 2. Input from the modulator is connected to the two detector circuits via transformers T3 and T4. The two reference inputs to the detectors are provided by the zero phase and +90° outputs of the generator, and the two signals are displayed finally by two 100–0–100 microammeters. Phase control of the generator can be set so that operation of R3 causes corresponding deflections of M1, and operation of R4 causes deflections of M2. This represents ideal N.T.S.C. performance.

Deliberate misadjustment of the phase control demonstrates cross-colour, i.e., mutual contaminations of U and V which occurs when the reference oscillator of a colour receiver is not correctly phased to the colour burst.

If an X–Y display unit is available, or an oscilloscope which is suitable for Lissajous displays, a modified detector circuit may be used. With the timebase of the oscilloscope switched off, and with both inputs set to zero, the spot is centred and the unit takes on the functions of a vectorscope.

Fig. 1. Modulator unit. The transformers (RS Components TT/6) are used to provide a balanced output.

Fig. 2. Synchronous detectors.
Letters to
the Editor

THE FUTURE OF TELEVISION

Britain was the first in the field with commercial television and after the war the original television market soon showed signs of saturating. The industry was re-vitalised by the introduction of the 625-line system, which opened up the higher-frequency transmission bands. When the market was again saturating, the industry was re-invigorated by the introduction of colour. It will not be many years before we have colour television, and when this happens, especially through the mechanism of rental of receivers, we shall see a new colour television market. A number of methods are known for producing a 3-D picture, e.g. in the cinema; and most of these have been tried for television in the laboratory and discarded. There remains the use of the hologram. This is the most perfect method of recording a 3-D image, but television engineers have recoiled in horror on seeing the bandwidth requirement calculated as several gigahertz. The subsequent suggestion of a possible reduction by a factor of 4 did not significantly change the situation. The trouble with holography is that it is too sensitive. It will inherently record distance to an accuracy of better than a thousandth of a millimetre, whereas an accuracy of one millimetre in depth would be quite adequate for most TV scenes. I do not believe it is beyond the wit of man to find a means of discarding the unwanted excess of accuracy in such a way as to reduce the bandwidth required.

I remember reading in a popular book on radio which was published in the 1920s something like this: "The problems surrounding television are as thick as snowflakes round the North Pole, but they will be solved eventually." They were solved in less than 20 years. The report of the Television Committee 1943 (for the then-chairman of Lord Hankey) recommended that the restoration of the pre-war television service should be followed by an improved system "possibility incorporating colour and stereoscopic effects". We now have both colour and stereoscopic vision, and it is only a matter of time before 3-D is introduced. But the question is where? Will it be, perhaps, in Japan or will it be in Britain?

"A Bell, Electronic Engineering Department, University of Hull.

References

COMMUNICATION THEORY

I would like to comment on the reference to Shannon's theory of information which Professor Bell makes in his article in Wireless World, April 1976. This, incidentally, is possibly the first occasion that any explanation of this famous theory has been presented in the pages of Wireless World.

It is ironic that the fundamental basis of the communication process actually appears as a rather vague branch of mathematics having a very remote practical application. The conclusions arrived at by Shannon's theory are not to be challenged, but what I think should be open to question is the manner in which the certain aspects of the theory is presented by many authors, including Professor Bell, and, unusually, by Shannon himself. I am concerned with the derivation of the expression

$$I = N - \sum p_i \log p_i$$

This expression, states Professor Bell, can be shown mathematically to be the only satisfactory measure of the uncertainty relating to a finite group of probabilities. The idea behind such a demonstration is that information is some quantity which reduces uncertainty and that the above function can be shown to have certain mathematical properties which, it is asserted, can intuitively expect. This approach was originated by Shannon and has been elaborately pursued by many writers since. It is, however, misleading because it seeks to define a measure of information in complete isolation from any physical consideration and without any indication, initially, of the true purpose of such a measure. This, I feel, is one of the factors which contribute to the difficulty of the theory of information.

A simple example can be shown to reveal the purpose and philosophy of the theory of information. Consider ing the output of a discrete source of information into a discrete noiseless channel. The discrete source is specified by the group of source symbol probabilities, p. The discrete memoryless channel capable of transmitting any one of a number B channel symbols per second. We now ask the question, what is the greatest rate at which the source symbols can be unambiguously encoded into the channel symbols and what is the relationship between this rate and the group of probabilities p? This is equivalent to asking what is the optimum of a process subjected to two sets of constraints, a probabilistic set and a deterministic set. Because of the probabilistic constraints an optimum condition can be realised only by an indefinitely large sample of the process. The answer to our question, therefore, is to be found by the application of an important statistical concept, namely, the law of large numbers. This law is, in fact, the central principle of Shannon's information theory and requires a knowledge of statistics very little beyond 'A' level in order to understand it. An application of the law in this case will give the answer to our question as C/H source symbols per second, where C = log B and

$$H = - \sum p_i \log p_i$$

H is a function of the source symbol probabilities only and measures an attribute of the source which can be called appropriately the "average information rate" and C can be called the "channel capacity." If the base of all the logarithms is chosen to be 2 then H is expressed in bits per source symbol and C in bits per second.

Deriving the above expression for H in this manner means that we can abandon the approach whereby the formula is quoted from the start, then shown to have certain mathematical properties and then given the name "entropy." The concept of entropy was first introduced in 1851 by Rankine (of ideal steam cycle fame) who called it the "thermodynamic function." The concept was extended by Clausius who coined the name entropy and a Professor Perry suggested that the unit should be called the "rank", in honour of Rankine. As Professor Bell says, the exact relationship between different applications of the notion of entropy need not concern us here. I would agree with this and say also that entropy is of historical importance only in the present context and the use of the term should be avoided. There is, of course, a valid analogy between thermodynamic entropy and average information rate but this is of esoteric interest only.

Collin Hackney, University of Salford.

Professor Bell replies:

Since I was primarily concerned with communication I had (perhaps wrongly) refrained from discussing at great depth the measure of information, which is a more complicated subject than Dr Hackney suggests. The entropy formula for information enters into communication in two ways. Dr Hackney refers to one of them, the coding of the output of an information source to suit the characteristics of a discrete noiseless channel. Since channels are never noiseless in practice, one tends not to give too much importance to this application, though it is the theoretical background of schemes of "lossy digital compression" and these are finding some practical application in telemetry from space vehicles and in specialised forms of television such as Viewphone. But so long as the communication engineer is setting out to provide a channel to carry any signal within the bounds of a fixed information rate he cannot rely on source-to-channel coding. The other application is to the noisy channel, leading to Shannon's channel-capacity theorem. The derivation of the entropy formula does
not depend on any intuitive expectation as regards its mathematical form, and I have failed to find any group of rules which I can apply to produce any other formula. One is tempted at first to think of “information” as an “instruction to act”, since one does not know whether information has been received unless the appropriate routine is done in some way. But then he (she) may put the information into store so one then modifies this to “potential action.” Next one has to consider what is called in common parlance the reliability of the transmission, or in technical terminology the signal-to-noise ratio of the received signal. As the daily press would say, does it come from a reliable source? The information in a railway timetable is usually considered to be valuable if one is surprised that an inter-city train does not appear at all or about the advertised time. But consider the uncertainties of the financial prospect. After collecting all the available evidence including beliefs about psychological factors — a financial expert will assign probabilities to the pound sterling being worth various values, say at 10 per cent steps between £1.50 and £2.00, in six months’ time. This is just for beginning with one group of probabilities which can be put in the formula $-\sum p_i \log p_i$. But of course the said financier may well have formulated at least qualitatively many other probabilities: whether a certain friend will arrive for a visit at the weekend, how much and what crop his apple trees will have this year, whether his first-born will get a university place next October . . . The point of bringing in all these non-scientific examples is to suggest that a person’s “world picture” consists very largely of a set of probabilities. It follows that information is which changes a person’s world picture. (Is this intuitive or axiomatic?) The second consequence is that information is always measured as a difference, not as an absolute value — one takes the difference between the information at the receiving end after a signal and that which was there before.

The exact mathematical form of the entropy measure, however, has nothing to do with the above. My authority for saying that it is the Shannon form is a A. Feinstein who gives the mathematical proof in his book “Foundations of Information Theory.”3 The assumptions are that information is some function of probabilities, that the measure is symmetrical in all the probabilities involved, and that it can take account of the result of subdividing a probability into component part probabilities. Given these basic assumptions, the entropy formula follows. I am not sure where abstract scientific theory ends and the esoteric begins, but of course the relation between information and thermodynamic entropy can also be pursued this way. The “Maxwell demon” type of argument. But this is a large topic, and an outline of the arguments with references to the original papers can be found elsewhere. There are cases in which Shannon’s entropy measure is inappropriate, but I am not sure what is being measured is information. The classic example is R. A. Fisher’s use of the inverse of the variance of an experimental result which is inherently liable to statistical uncertainty, on the ground that this can be related to the financial value of the result. There is also the question of structure and complexity in a pattern, but in relation to artistic patterns my comments will appear in another journal.4

D. A. Bell

References
3. D. A. Bell, Information and Pattern, Kybernetes (publication pending).

PHASE IN THE EAR

I have followed the discussion regarding the importance of phase in noise reproduction with some feelings of regret that so much energy has been expended in the seeking of adequate explanations without a full knowledge of the facts. The main consideration has been the “interface” which converts sound waves to electrical nerve impulses. In the article “Acoustics” in Grove’s Dictionary of Music (vol 1, page 33) it is stated that there are some 24,000 transverse fibres in the basilar membrane of the ear, and each one has its own natural frequency, and responding only to that frequency. If this be the case, the ear is an analyser of sound and no question of phase difference can arise. And incidentally harmonics are separated, the others, and distortion harmonics beyond audibility have no meaning except when intermodulation occurs.

And so everything seems satisfactorily explained, following elsewhere in Grove’s (vol. 6, page 349) that a 32ft organ tone can be obtained by sounding the second and third harmonics, 16ft and 10ft pipes, the so-called Tartini effect. The development of beats in electrical engineering usually implies a multiplication or addition but it is rather hard to imagine either of these occurring in the ear. Incidentally, there is probably another “interface” in the connection between the ear nerves and the brain. The hearing in much the same way as the reversal of direction that occurs between the eyebrow and the sight area of the brain.

All this seems to point to the need for a closer understanding between engineers and physiologists.

Eric Neate,

Callington,

Cornwall.

THE INVENTORS

I have, with fits of exception, given up trying to get “error takeoff” into production. After all, what is perfection compared to the healthy grating sound of Class B! But I do get a certain pleasure from the sheer delight of the system and recently made a step forward in my understanding which makes it much easier for me to design it. However, what I would like to hear from the National Research and Development Council (NRDC) who effectively rejected my idea is:

1. Do they recognise that we in Britain now have a chance to recapture the hi-fi amplifier market with amplifiers of perfect performance (not to mention other applications)?

2. Do they actually believe it works (my impression is of a lack of technical understanding, I may be wrong). I would be happy to demonstrate it to them.

3. Why, considering some of the things they have supported, will they not support a basic advance in understanding and application which “error takeoff” represents?

As for “industry”, their attitude was “this is perpetual motion” in content although not in words or “yes, it works but we are happy with what we have got.”

In my considered opinion the affairs of the “private inventor” should, in the long-term, be removed from the NRDC.

A. M. Sandman, London NW3.

Editor’s note: For an explanation of “error takeoff”, see Mr Sandman’s article “Reducing amplifier distortion”, Wireless World, October 1974 issue.

WIRELESS PIONEERS

The Society of Wireless Pioneers is interested in hearing from former or present wireless telegraph operators who have served or are serving ashore or afloat in the Merchant Service, the Post Office wireless telegraph service, or any branch of the military service. The Society of Wireless Pioneers is a non-profit organisation dedicated to wireless telegraph operators. Interested persons might write to: Mr John A. Edwards, GABVA, SOWP Director, Great Britain, 81 Hunter Avenue, Brentwood, Essex, England.

H. J. Scott, San Leandro, Calif., USA.

WAS BAIRD FOOLING THE PUBLIC?

In your April issue Mr F. H. Haynes stated: “It should be appreciated that Baird never successfully demonstrated television. Being without a method of synchronization over a distance, there could be no such event.” Later in his letter he wrote (apropos Baird’s endeavours to develop commercially his system of television): “. . . and that end demonstrations had to be conjured and reports by staff contributors commissioned for publication.”

These statements and others which Mr Haynes made, apparently in complete ignorance of the historical facts which are readily available to researchers, are so misleading and denigrating to the memory of Baird that it is most important that a factual rebuttal be given to your correspondent’s remarks.

Baird’s numerous demonstrations of low definition television were given not only to newspaper correspondents and the general public but also to a number of notable scientists, Members of Parliament, engineers and administrators of the British Broadcasting Corporation and the General Post Office, et al.

Professor Sir Ambrose Fleming, Professor Taylor Jones, and Dr Alexander Russell all
reported on Baird’s experiments during the 1926-1928 period and their observations may be read in the appropriate volumes of Nature and the Television magazine. Additionally the opinions of Colonel A. S. Angwin, (former assistant engineer-in-chief, GPO) and Sir Noel Ashbridge (former chief engineer to the BBC), on the progress of Baird’s work to 1936 are recorded in the archive collections of the BBC and GPO. Many other sources of information could, of course, be cited. A study of these accounts will show that there was no need for Baird to “conjure” successful demonstrations of television.

In July 1926 Dr Alexander Russell wrote that “Baird had made progress in solving the television problem”. Later in September 1926 Radio News (of the USA) sent a reporter to investigate Baird’s claims: “Mr Baird has definitely and indisputably given a demonstration of real television. . . . it is the first time in history that this has been done in any part of the world.” Professor E. Taylor Jones, of the University of Glasgow, commented: “This London-Glasgow television transmission of May 1927 observed: “The image was perfectly steady in position, was remarkably free from distortion, and showed no sign of the ‘streakiness’ which was, in fact, in evidence in the earlier experiments.” Approximately one year later (July 1928) Sir Ambrose Fleming had the opportunity of “seeing in practical operation in Mr Baird’s laboratory a very striking advance in television transmission which (had) been recently made by Mr Baird.”

Mr Haynes’ ill-founded comments on synchronizing may be assessed by noting that The Times’ correspondent found that “By means of a Baird television and a little advice from Mr Haynes which respectively control the synchronization and the ‘framing’ of the picture the rapidly swirling pattern was resolved into a steady head and shoulders image of the speaker.” This television was reviewed by Wireless World in its 12 March 1930 issue. The reviewer found that if the single LSSA valve, which gave an output of 1.5 Sw (sic) was replaced by an L6SA valve, then the process of synchronization became easier. “For quite long intervals the picture remained steady.”

These statements may be compared with Mr Haynes’ observation that: “With a monitored single output (face) and in an equipped laboratory where auxiliary gear, by way of a heavy duty synchronising and vision amplifier was to hand, the Baird television was shown to be a failure in fulfilling its intentions.”

The first public low definition television service in the United Kingdom commenced broadcasting at 11.00 p.m. on 22 August 1932. D. C. Birkinshaw, (the BBC’s television research engineer at that time), reported that “everything was well in the hitch of any sort, either technically or in the programme,” on the opening night. Both he and Eustace Robb (the studio producer) made detailed improvements to the quality of the 30-line transmission. Part of the sequence followed some “initiative” by W. Gladstone Murray (the BBC’s assistant controller, information) and N. Ashbridge. After visiting the Baird laboratories on 12th October 1931 the BBC’s chief engineer was a memorandum in which he mentioned that the picture he had seen, reproduced by means of a mirror drum/Kerr cell type of receiver “was easily the best television which I have seen so far.” It was quite easy to recognise the persons even after seeing them once and there was no difficulty following facial expressions.

The 30-line service was operational until 10th August 1935. During its existence the Television Committee, (under the Chairmanship of Lord Selsdon), was established, (the first meeting was held on 29th May, 1934), and subsequently it considered, inter alia, the discontinuance of the low definition television broadcasts.

When the report of the committee was published, it recommended, paragraph 34, that “the existing low definition broadcasts be maintained, if practicable, for the present.” The Committee had been rather impressed not by the number of protests but by the fact that they did appear to exist. These came not from Baird who felt the 30-line transmissions had no commercial value but from a number of different sources including Messrs Ferranti Ltd., et al. Mr V. Z. de Ferranti told Lord Selsdon: “. . . I was amazed that it was so good considering the limitations. . . . ‘If you could let us (the people in the North) have it . . . I would like it very much.”

Mr Haynes states in his letter — regarding the 30-line service: “No radio enthusiast was fooled. Radio Societies, then much attended, were amused.” But an examination of the documentary evidence presented to Lord Selsdon’s committee will show that it was the representation of many radio enthusiasts, the Television Society, certain industries, (large and small), which prevailed upon Lord Selsdon and his committee to extend the life of the 30-line service. A survey carried out by the Television Society in 1934 showed that 93% of the respondents wanted the 30-line transmission extended.

Additionally Mr Haynes commented: “Wireless World, always ready to pursue and report on what? — 30-line television? During the formative period of the low definition experimental television service, 1927-1930, Wireless World published 50 contributions on television, including 9 editorials, 38 letters from subscribers and 3 equipment reports!”

Mr Haynes mentioned, (second paragraph). “This was the time of early talking films and picture telegraphy when the stable photocell and bright recording lamp were both readily available. Baird claimed to use visual purple as the light sensitive material.” I have not come across this claim and would be pleased if Mr Haynes could quote his primary source. Baird had a notion (circa 1925) about using visual purple in an experimental cell but nothing came of this. He certainly utilised selenium cells in 1925 but by 1928 was employing gas-filled photomultiplier cells.

Another statement which Mr Haynes made — “Proper electrical circuits for conveying the light values were not to be found in the various Baird set-ups” — is untrue. Indeed Mr Haynes’ letter abounds with untruths designed to show Baird in a poor light. How any inventor could demonstrate, over a span of many years, the transmission and reception of images to leading authorities of the day surely and not use proper electrical circuits must surely be a mystery. Of course there is no mystery. A detailed description of the apparatus used by Baird in 1928 to demonstrate colour television was published in the Journal of the Royal Society of Arts and an account of the Baird 1930 television transmitter was given by T. H. Bridgewater in Wireless World (3rd December 1930). Later, from 1932, responsibility for the 30-line transmission was accepted by the BBC (in co-operation with Baird’s engineers).

It is unfortunate that Mr Haynes prima facie should have taken so little care with his letter. The writing of history is best left to those who are prepared to consult primary source documents — unpublished and published.

References
4 Birkinshaw, D.C.: Memorandum to Kirke, H.L., 25th August 1932, file T.13, BNC, WAC.
5 Ashbridge, N.: Report to Reith, Sir J., 10th October 1931, file T23, BBC, WAC.
6 Report of the Television Committee, Cnd. 4793, 1935. HMSO.

CITIZENS’ BAND

I am a holder of a Class B Amateur Radio licence and if no other place could be found for a Citizen’s Band, I would not feel “cheated” if segments of the amateur bands were allocated for this use. I am sure this would bring screams of protest from other amateurists, but if this could help us save the life of a mountain climber, small quibbler or hiker, this would surely justify the action. I shall not presume to draft licence conditions and regulations but surely no-one could object to the introduction of a Citizen’s Band strictly limited and controlled in the first instance to people engaged in dangerous activities such as the aforementioned.

This may even lead to amateurs taking a long hard look at themselves and operating methods. We may even notice that we are no more than sophisticated CB’ers ourselves (I apologise to the few exceptions). I hope this letter does not offend too many amateurists.

EQUAL-TEMPERED PITCHES — CORRECTION

We apologize to readers that the end of a letter on generating equal tempered pitches was accidentally omitted from page 78 of the September issue. This reads as follows.

The biggest error is for F, but this is not sufficient to give the impression (with the other frequencies) of the scale gravitating towards a key, as would probably be the case with the smaller divisors in the first example given in the article.

Sven F. Weber, Stornsay, Orkney.

(Former Professor, Royal Academy of Music).
Electronic systems — 5

Reception and demodulation

by R. Ashmore Assistant Editor, Wireless World

Electronic systems 3 and 4 discussed the various techniques, advantages and disadvantages of both amplitude and frequency modulation of carrier signals. This section will describe some of the methods of receiving and demodulating amplitude-modulated carrier waves.

Station selection

To receive a particular broadcast from amongst the many different transmissions within the radio broadcast bands it is necessary to have a receiver tuned to the carrier frequency of the desired transmitter. In order to achieve optimum reception of this transmitted signal the bandwidth of the receiver must match that of the transmitter. If the bandwidth of the receiver is too wide the demodulated signal will contain undesirable interference from the adjacent channels. Reducing the receiver bandwidth will decrease the adjacent-channel interference but will restrict the reception of the high frequency components of the wanted station. The solution is that a compromise has to be made between the two above conditions, the term “selectivity” being introduced to describe the success of the receiver in rejecting the adjacent channels.

To demodulate a transmitted signal successfully the demodulator must be provided with an input signal of sufficient amplitude and therefore it is necessary to provide radio frequency amplification prior to demodulation in order to receive weak or distant transmissions.

The crystal set, which is the simplest form of a radio receiver, is constructed from a parallel tuned circuit and a crystal detector or demodulator. The crystal has semiconducting properties similar to the semiconductor diode which has since replaced it. This receiver does not need power from batteries or the mains supply because the power required to drive the earpiece is derived from the electrical signals induced in the aerial, consequently it is desirable to operate the set with a long aerial and a good earth connection. Voltages will be induced in the aerial due to the presence of signals from all transmitting stations, therefore a circuit is needed which will single out (tune to) the desired frequency — a circuit which will do this is called a tuned circuit.

The tuned circuit used in a crystal set is an inductor connected in parallel with a variable capacitor, see Fig. 1. Let us now consider how this simple arrangement can single out a particular broadcast from a complex and full radio spectrum. Fig. 2 shows the plots of reactance against frequency for both the inductor and the capacitor. The equations for these impedances, for a capacitor C and an inductance L at a frequency f, are

\[\text{Capacitor: Impedance} = \frac{1}{2\pi fC} \]

\[\text{Inductor: Impedance} = 2\pi fL \]

For a given inductor/capacitor pair there will be a frequency at which the impedance of both components will be the same.

\[\text{i.e. when} \quad \frac{1}{2\pi fC} = 2\pi fL \]

\[\text{therefore} \quad f = \frac{1}{2\pi \sqrt{LC}} \]

At this frequency the parallel tuned circuit, made from the components L and C, are said to be in resonance and are tuned to the frequency f. The frequency response of the parallel tuned circuit described above is given in Fig. 3.

![Fig. 1. Tuning circuit, shown connected between aerial and earth, consisting of an inductor in parallel with a variable capacitor.](image)

![Fig. 2. Graphs of reactance against frequency for (a) capacitor and (b) inductor.](image)

![Fig. 3. Frequency response of the tuned circuit shown in Fig. 1, when tuned to station C. Ideally the response required would be a rectangular one with maximum amplitude within the bandwidth of C and zero amplitude at frequencies above and below C, so that all of the frequencies within channel C could be received with no interference from the adjacent stations.](image)
The blocked frequency markings represent the channels allocated to a number of different transmitting stations. It can be seen that, for the conditions shown in Fig. 3, the tuned circuit would have very little response from stations A or E, some response from stations B and D, but the most response from station C. Although the circuit is capable of rejecting all stations whose carrier frequency is below that of B and above that of D, it has a poor selectivity, due to only partial rejection of the adjacent stations. The response from stations B and D is considered as adjacent-channel interference when attempting to receive station C only.

If the value of the capacitor is changed, the frequency at which the impedances of the inductor and the capacitor are equal will also change, hence the resonant frequency will be different. Reducing the value of the capacitor will increase the resonant frequency, conversely increasing the value of the capacitor will decrease the resonant frequency. The variable capacitor allows the resonant frequency of the tuned circuit to be altered so that it is coincident with any particular transmitted carrier frequency, thus allowing any chosen broadcast to be received.

Demodulation

Demodulation is the process of recovering the information, impressed on the carrier wave, from the composite transmitted signal developed across the tuned circuit which, see diagram referring to point X in Fig. 4, is of the same form as the output of the modulator in the transmitter.

The average d.c. value of the waveform, over a complete cycle of the modulated carrier signal, is zero, and it is therefore necessary to remove all the negative going, or positive going, voltages in order to recover the modulating signal. This is achieved using a device such as a diode which will pass current in one direction only. Fig. 4 shows a circuit which achieves this result.

The signal at Y is a rectified version of the signal at X.

Since the signal at X has a mean d.c. level it is now only necessary to remove the remaining carrier components and the information which was transmitted will have been recovered. This is done by using a capacitor to filter out the high frequency components of the carrier signal. Because a capacitor has the property that its impedance decreases as frequency increases, selection of a suitable value of capacitance will ensure that it has a relatively low impedance to the high-frequency carrier signal and a relatively high impedance to the much lower frequency modulation signal. So that the broadcast stations can be heard, the load resistor is replaced by a pair of high impedance headphones which convert the tiny electrical currents into audible sound waves.

A suitable capacitor value may be chosen relative to the impedance of the headphones; it must have a lower impedance than the headphones at the carrier frequency and a high impedance at the frequency of the modulating signal. This is summarised in the equation given below.

The impedance of the capacitor \(C \) at a frequency \(f \) is:

\[
\text{Impedance} = \frac{1}{2\pi fC}
\]

Let the carrier frequency be \(f_c \), the modulating frequency be \(f_m \) and the impedance of the headphones be \(R \), then

\[
\frac{1}{2\pi f_c C} < R < \frac{1}{2\pi f_m C}
\]

Fig. 5 shows the complete circuit of the crystal set with typical component values. In order to comply with the above conditions the value of capacitor \(C \) has been chosen as 0.1µF, see conditions formulated in Fig. 5.

A receiver of this kind will drive a pair of headphones, if the aerial and earth are sufficient, but it is unlikely that it will provide enough output to drive a loudspeaker; it is also lacking in sensitivity and selectivity. The next article will describe receivers which are designed to improve these characteristics.

Further reading

Obtainable from Mr R. A. Smith, Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, are the teaching texts for the electronic system pilot A-level course.

Correction

It has been pointed out to us that in Part 4 of "Electronic Systems" (July issue), Fig. 3 and the associated text give the impression that 96kHz channels are used all over the world in the i.f. and m.f. bands. In fact, 96kHz is used only in ITU Region 1 and the position in the Far East, Australia and Canada is that 10kHz channels are used. Fig. 3 also suggests, incorrectly, that adjacent channels are allotted on an inter-continental basis. Apologies to readers for these errors.
Thévenin, Norton and dependent sources

Single theorem, replacing Thévenin's and Norton's, is valid for dependent sources

by Harry E. Stockman

The importance of dependent function sources in network theory has increased with rapid development in semiconductor devices. This theorem holds for dependent sources because the ratio between open-port voltage and closed-port current is derived, by looking away from the network, rather than into it.

Wireless World was the first journal to publish a single formulation for Thévenin's and Norton's theorems; a formulation which was not much longer than that used for each individual theorem. Either the Thévenin equivalent generator or the Norton equivalent generator can be drawn from one and the same theorem formulation. Like the original formulations, this one was valid only for independent sources.

During the past ten years, thanks to the rapid progress of semiconductor devices, the importance of dependent function sources in network theory has increased very much. While the Thévenin and Norton theorems by themselves are invalid for dependent sources, the combination of the two is valid for dependent sources. This is because of the different manner in which the generator immittance is obtained. In the combination theorem, to be discussed below, we do not look from the port into the network, to passivate it by removing the sources. On the contrary, we look the other way through the port, away from the network, securing the ratio between the open-port voltage and the closed-port current, or the inverse of this ratio, depending on whether we want an impedance or an admittance. The technique involved is simple and direct, and deserves a more widespread use than it has had so far.

The distinction is made clear by Fig. 1, where only Thévenin's theorem is discussed since the Norton theorem approach is similar. Fig. 1(a) shows the result of formally applying the classical Thévenin theorem to a linear network, in which no dependent sources are allowed. Fig. 1(b) shows how the generator impedance is determined when the combination theorem, formulated below, is used. In this case both independent and dependent sources are allowed in the original network. This means primary sources, or independent

![Diagram](image)

Thévenin and Norton theorems
Thévenin's theorem says the current in any impedance, Z_t, connected to two terminals of a linear network consisting of any number of impedances and generators (or voltage sources) is the same as though Z_t were connected to a simple generator, whose generated voltage is the open-circuited voltage at the terminals and whose impedance is the impedance of the network looking back from the terminals, with all generators replaced by impedances equal to the internal impedances of these generators.

Norton's theorem says the current in any impedance Z_n, connected to two terminals of a network, is the same as though Z_n were connected to a constant current generator whose generated current is equal to the current which flows through the two terminals when these terminals are short-circuited, the constant-current generator being in shunt with an impedance equal to the impedance of the network looking back from the terminals in question.

![Diagram](image)
computation to derive the equivalent generator. The other one is that in many problems, particularly problems involving feedback, the early part of the solution produces the transfer function, such as \(V_2 / V_1 \) in this example. In fact some problems begin with a transfer function, and later in the problem solution we need to construct a Thévenin or Norton equivalent generator. In such a case there exists a theorem, the equivalent generator theorem, that will directly read out the Thévenin or Norton equivalent generator from the proper transfer function, eliminating need for computation. The simple application of this theorem is described in a recent publication,² but can be explained in a few words.

Using the example in Fig. 2, we have for \(Z = 1 / Y \),

\[
V_2 = \frac{g(k - 1)Y}{V_1} = Y + G_i \]

This transfer function directly gives \(V_2 = E^* \) for \(G_i = 0 \), and the equivalent generator admittance is the sum of all denominator terms, excepting the load admittance term \(G_i \). For a current-driven system, the immittance read off in this matter pertains to an open input.

This is the total theorem and it means that each time we have available the transfer function, we can directly read off from it either the Thévenin equivalent generator or the Norton equivalent generator. Particularly, we have at a glance the system output immittance, and there is no need to do what is conventionally done; either that we go back to the network and apply the component combination method, which will fail us, anyhow, if dependent sources are present, or apply a voltage to the output port and calculate the ensuing current. This theorem replaces such techniques; however, it does require that the proper transfer function is known.

The formulation of the equivalent generator theorem is as follows:

For any linear network with mixed independent and dependent sources and an accessible port, there exists an equivalent generator with an immittance equal to the sum of all the immittance terms except the load immittance term in the denominator of the proper transfer function, having either the open-port voltage in series or the closed-port current in parallel.

References

Courses for radio amateurs

Enrolment for a course run by the Busy Radio Society took place at the Mosses Youth and Community Centre, Cecil Street, at 3 pm on August 31 and September 7. The course begins on September 21.

Walsall College of Technology’s course begins on September 20 at St Paul’s Street.

North and West Farnborough Further Education Centre begin a course on September 30 at 7:30 p.m. at the Cote School, St John’s Road. A morse proficiency course begins at Oak Farm School, Chaucer Road, on September 27.

Bridgend College of Further Education’s course will be held on Monday evenings from September 29. Open day at Technical College will begin their radio amateur’s course at 6.45 pm on September 21.

The Society of Electronic and Radio Technicians are holding a residential symposium on microprocessors at Work at Sussex University from September 26 to 29.

