Constructional articles

Ultra-low distortion amplifier
80-metre s.s.b. receiver
For superb colour, use EEV vidicons

EEV vidicons – with magnetic or electrostatic focusing – are available in matched sets for colour cameras. These outstanding tubes are selected and matched for picture geometry and uniformity of sensitivity. They help to make better colour pictures by improving registration, signal-to-noise ratio and system sensitivity without sacrificing other performance parameters.

Have you heard also of the latest vidicons that EEV is making for monochrome pictures – vidicons with fibre-optic faceplates, with enhanced infra-red sensitivity, or for use in ultra-low light conditions, or in dangerously high radiation environments or in missiles? Whatever your vidicon need – colour or black and white – get in touch with us. We’re likely to be able to meet it.

ENGLISH ELECTRIC VALVE COMPANY LIMITED
Chelmsford, Essex, England Phone: 61777 Telex: 99103 Grams: Enelectico Chelmsford
EEV klystrons - a wide and flexible range for UHF TV

EEV make amplifier klystrons for UHF TV at power levels 5, 7, 10, 25 and 40kW into the aerial. Their reliability is established, their operating efficiency is good and their design provides a high degree of operational flexibility. A 40kW tube can, for example, be operated at the same efficiency at any power level between 20kW and 40kW. When operated at 40kW the tube needs only 135kW d.c. input.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777
Telex: 99103 Grams: Enelectrico Chelmsford

Send for full details of the complete range of EEV amplifier klystrons.

Please send me full details of your range of UHF TV amplifier klystrons.
I am interested in a klystron with the following parameters:

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Bandwidth</th>
<th>Power Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAME
COMPANY
ADDRESS

TELEPHONE NUMBER
EXTENSION

WW—008 FOR FURTHER DETAILS

WW40
AP 354

www.americanradiohistory.com
None of this "see if you can squeeze it up to 100 watts". "Well it gets there at 2.875 KHz — anyway this is P.A., not HiFi — so who cares what the distortion is so long as it is not more than 6 or 7 per cent." The S.N.S. CD.100 amplifier gives a pure, fully transistorised power output of 100 watts at 1 KHz with distortion less than 1 per cent. You are probably saying "I've heard it all before". So have we! That is why we have built an amplifier which will set new standards in craftsmanship and performance. To prove it we will loan you one for a seven day free trial.

The CD.100 illustrated is a single input unit giving 100 watts RMS output for 25 mV input at 1 KHz so it can be driven by any tuner or tape machine or, of course, the output of a mixer. 50/100 volt line output (0-50-0-50) "Distortion less than 1 per cent at 1 KHz. "Full short circuit protection with the exclusive S.N.S. Current Lok circuit. "Ample thermal capacity to ensure the transistors run within their limits at 100 watts continuous Sine Wave. All these plus points, and many more, make the CD.100 yet another S.N.S. success.

S.N.S. COMMUNICATIONS LTD.
851 RINGWOOD ROAD — WEST HOWE — BOURNEMOUTH — HANTS — ENGLAND
Telephone Northbourne 4845/2663. Telegrams: Flexicall Bournemouth — Telex: 41224
If you need power tetrodes at the right price look at this EEV range

Forced-air Cooled

<table>
<thead>
<tr>
<th>Type</th>
<th>Service type</th>
<th>Anode dissipation max. (kW)</th>
<th>Output power (kW)</th>
<th>Anode voltage max. (kv)</th>
<th>Frequency (MHz)</th>
<th>Filament ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CX1000A</td>
<td></td>
<td>1.0</td>
<td>3.2</td>
<td>3.0</td>
<td>110</td>
<td>6.0</td>
</tr>
<tr>
<td>4CX1000K</td>
<td></td>
<td>1.0</td>
<td>3.2</td>
<td>3.0</td>
<td>110</td>
<td>6.0</td>
</tr>
<tr>
<td>4CX1500B</td>
<td>CV8295</td>
<td>5.0</td>
<td>16.0</td>
<td>7.5</td>
<td>30/110</td>
<td>7.5</td>
</tr>
<tr>
<td>4CX10,000D</td>
<td>CV6184</td>
<td>10.7</td>
<td>16.0</td>
<td>7.5</td>
<td>30/110</td>
<td>7.5</td>
</tr>
<tr>
<td>4CX35,000C</td>
<td>CV8244</td>
<td>10.0</td>
<td>9.0</td>
<td>6.9</td>
<td>60/220</td>
<td>5.0</td>
</tr>
<tr>
<td>CR192A (6166A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vapour Cooled

<table>
<thead>
<tr>
<th>Type</th>
<th>Anode dissipation max. (kW)</th>
<th>Output power (kW)</th>
<th>Anode voltage max. (kv)</th>
<th>Frequency (MHz)</th>
<th>Filament ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY1170J</td>
<td>60</td>
<td>82</td>
<td>15</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>CY1172 (RS 2002V)</td>
<td>150</td>
<td>220</td>
<td>15</td>
<td>30</td>
<td>21</td>
</tr>
</tbody>
</table>

4CX1000K

For audio or linear single sideband amplifiers. 4CX1000K has a solid disc screen contact to permit use up to 400MHz.

4CX10,000D

For audio, linear, single sideband or screen modulated r.f. amplifiers.

4CX35,000C

For audio amplifiers, r.f. linear amplifiers or Class C amplifiers or oscillators.

CY1170J

For audio amplifiers, r.f. linear amplifiers or Class C amplifiers or oscillators. Both types have a coaxial metal-ceramic envelope. A range of glass envelope types is also available.

Send for full details of EEV tetrodes

Please send me full data on your range of forced-air cooled and vapour cooled tetrodes. I am also looking for a power tetrode with the following parameters.

<table>
<thead>
<tr>
<th>Output power (kW)</th>
<th>Anode voltage max (kV)</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>POSITION</td>
<td></td>
</tr>
<tr>
<td>COMPANY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEPHONE NUMBER EXTENSION

WW—010 FOR FURTHER DETAILS
Develop the art of good listening

The best pick-up arm in the world. Write to SME Limited · Steyning · Sussex · England

WW-011 FOR FURTHER DETAILS
Over 3,500 specific types

For quality, reliability and world-wide availability you can rely on Haltron valves... and on Hall Electric's speed, intelligence and reputation.

Ministry of Technology EID approval
Air Registration Board approval.

HALTRON
Radio Valves and Tubes

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W.5.
Telephone: 01-486 8531 (10 lines) Telex: 2-2573

WW—012 FOR FURTHER DETAILS
How to be a mnemopolymerist

All you need to shrink your cable binding and sleeving costs — is a match!
Our demonstration kit contains two types of wired terminals and Helashrink® heat-shrinkable sleeves. You simply add heat for a tight shrink-fit or shroud. In seconds — and at very low cost. Post coupon and see.

Free demonstration kit
Please send me your free Mnemopolymerics Demonstration Kit — plus full details of the complete Helashrink range.

Name
Company
Address

WORLD LEADERS IN CABLE ACCESSORIES
HELLERMANN ELECTRIC
A division of Bowthorpe-Hellermann Ltd
Gatwick Road, Crawley, Sussex. Tel: Crawley 28888
A member of the Bowthorpe Holdings Group of Companies

*Mnemopolymerics — the science of heat-shrinkable polymers with a built-in memory — perfected after many years of intensive research and development by Hellermann-Electric. Helashrink products include:

Helashrink Electrovin® — sleeves, markers and tubing in PVC — designed to cut the cost of cable harness sleeving, terminal insulation, plug shrouding, identification, insulation of condenser and transistor cans, and general mechanical protection. Also for creating multicore cables, harness work and bus-bar protection. Two grades: Thin-wall, shrinking at 70°C; Standard-wall, shrinking at 135° to 150°C. Both self-extinguishing. Good storage stability.

Helashrink Insultite® — sleeves, markers, tubing and end caps in a range of irradiated and non-irradiated materials designed to provide the right product for the job — at the right price. Materials can be selected for flexibility, rigidity, shock and vibration protection, resistance to contaminants over a range of operating temperatures from −55°C to 300°C.
The world's best portable professional audio tape recorder

MODEL IVA Automatic, single speed

MODEL IVB Manual, single speed

MODEL IVD Automatic/Manual, three speeds

MODEL IVL Neopilot, three speeds, Automatic/Manual

These models plus eight variants give the professional user a choice of twelve basic Nagra IV tape recorders.
Modular plug-in electronic circuit boards, available for each machine, allow unique flexibility in the choice of recording functions.

Study the Nagra IV brochure and see how you can select precisely the facilities you need, built in to one compact machine of outstanding performance and reliability.

Write or telephone for technical information.

HAYDEN LABORATORIES LIMITED,
East House, Chiltern Avenue, Amersham, Bucks., England
Tel: 02403 5511 Telex: 83251 Cables: Haylab Amersham.
TRIO's TS-510 is the definitive instrument especially engineered for complete "SSB ERA" function. It's a high power, high stability product of imaginative design that fully lives up to the renowned "TRIO" name. Extremely stable VFO, a new development that is built around 2 FET's and 13 transistors, guarantees stable QSO's during entire use, an accurate double-gear tuning mechanism and a linear tuning capacitor produce a 1 kHz direct reading on all bands. There's easy tuning in of SSB signals because the TS-510's frequency coverage has been compressed to 25 kHz for one complete rotation of the dial. Sharp cutoff for both reception and transmission is achieved by a sharp factor frequency filter built just for this 510 series model. Combined with the TS-510's superb features are the distinctive, top quality PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator). With an AC power supply that operates a built-in 16 cm speaker, the PS-510 has been created as an exclusive companion instrument for the TS-510. It can be installed at any location with the PS-510 because the power supply is regulated on or off at the TS-510. The VFO-5D can match the TS-510 in performance and design. Its reading accuracy is unusually high since a double-gear dial covering 25 kHz per revolution is also used, as in the TS-510.

TO: B.H. Morris & Co., (Radio) Ltd.
Send me information on TRIO COMMUNICATION RECEIVERS & name of nearest TRIO retailer.

NAME:
AGE:
ADDRESS:

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS & CO., (RADIO) LTD. 84/88, Nelson Street, Tower Hamlets, London E. 1. Phone: 01-790 4824

WWW—017 FOR FURTHER DETAILS
VALUABLE NEW HANDBOOK TO AMBITIOUS ENGINEERS

Have you had your copy of "Engineerig Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On "SATISFACTION OR REFUND OF FEE" terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

ELECTRICAL ENG.

CIVIL ENG.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

WW-018 FOR FURTHER DETAILS
There are a couple of things you should know about the Welbrook All Silicon Stereo Amplifier

DISTORTION

0.1% at all output levels

PRICE

£42. 0. 0d.

A new and unique method of equalising impedances in the output stage enables only Welbrook to offer such true high fidelity reproduction at such low cost.

This technical breakthrough brings you the Welbrook W20 Stereo Amplifier, with no distortion rise at any level, for only £42. 0. 0d. This is a truly remarkable bargain among high quality stereo amplifiers, using Class B operation.

Performance:

Power Output:
- 24 watts R.M.S. (12 watts per channel) into 4 ohms load.
- 20 watts R.M.S. (10 watts per channel) into 8 ohms load.
- 14 watts R.M.S. (7 watts per channel) into 15 ohms load.

Total Harmonic Distortion:
Typically 0.1% for 10 watts per channel into 8 ohms load at 1 kHz with no increase at low levels.

Hum and Noise:
- With volume control at minimum-80 dB. With volume control at maximum-55 dB.

Frequency Response:
- -1 dB at 30 Hz and 15 kHz.

Inputs: Pickup:
- R.I.A.A. characteristic, sensitivity adjustable up to 3 mV to suit crystal, ceramic or magnetic cartridges.

Tuner:
- Flat characteristic-sensitivity 100 mV-input impedance 100 k ohms.

Tape:
- Flat characteristic-sensitivity 100 mV-input impedance 100 k ohms.

Outputs:
- Loudspeaker outputs to suit 4, 8 and 15 ohms. Tape output for recording-200 mV for rated input sensitivities-minimum external impedance 10 k ohms.

Tone Controls: Bass:
- Ganged control giving ± 14 dB at 30 Hz

Treble:
- Ganged control giving ± 14 dB at 15 kHz

Balance Control:
- Facility to reduce output from either channel continuously from maximum output to zero.

Dimensions:
- 14 ½” wide x 9” deep x 4” high (cabinet)

Price:
- Recommended retail price; £42. 0. 0d. including cabinet.

For full details of the Welbrook Stereo Amplifier post the coupon to:

WELBROOK ENGINEERING & ELECTRONICS LIMITED,
BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT

To: Welbrook Engineering & Electronics Limited; Please send me full details of the Welbrook Stereo Amplifier.

NAME

ADDRESS

(ww4)

WW—019 FOR FURTHER DETAILS
QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS – 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS – isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS – 12 1/2" x 6 1/2" x 4 1/2"

Complete the coupon and post today.

Please send me full details of the QUAD 50 Amplifier

NAME

POSITION

COMPANY

ADDRESS

(A BLOCK CAPITALS)

ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON Telephone: Huntingdon (0480) 2561/2

WW—020 FOR FURTHER DETAILS
from the new Bradley, new life for ageing oscilloscopes

The way things are going in computer logic and pulse measurement, even relatively new oscilloscopes are old before their time. Yet you may feel that investing in faster instruments to examine the even faster computer phenomena of today represents too large an outlay.

For you, Bradley introduces the 158 Oscilloscope Adaptor. It'll put new life into oscilloscopes, because it enables waveforms at frequencies up to 1000 MHz to be displayed on any general purpose oscilloscope. So you can expect quite a lot more from your present equipment. Bradleys will see to that.

G. & E. BRADLEY LTD.
Electrical House,
Neasden Lane,
Tel: 01-450 7811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY
EAGLE P.A. EQUIPMENT

If you want to make a voice heard, we can help you! Everything from a lightweight loudhailer to a P.A. installation big enough to start a revolution — or stop a riot! Speakers, mikes, amplifiers and every accessory you are likely to want is in the Eagle range. And in addition to clarity and power, Eagle P.A. equipment gives you magnificent value for money!

And another attractive thing about the range of Eagle Products is the rate at which fast-selling new items are added! See our new catalogue, which proves the point!

Send the coupon to the Sole Distributors of Eagle Products

B. Adler and Sons (Radio) Ltd.,
Coptic Street,
London, W.C.1
or quicker still, dial 01-636 9606,
ask for Carol Hill, she'll send you one today!

NAME:
COMPANY:
ADDRESS:

WW—022 FOR FURTHER DETAILS

SIMPLY SUPERB!

the new brenell...

MODEL ST STEREO

Probably the most important new recorder of the year!

The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics; self-mounting cabinet; simplified controls. Sound quality is even better than ever — as good as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.

ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.

Only the price is less than you may expect... £145 recommended. You pay no import duties... no high selling costs... only for a top-quality recorder, well made. It's a fine formula!

- Mono or stereo operation
- Choice of 2 or 4-track models
- 3 outer-rotor motors
- 3 tape speeds
- 2 recording level meters
- Full input/output and control facilities

A range of Brenell mono and stereo recorders is available, together with Brenell deck and tape-link.

brenell

BRENELL ENGINEERING COMPANY LTD. 231/5 Liverpool Road, London, N.1. Telephone: 01-607 8271

WW—023 FOR FURTHER DETAILS

GD 370
Point to Point Broadcasting
Radio Relay
Ground to Air Navigational Aids
Business Radio

Design
Site layouts
Aerial System Design

Aerials
LF 'T' and 'L' Aerials,
Mast Radiators,
HF Dipoles, Quadrants,
Rombics, Log Per-odics,
Vertical Incidence Arrays,
Conicals, Biconicals
VHF & UHF Yagis, Helices,
Ground Planes, Colinears,
Whips, Marine Aerials,
Television Arrays to 100kW e.r.p
MICROWAVE Passive Reflectors,
Dishes 3" to 60 ft. dia.

Supporting Structures
Self-supporting Towers,
Tubular and Lattice Masts,
Telescopic Masts

Accessories
Coaxial and open wire Feeders,
Filters, Aerial Switches,
Lead-in panels, Earth Systems.
Air-cooled Transmitter Loads.
Termination Networks

Installation
World Wide Service

C&S Antennas Ltd
Telephone: 01-554-0102 Telex: 25850 Cables: Antennas Ilford (England)
Telcon magnetic shields give today's circuits tomorrow's performance

Do you know about the new 'Telform' shields which have high-shielding-efficiency combined with a superior finish? These shields can be made extra-close fitting to save space and material and have fewer welded seams than conventional constructions.

TO-5 Thyristors are made in Britain by AEI Semiconductors

Which means delivery and quality of this low cost thyristor are guaranteed.

Features

- All voltage grade available, from 50 to 600V
- Three grades of maximum gate sensitivity 200μA, 1mA, 10mA, allow selection to give the best performance for every application
- Meets BS9300 Quality Assurance Requirements
- Fully diffused

Write for full details to:
AEI Semiconductors Ltd. Carholme Road. Lincoln. Telephone: Lincoln 28435
The international radio set

These days, in the radiocommunications business, it's all too easy to become out-dated and out-of-touch. So remember, if it's your business to maintain HF radio services, it's tough going trying to operate efficiently without equipment tailored for the task. Built—and installed if needs be—by people who really know their way round the international scene.

Redifon know how to keep your traffic rolling. By offering you more than a mere collection of radio sets; in fact an integrated communications system built up from a carefully planned comprehensive range of MF/HF transmitters, receivers and ancillary equipment. All designed to bring you a standard of flexibility, economy, quality, after-sales service and general value for money that you'd find hard to equal anywhere else on earth.

Redifon equipment has already proved itself in a wide variety of applications all round the globe. Such as diplomatic networks, police work, civil aviation services, maritime coast stations and, of course, for naval and military purposes too. The Redifon HF range could justly be called the International Set. Look at just a few of our products—all with unbeatable performance for price:

- **GK.203.** Frequency synthesis drive unit. 1.5-30 MHz in 100 Hz increments. 17 modes of transmission, including ISB if specified.
- **GA.481.** 100-watt linear amplifier, broad-band 1.5-30 MHz. No tuning or loading. Automatic protection against any mismatch (from open- to short-circuit aerial) or excessive drive. Easily portable, will operate direct from vehicle supply.
- **R.550.** General-purpose MF/HF communications receiver. VFO tuning for search with a resolution of 10 Hz, and frequency synthesis with 100 Hz increments for accurate setting to known frequencies. Dynamic range exceeds 120 dB, with superb blocking and cross modulation characteristics. Stringent defence specification at realistic price for commercial users.
- **MCU.6.** An aerial distribution amplifier that enables your receivers to go on doing their job long after other aerial amplifiers would have been blocked. 95 kHz-30 MHz. Several versions to meet your requirements.

Redifon Limited,
Communications Division,
Broomhill Road, Wandsworth,
London, S.W.18.
Telephone: 01-874 7281

WW—027 FOR FURTHER DETAILS
Transformers, Chokes
Saturable Reactors
Voltmobiles—voltage regulators
Rectifier Sets

Transformers
Air cooled power transformers from 0.5 to 300kVA at voltages up to 2kV, 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer.

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices.

Rectifiers
Sturdily built air cooled equipment from 50W to 500kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Voltmobiles
The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Saturable Reactors
From 5kVA up to 300kVA for controlling the outputs from transformers or rectifier units. Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes
A.C. and D.C. chokes

Specific enquiries are invited

HARMSWORTH, TOWNLEY & CO.
2 Hare Hill, Todmorden, Lancs.
Telephone Todmorden 2601 Extension 22
WW—028 FOR FURTHER DETAILS
SOLE U.K. DISTRIBUTORS OF
PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

- **LOW COST**
- **QUICK DELIVERY**
- **OVER 200 RANGES IN STOCK**
- **OTHER RANGES TO ORDER**

NEW "SEW" DESIGNS!

<table>
<thead>
<tr>
<th>CLEAR PLASTIC METERS</th>
<th>BAKELITE PANEL METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE SW. 100</td>
<td>TYPE S-80</td>
</tr>
<tr>
<td>100 x 80 mm.</td>
<td>80 mm. square fronts</td>
</tr>
</tbody>
</table>

"SEW" CLEAR PLASTIC METERS

<table>
<thead>
<tr>
<th>Type</th>
<th>10mA</th>
<th>5mA</th>
<th>1mA</th>
<th>600µA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20µA</td>
<td>600µA</td>
<td>500mA</td>
<td>300mA</td>
<td>150mA</td>
</tr>
<tr>
<td>1amp</td>
<td>10amp</td>
<td>5amp</td>
<td>1amp</td>
<td>1amp</td>
</tr>
<tr>
<td>60V D.C.</td>
<td>30V V. C.</td>
<td>15V A.C.</td>
<td>15V D.C.</td>
<td></td>
</tr>
</tbody>
</table>

"SEW" BAKELITE PANEL METERS

<table>
<thead>
<tr>
<th>Type</th>
<th>100µA</th>
<th>50µA</th>
<th>10µA</th>
<th>600µA</th>
</tr>
</thead>
<tbody>
<tr>
<td>50µA</td>
<td>600µA</td>
<td>500mA</td>
<td>300mA</td>
<td>150mA</td>
</tr>
<tr>
<td>1amp</td>
<td>10amp</td>
<td>5amp</td>
<td>1amp</td>
<td>1amp</td>
</tr>
<tr>
<td>60V D.C.</td>
<td>30V V. C.</td>
<td>15V A.C.</td>
<td>15V D.C.</td>
<td></td>
</tr>
</tbody>
</table>

EDGWISE METERS

<table>
<thead>
<tr>
<th>Type</th>
<th>10mA</th>
<th>5mA</th>
<th>1mA</th>
<th>600µA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20µA</td>
<td>600µA</td>
<td>500mA</td>
<td>300mA</td>
<td>150mA</td>
</tr>
<tr>
<td>1amp</td>
<td>10amp</td>
<td>5amp</td>
<td>1amp</td>
<td>1amp</td>
</tr>
<tr>
<td>60V D.C.</td>
<td>30V V. C.</td>
<td>15V A.C.</td>
<td>15V D.C.</td>
<td></td>
</tr>
</tbody>
</table>

U.K. DISTRIBUTORS OF "TMR" MULTIMETERS

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money combined with quality and accuracy of measurement.

- **IMMEDIATE DELIVERY**
- **DISCOUNTS FOR QUANTITIES**
- **TRADE ENQUIRIES INVITED**

LAB TESTER

TW. 50k

- **£4.12.6**
- **£6.19.6**
- **£8.10.0**
- **£8.17.6**
- **£12.10.0**
- **£18.18.0**

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER "YAMABISHI"

VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality
- Low price
- Immediate delivery

ALL MODELS

INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0-260 VOLTS

MODEL S-260

General Purpose

<table>
<thead>
<tr>
<th>Bench Mounting</th>
<th>1 Amp</th>
<th>2.5 Amp</th>
<th>5 Amp</th>
<th>8 Amp</th>
<th>10 Amp</th>
<th>12 Amp</th>
<th>20 Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>£5.10.0</td>
<td>£6.15.0</td>
<td>£9.15.0</td>
<td>£14.10.0</td>
<td>£18.10.0</td>
<td>£21.00</td>
<td>£37.00</td>
<td></td>
</tr>
</tbody>
</table>

MODELS M-100 & M-120

- Please add postage.

SOLE U.K. DISTRIBUTORS OF "TMR" MULTIMETERS

- **IMMEDIATE DELIVERY**
- **DISCOUNTS FOR QUANTITIES**
- **TRADE ENQUIRIES INVITED**

MODEL S-260

General Purpose

<table>
<thead>
<tr>
<th>Bench Mounting</th>
<th>1 Amp</th>
<th>2.5 Amp</th>
<th>5 Amp</th>
<th>8 Amp</th>
<th>10 Amp</th>
<th>12 Amp</th>
<th>20 Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>£5.10.0</td>
<td>£6.15.0</td>
<td>£9.15.0</td>
<td>£14.10.0</td>
<td>£18.10.0</td>
<td>£21.00</td>
<td>£37.00</td>
<td></td>
</tr>
</tbody>
</table>

Send for illustrated brochure on Sew Panel Meters—Discounts for quantities.

BARNET FACTORS LTD

147 CHURCH STREET, LONDON, W.2

Telephone: 01-723 5328

WWW.AMERICANRADIOHISTORY.COM
Raise your 'standards'

D.C. NULL DETECTOR, TYPE 6042 *
Portable detector for use with d.c. bridges and
potentiometers. Sensitivity 10 μV full scale. Input
impedance 14,000 Ω. Fully transistorised, 4 ranges.
Resolution 1 μV in 10,000 Ω source resistance.
Noise less than 0.15 μV peak to peak.

NULL DETECTOR AMPLIFIER, TYPE 6040 *
Similar to above but with increased sensitivity - 1 μV
full scale. Resolution 0.1 μV. 7 ranges.

First ask DYNAMCO
Save yourself time by talking about your applications (PCM,
TV, pulse, HF, etc) to our specialist engineers. If we can't
meet your requirements from our own extensive range, then
we'll tell you who can.
Call Chertsey 2636—and ask for Barrie Newman.

The scope specialists
Dynamco
Hanworth Lane
Chertsey Surrey England
World Wide Sales & Service

* SEND FOR LEAFLETS 175/2049 and 175/2047
H. TINSLEY & CO LTD · WERNOWEE HALL
SOUTH NORWOOD · LONDON SE25 · 01-654 6046
People keep talking about...

We can't, and don't, disregard current advancements in sophisticated electronics.

We can, and do, ceter to an undiminishing requirement for replacement valves from all quarters of Industry, Education and Research.

This requirement has been built up over many years past. So has Pinnacle.

We talk valves!

Solid State
Microcircuits
Integrated circuits
Semiconductors
Integrated circuits
Solid State

Pinnacle

Pinnacle Electronics Limited
Phone: All departments 01-692 7285
Direct orders: 01-692 7714

WWW---032 FOR FURTHER DETAILS
M. R. SUPPLIES (London) LTD.
(Established 1935)

Universally recognised as suppliers of UP-TO-DATE MATERIAL which does the job properly, instantly and efficiently. Satisfaction assured. Prices nett.

ROOM THERMOSTATS. Dual-dial wall-mounted Thermostats, 40 deg. F. 60 deg. F., 240 v. A.C., 4-wire; 110 v. A.C. 2-wire. One each price £1 13s. 6d. (6s. 6d.).

MINIATURE BLOWING FANS. (Bengalum). We have a great demand for these remarkable fans and now can supply immediately from stock, 500/2000 v. 220/240 v. 50 c/s synchronous. Quality up to 1,000 hours, with 1/1000 indicator. Only 1 ins. long, with synchro disc, depth 2 ins. Many industrial and domestic applications — indicates the running time of any electrical apparatus, easy to install. £1 6s. 6d. (6s. 6d.).

SYNCHRONOUS TIME SWITCHES. (Another of our popular specialties) 200/250 v., for accurate preset switching operations. Bengalum, 8,500 providing up to 8 on-off operations per 24 hours, or at certain times, with day-setting device (see optional). Capacity 20 amps. Completely housed in 2 in. dia., 3 in. deep. £5 15s. (6s. 6d.).

ELECTRIC FANS (posed), for extracting or blowing. The most exceptional offer we have yet made. 200/250 v. A.C. Induction motors — silent running. 5,600 r.p.m. totally enclosed. £5 15s. (6s. 6d.).

SMALL EXTRACTORS. In addition to our well-known range (List OM 169), we offer small type E.D. Units 250/200 v. A.C., 11, 12, 24, 60 r.p.m., suitable for long, with tin, small projection each side and contained gearbox. Suitable for display work and many industrial uses. Only 75. (6s. 6d. 6d.).

MINIATURE COOLING FANS. 200/250 v. A.C. With open type induction motor (no interference). Overall dia. 3 lin. x 2 lin. Fitted 3-in.-sized metal impellers. Ideal for projection lamp cooling, light-duty extractors, etc., will cost only £1 6s. 6d. (6s. 6d.).

AIR BLOWERS. Highly efficient air-cooled induction totally enclosed motor 250/200 v. 50 or 60 c/s. Model 827 240 V.C.M. (free air) £8. £5 15s. (6s. 6d.) W.L. (purchased) £3 15s. (4s. 6d.). Overall dia. 6' 6"; length 12 lin. Motor 950 c.p.m. total output to 200 C.F.M at 150/120 volts a.c. 13 x 2 lin. (3in. x .43in. £1 15s. 6d. (6s. 6d.). Model 829, 240 V.C.M. (free air) £11 15s. 6d. (6s. 6d.); 125 c.f.m. motor £2 15s. 6d. (6s. 6d.).

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS (as mentioned and recommended in many national publications). 300/200 v. 50, 60 c/s. Self-starting. Fitted eyeholes for hours, minutes and central sweep second hand. Central-combined switch, Dia. 3 lin. Depth behind dial 21 in. With back dust cover. 10/6 (free air) £15. Set of three brass hands in good plate style. For 3/6. (4s. 6d. 6d.) For 6/6. Dia. 2 1/2 in.

SYNCHRONOUS TIMER MOTORS (Bengalum). 200/250 v. 50 c/s. Self-starting. Dia. 3 in. x 1 lin. 250 volts. Choice of several speeds: 1 r.p.m., 12 r.p.m., 1 rev. hrs. 1 rev. per day, 331/2 r.p.m. £2 3s. 6d. (4s. 3d.). Also high- torque motor (12:1 ratio) £2 10s. 6d. 4 r.p.m. 370/65 (6s. 6d.).

SMITHS TIMER MOTORS. Synchronous self-starting 200/100 volts, 1 ph., 30 c/s. Checkwatt, 4 r.p.m. only. One 6d. (5s. 6d.).

MINIATURE D.C. MOTORS. 6/10 volts D.C. Ideal model makers. 4,000/3,000 r.p.m. no load. 11 x 3 in. diameter. Flange fitting. Model 6/10s. (2s. 6d.)

EXTRACTOR FANS. Rim mounted all metal construction. 7 1/2 in. induction motor, silent operation. Dia. 12 lin., 2 in., 2 1/2 in., 3 lin., 600 C.F.M. £6 10s. 6d. (11/6) 3½ in. frame model 16 in. blade. 12 in., max. dia., 300 C.F.M. £6 15s. (6d. 6d.).

IMMEDIATE DELIVERY of Heated Centrifugal Pumps, including stainless steel (most models).

OFFICIAL STOCKIST: "PARVASEX" Extractor Motors (List D.M. 185).

M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.1 C.
(Telephone: 01-636 2958)

LIGHT SOLDERING DEVELOPMENTS LTD
28 Sydenham Road, Croydon, CR9 2LL

Telephone: 01-688 8589 & 4559

WW—033 FOR FURTHER DETAILS

(Telephone: 01-636 2958)

LOW LEVEL INPUT TRANSFORMERS

This transformer has been designed specifically for use in low level input stages of D.C. "Chopper" amplifiers. It is currently used in applications requiring amplification of D.C. voltages of less than 1 volt, in conjunction with a mechanical chopper.

Rejection of extraneous magnetic fields is obtained by winding both primary and secondary windings in a "hum bucking" configuration and by screening these in a nest of four magnetic screens of high purity nickel. Laminations are also nickel. Both windings are provided with electrostatic screens to obtain a high common mode rejection 1000:1 at 70Hz. Primary and secondary are centre tapped and, when used in a "push-pull" input configuration, step-up ratios of 2.1 or 5.1 can be obtained according to type. Primary inductance exceeds 10 Henries at 70Hz. When the common mode rejection exceeds 1000:1.

TRIO INSTRUMENTS LTD.,
BURNHAM ROAD,
DARTFORD, KENT.

Telephone: Farningham 2082

WW—034 FOR FURTHER DETAILS
A Technical Knockout

Titles are hard to win at Morganite. But we have a Champion in the Type 81E Cermet Trimming Potentiometer.

After several rounds with our Quality Control personnel, the Champion emerged unscathed. Unfortunately, the other contender could not stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft. matchstick) but he suffered a technical K.O. during the final rounds of electrical tests.

The Champion took them in his stride and now challenges all comers.

If you have an application for a 0.5w single turn trimming potentiometer, (Bantam Weight) back a proven title holder – it pays!

MORGANITE RESISTORS LIMITED
Bede Industrial Estate, Jarrow, County Durham.
Telephone: Jarrow 897771 Telex: 53353

WW—035 FOR FURTHER DETAILS

www.americanradiohistory.com
These Units fulfil many requirements in connection with power, alarm, signal and telephone circuits, and have been adopted by many important administrations.

PROMPT DELIVERIES ENSURED AT ALL TIMES

FOR FURTHER DETAILS
SEND FOR OUR PRODUCT DATA CATALOGUE

They incorporate a P.O. Type 3000 Relay ensuring maximum reliability in operations with the minimum current consumption. The Mercury contacts are in a separate compartment to the Relay. Units can be supplied with Relays for A.C. or D.C. operation up to 250 volts.

The Geneva Gauge Range: three types of pressure measurement device suitable for sophisticated applications in science and industry. All feature instant readout, remote output and interchangeable gauge heads. Electronically stabilised power supply makes the gauges insensitive to mains voltage fluctuation, thus eliminating an external 'se-volts' control.

Thermocouple Gauges and Gauge Heads: for pressure measurement in the medium high vacuum range 1 torr to 10⁻² torr. Two type, mains or battery powered.

Pirani Gauge and Gauge Head: for pressure measurement in the medium high vacuum range 1 torr to 10⁻² torr. Two scale readout.

Penning Gauge and Gauge Head: for pressure measurement in the high vacuum range of 5 x 10⁻⁵ torr to 10⁻⁶ torr. Panel mounting accessories available.

JACK DAVIS (RELAYS) LTD.

Telephone: 01-253 3661/2

FOR FURTHER DETAILS
WWW.036

THE VACUUM GAUGES

THE GENEVA

FOR FURTHER DETAILS
WWW.037
Vortexion

This is a high fidelity amplifier (.3% intermodulation distortion) using the circuit of our 100% reliable—100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 3-30/60Ω balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1db Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5v at 20K or alternative 1mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 c/s-20Kc/s ± 1db. Less than 0.2% distortion at 1 Kc/s. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output 100-120v or 200-240v. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 c/s-20Kc/s± 1db. 0.15% distortion. Outputs 4, 7.5, 15 ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms-15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms-15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4v on 100K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to 20,000 cps within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and Hi Z gram.
CHASSIS and CASES

Type N

Type W

Type Y

Type Z

Type U

CASES
ALUMINIUM, SILVER HAMMERED FINISH

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Price</th>
<th>Type</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8 x 6 x 2</td>
<td>18/-</td>
<td>W</td>
<td>12 x 7 x 7</td>
<td>27/6</td>
</tr>
<tr>
<td>N</td>
<td>6 x 6 x 3</td>
<td>17/6</td>
<td>W</td>
<td>15 x 9 x 8</td>
<td>48/6</td>
</tr>
<tr>
<td>N</td>
<td>4 x 4 x 4</td>
<td>11/-</td>
<td>Y</td>
<td>8 x 6 x 6</td>
<td>29/-</td>
</tr>
<tr>
<td>U</td>
<td>4 x 4 x 4</td>
<td>11/-</td>
<td>Y</td>
<td>12 x 7 x 7</td>
<td>45/-</td>
</tr>
<tr>
<td>U</td>
<td>5 x 4 x 4</td>
<td>17/-</td>
<td>Y</td>
<td>13 x 7 x 9</td>
<td>50/6</td>
</tr>
<tr>
<td>U</td>
<td>6 x 6 x 6</td>
<td>23/-</td>
<td>Z</td>
<td>17 x 10 x 9</td>
<td>72/6</td>
</tr>
<tr>
<td>U</td>
<td>9 x 7 x 7</td>
<td>24/-</td>
<td>Z</td>
<td>19 x 10 x 8½</td>
<td>78/-</td>
</tr>
<tr>
<td>U</td>
<td>15 x 9 x 9</td>
<td>49/-</td>
<td>*Height</td>
<td>Plus post and packing.</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>8 x 6 x 6</td>
<td>23/-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type N has a removable bottom. Type U removable bottom or back. Type W removable front. Type Y all-sc rewed construction. Type Z removable back and front.

BLANK CHASSIS
FOUR-SIDED 16 SWG ALUMINIUM

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
<th>Size</th>
<th>Price</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 4 x 2</td>
<td>6/3</td>
<td>2/11</td>
<td>10 x 8 x 24</td>
<td>12/-</td>
<td>5/6</td>
</tr>
<tr>
<td>7 x 4 x 1½</td>
<td>6/-</td>
<td>3/2</td>
<td>12 x 7 x 21½</td>
<td>12/-</td>
<td>5/11</td>
</tr>
<tr>
<td>7 x 5 x 2</td>
<td>7/6</td>
<td>3/5</td>
<td>12 x 9 x 21½</td>
<td>13/9</td>
<td>7/-</td>
</tr>
<tr>
<td>8 x 4 x 2</td>
<td>7/-</td>
<td>3/4</td>
<td>13 x 8 x 21½</td>
<td>13/9</td>
<td>6/-</td>
</tr>
<tr>
<td>8½ x 5½ x 2</td>
<td>8/-</td>
<td>3/9</td>
<td>14 x 7 x 22</td>
<td>14/-</td>
<td>6/-</td>
</tr>
<tr>
<td>9 x 7 x 2</td>
<td>9½</td>
<td>4/10</td>
<td>14 x 10 x 21</td>
<td>16/-</td>
<td>7/3</td>
</tr>
<tr>
<td>10 x 4 x 2½</td>
<td>9/-</td>
<td>3/9</td>
<td>15 x 10 x 21½</td>
<td>16/-</td>
<td>9/-</td>
</tr>
<tr>
<td>12 x 4 x 2½</td>
<td>10/-</td>
<td>4/3</td>
<td>17 x 10 x 3</td>
<td>19/6</td>
<td>10/-</td>
</tr>
<tr>
<td>12 x 5 x 3</td>
<td>12/-</td>
<td>4/9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TO FIT OUR CASES

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
<th>Size</th>
<th>Price</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 x 5½ x 1½</td>
<td>7/-</td>
<td>3/3</td>
<td>12 x 6½ x 2</td>
<td>10/-</td>
<td>5/11</td>
</tr>
<tr>
<td>7 x 5½ x 2</td>
<td>7/9</td>
<td>3/9</td>
<td>14 x 8 x 2</td>
<td>13/6</td>
<td>7/11</td>
</tr>
<tr>
<td>11 x 6½ x 1½</td>
<td>10/-</td>
<td>5/6</td>
<td>15½ x 9 x 21</td>
<td>17/-</td>
<td>9/-</td>
</tr>
<tr>
<td>11 x 6½ x 2</td>
<td>10/-</td>
<td>5/6</td>
<td>17½ x 9½ x 21½</td>
<td>18/6</td>
<td>10/-</td>
</tr>
</tbody>
</table>

WITH BASES

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 4 x 2¼</td>
<td>9½</td>
<td>3½ x 3½ x 2¾</td>
<td>6/6</td>
</tr>
<tr>
<td>4 x 2½ x 1¾</td>
<td>6/-</td>
<td>3 x 2 x 1½</td>
<td>5/6</td>
</tr>
<tr>
<td>3½ x 3¼</td>
<td>6½</td>
<td>6½ x 2½ x 1½ (18SWG) 8/3</td>
<td></td>
</tr>
</tbody>
</table>

Plus post & packing.

 PANELS: Any size up to 3½ ft. at 6½ sq. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

H. L. SMITH & CO. LTD.
Electronic Components Audio Equipment
287/289 EDGWARE ROAD, LONDON, W.2
Tel: 01-723 5891

We shall be pleased to quote for all your component requirements.

STRONGHOLD
steel shelving
that adjusts
every inch of its height!

Immensely strong—completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bay!

73" high x 34" wide x 12" deep unit with six shelves in heavy-gauge steel, stove enameled grey or green! £3.15s.—Brand New! See the rest of the N.C. Brown range!

£4.5s. BRAND NEW carriage free on mainland

N. C. BROWN LTD.
pacesetters in storage equipment

Send your FREE BRO.
CHURE [] or Send []
(how many) bays of steel shelving f 4.5s.In green [] grey (tick which)

Tel: 01-405 7931

TELEPRINTERS, PERFORATORS
REPERFORATORS, TAPEREADERS
DATA PROCESSING EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES
DATEL MODERN TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronously and Phonic Motors; Teleprinter Tables and Cabinets; Silence Cover; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teletype Paper, Tape and Ribbons; Pointer and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Rack and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrixes; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY & COMPANY
Gosfield Works, Akenham Street, Tring, Herts.
Tel: Tring 3476 (3 lines) Cables: RAHNO TRING
STD: 0442 82 TELE 82362

TELEPRINTERS, PERFORATORS
REPERFORATORS, TAPEREADERS
DATA PROCESSING EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES
DATEL MODERN TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronously and Phonic Motors; Teleprinter Tables and Cabinets; Silence Cover; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teletype Paper, Tape and Ribbons; Pointer and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Rack and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrixes; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY & COMPANY
Gosfield Works, Akenham Street, Tring, Herts.
Tel: Tring 3476 (3 lines) Cables: RAHNO TRING
STD: 0442 82 TELE 82362

WW—041 FOR FURTHER DETAILS

www.americanradiohistory.com
These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country.

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite!

These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf from our distributors listed below. Data application brochures (Price 1s. 9d. each) which include PC board layouts for mono and stereo amplifiers are obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS12 2TU
Tel: Leeds 636311 Telex: 55147

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants
Tel: Portsmouth (0705) 62332 or 62180 Telex: 86114

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SL402A</th>
<th>SL403A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power r.m.s.</td>
<td>2W</td>
<td>3W</td>
</tr>
<tr>
<td>Input impedance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preamplifier</td>
<td>20 M Ω</td>
<td>20 M Ω</td>
</tr>
<tr>
<td>Main amplifier</td>
<td>100 M Ω</td>
<td>100 M Ω</td>
</tr>
<tr>
<td>Distortion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preamplifier</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Main amplifier</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Frequency response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower—3dB point</td>
<td>20 Hz</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Upper—3dB point</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Operating voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. operating load</td>
<td>+14 V</td>
<td>+18 V</td>
</tr>
<tr>
<td></td>
<td>7.5 Ω</td>
<td>7.5 Ω</td>
</tr>
</tbody>
</table>

PLESSEY microelectronics
Cheney Manor Swindon Wiltshire England Telephone: Swindon (0793) 6251. Telex: 44375
Push Button Switches

Switches with a diverse range of contact configurations. Any combination of complex latching and interlocking function in single, and between twin bank assemblies. Available with illuminated buttons and choice of five colours, individual legends can be engraved. These, with rotary, slide and lever switches are available from IMPECTRON LIMITED, write or phone for illustrated literature to 23-31, King Street, London, W.3., Telephone: 01-992 5388.
WORLD FAMOUS

VARIABLE VOLTAGE CONTROLS

VARIABLE TRANSFORMERS

* Output 0-260V
* Input 230V 50/60 CPS
* Shrouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

£5.10.0 1 amp
2.5 amp £5.15.0
5 amp £9.15.0
8 amp £14.10.0
10 amp £18.10.0
12 amp £21.0.0
20 amp £37.0.0

CONSTANT VOLTAGE TRANSFORMER.
Maintain on test gear readings with Automatic Mains stabilizer.

Specification:
* Output 240V
* Accuracy ±1%
* Input 190-260V
* Capacity 250 Watts
* Corrected waveform

£12.10.0 C&P 20/-

20 AMP LT SUPPLY UNIT

* Input 240V
* Output 20amps at 24V and 12V fully adjustable

£35.0.0

SOLID STATE VARIABLE VOLTAGE CONTROL

* Output 25-240V
* Input 240V 50 CPS
* 5 amp & 10 amp models

£8.7.6
10 amp model
£13.15.0

OMRON PROCESS TIMERS

SYS TIMER
* SYNCHRONOUS MOTOR & CLUTCH
* 10 MILLION OPERATIONS
* Instantaneous & Timed
* Set 3 AMP contacts
* Reset Accuracy ±1%
* Dial ranges 0-10 secs up to 0-28 hrs. May also be used as impulse start

£11 dependent on quantity

STP TIMER
SYNCHRONOUS MOTOR & CLUTCH
Matchbox size frontal area
Automatic re-set
* PLUG-IN OCTAL BASE
* INSTANTANEOUS AND TIMED OUT
* 2 AMP CONTACTS
* RANGES: 0-10 SECS TO 0-36 MINS

£5 dependent on quantity

NSY TIMER
* 2 sets 5 amp changeover output contacts
* 5 Million operations
* Repeat accuracy 25%
* Set time can be altered whilst in operation

Approx. 160/- each dependent on quantity

TEMPERATURE CONTROLLER TYPE
THP
* THERMISTOR OPERATED
* OCTAL BASE PLUG IN
* COMPACT

Temperature ranges up to 280°C
Output contacts 4 amp
Repeat Accuracy 3% full scale
Complete with Thermistor

Approximately £21 dependent on quantity.

OMRON APPROVALS: CSA. US MIL Spec. SEV.UL.

IMMEDIATE DELIVERY OF LIMIT & MICRO SWITCHES
FLOATLESS LIQUID LEVEL CONTROLS
PROXIMITY SWITCHES

OMRON PRECISION CONTROLS
I.M.O. (PRECISION CONTROLS) LTD
(Dept WWX) 313 EDGWARE ROAD, LONDON, W.2. TEL. 01-723 2231

WWW—046 FOR FURTHER DETAILS

www.americanradiohistory.com
the dawn of a new era

Sonnenschein dryfit PC batteries

Combining the high electrical capacity of the lead-acid cell with the undoubted advantages of the dry cell, Sonnenschein DRYFIT PC batteries provide virtually indestructible sources of d.c. power. Featuring extended shelf-life of 16 months at 20°C ambient without recharging. Models available in various sizes and ratings: cells can be fitted and charged how and where required - sideways, longways and upside-down; no spillage, no gassing; high overload capacity - steady discharge rate.

Specify Sonnenschein and forget your problems.

Write now for your catalogue
Sonnenschein DRYFIT PC BATTERIES
Sole U.K. Agents F.W.O. Bauch Ltd, 49 Theobald St, Boreham Wood, Hertfordshire. Tel. 01-953 0091

WWW-048 FOR FURTHER DETAILS

the only thing that's standard about a Claude Lyons CVR is the amazing value

Claude Lyons CVR Constant Voltage Regulators offer the design engineer the widest choice of variations for building into original equipment. They are compact and embody an all-silicon solid-state control circuit for high efficiency and reliability. Control accuracy is 0.3%, unaffected by load or frequency variations. Distortion is negligible.

CVRs are available with power ratings of 360, 600 or 1200VA: multiple input and output voltages; isolated outputs; d.c. outputs; local or remote a.c. or d.c. sensing. Prices are surprisingly low for quantity—and as such offer designers an ideal solution to stabilised supply problems.

For full details write to Publicity Department, Hoddesdon.
Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161 Telex 22724
76 Old Hall Street, Liverpool L3 9FX. 051-227 1761 Telex 62181

WWW-047 FOR FURTHER DETAILS
Before you buy TEST and SERVICE INSTRUMENTS.....

send for the FREE Heathkit Catalogue. This is your first step towards saving on your instrumentation costs.

Oscilloscopes
Signal Generators
VVMs
Power Supplies
etc., etc.

Whether you need factory-built models or easy-to-build kits, Heathkit can supply.

HEATHKIT FOR INSTRUMENTS, Hi-Fi, AMATEUR AND LEISURE ELECTRONIC PRODUCTS

DAYSTROM LTD., HEATHKIT DIVISION, GLOUCESTER, GL2-6EE. Tel. 29451
Our valves don't go to the launderette... but

We have a passion for cleanliness. A clean valve is a good valve, so in the factory meticulous chemical cleanliness is observed; every operator wears special protective clothing to prevent valve contamination; all components are covered prior to assembly; electrodes are cleaned by oxidising the metal surface, then reducing back to metal in an atmosphere of hydrogen.

It’s finickiness like this that ensures reliability in all Mullard industrial receiving valves.

The time we spend on eliminating impurities cuts your equipment down-time... another reason it pays to ask your supplier for Mullard.

Mullard
Mullard Limited Industrial Electronics Division
Mullard House Torrington Place London W C 1 01-580 6633

New Buyers Guide
There's a new wallchart on Mullard special quality receiving valves. It gives comprehensive equivalents information, and it's free from any Mullard Industrial Distributor—or use the reader enquiry service.
Mullard industrial distributor service

Birmingham: Central 5060
Gothic Electrical Supplies Ltd., Gothic House, Henrietta Street, Birmingham 19.

Birmingham: Aston Cross 4301
Hawnt & Company Ltd., 112/114 Pritchett Street, Birmingham 6.

Bristol 294313
Wireless Electric Ltd., 'Wirelect House', 122/123 St. Thomas Street, Bristol 1.

Crawley 28700
SASCO, Gatwick Road, Crawley, Sussex.

Glasgow: Govan 3347/3991
Harper Robertson Electronics Ltd., 82 Loanbank Quadrant, Glasgow SW1.

Leeds 35111
Farnell Electronic Components Ltd., 81 Kirkstall Road, Leeds 3.

London: Elgar 7722
Cables & Components Ltd., Park Avenue, London N.W.10.

London: New Cross 9731

Leicester: Leicester 768561
Townsend-Coates Ltd., Coleman Road, Leicester.

Rochdale 47411
Swift-Hardmans, P.O. Box 23, Hardale House, Baillie Street, Rochdale.

Sheffield 27161
Needham Engineering Co. Ltd., P.O. Box 23, Townhead Street, Sheffield 1.

WWW—051 FOR FURTHER DETAILS
The MXT/6 series of Audio Mixer assemblies offer complete flexibility for pre-amplifier/mixing of microphones, gramophones, tape recorders, tuners, tone signal generators, etc. Utilising a modular construction any number of channels can be incorporated up to 14 in standard assemblies for cabinet or rack mounting.

The combiner unit mixes the module outputs and amplifies the composite signal to drive either power amplifiers or 600Ω output stage. A master gain control and treble and bass controls are provided. Power requirements are modest and a typical 6 way assembly requires only 15mA at 12v DC.

Full information available on request—ask for details of Audio Sound Control Consoles, Integrated Mixer Amplifiers and Complete Sound Systems.

ENCAPSULATION—
low tool cost method for cylindrical coils and potting. Enquiries also for—

REED RELAYS
Solenoids
Coil Winding
Transformers to 8 K.V.A.

R. A. WEBBER LTD.
Knapps Lane, Bristol 5. 0272 657228

SEND FOR FULL TECHNICAL LEAFLETS
NOMBREX (1969) LTD., EXMOUTH, DEVON

niejs Instruments
TRANSISTORISED—MODERN STYLING—COMPACT

- 4 ranges: 10kHz-100kHz.
- Sine or square wave output.
- Dual calibrated attenuators.
- Stabilised output level.

Sizes: Height 5½". Depth 3½". Width 7½".

ALSO
R.F. GENERATOR 29-S £20 0 0
R.F. GENERATOR 29-X £27 10 0
R.F. GENERATOR 31 £12 10 0
C.R. BRIDGE 32 £10 10 0

INDUCTANCE BRIDGE
MODEL 33 £20 0 0

Post and Packing 6/6 extra.

NOMBREX INSTRUMENTS
TRADE & EXPORT ENQUIRIES WELCOME

www.americanradiohistory.com
Sooner or later you'll need both these devices!

At some time, every user of closed circuit t.v. needs a replacement vidicon tube. That's when you need a service organisation that can really perform. Just pick up the phone and contact your nearest EMI distributor.

EMI research has produced a range of tubes with reliability, good resolution and high sensitivity. Our distribution organisation has been expanded and streamlined. This ensures that everyone using closed circuit t.v. has access to the best professional advice and a fast replacement service.

For further details of the EMI vidicon range contact your distributor or:-

EMI ELECTRON TUBE DIVISION
EMI Electronics, Ltd., Hayes, Middlesex. Tel. 01-573 3888. Ext. 2078 Telex. 22417 Cables EMIDATA London.
from the new Bradley, six not-so-new Bradleys

These days you can be fairly sure that Bradleys are working on something new. But it’s reassuring to know that they aren’t abandoning their old friends. Like the 127B Voltage Calibrator. Like the 132 Current Calibrator. The 144 Current Multiplier, the 125B a.c. Voltage Calibrator, and the 156 Oscilloscope Calibrator. Or the Battery Line Oscilloscope.

And when you see the story behind them, you’ll soon see why we’re hanging on to them. Take the 127B. And the 125B. And the 132. They’re all designed to make your calibration simpler. So you can read off directly the percentage error. They’re guaranteed for a year. And you can carry them anywhere.

The 127B gives you an accuracy of 0.05% over the range of 0 to 509 volts d.c.

The 125B has an accuracy of 0.2% from 0 to 511 volts a.c. (It also has extremely low harmonic distortion.)

Spot frequencies 50, 60, 400 and 1000 Hz, with alternative frequencies up to 2400 Hz available.

The Model 132 provides current up to 100 mA in 1mA steps, at an accuracy of 0.05%. And there is the recently introduced new 144 multiplier. This will extend the range to 10 amps with the same high accuracy.

For the oscilloscope user, there is the 156 Oscilloscope Calibrator. It calibrates vertical amplitude and sweep speeds. It checks risetime. And it features direct reading of percentage deviation.

Finally there’s the Battery/Line Oscilloscope. It has a bandwidth of 20MHz and an input sensitivity of 5mV per division. It can be operated from its own self contained batteries or from a.c. mains.

They’re all part of the new Bradley. Even if they’re firm friends of yours.

G. & E. BRADLEY LTD.
Electra House,
Neasden Lane,
Tel: 01-450 7811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

Wireless World, March 1970
PARTS AND COMPONENTS FOR TELECOMMUNICATION ENGINEERING AND ELECTRONICS

EXPORT—IMPORT

- **RC-Elements**
 - Resistors
 - Capacitors
 - Potentiometers

- **Electromechanical Components**
 - Connectors, sockets
 - Switches
 - Relays
 - Pilot lamps
 - Rotary buttons

- **Electroacoustic Components**
 - Microphones
 - Earphones
 - Loudspeakers

- **Miscellaneous Parts and Components**
 - Transformers
 - Fluorescent tube and mercury-vapour lamp adapters
 - Ferrites
 - Permanent magnets
 - Aerials

IMPORT

- Vacuum tubes, special lamps
- Semiconductor devices
- Integrated circuits

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components

BUDAPEST, XIII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 3648; 3649

WWW—658 FOR FURTHER DETAILS
The Type 601 Storage Display Unit permits stored, non-facing displays of combined alphanumeric and graphic information from digital computers and other data transmission systems. The built-in vertical and horizontal amplifiers permit Y versus T plots up to 100kHz for remote storage monitor applications. All solid-state modular circuit design insures long-term stable performance. £560 plus 63.18.0 duty

Tektronix Display Devices

The Type 602 Display Unit is a compact, solid-state instrument with excellent resolution, providing accurate displays of information from X, Y and Z signal inputs. Application areas are: phase shifts and frequency ratios using Lissajous figures, graphic and alphanumeric displays from computers, high resolution raster displays with intensity modulation and Y-T plots of amplitude versus time displays.

£388 plus £40.16.0 duty

The Type 4501 Store Converter Unit provides conventional or stored displays converted to composite video and modulated RF for viewing on bright, large-screen TV monitors or receivers. Storage capability permits convenient viewing of single-event or low-repetition rate information. Output from a single scan converter may be looped through a multiple number of monitors for viewing at remote locations.

£1180 plus £140.9.0 duty

The Type 611, 11-inch Storage Display Unit permits high resolution alphanumeric and graphic display free from flicker. Resolution is equivalent to 400 stored line pairs along the vertical axis; 300 stored line pairs along the horizontal axis. Functions may be remotely programmed.

£1286 plus £147.0.0 duty

For detailed information on any of our products please fill in reader reply card or write, telephone or telex.

Tektronix U.K. Ltd, Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone Harpenden 61251, Telex 25559

For overseas enquiries: Australia: Tektronix Acaraffa Pty. Ltd., 90, Waterloo Rd., North Ryde, N.S.W., 2113 Canada;

Tektronix Canada Ltd., Montreal, Toronto & Vancouver, France: Relations Techniques Intercontinentales, S.A.

51, Office E, Couronnel, Route de Villejust (Boîte Postale 13) Switzerland: Tektronix International A.G., P.O. Box 57, Zürich, Switzerland. Rest of Europe and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.
NEWS OF THE DECADE...

Capacitance
50pf to 1.1111μf with infinite resolution.
Accuracy ± 1% or ± 0.5% on all decades.

Inductance
Air Spaced lmH to IH ± 5%.

Resistance
0.1 Ω to 1.111 MΩ Average accuracy ± 0.1% Resistance elements suitable for use up to 1MHz.

INSTRUMENTS
All ranges available from stock.
Write for descriptive leaflet or demonstration.

J.J. Lloyd Instruments Limited
Brook Avenue, Warsash, Southampton S03 6HP Tel: Locks Heath 1221

ancom limited
DEVONSHIRE STREET CHELTENHAM Telephone 53861

High Input Impedance
rate of output ±10v 5mA
open loop gain 200,000
bias current 5pA/°C
small signal unity gain 8MHz
maximum for full output 400kHz
offset voltage vs temp 20μV/°C
c.m.r.r. 10^4
input impedance 100,000MΩ
Our engineers will be pleased to learn of your special requirements and applications.

NEW LOW PRICES

SPECIALIST SWITCHES are again giving the fastest switch service in the world
FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

Please note our address:
SPECIALIST SWITCHES
P.O. Box 3, CHARD, SOMERSET

Write for design charts and prices or TELEPHONE—CHARD 3439

www.americanradiohistory.com
NEW DESIGN FROM PEAK SOUND

Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about £38. The assembly is supplied complete down to the necessary connecting wires supplied colour coded. Cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the 12 + 12 system as published in Practical Wireless. or the 25 + 25 watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now.

Matching F.M. Tuners will be available very shortly.

and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

THE SPECIFICATION

Using two Peak Sound PA.12-15's driven simultaneously at 1 kHz from 240 V, mains supply. Output per channel: 11 watts into 15Ω, 14 watts into 8Ω. (see spec. guarantee). Frequency bandwidth: 10Hz to 45 kHz for 1dB at 1 watt. Total Harmonic Distortion at 1 kHz at 10 watt into 15Ω—0.1%

Input sensitivities: Mag. PU3.5 mV imp. R.I.A.A. equalized into 68 KΩ. Tape, 100 mV line into 100 KΩ. Radio, 100 mV line into 100 KΩ. Overload factor: 29 dB on all input channels. Signal/noise ratio: —65 dB on all inputs. Vol. control max.

Controls: volume, Treble, Bass, Low-pass Filter, Mono/Stereo: On/off. Balance. Using two PA.25-15 amplifiers, output is then 25 watts into 15Ω or 8Ω per channel at 1 kHz.

Power bandwidth for —1 dB at 25 watts R.M.S. into 15Ω at less than 0.25% distortion is 20 Hz to 20 kHz.

THE MODULES

Englefield Amplifier Cabinet with front panel, knobs, sockets, cut and stripped wire, fuse, edge connectors, etc. £6 0 0

Two PA.12-15 power amp. built modules £11 19 0

SCU/400 Pre-amp/Control module £15 15 0

PS/45 Power Supply kit £4 10 0

£38 4 0

Using two PA.25-15 modules at £11/15—each and PS/485 Stabilized Power Supply Unit at £15/10—total price for complete system comes to £58 15 0

To Peak Sound, 32 St. Jude's Rd., Englefield Green, Egham, Surrey.

Details of Englefield systems, please and

Name

Address

Telephone: Egham 5316

Name

Address

WWW-063 FOR FURTHER DETAILS

WWW.americanradiohistory.com
PRESENTS 1970 RANGE OF PROFESSIONAL QUALITY PUBLIC ADDRESS

50-PTR Transistorised Amplifier
Solid State Amplifiers: 8 models, AC mains and battery operated, delivering 15 to 50 watts of power, with trouble-free service in extreme working conditions.

A-100 Professional Amplifier
Professional Tube Amplifiers: 4 models AC mains operated tube amplifiers, with power outputs from 20 to 100 watts. High Fidelity performance with guaranteed reliability.

Wide Range of unidirectional Microphones

Breakdown Proof Driver Units, Reflex Horns and Sound Column Speakers

AHUJA P.A. SYSTEMS are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

AHUJA RADIOS, 13, DARYA GANJ DELHI-6. (INDIA)

Issued by Engineering Export Promotion Council Calcutta (India)
Come and see us in Paris
Porte de Versailles
3rd to 8th April 1970

100,000 Engineers are expected at the

SALON INTERNATIONAL DES COMPOSANTS ELECTRONIQUES

INTERNATIONAL CONFERENCE ON ADVANCED MICROELECTRONICS

Scientific, technical and economic problems discussed,
6-10 April 1970—PARIS—Salle des Conferences de l’UNESCO. Programme and application forms on request. Under the patronage of the Federation Nationales des Industries Electroniques, 16, rue de Presles—Paris (15°)—Tel. 273.24.70

WWW—066 FOR FURTHER DETAILS
Not only beautiful, but...

- Lightweight
- Tropicalised
- Practically unbreakable
- High level phones
- Carbon or Magnetic level
- Extremely comfortable
- Simple to service

The Astrolite headset is a unique design which brings together elegant appearance, high performance and reliability. Communications or high fidelity versions available.