The North East London Polytechnic is holding a 12 week integrated circuit design workshop from Wednesday November 17. Part one: comprising five weekly meetings beginning on January 11, including seven meetings on such subjects as comparators, timers, etc., phase locked loops and multipliers. Both parts will be held at the Barking Polytechnic.

Cahue, Foster, Suffolk Circuits of Lady Lane Industrial Estate near Ipswich has been appointed sole U.K. agent for microcomputer-printed-circuit laminates. The laminates known as 'Di-Clad' are available in two forms. The 522 laminate with a dissipation factor of 0.001 at 1 MHz and 0.0029 at the X-band with a dielectric constant of 2.5. Laminate 527 has the same dielectric constant but...
CV3 Superscreen

Colour Projection Television has the flexibility you require

Ceiling (as well as floor) projector mounting

Rear (as well as front) projection capability

Variable picture sizes

Wide viewing angles give up to 50% more viewing space than can be obtained with a curved screen

An optional motorised rollable screen makes space for other activities

- The big 8' x 6' screen is ideal for audiences up to 300
- The price is competitive with all other comparable equipment available on the market
- The set is easy to maintain and adjust
- The 3 projection tubes generate in excess of 200 lumens highlight brightness with better than 500 lines resolution
- Power Input: 220-240 V/50 Hz
- 250 watts
- External Video Input: PAL or SECAM

The CV3 Superscreen is available for purchase or rental

For further information and presentation please phone, telex or write to the sole distributors:

Speywood Communications Limited, 26 Northfield Industrial Estate
Beresford Avenue, Wembley, Middlesex. 01-903 3381. Telex 377138
INSULATE THAT CHASSIS, OR COMPONENT, THE EASY WAY BY MOUNTING WITH TRANSIPILLARS FOR STRENGTH

INJECTION MOULDED NYLON PILLARS WITH INSERTS MOULDED IN FOR SUPER STRENGTH

TRANSIPILLARS

ARE STRONGER THAN ANY SIMILAR DEVICES HAVING MECHANICALLY ASSEMBLED INSERTS

SIZES FROM 6BA ½'' LONG TO 0BA 2¾'' LONG

METRIC EQUIVALENTS ALSO AVAILABLE

MIXED TERMINATIONS (E.G. 2BA ONE END, 4BA AT OTHER END) AND LENGTHS MADE TO USERS' REQUIREMENTS

DETAILS, PRICES AND SAMPLES FROM

WK ELECTRONICS
Scientific Instruments & Electronic Components
40a NAPIER ROAD, BROMLEY KENT BR2 9JA
Telephone: 01-460 9861 Telex 896071

WW—086 FOR FURTHER DETAILS
Variable pre-emphasis in f.m. broadcasting

One scheme used in October IBA tests

by Len Lewis, Audio & Design (Recording) Ltd

Since early f.m. broadcasting days much effort has been expended on attempts to improve the relatively poor signal-to-noise ratio inherent in transmitted signals. Early research soon established that the higher frequency elements of noise were subjectively most objectionable and thus worthy of greater investigation. Further, this hiss was unavoidably aggravated by the transmission process itself.

Fig. 1 demonstrates how energy distribution throughout the audio spectrum would have looked to those early researchers, for typical broadcast material of the time. Notice, particularly, how for both programme types there is a marked fall off in sound energy characteristic as frequency increases. Relating this to the known properties of hiss it was concluded that, by boosting or pre-emphasizing the higher frequencies where hiss occurs just prior to transmission and then de-emphasizing them on reception, a useful degree of noise attenuation would occur. Because higher frequency programme content was generally of a lower level such pre-emphasis was not likely to have any noticeable side effects. Consequently a standard pre-emphasis curve of 50µs time constant was arrived at collectively for Europe (against 75µs in America) by its broadcasting authorities and a complementary de-emphasis curve defined for incorporation, as standard, into receivers.

The curve, Fig. 2, has a 3dB boost at 3.18kHz rising to 10dB at 10kHz and Fig. 1 shows the effect on spectral distribution.

Unfortunately assumptions based on the falling h.f. characteristic of sound no longer hold true; with some types of modern sound balancing techniques, considerably higher levels can be presented for transmission. Instruments producing very high-pitched sounds are unnaturally emphasized, a condition commonly aggravated by the use of compressors, which tend to boost the average sound level anyway. This shift in emphasis, when modified by the 50µs pre-emphasis curve and presented for transmission, gives rise to an undesirable characteristic whereby, to prevent over-deviation of the transmitter by unnaturally emphasized h.f. signals, the whole signal is momentarily attenuated by the action of gain reduction at the transmitter limiter. In this way, low and mid-frequency programme components of subjectively major importance are attenuated to accommodate the higher frequencies. This significant change in spectral energy distribution now demonstrates that the 50µs pre-emphasis curve solution has clearly developed a serious, objectionable side-effect which warrants further investigation.

Obviously the simplest solution would be to reduce the overall level of programme presented to the transmitter to a point where limiting due to pre-emphasized h.f. content does not occur. This would, however, as with removing the 50µs curve at the transmitter altogether, give rise to an unacceptable deterioration in the overall signal-to-noise ratio. A far better solution would be to arrange pre-emphasis in such a way that dynamically according to programme content, the 50µs curve only be reduced, as appropriate, avoiding over-deviation of the transmitter and unnecessary attenuation of important low and mid-frequency programme elements. Further benefits can be identified, notably that receiving equipment would require no modification to receive these signals and that higher levels could safely be presented for transmission, thus improving signal-to-noise ratio whilst retaining a high fidelity characteristic regarding the original sound source.

Through work carried out over the last three years into selective limiting, that is, limiting of one section of the audio band without affecting any other and experimentation in co-operation with IBA engineers, Audio & Design (Recording) Ltd has produced such a

Variable pre-emphasis is a technique whereby the pre-emphasis curve used in f.m. broadcasting is varied according to programme content. The aim is to prevent transmitter over-deviation by high level, high frequency signals while not unnecessarily attenuating low and mid-frequency components. No modification of receiving apparatus is required as the device is active on momentary peaks only and for less than 10% of the time. It can improve signal-to-noise ratio by at least 6dB to give increased transmitter range.

![Fig. 1. Energy distribution in the audio spectrum, showing the effect of the 50µs pre-emphasis curve.](image)

![Fig. 2. The established 50µs pre-emphasis curve.](image)
system. Termed variable pre-emphasis, its characteristic is to establish and then limit only (hence vary) a standard 50µs pre-emphasis curve.

Fig. 3 shows how \(R_1C_1 \) forming a 50µs time constant and \(R_2 \), acting as a "stopper" resistor, create the pre-emphasis curve. To obtain variable pre-emphasis it is necessary to split off the pre-emphasis from the main signal path and process it separately. The pre-emphasis signal is passed first through a limiter, Fig. 4, and then, optionally, through a diode clipper whose threshold is set approximately 1dB above the limit threshold to disallow over-shoot. As gain must be introduced for low distortion at this stage, a simultaneous input/output attenuator is employed, both to restore unity gain and to set the threshold of the system. The processed pre-emphasis signal is then added to the main signal, so producing a variable pre-emphasis signal.

Similar to the variable emphasis system of transmissions used by the BBC on their p.c.m. links, variable pre-emphasis offers many advantages to broadcasters. Being a single-ended processor, variable pre-emphasis requires no complex complementary decoding circuit or signal path modification to be made to receiving apparatus (the vast majority of f.m. receivers currently in use in the UK are incapable of modification anyway) to continue receiving high fidelity signals, the primary objective of f.m. stereo broadcasting. Tests have shown that at least 6dB increased modulation of the transmitter can be achieved, thus effecting a proportional improvement in signal-to-noise ratio and transmitter range yet requiring no increase in power consumption. In addition, the system is active for less than 10% of the time because limiting occurs at high level on high frequency content only, whereas in complementary encode/decode situations signal modification is typically operative 90% of the time.

This is important when considering any system's effect on transient performance, and of even greater significance to those listeners who possess receivers that could not be modified to decode. No part of the current transmission chain is made obsolete as a simple addition to the programme chain is all that is required to commence variable pre-emphasized transmissions. In addition to not substantially affecting the high fidelity content of broadcast programmes today, variable pre-emphasis gives broadcasters an open-ended system that could take advantage of future technical developments, without being made obsolete by them or tying broadcasters and listeners alike down to specifically encoded, thus unmodifiable, signals.

On-air testing being carried out by the IBA during October (see News, page 42) involve two techniques to improve signal-to-noise ratio and hence reduce background hiss for a given signal strength and receiver performance. The techniques, Dolby B encoding described on page 237 of the July 1974 issue, and the variable pre-emphasis, described briefly in these pages, have some effects on audio quality and the IBA hope to determine within statistical limits how noticeable they are. (In the tests, the variable pre-emphasis scheme will be used to provide only a 2dB signal-to-noise ratio improvement.) Test results will be carefully assessed before the IBA decides whether to seek Home Office approval for the use of either system. Observations on technical quality should be sent to Reception Tests, Engineering Information Service, IBA, Crawley Court, Winchester, Hampshire SO21 2QA.

![Fig. 3](a) Method of obtaining the theoretical 50µs pre-emphasis of (b).

![Fig. 4](a) Variable pre-emphasis circuit and (b) the curves obtained.
Projection television—2

Refractive projectors

by Angus Robertson

The simplest form of television projection is to project the raster of an ordinary c.r.t. onto a screen using a lens. Light output depends upon the accelerating voltage and the efficiency and aperture of the projection lens; wide-aperture glass lenses are extremely expensive. There are two groups of refractive projectors, which are dealt with separately.

Trinitron projectors

Sony. The principle of the Sony VPP-2000, seen in Fig. 14, is shown diagrammatically in Fig. 15. A special 33cm Trinitron colour c.r.t. is used as the source, the light from which is directed, via a mirror, through the projection lens, with six elements, a focal length of 29cm, a diameter of 12.5cm and aperture f/2. A high-gain, solid screen, 1.02m by 0.76m, is used to obtain a quoted 34 nits (cd/m²) luminance and, working backwards from this, the calculated light output is 10 lumens. Price is £1,500. Sony also produce a self-contained projection system, the KP-4000, whose principle is illustrated in Fig. 16. A Trinitron tube projects onto an internal 81cm by 61cm high-gain screen with a brightness of about 34 nits. Although not presently available in the UK, price in the States is similar to the VPP-2000. The VPK-1200E uses three 33m single colour tubes to project a 1.8m by 2.4m picture onto a high gain screen. Light output is about 200 lumens. Only two lenses are used; the outputs of the red and blue tubes are combined by a dichroic mirror. Lenses are f/2 with 30cm focal lengths. Price is expected to be around £16,000.

Muntz/Markoff Theatre Vision Inc. and Tele-Theatre (Fig. 17) both manufacture refractive projectors using a Trinitron colour tube and a separate 1.02m by 0.76m high gain screen. Tele-Theatre price is £1,000.

Shannon Communications Inc. has developed a 30cm diameter lens system moulded from acrylics. It fits in front of a Trinitron tube and unlike the previous systems is focusable. Unfortunately little experience exists in the moulding of lenses of this diameter and the British company who were originally going to...
manufacture the acrylic lenses now feel unable to guarantee production. Whether the Shannon projector will be marketed in the near future now remains to be seen.

The problem with the manufacture of acrylic lenses is still to be solved. Lenses may be ground down from a solid blank which is an expensive process. Alternatively they may be hot moulded from acrylics. However when using this process to mould large diameter lenses (30cm), problems with expansion and cooling make accuracy extremely difficult. Until these snags are overcome, Mullard are going to try polishing lenses hot moulded to obtain greater accuracy.

The basic difficulty encountered with the previous refractive projectors is that the smallest colour tube available is the 33cm Trinitron. This uses an aperture grill and vertical stripes of coloured phosphor on the screen. About 400 groups of stripes are deposited across the screen and as mentioned earlier, this limits the resolution to 280 lines. It is not presently feasible to manufacture a colour tube of smaller dimensions because of the difficulties of maintaining sufficient resolution. Thus projector manufacturers are stuck with the problems of large diameter, wide-aperture lenses. These difficulties are not so prevalent when separate high-intensity, single-colour tubes are used. Shadow mask tubes may of course be used instead of the Trinitron tube.

Aeronutronic Ford
The refractive principle used by these projectors is perhaps the simplest to explain, but requires highly specialised techniques to obtain sufficiently high light outputs.

A 175mm c.r.t. is used as a basis for the projectors, shown in Fig. 18. The standard tube uses a glass faceplate with an active area of 10cm by 12.5cm; accelerating voltage used is 60kV with a very high beam current. To obtain a higher light output a sapphire faceplate may be used which has a much higher thermal conductivity than glass, allowing power dissipation of up to 40W (six to seven times that of glass) from the faceplate. Such a large plate is bonded to the tube by an exclusive process that compensates for varying thermal stresses between the glass tube and sapphire faceplate.

The projectors are fully refractive using nine element lenses with a speed of f/0.87. Analogue circuits are used for coarse colour registration with a digital correction system using semiconductor storage to obtain an accuracy of half a picture element over the entire screen, not just the centre. To combine the outputs of the three colour tubes, two of which are not normal to the screen, the Scheimpflug condition is used where the plane of the screen, plane of the c.r.t. and plane perpendicular to the axis of the lens, intersect at a common line to preserve focus at expense of distortion.

The ATP-1000 is a monochrome projector with a light output of 280 lumens using a glass-faceplate c.r.t. Resolution is 1,000 lines and contrast ratio 1.8. Price is $35,000 to $70,000. The ATP-3000 projects a 1,000 lumen colour picture, which is sufficient for a 2.7m by 3.6m picture. Price is $200,000 to $400,000. Finally the ATP-6000, shown in Fig. 19, is basically two ATP-3000 units providing 2,000 lumens with a 1,000 line horizontal resolution. Price is $400,000 to $500,000.

Advent has just introduced a refractive projector in the USA, fig 19a, which is effectively a baby version of the Aeronutronic Ford projectors. The Video beam 750 uses three 12.5cm diameter c.r.t.s focused onto a 1.55m x 1.15m high gain screen using three 12.5cm refractive acrylic lenses. Price is presently $2,495 and introduction is expected in the UK during 1977.

Eidophor light valve
The Eidophor is a projector which, by means of a high-intensity light source and an oil layer influenced by the video signal, can project a black-and-white or colour image by way of light valves.

The principle of the Eidophor is sketched in Fig. 20. The light source is a high-pressure xenon lamp which uniformly illuminates an aperture and is projected onto mirror bars with the aid of a condenser lens. The aperture image is reflected from the bars onto the concave mirror within the tube envelope. This arrangement of mirror bars is called a "dark field" projection system and ensures that no light can fall on the picture screen in spite of the concave mirror being intensely illuminated by the xenon lamp.

An oil layer 0.1mm thick is applied to the concave mirror and as long as its surface is completely smooth, the reflected light is not deflected and the picture screen remains dark.

However if this oil layer is deformed, part of the light is slightly deflected from its normal path and will fall between the mirror bars. This deflected light is focused by the projection lens onto the screen, the brightness increasing with increasing deformation of the oil layer.

The deformations are caused by an electron beam which exerts electrostatic forces on the oil and causes deformation. The electron spot size on the oil layer is chosen so that the resultant lines touch each other, distributing the charge evenly over the entire scanned area (72mm by 54mm); consequently the layer remains smooth. However, if the electron spot size is reduced, the lines no longer touch and the charge distribution assumes a line structure because the interline spacing carries no charge. This causes deformation of the surface and the smaller the spot, the larger the deformation. Thus, light reflected from the oil layer on the concave mirror is deflected past the
Fig. 19. Colour projector using the principle of Fig. 18

Fig. 20. Principle of the Eidophor. The lower ray is reflected between the mirror bars by the deformed oil layer

mirror bars and onto the screen. By continuously varying the spot size, a full brightness range may be obtained.

The nonconductive oil is made partially conductive and this, combined with the surface tension of the oil, provides for the oil to be smoothed after each field in readiness for new deformations. The great advantage of this technique is that the light source intensity is independent of the electrical power of the electron beam. Another feature inherent in the dark field technique is the contrast ratio of 1:100.

A colour Eidophor is arranged as shown in Fig. 21. The light from a single xenon source is split, using dichroic mirrors, into red, green and blue light, each beam being separately treated in a similar tube to the monochrome projector.

The EP8 monochrome Eidophor projector has an output of 4,000 lumens from a 2.5kW lamp. Maximum picture size is about 12m by 9m. A wide range of lenses are available for varying projection distances. Price is 250,000 Swiss Francs. A new range of monochrome projectors will soon be available. The 5170 in Fig. 22 is a colour projector with 3,000 lumen output. Resolution is 800 lines in the picture centre, registration accuracy being 0.1% in a circle 80% of picture height. Price is 600,000 Swiss Francs. Finally the 5171 is a high intensity colour Eidophor which has a 7,000 lumen output with a 4.8kW lamp. Maximum picture size is 18m by 13.5m. Seven different lenses are available. This unit, the highest-powered TV projector available, costs 690,000 Swiss Francs.

Westinghouse mirror matrix
This is a reflective light valve which uses a matrix of mirrors built into a vidicon camera tube.

The light-reflecting Schlieren system employed is shown in Fig. 23, where the light valve is seen to be the faceplate in
an otherwise conventional sealed-off vidicon tube which uses standard focusing and deflection components. The target is fabricated from monocrystalline silicon-on-sapphire substrates, using high yield semiconductor techniques. It is composed of a dense matrix (25.5 elements/mm) of aluminised silcon dioxide membranes (about 3,000A thickness) supported centrally on small silicon posts 4-5µm in height above the transport sapphire faceplate. These flat, stress-free oxide membranes can be deflected electrostatically by up to 4° when addressed with the electron beam. Thus, because light scattered by activated mirror elements is directed around the central stop in Fig. 23, an intensity-modulated display of the deposited charge pattern on the mirror matrix is produced on the screen.

Mechanical, and optical considerations have led to a special four-leaf geometry of the mirror elements in Fig. 24, enabling operation at a voltage level of only 175V) and an optical gating efficiency of about 50% to be achieved. The latter stems from the fact that light from activated mirror elements is spatially separated from the fixed diffraction background produced by the segmented target structure. Since the modulated light is effectively directed away from the optical axis of the Schlieren projection system, high screen brightness and high contrast are provided simultaneously by use of a central, cross-shaped Schlieren stop.

The mirror matrix is fabricated using chemically-inert, low vapour-pressure materials, so its inclusion within the sealed-off vidicon envelope shows no detrimental effects on tube life. In addition, the electrical insulation properties of the mirror matrix structure give long storage times for the charge pattern and its low thermal impedance suggests its suitability for high light-level flux handling capabilities.

At present, the write and erase time of 1/30s is such that real-time video cannot be projected, but the storage time inherent in the tube (many hours) makes the projector very suitable for single frame display such as might be used for computer displays, Travel indicators and such applications. A 1.3m x 1m screen was used with the prototype projector, which exhibited a 400-line resolution and 15:1 contrast ratio, with full grey scale. Total gated light output was about 90 lumens using a 150W xenon lamp and f/3.5 lens. Substantially higher luminous flux outputs can be expected with a larger light source and improved optics. A limiting resolution of 600 lines has been

Fig. 21. Optical system of the colour Eidophor.

Fig. 22. Gretag 5170 colour Eidophor. Control circuitry is in separate console on right.

Fig. 23. Reflective type of light valve used in the Westinghouse mirror-matrix system.
achieved using a 750,000 element array with fewer than 30 defective elements in a 50mm sealed tube. Price is expected to be between $2,500 and $3,500.

General Dynamics

A projection system similar to that of the Schmidt type is used by General Dynamics. The techniques uses a correction lens mounted between the c.r.t. and spherical mirror. Although providing better optical correction than the standard Schmidt, the large physical size and cost of the lens have prevented its wide use.

Lasers

Various attempts have been made to construct a projector using lasers as the light source. Although it is reasonably simple to modulate the laser light, scanning must be mechanical, using mirrors or prisms rotating at high speeds. However since the light path is very complex, efficiency is very low and this coupled with mechanical problems has frustrated development.

IBM deformographic

This uses a light valve containing a deformable target. Fig. 25 shows the principle of operation of the deformable storage display tube (d.s.d.t.) which uses a Schlieren optical system to convert the deformations of an optical surface into visual imaging points.

The heart of the d.s.d.t. is a dielectric membrane [target] which consists of an electronically-controllable storage substrate, a deformable material layer and a reflective layer. The target is mounted in the tube envelope so that the storage substrate faces the electron gun chamber of the tube. Deformations, created in the deformable material as a result of negative electrostatic charges deposited by the write gun of the d.s.d.t., are converted into a visual image by the off-axis Schlieren optical system. Since the substrate is a good insulator, it provides long-term image storage. Also, because of its secondary emission characteristic, the effective polarity of the deposited charge may be varied as a function of electron beam energy. Thus a deposited charge can be written and erased in a controlled manner by appropriately directed electron beams of selected energies.

Since the deformable material is isolated from the electron gun chamber, cathode poisoning is eliminated. By employing an elastomer as the deformable material, a simple mechanical restoring force provides the actual erase function once the deforming charge is removed. An additional advantage is the placing of the reflective layer on the deformable material, which allows an efficient reflective optical system to be employed instead of a complex transmissive system. Two electron guns are used mounted in the tube’s rear. The write gun provides a magnificently deflected pencil beam while the erase gun is designed to cover the entire substrate with its electron beam cloud. Electronic control of these guns with time sequencing provides for such facilities as storage, variable persistence, selective erase, coloured images and optical processing.

Storage is achieved by sequentially writing and erasing. A single writing operation places information on the target where it is stored until neutralized by the erase gun up to several minutes later. Variable persistence is arranged by simultaneous operation of write and erase guns, the degree of persistence being controllable by varying the erase current. Selective erase may be arranged by altering the potential of the writing gun to produce a directional erase beam. Although theoretically possible, deflection problems with two different beam potentials could cause problems.

Coloured data may be displayed by exploiting the Schlieren plane effect. Fig. 26 shows two methods of producing coloured symbolic data. The top portion shows two E’s generated from horizontal and vertical strokes. Because of the optical pattern created as a result of the stroke patterns, and crossed configuration separates the two characters into different colours at the image plane. The lower characters show colour generation by controlling depth of deformation. The lightly drawn character limits the reflective pattern to the inner annular filter ring while a heavily written character causes a large share of the reflected light to fall on the outer filter. The relative sizes of the characters shown in Fig. 26 are significant since the coloured characters made from directional strokes must be larger than black and white characters. Various other filter arrangements may be

Fig. 24. Mirror-matrix light valve. Cross-section of one element is shown at (b)

Fig. 25. System by IBM using a reflective, deforming surface – similar in some respects to that of Fig. 23
News of the month
Continued from page 46

vote. Members of the executive and chairmen of standing committees would normally be appointed from among board members.

Mr Clayton said the July meeting had been "as satisfactory if not more so than we could have hoped for." They had reached sufficient agreement on the redrafting of the charter and bylaws to be able to recommend to a meeting of the IEE council in Sheffield on September 9 that the resignation be rescinded. This, he hoped, would happen by a special resolution at a CEI meeting on September 22. "We shall then have the things that we need: a clear definition of the role of the CEI, direct elections of members of the CEI by the membership, and the possibility that those who are not members of chartered institutions can be represented on the CEI." The only qualification for affiliation to the CEI on the part of unchartered institutions, he said, was that an institution had enough people in it who were likely to become members. This would not make the board membership of the CEI unwieldy again because he could only think of one or two institutions that would want to come in.

"The first role of the CEI is to endorse academic examinations which a man must take before he can call himself a chartered engineer. It is also up to the CEI to establish a code of professional conduct and enforce it." Speaking of the comparative jurisdiction of the CEI with the individual institutions he said: "It can speak for the engineering profession as a whole in matters that affect the engineering profession as a whole, but there aren't all that many such matters, and that doesn't prevent each institution speaking individually.

"The CEI represents chartered engineers, not institutions," he asserted, and while he agreed that the name no longer reflected what the CEI was about, he said he could think of many bodies known by their acronym whose full name no longer reflected their function. "The existence of the CEI shows that a lot of people who are working in the same field can on matters of common interest represent a viewpoint together. We can do something useful in the CEI but it's not going to be transformed overnight."

As his year of office, one of the stormiest in the IEE's 105 years, closed, Mr Clayton said he recalled two things more vividly than the CEI battle. One was the inter-relationship between engineering and physics, "and our relationship with the mechanical engineers. We are two very close institutions and our links are getting closer all the time." Was the rumoured merger between the two a possibility? "All things are possible."

makers and importers

Aeronutronic Ford, 3939 Fabian Way, Palo Alto, California, USA.

Eidophor: Televizor Ltd, Channings House, Wargrave, Berks.

General Electric Co, Building 6, Electronics Park, Syracuse, New York.

IBM Corp, Department 102B, Building L91, Awego, State of New York 13827.

Projection Systems: Speywood Communication Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.

Pye TVT Ltd, PO Box 41, Coldhams Lane, Cambridge.

Sony (UK) Ltd, 134 Regent Street, London W1.

Tele Theatre: Speywood Communications Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.

Westinghouse Electric Corp, R. and D. Centre, Beulah Road, Pittsburgh, Pennsylvania 15355.

Microprocessor predictions

AMI Microsystems predict that sales of m.o.s.i.c.s which provide memories for microprocessors will increase by 113% over the next 2 1/2 years. The growth will extend, they say, into an increasing range of data processing, industrial and consumer products. Microprocessor sales are expected to increase by nearly half during the period, but US manufacturers are expected to get more than 80% of worldwide sales, which will increase, according to AMI's director of research, from last year's $64 million to $100 million in 1979. Ancillary memory sales will rise from $11 million to $190 million.
Self-setting time code clock

3 — Alignment procedure

by N. C. Helsby, M.A., University of Essex

On completion, align the clock as follows.

Short the receiver input and adjust R_7 to give 4.3V at TP1. Remove the short and a signal should appear as soon as the a.g.c. has reduced the gain to the correct value. A voltmeter connected to the output of IC3 will indicate signal strength by monitoring the a.g.c. amplifier output.

Adjust the aerial and T_1 tuning controls for maximum reading at this point, taking into account the slow response of the a.g.c. Note that the a.g.c. reference may be checked at the junction of $R_2 - R_3$ and should be about 2.9V. Similarly, the junction of $R_1 - R_3$ should be at about 3.6V. If the 5V supply is slightly high these values will be increased and the 4.3V should be raised accordingly.

Connect an audio amplifier to TP1, via a suitable capacitor, to check the overall noise level. Audible bleeps during the break in carrier may be heard using the tone generator.

In the decoder circuit, break the link on pin 4 of IC16 so that the timer runs continuously. If a timer/counter is available connect it to pin 3 of IC16 and adjust R_{10} to give a period of 10ms. Alternatively, the output at pin 3 may be compared with 100Hz ripple on the power supply by adding the two signals and adjusting R_{10} for zero beats using an audio amplifier as shown in Fig. 16.

The code recognition circuitry may be set up using an audio oscillator and a pair of headphones. The oscillator is required to give a rectangular-wave output of about 4V pk to pk at 25Hz. The output should go from zero to +4V, if it does not it may be restored by means of a diode and capacitor. Disconnect the receiver from the decoder and connect the audio generator as shown in Fig. 17. Connect a link from the collector of T_8 to the base of T_{10} so that the two collector resistors are shorted. Connect an audio amplifier or headphones to pin 8 of IC6b via a 10kΩ resistor. Starting with R_9, adjust until the 25Hz output at pin 8 just ceases. Disconnect the link between T_9 and T_{10} and with the same input signal, adjust R_4 so that the audio output just returns. This is the correct position for R_4 and, if an oscilloscope is available, the output at pin 8 should be high for 12ms under these conditions. If an oscilloscope is...
available continue to feed in the 25Hz test signal and set \(R_{10} \) to give a positive pulse length on pin 6 \(I_{C} \) of 27ms. If an oscilloscope is not available, adjust \(R_{10} \) to give the longest available pulse length. Disconnect the signal generator and connect the receiver output to the input of the decoder board. Decoding should proceed at each minute. To optimize the noise immunity, in the case where \(R_{10} \) was set, progressively advance it until decoding at the minute ceases, and then return it by a reasonable margin. The 25Hz oscillator continuously applied does not cause the decoder to trigger its clock, but it does so once each time it is switched to the input of the decoder.

As an alternative to the above procedure a test generator which gives the same waveform as the start of the time code may be constructed from monostables or standard test equipment. This waveform is applied at 500ms intervals and \(R_{10} \) adjusted to give the waveform shown in Fig. 18 at pin 9 of \(I_{C} \). The previous method using a 25Hz generator gives similar results. The timings shown allow for a margin of error in the transmitted code and the waveform shown will trigger the decoder clock every 500ms.

For the seconds counter and parity checker, remove the input seconds pulses by shorting the receiver aerial. Disconnect the link between \(R_{12} \) and pin 2 of \(I_{C} \) and measure the voltage on pin 2 which should be around 3.5V. Apply the voltmeter between \(R_{13} \) and ground and adjust \(R_{12} \) to the same value as on pin 2. Reconnect the link and remove the short-circuit across the receiver aerial. Find the extremes of \(R_{12} \) at which the p.l.l. loses lock, as indicated by the out-of-lock i.e., and note the positions. Set \(R_{12} \) midway between these positions. (When lock is lost the indicator flashes on and off as the c.c.o. comes in and out of phase with the input signal). This adjustment must be made very slowly due to the long time constants involved. Adjust \(R_{10} \) so that the negative-going edge on the collector of \(Tr_{3} \) is coincident with the positive-going edge of the received seconds pulses as shown in Fig. 19 (available on the edge of the seconds counting board). By mixing these signals through an audio amplifier, the exact coincidence point may be heard. This completes the alignment of the time code clock.

Printed circuit boards

Wireless World has arranged a supply of glass fibre boards for the time code clock. The p.c.b.s are available as a set which comprises three double-sided and two single-sided boards for the receiver, GMT/BST converter, decoder, seconds counter, and display. The boards mount on top of each other (see photo) to form a compact module which can be housed in a case approximately 8 x 5 x 3in. The set of boards is priced at £13.50 inclusive or £11.00 undrilled.

A set of special components is also available which comprises an aerial assembly, receiver coil assembly (LA4145), N5956K multiplier, MPS H05 transistor, two 1.5kΩ metal-film resistors, and the NE567 tone decoder. This set is priced at £7.50 inclusive.

Available from M. R. Sagin at 11 Villiers Road, London NW2.
Does your present radio test equipment measure up to this?

The Solartron Schlumberger

4010A/4011

Time was when radio testing meant a clutter of space-consuming instruments, complex interconnections, and out-of-phase calibrations.

We've changed all that. We've built a complete range of radio test equipment into a single compact unit - the Solartron/Schlumberger Manual Radio Test Set. It comes in two models: 4010A and 4011.

Features include a synthesizer covering the range 0.01 to 480MHz, depending on model, with decade manual and remote control facilities; FM, ΦM, and AM modulation; frequency counter; RF power meter; AF millivoltmeter; AF generator; and a distortion meter and filter for noise weighting.

SOLARTRON

Schlumberger

Telephone: (0252) 44433. Telex: 858245.
Our instruments are fast and reliable. Like the distributors that back them.