For all the other desirable features write or telephone:

AMPLIVOX COMMUNICATIONS LIMITED
Beresford Avenue Wembley, Middlesex
Telephone C1-992 8991
Grams and Cables: Amplivox, Wembley

HIGH FIDELITY MOVING COIL STEREO HEADPHONES (TYPE LS43) NOW available from Daystrom Ltd, Gloucester

WW-867 FOR FURTHER DETAILS
four major studio equipment bonuses from Plessey

1. Top performance
2. Widest range
3. Instant service
4. Total versatility

You gain these and many more bonuses using Plessey equipment. Arrange a demonstration now.

The range includes:
- 700 Series
- Solid State Studio Consoles
- CT80 Series
- Solid State Cartridge Recorders
- Rola 77 Mark III Recorder
- Rola Hi-Speed Copier
- Rola Auto Station
- Rola Auto-O
- P12 Studio Turntable

Sales and Service — Rola Recording Products Department —
Garrard Engineering Limited Newcastle Street Swindon Wiltsire
Telephone Swindon 5381 Telex 44271 or the manufacturer
Plessey Electronics Pty Limited Equipment Unit 91 Murphy Street
Richmond Australia 3121 Telex 30383 Cables ROLA Melbourne
No other **TRUE DUAL BEAM oscilloscope** can compete in price ... except the D51, by Telequipment of course.

The **D52 by Telequipment**

The D52 is a tough little portable oscilloscope at the remarkably low price of £120. Here are a few of its outstanding characteristics:

- **True Dual Beam**
- **Large 5" flat faced PDA Tube**
- **Matched Y Amplifiers**
 - 100mV/cm, DC—6MHz
 - 10 mV/cm, DC—1MHz
- **Calibrated Sweep Speeds**
 - 1B+ (+ variable)
- **Triggering Modes**
 - full range including TV sync.
- **Weight** 24 lb.

This is one of a range of fifteen oscilloscopes at prices from the Serviscope Minor at £25 to the sophisticated D53 Storage Oscilloscope for laboratory use at £513: Send for full details and short-form catalogue NOW!!!

Telequipment Limited.
313 Chase Road, Southgate, London N.14
Telephone: 01-882 1166. Telex: 262004.
For overseas enquiries write to: Tektronix Limited, P.O. Box 48, Guernsey, C.I.
A member of the Tektronix Group.

WWW—069 FOR FURTHER DETAILS
This month's cover illustrates a fish-eye view of the master control room at the new London headquarters of Thames Television; one of three new colour television centres in the capital (see p.104).

IN OUR NEXT ISSUE

Stabilized power supply. An unconventional design that will provide a constant-voltage, current-limited output or a constant-current, voltage-limited output.

Digital dice. Electronic novelty using the minimum of components.

Contents

97 Government and Industrial Research
98 Ultra-low Distortion Class-A Amplifier by L. Nelson-Jones
104 London's New Colour TV Centres
106 80-metre S.S.B. Receiver by W. B. de Ruyster
108 H.F. Predictions
109 Letters to the Editor
114 Swings and Roundabouts by Thomas Reddam
116 Conferences & Exhibitions
117 Simple Active Filters by M. Bronzite
120 News of the Month
123 Circuit Ideas
124 Tone-balance Control by R. Ambler
126 Announcements
127 Digital-controlled Tape-recorder Pre-amplifier by P. C. Grossi & C. Marcus
130 Pulse Generator using Integrated Circuits by C. Djokic
132 World of Amateur Radio
133 Personalities
134 Active Filters—8 by F. E. J. Girling & E. F. Good
139 Meetings
140 Literature Received
141 Test Your Knowledge questions & answers devised by L. Ibbotson
142 New Products
148 Real & Imaginary by "Vector"
A106 SITUATIONS VACANT
A130 INDEX TO ADVERTISERS

The apertures in a cathode ray tube gun must be aligned precisely in spite of production tolerances in the six or more electrodes involved. Errors of the order of a tenth of a thou make all the difference if a round, crisp spot is to be maintained. The requirement is a dead fit for each component, no less. To this end, BRIMAR have developed their own methods for the production of assembly jigs to meet these exacting requirements.

Even after assembly in such accurate jigs as these, the guns are still subjected to rigorous 100% inspection, including a final optical test of alignment, where even fractional differences mean rejection.

And in addition to this, BRIMAR have an unparalleled capability in chemistry, electron optics and vacuum physics enabling them to offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the electronics industry, covers advice on tube characteristics, operating conditions and associated components.

Tailored packaging and reliable delivery to meet production schedules are also part of the BRIMAR Service.

Want to know more about BRIMAR Industrial Cathode Ray Tubes?—ask to see our latest catalogue.
Government and industrial research

“The use a nation makes of its skilled manpower ... profoundly affects the kind of society in which we live. ... Despite heavy national spending on research and development in Britain we have not profited fully from this investment, for our rate of economic growth has been running at a lower level than that of many of our competitors.” This is how the Minister of Technology opens his foreword to a recently published Green Paper ("Industrial Research and Development in Government Laboratories") which outlines a Government proposal to set up a new Corporation, outside the Civil Service, to run civil research and development laboratories of the Atomic Energy Authority and of the Ministry of Technology under a single management. The Minister concluded his foreword by saying that the 20-page Green Paper is published to provide a basis “for wide public debate before decisions are taken by the Government.”

The proposed new body would be a statutory corporation possibly called the British Research and Development Corporation the aims and functions of which would be:

(i) to encourage and support the development and application of innovation and technological improvement in industry for the benefit of the U.K. economy; and to carry out research and development for this purpose, both itself and in collaboration with industry and on repayment;

(ii) to carry out research programmes necessary in the public interest, including basic research, and other specific programmes of work required by Government departments and other public authorities; and

(iii) to exploit where appropriate innovations resulting from Government-financed programmes carried out by other agencies.

It will be recalled that the Department of Scientific & Industrial Research formed in 1916, fulfilled a similar function to that envisaged for the new Corporation. It was, to some extent, due to the initiative of the D.S.I.R. that a scheme was launched for co-operative industrial research associations (of which there are now 43).

The fragmentation and “lack of the driving force of a common management orientated to the requirement of its customers” is put forward as the weakness of the present Government-financed research laboratories and the raison d’être for setting up the B.R.D.C. The organizations which would come under the direct management of the B.R.D.C. include five Mintech industrial research establishments (among them the National Physical Laboratory, and the National Engineering Laboratory), the A.E.A’s research and reactor groups, and the National Research Development Corporation. In all they employ nearly 5,000.

It is proposed that, while the cost of “basic research, advisory services and statutory work” might be met by a Government grant-in-aid, specific projects for Government departments would be charged at full cost. This contractual relationship could and should have a marked effect on the attitude of both the supplier and the customer. In addition the corporation would be free to undertake its own initiative work on which it expected to recover its costs. Having said that, however, one sees the dead hand of bureaucracy falling upon the proposed organization in the phrase “It would however be required to operate within the general framework of the Government’s industrial policies”.

No mention is made in the list of establishments coming under the jurisdiction of the B.R.D.C. of such places as R.R.E. Malvern, where so much valuable research in our particular field has been done. The Royal Aircraft Establishment, Farnborough, is mentioned but only to record that the “aerospace establishments of which R.A.E. is the largest”, are being reduced in size, are inextricably part of the Ministry’s defence procurement organization and that no change in this relationship is proposed.

When we consider the number of Government-sponsored projects which have been still-born because of bureaucratic bungling we are not enamoured of the idea of still greater Government control. There is a certain type of person who finds his spiritual home in the Civil Service type organizations (e.g. the Post Office and the B.B.C.) and another type who thrives on the cut-and-thrust of industry and commerce. Both have their qualities, but to provide the “driving force” for the B.R.D.C. mentioned above surely the second type of person is needed more than the first. The question is whether a new corporation set up by a government will be able to stand sufficiently far away from the Civil Service to prevent a wholesale transmigration of souls.
Ultra-low Distortion Class-A Amplifier

A design using feedback to control the gain and the levels of voltage and current in the output stage

by L. Nelson-Jones, M.I.E.E.

There is in the design to be described nothing very revolutionary, but rather an attempt to get a little nearer to perfection, in the power amplifier section of an audio system. Like Mr. Linsley Hood, the author has long felt that the slight extra cost and power consumption that class A implies, is well worth while, and that its advantages are not as marginal as has often been supposed.

The most often quoted advantage of class-A operation is the elimination of crossover distortion, but there are other factors other than this which give rise to distortion in a class-B stage, especially at the upper frequency limit of the audio range, among them hole storage and inequality of high frequency performance of the two halves of the output stage.

Circuit design

The perfect power amplifier will convert its input signal to a higher power level, which is an exact replica of the input. It will have zero output impedance, but will not be damaged by a short circuit of its output terminals. It will have a flat gain-frequency response over the whole of the audio band, but will not respond to frequencies greatly outside this band. It will give its full rated power over the whole audio band. It should preferably drive capacitive loads, so that it may be used with an electrostatic speaker.

It should be driven from a signal source whose bandwidth does not exceed that of the power amplifier, so that on transients in particular the power amplifier is not required to produce an output in excess of its capabilities.

No mention has been made of the input impedance of such an amplifier, this is because whilst some prefer a voltage input (high impedance), others prefer a current input (low impedance), and there is in any case no magic in this aspect. The degree of input impedance only decides the design of the output stage of the pre-amplifier, and to some extent alters the problems of stray couplings in the leads between these two sections. With low impedance, hum pick-up is most likely to be due to magnetic induction in the wiring, whilst with high impedance, it will more likely be due to electrostatic causes. The author's preference is for a high input impedance, mainly because he has more experience with such circuits, and in addition most signal sources and test equipment are rated for voltage output rather than current.

Now to the actual design, and firstly to underline what J. L. Linsley Hood said in a recent article — "... the basic linearity of the amplifier should be good, even in the absence of feedback" so that the feedback is used to obtain the desirable attributes of a good amplifier and not to overcome the shortcomings of a poor design.

Output stage

The use of the simplest circuit is very desirable, if only because it reduces the number of components which can cause phase shift at the higher frequencies, with consequent difficulty in stabilization of the overall loop. In this respect Linsley Hood's circuit is excellent, but the author has found that despite its good performance, the need to select the resistors in certain parts of this amplifier and its reliance on the stability of current gain of the output transistors to set the operating current, went very much "against the grain" after years of designing equipment for production runs.

In order to get a more acceptable overall loop gain, it was decided to use transistor pairs for both halves of the output stage, with the result that higher values of resistor may be used in the driver stage. Fig. 1 illustrates three possible output stages considered. Fig. 1(a) uses complementary transistors and is truly symmetrical, but is not as efficient as that of (b) which has a lower saturation voltage for each half as well as local feedback through the common emitter resistor of the first pair of transistors. Fig. 1(c), is the commonly used quasi-complementary type of output stage, which is in effect one half of Fig. 1(a), together with half of Fig. 1(b). Using this arrangement it is necessary for

www.americanradiohistory.com
the best results to include a diode in the emitter of the lower p-n-p transistor so that looking into the base of each half of the output stage the driving source sees two forward biased junctions having fairly equal transfer characteristics for each half. The use of such a diode is particularly necessary in class-B stages as discussed in a recent article and a letter . The design described here uses the circuit of Fig. 1(c) mainly because of the better availability of n-p-n power devices.

In the three output stages of Fig. 1 box X is the source of bias for the output stage. To ensure true class-A operation, with repeatability of operation from one amplifier to another, it was decided to use feedback to control the operating current. To achieve this the circuit of Fig. 2 was evolved. It will be seen that two additional transistors Tr7 and Tr8 have been added, together with a current sensing resistor R11. The action of the circuit is to hold the current through the output pair such that the drop across R11 is equal to the forward bias requirements of Tr8 (approximately 500 mV). Any increase in the output stage current will cause Tr7 to pass a greater current, which in turn will increase the conduction of Tr8, thus reducing the potential difference between the bases of Tr7 and Tr8, i.e., the bias of the output stage, and hence reducing the current in that stage. The input to Tr7 is filtered to remove audio components, so that the control circuit establishes the correct mean current irrespective of the signal present. The RC filter used for this purpose (R10 C6) must have values such that adequate filtering is achieved, yet the drop in R10 must not be large or the current level of the output stage will vary with the current gain of Tr8. This effect can be minimized by the use of a high gain transistor for Tr7. The capacitor C6 will be operated with only 500 mV polarization, which is insufficient to maintain the characteristics of a normal aluminium electrolytic. To overcome this problem a ‘solid’ tantalum capacitor is specified, whose dielectric film of tantanium pentoxide is permanent. “Solid” aluminium capacitors also exist such as Mullard C415 and C121. These are not to be confused with “dry” electrolytics, which are wet types with the electrolyte in the form of a paste, as are almost all aluminium electrolytics currently in use.

The operation of the output stage, with the bias network included, is at first hard to understand, since it at first appears that the drive to the base of Tr7 is reduced by the presence of Tr8, whose collector-emitter impedance is fairly high. This reasoning ignores the effect of C6 and C8, which results in the drives to the bases of Tr7 and Tr8 being almost equal. At low frequencies the circuit works well without C8, but with increasing frequency, phase shift in the power stage results in slight side effects which can be removed by the use of C8. By connecting the capacitor between the base and collector of Tr7, its effective value as seen between the emitter and collector of Tr7, is multiplied by the gain of this transistor, and thus a value of 0.22 µF proved quite adequate. Alternatively to revert to a more conventional circuit Tr7 could by bypassed by a normal 250 µF 6 V capacitor as shown dotted in Fig. 2, to ensure equal drive to both halves of the output stage, at all audio frequencies.

Input and driver stages

These follow the well known arrangement of p-n-p input stage, with n-p-n driver stage. The feedback is arranged to be 100% at d.c. by connecting the 3.3 kΩ feedback resistor (Fig. 3) direct to the emitter of Tr1. This feedback is reduced at audio frequencies by the attenuator formed by the 33 kΩ and 220 Ω resistors, but not at d.c. because of the 250 µF blocking capacitor.

The action of the d.c. feedback is to keep the midpoint of the output stage at a potential equal to the voltage at the base of Tr1 plus the base-emitter potential of Tr1 and the voltage drop in the feedback resistor (approximately 300 mV). Slight adjustment of the voltage of the bias chain feeding the base of Tr1 allows the mid-point of the output stage to be set for symmetrical clipping at the onset of overload. The mid-point level will vary slightly with temperature due to the 2 mV/C change in Vbe of Tr1, but this will be added to the effect of increase of current gain in the two input transistors, resulting in a drop in the collector current of Tr1, and hence a drop in the potential across the 33 kΩ feedback resistor. However the total change over the range 0-40°C is only some 200 mV, and is thus of little consequence, in relation to the level of 14 V.

Power supply

In order to ensure the greatest possible freedom from hum and similar problems it was decided that the extra cost of a fully regulated power supply was justified, in relation to the high performance being aimed at.

The series stabilizer is quite conventional except for the generation of the pre-regulator supply (+60 V). This supply is generated by a Cockcroft voltage-doubler circuit which is connected to the main rectified supply, so that the outputs of both circuits add. The input (peak) voltage to the voltage doubler is only half that across the main bridge rectifier, since on negative half cycles, the arm of the bridge between the input to the voltage doubler and the 0 V line, is conducting, clamping the point near 0 V, whilst on positive half cycles it is non-conducting allowing this point to rise. The connection of the anode of D2 to the main rectified supply has the effect of increasing the voltage across the two capacitors by the voltage of the main supply, but does not affect the a.c. conditions in the circuit.
The main supply is a normal bridge rectifier with capacitance smoothing. The value of this capacitor is decided by the maximum permissible ripple, which in turn depends on the minimum mains voltage allowable and the minimum voltage across the regulator series transistors at which the regulator still retains full control.

The actual pre-regulator supply generated by the voltage-doubler circuit is used to supply a zener diode (6.8 V) connected to the regulated supply, thus making a d.c.-coupled bootstrap connection for the collector load of the amplifying stage of the regulator (Tr9), and giving a considerable increase in gain, within the regulator loop. The loop is stabilized by the 1200 pF capacitor across the base and collector of Tr9, and the output impedance rise that causes at the higher frequencies, is removed by the connection of the 1250 µF capacitor across the regulated line, in accordance with normal practice in such regulators.

The performance of the regulator is excellent and the only additional smoothing needed is the 10 µF capacitor in the bias network of Tr9. An output for the pre-amplifier and tuner etc. is available (via a low value decoupling resistor and a 1250 µF capacitor) at the input plug.

Overload protection

This is inherent in the action of the current control circuit, which prevents the output stage mean-current from varying. A full short-circuit can be sustained without damage. The current in the output stage remains correct as regards mean level but due to the high value of loop gain the current waveform becomes a square wave on heavy overload and as a consequence the dissipation in the current-sensing resistor doubles to approximately 1 W.

Frequency response

At low frequencies three capacitors determine the basic response. The input capacitor to the base of Tr9, the d.c. blocking capacitor of the feedback loop, and the bias capacitor feeding the load. The cut-off frequencies due to each alone, are 14, 3 and 8 Hz respectively. The combined effect was measured, and gave a "cut-off" at 15 Hz (−3 dB). In the author's opinion it is important that the main limitation of the bandwidth at low frequencies should be due to the input capacitor, so that the amplifier will not be overloaded by frequencies outside the useful audio-range. It is also important that the output capacitor is sufficiently large to allow the very low output impedance, obtained by high degrees of negative feedback, to damp the fundamental resonance of the loudspeaker cone. The values given are a good compromise, and provide an adequate bass response. For a lower cut-off, all three capacitors should be changed by the same factor.

No specific steps have been taken to limit the high-frequency response, which is found to be level to 15 kHz, −1 dB at 54 kHz, and −3 dB at 92 kHz, above which it falls rapidly.

Noise and distortion

Clipping at the overload point is clean and symmetrical, as shown in Fig. 5(a) for a 1 kHz sinewave. The normal method of adjusting the bias of the amplifier is to adjust the "Set O/P Levels" control for symmetry of clipping, having previously set the supply regulator for a reading of +28 V.

Distortion was measured— with some difficulty—at 1 kHz, when it was found that it was almost entirely 3rd harmonic in nature, and of very low level, only reaching 0.015 % at the onset of clipping, so that at normal listening levels it would be quite insignificant.

Such a low level of distortion is not surprising when one considers the facts. The loop gain is measured as 4750 times, with the closed-loop figure of 16 times. The reduction in gain, and hence also in distortion is therefore 297 times or −49.5 dB, implying a basic open-loop distortion of around 5% a reasonable figure for a basically linear amplifier. The output of the amplifier operated under loop conditions at just under full output is shown in Fig. 5(b). The variation with output level of the distortion under closed-loop conditions is
shown in the graph of Fig. 4(c).

Due to the use of a regulated supply the noise and hum levels are of a very low value. Hum components alone (50 and 100 Hz) are

-83 dB relative to full output. Wideband noise, ignoring hum components, is approximately

-100 dB below full output, rising very slightly if the input is open circuit. The result is a background level that is completely inaudible.

Response to square wave input, and to capacitive loads

The effect of capacitive loads is shown in Fig. 5(c) and 5(d). The capacitor was a 1 μF paper type, and little difference in waveform is noticeable, whether or not, the 8-Ω resistive load is connected in parallel. The ring frequency induced is at approximately 200 kHz for a 1-μF capacitor but reduces somewhat with larger values of capacitor.

Fig. 5(e) shows the response to a steep input edge the total rise time is around 0.5 μs, giving a slewing rate of 40 V/μs. Fall time is similar.

Input impedance

Due to the high degree of series feedback employed, the input impedance is almost entirely that of the base bias network, i.e. the two 100-kΩ resistors effectively in parallel. The value was measured and was found to be such, namely 50 kΩ.

Current sensing resistor

It is desirable that this should be of a non-inductive type in order not to introduce high frequency effects, which might limit the available power at that end of the spectrum, and also cause stability problems in the loop.

The requirement for a non-inductive resistor is more important in class B amplifiers, but is by no means unimportant in class A applications (see "Letters to the Editor", F. Butler and Arthur Bailey, Wireless World, December 1966, pp. 611–614). The construction of the resistors used in the prototype is shown in Fig. 6. An alternative would be to use Eureka wire to connect the emitter of

T_R to the remainder of the circuit, using a single straight length of a suitable gauge (probably 26 s.w.g.). In this case the wire should be covered with high temperature sleeving, say silicone rubber, or glass fibre. The 1 kΩ resistor feeding the base of T_R would then be connected direct to the emitter of

T_A.

Heatsinks

In the prototype, finned extruded aluminium heatsinks of approximately 4 in x 4 in are used for each of the output transistors. A similar heatsink is used for the series transistors of the regulator. In each case no insulation is used between the transistors and the heatsink, which is live to the collector in each case. This course of action was taken to maximize the efficiency of the heatsinks, and these must therefore be separately insulated from their mountings. The method used in the prototype is to cut slots in the edge of the heat sinks (0.25 in deep, 0.25 in wide), which then enable the heatsinks to be mounted on

4BA studding using Transiblocks, details of which are to be found in the constructional section below. Silicone grease is used to ensure a good thermal connection between the heat sink and the power transistors.

The amplifier must not be used in confined surroundings such that free air circulation is impeded, as some 60 W of heat have to be dissipated by the complete stack of heat sinks. The cabinet in which the amplifier is mounted should therefore be well ventilated, and in particular the author has found that a larger area of vent is required at the top of such a cabinet than at the bottom in order to stop the build up of a cushion of hot air at the top. The maximum rise in the centre of the heat sink stack, gives a case temperature for the power transistor which is approximately 40°C above ambient. The junction temperature with the dissipation occurring in each transistor will be a further 20°C higher in the worst case. Thus at 20°C in free air the maximum junction temperature will be 80°C, allowing a considerable amount of leeway for both raised ambient temperature and less than free air circulation. It is recommended that the maximum case temperature of the power transistors should not be allowed to exceed 100°C in use, and in the cabinet in which it is to be mounted, so that a reasonable degree of reliability is achieved.

Adjustment of design for other than 8-Ω load

Referring to Fig. 2 again, we will first calculate the supply voltage required for any given load. (The number suffixes given refer to the transistor numbering in Fig. 2.)

Output voltage swing (pk–pk)

\[V_{oc} = V_{cc} - [V_{oc - sat} + V_{be - sat} + (I + I) R_{11}] \]

Also, power output (sinewave)

\[V_{out} (pk - pk) = \frac{(output \ voltage \ swing)^2}{8R_{load}} \]

Since V_{out} (r.m.s.) = $V_{pk - pk}$

\[\frac{Z_{out}}{2} \] (for a sinewave),

\[V_{out} (pk - pk) = \sqrt{\frac{8R_{load}}{P_{out}}} \]

Fig. 4. Performance curves.

Fig. 5. Oscillograms of amplifier performance.

(a) 1 kHz sinewave being symmetrically clipped.
(b) Full output of amplifier with open loop.
(c) Square wave into resistive load.
(d) Square wave into capacitive load.
(e) Response to input with rise time of 0.5 μs.
and therefore

\[V_{c} = \sqrt{8R_{load} P_{out} + V_{er-sat} + V_{be}} \]
\[+ V_{er-sat} (1 + \frac{l}{l})R_{11}, \text{minimum.} \]

The standing current must exceed \(V_{c}/4R_{load} \)

in order to achieve the required voltage swing, and for its satisfactory safety margin it should exceed \(V_{c}/4R_{load} \).

Taking typical values for the circuit given using an 8-Ω load and 10-W output level we get

\[I_{\text{min}} = \frac{28}{4 \times 8} = 875 \text{ mA}. \]

(a value of 900 mA being actually used.)

For a 3-Ω load and 10-W output we get figures of 19.5 V for \(V_{c} \), and 1.63 A for \(I_{\text{min}} \) (Total power 31.8 W, 31.5 % efficient).

For a 15-Ω load and 10-W output we get figures of 36 V for \(V_{c} \), and 0.6 A for \(I_{\text{min}} \) (Total power 21.5 W, 46.4 % efficient)

From these figures it is apparent that the rise in \(V_{er-sat} \) and \(V_{be} \) figures with the current used in a 3-Ω amplifier seriously reduces the overall efficiency. In the case of the 15-Ω load on the other hand, the efficiency is not far short of the theoretically possible figure of 50 %, for a class A stage. The efficiency of the 8-Ω stage is 39.8 %.

Details of value changes for 3-Ω, and 15-Ω circuits are given with the constructional details below.

Construcational details

Fig. 7 shows the construction of the underside of the chassis of the 10+10-W amplifier. The layout is shown in greater detail in the sketch of Fig. 8—the two amplifiers being constructed as mirror images, as can be seen in the photograph.

To avoid large circulating currents the loudspeaker return leads should be wired to the earth tags of their respective amplifiers, as shown in Fig. 8. The negative lead of the rectifier bridge should be connected to the same earth tag as the negative connection of the 5000 μF main smoothing capacitor, together with the negative connection of the second 50 μF smoothing capacitor of the voltage doubler.

Providing the layout given is followed, and the precautions listed over earth tags are followed, no problems should be encountered.

Layout of the series regulator components is entirely non-critical and uses similar tag strips to those in the power amplifiers.

Fixed resistors

With the exception of the current sensing resistors \(R_{11}, R_{11a} \) and those marked with * in the circuit of Fig. 3, all resistors are solid carbon moulded 1 W/10 %. All resistors marked * are \(\frac{1}{2} \) W/2 % metal oxide (Electrosil TR5, Welwyn MR5, Radiospares “\(\frac{1}{2} \) W oxide”). See Fig. 6 for details of the construction of \(R_{11} \).

Variable resistors

Both are wirewound Radiospares type “pre-set” (set \(+28 \text{ V} \) and set output levels). Any good wirewound types such as those quoted of 1 W rating or above are suitable.

Non-electrolytic capacitors

0.22 μF 160 V input capacitor Wima Tropyfol M (160 V) or Mullard C296AA/A220 K. Radiospares also make a suitable type 250 V PDC.

0.22 μF 20 V ceramic disc (base-collector

Tr7). Radiospares 20 V discs, or use polyester 160 V type as above.

1200 pF tubular ceramic (1000 pF can be used). The capacitor used in the prototype is now obsolete; Radiospares suggest as alternatives “discs 0.001 μF” or “Hi-K 0.001 μF” (tubular).

0.1 μF 400 V (across bridge rectifier, necessary to prevent the generation of mainsborne interference due to hole storage effects in the rectifiers), Wima Tropyfol M(400 V), Mullard C296AC/A100 K. Radiospares 400 V PDC.

Electrolytic capacitors

47 μF 6 V (base-emitter Tr5). This must be solid tantalum type. The Radiospares type used in the prototype is discontinued but is apparently identical to Union Carbide “Kemet E”. Alternatives are S.T.C. 472/W/401CA (metal case), S.T.C. TAG47/3 (3 V rating similar to Kemet E), Mullard.

Caution

1250 V heatsinks available from Electrovalue. The Daly type has spares heatsinks, 115-225-245 V 50/60 Hz. Sec. 27 V at up to 3A rectified d.c.

Fuse

2A normal or 750 mA “anti-surge” delay type.

Heatsinks

Power transistors mounted on 5 Radiospares heatsinks, which are equivalent to “Marex” (Marston-Excelsior) type 10D—4 in long, S.T.C. supply a similar type, code HSC4 and a clip for insulated mounting (but not as in photos) FP2551 (Electronic). Heatsinks mounted on 4BA stud using four transiblocks per heatsink. Transiblocks are made by Industrial Instruments Ltd, Stanley Road, Bromley, Kent. Farrell Instruments Ltd (Industrial Supplies Division) also stock these items.

The TO-5 transistors (Tr3, Tr5), are fitted with cooling clips—Redpoint .5P, available from Electrovalue and Electronic. A similar type—“Sinks TO-5”—is available from Radiospares.

Sundries

Chassis size 7 in x 10 in x 2 in (sheet aluminium type).

The input socket is a 5 pin “DIN” audio connector. The loudspeaker sockets are Radiospares miniature non-reversible 2-way plugs, and sockets. Non-reversibility is essential to preserve the phasing of the outputs to the speakers. It is convenient to mount the fuseholder (Radiospares panel fuse holders or Belling-Lee L.1348, L.1382, L.1744) on a panel attached to the side of the mains transformer, with a strip on top of the transformer for connection of the mains lead, mains switch, etc., as shown in the photograph.

Modifications for 3-Ω output

R11 and R14 must be increased to 0.31 Ω (5.5%) each. The mains transformer will require to be 21 V r.m.s. 3.5 A d.c. rectified rating. The output capacitor feeding the loudspeaker must be 5000 µF 25 V. The 12-kΩ resistor in the regulator will reduce to 7.5 kΩ, and the 3.3 kΩ resistor feeding the 6.8 V zener diode will reduce to 2.2 kΩ. The main smoothing capacitor should be raised to 7000 µF at not less than 30 V working. The collector resistors of Tr7 should be dropped from 820 Ω, 1.5 kΩ and 1.2 kΩ to 470 Ω, 820 Ω, and 680 Ω respectively.

Modifications for 15-Ω output

R11 and R14 must be increased to 0.84 Ω (5%) each. The mains transformer must be 34 V r.m.s. 1.5 A d.c. rectified rating. The 12-kΩ resistor in the regulator must be increased to 17 kΩ which is not a standard value, alternatively the 4.7-kΩ may be dropped to 3.6 kΩ which is a standard value. The 3.3-kΩ resistor feeding the 6.8-V zener diode should be raised to 39 kΩ. The collector resistors of Tr7 may be changed to 39 kΩ. The output capacitor feeding the loudspeaker must be 10000 µF 25 V.

Semiconductors

Tr1, Tr7 2N3072
Tr3, Tr9 BC107
Tr5 2N2219
Tr5 2N2905
Tr6, Tr10, Tr11 N3055
Tr10 2N3054
Tr8 BC168
D1 OA200
D2, D3 RA5310AF
ZD1 ZFR.2
Rect. 1 Rectifiers Radiospares REC. 40.5 A bridge 200 V (p.i.v.)

2218 A which have a higher voltage rating than 2N2219. However if 2N2218 A is used then Tr7 should be changed to 2N2904 to preserve some equality of current gain. If a transistor tester is available then samples of 2N2219 may be selected for Vrec of above 40 V instead (normal minimum is 30 V).

It should be noted that the output to preamplifier and tuners will alter, being +19-5 V for the 3-Ω version, and +36 V for the 15-Ω version.

It is expected that the distortion of the 3-Ω version will be two to three times greater than that quoted for the 8-Ω version, with similar or slightly better figures for the 15-Ω version. In the author’s opinion, since very few speakers deserving the title high-fidelity, have 3-Ω voice-coil, the 3-Ω version of the amplifier is not worth considering unless no other choice exists itself.

REFERENCES

London’s New Colour TV Centres

A pictorial look behind the cameras

One of two news studios (top left) at the recently built Television News Spur at the B.B.C. Television Centre. Amid the jungle of lights the four Mk. VII Marconi colour cameras can be seen. These are controlled remotely from control desks from which the operator can adjust pan, tilt, focus, zoom and camera height using simple potentiometers. Two banks of ten push-buttons, positioned one above the other, enable the operator to store up to twenty camera positions. Pressing any one of these buttons causes digital information describing the camera settings to be stored in a ferrite core store. Re-pressing the same button causes the camera to instantly take up the same position again. A “fader” control causes the camera to move between a position set up on one of the top row of buttons to a position which has been set up on the bottom row of buttons. The camera control system was designed by Evershed Power-Optics Ltd. The news announce sits in front of a screen which is saturated-blue in colour. The output of the blue gun of the main camera looking at the announcer can be made to switch an auxiliary camera the output of which is mixed with the main camera. If the auxiliary camera is looking at an outdoor scene, whenever the main camera is scanning the blue background the outdoor scene will appear on the screen. When the main camera scans the announcer very little blue signal will be picked up, the auxiliary camera will be switched out and the main camera will provide the vision signal. The effect on the television screen will be to have a picture of the announcer against a background of the outdoor scene. The sub-central apparatus room (top right) which routes all the incoming and outgoing sound and vision signals to and from the B.B.C’s news centre. In addition to this the C.A.R. provides communication facilities and can either route synchronizing pulses from the main television centre or generate its own for the rest of the news complex. The main sound routing system has 100 sources, any of which can be sent to any of 60 destinations. Remote controls also exist for the camera in the parliamentry studio. Part of the telecine area (bottom left) and one of the two telecine control desks (bottom right). Altogether there are nine 16-mm colour machines, two of which are multiplexed to deal with 8mm and super-8mm film from amateur sources, and two 16-mm monochrome machines. If necessary the colour quality of material from the telecines can be corrected.

www.americanradiohistory.com
The master control desk at Thames Television's new centre in Euston is boomerang-shaped and has positions for the lines engineer (top left), the engineer in charge who performs a quality control function (top right), and the network switcher (bottom left). The monitor bank facing the desk has a row of 14-in. monochrome monitors and a row of colour monitors underneath. These preview incoming sources, check the passage of signals through the system and view the outputs. The lines engineer has a monitor-switching system controlling the input to an 11-in. Pye picture monitor and a 525 Tektronix 'scope. Communicators and sound monitoring take up the rest of his desk. The central position for the engineer-in-charge has very comprehensive monitoring and switching facilities which include a vectorscope and a subcarrier phase meter (by Michael Cox Electronics).

ITN's new studios Wells St., London, were officially opened by the Queen on the 20th of November last year. The control room can be seen (left). Beneath the clock is the colour transmission monitor with colour preview pictures on either side. To the left of the clock are the monitors for telecine and video tape recorders. Below the transmission monitor are the four studio camera monitors. Sitting from left to right: vision mixer, director, production assistant, and producer, rehearsing NEWS AT TEN. Far left are the monitors for engineers controlling the quality of the picture. The 24-channel sound mixing and production desk in studio No. 1 is shown in the right photograph. This equipment, together with the turntables in the foreground, was supplied by Elcom.
80-metre S.S.B. Receiver

A limited coverage receiver of straightforward design for amateur use

by W. B. de Ruyter, PA0PRW

Since f.e.t.s are now available at low-cost it is possible to build a stable receiver with a performance similar to good valve receivers with the attendant advantages of low-power consumption and the absence of self-generated heat. The receiver described here operates on a 12-V supply and consumes only about 35 mA.

Stability is such that the receiver stayed within 3 Hz of zero-beat for several days when tuned to a standard frequency transmission. Detuning in the prototype due to supply voltage variation was about 50 Hz/V making mobile operation using a good 12-V car battery possible. Due to the excellent square law characteristic of the f.e.t., cross-modulation properties are good. In a test, a 60 mV unwanted signal spaced 100 kHz from a weak wanted signal did not result in any harmful cross-modulation.

The sensitivity of the circuit depends almost entirely on the Q-factor of the input coil. It was noticed that practically no change in signal-to-noise ratio resulted when the aerial circuit was fed straight into the mixer instead of to the r.f. amplifier. However, the r.f. amplifier is needed to improve image rejection, reduce 455 kHz interference and to provide adequate automatic gain control.

Circuit description

A block diagram is shown in Fig. 1 and the complete circuit diagram of the receiver is given in Fig. 2. The f.e.t./bipolar transistor r.f. stage, \(T_r \), and \(T_y \), does not require neutralizing if due care and attention is taken with screening. Provided that the v.f.o. circuit is properly constructed, mechanical rigidity being important here, a good waveform and a stability approaching that of a crystal oscillator will be attained. The v.f.o. operating frequency is arranged to be 455 kHz above the signal frequency (3.955 to 4.455 MHz).

All the r.f. coils employed in the prototype were of the type intended for valve trawler-band receivers for tuning between 60 and 180 metres.

The 4 to 40 pF main tuning capacitor used in the prototype was salvaged from a Government surplus type 31 receiver and was complete with a 36:1 reduction gear box and trimmer capacitors. In fact constructors who are not too keen on "metal bashing" will find, as the author did, that the type 31 receiver cabinet makes an ideal case for the receiver described here.

The author considers that the money spent on the relatively expensive mechanical filter is more than justified when looked at in terms of receiver performance. An added advantage is that i.f. alignment is reduced to trimming for maximum input to, and output from, the mechanical filter. The cascode i.f. amplifier is designed to properly match the mechanical filter and also incorporates the simple \(S \)-meter circuitry.

The use of a Colpitts oscillator for the b.f.o. eliminated the need for any coils in this part of the circuit. The b.f.o. operates below the bandpass of the mechanical filter.

A square law heterodyne detector is employed and it is necessary to adjust the i.f. output coil, \(L_3 \), for optimum reception quality.

After a d.c. coupled a.f. pre-amplifier stage, \(T_{1a} \), the a.f. signal divides into two. One path is to a two stage f.e.t./bipolar a.f. amplifier via the a.f. gain control. This amplifier develops more than enough power to drive a pair of 150 \(\Omega \) headphones. Some readers might prefer to incorporate a simple a.f. power amplifier for loudspeaker reception. The second path from the d.c. coupled a.f. pre-amplifier goes via an impedance converting emitter-follower, \(T_{1b} \), to the a.g.c. rectifier and smoothing capacitor. The a.g.c. performance is such that the heterodyne detector is not overloaded on even very strong signals. The switch \(S \) is connected to the negative terminal of a suitable battery providing an r.f./i.f. manual gain control. The positive terminal of the battery is, of course, connected to earth (power supply negative).

The f.e.t. in the \(T_r \) position, i.f. amplifier, must be selected for a certain value of pinch-off voltage, 3 V being the target figure. It is best to obtain a good supply of these components so that suitable devices can be selected. A test circuit that will perform this task is given in Fig. 3; the meter will indicate pinch-off voltage. It is advisable to use an f.e.t. in the r.f. amplifier, \(T_r \), with a pinch-off voltage half a volt or so higher than the f.e.t. in the i.f. amplifier, \(T_y \). This will ensure that the a.g.c. cannot cut off the i.f. amplifier.

Construction

The author assumes that a type 31 receiver will be used as the basis for construction. The first step is to remove all the components from the chassis except the five-gang tuning capacitor and its associated reduction gearing. A small mA meter, which serves as the S-meter, is mounted in the position that was occupied.

Diagram:

[Diagram of the complete receiver]
Fig. 2. The circuit. A power supply is not included in this description, but a car battery or almost any mains 12V power pack will suffice.

Fig. 3. Circuit for measuring f.e.t. pinch-off voltage.

Fig. 5. Front view of the prototype.

by the dial-light knob, and the original squelch control knob becomes the a.g.c. control. The a.f. gain control is retained in its original position.

It was found that the 10-ft collapsible whip aerial supplied with the 31 set performed very well even without grounding the receiver.

The excessively large holes which now decorate the chassis are blanked-off with plates made from brass sheeting.

As previously stated any 60 to 180 metre trawler band coils can be used. The prototype employed Philips coils; type A3 125-34 for the aerial and mixer coils and type A3 125-68 for the v.f.o. and buffer. Only four of the sections of the five-section main tuning capacitor are used in the circuit; readers may find the fifth section useful for tuning a loop aerial.

The importance of rigid mechanical construction and good screening between stages cannot be overstressed as is normal with r.f. circuitry. It is a wise constructor who gives careful attention to these points. In particular excessive stray coupling between the input and output of the mechanical filter will seriously degrade the performance. Figs 4, 5 and 6 indicate the positions of the main components.

The first task is to check the source voltage of the f.e.t.s is
between 1.5 and 2V. Alignment of the receiver is not difficult and follows conventional practice; a crystal calibrator is of great value when carrying out this task.

The tuning range is set by adjusting the trimmer capacitors with a 3.5MHz input and the inductors with an input of 4MHz for maximum output. This procedure is repeated for the v.f.o. and the buffer circuitry. Due to the limited coverage very good tracking can be achieved. Finally the preselection circuits are adjusted and L_1 set for optimum sound quality.

Conclusion

The prototype receiver performed well and the author considers that its construction is good training for those who wish to construct the receiver designed by D. R. Bowman, which was described in the July, August and September 1969 issues of *Wireless World*. The frequency coverage of this receiver can be extended using crystal converters; however, the performance will not match Bowman’s design under these conditions.

Components List

Resistors

In this list the prefix R and the symbol Ω have been omitted.

<table>
<thead>
<tr>
<th>R or Ω</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 100k</td>
</tr>
<tr>
<td>2</td>
<td>2 - 3.3k</td>
</tr>
<tr>
<td>3</td>
<td>3 - 150k</td>
</tr>
<tr>
<td>4</td>
<td>4 - 560</td>
</tr>
<tr>
<td>5</td>
<td>5 - 15k</td>
</tr>
<tr>
<td>6</td>
<td>6 - 150</td>
</tr>
<tr>
<td>7</td>
<td>7 - 10M</td>
</tr>
<tr>
<td>8</td>
<td>8 - 1.5k</td>
</tr>
<tr>
<td>9</td>
<td>9 - 150</td>
</tr>
<tr>
<td>10</td>
<td>10 - 3.3k</td>
</tr>
<tr>
<td>11</td>
<td>11 - 3.3k</td>
</tr>
</tbody>
</table>

all above resistors $\frac{1}{2}$ watt.

VR_1 = 5kΩ preset potentiometer; set S-meter sensitivity.

VR_2 = 1MΩ potentiometer; a.g.c. control (r.f. - i.f. gain).

VR_3 = 100kΩ potentiometer; a.f. gain.

Capacitors

In the list below the prefix C and the suffix F have been omitted.

<table>
<thead>
<tr>
<th>C</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 10n</td>
</tr>
<tr>
<td>2</td>
<td>2 - 82p</td>
</tr>
<tr>
<td>3</td>
<td>3 - 10n</td>
</tr>
<tr>
<td>4</td>
<td>4 - 82p</td>
</tr>
<tr>
<td>5</td>
<td>5 - 5p</td>
</tr>
<tr>
<td>6</td>
<td>6 - 4p</td>
</tr>
<tr>
<td>7</td>
<td>7 - 10n</td>
</tr>
<tr>
<td>8</td>
<td>8 - 10n</td>
</tr>
<tr>
<td>9</td>
<td>9 - 10n</td>
</tr>
</tbody>
</table>

All capacitors should be ceramic with the exception of the 82pF components, which should be silver mica with a slightly positive temperature coefficient, and the electrolytic capacitors which should be at least 15V working types.

Other components

L_1 & L_2 - Trawler band aerial coils.

L_3 & L_4 - Trawler band oscillator coils.

L_1/C_{21} - 455kHz tuned circuit.

f.e.t.s - 2N4303

bipolar transistors - BC109b, 455kHz Collins N20 mechanical filter

b.f.o. crystal - 453.7kHz.

H.F. Predictions—March

The charts show median standard MUF, optimum traffic frequency (FOT) and lowest usable frequency (LUF) for reception in this country. LUFs were calculated by Cable & Wireless Ltd for specific point-to-point telegraph circuits. LUFs for domestic reception of high-power broadcast transmissions would be slightly higher and those for the amateur bands considerably higher, especially during daylight.

Commercial working frequencies are kept below FOT to allow for day-to-day variations in the ionosphere and the seasonal trend over the month. Amateur 'openings' can be expected in bands up to 15% above MUF. It may be recalled that March 1969 showed a sudden increase in solar activity, the measured 1F2 index value being 127. The forecast value for this month's predictions is 98.
Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Capacitor-discharge ignition

I was very interested to read R. M. Marston's article in the January Wireless World but I was unable to convince myself that the storage capacitor \(C_t \) would charge in 1.6 msec. To either substantiate or disprove this I constructed a test circuit (Fig. 1). The switch simulates the s.c.r. and being two-pole enables the oscilloscope to be triggered at the moment of turn-off. It was found, using three different iron-cored mains transformers (two standard units and one wound as suggested), that the converter did not actually stop oscillating on short circuit but continued at a high frequency (approx. 20kHz dependent on the transformer). This is due to the transformer leakage inductance, a property which Mr. Marston's transformer obviously had, since he used the overshoot it causes to advantage. The current taken in this condition rose to approx. 2.5 amps. At first I thought that this high-frequency mode would enable the capacitor to charge in the time claimed but operating the switch revealed with these transformers the risetime was never better than 3 msec. The current available from the converter under short-circuit conditions was approx. 20mA, which is enough to hold on the s.c.r., but the backswing from the ignition coil (Fig. 2) passes through diodes \(D_2 \) to \(D_4 \) for a period over 0.1 msec enabling the s.c.r. to turn off and partially recharging \(C_t \). Thus this system has the same disadvantage as the usual capacitive discharge system (Fig. 3) has, i.e. without the backswing the s.c.r. may latch on.

To ensure that the converter truly stops oscillating I wound a transformer on a Mullard Vinkor FX2243 core since this would result in low leakage inductance. The low primary inductance of this transformer resulted in a natural operating frequency of approx. 2kHz and it did stop under short-circuit conditions. Unfortunately the time taken for the oscillator to restart and charge the capacitor resulted in a charging time of approx. 25 msec.

Mr. Marston's system would seem to charge up the capacitor in a short time when the energy is not all used in the coil resulting in a large backswing which will recharge \(C_t \), (Fig. 2). When the energy is all used the capacitor will have to charge from zero volts and take some time in excess of 3 msec. This method of utilizing the backswing to recharge the capacitor is also possible in the normal system simply by placing an ordinary 500V diode across the s.c.r. in the reverse direction (Fig. 3).

Considering the action of the rest of the circuit, when the contact breaker points close, with \(C_t \) charged to 12 volts, a reverse voltage of 12 volts is applied to \(T_2 \), base which will break down at typically 8 volts. Since this happens every time the points close it will probably result in premature failure of this device. Another small point in the article is that the standard ignition coil for a 12-volt system without a ballast resistor usually has a 50:1 ratio and not 100:1 as implied in the article, resulting in half the voltage expected.

For the most effective spark it is necessary for the sparking plug tip to be negatively polarized whereas the configuration used by R. M. Marston will result in a positively polarized tip. This can be easily remedied of course by reversing the C.B. and S.W. connections.

I. M. SHAW.
Ferranti Ltd.,
Chadderton,
Lancs.

May I raise a few points on Mr. R. M. Marston's article on a capacitor-discharge ignition system?

The resonant frequency of 1600Hz quoted corresponds to an inductance of about 10mH in series with capacitor \(C_t \), as the equivalent inductance of a coil. 10mH is approximately the magnetizing inductance of the primary of a conventional ignition-coil. During discharge, the secondary is more or less short-circuited, and the relevant inductance is the leakage inductance—approximately 1mH. This gives a resonant frequency of about 5000Hz.

The inverter design is based on a figure of 7.9 turns per volt, and a supply of 16V. Centre-tapping the transformer will halve the turns per volt, and hence double the frequency, with double the hysteresis losses. I realize that the 1 ohm resistor to the centre tap will slightly increase the turns per volt, when on load.

The power transistors will suffer from excessive heat dissipation, as during ignition and most of the charging cycle they will not be saturated. Base drive is not removed during ignition, and the only resistance load during charging is the IQ resistance plus the windings resistances in the transformer. The mica-washer, plus insulating varnish, will limit the cooling the transistors can receive. A 2k \(\Omega \) or 3k \(\Omega \) wire-wound resistor in series with the secondary winding of the transformer would probably help greatly without excessively increasing the charging time-constant.

J. F. HENDERSON.
Oadby,
Leicester.

In the article on capacitor-discharge ignition the author describes a system where the firing of the s.c.r. short-circuits the secondary of the inverter transformer and stops the inverter oscillation. In my experience this is an unsafe procedure for two reasons: first of all the resistance of the transformer secondary may be sufficiently large for the inverter not to stop oscillating, in which case at the very least excessive power may be consumed and the inverter transistors and the s.c.r. may be damaged by overheating, secondly when an inverter is started the first cycle is often abnormal in containing parasitic oscillations or excess ringing and if the s.c.r. stops the inverter every time it is fired the
JAMES from hence is to 400V. (Fig. 1) of 400V and the through Volts Current - reverse its resonant the current. There through cycles.

Fig. 1. Inductive charging circuit.

majority of inverter cycles will be first cycles. I would suggest instead that the inverter voltage be reduced to 200V and a 32-µF reservoir capacitor follow the bridge rectifier (which now need be only 200V rating) and that the spark capacitor be charged through a 0.1-H choke and a 400-V rectifier as in Fig. 1. The circuit performs as follows: when the s.c.r. is fired, C₄ discharges through the spark coil very quickly and the resultant ringing turns off the s.c.r. There is now 200V across the choke and the current in it starts to rise; the series resonant circuit LC then oscillates at its fundamental frequency of about 500Hz for half a cycle when the capacitor is at 400V and the current in the choke tries to reverse itself, which it cannot do because of the rectifier (which should have a high surge rating), and the voltage on the choke collapses leaving the capacitor charged to 400V. (Fig. 2) The advantage of this resonance, besides the voltage doubling, is that there is no series resistance and hence no dissipation—all the power taken from the reservoir capacitor ends up in the spark capacitor. It is also faster.

James M. Bryant, Cheltenham, Gloucester.

Thank you for publishing an electronic ignition system. I hope it does not suffer from the shortcomings of some of the other designs that have appeared, e.g.

s.c.r. 'lock on' due to converter not being turned off, with consequent self-destruct; and relatively large delays (500µs or more) being incorporated in the trigger circuit so as to overcome points-bounce (Mr. Marston's design certainly appears to overcome the second example).

Regarding Fig. 1 of the article, the conventional circuit, many modern cars do not have quite this circuit, but the one shown below. The primary of the coil is rated at about 7 to 8V and a 1.5Ω series resistance is added. The ballast resistor is sometimes in the form of resistive cable from the ignition switch to the coil.

This circuit is used to improve starting, the ballast resistor being short-circuited as the starter solenoid operates. Thus the e.h.t. voltage is much higher than would be the case with the conventional ignition when starting and in theory still gives a good output when the battery voltage drops considerably when starting on a very cold morning.

When using Mr. Marston's circuit with this type of coil, a higher e.h.t. voltage will be obtained and the period of oscillation may be much less than the 600µs quoted (I believe the inductance of the primary of the coil is lower). The ballast resistor must be remembered as the performance will obviously be derated otherwise. Possibly, if it is of the resistive cable type, rather than adding another lead from the ignition switch, it could replace R₁ in the circuit; it would then be in series with the whole circuit. Would this then cause trouble in the triggering circuit?

M. J. MEADOWS, Bishop's Stortford, Herts.

The author replies to these and other correspondents:

A large number of letters have been received regarding my "Capacitor-Discharge Ignition System" article, and many different points have been raised. I will try to answer each of these under a suitable heading.

Converter action: In the original article I stated that, when the s.c.r. is on, C₁ and the ignition coil form a resonant circuit with a typical resonant frequency of 160kHz. I quoted this figure because it is the "conventional" one given in most papers on the subject, the precise figure is of negligible importance. The only important point here is that the spark resulting from the C₁ discharge must be of sufficient duration to ensure proper ignition of the compressed gases in the engine's cylinders. My own investigations in this respect indicate that the minimum acceptable spark times are 20µs, since the spark lasts for roughly one quarter of a resonant cycle, it is evident that the resonant frequency becomes critical only when it exceeds 10kHz. "Ideal" resonant frequencies, giving good spark generation with minimum power losses, lay between 1.25 and 5kHz (this figure is based on published research data).

C₁ charge time: The measured charge time of C₁ is 1.6ms. The capacitor charges from two sources. One of these is the converter, which, with its output impedance of 3kΩ, gives a charge time of 3ms. The second source is the backswing of the C₁ ignition coil resonant circuit. As Mr. Shaw observes, the unit makes use of the backswing or current reversal of the resonant circuit to partially recharge C₁ via the D₁-D₂ net-work after the s.c.r. has turned off. This backswing gives a considerable reduction in the car battery. Under worst-case conditions (at 6000 r.p.m. in a 12-cylinder vehicle), consumption rises to roughly 24 watts. These power levels are well within the handling capabilities of the 2N3055 transistors, and will not result in 'excessive' heat dissipation as ordered by Mr. Henderson. When the converter output is shorted, current consumption rises to 2.5 amps; the 2N3055 transistors have maximum collector current ratings of 15 amps. At normal running speeds the converter output is shorted for less than 1% of each ignition cycle, the relatively high short-circuit currents thus cause negligible increase in the mean current of the converter.

The converter transformer: I designed the converter section around a more-or-less standard type of i.t. transformer because this component is cheap, readily available, and is naturally suited to the two-mode method of operation. I do not recommend the use of ferrite-cored transformers in this application; they may fail to give good restart operation, and may give insufficient overshoot to give good cold-starting characteristics to the vehicle.

Use of a reservoir capacitor: Mr. Bryant recommends the use of a reservoir capacitor across the converter output, and Mr. Shaw shows the same component in his diagram (Fig. 3) of the "usual" C-D system. The use of such a capacitor is emphatically not recommended, since it partially nullifies the effects of backswing and almost invariably results in eventual lock-on of the s.c.r.

C₁ and ignition coil resonant frequency: In the original article I stated that, when the s.c.r. is on, C₁ and the ignition coil form a resonant circuit with a typical resonant frequency of 160kHz. I quoted this figure because it is the "conventional" one given in most papers on the subject; the precise figure is of negligible importance. The only important point here is that the spark resulting from the C₁ discharge must be of sufficient duration to ensure proper ignition of the compressed gases in the engine's cylinders. My own investigations in this respect indicate that the minimum acceptable spark times are 20µs, since the spark lasts for roughly one quarter of a resonant cycle, it is evident that the resonant frequency becomes critical only when it exceeds 10kHz. "Ideal" resonant frequencies, giving good spark generation with minimum power losses, lay between 1.25 and 5kHz (this figure is based on published research data).

C₁ charge time: The measured charge time of C₁ is 1.6ms. The capacitor charges from two sources. One of these is the converter, which, with its output impedance of 3kΩ, gives a charge time of 3ms. The second source is the backswing of the C₁ ignition coil resonant circuit. As Mr. Shaw observes, the unit makes use of the backswing or current reversal of the resonant circuit to partially recharge C₁ via the D₁-D₂ net-work after the s.c.r. has turned off. This backswing gives a considerable reduction in

Wireless World, March 1970

www.americanradiohistory.com
total C, charging time, gives substantial energy conservation, and ensures reliable turn-off of the s.c.r. Backswim utilization is virtually standard practice in the U.S.A., where many new vehicles are fitted with C-D ignition as standard equipment; it then seems strange that Mr. Shaw should refer to backswim utilization as 'a disadvantage'!

Breakdown of Tr: Mr. Shaw's point about the possible breakdown of Tr is a fair one, although in practice the absolute peak reverse base current will not exceed 80mA; this is within the device capability when operated in the zener mode, however, so damage is unlikely to result. The risk of damage can be eliminated, if required, by wiring a 180 ohm resistor in series with Tr base.

Ignition coil turns ratio: In the original article I implied a 100:1 turns ratio for the ignition coil, since this is the 'conventional' ratio quoted in most articles. The precise ratio is of little importance, since all coils are (in general terms) designed to give an adequate spark voltage (depending on the individual vehicle's compression ratio) with 300 volts on the primary winding.

Spark plug polarization: The centre electrode of a spark plug is hotter than the outer electrode under normal running conditions; if the centre electrode is negatively polarized emission takes place and reduces the plug's ionization voltage by (typically) 30%. In conventional ignition systems this is a mainly academic point, since the benefit is not available under cold start conditions (where it would be of most value), and the available spark voltage is so greatly in excess of engine needs under normal running conditions that the 30% reduction is superfluous. The majority of the world's vehicle manufacturers thus ignore the effect, and use positively polarized plugs. The point is even more academic when the C-D ignition system is used, since the secondary voltage is even more in excess of engine needs. No practical benefit will thus result from modifying the circuit to give negative polarization of the plug electrodes.

Effect of a ballast resistor: As Mr. Meadows points out, the majority of modern vehicles have a ballast resistor wired in series with the ignition coil primary. In conventional (I-D) systems, of course, the coil functions both as an energy store (it passes a typical current of 4.5 amps) and as a step-up transformer; in the energy storage mode the ballast resistor has a considerable effect on the available secondary voltage. In the C-D system, on the other hand, the coil is used purely as a step-up pulse transformer, and primary currents are relatively low; the ballast resistor thus has negligible effect on the secondary voltage, and it makes little difference to the circuit if the ballast resistor is wired in series with the ignition coil or not.

Modifying for 6 volt operation: The unit is designed for 12 volt operation only; it cannot be readily modified for 6 volt operation, and I can give no further information on this subject.

Vehicles with electronic tachometers: Many modern vehicles are fitted with electronic tachometers; in the general case, these devices will operate perfectly well if the vehicle is fitted with the C-D ignition system, but it may be necessary to modify the tachometer connections. I regret, however, that I am unable to give any practical information on this subject.

Supply of components: All components used in the C-D system are available from L.S.T. Components, 7 Copfold Road, Brentwood, Essex.

Radio interference: A great deal of correspondence has appeared in American journals recently concerning the radio interference that is generated by C-D ignition systems. Interference levels are, of course, affected by the positioning of the C-D unit, and by the type of radio aerial used. Naturally, some correspondents claim that the system gives greater interference than I-D ignition, and others claim that it gives less. The general opinion (by four to one), however, seems to be that C-D ignition gives a lower interference level than I-D ignition.

R. M. MARSTON.

In praise of capacitor-discharge ignition

I read with great interest the article by Mr. Marston on capacitor-discharge ignition in the January issue, as I had been trying, with only limited success, to make up a somewhat similar system published elsewhere several years ago. Since I had already most of the components available, I was quickly able to build up two units and have already fitted them to both my cars. I can confirm several of the author's claims regarding improvement of general performance, but in particular cold starting is outstandingly good on both cars, one having four cylinders and the other six cylinders. No doubt all the other improvements will follow.

I may be able to help other readers contemplating making up the ignition unit but who are daunted by the prospect of (a) finding and (b) re-winding a suitable transformer. From my earlier experiments I already had two ready-made transformers, namely the TT 51/A, made by Repanco and which I bought a few months ago from Henry's Radio at 32s 6d each. It is not quite capable of 400V at 12 battery volts, but is nevertheless quite suitable for the purpose. The actual output voltages range from 200V d.c. at 8V input up to 350V at 13.8V input. On a bench rig, I could achieve 4-in long sparks from an ordinary ignition coil right down to 5V input! At a nominal 12V input, the spark output, which is intense, easily jumps a 1-in gap to earth. In fact, if one motorizes the make-and-break under bench conditions, the resulting high-energy sparking causes quite a concentration of ozone in the room.

An alternative thyristor is the R.C.A type 40379, which is obtainable in small-order quantities from one of the official agents, Roberts Electronics, of Hitchin, price about 17s. The use of cheap thyristors is not, unless one is lucky enough to get a good one, worth wasting time and money on. The 40379 has the same voltage ratings as the 3525 recommended by Mr. Marston, but is possibly easier to install as it is a wire-in 'low-profile' version.

I would emphasize that the discharge capacitor(s) must have an adequate voltage rating, 600V d.c. being the minimum. A 400V unit will soon fail because of the high-voltage peaks. A final constructional note: all the circuit components, with the exception of the power transistors and the transformer, fit neatly on to a p.c.b. measuring 44 x 33in.

May I offer my thanks to Mr. Marston for his ingenious and reliable s.c.r. firing circuit, which overcame all my earlier troubles with DISCAP ignition, which, to be viable, must offer at least the same reliability as conventional ignition.

D. E. BOLTON, Seaford, Sussex.

New logic symbols?

The article on Logic Symbols in the December issue has prompted me to enquire about some new symbols which may be stronger to some of your readers.

E. A. FOULKE, Billericay, Essex.

PROPAGATE (Read it aloud): a stream of particles (sheep or cattle) emanating from a single source (or field) and broadcast in independent outputs, offering random impedance to traffic.

LYCHGATE: a number of inputs and the same number of outputs, except for one which is negated.

COW "AND" GATE: the output is measured in units of pINTAS.

A digital Christmas tree

I was very interested to see the circuit of the pseudo-random sequence generator which was described in the January issue of the Wireless World (page 35). I recently constructed a similar unit using SGS RTX L elements (L914 in the oscillator and feedback gate, L923 in the shift register, and L900 as the clock pulse driver), and the following points may be of interest to readers.

First, it is possible to increase the number of outputs to the drivers by two by utilizing the signals which are applied to the J_A and K_A input lines of the shift register. Secondly, the unit will not
function if (on switching on) all the Q outputs are zero. This would be very unusual but it may happen; no matter what one does with the inter-connections between the flip-flops in this type of sequence generator, there will always be one code combination which "locks", and if this is allowed to occur (as it may on switch-on) then the combination firmly refuses to budge. If this occurs, the most satisfactory solution is to employ a circuit to force (at the instant of switch-on) one of the flip-flops to generate a logic 1 signal at Q output terminal. One possible way of achieving this end is shown in the accompanying figure.

N. M. MORRIS,
North Staffordshire Polytechnic,
Stoke-on-Trent.

Measuring crossover distortion

Mr. Gordon J. King's letter in the October issue states that it is impossible to measure an amplifier's non-linear distortion at low output levels because of the masking effect of residual noise. This is untrue for the orders of noise level and harmonic content cited in his letter.

The "conventional" method of measurement that he refers to (more commonly known as distortion-factor measurement) is essentially a measurement of total impurity rather than of harmonic content alone, so that it is not the most suitable method for assessment of crossover distortion.