Our Appointed Distributors have been ordering instruments a year ahead on your behalf. This means they can deliver your order quicker than any other source. They can help you choose the right instrument, too.

Here's where to contact them:

LONDON AREA
- **London**
 - Edmundson Electric Ltd.
 - Tel: 01-891 1331
 - ERD(South East) Ltd.
 - Tel: 01-928 5620
 - Lugton & Co Ltd.
 - Tel: 01-348 8247
- **R.T.I. Electronics Ltd.**
 - Tel: 01-539 4986
- **ITT Instrument Services**
 - Tel: 0279 26811
- **Welwyn Garden City**
 - Elistons (Welwyn) Ltd.
 - Tel: 07075 26344

MIDLANDS
- **Coventry**
 - Mercia Electronics Ltd.
 - Tel: 0203 24091
- **Birmingham**
 - ITT Distributors Ltd.
 - Tel: 021-236 5030
 - ERD(Midlands) Ltd.
 - Tel: 021-236 5060
 - Northampton
 - E.M.F(Electrical) Ltd.
 - Tel: 0604 21711
 - **Norwich**
 - Newey & Eyre Ltd.
 - Tel: 0603 49341
 - **Nottingham**
 - Newey & Eyre Ltd.
 - Tel: 0602 866531

NORTHERN IRELAND
- **Belfast**
 - Eirco Ltd.
 - Tel: 0232 42911

NORTH EAST
- **Hull**
 - Edmundson Electric Ltd.
 - Tel: 0482 20691
 - **Leeds**
 - **Newcastle upon Tyne**
 - J Gledson & Co Ltd.
 - Tel: 0632 860955

NORTH WEST AND S. WALES
- **Bristol**
 - Black Arrow (Electronics) Ltd.
 - Tel: 0454 315824
 - **Cardiff**
 - **Bath**
 - **Salford**
 - Hirst Ibbetson & Taylor Ltd
 - Tel: 061-833 9711

SCOTLAND
- **Glasgow**
 - ERD(Scotland) Ltd.
 - Tel: 041-647 7141
- **Dundee**
 - Wood & Cairns Ltd.
 - Tel: 0382 22051

SOUTH WEST AND S. WALES
- **Bristol**
 - Black Arrow (Electronics) Ltd.
 - Tel: 0454 315824
- **Cardiff**
 - Newey & Eyre Ltd.
 - Tel: 0222 45831

THORN
- **Thorn Measurement Control and Automation Division, Archcliffe Road, Dover, Kent. Telephone: Dover (0304) 202620**

Avo Limited
Evershed & Vignoles Limited MEGGER Instruments Division
H. W. Sullivan Limited

WW 098 — FOR FURTHER DETAILS
Distortion levels in r.f. clipping

Theoretical intermodulation distortion levels from clipping a two-tone s.s.b. signal

by D. A. Tong, B.Sc. Ph.D.
Datong Electronics Ltd

Speech clipping at r.f. is now a well known and accepted method of increasing effective transmitter power. So far little experimental work has been done to determine the levels of intermodulation distortion generated by r.f. clipping. This study attempts to find the magnitude of distortion that can be expected when ideal clipping is applied. The analysis shows that quite high i.d. occurs with a two-equal-tone signal even for small amounts of clipping but, probably due to the waveform, this is not so objectionable when listening to speech.

In the use of a.m. and f.m. transmitters a.f. speech clipping has been widely used to raise the average-to-peak amplitude ratio of the speech waveform. Disadvantages of this technique are a high level of distortion, and the incompatibility with s.s.b. transmitters which are now the most common kind in use. If, however, the clipping is performed, at r.f. on a s.s.b. signal most of the distortion is eliminated and there is no incompatibility with s.s.b. transmitters. Radio frequency clipping by 15 to 20 dB can increase effective peak power by a factor of ten.

An add-on r.f. clipper can be placed in series with the transmitter microphone lead because the device generates its own s.s.b., clips it and demodulates it back to a.f. A single audio frequency sine wave, when processed in such a way, is reproduced as a sine wave with, assuming an ideal system, zero distortion, no matter what the degree of clipping. If the same signal is subjected to direct clipping it approaches a square wave and a set of odd harmonics is generated. If the wanted frequency is at the low end of the speech band, many of the harmonics are also in the speech bandwidth and cannot be filtered out. When several sine waves are simultaneously fed into a clipper the situation is more complex because a range of sum and difference products between various harmonics are generated.

The calculation which follows was undertaken in an attempt to find out how much distortion can be expected with ideal r.f. clipping applied to a typical two-tone s.s.b. test signal. Although a general calculation for the intermodulation produced by simultaneously clipping sine waves of varying amplitude would be complex, the special case of two equal-amplitude sine waves is more easily solved. The analysis shows that quite high intermodulation distortion occurs, even for small amounts of clipping. This is certainly not a condemnation of r.f. clipping for speech transmisions, but a point against in-band distortion, produced from a two-tone test signal, being used as an important parameter for characterizing a transmitter used for speech communications.

Calculation

A two-tone test signal can be regarded as a double sideband suppressed carrier signal produced by multiplying together two hypothetical signals. The test signal is defined as

\[f(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t, \]

(1)

\[f_m(t) \]

\[f(t) \]

\[\pm \frac{\pi}{\omega_1 - \omega_2} \]

\[\frac{-2A_1}{2A_1} \]

\[-A_1 \]

\[A_1 \]

\[A_2 \]

\[2A_2 \]

\[-2A_2 \]

\[\pm \frac{\pi}{\omega_1 + \omega_2} \]

\[\frac{-2A_2}{2A_2} \]

\[-A_2 \]

\[A_2 \]

\[2A_1 \]

\[-2A_1 \]

(2)

\[\text{Fig. 1. (a) Modulating waveform, } f_m(t), \text{ which, when multiplied by } \cos (\omega_1 + \omega_2) \text{ /2 gives the two-tone test signal } f(t). (b) Two-tone test signal } f(t). \text{ Note its peak amplitude is twice that of the waveform in (a). The phase of the waveform with period } 4\pi / (\omega_1 + \omega_2) \text{ is shifted by } \pi \text{ radians (180°) in each successive section of the envelope. In both (a) and (b) the effect of amplitude limitation is shown by the dotted line.} \]

i.e. the sum of two signals. This can be written in the product form as

\[f(t) = 2A_1 \cos (\omega_1 + \omega_2 /2) \cos (\omega_1 - \omega_2 /2) t \]

(2)

where \(\omega = \omega_1 - \omega_2 \). This second equation shows why the peak amplitude of the two-tone signal is twice that of each separate tone. It also shows that the envelope of the r.f. component, at angular frequency \(\omega + \omega_2 /2 \) is amplitude modulated by a low frequency waveform which is equal to half the difference of the two original tones. The waveforms \(f(t) \) and \(2A_1 \cos (\omega_2 /2) \) are shown in Fig. 1.

Because the envelope shape of \(f(t) \) is directly related to that of the modulating waveform \(2A_1 \cos \omega_1 /2, \) any amplitude limiting of the composite signal \(f(t) \) can be regarded as due to similar limiting of the modulating waveform. This is indicated by the dotted lines in Fig. 1.

To predict the effects of r.f. clipping on a two-tone signal, one can first calculate the Fourier components representing a clipped cosine-wave, and then consider the effect of modulating \(\cos(\omega_1 + \omega_2 /2) \) separately by each of these components. The results of each modulation process, i.e. each multiplication, can then be added together to give the final frequency spectrum.

Any complex modulating signal \(f_m(t) \) with a fundamental frequency of \(\omega_2 /2 \) can be represented as the following general Fourier series

\[f_m(t) = a_0 + a_1 \sin \omega_2 t /2 + a_2 \sin 2\omega_2 t /2 + \ldots \text{ etc.} \]

+ \(b_1 \cos \omega_2 t /2 + b_2 \cos 2\omega_2 t /2 + \ldots \text{ etc.} \)

This expansion simplifies if there is no d.c. component in the waveform, and the clipping is symmetrical. Under these conditions only the odd cosine terms are left

\[f_m(t) = b_1 \cos \omega_2 t /2 + b_2 \cos 3\omega_2 t /2 + \ldots \text{ etc.} \]

(3)

This is why every effort should be made, in any a.f. or r.f. process to achieve...
symmetrical clipping. When each of these modulating components are used separately in equation (2), and the results are added to give the complete expansion for \(f(t) \), the result is

\[
f(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t + A_3 \cos (\omega_1 + \omega_2) t + A_4 \cos (\omega_1 - \omega_2) t + A_5 \cos (2\omega_1 t) + A_6 \cos (2\omega_2 t) + \ldots
\]

The line spectrum corresponding to this expression is shown in Fig. 2, and the peak amplitude of each frequency component is shown above the corresponding spectral line.

Before discussing the actual magnitudes of \(b_1 \), \(b_2 \) etc., it is worth making a few points about Fig. 1 and 2. The higher the subscript, i.e. the higher the harmonic of \(f_a(t) \) responsible for the particular component, the weaker the resulting component. Out of the unwanted intermodulation products, attention will be concentrated on the components at \(\omega_1 + \omega_2 \) and \(\omega_1 - \omega_2 \). These are the largest and also the closest in frequency to the desired signals and therefore the least likely to be filtered out. Fig. 1(b) is slightly misleading because the dotted lines, which represent the peak-to-peak amplitude after clipping, suggest that the waveform at frequency \(\omega_1 + \omega_2 / 2 \) will be clipped. In fact, if this waveform is modulated by the clipped version of \(f_a(t) \) shown in Fig. 1(a), i.e. a cosine wave of original amplitude \(A_0 \) clipped to a peak amplitude of \(A \), the sine shape of the high frequency waveform will be retained. This treatment therefore applies only to the case where clipping is achieved by an ideal r.f. compressor with threshold at \(A \) and with a long time constant compared to \(4\pi / (\omega_1 + \omega_2) \) but negligible compared to \(4\pi / (\omega_1 - \omega_2) \). Nothing is said about the spectral components which will appear centred on harmonics of \((\omega_1 + \omega_2) / 2 \), but, because these are always discarded by subsequent filtering, this is not important. One assumes that for components centred on \((\omega_1 + \omega_2) / 2 \), there will be negligible difference between true clipping and the hypothetical r.f. compressor mentioned above. The same assumption is also implicit in Kahn's treatment of hard clippers [2].

The magnitudes of coefficients \(b_1 \), \(b_2 \) etc. can be derived using Fourier analysis for the waveform shown by the full line in Fig. 3(a). An ideal limiter or clipper \(R_2 \) in Fig. 3(b) equal to zero) allows no increase in input waveform amplitude after it has reached a certain threshold as shown by \(A \) in Fig. 3(a). Practical clippers approach this condition and therefore, the calculation has been carried out for the general case. The two results are

\[
b_i = A \left(\frac{2}{\pi} (1-x^2)^{i/2} \right)
\]
where \(x = A/A_0 \) and \(\alpha \) is the gain of the clipper, see Fig. 3(a). It should be noted that in two-tone testing it is normal to measure the amplitude of the strongest intermodulation product relative to the product of the desired component. The intermodulation level in decibels will therefore be equal to

\[
IP_{\max} = 20 \log_{10} B/b_3
\]

where \(b_1 \) and \(b_2 \) are given by equations (4) and (5). In the case of infinite clipping with an ideal clipper, \(\alpha \) and \(A/A_0 \) are both zero. It can be shown that \(b_3 = 4A/3\pi \) and \(b_1 = 4A/\pi \). For infinite clipping, therefore, \(b_1/b_2 \) is 3. The minus sign is neglected because it merely implies a phase shift of \(\pi \) radians in the cos \(3\Delta t/2 \) term relative to the cos \(\Delta t/2 \) term. This result provides a check on the calculation because the waveform \(f_m(t) \) is now a symmetrical square wave and the expansion for this is well known [1]. It also gives a useful result because the worst intermodulation product caused by infinite clipping of a two-tone signal will be at a level of \(-9.5\,\text{dB} \) relative to one of the wanted signals. In this special case it is easily shown that \(b_m = 4A/m\pi \), therefore the level of every intermodulation product can be derived, see Fig. 6.

A second check on the results can be obtained by making \(A = A_0 \) and \(\Delta t = 0 \). It is found that \(b_1 = A_0 \) and \(b_2 = 0 \) as expected because this is the case for no clipping. It was noted that with infinite clipping, \(b_1 = 4A/\pi \). This amplitude is greater than the clipping threshold. If in addition \(\alpha \) is non-zero, as in practical clippers, the wanted output will vary with the input amplitude even when the input is above the clipper threshold \(A \). The degree of clipping in any situation is expressed as

\[
B(\text{dB}) = 20 \log_{10}(A/A_0)
\]

and \(B \) represents the ratio of one wanted output to one of the inputs.

For a given degree of clipping it is useful to know how much the wanted output component has increased above the clipping level. This enables a.c. systems and other circuits following the clipper to be designed properly. The parameter is defined as

\[
C(\text{dB}) = 20 \log_{10} a.
\]

In a practical system \(B \) and \(C \) are the important parameters from a performance point of view. From the design aspect \(A \) is important and it is worth noting that \(B + C = -20 \log_{10} x \), where \(x = A/A_0 \) as before.

Fig. 4. The upper curves show the value of \(IP_{\max} \) defined by equation (6), relative to one of the wanted tones in the output as a function of clipping level, defined by equation (7). The lower curves show the corresponding variations in the level of the desired output signal, defined by equation (8).

Fig. 5. Analysis of the instantaneous amplitude of phrases of speech spoken without pauses (taken from reference 5).

Numerical Results

So that the expressions developed so far can be more easily used, the parameters \(IP_{\max}, B \) and \(C \) as defined by equations (4) to (8) have been evaluated for a range of clipping levels and for various values of \(\alpha \) using a calculator. The results are collected in Fig. 4 and 7. A most striking feature of these graphs is the high level of intermodulation distortion predicted for even small amounts of clipping. With an ideal clipper (\(\alpha = 0 \)) the amount of intermodulation produced, when one half of the r.f. signal is clipped, is obtained by putting \(A/A_0 = 0.5 \) in equation (9). This gives \(B + C = 6 \text{ dB} \). From the graph, \(B \) and \(C \) will then be 4.3 and 1.7 respectively and \(IP_{\max} \) will be close to \(-13 \text{ dB} \). Note that the clipping level as defined in equation (7) will be 4.3 dB and not 6 dB. This situation is hardly improved by using a non-zero value of \(\alpha \). Although the \(IP_{\max} \) curves for non-zero \(\alpha \) bend over at high clipping levels to give an apparent improvement in i.p. levels, the curve for the level of wanted output rises steeply at the same time. This apparent improvement is therefore at the expense of large changes in output level. The explanation is, at high clipping levels with non-zero \(\alpha \), the distance between the levels \(A \) and \(A(1-\alpha) + A_{oa} \) in Fig. 3, has become so large relative to \(A \), the latter has become negligible. The obvious steepness of the intermodulation curve at low clipping levels is a reflection of the flatness of the cosine function around the peaks. In this region a small increase in clipping level produces a large increase in the function affected by the clipper. For example, with only 1 dB of clipping, Fig. 4 shows that \(B = C = 1 \) and hence \(A/A_0 = 0.794 \). But cos \(2\pi\Delta t/T = A/A_0 \), and therefore \(\Delta t/T = 0.104 \). This means that the flat sections of the clipped waveform in Fig. 3 account for as much as 41.8% of the total period \(T \). The corresponding value for \(IP_{\max} \) is \(-20.8 \text{ dB} \). As clipping increases, the discontinuities in the.
clipped waveform travel down ever steepening parts of the cosine function and the additional effect on i.p. level diminishes. At a clipping level of 10 dB, 84% of the waveform in Fig. 3 is flat and the intermodulation level is 10.4 dB, which is only 0.9 dB better than the ultimate value when the whole waveform is flat. Corresponding values for 3, 5 and 20 dB of clipping are 60% and -14.5 dB, 69% and -12.2 dB, 95% and -9.6 dB. It is striking that from only 3 dB of clipping to infinite clipping, the third order intermodulation products change by only 5 dB.

The percentage of a two-tone signal which has been flattened by clipping is easily measured using an oscilloscope. This parameter, called y, has been plotted against third order intermodulation level in Fig. 7 so that an upper limit for the intermodulation caused by flat-topping in a transmitter can be more easily estimated. Also shown is one quadrant of the cosine curve $x = \cos(n2\pi y)$ which illustrates the comments made about the flatness around $y = 0$. It also allows the ratio of clipper threshold to input amplitude, x, to be quickly related to y, and hence I_{pmax}. It seems clear from these curves that a small amount of flat-topping in a transmitter will cause a lot of interference in adjacent channels if the transmitter is being driven by a two-equal-tone test signal. A similar point has also been made by L. A. Moxon (G6XN) in his recent review of r.f. speech clipping [8].

Unfortunately there seems to be a shortage of experimental data with which to compare the results of the calculation. Data points taken from the only sources located have been superimposed on the graph in Fig. 7. W. Sabin's (WO1YH) measurements agree well with the theoretical curve but are restricted to 10 and 20 dB of clipping. P. E. Chadwick (G3RPZ) measured intermodulation products as a function of the parameter y [10] but he does not state whether his i.p.s. are third order or the sum of all intermodulation products. The four values quoted seem fairly consistent but, compared with the theoretical curve they appear to underestimate the distortion as the clipping increases. The four points supplied by J. Horwood (G3FRB) do not agree with the theoretical curve or Sabin's data. It would have been useful if the two test-tone frequencies had been quoted, (those used by Sabin were 600Hz and 1kHz) because the low intermodulation level quoted for 10 dB of clipping raises the suspicion that the intermodulation products were being reduced by the post-clipper filter.

At 20 dB of clipping the present calculation and the data quoted indicate the i.p. level is substantial and would be objectionable if one were listening to a two-tone test signal. When listening to speech the i.p. is not so objectionable; this is probably due to the nature of the waveform. The graph in Fig. 5 shows

Fig. 6. Frequency spectrum of an infinitely clipped two-tone s.s.b. signal. The high levels of unwanted components (all except those with frequency $\omega + \omega_1$) show the need for a narrow band filter after a r.f. clipper. The spectrum is symmetrical about $\omega_1 + \omega_2$ but only frequencies greater than this are shown.

Fig. 7. Data in Fig. 4 is shown replotted to illustrate how the level of third order intermodulation products varies with y. The relationship between y and ω_1 is also plotted which is merely one quadrant of a cosine curve. Also plotted are some published experimental data for third order intermodulation levels.
the percentage of total observational time during which the instantaneous amplitude of speech waveforms exceeds a given percentage of the peak level (reference 4). The 33% level is exceeded for only 14% of the time. If, therefore, the speech clipping begins at the 33% level (i.e. A/Ao = 0.33), up to about 8 dBs of clipping will occur, but only for a fraction of the total time. It seems quite reasonable therefore that neither r.f. nor a.f. clipping to this extent will cause much subjective deterioration of the speech and this is what is observed in practice.

Because the remaining 86% of the speech has been raised in level by 9.5 dBs a large increase in talk power is achieved. Although this applies equally well to a.f. or r.f. clipping, the audible difference is less pronounced for the latter at high clipping levels because fewer distortion products are produced. For example, many pairs of frequencies in a speech waveform will have intermodulation products that fall outside the subsequent filter's pass-band. These two frequencies will appear undistorted whereas distortion products would still arise if a.f. clipping were used. Perhaps a major disadvantage is that the level of intermodulation products produced when two tones are clipped at r.f. will reduce when their uncropped levels become unequal. In the limiting case of a single tone, no distortion is produced by an r.f. clipper. This is in direct contrast to audio clipping, where even a single tone would produce a series of odd harmonics which waste transmitter power.

Farkas and Gschwindt [5] have shown theoretically and empirically that for 20 dB of clipping, the output power from an audio clipper is 1.66 times that from a r.f. clipper. This extra 60% of power is wasted so far as wanted information is concerned. Furthermore, the extra power is being used to transmit interference within the information bandwidth and therefore, compared with r.f., a.f. clipping contains a built-in jammer which has 66% of the strength of a r.f. clipped signal.

Conclusion

In testing linear amplifiers for non-linearity at any frequency, a two-tone test input is widely used because of the relatively high levels of intermodulation products (compared to harmonics from a single tone of the same amplitude in the same situation) produced by a given degree of non-linearity [6]. Considering the extreme deviations from linear amplifiers permitted by any form of a.f. or r.f. clipper or amplitude limiter, the levels of intermodulation products calculated in Fig. 4 seem plausible. One feels, however, that maybe some other factor made the distortions figures, quoted in reference 3, so low.

For reasons noted already the two-equal-tone test signal is not suited for testing in-band distortion in a speech transmitter using a clipper. The result is too pessimistic when compared with the audible deterioration. On the other hand, when testing for out-of-band interference in a speech system using r.f. clipping, a two-tone signal is valuable because it represents a worst-case situation, which is what adjacent channel users are interested in. The present calculation could easily be carried further to evaluate the amplitudes of higher intermodulation products more likely to be outside the information bandwidths defined by the post-clipping filter. It is probably safer to assume the worst-case situation of infinite clipping where the amplitudes of intermodulation products produced by the two-equal-tone input are given by bm = (4/A2m)2. These components are plotted in terms of decibels below the wanted output in Fig. 6. A similar diagram appears in reference 7. The high level in adjacent channel regions shows why the filter following an r.f. clipper has to do more than remove harmonics at 2f, 3f, etc., where f is the carrier frequency, as has been implied in at least one publication. With a speech input Fig. 6 would appear more as a continuous spectrum. This figure emphasises the recommendation that the post-clipper filter should be of comparable specification to the original sideband selection filter. Such a filter also helps to reduce the carrier and unwanted sidebands to their original pre-clipping level.

Crossover distortion

The solid line in Fig. 3(a) can also be regarded as an exaggerated output from a class B audio amplifier suffering from cross-over distortion and where the input signal is a single sinusoid. The same calculation can therefore be used for determining the amplitudes of the harmonics produced by such an amplifier. Similarly the curves given in Fig. 4 for low level inputs of a can be interpreted as giving the amplitude of the strongest inter-modulation product produced by a class B r.f. power amplifier with an arbitrary amount of cross-over distortion when fed with a two-equal-tone test signal. This treatment cannot be used to calculate the intermodulation products for a two-tone audio-frequency signal subjected to clipping or cross-over distortion for reasons given earlier. Qualitatively, however, the result of clipping such a signal will be a series of overlapping sets of products as in Fig. 2, with each set centred on a multiple of (w1 + w2)/2. Thus, the total number of unwanted products within the information bandwidth will be much larger than if the compression of dynamic range is carried out by heterodyning to r.f. clipping, filtering harmonics, and heterodyning the result back to a.f.

References

Sixty Years Ago

Our occasional "Letter from America" was a feature of the journal as long ago as sixty years. The letter in the October 1916 issue — incidentally written by David Sarnoff who later became chairman of RCA — included among other things the small drama of a stolen crystal detector.

"The operator in charge of a wireless station installed on a vessel left his cabin for a few minutes, during which time an unconscious person entered the radio cabin and possessed the crystal tube detector, as well as the spare crystal detectors which were lying in a box on the operating table. The ingenuity of this particular operator was not all that could be desired, and as a result the vessel was unable to receive wireless signals for a period of two and a half days."

The report then goes on to quote The Electrical World:

"A condition in which the operation of a wireless telegraph outfit must be entirely suspended on account of the lack of a spare bit of carbondium is not healthy. That it can exist reflects no credit upon either the operator himself, the company which trained and employed him, or the naval examiners who granted his licence certificate. This is quite over and above that part of the responsibility of the operator to construct a temporary detector of at least enough sensiveness and reliability to keep the ship radio in operation."

"... Had the operator, who was forced to sit idly by his dead receiver because the crystal had been stolen, known a little of what expedients were made use of in the early years of wireless telegraphy there would have been no failure to protect his ship by radio service. Two needles and a pencil, a knife-blade and a broken incandescent lamp, a piece of dry-cell carbon and an iron wire — any of these could be used as a microphonic detector which would take the place of the crystal and receive signals from fifty to one hundred miles."

...
Suppressing d.s.b.?
The Radio Regulatory Division of the Home Office has gained a favourable reputation in its attitude towards amateur licence matters. It is therefore all the more inexplicable that it is withdrawing from British amateurs the right to use double-sideband suppressed carrier (d.s.b.s.c.) modulation. In seeming direct contradiction to the international definition of the amateur service as a service of “self-training and technical investigations” the authorities are attempting to kill any further investigation into a modulation system for which it has itself provided funds for university research and which some engineers have endorsed as potentially more effective for amateur communication than s.s.b.

The reasons put forward by the Home Office for this strange banning of a system that has been permitted for many years are so extraordinary that they can be based only on a misunderstanding of d.s.b.s.c.

In the first place it claims that the mode is not specifically authorised by international radio regulations. But this applies equally to other modes permitted to radio amateurs and certainly does not worry licensing authorities in other countries. If the Home Office is to ban systems on such grounds how can amateurs make technical investigations into experimental systems?

In what appears to be its key reason, the Home Office claims that d.s.b.s.c. is difficult to monitor without special equipment. This is simply not true: d.s.b.s.c. is fully compatible with s.s.b. and can be effectively received on any set that has sufficient selectivity and stability to receive s.s.b., the d.s.b.s.c. being converted to s.s.b. within the receiver. This misconception can be, based on the fact that to take full advantage of the potential of d.s.b.s.c. the injection oscillator frequency should be locked in phase to the suppressed carrier to permit such techniques as binaural synchronous demodulation (which modern components are making far more possible than hitherto). With such demodulation, d.s.b.s.c. offers a theoretical advantage of 6dB over s.s.b.

As a third reason, the Home Office claims that no undue hardship would be placed on amateurs by the recall of this facility. This must mean that relatively few amateurs currently use d.s.b.s.c. (but then only a few transmit high-definition tv) and that since Japanese equipments do not feature d.s.b.s.c. very few amateurs can claim to have bought a manufactured d.s.b.s.c. transmitter recently. So much for encouraging home construction as a form of self-training!

As long ago as 1959, J. P. Costas delivered a mathematical broadcast at the widely held belief that because d.s.b.s.c. needs more bandwidth than s.s.b. fewer d.s.b.s.c. stations could operate effectively in a restricted band. He showed clearly that this is true only where all frequencies are channelised, since d.s.b.s.c. signals are potentially much less vulnerable to interference than s.s.b. transmissions.

More recently, Home Office sponsored research under Professor Gosling at Swansea and Bath universities has underlined the potential of d.s.b. with diminished carrier for mobile and hand-held v.h.f. equipments.

There is little doubt that d.s.b.s.c. is a fully compatible, effective, economical and (potentially) the most efficient of all amplitude modulation systems, at a stage where, with further development, fully synchronous demodulation may be easily implemented. We urge the Home Office to think again — and to rescind a decision that runs contrary to the best interests of amateur radio.
Characteristics and load lines

3 — Linear load lines

by S. W. Amos, B.Sc., M.I.E.E.

The fundamental law on which electronics is based is that of Georg Ohm which states that, subject to certain conditions, the current in a conductor is directly proportional to the voltage applied to it. Thus if the current in a conductor is plotted against the voltage applied to it, a graph such as that of Fig. 1 is obtained. The significant feature of the curve is that it is linear and passes through the origin. The slope of the straight line is a measure of the resistance of the conductor. If the line has a very small slope as for OA in Fig. 2 this indicates that high voltages give rise to small currents, a property of a high resistance. For curve OB, on the other hand, low voltages give rise to high currents and this is a property of a low resistance. As a generalisation, therefore, we can say that the more nearly horizontal the curve is, the higher is the value of resistance it represents and the more nearly vertical the curve is the lower is the value of resistance it represents. The voltage axis itself can be taken as the curve for an infinite resistance (an open circuit) and the current axis as the curve for zero resistance (a short circuit). Mathematically the slope of the curve is equal to 1/(resistance).

Consider a simple circuit consisting of two resistors connected in series across a battery as shown in Fig. 3. The lower end of R1 is connected to a point of zero potential and the upper end A has a potential which increases in direct proportion to the current in R1. By plotting the potential at A against the current we obtain a graph similar to that of Fig. 1. It is given in Fig. 4 and here the axes are calibrated so that the value of R1 can be calculated. Fig. 4 shows that when the voltage across R1 is 10, the current is 1mA so that R1 must be 10 kilohms.

Now consider R2. The upper end B of this resistor has a fixed potential of 24V and the lower end A has a potential which decreases as the current through R2 increases, the extent of the decrease being directly proportional to the current. If the potential at A is plotted against the current through R2 we obtain the curve shown in Fig. 5. It is again similar to Fig. 1 but is laterally reversed compared with it. From Fig. 5 we can see that when the voltage across R2 is 10, the current in it is 0.5mA, which gives the value of R2 as 20 kilohms.

By combining Figs. 4 and 5 we obtain Fig. 6, the interesting feature of which is that the two straight lines meet at the point P. This diagram is useful because...
resistors. Again simple theory confirms this: the current is given by
\[I = \frac{24}{(R_1 + R_2)} = \frac{24}{(30 \times 10^2)} = 0.8\,\text{mA}. \]

Fig. 6 is useful in predicting the changes which occur in the circuit if a resistance value is changed. For example if \(R_1 \) is increased in value, the slope of line OP decreases and P moves to the right and downward, indicating an increase in the potential at A and a decrease in current through the resistors. On the other hand if \(R_2 \) is increased, the slope of PB decreases, causing P to move downwards and to the left, corresponding to a decrease in the voltage at A and a decrease in current. Similar arguments can be used to show the effects in the circuit of decreasing \(R_1 \) and \(R_2 \).

RC-coupled loads

It is unlikely, of course, that anyone would use a graphical construction such as that of Fig. 6 to determine the voltages and current in a circuit as simple as that of Fig. 3; calculation using Ohm's law is simpler and quicker. But the principle of Fig. 6 is useful for solving problems where \(R_1 \) is not a linear resistor but a non-linear active device (e.g., a transistor) and \(R_2 \) is its load resistor as shown in Fig. 7. To illustrate this let us replace the straight line OP by the output characteristic of a field-effect transistor. This gives Fig. 8.

AP is the drain current – drain voltage characteristic for the transistor (for zero gate voltage) and BP is the load line with a slope corresponding to a resistance of 1.5 kilohms. The two curves intersect at P, showing that the drain voltage is just over 10V and that the current in transistor and resistor is 9.5mA. Because of the non-linearity of the transistor characteristic it would be difficult to calculate these values and this illustrates the usefulness of the graphical method.

It is important to realise that the load line BP defines the relationship between the current in the resistor and the voltage across it. This is a property of \(R_2 \) and is unaffected by conditions within the transistor. Similarly AP defines the current-voltage relationship for the transistor and this is independent of the load resistor. By plotting both curves on the same graph their points of intersection can give useful information about circuits in which the two devices are connected in series.