Distortion factor may be defined as the ratio between the r.m.s. sum of the impurity components and the r.m.s. value of the total signal; i.e.,

\[
DF = \sqrt{N^2 + D^2} / S
\]

where \(S \) is the total signal voltage, \(N \) is the noise voltage, and \(D \) is the r.m.s. sum of the harmonic voltage components. Clearly the total harmonic distortion is calculable if the noise level is known. \(D/S\sqrt{N^2} = (N/S)^2 \). In practice, however, measurement errors become very significant if the noise exceeds the harmonic distortion level by more than about 3dB.

But, as Mr. King states, most of the noise output is amplified noise originating in the early stages; so why does he base his argument on measurements made with the gain control set to maximum? Crossover distortion is entirely a function of the output stage, and, provided earlier stages are not overloaded, there is no reason why the tests should be made at maximum gain.

Applying sufficient test signal input to produce the rated output at full gain, and then turning back the volume control to reduce the output power to 10mW, would reduce the noise together with the signal. The full-power signal-to-noise ratio would be retained at the low level, and a reasonably accurate assessment of the non-linearity could be obtained from a distortion factor measurement. With a signal-to-noise ratio of only 57dB, 0.1% distortion could easily be measured, provided the necessary calculations were made.

The normal test method in a well-equipped laboratory, however, would be that of harmonic analysis; i.e., measurement of each harmonic separately with a wave analyzer.

A good quality wave analyzer normally has a 3dB bandwidth less than 10Hz. This approximates very closely to its noise bandwidth. Since the total noise bandwidth of the amplifier is likely to be at least 30Hz, the noise power in the measurement channel would be some 35dB less than the total noise power. Thus, even if the overall signal-to-noise ratio at the measurement level were as low as 40dB, individual harmonics of less than 0.1% of the fundamental could easily be measured with negligible error from noise interference.

An even more revealing test would be an intermodulation analysis, using a two-tone test signal. For it is surely the intermodulation products that offend Mr. King's sensitive ear rather than the harmonics of 20kHz, which he mentions in his letter.

J. F. GOLDING,
St. Albans,
Herts.

Doctors in industry

In your editorial "Is there a doctor in the house?" you refer to a Royal Society Report entitled "Postgraduate Training in the United Kingdom, Engineering and Technology". Your readers may not be aware that this is a somewhat controversial report prepared by a group of four professors, all of whom are at one London college.

The important practical questions are the prospects for an engineer with a doctorate and the need of industry for such people, which are mentioned in your penultimate paragraph. It is clear that industry does not at present feel a real need for many Ph.Ds, but there are two factors which must be considered. The first is that a generation ago considerable sections of the engineering industry would not tolerate the employment of a university graduate, and the real needs of industry for qualified personnel are not always the same as its immediate wants. The second factor is that the purpose of taking a higher degree should be an improvement in general capability plus training in research methods (the latter is specifically quoted by the Science Research Council as the reason for giving research studentships). It is commonly thought that the effect of taking a higher degree is to narrow a man's interest to the particular specialized topic which forms the subject of his thesis. This ought not to be so, but there is little doubt that it does sometimes happen. We must all continue to be on our guard against it.

D. A. BELL,
Professor of Electronic Engineering,
The University of Hull.

Relay contact symbols

In his article on Graphical Symbols in the February issue, Mr. Amos does not comment on the fact that in his Figs. 8 and 9 the relay contacts are drawn differently from those presented in BS 3939. The British Standard (which states that it coincides with I.E.C. on this point) shows the make and the break contacts both as solid triangles. Mr. Amos shows a solid triangle for the break contact and a hollow triangle for the make contact.

The difference is of no importance if contacts are drawn only for the case where all relay coils are unenergized; there may be redundancy but there is no conflict with the British Standard. However, it is often useful when analysing a system to draw the circuit for various particular states, such as standby, forward run, etc. Here it is of great value to have this convention of a hollow triangle for the make contact so as to be able to show clearly which contacts are in the operated condition.

This is a well-known convention of long standing which for some reason has been ignored in the current edition of BS 3939. To preserve uniformity it should be defined and given in the Standard as a permissible alternative.

JAMES M. LITTLE,
Welwyn Garden City,
Herts.

The author replies:

I am grateful to Mr. Little for pointing out my oversight. To agree with BS 3939, make and break contacts should be shown as solid
Simple linear a.c. voltmeter

On page 578 of your December 1969 issue there appears an article by G. W. Short entitled "Simple Linear A.C. Voltmeter". This describes the connection of a rectifier-type meter between the collector and base of a transistor (via a d.c. blocking capacitor) for the purpose of attaining an almost linear meter scale calibration.

This proposal was made in 1962 by me and is the subject of British Patent No.1020154 granted to Creed and Co. Ltd. (now ITT Creed) on 27th June 1963. The basis of the proposal is that, if the transistor has a high enough current gain, the current in the feedback path from collector to base is substantially equal to the current flowing from the input terminal to the base, irrespective of the resistance of the feedback path, within the constraint that the d.c. supply voltage is sufficient to permit the collector potential to rise high enough to drive the current through the feedback path.

Since the current in the feedback path, for a given input current, is independent of the resistance of this path, the path can include elements whose resistance depends on current without any effect on the current value. Hence, in the arrangement described, in which the input path is of virtually constant resistance, the current in the feedback path (and thus in the meter) will be proportional at all instants to the potential applied to the input terminal, despite the concomitant variations in rectifier resistance.

There are two minor differences between the diagram in Patent No.1020154 and that shown in the article. These concern the point of connection of the base-bias resistor (to d.c. supply, or to collector, respectively) and the point of connection of the base-end of the feedback path (to R6/C, Junction, or to base, respectively). These differences have no significant effect on the principle of operation or on practical performance.

The circuit values quoted in the Specification, merely as an example for a 1 mA f.s.d. movement, were: R4 = 10kΩ, C1; 8 μF; R1, 100kΩ (chosen to give Class A conditions); R2, 10kΩ; C2, 25 μF; transistor: current gain not less than 30, meter diodes: OCM81; battery: 9 volts, 5mA drain; meter: 1 mA f.s.d.

In practical tests, this circuit provided a 10 volt f.s.d. instrument with an almost undiscernible deviation from linearity, usable also for any multiple of 10 volts without change of scale. By change of resistor R1, a 1 volt f.s.d. is attained in which the non-linearity is less than that normally associated with a 40 volt f.s.d. rectifier voltmeter. Further, by use of a lower value of R1, a 100 mV f.s.d. is attained in which the non-linearity is only about as much as is normally associated with a 5 volt f.s.d. rectifier voltmeter.

The upper frequency limit of use is set by the transistor and diodes and stray capacitances, while the lower frequency limit is set by the capacitors. It is interesting to note that to a significant extent the increasing impedance presented by C1 as the frequency drops is catered for in the same way as variation in d.c. resistance change. If electrolytic capacitors are used the leakage of C1 must be watched, particularly if the alternating potential to be measured is riding on a d.c. component. It will be necessary to ensure that such a d.c. component polarizes C1 in the permitted sense, or that C1 is of the reversible type.

FREDERICK P. MASON, ITT Creed, Burgess Hill, Sussex.

The author replies:

I wasn’t aware of Mr. Mason’s patent: all honour to him for thinking of it first. He does well to point out the danger of depolarizing C1. This component is to be regarded in my voltmeter, as a device for keeping the right d.c. conditions at the base of the transistor rather than a d.c. block to external potentials. For many applications an extra capacitor will have to be added temporarily, or the design modified by substituting a non-polarized capacitor of adequate working voltage. The value of R1 in Mr. Mason’s circuit should, presumably, be 1kΩ, since 10kΩ would absorb too much voltage. Placing C1 inside the feedback path has the advantage of extending the I.f. response. Connecting R1 between base and collector makes it unnecessary to adjust the value, if a close-tolerance transistor is used and some slight deviation from optimum d.c. conditions is permissible. C1 must not present too high an impedance at the lowest frequency of interest, because although the feedback will maintain the response to I.F. signals the risk of peak clipping increases as the impedance of the feedback path increases.

Finally, may I correct a printer’s error in the design data in my article? Step (4) should read: R3 = (VCC - VCE0)/C1.

G. W. SHORT.

The engineer in State and private enterprise

Contrary to what Mr. Clarke suggests in his letter in the February issue, I have not found that whether a person is an engineer or a technician has much to do with his quality as a person or as an employee. I have known many chartered engineers who do not appear to be able “to apply their training to the solution of any engineering problem”, and are only moderately expert in a few special techniques. In contrast to this, I find that the well-trained technician with a broad-based education is often extremely adaptable, and is capable of using his training to approach new technical problems with a confidence and lack of conservatism that would be a credit to any chartered engineer.

Perhaps some chartered engineers are “loyal”, “outspoken” and “obstinate”. The choice of words is curious. I would prefer to hear a good technician, or an engineer for that matter, described as dedicated, reliable or dependable in his work, and tenacious and resourceful in solving problems in his work. I would expect that he would go about his business quietly, and that his standard of social and ethical conduct would be no worse than that of any other section of the community. What differentiates the engineer from the technician is the “nature” of his employment and training, and not the extent to which he is a specialist. It is a serious fault in the order of society that academic achievement continues to be confused with personal quality and high moral calibre. Thus the question of social and ethical standards is irrelevant and ought not to arise.

The question of specialization, on the other hand, is important, as it bears heavily on the kind of training needed by engineers and technicians alike. Insofar as bona-fide technician courses are concerned, I can assure Mr. Clarke that specialist techniques occupy only about 10% is the syllabus within a five-year part-time course. I suspect that this is a smaller proportion than in a typical engineers’ training course.

If more lecturers in technician courses would put away their engineering notes and if more prominent senior technicians with vision and insight into a technician’s training needs were consulted at the syllabus writing stage then I see no reason why future technicians should not be every bit as broad-based as the best of engineers. Perhaps it is not too much to hope that this is what Dr. Hazelgrave’s committee had in mind.

A. J. SARGENT, Carshalton, Surrey.
Swings and Roundabouts

A bottoms up (meaning fundamental) view of the LC circuit

by Thomas Roddam

We have seen in a previous article ("Time", February 1970 issue) that an examination of the way in which current flows in a circuit consisting of one resistor and either one capacitor or one inductor leads us to a simple equation:

\[\frac{dy}{dt} = -\frac{1}{\tau} y \]

This is the defining equation of a function which turns out to be the exponential function and which, we may as well note now, is defined for all values of the constant \(\tau \).

At this stage of our studies we need to keep things simple. The object is, in case you have forgotten, to look fairly closely at some of the concepts we take for granted. We can stick to only two circuit elements by considering a circuit containing only inductance and capacitance. It is not tremendously important how we get charge moving in this circuit, but the arrangement of Fig. 1 will, I hope, lead us to a differential equation rather than an integral equation.

The current source, a high voltage and high resistance, has set up a current \(I = I_0 \) through the inductor before we start. The contact \(S_2 \) is closed, so that there is no charge on the capacitor. And now, at time \(t = 0 \), we open \(S_2 \) and close \(S_1 \), leaving the LC circuit isolated. The current in the inductor continues to flow: nothing has yet shown cause why it should not. Thus current flows into the capacitor. Now:

\[\frac{dV}{dt} = \frac{I}{C} \]

The appearance of \(V \) is a reason why \(I \) should change, and since \(V \) will be growing in the sense which opposes the current

\[\frac{di}{dt} = \frac{V}{L} \]

We differentiate this to get

\[\frac{d^2i}{dt^2} = \frac{1}{L} \frac{dV}{dt} = \frac{1}{LC} I \]

If we had chosen a different approach, the integral equation approach, we should have needed to take the boundary conditions in at this stage. They are special to the starting situation and much better forgotten for the moment. We can write this equation conveniently as

\[\frac{d^2i}{dt^2} = -K^2 i. \]

Now we start guessing, or, as it is expressed more elegantly, we use the heuristic method of solution. With \(L \) and \(R \) we get an exponential function: with \(C \) and \(R \) we get an exponential function: with \(L \) and \(C \), if there is any justice we should get an exponential function, or, perhaps, a pair of them. So we write:

\[I = \exp mt \]

giving

\[\frac{dl}{dt} = m \exp mt \]

\[\frac{d^2l}{dt^2} = m^2 \exp mt \]

Comparison shows that this works, provided

\[m^2 = -K^2 \]

Don't make a dash for freedom by writing

\[m = jK, \]

where \(j \) is the well-known square root of \(-1\). (If you use \(j \) you are a mathematician and have no business here.) \(m = -jK \) is also satisfactory. We keep both forms, since both are good, writing

\[I = \exp(jKt) + \exp(-jKt) \]

There are some constants to be slipped in, the constants which disappear when you differentiate. These represent, in plain language, the range of the meter used for monitoring \(I \) and the time interval between operating the switches and starting the clock. We shall be just as much in need of extra constants if we write:

\[I = \frac{1}{2}[\exp(jKt) + \exp(-jKt)] \]

Let us substitute \(\xi = Kt \). Then we have an expression

\[\{\exp j\xi + \exp -j\xi\} \]

of which I find Hardy (Pure Mathematics, p. 415) saying: "We are therefore naturally led to adopt the formulae (1) (that is this expression) as the definition of \(\cos \xi \) for all values of \(\xi \)." This means that \(\xi \) may be real or complex. So now

\[I = \cos(Kt) = \cos \left[\frac{t}{(LC)^{1}} \right] \]

The conclusion we reach is that the cosine function is the function which is produced by an LC circuit swinging away free. There is, however, an important extra feature which is left out in the beginners' account of this circuit. We have kept matters just formal enough to include the possibility of \(K \) being a complex number.

We saw that \(CR \) is a time, and \(L/R \) is a time, so quite clearly \((CR, L/R) \) is a time, too. The final form of our current equation is therefore

\[I = \cos \left(\frac{t}{\tau} \right) \]

and we have, for the LC circuit, a time constant \(\tau = (LC)^{1} \).

At this point I feel some sympathy for the young man who once explained to me why he could not design the aerial system I wanted. He agreed that it was described by certain mathematical functions, but, he said hotly: "There's no function theory, only tables." It is not necessary to go through the theory, but it can be shown that for this general function \(\cos \xi \), the ordinary equations of elementary trigonometry still hold. Cheating slightly, because there is an exponential definition,

\[\sin \xi = -\cos(\xi + \pi/2) \]

and

\[\cos \xi = -\sin(\xi + \pi/2) \]

so that

\[\cos (\xi + \pi) = -\cos \xi \]

and

\[\cos (\xi + 2\pi) = \cos \xi \]

With this in mind, we write \(1/\tau = f \), and

\[2\pi f = \omega \quad f = 2\pi t \]

Finally, then, the old familiar

\[I = \cos (\omega t') \]

Looking back, we have an equation

\[V = -L \frac{di}{dt} \]

and making use of what we have shown, and the familiar ordinary equations we get:

\[V = L \sin (\omega t') \]

Again a familiar result: we are not worrying about scale constants, and we can see that for shape

\[I_t = \cos (\omega t') \]

\[= \sin (\omega t' + \pi/2) \]

\[= V \sin (\omega t' + \pi/2) \]

\[= V \sin (\pi + \omega t') \]

and so on.

Fig. 1. At time 0, \(S_1 \) is closed and \(S_2 \) opened.

www.americanradiohistory.com
V reaches a maximum when I is zero: I is a maximum when V is zero, and since energy must be conserved (for sines and cosines go on for ever)

\[L_{\text{max}} = CV_{\text{max}} \]

Also, from the equation

\[\cos^2 x + \sin^2 x = 1 \]

\[LI^2 + CV^2 = \text{const.} \]

There are several ways in which the practical engineer must concern himself with the facts revealed by this analysis. First of all, what is happening is that energy is stored by the inductor and the capacitor in the way that one holds a hot chestnut, tossing it from hand to hand. We get a similar situation in some active RC systems, where we have two stores, here both capacitors, with an active element to restore the energy lost in the shifting process. This turn and turn about arrangement, in one sense, gives the "tuned circuit" behaviour. There is, however, another way of considering active circuits which we must leave until later.

A second "practical" point is this: for about one-quarter of the characteristic time most of the energy is stored in element \(A \); for the next one-quarter in element \(B \), and then back again. This energy may be considerable, but I am not sure that we know enough yet to do the calculations.

Perhaps the best next step is to find a new function. We have the exponential and the cosine, produced by using two elements at a time. Now let us take three elements, in the circuit of Fig. 2. As before, we get a current \(I_0 \) flowing before we start, and then close \(S_1 \) and open \(S_2 \). As before,

\[\frac{dV}{dt} = \frac{1}{C} \]

Now, however, the voltage drop across the resistor will help to reduce the current through the circuit, and so, of course, will any voltage across the capacitor.

\[L \frac{di}{dt} = -RI - V \]

Thus

\[V = -L \frac{di}{dt} - RI \]

and

\[\frac{dV}{dt} = - \frac{di}{dt}^2 - R \frac{di}{dt} \]

giving the equation:

\[\frac{d^2i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{1}{LC} = 0 \]

Guessing \(i = \exp mt \) we get

\[m^2 + \frac{R}{L} m + \frac{1}{LC} = 0 \]

cosine function I did not include his definition of \(\sin \). In fact,

\[\cos \zeta = \frac{1}{2} (\exp (\zeta t) - \exp (-\zeta t)) \]

and

\[\sin \zeta = -\frac{1}{2i} (\exp (\zeta t) - \exp (-\zeta t)) \]

and

\[\cos \zeta + j \sin \zeta = \exp (\zeta t) \]

The basic signal which we use to test our circuit is, reasonably, \(V = V_0 \sin \omega t \), or equally, reasonably \(V = V_0 \cos \omega t \). If we apply a combination of these two signals together, \(V = V_0 (\cos \omega t + j \sin \omega t) \) we can write for our inductor

\[L \frac{di}{dt} = V_0 \exp (j\omega t) \]

and so, in fact

\[I = \frac{V_0}{\omega L} \exp (j\omega t) = \frac{V}{\omega L} \]

That \(j \) in \(\frac{V_0}{\omega L} \) is not really there, you only imagined it. However, this is not a lot of airy-fairy nonsense. There are some pretty real implications. As a simple example, we have seen that the mathematics of the LC circuit throws up a time constant \((LC)^{\frac{1}{2}} \), which we write as \(1/\omega \). But in fact the solution is not just one angular frequency \(\omega \), but two, \(+\omega \) and \(-\omega \). In many modulator problems we find that if we forget the \(-\omega \) term we finish up with some unwanted products in the working frequency band. These products arise from the simple fact that \(\cos (-\omega t) \) looks just the same as \(\cos (\omega t) \) to the load.

The choice of \(\exp (j\omega t) \) is, in a way, a simplification, a throwing away of one of the frequencies, \(-\omega \), which the natural circuit demands. The price paid for this simplification is that at the end of the day we must pay the bill by taking the real part of the solution. The important thing is that you do not need to pay until the end of the day, and very often you do not realize that you have paid at all.

Let us consider the circuit made up of resistance and inductance in series. Norma lly we just write down the impedance

\[Z = R + j\omega L \]

If we force a current \(I \) through this, we get a voltage \(V = ZI \) across the terminals. Now,
if we write R.P. on the slate, and
\[I = I_0 \cos(\alpha t + \sin(\alpha t) = I_0 \exp(j\alpha t) \]
\[V = V_0[R \cos(\alpha t) + jR \sin(\alpha t) \]
\[+ j\omega L \cos(\alpha t) - \alpha L \sin(\alpha t) \]
\[= I_0[R \cos(\alpha t) - \alpha L \sin(\alpha t) \]
\[+ (jR \sin(\alpha t) + \alpha L \cos(\alpha t)) \]

Here we pay the real part bill and say
\[V = I_0[R \cos(\alpha t) - \alpha L \sin(\alpha t) \]
\[= I_0(R^2 + \omega^2 L^2)^{1/2} \times \]
\[\frac{R}{(R^2 + \omega^2 L^2)^{1/2}} \cos(\omega t) - \frac{\omega L}{(R^2 + \omega^2 L^2)^{1/2}} \sin(\omega t) \]
\[= I_0 \left(R^2 + \omega^2 L^2 \right)^{3/2} \cos(\omega t + \phi) \]

where
\[\cos(\phi) = \frac{R}{(R^2 + \omega^2 L^2)^{1/2}} \]
\[\sin(\phi) = \frac{\omega L}{(R^2 + \omega^2 L^2)^{1/2}} \]

We need not have put in this real part step, if we had started with
\[I = I_0 \exp(j\alpha t) + \exp(-j\alpha t) \]

Then the terms \(\cos(\alpha t) \) and \(\omega \sin(\alpha t) \) would have remained. But
\[\sin(\alpha t) + \sin(-\alpha t) \]
and
\[\omega \cos(\alpha t) + \omega \cos(-\alpha t) \]
both vanish, eliminating the imaginary part automatically. The use of the real part operation simply enables us to cut our expressions down in size while we are manipulating them.

At this stage we can summarize our results so far as revealing to us the idea of a characteristic time, or time constant, for RL or RC circuits, a characteristic frequency, \(1/\sqrt{LC} \), for LC circuits, which is actually a frequency pair, \(\pm \omega_0 \). For the RL circuit we have a rather more complicated looking characteristic frequency pair, \(\pm (\alpha - j\omega L/2L) \). The rather special behaviour of the pure LC circuit has the practical advantage that since it goes on and on it is very convenient for circuit testing. If we choose to make use of this special case we get some rather simple concepts, like reactance, with nice simple expressions like \(R + j\omega L \). We evolve procedures which enable us to dodge, most of the time, the debt we owe for this simplicity. Fourier analysis and the superposition theorem justify us, in general terms, but philosophically it is a bit thin. A single pure tone is meaningless. Its message is zero. One hundred such tones together: one hundred times nowt, in my part of the world, is still nowt. One might say that it is the small print well along in the Fourier series which really carries the information which matters.

I am labouring this point because I feel that the experimental and theoretical simplicity of the sine-wave analysis tend to turn it into a closed technique. You get to this point, you can bash away with the \(\cos(\alpha t) \) terms and watch the pretty sine waves on the scope, and there it all is. All there is to stop you is the sheer labour of handling the long expressions you get with a dozen or so mixed circuit elements. If you regard it as a closed technique you need a lot of mental energy to break out of the circle. Your elders and betters knew this and made "Don't fence me in!" their theme song.

Implicitly we have been assuming that \(R \) was the resistance of an ordinary passive resistor. When this is so, the closed circle of sine-wave users is justified, because with any other waveform, or almost any other, the transient at \(t = 0 \), the time we switch on, may dominate the behaviour until the decaying drive is too small to be useful for measurement. If, however, we make \(R \) a negative quantity, by tricks with active elements, we get a signal which grows exponentially out of the inherent circuit noise. Behaviour under these conditions may be studied more easily by using the complex frequency concept.

In the end, however, the real point is that the complex frequency concept is just the beginning of a whole field of circuit studies. It is to this subject that I shall turn in another article.

Test Record for Audio Systems

Stereo test record HFS69, available from the Haymarket Publishing Group, enables distinctions to be made between various grades of pickups and loudspeakers, and also provides a means of determining the side-thrust adjustment and minimum tracking weight of a pickup. There are ten tracks. The first side has five listening tests including white noise and applause, and the second side has more advanced tests—some for use with an oscilloscope. Price 30s plus 2s 6d postage.

Haymarket Publishing Group, 9 Harrow Road, London W.2.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses.

LONDON

Mar. 2-5 Alexandra Palace
 Physics Exhibition
 (I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. 10-12 Camden Town Hall
 Sound '70 International
 (Association of Public Address Engineers,
 394 Northolt Rd., South Harrow, Middlesex.)

Mar. 17-19 Savoy Place
 Electrical Methods of Machining,
 Forming and Casting
 (I.E.E., Savoy Pl., London W.C.2)

BRIGHTON

Mar. 2-6 Exhibition Halls
 Engineering Design Show
 (Business Conferences & Exhibitions,
 Mercury House, Waterford Rd., London S.E.I)

CAMBRIDGE

Mar. 19-22 Churchill College
 Television Tomorrow
 (Royal Television Society, 16 Shaltesbury Ave.,
 London W.C.2)

CRANFIELD

Mar. 23-26 College of Aeronautics
 Aerospace Instrumentation Symposium
 (N. O. Matthews, Dept. of Flight, College of
 Aeronautics, Cranfield, Beds.)

EDINBURGH

Mar. 17-20 The University
 Management and Economics in the
 Electronics Industry
 (D. J. T. Williams, Ferranti Ltd., Ferry Rd.,
 Edinburgh)

OVERSEAS

Mar. 5-10 Paris
 Audio Festival
 (Fed. Nat. des Ind. Electroniques,
 16 rue de Presles, Paris 15)

Mar. 11-13 Zurich
 Digital Processing of Analogue Signals
 (E. H. Rothauser, I.B.M. Research Lab.,
 Zurich)

Mar. 11-13 Washington
 Scintillation and Semiconductor
 Counter Symposium
 (Louis Costrell, Radiation Physics Inst. Section,
 N.B.S., Washington, D.C. 20234)

Mar. 17-19 Freiburg
 Field Effect Transistors
 (H. H. Burghoff, Stresemann Allee 21,
 6 Frankfurt/Main)

Mar. 18-21 Nairobi
 Electro 70 Show
 (Electronics Institution of East Africa,
 P.O. Box 9690, Nairobi, Kenya)

Mar. 23-26 New York
 I.E.E.E. Convention & Exhibition
 (I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

"Wireless World" Index

The Index to Volume 75 (January-December 1969) is now available price 2s 6d (postage 4d). Cloth binding cases with index cost 11s 6d, including postage and packing. Our publishers will undertake the binding of readers’ issues, the cost being 40s per volume including binding case, index and return postage. Copies should be sent to IPC Business Press Ltd., Binding Department, c/o 4 Iliffe Yard, London S.E.17, with a note of the sender’s name and address. A separate note confirming despatch and enclosing the remittance, should be sent to the Binding Department, Dorset House, Stamford Street, London S.E.1.
Ferrograph F307 stereo amplifier—
the heart of
great Hi-Fi

F307 is an integrated Stereo Amplifier, built in a tradition of excellence and extremely versatile in its capabilities.

It presents a clean uncluttered appearance, conforming very closely with the Series Seven Recorder in this regard. Only its main controls appear on the panel—all subsidiary controls being housed beneath a hinged extruded aluminium flap.

F307 delivers power output of 20 watts RMS per channel into a load of 8 ohms and has a total harmonic distortion of less than 0.25%, at 1kHz at all levels up to its rated output.

Your Ferrograph dealer will be pleased to demonstrate F307 to you. When planning your Hi-Fi system, this is an Amplifier to which the most serious consideration must be given and its Manual makes informative and compelling reading.

Ferrograph Co. Ltd.
Telephone: 01-589 4485

To The Ferrograph Co. Ltd.
Please send me FREE details of the Ferrograph Stereo Amplifier F307
OR send me the F307 Manual for which I enclose 5s 6d post paid
Name.
Address.

WW—071 FOR FURTHER DETAILS
The light heavyweight champion wins on points

Solartron's light heavyweight champion, the CD1642, is a natural-born winner.

Look at its advantages.

Fully transistorised portability, running off every power source you use, with an optional rechargeable battery attachment too.

And you lose nothing in full-size lab. 'scope performance. It has 10 mV/cm sensitivity at 15 MHz, triggering to 25 MHz, dual trace, D.C.—15 MHz, brilliantly crisp displays and exceptional focus right to the edges.

And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance.

So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.
Simple Active Filters

Design procedure

by M. Bronzite, B.Sc.

In recent years there has been much work on low-frequency active filters using twintee, op-amps, n.i.c.s, and gyrators. For all of these, the calculation of the necessary frequency selective components can be tedious, and some knowledge of filter theory is desirable in order to match the chosen type of filter to the particular requirement. It is, perhaps, time to re-examine a simpler structure using unity-gain amplifiers\(^1\)\(^-\)\(^2\), which lends itself to rapid design without the use of precision components, yet is stable and may be readily "bread-boarded".

This design of a low- or high-pass filter will rely on evaluating three dependent variables, any two of which may be used to determine the third: (1) the pass-band ripple (in dB), which constitutes the variation in output over the whole of the pass-band with a constant amplitude input; (2) the reject-band attenuation, one useful measure of this being the attenuation one octave away from the pass-band limit; and (3) the order of the filter \(N\) which is the number of filter elements required to achieve a given performance. Given, say, (1) and (2), this article will describe how the rest of the design may be accomplished.

The filter itself consists of simple units which are added together to provide the required complexity, and these units are shown in Fig. 1 along with the pertinent design equations. With types (a) and (d) the first set of components \((R_1,C_1)\) may be designed independently of the second set \((R_2,C_2)\), whereas in types (b) and (e) the series elements are equal in value, giving an advantage of one less active element being used at the cost of reduced component flexibility. Due to the amplifier isolation, each unit can be considered without regard to the requirements of other units and can even be separated from them by intervening linear circuitry without degrading the overall performance. In many cases, a value of \(C\) is chosen and the value of \(R\) is calculated on the grounds of restricted capacitor availability, and this tends to favour the use of units (a) and (e) for low- and high-pass filters respectively, since (b) requires two capacitor values and (d) requires two amplifiers. The unity gain amplifiers can consist of any available active element with a gain of 1 ± 0.005 assuming the filter performance is not required to be too stringent. (Naturally, a very "tight" specification would demand both precision components and an accurate amplifier.) Thus op-amps and emitter followers are of immediate application but some care must be taken with the design of source and cathode followers since their transmission characteristics can be significantly less than 0.95. The drive capability will depend on the source and load presented to the amplifier, i.e., using unit (d) from Fig. 1, if \(R_2\) is much larger than \(R_1\), then a Darlington pair would be used for the second amplifier, but if \(R_2\) is very roughly equal to or smaller than \(R_1\), then a simple emitter follower is suitable.

Now a filter pass-band limit may be defined as either the frequency at which the output has diminished by \(m\) dB \((f_m)\) or the frequency where it has diminished by 3 dB \((f_{3dB})\) and obviously the attenuation in the first octave after this point will depend on which criterion is chosen. In the latter case, the filter performance is related to \(f_{3dB}\) and it is necessary to generate the equivalent value of \(f_m\) in order to apply the design equations given in Fig. 1. This is done by means of a coefficient \(\beta\) which is given in Table 3 for various values of ripple and order of filter, and the appropriate conversion equations are appended to the table. The calculation of \(\beta\) itself is derived from ref. 3.

The only matter outstanding to finish the design is the value of \(T\) and this is given in Tables 1 and 2, with an outline of its derivation given in the appendix. The tables contain nine groups of figures of which the first eight generate a Chebychev response \((m=0)\) and the last one generates a Butterworth response \((m=0)\) and \(f_m=f_{3dB}\). The figures quoted in the attenuation column cater for the two different cases discussed above, and it would seem practical to use the first when \(m\) is large and the second when \(m\) is small. In any case, these attenuation figures were extrapolated from graphical sources\(^1\),\(^4\),\(^5\) and can only be considered as approximate with a maximum error of \(±5\%\) on the quoted figure. While on the subject of attenuation it should be recalled as a rough rule of thumb that all the filters have a roll-off of 6N dB/octave after the first octave. Thus a five element 1 dB low-pass filter with a pass-band limit of 1 kHz will be 1 dB down at 1 kHz, 65 dB down at 2 kHz (from Table 1), 75 dB down at 3 kHz (from Table 1), 85 dB down at 10 kHz (from Table 1), and 90 dB down at 30 kHz (from Table 1).

Fig. 1. Block configurations.

Equations

- For low-pass filters: \(\frac{R_2}{C_2} = \frac{T}{f_{3dB}}\)
- For high-pass filters: \(\frac{R_1}{C_1} = \frac{T}{f_{3dB}}\)

Tables

- Table 1: Values of \(T\) for various attenuation levels
- Table 2: Values of \(f_{3dB}\) for various filter frequencies
- Table 3: Conversion from \(f_{3dB}\) to \(f_m\) for various ripple and order conditions

at 4 kHz (4.5 - 6.5), and so on. For more accurate figures, refs. 1 and 4 may be consulted, although the values given in the tables will be found adequate in the majority of cases.

Having covered the process of design, two examples will be given to illustrate the approach. The first concerns a low-pass filter with a maximum permitted in-band variation of 2% \(f_m = 4.5 \) kHz, and the first octave attenuation must be in excess of 50 dB. Now \(f_2 \) is approximately 0.2 dB so \(m = 0 \). Examination of Table 1 gives a value of \(N = 6 \) for 52 dB of attenuation. Moving to Table 3, for the given values of \(m \) and \(N \) it is found that \(\beta = 1.093 \), and in turn gives \(f_n = 4.5/0.93 = 4.2 \) kHz. Returning to Table 1, \(T_1 = 0.69383 \) for the first Double... and the rest of the design is straightforward, having agreed on which unit to use. The second example will be worked out in full and consists of a high-pass filter with a pass-band ripple of less than 2% \(f_m = 100 \) Hz, and 50 Hz rejection must be better than 35 dB. Selecting \(m = 0.5 \) (6%) gives the required order as \(N = 5 \) with 42 dB attenuation. It was arbitrarily decided to use a 0.1-\(\mu \)F capacitor throughout, and the filter would consist of two \((e)\) units with one \((f)\) unit. Thus, with \(T_r \) selected from Table 2, for the first unit, \(D_1, R_1 = 0.0356 (2 \times 0 \times 10^{-6} \times 100) = 1.78 \) k\(\Omega \), \(R_2 = 2 \times 0.0736 (0 \times 10^{-6} \times 100) = 14.72 \) k\(\Omega \); for the \((f) \) unit \(R = 0.0577 (2 \times 0 \times 10^{-6} \times 100) = 4.66 \) k\(\Omega \), \(R_2 = 2 \times 0.129 / (0 \times 10^{-6} \times 100) = 25.8 \) k\(\Omega \); and for the \((e) \) unit \(R = 0.0577 (2 \times 0 \times 10^{-6} \times 100) = 5.77 \) k\(\Omega \). The final circuit is shown in Fig. 2 where the resistors are 5% and the capacitors 10% tolerance. As this is a high-pass filter it is a good practice to decouple the h.f. lines, although it is hardly ever necessary for the low-pass circuits. The performance is shown in Fig. 3, and owing to the use of a relatively high distortion input signal there was some 2nd harmonic breakthrough below 30 dB which reduced the effective accuracy of measurement.

With the design established, some of the limitations of the filter will now be discussed and these should be borne in mind when considering a given filter for a given application. In the first place, no mention has been made of the pulse response of these filters and in general it can be said that the higher the ripple, and the higher the order, the more the overshoot on the output to a square-wave input. Where the matter is critical then Thomson filters\(^6\) should be used, and using say, the values given in ref. 7, and applying the method given in the Appendix, values of \(T_r \) suitable for a maximally-flat delay filter may be readily found. On a more mundane subject care must be taken that the input amplitude does not approach that voltage h.t. supply. Hence one method of reducing the problem is that emitter followers will have a large variation in output current (this can be minimized by using constant-current generators as emitter loads), amplification occurs in the heart of the filter, especially near the pass-band limit, which is not seen either at the input or output. Again the higher the ripple, and the higher the order, the more the gain, and in practice, gains in the order of 6 dB or more may be encountered. However, an empirical approach will soon establish the extent of the problem and the permitted input levels for a given supply may be easily found. The choice of active element will depend to a certain extent on the frequency of operation envisaged. At the v.h.f. end, in order to keep the size of capacitors to reasonable proportions (and with exact requirements it is far easier to obtain low value precision capacitors), Darlington pairs of f.e.t.s should be used which permit resistors in excess of 10 M\(\Omega \). At the h.f. end, high \(f_s \) transistors permit reliable operation up to, say, 10 MHz, in direct contradistinction to op-amp filters where 100 kHz represents a sensible limit. With this range, and using high density packaging for the active elements, video band-pass amplifiers without transformers or chokes become a distinct possibility. Again, d.c. offsets may dictate the selection of components; e.g., in a digital filter where

TABLE 1

<table>
<thead>
<tr>
<th>Ripple order</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>value</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 1</td>
</tr>
<tr>
<td>3</td>
<td>0 2 2</td>
</tr>
<tr>
<td>4</td>
<td>0 3 3</td>
</tr>
<tr>
<td>5</td>
<td>0 4 4</td>
</tr>
<tr>
<td>6</td>
<td>0 5 5</td>
</tr>
<tr>
<td>7</td>
<td>0 6 6</td>
</tr>
<tr>
<td>8</td>
<td>0 7 7</td>
</tr>
<tr>
<td>9</td>
<td>0 8 8</td>
</tr>
<tr>
<td>10</td>
<td>0 9 9</td>
</tr>
<tr>
<td>11</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

Fig. 2. Circuit of filter (see text).
and the expressions are related to the angular frequency \(\omega = 1 \), and must be converted to \(f = f_0 \), giving

\[
\begin{align*}
t_1 &= \frac{1}{2(2a/b)} \\
t_2 &= \frac{a}{2(ab)} \\
&= a/b
\end{align*}
\]

i.e.,

\[
(\frac{R_1}{f_0}) = \frac{T_1}{f_0}\text{, where } T_1 = 1/(2a)\]

and \(R_2 = f_0/2\text{, where } T_2 = a/(2b)\)

REFERENCES

News of the Month

Mediator cleared for take-off in 1971

Mediator, the computer-assisted air traffic control system, will go into service at West Drayton (West London) early in 1971 and will replace existing facilities now being used at Heathrow airport.

Following the publicity given to the recent near collision of two aircraft the press were invited to have a look at the preparations being made for Mediator, and other a.t.c. systems, at the College of Air Traffic Control and the Air Traffic Control Evaluation Unit at Bournemouth airport.

Arnold Field, director of the National Air Traffic Control Service, likened a.t.c. to a high-speed game of three-dimensional chess. The magnitude of the problem, discussed in Wireless World (Nov. 1969, p.511), was vividly demonstrated in a speeded up film of a radar display covering the London area. Incoming, outgoing and over-flying aircraft looked like a swarm of angry bees round a jam-pan.

At the present time controllers from Heathrow are being brought to Bournemouth for a course in using the Mediator system. The method employed to realistically simulate air movements during these courses is of great interest. However, the simulator is not only used for teaching, it was, and still is being, used in evaluating and developing Mediator procedures.

The simulator consists of three distinct sections: a Ferranti 1600 Hermes computer, the “pilots” who have alphanumeric displays and key boards, and the trainee controllers who have a radar display of the area they are covering. The computer drives the “pilots” alphanumeric displays and the controllers radar displays. Simulated r.t. communication is provided between the controllers and the “pilots”. In practice one person will act as pilot for several “aircraft”.

A program containing the detailed flight plans of up to 80 aircraft, any of which can fall into one of ten performance categories, is fed to the computer. The computer also simulates four radar stations and 500 navigational beacons; each “radar station” can consist of one primary and one secondary radar installation. The radar displays are presented to the controllers in standard form.

If left unattended the computer will fly the programmed aircraft through the airspace in accordance with the flight plans; either landing, taking-off or overflying as the case may be. The controllers get a radar picture of all the aircraft in the airspace and can contact the “pilot” of any aircraft on one of the nine available r.t. frequencies.

There are therefore nine pilot positions and one “pilot” will handle all the aircraft on a particular r.t. frequency.

The system works as follows. As soon as the program flies an “aircraft” into the controlled air space a blip will appear on the appropriate radar display in the correct position. At the same time one of forty buttons available to each “pilot” lights up. The “pilot” presses the button and an alphanumeric display gives all the details, to the “pilot” only, of the aircraft. These details include the call-sign, position, speed, height, type, etc, of the simulated aircraft. The pilot labels the button he has pressed with the aircraft call-sign. Repressing this button at any time lets the “pilot” see the current position of the aircraft he is “flying”.

As the program continues more and more aircraft enter the airspace and the computer allocates a “pilot’’’s” button for each; the particular “pilot” selected by the computer depends on the “aircraft”’s r.t. frequency. The controllers have to ensure that all the aircraft are properly spaced out and that none of the current air traffic regulations are contravened. If a hazardous situation is developing the appropriate controller contacts the “pilot” on the correct r.t. frequency in the same way as is done in real life. The “pilot” then presses the button allocated to the aircraft by call sign and obtains an alphanumeric display of the aircraft’s current situation from which he can give the information requested by the controller. If the controller requests a course or altitude change the “pilot” can feed this information into the computer via a key-board. The computer alters its program in accordance with the instructions and controls the rader and alphanumeric displays appropriately.

The system simulates accurately air traffic control problems as far as the controller is concerned and can lead to some quite heated situations. After an exercise the results of particular actions can be studied and analysed.

This is only one facet of the great variety of work being carried out at the Bournemouth establishment and airline passengers can rest assured that a large number of people are working very hard to ensure their safety.

New weather satellite

In January, almost ten years after the first operational weather satellite, TIROS-1, was launched (April 1960), the first of a new series of weather satellites, called ITOS (Improved TIROS Operational Satellite), went into orbit. Hundreds of

Controllers at work during a Mediator simulation. The equipment was used to determine which was the best site for London's third airport from an air traffic control point-of-view; Foulness came out tops.

www.americanradiohistory.com
receiving stations, belonging to many nations, are using information from TIROS transmissions for their weather forecasting services and an unknown number of amateurs, who have designed and built their own equipment, receive the pictures regularly.

The first satellite in the ITOS series, called TIROS-M, was launched using a two-stage Delta-N vehicle with six additional solid-fuel rockets attached to give extra thrust on lift-off. The rocket also carried the 39-pound amateur satellite OSCAR-5 into orbit which is described in this month's "World of Amateur Radio" section.

TIROS-M contains two distinct camera systems. The first of these, the A.V.C.S. (advanced vidicon camera sub-system), takes a series of wide-angle, high-resolution, cloud-cover pictures of the earth and stores these in a tape recorder for replay on command from a ground station. A picture sequence lasts about 48 minutes and consists of eleven pictures taken at 260 second intervals. The initiation of a picture sequence is controlled from the ground.

The second camera sub-system is called A.P.T. (automatic picture transmission), and like the A.V.C.S. takes a series of wide-angle, high-resolution photographs. Once a sequence has been started, as dictated by a ground station, up to eleven pictures, at the rate of one every 260 seconds, can be taken. The exact number of pictures taken is under the control of the ground station and a sequence may consist of between one and eleven photographs. The pictures taken by this system are transmitted at the time, i.e. in real time, and are not recorded in the space-craft. A high-persistence vidicon is employed that allows the use of fairly simple receiving equipment.

The remaining item of primary measuring equipment is a scanning radiometer which takes infra-red pictures of the earth during both day and night. Data from this sub-system is recorded on board the satellite and transmitted in real-time as well.

Secondary equipment consists of a solar proton monitor to measure proton fluxes encountered in orbit and a flat plate radio-

One of the TV cameras used in the satellite TIROS-M which is now providing weather information for the world's meteorological centres. TIROS-M was built by R.C.A. under the direction of N.A.S.A.'s Goddard Space Flight Centre.

Plotting the stars

The first machine to bring automation to optical astronomy has been installed at the Royal Observatory, Edinburgh. It is called Galaxy (General Automatic Luminosity And XY measuring machine), and was originally conceived by Dr. P. B. Fellgett, now professor of cybernetics and instrument physics at Reading University. The design and construction of the machine was entrusted to the Scientific Instrument Control Department of Ferranti at Dalkeith, now Faul Coradi Scotland Ltd, in 1965.

Astronomers have had at their disposal for many years an instrument, called a Schmidt telescope, which enables photographs to be taken of areas of the sky a few times larger than the moon. Each photograph contains the images of tens of thousands of stars and can provide a wealth of information, if that information can be extracted. Precise measurements that have to be made are the position of each star relative to the others and the brightness of the stars. Comparison of two photographs of the same area taken at different times enable angular motion, velocity and distance to be calculated. Galaxy determines the position of each star image on the photograph to within 1 micron, it measures the size of the images to within 0.25 microns and in addition it measures the density of each image.

Measurements are carried out in two distinct operations. First, in the search mode, a flying-spot c.r.t. scanner is used to determine the approximate X and Y co-ordinates of every image on a photograph; the co-ordinates are punched out on eight-hole paper tape. This search-scan is carried out by movement of both the c.r.t. spot and a carriage which holds the photograph.

For the second stage of the operation, which is the actual measurement, the system operates at a high magnification. The c.r.t. spot, which is only 1 micron in diameter, is made to scan in a spiral which is 256 microns in diameter.

Under the control of the paper tape produced in the first operation each image is brought by the carriage servo mechanisms approximately to the centre of the spiral scan. Control of the servos, which up until this stage has been digital, is handed over to the analogue signals from a photo-multiplier which “looks” through the film at the c.r.t.

If the image is not centred in the spiral there will be more light output from one side of the image than the other so the servos move the carriage until equality results. The density profile of the image is then compared with 1024 standard profiles held in a core store. The address of the matching profile together with the co-ordinates of the image centre (carriage position) within one micron are punched out on paper tape for computer analysis.

Galaxy was first switched on in June 1969 and, after a few minor modifications had been made, it has performed well since. Ferranti "Micro-spot" cathode-ray tubes are used and the carriage measuring system was originally designed by Ferranti for industrial use. The problem now is to programme a computer to make maximum use of the output from Galaxy.

It is predicted that Galaxy, as well as being of value to astronomers, will have applications in medical and industrial fields.

Omega for Q.E.2

On the introduction of the Omega I relative navigation receiver (the commercial version of the equipment designed by the Northrop Corporation for the United States Navy) the Cunard Steam-Ship Co., was one of the first to consider the possibilities of using the system. Arrangements were therefore made with the Marconi International Marine Co.,

The Omega navigation receiver fitted to the Q.E.2 which provides position fixing to an accuracy of two miles.
who market the new Omega receivers in the U.K., to install one on board the liner Queen Elizabeth 2 to enable Cunard to carry out extensive trials of the system during a number of voyages.

Following an evaluation period of several months Cunard have now decided to retain the Omega receiver for regular use in the navigation of the Queen Elizabeth 2, and have accordingly purchased the equipment from Marconi Marine.

With four shore transmitting stations currently operating, the Omega system provides full coverage of the North Atlantic and of the eastern North Pacific. The addition of four more shore transmitters, which should be in operation before the end of 1972, will give full global coverage.

I.T.T.-S.T.C.

Semiconductors forecast 44% growth in 1970

"If you don’t want to sell a product in the semiconductor business you just stop lowering the price. This is just one way of shutting down unprofitable production lines," says Joseph Hurley, general manager of I.T.T.-S.T.C. Semiconductors. In the past few years I.T.T. semiconductor companies throughout the world have undergone a major rationalization and in this country S.T.C. have shut down several lines that were not profitable or that were duplicating work done elsewhere.

As a result of these and other moves sales of the group expanded by 53% last year and I.T.T. predicted a further expansion of 44% next year.

I.T.T.-S.T.C. calculated that in the U.K. they were in fourth position as far as sales are concerned at the end of 1969 and expect to move into third position by mid-1970. The company estimate that the total sales of semiconductors in the U.K. during 1970 will be about £115m.

An interesting prediction made by Mr Hurley is that in America 25% of I.C. production by 1971 will be for the consumer market with the same sort of percentage being reached in the U.K. a year or two later.

Britain at Hanover Fair

The British contingent of electronic and electric component and equipment manufacturers will share a common stand at the forthcoming Hanover Fair (March 1-10). The exhibit, which is made up of 25 firms, is being sponsored by the British Electrical and Allied Manufacturers’ Association.

Trainee awards

The annual presentation of prizes to trainee technologists and technicians completing their final year of training with a member company of the Telecommunication Engineering and Manufacturing Association was made during the Association’s annual dinner on February 3rd. The first prize is £50 and the second £20 in each class. Prize winners in the technologist class (students who have obtained a degree or equivalent qualification or are completing their final year in a degree course) were 1st. M. W. Brown (GEC/AEI), 2nd. A. R. Riddough (Plessey Telecommunications). Technician prize winners were 1st. D. Smith (Plessey Telecommunications) and tied 2nd. R. A. Cooper (GEC/AEI) and V. W. Smith (Credo). Candidates have to write a technical essay on some personal aspect of his training or work related to the T.E.M.A. side of the activities of his company.

Film and television training committee formed

Concern in matters relating to training for film and television production has led the British Kinematograph Sound and Television Society (B.K.S.T.S.) to set up a special committee to deal with training and education. The film and television industries have no nationally recognized training schemes, nor are covered by an industrial training board.

The B.K.S.T.S. Education & Training Committee will be concerned with varying requirements over a wide range of operations throughout the industry. Activities of the Committee will include the appraisal of existing training schemes, investigation into the present and future needs of employers, the giving of advice and information, and the possibility of introducing professional qualifying structures.

New names for SI units

Two more famous scientist/engineers of the past, Siemens and Pascal, are honoured in suggestions for short names for SI (Système International) units of measurement. The name siemens (symbol, S) is proposed for the unit of conductance, and the name pascal (symbol, Pa) for the newton-per-square-metre unit of pressure. These are being put forward by an advisory body on units for consideration by the International Committee for Weights and Measures (C.G.P.M.).

Electronic information service

INSPEC, the I.E.E.’s information service in physics, electrotechnology and control, has introduced a service which will provide selected information on electronic literature published in English (including translations). Called S.D.I. (selective dissemination of information), the service will give information on only the new literature which is of interest to the particular subscriber (£45 per individual or £65 for a group).

For the last year the I.E.E. has operated an S.D.I. service to 600 research and development workers as part of an information research project which is supported by the Office for Scientific and Technical Information. The service proved so successful that it has now been made generally available a year earlier than was originally planned.

The amount of material available to the service is being expanded as a result of a new agreement between the I.E.E. and the I.E.E.E. in which an exchange of information from the institutions’ "data pools" is to take place. Readers interested in the service should contact: The Manager, INSPEC SDI Investigation, I.E.E., 26 Park Place, Stevenage, Herts.

Physics exhibition

The Physics Exhibition is to be held from the 2nd to the 5th of March at Alexandra Palace, London. Tickets may be obtained from The Exhibitions Officer, Institute of Physics and the Physical Society, 47 Belgrave Square, London, S.W.1, price 5s each.

Faraday lecture "down under"

The 1968 Faraday Lecture, entitled "Microelectronics", which was presented in the U.K. by the I.E.E., is to be given in Australia under the auspices of the Institution of Radio and Electronic Engineers of Australia in conjunction with Mullard-Australia Pty Ltd, and Mullard Ltd.

The lecture, which will be the first of an annual series, will be given by Edward T. Emms of the Mullard Control Application Laboratory. In addition to the lectures being held in Sydney, Melbourne, Adelaide and Canberra plans are being made for a deputy to deliver the lecture in other major Australian cities including Hobart, Perth and Brisbane, and at two or three centres in New Zealand.

At the output interface

One of the big problems in industrial control systems is finding ways of controlling large loads from low-level control circuitry and sensing transducers. For many years the relay has reigned supreme in this field and, in fact, has much to commend it. Even so, very often some amplification is needed to drive the relay.

In recent years the thyristor, and later the triac, have challenged the relay with fast switching speeds, low weight, high-current handling, no moving parts and no contacts to weld together or become dirty.

Even using these devices interface circuitry between the control circuitry or sensor and the switching component is necessary with the attendant printed circuit boards, wiring costs, etc.

FR Electronics, a department of Flight Refuelling, has produced a range of modules containing the switching device and the necessary interface circuitry. These are available to replace ordinary relays or to provide timing or comparator functions.
Circuit Ideas

Long-tailed pair LC oscillator

Oscillation is maintained by a positive feedback loop consisting of an emitter follower and a common-base stage (like an emitter-coupled multivibrator), but with a tuned circuit to fix the oscillation frequency. The collector-emitter bias is set by the base-emitter bias to about 0.7 volt for a typical silicon transistor, and the peak to peak output is limited to twice this. Only three cheap components are used apart from the tuned circuit. As there are no inductors or capacitors in these additional components, the circuit will operate over a very wide range of frequencies with a suitable change in the tuned circuit. Predictable oscillation level is approximately 11 V pk-pk, and predictable d.c. current is \((V_T - 0.7)R \). The circuit is relatively unaffected by changes in supply voltage. With a suitable value of \(R \) the circuit will work with any supply from 1 V upwards. A current of 1 mA is generally suitable. Operation should be restricted to frequencies for which \(C \) is large compared with the emitter-base capacitance, which is commonly 20–40 pF.

D. T. SMITH, Clarendon Laboratory, Oxford.

Mock tunnel diode

The combination of two transistors and four resistors shown above simulates a tunnel diode. Below a certain voltage, \(R_s \) and \(R_4 \) divide the \(V_{ce} \) such that there is less than 0.6V on the base of \(T_{r1} \)—hence no current flows through \(T_{r1} \). But \(T_{r1} \) is turned on by \(R_3 \) and this current flows through the circuit. If the voltage across simultaneous low distortion low-pass and high-pass filtering. The capacitor value given (5% tolerance) can be altered proportionately for other turn-over frequencies. Mid-point gain is 50 and the filter slopes 18dB/octave.

J. L. LINSLEY HOOD, Taunton, Somerset.

Square pulse from unijunction transistor

In the circuit shown below, \(C \) charges via \(R_s \), \(R_3 \), and \(D \) until the potential at the anode of \(D \) switches the unijunction transistor into conduction. The potential at the emitter now drops and \(D \) is reverse biased so that \(C \) cannot discharge via the transistor which continues to conduct whilst \(C \) discharges through the relatively high resistance \(R_s \). The on-time of the transistor is dependent on the time constant \(C R_s \) which is made large in comparison with that of \(C R_3 \)—itself limited by the necessarily low value of \(R_s \). The off-time is controlled similarly by \(R_3 \). The pulse was used repeatedly to turn on a transistor for a period sufficiently long to energize a solenoid type of motor vehicle petrol pump—it replaced an unreliable mechanical system.

G. M. PAUL, Whitstable, Kent.

Sinewave oscillator.

\(V_5 \)

\(R \)

Output

Transistor circuit operating as a tunnel diode.

The circuit is increased, current starts to flow through \(T_{r1} \) reducing the current through \(T_{r1} \). Thus the total current through the circuit decreases with increasing \(V_{ce} \). The negative resistance may be reduced by increasing \(R_s \), and the ratio of peak-to-valley current may be changed to some extent by varying \(R_3 \).

With the circuit shown peak and valley voltages were 3.4V and 3.9V respectively. The "device" will operate to beyond 1MHz.

D. BLOOMER, Derby.

Combined low-pass and high-pass filter

The circuit employed for magnetic-pickup equalization in my pre-amplifier design (July 1969) can be modified to provide the circuit shown below, \(C \) charges via \(R_s \), \(R_3 \), and \(D \) until the potential at the anode of \(D \) switches the unijunction transistor into conduction. The potential at the emitter now drops and \(D \) is reverse biased so that \(C \) cannot discharge via the transistor which continues to conduct whilst \(C \) discharges through the relatively high resistance \(R_s \). The on-time of the transistor is dependent on the time constant \(C R_s \) which is made large in comparison with that of \(C R_3 \)—itself limited by the necessarily low value of \(R_s \). The off-time is controlled similarly by \(R_3 \). The pulse was used repeatedly to turn on a transistor for a period sufficiently long to energize a solenoid type of motor vehicle petrol pump—it replaced an unreliable mechanical system.

G. M. PAUL, Whitstable, Kent.

Low-pass and high-pass filter circuit.

Mock tunnel diode

The combination of two transistors and four resistors shown above simulates a tunnel diode. Below a certain voltage, \(R_s \) and \(R_4 \) divide the \(V_{ce} \) such that there is less than 0.6V on the base of \(T_{r1} \)—hence no current flows through \(T_{r1} \). But \(T_{r1} \) is turned on by \(R_3 \) and this current flows through the circuit. If the voltage across simultaneous low distortion low-pass and high-pass filtering. The capacitor value given (5% tolerance) can be altered proportionately for other turn-over frequencies. Mid-point gain is 50 and the filter slopes 18dB/octave.

J. L. LINSLEY HOOD, Taunton, Somerset.
Tone-balance Control

A different kind of characteristic, to suit “difficult” programme material

by R. Ambler, B.Sc., Ph.D.

It seems to the writer that there are occasional programme sources, both records and radio, that do not sound correctly balanced as between bass and treble, yet there is no obvious harmonic distortion and the condition cannot be satisfactorily corrected by the usual type of bass and treble tone controls.

If the bass is originally too strong and the treble too weak, normal bass cut and treble boost may be applied: however this removes too much of the extreme bass, provides too much extreme treble, and still leaves the bass in general too strong and the treble in general too weak. The opposite effect may also occur, when the bass is originally too weak and the treble too strong. These effects are more often but not invariably found when the programme source is on older or cheaper gramophone record, or a radio programme from one of the less usual concert halls involving landlines which may be longer or less well equalized.

The type of tone control usually included in a high-fidelity audio assembly always operates more powerfully on the extreme bass and treble parts of the audio spectrum than on the less extreme parts. This characteristic is shown by both the passive type of network exemplified by William- son’s circuit and by the feedback type of system such as Baxandall’s. In both these circuits separate bass and treble controls are provided.

It occurred to the writer that a tone-balance control would be useful in the circumstances described above, which at one end of its range boosts the whole of the bass fairly uniformly, slopes across the middle frequencies, and cuts the whole of the treble fairly uniformly. At the centre of its range it should provide a flat frequency response and unity gain, and at the other end of its range bass cut, slope across the middle, and treble boost. A negative-feedback system would be preferred, to minimize distortion.

A basic tone-balance control system which meets these requirements is shown in Fig. 1(a). At low frequencies where the admittance of the capacitors has become negligibly small, the circuit reduces to that shown in Fig. 1(b). Moving the potentiometer slider to the left reduces the input resistance and increases the feedback resistance, hence giving a uniform boost at these low frequencies. Moving the slider to the right gives a uniform bass cut. At high frequencies, where the impedance of the capacitors has become negligibly small, the circuit approximates to that shown in Fig. 1(c), as R₂ has a lower value than R₁. Here the “input” and “feedback” ends of the potentiometer have been reversed, so movement of the slider to the left gives a uniform treble cut to go with the bass boost and movement to the right gives a uniform treble boost to go with the bass cut. It seems reasonable to assume a smooth transition between the cut and boost conditions at any one setting of the potentiometer as the frequency is varied, and also that the system gain will be equal to (−1) at all frequencies with the potentiometer centred, and hence with the input/feedback network symmetrical. These assumptions are in fact confirmed by a detailed analysis.

If the usual assumption is made that the amplifier is an ideal inverting amplifier so that its input voltage and input current are both negligibly small, it can be shown by consideration of the voltage at each junction point and current in each arm of the network that system gain equals

\[V_f = \frac{R_1 R_2 + (R_1 + R_3) R_4 + 1/jωC_1}{R_1 R_3 + (R_1 + R_3) (R_4 + 1/jωC_1)} \]

from which

\[\frac{V_f}{V_a} = \frac{\left(R_1 R_2 + R_1 R_4 + R_3 R_4 \right)^2 + \left(R_1 R_3 + R_1 R_4 + R_3 R_4 \right)^2}{\left(R_1 + R_3 \right)^2/\omega^2 C_1^2} \]

If \(\frac{V_f}{V_a} = -1 \), equation (2) reduces to

\[0 = (R_3 - R_2)(2R_1 + R_2 + R_3) \]

There are two practical conditions for unity gain. The first is \(R_2 = R_3 \), i.e., with the potentiometer centred. This is independent of frequency. The second is with the right-hand bracket equal to zero and it shows a unity gain crossover frequency which is independent of the setting of the potentiometer.

The component values required to give the desired response were calculated from equations (2) and (3). After choosing (somewhat arbitrarily) a value of 100 kΩ (linear) for the potentiometer \(R_1 + R_3 \), the value of \(R_1 \) was calculated to frequencies at four different potentiometer settings: these results are shown graphically in Fig. 2 together with the flat response produced with the potentiometer centred.

It is obvious that a lower impedance level could be used in the input feedback network, but there are disadvantages in going too low. A potentiometer value of 20 kΩ or 50 kΩ would be satisfactory, with the other values altered to suit. The value of 100 kΩ arose when the circuit was first being developed and tested. A greater maximum boost or cut was originally allowed for, and then found in practice to be unnecessary and indeed undesirable.

The values given are perfectly satisfactory, however, with a suitable amplifier. The system requires to be fed from a fairly low
impedance source (say <1 kΩ) to avoid degradation of its response, and itself has a low output impedance (<1 kΩ).

The tone balance control has been incorporated in an experimental mono tone control system, the circuit of which is shown in Figs. 3-5. The input stage Fig. 3 is a slightly modified version of that published by Bailey \(^3\) adjusted to suit the writer's signal sources. After the volume control, Fig. 4, comes an impedance conversion stage, followed by Baxandall type bass and treble controls, then the tone balance control, and finally a feedback amplifier stage to raise the output level to the 4 volts peak-to-peak maximum needed to drive the Williamson amplifier \(^4\) which the writer is still using. Like Mr. Linsley Hood \(^5\) the writer has not come across any other amplifier which actually sounds better when driving moving-coil loudspeakers. A signal level through the control system of 200 mV peak maximum is convenient, being well below the overload point and above the noise level.

The final stage in the control unit could be omitted if a more sensitive power amplifier were used, and the impedance conversion stage after the volume control could be omitted at the cost of a slight degradation of the response, particularly if treble boost is called for in the Baxandall tone control. However this impedance converter is a convenient point at which to insert a stereo balance control, as indicated in Fig. 4.