Fig. 8 applies when the gate of the transistor is held constant at zero volts. By using other values of input bias it is, of course, possible to obtain other output characteristics although their general shape remains the same. Fig. 9 illustrates a family of output characteristics (this time for a bipolar transistor) and superimposed on them is a load line for a resistance of 1 kilohm. If \(I_L = 60\mu\text{A} \) the intersection of the load line with the characteristic is at \(P \) where \(V_C = 1.3V \) and \(I_C = 8.6\,\text{mA} \). By changing the bias current to 50\(\mu\text{A} \) the intersection moves to \(Q \) where \(V_C = 3V \) and \(I_C = 7\,\text{mA} \). By suitable choice of \(I_B \), in fact, the intersection can be moved to any desired point on the load line. If \(I_B \) is controlled by a signal then the point of intersection (usually called the operating point) moves up and down the load lines in sympathy with the signal.

If the input bias exceeds about 60\(\mu\text{A} \) the operating point is confined to the area above P in which there is very little voltage drop across the transistor and the collector current is around 8mA. Under such conditions the transistor is said to be saturated, bottomed or simply "on". On the other hand if the base current is less than 10\(\mu\text{A} \) (or is reversed in direction) the operating point is confined to the area around B where...
there is very little collector current and very little voltage drop across the load resistor. In this state the transistor is said to be cut off or simply "off". In digital equipment the transistors are always in the "on" or "off" state: in fact they are used as switches and the transition from one state to the other is as rapid as possible, causing the operating point to traverse the load line at very high speed.

The region between P and B which is of little concern to the designer of digital equipment is of great interest to the designer of analogue equipment. This is the region used in linear amplification and the way in which it occurs is illustrated in Fig. 10. This shows a sinusoidal input signal which swings the base current between the limits of 10µA and 50µA (a peak value of 20µA). Under the stimulus of this input signal the operating point moves up and down the load line between the limits of P and R. This causes the collector current to swing between the limits of 3.4mA and 0.8mA. This corresponds to a peak value of 1.3mA and shows that the transistor is giving a current gain of 65. The collector voltage also swings and its limits are 1.2V and 7.2V (a peak output of 3.0V).

The input signal is in fact a peak signal of 20µA superimposed on a steady bias of 30µA. Thus in the absence of an input signal the bias is present alone and the operating point is at Q1 known as the quiescent point.

Linearity of the input-output characteristic depends on the uniformity of the intercepts made on the load line by the transistor characteristics and an account of this was given by Part I of this series.

Current amplifier

Bipolar transistors are commonly used as current amplifiers and if a basic circuit such as that of Fig. 7 is used for this purpose it normally feeds into a very low resistance Rf as suggested in Fig. 11: the terminating resistance could well be the input resistance of another bipolar transistor. The low-value resistor is isolated from the first transistor by a series capacitor C1. Thus d.c. conditions in the circuit are unchanged and the load line for Rf is still as indicated in Fig. 10, with the operating point at Q. As soon as an alternating signal is applied to the base of the transistor, however, conditions change because the effective load resistance is now that of Rf and R3 in parallel. It is assumed that the reactance of C1 is negligible compared with R3 at the frequency of the applied signal. The effective load resistance is now Rf R3/(Rf + R3) which is smaller than R3 and thus the load line which applies to a.c. (signal) conditions has a greater slope than the d.c. load line. If Rf has a slope corresponding to 2.25 kilohms (as for Fig. 10) and if R3 is assumed to be a linear resistance of 1 kilohm, then the effective load resistance is composed of 2.25 kilohms and 1 kilohm in parallel, i.e. approximately 700 ohms. The a.c. load line EF in Fig. 12 is drawn with a slope corresponding to 700 ohms. The input signal shown is of 20mA peak value as in Fig. 10 but because EF is more nearly vertical than PR the output current in Fig. 12 is greater than in Fig. 10: it swings in fact between 3.7mA and 0.7mA, a peak value of 1.5mA corresponding to a current gain of 75. The output voltage is however smaller, swinging between 3.5V and 5.5V, a peak value of 1V. By making EF vertical the output current could be increased further still, bringing it to a maximum, the current gain then being equal to hfe for the transistor. To make EF vertical the external load resistance R3 must be zero, i.e. a short circuit. If EF is vertical the output voltage is of course zero.

Voltage amplifier

Fig. 12 shows how the shunting effect of R3 curtails the voltage output from the transistor and it is clear that if the greatest output voltage swing is required R2 must not be appreciably shunted by R3. Thus R3 must be large compared with R2 so that the parallel resistance of R2 and R3 is not significantly less than R2. In these circumstances the a.c. load line is almost coincident with the d.c. load line and Fig. 10 can be taken as the diagram for a practical amplifier.

The knee of the Ic-Vc characteristics occurs at a very small collector voltage and it is thus possible by suitable choice of load resistance and base bias to obtain an output-voltage swing nearly equal to half the supply voltage Vce. The quiescent point should be at the centre of the load line and thus the quiescent (no-signal) collector current corresponds to a quiescent collector voltage of Vce/2. Thus we have the simple relationship

\[
\text{quiescent } I_c = V_{ce} \frac{V}{R_2}
\]

Thus if we have a supply voltage of 9 and we require a mean value of Ic of 1mA the R2 should be 4.5 kilohms. The required value of Ic is achieved by adjustment of base bias current and in a practical circuit some means of ensuring that the mean current remains at 1mA in spite of spreads of transistor parameters and variations in temperature is desirable.

Transformer-coupled loads

A.C. and d.c. load lines. A transistor with a direct-coupled load as represented in Fig. 10 is capable of a good voltage output and a good current output simultaneously: in other words it can supply appreciable power. Nevertheless the power output is limited by the fact that the collector voltage swing cannot exceed half the supply voltage. This limitation disappears if the load resistance is connected to the collector circuit via a transformer as indicated in
Fig. 13. A transistor amplifier with a transformer-coupled load.

Fig. 14. \(I_c-V_c \) characteristics for a power transistor and a suitable load line.

The operating conditions for a transformer-coupled load can be represented by d.c. and a.c. load lines. First consider the d.c. conditions. The resistance of the primary winding of the transformer is the only effective load for the transistor for d.c. and this is usually very small. Thus if we construct a load line for the primary resistance it will be almost a vertical line connecting the supply voltage \(A \) to the quiescent point \(Q \) as shown in Fig. 14. In power amplifiers it is normal, however, to assume the d.c. low line \(AQ \) to be vertical and to omit it, \(Q \) being located vertically above \(A \).

When an alternating signal is applied to the base of the transistor the collector current varies in sympathy and generates a corresponding voltage across the transformer primary winding. By plotting this voltage against the collector current we can obtain the a.c. load line for the amplifier. Its slope depends on the effective resistance at the terminals of the transformer primary winding and this is given by \(n^2R \) where \(n \) is the turns ratio of the transformer and \(R \) is the load resistance connected to the secondary winding. By choice of \(n \) and \(R \) the effective primary resistance can be made almost any desired value, but it is usually much greater than the d.c. load resistance. This contrasts with the capacitance-coupled circuit (Fig. 11) where the a.c. load resistance is inevitably less than the d.c. load resistance.

Output power. For an output stage the position of the quiescent point and the slope of the a.c. load line are chosen to give the maximum output power consistent with an acceptable degree of distortion. There are, however, practical limitations to be observed: for example, there is a maximum value of \(I_c \) which must not be exceeded. There is also a maximum value of \(V_c \) which must not be exceeded and a maximum value of collector dissipation.

As an example Fig. 14 gives the \(I_c-V_c \) characteristics for a silicon power transistor. For the particular type of heat sink used the maximum safe collector dissipation is 22.5W and the curve (a hyperbola) for this value of dissipation is shown as a dotted line. The load line must not cross this curve but it may touch it, and a suitable load line is given by \(PR \): it corresponds to a load resistance of approximately 46 ohms. A transformer-coupled load is assumed and 46 ohms is the resistance of the transformer primary winding. The base bias is 50mA and the input signal swings the base current between 20mA and 80mA, giving the following maximum and minimum values of \(I_c \) and \(V_c \):

\[
\begin{align*}
I_{c\text{max}} & = 1.22A \\
V_{c\text{max}} & = 54V \\
I_{c\text{min}} & = 0.24A \\
V_{c\text{min}} & = 8V
\end{align*}
\]

The peak output voltage swing is thus (54-8)/2, i.e. 23V and the peak output current swing is (1.22-0.24)/2 i.e. 0.49A.

The output power is thus

\[
\frac{1}{2} \times 23 \times 0.49 = 5.6W
\]

(To be continued)
The easy way to a PCB... ...the Seno33 system!

The Seno33 - The Laboratory in a box

From your usual component supplier or direct from
DECON LABORATORIES LTD.
Epsom Drive, Portslade
Brighton BN2 1EG
Telephone (0273) 414371
Telex: 0044141 DECON BRIGHTON 87443

All prices post & VAT inclusive. Data sheets free of charge

Complete the coupon and we'll send you our complete, new catalogue.

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

Clip the coupon now (enclosing a 10p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited, Dept WW-106, Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451

The new Heathkit catalogue. Out now FREE
To: Heath (Gloucester) Limited, Dept WW-106, Gloucester, GL2 6EE. Please send me a Heathkit catalogue. I enclose a 10p stamp for postage.

Name
Address
A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.

Manufacturers of sound systems and electronics
Station Road, Wenden
Saffron Walden
Essex CB11 4LG
Saffron Walden
(0799) 40888

Automatic Response Plotting System

By coupling audio analysis plug-in modules to Hewlett-Packard's X-Y plotter, Urei offer automatic frequency response recording, with automatic rate sensing and control, ensuring accurate tracing without the necessity of slow sweep rates.

Suitable for hard copy records of tape machine responses, telephone lines, acoustics, speakers, microphones—Urei Model 200 will resolve to 0.05 dB and has a range up to and beyond 60 dB. Choice of calibrated sweep and calibrated frequencies, accuracy is to ±0.3% full scale. Automatic or manual frequency control, range 20Hz to 20KHz.

Full descriptive literature is available on request.
Fast-recharge soldering iron

The Quick-charge cordless soldering iron incorporates nickel cadmium batteries to provide very fast recharging: it is claimed that completely dead battery cells can be brought to the full charge state in about 4 hours. In use this iron can be continually charged through its stand and, after pressing the on/off operating button, solder heat can be reached in 5 seconds. Up to 125 joints can be made from fully charged batteries. To eliminate electrical leakage the soldering tips, which are available in five sizes, are isolated. The iron gives a performance equivalent to up 50W with a 700°F tip temperature. Optional extras include a built-in light case and automobile charger/plug assembly. Greenwood Electronics, Portman Road, Reading, Berks RG3 1NE.

Low-cost indicator meters

Low-cost miniature indicator meters, available with full scales of 0-500µA or 0-180mA, have been introduced by Perdix Components Limited. Styles of mounting allow flat or edgewise presentation and the units, which may be illuminated from the rear, are moulded in transparent plastic, their robust construction allowing use in portable equipments without extra protection. The meter movement has a sinusoidally-distributed air gap giving a scale suppression at the end to guard against overload conditions. Prices range from 80p to £1.00 depending upon the quantity and specification required. Perdix Components Ltd, 98 Crofton Park Road, London S.E.4.

Synthesised signal generator

A digital signal generator, from Marconi Instruments Ltd, provides c.w., a.m. and f.m. outputs over the frequency range 50kHz to 520MHz. All of the operating functions, including carrier frequency, output level and modulation, may be controlled manually or remotely by applying programmed parallel binary-coded-decimal commands. Features of the generator are its high output level (2 volts into 500Ω for c.w. and f.m. signals), accurate output level setting switchable for up to 145.9dB attenuation in 0.1dB steps (accurate to ±1dB overall), and good noise performance – for example, at least 130dB/Hz below carrier level at 20kHz offset for s.s.b. Other features include a choice of a.m. depths from 0 to 99% in 1% steps and f.m. deviation from 0 to 299kHz in 3 ranges. An oscillator provides switch-selectable modulation frequencies ranging from 20Hz to 99kHz. Marconi Instruments Ltd, St. Albans, Herts, AL4 0JN.

Low cost printer

The Olivetti NIP-18 is a non-impact printer which, it is claimed, is suitable for alphanumeric print-out applications where previously cost, size, weight and noise ruled out equipment of this type. This printer, which is small, silent and capable of printing a full 64 character sub-set, is available in two versions; the first, costing less than £60, is a print head type complete with motor; the second is an o.e.m. version complete with b.c.d. character generator, computer interface and paper holder etc., costing less than £200. Dot-matrix serial printing on electrosensitive paper is by a 7-electrode mobile head which prints numerals, letters of the alphabet and symbols to a maximum of 25 3mm-high characters per line at a speed of 2 lines per second. The NIP-18 measures 175 x 45 x 80mm. Radiatron Instruments Ltd, Crown Road, Twickenham, Middlesex TW1 3ET.

New Products

Wireless World, October 1976
Squelch filter
The FB-239 is a low-power sub-audio active filter suitable for use as a squelch filter and tone encoder in portable and mobile communications equipment. This filter can be externally programmed with 2 resistors to cover all sub-audible frequencies and required Q-values, has a current drain of less than 300µA, and is available in a metal hermetic 14-pin d.i.l. package or a 9-pin edge-mounted plastic package. Suvicon Ltd, Westminster House, 188-190 Stratford Road, Shirley, Solihull B90 3AQ.
WW 305 for further details

Electro-optic transmission system
A compact electro-optic transmission system consisting of transmitter and receiver modules, optical couplers and electrical connectors, has been produced by Belling-Lee. The Fibretran system, as it is called, is capable of handling digital, analogue and television signals in a frequency range from 20Hz to 10MHz and will operate with light-guide cables up to 100m long. The receiver provides a composite output with a signal-to-noise ratio better than 40dB. Systems are available for mains or low voltage operation and are suitable for hazard areas and areas where security of transmission, isolation and freedom from interference are required. Belling and Lee Limited, Great Cambridge Road, Enfield, Middlesex EN1 3RY.
WW 306 for further details

Miniature filament lamps
A range of miniature filament lamps, from IMO Electronics Ltd, includes radial and axial lead, bi-pin, grooved, screw and flanged base types. Supply voltages and currents range from 1.15 to 28V d.c. and from 15 to 320mA ± 10% respectively. These lamps are selected and aged to provide long life and consistency of brightness. IMO Electronics Ltd, 349 Edgware Road, London W2 1BS.
WW 308 for further details

Wow and flutter meter
The Leader LFM39 meter is designed for accurate, simple and rapid determination of wow and flutter and drift characteristics of tape recorders, gramophones and other playback/recording apparatus. These measurements can be made simultaneously. Weighted characteristics, in accordance with DIN, CCIR and JIS specifications, and wow and flutter are indicated on the meter in terms of effective percentage values to JIS specifications. In addition to the weighted measurements the centre frequency of 3.15kHz may also be measured in accordance with DIN specifications. Five full-scale ranges, 0.03, 0.1, 0.3, 1, and 3% are available. C. E. Hammond & Co. Ltd, Aveley/Cybervox, Chersey Road, Byfleet, Surrey KT14 7LA.
WW 307 for further details

Dual-trace 50MHz oscilloscope
A portable 50MHz dual-trace oscilloscope, designated OS3300B, is intended for general purpose applications. The instrument, from Gould Advance, has a sensitivity of 1mV/cm (max) from 0 to 10MHz, a 10ns/cm (max) timebase and an e.h.t. of 13kV, making it suitable for displaying fast transients. In addition, triggering facilities are incorporated to ensure a stable trace on both channels, irrespective of frequency or waveform, and delayed-sweep and mixed-sweep timebase facilities allow detailed examination of complex waveforms and pulse trains. The oscilloscope has an 8 x 10cm rectangular-faced tube, measures 18 x 29 x 45cm and weighs 12.7kg. Gould Advance Ltd, Roebuck Road, Hainault, Essex.
WW 309 for further details

Teletext adaptor
The Labgear teletext adaptor, unlike receivers with built-in Ceefax and Oracle decoders, is an external “add-on” unit which may be fitted between the aerial and a standard 625-line colour (PAL) or black-and-white television receiver. Normal picture facilities are retained with the adaptor in circuit. This unit, type CM7026, can provide colour displays for all normal teletext facilities and may be used in specialised applications where pages of interest are required “piped” simultaneously to a number of receivers located throughout a building from a single adaptor, for example as in stock exchanges, bookmakers or education establishments. Labgear Ltd, Abbey Walk, Cambridge CB1 1RQ.
WW 310 for further details

Tape-tension gauge
Low-cost tape-tension gauges, in the Tentometer range, are designed for use on most makes of video and audio magnetic-tape transports and are suitable for tape widths from ⅛ to 1 inch as standard, and 2 inches as special, or for applications requiring a damped response or small physical dimensions. These gauges, which use high-quality meter movements and three offset prongs through which the tape travels,
are claimed to be as accurate as more expensive electronic gauges. Static or dynamic responses may be measured with these gauges to diagnose faults leading to horizontal instability on video systems or wow-and-flutter on audio systems. Individual models cover tension ranges of 0 to 5oz (140gm), 0 to 12oz (340gm) and 0 to 20oz (600gm). Crow of Reading, P.O. Box 36, Reading REI 2NB.

WW 311 for further details

Accumulators
Two 2-volt cells, one of 5Ah capacity and the other of 10Ah capacity, have been produced by Varley Dry Accumulators. The cells, which are made by building up the plates and separators under compression to form a porous block, are claimed to be spillproof highly resistant to shock and vibration and capable of supplying discharge currents of up to approximately 30A (10Ah cell). Push-on contacts are provided with these cells. Varley Dry Accumulators Ltd, Alfreds Way, Bark ing, Essex IG1 0TB.

WW 312 for further details

Strip-line attenuators
Strip-line pill-shape and chip attenuators, made by Pyrofilm of New Jersey, are now available in the UK. Ground plane spacing for the attenuators is only 5in and they can be used over the frequency band zero to 12GHz with a maximum v.s.w.r. of 1.25 up to 4GHz. Values available are 3, 6, 10 and 20dB at an accuracy of ±0.5dB at 1GHz, or 5%. Aspen Electronics Ltd, 2 Kildare Close, Eastcote, Middlesex HA4 9UW.

WW 313 for further details

R and C decade units
Pocket-sized resistance and capacitance substitution units are now available from Electronic Services and Products Ltd, who have been appointed the sole UK agents. The Mini-R-decade unit, 10 x 25 x 3cm, provides ±W 1% accuracy of resistance ranging from 10 to 10MΩ and the Mini-C-decade unit, measuring 10 x 15 x 4cm, has a capacitance range from 100pF to 11µF with a ±5% accuracy. Both units are housed in aluminium cases. Electronic Services and Products Ltd, Cross Lane, Braunston, Daventry, Northants NN11 7HH.

WW 314 for further details

Frequency counter
Telford Communications frequency meter, model TC12, has a frequency stability of 0.005% between 0 and 60°C, and not 0.05% as mentioned in our September issue, page 92. This unit is priced at £140.40 inclusive of v.a.t. (crystal oven and i.e.d. displays to order). Readers may have noticed the error in the advertisement in that issue, for which we apologise.

WW 315 for further details

Solid State Devices
Microwave coax detectors
Two miniature microwave-detectors, from Hewlett Packard, are coaxial diode modules designed for measurement applications. The detectors are pack-

C.m.o.s. analogue switches
A family of monolithic c.m.o.s. analogue switches, from Analog Devices Ltd, eliminates s.c.r. latching phenomena by dielectric isolation and provides over-voltage protection for analogue inputs up to ±25V greater than the power supply voltages by switching in a series 1kΩ resistor. Automatic removal of this resistance allows the switch to operate normally and exhibit a low on-resistance. Types AD7510DI and AD7511DI have inverter logic inputs and are quad independent s.p.d.t. switches and type AD7512DI is a dual s.p.d.t. switch. Each type features an on-resistance of 75Ω, a low leakage current of 400pA, a switching speed of 350ns, a low power dissipation of 3mW and t.t.l./c.m.o.s. interfacing.

WW 318 for further details
OUR RESPONSIBILITY

AS I write, the time of the end-of-term school report is upon us; that moment of truth when a battered envelope is resurrected from Junior's satchel and torn open to reveal the candid comments of those who labour mightily towards the education of our young.

We deal with our erring offspring according to our several lights, ranging from the eyeball-to-eyeball frank exchange of views to the more direct slipper-on-the-posterior approach and thereby we assuage to some extent our injured pride at having begotten such dullards. But when we ourselves arrive at our own end-of-term and the gold watch for long service has been presented, what, I wonder, will our own report be like? I don't mean the deputy-manager's laudatory little speech as the timepiece is handed over. All of us who, as subscribers, have been invited to these macabre little ceremonies, know the poetic licence that can be taken on these occasions. No — I mean the report which is written only in our own consciences.

Who can say? For, being individuals, we have differing standards; all of us, from primary school onwards, are conditioned to the unwritten law that material gain is the metre-stick of success and those who have never thrown off those particular blinkers will consider their report written in terms of their bank balance.

Others may rest content in the contemplation of a lifetime spent in honest effort at whatever tasks have been set them. But I know of a growing number — many far from retiring age — who, possessed of social consciences, are expressing disquiet at the uses to which the equipments they handle are being put.

Guglielmo Marconi, towards the end of his life, put his finger exactly on the pulse when he asked "Have I done the world good or have I added a menace?" For wireless, which had begun life as a saviour of life at sea, had, even by the 1930s, diversified into many other channels of application, notably in terms of warfare. Marconi, even at that time, could see that the whole thing was getting out of hand.

Today the use of electronics for lethal purposes has increased by several orders of magnitude. Seven countries are now thought to possess a nuclear capability in their own right, while many more have nuclear warheads supplied to them. There are other even more terrible weapons, lying under their security wraps against the day, the whole brood being contained in the generic title ABC (Atomic, Biological and Chemical). All of them depend on electronics in their delivery systems at least and we may have been involved in their manufacture unwittingly, for the ultimate purpose of such black boxes is not nosed abroad.

The problem of engineering conscience can become acute in areas of manufacture where the bulk of the company's contracts are for military equipment — radars, gun-laying devices, complex weapon-control systems and so on. Then we are faced with the problem that anyone who feels guilty at working on such devices has no business to be there anyway. But the issue is by no means as simple as that; he may, for instance, have been transferred from some innocuous area within a company to one where military work is performed.

Again, a man may have joined the company at a period when he had no scruples about the nature of the work. Then, maybe years later, something happens to a religious experience perhaps, but not necessarily so — to alter his outlook radically. By this time he has probably acquired a wife, children, a mortgage, a car and sundry h.p. commitments. Jobs are not so easily come by and, if he is over forty, virtually impossible to obtain. So where does his duty lie? Towards his family? Or towards his convictions? It is not for us to pass judgement on whether he should bring his family to poverty and preserve his moral integrity or continue in a job and try to stifle his conscience. Whichever decision he takes he will involve acute mental stress and probably a breakdown.

But the majority of us somehow continue to live with the situation, probably because everyday problems keep us so busy that we barely have time to think of anything else. Or if we do, we console ourselves with the thought that the "Other Side" (whoever they might be) are turning out weapons, so it is our duty to do likewise. Certainly we would not dream of pressing the button to send thousands of men and women and children to smothered, but the obvious argument in a factory or peaceful research lab, assembling or redesigning a black box, so we don't have to.

Some of us may not even think as far as that. To many, research, in particular, is a game of wits which are presented with a technical problem which, at first thought, seems impossible of solution. You exercise all your ingenuity and sometimes you win and sometimes you don't. The ultimate purpose of whatever you're trying to design is of minor consequence. It's whether you bring it off or not that counts. The situation in both instances is analogous to domestic vignette. Relatively few of us would eat steak if we had to split open a steer and watch its life's blood pouring down a drain. By the same token a lot of us would become queasy about those clever little black boxes we hatch up if we were forcibly taken to view at first hand the carnage and to smell the stench which are the logical end products of a weapon-delivery system.

There is a growing conviction that scientists, physicists and engineers must bear full responsibility for their actions and for the devices they perpetuate. Which is as it should be, for the electronic engineering profession is one of the world's greatest forces for good as well as evil. The recent landing on Mars is an example of electronics at its best; the ABC weapons an example of it at its worst. Probably the circuitry used in both cases is not all that dissimilar; the problem, perhaps not yet fully grasped, is that technology represents the ultimate in anarchy for there is nothing or no-one at its head to say "yea" in the one instance and "nay" in the other.

Some years ago now the world screamed in horror at the drug Thallidomide being put on the market without adequate investigation into its possible side effects. The outcome was horrible enough in all seriousness — yet, daily, new electronic devices are introduced which, although innocuous in themselves, can form an integral part of mechanisms for world annihilation, against which the Thalidomide disaster seems insignificant.

So what is to be done? I'll throw that to the meeting while I duck out, leaving you with one or two tentative thoughts. One is that the modern world is completely and utterly dependent upon electronics for its functioning and an international federation of electronic engineers would exercise considerable authority. Unfortunately, no such world brotherhood exists and it seems unlikely that it ever will. The other thought is that the United Nations, and particularly the USSR and the USA, have spent years haggling over which categories of weapons should be banned and which should not. It seems to me if they would prohibit the use of electronic circuitry in all ABC weapons systems the matter would solve itself, for without these, an arsenal would be just as much ironmongery. Life could be much simpler and, no doubt, considerably longer.

Real and Imaginary by "Vector"
Dear Wireless World Reader.

It is with great pleasure that I offer, for the first time in Great Britain, this selection of high quality test and circuit-building equipment. Continental Specialties has earned a high reputation in USA, and our goods are bought again and again, not only all over the States, but also in Canada, Australia and many other countries.

The reason for our success is simple. All our equipment is carefully designed to make life easy for the user, and then manufactured to a very high standard, to satisfy both the professional engineer and the enthusiastic hobbyist.

And at today's prices, we think the value is unbeatable.

QT Sockets

Circuit-building and testing at its easiest! Forget the soldering iron: with these sockets and bus-strips you won't need it. Each socket is made up of rows of 5 contacts, connected transversely at the back, and each bus-strip has two rows of contacts, connected lengthways. You can plug in and out almost any component you can think of: DIL 1Cs (64-40 leads), TOs, discretes with any lead diameter from 0.15 to 0.32 inch. Component interconnections are made with standard solders insulated wire. The contacts are solid Silver Nickel alloy, with contact resistance only 0.4 millions, spaced at standard 0.1 inch pitch. The bodies are made of high-temperature plastic so if you decide to solder the heat won't hurt it; the reverse side, with the connecting strips, is covered by a peelable, tough vinyl insulation, and each socket unit has a snap-lock mechanism for easy mating to its neighbour.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT50S</td>
<td>6.50</td>
<td>5x130</td>
</tr>
<tr>
<td>QT50S</td>
<td>6.50</td>
<td>2x60</td>
</tr>
<tr>
<td>QT55S</td>
<td>5.50</td>
<td>6x94</td>
</tr>
<tr>
<td>QT35B</td>
<td>5.50</td>
<td>2x10</td>
</tr>
<tr>
<td>QT35S</td>
<td>5.50</td>
<td>5x70</td>
</tr>
<tr>
<td>QT35S</td>
<td>5.50</td>
<td>2x30</td>
</tr>
<tr>
<td>QT35S</td>
<td>5.50</td>
<td>2x10</td>
</tr>
<tr>
<td>QT35S</td>
<td>5.50</td>
<td>5x70</td>
</tr>
<tr>
<td>QT35S</td>
<td>5.50</td>
<td>2x30</td>
</tr>
</tbody>
</table>

Proto Boards

Another great idea for easy circuit building, based on the QT socket and bus strip concept. These Proto Boards come as complete kits, which you assemble in a few minutes, ready for immediate use. PB6, £10.45, includes one QT45S socket and two QT47B bus strips, four 5-way building points, a base-plate with rubber feet and all the necessary assembly, hardware. PB100, £13.20, gives you two QT35S sockets, one QT35 Strip, two binding posts, base plate and assembly hardware. Try the QT and Proto Board system once and you'll never want to be without it.

That's all for this month. But we'll send a catalogue full of good things to everyone writing to us, or you can use the enquiry service. Best wishes, and happy circuit-building!

Yours sincerely,

(Ronald J. Portugal)

Continental Specialties Corporation, 44 Kendal St., PO Box 1942, New Haven, Connecticut, 06509/USA.

WW—101 FOR FURTHER DETAILS
Make it with MAPLIN!

ELECTRONIC COMPONENTS

WIDE RANGE• HIGH QUALITY• FAST SERVICE

PUBLICATION DATE OCT. 28, 1976
ON APPROVAL

All new • Completely re-written • Hundreds of new lines
Lots of exciting new projects to build — PRICE 90p
SEND NO MONEY NOW. Overseas send 8 International reply coupons

JOIN OUR MAILING LIST NOW!
Published every two months our Newsletter gives
full details of our latest guaranteed prices
Send just 20p towards cost of postage and we'll send you the next six issues as they are published. A 50p voucher is sent with each newsletter which may be used on purchases.

MAPLIN ELECTRONIC SUPPLIES
All mail to P.O. Box 3, Rayleigh, Essex SS6 8LR
Shop: 284 London Road, Westcliff-on-Sea, Essex
(Closed on Monday). Tel: Southend (0702) 4410

The 4600 SYNTHESIZER

We stock all the parts for this brilliantly designed synthesizer, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesizer is technically superior to most of today's models. Complete construction details in our booklet now available price £1.50, or send SAE for specification.

A really superior high quality stereo graphic equalizer featuring 9 octaves per channel. We stock all the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article.

Get our FABULOUS NEW 1977/78 CATALOGUE

BUILD IT YOURSELF . . . IN STAGES

Get started with a 49 note instrument — features tremulant and reverberation. Ideal to learn on. Leaflet MES 51. Price 15p gives full details to build this complete instrument.
Extend the range of MES 51 by adding another keyboard and several new tone colours. Leaflet MES 52. Price 15p also shows how to use 61 note keyboards.

Fully controllable attack and delay controls (formerly found only on the most expensive organs). Up to seven footages on each keyboard, up to 70 controls including drawbars, and a 13 note pedalboard, make up the additions described in the step-by-step page 32 page instruction leaflet MES 53. Price 35p.

DIGITAL CLOCK KITS

This is a fully constructed and tested electronic clock module as illustrated. Data sheet supplied. Simple to connect to alarm and your battery/mains radio. Smart case available. Price 35p. Data sheet available separately. Please send SAE.

50p INCLUDES FREE POSTAGE

* Automatic voice operated fader.
* Belt drive turntables
* Monitor facilities (Headphones and VU meter)
* Sound operated light show — plus many other advantages.

Full details in Sept/ Oct. edition of this magazine

Send for our leaflet MES 41, giving full details for construction. Price 20p. Soon you'll be the Deejay everyone wants at their party!

100 W PER CHANNEL STEREO DISCO

- Bright 4 Digit 0.5" Display
- Flashing Colour (YHz)
- Switch for Display Seconds
- Alarm Set Indicator
- P.M. Indicator
- Power Failure Indicator
- Sleep Timer
- Snooze Timer
- Time can be set accurately to within one second
- Leading Zero Blanking

SIMPLE ALARM KIT — £0.38
ALARM CLOCK KIT — £10.99
ALARM CLOCK & RADIO CONTROLLER KIT — £11.51
SMART PLASTIC CASE with fully punched chassis — £2.49

Please send SAE for our Clock data sheet.

Get your FREE NEW 1977/78 CATALOGUE

Send us your name and address on a postcard and we will send you a copy of your brand new 1977/78 catalogue the instant it is printed (Oct 28th, 1976). Only if I am completely satisfied that it is worth every penny will I send 50p within 14 days of receipt. If I am not satisfied I may return the catalogue to you within 14 days without obligation. I understand that I need not purchase anything from your catalogue should I choose to keep it.

NAME

ADDRESS

If you do not wish to cut magazine write your request for catalogue on separate sheet.

1977/78 GREEN COVER CATALOGUE STILL AVAILABLE PRICE 40p

Wireless World, October 1976
The potentiometer with greater potential

The new DC Potentiometer Model T7100 is, without doubt, an exceptional piece of laboratory equipment. What makes it so is its high accuracy over its six decades of measurement available at the same time. Dial 1 offers an accuracy of +0.001% +0.1 µV, Dial 2 (+0.001% +0.1 µV) and Dial 3-6 +0.1 µV.

This triple pot offers not only exceptional long term accuracy and stability, but also a built-in self calibration check. Added to this, wound components have been replaced by resistors printed on a heat sink substrate—so there is virtually no source of drift or thermal emfs.

The T7100 is as good as it looks. It's worth finding out more about. Get in touch with us today for the full facts.

H W Sullivan Limited,
Archcliffe Road, Dover, Kent, CT179EN
Tel. 0304 202620 Telex: 96283

QUADRAPHONIC KIT MODULES

The following modules, currently being described in Wireless World, are offered. Each kit comprises all glass type PCBs and Components. Each module functions independently, but a universal system may be constructed by means of a master switch into which the boards may be plugged.

- **T7100 DEMODULATOR** £32 + VAT (£4.00)
- **SQ VARIOMATRIX DECODER** £20 + VAT (£2.00)
- **SQ MASTER SWITCH** £20 + VAT (£2.00)
- **SQ DECODER** (Type L3A) £25.50 + VAT (£3.19)

MASTER SWITCH KIT £8.50 + VAT (£1.00)

Add £ postage packing and insurance per parcel. Overseas customers neglect VAT, but add £3.20 for airmail postage. For enquiries please send S A E to

COMPCOR ELECTRONICS LIMITED

3 Cll Way, London W13 8JN
or telephone 01 998 8221 on weekdays between 7:30 p.m. and 10 p.m. only

QUARTZ CRYSTALS — FAST!

AEL Gatwick House, Horley, Surrey, England
Telex: 87116 (Aerocon-Horley) - Cables: Aerocon Telex Horley

SYNCHROS AND SERVOMOTORS KIT

Many other types and ranges available. S A E for catalogue

WW—088 FOR FURTHER DETAILS

REED SWITCH INSERTS

- Overall length 1-85in. (Body length 1.7in.) Diameter 0.16in. to switch up to 500mA at 250VDC. Gold clad contacts 74p per doz. £4.15 per 100. £2.95 per 1,000. £1.75 per 10,000. All carriage paid U.K.
- Operating Magnet 9p per doz. £0.55 per 100. £0.35 per 1,000. All carriage paid U.K.
- Operating Coils for 12V supply to accept up to four standard reeds. £2.50 per doz. £1.40 per 100. All carriage paid U.K.
- Heavy duty type (Body length 2.0in.) Diameter 0.23in., to switch up to 16A at up to 250VDC. Gold clad contacts: £1.45 per doz. £0.95 per 100. £0.65 per 1,000. All carriage paid U.K.
- Operating Magnet 15p per doz. £0.95 per 100. £0.65 per 1,000. All carriage paid U.K.

OVER 300,000 RF AND MULTIWAY CONNECTORS IN STOCK.

TELEX YOUR REQUIREMENTS NOW!

WW—090 FOR FURTHER DETAILS

ENVIRONMENTAL TEST EQUIPMENT

- A Standard Range offering the following facilities:
 - High temperatures to 500° C
 - Low temperatures to -75° C
 - Humidity Cycling
 - Thermal Shock
 - Vibration
 - Pressure Cycling
 - Sand and Dust exposure
 - Corrosive Gas exposure
 - Electrostatic Test

SANWA QUALITY ELECTRONICS LTD

Catalogue on request

WW—089 FOR FURTHER DETAILS

Sanwa

Quality Manufacturers from

Serve & Electronic Sales Ltd.

Bays, 24 High Street, Lydd, Kent
VAT No. 201-1296-23
Telephone: Lydd 20292
Telex: 966256 (AB Servoylap)

WW—091 FOR FURTHER DETAILS
GEARED MOTORS
100 R.P.M. 115 lbs. ins.!!

VARIABLE VOLTAGE TRANSFORMERS
Carriage costs extra.
120 V AC 50/60 C.
OUTPUT VARIABLE 0/260 V. A.C.
BRAND NEW. All types.
200/250 (1 Amp) Hinged A/C volt meter.
0 & 5 KVA (Max. 2 1/2 Amp) $11.50
1 KVA (Max. 5 Amp) $18.00
3 KVA (Max. 15 Amp) $38.00
5 KVA (Max. 20 Amp) $60.00
LT TRANSFORMERS
0.6 15 & 20 amp $6.65
0.6 15 amp $7.80
0.6 20 amp $8.70
0.4 24 & 30 amp $12.80
0.1 15 amp $8.00
0.1 20 amp $8.80
Order types to order on sight. Phone your enquiries.

SQUAD LIGHT
A new concept in light for television studios. Designed for use in studios of all types requiring bright, soft, even illumination on a single light source, especially for use with television equipment. Each individual light head is designed for safe, easy interconnection. Price only $85.00.

COLOUR WHEEL PROJECTOR
TYPE P150 INTECHANGE
380-240 V A.C. 50/60 C. 3000/1500 Watts 600 volt, controlled by the use of a 200/250 volt, 50/60 C. motor. Takes metal halide and incandescent tubes. Many available for 50 volt A.C.

INSULATION TESTERS (NEW)
1000 VOLTS 5000 megohms $40.00
1000 VOLTS 1000 megohms $48.00

TRIAC
380-240 V A.C. 50/60 C. 3000/1500 Watts 600 volt, controlled by the use of a 200/250 volt, 50/60 C. motor. Takes metal halide and incandescent tubes. Many available for 50 volt A.C.

PROGRAMME TIMERS
220 volt. 50 watt. 15 or 20 min.
Each timer operates a 12 volt switch. Ideal for use with televisions, record players, etc. For use indoors. Soldering kit $0.50.

POWER RIPPLERS
For use with 220 volt lighting systems. A.C. 50/60 C. 3000/1500 Watts 600 volt, controlled by the use of a 200/250 volt, 50/60 C. motor. Takes metal halide and incandescent tubes. Many available for 50 volt A.C.
HY5

Preamplifier

The HY5 is a super hybrid amplifier ideally suited for all applications. All common input functions are covered. Low noise - Low distortion - High overload - Two simply combined for stereo.

APPLICATIONS: Hi-Fi - Whispers - Disco - Guitar and Organ - Public address

SPECIFICATIONS:
- INPUTS: Magnetic Pick up 3mV: Ceramic Pick up 30mV: Tuner 100mV: Microphone 10mV
- OUTPUTS: 100mW into 4R (4kHz at 1%)
- DISTORTION: 0.1% at 15W
- SUPPLY VOLTAGE: 195V

Price £6.75 + 59p VAT P&P free.

HY30

15 Watts into 8Ω

The HY30 is an exciting new kit from I.L.P. it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C, heatsink, P.C board, 6 diodes, & capacitors, mounting kit together with easy to follow construction and operating instructions. This amplifier is suitable to the beginner in audio who wishes to use the latest modern technology available.

FEATURES: Complete Kit - Low Distortion - Short Open and Thermal Protection - Easy to Build

APPLICATIONS: Isolating audio equipment - Tuner pre-amp - Amplifier audio - Audio descroter

SPECIFICATIONS:
- OUTPUT POWER: 5W RMS into 8Ω
- DISTORTION 0.1% at 15W
- INPUT SENSITIVITY: 500mV (FREQUENCY RESPONSE 10Hz - 16kHz - 3dB)
- SUPPLY VOLTAGE: 195V

Price £6.75 + 59p VAT P&P free.

HY50

25 Watts into 8Ω

The HY50 is the ideal I.L.P. complete integration approach to power amplifier design. The amplifier features an internal heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World

FEATURES: Low Distortion - Integral heatsink - Low price connections - 7 Amp output transistors - No internal components

APPLICATIONS: Medium Power H.F. - Low power disco - Guitar amplifier

SPECIFICATIONS:
- INPUT SENSITIVITY: 500mV
- OUTPUT POWER: 25W RMS into 8Ω
- LOAD IMPEDANCE: 4Ω DISTORTION 0.04% at 25W
- 1kHz SIGNAL: NOISE RATIO: 75dB FREQUENCY RESPONSE 10mHz - 45kHz - 3dB
- SUPPLY VOLTAGE: 25V SIZE: 105 x 50 x 25cm

Price £6.20 + 77p VAT P&P free.

HY120

60 Watts into 8Ω

The HY120 is in the baby Grand range of I.L.P.s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier uses a new standard modular design.

FEATURES: Very low distortion - Integral heatsink - Load line protection - Thermal protection - Full protection - No external components

APPLICATIONS: Hi-Fi - Hi quality disco - Public address - Monitor amplifier - Guitar and organ

SPECIFICATIONS:
- INPUT SENSITIVITY: 500mV
- OUTPUT POWER: 60W RMS into 8Ω
- LOAD IMPEDANCE: 4Ω DISTORTION 0.04% at 60W
- 1kHz SIGNAL: NOISE RATIO: 90dB FREQUENCY RESPONSE 10mHz - 45kHz - 3dB
- SUPPLY VOLTAGE: 25V SIZE: 114 x 50 x 85cm

Price £19.50 + £1.16 VAT P&P free.

HY200

120 Watts into 8Ω

The HY200 has improved to give an output of 120 watts has been designed to stand the most rugged conditions such as disco or group while still retaining the true Hi-Fi performance.

FEATURES: Thermal shutdown - Very low distortion - Load line protection - Integral heatsink - No external components

APPLICATIONS: Hi-Fi - Disco - Monitor - Power slave - Industrial - Public Address

SPECIFICATIONS:
- INPUT SENSITIVITY: 500mV
- OUTPUT POWER: 120W RMS into 8Ω
- LOAD IMPEDANCE: 4Ω DISTORTION 0.05% at 100W
- 1kHz SIGNAL: NOISE RATIO: 96 dB FREQUENCY RESPONSE 10mHz - 45kHz - 3dB
- SUPPLY VOLTAGE: 45V
- SIZE: 114 x 100 x 85cm

Price £21.20 + £1.70 VAT P&P free.

HY400

240 Watts into 4Ω

The HY400 is I.L.P.s Big Daddy of the range producing 240 watt into 4Ω! It has been designed for high power disco or public address applications. If the amplifier is to be used in continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the HY200 to lead the market as a true high power Hi-Fi amplifier.

FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external components

APPLICATIONS: Public address - Disco - Power slave - Industrial

SPECIFICATIONS:
- OUTPUT POWER: 240W RMS into 4Ω
- LOAD IMPEDANCE: 4Ω DISTORTION 0.1% at 240W
- 1kHz SIGNAL: NOISE RATIO: 94dB FREQUENCY RESPONSE 10mHz - 35kHz - 3dB
- SUPPLY VOLTAGE: 45V
- INPUT SENSITIVITY: 500mV SIZE: 114 x 100 x 85cm

Price £29.25 + £2.24 VAT P&P free.

POWER SUPPLIES

PSU03 suitable for HY30 £10.75 plus 59p VAT P&P free
PSU05 suitable for HY50 £15.00 plus 59p VAT P&P free
PSU06 suitable for HY200 £17.50 plus 0.72 VAT P&P free
PSU08 suitable for HY400 £21.00 plus 1.00 VAT P&P free

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque ☐ Postal Orders ☐ Money Order ☐
Please debit my Access account ☐ Barclcard account ☐
Account number
Name & Address

Signature

WW—047 FOR FURTHER DETAILS
You've asked for it!

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

high fidelity designs

£1 from newsagents and bookshops or £1.35 (inclusive) by post from the publishers. A book from Wireless World

To: General Sales Department, Room 11, Dorset House, Stamford Street, London, SE1 9LU
Please send me copy copies of High Fidelity Designs at £1.35 inclusive. I enclose remittance value £ (cheques payable to IPC Business Press Ltd.).
NAME (please print)
ADDRESS

Company registered in England No. 657128
Wregd. office, Dorset House, Stamford Street, London SE1 9LU
RETURN OF POST MAIL ORDER SERVICE

BRANDS
4-25p; ALUMINIUM RADIO BOOKS

COMPLETE STEREO SYSTEM

R.C.S. "MINOR" 10 watt AMPLIFIER KIT

E.M.I. 1 3/8 x 8 speaker! SAE

BOOKSHELF CABINET

THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER.

BLANK ALUMINUM CHASSIS

RADIO COMPONENT SPECIALISTS

FLASHING LOW VOLUME ELECTRICAL TOOLS

Baker 150 watt PROFESSIONAL MICROPHONE CHASSIS

Baker major

Baker loudspeaker, 12W, 60 watt GROUP 50

Baker LOUDSPEAKER CABINET 18"., wide 20".

R.C.S. 100 watt VALVE AMPLIFIER CHASSIS

VALVE OUTPUT TRANSISTOR.

BAKER LOUDSPEAKER 12W, 60 WATT GROUP 50

R.C.S. SOUND TO LIGHT KIT

EMI 13 x 8 speakers

TUNER-AMPLIFIER CHASSIS AM-FM 5 + 5 watt

STEREO FACIA DIN SOCKETS CHASSIS

WATT AMPLIFIER.

Baker major 12" £10.35

30.145,00 s/c, 12-in. double cone, tweeter and woofer cones together with a BAKR Ceramique magnesium assembly having a flux density of 14000 Gauss and a List price of £145.000.

Free sample kit of 3 or 8 ohm 15 meters was made.

Module kit: 30-17921 s/c with Furford crossover, £13.

rca jack 100S 250. 35p; 35p, 40p. 55p.

To please state 3 or 8 ohm 15 ohm.

SEPB. MAJOR 50 watt 4 ohm 20 p. Tweel and base. Ideal disco amplifier.

100 Watt DISC AMPLIFIER CHASSIS volt input.

1W. 100V line power.

Stereo BAKR. £280 Post £1.50

Stereo TWIN CONE.

STEREO FLAT PANEL AMP.

STEREO FLAT PANEL AMP.
LYNX ELECTRONICS (LONDON) LTD.

Lynx Electronics (London) Ltd.

Professional Stereo Power Amplifiers designed and manufactured to the very highest standard.

TURNER POWER is setting a new standard in the studios for ultra-clean monitoring, and with bands on the road for ruggedness and reliability.

Customers include: Air Studios, Wessex Studios, Gooseberry Studios, Lansdowne Studios, Decibel Studios, Queen and leading hire companies.

TURNER ELECTRONIC INDUSTRIES LTD.
175 Uxbridge Road, London W7 3TH
Tel. 01-567 8472

100 WATT STEREO POWER AMPLIFIERS (from 100 watts to 500 watts)

THE RADIO SHOP
16 CHERRY LANE
BRISTOL BS1 3NG
TELEPHONE 0272-421196

OFFICIAL ORDERS WELCOMED GOVT./EDUCATIONAL DEPTS. ETC

THYRISTORS

4 AMP ISOLATED TAB

N/A 1.0 A

1 AMP TOS 10 A ISO DIS

N/A 0.06 A

N/A 100 V

N/A 200 V

N/A 500 V

1.4 AMP CLIPPED TAB

N/A 400 V

N/A 1000 V

N/A 2000 V

N/A 5000 V

THE BRIDGE E1.14

E1.12

E1.10

E1.08

E1.06

E1.04

E1.02

E1.00

E2.92

E2.80

E2.70

E2.59

E2.50

E2.45

E2.40

E2.35

E2.30

E2.20

E2.15

E2.10

E2.05

E2.00

E1.95

E1.90

E1.85

E1.80

E1.75

E1.70

E1.65

E1.60

E1.55

E1.50

E1.45

E1.40

E1.35

E1.30

E1.25

E1.20

E1.15

E1.10

E1.05

E1.00

E0.95

E0.90

E0.85

E0.80

E0.75

E0.70

E0.65

E0.60

E0.55

E0.50

E0.45

E0.40

E0.35

E0.30

E0.25

E0.20

E0.15

E0.10

E0.05

E0.00

2.0 AMP ISOLATED TAB

N/A 100 V

N/A 200 V

N/A 500 V

1.2 AMP TOS 10 A ISO DIS

N/A 0.06 A

N/A 100 V

N/A 200 V

N/A 500 V
SINTEL for MEMORIES-CMOS-DISPLAYS-MPS-BOOKS

FAST SERVICE

We guarantee that telephone orders, to goods in stock, received by 4.30 p.m. (Mon. - Fri.) will be despatched the same day. First Class Post.

Components from leading manufacturers only.

Z & I AEROS SERVICES LTD.

Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF
Tel.: 727 5641 Telex: 261306

- 032 FOR FURTHER DETAILS
VALVE MAIL ORDER CO.
Climax House, 159 Fallsbrook Rd., Streatham
London SW16 6ED
Tel: 01-677 2424 Telex: 946 708

INDUSTRIAL VALVES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>105A</td>
<td>105B</td>
<td>105C</td>
<td>105D</td>
<td>105E</td>
<td>105F</td>
<td>105G</td>
<td>105H</td>
<td>105I</td>
</tr>
<tr>
<td>105J</td>
<td>105K</td>
<td>105L</td>
<td>105M</td>
<td>105N</td>
<td>105O</td>
<td>105P</td>
<td>105Q</td>
<td>105R</td>
</tr>
<tr>
<td>105S</td>
<td>105T</td>
<td>105U</td>
<td>105V</td>
<td>105W</td>
<td>105X</td>
<td>105Y</td>
<td>105Z</td>
<td></td>
</tr>
<tr>
<td>115A</td>
<td>115B</td>
<td>115C</td>
<td>115D</td>
<td>115E</td>
<td>115F</td>
<td>115G</td>
<td>115H</td>
<td>115I</td>
</tr>
<tr>
<td>115J</td>
<td>115K</td>
<td>115L</td>
<td>115M</td>
<td>115N</td>
<td>115O</td>
<td>115P</td>
<td>115Q</td>
<td>115R</td>
</tr>
<tr>
<td>115S</td>
<td>115T</td>
<td>115U</td>
<td>115V</td>
<td>115W</td>
<td>115X</td>
<td>115Y</td>
<td>115Z</td>
<td></td>
</tr>
</tbody>
</table>

VALE to be added

VALVES & PLASTIC

CIRCUITS 8% AND METAL CAN

TRANSISTORS 8%

VAT to be added

This catalogue — Electrovalue Catalogue No. 8 (Issue 2, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company is a computerized operation to keep delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted.

Terms of Business: Mon. to Fri. Open for calls 9 a.m. to 5 p.m. Closed Sat. Express postage 15p for 1st valve. 2p each additional valve. Express postage 15p per order for transistors. Prices on application for any type not listed. Obsolete valves a speciality. Prices correct when going to press. This applies to the UK.

SPECIAL OFFER

Price £8.00 P&P 50p add VAT 8%.

Electrovalue Ltd

ELECTROVALUE LTD

POSTAL COMMUNICATIONS TO OPER: Wirral 10 1S ST. JUDES ROAD, ENGLEFIELD GREEN, SURREY TW10SBA. Phone Egham 3803. Fax 261475. NOIRNOIL BRANCH: 25 BURBAGE LANE, BURBAGE, MAIDSTONE KIN wk 1NA. Telephone: 0622 84845.

THE OPEN DOOR TO QUALITY

This catalogue — Electrovalue Catalogue No. 8 (Issue 2, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company is a computerized operation to keep delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted.

+ FREE POSTAGE

on all C.W.O. mail orders over £2.00 list value (excluding VAT) in U.K. if under, add 15p handling charge
SPECIAL ANNOUNCEMENT

We are adding a further 800 new items to our stock list of components. Watch for our advertisement in next month's issue! Better still, write NOW for our NEW 1976 Catalogue. It shows our complete range of Electronic Components, Semiconductors, Audio Modules, Hi-Fi Accessories, etc., in fact, everything for the electronic enthusiast. AND ALL AT UNBEATABLE BARGAIN PRICES!

Order your copy NOW
Only 50p plus 15p postage

BI-PAK
P.O. BOX 6, WARE, HERTS.

RADFORD HD250
High Definition Stereophonic Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier will match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 8 ohms.

Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise).

Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 kHz).

Hum and noise: Disc: ...83dBV measured flat with noise floor below 23 kHz (ref 5mV), ...85dBV "A" weighted (ref 5mV)

Line: ...85dBV measured flat (flat 100v) ...88dBV "A" weighted (ref 100v)

Hear the HD250 at
SWIFT OF WILMSLOW
Rev 12V
5 Swan Street, Wilmslow, Cheshire (Tel: 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel: 79699).
Also in stock: All Radford speaker drive units and crossovers, ZD22 preamps, Low Distortion oscillator LD03 and Distortion Measuring set DM35.

TRANSMISSORS
ALL EX-STOCK - SAME-DAY DESPATCH
MAMS ISOLATING
PH-120-240V SEC: 220-120V
Centre Tapped and Screened

12 and/or 24-VOH
Primary 220-240 Volts

<table>
<thead>
<tr>
<th>Reference</th>
<th>Watts</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>12v</td>
<td>24v</td>
</tr>
<tr>
<td>111</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>225</td>
<td>330</td>
</tr>
<tr>
<td>113</td>
<td>225</td>
<td>440</td>
</tr>
<tr>
<td>114</td>
<td>225</td>
<td>550</td>
</tr>
<tr>
<td>115</td>
<td>225</td>
<td>660</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>770</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>880</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>990</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>1100</td>
</tr>
</tbody>
</table>

50 VOLTS RANGE
SEC: TAPS 0-115-220-440-660V

<table>
<thead>
<tr>
<th>Reference</th>
<th>Amps</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25.0</td>
<td>3.12</td>
</tr>
<tr>
<td>102</td>
<td>6.0</td>
<td>4.08</td>
</tr>
<tr>
<td>103</td>
<td>6.0</td>
<td>5.36</td>
</tr>
<tr>
<td>104</td>
<td>6.0</td>
<td>6.25</td>
</tr>
<tr>
<td>105</td>
<td>6.0</td>
<td>7.00</td>
</tr>
<tr>
<td>106</td>
<td>6.0</td>
<td>8.18</td>
</tr>
<tr>
<td>107</td>
<td>6.0</td>
<td>10.41</td>
</tr>
<tr>
<td>108</td>
<td>8.0</td>
<td>15.56</td>
</tr>
<tr>
<td>109</td>
<td>10.0</td>
<td>20.41</td>
</tr>
</tbody>
</table>

30 VOLTS RANGE
SEC: TAPS 0-12.5-25-50-100V

<table>
<thead>
<tr>
<th>Reference</th>
<th>Amps</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>25.0</td>
<td>3.12</td>
</tr>
<tr>
<td>113</td>
<td>6.0</td>
<td>4.08</td>
</tr>
<tr>
<td>114</td>
<td>6.0</td>
<td>5.36</td>
</tr>
<tr>
<td>115</td>
<td>6.0</td>
<td>6.25</td>
</tr>
<tr>
<td>116</td>
<td>6.0</td>
<td>7.00</td>
</tr>
<tr>
<td>117</td>
<td>6.0</td>
<td>8.18</td>
</tr>
<tr>
<td>118</td>
<td>8.0</td>
<td>15.56</td>
</tr>
<tr>
<td>119</td>
<td>10.0</td>
<td>20.41</td>
</tr>
</tbody>
</table>

AUTO TRANSFORMERS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Mains Volts</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>220-240V</td>
<td>3.03</td>
</tr>
<tr>
<td>113</td>
<td>220-240V</td>
<td>5.03</td>
</tr>
<tr>
<td>114</td>
<td>220-240V</td>
<td>7.03</td>
</tr>
</tbody>
</table>

SCREENED MINIATURES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Mains Volts</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>220-240V</td>
<td>3.03</td>
</tr>
<tr>
<td>113</td>
<td>220-240V</td>
<td>5.03</td>
</tr>
</tbody>
</table>

CASED AUTO. TRANSFORMERS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Mains Volts</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>220-240V</td>
<td>3.03</td>
</tr>
</tbody>
</table>

HIGH QUALITY MODULES

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 watt RMS Amplifier</td>
<td>200-240V</td>
<td>£2.09</td>
</tr>
<tr>
<td>5 watt RMS Amplifier</td>
<td>240V</td>
<td>£2.89</td>
</tr>
<tr>
<td>10 watt RMS Amplifier</td>
<td>240V</td>
<td>£3.59</td>
</tr>
<tr>
<td>20 watt RMS Amplifier</td>
<td>240V</td>
<td>£4.39</td>
</tr>
<tr>
<td>50 watt RMS Amplifier</td>
<td>240V</td>
<td>£5.19</td>
</tr>
<tr>
<td>100 watt RMS Amplifier</td>
<td>240V</td>
<td>£5.99</td>
</tr>
<tr>
<td>150 watt RMS Amplifier</td>
<td>240V</td>
<td>£6.79</td>
</tr>
<tr>
<td>200 watt RMS Amplifier</td>
<td>240V</td>
<td>£7.59</td>
</tr>
<tr>
<td>250 watt RMS Amplifier</td>
<td>240V</td>
<td>£8.39</td>
</tr>
</tbody>
</table>

POWER UNITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 volt 600 VA Transformer</td>
<td>600VA</td>
<td>£15.75</td>
</tr>
</tbody>
</table>

ANTEN SOLDERING IRONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 volt 500 VA Transformer</td>
<td>500VA</td>
<td>£20.32</td>
</tr>
</tbody>
</table>

Barrie Electronics Ltd.
3, THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8

NEAREST TUBE STATIONS: ALDFORD & LIVERPOOL ST.

WW-060 FURTHER DETAILS
PRECISION PHASE DETECTOR TYPE 265: Freq. 0-1.15MHz in 3 ranges. Varicap is delay micro 0-0.6k; 15V DC input. £1.20. CT-420 SIGNAL GENERATOR: 200-900kHz Variable tuning. Two fixed frequencies 900k and 10kHz. Internal calibrator 100 & 500 Hz. £75 each. £2. NOISE GENERATOR TP-1108: For direct noise factor calibration. Output impedance 70 ohms £85 each. £1.50.

MV-30 UNIVERSAL HYDROTEST POWER SUPPLY: £55. £3.

PLL-TJ-2179 J-L WAVE VOLTAGE TUNING UNIT: £1. £3.

BPL A.C. MILLIVOLTMETER TYPE VM-348-D: Mk 3: 2 millivolts-2 volts, 6 ranges. £35. £5.

REDIFON MODEM: £2. £3.

Pulse generator 24V d.c. power supply speed 50 bauds per min. 2nd hand cond. (Excellent order) no parts broken. £29 each. Carridge £3.

AUTO TRANSFORMER: 240V-5V d.c. 1000 watts. Used in strong steel case 5" x 6½" x 7½". Bitumen impregnated. £12.00. £1.50.

CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range 2000-100kHz. Main 230V 50Hz. Measures crystal current under oscillator conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. £25. £1.20.

SOLARTRON VARIABLE POWER UNIT S.R.S.: 1035 0-500 volts at 100 mA and 63 volts C.T. 3 amps d.c. 110/250 volts a.c. input. £18.50. £1.50.

CATHODE RAY TUBES: 5" screen, type CV-1535 £4.00 + £1.00 post. Type 5320 square face 5" x 3½" £7.50 + £1.00 post.

PULSE GENERATOR PG21: Pulse width variable 1nsec to 200msec in 7 ranges. Zero deviation 200mV with repetition rate 1-10Hz. £17.58. Carridge £3.50.

CLASS D VAVEMETER NO: 1: Crystal controlled heterodyne frequency meter covering 2-8 MHz. Power supply 6V d.c. Good secondhand condition. £5.50. £1.50.

All U.K. orders subject to value added tax.

Visit our new shop in Ware High Street for a wide range of individual bargains for callers. If you wish to collect any of the above items please telephone 0902 (0)226 to arrange appointment.

W. MILLS 3 & 3a BALDSTOCK STREET,WARE,HERTS.SG12 9DT WARE 66312 (STD 0920)

Get a great deal from Marshalls'
Gatronics HAVE MOVED!...

Now Open — a superb new showroom devoted exclusively to Amateur Radio & Electronics

NOW OPEN

...

Gatronics HAVE MOVED!...

... our Mail Order and Administration departments as well as the Showroom and Labs have now moved to Communications House, Wallington, Surrey.

NEW PREMISES + **NEW additional Staff** = **NEW Super Service**

TELETEST DECODER

Our kit contains all the printed circuit boards and components necessary to build the complete decoder. The power supply and video switching circuitry are normally installed within the television cabinet and the main decoding control and memory circuitry in a separate cabinet positioned on top of the television.

PRICES ARE AS FOLLOWS:

- **Set of 5 PCBs incl. PSU & Video Switching** £17.50 + VAT = £19.20
- **Component Kit (incl. PCBs)** £95.02 + VAT = £104.10
- **Add-on Unit for Lower Case: PCB only** £2.10 + VAT = £2.26
- **Add-on Component Kit (incl. PCB)** £13.50
- **Cabinet** £12.40 + VAT = £13.50

Post & PCG — PCBs are post free but add £1 for component kit and £5 for cabinet.

Special Prices for Semiconductor kits. SAE for price list

TANTAS X887 CHARACTER GENERATOR,

£26.01: 25/1, £19.16, 2102, £2.70.

Future

Dept 620, CATRICKS LTD., COMMUNICATIONS HOUSE 20 WALLINGTON SQUARE, WALLINGTON, SURREY SM5 8BG

TELM: 01-669 6700

WW—606 FOR FURTHER DETAILS
SOLOTRON REGULATED PSU

J. L. Linsley-High Quality Cassette Recorder

Lenco CRV cassette mechanism

High Quality, robust cassette transport for Linsley-Hood Recorder. Features fast forward, fast reverse, record pause and automatic cassette ejection mechanism. Fitted with Record/Ply and Erase Heads and supplied complete with Data and extra cassette ejection spring for above horizontal use. Ex-stock £19.10 + £2.38 VAT

71x Complete set of parts for Master Board, includes Bias oscillator, Relay, Controls, etc. £9.83 + £1.23 VAT

72x Complete set of parts for Motor Speed and Solenoid Control for Lenco CRV Deck £3.52 + £0.49 VAT

71x Complete set of parts for stereo Replay Amps and VM Meter Drive £8.02 + £1.0 VAT

71x Complete set of parts for Stereo Record Amps £6.64 + £0.83 VAT

71x Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate 3" x 3" PCB designed so that the motor control board fits above it to save space £8.29 + £1.03 VAT

700 VM Meters Individual high quality meters with excellent ballistics and built-in illumination. £6.48 + £1.81 VAT PER PAIR

PLEASE NOTE

Unless ordered as "as seen" ALL EQUIPMENT ordered from us is completely overhaulied mechanically and electrically in our own laboratories.