It should be noted that the whole of the signal network after the volume control in Fig. 4 is floating at a level of about +6 V d.c. This has the advantage of saving capacitors. The savings are cost, space, and fewer unwanted phase shifts. There appears to be no significant disadvantage even with a series of stages in cascade, as in the present circuit: capacitors are needed only at the beginning and end of the series. The bypass capacitor in the bias network of each amplifier may be omitted if desired: the change in response is small as the bias

Fig. 2. Calculated frequency response of tone balance control circuit shown in Fig. 1(a).

A — R2 = 0, R3 = 100 kΩ; B — R2 = 25 kΩ, C — R3 = 75 kΩ; D — R3 = 25 kΩ; and E — R2 = 100 kΩ, R3 = 0.

Fig. 3. Input stage (modified Bailey).

Fig. 4. Control unit incorporating tone balance control. Details of op. amps. and input stage in Figs. 5 and 3.
resistors become a minor adjustment to the audio feedback network. The op. amps. shown in Fig. 4 have the circuit of Fig. 5. The layout does not appear to be critical: in the trial equipment the signal network is mounted between the tags on the potentiometers and tags on a tag strip; the amplifier sections are built on Radiospares miniature 18-way group boards. The bias resistors marked 1.41 MΩ* in Fig. 5 are each made up of three resistors in series, the values being selected on trial to give a d.c. level of 6 V ± 0.2 V at the output point with a supply voltage of 12, 1.41 MΩ being the calculated value. This method of adjustment is cheap and not seriously time-consuming or inconvenient for the home constructor; otherwise a variable resistor of 1 MΩ in series with a fixed resistor of 820 kΩ or 1 MΩ could be used. Half-watt moulded carbon resistors have been used throughout, with no apparent disadvantages.

Power is obtained from a small commercial stabilized supply unit: this is not strictly essential provided there is good smoothing, but it is a very convenient way of providing the smoothing and obtaining the correct operating voltage.

The tone balance control performs satisfactorily the function for which it was intended and which cannot be performed by the normal Baxandall bass and treble controls. It compensates quite accurately (judging by ear) for some of the variations in recording characteristics used in the early days of l.p. records and for similar sounding, probably fortuitous, variations in some more recent records: it even enables reasonably well-balanced results to be obtained from a variety of 78 r.p.m. records reproduced through the current standard l.p. playback characteristic, with some help from the normal treble control. It compensates satisfactorily most (but not all) of the "off-balance" radio programmes mentioned earlier.

The approximate equality of maximum bass boost or cut and treble cut or boost, together with the choice of 800-880 Hz for the centre frequency, ensures that the general volume level remains reasonably constant when the tone balance control is adjusted. The frequency of 800 Hz is a reasonable compromise between the geometric mean of the audio spectrum (630 Hz), the nominal bass-to-middle crossover of the writer's speaker system (750 Hz), the nominal bass boost hinge frequency of commercial records (500 Hz) and the nominal treble cut hinge frequency of records (2 kHz).

The tone balance control has been found to have additional uses. On the writer's equipment its normal setting is one giving a little bass boost and treble cut, to compensate for a slightly lower sensitivity in the bass speaker compared with the middle speaker. The control also seems able to provide a useful single-knob tone control in moderate quality systems of slightly restricted frequency range, simulated on a wide-range system by the application of some bass cut and treble cut with the normal Baxandall controls.

It is not suggested that the tone balance control supersedes the Baxandall circuit in high-fidelity equipment; it has a different function. In fact the best results and the widest range of control and compensation are obtained by providing both the Baxan-
dall type of control and the new one. If this is done there is some advantage in adjusting the characteristics of the Baxandall system to leave a slightly wider "flat" gap than would normally be provided between the bass and treble characteristics. It would also seem desirable to provide both low-pass and high-pass variable filters but the writer has not yet done this.

REFERENCES

Announcements

The series of Electronic Instruments Exhibitions initiated in Manchester in 1967 will again be held at the Hotel Piccadilly from September 8th to 11th this year. A second will be held at the Skyway Hotel, Southport, from September 22nd to 24th. Organizers are Industrial Exhibitions Ltd, 9 Argyll Street, London W1 2HA.

Standard Telephones & Cables Ltd has received orders totalling more than £12M for three submarine telephones cables into the Spanish mainland. Two of these will link the Canary Islands and the Balearic Islands with the mainland and will employ over 150 transistor repeaters. The third, a 640-circuit cable with 51 transistor repeaters, will connect Spain with the United Kingdom.

Applied Research Laboratories Ltd, of Wingate Road, Luton, Beds., have sold two electronic systems, valued at about £60,000, to the Soviet Union. The systems automatically determine the precise chemical composition of metallic and non-metallic substances and print out the results within seconds.

Multitone Electric Co. Ltd has announced that the New York Stock Exchange has placed a contract with Multitone Electronics Inc., their wholly owned U.S. subsidiary, to install a pocket paging system in the Wall Street building.

U.K. orders totalling in excess of £140,000 for seven Philips EM 300 electron microscopes have been received by Pye Unicam of Cambridge during the first week of 1970.

The marine division of Redifon Ltd has won a £24,500 order to supply marine radio equipment to the Lloyd Brasileiro shipping line, RjS de Janeiro.

Gelman-Hawkesley, of 12 Peter Road, Lancing, Sussex, have signed a three-year agreement for an exclusive deal to market the products of Royco Instruments of California, Royco manufacture particle counting systems.

Rastra Electronics Ltd, 275 King Street, Hammersmith, London W.6, have been appointed distributors for the products of Silicon General Inc., of California, U.S.A.

Sharp Corporation, of Japan, has formed a wholly owned subsidiary, Sharp Electronics (U.K.) Ltd, at Derby Street, Manchester, to handle the distribution and marketing of Sharp equipment throughout the United Kingdom.

Standard Telephones and Cables Ltd will combine Submarine Cables Ltd, whom they recently acquired from Associated Electrical Industries, with their submarine systems group.

Coutant Electronics have appointed Poly-amp A.B. of Stockholm as their exclusive agents in Sweden.

Henry & Thomas Ltd, Yeo Street, Bow Common, London E.3, have signed an agreement with the Hirose Electric Company Ltd, of Tokyo, which gives the British company sole marketing rights in the U.K. for the complete range of Hirose connectors.

A range of semiconductor devices manufactured by Philco Ford will now be available in the U.K. through Autrema Ltd, 23-31 King Street, London W.3.

The full range of potentiometers made by the Clarostat Manufacturing Co. Inc., of the United States, is now available in the U.K. exclusively from Weilwyn Electronic Ltd, Bedlington, Northumberland.

Impelectron Ltd, 29-31 King Street, London W.3, have been appointed sole representatives for Sylvan's semiconductor components in the U.K., Northern Ireland and Eire.

Ates Electronics Ltd, the recently formed British company of the Italian semiconductor manufacturer, is moving to Mercury House, Park Royal, London W.5 (Tel: 01-998 6171).

P.W.O. Bauh Ltd, has moved to premises at 49 Thosfield Street, Boreham Wood, Herts. (Tel: 01-953 0911).

The group headquarters and registered office of The Morgan Crucible Company Ltd, are now at 98 Petty France, London S.W.1 (Tel: 01-222 7212).
Digitally-controlled Tape-recorder Pre-amplifier

An accurate system for automatically optimizing recording level to obtain maximum dynamic range

by P. C. Grossi, B.Sc., and C. Marcus, B.Sc.

In the course of developing semi-professional tape-recording systems the authors realized the importance of optimizing recording levels. In order that the full dynamic range of the recording medium can be exploited, modulation must be maximized but kept below a preset level which is determined by the saturation flux density of the tape.

An automatic system was developed to replace the conventional meter and a potentiometer with which the authors were dissatisfied because of the inherent inaccuracies involved; one of the most significant of these resulting from the slow response time of the meter. Also, due to observational difficulties, the recording level usually cannot be set more accurately than 5dB. In addition, one must often consider cost, panel space and convenience of operation.

The automatic system does not operate on the same principles as automatic volume controls, which merely restrict the dynamic range without effectively eliminating tape over-modulation. The system is best described with the aid of the block diagram (Fig. 1). The input signal is fed to a variable gain amplifier. If the peak level of the output is excessive a series of pulses is generated by the peak-level sensor, which, through the action of the pulse counter, reduces the amplifier gain.

The variable-gain amplifier consists of six cascaded stages. The voltage-gain of each stage may have either of two preset values, selected by a transistor switch. The output signal is fed to the peak-level sensor which generates pulses whenever the output voltage exceeds a preset level; these pulses are counted by the gain-control pulse counter which consists of a set of six cascaded bistables which determine the state of the above mentioned transistor switches.

It was decided that 1V r.m.s. insignificantly distorted output should be obtainable for any input between 1mV and 1V r.m.s.; this necessitates a control range of at least 60dB. Since an accuracy of better than 1dB is not required, this can be accomplished by the use of six amplifiers whose greatest voltage gains form a binary progression.

It is necessary to have two switches in the system. One of them—possibly a push button—resets the bistables so that the amplifier gives full gain. Since the signal level cannot cause the amplifier gain to be increased, the switch must be operated each time a new signal is to be controlled. Another switch is incorporated into the bistable input can be manually disconnected; this prevents motor switching and other sources of undesired transients from progressively reducing the amplifier gain. The two switches can be incorporated into a single three-position mechanism should panel space be at a premium.

The prototype illustrates that this system is capable of truly high-fidelity operation as the bandwidth at full gain was 25Hz to 100kHz—1dB; the noise output was less than 1mV (unweighted) for a source impedance of 100kΩ and for a bandwidth of 60kHz. At unity voltage gain the bandwidth was 2Hz to 20kHz ±3dB and the noise figure was

[Diagram and circuit descriptions follow, including values and connections for capacitors and resistors.]

Fig. 1. Block diagram of system.

Fig. 2. Circuit diagram of the pre-amplifier. Tr1 and Tr2 can be any high-gain silicon transistor, e.g. BC109, 2N3707; Tr3—2N4058, 2N4286, etc; Tr—BC108, 2N2925, etc; Tr,—2N4062, 2N4289, etc; Tr3 and Tr,—2N2926, BC168, etc; and Tr1 to Tr5, to Tr15—2N706, 2N708, 2N2926, etc.
considerably improved. The maximum distortion occurred at unity voltage gain and was less than 0.05% for an output of 1V r.m.s. For a heavy overload the gain reduced at the rate of 4000dB per second and the greatest gain reduction step was less than 2dB. The prototype was constructed for less than £5 10s using components as advertised in Wireless World and was placed in an aluminum box measuring approx. 100 x 150 x 65mm (4 x 6 x 2½ in).

The amplifier
The complete circuit diagram of the amplifier is shown in Fig. 2. Direct coupling is used throughout as it avoids the use of large and costly electrolytic capacitors. However, this means that a low-impedance stabilized power supply must be used.

The input stage is similar to a Darlington pair for high input impedance but R1 has been added to improve the gain of Tr. Each of the following stages derives its bias conditions from those of the previous stage. Emitter and collector resistors are approximately equal—the difference being to compensate for the base-emitter potential of each stage, hence increasing the signal handling capability.

The amplifier terminates in an emitter-follower stage for low output impedance.

To minimize noise, the high-gain stages should be placed near the input; however, the first stage should be of low gain for high input impedance. The best compromise was achieved by placing the 8dB stage at the input, followed by the 32dB stage, then the 16dB 4dB 2dB and 1dB stages in that order.

The voltage gain of each stage is given by \(R_e/R_s \); where \(R_e \) is the collector load, taking into account the loading of the next stage, and \(R_s \) consists of three component parts. \(R_e \), the total external emitter resistance; \(R_f \), the reflected source impedance, given by the source impedance divided by the transistor current gain \((\beta) \); and \(r_e \), the internal emitter resistance of the transistor, given by \(26/\beta r_0 \) for the emitter current in milliamps.

The a.c. voltage gain of each stage is increased if the emitter resistor is shunted by a network comprising a d.c. isolating capacitor in series with another resistor. The gain is selected by the action of a transistor switch \((T_{R_{14}})\). The shunt resistor values are calculated using the formulae shown above. By means of a simple calculation it can be shown that, to the required accuracy, \(R_{15} \) and \(R_{16} \) can both be connected to the same stage, since they each involve only a small increase in gain. The purpose of \(VR \) in the prototype was to adjust the d.c. gain to be exactly unity.

Each transistor switch is operated such that when it is ‘on’ it is heavily saturated with a base current of 1mA. This gives a very low a.c. bilateral impedance. In order to turn a switch ‘off’ the base must be reverse biased by several volts to prevent emitter-base conduction on large signals at the emitter. Each switch is shunted by a large resistor so that the charge on the isolating capacitor does not change significantly during switching; the switches themselves are operated in inverse mode as the d.c. offset voltage is reduced. These precautions ensure that large switching transients do not appear at the output.

Peak-level sensor
With reference to Fig. 3, it can be seen that \(T_{R_{14}} \) and \(T_{R_{15}} \) are connected as a long-tail pair. By means of the divider \(R_{23}, R_{24}, VR \), the base of \(T_{R_{14}} \) is held at a quiescent potential 1.4V lower than that of \(T_{R_{15}} \). Hence \(T_{R_{14}} \) normally conducts and \(T_{R_{15}} \) is normally cut off. The output signal is fed to the base of \(T_{R_{14}} \) through \(C_4 \); if the peak amplitude of this is less than 1.4V then \(T_{R_{14}} \) will remain conducting. If, however, the positive signal excursion exceeds 1.4V, then a sharp transition will take place turning \(T_{R_{15}} \) ‘on’ and \(T_{R_{14}} \) ‘off’. This state will be maintained until the positive signal excursion no longer exceeds 1.4V.

When \(T_{R_{15}} \) is conducting it acts as a current source linearly charging \(C_5 \). When the emitter potential of \(T_{R_{16}} \) reaches triggering potential, \(C_5 \) is rapidly discharged and a negative pulse is fed through \(C_{10} \) to the first bistable. When the potential across \(C_5 \) reduces below a critical level the emitter conduction in \(T_{R_{16}} \) ceases and the initial conditions are restored. This cycle is repeated until \(T_{R_{15}} \) is turned ‘off’.

Due to the large tolerance on the inter-base resistance of junction type TIS43, a variable resistor \((VR)\) should be incorporated in the base bias chain of \(TR_{14}\). By this means the stabilized output level can be adjusted. \(T_{R_{15}} \) is biased from \(R_{19} \) in order to minimize the effects of temperature changes. The purpose of \(R_{19} \) is to ensure that the leakage current of \(T_{R_{15}} \) does not cause any significant charge to be placed on \(C_6 \).

Gain-control pulse counter
This consists of a set of six bistables, cascaded in the usual manner. A resistor is connected to one collector of each

Fig. 3. Peak-level sensor circuit. \(T_{R_{14}} \) and \(T_{R_{15}} \) can be 2N3702 or 2N4289, and \(T_{R_{16}} \) TIS43 or 2N2646.

Fig. 4 (a). First bistable. Diodes are germanium types, e.g. OA81, OA91, 1N914. \(T_{R_{14}} \) and \(T_{R_{15}} \) can be 2N3708, BC108, etc. (b) Circuit for remaining five bistables. Diodes and transistors as for first bistable.
Although the amplifier and counter may share a common positive rail, separate negative rails are used so that the transistor switches can be back biased when they are required to be ‘off’.

The circuit diagram of the first bistable is shown in Fig. 4(a); it can be seen that base triggering is used here as the input pulses are too small to give reliable collector triggering. The remaining five bistables are as shown in Fig. 4(b) where collector triggering is used as it is less critical of pulse amplitude. The bistables were designed to use components already in the authors’ possession, and were found to be entirely suitable for this application. Provided they will correctly drive the transistor switches (as mentioned above), any form of bistable can be used; some constructors may wish to use integrated circuits.

To ensure that the amplifier is giving sufficient gain for a new signal, it must first be restored to full gain; this will be appropriately reduced by the automatic system. In the prototype this was accomplished by connecting the ‘reset’ line to the positive rail; a large base current then flows into one transistor of each bistable, ensuring that the transistor switches are all turned ‘on’. The ‘reset’ line, switches and pulse outputs must be connected as in Fig. 4; if this is not so, either the amplifier will not be reset to full gain or the gain will not reduce each time a pulse is fed to the bistables.

Construction
The prototype was built on two boards. One held the gain-control pulse counter, and the other the amplifier and peak-level sensor.

The gain control pulse counter was built on 0.2in matrix copper clad wiring board measuring 120 × 75mm (4.7 × 3in). Since the device operates at audio frequencies, the layout of this is not at all critical; the constructor will wish to adopt a layout most suited to the size of available components and the allotted space. Any npn silicon transistors with a greater than 30 may be used here and any diode with a reverse breakdown voltage greater than 30V; the resistors and capacitors may be of large tolerance.

The layout of the prototype is shown in the photograph. No trouble was experienced with instability in the prototype, but it is recommended that the usual precautions for high-gain, wideband amplifiers should be taken. A layout similar to the circuit diagram should be adopted, with input and output leads well separated and completely screened.

Very high-gain transistors must be used throughout the amplifier, but low-noise devices need only be used in the first three stages. Any audio transistor may be used as a switch provided the base-emitter reverse breakdown voltage is greater than 4V. All the amplifier resistors should be of close tolerance (2% or better).

Although the above theory is sufficiently accurate, preferred resistor values are not always yielded; hence the constructor may find it convenient to obtain the correct shunt resistor values by means of series or parallel combinations, which should be checked empirically. If the resistor values are in error such that the gain of any stage is too large, the range of control will be increased but several large gain steps may be introduced. If a stage gain is too small, the range of control will be reduced but some of the gain steps will be smaller. If a range of control less than 63dB can be tolerated, the latter type of error is preferable as the regulation is improved.

The components of the digitally-controlled pre-amp. need take up little space—the aluminium case shown measures only 6in × 4in × 2.5in. The bistables are mounted on the board attached to the lid of the container, the other board carrying the amplifier and the peak-level sensor. Amplifier input and output are carried by screened leads. The bunch of unscreened leads joining pulse counter to the amplifier carries switching signals only. The power supply is external.

Although it was stated that V_{R_1} could be used to adjust the output signal level, it is recommended that an output level close to 1V r.m.s. should be selected. Outputs greater than 1.4V r.m.s. will suffer severe distortion due to clipping, and temperature effects in the unijunction transistor make small outputs impracticable.

The power supply shown in Fig. 5 was designed to operate the amplifier. However any power supply with an output impedance less than 1Ω and delivering the specified voltages may be used.

Acknowledgments
The authors would like to thank Professor G. D. Sims, of the Department of Electronics, Southampton University, for laboratory facilities. They are also grateful for the encouragement and interest shown by Dr. A. R. Brunnschweiler and Mr. A. P. Dorey.
Pulse Generator Using Integrated Circuits

A versatile two-channel instrument using only three integrated circuits

by C. Djokie*, M.Sc., M.I.E.E.

The pulse generator described in this article was designed for use in a University teaching laboratory but may well be used for many other applications.

The repetition rate may be altered from 1 Hz to 1 MHz in six decades, with a continuous fine control covering each decade. In addition there is provision for operating the pulse generator from an external source and a single shot facility is available in the form of a push button mounted on the front panel. The pulse generator has two independent positive outputs which are continuously adjustable in amplitude from 0-10V and have an output impedance of approximately 50Ω.

The pulse width of either channel may be varied from 1 sec to 0.5µsec in six decades with a continuously variable fine width control covering each decade.

The output of channel A may be delayed with respect to that of channel B and to a pre-trigger output pulse, by an amount variable from 1 sec to 0.5µsec in six decades with a fine delay adjustment. In addition the unit may be operated with the two output pulses in coincidence.

A pre-trigger positive output pulse of approximately 3V across a low impedance is provided at 0.5µs before each channel B output pulse. In addition the output of both channels may be inhibited by the application of a 3V positive level. With this facility the instrument may be used as a burst pulse generator. The output pulses are practically free from overshoot and have rise and fall times of 25ns, when measured into a 50Ω load.

The satisfactory performance of the instrument is best illustrated by the typical output waveforms shown in Fig.1. In Fig.1(a) the two outputs are shown with that from channel A delayed by 50µsec with respect to channel B Fig.1(b) shows the rise time of the output pulses from the two channels and illustrates that true time coincidence may be obtained. Finally, in Fig.1(c) the inhibit pulse is illustrated.

Operation of the instrument is best understood by considering the block diagram shown in Fig.2 in conjunction with the complete circuit diagram as shown in Figs.4 and 5. All the integrated circuits employed contain four two-input NOR gates the circuit diagrams of which in discrete component form with the pin connection details, are given in Fig.6. The integrated circuits are all of the same type and are from the Motorola range of plastic encapsulated, medium power, r.l. Two types may be employed, the MC724P

* Birmingham University

Fig. 1. (a) Output pulses with channel A delayed (vertical gain: 2V/div.; timebase: 10µs/div.). (b) Rise time of both channels showing that time coincidence can be achieved (Vertical gain: 2V/div.; time base: 50ns/div.). (c) The action of the inhibit pulse (vertical gain: 2V/div.; timebase: 0.5ms/div.).

Fig. 2. Block diagram of the instrument.

Fig. 3. The power supply circuit.
(+15 to 75°C) or the MC724P (0 to 75°C).

The repetition rate generator is a cross-coupled multivibrator formed by gates A and B. With the fine repetition rate control potentiometer set to minimum resistance the output is a square-wave and by setting this potentiometer to maximum resistance, a mark to space ratio of 1:20 is obtainable.

The differentiated output of the multivibrator is fed to the delay monostable, formed by gates E and F, in channel A, and also via a double inverter, gates C and D, to the pulse width monostable in channel B (Gates K and L). The double inverter isolates the pre-trigger output pulse from the rest of the circuit and by differentiating the output of the first inverter and using this pulse to drive the pulse width monostable in channel B, the gate propagation delay across gates E and F may be equalled thus providing true time coincident output pulses in channels A and B when desired.

The output of the delay generator (gates E and F) is differentiated and fed to the channel A pulse width monostable (gates G and H). Both the pulse width monostables may be inhibited by the application of a positive pulse or level greater than 1.5V to the inhibit terminal.

The outputs of the pulse width monostables are inverted (gates J and M) and fed to the output amplifier input transistors. These transistors are run under saturated condition with the collector potentials set by the amplitude control potentiometers. The output from these transistors is fed to emitter followers to provide low-impedance outputs. The series resistance (30Ω) ensures that the output transistors are protected against accidental earthing of the output terminal.

The power supply (Fig.3) uses a conventional bridge rectifier circuit with zener diode voltage reference levels controlling the series stabilizer transistors.
World of Amateur Radio

Slow-scan amateur TV

Despite the efforts of the British Amateur Television Club to popularise long-distance h.f. transmission of slow-scan television pictures, there remains a paucity of British activity in this field. Progress continues to be made in this interesting form of video communication by amateurs in the United States, Canada, Sweden, Belgium and Italy, yet so far as can be ascertained there are currently no British amateurs equipped to receive slow-scan TV pictures to the American standards established in 1961. These are: 120 lines, 1:1 aspect ratio; horizontal frequency, 16.666 Hz, vertical 7.2 seconds per picture, horizontal 5ms, vertical sync pulse 30ms, f.m. subcarrier (sync 1200 Hz, black level 1500 Hz, peak white 2300 Hz). The video transmission to this standard can be sent over conventional s.s.b. or a.m. channels and can be recorded on an audio tape recorder. One of the main enthusiasts for slow-scan TV in Britain is C. Grant Dixon, G6AEC/T and G8CGK, of Kyrle's Cross, Peterstow, Ross-on-Wye, Herefordshire, but he is not licensed for h.f. operation and is anxious to hear from any h.f. amateur interested in experimenting with this mode of television. Live scenes can be transmitted as a series of 8-sec stills, while the system is also suitable for slides and photographs. Typically the pictures can be received on 5FP7 long-persistence cad. c.r.t.s with the bright blue trace filtered out, leaving the yellow afterglow to provide the picture. A recent technique, according to S. Horne, VE3EGO, of Ottawa, takes the output from a "fast scan" camera and samples the output to produce a picture at slow scan rate—sampling type s.s. television cameras are used at stations VE3EGO, W9NTP and WB6ZYE. A slow-scan net is understood to operate on 14230 kHz at 19.00 G.M.T. on Saturdays.

Australis Oscar 5 launched

Australis Oscar 5, an amateur radio beacon satellite, was successfully launched into polar orbit on January 23rd. The satellite, built by an amateur team at Melbourne University, was launched from the Western Test Range by N.A.S.A., as a secondary payload to a TIROS weather satellite, as a result of the efforts of AMSAT (Radio Amateur Satellite Corporation).

Oscar 5 carries two beacon transmitters radiating about 50 mW on 144.050 MHz, and 150 mW on 29.450 MHz. Transmissions are automatically keyed to send "HI" in Morse, as well as telemetry data of temperature, spin rate and battery performance by varying audio tones. Power is derived from 28 alkaline manganese cells with an estimated life of about two months.

Beacon transmissions began 66 minutes after launch, and have since been heard by many amateurs, including a number in the U.K. where signals are usually weak. Regular bulletins of orbital data are being transmitted by the A.R.R.L. over W1AW on 14.020 MHz at 19.00 G.M.T. on weekdays.

The satellite, box-shaped 12 by 17 by 6 inches and weighing 39 pounds, is orbiting at about 910 miles and has a periodicity of 115 minutes. This is the first amateur satellite to be launched by N.A.S.A. although four previous Oscars (Orbiting Satellite Carrying Amateur Radio) have been launched by the U.S. Air Force; the last about 1965.

Construction of the satellite started in 1966 by Project Australis, a group formed by the Melbourne University Astronautical Society; it is the first amateur satellite to incorporate simple attitude control, and the transmissions are intended to provide amateur training in satellite tracking as well as permitting propagation experiments.

The successful launching of Australis lends further encouragement to the new British Project Trident group members of which are working on plans for the construction in the U.K. of an active satellite transponder which would accept 144-MHz amateur signals and re-transmit them on about 432 MHz. Detailed work is being undertaken by a group of South Coast v.h.f. enthusiasts and a number of British electronics firms have already promised support.

50 years of callsigns

The Ministry of Posts and Telecommunications has recently begun issuing Class A amateur licences in the G3ZAA series—the final letter sequence of the G3-three-letter callsigns which have been used for all new standard licences since 1946. It thus seems likely that a start will be made this year on G4-four-letter callsigns. This year also marks the fiftieth anniversary of the modern form of amateur callsigns introduced in Britain in 1920—the pre-1914 callsigns consisted of three letters one of which was always "X" to indicate an "experimental" station. Details of the "new" licences were announced at the first annual conference of amateur wireless societies of the Royal Society of Arts on February 27th, 1920 when it was also revealed that "wireless receiving licences would be issued freely to all approved persons."

In Brief: Brian Armstrong, GEDD, has been elected 1970 executive vice-president of the R.S.G.B. . . . The annual R.S.G.B. amateur radio exhibition this year is to be held from August 19th to 22nd instead of the usual October or November date. A new 70-cm beacon station, GB3SC, at the B.B.C. Sutton Coldfield station operates on 433.5 MHz. . . . A 70.69 MHz beacon, GB3SX, is to be sited at Crowborough, Sussex. . . . It is planned to establish two beacon stations on 23 cm, one on the South Coast, another in London. The 33rd BERU h.f. contest will be held from 00.01 G.M.T. March 7th to 23.59 G.M.T. March 8th for amateurs throughout the British Commonwealth. The second sections of the A.R.R.L. DX Contests are March 7th to 8th (phone) and March 21st to 28th (c.w.). Two Russian stations of interest on 14 MHz recently have been UPOL16, an Arctic weather station giving the location of 84° N, 162° W and temperature around 26° C, and UWOIH /M a ship in the Antarctic. YU stations are this year using the prefix YT to mark 25 years of Yugoslav independence. . . . The prefix 3B has replaced VQ8 for the group of islands which includes Mauritius and Chagos.

PAT HAWKER, G3VA
The Latest Big-Screen Attraction

The new SM111 dual-channel Oscilloscope. It's not the smallest scope sold, but, thanks to an SE breakthrough, gives you a full 10x8 cm. display, easily the highest screen-to-instrument ratio ever achieved in the world. The specification is of a good laboratory scope — 18MHz bandwidth, 20mV sensitivity — increased in X10 mode to 2mV on both channels, d.c. trigger facility and a d.c coupled X-amplifier. It's portable, a.c. or d.c. powered, the rugged performance is guaranteed in all environments. It's a star-studded SE Production, on general release NOW. We bet it costs much less than you think. Write or ring today for full details or for an immediate demonstration.

Some notes on Bridge Measurement by WAYNE KERR

Number 8
The Logarithmic Scale

This series of notes has described Transformer Ratio Arm networks which can be constructed to form manually operated or self-balancing bridges. In many cases, a linear relationship between the scale and the impedance or admittance parameter being evaluated is satisfactory, but when components are being selected to a specific tolerance, or a simple, wide range bridge is required, a logarithmic scale offers several advantages. Figure 1 shows a section of a scale obeying the logarithmic law of a slide rule.

The spacing of the tolerance marks on the cursor is correct for any point on the scale and can be extended to include a range of tolerances in addition to the 10% marks illustrated.

A convenient logarithmic scale giving a reasonable overlap between decades can be achieved by using the arrangement shown in figure 2.

A linear wound variable resistor is connected across part of the winding of the left hand transformer. The sliding contact on the resistor covers a voltage range of 1:16 and as this voltage is applied to the standard impedance it varies the current flowing through the right hand transformer by an equivalent ratio. The resistor is connected by means of five equi-spaced taps to the transformer windings which supply voltages in the ratio 1, 2, 4, 8 and 16. Although this arrangement gives correct balance points on the logarithmic scale when the sliding contact lies precisely on a tap, the interpolation between these points is linear and errors arise of up to 6%. However, a resistor (R) connected in shunt to the voltage produced corrects the errors to less than 1% and a further slight correction to the scale calibration removes the errors completely. The advantages of the transformer ratio arm bridge described in earlier issues of this series can be obtained from this network. Two, three and four terminal measurements can be made and high impedance components can be connected to the bridge with long lengths of screened cable without the capacitance of these cables affecting the bridge balance point. A wide range of decade ratios between the standard and unknown impedances can be achieved by varying the tapping points on the right hand transformer. Furthermore, the unknown impedance can be connected to alternative voltage decade taps on the left hand transformer.

A further advantage of the bridge illustrated in figure 2 lies in the reciprocal nature of the standard logarithmic voltage and its relationship to the calibrated scale. The arrangement shown is correct for a capacitance or conductance scale with suitable standards but it can be easily adapted to inductance and resistance measurements by re-connecting the 1, 2, 4, 8 and 16 points to taps F, E, D, C and B, i.e.: reversing the order shown. Separate standards are necessary in this case and for component measurements a simple network must be added to balance the phase angle of the unknown impedance.
Donald Rowley, M.A., executive director of British Aircraft Corporation’s Electronic and Space Systems Group, Bristol, has been appointed chairman of the National Industrial Space Committee—the professional industrial organization sponsored by the Society of British Aerospace Companies, the Electronic Engineering Association and the Telecommunication Engineering Manufacturing Association. Mr. Rowley had been acting as chairman of N.I.S.C since Group Captain E. Fennessy, C.B.E., resigned last summer on joining the Post Office Corporation. Mr. Rowley will head the organization in coordinating and representing to the Government the considered views of the aerospace, electronics and telecommunications industries in space matters. Mr. Rowley, who is 43, and a graduate of Selwyn College, Cambridge, joined the Guided Weapons Department of the Bristol Aeroplane Company in 1949 and, on the formation of B.A.C.’s guided weapons division in 1963, was appointed chief engineer of the Bristol Works. In April last year he became executive director, Electronics and Space Systems.

Peter Bettridge, A.M.I.E.E., has joined the board of Elecenco Sales Ltd. He is also general marketing and sales manager of Electrical Remote Control Co. Ltd and its subsidiaries. His appointment follows the tragic death of Roy Martin in a motor car accident. Mr. Bettridge, who is 39, has served with E.M.I. Research Laboratories Ltd, Research and Control Instruments Ltd, Sperry Gyroscope Co., Ltd, and Associated Automation Ltd.

Dr. John V. N. Granger, chairman of the board of Granger Associates at Palo Alto, California, and also chairman of the British subsidiary, has been elected president of the Institute of Electrical and Electronics Engineers for 1970. Dr. Granger was at one time teaching fellow in physics and communications at Harvard University, instructing in the pre-radar school for Army and Navy officers. During World War II he served the U.S. Ninth Air Force and the First Tactical Air Force in planning and evaluating radar counter measures. Returning to Harvard, he became a research fellow in electronics. His doctoral thesis was on low-frequency aircraft aerials. Dr. Granger joined Stanford Research Institute in 1949 to organize and supervise the aerial research programme. He resigned in 1956 to form Granger Associates.

J. A. Jenkins

Mullard recently announced the appointment of three new directors, C. Barwell, J. A. F. van Dijk, M.Sc., and J. A. Jenkins, M.A., A.Inst.P. Mr. Barwell joined the company in 1932, was head of Central Marketing Services from 1963-68, and since September 1968 has been head of the company’s Industrial Electronics Division, the three main product areas of which are semiconductor devices, passive components (including magnetic materials), and valves and tubes. Mr. van Dijk was born in Rotterdam and obtained his degree in engineering at Delft University, Holland. He joined Mullard’s Space Systems Group in 1963-68, and since September 1968 has been head of the company’s Industrial Electronics Division, the three main product areas of which are semiconductor devices, passive components (including magnetic materials), and valves and tubes. Mr. van Dijk was born in Rotterdam and obtained his degree in engineering at Delft University, Holland. He joined Mullard’s

J. A. F. van Dijk

Brookdeal Electronics, signal recovery instrument manufacturers, who recently moved from Lewisham to Bracknell, Berks, have announced two appointments. John Roberts, aged 39, and formerly sales promotion manager with Hewlett-Packard, has joined the company as sales manager. Cedric Shore, who is 32, has been appointed production manager. He was formerly senior project engineer with the Data Recording Instruments Division of I.C.L.

Blackburn (Lancs) plant in 1948 as chief valve engineer, becoming manager of the Valve Division five years later. He has been plant director at Blackburn since 1963. Mr. Jenkins, who graduated in mathematics and natural philosophy at Glasgow University, joined Mullard Research Laboratories in 1947 and subsequently took charge of the photo-electronics division. In 1955 he established the company’s semiconductor manufacturing division. On the formation of Associated Semicon-ductor Manufacturers Ltd at Southampton he was appointed to the board as general manager and in 1967 was made managing director.

The Radio Industries Club has nominated as its 1970/71 president Dr. F. E. Jones, M.B.E., F.R.S., managing director of Mullard Ltd. Dr. Jones, who is 56 and a graduate of King’s College, London, where he also obtained his Ph.D., led the team in the Ministry of Aircraft Production which developed the OBOE blind bombing system used by the R.A.F. during World War II. In 1952 Dr. Jones was appointed deputy director of the Royal Aircraft Establishment, Farnborough, and four years later joined Mullard as technical director. He has been managing director of the company since 1964, and also a director of the British Space Development Company since 1965. Dr. Jones has served on many government and industrial committees and was chairman of the Working Group on Migration (the Brain Drain enquiry), the report of which is colloquially known as the Jones Report.

“...For his many contributions to the development of microwave valves and particularly for his outstanding leadership of the team at Cambridge University responsible for the development of the scanning electron microscope”

Professor C. W. Oatley, O.B.E., F.R.S., has been awarded the 48th Faraday Medal by the I.E.E. Professor Oatley, who is 66, graduated at St. John’s College, Cambridge, and subsequently became a lecturer in the Department of Physics at King’s College, London. After wartime service at the Radar Research & Development Establishment he became a lecturer in the Department of Engineering at Cambridge University in 1945. He has been professor of electrical engineering since 1960.

Dr. Dennis Gabor, F.R.S., has been awarded the I.E.E.E. Medal of Honour "for his ingenious and exciting discovery and verification of the principles of holography". Dr. Gabor is Professor Emeritus, Department of Electrical Engineering at Imperial College of the University of London and is also staff scientist for CBS Laboratories at Stamford, Connecticut, where he is a member of the team which developed Electronic Video Recording. Dr. Gabor will receive the bronze medal at the Institute’s annual banquet on March 25th during the International Convention. Born in Hungary in 1900, Dr. Gabor studied in Berlin where he received his doctorate. He came to England in 1934 and worked in the B.T.H. Research Laboratory, Rugby, until joining the staff of Imperial College, London, in 1949. It was in 1948 that he discovered how to reconstruct objects from their light-wave interference patterns.

Norman King, aged 33, has been promoted to marketing manager of the Instrument Division of Cossor Electronics Ltd. Mr. King has been sales manager of the Division since last March.
Active Filters

8. The two-integrator loop, continued

by F. E. J. Girling* and E. F. Good*

The versatility of the two-integrator loop is illustrated by descriptions of its application to selective circuits of very low frequency, a tunable crossover filter, a two-phase low-frequency oscillator, a frequency discriminator, and to an electronically-tuned oscillator and self-tuning filter.

Compensation of \(q \) for finite gain

When \(A \) is finite and the ideal design values do not give the required \(q \) to a close enough approximation, a new (higher) value of \(q_i \) may be set into the design; and it follows from eqn. (28) of Part 7 that the appropriate new value is given by

\[
\frac{1}{q} = \frac{1}{q_i} + \frac{1}{A}
\]

Alternatively the positive damping attributable to finite gain,

\[
\frac{1}{q} = \frac{1}{A} + \frac{1}{A_2}
\]

\[2 \text{ when } A = A_2 = A. \] (3)

can be counterbalanced by an equal negative damping. Since the inner feedback loop, Fig. 1(a), produces positive damping, a similar loop giving feedback of the opposite sign is required. This is shown in Fig. 1(b), where only the relevant parts of the circuit of Fig. 1(a) are reproduced. As the scaling factor of the positive damping loop is \(1/q \), the scaling factor for the negative damping (or positive feedback) should be \(1/q_i \) so that

\[
\frac{1}{q} = \frac{1}{(1 + 1)} = \frac{1}{q_i}.
\]

(4)

An essentially equivalent method of compensation is to apply positive feedback to the integrator amplifiers individually so that the zero-frequency gain of each becomes approximately infinite.

However, these methods of compensation, which are not self-adjusting but based on a supposed constant value of gain, give no reduction in sensitivity to changes in gain. From this point of view eqn. (4) may be written

\[
\frac{1}{q} = \text{constant} + \frac{1}{q_i}.
\] (5)

Hence, since relative changes in \(q \), are proportional to relative changes in \(A \), eqn. (3), sensitivity of \(q \) to relative changes in \(A \) can be reduced only by making \(1/q \), a smaller fraction of \(1/q_i \), i.e. by increasing \(A \). This may be expressed

\[
\frac{\Delta q}{q} = \frac{\Delta A}{A} \frac{q_i}{q}.
\] (6)

The above discussion refers to finite gain in the integrator amplifiers. Providing the inverting amplifier that closes the main feedback loop gives no appreciable phase shift, changes in its internal gain cause only an indirect and very small change in \(q \) by causing a small change in resonant frequency and consequently a small change in the \(Q \)'s of the integrators; and similarly changes in the internal gain of the amplifier (if any) in the damping loop cause only a small change in \(q \) by making a small change in \(q_i \). It follows that these amplifiers need not be of particularly high gain for a high value of \(q_i \); and the small effects of their finite gain can, moreover, be corrected by adjusting the values of appropriate resistors in the circuit, e.g. one of the resistors \(R' \).

But phase defects in the integrators cannot be so corrected.

Compensation of the phase errors caused by finite gain

As well as lowering the \(Q \) factor of the circuit, the less than 90° phase shift given by a finite-gain integrator also modifies the characteristic shape of many of the various filter responses available, and the most serious effect can be noticed in the symmetrical notch response. Clearly a transmission zero can be obtained only when \(V_C \) and \(V_L \) are exactly out of phase, so that their addition is in effect a subtraction. This condition exists when \(A \to \infty \) and the total phase shift for the two integrators is 180°. When \(A \) is finite \(V_L \) may be resolved into a component exactly out of phase with \(V_C \) and a quadrature component, which remains at the notch output when \(V_C \) and \(V_L \) are exactly out of phase—and so prevents the notch going to zero. Its magnitude at \(1/2 \), relative to \(V_C \) and \(V_L \), is \(2/\sqrt{2} \). But at this frequency \(V_C \) and \(V_L \) have magnitude \(V \). Hence, for example, \(q = 10 \) and \(A_1 = A_2 = A = 100 \), the minimum of the notch will be approximately \(V \), 14dB, not a very satisfactory attenuation...

Now because the feedback integrators give inversion in addition to integration the quadrature component causing the imperfection is approximately out of phase with the voltage \(qV_C \) at the tuned-circuit (or band-pass) output, Fig. 2. It follows, since the relative magnitudes of \(V_C \) and \(V_L \) change with frequency, that the output \(V \)
Wireless World, March 1970

will be exactly out of phase with \(v_{QR} \) at a frequency close to \(\omega \). This offers the possibility of producing a perfect notch by adding a fraction of \(v_{QR} \), as the following analysis confirms.

Let the finite-gain responses be distinguished from the ideal responses by added primes, \(v' \) etc., Fig. 3(a). Then we know from the analysis of a loop containing two lags and gain that \(V_C \) retains perfect low-pass form,

\[
V_C = \frac{1}{1 + PT} v' \quad (7)
\]

though \(q \) is lower than the ideal value, and also \(T \) is a little affected by finite \(A_1, A_2, A_3 \), and is only approximately equal to \(CR \).

The band-pass and high-pass outputs, if factors of the type \(A/(A+1) \) are ignored, are given by

\[
v_{QR}' = \left(\frac{1}{A_1} + PT \right) v_C' \quad (8)
\]

\[
v_L' = \left(\frac{1}{A_2} + PT \right) v_QR' \quad (9)
\]

\[
= \left(\frac{1}{A_1 A_2} + \frac{1}{A_1} + \frac{1}{A_2} \right) T + pT^2 V_C'. \quad (10)
\]

Thus it is seen that the tuned-circuit response \(q v' \) levels off on the low-frequency side of resonance to \(V_{QR} A_1 \), and the high-pass response to \(V_{QR} A_2 \). These characteristics, which are also apparent from inspection of the equivalent passive network, Fig. 4(a), are sketched in Fig. 4(b).

With reasonably high values of \(A_1 \) and \(A_2 \) the departures from the ideal forms do not usually matter much; but Fig. 3(b) shows how corrections can be made if required, the extra linkages serving to cancel the unwanted terms in eqns. (9) and (10).

The removal of the quadrature component from \(-V_C \), if present, can, however, give a useful improvement in the notch response. For this purpose the significant correcting term is the fraction of \(q v' \) added to the high-pass output, which leads to the arrangement shown in Fig. 1(b). The fraction is the same as that needed to restore the \(Q \) factor, eqn. (2), and both compensations may be made simultaneously as shown in the figure.

Provided the various resistors are reasonably good, observation of a null at \(V_N \) provides the most direct indication of correct adjustment, although it is not necessary to the formation of a deep notch that \(q \) should also be compensated. Because of the approximations made, and because no notice has been taken of possible tolerance in the passive components, the analysis given is not exact. However, with amplifiers of gain say 100, the compensation will typically increase the depth of the notch by 20dB.

Frequency shift caused by finite gain

If \(A_1, A_2, A_3 \) are all \(> 1 \), the frequency shift caused by finite gain in the three amplifiers is given by

\[
\frac{1}{\omega_0} = \left(1 + \frac{1}{A_1} \right) \left(1 + \frac{1}{A_2} \right) \left(1 + \frac{n}{A_3} \right) T^2 \quad (11)
\]

where \(n \) is the number (or equivalent number) of equal resistors connected to the input of the \(A_3 \) amplifier. When \(q A_1 \) is so large that the second term of the denominator can be neglected, the equation shows that finite gain in any of the three amplifiers moves \(\omega_0 \) to a value lower than \(1/T \). Thus, if \(A_1 = A_3 = A_2 = 100, qA_1 \gg 100, \) and \(n = 4 \), the shift is about 3\%.

The second term of the denominator arises from the fact that when \(A_1 \) is finite \(v_{QR} \) is not exactly in quadrature with \(-V_C \). To obtain eqn. (11) accurate approximations for the voltage transfer ratio of each stage must be used, e.g.

\[
\frac{A_1}{1 + (A_1 + 1)PT} \quad (12)
\]

High Q circuits

Because of the small phase margin, the greatest scope for realising high \(Q \) factor in a predictable and stable manner is at low frequencies, where unwanted phase shifts can be kept low. The problem of unwanted phase shifts is also less severe in a fixed-tuned circuit, where they will be more constant. With conventional techniques \(q = 10 \) can be obtained with reasonable constancy in a variably-tuned circuit with an upper frequency of about 100 kHz. For an upper limit of 10 kHz the maximum value of \(q \) might be raised to 25 or 50. The increase will not be quite in inverse ratio to the upper frequency, because amplifiers of high gain are needed if \(q \) is not to be sensitive to changes in amplifier gain, and this calls for more severe curtailment of bandwidth to obtain Nyquist stability. It is clear, of course, that upper frequency limits may be increased considerably by improvements in micro-electronic techniques.

For stable values of \(q \) greater than 100, high-gain amplifiers are needed; but this is no difficulty at low frequencies. Secondly the \(Q \) of the capacitors must be considered. A lossy capacitor shows a phase angle of less than 90° between current and voltage; so even if everything else is perfect each integrator has a phase defect of this amount, and the \(Q \) factor of the loop is limited to a value given by

\[
\frac{1}{q} \approx \frac{1}{Q_C} + \frac{1}{Q_2} = \frac{1}{Q_C} \quad (12)
\]

if \(Q_C = Q_2 = Q_C \).

Some better quality dielectrics are polystyrene, mica, silicon dioxide, polycarbonate. Capacitors with the latter dielectric are usually stated to have a maximum power factor of 0.05% i.e. \(Q_C = 2000 \) minimum. In practice at very low frequencies, using amplifiers with \(A = 10,000 \) approx. and no intentional damping, values of \(q \) of 1,500 and more are found, suggesting that \(Q_C \approx 4,000 \).

Very low frequencies

A loop with \(f_s = 1/63 \) Hz (\(\omega_s = 1 \) radian/second) calls for \(T = 1 \) second. If the capacitors are to be of good quality and not too bulky, they must be of comparatively low capacitance, say 0.1 \(\mu F \). The resistors must therefore have a resistance of 10 M\(\Omega \), and if the gain of the integrator amplifiers is not
to be considerably eroded their input resistance should be much greater than this. By using amplifiers with field-effect transistors at the input this requirement is easily met, and by using m.o.s.f.e.t.s amplifiers suitable for use with very high values of resistance can be made. Thus a circuit was made with $C = 1 \mu F$ and $R = 1,000 \, \Omega$ ($T = 1,000$ seconds, $2 \pi T = 2$ hours approx.) and set ringing by charging one of the capacitors from a battery. The time of decay to half amplitude was about 7 days, so the decay time constant was about 10 days. This is just over 800×10^3 seconds, and therefore corresponded to a Q factor of over 400. The capacitors were polycarbonate dielectric. The Q factor of such a circuit is not, of course, well controlled, as it depends entirely on imperfections such as capacitor leakage and amplifier open-loop gain.

2nd- and higher-order band-pass filters

If good rejection at frequencies somewhat removed from the wanted frequency is required, rather than sharpness at the peak; or if to obtain the required selectivity with a 1st-order tuned-circuit filter, an uncomfortably high Q factor would be needed; a higher-order filter should be used. A conventional way of setting up a band-pass filter of 2nd-order is to cascade two stages with tuned-circuit response, and to stagger their centre frequencies suitably to either side of the specified centre frequency. Clearly this method can be followed using two two-integrator loops. A rather more convenient method, however, is to use two synchronously tuned stages, and to apply overall feedback (negative) to obtain the required bandshape. This is an analogue of a two-lags-and-feedback low-pass filter. For a 3rd-order filter a third tuned-circuit section can be added in cascade, a 4th-order filter can be made as a cascade of two 2nd-order loops, and so on. This method of design will be treated in detail in later parts.

Cross-over filters

To separate a broad band of frequencies into upper and lower parts, for example in a sound reproducing system when a separate loudspeaker is used for the higher frequencies, two complementary filters, one high-pass and one low-pass, are generally used. Fig. 5. The responses are arranged to cross over at the half-power points, and usually Butterworth, or maximally flat, response is chosen for each. On a power basis (V^2) the sum of the responses of two complementary Butterworth filters is constant. Fig. 6. This follows from the defining equations:

$$G_1(p) = \frac{1}{1 + (\omega T)^2} \qquad \text{(low-pass)} \quad (13)$$

$$G_2(p) = \frac{\omega T}{1 + (\omega T)^2} \qquad \text{(high-pass)} \quad (14)$$

 whence $(G_1(p))^2 + (G_2(p))^2 = 1. \quad (15)$

If therefore, the cross-over networks are passive, as in Fig. 5, and the Ls and Cs are lossless and the load resistances are equal, the input impedance of the combination is a pure resistance of equal value.

Fig. 5. 2nd-order passive crossover filter.

For 2nd-order Butterworth response, $q = 1/\sqrt{2}$, i.e.

$$G_1(p) = \frac{1}{1 + \sqrt{2} p T + p^2 T^2} \quad (16)$$

and

$$G_2(p) = \frac{1}{1 + \sqrt{2} p T + p^2 T^2} \quad (17)$$

Clearly a two-integrator loop is not needed for such a low Q factor, but its use may be justified, especially for experimental purposes.

- The low-pass and high-pass outputs come from the same circuit, so the corner frequencies are automatically the same.
- Variable tuning over a wide range may be had by varying either two Rs or two Cs.

The obvious disadvantage is that when the loads are, for example, loudspeakers, two power amplifiers are needed. The basic circuit arrangement for simultaneous l-p and h-p output has already been given. If 3rd-order Butterworth response is wanted, the damping of the loop is altered to $q = 1$, and a lag, $1/(1 + p T)$, and a lead, $p T(1 + p T)$, are connected as shown in Fig. 7. The two responses are not now entirely tuned by the same components; but the extra components can hardly need to be accurate to better than a few per cent, and continuously variable tuning is still possible if a four-gang potentiometer is accepted. Probably for most purposes incremental tuning with a switch would be sufficient. For versatility buffer amplifiers after the added networks may be thought advisable, so that response is not dependent on the input impedance of the amplifiers following. The difference between 2nd- and 3rd-order Butterworth response is shown in Fig. 6.

Two-phase low-frequency oscillator

The selectivity of the frequency-selective network in a conventional CR oscillator is low. For example, the Q factor of a conventional Wien-bridge network is $\frac{1}{2}$. Consequently the amplitude-limiting device must be linear at the oscillation frequency, since any harmonics generated would not be attenuated very much relative to the fundamental. This means the limiting device must be slow-acting relative to the period of the oscillation and respond only to the average amplitude of oscillation over many cycles; since otherwise the amplitude would be modulated at oscillation frequency (or twice it), a non-linear process generating harmonics. Such a slow-acting limiter is unacceptable at very low frequencies.

An LC oscillator can use an effectively instantaneous limiter. This distorts the waveform, reducing it to pulses. But the Q factor of the LC circuit can be high, giving good discrimination against the harmonics generated, so the output waveform can be a good sine wave.

Clipping diodes are an example of an instantaneous limiter, and if clipping is hard and symmetrical the output from the limiter approximates to a square wave. The Fourier analysis of which shows that it consists of the fundamental and odd harmonics in relative amplitudes inversely as their order:

$$p = \frac{4E}{\pi} \left\{ \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t \ldots \right\} \quad (18)$$

Now tuned-circuit response when q is high, see Fig. 8, multiplies the fundamental by q and the harmonics by $q(n^2 - 1)$ approximately. So if $q = 10$, for example, the relative amplitude of the third harmonic is changed from $\frac{1}{10}$

$$\frac{1}{10} \times 10 \times \frac{1}{8} = 1.25\%$$

the fifth harmonic from $\frac{1}{10}$

$$\frac{1}{10} \times 10 \times \frac{1}{4} = 0.41\%$$ etc.

Thus the square wave becomes a fairly good sine wave even with this not very high

www.americanradiohistory.com
Wireless World, March 1970

value of \(q \). But the two-integrator loop can do better than this.

Fig. 8. Two-phase low-frequency oscillator.

Besides the tuned-circuit output there is the low-pass output, which, because of the integrator between, is the tuned-circuit output multiplied by \(1/pT \) or \(1/j\omega T \). At this output, therefore, the harmonics are further attenuated by a factor \(n \); so for \(q = 10 \) the third-harmonic content becomes about 0.4\% and the fifth-harmonic content less than 0.1\%.

To turn the circuit into an oscillator the input must come from a source within the circuit itself, and consideration of the phase response shows that at the resonant frequency the voltage at the tuned-circuit output is in phase with the input voltage, Fig. 8(a). The oscillation loop may be closed, therefore, by connecting the input of the limiter to the tuned-circuit output, as shown in Fig. 8(b). If oscillation is to start and restart reliably, transmission through the limiter for amplitudes below the clipping level must give enough positive feedback to overcome all damping and make the circuit regenerative. Then the amplitude of oscillation will build up until, because of the clipping, a condition of balance is reached where the output from the limiter is just sufficient to maintain a steady level of oscillation. If the output from the limiter is effectively a square wave, and the two-integrator loop has ideal component values and \(R'' = R' \), the magnitude for the fundamental is \(q \), and the voltage at both outputs (less harmonics) is \(4qE/\pi \) peak or \(2\sqrt{2}qE/\pi \) r.m.s.

When the \(A \) of the second integrator is high, and also the \(Q \) of the capacitor, or if compensation is used, the low-pass output is almost exactly at 90° phase angle with respect to the tuned-circuit output. This is of practical value, particularly in making phase measurements.

Fig. 9. Frequency discriminator.

If the circuit is to be used as an oscillator and versatile filter, an independent damping loop is used, Fig. 8(b). If the circuit is to be used only as an oscillator, however, the method of damping shown in Fig. 8(c) may be used, in which capacitance \(C/q \) is placed across the \(R \) of the first integrator. This also allows the convenience of tuning with a two-gang variable resistor, and when \(q \) is high makes a negligible change in the responses at the two outputs.

Use as a frequency discriminator

Some applications require that a bandpass filter be tuned to the frequency of an input signal, while others, conversely that an input signal be adjusted to the frequency of a filter. Either type of operation may be performed under the control of the output from a frequency discriminator. The two-integrator loop can be arranged to combine the functions of selective amplifier and frequency discriminator. The feature that makes it attractive in this dual role is that the cross-over frequency of the discriminator is tuned by the same components that determine the resonant frequency of the filter. It follows that the cross-over of the discriminator will move in sympathy with any variation in the tuning of the filter and also that any change to the bandwidth of the filter is accompanied by a corresponding change in the discriminator slope.

Figure 9 is a block diagram of the essential features of the arrangement. The tuned-circuit response, \(qV_R \), provides the characteristic for the selective amplifier. The symmetrical notch response, \(V_n = V_C + V_L \), provides the basis for the discriminator.

It will be remembered that the notch response carries the phase of the low-pass response below the notch frequency and the phase of the high-pass above. At the notch frequency there is an abrupt change of phase through 180°. Thus, for example, if the output at \(V_n \) is phase-sensitively rectified using the output at \(V_C \) as reference, the resulting voltage will have a d.c. component whose polarity will depend upon the sense of the error between the input frequency and the notch frequency. The magnitude of the d.c. component will indicate the magnitude of error, approximately linearly for small errors. However, the rapid rate of attenuation given by the low-pass response restricts the range of operation, and usually a better reference can be formed by subtracting the high-pass response from the low-pass, i.e.

\[V_{ref} = V_C - V_L \]
This subtraction brings the high-pass response into phase with the low-pass so that, in effect, the two responses add, yielding a symmetrical response as sketched in the diagram.

Tuning an integrator

There is often a need to vary the effective ‘T’ of an integrator. Obviously in Figs. 10(a) and (b) varying either C or R varies T. Since there is no change in zero-frequency gain with variation of C, the Q factor of the integrator is unaffected, i.e. \(Q = A \omega CR \). The same is true for variation of \(R \) provided \(R \gg R \). But there are practical limits to the values of \(C \) and \(R \) if the tuning is to be continuously variable.

The method of Fig. 10(c) gives \(T = k_1 CR \) approximately as \(k_1 \) times what it would be if the capacitor were joined directly across the amplifier, and so the equivalent capacitance is \(k_1 C \). This method is used to good effect in the well known Baxandall tone-control circuit. As operation of the potentiometer does not reduce the zero-frequency gain, there is in principle no loss of Q. For this to be true in practice it is necessary for \(r \) to be effectively zero so that no appreciable unwanted resistance appears in series with C. If, at any particular setting, the potentiometer has output resistance \(r_o \), i.e. \(r_o = k_2 (1 - k_1) \), there is a fall in Q caused by the introduction of a term \((1 + p CR_o) \) into the numerator of the transfer function. This advances the phase and so increases the phase margin. At frequencies where \(CR_o \ll 1/\omega \) this increase in phase margin, measured in radians, is given by \(\omega CR_o \) and hence, even when \(A \to \infty \) the Q factor of such an integrator is limited to \(Q = 1/(\omega CR_o) \). With \(A \) finite (and since losses add as the reciprocals of Qs) the Q factor may be written down approximately as

\[
\frac{1}{Q} = \frac{1}{A \omega k_1 CR + \omega CR_o} \quad (18)
\]

The maximum value of \(r_o \) is \(r/4 \) (at \(k_1 = \frac{3}{4} \)), and if then the second term on the r.h.s. of eqn. (18) is too great to be neglected, an emitter follower or other buffer amplifier may be interposed between the slider of the potentiometer and the capacitor.

The method shown in Fig. 10(d) gives \(T = CR/k_2 \), so now the potentiometer effectively increases CR. As the zero-frequency gain is \(k_2 A \) there is a fall in Q when \(k_2 < 1 \) (except in the ideal case where \(A \to \infty \)). It is often a convenient arrangement, however, if used with care. If \(R \gg r \), \(k_2 \) is the off-load attenuation ratio of the potentiometer, but, if this condition is not met, the output resistance of the potentiometer merely increases R and distorts the tuning law.

Fig. 10(e) shows graphically the essential effects of tuning a finite-gain integrator by a potentiometer.

Voltage controlled tuning

The continuous tuning of higher order filters, requiring a large number of variables, is generally impracticable using ganged potentiometers or capacitors, and even switched tuning with a large number of banks is not always convenient. Voltage controlled tuning offers an alternative solution. A scheme suggested and used some years ago by a colleague, Dr R. L. Ford, is described here for the purpose of illustration.

In Fig. 11(a) the potentiometer used in Fig. 10(d) has been replaced by a switch which periodically connects the integrator to the input voltage source for a time \(t_1 \) and to earth for a time \(t_2 \). If the frequency of operation of the switch, \(1/(t_1 + t_2) \), is greater than the effective upper limit of the spectrum of the input voltage \(V_i \), then the input to the integrator may be taken to be the smoothed average \(V(t_1)/(t_1 + t_2) \). This is illustrated in Fig. 11(b). Alternatively the
March Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned.

LONDON
6th. I.E.R.E.—"The continuing education and development of professional electronic engineers" by Dr. K. G. Stephens at 18.00 at Bedford Sq., W.C.1.
8th. I.E.R.E.—"Closed circuit educational television" by E. Wykes at 19.30 at the Educational TV Centre, Battersea.
5th. I.E.E.—Applison Lecture "Radar meteorology" by Dr. E. Eastwood at 17.30 at Savoy Pl., W.C.2.
9th. I.E.E.—"Problems of starting up colour television programs" by P. H. Steele at 18.00 at the I.E.E., Savoy Pl., W.C.2.
10th. I.E.R.E.—"Management effectiveness for engineers" by H. Macleay at 18.00 at 9 Bedford Sq., W.C.1.
16th. I.E.E.—"Sonar" by T. N. Reynolds at 17.30 at Savoy Pl., W.C.2.
16th. R.Inst.—"The Parliamentary and Scientific Committee" by R. Gresham Cooke at 17.30 at 21 Albert Embankment, S.W.1.
18th. I.E.R.E.—"Electronic engineering in the solution to harbour approach problems for large ships" by T. W. Welch at 18.00 at 9 Bedford Sq., W.C.1.
19th. R.Soc.—"Electronic aids to night vision" by P. K. Beggs at 16.30 at 6 Carlton House Terrace, S.W.1.
20th. I.E.E.—"Flexible printed circuits" by B. P. Ryman at 18.30 at the London School of Hygiene & Tropical Medicine, Keppel St., W.C.1.
20th. I.E.E.—"Technological forecasting and corporate long-range planning" by Dr. B. C. Lindley at 17.30 at Savoy Pl., W.C.2.

AYLESBURY
3rd. I.E.R.E.—"Pulse code modulation" by G. H. Bennett at 19.15 at Aylesbury College of Further Education.

BASILDON

BATH

BIRMINGHAM

BOURNEMOUTH
5th. I.E.R.E.—"Computers for engineers" by T. Matthews at 19.00 at the College of Technology.

BRISTOL
18th. I.E.R.E./R.C.S.—"Computer typesetting" by R. Chapman at 19.00 at the University.

CAMBORE
10th. I.E.R.E.—"Training technician engineers for the future" by Dr. H. L. Hasteigrave at 19.00 at the College of Technology.

CARDIFF
12th. R.T.S.—"Modern video recorders" by W. Silive at 19.00 at B.B.C., Llandaff.
23rd. I.E.R.E./I.E.E.—"Digital filters" by R.C.V., Macario at 18.30 at the University of Wales Inst. of Science and Technology.

CHELTENHAM
17th. I.E.R.E.—"Training of professional engineers and technicians" by R. E. Stevenson at 19.00 at the Government Communications Headquarters, Oakley.

COVENTRY

EDINBURGH
19th. I.E.E.—Faraday Lecture "People communications and engineering" by J. H. H. Merriman at 14.00 (students) and 19.00 (public) at Usher Hall.

GLASGOW
12th. I.E.R.E./I.E.E.—"Inerial navigation" by J. T. Summers at 19.00 at the Institution of Engineers and Shipbuilders in Scotland, 183 Bath St., C.

HORNCHURCH
I.E.R.E.—"Automation in air traffic control" by A. Hartley-Smith at 18.30 at Havering Technical College, Ardleigh Green Rd.

HULL
18th. I.E.R.E./I.E.E.—"Doppler aids for berthing large tankers" by Dr. W. P. Williams at 18.30 at the Yorkshire Electricity Board Offices, Ferensway.

LEICESTER
10th. R.T.S.—"The B.R.C. 3000 colour TV chassis" by C. R. West at 19.30 at Vaughan College, St. Nicholas Centre.
18th. I.E.E.—"Storage of sight and sound" by J. E. Shepherd at 13.30 at the Polytechnic, the Newar.

LIVERPOOL
18th. I.E.R.E.—"The development and application of integrated circuits" by T. Urwin at 19.00 at the University's Dept. of Electrical Engineering.

MAIDSTONE
2nd. I.E.E.—"Stereophonic transmission" by G. J. Phillips at 19.00 at the Royal Star Hotel.

MANCHESTER

NEWCASTLE-UPON-TYNE
11th. I.E.R.E.—"High speed data communications over telephone lines" by C. B. Stickford at 18.00 at Rutherford College, the Polytechnic.
17th. I.E.E.—Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 14.15 (students) and 19.15 (public) at City Hall.

NEWPORT, MON.
18th. I.E.T.E.—"From the Albert Hall to the Festival Hall—the adventures of an electrical engineer in the realms of acoustics" by James Moor at 19.30 at the College of Technology, Alh Yr-Yn Avenue.

PLYMOUTH
17th. I.E.R.E.—"Training technician engineers for the future" by Dr. H. L. Hasteigrave at 19.00 at the College of Technology.

READING
19th. I.E.R.E.—"Laser applications in electronics" by Prof. W. A. Gambling at 19.30 at J. J. Thomson Laboratory, the University, White-knights Park.

RUGLEY
5th. I.E.R.E.—"Satellite power supplies" by P. S. Woodcock at 19.00 at the Shrewsbury Arms Hotel, Market St.

SWINDON

www.americanradiohistory.com
LITERATURE RECEIVED

ACTIVE DEVICES
A series of data sheets describing the new range of m.t.n.s. (metal-thick-oxide-nitride-silicon) medium scale integration devices is available from General Instrument Microelectronics, Stonefield Way, Ruisslip, Middlesex, HA4 OJT. Called the "Giant" range, the devices have inputs and outputs compatible with d.t.l/t.t.l. and m.o.s. circuitry without any interface components. A single-phase d.t.l/t.t.l. clock line is all that is required.

m.t.n.s. price list .. WW401
reliability aspect of low voltage nitride WW402
RA-6-4803, 32-bit random access memory WW403
SS-6-8211, dual 16-bit d.c. shift register WW404
SS-6-8212, dual 16-bit d.c. shift register WW405
SL-6-4025/32, quad 25/32-bit static shift register WW406
MU-6-2281, 10-channel multiplexer WW407
SL-6-2064, dual 64-bit static shift register WW408
SL-6-2050, dual 50-bit static shift register WW409
SS-6-1032, 32-bit static shift register WW410
SS-6-2004, dual 4-bit shift register WW411
SS-6-2021, 21-bit static shift register WW412
MU-6-8571, 16-way shift register controlled multiplexer WW413
AX-6-8591, presetable reversible h.c.d. counter, store, 10-line decode, display drive, with zero detect and display blanking WW414

We have received two loose-leaf binders containing literature from Marconi-Elliott Microelectronics Ltd, Witham, Essex:

Digital and linear microcircuits, data WW415
Application notes .. WW416

The hybrid microcircuit facilities of Racal Research Ltd, Newtown, Tewkesbury, Glos., are described in a leaflet available from them WW417

The 1970 edition of "Abridged Valve Data" may be obtained from English Electric Valve Co. Ltd, Cheimsford, Essex WW418

The SG7520/25 series of high-speed sense amplifiers manufactured by Silicon General Inc., 7382 Bolsa Avenue, Westminster, California 92683, U.S.A., is described in an eight-page leaflet WW421

Transistor Electronic Ltd, Gardner Rd, Maidenhead, Berks., give details of a 64-bit, word addressed, integrated circuit memory cell in a leaflet WW422

Data is available on a 6A, 1,400V, rectifier (type 56) in a four-page booklet (4450-50/56) from A.E.I. Semiconductors Ltd, Carholme Rd, Lincoln WW423

The following literature has been produced by the National Semiconductor Corporation and is available from Athena Semiconductor Mktg. Co. Ltd, 140 High St, Egham, Surrey:

t.t.l. cross reference guide WW424
t.t.l. series 54/74 (NS) performance guide WW425

PASSIVE COMPONENTS
"Electronic Components, Accessories and Materials" is the title of a directory and product guide published by the Radio and Electronic Component Manufacturers' Federation, Mappin House, 4 Wimsley St., London WIN ODT. It lists details of 195 manufacturing firms and includes a product guide in English, French, German and Spanish. Copies are available price 6s each to U.K. residents or free of charge to overseas companies.

The 1970 "Constructors Catalogue" from Electroniques, Edinburgh Way, Harlow, Essex, unlike last year's catalogue, is devoted entirely to electronic components and equipment; it costs 10s plus 3s postage and packing.

Crystals, resistors, magnetic materials, infra-red filters and capacitors are listed in "Passive Components Summary" (6000/301) obtainable from ITT Components Group Europe, Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex WW426

Now obtainable is the "Microwave Associates Master Catalog" from Microwave Associates Ltd, Cradock Rd, Luton, Beds. WW427

Sub-miniature indicator lamps (3mm) are the subject of a leaflet from Vitality Bulbs Ltd, Beetons Way, Bury St. Edmunds, Suffolk WW428

The Sprague range of "Tantaxel" tantalum electrolytic capacitors is described in a booklet from WEL Components Ltd, 5 Loverock Rd, Reading, Berks WW429

A leaflet produced by A. F. Bulgin and Co., Bye Pass Rd, Barking, Essex, describes some of their indication, connection and switching components WW430

The transformer design and production facilities of Gresham Transformers Ltd, Hanworth Trading Estate, Feltham, Middlesex, are detailed in a leaflet WW431

If it's rotary switches you are interested in you will find the latest catalogue from Lorlin Electronic Co. Ltd, Billingham, Sussec, of value. WW432

An eight-page catalogue describing coaxial directional couplers is available from Radiall, 1 Rue Jacquard, 93-Rosny, S/Bois, France WW433

EQUIPMENT
The "High-Fidelity and General Audio Equipment" catalogue from Henry's Radio Ltd, 303 Edgeware Rd, London W.2, consists of 120 pages and costs 5s plus postage and packing.

The 1970 edition of Lasky's "Audiotronics" catalogue is now available free of charge (1s 6d required for postage and packing) from Lasky's Radio, 3-15 Cavell St, Tower Hamlets, London E.1.

The range of temperature control and measuring instruments, chart recorders and other industrial instrumentation manufactured by FAS Automazioni Strumenti of Italy is described in a catalogue. FAS Automazioni Strumenti, Via F. Koritka, 8/10, 1 20154 Milan, Italy. WW449

A full range of accessories for Philips oscilloscopes is described in an eight-page brochure available from Pye Unicam Ltd, York St, Cambridge WW442

GENERAL INFORMATION
The "MiniFlux Manual" is a 131-page book devoted to the replay of tape recordings. The theory is discussed and a number of practical circuits are given including a stereo pre-amplifier using integrated circuits. Price 3s 1d from: MiniFlux Electronics Ltd, 8 Hare Rd, London, N.W.7.

The B.B.C. Broadcasting House, London W1A 1AA, has produced the following two information sheets:

2701(17) Television interference from distant transmitting stations. 1102(5) V.H.F. radio receiving aerials.

The following publications are available from the British Standards Institution, 2 Park St, London W1Y 4AA:

BS 9110: Metric Units: Specification for fixed resistors of assessed quality: generic data and method of test price 16s.
BS 9111: Metric Units: Rules for the preparation of detailed specifications for fixed non-wirewound resistors, film type (1) of assessed quality price 12s.

"Automation Matters" is the title of a booklet published by Sirsa for the U.K. Automation Council. The subject dealt with is "Cost reduction by thickness measurement and control". The booklet can be obtained from Sirsa, South Hill, Chislehurst, Kent, price 10s.
Test Your Knowledge

22. Rectifier Circuits

Figures 1, 2 and 3 show three simple rectifier circuits, each supplied from the mains, and each feeding a resistive load R. Unless otherwise stated it is to be assumed that the components are ideal.

1. The current in each diode flows for half of an input cycle:
 (a) in all three circuits
 (b) in the circuit of Fig. 1 only
 (c) in the circuit of Fig. 2 only
 (d) in the circuit of Fig. 3 only.

2. In each circuit the direct voltage appearing across R will consist of a steady voltage with a ripple superimposed. The fundamental ripple frequency is 50 Hz:
 (a) for the circuit of Fig. 1 only
 (b) for the circuits of Figs. 1 and 3 but not Fig. 2
 (c) for all three circuits
 (d) for none of the circuits.

3. In the circuit of Fig. 1, if for a given load-resistor the value of the capacitor C is increased, the amplitude of the ripple will be reduced. In a practical circuit the maximum value of capacitor which may be used is determined by:
 (a) the time constant CR which must not exceed 1/50 second
 (b) the physical size of the capacitor
 (c) the maximum rated instantaneous current for the diode
 (d) the maximum rated diode reverse voltage.

4. In the circuit of Fig. 2, increasing the value of L will decrease the amplitude of the ripple. The limit to the size of inductor used in a practical circuit is determined by:
 (a) the time constant LR which must not exceed 1/100 second
 (b) the resistance of the inductor, which will be greater for larger values
 (c) the maximum rated instantaneous diode current
 (d) the maximum rated diode reverse voltage.

5. If in the three circuits similarly labelled components have the same values, the amplitude of the ripple voltage across the load:
 (a) will be the same for all three circuits
 (b) will be least for the circuit of Fig. 1
 (c) will be least for the circuit of Fig. 2
 (d) will be least for the circuit of Fig. 3.

6. Assuming that the component values in the three circuits are such that the ripple amplitude is small compared to the steady output voltage, the ripple waveform appearing across the load will be approximately saw-tooth:
 (a) in all three circuits
 (b) in the circuit of Fig. 1 only
 (c) in the circuit of Fig. 2 only
 (d) in the circuit of Fig. 3 only

7. Assuming small ripple amplitude, the magnitude of the steady output voltage will be:
 (a) the same for all three circuits
 (b) least for the circuit of Fig. 1
 (c) least for the circuit of Fig. 2
 (d) least for the circuit of Fig. 3.

8. The magnitude of the steady output voltage for the circuit of Fig. 2 will be:
 (a) 340 volts
 (b) 340/π volts
 (c) 680 volts
 (d) 680/π volts

9. Assuming that the ripple amplitude is small in each case, the maximum reverse voltage appearing across each diode is:
 (a) the same in all three circuits
 (b) least for the circuit of Fig. 1
 (c) least for the circuit of Fig. 2
 (d) least for the circuit of Fig. 3.

10. Assuming small ripple amplitude the value of the maximum reverse voltage appearing across the diode in Fig. 1 is approximately:
 (a) 340 volts
 (b) 340/π volts
 (c) 680 volts
 (d) 680/π volts

11. The simple inductor smoothing used in Fig. 2:
 (a) could also be used in a half-wave rectifier or a bridge rectifier circuit
 (b) could not be used in either a half-wave rectifier or a bridge rectifier circuit
 (c) could be used in a half-wave rectifier circuit, but not in a bridge rectifier circuit
 (d) could be used in a bridge rectifier circuit, but not in a half-wave rectifier circuit.

12. For three practical circuits, of the forms of Figs. 1, 2 and 3, designed to feed the same load, the voltage regulation over the working range will probably be:
 (a) the same for all three
 (b) best for the circuit of Fig. 1
 (c) best for the circuit of Fig. 2
 (d) best for the circuit of Fig. 3

13. In the circuit of Fig. 1 the current in the branch containing the capacitor:
 (a) flows in the direction ab at all times
 (b) flows in the direction ba at all times
 (c) flows in the direction ab when the diode is conducting, in the direction ba when it is not
 (d) flows in the direction ba when the diode is conducting, in the direction ab when it is not.

14. If in the circuits of Fig. 1 and 2 the load resistance R is increased in value, the amplitude of the ripple voltage across the load will:
 (a) increase in both cases
 (b) decrease in both cases
 (c) increase for the circuit of Fig. 1, decrease for the circuit of Fig. 2
 (d) increase for the circuit of Fig. 2, decrease for the circuit of Fig. 1.

15. In the circuit of Fig. 3:
 (a) the reactances of the inductor and of the capacitors should be as large as possible
 (b) the reactances of the inductor and of the capacitors should be as small as possible
 (c) the reactance of the inductor should be as large as possible; the reactances of the capacitors should be as small as possible
 (d) the reactance of the inductor should be as small as possible; the reactances of the capacitors should be as large as possible.

Answers and comments, page 147
New Products

Magnetic Cartridge
The American ADC 25 stereo pickup, available in the U.K. from K.E.F., is an induced magnetic cartridge with three interchangeabe stylus assemblies. Two of the styli are elliptical \((0.0009 \times 0.0003\text{in})\), and \(0.0007 \times 0.0003\text{in}\) and the third is spherical \((0.0006\text{in})\). It is claimed that this choice allows the user to obtain the best reproduction from records having different groove characteristics. No harm can be done to any record with any of the styli in the recommended tracking pressure range of 0.5 to 1.25g. Each stylus is predicted to last indefinitely 'with clean records and proper use'. Price £81 12s plus £18 19s purchase tax. K.E.F. Electronics Ltd, Tovil, Maidstone, Kent.

Universal Bridge
A new a.f. bridge from Wayne Kerr, model B224, measures components singly or in any combination, and provides four-figure readings of the real and imaginary terms simultaneously. Seven of the ten ranges are for two- or three-terminal connections, accuracy being 0.1% or better. The remaining three ranges provide four-terminal connections to ensure accurate (0.3%) measurements of all impedances below 10k\Omega. Operation can be at any frequency between 200Hz and 20kHz. The internal detector covers this range and an oscillator is built in for normal operation at 10\(^a\) radians/sec (1592Hz). Simplicity of operation is assured by a functional layout of the controls and by the logarithmic amplitude response of the detector amplifier. This ensures rapid selection of the correct range, easy determination of a first balance and automatic increase in sensitivity as the final balance point is approached. Operation is from 110 or 240V a.c. or from the internal rechargeable battery. This latter facility simplifies connection of the bridge measurement leads to circuits where one terminal is grounded. Overall coverage is 200 attofarads \((0.0002\text{pF})\) to 5 farads, 2 picohms to 50 kilohms, 2 nanohenry's to 5 megahenrys and 2 micro-ohms to 500 gigohms. The B224 is 19in wide, 12in high and 6in deep \((482 \times 311 \times 152\text{mm})\). It weighs approximately 22lb \((10kg)\) and will sell in the U.K. at £340. Wayne Kerr Co. Ltd., New Malden, Surrey.

WW 301 for further details

High-current Power Supply
The Lambda LK361 power supply can deliver 50A at 0–36V and is convection cooled. It has line and load regulation of 0.015%, ripple 500mV r.m.s., is completely programmable, and can be used in the constant-voltage or constant-current mode with automatic crossover. The unit may be used for series or parallel operation and is guaranteed for five years. Lambda Electronics, 21 Aston Road, Waterlooville, Portsmouth, Hants.

WW 306 for further details

Electronic Multimeter
Electronic multimeter model 313 from Bach-Simpson has an input impedance of 11\text{M}2 on d.c. and 10\text{M}2 on a.c. ranges. It has a frequency response of \(\pm 0.5\text{dB}\) from 20Hz to 100kHz (10kHz to 250MHz with external probe) and seven resistance ranges which provide internal resistance measurements up to 100\text{M}2. Other special features include centre-zero facility, r.m.s. and peak-to-peak a.c. scales together with a dB scale. A 7-in scale enables currents of 5\,\text{mA} or less to be read. Bach-Simpson Ltd., 331 Uxbridge Road, Rickmansworth, Herts.

WW 305 for further details

U.H.F. Receiver
The Decca type RU.3911, receiver unit is fully transistorized and will demodulate u.h.f. 625-line PAL colour television signals in the range 470/860 MHz received "off-air", or distributed on a channel-selective or wideband closed circuit system, to provide a high-quality video and audio output signal at standard levels for immediate display, further processing, or re-modulation. The standard unit is contained in a case measuring 19\frac{1}{2} \times 4\frac{1}{2} \times 13\frac{1}{2} in but is also suitable for mounting on a resolution of 600 lines, and uses magnetic focusing and deflection. The maximum operating voltage is 1100V, and the heater supply required is 6.3V at 95mA. The capacitance between the target and the other electrodes is only 4.5pF. It is intended for use in monochrome television cameras: three other versions suitable for use with red, green and blue light are available; these are distinguished by the suffixes R, G and B after the type number QX1071.

Mullard Ltd, Mullard House, Torrington Place, London W.C.1.

WW 308 for further details

Camera Tube
The XQ1071 is a sensitive, one-inch, Plumbicon tube from Mullard for use in cameras of industrial closed-circuit television systems. It will give acceptable pictures under normal lighting conditions, and has a rapid response, greatly reducing the smear obtained when the camera is focused on moving objects. The tube has a

www.americanradiohistory.com
19-in rack, for which purpose a separate dust cover is provided. Manual tuning of the four pre-set channels, selected by push-buttons, is by means of a separate control, but an effective switchable automatic frequency-control circuit is also provided. There are six independent video outputs of 1V into 75Ω, and one balanced audio output of 1mW into 600Ω. A monitor loudspeaker is provided on the front panel. Price £89 10s 6d (including purchase tax). Decca Radio & Television, Ingate Place, Queenstown Road, London, S.W.8.

WW 317 for further details

Aircraft 'Homer'
Burndeed Electronics (E.R.) is marketing a homing instrument manufactured in West Germany for fixed or rotary wing aircraft which, when used with the company's personal and flotation beacons or similar equipment gives a ground/air range of 150/200 miles at 30,000ft (60/80 miles at 10,000ft). It will pick up any radio distress signals on 121.5 or 243MHz. A safety feature of the homing device (type BE 373) is its independence from the main aircraft communications system; only a connection to the usual 28V d.c. supply is required. A pair of V-wave radio aerials with balanced 50-Ω feeder cables is supplied, and an alternative version for vehicle or ship 12-V operation is available. In normal operation, the emergency channel is preset to the v.h.f. or u.h.f. international aviation distress frequency; an auxiliary channel can be used to within + 2.5MHz (v.h.f.) or + 5MHz (u.h.f.) for training and/or tactical purposes. The homer provides 'left/right' indications from the received signal. Audio outputs to the aircraft intercom system are provided. The unit costs under £500, plus installation. Burndeed Electronics (E.R.) Ltd, St. Fidelis Road, Erith, Kent.

WW 322 for further details

V.H.F. A.M. Radiotelephone
A range of V.H.F. A.M. mobile radiotelephones (the Star AM7 series), has been introduced by S.T.C. The AM7 is available in low-, mid- and high-band versions, covering all the v.h.f. frequencies available for use in the U.K. Single-channel and four-channel models are available, employing 12.5KHz channel spacing. The equipment, which is completely solid state, has no relays or moving parts. The output power is 5–7 watts, and receiver sensitivity is 0.5V to open squelch. Audio output is 2.5 watts into 3Ω. Power requirements (from 12V vehicle battery) is 1.9A on transmit (full modulation) and 0.2A on standby. Standard Telephones and Cables Ltd, S.T.C. House, 190 Strand, London, W.C.2.

WW 309 for further details

Modular Noise Source
The NS 110A module provides 0.5V r.m.s. of random noise in the range 500Hz –1MHz (± 1dB). In the range 50Hz–5MHz the output is level to within ±5dB. The module requires a supply of 9V at 10mA. Provision is made for an attenuator or filter to be inserted between the separate internal amplifiers. The output amplifier (A,) has a 600-Ω short-circuit proof output terminal (OP). The module is suitable for use as a broadband source for telephone-line noise simulation, intermodulation and cross-talk tests, frequency response measurement and noise interference tests. The noise level is sufficiently flat in the audio region to permit assessments to be made of loudspeaker response and room acoustics including sound attenuation and reverberation. ADM Electronics, P.O. Box 3, Merthyr Tydfil, Glam.

WW 307 for further details

50-MHz Oscilloscope
A 50MHz dual-trace general-purpose oscilloscope from Pye Unicam, known as the Philips PM 3250, combines a 2mV input sensitivity with a 50MHz bandwidth, and 200μV when a 5MHz bandwidth is used. It is capable of simultaneously displaying the differential signal (A-B) with one of the original signals. The Y-amplifier can be set from 2mV/cm to 20V/cm using a thirteen-position calibrated control and ×10 gain magnifier gives the 200μV/cm sensitivity at the reduced bandwidth of 5MHz. Full overload protection is provided on both channels and at maximum input sensitivity 400V can be applied to either input without damage. Sweep speeds pro-

vided on the main timebase cover the range 1s/cm to 50ns/cm in 23 calibrated ranges and a ×5 magnifier permits a 10ns/cm speed to be used. The timebase can operate in the triggered, automatic or single-shot modes, and triggering can be from either input channel or an external source. A delayed timebase provides sweep speeds of from 0.5s/cm to 50ns/cm in 22 calibrated steps and also employs a magnifier to give 10ns/cm. This timebase can be triggered immediately after a delay by either the main sweep or the measuring signal. The instrument is mains powered and measures 22×32×48cm. Pye Unicam Ltd., York Street, Cambridge.

WW 302 for further details

Beam Tetrode
The TT100 beam tetrode from The M-O Valve Co., is primarily intended for use as a class AB power amplifier for s.s.b. transmitters in ships. It will give a p.e.p. output of 100W with intermodulation products of – 42dB for an h.t. of only 600V, while 200W p.e.p. is available for an h.t. of 850V. The stated output powers are maintained up to at least 20MHz, while at 30MHz the output is greater than 85% of the low frequency value. (Anode dissipations significantly greater than these values are permissible for short periods). Class AB2 operation is recommended and is made possible by the very low grid interception of the valve. The M-O Valve Co. Ltd, Brook Green Works, London W.6.

WW 319 for further details

Cassette Tape Editing Kit
A cassette tape editing and joining kit from Multicore enables cassette tapes to be joined if they have been broken or edited because it is desired to remove unwanted sections which have been recorded. It may also be used, under certain circumstances, to add tape from one cassette to another. The kit comprises: Bib tape splicer with chromium plated clamps; two razor cutters (1 spare); splicing tape on dispenser; tape piercer; three tape extractor and winder

www.americanradiohistory.com
cards (two spare), and ten cassette and container labels (self adhesive). The main difference between editing 3/8-in tape and 1/4-in tape is that with a reel-to-reel machine the non-oxide side of the tape is available for marking with a chinagraph pencil. The tape in a cassette is wound the other way round, i.e., with the oxide side outwards. If the oxide side was marked with a chinagraph pencil the marking would not be visible when the tape was mounted in the channel on the splicer with the oxide side downwards. Obviously, the splicing tape must be applied to the non-oxide side of the tape. A method of marking simultaneously both sides of the tape has been devised. Although the joining and editing processes are relatively simple, a comprehensive 6-page instruction leaflet is included in the kit. The price is £29s. The Bib Division of Multicore Solders Ltd, Hemel Hempstead, Herts.

WW 323 for further details

A.M. Monitor

A solid-state a.m. monitor for transmissions in the frequency range 540kHz to 30MHz has been introduced by Gates Radio Company. The monitor is said to meet or exceed all requirements for measuring modulation percentages, and is suitable for proof-of-performance measurements. The monitor's solid-state circuits are not affected by ageing and measurement accuracy is said to be retained indefinitely. Correct positive or negative peak indications are given even on programme bursts as short as 40 to 90 milliseconds. The over-modulation flasher light also has the same accuracy as the meter. For aural monitoring there is a 600-Ω output. Three functional monitoring controls are located on the front panel: (1) carrier-level setting, (2) a range selector covering negative peak percentages, and (3) a modulation meter switch for choosing either negative or positive peaks. For obtaining modulation readings by meter and flasher at distant location, there is an optional remote meter panel available. Gates Radio Company, 123 Hampshire Street, Quincy, Illinois, U.S.A.

WW 327 for further details

Six-decade Resistance Box

A resistance range of 1 kΩ to 1 MΩ in 1-Ω steps is provided by Resistance box type GE 6000, from Guest International. Very high precision is obtained through the use of 0.5% metal film resistors on the 10-Ω decade and above. These resistors provide protection during overload conditions and have low self-inductance. The dimensions are 343 × 63.5 × 70mm, and the price is £22. Guest International Ltd, Nicholas House, Briggstock Road, Thornton Heath, Surrey.

WW 326 for further details

Voltage Triplers

A range of voltage triplers, announced by General Instrument (U.K.), employs matched silicon diodes and ceramic capacitors to provide e.h.t. for various applications. A typical unit in the new range is the TVM25 which converts 8.3kV from the flyback transformer to 25kV for a colour-tube anode and provides a separate focusing voltage. The peak input voltage is 12kV, output voltage is 30kV, normal output current is 1.5mA d.c. and the short circuit overload rating is 50mA for 30 seconds. The operating temperature range is -50° to +85°C. Operating frequency is 15.750Hz. Input capacitance is less than 30pF for zero bias voltage. Individual capacitors used in the TVM25 are rated at 1,000pF at 10kV with leakage current less than 1µA at 10kV working voltage and 85°C ambient temperature. The tripler is totally encapsulated in epoxy resin which is flame resistant and has negligible corona potential. General Instrument (U.K.) Ltd, Stonefield Way, Victoria Road, South Ruislip, Middx.

WW 312 for further details

Miniature Variable D.C. Power Supply

The TF 2150 power supply from Marconi Instruments provides continuous control of both current and voltage with a maximum output of 25W. The range is 0.30V and 0.125A. Regulation is better than 0.05%, and ripple less than 400µV. There is non-re-entrant current protection. The accuracy of full scale volts is ±2%. It may also be operated as a pulsed power source, linear d.c. power amplifier, threshold switch, or temperature regulator. It may be remotely programmed (external resistor) and operated in series or parallel, grounded or ungrounded. The unit weighs 2.3kg, measures 190 × 80 × 160mm, and costs £39 10s. Marconi Instruments Ltd, Longacres, St. Albans, Herts.

WW 325 for further details

1/2-kW Power Supply

Robin Telephones have developed a low-ripple high-efficiency stabilized power supply capable of delivering 10A at 50V. Stability is achieved by a variable inductance, which is controlled by a semiconductor circuit. The output is monitored by two meters which can be scaled to customers' requirements. The stability is such that at 1A ripple is 7mV (voltage 50.5V) and at 10A ripple is 92mV (voltage 50.0V). Supplies with other voltage and current ratings are available. Price £58. Robin Telephones Ltd., 5 & 6 Wandsworth Place, London S.W.18.

WW 304 for further details

Low-voltage Indicator Tube

Counting Instruments are marketing a miniature Itron (Japanese) low-voltage indicator tube. The display is green. Heater requirement is 50mA at 0.7V, and the maximum d.c. level for the display segments is 25V d.c. Counting Instruments Ltd, 5 Elstree Way, Boreham Wood, Herts.

WW 324 for further details

700V 6A Transistor

Available from GDS (Sales) Ltd is a power transistor with 700V V_{CES} and 325W P_{D} ratings. 1µs maximum fall time and 25V maximum saturation voltage, both measured at a collector current of 6A. Supplied in the TO-3 package and rated at 125W at 25°C case temperature, the Motorola MJ9000 is capable of carrying up to 10A continuous collector current. Also announced is the Motorola MJ8400 which is rated at 600V V_{CEO} and 1400V V_{CES} and
has 1.1µs maximum fall time at 3A. Both transistors can be used in c.r.t. deflection systems. Cost of the MJ9000 is 72s 4d and the MJ8400, 86s 2d. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.

WW 314 for further details

Transistor Tester
Both field effect and bipolar transistors can be tested under small signal a.c. conditions at a nominal frequency of 1kHz with the Bournlea Dynamic transistor tester. For depletion mode f.e.t.s the measurement range of zero-bias transconductance (g_m) is from 0.5 to 75 mhm. For bipolar transistors the measurement range of current gain (beta) is from 5 to 750. Devices of either polarity can be tested. Terminals on the side of the instrument enable any sensitive multi-range meter to be used for a variety of additional tests on diodes and transistors, including f.e.t. zero bias drain current (I_DSS) and f.e.t. pinch-off voltage (V_p). The Cardon Instrument Co., Earls Coine, Colchester, Essex.

WW 310 for further details

Encapsulated Single-phase Bridge
International Rectifier are producing low-cost, encapsulated single-phase bridge rectifier assemblies rated at 1.6A. The series, designated BSIB, whilst compact in size, displays high single-cycle surge and repetitive current ratings and offers an operating temperature range of -40° to 150°C. It is available in the range of 75 to 600V r.m.s. International Rectifier, Hurst Green,0xted, Surrey.

WW 313 for further details

Direct Reading Attenuators
A range of fourteen simple direct reading attenuators has been introduced by Flann Microwave Instruments, for isolating poor s.w.r.s. All models in the range are frequency insensitive and display an s.w.r. of less than 1.25 over their calibrated attenuator range of 30dB. There are 13 calibrations ranging from attenuations of 0.1 to 30.0dB. Calibration accuracy is 5% or 0.25dB, whichever is the greater. Phase shift varies from under 3° to less than 5°, depending on model. Frequency range varies from 2.6-3.05GHz to 92-138GHz, and power rating from 0.3W to 8W, depending on model. Flann Microwave Instruments Ltd, 9 Old Bridge Street, Kingston-upon-Thames, Surrey.

WW 334 for further details

Miniature Terminals
Specially designed for miniature circuitry, Vero Electronics have introduced a terminal (part no. MT/11081) which holds up to five leads using three possible directions. With a hand tool these terminals are easily inserted into 0.052-in diameter holes, may be re-used if desired by simply pulling them out of the board. The miniature terminals are produced from beryllium copper sheet, and finished in tin. Staking is not essential but the terminal may be staked by flaring the bottom end using needle nose pliers. Vero Electronics Ltd, Chandler's Ford, Hampshire.

WW 320 for further details

Instrument Amplifier
Intended as an instrument pre-amplifier, the FE-251-CA from Fyldc has a wide gain range, with internal damping and variable sensitivity for electrically damped galvanometers. Shift facilities are built in, and there is output sensitivity control. Gain is switched between 20 and 1000, and input impedance is greater than 2MΩ. Both input and output are protected against overload.

Output capability is ±8V at up to 1.5mA and common mode rejection is greater than 100dB. Full shift of the output is possible, and wideband noise is less than 10nV pk-pk, referred to output. Bandwidth may be adjusted, from d.c. to between 10kHz and 100kHz. A monolithic input stage produces drift performance better than 5 V/°C, referred to input. Fyldc Electronic Laboratories Ltd, 6/16 Oakham Court, Preston, PR1 3XP.

WW 329 for further details

Pulse Generating System
Two addition modules are available for Farnell's modular pulse-generating system. The PO/V variable slope module is an alternative to the standard output module, for applications requiring variable rise and fall times or higher output voltages. Rise and fall times can be varied between 1ns/V and 10ms/V (minimum rise time approximately 10ns) with maximum peak-to-peak amplitudes of 40V into open circuit, 20V into 50Ω. Separate controls enable the pulse level to be set between -3V to +20V (positive level) or +3V to -20V (negative level) into open circuit. Total perturbations 10%, overshoot and ringing 10% of maximum amplitude and output impedance 50Ω ±5%. Price: £45. The frequency divider module PF/D operates over the range 0-1MHz and divides the frequency obtained from the P.R.F. Generator Module PF/A by either 10 or 100, thus enabling repetition rates as low as 0.01Hz to be obtained. Price: £28. Farnell Instruments Ltd, Sandbeck Eay, Wetherby, LS22 4DH, Yorkshire.

WW 311 for further details

Flat-based Heat Sink
Jermyn Industries have added to their range of power heat sinks the type 'MF' which is a flat-based aluminium extrusion with nine equally spaced fins. This extrusion is 3⁄in high, 3⁄in wide, and has a base thickness of 1⁄in. Type MF-25US is 2⁄in length and has a thermal impedance of 3.3°C/W. The other standard stock version, MF-56U is 2⁄in long and has a thermal impedance of 1.75°C/W. These two standard types are available black-anodized, but undrilled. Other lengths can be made available to special order. This range of heat sinks is suitable for mounting TO-66, TO-3 and many other sized devices on the flat face, and may be utilized to replace one side of a module's container due to its thin section and low weight. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WW 316 for further details

Frequency-selective Microcircuit
A frequency sensitive switch, type FX-201, is now available from Consumer Microcircuits. Employing low-voltage m.o.s./m.s.i. microcircuits in a TO-5 case the device operates as two independent frequency selective switches. It accepts a-m and pulse input signals—the operating frequencies and bandwidths being determined by means of a few externally connected resistors and capacitors, and adjustable over a very wide working range. The band frequencies are adjustable
High-speed data processing. Model FS-21 is a member of the same family, but optimized for fast settling. It is said to be suitable for digital to analogue conversion systems, sample-and-hold circuits, and pulse amplifiers. Both versions offer outputs of ±20mA at ±10V, 20μV/°C voltage drift and 0.5nA/°C current drift. The operating temperature range is 0 to 70°C with optimum performance from 10 to 50°C. V-F Instruments Ltd, Gloucester Trading Estate, Hucclecote, Glos. GL3 4AA.

Frequency-period Meter

The 9520 frequency-period meter, from Racal, covering the frequency range 5Hz to 10MHz, can measure periods from 1μs to 0.2s and gives a four-digit in-line display. The gate times of 1ms, 10ms, 100ms and 1s are selectable by push-buttons, as are the mode of operation, check position and power on-off switch. The U.K. price is £135. Racal Instruments Ltd, Duke Street, Windsor, Berks.

Data Amplifiers

Two new data amplifiers have been introduced by Data Device Corporation—the model VA-21 video amplifier and the fast settling model FS-21. The VA-21 provides a slewing rate of 750V/μs, with a 12MHz frequency for full output. Its stable 6dB/octave roll-off characteristic gives a useful gain-bandwidth product of 80MHz minimum. Developed specifically for high frequency inputting applications, the VA-21 can be employed in video summing and deflection control amplifiers, and in

Laboratory D.C. Power Supply

New from Tranchant Electronics Ltd, is the TZ 45, an all-silicon solid-state d.c. power supply unit delivering up to 40V at 2A in both constant-voltage and constant-current modes, both modes having coarse and fine adjustment controls. Unit measures 4 x 7 x 11 lin. An over-voltage crowbar with operating time of less than 20us, operating temperature range of 0-60°C, ripple 300μV r.m.s. load and line regulation 1 part in 10,000 is available as an optional extra. Tranchant Electronics (U.K.) Ltd, 17 Charing Cross Road, London, W.C.2.

T.T.L. Integrated Circuits

Monostable FJK101, high speed, full adder FJH191, 5-bit shift register FJJ241, single master-slave bistable element FJJ261 and two-bit adder FJH201 are five t.t.l. integrated circuits in dual-in-line encapsulations introduced by Mullard. The FJH191 has gated complementary inputs and is intended for use in parallel-add and serial-carry applications. The device provides a complementary sum output and an inverted carry output and it is claimed that one FJH191 needs less power than a selection of other t.t.l. circuits arranged to perform the same functions. Supply voltage required is 4.75 to 5.25V at 21mA. Fan-out from a carry output and sum outputs is 5 and 10, respectively. The FJJ241 has five R-S master-slave flip-flops connected to give parallel-to-serial or serial-to-parallel conversion of binary data. Access to the inputs and outputs of each flip-flop allows either parallel in and parallel out or serial in and serial out modes of operation. Supply voltage required is 4.75 to 5.25V at a typical supply current of 48mA. The width of clock and clear pulses is not less than 35ns and 30ns respectively. Mullard Ltd, Mullard House, Torrington Place, London W.C.1.

Minimal Reactive Resistor

Although the claim for the FC100 by Reliance Controls is that it is believed to be the first non-reactive fixed Cermet resistor available with dual-in-line configuration, the Cermet element does have some minimal inductance. The dual-in-line package allows complementary mounting with silicon integrated circuits. The substrate is 96% alumina, the case diallyl phthalate, the terminals are plated beryllium copper. The FC100 is available with values from 100Ω.2 to 1MΩ, and has a nominal weight of lg. Reliance Controls Ltd, Drakes Way, Swindon, Wiltshire.

Low-cost Thyristors

Two ranges of thyristors the TAG 3 and TAG 6 with 5.0 and 7.5A capacity rated up to 600V and 800V respectively are available from Jermyn. The maximum gate drive is 15mA at 2.0V and 25mA at 3.0V respectively. The TO-66 encapsulation employed ensures low thermal impedance between junction and heatsink. The 400V devices in each range are priced at 12c.8d and 16s 4d each respectively in quantities of 100-999. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

Heat Sink Adaptors

The excellent thermal conducting and electrical insulating properties of aluminium oxide are used in the new A1004AX(TOS) and A1005AX(TO18) heat sink adaptors, manufactured by Jermyn. A body of anodized aluminium is seated on an aluminium oxide ceramic base, giving a total thermal impedance from transistor to base of approximately 13°C per watt. Electrical characteristics include 500V minimum breakdown voltage (1000V typical) and 1pF (typical) capacitance from transistor to mounting surface. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WWW 331 for further details

WWW 333 for further details

WWW 303 for further details

WWW 318 for further details

WWW 315 for further details
1. (c) In the circuits of Figs 1 and 3 the capacitors charge up so that the potential across each diode only becomes positive for a small part of a cycle; the diode current only flows during this time. In the circuit of Fig. 2 the inductor keeps the current flowing; the diodes conduct for half-cycles in turn.

2. (a) The circuits of Figs 2 and 3 both have a fundamental ripple frequency of 100 Hz.

3. (c) The charge which flows out of the capacitor through the load while the diode is not conducting must be replaced while the diode conducts. As the ripple decreases the diode-conduction time is reduced so that the peak current during this time increases.

4. (b) The inductor resistance lowers the value of the output voltage since some of the steady component of the rectified voltage is developed across it.

5. (d) The inductor and second capacitor, acting as a filter, will very much reduce the ripple output compared to that of the other two circuits.

6. (b) The indicator smoothing of Fig. 2 produces a ripple which is more nearly sinusoidal. The filter circuit in Fig. 3 eliminates the higher frequencies in the ripple more efficiently than the fundamental, and thus leaves a residual ripple which is approximately sinusoidal.

7. (c) Figs 1 and 3 will give an output voltage which is not much less than the peak value of the supply.

8. (d) The steady output voltage for this circuit is the mean value of a full-wave rectified sine wave; i.e. \(\frac{2}{\pi} \times \) peak voltage.

9. (d) In the circuit of Fig. 3 the maximum reverse diode voltage is the peak value of the input voltage. In the circuit of Fig. 2 and, approximately, in that of Fig. 1 it is twice this.

10. (c) Since the capacitor is charged to nearly peak positive input voltage, when the supply is peak negative the voltage across the diode is nearly twice the peak value.

11. (d) Inductor smoothing is only effective where flow of current through is continuous.

12. (c) Circuits in which an inductor is the first smoothing component have the better regulation.

13. (c) When the diode is conducting the capacitor is discharging through the load.

14. (d) In the circuit of Fig. 1 increasing \(R \) decreases the amount by which the capacitor discharges between charging pulses and thus reduces the ripple amplitude. In the circuit of Fig. 2 on the other hand, the smoothing effect of the inductor increases with increase of mean current (assuming that \(L \) does not change) and thus with decrease of \(R \).

15. (c) The inductor and second capacitor can be thought of as forming a potential divider for the ripple voltage which appears across the first capacitor. It is also necessary that the resistance of the capacitors should be much less than the load resistance value (but the first capacitor must not overload the diodes).

Answers to “Test Your Knowledge”

Questions on page 141

BULGIN

NEW FUSES AND FUSEHOLDERS

MINIMUM PANEL PROJECTION HOLDER

As with all Bulgin Fuseholders, one of the main points taken into consideration with the basic design is the SAFETY FACTOR. The rear (live) contacts cannot be reached by the B.S. Test Finger from front of panel and the secured front cap avoids accidental removal of the Fuse Link. The front of the unit is almost flush fitting with minimum panel projection. Connection Tags accept 187 series Push-on Tabs. F.317 accepting 1" x 1" F.318 accepting 1 1/2" x 1 1/2" Fuses.

SHROUDED MINIATURE FuseHOLDERS

A further version of the popular and well established F.286, F.287 range of miniature Fuseholders but with added SAFETY FEATURES—a strong but elegant moulded shroud to protect the “key slot cap” which can only be removed with the aid of a screwdriver. When the Cap is removed, the fuse link is withdrawn at the same time, thus breaking the connection and speeding fuse replacement. F.296/5 accepting 20mm x 5mm Fuses.

FUSES

With improved manufacturing techniques (incorporating the use of specially designed automatic equipment), we are pleased to announce EK-STOCK deliveries for all of our popular ranges of fuses.

OUR FULL RANGE IS LISTED IN FREE BROCHURE NO. 1532/C

A. F. BULGIN & CO. LTD.

MANUFACTURERS OF ELECTRICAL AND ELECTRONIC COMPONENTS

BYE-PASS ROAD • BARKING • ESSEX • ENGLAND

TEL: 01-594 5588 (12 LINES) Private Branch Exchange

WW—075 FOR FURTHER DETAILS
Real & Imaginary
by "Vector"

"Pipes and whistles in his sound"

"Local radio is likely to have audiences of millions instead of thousands as a result of a Government decision to allow the B.B.C. to use the medium wave as well as v.h.f. for local broadcasting." This newspaper summary caught my eye when speeding by British Rail towards London and Dorset House. On my arrival, and while waiting in the Editor's office, I began looking through the volumes of W.W. which grace the walls. These go back to 1911, almost to the dinosaurian era, but I had little difficulty in locating my immediate quarry, namely, the beginnings of v.h.f. (it was e.h.f. in those days) broadcasting in this country. Indeed, one could scarcely miss it, for the correspondence columns were so heated as to need asbestos paper. There were those who wanted v.h.f./f.m.; there were those who wanted v.h.f./a.m. and there were those who didn't want either at any price. Incidentally, among the last-mentioned I was intrigued to find our old friend Thomas Roddam putting in a plea for pulse modulation (p. 70, Feb. 1947).

Given transistors and integrated circuits, how about it now, Mr. Roddam?

To press on, it seems that the end of World War II found the m.f. band in a chaotic state. Transmission technologies had improved tremendously and with them came increased output powers to blast propaganda across enemy frontiers. Nightfall brought a hideous cacophony, garnished with monkey-chatter and whistles; a situation which is still with us a quarter of a century later.

The B.B.C., with Government approval, decided to go to v.h.f. where sufficient channels to cover the British Isles were available. The vexed question of f.m. versus a.m. was settled by building a new station at Wrotham, Kent, to radiate both forms of modulation. After exhaustive tests, f.m. was chosen and stations were being built in quantity in 1954/55; all seemed set for the millennium.

For prospects were bright indeed. Here was a transmission system which provided speech and music of high quality, unpaired by co-station interference or by natural or man-made static. With a network of f.m. stations covering the country, virtually everyone could have a choice of three programmes under almost flawless conditions. The m.f. stations would gradually become redundant and could then be phased out, except, of course, for external broadcasting.

The serpent in this Garden of Eden was not discovered for some little time. An integral part of the system was the home receiver. This was the one item over which the B.B.C. had no control; they could issue specifications for top-quality transmitters and aerial systems; they could badger the G.P.O. into providing landlines which would preserve the audio waveforms, but they could have no voice in the design of the home installation.

No one was alarmed when v.h.f. made a slow start, for that was John Citizen's conservative way. But as time went by it became very apparent that, in spite of all the seductive advertising, John had no intention of investing in the new system.

Various factors contributed to this; the times were uncertain; the new type of receiver was more expensive, and John's definition of high-quality reproduction was a big bad wolf in the bass register and a complete cut-off of the higher frequencies. But over and above these were two circumstances that both the B.B.C. and the domestic receiver manufacturers failed to recognize, although any dealer could have told them about it (and probably did!)

One was that before the war, John (and, more particularly, Mrs. John) had become accustomed to listening to foreign commercial stations, such as Fecamp and Luxembourg, which featured broadcasts in English. Naturally, then, when buying a new set, one of the first questions would be "Will it get foreign stations?" and if the answer was a hesitant, "No, not really" then this put the v.h.f. receiver out of court.

The second circumstance also showed the influence of the distaff side. Mrs. John has always had an aversion to trailing wires which interfere with the ritual of cleaning and dusting. A completely self-contained receiver which could be lifted and replaced was to her an ideal which had the added merit that it could be carried from room to room; this enabled her to perform the domestic rites without missing a single syllable concerning the vagaries of her favourite soap-opera tearjerker of the day. For this facility she was prepared to put up with any amount of interference.

When it dawned on the radio manufacturers that v.h.f. was an also-ran with the general public they panicked toward the wrong conclusion, deciding that cheaper receivers would put matters to rights. As a result, cheese-pared circuitry which cut down on such frivolities as an efficient f.c. system and cheap-and-nasty loudspeakers became the order of the day, the whole being accommodated in a two-by-nothing plastic box. Thus the poor old dealer was lumbered with a receiver which (a) would get only three B.B.C. stations, (b) was difficult to tune, (c) did not stay tuned because of frequency drift and (d) was of no better quality than the average m.f. set (and when mistuned was a darned sight worse).

With hindsight, it is easy to see that the cardinal mistake was that no finite date for the closure of B.B.C. internal m.f. stations was given. On the assumption that a receiver's life is about seven years, say, seven years from a given date would have been realistic. Henceforth, from the publication of that date, the industry would have been able to concentrate on two main types of receiver. One, for the quality-seeking minority, a v.h.f./f.m. receiver of unstinted design, and the other, for the mass market, an a.m./f.m. set covering the m.f. and v.h.f. bands as a minimum requirement. At the end of the seven years all B.B.C. domestic m.f. transmissions would have ceased; this would have sensibly reduced co-station interference on the band, thus adding to the enjoyment of the foreign station enthusiast.

A friend of mine, who is a radio and television dealer, but is otherwise sound of mind, tells me that the trends of the 1950s are accentuated today. In the mass market the hefty mains receiver which requires an external aerial is virtually out, and very few are sold.

The main sound radio market is the teenager, the mini being the miniature cheap-and-nasty transistor portable (and its counterpart in record players), their main selling points being their undoubted ability to make a raucous noise. The larger medium-to-moderate quality portable is the main choice of the older couples.

Sound radio today (says my dealer friend) is very much a subsidiary to television. In cases where married couples both go out to work the radio is used as an early-morning time check and is then off for the rest of the day. The housewife uses it as a background to those domestic chores which demand flitting from room to room.

In view of the secondary role of sound radio, cannot we learn the lesson of the past? Let's stop fiddling around with the m.f. band; instead, appoint a date (say 1976) when the B.B.C. Charter expires to end m.f. transmissions.

I realize that in saying this I am facing a formidable opposition which includes the B.B.C., the Post Office, Mr. Hughie Green and, possibly, the Editor (see his November '69 leader page). If B.B.C. m.f. transmissions continue but 'Vector' does not, you will know the reason why.
The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amp. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10w. peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amp, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR IC-10

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

SPECIFICATIONS

Output: 10 Watts peak, 5 Watts R.M.S. continuous
Frequency response: 5 Hz to 100 KHz ± 1dB
Total harmonic distortion: Less than 1% at full output.
Load impedance: 3 to 15 ohms.
Power gain: 110dB (100,000,000,000 times) total.
Supply voltage: 8 to 18 volts.
Size: 1 x 0.4 x 0.2 inches.
Sensitivity: 5mV.
Input impedance: Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from cross-over distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR IC-10

SINCLAIR RADIONICS LTD. 22 NEWMARKET ROAD, CAMBRIDGE

Telephone: 0223 52731

WW—076 FOR FURTHER DETAILS

www.americanradiohistory.com
Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.

Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.

The modules are: 1. The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ.5 and PZ.6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or PZ-6. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.

All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.

Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive filter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet. Only holes have to be drilled into the wood of the plinth or cabinet to mount the Stereo 60 and any slight slips here will be covered completely by the aluminium front panel of the control unit. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.
Z-30
TWENTY WATT R.M.S. (40 WATT PEAK)
POWER AMPLIFIER

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 manual.

SPECIFICATIONS

Power output—15 watts R.M.S. (30 watts peak) into 8 ohms using a 35 volt supply; 20 watts R.M.S. (40 watts peak) into 3 ohms using a 30 volt supply.

Output—Class AB.

Frequency response: 30 to 300,000 Hz ± 1dB.

Signal-to-noise ratio: better than 70dB unweighted.

Harmonic distortion: 0.02% total harmonic distortion at full output into 8 ohms and at all lower output levels.

Size: 34 x 24 x 9 inches.

Input sensitivity: 250mV into 100 Kohms.

Damping Factor: > 500.

Loudspeaker impedances 3 to 15 ohms.

Power requirements: 8 to 35 V.d.c.

APPLICATIONS

High fidelity amplifier: car radio amplifier; record player fed direct from pick-up; Intercom; electronic music and instruments: P.A.; laboratory work, etc. Full details of these and many other applications are given in the manual supplied with your Z-30.

STEREO SIXTY

PREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities—Radio—up to 3mV; Magnetic Pickup—3mV. Correct within ± 1dB on R.I.A.A. curve. Ceramic Pickup —up to 3mV; Auxillary—up to 3mV.
- Output—250mV.
- Signal-to-noise ratio—better than 70dB.
- Channel matching—within 1dB.
- Tone Controls—TREBLE ± 15 to —15dB at 10 KHz; BASS ±15 to —15dB at 100 Hz.
- Power consumption 5mA.
- Power requirement—PZ-5 or PZ-6.
- Finish—brushed aluminium front panel with black knobs.
- Mounting—on cabinet front by spindle bushing and adjustable brackets.

STEREO SIXTY
Ready built, tested and guaranteed
£9.19s.6d.

SINCLAIR POWER SUPPLY UNITS

PZ-5
30 volts unstabilised—sufficient to drive two Z-30’s and a Stereo 60 for the majority of domestic applications.

Price: £4.19s.6d.

PZ-6
35 volts stabilised—ideal for driving two Z-30’s and a Stereo 60 when very low efficiency speakers are employed.

Price: £7.19s.6d.

SINCLAIR RADIONICS LIMITED
22 NEWMARKET ROAD, CAMBRIDGE
Telephone 0223 52731

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter.

To: SINCLAIR RADIONICS LTD., 22 NEWMARKET RD., CAMBRIDGE
Please send

NAME
ADDRESS

for which I enclose cash/cheque money order

WW—07S FOR FURTHER DETAILS

www.americanradiohistory.com
it's incredible!

it's new!

frequency sensitive switches in microcircuit form

breakthrough in size, cost, precision and versatility

This FX-201 'Z TRIP' is unique—it is the only frequency sensitive switch in microcircuit form. It incorporates over 200 transistors on a single monolithic silicon chip, and is housed in a TO-5 style can.

This 'Z TRIP' consists of two independent 'band accept' frequency selective switches, incorporating an input amplifier, analogue/digital frequency discriminating circuits and buffered bistable output switches. It operates from a single d.c. supply and is rated for industrial environments.

The FX-201 accepts sinewave and pulse input signals: when the input signal frequency falls within either of the two predetermined acceptance bands the corresponding output is switched. Completely immune to random signal noise and harmonics.

- Adjustable band frequencies 10Hz to 30kHz
- Adjustable band separation 1% to 50%
- Adjustable bandwidths 1% to 50%
- Band edge 'slope' typically 0.1%
- Response time approx. 1.8 mSec @ 5kHz
- Signal amplitude range 20mV to 20V

LOW COST IMMEDIATE DELIVERY

Comprehensive data from

CONSUMER MICROCIRCUITS LTD
142/146 OLD STREET, LONDON, E.C.1
Telephone: 01-253 5638/9

WWW-079 FOR FURTHER DETAILS

IF YOU'RE SENSITIVE TO SOUND

you'll be receptive to Reslo

Famed for a wide range of bi-directional, cardioid and radio microphones, Reslo also produce amplifiers, loudspeakers, P.A. systems and accessories, all precision-engineered to the highest acoustical-performance standards. Sounds good?

Sounds great—with Reslo.

Clip the coupon and we'll tell you more...

CLUBS & LICENSED TRADE EXHIBITION

Prince's Exhibition Hall.
Birmingham
11-15 May
STAND No. 42

Type UD1
Modern-style high-output microphone, with internal 'anti-pop' filter.

Type RBT & RBTS
Miniature ribbon microphone, suitable for sound reinforcement or recording.

Type SL1
Omni-directional microphone for hand or stand use.

Please send me your free brochure giving full details.

NAME _______________________
ADDRESS ___________________

RESLO MIKES
ROMFORD
ESSEX

WWW-080 FOR FURTHER DETAILS
TF 2300 Modulation Meter:
even more accurate,
even wider frequency ranges

Added to such already well-known attributes as its low inherent noise, high rejection of a.m. on f.m., and wide demodulation bandwidth, these latest improvements put the TF 2300 into a special class among modulation measuring instruments.

It is suitable for use as an accurate monitor or precision demodulator with virtually all types of f.m and a.m. transmitter, including telemetry, stereo-multiplex, and fixed and mobile communications equipment.

The demodulated waveform is available – with switchable de-emphasis on f.m. – at panel terminals for further measurement. Provision for crystal-locking the local oscillator (up to three crystals can be inserted) permits measurement of extremely low deviations, such as f.m. transmitter noise. The i.f. output is available at a coaxial panel socket; and the instrument can be used with an external local oscillator if desired. Price £575 f.o.b. U.K.

Narrow Band Version TF 2300S This special version of the Modulation Meter includes an additional deviation range of 1.5 kHz f.s. for measurements on narrow-band f.m. transmitters. Its carrier frequency range also extends down to 2 MHz for use with h.f. transmitters using narrow deviation. Price £675 f.o.b. U.K.
ARE COSTS OUTWEIGHING YOUR PROFITS?

Come and see what mechanisation can do.

High productivity and full order books are fine. But if margins are down, you’ve got to look for new ways of improving efficiency. You’ll find them—in plenty—at London’s International Mechanical Handling Exhibition. It will be the biggest collection of time-saving ideas you’ve ever seen—the world’s largest display of mechanized handling aids. New systems and equipment to cut costs and ensure maximum utilization of plant. The very latest in receiving techniques; storage inventory control; in-processing; packaging; transport; distribution; plus all that is new in ancillary services and equipment. Whether your business is large or small you can save money with modern handling methods.

Don’t miss this important event. Make a note of the date . . . and mail the enquiry now.
Are people being stubborn by insisting on the Minitest?

No. Just choosy!

Diminutive, sensitive, neat, tough. These are the adjectives that describe the S.E.I. Minitest. You will never be provoked into using any other for years, hence this pocket size, multi-range test set will be serving you accurately. The Minitest measures a.c. and d.c. voltages, d.c. current, and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively. Readings are instantaneous and the minute is clearly discernible. A steel case shields the movement from external magnetic fields and shocks. This has a robust, wipe-clean, melamine cover. All controls are handily disposed. High voltage probes are available to extend the range of the Minitest to 25 or 30kV d.c. for testing electronic equipment with high source impedance. They can be used with any other meter of similar sensitivity. Wisdom suggests Minitest and S.E.I. probes together, right from the start.

Act now: Send for the catalogue.

We manufacture a wide range of portable instruments . . . write today for full information.

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles, Manchester M30 OHL
Telephone: 061-269 5281 Telex 66711
A Member Company of G.E.C. Electrical Components Ltd

Accurate and direct measurement of speed without coupling to moving parts

FRAHM resonant reed TACHOMETERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.

Anders means meters

ANDERS ELECTRONICS LIMITED
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-387 9092

FYLDE

Electronic Laboratories Limited.
Oakham Court, Preston, PR1 3XP
Telephone: Preston (0772) 57560
'Watts' THE NAME FOR RECORD MAINTENANCE

HI-FI PARASTAT

Gramophone Record Maintenance and Stylus Cleaning Kit

Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 fineline pointed tips of the Hi-Fi Parastat Brush positively explore every detail in the record groove to provide the high degree of record cleanliness necessary when using ultra lightweight pick-ups tracking at 2 grammes or less. The cover pad in the lid of the case is provided for the purpose of cleaning and activating the brush which when enclosed within the case is kept at the correct level of humidity required to control all static at the working surface. Perfectly clean records must be played with a perfectly clean stylus and an integral part of the kit is the new Watts Stylus Cleaner which provides a safe and efficient method of cleaning the stylus. Supplied complete with instructions, 1 oz. New Formula dispenser, Distilled Water dispenser, spare pad cover and ribbons. Price 42/6 plus 1/3 P.T.

The original DUST BUG

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. The Humid Mop cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use. Complete with 1 oz. New Formula dispenser and instructions. Price 52/6

'PARASTATIK' DISC PREENER

Keeps new records like new. Expressly designed for use with records which have not had previous antistatic treatment. Complete with instructions. Price 6/9. Replacements: Packet of 4 wicks 2/-. All obtainable from your local specialist or direct:

2/6 Post Free

To CECIL E. WATTS LTD., DARBY HSE., SUNBURY ON THAMES, MIDDX.

Please send (Post Free U.K. and Commonwealth)

Disc Preeners @ 6/9

Hi-Fi Parastats @ 42/6 plus 1/3 P.T.

Dust Bugs @ 18/9 plus 4/5 P.T.

Manual Parastats @ 47/6

48 page Booklets @ 2/6

Stylus Cleaners @ 5/- plus 1/3 P.T.

Spare parts as per attached list.

Manual Parastat/Humid Mop @ 52/6.

Enclose cheque/P.O. value £ (Do not send postage stamps)

Name

Address

WWW—086 FOR FURTHER DETAILS

PRECISION PRESSINGS

Accurate components at competitive prices

Produced by progressive tooling and multi-form methods

JOHN SMITH LTD.

209 SPON LANE · WEST BROMWICH · STAFFS.

TÉL.: 021-553 2516 (3 LINES)

WOOLDE LANE · GRADLEY HEATH · HARLEY · WORCS.

TÉL.: 069289 (3 LINES)

WWW—086 FOR FURTHER DETAILS

Sub-miniature DESIGN

Jack Socket

R 32307

Screened Jack Plug

R 22301

Presenting part of a wide range of components used throughout the world by the electronics engineer in search of quality and reliability.

Further information available.

RENDAR INSTRUMENTS LTD.

BURGESS HILL, SUSSEX, ENGLAND

TELEPHONES: BURGESS HILL 2642-3

CABLES: RENDAR, BURGESS HILL

WWW—086 FOR FURTHER DETAILS
SOUND "Astronic" SYSTEMS

MANUFACTURERS OF A COMPLETE RANGE OF MODULAR UNITS FOR SOUND AMPLIFICATION

OVER FIFTY STANDARD MODULES IN THE SERIES 1700 RANGE PLUS MANY SPECIALS

COMPLETE MIXING DESKS TO YOUR SPECIFICATION

COME AND SEE THESE AND OTHER PRODUCTS AT THE

SOUND 70 INTERNATIONAL
10th-12th MARCH

ASTRONIC LTD.
DALSTON GARDENS, STANMORE, MIDDLESEX HA7 1BL
Telephone: 01-204 2125

POWER UNITS

Valradio

Now available with 3 OUTPUTS making these units more versatile for:
DEVELOPMENT PRODUCTION TESTING SERVICING

Type VRU/30/20*—£131.5.0

*OUTPUT 1, 0-30V 20A DC.
Will provide accumulator performance from AC mains for production testing and servicing of battery operated equipment. Output continuously variable 0-30V at up to 20A.

*OUTPUT 2, 0-70V 10A AC.
For the testing and development of low voltage AC equipment.

*OUTPUT 3, 0-240V 4A.
Continuously variable AC mains supply voltage for testing equipment at various voltages.
Send for publication WPUS.

VALRADIO LTD.
Dept. WPUS, BROWELL'S LANE, FELTHAM, MIDDLESEX, ENGLAND
Telephone: 01-890 4242

VITALITY BULBS LIMITED

VITALITY are pleased to announce the appointment on 1st February 1970 of two main distributors to the electronics industry.