SOLOTRON CD 1220 OSCILLOSCOPE

With demodulator. £275.00. 10MHz, 5 channels. 4 sets £50 per set, £100 per set.

SOLOTRON DIGITAL VOLTMETERS

(1420).-2, 2.5, 3, 5 and 7 ranges 1000V to range 1. £8.00, 4 ranges 500V £7.00, etc.

HART ELECTRONICS

The Only Firm for Quality Audio Kits

J. L. Linsley-High Quality Cassette Recorder

Lenco CRV cassette mechanism

High Quality, robust cassette transport for Linsley-Hood Recorder. Features fast forward, fast reverse, record pause and automatic cassette ejection mechanism. Fitted with Record/Ply and Erase Heads and supplied complete with Data and extra cassette ejection spring for above horizontal use. Ex-stock £19.10 + £2.38 VAT

71x Complete set of parts for Master Board, includes Bias oscillator, Relay, Controls, etc. £9.83 + £1.23 VAT

72x Complete set of parts for Motor Speed and Solenoid Control for Lenco CRV Deck £3.52 + £0.49 VAT

71x Complete set of parts for stereo Replay Amps and VM Meter Drive £8.02 + £1.0 VAT

71x Complete set of parts for Stereo Record Amps £6.64 + £0.83 VAT

71x Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate 3" x 3" PCB designed so that the motor control board fits above it to save space £8.29 + £1.03 VAT

700 VM Meters Individual high quality meters with excellent ballistics and built-in illumination. £6.48 + £1.81 VAT PER PAIR

PLEASE NOTE

Unless ordered as "as seen" ALL EQUIPMENT ordered from us is completely overhaulied mechanically and electrically in our own laboratories.

SOLOTRON CD 1220 OSCILLOSCOPE

With demodulator. £275.00. 10MHz, 5 channels. 4 sets £50 per set, £100 per set.

SOLOTRON DIGITAL VOLTMETERS

(1420).-2, 2.5, 3, 5 and 7 ranges 1000V to range 1. £8.00, 4 ranges 500V £7.00, etc.

HART ELECTRONICS

The Only Firm for Quality Audio Kits

J. L. Linsley-High Quality Cassette Recorder

Lenco CRV cassette mechanism

High Quality, robust cassette transport for Linsley-Hood Recorder. Features fast forward, fast reverse, record pause and automatic cassette ejection mechanism. Fitted with Record/Ply and Erase Heads and supplied complete with Data and extra cassette ejection spring for above horizontal use. Ex-stock £19.10 + £2.38 VAT

71x Complete set of parts for Master Board, includes Bias oscillator, Relay, Controls, etc. £9.83 + £1.23 VAT

72x Complete set of parts for Motor Speed and Solenoid Control for Lenco CRV Deck £3.52 + £0.49 VAT

71x Complete set of parts for stereo Replay Amps and VM Meter Drive £8.02 + £1.0 VAT

71x Complete set of parts for Stereo Record Amps £6.64 + £0.83 VAT

71x Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate 3" x 3" PCB designed so that the motor control board fits above it to save space £8.29 + £1.03 VAT

700 VM Meters Individual high quality meters with excellent ballistics and built-in illumination. £6.48 + £1.81 VAT PER PAIR

PLEASE NOTE

Unless ordered as "as seen" ALL EQUIPMENT ordered from us is completely overhaulied mechanically and electrically in our own laboratories.
A fascinating excursion into the past. The author has unearthed some 400 trade names from the crystal set days, along with nearly 200 manufacturers—giving the name of the set, technical description and original price. He also reviews the first days of broadcasting and looks at the difficulties experienced by crystal set users. Concise information and over 40 illustrations make this book a valuable work of reference as well as a rare piece of nostalgia for collectors.

VINTAGE CRYSTAL SETS 1922-1927

£2.50 from bookshops

£2.80 inclusive direct from Wireless World, Room 11, General Sales Dept., IPC Business Press Ltd., Dorset House, Stamford Street, London SE1 9LU

Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit Course:

1. Build an oscilloscope.
2. Read, draw and understand circuit diagrams.
3. Carry out over 40 experiments on basic electronic circuits and see how they work.

Free!

Brochure, without obligation to

BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL,

P.O. Box 156, Jersey, Channel Islands.

NAME?

ADDRESS

WW F10
low cost ~ top quality COMPONENTS

- A.E.G. Telefunken and Toshiba Components

Semi Conductors

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD137</td>
<td>$0.30</td>
<td>BF457</td>
<td>$0.37</td>
</tr>
<tr>
<td>BD138</td>
<td>$0.33</td>
<td>BF458</td>
<td>$0.37</td>
</tr>
<tr>
<td>BD139</td>
<td>$0.37</td>
<td>BF459</td>
<td>$0.38</td>
</tr>
<tr>
<td>BD140</td>
<td>$0.39</td>
<td>BF460</td>
<td>$0.38</td>
</tr>
<tr>
<td>BD141</td>
<td>$1.59</td>
<td>BF461</td>
<td>$1.35</td>
</tr>
<tr>
<td>BD140</td>
<td>$1.65</td>
<td>BF462</td>
<td>$1.29</td>
</tr>
<tr>
<td>BD183</td>
<td>$0.95</td>
<td>BF463</td>
<td>$0.94</td>
</tr>
<tr>
<td>BD184</td>
<td>$0.98</td>
<td>BF464</td>
<td>$0.94</td>
</tr>
<tr>
<td>BD185</td>
<td>$0.99</td>
<td>BF465</td>
<td>$0.95</td>
</tr>
<tr>
<td>BD186</td>
<td>$0.99</td>
<td>BF466</td>
<td>$0.95</td>
</tr>
<tr>
<td>BD187</td>
<td>$1.01</td>
<td>BF467</td>
<td>$0.95</td>
</tr>
<tr>
<td>BD222</td>
<td>$0.47</td>
<td>BF468</td>
<td>$0.47</td>
</tr>
<tr>
<td>BD225</td>
<td>$0.47</td>
<td>BF469</td>
<td>$0.47</td>
</tr>
<tr>
<td>BD230</td>
<td>$0.50</td>
<td>BF470</td>
<td>$0.47</td>
</tr>
<tr>
<td>BD233</td>
<td>$0.43</td>
<td>BF475</td>
<td>$0.40</td>
</tr>
<tr>
<td>BD234</td>
<td>$0.49</td>
<td>BF480</td>
<td>$0.39</td>
</tr>
<tr>
<td>BD235</td>
<td>$0.50</td>
<td>BF481</td>
<td>$0.39</td>
</tr>
<tr>
<td>BD236</td>
<td>$0.53</td>
<td>BF482</td>
<td>$0.38</td>
</tr>
<tr>
<td>BD237</td>
<td>$0.53</td>
<td>BF483</td>
<td>$0.37</td>
</tr>
<tr>
<td>BD238</td>
<td>$0.53</td>
<td>BF484</td>
<td>$0.37</td>
</tr>
<tr>
<td>BD332</td>
<td>$0.35</td>
<td>BF485</td>
<td>$0.35</td>
</tr>
<tr>
<td>BD333</td>
<td>$0.35</td>
<td>BF486</td>
<td>$0.35</td>
</tr>
<tr>
<td>BD334</td>
<td>$0.35</td>
<td>BF487</td>
<td>$0.35</td>
</tr>
<tr>
<td>BD335</td>
<td>$0.35</td>
<td>BF488</td>
<td>$0.35</td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA115</td>
<td>$0.09</td>
<td>2N417</td>
<td>$0.07</td>
</tr>
<tr>
<td>BA145</td>
<td>$0.16</td>
<td>2N460</td>
<td>$0.16</td>
</tr>
<tr>
<td>BA148</td>
<td>$0.16</td>
<td>2N460</td>
<td>$0.16</td>
</tr>
<tr>
<td>BA154/201</td>
<td>$0.12</td>
<td>2N460</td>
<td>$0.12</td>
</tr>
<tr>
<td>BA155</td>
<td>$0.15</td>
<td>2N460</td>
<td>$0.15</td>
</tr>
<tr>
<td>BA213</td>
<td>$0.09</td>
<td>2N460</td>
<td>$0.09</td>
</tr>
<tr>
<td>BA216</td>
<td>$0.11</td>
<td>2N460</td>
<td>$0.11</td>
</tr>
<tr>
<td>BA226</td>
<td>$0.11</td>
<td>2N460</td>
<td>$0.11</td>
</tr>
<tr>
<td>BA227</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
<tr>
<td>BA320</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
<tr>
<td>BA326</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
<tr>
<td>BA327</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
<tr>
<td>BA328</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
<tr>
<td>BA332</td>
<td>$0.10</td>
<td>2N460</td>
<td>$0.10</td>
</tr>
</tbody>
</table>

EHT Multipliers

<table>
<thead>
<tr>
<th>Type</th>
<th>Chassis</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20AK</td>
<td>1500 (17" x 19")</td>
<td>$1.85</td>
</tr>
<tr>
<td>27Q</td>
<td>S90MK2 1400</td>
<td>$1.80</td>
</tr>
<tr>
<td>11TAQ</td>
<td>ITT CVC 3 & 4</td>
<td>$1.30</td>
</tr>
<tr>
<td>11TH</td>
<td>GEC Sable</td>
<td>$1.20</td>
</tr>
<tr>
<td>11TM</td>
<td>Philips G8</td>
<td>$1.50</td>
</tr>
<tr>
<td>11TB</td>
<td>Philips G50</td>
<td>$1.50</td>
</tr>
<tr>
<td>10CH</td>
<td>Philips 691/692</td>
<td>$1.40</td>
</tr>
<tr>
<td>10CP</td>
<td>Philips 690/691</td>
<td>$1.40</td>
</tr>
</tbody>
</table>

New Colour Tubes

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12"</td>
<td>Toshiba E217A</td>
<td>$1.75</td>
</tr>
<tr>
<td>12"</td>
<td>Toshiba M6529 FP</td>
<td>$1.75</td>
</tr>
<tr>
<td>24"</td>
<td>CME 2413</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Distributors

- **WEST MIDLANDS**
 - Gectionvision
 - 116 The Park Paling, Chelmsmore, Coventry CV3 5LL
 - Tel. Coventry 56476-503598
- **EAST ANGLIA**
 - Norwich Electronic Components
 - 16 Denbigh Road, Norwich NR2 3AA
 - Tel. 0603 28025
- **LONDON & SOUTH EAST**
 - Paul Electrical Ltd.
 - 250/252 Grand Drive, Raynes Park, London. SW20
 - Tel. 01 342 8546
- **DORSET & HANTS, ISLE OF WIGHT**
 - Double D Distributors
 - 19 Highfield Road, Farnborough, BH9 2SG
 - Tel. 0202 519562
- **SCOTLAND**
 - Electronic Sales (Ulter) Limited
 - 4 Tate Ave., Lisburn Road, Belfast BT9 7BY
 - Tel. Belfast (0232) 668118
- **Lancashire**
 - Moorse Electric Co.
 - 70 Moorside Avenue, Smithills, Bolton. Tel. 0204 40918
- **MERSEY.SIDE, CHESHIRE**
 - Geetavision
 - From 319 Squires Gate Lane, Blackpool FY4 3RG
 - Tel. Blackpool 0253 464612
- **WALES**
 - Swansea Aerial Co Ltd., Sihp Road, Landore, Swansea SA1 2NT
 - Tel. Swansea 50393/54836

COMBINED PRECISION COMPONENTS LTD.

C.P.C. Dept. W. 194-200 NORTH ROAD, PRESTON, LANCASTERS, ENGLAND

Phone: Preston (STD 0722) 55034. Telex 677122

AROUND THE WORLD EXPORT SERVICE: ask for Robin Pratt New price list 1.10.76
Wireless World Dolby noise reducer
Trademark of Dolby Laboratories Inc.

We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring:
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
- complete set of components for stereo processor
- regulated power supply components
- board-mounted DIN sockets and push-button switches
- fibreglass board designed for minimum wiring
- solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

Typical performance
- Noise reduction: better than 9dB weighted
- Clipping level: 16.5dB above Dolby level (measured at 1% third harmonic content)
- Harmonic distortion: 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%
- Signal-to-noise ratio: 75dB (20Hz to 20kHz, signal at Dolby level) at Monitor output.
- Dynamic Range > 90dB
- 30mV sensitivity

PRICE: £37.90 + VAT

Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which) .. Price £52.00 + VAT

Single channel plug-in Dolby processor boards (92 x 87mm) with gold plated contacts are available with all components .. Price £7.20 + VAT

Single channel board with selected fet. .. Price £2.20 + VAT

Gold plated edge connector ... Price £1.40 + VAT

Selected FET's. 60p each + VAT, 100p + VAT for two, £1.90 + VAT for four

Please add VAT at 12½% unless marked thus* when 8% applies

We guarantee full after-sales technical and servicing facilities on all our kits

INTEGRLEX LTD.

Please send SAE for complete lists and specifications

Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106
S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer. Mag. input. Tape In/Out facility (for noise reduction unit, etc). THD less than 0.1% at 20W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88—104MHz. 30dB mono S/N @ 1.8μV. THD typ. 0.4%

PRICE: £53.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high-performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range 88—104MHz. 20dB mono quieting @ 0.75μV. Image rejection – 70dB. IF rejection – 85dB. THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

Compare this spec. with tuners costing twice the price

STereo module tuner KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC

PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring.

PRICE: £31.95 + VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT £14.28 + VAT

BASIC MODULE TUNER KIT (Mono) £14.75 + VAT

BASIC MODULE TUNER KIT (Stereo) £16.75 + VAT

PHASE-LOCKED IC DECODER KIT £4.47 + VAT

PUSH-BUTTON UNIT £4.50 + VAT

PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT £8.00 + VAT
Ten into one will go.

With the precision of the Jackson G10 Gearbox, you get ten turns of input equaling one effective turn of output. This makes the G10 ideal for decimal presentation for analog control. The Gear Box itself is packaged within 70mm by 35mm by 19mm. The output shaft drive torque is greater than 700 gm cms. Input shaft diameters are 6mm. All the gears are fully anti-backlash loaded. The Jackson G10, the compact, versatile gearbox.

All Jackson Products are backed by 50 years' experience in the communications field. Highly skilled men, and Jackson Brothers' good name.

Write for further information to:

JACKSON BROTHERS (LONDON) LIMITED

Kingsway, Waddon, Croydon CR9 4DG
Tel: 01-681 2754/7 Telex 946849
U.S. Office: Swedgal Electronics Inc.,
258 Broadway, New York, N.Y. 10007
B.S. 9000 Approved. DEF STAN 05-21.

The James Scott range of Microwave equipment now offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.

The range is made up of standard sub-assemblies which can be permuted to suit individual application requirements.

Some Suggested Applications for these Units:
Level controllers; Proximity alarms; Small object counters; Process control systems; Positioning systems; Door opening systems; Safety barriers; Presence/detectors; Train control systems; Vibration sensing systems; Intruder alarms; Road vehicle systems.

If any of the above are your problems or if you have a particular problem for which we could adapt a system please write or telephone for further information and technical literature.

JAMES SCOTT
(Electronic Engineering) Ltd
CARNTYNE INDUSTRIAL ESTATE
GLASGOW G32 6AB
Tel: 041-778 4206
The magnificent nine...

an open and closed case for selecting Celestion.

The sound to be experienced!
20x20 Watt STEREO AMPLIFIER

Superb Viscount IV unit in latest finished cabinet. Black ash with aluminium rotary controls and pushbuttons, red mains indicator and speaker jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. 20 + 20 watts rms, 40 + 40 watts peak.

HOW YOU CAN SAVE

<table>
<thead>
<tr>
<th>System 1B</th>
<th>System 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>£8000</td>
<td>£9200</td>
</tr>
</tbody>
</table>

Carriage surcharge to Scotland: System 1b £2.50, System 2 £5.

30x30 AMPLIFIER KIT

Specially designed by RT-VC for the experienced constructor. This kit consists of four parts and the necessary tools for assembly. £29.00

DIY STEREO SYSTEM

COMPLETE WITH SPEAKERS

Here's real value in DIY! Comprises ready-built amplifier module, 3-speed Garrard auto-return deck, and teak-veneer cabinet. £26.95

PORTABLE DISCO CONSOLE with built-in pre-amplifiers

Building boxy, sturdy, and easy to fit. Great value and a perfect introduction to discos. £49.00

EASY-TO-BUILD, WITH ENCLOSE

Specially designed by RT-VC for cost-conscious hi-fi enthusiasts. Comes complete with two teak-veneer enclosures, two EMI 13" x 8" (approx.) woofers, two 3/4" (approx.) tweeters and a pair of matching crossovers. £75.00

15-WATT KIT IN CHASSIS FORM

When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size 13" x 8" (approx.) EMI woofer, 3/4" (approx.) tweeter, and matching crossover. £50.00

20-WATT HI-FI KIT IN CHASSIS FORM

For extra power, choose this superb RT-VC kit. EMI 13" x 8" (approx.) triplate-amped-coned woofer with massive 5" (approx.) magnet, plus 5" (approx.) mid-range unit with concentric 2" parasitic tweeter and 2¼" (approx.) magnet. £50.00

STEREO CASSETTE DECK KIT

Again, this kit is specially designed for the experienced constructor — for mounting into your own cabinet. Features include solenoid assisted AUTO-STOP, 3-digit counter, record/playlist PC board, mains transformer and input and output controls. £24.00

STEER CASSETTE AMPLIFIER KIT

Build up a 4-watts rms per channel stereo amplifier with Uniround MK2 module. For £9.95 you get pre-amp, power amp, and all the control panel parts. £26.95

50-WATT DISCO AMP

Big value from RT-VC 35-WATT DISCO AMPLIFIERS. £170.00

84

DIY SPEAKER KITS

'SHOPPER' £6.50

ELECTROLYTIC CAPACITORS AT BARGAIN PRICES

All brand new from reputable international manufacturers.

PACK 1. Contains 32 assorted electrolytic values from 47 pF to 470 μF. Minimum 15 watt working. Site 3 + 20 pF.

PACK 2. Contains 17 assorted electrolytic values from 10 μF to 200 μF. Minimum 15 watt working. Majority 40 watt working. Site 2 + 26 μF.
POWERTRAN ELECTRONICS

INTEGRATING AMBIENT ACOUSTICS

HI-FI NEWS 75W/CHANNEL AMPLIFIER

By J. L. Linsley Hood

In Hi-Fi News there was published by Mr. Linsley-Hood a series of articles (November, 1972-February, 1973) and a subsequent follow-up article (April, 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Lincou which is employed in the two most critical points of the system, namely the equilibration stage and tone (control) stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed toroidal transformer.

FREE TEAK CASE WITH FULL KITS

KIT PRICE ONLY
£73.90

WIRELESS WORLD FM TUNER

FREE TEAK CASE WITH FULL KITS

KIT PRICE ONLY
£66.75

PRICE STABILITY!
Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. VAT at 5% inclusive will be charged on all items. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts. U.K. Orders Subject to 12¾% Surcharge for VAT. Carriage free MAIL ORDER ONLY for at current rate if charged). Securicor Delivery For this optional service (Mainland only) add £2.50 VAT inc. per kit. Overseas Orders: No VAT. Postage charged at actual cost plus 50p packaging and handling.

DEPT. WW10

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE

ANDOVER, HANTS SP10 3NN

SPECIAL PRICE FOR COMPLETE KITS
£78.50

Further details of above given in our FREE LIST
AUDI0 KIT SUPPLIERS TO THE WORLD

T20 + 20 and our new T30 + 30 20W, 30W AMPLIFIERS

Designed by Texas engineers and distributed in Practical Wireless. The Texas was an immediate success. Now developed further in our laboratories to include a preamplifier and additional improvements, the slimline T20 + 20 delivers 20W per channel of true hi-fi at exceptionally low cost. The new unit is based on a single FGrass PCB and features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adjustable input selector and head phones socket. In a follow up article in Practical Wireless further modifications were included. The technicians have worked hard and a new model is 30W per channel.

SPECIAL PRICES FOR COMPLETE KITS!

<table>
<thead>
<tr>
<th>Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20 + 20</td>
<td>£28.25</td>
</tr>
<tr>
<td>T30 + 30</td>
<td>£32.95</td>
</tr>
</tbody>
</table>

With 100s of kits now available in stock - is there any problem over suitable software. No problems with hardware either. Our new unit the SQM-1-30 simply plugs into the tape monitor socket of your existing amplifier and drives two additional speakers at 30W per channel. A full complement of controls including volume, bass, treble and balance are provided as are comprehensive switching facilities enabling the unit to be used for either front or rear channels, by-passing the decoder for monitor-only use and exchanging left and right channels. The SQM-1-30 is suitable for use in our T20 + 20, or our new T30 + 30 amplifier which the SQM-1-30 matches perfectly. Kit price includes CBS licence fee.

PC BOARD KIT PRICE

<table>
<thead>
<tr>
<th>Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQM-1 - 30</td>
<td>£37.15</td>
</tr>
</tbody>
</table>

Wireless World Amplifier Designs. Kits are not available for these projects but component prices and PCBs are stocked to the right-hand page. All kits are complete with fully detailed design. Suitable for building these amplifiers are the various kits modules and power systems. The transformers and power supplies used in these amplifiers are all standard and feature a wide range of transformers which may be either solid-state or hybrid operating. For these reasons please refer to the back pages of this article for power supplies used in these amplifiers. The basic kit is supplied with all the necessary components and transformers required for building the amplifier. A full complement of controls including volume, bass, treble and balance are provided as are comprehensive switching facilities enabling the unit to be used for either front or rear channels, by-passing the decoder for monitor-only use and exchanging left and right channels. The SQM-1-30 is perfectly matched to our T20 + 20 and T30 + 30 amplifiers. Kit price includes CBS licence fee.

SQ QUADRAPHONIC DECODERS

Feed 2 channels (200-1000mV) as obtained from most pre-amplifiers or amplifier tape monitor outputs into any one of our 3 decoders and take + channels out with no overall signal level reduction. On the logic enhanced decoder Volume, Treble, Equilibrium, BlackRabbit balance and Dimension controls can all be implemented by simple single gang potentiometers. These state of the art circuits used between decoder and PCBs are offered in kits of superior quality with close tolerance transistors, metal oxide resistors and glass PCBs designed for edge connector insertion. All kits include CBS licence fee.

SEMICONDUTERS

As used in our range of quality audio equipment.

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N6693</td>
<td>£9.20</td>
</tr>
<tr>
<td>2N2907</td>
<td>£8.90</td>
</tr>
<tr>
<td>2N3904</td>
<td>£9.00</td>
</tr>
</tbody>
</table>

Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1975 are shown surrounding this advertisement.

—all available with M.O. or express, courier pre-set tail add 10%
BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743

All Goods are Exempt from V.A.T.

STEPHENS ELECTRONICS

MAIL ORDER DEPT. W/WI, AKEMAN STREET, TRING, HERTS.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMS: Credit terms are subject to the manufacturers' guarantee.

- Cash or cheque on order only.
- Despatch charges are included in the prices quoted.
- Any parcel insured against damage in transit for extra per parcel.

V.A.T.

- **Corporation Tax**
- **Small Industries**
- **VAT on Extra Duty**

Free Postage and Packing (UK)

- **Orders over £100.00**
- **Orders under £100.00**

Packs available on request.

All Prices Subject to V.A.T.

Tear off labels with a 1.1% VAT rate.

Postage and Packing Under £3.00: £0.60.

Orders over £3.00: FREE.
NOW-just when you need it most!

BI-PRE-PAK'S ONGE-IN-A LIFETIME

MANY ITEMS AT HALF PRICE AND LESS
PAKS! PAKS!! PAKSS!!!

Down from 60p to 30p each

TESTED PAKS all at 30p each

<table>
<thead>
<tr>
<th>Pak No</th>
<th>Contents</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP10</td>
<td>2 Light dependent resistors. 400 items right, 1 megohm dark. 5 x 3s.</td>
<td>30p</td>
</tr>
<tr>
<td>TP11</td>
<td>10 Transistors IX12 & XI12 equal to AC126 AC145 C0312 U2012 etc.</td>
<td>30p</td>
</tr>
<tr>
<td>TP12</td>
<td>5 CRT/F1 Light sensitive transistors</td>
<td>30p</td>
</tr>
<tr>
<td>TP13</td>
<td>20 QC71 PNP audio pre amp transistor.</td>
<td>30p</td>
</tr>
<tr>
<td>TP14</td>
<td>40 SC4117 PNP audio output transistor.</td>
<td>30p</td>
</tr>
<tr>
<td>TP15</td>
<td>20 1 x 100p fuses, mixed voltage. 6.8 to 43 volts.</td>
<td>30p</td>
</tr>
<tr>
<td>TP20</td>
<td>10 Multid OC45 transistors. I.F. amp PNP germanium</td>
<td>30p</td>
</tr>
<tr>
<td>TP21</td>
<td>10 NPN silicon transistors. (approx) transistors.</td>
<td>30p</td>
</tr>
<tr>
<td>TP22</td>
<td>2 Integrated circuits. 4 transistors B2C692 & 2 flop type B2C695</td>
<td>30p</td>
</tr>
<tr>
<td>TP27</td>
<td>5 Germanium PNP. high frequency transistors. unmarked similarly to AC170/77, AF159/67/7 2 lead TO 1</td>
<td>30p</td>
</tr>
<tr>
<td>TP28</td>
<td>20 2N4418 (last 'col' silicon transistors. FP4 lead 10 to 18.</td>
<td>30p</td>
</tr>
<tr>
<td>TP35</td>
<td>7 Integrated circuits. (approx) transistors.</td>
<td>30p</td>
</tr>
<tr>
<td>TP36</td>
<td>6 integrated circuits. (approx) transistors.</td>
<td>30p</td>
</tr>
<tr>
<td>TP40</td>
<td>15 Transistors. these are brand new. manufacture surplus items.</td>
<td>30p</td>
</tr>
</tbody>
</table>

OUNTESTED PAKS — all at 30p each

UT2	150 Germanium diodes. miniature glass type.	30p
UT4	100 Silicon diodes miniature glass type. similar to 1M540, 1M541, 1M542	30p
UT5	500 Silicon diodes. miniature glass type. similar to 1M549, 1M550, 1M551	30p
UT6	20 Zener diodes. 250v 0.24 to 20 range. average 50% good.	30p
UT7	30 Zener diodes. 750 MA 30100 type, top hat, mixed voltages.	30p
UT8	10 Power transistors. PNP germanium and NPN silicon. mostly TO-3 but some plastic and some marked	30p
UT10	30 0.647 gold bonded diodes, polarity marked	30p
UT12	10 2N3819 10-channel FET's, plastic case type.	30p
UT13	15 Integrated circuits. (approx) transistors.	30p
UT14	15 2N3819 transistors. PNP germanium audio output.	30p

BUMPER I.C. PACK

50p

(Ex one penny each)

50 assorted integrated circuits including many brand new marked devices

SUNDAY POST OFFICE (G.P.O.) ITEMS

EX G.P.O.	Telephone dial, as used in 700 and 300 type switches. Complete	35p
EX G.P.O.	Telephone handles with lead, black. (Additional P & P 25p)	40p
EX G.P.O.	Buzzers, 12 / 24 volt operation, clean condition.	20p
EX G.P.O.	Push button key switches, 2 pole change over. Brand new	20p
EX G.P.O.	Counter units 0000 - 9999. 10 per second (24-bit operation).	20p

INSTRUMENT CASES

Beautifully finished in smooth enamelled grey crackle, in heavy gauge aluminuim with internal racking and heavy gauge panels (suitable as backboards). Ideal for P.A. systems. Bench power supplies, oscilloscopes, metered instruments. etc. BRAND NEW AND BOXED

SIZE X 14" x 15" x 6" deep £5.50 + additional 75p for P/P
SIZE 8" x 17" x 16" x 12" deep £6.50 + additional £1 for P/P

ORDER WITHOUT DELAY—OFFERS CANNOT BE REPEATED — CALLERS ARE WELCOMED

BI-PRE-PAK LTD Dept WW/S.
220-224 WEST ROAD, WESTCLIFF-ON-SEA
ESSEX SS0 3DF Telephone Southend (0702) 46344

PRINTED CIRCUIT BOARDS (Ex Equipment)

TYPE 4: X 15 x 15cm dual copper on 0.5cm FR4 board, 30 circuits on one side. £1.50 for 30 or 2 for £2.80

TYPE 5: A stabilised power supply board, rated for 10 amp. £10.00 each or 3 for £27.00.

SUNDALE PUBLISHERS FOR LIST

CORRUGATED PLASTIC TRAY 150 x 150 x 50mm £1.25

UNF TUNER UNITS

We have sold thousands of these units worldwide and made for a world famous manufacturer. Correct 625 line I.F. performance. £1.35 per unit. £10.50 for 10 units.

HIGH VOLTAGE (125V) DIODES

Replacements to colour TV's only. 6 for 65p.

Mains on/off rocker switches 2 x 1/2 1 x 3/4 1 x 6/7 £2.25

PULL BUTTON SELECTOR ASSEMBLIES

For van/camping systems as used in VHF/FM radio receivers or UHF TV monitors. £1.25 x 4 button assy. £2.00 for a set.

STEREO DECODERS (FM)

L.C. opeated units for use in genuine audio systems. £1.95 x 4 units. £7.60 for 4 units.

12 RELAYS £1 ONLY

Ex G.P.O. and Ex others, various voltages and coil impedances, non-specified, but extremely useful to keep for when wanted. Add 35p per pack to postage charge

BI-PRE-PAK LTD Dept WW/S.
220-224 WEST ROAD, WESTCLIFF-ON-SEA
ESSEX SS0 3DF Telephone Southend (0702) 46344
COMPRESSOR

ASR 33 TELETYPES. (new) £8.75, (used) £2.50.
ASR 39 Heavy Duty Telegraphs. £35.00.
TELETHREN. (110) High Speed Paper Tape Punch. £78.00.
ICL Model 2640 High Speed Paper Tape Readers. £78.00.
COSSOR Model DDS 401 VDU. £85.00.
PDP on MINICOMP. With 4K memory andTTY interface. £650.00.
AMPEX Model RF-1 82K-Bit Core Memory with all (I.C.) logic.
Bury 2400 supplies in a single 5in. rack panel. £79.00.
ITEL Model 18 Paper Tape Golfball Typewriter in as-new condition. £295.00
DATEK Model 40 Paper Tape Readers operating mechanically (not brush) up to 40 c.p.s. £28.00.

EKC Model 5183 6 digit counter-timers. A very versatile instrument. NEW: £48.00 (or £38 untested).
PRINTREC Model 100 High Speed Paper Tape Punch. £78.00.
A compact unit with an estimated usage well below 100 hours. £298.00
HONEYWELL Model P112 printing card key-panels. £85.00 each or £100.00 for two.
HONEYWELL 18K x 8 Core Memory (2 microsecond) with all logic, etc. £65.00
HONEYWELL Card Sorter, £95.00.
SOLARTRON Model CD1440 double team Oscilloscope. £110.00
PERSPECT Model 6640 9-track NRZ Mag Tape Unit. £475.00
For all who want to know about electronic circuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (I) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A new book from Wireless World

ORDER FORM
To: General Sales Department,
IPC Business Press Limited,
Room 11, Dorset House,
Stamford Street, London SEI 9LU.