Combined Electronic Services Ltd.,
Queensway, Waddon Factory Estate,
Croydon CR9 4DR
Phone: 01-688-3699. Telex: 262308

Farnell Electronic Components Ltd.,
Canal Road, Leeds LS12 2TU
Phone: 836311. Telex: 55147

Comprehensive stocks will be maintained and orders for up to 500 lamps will be referred.

The small quantity user will benefit by improved delivery and wholesalers also, when unable to deliver small quantities from stock, can order from these two Companies.

Vitality Bulbs Ltd.,
Beetons Way, Bury St. Edmunds, Suffolk.
Phone: 0284 2071. Telex: 81295

A Member of the General Instrument Group

WWW—087 FOR FURTHER DETAILS
WWW—088 FOR FURTHER DETAILS
WWW—089 FOR FURTHER DETAILS
For with between These VHF Signal

HATFIELD

765/A Frequency range

COMPUTER

DK tape Elliott

SURPLUS PUNCHES, READERS, VERIFIERS

HATFIELD BALUN

Lordship Lane, LETCHWORTH, HERTS.

50 ohms:

TRAINING PRODUCTS

2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/6

Ballistics

Computers by Westinghouse.

Nine servo amplifiers with associated motors and Power Packs.

Brand new in sealed containers. Price on application.

Automatic Numbering Machine by Western Union.

Four Uniselectors and 30 neons. Ideal basis for amateur computer.

Application leaflet. £12.10s. post free.

PUNCHES, READERS, VERIFIERS AND TELEPRINTERS. NEW COMPUTER ENGINEERING SURPLUS MATERIALS, AT REALISTIC PRICES. MOBILE SHOWROOM. CALL ON REQUEST TO SUITABLE LOCATIONS.

Ellisoff 8038 computers 4k store, 803C 8k store, film handlers, two tape readers, two tape punches. ICL 1901 Central Processors 8k store Lineprinter, 600 LPM. Elliott 903 8k store tape readers & punch. Prices on application.

COMPUTER TRAINING PRODUCTS

Hatfield Instruments Ltd., Dept. WW, BURRINGTON WAY, PLYMOUTH, PL5 3LZ, DEVON

Telephone: Plymouth (0752) 72773/3
Cables: Sigjen Plymouth.

WWW-093 FOR FURTHER DETAILS

FURTHER DETAILS

SPECIFICATION:

PETER SEYMOUR LTD., 410 BEVERLEY ROAD, HULL, YORKSHIRE

WWW-092 FOR FURTHER DETAILS

HATFIELD SIGNAL DIVIDERS

These VHF Signal Dividers offer an efficient and inexpensive method of dividing a signal between two outputs while maintaining optimum VSWR and insertion loss characteristics.

Frequency range is d.c. to 1 GHz, through power 1W maximum. Two impedances are available: Type 765/A 50 ohms; 765/B 75 ohms. The Dividers are fitted with BNC connectors, and a four port model with a similar specification will be available shortly.

A range of low-loss passive couplers is also available, in both bridge and transformer types. Illustration shows Type NB2, a 3-port coupler with BNC sockets.

For fast deliveries and full specifications, please contact:

HATFIELD BALUN

WWW-093 FOR FURTHER DETAILS

WEbsite: americanradiohistory.com
A very wide range of modern design instruments is available for 10/14 days' delivery.

Full information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1
Phone: 01/837/7937

TECHNICAL TRAINING
in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs—they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:
- C. & G. Telecommunication Techns'. Certs.
- C. & G. Electronic Servicing
- Radio Amateurs' Examination
- P.M.G. Certs., in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter—all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY
for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Stewarts Road, London, S.W.8

Please send me the ICS prospectus—free and without obligation.

(state Subject or Exam.)

NAME

ADDRESS

INTERNATIONAL CORRESPONDENCE SCHOOLS

WWW.AMERICANRADIOHISTORY.COM
F.A.L. 'PHASE 32'
You must hear this superb unit
15 + 15 WATT
HIGH FIDELITY OUTPUT
SOLID STATE STEREO AMPLIFIER
Recommended
Retail Price
ONLY 36 Gns.
★ Excellent performance
★ High grade components and transistors
★ Impressive technical specification
★ Attractive appearance
★ Modest cost

Housed in Teak veneered Cabinet,
Switched selection of Microphone,
Magnetic P.U., Ceramic P.U.,
Radio Tuner, Tape Recorder.
Available from your local Hi-Fi Dealer
Wholesale and Retail enquiries to Manufacturers
FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13

SEND S.A.E. FOR FULLY DESCRIPTIVE LEAFLET

WWW—097 FOR FURTHER DETAILS

Connoisseur
Precision in Sound
S.C.U.I. STEREO CARTRIDGE
This is the cartridge for the person who really cares about his equipment.
S.A.U.2. ONE OF TODAY'S MOST ADVANCED PICK-UP ARMS
★ Auto-bias Compensator ★ Hydraulic Lowering device ★ Precision balance

Full details on request to
See us at S.O.N.E.X '70
Skyway Hotel, 26th-28th April

A. R. SUGDEN & Co. (Engineers) Ltd.
Market Street, Brighouse, HD6 1DX, Yorkshire. Tel. 2142

WWW—098 FOR FURTHER DETAILS

And how to stop it
First, measure it - on the Rank Studio Flutter Meter.
The Type 1740 measures accurately the degree
of Wow and Flutter on sound recorders
and reproducers.
For more information write to:

RANK FILM EQUIPMENT
Rank Audio Visual Limited
P.O. Box 70
Great West Road
Brentford, Middx.
Tel 01-368 9222

WWW—099 FOR FURTHER DETAILS

For electronic components fast...
Radiospares
13-17 Epworth St., London E.C.2.
Tel: 01-253 9581, Telex: 262341.

WWW—101 FOR FURTHER DETAILS
NEW SCIENTIFIC TITLES

An Introduction to the Chemistry of The Alkaloids
A. McKILLOP, BSc, PhD.
Alkaloid chemistry is presented both in terms of general principles and by means of detailed illustrative examples.
408 52473 1 212 pages illustrated Limp 34s.

Principles of Pulse Code Modulation
K. W. CATTERMOLE, BSc, CEng, MIEE
The principles and properties that are essential to a full understanding of the mechanisms, and a quantitative appraisal of the performance of pulse code modulation.
592 02834 8 442 pages illustrated 95s.

Progress in Stereochemistry—4
Editor: B. J. AYLETT, MA, PhD and M. M. HARRIS, DSc, PhD
Explores new trends in the interplay between stereochemical thought and the advances in chemistry and biochemistry.
408 31910 0 448 pages illustrated 150s.

Available from leading booksellers or:
THE BUTTERWORTH GROUP 88 KINGSWAY LONDON WC.2.

FOR FURTHER DETAILS
WWW.104

OXLEY® FRAME TRIMMER
The OXLEY Frame Trimmer has been designed to provide horizontal mounted adjustment. This has been achieved by eliminating the conventional ceramic base and substituting a bridge construction with twin plastic bearing assemblies incorporating P. T. F. E. bush. The added advantages occurring from this assembly are:

- Twin bearings for stability
- Completely solderless construction
- Rotor and Stator of Monolithic design for improved rigidity
- Uniform torque
- Smooth adjustment
- Capacitance: 5pF, maximum 20pF.

Contact our Sales Department for further details

OXLEY DEVELOPMENTS, CO., LTD.
Priory Park, Ulverston, N. Lancs.
Telephone: Ulverston 2621 Telex 6541

FOR FURTHER DETAILS
WWW.102
Trainfortomorrow's world in Radio and Television at The Pembroke College of Electronics.

The next full time 16 month College Diploma course which gives a thorough fundamental training for radio and television engineers, starts on 15th April 1970.

The course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

To get ahead in this fast growing industry — an industry that gives you many far-reaching opportunities — is to enrol now with the world famous Pembroke College. Minimum entrance requirements: 'O' Level. Senior Cambridge or equivalent in Mathematics and English.
TEST GEAR

OSCILLOSCOPES

E.M.I. 7251A 60 MHz, £30
SOLARTRON 912 D B D - DC - 9 nits £40
SOLARTRON 913 DC - 15 nits NOW ONLY £30
SOLARTRON 958 DC - 6 nits £19
SOLARTRON 9140 1904 1905 X 3 £220 and £190
HARTLEY 13A. DB £49/10c.
All carefully checked and carried. Certain models fitted.

TRANSMITTERS

TP 856 (CT5) Audio Freq. Voltmeter £15. Carr. 100.
TP 762U Hi-Freq Generator £11 Carr. £1
650 N S.P. Hi-Freq Generator. £12 Carr. £1
TP 114U Signal Generator. Servicable, Clean £5. Carr. £1
1901A Triangular Waveform Generator £12 Carr. £1
TP 855 Video Oscillator Squares £35 Carr. £15
TP 855B RGB Waveform £40 Carr. £15
TP 855R Video voltmeter £4 Carr. £10
1901A Triangular Waveform Generator £12 Carr. £1
TP 701B Carrier Deviation Meter £9 Carr. £10
Pulse generator P03 10 FREE 1 - 90 Max £15 Carr. £15.
1901A Triangular Waveform Generator £12 Carr. £15
1901A Triangular Waveform Generator £12 Carr. £15

INSTRUMENTS

New D.S.R. U.S.R. 15A £20 Carr. £20
Calibrated 500mA 0.1% DC £2 Carr. £2
Stab 500mA 0.1% DC £2 Carr. £2
1901A Triangular Waveform Generator £12 Carr. £15
1901A Triangular Waveform Generator £12 Carr. £15

Avo-

Generator CT8 530 £2 Carr. £15
Timer 60 - 20000 & 0.5 - 9000 £15
Digital Electronic Testmeter CT8 Complete £15 Carr. £15

General Electric

OLS 428B/1 Valve VOM £20 Carr. £20
OLS 482B/1 Valve VOM £10 Carr. £10
OLS 7001 Microvoltmeter £3 Carr. £5
OLS 701A Microvolt back £5 Carr. £5
OLS 702A Microvoltmeter (0.01) £20 Carr. £20
OLS 702A Microvoltmeter (0.01) £20 Carr. £20

By P. E. Bradley NOW ONLY £46.

CINTEL

Wide Range Capacitor 6300pF, £20 Carr. £20
Microwave Generator 871 £25 Carr. £15
Sine and Pulse Generator 117 £25 Carr. £15
Sine and Pulse Generator 117 £25 Carr. £15

METERS

Elliott Portable Radiometer £75 dia. sealed 3 to 125 Hours £25 - £25. 31. Frequency range DC to 500000 Hz. Zero null detector. 0.01%. 0.1 Volt E.H.T. sningle stage, mastic band, movement lock. In fine quality wooden case. £25. £25.
E.H.T. ELECTROSTATIC Ernest Turner, etc. 0.1/1.5kV. £8. 0.6 kV. £15. £15.
TAYLOR 1000-1600 Micro amp sealed dial 6 x 2" with internal range divider. £25. £25.
Griffin & George 3" round in sloped onepiece body with terminals 2 £5. £5. £10. 25. 25.

DIGIT RESETABLE COUNTERS

1.000 12 volt jet +1 to 41 long. As new by Heptico of Geneva. £1/10 each.

TRANSFORMERS

All standard inputs.

STEP DOWN ISOLATING TRANSFORMER 240v 110v 0.5 watt £1.50. £1.50.
Isolation transformer etc. Standard mains input. £35. £35.

MODULATION trans. £6 60. 30 each. £3. 30.
Transformer 0.225-1200 MA 3.5v A4 CT 2 x 3 £3. 3 £3.
2000-2900 0.9 watt 100 mA, Separate model £1. £1. £1.
4000-5000 4 volts amp & 0.5 amp taxi 20. £2. £2.
Gardners 5 x 350-370mA £1. 5 x 350-370mA £2. £2.
500-500 350-320mA £1. 500-500 £2. £2.
Denco Travelling Wave Amplifier £40. £20.
Heinz Gunther A/F/P Generator 1000 watt £40. £40.

Signal Generator CT 5 £3. Complete with leads. Good condition.

FREQUENCIES

Medium frequency 0.005 to 1.000 MHz £4. Carr. £4.

VIBRATING REED ELECTROMETER type N 572 by R.E.C. 100 to the +5 V. max sensitivity of 50000. £10.

R.F. FREQUENCY COUNTERS

R.F. Micro-oscilloscope type R.R.F. 225 £10. £20
Distributed Amplifier type 2SC517 £50 and 1000 mV £50
Distributed Amplifier type 2SC517 £50 and 1000 mV £50
Distributed Amplifier type 2SC517 £50 and 1000 mV £50
Distributed Amplifier type 2SC517 £50 and 1000 mV £50

CASH WITH ORDER

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltlmead' prices. Callers welcome 9 a.m. to 10 p.m. daily.

OFFICIALS WELCOMED

CHILMTTE LTD.
22 SUN STREET. READING. BERKS.
Off Cumberland Road (Cemetery Junction) Tel. No. Reading 65916 (9 a.m. to 10 p.m.)
Wilkinson's

FOR RELAYS
P.O. TYPE 3000 AND 600
BUILT TO YOUR REQUIREMENTS — QUICK DELIVERY
COMPETITIVE PRICES — VARIOUS CONTACTS
DUST COVERS — QUOTATIONS BY RETURN
LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED RELAYS

HIGH SPEED COUNTERS
SEC 2 3 4 10

5/- ea.

MINIATURE DIGITAL DISPLAY SERIES 66
Counting Units, Ltd., an assembly of five units each with either a decimal point, or letters 20 complete, send for details.

LAMP HOUSES with pair of 6ls, lenses mounted in a 6in. square case, ideal spotlight 750- each, post 10/-

BATTERY CARGERS at special price made by Westinghouse, worth £35. Input 200/250v. A.C. output 6v. 15 amps D.C. with separate fuse, regulated by a 4 position switch and sliding resistance. GUN PRICE 190/- CEP 50/-

CERAMIC AND PAKOLIN WAFER SWITCHES available from stock at base prices, send for 24 way Double Pole Wider Switches 12£. each, post 2/-

P.O. STANDARD EQUIPMENT BAKES 40. U channel guides drilled for 31/4 in. panels, almost every angle 150/-, age 20/-

AIR BLOWERS 200/250 volts A.C. cylindrical 7in. 7in. suitable for inside or outside. 150/A. h.p. 140/15/- h.p. 41/10/- h.p. 12/-

ELCRO STUD SWITCHES 12 pole 3 way or 3 way type on 3 Banks, brakes before make action. 50v. 50/-

GEARED MOTORS 1 r.p.m. or 2 r.p.m. 4 volts very powerful, reversible 24v. A.C. 35v., post 2/-, be operated from 230v. with our 20c. Transformer. Post 5/-

VACUUM GAUGES 3m. sealed 0/10 inches of mercury. 20£. each, post 2/6

PRESSURE GAUGES 25mm, 60, 250, 400 or 600 p.s.i. 5/- each. 4in. flange 50, 100 p.s.i. 37/-, 100 p.s.i. each with 5/6 f.m.s. var. 37/-, post 2/6

STANDARD LEVER METERS 1 position 50/500 MC each, 7/6 each, 10/- each. 10/6 each, 20/- each

UNISELECTORS New British made 8 bank, 25 way, non-bridging full wipers, £7.10 each.

VARIABLE Relay 700 ohms 4 CO, 15£. ea.

ROOM THERMOSTAT. Adi. between 45 and 75 deg. For 150. 10 amps A.C. ideal for greenhouses, 25£. Post 4/-

L. Wilkinson (Croydon) Ltd.
Longley House Longley Rd. Croydon Surrey

A NEW HI FI PULSE RATE
F.M. TUNER M-70

- 14 SI TRANSDUCERS. 4 SI DIODES
- TUNING METER
- DISTORTION LESS THAN 0.5%
- SENSITIVE FOR STEREO
- SIGNAL NOISE 60db
- NOMINAL TUNING 1.5m - 100MHz

A highly specified printed circuit board for above tuner with built in card holding case, together with complete shopping list and assembly details for all components required:

75/- (approx. cost of remaining components-44)

* A HIGH FIDELITY TUNER FOR ABOUT 40/-
Printed circuit accommodation is just enough such one—if you can read and use a soldering iron—45 minutes.
The shopping list consists of 24 printed orders which are sufficient for you to obtain all the components required.
If you are building a RE 52 set up, an excellent tuner is a must; a tuner that will impress you as well as your friends. p. 4 - p. 5

Mail Orders to: DEPT. WW, MULTEL 30 BAKER STREET LONDON W.1

Wireless World, March 1970

Livingston Hire
01-267-0414
FULLY TESTED AND MARKED
AC107 3/- OC170 3/-
AC126 2/6 OC201 3/-
AC128 3/- OC202 3/-
AC176 5/- 2G301 7/-
AC182 3/- 2G303 7/-
AF114 4/- 2N711 10/-
AF115 4/- 2N1302-3 10/-
AF116 3/- 2N1305-5 5/-
AF117 3/- 2N1306-7 5/-
AF239 12/6 2N1308-9 8/-
AF186 10/- 2N381 F.E.T. 5/-
AF189 10/-
BPY50 4/- Transistors
BSY25 7/- OC20 10/-
BSY26 3/- OC23 7/-
BSY27 3/- OC25 8/-
BSY28 3/- OC26 5/-
BSY29 3/- OC28 7/6
BSY98A 3/- OC36 5/-
OC41 2/6 DC120 7/-
OC44 2/6 AD149 10/-
OC40 2/6 2N2227 20/-
OC71 2/6 2N3050 15/-
OC72 2/6 Diodes
OC73 3/6 AAY42 2/-
OC81 2/6 OA85 2/-
OC81D 2/6 OA70 1/9
OC83 4/- OA79 1/9
OC139 2/6 OA81 1/9
OC140 3/6 IN914 1/6

NEW UNMARKED UNTESTED PAKS
- IRRADIATED CIRCUITS, DATA & CIRCUITS OF TYPES. SUPPLIED WITH ORDERS.
- SUPPLIED WITH ORDERS.
- DC54, DC810 & DC813 TRANS. MULIARD GLASS TYPE.
- 2N3070 & 2N3072.
- SIL DIODES MIN. GLASS TYPE.
- SIL DIODES MIN. GLASS TYPE.
- SIL DIODES MIN. GLASS TYPE.
- 1 AMP. PLASTIC DIODES 50-1000 VOLTS.
- 250mA ZENER DIODE DO-7 MIN. GLASS TYPE.

FREE! PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER £4

RETURN OF THE UNBEATABLE P.1 Pak.
Now greater value than ever
Full of Short Lead Semiconductors & Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors, PNP & NPN, and a host of Diodes & Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors. Please ask for Pak P.1. Only 10/-.

FREE CATALOGUE AND LISTS FOR:
- ZENER DIODES, TRANSISTORS, RECTIFIERS
- FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUAL SELECTION. POST & PACKING 8 for 20/-
Eapor toenters' Assortment

The devices themselves are normally trans. forward Diodes

GERMANIUM TRANSISTORS

Triode.

in PIV PIV

1200 mA, 400V. Diode

400 V, 200 mA.

100 V, 150 mA.

100 V, 125 mA.

100 V, 100 mA.

100 V, 75 mA.

100 V, 50 mA.

100 V, 30 mA.

100 V, 20 mA.

100 V, 10 mA.

100 V, 5 mA.

100 V, 2.5 mA.

100 V, 1.25 mA.

100 V, 0.75 mA.

100 V, 0.50 mA.

100 V, 0.30 mA.

100 V, 0.20 mA.

100 V, 0.10 mA.

100 V, 0.05 mA.

100 V, 0.025 mA.

100 V, 0.0125 mA.

100 V, 0.0063 mA.

100 V, 0.0032 mA.

100 V, 0.0016 mA.

100 V, 0.0008 mA.

100 V, 0.0004 mA.

100 V, 0.0002 mA.

100 V, 0.0001 mA.

100 V, 0.00005 mA.

100 V, 0.000025 mA.

100 V, 0.0000125 mA.

100 V, 0.0000063 mA.

100 V, 0.0000032 mA.

100 V, 0.0000016 mA.

100 V, 0.0000008 mA.

100 V, 0.0000004 mA.

100 V, 0.0000002 mA.

100 V, 0.0000001 mA.

100 V, 0.00000005 mA.

100 V, 0.000000025 mA.

100 V, 0.0000000125 mA.
FREE NOW!
16-PAGE TEST EQUIPMENTS CATALOGUE. ALL ASPECTS OF LOW COST INSTRUMENTS FOR AMATEUR, PROFESSIONAL, EDUCATIONAL USE. FREE!
5005 GET YOUR COPY TODAY.

FREE!
MULTIMETERS
VALVE VOLTMETERS
AF, RF MILLIVOLTMETERS
PANEL, FS METERS
VARIABLE TRANSFORMERS
SCOPE, DECADES
POWER SUPPLIES
AUDIO, RF GENERATORS
TESTERS, CHECKERS

SINE/SQUARE WAVE AUDIO GENERATOR

GRID DIP METER
All transistor grid dip meter, absorption wavemeter and osc. detector. Frequency range 440k/c to 200MHz in 6 scales. Uses 3 transistors plus diode with 500uA meter. Internal battery. TE15 £61.10 p. S/6

VACUUM TUBE VOLTMETER

50,000 OHMS PER VOLTMETER

TRANSISTORISED RF MILLIVOLTMETER

PORTABLE OSCILLOSCOPE

PORTABLE OSCILLOSCOPE

DC STABILISED POWER SUPPLY

FREE!
HI-FI equipment to suit EVERY POCKET

DISCOTHEQUE AND PUBLIC ADDRESS—A SPECIALLY

ELECTRONIC ORGANS

MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT
VENEREDED CABINETS FOR ALL MODELS
NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUALS, 49 NOTE Available in many sections as required
HP AND CREDIT SALE FACILITIES

HENRY'S RADIO LTD.
HENRY'S RADIO LTD.

NEW FOR 1970

ON DEMONSTRATION

HENLEC 'IC STEREO'

Three-dualchannel integrals are used in this new design by Henry's. Design, which has the unusual facility of doubling a high quality headphone amplifier. Inputs are provided for magnetic, crystal and ceramic pickups and microphones, radio and recorder signals, etc. Wide range controls and balanced high and low pass filters are employed to assist in the design of an amplifier which has a very high degree of integrals. The result is a system that has the highest degree of silent operation. Designed for the Philips E96 and the similar types of units. Price £33.00.

HENLEC STEREO 25-25

Comprises two PA53 amplifiers and MU442 in matching cabinet for digitale use with above IC Stereo. Price £33.00.

HENLEC 'PA25' POWER AMPLIFIER

This silicon design uses complementary transistors in the symmetrical output stage, direct coupled to a loudspeaker of 8 ohms impedance or higher. Power output is 35 watts RMS with an 8 ohm load or 12 watts into 15 ohms, over a frequency range of 15Hz-2kHz 3db. Cost saving is assured by the use of generally dimensioned bulk silicon headamps. Price £7.10.00.

HENLEC 'PA50' POWER AMPLIFIER

Basically similar to the 'PA25', the 'PA50' will deliver 50 watts RMS to a 4-ohm load. Extra power is handled by complementary triple devices using the latest PNP and NPN silicon power transistors. As a result of extra heat sinking, the 'PA50' runs as cool as the 'PA25'. Price £9.10.00.

HENLEC MU442 POWER SUPPLY

Designed to run one or two 'PA25's or one 'PA50' the MU442 connects to the amplifier to maintain clean power. No interfering is required to connect up the system. Audio input plug and speaker plug go to the panel of this MU442. Price £6.00.00.

MK1 100 watts RMS with stabilised power output overcurrent trip indication. Price £49.10.00.

THE FINEST SOLID STATE UNITS
ALL SILICON BRITISH EQUIPMENT

SEND FOR FREE BROCHURES

TO BUILD YOURSELF ALL TRANSISTOR DESIGNS

- PW Stereo Decoder (Reprint no. 45A 1/6) £3 15 0 p.p. 3/6
- ZF Spring Line Reverbation Unit (Reprint no. 45A 1/6) £4 10 0 p.p. 6/6
- Fairchild Mic. Kit £4 7 6 p.p. 5/6
- 9V Battery Power Supply £3 15 0 p.p. 1/6
- Tiny Tone Radio Control Receiver (Reprint 2A 1/6) £2 15 0 p.p. 1/6
- Henry's PSMK Radio Tuner £4 7 6 p.p. 1/6
- PW Switched FM Tuner (Reprint 1/10) £3 17 6 p.p. 1/6

NOTE: FOR MANY OF THE INTEGRATED CIRCUITS LISTED, APPLICATIONS AND CIRCUITS ARE AVAILABLE. COMPLETE LIST No. 36A WITH DETAILS ON REQUEST.

TRANSISTORS

FROM STOCK THE LARGEST RANGE AVAILABLE, COVERING ALL TYPES OF TRANSISTOR, INTEGRATED CIRCUITS, DIODES, RECTIFIERS, ZENERS, LIGHT DEVICES. FREE LIST No. 36 of over 1,000 TYPES ON REQUEST.

TRADE AND INDUSTRIAL ENQUIRIES INVITED

ALSO IN STOCK. TRANSISTORS £1.16.18 PAIR WITH CIRCUITS. LARGE RANGE OF NUMERICATOR TUBES AND INDICATORS, RELAYS AND COUNTERS, SOLENOID AND ACTUATORS—SEE CATALOGUE "A".

HENRY'S RADIO LTD.

WIRELESS WORLD, March 1970
EX-COMPUTER PARTS & SUPPLIES
Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10mv, and regulation better than 1%. Over voltage protection on all except 24v.

We offer the following types:
6v. 8a. £10. 20v. 15a. £15.
6v. 15a. £14. 30v. 7a. £12.
12v. 20a. £16. 24v. 4a. £14.
Carr. 15% per unit.

TRANSFORMERS
L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40/50. 1.5 amp. 30p. 5/6.
ADVANCED TRANSFORMER VOLTAGE. Prim. 190/250v. 1.5% 115v. 2,250 watts. £15 ea. P.P. 50.
L.T. TRANSFORMERS. Prim. 200/250v. Sec. 15/25/35. 8 amp. £6.25 P.P.
STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 12/22/24. 6.25 amp. 5/6 P.P.
L.T. TRANSFORMERS. Prim. 240v. Sec. 11/12/15. 3.5 amp models 25/-; 5 amp model 28/- P.P. 5/6.

DIODES EX.EQPT. SILICON: Diode Range 100-950. £1 each. 100v. 2watt. £2 each. 2watt 600v.
100v. 2watt. 2-6. 0.145-0.175.
SILICON BRIDGES. 4 watts. £1.75.
SILICON BRIDGE DIODES. 2 watts. £1.75.
GERMANIUM-400 VOLTS. £1.75.
SILICON DIODES. 1 watt. £1.75.
GERMANIUM 400 VOLTS. £1.75.
SILICON BRIDGE DIODES. 1 watt. £1.75.

FLUORESCENT CONTROL KITS

Kits for 4 in. tubes: Ch. 2 tube radio, starter holder and 3 tube clips with wiring instructions. Suitable for normal fluorescent tubes. The new "Gruen" takes for full tubes and instant plastic. tube caps. 100 lamp, $1.49. Kits 25c.

FLUORESCENT TYPE

The two made by the Wilson Group are for operating and controlling d.c. "The Gruen" made by A.C. motors.

Prototypes

These are used and they supply a variable d.c. resulting in motor speed control and electrical efficiency for superior to other motor control methods. We have a complete line of complete cabinets with front control panel on which are position knobs for control and the thermostat firing center.

MINIATURE EXTRACTOR FAN

Beautifully made by famous German Company. Made from high quality materials. Suitable for use in confined room. Ideal for room蒸发 but individual to be integrated in a forced blower, ref. 65.-

MINIATURE WAFFER SWITCHES

2 post, 2-way—4 post, 2-way—3 post, 2-way. Make selection and order separately. Write for details. 2 post, 6-way—1 post, 12 way. All at 1/25 each. 25c. per box.

WATERPROOF HEATING ELEKTON

21 volts mean or alternating temperature control. 1/4 post free.

INSTRUMENT MOTORS

2 post, 2-way—4 post, 2-way. Made by famous Smith Company. Very powerful, allowing extremely small motors and other small parts, etc. Dimensions approx. 1.14 in. deep by 2.5 in. dia. Following motors, please specify required speed:

Rev. per min. 1, 2, 4, 6, 8, 10, 15, 20,

3 for 15c. each, 1.25c. each, 10c. each.

CONTROL DRILL SPOOLS

Electrically changes speed from approximately 10 revs. per min. to 6000. Follows drill, please specify required speed:

Rev. per min. 1, 2, 4, 6, 8, 10, 15, 20.

Drill. per min. 1, 2, 4, 6, 8, 10, 15, 20.

Each 12c. per box.

DRILL CONTROLLER

Installs in over 10000 of the 15amp drills. 15c. post free.

ELECTRIC CLOCK WITH 21 AMP SWITCH

Made by Smith's, these units are suitable to any power quality to control the clock. The clock is driven by a dry cell and all parts are wired together. Ideal for all types of work. Please specify whether you want alternating or direct current. Offered at only 15c. each and 10c. each.

THERMAL CUTOUT

A miniature switch. Simply screw down the handle on any screw mounting. It can be used for overload protection - the discharge from switch will break the circuit. Normal working temperature is 100 deg. on oil. Less than the value of the clock shown—post and insulating 15c.

MINIMASTER

250 watts—40. Long bases but to 2 1/2 12v. Ideal for notebooks and other applications. Ideal for use in test circuits, 15c. each, 10c. each. Post 6 1/2 post, 5c. each.

MAMMOT MAINS TRANSFORMER POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output for 9, 12, 15, 18 and 24 volts. The usual output 12v. Designed for transistors, radio, and microphones. Kits constructed to order. Several models available, 25c. each. 5c. each. 10c. each.

MINIATURE WAFFER SWITCHES

2 post, 2-way—4 post, 2-way—3 post, 2-way. Make selection and order separately. Write for details. 2 post, 6-way—1 post, 12 way. All at 1/25 each. 25c. per box.

WATERPROOF HEATING ELEKTON

21 volts mean or alternating temperature control. 1/4 post free.

INSTRUMENT MOTORS

2 post, 2-way—4 post, 2-way. Made by famous Smith Company. Very powerful, allowing extremely small motors and other small parts, etc. Dimensions approx. 1.14 in. deep by 2.5 in. dia. Following motors, please specify required speed:

Rev. per min. 1, 2, 4, 6, 8, 10, 15, 20,

3 for 15c. each, 1.25c. each, 10c. each.

CONTROL DRILL SPOOLS

Electrically changes speed from approximately 10 revs. per min. to 6000. Follows drill, please specify required speed:

Rev. per min. 1, 2, 4, 6, 8, 10, 15, 20.

Drill. per min. 1, 2, 4, 6, 8, 10, 15, 20.

Each 12c. per box.

DRILL CONTROLLER

Installs in over 10000 of the 15amp drills. 15c. post free.

ELECTRIC CLOCK WITH 21 AMP SWITCH

Made by Smith's, these units are suitable to any power quality to control the clock. The clock is driven by a dry cell and all parts are wired together. Ideal for all types of work. Please specify whether you want alternating or direct current. Offered at only 15c. each and 10c. each.

THERMAL CUTOUT

A miniature switch. Simply screw down the handle on any screw mounting. It can be used for overload protection - the discharge from switch will break the circuit. Normal working temperature is 100 deg. on oil. Less than the value of the clock shown—post and insulating 15c.

MINIMASTER

250 watts—40. Long bases but to 2 1/2 12v. Ideal for notebooks and other applications. Ideal for use in test circuits, 15c. each, 10c. each. Post 6 1/2 post, 5c. each.

MAMMOT MAINS TRANSFORMER POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output for 9, 12, 15, 18 and 24 volts. The usual output 12v. Designed for transistors, radio, and microphones. Kits constructed to order. Several models available, 25c. each. 5c. each. 10c. each.
EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

BARGAINS IN NEW TRANSISTORS

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Values</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N446</td>
<td>A1-A7</td>
<td>up to 100</td>
</tr>
<tr>
<td>2N467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N706</td>
<td>C1-C9</td>
<td>up to 50</td>
</tr>
<tr>
<td>2N713</td>
<td>D1-D9</td>
<td>up to 25</td>
</tr>
<tr>
<td>2N1302</td>
<td>E1-E9</td>
<td>up to 10</td>
</tr>
<tr>
<td>2N1303</td>
<td>F1-F9</td>
<td>up to 5</td>
</tr>
<tr>
<td>2N1004</td>
<td>G1-G9</td>
<td>up to 2.5</td>
</tr>
<tr>
<td>2N1005</td>
<td>H1-H9</td>
<td>up to 1</td>
</tr>
<tr>
<td>2N1006</td>
<td>I1-I9</td>
<td>up to 0.5</td>
</tr>
<tr>
<td>2N1307</td>
<td>J1-J9</td>
<td>up to 0.25</td>
</tr>
<tr>
<td>2N1008</td>
<td>K1-K9</td>
<td>up to 0.1</td>
</tr>
<tr>
<td>2N1309</td>
<td>L1-L9</td>
<td>up to 0.05</td>
</tr>
<tr>
<td>2N1113</td>
<td>M1-M9</td>
<td>up to 0.01</td>
</tr>
<tr>
<td>2N1171</td>
<td>N1-N9</td>
<td>up to 0.001</td>
</tr>
<tr>
<td>2N2437</td>
<td>O1-O9</td>
<td>up to 0.0001</td>
</tr>
<tr>
<td>2N2436</td>
<td>P1-P9</td>
<td>up to 0.00001</td>
</tr>
<tr>
<td>2N2425</td>
<td>Q1-Q9</td>
<td>up to 0.000001</td>
</tr>
<tr>
<td>2N3937</td>
<td>R1-R9</td>
<td>up to 0.0000001</td>
</tr>
<tr>
<td>2N3436</td>
<td>S1-S9</td>
<td>up to 0.00000001</td>
</tr>
<tr>
<td>2N3425</td>
<td>T1-T9</td>
<td>up to 0.000000001</td>
</tr>
<tr>
<td>2N3465</td>
<td>U1-U9</td>
<td>up to 0.0000000001</td>
</tr>
<tr>
<td>2N3464</td>
<td>V1-V9</td>
<td>up to 0.00000000001</td>
</tr>
<tr>
<td>2N3454</td>
<td>W1-W9</td>
<td>up to 0.000000000001</td>
</tr>
<tr>
<td>2N3453</td>
<td>X1-X9</td>
<td>up to 0.0000000000001</td>
</tr>
<tr>
<td>2N3452</td>
<td>Y1-Y9</td>
<td>up to 0.00000000000001</td>
</tr>
<tr>
<td>2N3451</td>
<td>Z1-Z9</td>
<td>up to 0.000000000000001</td>
</tr>
</tbody>
</table>

Prices are in pence each for quantities of one thousand and above. [For quantities of one penny on total resistor order.]

MULLARD SUB-MINI ELECTROLYTICS

<table>
<thead>
<tr>
<th>Size</th>
<th>Values (µF)</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.1-22000</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>C10</td>
<td>10-2200</td>
<td>25p-50p</td>
</tr>
<tr>
<td>C100</td>
<td>100-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>C1000</td>
<td>1000-2.2</td>
<td>100p-500p</td>
</tr>
<tr>
<td>C10000</td>
<td>10000-22</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>C100000</td>
<td>100000-22</td>
<td>2500p-12500p</td>
</tr>
<tr>
<td>C1000000</td>
<td>10000000-22</td>
<td>12500p-75000p</td>
</tr>
</tbody>
</table>

WIREWOUND POTENTIOMETERS

<table>
<thead>
<tr>
<th>Values (µW)</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>0.01-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>0.1-2.2</td>
<td>50p-100p</td>
</tr>
<tr>
<td>1-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>10-2.2</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>100-22</td>
<td>2500p-12500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>12500p-75000p</td>
</tr>
<tr>
<td>10000-22</td>
<td>75000p-400000p</td>
</tr>
<tr>
<td>100000-22</td>
<td>400000p-2M2</td>
</tr>
<tr>
<td>1000000-22</td>
<td>2M2-100M2</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Ω</td>
<td>0.1-10000</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>100Ω</td>
<td>1-100000</td>
<td>25p-500p</td>
</tr>
<tr>
<td>1KΩ</td>
<td>10-1000000</td>
<td>500p-1000p</td>
</tr>
<tr>
<td>10KΩ</td>
<td>100-1000000</td>
<td>1000p-5000p</td>
</tr>
<tr>
<td>100KΩ</td>
<td>1000-1000000</td>
<td>5000p-25000p</td>
</tr>
<tr>
<td>1MΩ</td>
<td>10000-1000000</td>
<td>25000p-125000p</td>
</tr>
<tr>
<td>10MΩ</td>
<td>100000-1000000</td>
<td>125000p-750000p</td>
</tr>
</tbody>
</table>

CARBON EQUILIBRATE PRE-SETS

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>0.01-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>0.1-2.2</td>
<td>50p-100p</td>
</tr>
<tr>
<td>1-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>10-22</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>100-22</td>
<td>2500p-12500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>12500p-75000p</td>
</tr>
<tr>
<td>10000-22</td>
<td>75000p-400000p</td>
</tr>
<tr>
<td>100000-22</td>
<td>400000p-2M2</td>
</tr>
<tr>
<td>1000000-22</td>
<td>2M2-100M2</td>
</tr>
</tbody>
</table>

CARBON SKELETON RESISTORS

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>1-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>10-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>100-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>10000-22</td>
<td>2500p-12500p</td>
</tr>
</tbody>
</table>

CARBON SKELETON PRE-SETS

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>1-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>10-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>100-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>10000-22</td>
<td>2500p-12500p</td>
</tr>
</tbody>
</table>

Mullard Sub-Mini Electrolytics

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>1-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>10-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>100-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>500p-2500p</td>
</tr>
<tr>
<td>10000-22</td>
<td>2500p-12500p</td>
</tr>
</tbody>
</table>

Large All New Stock

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>1-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>10-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>100-22</td>
<td>100p-500p</td>
</tr>
<tr>
<td>1000-22</td>
<td>500p-2500p</td>
</tr>
</tbody>
</table>

Small Electronics

<table>
<thead>
<tr>
<th>Values</th>
<th>Price (1 each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-220</td>
<td>2.5p-25p</td>
</tr>
<tr>
<td>1-22</td>
<td>25p-50p</td>
</tr>
<tr>
<td>10-22</td>
<td>50p-100p</td>
</tr>
<tr>
<td>100-22</td>
<td>100p-500p</td>
</tr>
</tbody>
</table>

Postage and Packing

Free on orders over £20

Please add 15% if order is under £2

Orders over 50 items: carriage charged at cost.

Wireless World, March 1970

DEPT. WW. 703, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY.
Hours: 9-5.30 daily; 1.00 p.m. Saturdays.
Telephone: Egham 5533 (STD 0784-3)
Complete stereo system—£29 10s.

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.

Type 1 SPECIFICATION:
Impedance 8 ohms. It incorporates Goodmans high flux 6"-4" speaker and 2" inch tweeter. Teak finish 12" x 6" x 5½". 4 guinnesas each. 7/6d p. & p. Type 2 as type 1. Size 17½" x 10½" x 6½" incorporating 10½"-6½" bass unit and 2½" tweeter. 3.02 ohms impedance 8 guinnesas plus 1½" p. & p. Garren-Changina from £7.10.6d. p. & p. 7/6d.

Duetto Integrated Transistor Stereo Amplifier...£9 10s. plus 2/6d. p. & p.

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.

SPECIFICATION:
O.M.S. power output: 3 watts per channel into 10 ohms speakers.
INPUT SENSITIVITY: Suitable for medium or high output crystal cartridges and tapes. Cross talk better than 30dB at 1KHz.

THE RELIANT MK.II
Solid State General Purpose Amplifier...£6 16s. plus 7/6d. p. & p.

ELEGANT SEVEN MK. III
(350mW Output)...

EUROPEAN TV & RADIO SUPPLIES FOR 29/60

50 WATT AMPLIFIER...

THE VISCOUNT INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFIER...

69/6 and 28½p. 6...

SPECIAL OFFER

An extremely reliable general purpose valve amplifier—with six electronically mixed inputs. Suitable for use with microphones, gram, tuner, organ, etc. Separate bass and treble controls. Output impedance 3 ohms and 15 ohms.

AC MAINS 220-250V £28 10s. plus 2/6d. & p.

THE DORSET (600mW Output)...

7-transistor fully tunable M.W.-L.W. superhet portable—

NEW COMPLETE HI-FI STERE SYSTEM £39

RADIO & TV COMPONENTS (Acton) LTD
21a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W.2.
Goods not dispatched outside U.K. Terms C.V.O. All enquiries S.A.E.
SUPER-BARGAIN STOCKTAKE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY.
If any sale item is 'sold-out' when order received we shall substitute items of equal value.

ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Capacity</th>
<th>Voltage</th>
<th>Price</th>
<th>£ s. d. Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 uf</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 uf</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6 uf</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 uf</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6 uf</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 uf</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20 uf</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20 uf</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>32 uf</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>2.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>100-200/200/50</td>
<td>275</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>50/80</td>
<td>300</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>275</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>300</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>125</td>
<td>250</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>16/32</td>
<td>275</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>75/75/75</td>
<td>150</td>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>40</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>32</td>
<td>35</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>35</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>100 uf</td>
<td>275</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>30 uf</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>30 pf</td>
<td>20 REV</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>275</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>275</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td>40</td>
<td>275</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>350</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>500</td>
<td>400</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>29</td>
<td>1,000</td>
<td>500</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Total:

RESISTORS. EXCELLENT QUALITY. MAINLY 5%, 7.6/d. per 100 of any one value.
2/- per dozen of any one value. Small quantities 3d. each.
Tick the values required.
13 ohms 560 ohms 3.3 k ohm 10 k ohm 100 k ohm
22 k ohm 750 ohms 3.3 k ohm 16 k ohm 2 k ohm
36 k ohm 1 k ohm 4.7 k ohm 22 k ohm 10 k ohm
47 k ohm 1.5 k ohm 4.7 k ohm 22 k ohm 10 k ohm
62 k ohm 1.8 k ohm 5.6 k ohm 24 k ohm 22 k ohm
91 ohms 1.8 k ohm 5.6 k ohm 24 k ohm 22 k ohm
150 ohms 250 ohms 1.5 k ohm 22 k ohm 2 k ohm
220 ohms 250 ohms 1.5 k ohm 22 k ohm 2 k ohm
470 ohms 2.4 k ohm 7.5 k ohm 30 k ohm 30 k ohm

or our selection (mixed): 6/d. per 100.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS. 10/- per 100 of any one value. 3/- per dozen of any one value. Small quantities 6/- each. As available. In following values. Tick those required.
1 uf 12 12 12 12 12 12 12 12 12
3.9 pf 6 pf 15 pf 27 pf 50 pf 80 pf 135 pf 180 pf 250 pf 800 pf
4.7 pf 12 pf 18 pf 30 pf 50 pf 82 pf 158 pf 230 pf 450 pf 1,500 pf
7.5 pf 22 pf 39 pf 72 pf 125 pf 170 pf 240 pf 600 pf 900 pf 2,250 pf 6,250 pf

Total:

MULLARD POLYESTER CAPACITORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 pf</td>
<td>3d. each</td>
<td>400 V</td>
</tr>
<tr>
<td>1,500 pf</td>
<td>3d. each</td>
<td>400 V</td>
</tr>
<tr>
<td>1,000 pf</td>
<td>3d. each</td>
<td>400 V</td>
</tr>
<tr>
<td>2,200 pf</td>
<td>3d. each</td>
<td>400 V</td>
</tr>
<tr>
<td>.1 uf</td>
<td>6d. each</td>
<td>160 V</td>
</tr>
<tr>
<td>.2 uf</td>
<td>6d. each</td>
<td>160 V</td>
</tr>
<tr>
<td>.25 uf</td>
<td>6d. each</td>
<td>160 V</td>
</tr>
<tr>
<td>1 uf</td>
<td>160 V</td>
<td></td>
</tr>
</tbody>
</table>

Total:

25% discount lots of 100 per type.
50% discount lots of 1,000 per type.

TRANSPORT BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! !
P.N.P. Audio. Untested, unmarked. MAINLY O.K. 10/- per 100.
N.P.N. Silicon, R.E. types marked ALL USEABLE 10/- per 50.
POWER OUTPUT (Similar O.C.T.) ALL TESTED each 2/- dozen
SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR SHORTS. Case of 20/50 6d. each, 50/100 3d. each, 100/200 1/- each.

LIGHT SENSITIVE TRANSISTORS, 2/- each.

LIGHT SENSITIVE DIODES

Can be used controlling any transistorised device, 1/- each.

75/- per 100. 25/- per 1,000.

TRANISTORS. 400 volt B.T.Y 79 6/d. each: SCR 51 (10 amp) 8/- each.
RECTIFIERS. Latest type. All marked. 800 volt peak. 1 amp mean current 22/- each, 44/- each, 90/- each. 100 volt, I.C.C 3/4 (1000 volt) 2/- each, 4/- dozen, 1/- each. 150/- each, 275/- each.
BY L27 2/6. each, 24/- dozen. 7/-10/- per 100. 50/- per 1,000.

RECORDING TAPE GIVE-AWAY! ALL BRITISH MADE. BEST HEARD.

SKELETON PRESETS. Mixed. 6/- dozen.

VOLUME CONTROLS: $1 meg. 1 meg with D.P. switch 5k. (No switch) all 2/6.

RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened input lead, volume control and speaker leads. This excellent unit also has built-in rectifier and smoothing components enabling same to be used directly on 6 to 9 volt A.C. supply. Small number only! Cannot be reset at this price! 80/- each.

TRANSISTOR RADIOS. Fantatic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivity! Complete with earpieces, battery and plastic carrying case, all packed in a attractive presentation box. You would expect to pay £5—but our price due to huge purchase is only 37/-!-

CO-AXIAL CABLE. Semi-air spaced. 8yd. yard. 60 yd. rolls 30/- Postage 4/6d.

CRYSTAL TAPE-RECORDER MIXES. 12/- each. CRYSTAL EARPIECES WITH PLUG. 5/- each. Magnetic earpieces. No plug. 1/6d. each.

THIN CONNECTING WIRE. 1yds 1/-, 100 yds 7/6d. 1,000 yds 50/-.

RECORD PLAYER CARTRIDGES

ACOS GP67/2 15/- (Mono) GP49/1 36/0 (Stereo, ceramic)
ACOS GP9/3 28/- (Copperclad) ACOS GP9/1 with diamond needle 32/6d.
ACOS GP9/3 25/- (Stereo) ACOS GP9/1 with diamond needle 37/6d.

TRANISORISED FLUORESCENT LIGHTS. 12 VOLT 8 watt 12" tube, Reflector type 50/- 15 watt 18" tube, Batten type 79/6.

Complete with 12" tube. Postage 1/-.

TRANISORISED SIGNAL INJECTOR KIT 10/-

TRANISORISED SIGNAL TRACES KIT 10/-

TRANISORISED REV. COUNTER KIT (CAR) 10/-

VEERO-BOARD

21" x 1" x 1 1/2" 13/- 17" x 3/8" x .015 11/-
3" x 1" x .035 6/- 17" x 3/8" x .015 11/-
4 1/4" x 3/8" x .015 11/- 17" x 3/8" x .015 11/-
5" x 3/8" x .020 11/- 17" x 3/8" x .015 11/-
6" x 3/8" x .020 11/- 17" x 3/8" x .015 11/-

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for, Spot Face Cutter and 5 1/2" 1" boards 9/6d.

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include minimum amount to cover post and packing. Minimum 2/6.

G.F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

www.americanradiohistory.com
R.S.C. SENSATIONAL HIGH FIDELITY STEREO ‘PACKAGE’ OFFERS

13 Watt Output
- Garrard SP15 Mk II 4-Speed Player Unit, on panel with 12" vinyl turntable and diamond stylus. £T12A Amplifier in veneer finish.
- Pair of Dorchester Loudspeaker Cabinets. £900 Metallic diamond lamp finish. £30.00 (Total: £99.00). Car. £25.00.

TRANSPARENT PLASTIC COVERED 3 GNS extra
- Transparent Plastic cover 3 Gns extra. Terms 3 D.C. payments. £5-15.5 (Total: 59 Gns). Car. £25-

RSC TA12 Mk II 13 WATT STEREO AMPLIFIER
- FULLY TRANSISTORIZED, SOLID STATE CONSTRUCTION HIGH FIDELITY AMPLIFIER. Designed for optimum performance with any make of turntable and full construction stereo equipment. £33/6-10 (Total: £36.10). Car. £25-

INTEREST CHARGES REFUNDED
On Credit Sales written in 3 Months.

R.S.C. BATTERIES/MAINS CONVERSIONS TYPE BMH. An all-killer battery eliminator, specially designed for use in hi-fi systems. £6.00 for 3 sets, £20.00 for 1 set. Car. £5.00

R.S.C. MAINS TRANSFORMERS
- FULLY GUARANTEED. Interlaced and Interminated. Available in 5 models. £14.00-22.00 (Total: £22.00). Car. £12.00

MIDRIB CLAMPED TYPE 2 £2-4.50 (Total: £2.50). Car. £1.25-

100-240V, 50-60Hz, 0.2A MAX. (Total: 0.2A MAX.). Car. £0.25-

110-220V, 50-60Hz, 0.5A MAX. (Total: 0.5A MAX.). Car. £0.50-

CHARGERS TRANSFORMERS 140-160V, 50-60Hz, 0.2A MAX. (Total: 0.2A MAX.). Car. £0.15-

200-240V, 50-60Hz, 0.2A MAX. (Total: 0.2A MAX.). Car. £0.15-

50-60Hz, 0.2A MAX. (Total: 0.2A MAX.). Car. £0.15-

R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER
- High sensitivity. £200-500. £5.00 A.M. operation.
- Brackets A & B. £5.00 for any amplifier (approx. 1000). £5.00 Output for one output of £10.00 for stereo.
- Steady Listening Fidelity Amplifier.
- Complete kit of parts, point to point wiring diagrams. £22.00 for £27.00 (Total: £27.00). Car. £15.00-

UNIT FACTORY BUILT 20 Gns. Deposit £10.00 and pay monthly payments £2.00 (total: £20.00). Car. £15.00-

R.S.C. SUPER 15 WATT STEREO AMPLIFIER
- Built state. £20.00 as above. £5.00 Full construction kit. £20.00 as above. £5.00 Complete kit of parts, point to point wiring diagrams. £22.00 for £27.00 (Total: £27.00). Car. £15.00-

R.S.C. MIGHTY 104 WINCH
- 1000 lb. capacity. £4.00 Administrator’s duties. £5.00 A.M. operation.
- £5.00 for any amplifier (approx. 1000). £5.00 Output for one output of £10.00 for stereo.
- Steady Listening Fidelity Amplifier.
- Complete kit of parts, point to point wiring diagrams. £22.00 for £27.00 (Total: £27.00). Car. £15.00-

R.S.C. MIGHTY 104 WINCH
- 1000 lb. capacity. £4.00 Administrator’s duties. £5.00 A.M. operation.
- £5.00 for any amplifier (approx. 1000). £5.00 Output for one output of £10.00 for stereo.
- Steady Listening Fidelity Amplifier.
- Complete kit of parts, point to point wiring diagrams. £22.00 for £27.00 (Total: £27.00). Car. £15.00-

R.S.C. FANATEC ‘POP 30’ LOUDSPEAKER
- £5.19.9

Other various types also available. £5.00-6.00. Terms: £1.00, £2.00, £3.00 each set. Car. £1.00-

Record Playing Units
- £5.00-6.00. Terms: £1.00, £2.00, £3.00 each set. Car. £1.00-

R.S.P.S. Veterinary
- £5.00-6.00. Terms: £1.00, £2.00, £3.00 each set. Car. £1.00-

R.S.C. PRINTS
- £6.00-8.00. Terms: £1.00, £2.00, £3.00 each set. Car. £1.00-

RAPID PROGRAMMED PRINTING (R.P.P.)
- £5.00-6.00. Terms: £1.00, £2.00, £3.00 each set. Car. £1.00-

www.americanradiohistory.com
NEW AMERICAN 5' CHART RECORDER
cost 10% for additional point. Spectrum analyser and permanent record of phenomena with comparable high rates of change. The linearization characteristic of the moving-coil recorder is designed to simulate an instrument immune to the effect of vibrations and heat. The unit may be fitted with a chart-speed, chart-width 50 to
length 150 mm, linearity 1 mm r.m.s. a specific purpose in 10 cm. Single pen with amplifier. £2.05. 4 pens with amplifier £2.45. Also...
LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS

CONTINUOUS TAPE CASSETTE

5 DIGIT COUNTER

A 5-digit counter with 10,000 counts. Quality guaranteed. Yuker Corporation, Spring Street, New York, N.Y. 2, phone 972-2366.

HIGH SPEED QUICK SELECT ELECTRO

and separate

MOTOR

HYSTERESIS REVERSIBLE MOTOR

in.,

MOTOR

HYSTERESIS MOTOR JMA2

IDEAL for instrument motor drive. Extensively used in industry, a new development in motor design. Ideal for industrial applications, the JMA2 motor has a high ratio of reversible to direct torque. Available in various sizes and capacities. Please consult for specific details.

LOW TORQUE HYSTERESIS MOTOR JMA2

IDEAL for instrument motor drive. Extensively used in industry, a new development in motor design. Ideal for industrial applications, the JMA2 motor has a high ratio of reversible to direct torque. Available in various sizes and capacities. Please consult for specific details.

MINIATURE SQUARE COUNTER 4 DIGIT

by yuker brook. rotary

motor

PRECISION POTentiometers

TEN TURN 360° ROTATION BRAND NEW

PRICE

GENERATORS

SIGNAL GENERATOR

MOTOR

MARCONI VALVE

VOLTMETER TF-428/A

VOLSTAT

Afroske

VOLTAMETER TF-428/A

RIGHT ANGLED GEAR BOXES

Three gear boxes that provide a right-angle output of 90°. Each gear box is designed for specific applications. See diagram for details.

OSCILLATORS

DAWGE 4AWC AUTOMATIC L.F.

A WAVEFORM GENERATOR... AMPLITUDE... 2.5 V. Frequency Range: 100 to 1000 kHz. Input: 0-10 V. Output: 0-100 V. Altern: 10 volt/s. Frequency Response 10 kHz. Specifications: 50 nA, 0.01%. Frequency range: 100 to 1000 kHz. Input: 0-10 V. Output: 0-100 V. Altern: 10 volt/s. Frequency Response 10 kHz. Specifications: 50 nA, 0.01%.

BRAND NEW LABORATORY TEST EQUIPMENT AT LESS THAN HALF PRICE

HIGH VALUE RESISTANCE BOX TYPE R7003

PORTABLE WHEATSTONE BRIDGE

CARRIAGE EXTRA

ELECTRONIC BROKERS LTD., 49-53 PANCERS ROAD, LONDON, N.W.1. Tel: 01-887 7781/2 Cables: SELELECTRO
<table>
<thead>
<tr>
<th>No.</th>
<th>Sec. Tops</th>
<th>Amps</th>
<th>Price</th>
<th>Carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>25-33-40-50</td>
<td>10</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>1B</td>
<td>25-33-40-50</td>
<td>10</td>
<td>£10 0 0</td>
<td>9/6</td>
</tr>
<tr>
<td>1C</td>
<td>25-33-40-50</td>
<td>10</td>
<td>£10 0 0</td>
<td>9/6</td>
</tr>
<tr>
<td>1D</td>
<td>25-33-40-50</td>
<td>10</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>2A</td>
<td>25-35-50-60</td>
<td>12</td>
<td>£12 7 2</td>
<td>6/8</td>
</tr>
<tr>
<td>2B</td>
<td>25-35-40-50</td>
<td>12</td>
<td>£12 7 2</td>
<td>6/8</td>
</tr>
<tr>
<td>2C</td>
<td>25-35-50-60</td>
<td>12</td>
<td>£12 7 2</td>
<td>6/8</td>
</tr>
<tr>
<td>2D</td>
<td>25-35-50-60</td>
<td>12</td>
<td>£12 7 2</td>
<td>6/8</td>
</tr>
<tr>
<td>3A</td>
<td>25-35-35-40</td>
<td>10</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>3B</td>
<td>25-35-35-40</td>
<td>10</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>3C</td>
<td>25-35-35-40</td>
<td>10</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>3E</td>
<td>25-35-35-40</td>
<td>10</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>4A</td>
<td>12-20-24</td>
<td>20</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>4B</td>
<td>12-20-24</td>
<td>20</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>4C</td>
<td>12-20-24</td>
<td>20</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>4D</td>
<td>12-20-24</td>
<td>20</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>5A</td>
<td>3-12-18</td>
<td>30</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>5B</td>
<td>3-12-18</td>
<td>30</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>5C</td>
<td>3-12-18</td>
<td>30</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>5D</td>
<td>3-12-18</td>
<td>30</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>6A</td>
<td>48-56-60</td>
<td>2</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>6B</td>
<td>48-56-60</td>
<td>2</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>7A</td>
<td>6-12</td>
<td>30</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>7B</td>
<td>6-12</td>
<td>30</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>7C</td>
<td>6-12</td>
<td>30</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>7D</td>
<td>6-12</td>
<td>30</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>8A</td>
<td>12-24</td>
<td>50</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>9A</td>
<td>17-32</td>
<td>50</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>10A</td>
<td>9-15</td>
<td>2</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
<tr>
<td>11A</td>
<td>6-3</td>
<td>15</td>
<td>£10 2 0</td>
<td>9/6</td>
</tr>
<tr>
<td>12A</td>
<td>30-50-0-25-20</td>
<td>30</td>
<td>£10 0 0</td>
<td>6/8</td>
</tr>
</tbody>
</table>

Auto Transformers

<table>
<thead>
<tr>
<th>Transformer Type</th>
<th>Price</th>
<th>Weight Approx.</th>
<th>Price</th>
<th>Carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15 A.</td>
<td>£10 0 0</td>
<td>2/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>1.25 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>1.35 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>1.50 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>2.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>2.50 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>5.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>10.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>15.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>20.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>25.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>30.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
<tr>
<td>40.00 A.</td>
<td>£10 0 0</td>
<td>3/6</td>
<td>£10 0 0</td>
<td>12/6</td>
</tr>
</tbody>
</table>

Isolation Transformers

Open-Frame Type Terminal Block Connections

- Price 240v.: Sec. tapped 110, 240v., 2kva. cont. rating. Size 9 x 8 x 11 ins. Weight 65 lbs. £19.10.6 ex warehouse.

Heavy Duty Auto Transformers

- 240-110v., 5 kva. open-frame type terminal block connections. Size 9 x 8 x 11 ins. Weight 63 lbs. £23.10.6 ex warehouse.

Dublin Diconol 60 Mfd Capacitors

Radio Spares. H.T. Transformers

- Price 200-250v. Sec. 250-0-250v. 10/6, 4.5k. 6.5, 3A CT, 6-3v. 2.5A CT, 5v. 3-5A. Half shrouded, Flying leads. Carr. 10/6. Carr. 5/6.

Parmac Potted Transformers

- Sec. 6-3v. Sec. 2-6-2v. 4A 5k. Wkg. "C" core potted types. 17/6. P & P 3/6.

Marconi Signal Generators

Type TF-144G

- Freq. 85Kc/s-25Mc/s in 8 ranges. Incremental: +/− 1% at 1Mc/s. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100mV-1 volt-52.5 ohms. Internal Modulation: 400 c/s sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains 200/250V, 40-100 c/s. Consumption approx. 40 watts. Measurements: 194 x 124 x 10 in. The above come complete with Mains Leads, Dumpy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/- DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

W. Mills

3-B Truro Road, Tottenham, N.17

Phone: Tottenham 9213
HIRO RECEIVER. Model ST. This is a famous American High Frequency superhet, suitable for CW, and CW/CW; reception crystal filter, with phasing control, AVC and signal strength meter. Complete HIRO ST SET (Receiver, Set, Lead and W.T., in cloth case) for £210/-. call 35/-.

COMMAND RECEIVERS: Model 69-M, etc., as new, price £5/10/- each, post 10/-.

COMMAND TRANSMITTERS. BC-459, 5-3-M., approx. 25W output, directly calibrated. Valves 2 x 1625 PA, 1 x 1626 osc.; 1 x 1629 Trigger Indicator; Crystal 6,000 Kc/s. New condition £4/10/- each, 10/-.

AIRCRAFT RECEIVER ARR. 2; Valve line-up 7 x 001; 3 x 6AK5; and 1 x 12AU. Switch tuned 25W-250W Rec. only £3 each, 7/6 each; or Rec. with 24V power unit and mounting tray £3/10/- each, 10/- post.

RECEIVERS: Type BC-348, operates from 24 V.D.C. freq. range 200-500 Kc/s, 1.5-18 Mc/s. (New) £25/0/- each, (second hand) £20/0/- each, good condition, call 15/- each type.

MARCONI RECEIVER 1457 type 88; 1-5 Mc/s, 2nd-hand condition £10/0/- each. New condition £25/0/- each, call 15/-.

RACAL EQUIPMENT: Frequency Meter type SA20; £35 each, call 1/-. Frequency Counter type SA21; £65 each, call 30/-. Converter Frequency Electronic VHF Type S.A.80 (for use with the SA.20); 25Mc/s-160Mc/s, £60 each, call 1/-.

ROTARY CONVERTERS: Type 8a, 24 v. D.C., 115 v. A.C. @ 1.8 amps. 400 c/s 360 resistor, £6/10/- each, 6/- post. 24 v. D.C. input, 175 v. D.C. @ 40A. A Werner 200 c/s, £1 post, 2/-

CONDENSERS: 150 mfd, 300 v. A.C., £7/10/- each, call 15/-; 40 mfd, 440 v. A.C. W.G., £12/10/- each. 30 mfd, 600 v. W.G. D.C., £3/10/- each post, 15/-; 15 mfd, 1,000 v. A.C. W.G., £15/6/- each, 10/- post, 15/-; 10 mfd, 1,500 v. A.C. W.G., £20/6/- each, 15/- post, 15/-; 10 mfd, 2,000 v. W.G. D.C., £25/0/- each, 15/- post, 15/-; 10 mfd, 600 v. W.G. D.C., £6/5/- each, 6/- post, 6/-; 8 mfd, 1,200 v. D.C., £8/5/- each, 6/- post, 6/-. 8 mfd, 600 v. D.C., £6/6/- each, 5/- post, 6/-. 5 mfd, 1,000 v. D.C., £5/0/- each, 4/- post, 4/-; 2 mfd, 3000 v. W.G., £2/6/- each, 7/6 post, 7/6; 0.25 mfd, 3,000 v. W.G., £4/- each, 1/- post, 6/-; 0.01 mfd, 5,000,000 v. W.G. £15/- each, 15/- post.

OSCILLOSCOPE Type 13A, 100/250 V. A.C. Time base 2 c/s-750 Kc/s. B.W. 0.5% at 1 Mc/s. Calibrator marks 100 Kc/s and 1 Mc/s. Double Beam tube. Reliable general purpose scope, £21/10/- each, 30/-. Contact for full details.

CARRIER Oscilloscope Type 101, £30 each, 30/- post.

CASSY 10/11 M1. £11/-, £45 each, 30/- post.

RELS: GPO Type 600, 10 relays @ 300 ohms with 2M and 10 relays @ 50 with 2M, £2 each, 6/- post. 12 Small American Relays, mixed types £2, post 4/-. Many types of American Relays available, i.e. Sigma; Allied Controls; Leach; etc. Prices and further details on request 6d.

GEARED MOTORS: 24 v. D.C. current 150 m.a., output 1 r.p.m., 30/- each, 10/- post. Assembly unit with Leicher Tuning Mechanism and Potentiometer, 3 r.p.m., £2 each, 5/- post.

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.

CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2amps, £1/10/- each, call 12/6.

OHMITE VARIABLE RESISTOR: 5 ohms, 5 amps; 1.25 ohms at 6 amps. Price (either type) £2 each, 2/- 4/- each post.

TX DRIVER UNIT: Freq. 100-156 Mc/s, Valves 3 x 324C’s complete with filament transformer 230 v. A.C. Mounted in 16u. panel, £4/10/- each, 15/- per czr.

POWER SUPPLY UNIT FN-124A: 230 v. a.c. output 50-65 c/s, 513V and 1025V @ 420 ma output. With 2 smoothing choke 9/8, 2 Capacitors 105mc 1500v and 1050v filament Transformer 23x v. a.c. input 4 Rectifying Valves type 573, 2 x 5W windings @ 3 Amps each, and 5v @ 6 Amp and 4V @ 0.25 Amp. Mounted on steel base 14"W x 11/4"H x 14/1/2"D. (All connections at the rear). Excellent condition £16/-10/, £1/-.

AUTO TRANSFORMER: 230-115V, 50-60c/s, 1000 watts, mounted in a strong steel case 5" x 6" x 7/2. Insulation improved. £5 each, Carr. 12/6. 230-115/50-60, £55/10/- each mounted in stell case vac. £7 each, Carr. 10/-.

POWER UNIT: 110 v. or 230 v. input switched; 28 x, @ 45 m.a. D.C. output. Wt. approx. 100 lbs., £17/10/- each, 30/- post. SMOKING UNITS suitable for above £7/10/- each, 15/- each.

DE-ICER CONTROLLER MK. II.: Containing 10 relays D.P. changeover heavy duty contacts, 1 relay 4F, C.O.S. (250mils coil). Switch study 30-way relay operated, 3 switchwheel. 3-way d.t.o; timing motor with Chronometer governor 20-30 v. 12 r.p.m. altered to 30-way stud switch and two Ledex solenoids, 1 delay relay etc., sealed in steel case (4 x 5 x 7 ins.) £3 each, call 7/6.

MODULATOR UNIT: 50 watts, part of BC-640, complete with 2 x 811 valves, microphone and modulator transformer. £1 each, 15/-

ALL GOODS OFFERED WHILE STOCKS LAST IN “AS IS” CONDITION UNLESS OTHERWISE STATED.
LAFAYETTE SOLID STATE HF RECEIVER

Model S-700

- Proven Montana quality in all cases. Brand new.
- Complete with accessories and instruction manual.
- Completely new, totally transistorised. Brand new.
- Perfect order. Incorporates BFO. 100 Kc/s. 40 Mc.
- Used in shortwave reception. Brand new.
- Excellent performance. 100 Mc/s. A.C. earth operation RF.
- RCA AMPLIFIER +50 dB. Post-0273. 1970. $77.10

GEARED MAINS MOTOR

ARMSTRONG SIGNAL GENERATOR

- Perfect order. Incorporates the Armstrong step.
- Operates on 9. volt. Post-0261. 1970. $77.10

TE-22 TRANSISTORISED SIGNAL GENERATOR

- Complete with all accessories. Brand new.
- Post-0260. 1970. $77.10

FIELD TELEPHONE TYPE

- Generator rings. Metal case. Operate on 2.5. volts. 12 volt supply. Excellent condition. 61.10.00 each. Brand new.

LAFAYETTE SOLID STATE AMPLIFIER MODEL S-100

- Fully transistorised. Brand new.
- Excellent performance. 40.10.00 each. Brand new.
- Tested and checked. Excellent condition.
- Complete with accessories and instruction manual.
- Complete with accessories and instruction manual. Excellent condition.
- Excellent condition. Complete with accessories and instruction manual.
Latest Catalogue

Full current range offered branded new and guaranteed at fantastic savings

- 2000 +1 B: Equally adaptable for CHECKER MODEL ZQM V7479.
- 6.200: Wave has 180.6 m/s per item.
- 6.411: Klee 140 x 50 mm, attenuator. audio generator covering 0.1 to 100 kHz, 20 am, -57 dB, -17 dB.
- 6.600: Amplifiers, kits, facilities.
- 6.750: Arbitrary output with internal switch. Recorder with internal frequency, 20.000 cps. 20/-, 200 v. A.C. operation.
- 6.810: Special offer £17.10.0-
- 6.820: Branch new, guaranteed and carried paid.
- 6.840: High quality construction. Output 1 m/s, 20-60 cycles.
- 6.850: Output full variable from 0-200 volts. Bulky quantities available.
- 6.870: Full range of Garrard accessories available.

LAFAYETTE LA-2243 TRANSISTOR STEREO AMPLIFIER

- 10 transistors, 8 diodes. THD power output 20 watts at 8 ohms. Max: 20,000 volts +3 or -1 v. Distortion: THD: Class B-A. 150 K 300 K, 300 0.05% 0.06% 0.09% 0.1% 0.15% 0.17% 0.2% 0.22%

Variable Voltage Transformers

Determines. Brand new, and guaranteed at fantastic savings.
- 2000 +1: Equally adaptable for CHECKER MODEL ZQM V7479.
- 6.200: Wave has 180.6 m/s per item.
- 6.411: Klee 140 x 50 mm, attenuator. audio generator covering 0.1 to 100 kHz, 20 am, -57 dB, -17 dB.
- 6.600: Amplifiers, kits, facilities.
- 6.750: Arbitrary output with internal switch. Recorder with internal frequency, 20.000 cps. 20/-, 200 v. A.C. operation.
- 6.810: Special offer £17.10.0-
- 6.820: Branch new, guaranteed and carried paid.
- 6.840: High quality construction. Output 1 m/s, 20-60 cycles.
- 6.850: Output full variable from 0-200 volts. Bulky quantities available.
- 6.870: Full range of Garrard accessories available.

GARRARD

Variable Voltage Transformers

Determines. Brand new, and guaranteed at fantastic savings.
- 2000 +1: Equally adaptable for CHECKER MODEL ZQM V7479.
- 6.200: Wave has 180.6 m/s per item.
- 6.411: Klee 140 x 50 mm, attenuator. audio generator covering 0.1 to 100 kHz, 20 am, -57 dB, -17 dB.
- 6.600: Amplifiers, kits, facilities.
- 6.750: Arbitrary output with internal switch. Recorder with internal frequency, 20.000 cps. 20/-, 200 v. A.C. operation.
- 6.810: Special offer £17.10.0-
- 6.820: Branch new, guaranteed and carried paid.
- 6.840: High quality construction. Output 1 m/s, 20-60 cycles.
- 6.850: Output full variable from 0-200 volts. Bulky quantities available.
- 6.870: Full range of Garrard accessories available.

LAFAYETTE LA-2243 TRANSISTOR STEREO AMPLIFIER

- 10 transistors, 8 diodes. THD power output 20 watts at 8 ohms. Max: 20,000 volts +3 or -1 v. Distortion: THD: Class B-A. 150 K 300 K, 300 0.05% 0.06% 0.09% 0.1% 0.15% 0.17% 0.2% 0.22%

Variable Voltage Transformers

Determines. Brand new, and guaranteed at fantastic savings.
- 2000 +1: Equally adaptable for CHECKER MODEL ZQM V7479.
- 6.200: Wave has 180.6 m/s per item.
- 6.411: Klee 140 x 50 mm, attenuator. audio generator covering 0.1 to 100 kHz, 20 am, -57 dB, -17 dB.
- 6.600: Amplifiers, kits, facilities.
- 6.750: Arbitrary output with internal switch. Recorder with internal frequency, 20.000 cps. 20/-, 200 v. A.C. operation.
- 6.810: Special offer £17.10.0-
- 6.820: Branch new, guaranteed and carried paid.
- 6.840: High quality construction. Output 1 m/s, 20-60 cycles.
- 6.850: Output full variable from 0-200 volts. Bulky quantities available.
- 6.870: Full range of Garrard accessories available.

LAFAYETTE LA-2243 TRANSISTOR STEREO AMPLIFIER

- 10 transistors, 8 diodes. THD power output 20 watts at 8 ohms. Max: 20,000 volts +3 or -1 v. Distortion: THD: Class B-A. 150 K 300 K, 300 0.05% 0.06% 0.09% 0.1% 0.15% 0.17% 0.2% 0.22%
Brand New Semiconductors & Components

Transistors

<table>
<thead>
<tr>
<th>Brand</th>
<th>Code</th>
<th>Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N301</td>
<td>4/-</td>
<td>2N305</td>
<td>126/4</td>
</tr>
<tr>
<td>2N303</td>
<td>4/-</td>
<td>2N305</td>
<td>134/4</td>
</tr>
<tr>
<td>2N307</td>
<td>4/-</td>
<td>2N305</td>
<td>154/4</td>
</tr>
<tr>
<td>2N308</td>
<td>4/-</td>
<td>2N305</td>
<td>194/5</td>
</tr>
<tr>
<td>2N309</td>
<td>4/-</td>
<td>2N305</td>
<td>224/6</td>
</tr>
<tr>
<td>2N310</td>
<td>4/-</td>
<td>2N305</td>
<td>244/6</td>
</tr>
<tr>
<td>2N311</td>
<td>6/-</td>
<td>2N305</td>
<td>324/6</td>
</tr>
<tr>
<td>2N313</td>
<td>6/-</td>
<td>2N305</td>
<td>354/7</td>
</tr>
<tr>
<td>2N315</td>
<td>6/-</td>
<td>2N305</td>
<td>384/7</td>
</tr>
<tr>
<td>2N316</td>
<td>6/-</td>
<td>2N305</td>
<td>414/7</td>
</tr>
<tr>
<td>2N320</td>
<td>6/-</td>
<td>2N305</td>
<td>444/8</td>
</tr>
<tr>
<td>2N321</td>
<td>6/-</td>
<td>2N305</td>
<td>474/8</td>
</tr>
<tr>
<td>2N322</td>
<td>6/-</td>
<td>2N305</td>
<td>504/9</td>
</tr>
<tr>
<td>2N323</td>
<td>6/-</td>
<td>2N305</td>
<td>534/9</td>
</tr>
<tr>
<td>2N324</td>
<td>6/-</td>
<td>2N305</td>
<td>564/9</td>
</tr>
<tr>
<td>2N325</td>
<td>6/-</td>
<td>2N305</td>
<td>594/9</td>
</tr>
<tr>
<td>2N326</td>
<td>6/-</td>
<td>2N305</td>
<td>624/9</td>
</tr>
<tr>
<td>2N327</td>
<td>6/-</td>
<td>2N305</td>
<td>654/9</td>
</tr>
<tr>
<td>2N328</td>
<td>6/-</td>
<td>2N305</td>
<td>684/9</td>
</tr>
<tr>
<td>2N329</td>
<td>6/-</td>
<td>2N305</td>
<td>714/9</td>
</tr>
<tr>
<td>2N330</td>
<td>6/-</td>
<td>2N305</td>
<td>744/9</td>
</tr>
<tr>
<td>2N331</td>
<td>6/-</td>
<td>2N305</td>
<td>774/9</td>
</tr>
<tr>
<td>2N332</td>
<td>6/-</td>
<td>2N305</td>
<td>804/9</td>
</tr>
<tr>
<td>2N333</td>
<td>6/-</td>
<td>2N305</td>
<td>834/9</td>
</tr>
<tr>
<td>2N334</td>
<td>6/-</td>
<td>2N305</td>
<td>864/9</td>
</tr>
<tr>
<td>2N335</td>
<td>6/-</td>
<td>2N305</td>
<td>894/9</td>
</tr>
<tr>
<td>2N336</td>
<td>6/-</td>
<td>2N305</td>
<td>924/9</td>
</tr>
<tr>
<td>2N337</td>
<td>6/-</td>
<td>2N305</td>
<td>954/9</td>
</tr>
<tr>
<td>2N338</td>
<td>6/-</td>
<td>2N305</td>
<td>984/9</td>
</tr>
<tr>
<td>2N339</td>
<td>6/-</td>
<td>2N305</td>
<td>1014/9</td>
</tr>
<tr>
<td>2N340</td>
<td>6/-</td>
<td>2N305</td>
<td>1044/9</td>
</tr>
<tr>
<td>2N341</td>
<td>6/-</td>
<td>2N305</td>
<td>1074/9</td>
</tr>
<tr>
<td>2N342</td>
<td>6/-</td>
<td>2N305</td>
<td>1104/9</td>
</tr>
<tr>
<td>2N343</td>
<td>6/-</td>
<td>2N305</td>
<td>1134/9</td>
</tr>
<tr>
<td>2N344</td>
<td>6/-</td>
<td>2N305</td>
<td>1164/9</td>
</tr>
<tr>
<td>2N345</td>
<td>6/-</td>
<td>2N305</td>
<td>1194/9</td>
</tr>
<tr>
<td>2N346</td>
<td>6/-</td>
<td>2N305</td>
<td>1224/9</td>
</tr>
<tr>
<td>2N347</td>
<td>6/-</td>
<td>2N305</td>
<td>1254/9</td>
</tr>
<tr>
<td>2N348</td>
<td>6/-</td>
<td>2N305</td>
<td>1284/9</td>
</tr>
<tr>
<td>2N349</td>
<td>6/-</td>
<td>2N305</td>
<td>1314/9</td>
</tr>
<tr>
<td>2N350</td>
<td>6/-</td>
<td>2N305</td>
<td>1344/9</td>
</tr>
<tr>
<td>2N351</td>
<td>6/-</td>
<td>2N305</td>
<td>1374/9</td>
</tr>
<tr>
<td>2N352</td>
<td>6/-</td>
<td>2N305</td>
<td>1404/9</td>
</tr>
<tr>
<td>2N353</td>
<td>6/-</td>
<td>2N305</td>
<td>1434/9</td>
</tr>
<tr>
<td>2N354</td>
<td>6/-</td>
<td>2N305</td>
<td>1464/9</td>
</tr>
<tr>
<td>2N355</td>
<td>6/-</td>
<td>2N305</td>
<td>1494/9</td>
</tr>
<tr>
<td>2N356</td>
<td>6/-</td>
<td>2N305</td>
<td>1524/9</td>
</tr>
<tr>
<td>2N357</td>
<td>6/-</td>
<td>2N305</td>
<td>1554/9</td>
</tr>
<tr>
<td>2N358</td>
<td>6/-</td>
<td>2N305</td>
<td>1584/9</td>
</tr>
<tr>
<td>2N359</td>
<td>6/-</td>
<td>2N305</td>
<td>1614/9</td>
</tr>
<tr>
<td>2N360</td>
<td>6/-</td>
<td>2N305</td>
<td>1644/9</td>
</tr>
<tr>
<td>2N361</td>
<td>6/-</td>
<td>2N305</td>
<td>1674/9</td>
</tr>
<tr>
<td>2N362</td>
<td>6/-</td>
<td>2N305</td>
<td>1704/9</td>
</tr>
<tr>
<td>2N363</td>
<td>6/-</td>
<td>2N305</td>
<td>1734/9</td>
</tr>
<tr>
<td>2N364</td>
<td>6/-</td>
<td>2N305</td>
<td>1764/9</td>
</tr>
<tr>
<td>2N365</td>
<td>6/-</td>
<td>2N305</td>
<td>1794/9</td>
</tr>
<tr>
<td>2N366</td>
<td>6/-</td>
<td>2N305</td>
<td>1824/9</td>
</tr>
<tr>
<td>2N367</td>
<td>6/-</td>
<td>2N305</td>
<td>1854/9</td>
</tr>
<tr>
<td>2N368</td>
<td>6/-</td>
<td>2N305</td>
<td>1884/9</td>
</tr>
<tr>
<td>2N369</td>
<td>6/-</td>
<td>2N305</td>
<td>1914/9</td>
</tr>
</tbody>
</table>

Silicon Rectifiers

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>+100</td>
<td>2.50</td>
</tr>
<tr>
<td>+200</td>
<td>3.00</td>
</tr>
<tr>
<td>+300</td>
<td>3.50</td>
</tr>
<tr>
<td>+400</td>
<td>4.00</td>
</tr>
<tr>
<td>+500</td>
<td>4.50</td>
</tr>
<tr>
<td>+600</td>
<td>5.00</td>
</tr>
<tr>
<td>+700</td>
<td>5.50</td>
</tr>
<tr>
<td>+800</td>
<td>6.00</td>
</tr>
<tr>
<td>+900</td>
<td>6.50</td>
</tr>
<tr>
<td>+1000</td>
<td>7.00</td>
</tr>
<tr>
<td>+1200</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10</td>
<td>0.50</td>
</tr>
<tr>
<td>+15</td>
<td>0.60</td>
</tr>
<tr>
<td>+20</td>
<td>0.80</td>
</tr>
<tr>
<td>+25</td>
<td>1.00</td>
</tr>
<tr>
<td>+30</td>
<td>1.20</td>
</tr>
<tr>
<td>+35</td>
<td>1.40</td>
</tr>
<tr>
<td>+40</td>
<td>1.60</td>
</tr>
<tr>
<td>+45</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Fuses

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>250mA</td>
<td>0.25</td>
</tr>
<tr>
<td>300mA</td>
<td>0.30</td>
</tr>
<tr>
<td>350mA</td>
<td>0.35</td>
</tr>
</tbody>
</table>

SPECIAL OFFERS

- Bag of transistors (new) approx. 100 pieces (10 brands)...
- Bag of transistors (new) approx. 120 pieces...
- Bag of transistors (new) approx. 150 pieces...
- Bag of transistors (new) approx. 200 pieces...

Tubes

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10</td>
<td>0.50</td>
</tr>
<tr>
<td>+15</td>
<td>0.60</td>
</tr>
<tr>
<td>+20</td>
<td>0.80</td>
</tr>
<tr>
<td>+25</td>
<td>1.00</td>
</tr>
<tr>
<td>+30</td>
<td>1.20</td>
</tr>
<tr>
<td>+35</td>
<td>1.40</td>
</tr>
<tr>
<td>+40</td>
<td>1.60</td>
</tr>
<tr>
<td>+45</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Telex 21-492 A. MARSHALL & SONS LTD
Tel: 01-452 0161/23 28 CRICKLEWOOD WOODWAY, LONDON, N.W.2
CALLERS WELCOME
Hours 9-5.30 Mon.-Sat.
OPTOELECTRONICS from PROOPS

New Science Projects combine fascination of Optics with Electronics.

INFRA-RED TRANSMITTERS & RECEIVERS

INFRA-RED PHOTO RECEIVER - MSP3
Ultra sensitive detector/ampilifier for infra-red (Galium Arsenide) or visible light optical links reception. Special response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.

85/- post free

MAX RATINGS
Total dissipation (in free air. Tens = 25°C) 100mW. Derating Factor 2m/W°C. Output Current Intensity 100mA. Voltage 25V. Operating Temperature from -30°C to +125°C.

Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (CdS)
Inexpensive light sensitive resistors which require only simple circuitry to work as light measuring units in a wide range of devices, such as, flashing or breakdown lights, exposure meters, brightness controls, automatic porch lights, etc. Not polarity conscious — use with A.C. or D.C. Spectral response covers whole visible light range.

MKY101-C
Epoxy sealed. 6 in. diam. x 1/2 in. thick. Resistance at 100 Lux — 500 to 20,000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current 150 mA. 10/6 post free

MKY71
Glass sealed with M.E.S. base. Glass envelope 4 in. diam., overall length 1 in. Resistance at 100 Lux — 50 K ohms to 150 K ohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW. 8/6 post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable, a useful form of power used with small size light trigger for relay and counting devices, luminous flowmeters, exposure meters, colorimeters, etc. Spectral response covers visible light range.

Type 1—1/2 x 1/4 in. Output at 0.8 volts at 1,000 Lux. 5/- post free

Type 2—100 x 50 mm. Output 4 mA at 0.5 volt at 1,000 Lux. 22/6 post free

REED SWITCH COILS & CAPSULES

Compact assemblies of reed switches and operating coils that permit the design of a wide variety of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact disadvantage of electro-mechanical relays, hermetically sealed contact isolation ensures high reliability. Small enough to combine with solid state componentry on printed circuit boards. Ideal for switching matrices, binary kits, control systems, etc. These were removed from base by highly effective detumouring mechanisms and are guaranteed to be in perfect working order. Each capsule consists of a square metal screened, 24 volt DC operating coil on a nylon former with one detachable end for the removal and replacement of reed switches.

Types available:

R/C8 Two reed switches. Contacts normally open. Size overall: 1 x 1 x 1 in. 5/- post free

R/C4 Four reed switches. Contacts normally open. Size overall: 1 x 1 x 10 in. 10/- post free

R/C6 Six reed switches. 4 contacts normally open, 2 normally closed. Size overall: 1 x 1/2 x 1/2 in. 15/- post free

GALLIUM ARSENIDE LIGHT SOURCE—MGA 100
Filamentary, infra-red emitter in a robust, waved coil axial with beam to facilitate optical alignment and heat sinking.

35/- post free

MAX RATINGS
Forward current 1 x max. 5 D.C. 400mA. Forward peak current 1 x max. (peak) 5A. Power dissipation 600mW. Derating factor for Tolerant greater than 25°C 7.5m/W°C.Revers voltage 1 x max 24V.

When mounted on an aluminium heat sink 1 in. x 1 in. x 2 in.

Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as electricity is conducted by copper wires. Fibre optics make it possible to control, miniaturize, split, reflect or transfer light from one source to many places at once and to operate photo reactions inside human beings and to light inaccessible places. Proops offer both glass fibre optics or inexpensive Crolon plastic fibres for hundreds of experiments in a fascinating and surprising variety of applications.

RANK TAYLOR-HOBSON ENGINEERS KITS
Basic fibre optic components that demonstrate new way for employing light in various applications. Two kits are available: each contains high-grade glass fibre-light guider consisting of thousands of fibres tightly bonded in flexible sheaths with tenoned, optically polished ends. Together with connecting and light source components. Each is supplied complete with cord wallets containing technical and application data.

KIT 1 £16 Post Free

Contains: 1.5 mm x 24 in. 3 mm x 18 in. and 6 mm x 12 in. light guides, plus 24 in. long 2 mm diameter for punchcard or coding applications. Also battery operated light source, 2 way Y adapter with non-random separation, and 3 mm / 3 mm. / 1.5 mm connection.

KIT 2 £28 Post Free

Contains: 2 mm x 18 in. 6 mm x 12 in. light guides; 1.5 mm ‘Y’ guide with two 12 in. long tails. 24 in. long 12 pin component for coding or punchcard applications. 24 in. length of Crolon 64 fluorescent and monofilament plastic light guide. Also, coherent solids conserving of 6 mm, 12 in. image conduit, 6 mm, 12 in. image conduit with polished ends, 4 mm x 25 mm image imitator. Complete with 2-way adaptor, fibre optic toothpicks and button, 3 mm x 3 mm and 3 mm / 1.5 mm connection.

Special offer of IMAGE FIBRESCOPES £3 Post Free

Between 60.000 and 60.000 currently arranged. 15 micron glass fibres that provide (with appropriate optics) perfect visual inspection into otherwise inaccessible areas. Originally made by Rank Taylor-Hobson for use in industrial and medical fibrescopes at £72 each, these have slight, superficially imperceptible faults, and are available in transparent, flat-tubing instead of opaque, flexible conduit. As usual. Ends are ground, polished and metal copped. ABSOLUTELY IDEAL for demonstration in Schools and Technical Colleges and for many other applications that require highly sophisticated means of access to enclosed, difficult to get at places: Length overall: 3 ft. Cross sectional area: 3 x 3 mm. Resolution: 10 LP/mm to 20 LP/mm.

LOW COST CROFON FLEXIBLE LIGHT GUIDES

Newly developed plastic light transmitting media by Du Pont, which can be used for both serious projects and inexpensive prototype work. Ends can be ground flat, dyed or capped with sphyx resin. Temperature range —40°C to + 170°C. No loss of light through bending. 12 page Data and Applications booklet supplied free with each order. Types available:

Multi-strand— 64 special plastic fibres, tightly bonded together in a tough, flexible conduit 8/6 per foot. Minimum order two feet. 17/- p. 6/6/8.

Monofilament— single 0.040" plastic fibre which is specially useful for light indication in confined spaces. 4/- per foot. Minimum order three feet. 12/- p. 6/6/8.

RCA TRIAC — CA4043Z 45/- post free

Suitable for light dimming and motor control circuits

Gate-controlled. Full-wave. A perfect single switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C. operation from 20 to 250 volts. currents upwards to 1440 watts. Size overall 1 in. x 1 in. x 1 in. Complete with heat sink, data and applications information.
MARCONI TEST EQUIPMENT

WIRELESS CYSTT

VALVES

* SIGNAL GENERATOR TF 801/A, 10-300 MHz, 6 bands, input at 400 c/s, 1 kts. External 50 c/s to 1 kts. Output 10 c/s, rms below 75 ohms output. £55. DITTO but 801/A with additional high level output by PDA, both P & H. C. Includes necessary connectors, plug, and instruction manual.

HEWLETT-PACKARD TEST EQUIPMENT

MODEL 3424 ELECTRONIC COUNTERS

* Plug In Unit. Base counter measures frequencies from 1kHz to 10MHz and time from 0 to 10 kHz. Audible, Business, professional, 8 entries, eight place registration. Full self check built in from frequency standards. Plug in unit extends frequency range of basic counter to 100 kH. Full specification and price on request.

AVO VALVE CHARACTERISTIC METE

* Complete manual. Carriage.

FOR EXPORT ONLY

* 53 TRANSISTORS. All spares available. COLLINS TC5 Complete installations and spare parts. 63 WIRELESS SETS. Complete installations and spare parts. P & H for C & S. 30 150 kHz and 145 MHz TRANSISTORS ET 4336. Complete installations and all spares. BC 601 & 15 TRANSISTORS. Complete installations and all spares. No. 19 WIRELESS SETS. P & H SETS and all sets R 2100 RECEIVERS with all necessary accessories.

PYE PTC 2002 A.M. Range

* Mobile, new and complete, £45.

SOLARTRON EQUIPMENT

LAB. AMP AWS 151A, Frequency

F.G. Single beam Laboratory Model, DTG, price upon application.

G.D. Storage Oscilloscope, as new.

Price on request.

TELEPHONE ENQUIRIES

* To view TEST EQUIPMENT, telephone 1-748 0536 Extension 23.

INTEGRATED CIRCUITS MANY OTHERS IN STOCK

* RCA CA 3005 wide band RF Amplifier 300MHz diss. £27.
* CA 3013 45MHz band 150MHz diss. £15.
* CA 3020 Audio power ampl. £30.
* CA 3436 Audio pre-ampl. £19.
* STC MIC 9301B Digital dual 4 input gates £45.
* MCM 709C Linear operational ampl. £95.
* MCM 905D High speed flip-flop £45.

TRANSISTORS, ZENER DIODES

* Not listed as "as seen" all equipment ordered from us is completely overhauled mechanically and electrically, thus ensuring that our equipment is in "connect and use" condition.

P. C. RADIO LTD.

170 GOLDHAWK RD., W.12

Tel. 01-743 4946

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

All enquiries & orders please address to

COLOMAR (ELECTRONICS)

170 Goldhawk Rd., London, W.12

Tel. 01-743 0899

www.americanradiohistory.com
You're on the right track—

with Goldring 800 magnetic cartridges

Goldring 800 magnetic cartridges track unerringly. Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.

Hear it for yourself. You'll know you're on the right track.

Goldring 800/H... the 800/H is designed for inexpensive changers to track between 21...34 grams and has a high output of at least 8mV. £10.13.6 tax paid.

Goldring 800... the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict. £13.0.0 tax paid.

Send for details and complete range of Goldring Hi-Fi equipment

Goldring Manufacturing Co. (Great Britain) Ltd.

WW—108 FOR FURTHER DETAILS

NO EXCUSES! NO DELAYS! FROM STOCK!

VARIABLE VOLTAGE TRANSFORMERS

- **Double Wound Variable Transformers**
 - Fully isolated, low tension Secondary winding. Input 230 v. A.C.
 - OUTPUT CONTINUOUSLY VARIABLE 0-36 v. A.C.
 - 0-36 v. at 5 amp. £5.12.6
 - 0-36 v. at 20 amp. £21.0.0
 - These fully shrouded Transformers, designed to our specifications, are ideally suited for Educational, Industrial and Laboratory use.

- **INSULATION TESTERS (NEW)**
 - Test to I.E.E. Specifications, fully enclosed and fitted with metal construction suitable for bench or field work, constant speed clutch. Size 4 in., 3 in., 2 in. £26.0.0

- **5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT**
 - Input 230 v. A.C.
 - Output 0-240 v. A.C.
 - Fitted large scale ammeter and voltmeter. Neon Indicator, fully fused. Strong attractive metal case 15 in. x 8 in. £34.0.0

- **36 Volt 30 Amp. A.C. or D.C. Variable L.T. Supply Unit**
 - *INPUT* 220/240 v. A.C.
 - *OUTPUT* CONTINUOUSLY VARIABLE 0-36 v.
 - Fully isolated. Fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and Chrome handles. Input and Output fully fused. Ideally suited for Lab. or Industrial use. £55 plus 40% & c.

- **SERVICE TRADING COMPANY**

- **VARIABLE VOLTAGE TRANSFORMERS**
 - **INPUT** 230 v. A.C. 50/60
 - **OUTPUT VARIABLE 0-240 v. A.C.
 - BRAND NEW. Kennek prices in the country. All Types (and spares) from 1 to 50 amp. available from stock.
 - 0-260 v. at 1 amp. £5 10 0
 - 0-260 v. at 2.5 amp. £6 15 0
 - 0-260 v. at 5 amp. £9 15 0
 - 0-260 v. at 8 amps. £14 10 0
 - 0-260 v. at 10 amps. £18 10 0
 - 0-260 v. at 12 amps. £21 0 0
 - 0-260 v. at 15 amps. £25 0 0
 - 0-260 v. at 20 amps. £37 0 0
 - 0-260 v. at 37.5 amps. £72 0 0
 - 0-260 v. at 50 amps. £92 0 0
 - 20 DIFFERENT TYPES AVAILABLE FOR IMMEDIATE DELIVERY.

- **OPEN TYPES**
 - **INPUT** 230 v. A.C. 50/60
 - **Output variable.**
 - 0-260 v.
 - ½ amp. £1 10 0
 - 1 amp. £5 10 0
 - 2½ amp. £6 12 6
 - **1 AMP.** £1 7 6

- **VAN DE GRAAFF ELECTROSTATIC GENERATOR**
 - Fitted with motor drive for 230 v. A.C. giving potential of approx. 50,000 volts. Supplied absolutely complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price £77.0.0, plus 4% P. & P. L.T. on req.

- **CONSTANT VOLTAGE TRANSFORMER**
 - **INPUT** 185-250 v. A.C.
SERVICE TRADING CO

LARGE DIGIT 12-18V D.C. MAGNETIC COUNTER
4 in. down, 0.0100 and 0.0001 digit. High. Wide, total. Set of 1 lb. (incl. containers)

RING TRANSFORMER
Functional Ventral Educational
This main output Auto. Transformer with large center aperture, can be used as a Double winded current Transformer, Auto Transformer, H.T. or L.T. Transformer, by simply hand winding
the desired number of turns through the centre opening. The transformer can be used to provide 240v, 4v., 7v. or 10v. etc.

DEMONSTRATION TRANSFORMER (S5222Z TYPE)
Two removable coils are tapped at 0, 110, 220, and 300 volts. and 0, 220, and 300 volts. respectively. A composite apparatus designed for demonstrations. Electro-magnetic induction, induction lumps, relationships between field intensity and amperes turns, induction motor and transformer experiments. New modulated model. £11.10. P. & P. 10.

LT. TRANSFORMERS

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Tap.</th>
<th>Price</th>
<th>Curr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1032</td>
<td>110</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1033</td>
<td>220</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1034</td>
<td>300</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1035</td>
<td>410</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1036</td>
<td>550</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1037</td>
<td>770</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
<tr>
<td>1038</td>
<td>1100</td>
<td>£2.15</td>
<td>6/6</td>
</tr>
</tbody>
</table>

AUTO TRANSFORMERS

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Tap.</th>
<th>Price</th>
<th>Curr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1042</td>
<td>110</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1043</td>
<td>220</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1044</td>
<td>300</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1045</td>
<td>410</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1046</td>
<td>550</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1047</td>
<td>770</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
<tr>
<td>1048</td>
<td>1100</td>
<td>£3.10</td>
<td>6/6</td>
</tr>
</tbody>
</table>

INSULATED TERMINALS

A.C. CONTACOR
2 marks, 0.5 amp, 80 volt (5) 15 amp. contacts. 230/240v. a.c. operation. Brand new. £1.10. P. & P. 1/6.

LIGHT SENSITIVE SWITCHES

LIGHT SOURCE AND PHOTO CELL
Precision engineered light source with adjustable lens assembly and versatile and adjustable lamp to take MBC bulb. Separate photo cell mounting assembly for ORP.12 Cadmium Sulphide Photo cell. Doctor microscope windows. All are single hole fixing. Price per pair £2/15/0 plus 3/6. P. & P.

CONDENSERS
New as a fraction of maker's price. 2,500 mfd. 100 volt. 0.6 and 0.06 mfd. 25 v. 10/6. 10,000 mfd. 35 v. 1/10. 4,000 mfd. 50 v. 1/15.

MINIATURE UNISELECTOR
3 banked positions, plus horning button. 40 ohm coil. 2 X 36v. D.C. operation. Carefully removed from equipment and tested. £2.6. plus 2/6. P. & P.

UNISELECTOR SWITCHES
4 BANK 25 WATT WIPER
20v. coil, 24v. D.C. operation. £5.76. plus 2/6. P. & P.

6 BANK 25 WATT WIPER

8-BANK 5-WAY FULL WIPER

RELAYS
NEW SIEMENS PLESSLEY, etc.
MINIATURE RELAYS AT A HIGHLY COMPETITIVE PRICE.

<table>
<thead>
<tr>
<th>Coil Working</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. VOLT CONTACTS</td>
<td>£1.96.</td>
</tr>
<tr>
<td>10 - 12v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>12 - 14v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>14 - 16v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>16 - 18v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>18 - 20v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>20 - 22v.</td>
<td>£1.96.</td>
</tr>
<tr>
<td>22 - 24v.</td>
<td>£1.96.</td>
</tr>
</tbody>
</table>

SAWNA MULTI RANGE TESTERS
A.VO MODEL 48A
Adjustable Tone Control. Fitted with moving coil speaker, also earphone for personal monitoring. Complete with Morse key. 240v. 1/6. P. & P. £11.10. P. & P.

230V O.C. RELAY LONDEX
Four 3 amp contacts. 2 x 2216. D.C. operation. £5.10. P. & P.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE
8/6. P. & P.

NICKEL CADMIUM BATTERY
1.2v. 35Ah. Size 81 high x 3131. 30 each. £4. & P. 1/6. 30 each. £4. & P. 1/6. Size 7.2v. 7Ah. Height 231. Width 261. X 1/2in. Weight approx. 13 oz. Ex-R.A.F.

MINI SERVICE RELAY

CIRCUIT TESTER

BATTERY TESTER
10amps, 24v. operation. Operates 500 mca. contacts. £5. 10.3 x 31 x 12 in.

MULTI RANGE TESTERS
A.VO MODEL 48A
Adjustable Tone Control. Fitted with moving coil speaker, also earphone for personal monitoring. Complete with Morse key. 240v. 1/6. P. & P. £11.10. P. & P.

NEW MODEL
HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR

34R SILICON SOLAR CELL
4 x 5 volt units series connected, output voltage at 20 ma, in sunlight. 30 times the efficiency of selenium, 45%. P. & P. 1/6. 1/6.
SCHARK ROTARY STEPPING RELAY RT04

48v. coil (22 ohm). The relay has 48 basic segments stepped in step by the 4 sweep contacts to 4 pole-plates (banks of 12). There are 2 secondary switch contacts: (3) one each way contact set which changes over and back with each step; (2) pair single-pole contacts which change over on each 12th step and return on the final pulse. Type L112IS - Size: Base 2" x 2" x 4" - High. New in maker’s packing, also, as before, but 110v. (1,120 coil cc), 6.150 each.

Electro Tech Sales

ELECTROTECH grey, cream or new beautifully overall. Brand switch direction required. There c.p.s. Type of approx. in back Motor 100 L6.10.0. Size: rating, JONES. Rating. Size: dia. 50,000 meg. Victorine "Hi-Meg" Resistors. One value only 50,000 meg x 2%, class encapsulated 1/2.

THORN DIGITAL INDICATOR designed for use with Miniature switches of various types 12/240v. 50/60 c.p.s. Made in UK. Fully tested. Approx. Overall length 1". Weight, 1.8. In maker’s packing, also, as before, but 110v. (1,130 coil cc), 6.150 each.

ATLAS SUB-MINIATURE LAMPS type L112S and L112S - high efficiency light-sources with excellent light-output and low power demand. Ratings: Standard 240v. 50,000 meg x 6.3 x 3.1 mm. feeds 12.7 mm. diameter 1 x 1 m. Ideal for instrument lighting normally sold in lots of 12 each. our price 0.50 per dozen or boxes of 50 at 45 each per box.

THORN ILLUMINATED PRESS SWITCH for 250v. operation. PRESSURE: on cap completes a second circuit. Very bright 95 mm. dia. 30.5 mm. amber, green or red. 10/6 each.

N.E.W HYDRO STATICS by WALTER JONES. Type 410S/12. Rated exact. constant level (1 or 2). Standard Miniature switch (red or blue). Size: length (spindle) 3", Width 2.5 x 3", Spindle (x)3/16", Weight 3 lb. Maker's price in region of £22.00. Our price 6.10 each. T courtyard

5.V. Solenoid. 1" pull. Very powerful, length 6", dia. 1", 11/16". 10/6 each.

VARIVUSS reversible 100 RPM GEARED MOTOR. Type S.D.14, 240/300v. A.C. 1/24. Input 120-240v., 50/60 c.p.s. 0-240v., at 400 v.s. A reversible 115v. a.c. geared motor drives the contact spring arm in the direction required. The Swiss micro switch mounted at each end of the spring and intended to be connected as a safety-stop. First class condition. £8.15 each.

New "Discus" Centrifugal Blower by Watkins & Watson, 240V. A.E.I. motors. 2,850 r.p.m. overall diameter 10", outlet flange 2 1/2.D. additional coupling mounting supplied. Limited supply. £9.10 each.

NEW INDUSTRIAL ALTERNATORS MANUFACTURED BY INGELHURST ELECTRIC CO. Brand new "Discus" Centrifugal Blower by Watkins & Watson, 240V. A.E.I. motors. 2,850 r.p.m. overall diameter 10", outlet flange 2.1/2.D. additional coupling mounting supplied. Limited supply. £9.10 each.

VICKERS-SFERRY-RAND hydraulic Power Line illustrated, full details upon request. Approximate makers price at £150.00 each.

SYLVANIA MAGNETIC SWITCH - a magnetically activated switch operated in a vacuum. Switch speed-4ms. temperature -54 to +200° C. Silver contacts withstand pressures up to 2,000 lb. sq. in. rated 10 amp at 240v. continuous. Fault currents of 28 amps at 120v. or 13 amp at 240v. silver contacts. Supplied in any of the following opening temperatures (deg. cent.) 80, 85, 90, 100, 105, 110, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 180, 190, 200 each at £4.10 per dozen.

MINIATURE "LATCH-MASTER" RELAY, 6, 12, or 24v. D.C. operation. One make one break, contacts rated 5 amps at 20v. Once current is applied, relay remains latched until input polarity is reversed. Manufactured for high acceleration requirements by Sperry Gyroscope Co. Size: Length 1/2", dia. 9/16" (including mount). Please state vertical or horizontal mount and voltage. £2.00 each.

New "Magnetic Devices" solenoid 240v. A.C. Type 42117, 1 to 3 lb. pull, frame size 1 1/2" x 11" x 12". 30/6 each.

MINIATURE B.P.L. 800-500 Micro-Ammeter. 13/16" Diam. scale. Through-Panel mounting, 45/.

"AUTOMATIC ELECTRIC" ENCLOSED RELAYS 6v. 50/60 c.1, 12/6 24v. 4700 c.1, 13/6 1,260 c.1, 15/6 48v. 1,260 c.1, 15/6.

NEW "CROYDON" 240v. A.C. reversibly motors. Choice of 1/50th HP, 1,500 RPM, or 1/100th HP, 750 RPM (diental in appearance). Size 3A1. Long plus spindle 1 1/4" dia. A beautiful motor at less than half the manufacturer's price. £6.10 each.

BRAND NEW ALTERNATORS MANUFACTURED BY INGELHURST ELECTRIC CO. Brand new "Discus" Centrifugal Blower by Watkins & Watson, 240V. A.E.I. motors. 2,850 r.p.m. overall diameter 10", outlet flange 2.1/2.D. additional coupling mounting supplied. Limited supply. £9.10 each.

WHERE NO CARRIAGE CHARGE IS INDICATED PRICE IS INCLUSIVE. PERSONAL CALLERS WELCOME.

Sylvania Circuit Breakers gas filled providing a fast thermal response between 80° and 180°C. Will withstand pressures up to 2,000 lb. sq. in. rated 10 amp at 240v. continuous. Fault currents of 28 amps at 120v. or 13 amp at 240v. silver contacts. Supplied in any of the following opening temperatures (deg. cent.) 80, 85, 90, 100, 105, 110, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 180, 190, 200 each at £4.10 per dozen.
LASKY'S

AN ABSOLUTE MUST FOR EVERYONE—THE AUDIOTRONICS CATALOGUE IS EQUAL TO OVER 100 PAGES OF CURRENT W.W. ADVERTISING!!!

The 1970 edition of Lasky's famous Audiotronics catalogue is now available—FREE on request. The tabloid size makes it easy to read. The entire contents are packed with 1000's of items from the latest stock in Great Britain for everything for the Radio and Hi-Fi enthusiast. Electronics Holdfast, Serviceman and Communications Ham. Over half the pages are devoted exclusively to all aspects of Hi-Fi (including Lasky's budget Stereo Systems and Package deals). Tape recording and audio accessories PLUS Lasky's amazing money saving vouchers worth over £20. All goods are available by Mail Order—bringer the benefits of shopping at Lasky's so close to your comfort at your hands. The performance of the "Criterions" is superior to many larger and more expensive units and at Lasky's exclusive prices offers absolutely unbreakable value.

JULY 1970

LASKY'S PRICE 75/- Post 2/6

LASKY'S PRICE £9.10.0 OR £17.10.0 Post 1/-7/6, 2/-12/6

GARRARD RECORD PLAYERS

AUTOCHANGERS

SL72 II £30 0

AP 75 £5 10

SP 25 Mk II £19 0

SP 25 Mk II with AD 76K magnetic cartridge

401 Transcription Unit

£18 0

Bases and Covers for Garrard Units: Tros WB1 and WB5 for models ATX Mk II, 2025C, 3000, SL68B, SL55, 1025, SP25, Mk II, £3.50; WB1 £3.15; £2.85, £2.15. Type WB4 for models SL72B, SL75B, SL98B £12 6. Poster covers: £1.25. £1.10 each. £5.00 for 50. (Post £1.25)

GARRARD PACKAGE DEALS

AP 75 complete with AD 76K stereo magnetic cartridge £30.00 Post 10/-

SP 25 Mk II £19.00 Post 7/6

1025 complete with J7025 stereo magnetic cartridge, tape plinth and pensuke cover

£11 19.6 Post 7/6

Post on Garrard units: £4 extra—except AP 75, SL 75B, SL 95B and 401 7/6 extra. Post on bases and covers 5/- extra.

High Fidelity Audio Centres

42-45 TOTTENHAM CT RD. LONDON, W.1 Tel: 01-580 2573

Open 9am-5pm

Saturday 9am-4pm

Post on Garrard units: 6/- extra—except AP 75, SL 75B, SL 95B and 401 7/6 extra. Post on bases and covers 5/- extra.

ALL MALL ORDERS AND CORRESPONDENCE TO: 3-15 CAVEILL STREET, TOWER HAMLETS, LONDON, E.1

Tel.: 01-790 4821

www.americanradiohistory.com
Work as a RADIO TECHNICIAN attached to Scotland Yard

You’d be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City & Guilds Intermediate (telecommunications) or equivalent.

Salary scale: £1,095 (age 21), rising by increases to £1,500 plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

LEINE & LINDE
PRECISION ROTARY DIGITISERS

These incremental shaft-angle digitisers are used to determine accurately the angular position, velocity and acceleration of a shaft.

BRITEC LIMITED
17 Charing Cross Road, London W.C.2
Telephone: 01-930 3070

WW—111 FOR FURTHER DETAILS

TRANSFORMERS
COILS
LARGE OR SMALL QUANTITIES
CHOSES
TRADE ENQUIRIES WELCOME
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
CR4 8LZ
EST. 1933

WW—112 FOR FURTHER DETAILS

SONEX is an important new series of annual Hi-Fi exhibitions. The best in Hi-Fi, the newest equipment, future trends in sound, sound demonstrations, ideas for Hi-Fi in the home. All this in rooms simulating home listening conditions at the Skyway Hotel. Be sure to get your free ticket from your Hi-Fi dealer.

April 24th-26th, 1970
Fri & Sat: 11am-9pm.
Sun: 11am-6pm.
Skyway Hotel
Bath Road, Hayes, Middx.

SONEX ’70
Organised by British Audio Promotions Ltd for the Federation of British Audio

ww—110 FOR FURTHER DETAILS
INTEGRATED CIRCUIT AMPLIFIERS

CA3005 RF Amplifier with 10mA/1kHz bandwidth. Max. Dissipation 500mW. 1% resistor and capacitor networks, detector, balanced mixer, beam-power detector or self-oscillating mixer.

CA3122 Wide Band Amplifier; 1µ to 6MHz, suitable as IF Amplifier for VHF/PVR receivers.

CA3200 General Purpose Audio Amplifier of 50mW output. 50Ω.

CA3104 Buffer Amplifier consisting of two "super-slip" pairs of transistors suitable for stereo pick-up systems.

The above 3-4 IC's are in TO-99 encapsulations.

PA200 Audio Amplifier providing a max. output of 1.2 watts. 8Ω.

PA210 7-1/2 watts Audio Amplifier. The above 3-4 IC's are in epoxy moulded double transistors package.

IC200 General Purpose operational amplifier in TO-99 case. 40Ω.

TA200 3-stage direct-coupled amplifier for use from 1kHz to 400kHz, 75Ω in connection. Output 10mW into 15Ω load. 15Ω.

TA300 3-stage amplifier with connection brought out to the individual IC's. Operating range 0.01mW to 100mW with 10Ω input and 15Ω output 1Ω. 20Ω.

TA305 MOST input stages followed by a high-impedance 75Ω output stage.

TDA100 All active components required for an A.M. Receiver comprising mixer, detector, I.F. amplifier, a.g.c. and pre-amplifier stages. To build complete receiver only coils, capacitors and resistors are required and output stage for which one of the above described I.C.'s can be used. Dual seven-ic-in package.

Dual stage output stage for all the above I.C.'s; 1mA with 1Ω or 3Ω per stage if ordered separately.

FULLY GUARANTEED

FULLY QUALITY VALVES

[Continued on next page]
Put some of the world’s most sophisticated hardware to the test

What you will do

At IBM Greenock, you will be involved in the commissioning and testing of the latest IBM products which can include computers and sophisticated optical character recognition equipment. These products have to be tested thoroughly and all faults traced and rectified.

Qualifications and Training

You will have a strong electronic background, with experience in the testing of electronic products, maintenance of radio, radar or TV, or similar work in the armed forces.

You will probably have, or be near to attaining a qualification such as ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, 48, 49, 57, 300) although a first class practical knowledge of electronics can eliminate the need for formal qualifications.

A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.

You will receive a mixture of formal and “on the job” instruction, and IBM will teach you all you need to know about their equipment.

Salary and Prospects

Starting salaries will be excellent. And the prospects are outstanding in this fast-growing company. Fringe benefits include a non-contributory pension scheme and free life assurance. IBM will also assist with removal expenses where applicable.

Write Today

Write with details of your age and experience to Mr. J. G. B. McKenzie, Manager, Personnel Selection, IBM United Kingdom Limited, P.O. Box 30, Spango Valley, Greenock, Scotland. Please quote reference ET2/WW/90062.

Electronic Test Technicians

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

YOUNG ELECTRONICS ENGINEER

required for development work on digital equipment for Psychological Research. This post provides an excellent opportunity for an ambitious Junior, or Intermediate Engineer to join a small team whose talents are directed towards applying electronics technology to the most modern and exciting disciplines of Science. Good salary and prospects are offered by this rapidly expanding Company. Please write giving full details of qualifications and experience to:

Mr. K. J. Kapota, General Manager, BEHAVIOURAL RESEARCH & DEVELOPMENT LTD. 124 Colne Road, Twickenham, Middx.
News travels fast at Reuters

We want you to keep it that way!

News is our business at Reuters - we gather it from all over the world, sift it, edit it, and then get it to our thousands of subscribers just as fast as we can, twenty-four hours a day, every day of the year. No rests, no breaks, never stopping. We couldn't begin to cope without sophisticated data handling systems and computers. We are dependent on our communications and need more data processing engineers to service our equipment comprising the following:

- ADX and electronic message switching systems.
- STOCKMASTER and electronic brokerage systems, including remote display terminals.
- Two IBM 1800 systems.
- Reuters' international communications systems.
- Peripheral and ancillary equipment.

Qualifications. Preferably HNC, or equivalent, in relevant subjects. Retiring Service personnel, with Service qualifications would be considered. Engineers without formal qualifications but trained by a leading computer or communications company - would also be considered.

Experience. Ideally, two years in the maintenance of digital equipment - Processing, Retrieval or Communications. Preference will be given to applicants who have experience in all three areas of operation.

Salary and Conditions. Starting salary will depend on experience and ability but will in any case be better than the applicant's present earnings. Holidays and general conditions of employment are among the best in industry.

Most of the vacancies are in London but there are a few at Manchester, Birmingham and Edinburgh. We can promise you an interesting and busy life where your rewards will match your performance.

To start with, write to or telephone: Brian Heywood,

REUTERS Limited

Telephone: 01-353 6060
Installation Engineers
Technicians & Testers
Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to
The Personnel Officer,
STC Chester Hall Lane,
Basildon, Essex.

Test Technicians
Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

BBC ENGINEER
EXTERNAL SERVICES SECTION OF
TRANSMITTER PLANNING & INSTALLATION DEPT.

The BBC have a vacancy for an Engineer in the External Services Section of Transmitter Planning and Installation Department. The department is responsible for the planning, installation and preparation of specifications for high power transmitters and for aerial and feeder systems at H.F. and M.F. transmitting stations in the United Kingdom and abroad.
Candidates should be qualified to degree or equivalent standard (Corporate membership of a relevant Chartered Institution would also be taken into consideration). In addition, applicants should have a general knowledge of modern transmitting stations and should have some experience of the installation and design of transmitters and aerial systems.
The post is based in London but candidates must be prepared to visit sites for short periods in the United Kingdom and abroad. A starting salary dependent on previous experience and qualifications of £2,030 to £2,238 p.a. would be paid rising to a maximum of £2,550 p.a.

CONTINUOUS EXPANSION
Standard Telephones & Cables, Microwave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require the following

STC

computer engineering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/ radar experience in the Forces.
Starting salary will be in the range of £900/£1,250 per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, NW2 quoting publication and month of issue.

Plan your future with NCR

www.americanradiohistory.com
Government of BOTSWANA

Police Department requires

ASSISTANT FORCE WIRELESS OFFICER

Candidates 30–45 years, must possess the City & Guilds Intermediate Cert. (Telecomms.) or equivalent or practical experience, preferably in the Police or Armed Forces, giving comparable ability. Several years' experience in the electronics or radio field, preferably in connection with H.F. S.S.B. and V.H.F./F.M. and ideally in police communications, is also essential. The officer will undertake the installation, operation and maintenance of the police radio network comprising H.F., S.S.B. and V.H.F./F.M. stations to 500 watts throughout Botswana.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2K 695212/WF

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and transceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex-service personnel.

Commencing salaries of up to £1,500 per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:

G. W. Fox, Personnel Department,
U.K. Electronics & Industrial Operations,
E.M.I. Ltd., Blyth Road,
Hayes, Middlesex.
Tel: 01-573 3888, Ext. 411.
Become a

RADIO
TECHNICIAN

and work at the nerve centres of civil aviation

The National Air Traffic Control Service of the Board of Trade needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.

This is responsible demanding work (for which you will get familiarisation training) involving communications, computers, radar and data extraction, automatic landing systems, and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.

If you are 19 or over, with at least one year's practical experience in telecommunications, fill in the coupon now. Preference will be given to those having ONC or qualifications in Telecommunications.

Salary: £935 (at 19) to £1,295 (at 25 or over). Scale maximum £1,500 (higher rates at Heathrow). Some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form

Name

Address

WW/64

Not applicable to residents outside the United Kingdom.

NATCS
National Air Traffic Control Service

Senior Posts for

DRAUGHTSMEN
AND
ENGINEERS

LABGEAR LTD, of CAMBRIDGE have vacancies in their engineering division for the following Staff:

1. TWO SENIOR DESIGN DRAUGHTSMEN with experience in light engineering, sheet metal design and layout of printed circuits.

2. A SENIOR RADIO COMMUNICATIONS EQUIPMENT DEVELOPMENT ENGINEER with experience in S.S.B. circuit techniques.

3. A DEVELOPMENT ENGINEER with experience in design of U.H.F. aerials and amplifiers.

4. AN ELECTRONIC INSTRUMENT DEVELOPMENT ENGINEER with broad general experience of both digital and linear techniques.

The above staff are urgently required to deal with a major expansion programme. Our own staff have been fully informed. Exceptionally good working conditions, first class pension and life assurance scheme.

Please apply to Personnel Manager,
LABGEAR LTD., CROMWELL ROAD, CAMBRIDGE
Telephone 47301

Senior Development Engineer
Radio and Audio Products

Kolster-Brandes Limited wish to strengthen the radio and audio section of their Engineering Department by the appointment of a Senior Engineer. He ought to be qualified to HNC or degree level—but experience and ability will impress us equally. Above all, we will be looking for evidence of real achievement, primarily in radio circuit design, and possibly also in the wider field of audio equipment.

Starting salary is likely to be in the range £1,600–£1,900, and conditions of employment are consistent with our standing as a major international company. Generous assistance will be given with relocation expenses.

Concise details of your qualifications and experience should be sent to Miss C. M. Arnold, Kolster-Brandes Ltd., Fossecroft, Sidcup, Kent.
Government of UGANDA REQUIRES BROADCASTING ENGINEERS

To serve on contract for one tour of 21-27 months in the first instance. Salary according to experience in scale Uganda Shg. 21,120-27,780 (£Stg. 1,232-1,620) a year, plus an Inducement Allowance, normally tax free, of £Stg. 778-886 a year, paid direct into a Uganda bank account nominated by the officer. Gratuity 25% of total emoluments drawn. Liberal paid leave. Accommodation provided at reasonable rental. Outfit and education allowances. Free passages. Contributory pension scheme available in certain circumstances.

Candidates must possess the City and Guilds Final Certificate in Telecommunications (with Radio) or an equivalent qualification and have wide practical experience of technical broadcasting equipment including high power M.F. transmitting and studio control equipment. The officer will be required to undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations and studios; outside broadcasts and recordings in remote districts; and to give assistance with the training of junior engineering staff.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2R/690995/WF.
APPOINTMENTS

TEST

Right. We have your attention, so you can now forget about the girl.

We are looking for Electronic Testers to work on a wide variety of radio products ranging from the world's most advanced and compact mobile radio equipment to high-powered H.F. transmitters. Duties will include testing, fault-finding and alignment, and in the case of senior positions will include systems test and trouble-shooting work.

Tom Anderson, Radio Products Group, Standard Telephones and Cables Ltd.

STC

Oakleigh Road, New Southgate, N.11
01-368 1334
ext. 2078

(MINISTRY OF DEFENCE)

(ARMY DEPARTMENT)

LECTURER GRADE II

Applications are invited for the post of Lecturer Grade II at the Army School of Signals, Blandford Camp, Dorset. Candidates should have an honours degree in electrical engineering or physics with an interest in electronics. Candidates with a mathematical degree and interest in computers or the Cambridge Mechanical Sciences Tripos will also be considered. Experience in the use of modern military communications equipment and teaching experience are desirable but not essential.

Salary will be in accordance with the current scales of salary for Teachers in Establishments for Further Education. In addition to salary a special non-pensionable allowance of £365 per annum is payable for the slightly longer teaching year at the school. The appointment is pensionable under the Teachers' Superannuation Acts.

Requests for application form and further information should be made to:

Ministry of Defence (AD), CE3(b), Room 308, Northumberland House, Northumberland Avenue, London, W.C.2

Closing date for receipt of applications—10 days from date of publication 320

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1970 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainer’s progress, are held at intervals. Applications are now invited for the course starting in September, 1970.

During training a salary will be paid on the following scale:

- Age 21: £850 per annum
- 22: £865
- 23: £880
- 24: £925
- 25 and over: £965

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade I scale:

- Age 21: £965 per annum
- 22: £1025
- 23: £1085
- 24: £1145
- 25 (highest age point): £1215

then by six annual increases to a maximum of £1650 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years’ operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.

Application forms and further particulars from:

Recruiting Officer, (R.O.3) Government Communications Headquarters, Oakley, Priory Road, CHELTENHAM, Glos., GL52 6AJ

Telephone No. Cheltenham 21491, Ext. 2270

UNIVERSITY OF SURREY

Department of Biological Sciences

A SENIOR TECHNICIAN

is required in the HUMAN BIOLOGY section. The Department is about to move into a new building within the University campus at Guildford. This is a recently established section of the Department and offers good opportunities for a person with ability and enthusiasm. The applicant is expected to engage in research and teaching, and the servicing and calibration of the Department’s modern bio-medical electronics.

Staff are encouraged to engage in further studies relevant to the needs of the Department and day release is available for this.

Salary scale for Senior Technician: £1,056-£1,311.

Application forms are available from the Staff Officer, University of Surrey, Guildford, Surrey.
Government of MALAWI
requires
TELECOMMUNICATIONS OFFICER
[CIVIL AVIATION]

to serve on contract for one tour of 24-36 months in the first instance. Salary in scale rising to £1,905 a year (inclusive of Overseas Addition), point of entry according to experience. In addition, a supplement of £1,960-224 a year is payable by the British Government direct into officer's bank in U.K. Gratuity 25% if officer completes 30 month tour. Generous paid leave. Furnished accommodation. Education and outfit allowances. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 25-45, should possess City and Guilds Telecommunication Technician's Certificate (Intermediate) plus at least two “B” year certificates and in addition not less than four years' experience in radio/ radar maintenance after serving a recognised apprenticeship or similar training. Applicants lacking formal educational qualifications but with extensive experience can be considered.

The officer will be responsible for the installation and maintenance of telecommunications and radio navigational equipment at airports throughout Malawi.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating, name, age, brief details of qualifications and experience and quoting reference number MzK/6B1117/WF.