Please send me copies of Circuit Designs - Number 1 at £10.40 each inclusive. I enclose remittance value £ (cheques payable to IPC Business Press Ltd.)

NAME (please print) ..
ADDRESS ..

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House, Stamford Street, London SEI 9LU.
Electronic Brokers Ltd. are one of the leading electronic instrumentation companies in the UK, providing a full range of services to Universities, Industries, Colleges and Governments both at home and overseas. We have the largest stock of secondhand test equipment in Europe as well as a selected range of new products. These are on display at our showroom where customers can examine the equipment of their choice and see it working.

Electronic Brokers Ltd. have fully equipped workshops on the premises to test and repair on the majority of equipment we sell.

UNIVERSAL INSTRUMENTS
F.M. Signal Generator Type 72/3 30 KHz/30 MHz £29

GENERIC
A. M. Signal Generator Type 2922.5 KHz 500KHz. R.F. output 20V - 200mV. £40

NEWFLEET PACKARD
A. M. Signal Generator 20F1 F. M. A. C. W. Output coverage 54 to 216 MHz R.F. -0.5 to 15-dB. £60

MARCONI INSTIL
500MHz R. F. Hewlett Packard Mod. Z3OMHx. Turret 0.01 L.F. Decade £50

MUIRHEAD
70kHz - 70MHz Mal check: Director 6000. Variable. £65

HEWLETT PACKARD
Typs LO-40 40- 108MHz Video Oscillator £60

SMALLEY
7kHz - 10MHz Model T8018/35. £1.300

TEKTRONIX
Dual Trace Oscilloscope 525 £1.200

SIGNIFICANT
Dual Channel oscilloscope 525 £1.200

AVO
Typs LO-170 170-330MHz £1.050

SIEMENS
In phase & quadrature bands. £1.500

PROJECT
QX 1152A/17 £1.500

KERR
Model T8018/35. £1.500

TECHTRONIC
Continuous Trace Oscilloscope £1.000

AVO
Series I. £90

MOTHERS
B9071 £90

HEWLETT PACKARD
1410A Low Level oscilloscope in 100KHz condition £500 £60

MICROHUN
Audio Oscillator D898A 2 classes 0.01Hz-11.2KHz £25

NEUMANN (GERMANY)
3-Stage Vanet Generator £25.000

RADIOFREQUENCY
48V 10KHz-100MHz £100

HARRIS & SCHWARTZ
40a - 170a 100KHz-500MHz £20

HEWLETT PACKARD
Audio Frequency Generator 2064 20Hz-22KHz £25

RADIOFREQUENCY
10MHz- 1000MHz £38.000

WEHANF & GOLTMAN
U.F. Phase Meter, Oscillator MS-6B £7.500

HL Exempt
Banker's Counter £2.500

RECORDERS
Single Channel 1 & 6% £75
1 x Movement £80

MULTIMETERS
AVO
Analogic Test Set No. 1 (Printed Circuit Version of Model S £125
Analogic: Model EX (bare spec. as Model B) £60
Analogic: Model B £60
All above calibrated, calibrated and guaranteed to test standards. £60

Last resale price £75

Military: E7 £4.600 2 and 8 coaxial case & leads £250

OSCILLOSCOPES
MARCONI T.V. Scope HF 2900A 1 kV TV D.P. £15

KALTRON
Frequency Response of Double Beam CRT £45

APA ELECTRONICS
Portable Scope CD-1000 15MHz. Price as available £70

POWER SUPPLIES
APA ELECTRONICS

BIRD
Portable Units Type 884 1000V. 2 -50 kHz. As supplied £85

LONDON
Variable $100

SMALL
Variable £75

SPEAKERS
Add 8% VAT to ALL PRICES

TELEPHONE TEST EQUIPMENT
SIEVERS
Level Meter 30 332 5-3200KHz £120
Level Meter 30 335 100KHz £140

HEWLETT PACKARD
510Mhz or 6GHz £135

PARKING INSTRUMENTS
50MHz Scope £80

TECHTRONIC
£105

SPOON
Waveform Monitor Model 51 £105

AVO
50.000 Multimeter 4 & 8 case and Leads £140

BRIDGES
Above offers close 25 October, 1976

SULLIVAN
Contact Resistance Bridge AC 5000. Range 0-500ohms £10

WAYNE KERR
£65

WEBSTER
Add 23% Variable £105

COMPASS & BOLT
£110

SWEET GENERATORS
Special Offer £235

HEWLETT PACKARD
380-385 £245

SWEET GENERATORS
Scope Oscilloscope £390 £385

TECHTRONIC
650MHz £145

JONES & GOLTMAN
Low Frequency Transmitter £42 10MHz £145

W R & GOLTMAN
210MHz £150

VICTOR & GOLTMAN V2 2.5GHz Power measurement on plug and impedance test. For multichannel FM Systems up to 12MHz base bands £750

SWEEP GENERATORS
£50

WHITEWORTH
Add 8% VAT to ALL PRICES

49.53 Pancras Road
London NW1 7LZ
Tel: 01-837 7781
BROKERS

49-53 Pancras Rd London NW1 2QB Telephone: 01-8377781

NEW PRODUCTS DIVISION

E.B. import and distribute high-grade products from World-renowned manufacturers including:

STROBETTE

Strobe/Tacho

$49.50

STROBOSCOPIC TACHOMETER

Reach RPM from as low as 24 in a wide range of frequencies 0-1,000 - 5,000 - 10,000 - 30,000 RPM. Battery powered. Mirror Dial. Accuracy 1% of full scale. Push button reading.

£89.50

FREQUENCY METER

Complete with case. 0.01 Hz to 1 MHz. Accuracy 1%. Reader: 100,000.

£90.00

TACHOMETER

RPM. Includes mirror dial. Accuracy 1% of full scale. Reader: 100,000.

£95.00

4-100,000 MHz

Sweep Generator. A wide range of frequencies from 4 to 100,000 MHz. Accuracy 1% of full scale.

£160.00

MULTIMETER U4324

More ranges for less money.

£190.00

P.O.A.

£56.50

£17.95

£10.95

£3.95

See inside back cover for details of availability and range of multimeter.

On these pages you will find just the briefest selection from the vast range which we hold in stock at any one time. If you are seeking a specific item and it is not listed, it will pay you to ring us first - we believe to offer the best prices and the best service.

WORLD WIDE EXPORT

Enquiries and tenders welcome from any part of the world.

HOW TO REACH US...

We are easy to reach no matter where you live. Minutes away from Kings Cross or St Pancras main-line stations, and a bus ride from Euston; only just over half an hour from Heathrow Airport. Parking is easy too.

Please note: All instruments offered are second-hand and tested and guaranteed 12 months unless otherwise stated.

123

VOLTMETERS

ADVANCE

AC Voltmeter Model 77B. £700.00

BROKERS

AC Voltage Standard 100V. £300.00

£300.00

£320.00

£310.00

£300.00

£290.00

£280.00

£270.00

£260.00

£250.00

£240.00

£230.00

£220.00

£210.00

£200.00

£190.00

£180.00

£170.00

£160.00

£150.00

£140.00

£130.00

£120.00

£110.00

£100.00

£90.00

£80.00

£70.00

£60.00

£50.00

£40.00

£30.00

£20.00

£10.00

£5.00

£2.00

£1.00

£0.50

£0.10

If you require samples of our huge stock, if you believe we may be able to help you, we would be pleased to send you a ring.
KOMPASS pinpoints alternative suppliers—it is the unsurpassed guide to competitive buying.

KOMPASS brings your products and services to the notice of potential buyers throughout the world.

KOMPASS lists products and services in detail—33,000 separate listings and essential business data on 28,000 U.K. companies.

KOMPASS helps you find new markets. Over 100,000 named key executives are listed in Kompass U.K.

KOMPASS E.E.C. gives detailed industrial information on over 185,000 companies in the E.E.C.

KOMPASS worldwide: There is a Kompass register for 16 countries of the world, all featuring the unique classification system in English, French, German, Italian and Spanish.

Kompass Publishers Limited
RAC House
Lansdowne Road
Croydon
CR9 2HE
Telephone: 01-686 2262
Wireless World, either

A prestige anodised aluminium white zinc case can be supported to hinge plate. Heavy duty cases in blue with PVC steel. Assemble in the town hall, clip in feet, 2 screws allow the cover to hinge off case, more for PC uses are available to build up to 4 PC bases in a double case.

Case SPECIALISTS

WH

MOD 3

Offer instrument manufacturers low cost cases in stock. Blue PVC coated steel strength and rigidity. PVC aluminum front and side panels, removable PCB and PSU mounting system available. Also available in black. 201 end cut 302 Bk. 302 303. Bk. 304 305.

MOD 2

Overhead level distortion better than 22 dBm. Cost price breaks on prices. Size: 1.5mV. Load Regulation: 0.15%. Ripple & Noise. 5V regulated power supply.

Instrument cases

WEST HYDE

All dimensions are With/eight x Depth

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD 3 including PSU</td>
<td>£23.90</td>
</tr>
<tr>
<td>MOD 3 with PSU</td>
<td>£21.00</td>
</tr>
<tr>
<td>MOD 3 without PSU</td>
<td>£18.10</td>
</tr>
<tr>
<td>MOD 3 with PSU & Rack</td>
<td>£29.00</td>
</tr>
<tr>
<td>MOD 3 with PSU & Box</td>
<td>£31.00</td>
</tr>
</tbody>
</table>

CONTIL ELF

A range of heavy duty cases in your textured vinyl. From panels consisting white, green or PVC/Aluminium. also available unpainted up to 1277. Aluminium panels 306 x 110 x 5mm up to 16127 only.

LECTURER

There are 250 different cases stock, size range over 5000.1 in volume.

Send for catalogue

WEST HYDE DEVELOPMENTS LIMITED

Hyfield End, Northam Hill, Birmingham, B38 9NR. Tel: 021-4697078. Fax: 021-4697078. POST FREE.

Instrument cases

BRIGHTCASE MARK IV

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>4 x 5 x 5 x 5</td>
<td>£6.05</td>
</tr>
<tr>
<td>M02</td>
<td>6 x 6 x 6</td>
<td>£10.00</td>
</tr>
</tbody>
</table>

MINOS

A series of double side glass. PVC steel top and bottom which can be supplied in painted or unpainted. Free standing or clip mounting available in stock or half height version in special polyester back for safe storage.

THE INSTRUMENT

12 CHANNEL STEREO MIXING CONSOLE

Performance reference to input — 125dBm

Noise reference to input .05% typically .01%

Overhead level at 22 dBm all outputs buffered £250 Retail

12 Channel Export Model

16 Channel Mixing Console

8 Channel Stereo Mixer

For further details telephone (0223) 66559

MM ELECTRONICS

French’s Mill, French’s Road, Cambridge (0223) 66559

WW — 096 A FOR FURTHER DETAILS

Become a radio amateur

Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

GREENWELD

443 Millbrook Road Southampton, S01 0XH. Tel: (0703) 772501

WW — 096 A FOR FURTHER DETAILS
SPECIAL LOW PRICE ARRANGEMENTS FOR VISITING OVERSEAS TRADE FAIRS

IPC Electrical-Electronic Press Ltd., the world's largest publishers of computer, electrical and electronic journals, have made special arrangements for readers wishing to visit important overseas trade fairs. The cost, in most cases, is little more than the normal air fare but includes - travel by scheduled airline from Heathrow and Manchester * first-class hotel accommodation * arrival and departure transfers * admission to the trade fair * services of an experienced tour manager. The current programme comprises the following tours.

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

International Exhibition of Data Processing, Communication and Office Organisation — SICOB Paris, September 23-October 1, 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price £86.50, extra nights as required. □

International Industrial Electronics Trade Fair — Fairex — Amsterdam, October 18-20, 1976. Two nights at the first-class American Hotel. Fully inclusive price £89.00. □

International Trade Fair for Production in the Electronics Industry — Electronica — Munich, November 25-December 1, 1976. Two nights at the first-class Hotel Der Konigshof. Fully inclusive price £118.00, extra nights as required. □

Please send details of the tours indicated above.

NAME

ADDRESS

COMPANY

Telephone
HEWLETT PACKARD Spectrum Analyzer type B35 £700.

POLYCOMBI double scale clock 1800 £400.00.

Rhode & Schwarz GENERATOR 80kHz-200 MHz £550.

DIAGRAM AND GENERATOR 200kHz-20MHz Very fine condition £500.

ADMITTANCE METER £950.

POLAROID model Pol-Eg completes £100.00.

12-CHANNEL CHART RECORDER £150.00 each condition £75.00.

TELEON SWEEPER £200.00 each condition £150.00.

MARCONI OSCILLATOR TF1012 200K/2 MHz £150.

MARCONI GENERATOR TF 120B condition £100.00.

MARCONI Wave Control Oscillator TF127D fits range £100.00 Sine Wave 100K to 100KHZ. Square Wave, high output up to 300W. Factory fitted £150.

MARCONI Portable GENERATOR TFR81 very fine condition £150.00.

MARCONI Transmitter TFR110D £200.00 E350.

MARCONI ADAPTOR TFL110/TF1120/TF866 £50.

ARMAC type noise meter 276 Large screen £110.

FLANN signal GENERATOR type 501 2000Khz to 300Khz Super condition £150.

COLLINS Recorder unit 1500W, in case and power unit. 500kHz to 100Kz. No information — £750.

A selection of items on our List.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Condition</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y10</td>
<td>TIME MARKER & PULSE GENERATOR</td>
<td>Like New</td>
<td>£30</td>
</tr>
<tr>
<td>Y108</td>
<td>MARCONI Portable SIGNAL GENERATOR</td>
<td>Like New</td>
<td>£100</td>
</tr>
<tr>
<td>Y111</td>
<td>MARCONI TV TRANSMITTER SIDEHANDBAND ANALYSER</td>
<td>New</td>
<td>£280</td>
</tr>
<tr>
<td>Y120</td>
<td>MARCONI GENERATOR</td>
<td>Like New</td>
<td>£60</td>
</tr>
<tr>
<td>Y128</td>
<td>JERROLD SWEEP SIGNAL GENERATOR</td>
<td>Very Good</td>
<td>£150</td>
</tr>
<tr>
<td>Y172</td>
<td>SHOCK & SCHWARZ ATTENUATOR / DUMMY LOAD</td>
<td>Good</td>
<td>£75</td>
</tr>
<tr>
<td>Y186</td>
<td>MARCONI DOUBLE PULSE GENERATOR</td>
<td>Like New</td>
<td>£250</td>
</tr>
<tr>
<td>Y177</td>
<td>NAGARD DOUBLE PULSE GENERATOR</td>
<td>Type 5000</td>
<td>£150</td>
</tr>
</tbody>
</table>

THE LATE MODEL MARCONI OSCILLATOR TS85A/1 in superb condition. Reasonable price £200.00. Will trade £150.00.

ALL ITEMS £22.50 ea. SPECIAL OFFER - pick 2 different items of the 5 for £60.

Carr £2.50 each or £5 for 3.

MARCONI PORTABLE FREQUENCY METER T102X/11 100 to 160MHz. Very fine condition £110.

SOLARTRON AC MILLIVOLT METER W252 1.5MV to 150MV full scale in 10 ranges. 6% more ±1% drift £250.

R.F. WATTMETER TS118A BIRD ELECTRONIC CORPORATION MULTIFUNCTIONAL RECORDER 20MHZ to 1400MHZ. POWER 2 WATTS TO 300 WATTS 4 RANGES IMPEDANCE 50 OHMS. Designed also to be used as a Dummy Load. Small portable instrument. In Superb Condition supplied in transit case with MANUAL AND SPARES. £75 each.

HEWLETT PACKARD Signal Generator T1110 £1500.00 in transit case, perfect condition £2500.

VACUUM PUMP by ITS £250.00.

THE HONEYWELL KEYTAPE UNIT is a multi-channel Keyboard to Magnetic Tape System recording Keyboard entered data on 1/2" tape in 80 or 120 character records in a form easily usable as a computer input/output and verifier. 240 Volt operation.

Honeywell Keytape Unit as picture. Checked, tested with Manual. £215 ea.

As above but less data boards. Tested forward/backward tape movement and control, etc. Data entry/exit via read/write boards. £105 ea.

Exactly as above but less keyboard and table. £80 ea.

All units carry replaced.

KEYBOARDS as pictured also available at £25 each. Carr £2.50.

ALWAYS SOME LOW COST PERIPHERALS — PUNCHES, READERS, PRINTERS ETC.

AVO SIGNAL GENERATOR

Frequency range 2 to 250MHz. AM Sine/Square Modulation. High level output. Attenuator Complete with 2-position Super black and discard front plate. Large white dial with back lighting. Suitcase style. Suit £15 X 10" X 9".

R.F. WATTMETER TS118A BIRD ELECTRONIC CORPORATION

FREQ. RANGE 20MHZ TO 1400MHZ. POWER 2 WATTS TO 300 WATTS 4 RANGES IMPEDANCE 50 OHMS. Designed also to be used as a Dummy Load. Small portable instrument. In Superb Condition supplied in transit case with MANUAL AND SPARES. £75 each.

COME AND LOOK ON OUR SHELVES — HUNDREDS OF OTHER ITEMS TO INTEREST YOU. TOO FAR AWAY THEN SEND FOR LISTS.

HEWLETT PACKARD Signal Generator T1110 £1500.00 in transit case, perfect condition £2500.

VACUUM PUMP by ITS £250.00.
FOR HIGH VOLTAGE SUPPLIES, SAY ERIE

When you talk about designing and packaging miniature low current high voltage power supplies and voltage multipliers, the name Erie should come first. What other manufacturer of these sophisticated devices has its own in-house capacitor and rectifier technology? From very low input voltages, Erie can produce up to 50,000 volts output.

When size and weight are at a premium and reliable performance is essential let Erie Technological Products of Canada design and build your high voltage power supplies and voltage multipliers.

For the latest information on "state of the art" power supplies and multipliers contact:

ERIE ELECTRONICS LIMITED
South Denes, Great Yarmouth, Norfolk.
Tel: 0493 56122 Telex: 97427

128

Components ITT

AC/DC MULTIMETER TYPE U4324
With high band sensitivity movement
Full sensitivity movement and full coverage of AC and DC current and voltage ranges.
0.005% of reading + 0.4 count DC; 0.005% of reading + 0.2 count AC.
See Type 432-1000 20-200-1200
1000 VOLTS 100-200-300-600-900
110 AC
265 x 2000 hertz.
0.10-50-250-500-1000
500-5000
SMD Rev. Range.

Price £12.45
+ £4 VAT

Send Stamped Addressed Envelope for FREE Catalogue of over 2,000 Items

AMATEUR COMPONENTS
ORCHARD WORKS, CHURCH LANE, WALLINGTON, SURREY SM6 7NF

TELERADIO SPECIALISTS IN DESIGNS by John Lindsey Hood

Supplied as a Kit of parts or in ready assembled module form. Also available: Phase Locked Loop, F.M. Tuner; Millivoltmeter; Audio Signal Generator; T.H.D. Distortion Analyser; F.M. Signal Generator/Webbulator. Send SAE for comprehensive illustrated lists and up-to-date prices.

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London, N.9
Telephone: 01-801 3119
Closed Thursdays

FOR FURTHER DETAILS

WW - 068 FOR FURTHER DETAILS
WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.

ISSUE 66 PAGES

total

in

P

ranges.

Oscillator

ranges

or

packing)

ranges.

4 ranges

-81d

ranges

1976

100

c/o

WIRELESS WORLD, VIE-

- hfe

500V Paper

leads and

17011

40

0.047.

22ohms

£1.41

-0.8-

0.6-

%of F.S.D.
Advertisements accepted up to 12 noon Monday, October 4, for the November issue, subject to space being available.

ELECTRONICS SERVICING/CALIBRATION ENGINEERS

Circa £3,900 per annum

Are you an experienced Engineer with exceptional ability, capable of working with minimum supervision and able to devise your own test methods?

If so, and you have knowledge in depth of complex equipment associated with the following we shall be glad to hear from you: Radar, E.C.M. systems, valve or solid state equipment, R.F. Microwave or pulse techniques, or 3rd line servicing of a wide range of defence equipment.

Employment conditions include generous holidays, a 37½-hour week, subsidised restaurant and other fringe benefits.

For more details please telephone, call or write to:

R.F. Honnor, Personnel Manager,
G & E BRADLEY LTD., Electrical House,
Neasden Lane, London N.W.10.
01-450 7811

UNIVERSITY OF EAST ANGLIA

TECHNICIAN

required in the Music Centre from 1 October or as soon after that date as possible. The successful applicant will assist the Sound Engineer in the operation and maintenance of the sound-recording and electronic music equipment which includes a Synthi 100 synthesizer and professional-quality mixers and tape recorders. Some experience with microcomputers would be an advantage.

Salary on the scale £2,559-£2,940 per annum.

Applications, giving details of age and experience, and the names of two referees should reach the Dean, School of Fine Arts and Music, University of East Anglia, University Plain, Norwich NR1 2JU by 24 September, 1976.

UNIVERSITY OF GLASGOW

DEPARTMENT OF CHEMISTRY

ELECTRONICS TECHNICIAN

Grade 7

To supervise a Departmental Workshop and to be responsible for the design, development and construction of prototype electronic equipment for chemical applications and the maintenance of existing equipment.

Applicants should hold a HNC or degree in Electronics, or an equivalent qualification and should have several years’ subsequent experience in both digital and analogue electronics.

Salary £3,666-£4,122 per annum.

Apply in writing, giving full details, together with the names of two referees, to Dr. J. M. Winfield, Department of Chemistry, University of Glasgow, Glasgow G12 8QX.

UNIVERSITY OF LEICESTER

Department of Astronomy

Applications are invited for the post of

ELECTRONICS TECHNICIAN

with experience in the development of analogue and digital electronic circuits. The appointment will be for two years initially from 1 October, 1976, with a commencing salary of £2,751 a year.

Applications to Dr. D. J. Adams, Department of Astronomy, University of Leicester, Leicester, LE1 7RH, giving details of previous experience and the names of two referees.
ELECTRONIC ENGINEERS AND TECHNICIANS

are required by a progressive company part of a larger Engineering Group engaged in the manufacture and maintenance of Miniature Closed Circuit T.V. Systems for the power Industry and other Government bodies in the U.K. The Company also has a rapidly expanding export market. We therefore require the following to join our existing team:

1. An electronics engineer who, although will be theoretically competent, must have a practical flair to enable him/her to maintain the production of a highly varied and interesting product line.
2. An electronics technician to work with the above.
3. A mobile electronics technician to repair our own and customers' equipment on site, a proportion of bench work is envisaged. A car or generous vehicle allowance is offered with this position.
4. A prototype wireman/wirewoman capable of the highest standards of wiring. He or she must also be self-motivating.

The salaries offered for the above positions are excellent and we would consider that they would not be a limiting factor to the right applicant. The company also operates a non-contributory pension scheme. Consideration would also be given to relocation expenses if required.

Apply in writing giving details of experience and qualifications to date to:—

A. K. SEFTON, Director
SEER T.V. LIMITED
Westminster House, High Street
Old Woking, Surrey GU22 9LF

DATEK SYSTEMS LTD.

A leading company in the phototypesetting industry has the following vacancies:

SERVICE ENGINEER

to handle in-house repairs and field service in the U.K. and Europe. In the field the engineer would give support and act as advisor to our agents' own service engineers. Digital I.C. experience is essential and printing industry or computer peripheral experience would be valuable. A clean driving licence is essential. Salary up to £4,000.

DEVELOPMENT ENGINEER

to design and develop new computer peripherals. Several years' digital design experience is essential and knowledge of software or microprocessors would be an asset. The right person will probably have HNC or a degree but adequate experience could be satisfactory. Salary up to £4,500. Company benefits include four weeks' holiday, sickness and pension schemes.

Phone or write for application form to:
Miss Bux
Datek Systems Ltd.
849 Harrow Road
Wembley, Middx.
Tel. 01-904 0061

Looking for a new job?

Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.

We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Electrotechnical Personnel Services
12 Mount Ephraim
Tunbridge Wells, Kent

Tunbridge Wells (0892) 39388

TJB Electrotechnical Personnel Services is a division of Technical & Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries.

Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form
NAME ..
ADDRESS
..
..

(W)
Radio Officers—now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are £2905 rising to £3704 after three years service. Between 19 and 24, the starting salary varies from £2234 to £2627 according to age. In addition, a supplement of £312 p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages £900 a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Office Telecommunications

Silver Line is adding nearly 1/2 million tons d.w. to its existing, modern fleet of VLCCs, OBOs, bulk carriers and chemical tankers operating in numerous different trades. This means excellent career opportunities for all ranks with a company which, as part of a major international shipping group, nevertheless maintains a traditionally personal approach to crew matters.

Voyages subject to the trade are up to four and a half months' duration and leave (taken as leave) is better than average. There are significant additional benefits for contract officers in terms of salary, pension scheme, BUPA, family travel concessions, and baggage insurance.

For further details contact Jim Moxley either by phone (01-353 0262) reversing the charges, or by completing and sending in the coupon.

Silver Line

Name
Rank
Address
Tel
I hold certificates

To Jim Moxley, Silver Line Limited
43 Fetter Lane London EC4A 1BA

SILVER LINE
With contracts for a variety of advanced avionic projects in the Tornado (MRCA), Sea Harrier, Nimrod Mk2, Mitsubishi FS-T2, Jaguar and the naval Lynx helicopter, Ferranti in Edinburgh are in a position to offer career conscious engineers a wealth of technological experience. Planned expansion through this year and next now requires the appointment of engineers with experience in the following areas:

Design/Development
Opportunities exist for electronic and mechanical engineers with qualifications ranging from HND to Honours degree to join our design teams involved in airborne radars, laser range finding and target seeking equipments, inertial navigation systems and their associated test gear.

Test And Support
To support our design teams we need engineers with qualifications from C & G to HNC, preferably with Test and Quality Assurance experience.
They will become involved in a range of work covering automatic test equipment, fault diagnosis and building special-to-type test equipment.

Technical Authors
Development across all our projects requires parallel expansion in our Technical Publications Group.
Experienced technical authors will find the close association with project design particularly stimulating and for engineers keen to embark on such a career this is an opportunity to train in one of the most authoritative technical writing teams in the country.

Salaries are negotiable. The Company operates a contributory pension and life assurance scheme and incoming employees will qualify for housing under the Scottish Special Housing Association scheme.
Apply in writing, quoting reference WW/1, with particulars of qualifications and experience to:
Staff Appointments Officer,
Ferranti Limited, Ferry Road,
Edinburgh EH5 2XS.
TECHNICIAN

A technician is required for the above department, to be responsible for the maintenance of medical and electronic apparatus used in the Area. The technician will join a team who carry out a continuing servicing and overhauling programme to ensure the equipment in their charge will run at the peak of its available efficiency at all times.

Salary £2346 p.a. rising to £2887 p.a. (with £600 p.a. supplement). Application form and job description to be obtained from Area Engineer, Shrewsbury Hospital, Cephas Street, Shrewsbury. Salary range: £3024 - £3405 p.a. incl. London Weighting)

Administrative Assistant (WW 14/9), Birkbeck College, Malet Street, London WC1E 7HX, or phone for application form: 01-580 2662, ext. 727.

MEDICAL PHYSICS

TECHNICIAN IV

With O.N.C. or equivalent qualification in electronics or electronic engineering for the electronics section of the Medical Physics Department at the Manchester Royal Infirmary. As one of a team of six, he/she will repair and maintain a wide range of electronic and electro-medical hospital equipment and will also assist in development work.

Salary range £2346 - £2887 + £312 supplement. Applicants giving a summary of previous experience and qualifications and the names and addresses of two referees, should be sent by 6th September to the Assistant Administrator (Medical Area), Manchester Royal Infirmary, Manchester M13 9XW.

MECHANICAL ENGINEER

This appointment is for a mechanical engineer preferably who has design and production experience in the consumer manufacturing industry, and who has woodworking knowledge of cabinet engineering. The successful applicant will be expected to act largely on his own initiative in engineering/production liaison and to make rapid decisions on the consequent mechanical situation.

These appointments will be based at Bishop Auckland which is a pleasant rural town in attractive countryside where there is a wide choice of places to live. Assistance with re-location will be given if appropriate. Ability, tact, and especially a desire to get involved to promote team spirit and production efficiency are essential requirements for these positions.

Formal qualifications, whilst desirable, are not essential where adequate experience and ability can be demonstrated.

Please apply in confidence to:
Mr. J. Davison
Rediffusion Consumer Electronics Ltd.
St. Helens Auckland
Bishop Auckland
County Durham DL14 9AL.

REDIFFUSION

(614)
Your experience could open the door to a range of interesting and rewarding opportunities in the Design, Production or Service departments of a Company whose products complement the most advanced modern electronic techniques.

For more information apply in confidence to: — John Prodger, MARCONI INSTRUMENTS LIMITED Longacres, St. Albans, Herts. Tel.: St. Albans 59252

A GEC-Marconi Electronics Company

URGENTLY REQUIRED
TRANSMITTER ENGINEERS

SHORT WAVE
MEDIUM WAVE
LOW AND HIGH POWER

We have immediate vacancies on overseas projects

— AFRICA AND MIDDLE AND FAR EAST —

You are invited to phone Tony Owers for more information and we are especially anxious to acquire staff on a permanent basis operating from the United Kingdom.

Phone: Tony Owers, 01-573 8333

PERSONNEL & ELECTRONICS LTD.
We are looking for Lecturers to teach the practicalities of computer servicing.

You will be based at our Engineering Training Centre in Letchworth, Herts - the largest of its kind in Europe. Here you will be given a comprehensive grounding in computer technology in general and ICL equipment in particular.

You will be thoroughly prepared to train engineers to the point where they will be capable of maintaining computers at the optimum operational efficiency. Ideally, you will have an HNC or NVQ in a technical subject. Any experience of digital electronics, computers or instructing on these subjects, while not essential, will be useful.

We'll start you as an Assistant Lecturer on a salary of not less than £3000 a year. You'll be encouraged and expected to progress to the position of Senior Lecturer which carries a salary of £5000.

Relocation expenses will be considered where appropriate.

We are looking for Lecturers to teach the practicalities of computer servicing.

You will be based at our Engineering Training Centre in Letchworth, Herts - the largest of its kind in Europe. Here you will be given a comprehensive grounding in computer technology in general and ICL equipment in particular.

You will be thoroughly prepared to train engineers to the point where they will be capable of maintaining computers at the optimum operational efficiency. Ideally, you will have an HNC or NVQ in a technical subject. Any experience of digital electronics, computers or instructing on these subjects, while not essential, will be useful.

We'll start you as an Assistant Lecturer on a salary of not less than £3000 a year. You'll be encouraged and expected to progress to the position of Senior Lecturer which carries a salary of £5000.

Relocation expenses will be considered where appropriate.

We are looking for Lecturers to teach the practicalities of computer servicing.

You will be based at our Engineering Training Centre in Letchworth, Herts - the largest of its kind in Europe. Here you will be given a comprehensive grounding in computer technology in general and ICL equipment in particular.

You will be thoroughly prepared to train engineers to the point where they will be capable of maintaining computers at the optimum operational efficiency. Ideally, you will have an HNC or NVQ in a technical subject. Any experience of digital electronics, computers or instructing on these subjects, while not essential, will be useful.