SOUTHEND-ON-SEA
MUNICIPAL AIRPORT
RADAR/RADIO ENGINEER

Applications are invited for the above superannuated post from Technicians with experience in the maintenance of 3 c.m. and 10 c.m. Radar, VHF communications and recording equipment and navigational aids. Possession of appropriate City and Guilds or National Certificates desirable. Salary according to Technical 4/5 Scales, £1,955-£1,540 (under review).

Applications, in writing, giving age, experience and qualifications, should be forwarded immediately to the Airport Commandant, Municipal Airport, Southend-on-Sea, Essex. 334

UNIVERSITY OF BELFAST
Department of Civil Engineering
EXPERIMENTAL OFFICER/ SENIOR EXPERIMENTAL OFFICER

Applications are invited for the post of Experimental Officer/Senior Experimental Officer. The Officer will be responsible for the electronic and electrical laboratory equipment in the Department of Civil Engineering and the design and development of specialised electronic devices for research work. Applicants should hold a degree in engineering or qualification for corporate membership of a recognised engineering institution.

The appointment will be on the grade appropriate to the applicant's age and qualifications: the respective salary scales (which carry superannuation within the F.S.S.U.) are:

Experimental Officer—£1,120 x 6(4) to £1,460 x 70(3) = £1,350
Senior Experimental Officer—£1,580 x 6(9) to £2,310 x 11(5) = £2,503 (Bar at £1,825)

Applications, giving full particulars of career to date and the names of two referees, should be sent to: The Secretary to Academic Council, Queen's University, Belfast, BT7 1NN, by 14 March, 1970.

GEC-Marconi Electronics
Technicians and Engineers for St. Albans and Luton qualified or not!

Vacancies in all grades

- VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
- APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
- SALARIES up to £1,600 negotiable and backed by valuable fringe benefits.
- RE-LOCATION EXPENSES available in many instances.
- CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
- 37½-hour, 5-day, office-hours week.
- WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required.

Marconi Instruments Limited
Longacres, St. Albans, Herts. Tel: St. Albans 59292
Luton Airport, Luton, Beds. Tel: Luton 31441
A GEC-Marconi Electronics Company

www.americanradiohistory.com
APPOINTMENTS

BBC TELEVISION ENGINEERS

required for the expansion of the COLOUR TV SERVICE

Do you have one of the following qualifications in electronics:

B.Sc. H.N.C. H.N.D. City & Guilds Full Tech. (Telecomms)?

If so you may be interested in the vacancies we have at our colour television studios at the Television Centre. We require qualified engineers to train in television techniques to work on our new colour studio equipment.

Applicants must have normal colour vision and be normally resident in this country.

Starting salaries in the range £1,175 to £1,609 depending upon experience on the basic grade of OP4. The salary scales are as follows:

- OP4 £1,453 to £1,843 by annual increments of £78
- OP5 £1,700 to £2,140 by annual increments of £88
- OP6 £1,921 to £2,446 by annual increments of £105

There are engineering grades above this commanding salaries of over £4,000 p.a. Those engineers who are required to work early morning or evening shifts and extra duty may earn from £200 to £300 above their basic salary.

Promotion to grade OP5, OP6 and above is by internal competition on merit rather than seniority. There are therefore good opportunities for the progressive engineer to gain rapid promotion.

Write giving age and details of qualifications and experience to:—

The Engineering Recruitment Officer,
BBC Broadcasting House,
London W1A 1AA.

Quoting Reference: 70.E.4004

ROYAL ARMAMENT RESEARCH AND DEVELOPMENT ESTABLISHMENT

MINISTRY OF DEFENCE, Fort Halstead, Near Sevenoaks

ELECTRONICS

Two ELECTRONIC ENGINEERS (graded Experimental Officer/Assistant Experimental Officer) are required for work on advanced applications of electronics in the artillery field.

Qualifications and Experience: Degree HNC or equivalent, in appropriate subjects. Several years development experience is necessary in one or more of the following fields: VHF TV, Audio, Control and Digital Systems, including the use of I.C. techniques and other advanced methods. Age: AEO under 28, EO normally 26-30.

Prospects of permanent tenable appointments. Promotion prospects.

Salary: AEO £940 (at 22)—£1,208 (at 26 or over)—£1,454; EO £1,590—£2,006.

UNIVERSITY OF CAMBRIDGE

Engineering Department

Electronics Technician

Applications are invited for vacancies in the Electronics Laboratory and Workshop of the Department, covering the manufacture and maintenance of a wide range of instrumentation and experimental equipment. Two posts are available, one on which experience in design and development is essential and the other requiring a skilled valve technician. The maximum salaries in the two posts are £1,548 per annum and £1,266 per annum respectively.

5-day week with 5½ weeks' holiday per year.

Applications should be sent to the Superintendent of Workshops, Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ.

MEDICAL RESEARCH COUNCIL

TECHNICAL OFFICER (Physics)

A research unit studying the medical effects of environmental pollution requires a technician to assist in the development of physical and electronic instrumentation and the commissioning and running of a real-time computer system. It is soon to be installed. The successful candidate will be expected to learn digital computer programming.

Applicants preferably should have experience in electronics and if aged 22 or over have an appropriate University degree. Minimal qualifications: 'A' level mathematics and physics. Salary according to age, qualifications and experience (Technical Officer or Junior Technical Officer grades).

Further details from and applications to: Professor P. J. Lawther, M.R.C. Air Pollution Unit, St. Bartholomew's Hospital Medical College, Charterhouse Square, London, E.C.1.

UNIVERSITY OF ST. ANDREWS

Department of Chemistry

Applications are invited from candidates with an Ordinary Degree, H.N.C. or equivalent qualification in Electronics for a position in the Department of Chemistry. The successful applicant will be expected to assist in the servicing of spectrometers and in the development of electronic equipment. The new chemistry building is equipped with Mass Spectrometers (MS-902 and MS-10), N.M.R. Spectrometers (HA-100 and R-10) and a Deca E.S.R. Spectrometer in addition to I.R. and U.V. Spectrophotometers.

Salary in the range £1,090—£1,465 (Technical Officer), grant towards removal; pension scheme. Applications with the name of a referee should be sent before 15th February, 1970, to the Deputy Secretary, University of St. Andrews, College Gate, St. Andrews, from whom further particulars may be obtained.
Government of MALAWI

Posts & Telecommunications Department

requires

SECTIONAL ENGINEER

to serve on contract for one tour of 24-36 months in the first instance. Salary according to experience in scale rising to £1,905 p.a. (inclusive of Overseas Addition) plus a Supplement rising to £244 p.a. paid by the British Government direct to officer's bank in the U.K. Gratuity 25% on completion of 30 month tour. Terminal payment in lieu of leave. Furnished accommodation. Free passages. Outfit and education allowances. Contributory pension scheme available in certain circumstances.

Candidates, between 25-45 years, must have specialised training and experience on the maintenance of microwave radio and associated equipment and hold passes in appropriate subjects in the City & Guilds of London Institute examinations or the equivalent.

The officer selected will be responsible for the maintenance of microwave radio route, carrier equipment and V.H.F. radio.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2K/69086/WF.

UNIVERSITY COLLEGE CARDIFF
Department of Education
COMMUNICATIONS CENTRE
Electronics/Television Engineer

Applications are invited from suitably qualified and experienced persons for the above post. The successful applicant will be responsible for the maintenance of Television and other sound and electronic equipment in the mobile and C.C.T.V. units. He will also be associated with the planning within an expanding department, and with the preparation of teaching equipment in relevant science education courses. Qualifications should include H.N.C. or equivalent, in Electrical Engineering, and the applicant should have had not less than two years experience in sound and/or television engineering.

Salary in the Chief Technician (I) Grade £1,385-£1,578 p.a. Applications should be sent to: The Registrar, University College, P.O. Box 78, Cardiff, CFI 1XL by 1st March, 1970, quoting ADV 381/WW

UNIVERSITY OF LIVERPOOL
Department of Psychology

Applications are invited for the post of LECTURER in Psychology.

Preference will be given to candidates who have specialised in some aspect of experimental psychology and who have a good knowledge of instrumentation. The department will shortly be moving into a new building, which will provide up-to-date laboratory facilities. The initial salary will be within the range £1,240 - £1,385 per annum according to qualifications and experience.

Applications, stating age, qualifications and experience, together with the names of three referees, should be received not later than 2nd March, 1970, by the Registrar, The University, P.O. Box 147, Liverpool L99 3BX. from whom further particulars may be obtained.

Please Quote Ref.: RV/5658/WW

GEC-Marconi Electronics

ELECTRONIC TECHNICIANS

Marconi can offer you

Attractive salary. Annual salary reviews
Good working conditions. 37-hour working week
Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical staff to work on the design and manufacture of specialised electronic test equipment and also on the repair and maintenance of general electronic test apparatus. Applicants should have a good basic knowledge of electronics and have some previous industrial or retail trade experience.

Marconi

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone : Basildon 22822.

A GEC-Marconi Electronics Company

www.americanradiohistory.com
Radio Operators

Your chance of a shore job with good pay from the start!

If you hold a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic, the Post Office can now offer you a starting salary of £1065—£1,215 (depending on your age). Annual rises will take you to £1,650 and there are good prospects of promotion to more responsible and better paid posts.

If you are over 21, write for more details to:

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS & TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.

Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.

These will be staff appointments with all the expected benefits.

Applications to:

Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South,
Chessington, Surrey (near Ace of Spades).
Phone: 01-397 5411

TECHNICAL OFFICER

HOME OFFICE POLICE

SCIENTIFIC DEVELOPMENT GROUP

Unestablished vacancy for a TECHNICAL OFFICER GRADE III with knowledge and experience of workshop practice and electronic equipment. The successful candidate will work in the equipment section, which is concerned with assessment, trials and development of a wide range of equipment for police use, and will carry out construction, modification and test work in co-operation with police officers.

The post is based initially in Central London, but the section will move to Sandridge, near St. Albans, later in the year.

Qualifications: Ordinary National Certificate or evidence of an equivalent standard of technical education, together with a five year apprenticeship and at least three years' practical experience.

Salary: £1355 (age 25)—£1485 (age 28 or over on appointment)—£1675.

Applications should be made to the Principal Establishment Officer (T.O.) Room 324, Home Office, Whitehall, London, S.W.1 by 31st March, 1970.

BOROUGH POLYTECHNIC

BOROUGH ROAD, S.E.1

Department of Humanities and Social Studies

TECHNICIAN

required as soon as possible for this expanding department which provides a wide range of courses in technology and professional level.

Duties will include supervision, maintenance and preparation for use of audio-visual equipment. Some knowledge of such equipment is expected and there are opportunities for further training.

Salary scale: £745—£1,125 per annum, plus £125 per annum London Weighting. Minimum age 21.

Apply in writing to the Secretary, giving details of age, qualifications and experience, and quoting the reference H/T.

SITUATIONS VACANT

A FULL-TIME technical experienced salesman required for the Radio Dept., Retail Sales; write giving details of age, previous experience, salary required to:—The Manager, Henry's Radio Ltd., 303 Edgware Rd., London W.2.

ARE YOU INTERESTED IN HI FI? If so, and you have some experience of selling in the Retail Radio Trade, an excellent opportunity awaits you at Telemonde Ltd., 343 Euston Road, London, N.W.1. Tel. 01-385 7687. [21]

A SUBSTANTIAL EXPERIMENTAL OFFICER required for the Department of Chemistry, Salary in range £1025—£1,454 per annum. An interest in electronics desirable; duties to be concerned mainly with the maintenance of instruments such as pH meters, spectrophotometers, mass spectrometers, etc. and possibly some design of electronic circuits. Apply in writing, quoting M.19, to Assistant Bursar (Personal), University of Reading, Reading, Berks.
[208]

R F REYNOLDS LTD., require fully experienced TELECOMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good remuneration salaries. We would particularly welcome enquiries from serving personnel or personnel about to leave the Services. Please write giving full details to:—The Personnel Manager, Redfem Ltd., Bromhill Road, Wandsworth, S.W.18.
[22]

SCHOOL TECHNICIAN/TECHNICIAN required for the School of Construction, development and servicing of an interesting variety of electronic apparatus in modern laboratories and research laboratories. Salary in ranges £1,025—£1,291 p.a. and £1,473—£1,947 p.a. according to age and experience, plus London Weighting £123 p.a. and possible £30 or £30 qualification allowance. Five day week. 35 hours weekly. Pension scheme. Letters only to Registrar (C.T./R.T.), Queens' School, Mile End Road, E.11, stating which post applied for, age, past and present experience, and any qualifications.
[304]

WE HAVE VACANCIES for Young Experienced Test Engineers in our Production Test Department. Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobile Equipment. Excellent Opportunities for promotion due to Expansion Programmes. Please apply to Personnel Manager, Pye Telecommunications Ltd., Cambridge Works, High Road, Cambridge. Tel. Cambridge 2727.
Government of ZAMBIA
DEPARTMENT OF CIVIL AVIATION
requires
RADIO ENGINEERS

Salary in scale up to £2590.
Low Taxation.
Tour of 36 months offered.
Generous leave on full salary.
25% End-of-Tour gratuity.

Commencing salary according to experience in scale Kwacha 2736 (£Stg.156) rising to Kwacha 3216 (£Stg.1876) a year, plus an Inducement Allowance of £Stg.714 a year, payable direct to an officer's U.K. Bank account. Both gratuity and inducement allowance are normally TAX FREE. Free passages. Quarters at low rental. Children's education allowances. Generous leave on full salary or terminal payment in lieu. Pension scheme available under certain circumstances.

Candidates must be under 55 years of age and should possess 8 years' relevant experience following:—
(i) an apprenticeship of 5 years, or
(ii) possession of a Service Trade Certificate, or
(iii) possession of an I.C.A.O. certificate or
(iv) equivalent.

In addition, candidates should have a sound experience of the theoretical principles of and experience in the maintenance of the first two and at least one other of the following groups of communications and navigational aid systems:

2. Low and High Powered V.H.F., A.M. Equipment.
6. Audio and Remote Control Equipment; Public Address Equipment; Airport Magnetic Tape Recorders; Inter Office Communication; Underground Control Cables; Impulse and D.C. Switching System.
7. Teleprinter Telegraphy (torn tape) and associated Page Printers; Tape Recorders (autoheads); Semi-Automatic Message Switching System.

Duties include the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centre. Possession of a valid driving licence will be an advantage.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2Z/690315/WF.

Audio Design Engineer

An outstanding opportunity with an attractive salary and the satisfaction of seeing complete equipment through design and production. Candidates should have H.N.C. or equivalent with several years' relevant experience in the audio industry.

Electrosonic Limited—Greenwich. Tel: 01-674 4784

Independent Television News Limited

intends to appoint

Trainee Television Engineers

Vacancies exist in the Vision and Sound Engineering Departments for Trainee Television Engineers. Applicants should have a keen interest in the technical problems of Television and have had some practical experience of electronics. They should possess either recognised Engineering Qualifications or 'A' levels in science subjects. Training will be provided in the various engineering sections of ITN covering the field of television broadcasting. Where necessary attendance at evening classes will be arranged.

Trainees, who successfully complete their period of training, will be appointed to the permanent staff where benefits include a Pension Fund and Free Life Insurance. Opportunities for promotion to more senior grades will exist.

Salary during the nine months training period will be not less than £782 per annum whilst under supervision, rising substantially on appointment to permanent staff.

Candidates aged 18-25 should telephone or write for application forms:
The Personnel Manager, Independent Television News Limited, ITN House, 48 Wells Street, London, W.1 Telephone: 01 637 2424, Ext. 392

RADIO & TELEVISION SERVICING
RADAR THEORY & MAINTENANCE

This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.

Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earl's Court, London, S.W.5. Tel: 01-373 8721.

OXLEY Development

MIDLANDS/NORTHERN AREA
TECHNICAL SALES REPRESENTATIVE

Company expansion has created a vacancy for a technical representative in the Midlands and part of the northern area of the United Kingdom. The successful applicant will be a person of proven ability with a wide degree of knowledge in the telecommunications and electronics field. Engineering qualifications to H.N.C. standard. Salary will be negotiated according to qualifications and experience. Company car provided; pension fund and life assurance scheme in operation.

Applications, giving details of education, experience, qualifications and salary, together with copies of two references or names and addresses of referees, to be forwarded to:

The Personnel Manager,
OXLEY DEVELOPMENTS COMPANY LIMITED,
PRIORY PARK, ULVERSTON, NORTH LANCASHIRE
hi-fi design and development

Rank Wharfedge and H. J. Leak, currently implementing plans which will double the present seven figure turnover within three years, are to expand the Acoustics Section of their Engineering Department, which also includes Research, Electronic and Mechanical Engineering Sections, a model shop and a drawing office. Creative engineers are required to design and develop for manufacture high quality loudspeakers and dependent systems, and work on improving the quality of moving coil design such as the Wharfedge "Denton", "Dovedale III" and Leak "Sandwich" loudspeakers. Recent investigations have covered topics such as the increase of specific output, low colouration diaphragms and loudspeaker suspension terminations.

Candidates should be qualified to HND standard with relevant experience in the electro-acoustic field. A sound education and training in engineering, with a deep interest in hi-fi, is essential. Salaries will be up to £3,000 per annum; contributory pension, free life assurance. Location - Idle, nr. Bradford. Assistance with removal expenses will be given where appropriate.

Please write, giving brief details and quoting Ref. MA 7519D. to:—

DEPUTY EXECUTIVE APPOINTMENTS ADVISER, THE RANK ORGANISATION LIMITED, MILLBANK TOWER, MILLBANK, LONDON, S.W.1.

Test Engineers required for Production Testing of Numerically Controlled Machine Tools. Knowledge or experience of Logic Gating Systems or alternatively, Analogue Circuits and Systems desirable.

Minimum Age 24 years

AUTOLOGIC LTD.

James Estate · Western Road · Mitcham
648-0121

Write, telephone or call Mr. G. A. Boyd

ELECTRONIC TEST ENGINEERS

Salary up to £1,650 per annum

RADIO TEST ENGINEERS. Production testing and fault finding on transistorised Audio Amplifiers & PM Receivers. 5-day week. Apply Chief Engineer, Rogers Developments (Electronics) Ltd., 4-14 Barnswood Road (off Bromley Road), Cudham, Kent. Tel: 01-812 4322

UNIVERSITY OF SHEFFIELD. Chief Technician required in Department of Chemistry to take charge of Electronics Workshop, concerned with development and construction of new electronic equipment. Experience and training, and maintenance and repair of wide range of electronic handbooks. Experience and qualifications. Salary £1,385 – £1,578 per annum. Write stating names and addresses of two referees to the Bursar (Ref. B.647), The University, Sheffield, S10 2TN.

ARTICLES FOR SALE

BLAND NEW ELECTROLYTICS, 15/16 vol. 0-5, 1, 2, 4, 10, 20, 30, 60, 100, 250 mfd. 6.5 micron Carbon Film Resistors. 1 watt 1% R12 Series 10 ohms to L. Mendocin 1/2 degree. Minimum order 1, Tel. 0202 776 4517.

MURPHY FM VHF RADIO TELEPHONES

Two 10W Mobiles and 15W Base station, new and unused. Slightly marked cases, complete with aerials, mounting brackets and testimonials.

£220 the lot

GREENHAM MARINE LIMITED

Enefcro House, The Quay, Poole, Dorset
Telephone: 6863
Electronic Video Recording

We now wish to engage further staff for our new EVR project at Basildon. We will be in production this year. Applications are invited from staff who have experience in television or sound studio recording and outside broadcasting work or who have worked in the testing of this kind of equipment. The work to be done will fill any one or more of the following categories:

PRE-MASTERING

Video Tape Recorders, 4 head highest quality; Telecine Channels, Flying Spot or Vidicon Multiplexed Systems; Video switching, Vision and Sound Mixers, Central Apparatus equipment synchronising generators, Test Waveform origination Pulse and Video distribution, Signal-Processing amplifiers; Sound Dubbing and Transfer Suite Video and Sound Test Equipment, Picture and Waveform monitors; Voltage Stabilisation equipment; Use of test equipment for accurate measurements.

MASTERING

Maintaining and operating sophisticated electronic apparatus. A knowledge of high vacuum technology is essential.

The appointments range from junior to senior level with starting salaries in the £1500 to £2500 range, depending upon the duties. There are promotion prospects. Shift work will be necessary in some cases. All the posts are pensionable with free life insurance. We will assist with relocation expenses. Rented accommodation is available under Basildon New Town Scheme. There are excellent local schools.

Interviews will be held in central London.

Applications giving brief details of age and experience should be sent, quoting reference ZH.193 to: W. W. Ellis, Personnel Manager, Ilford Limited, Christopher Martin Road, BASILDON, Essex.

ELECTROSONIC LIMITED

TAPE RECORDING YEARBOOK

Completely new ninth edition with comprehensive catalogue section and articles by experts. *Price 10s. 6d. from: 7 Alverstone Avenue, East Barnet, Herts.*

The University of Aston in Birmingham

M.Sc. Course in Electrical Engineering (Ref. M.Sc.7)

October 1970

(a) Full Time
(b) Sandwich
(c) Block Release
(d) Part-Time Day

The above course leads to a Master's Degree in Electrical Engineering. One-third of the lecture work will cover mathematics and electrical engineering materials. The remaining time will be devoted to one specialist option selected from the following:

1. Communication Systems
2. Control Systems
3. Electrical Machines
4. Measurement and Instrumentation
5. Power Systems
6. The Design of Pulse and Digital Circuits and Systems

The Science Research Council has accepted the Course as suitable for tenure of its Advanced Course Studentships.

The Course is open to applicants who have graduated in science or engineering or who hold equivalent professional qualifications. Suitable qualified persons who wish to attend for part of the course (without examination) may do so by arrangement. Application forms and further particulars (quoting ref. no.) may be obtained from:

The Head of the Department of Electrical Engineering, The University of Aston in Birmingham, The Summer Building, 17 Colles Hill Street, Birminham 4.

Norwich City College

Department of Electrical Engineering

H.N.D. Course in Electrical and Electronic Engineering

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced level in the GCE and passed in one subject (or have obtained a good ONC or DEND in Engineering) a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation, Statistics, Economics and Law, Electronics, Control, Telecommunications, Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities. Accommodation will be arranged by the College if desired.

Enquiries about the course starting in September 1970 should be made to:

E. Jones, B.Sc., Ph.D., C.Eng., M.I.E.E., Head of Department of Electrical Engineering, Norwich City College, Ipswich Road, Norwich, Norfolk, NOR 67 D.

Transformer Designer

Required by a leading company in the Transformer Industry. This is a challenging post working on the design of transformers up to 100 kVA and offers excellent prospects and a good salary for the right person. Applicants should be writing to:

Personnel Officer, Reading Windings Ltd., 168 Basingstoke Road, Reading, Berks.

www.americanradiohistory.com
APPOINTMENTS

GRANADA TELEVISION

Electronic Engineers for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.

PAY—£1,095 (at age 21) rising to £1,500 p.a. 5-day, 40-hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects.

QUALIFICATIONS—City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.

For further details write to: Directorate of Telecommunications, Home Office, Ruskin Avenue, Kew, Richmond, Surrey.

Design/Development Engineers

with

DIGITAL VOLTMETER EXPERIENCE

or

COMMUNICATIONS EXPERIENCE

Design/Development Engineers

for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio vision, videotape, teleline, transmission switching and maintenance of equipment.

Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at £1,729 pa and Engineer at £2,049 pa.

We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of £1,415 pa.

Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension & Life Assurance Scheme.

Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.

Please quote Reference E/WW in your reply.
RADIO SYSTEMS DIVISION

AUTOMATED DYNAMIC TESTING

Senior Development Engineers
Test Schedule Writers & Programmers

are required by our Test Gear Development Unit to work on fully automated systems for carrying out dynamic tests on electronic equipment of advanced design. The project includes—

PUNCH TAPE CONTROL · PROGRAMMABLE STIMULI AND RESPONSE PRINTOUTS · LOGIC FUNCTIONS · MICRO MINIATURISATION · DC – 400 MHz.

Senior Engineers will work on individual facets of the project, as part of a team, and will be required to embrace conventional measuring methods and advanced digital techniques in new approaches to measurement problems. This sophisticated technique of production testing calls for Engineers capable of exploring new fields and carrying designs through to a practical conclusion.

Salaries will be negotiated individually and there are attractive staff benefits.

Test Schedule Writers and Programmers are required for an expanding team working in association with Engineers engaged on automatic test equipment design. A knowledge of ATLAS test language or another computer language is desirable. Some training will be given to successful applicants.

WEST SUSSEX COUNTY COUNCIL

ENGINEERING INDUSTRY TRAINING CENTRE, CRAWLEY

TRAINING INSTRUCTOR

required as soon as possible for first year off-the-job training. Applicants should have suitable qualifications in Electronics and good experience in Mechanical Engineering, including Hydraulics and Pneumatics. Salary within the scale £1,242 to £1,932 per annum.

Further particulars and application form obtainable from the Head of Centre, College of Further Education, College Road, Crawley.

Tender No. W3/MW/2 of 1969

The Director of Railway Board, Ministry of Railways, New Delhi (INDIA), invites tenders for the supply of:

Narrow Band Long Haul Microwave line of Sight Radio Relay System of South Central, Central and North Eastern Railways

Tender documents are obtainable from Administration Branch, India Supply Mission, Government Building, Bromyard Avenue, Acton, London W.3, on application with a remittance for £2.15.8d. by Postal Order or Cheque made payable to the High Commissioner for India in U.K. and crossed.

It may please be noted that offers should reach Director, Signal and Telecom, Railway Board, Rail Bhavan, Rainina Road, New Delhi, India, not later than 3 p.m. on 16th March 1970. The offers received will be opened on the same day at 3.30 p.m.

Opportunity for a hi-fi service engineer

We want a keen high-fidelity service engineer familiar with today's best techniques and standards. The right man will also assist in the Company's design and development work. This could easily become the major part of this job which offers exceptionally attractive prospects.

Peak Sound productions include the Wireless World 'Baxandall' speaker, P.W.12+12, the Englefield systems, modules and 'Cir-Kit'.

Write or phone:

peak sound

PEAK SOUND (HARROW) LTD., 32 St. Jude's Road, Englefield Green, Egham, Surrey

Phone Egham 5316

AIR FORCE DEPARTMENT

RADIO TECHNICIANS

Starting pay according to age, up to £1,189 p.a. (at age 25) rising to £1,500 p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester and RAF Henlow, Bedfordshire

Interesting and vital work on RAF radar and radio equipment.

Minimum qualification, 3 years' training and practical experience in electronics.

5-day week—good holidays—help with further studies—opportunities for pensionable employment.

Write for further details to:

Applicants must be UK residents.
TECHNICAL SIGNS OFFICER

Government Communications Headquarters

Service or ex-Service personnel who have specialised in electronics or engineering are invited to apply for a post at the Government Communications Headquarters, Cheltenham, as a Technical Signals Officer. There are no age limits.

DUTIES demand capacity for individual work of a research nature and for the direction of teams engaged on such work.

QUALIFICATIONS: Candidates will be expected to have a degree in science or engineering or equivalent qualification. Experience in transmission of data by radio telemetry essential. A knowledge of communications satellites and the problems of exchanging data with vehicles in near-earth and space trajectories will be an advantage.

SALARY: £2,021 to £3,081. Starting salary may be above minimum. Non-contributory pension.

WRITE to Civil Service Commission, 23 Savile Row, London W1X 2AA, or TELEPHONE 01-734 6010 ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" service), for application form, quoting S/7382/70. Closing date 9 March 1970.

SCOTTISH HOME AND HOUSING DEPARTMENT

Wireless Technician

Applications are invited from men, aged 21 or over, for one post of Wireless Technician. The circumstances of the successful candidate will be taken into account in deciding the location of the post which will be either in East Kilbride or Inverness.

QUALIFICATIONS: Sound theoretical and practical knowledge of wireless engineering and wireless communications equipment, including V.H.F. and V.H.F. equipment. Possession of a H.N. or C. & G. certificate an advantage, but provision may be made for those who wish to continue their studies for one of these qualifications. The work involves installation and maintenance of equipment located a considerable distance from headquarters. Candidates must be able to drive private and commercial vehicles and have a clean driving licence.

SALARY: £1,095 (age 21) to £1,295 (age 25 or over): scale maximum £1,500.

Initially the post will be unestablished (non-pensionable) but after one year of continuous satisfactory service the successful candidate may have an opportunity of becoming established.

THE UNIVERSITY OF WARWICK

SENIOR TECHNICIAN

The School of Molecular and Biological Sciences has a vacancy for a Senior Technician to assist in maintaining and servicing the electronic and electrical equipment that is in use in the School. There will be minimal supervision of day to day work and the post will give opportunities for the exercise of initiative, not only in the area of maintenance, but also in the development of new "one-off" items in consultation with the Research Staff.

The School occupies well-equipped laboratories set in pleasant rural surroundings between Coventry and Kenilworth, both of which are within easy commuting distance. Salary is on an incremental scale of £1,056-£1,311 p.a. The starting point will depend on age, experience and qualifications. Three weeks' annual holiday with generous holiday entitlement for Christmas and Easter.

Applications should be sent to the Registrar, University of Warwick, Coventry CV4 7AL, Warwickshire, as soon as possible, quoting reference number 15/70.
R & R RADIO
51 Burnley Road, Rawtenstall
Rosendale, Lancs
Tel.: Rosendale 3152
VALVES BOXED, TESTED & GUARANTEED
EF890 3/-
EF899 3/-
EB900 3/-
EC209 3/-
EC217 3/-
EC2170 4/-
EF909 1/6
EF91 3/6
EF913 3/-
EF921 4/-
EF935 4/-
EL37 5/-
EL41 5/-
EL83 5/-
ECL830 6/-
ECL840 6/-
PY81 3/-
PY900 3/-
PY902 3/-
U911 3/-
UF23 5/-
30FP 2/-
30PS 5/-
30PL13 5/-
5PCL14 5/-
POST, ONE VALVE 9d, TWO TO SIX 4d.
OVER SIX POST PAID.

GEARED MOTORS
Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d stamp for catalogue.
F. HOLFORD & CO. LTD.
6 IMPERIAL SQUARE, CHELTENHAM

WANTED
ELECTRICAL AND ELECTRONIC SURPLUS EQUIPMENT
BEST PRICES PAID
FIELD ELECTRIC LTD
3 SHENLEY ROAD, FORENHAMWOOD
Telephone ELSTREE 6009

BUILD YOURSELF A TRANSISTOR RADIO
ROAMER EIGHT MA. 1 WITH TONE CONTROL.
SEVEN WAVESBANDS.
MINI. MW1, LW1, SW1, SW2, SW3.
THUNDER BAND.
1 transistor and 2 tubes hetero rectifier and transistors.
Cathode, 80 mm. 1-4. 6 point
Total Building Cost 4/- P & 6/10
Plates and Parts List 1/6 Free with order.
ROAMER SEVEN MA. 1 WAVESBAND.
MINI, LW1, SW1, SW2, SW3.
THUNDER BAND.
1 transistor and 2 tubes bell and crystal.
Cathode, 80 mm. 1-4. 6 point
Total Building Cost 4/6 E. P & 3/8
Person and Parts List 1/6 Free with order.
POCKET FIVE, MEDIUM AND LARGE WAVES
A TRANSMITTER WITH SPEAKER AND EARPIECES.
5 transistors and 2 tubes.
Cathode,５mm. 1-2.
Total Building Cost 3/- P & 7/6.
Person and Parts List 1/6 Free with order.
TRANSMER SEVEN MA. 1 WAVESBAND.
MINI, LW1, SW1, SW2, SW3.
THUNDER BAND.
1 transistor and 2 tubes bell and crystal.
Cathode, 80 mm. 1-4. 6 point
Total Building Cost 4/- P & 6/10
Person and Parts List 1/6 Free with order.
TRANSMER FIVE, MEDIUM AND LARGE WAVESBAND WITH SPEAKER AND EARPIECE.
5 transistors and 2 tubes.
Cathode, 5mm. 1-2.
Total Building Cost 3/- P & 7/6.
Person and Parts List 1/6 Free with order.

LAWSON BRAND NEW TELEVISION TUBES

Tubeflycycl, and insulation
12' Types £4.10.0
14' Types £4.19.0
17' Types £5.19.0
19' Types £5.19.0
21' Types £7.15.0
23' Types £8.10.0
19' Panorama £8.10.0
23' Panorama £11.10.0
15' Twin Panel £9.12.6
23' Twin Panel £12.10.0
Carriage and insurance
12'-19"-12/6
21'-23"-15/0

The continually increasing demand for tubes of the very highest quality and reliability is now being met by the new Lawson "Century 99" range of C.R.T.'s.
"Century 99" are absolutely brand new tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition. Screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99" are a complete range of tubes in all sizes for all British sets manufactured 1947-1969.
Complete fitting instructions are supplied with every tube.
2 YEARS FULL REPLACEMENT GUARANTEE WW-114 FOR FURTHER DETAILS.

LAWSON TUBES
18 CHURCHDOWN ROAD
MALVERN, WORCS.
Tel. MAL 2100

PRINTED CIRCUITS
PROTOTYPE AND BATCH PRODUCTIONS
Instrument panels and dials
In Metal and Perspex
SCREEN PROCESS PRINTERS
*Brooklands Plating Co. Ltd.
Sele's Yard, South End, Crewe CW1 1AF 01-659-2133

AMERICAN
TEST AND COMMUNICATIONS EQUIPMENT
*GENERAL CATALOGUE AN/TO 802
*Manuals offered for most U.S. equipments
SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. Cley 289

WE PURCHASE
COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT, PLUGS
AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO-
METERS, RELAY TRANSFORMERS, ETC.
ELECTRONIC BROKERS LTD.
49 Pancras Road, London. N.W.1. 01-637 7781

TRANSFORMER LAMINATIONS
enormous range in Radiometal, Mumetal and H.C.R., also "C" & "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large selection of stranded single p.v.c.
covered Wire 7/0048, 7/0076, 14/0076 etc.
P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.
J. Black
OFFICE: 44 GREEN LANE, HENOD, N.W.4
Tel: 01-203 1955
STORES: 30 BARRETT'S GROVE, N.16
Tel: 01-254 1991

VACUUM
OVENS, PUMPS, PLANT, GAUGES, FURNACES,
ETC., GENERAL SCIENTIFIC EQUIPMENT
EX-STOCK, RECONDITIONED, PATTERNED, OVENS,
R. F. HEATERS. FREE CATALOGUE
V. N. BARRETT & CO. LTD.
1 MAYO ROAD, CROYDON,
CRO 107. 01-164 1917-9

GEAROMATIC TUNNELS
From 1937 to 1969
25.500 parts

IF YOU WANT A REAL GEM CONTACT
TECLE LTD
ENNS, CO. CLARE. Phone: 21599
AFTER ALL, WE'RE IN THE EMERALD ISLE

IF YOU WANT A REAL GEM CONTACT
TECLE LTD
ENNS, CO. CLARE. Phone: 21599
AFTER ALL, WE'RE IN THE EMERALD ISLE

IF YOU WANT A REAL GEM CONTACT
TECLE LTD
ENNS, CO. CLARE. Phone: 21599
AFTER ALL, WE'RE IN THE EMERALD ISLE
COLOUR TELEVISION Vol. 2
PAL SECAM and other systems
by P. C. Carnt and G. B. Townsend
75/-
Postage 1/6

HI FI YEAR BOOK, 1970. 20/-
Postage 2/6.

1970 WORLD RADIO-TV HANDBOOK.
42/- Postage 2/6.

DIGITAL COMPUTER BASICS.
Bureau of Naval Personnel. 19/- Postage 1/6.

COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. 40/- Postage 2/6.

Q & A COLOUR TELEVISION by J. A. Reddigh. 10/- Postage 9d.

REFERENCE DATA FOR RADIO ENGINEERS. 190/- Postage free.
THE INTEGRATED CIRCUIT DATA BOOK. Motorola. 50/- Postage 3/6.

SCR MANUAL. General Electric Company. 25/- Postage 1/6.

TRANSISTOR THYRISTOR & DIODE MANUAL. Radio Corporation of America. 20/- Postage 2/6.

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Literature
19-21 PRAED STREET, LONDON, W.2
Phone PADDINGTON 4185
Closed Sat. 1 p.m.

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fished leslers, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes, 24-hour despatch service. Should goods not meet with full approval, purchase price and postage will be refunded.

S.P. 3in. 160ft. 2/5; 5in. 600ft. 5/6;
5in. 1000ft. 8/9.
L.P. 3in. 225ft. 2/6; 5in. 1000ft. 8/9.
D.P. 3in. 350ft. 4/6; 5in. 1200ft. 12/13.
1/8in. 1,000ft. 14/15.
Postage on all orders 1/6.

COMPACT TAPE CASSETTES AT HALF PRICE
60, 90, and 120 minutes playing time, in original plastic library boxes.
MC 60/- each. MC 90 12/6 each. MC 120 18/3 each.

STARMAN TAPES
28 LINKSCROFT AVENUE, ASHFORD, MIDDX.
Ashford 83020

WWW—115 FOR FURTHER DETAILS

LONDON CENTRAL RADIO STORES

ELECTRICITY SLOT METER (15c. to 20c. for A.O. models). Plain slot meter, for low impedance work only, e.g. 600m. 20,000 V. 9/6. Merit. Weight 21 oz. New with case. Price 3/6. Postage 10/6. Returned for cash or 7 days from date of purchase.

WIRELESS SETS by A.M.D. Price range from £25 10s. to £5 0s. 6d. Weight 12 lbs. to 1 cwt. Latest models of all types. New, perfect, fit and forget. Use any size valve. Make one order now for delivery with your valve. Compare with most catalogues. 5 years guarantee.

MIDDX. COLOUR TELEVISION Vol. 4. 30/- Postage 2/6.

Q&A TELEVISION 3rd Edition. 10/- Postage 2/6.

16-WAY PRE-SOFT-BUTTON INTER-COM TELEPHONES in 6-WAY links with lowest prices. Thoroughly overhauled. Guaranteed. £20/- per unit.

10-WAY PRE-SOFT-BUTTON INTER-COM TELEPHONES in 4-WAY links with low prices. Thoroughly overhauled. Guaranteed. £15/- per unit.

TELPHONE CABLE HARD SKEWED LEADS, 3 core, 5/6. P.P. 1/-. QUANTITY ELECTRIC CHECK METERS. Returned for cash, £2 5s. 0d. to £5 15s. 6d. reasonable offer. 10/- postal guarantee. P.P. 1/-. BARE UNISOLEX SWITCHES. 20 contacts, alternates white & dark. 10/-; half half-white, 4 rack half-white, 20 contacts 7/6. P.P. 1/-. FINAL END SWITCHES. Rotary, various sailors, also 19 Connectors in stock. All for cash only.

23 Lisle St. (Ger 1969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

BAILEY 30 WATT AMPLIFIER
10 Tr's as spec'd and Electriform Pcb £6 7s.
20 Tr's as spec'd and 2 Electriform Pcb's £13 10s.
RC123/246/461 £3 15s. 6d.
M481 25/6 MP1031 8 4s. 6d.
R-1282F (1/2 low noise) £1 2s. 8d. (C-1-C-C (Mullard)
M481 3G4 2500fd/6kw with clip £15/-
All in S/Sink (Drilled 2 x 703 x 4) £4 16/6.

LINSLEY HOOD CLASS A AMP
Set 10 C.P. R's 5 1/2£
Set 5 Capacitors 22, 2/6 £
M481 (Mached for 0/3, 1/3 T.D.U.) per pair 43/6.
M481 (Mached for 0/1, 1/3 T.D.U.) per pair 52/6.
Non-Pcb. £2 5s. 0d. to £5 15s. 6d. for pair in 1/-. Lektronik Pinboard 4 x 8 in. prices. Layout 2/6.
M480 14/6 Heats A.4172 2500fd/50w £12 1/6.
1250fd/50w £12 1/6. £9 25s. 50p. 31/5000fd/50w £7 10s.
A.F. FACTORS. 72 BLAKE ROAD, STAPLEFORD, NOTTS.

WE BUY
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields & Mayco Disposals,
21 Lodge Lane, London, N.12

RING 445 2713
445 0749
958 7624

"SPECIAL OFFER"
Ex LEC Ultra radios requiring attention to clearance from 64-0-0; stack, catches only 10 watts output, provision for microphone. Small unit factory, hall, public address. Standard play Professional, sound full, and Acetate recording tape. (Low noise). Used once only. Approx. 2,500 ft. £16. List Price £20.00.

MARRINING PHOTOGRAPHIC LTD.,
433 Green Lomax, London, N.4 - 01-340 5261

WANTED—
Redundant or Surplus, stocks of Transformer materials, Laminations, Steel, black and clad, etc., Transformers, Diodes, etc., P.V.C. Wires and Cables, Bakelite sheet, etc, etc.
Good prices paid
J. BLACK
44 Green Lane, Hendon, N.W.4
Tel. 11-203 1853 and 3033

ELECTRIC TIME SWITCHES
Made by THE RHEOSTAT CO. LTD.

Box 365 KINGSWOOD SUPPLIES (W.W.2) 4 Ike Place, London, W.6 Tel: 01-728 9184

PRINTED CIRCUITS

and Electronic Equipment Manufacturers
Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. G.P.O. Approved
Let us solve your problems
K. J. BENNETT & PARTNERS
18 GREENACRES ROAD, OLDHAM
Tel: 061-624 0939

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics Industry. ICS provide special training courses in all branches of Radio, Television and Electronics—one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

- RADIO/TV ENG. & SERVICING
- AUDIO FREQUENCY
- CLOSED CIRCUIT TV
- ELECTRONICS—many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL
- ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:

- C. & G. Telecom. Techns' Certs.
- C. & G. Electronic Servicing
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education
Polish
electronic tubes for radio receiver sets and electronic components are offered by UNIVERSAL Foreign Trade Enterprise Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370. Telex No. 81437

To persons interested we forward detailed information, catalogues and tenders.

WWW—116 FOR FURTHER DETAILS

DIOTRAN

SALES
P.O. BOX 5
WARE, HERTS
TELE: WARE 3463

OVER 2 MILLION SILICON ALLOY & GERM. TRANSISTORS AVAILABLE FOR IMMEDIATE DELIVERY.

MANUFACTURERS END OF PRODUCTION SURPLUS.

TRANSISTORS

Type and Construction
A 1 germ. A.P. NPN TOL. — AC137, NK772, AC157, ASY6 £10.16 £35 £300
A 2 germ. A.P. PNP TOL. — AC137, NK772, AC157, ASY6 £10.16 £35 £300
A 3 germ. A.P. NPN TOL. — AC137, NK772, AC157, ASY6 £10.16 £35 £300
A 4 germ. R.F. PNP TOL. — OCF4-4L, NK772, ASY6 £10.16 £35 £300
A 5 germ. R.F. NPN TOL. — OCF4-4L, NK772, ASY6 £10.16 £35 £300
A 6 germ. V.H.F. PNP TOL. — AF116, KNTX67 SL91 £10.16 £35 £300
A 7 Assorted Germ. A.P., PNP, PNP mixed packs, general purpose 10s £10.16 £35 £300
A 8 Germ. A.F., PNP 137 £10.16 £10 £100
A 9 Phil. A.P. NPN TO-5 £10.16 £10 £100
A 10 Phil. A.P. PNP TO-5 £10.16 £10 £100
A 11 10% Guaranteed 0% Good use Transistors ideal for low cost work and experimental work.

A 12 All 10% are all perfect devices, factory tested, no open or short circuit Transistors in these lots.

1) TESTED TRANSISTORS 1-%
each ONE PRICE ONLY NPN, PNP, each SILICON PLANAR 1- EACH.
BC108 2N1006 2N1132 2N2220 2N3711
BC109 2N1087 2N1163 2N2307 2N3391
BPX60 2N1070 2N1171 2N2711 2N5467
BPX64 2N2905 2N3107 2N2907 2N6074
BPX88 2N3901 2N8295 2N3131 2N6998
BPX68 2N2905 2N2524 2N5151 2N6996
BPX68 2N1087 2N2926 2N3711
From Manufacturers’ Over-run.
Unmarked.

GERM. PNK AND NPN TRANSISTORS

TESTED, UNMARKED SIMILAR TO—1% EACH.
AC125 AC5541 2N797 2N714
AC126 AC5542 2N747 2N715
AC127 AC774 2N743 2N742
AC128 AC775 2N443 2N442
AC130 AC776 2N432 2N431
AC131 AC687 2N742 2N741
AC132 AC688 2N742 2N741
AC133 AC689 2N742 2N741

TRANSLATOR EQVT. BOOK

2,500 cross references of translators—British, European, American and Japanese. A must for every translator user. Exclusively distributed by DIOTRAN SALES. 15% EACH.

Post and Packing costs are continually rising. Please add 1-towards rate. CASH WITH ORDER PLEASE.

OVERSEAS QUOTATIONS BY RETURN SHIPMENT TO ANY WORD IN THE WORLD AT COST.
P. F. PALECE

10 Chapel St London N.W.1
Phone 01-723-8753

LEXDE ROTARY SOLENOID SWITCHES suitable for all types of remote circuit selection and a variety of switching operations—brand new stock—no waiting—all the shield delivered of the following types.

(1) Miniature type—I pole 12 positions 3 banks wafer dia. 14mm. 3 position foot mounting. Operating voltage: 24 Volts D.C. 250V.
(2) Miniature type—I pole 7 position 5 banks 18mm dia. washers for range mounting. Operating voltage: 12 Volts D C. F. 1.0.
(3) Standard type—2 pole 6 way 13 banks, 48 Volts D.C. Operating voltage 55V.

DIRECT CURRENT AMPLIFIER

MARCONI STANDARD SIGNAL GENERATORS TF 867

Frequency range 15 KHz to 30 MHz. Eleven bands. Output 0.4 microvolts to 4 volts. 75 ohms impedance. A high quality generator at a reasonable price. First-class condition. Recalibrated up to specification. £100.

BURNDEPTF RF PLUGS

These difficult to obtain plugs suitable for the Lendox aerial c/o relay and many other types of equipment are offered. New, ex. equipment at 4/6 each. P.P. 6d.

SPECIAL OFFER

"INSULATION TESTING" TESTER No. 11 METROMH by famous British manufacturer. All solid state. No handiakes to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0 to 250K ohms for insulation testing. Also 0 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protective cover. Offered in good condition with battery ready to work. For 250 volt pressure only. List Price £91.10d. Our price £8.19.6 plus 4/6 post/packaging.

BUILD YOUR OWN LOW VOLTAGE PSU

We have a limited number of transformer and rectifier units consisting of good quality transformer with built-in mains selector plus from 110 to 250v. input. Operating condition (BTY123) one set per each circuit and two TCC 5000 Mil electrolytic condensers. 70V. D.C. The components are mounted on two angle formed brackets ready drilled for easy fixing. Offered brand new at only £4. Post/packaging 10/6. Also transformers only 4/5. Post/packaging 7/6.

HIGH VOLTAGE EHT INSULATION TESTERS. TELEMAX TYPE 115

Variable EHT outputs from 1 to 15 Kv. Leakage currents 0 to 100 microamps. For A.C. operation. 110 to 250 volts. Cost over £70. Our price in good used condition, £35.

OMHITE BHEOSTATS

40 ohms, 500 watts. Toroidal winding on ceramic formers. BRAND NEW high quality units. Size 5 in. dia. Price 35/- each.

A.M.I. MINIATURE UNISELECTOR SWITCHES

No waiting, straight off the shelf and into your equipment the Catalogue Nos. are 2202A, 4313A/11, coil resistance is 350 ohms. Complete with base, and the price is £4.19.6. Limited quantity only available.

MINIATURE LOW VOLTAGE P.S.U. Variable between 6-14 v. D.C. These P.S.U. are transistorised and stabilised, fused and protected output in 240 mA, 240 v. A.C. inputs. Size: 4 x 3 x 2 1/2 in. Ideal units for building into equipment. Price 7/-a. P. & P. 3/-.

LANGBOURNE DYNAMICS TYPE 48

Low Voltage/Highly Stabilised POWER SUPPLY UNIT

Variable between 330 v. D.C. at 1 A. Fully transistorised and current limiting offered. BRAND NEW at only £13.10 inclusive of P. & P.

AUDIO OSCILLATORS AMERICAN TS-362/U

RHODE & SCHWARZ SPECIAL EQUIPMENTS

UHF Receiver USVD BN1523. Range 200-460 MHz.

R. B. S. Signal Generator, Frequency range 1900-1990 MHz, type BN14026.

R. B. S. ZDO Diagraph BN 3562.

R. B. S. Signal Generator and Keytron P.S.U. Type TSPM. Range 1-75000 MHz.

Schomandel Frequency Meter. Type FDI with FDOI adaptor. Frequency range 30-900 Mc/s. Recalibrated to makers specification.

Solartron 2 phase and 4 phase oscillators and associated equipment.

STC ENCAPSULATED SILICON RECTIFIERS in single phase bridge circuit. 18 square x 5 inch. including stud. 100 Volt, 2 amps. Only 7/6 each. Post/packaging 64.

MINIATURE SEALED RELAYS STC TYPES

4184GE, 2 change over. Medium duty. 48 V. 25000. 4184GD, 2 change over. Medium duty. 24 V. 7000. 4184GB, 2 change over. Medium duty. 6 v. 45,000.

LARGE QUANTITY OF 400 TYPE RELAYS removed from equipment. Coil resistance 50 ohm, 2 break contacts. 36/- per day. Special price to clear the lot.

HIGH SPEED RELAYS. "Suitable for transistor circuits."

PAXOLIN PC BOARD contains 63 Lenmar DCM5 models. Rates at 400 P.L.V. 500 mA. New and unused. With long leads. Board size: 8' x 4' inches. 301/- ea.

LUCAS CAR RELAYS. 12 v. Heavy duty. Suitable for spotlights, horns, overdrives, etc. Brand new. Only 7/- Special price for quantities.

"PERISTALTIC PUMPS" HR FLOW INDUCER TYPE MHZ 12 L. WAY MARLOW LTD.

These very versatile pumps have facilities for two feed lines. The pumps are standard type but less variable speed control. Ideally suitable for highly corrosive liquids. Offered as new for A.C. mains operation, at the greatly reduced price of £28.10. Post/packaging 10/6.

PORTABLE WHEATSTONE BRIDGE

Specifications:
Type: Moving Coil Galvanometer, Ranges: 1 005 to 5 ohms to 50 ohms 35 to 500 ohms 450 to 5000 ohms 5 500 to 50,000 ohms. Scales: switched. Sine wave: 0.5 to 50, Galvanometer Scale: 10-100. Case: moulded plastic. Internal Sources: 4 v. dry battery. Operating temperatures: +10 to -10 °C. Operating humidity: Up to 80% R.H. Dimensions: 200 x 110 x 90 mm. Weight: 0.9 kg. List price £25. Our price £19.19.6.

www.americanradiohistory.com
NEW PRICES ON NEW COMPONENTS

RESISTORS
Dimensions (mm.): Body: 1W: 8 x 2 8 1W: 10 x 4 3
Resistors: 3% and 5%.
Per Tag: 10's ranges. 15 Ohms to 16 Megohms. (SIL 321 Series). 3% and 5% ranges, 1 Megohm. (SIL 2436 Resistors).
Prices—per Ohm value.

<table>
<thead>
<tr>
<th>Value</th>
<th>1 2 3 4 5 6 7 8 9 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
<tr>
<td>10W</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
<tr>
<td>100W</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
</tbody>
</table>

CAPACITORS
Subminute Polyester film. Modular for P.C. mount. Hard epoxy encapsulation. ±10% tolerance, 100 Volt working.
Prices—per Ohm value.

<table>
<thead>
<tr>
<th>Value</th>
<th>1 2 3 4 5 6 7 8 9 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
<tr>
<td>10F</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
<tr>
<td>100F</td>
<td>1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10</td>
</tr>
</tbody>
</table>

SKELETON PRE-SET (POLYESTER CAPACITORS)
High quality pre-sets available for printed circuit boards of 0-1nF. P.C.M. 100 ohms to 5000 slopes .1W. Minimum $3.50 at 70C. 20% below. 1W, 30% above. M. (Horizontal: 0.75n 0.4nF. P.C.M.) or Vertical (0.4n 0.9F. P.C.M.). Subminimum: 0.1W at 70C, 20% below. 0.5W, 30% above.

GANGED STEREO POTENTIOMETERS (Carbon)
1W, 70C, Long life. Linear and Logarithmic Linear, input 5k to 1M. ±13%. Potentiometer value 10F or 1M. Price per ohm value $2.25.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

GANGED LINEAR POTENTIOMETERS
(0.2W, 500ohms). ±1.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.

SKELETON PRE-SET POTENTIOMETERS
Superior high quality pre-set available. Long rotational body. Linear ohms. ±11.5%, Tolerance: 10%.
BAKER HI-FI MAJOR £8

30-14,500 c.p.s., 12in. double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Price £8, or Module kit, 30-17,000 c.p.s. Size 19 x 12 in. with tweeter, crossover, battle and instructions.

Post Free £10.19.6

LOUDSPEAKER CABINET WADDING 18 in. wide, 2 ft. per ft. run. Post 2/6 per order.

ELECTRIC MOTORS
(130v. or 240v., A.C.) Clockwise 1, 200 R.P.M. off load Heavy duty 4 pole 50mA. Spindle 1 x 3/20 in. diameter. Size 2 1/8 x 2 3/4 x 1 1/2 in.

PRICE 17/6 2/6

EXTENSION SPEAKER
Smart plastic cabinet speaker with 20L lead for transistor radio, intercom, mains radio, tape recorder, etc. 30/ Post Size 7 3/4 in. x 2 1/4 x 3 1/2 in. RETURN BY POST DESPATCH - CALLERS WELCOME 930 Series DTL:-

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 930</td>
<td>Dual 4-input gate</td>
<td>1/6</td>
</tr>
<tr>
<td>ST 936</td>
<td>Hex inverter</td>
<td>9/6</td>
</tr>
<tr>
<td>ST 945</td>
<td>Clocked R-S/J-K flip-flop</td>
<td>12/6</td>
</tr>
<tr>
<td>ST 946</td>
<td>Quad 2-input gate</td>
<td>8/6</td>
</tr>
<tr>
<td>ST 951</td>
<td>Gated monostable</td>
<td>13/6</td>
</tr>
<tr>
<td>ST 962</td>
<td>Triple 3-input gate</td>
<td>9/6</td>
</tr>
</tbody>
</table>

BAILEY PRE-AMPLIFIER
High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuit of great versatility with a maximum output of 2 volts making it suitable for driving Bailey 20W and 30W Amplifiers, Linley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modifications 7in. by 33in. features edge connector mounting, roller turn, finish and silk screened component locations. This board is available in S.R.B.P., mazerial of fibreglass and the complete Kit for the unit contains gain graded BC109 transistors, polyester capacitors and metal oxide resistors where specified.

BAILEY 20W AMPLIFIER
All parts are now available for the 60-volt single supply rail version of this unit. We have also designed a new Printed Circuits intended for edge connector mounting. This has the component locations marked and is rolled tinned for ease of assembly. Size is also smaller at 43in. by 21in. Price in S.R.B.P material 11/6d. in fibreglass 14/6d.

BAILEY 30W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo with bifilar wound secondary and special 21V primary for use with C26 Thermistor, 3/6d., post 5/.

Trifilar wound Driver Transformer, 2/6d., post 1/., Power Amps, 13/6d., post 1d., Reprint of "Wireless World" articles, 5/6d., post free.

DINSDALE 10W AMPLIFIER
All parts still available for this design.

Reprint of articles 5/6d., post free.

LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black, anodised Metalic, and all power supply components.

PLEASE SEND S.R.B.P. FOR ALL LISTS.

HART ELECTRONICS
321 Great Western St., Manchester 14

The firm for quality.

Inexpensive IC's... fast!

Simpson Taylor can now guarantee immediate delivery of 930 series DTL in quantities of 1 to 100 off.

930 Series DTL:-

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 930</td>
<td>Dual 4-input gate</td>
<td>1/6</td>
</tr>
<tr>
<td>ST 936</td>
<td>Hex inverter</td>
<td>9/6</td>
</tr>
<tr>
<td>ST 945</td>
<td>Clocked R-S/J-K flip-flop</td>
<td>12/6</td>
</tr>
<tr>
<td>ST 946</td>
<td>Quad 2-input gate</td>
<td>8/6</td>
</tr>
<tr>
<td>ST 951</td>
<td>Gated monostable</td>
<td>13/6</td>
</tr>
<tr>
<td>ST 962</td>
<td>Triple 3-input gate</td>
<td>9/6</td>
</tr>
</tbody>
</table>

These IC's are completely compatible with other manufacturers DTL and TTL, and meet the full electronic spec for 930 series devices.

e.g.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>gates:</td>
<td>25 ns propagation delay</td>
</tr>
<tr>
<td>flip flops:</td>
<td>4.5MHz toggle rate</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>40mW per package</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>0 to +75°C</td>
</tr>
</tbody>
</table>

Fan Out: 8 min

*Dual in line Packages.
*Data Sheets for S.A.E.
*Quotations for larger quantities available on request.

Simpson Taylor and Company Limited
Bryans, Newtongrange, Dalkeith, Scotland

include 1/6 postage & packing per order below £5

WW—121 FOR FURTHER DETAILS
Solve your communication problems with this new 4-Station Intercom Transistor Intercom system (1 Master & 5 Subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Master to Subs and Subs to Master. Operates on one 9-volt battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each for 169 connections. Nothing else to buy. P. & P. 7/6 in U.K.

INDEX TO ADVERTISERS
Appointments Vacant Advertisements on pages 106-122

PAGE
A1 Factors 124
Acoustical Mfg. Co. Ltd. . . . 15
Adams Products Ltd. Cover III
Adler, B., & Sons (Radio) Ltd. . . . 18
ALL Semiconductors Ltd. 48
Albina Radios 49
A.K.O. Equipment Ltd. 49
Ampilows Ltd. 96
American Radios 127
Amscom Ltd. 66
Anders Electronics Ltd. . . . 78
Astronic Ltd. 49
Ates Electronics Ltd. 78
Audax Sound System 40
Bantex Ltd. 75
Barnes Factors Ltd. 75
Barrett, V. N. 123
Batey, W., & Co. 30
Beach, F. W. Ltd. 56
Bentley Anequip’s Corporation Ltd. . . . 80
Bentley, K. J. 124
B.I.E.T. 12
Bi-Pak Semiconductors 80
Bi-Precit Ltd. 80
Black, J. 124
Bradley, G. E. & Ltd. 16, 17, 42, 43
Brenell Co. Ltd. 13
Brierley Ltd. 104
Brooklands Plating Co. Ltd. . . . 123
Brown, N. C. Ltd. 123
Buchi Instruments Ltd. . . . 104
Bulgin, A. F., & Co. Ltd. Ed. 147
Butterworth & Co. (Pub.) Ltd. . . . 75
Cedar Products Ltd. (Vulkan) . . . 123
Chiltern Ltd. 124
Colomon (Electronics) Ltd. . . . 98
Computer Training Products 72
Consumer Microcircuits Ltd. 66
C. & S. Antennas Ltd. 19
Davis, Jack, (Relays) Ltd. 27
Daystrom Ltd. 37
Dentan Ltd. 123
Drake Transformers Ltd. 33
Duxford Electronics 128
Dynamco Ltd. 24
E.B. Instruments 129
Elightco Operation Ltd. 44
Electronic Advertisers 90, 91, 123
Electronic Components (Croydon) Ltd. 35
Electrovalve 86
Electro-Tech Sales 102
Electro-Winds Ltd. 41
E.M.I. Electron Tube-Vendicons 41
English Electric Valve Co. Ltd. Cover II, 1, 3, 5
Erte Electronics Ltd. 10
Ferrethograph, Tho. Co. Ltd. 55
Fisner Ltd. 44
Future Aids Ltd. 74
Fydy Electronics Laboratories 74

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire. Battery 2/6. P. & P. 4/6.

7-STATION INTERCOM

Introducing TELEPHONE AMPLIFIER

Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.V.),
169 Kensington High Street, London, W.8
CLEARWAY to lower production costs with ADCOLA Precision Tools

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment—and we provide:

★ THREE DAY REPAIR SERVICE ★ INTERCHANGEABLE BITS—STOCK ITEMS ★ SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD
Adcola House · Gauden Road · London · SW4
Tel. 01-622 0291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:

NAME ...
COMPANY ..
ADDRESS ..

WW—002 FOR FURTHER DETAILS
TO MANUFACTURERS OF SOLDERED JOINTS

ERSIN

5 CORE SOLDER

EXTRUSOL®

EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.

EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.

The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be released under AID authority and conforms with USA QQ-S-571d

ADVANTAGES OF EXTRUSOL

1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF MANUFACTURE UNTIL IT IS USED

EXTRUSOL is supplied in 1-lb. and 2-lb. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

Ask for full details on solders, fluxes, soldering chemicals, on your company's notepaper.

Wireless World, March 1970

WWW.003 FOR FURTHER DETAILS

EXTRUSOL®

EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.

EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.

The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be released under AID authority and conforms with USA QQ-S-571d

ADVANTAGES OF EXTRUSOL

1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF MANUFACTURE UNTIL IT IS USED

EXTRUSOL is supplied in 1-lb. and 2-lb. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

Ask for full details on solders, fluxes, soldering chemicals, on your company's notepaper.

Wireless World, March 1970

WWW.003 FOR FURTHER DETAILS