We'll start you as an Assistant Lecturer on a salary of not less than £3000 a year. You'll be encouraged and expected to progress to the position of Senior Lecturer which carries a salary of £5000.

Relocation expenses will be considered where appropriate.

TELECOMMUNICATIONS TECHNICIANS

Our telecommunications are vital in maintaining contact with Offshore operations. We require top-calibre Technicians to be responsible for the installation maintenance of all these systems (VHF and HF) and multiplex and telephone switching equipment for the Forties Field Project. Most of the equipment is on our four Forties Field platforms with the main terminals at Dyce. Both onshore and offshore based appointments are available. Onshore staff will be required to spend some periods working offshore.

Candidates must hold an ONC or equivalent and have at least 5 years practical experience. Experience of data transmission and Post Office line working would be an advantage.

Attractive salaries will be paid plus generous allowances while working offshore. The posts are permanent and pensionable. Candidates selected must live or be prepared to move into the Aberdeen area.

Please write with full details, age, qualifications, experience, etc., to:

FORTIES FIELD
BP Petroleum Development Limited
Farburn Industrial Estate
DYCE, Aberdeen ABZ 0PB

ARTICLES FOR SALE

<table>
<thead>
<tr>
<th>CMOS with Discount</th>
<th>Any</th>
<th>Over 10%</th>
<th>Over 25%</th>
<th>Over 50%</th>
<th>Over 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C100</td>
<td>1.00</td>
<td>1.00</td>
<td>0.90</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td>C120</td>
<td>1.20</td>
<td>1.20</td>
<td>1.00</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>C130</td>
<td>1.30</td>
<td>1.30</td>
<td>1.10</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>C200</td>
<td>2.00</td>
<td>2.00</td>
<td>1.80</td>
<td>1.60</td>
<td>1.40</td>
</tr>
</tbody>
</table>

ENAMELLED COPPER WIRE

<table>
<thead>
<tr>
<th>AWG</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 18</td>
<td>500 ft</td>
<td>£1.25</td>
</tr>
<tr>
<td>No. 14</td>
<td>500 ft</td>
<td>£1.75</td>
</tr>
</tbody>
</table>

COPPER SUPPLIES

102 Parrwood Road, Withington, Manchester 20
Telephone 061-445 8753

GREENBANK ELECTRONICS (Dept W11W)

54 New Chester Road, Newbury, Warks. (0632) 23564

ENAMELLED COPPER WIRE

<table>
<thead>
<tr>
<th>AWG</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 18</td>
<td>500 ft</td>
<td>£1.25</td>
</tr>
<tr>
<td>No. 14</td>
<td>500 ft</td>
<td>£1.75</td>
</tr>
</tbody>
</table>

YOUR TAPES TO DISC: Mono or Stereo. Cutting, Vinylite Pressing, Sleeves/Labels. Top professional quality. S.A.E. for photo leaflet.

ELECTRICAL/ ELECTRONICS ENGINEERS

a consultancy/managerial/designer role

The Government Communications Headquarters has a constant demand for specialised complex equipment and systems designed by its own engineers, as well as readily available commercial equipment.

The successful candidates will undertake engineering project officer duties. Those will include interpreting non-technical briefs; advising clients on the best method of approach; preparing specifications and designs; costing; and managing projects right through to implementation.

Currently there are vacancies in the following fields: Radio Communication Systems across the range from VLF to microwaves and millimetric bands; Line and Data Communication Systems including computer application, and Main Computer Systems together with a wide range of peripherals.

Candidates must have a degree in electrical or electronic engineering or be academically qualified for corporate membership of the IEE or IERE. They must have general appreciation of project officer responsibilities and had at least 2 years' appropriate training and experience.

Starting salary between £3760 and £5030, depending on qualifications and experience. Prospects of promotion. Non-contributory pension scheme.

For further details and application form (to be returned by 7 October 1976) write to Civil Service Commission, Altenon Link, Basingstoke, Hants RG21 1JB, or telephone 01-897 5329/5602, 9.0 a.m. to 5.0 p.m.

Radio Technician

Our Overseas Division has a vacancy for a Radio Technician at Heathrow Airport London.

Applicants should have a sound basic knowledge of radio theory, experience in STORNO/MOTOR ROLLER VHF and UHF ground radio communications equipment. In addition, applicants must be willing to work shifts, have a current driving licence and preferably have passed a final certificate City & Guilds.

Salary including London Weighting. Earnings Supple-ment and shift allowance is £59 58 per 40-hour week. Other benefits include an excellent contributory pension scheme and first-class sports and social facilities.

Please write giving details, quoting reference 620/WW/MT, to Manager Selection Services, British Airways Overseas Division, PO Box 10, Heston Airport (London), Hounslow, Middlesex TW6 2JA. Or telephone: 01-897 5329/5602, 9.0 a.m. to 5.0 p.m.
BIOMEDICAL ELECTRONICS DEVELOPMENT ENGINEER

Pfizer Central Research located at Sandwich on the Kent coast comprises some 460 scientists and supporting staff researching and developing novel compounds for use in the human medicinal and veterinary fields.

We now need an additional electronics engineer to —

a) design, develop and construct a wide range of prototype equipment to assist our research efforts.

b) Maintain, and further develop, our existing electronic equipment.

c) Assist in the development of hardware/software for on line data acquisition and analysis.

The successful applicant, male or female, will be a graduate or HNC in electronic engineering in the early/middle twenties age range who has an interest in the application of computing.

Our well-equipped laboratories are housed in the recently opened £2.6 million Research Block extension. Conditions of employment include flexible working hours, four weeks' holiday, pension, death benefit, salary continuance scheme, bonus, etc. Financial assistance with relocation expenses is given where appropriate.

Applications giving brief details of age, qualifications and experience should be addressed to —

G. Marshall
Personnel Officer
Pfizer Central Research
Sandwich
Kent

TELETYPES 15. Absolutely as new.
c) Crated.

TELETYPES 15. Absolutely as new.
c) Crated.

CAPACITORS, mixed bags of electrolytics, approximately 500 untested for 15g Mullard metalised polyester, mixed bags of 10, 1μF and 2.2μF (250V d.c.), cosmetic imperfections so £1. Add £5 P&P to all orders. R. Wandre, 3 Erpingham Road, SW13 1BE. (617)

THE FASTEST GROWING AIRLINE IN THE MIDDLE EAST

SENIOR RADIO TECHNICIAN

Starting salary c.£7,600 (tax free)

Saudi, the airline of the Kingdom of Saudi Arabia, is seeking — as part of a planned programme of expansion — a thoroughly experienced Senior Radio Technician to maintain the existing level of operations and also to work on new communications equipment which is currently being installed.

Duties will include:

- routine maintenance and troubleshooting on radio equipment — e.g. UHF/VHF mobile communications equipment, public address systems, etc.
- work on communications system installations including antennas, feeder lines, power lines and cables
- the maintenance of technical journals
- keeping up-to-date regarding state of the art procedures in electronics maintenance
- field trips
- the maintenance of service records on equipment and logs of the utilisation of spare parts
- participation in on-job training of Saudi National employees.

Applications, who should be aged under 45, should have completed a trade school course or have equivalent experience. Three to five years experience of electronics equipment servicing is essential.

This job, which is for a 2 year (renewable) contract period, is based in Jeddah and offers a starting salary of around £7,600 p.a. (income tax free) plus free unfurnished accommodation for you and your family. Saudi also provide a generous re-location allowance, free and reduced air tickets and 40 calendar days leave per annum.

Please write, in confidence, enclosing full personal and career details, and quoting job title and reference A-564-76, to:

Miss C. Mulshaw,
EXCLUSIVE OFFER
WORLD-WIDE RANGE NEVER BEFORE OFFERED
PHILCO HC-180 POINT-TO-POINT STRIP TRANSISTOR V.H.F. RECEIVERS.
All possible phasing channels to 3 km with socialism.
Superb diversity reception on 388, 500, 600, 640, 750 etc., with 4 sub-hands to each channel. Full details and prices from.

HIGH QUALITY 19" RACK MOUNTING CABINETS & RACKS ENDEAVOURING FOR NEW STOCK NOW AVAILABLE

AUDIO AND INSTRUMENTATION TAPE RECORDER-REPRODUCERS
- Philips 1021 Digital Units, 2 tracks.
- Philips 1015 Digital Units, 1 track.
- Ampex FC-1000, 6 speeds, 'tracks 6/12'.
- Ampex FC-1000, 8 speeds, 'tracks 3/6'.
- Ampex FC-1000, 4 speeds, 'tracks 4/6' 1/2".
- EMI TKR 2 speeds, 1 track. 44, 55, 66, 77, 88. 99.
- EMI TKR 2 speeds, 1 track. 44, 55, 66, 77, 88. 99.

MAGNETIC CAPACITOR 100p. 8 tracks, 3 speeds x 4.

Lowest advertised prices. Please ask for a list.

We have a large selection of "bits and pieces" we cannot list - please send your requirements and we will send you a full list of all our equipment.

All our aerial equipment in professional MFQ quality.
- Cities 330 very high quality Transmitters.
- Cities 2200 high quality Transmitters.
- Cities 2200 high quality Self-Attenuating Triplers.
- TT/TTS ITN 2 EC 92401.1 (400, 800, 1600). (Overseas).
- ENT/TS 4 HIGH QUALITY Transmitters.
- Complete part complete, surplus/salvaged.
- Decca Cintel 2.

Prices of above £70 to £400

Also Transport DECKS only available.

RIVERSIDE ELECTRONICS
Wholesalers and other users of consumer electronics are invited to send us our monthly list of special offers. We stock semi-conductors, i.c.s., capacitors, resistors, etc. Export enquiries welcome.

P.O. BOX 4, WISBECH, CAMBS.
Telephone: 0944 4158

THE MODERN BOOK CO SPECIALISTS IN SCIENTIFIC & TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1NP
Phone 723 4185
Closed Sat. 1 p.m.

IBM GOLFW 750 1/0

THYRISTOR AND RECTIFIER MANUAL
by RCA
Price: £3.50

TTL DATA BOOK
by RCA
Price: £1.50

MEMORY DATA BOOK
by National
Price: £5.90

SEMICONDUCTOR CIRCUIT ELEMENTS
BOOKS
by T. D. Towers
Price: £6.00

BASIC MATHEMATICS FOR ELECTRICIANS
by Cook & Adams
Price: £10.30

REFERENCE DATA FOR RADIO ENGINEERS
Price: £20.00

PRICES INCLUDE POSTAGE & PACKING

R.C.A.
INTEGRATED CIRCUITS

BY UNIVERSITY OF LONDON

139 - 141

332 LEY STREET, ILFORD

ENGLAND

SOUTHAMPTON SO4

LEAFLET

051 333 1863

NO BUTTONS
P.S.F. 59/14 (or similar). Magnets.
- Neodymium button magnets.
- Neodymium button magnets.

RCA Calculator Keyboards PC type.

NEW 70p (70c)

asics 6800 (6800)

330 PLASTIC MAGNETIC STRIP 2" Wide
- (or similar). Magnets.
- (or similar). Magnets.
- (or similar). Magnets.

McKinnon Crystal Company

561 DRYDEN ROAD

SOUTHAMPTON S02 4AY

WRITE FOR CATALOGUE 1975

LEAFLET

051 404519

STANDARD CODE 0703

Light activated SCR (SCR). 50V, 10V, 20V, 30V, 50V.
Light activated SCR (SCR) with clamp (suitable for special orders).

70p (70c)

148 - 152

332 LEY STREET, ILFORD

ENGLAND

SOUTHAMPTON SO4

LEAFLET

051 333 1863

NO BUTTONS
P.S.F. 59/14 (or similar). Magnets.
- Neodymium button magnets.
- Neodymium button magnets.

RCA Calculator Keyboards PC type.

NEW 70p (70c)

asics 6800 (6800)

330 PLASTIC MAGNETIC STRIP 2" Wide
- (or similar). Magnets.
- (or similar). Magnets.
- (or similar). Magnets.

McKinnon Crystal Company

561 DRYDEN ROAD

SOUTHAMPTON S02 4AY

WRITE FOR CATALOGUE 1975

LEAFLET

051 404519

STANDARD CODE 0703

Light activated SCR (SCR). 50V, 10V, 20V, 30V, 50V.
Light activated SCR (SCR) with clamp (suitable for special orders).

70p (70c)

148 - 152

332 LEY STREET, ILFORD

ENGLAND

SOUTHAMPTON SO4

LEAFLET

051 333 1863

NO BUTTONS
P.S.F. 59/14 (or similar). Magnets.
- Neodymium button magnets.
- Neodymium button magnets.

RCA Calculator Keyboards PC type.

NEW 70p (70c)

asics 6800 (6800)

330 PLASTIC MAGNETIC STRIP 2" Wide
- (or similar). Magnets.
- (or similar). Magnets.
- (or similar). Magnets.

McKinnon Crystal Company

561 DRYDEN ROAD

SOUTHAMPTON S02 4AY

WRITE FOR CATALOGUE 1975

LEAFLET

051 404519

STANDARD CODE 0703

Light activated SCR (SCR). 50V, 10V, 20V, 30V, 50V.
Light activated SCR (SCR) with clamp (suitable for special orders).

70p (70c)

148 - 152

332 LEY STREET, ILFORD

ENGLAND

SOUTHAMPTON SO4

LEAFLET

051 333 1863

NO BUTTONS
P.S.F. 59/14 (or similar). Magnets.
- Neodymium button magnets.
- Neodymium button magnets.
EDUCATIONAL

INTERTEXT GROUP
- INTERNATIONAL CENTER OF EDUCATION
- SCHOLARSHIP (SOA)
- INSTITUTE OF DOMESTIC ARTS (IDA)

Ian Ramesden

World Trade Centre, Kingsway, London WC2

SERVICES

PRINTED CIRCUITS AND HARDWARE

Ready available supplies of Constructors, hardware, Aluminium sheet and panels. Printed circuit boards in low and medium quantities for individual or published designs.

Promt service

Send list for catalogue

RAMAR CONSTRUCTOR SERVICES

Mason Road, Stratford-Upon-Avon

COURSES

THE POLYTECHNIC OF LONDON

DEPARTMENT OF PHYSICS

B.Sc. (Hons.) THE PHYSICS AND TECHNOLOGY OF ELECTRONICS

A one-year course offering specialisation in Microwave Physics, or Theory and Practice of Control Engineering. Electric Processes in Gases and Associated Spectroscopy.

IN APPLIED PHYSICS

3-year full-time course with special topics in electronics.

CERTIFICATE OF SUPPLEMENTARY STUDY

M.Sc. THE PHYSICAL BASIS OF ELECTRONICS

This course is available as a full-time, part-time or an evening course for graduates in Physics, Engineers and all disciplines.

Specialised courses in Semiconductor Physics and Devices, Plasma and Laser Physics, Electromagnetic Waves and Communication Theory. Details of these courses from this: The Instrumental Tech. of London

THE POLYTECHNIC OF LONDON

Holloway Road, London N7 8DB

Tel. 01-607 6777, Ext. 307

WANTED

B-D ELECTRONICS offer prompt settlement for your surplus equipment. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Plymouth (0733) 285218.

SURPLUS COMPONENTS, Equipment and Computer panes wanted for cash. Ring Southamp40 ton 772541.

SITUATIONS WANTED

YOUNG MAN requires work in re- cording, tape editing or similar. Very adaptable. Some experience. Tel. 086252 546.

CAPACITY AVAILABLE

AIRTRONICS LTD., for Coil Winding — large or small production runs. PC Board Assembly Manufacturers. Suppliers to P. O. M.D. etc. Ex. Respiratory. Enquiries welcome. 4 Walander Road, London SE15 7PE. Tel. 01-851 1796.

FINE SPOT WELDING, coil winding, mechanical and electrical assembly, light sheet metal and pressure vessels. Webores (Manchester) Ltd., Shenton. Tel. 061-860 4545.

COIL WINDING and transformer manufacturer, quick deliveries, competitive prices. Raven Transformers Ltd., 507 High Road, Leyton, E.10. 01-598 9487.

RESEARCH, DESIGN & DEVELOPMENT. We are expanding our Electronic Components Division and are now offering rapid services in all electronic departmments. We have 15 years experience working for the Government and industry generally. Give us a try and you will be given a quote. Tel. 01-397 7430.

SPECIALIST IN PRINTED CIRCUIT ASSEMBLIES. We offer rapid services in all electronic departmments. We are interested in all aspects of printed circuit assemblies. Tel: 071-905 7069.

WANTED, all types of scrap and REDUNDANT ELECTRONIC & COMPUTER MATERIALS with precious metal content.

TRANSISTORS & PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS

THE COMMERCIAL SMELTING & REFINING CO. LTD.

171 FARRINGDON ROAD

LONDON EC1 3AL

Tel. 01-837 1371.

WANTED, NEW VALVES, transistors and clean new components, large or small quantities wanted, quotations by return. — Walton’s, 55 Worcester St., Wolverhampton. (62)

WANTED, all types of scrap and REDUNDANT ELECTRONIC & COMPUTER MATERIALS with precious metal content.

THE POLYTECHNIC OF LONDON

EVENING COURSE IN TELEVISION ENGINEERING

The Polytechnic of Central London, 115 New Cavendish Street, London W1, will run a course in television engineering starting September 21, 1979 for 30 weeks on Wednesday evenings, 6.00-9.00 p.m. The course is arranged for R. T. & I. Electronics Ltd., 140 London Rd., London, E.11. Levy 4986.

EDUCATIONAL

WANTED

RADIO AMATEURS EXAMINATION City & Guilds

Pass this important examination, and obtain your QL licence, with an RRC Home Station Course. For details of this, and other courses (GCE, Professional Examinations etc.) write to: Box 2, Engineers World, London.

THE RAPID RESULTS COLLEGE

Dept. JW1, Tudor House, London, S.W.1.

Tel. 01-747 7727 (Covers Advisory Service), or for a prospectus only ring 01-946 1102 (24-hour recording service).

EQUIPMENT WANTED

BROADFORDS AND MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.11 K2G

Telephone: 01-445 2740

WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK OR QUANTITIES. WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

B. F. induction heater about 1 SWK — Barrett, 1 Mayo Road, Croydon, CRU 7QP.

RECEIVERS AND AMPLIFIERS

WANTED

EQUIPMENT

EURO CIRCUITS

Printed Circuit Board — Master Laminates — Photolithography — Laser boring — Rolloid triming — Gold plating — Flexible Circuit — Conformal finish. No order too large or too small. Further information available NOW.

EQUIPMENT WANTED

FWC circuits ltd.

Weal Kingsdown. New Romney, Kent.

VALVES WANTED

C & G L. Advanced Communication radio. Recent complete course study material with model answers. Reasonable price. Box number W2516.

BCKS

"VINTAGE CRYSTAL SETS, 1922- 1927" Just published by Wireless World, contains 12 pages of Chapters on the first days of broadcasting. This book is a must for all owners of Wireless Trademarks. Also catalogue sections which are complete and descriptive crystal sets together with their original prices in d.s. A book for the collector, the enthusiast, and the amateur in this hobby. Available from main booksellers or direct from us. Please send £2.90 inclusive to IPC Business Press Ltd., Room 202, 12 Southwark St., London, SE1 7LU.

CLASSIFIED WANTED

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

FOR RENT, 10-room bungalow, decked garden, with all services available. 100 yards of road about 8-9 miles from town. Excellent for further information and instrument sales contact Alton, 10 Bremley Drive, Leigh, Lancs. Tel: 76624. (6171)

WANTED

L.A. INDUSTRIAL ADVISORY SERVICES

For original, basic CASH offer, phone:

COMPUTER APPRAISATION

Godstone (089 336) 3221

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

FURBER'S ELECTRONICS

FOR SALE: Large stock of new components and associated materials. Phone 0473-31157. (6685)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

REFERENCES WANTED

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)

BY INTERESTED COLLEAGUES. 2 GP boards. One BRT400, G209, S640, etc. Tel: 01-747 7725 (b-d electronics). (22)
A. & S. T.V. COMPONENTS
8 Cavendish Crescent, Deacons Hill Road
Elstree, Herts.
Tel. 01-963 9724 or 01-207 0520

Opening shortly Trade Counter at 3 High Street, Elstree where there will be a MAD MAD sale incl. Valves. TV Panel Boards, L.O.P.T.S., Tuners, Condensers, Telescopic aerials, Cabinets and a host of other components and accessories

TRANSISTORS & I.C.’s

<table>
<thead>
<tr>
<th>Class No.</th>
<th>Type</th>
<th>Quantity</th>
<th>Price (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 17 16p</td>
<td>BC 107</td>
<td>13p</td>
<td>35p</td>
</tr>
<tr>
<td>AC 128 14p</td>
<td>BC 108</td>
<td>12p</td>
<td>40p</td>
</tr>
<tr>
<td>AC 199 13p</td>
<td>BC 109</td>
<td>12p</td>
<td>40p</td>
</tr>
<tr>
<td>AD 149 37p</td>
<td>BC 147</td>
<td>8p</td>
<td>100p</td>
</tr>
<tr>
<td>AD 161 40p</td>
<td>BC 148</td>
<td>8p</td>
<td>120p</td>
</tr>
<tr>
<td>AD 162 40p</td>
<td>BC 159</td>
<td>13p</td>
<td>250p</td>
</tr>
<tr>
<td>AF 178 40p</td>
<td>BD 124</td>
<td>78p</td>
<td>125p</td>
</tr>
<tr>
<td>AF 239 40p</td>
<td>BD 131</td>
<td>40p</td>
<td>140p</td>
</tr>
<tr>
<td>BD 132 40p</td>
<td>BD 132</td>
<td>40p</td>
<td>140p</td>
</tr>
<tr>
<td>BDX 32</td>
<td>OA 90</td>
<td>8p</td>
<td>150p</td>
</tr>
<tr>
<td>BF 180 25p</td>
<td>2x1711</td>
<td>30p</td>
<td>150p</td>
</tr>
<tr>
<td>BF 196 11p</td>
<td>R20108</td>
<td>1.90p</td>
<td></td>
</tr>
<tr>
<td>BF 197 14p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Many other transistor devices available) (Colour Triplers from £4.20)

WHOLESALEURS, RENTAL COMPANIES AND TRADERS
SUPPLIED — SPECIAL QUOTATIONS GIVEN

Discounts given on 100 lots or 100 mixed lots. Certain stock lines available at generous discount. Enquiries invited.

ALL GOODS BRANDED OF HIGH QUALITY AND NEW

Please add 12½% for V.A.T. Minimum order £3.00. Under £10.00 please add 25p P & P. Terms of business C.W.O.

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SE1 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 81p PER LINE. Average seven words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 45p
- Cheques etc., payable to "Wireless World" and crossed "& Co."

NAME……
ADDRESS……

REMITTANCE VALUE……………………………………… ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION………………………….. NUMBER OF INSERTIONS………………
In the search for quality it helps to know where to look.

When you’re looking for the best in Hi Fi, there’s one sure way of finding it: Hi Fi Year Book 1977, with 500 pages of products, photos and invaluable articles that will help you in your choice. It tells you everything you need to know with separate illustrated sections for every major category of equipment — what it does, what it costs, who makes it, and where you buy it. Plus a host of articles on the latest Hi Fi developments and their application.

So if you want information like you want Hi Fi — order your copy right away.

HI FI YEAR BOOK 1977
Available direct from the publishers @ £3.40 inclusive or from leading booksellers and newsagents price £3.00.

ORDER FORM

To: IPC Business Press Ltd.
Room 11, Dorset House, Stamford Street, London SE1 9LU

Please send me Hi Fi Year Book 1977 @ £3.40 inclusive, remittance enclosed. Cheques/P.O’s should be made payable to IPC Business Press Ltd.

Name

Address

Registered in England No. 677123. Regd. Office Dorset House, Stamford Street, London SE1 9LU
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 130-142

PAYMENT DUE: 15TH Day of each Month

A & S TV ... 139
Aero Electronics Ltd ... 22
Allan, R. Radio Ltd ... 32
Ambit International ... 94
Aspen Electronics ... 82
Audix Ltd ... 88
Avo Ltd ... 16, 22
Barr & Stroud Ltd ... 15
Baron Electronics Ltd ... 50
Bauch F. W. O. Ltd ... 88
Baylis, A. D. & Sons Ltd ... 25
Bentley Acoustic Corp. Ltd ... 118
B.H. Component Factors Ltd ... 129
Bi-Pak Semiconductors Ltd ... 103
Bio-Pre Pak Ltd (Stirling Sound) ... 119
Boss Industrial Mouldings Ltd ... 15
Brenell Eng ... 36
British National Radio and Electronic School ... 107, 125
Burkin (Ultron) ... 1
Cambridge Learning ... 14
Catronics ... 105
Chiltham Ltd ... 127
Colomax (Electronics) Ltd ... 106
Combined Precision Components Ltd ... 108, 109
Compcor Electronics ... 95
Computer Application ... 93
Continental Specialties Corp. ... 93
Crimson Elektrik ... 105
Decon Laboratories Ltd ... 87
Demco Electronics International ... 24
Doram Component Ltd ... 11
Eagle International Ltd ... 15
Edystone Radio Ltd ... 13
Electronic Brokers Ltd ... 122, 123, 128 & 144
Electrovalue Ltd ... 18, 19, 36
Erie Electronics Ltd ... 128
ESP Ltd ... 90
Euro Circuits ... 141
Everved & Vignoles Ltd ... 15
Ezel Electronics ... 25
Farrell Instruments Ltd ... 20
Future Film Developments Ltd ... 105
Grampian Reproducers Ltd ... 26
Greenbank Electronics ... 27
Greenwell ... 125
Greenwood Electronics ... 15, 27
Harris Electronics (London) Ltd ... 14, 20
Hart Electronics ... 106
Hoffman Brothers ... 107
Huyden Laboratories Ltd ... 3
Heatkit Ltd ... 87
Henson, R. Ltd ... 33
Heworth Electronics ... 33
H.H. Electronic ... 143
Hi-Fi Y/book ... 143
Icon Designs ... 24
I.L.P. Electronics Ltd ... 97
Industrial Instruments Ltd ... 4
Industrial Tape Applications ... 110, 111
Intersi Ltd ... 17
Jackson Bros (Ldn) Ltd ... 112
JPS Assocs ... 28
Keytrons ... 140
KGM Electronic Ltd ... 31
Kinnie Components Ltd ... 120
Levells Rich Equipment Ltd ... 16
Lever Electronics Ltd ... 1
Linstedt Electronics ... 10
Lloyd, J. J., Instruments Ltd ... 8, 26
Lynx Electronics (London) Ltd ... 100
Lyons Instruments ... 20, 28
Macnines Laboratories Ltd ... 24
McKnight Crystal Co ... 140
McLennan Eng. Ltd ... 26
Maplin Electronic Supplies ... 94
Marconi Instruments Ltd ... 104
Marshall, A. & Sons (London) Ltd ... 104
Medelec Ltd ... 6
Midas Application ... 104
M.I. Electronics ... 125
Modern Book Co ... 140
Multicore Solders Ltd ... Cover IV
Norelco Ltd ... 14
Orchard Electronics Ltd ... 28
Patrick, J. B. ... 129
PE Electronics Co ... 32
Powertran Electronics ... 116, 117
Precision Petite Ltd. ... 33
Q·Max ... 12
Quartz Crystal Co ... 138
Radio Components Ltd ... 99
Radio Shop, The ... 100
R.C. Instruments Ltd ... 30
RE Audio Visual ... 139
Rena Cetioni Ltd ... 113
R.S. Valves Ltd ... 115
R.V.C. ... 9
Sibley, J. E., & Co. Ltd ... 22
Sigmans Ltd ... 95
Sullivan, H. W., Ltd ... 95
Swanley Electronics Ltd ... 105
Swift of Wilmslow ... 103
Tamar Electronics ... 29
Tandy Corporation (U.K.) ... 28
Thencentronic Ltd ... 114
Telektron (Telecommunications Ltd) ... 34
Telephone & Wireless Components Ltd ... 107
Teleprompter Instruments Ltd ... 31
Teleson H-Fi ... 128
Thorn Radio Valves & Tubes Ltd ... 5
Trampus Electronics ... 103
Trident Audio Developments Ltd ... 29
Turner Electronics ... 100
Twelve Counties Electronics Ltd ... 114
United-Carry Supplies Ltd. ... 16
Viner Vintage Sets ... 107
West Hyde Developments Ltd ... 125
Wilmot Breeden Radio Co Ltd ... 10
Wilmot Breeden Radio Ltd ... 2
Wilmot Breeden Electronics Ltd ... 2
Wilmot Breeden Electronics Ltd ... 2
Wilmot Breeden Audio Ltd ... 129
WK Electronics ... 64
Z. & I. Aero Services Ltd ... 12, 22, 101
Zettler (U.K.) Division ... 12

Printed in Great Britain by QL Ltd, Station Road, Colchester and Published by the Proprietors IPC ELECTRICAL ELECTRONIC PRESS LTD, Docket House, Stamford St, London, SEI 9LU telephone 01-281 8000. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon & Gotch Ltd. INDIA: A. H. Wheeler & Co. CANADA: The Wm Dawson Subscription Service, Ltd. Gordon & Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd. William Dawson & Sons (S.A.) Ltd. UNITED STATES: Eastern News Distributors Inc., 35 West 15th Street, New York, N.Y. 10011.
New!

Anti-Feedback & Equalization
On the microphone!

Never before has a microphone put such absolute sound control into the palm of your hand. With Shure's new revolutionary PE5EQ E-Qualidyne Microphone, you simply preset any of four frequency switches on the microphone to minimize your Number One enemy—feedback. You can also select—on the spot—any one of 16 frequency response variations to tailor your performance to ANY stage: Sweeten the strings ... enhance the better qualities of your voice ... or eliminate close-up "boominess." Ideal where a single type of microphone will be used for different applications in the same act. Only the E-Qualidyne can offer such hand-held versatility. And only Shure has it!

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
Multicore's newest solder creams are designed specifically for hybrid microcircuits P.C.B's and critical component joints. Unlike ordinary creams - which suffer from the problem of oxide around each atomised solder powder particle - they're completely oxide-free. The advantage is faster soldering with clear flux residues and no solder globules.

The new range can be made in any quantity and with a very wide variety of soft solder alloys, fluxes, particle sizes and viscosities. They're suitable for screen printing, stencilling or application by automatic precision dispensers. Add to that the speed, simplicity, reliability and low application cost of solder creams in many operations and you have a product that takes the art of soldering one step further.

Multicore's solder cream can often be used instead of solder preforms. No tool costs are involved and inventories of individual shapes are avoided. The cream can often be applied more quickly and has more uniform flux content than preforms. But for those assemblies where preforms are preferred...

...don't forget Multicore preforms

These precision-made solder preforms come in virtually any size and shape. Rings, washers, discs, pellets and lengths of solder tape in most soft-solder alloys, with or without flux cores, are easily placed between the parts to be soldered.

Whether cream or preforms are used, just raise the temperature of the metal surfaces to around 50°C above the melting temperature of the solder. The solder cream or preform does the rest. Heating techniques can include gas flame, hot plate, oven conveyor, induction coils, resistance/electrode soldering, hot gas and infra-red.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.