Digital photographic timer
Better a.g.c.

Electronic speech recognition
Keyswitch is proud to announce five new miniature relays that cleanly sweep the field. British designed, British developed, and British made, the KMK range features high contact capacity, moulded assembly for high insulation, phosphor bronze contact springs, 99.9% silver or silver cadmium oxide contacts, Swedish iron magnetic circuit, international contact clearance of 4mm, life in excess of 5 million operations, connection by solder or push-on type '110' connectors, open relays mounting in any position, and plug-in relays for international plugability. Unit prices are as low as 9/4d (1,000 rate), substantially less for larger quantities.

These versatile new midgets are available with one, two or three changeover contacts rated up to 10A at 250Vac/6Vdc, and with coils for 6-230Vac/2.5VA and for 6-200Vdc/1W. Contact Keyswitch for complete price and technical details of these exciting new all-British KMK's.

Keyswitch Relays Ltd, Cricklewood Lane, London NW2; telephone: 01-452 3344; telex: 262754.

WWW-091 FOR FURTHER DETAILS
When is an Avo meter not an Avometer?

When it gives you (a) \(\pm 0.3\%\) accuracy, (b) (c) 100% solid state, (d) (e) (f) semiconductor characteristics data, (g) valve characteristics data, or (h) digital L/C/R measurements.

Here are eight members of the Avo test equipment range that combine traditional Avo quality with some of the most advanced instrument technology available anywhere. Start your measurements with a standard Avometer, of course, but as your requirements develop and expand, remember the many other ways in which Avo can continue to help you. For full details, contact Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

AVO MEANS BASIC MEASUREMENTS ALL OVER THE WORLD

WW-005 FOR FURTHER DETAILS
FOR SUPERB QUALITY AND WORLD WIDE DISTRIBUTION HALTRON OFFER A VAST SELECTION OF VALVES FOR ALL AREAS OF RESEARCH AND INDUSTRY

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

HALTRON RADIO VALVES & TUBES

All enquiries to:

WWW—006 FOR FURTHER DETAILS
English Electric Valve has developed cathode ray tubes with a new type of electron gun. Compared with normal tubes, the new gun achieves better resolution and a much sharper, clearer image on the screen. The improvement in resolution is 3:2 compared with normal CRTs.

Main features of the new tubes are:

1. The gun cathode and focusing assembly produce a laminar electron beam with very narrow divergence.

2. The beam has a uniform electron density, rather than the normal Gaussian distribution, and produces a spot with uniform brightness and a very sharp edge.

3. Aberrations are much reduced.

4. The spot size may be varied without defocusing.

5. The narrowness at the point of deflection minimizes deflection defocusing.

6. No focusing coils or high-voltage focusing electrodes are needed so there is no danger of voltage breakdown causing damage to components.

7. If users accept a standard of resolution no better than normal CRTs, they may specify the new gun for tubes with shorter overall length or greater deflection angle, or both, with corresponding advantages in equipment design and compression.

8. The new laminar beam gun may be specified for any EEV CRT but is not for sale as a separate component.

Experimental samples of the new CRTs are available to users for assessment trials. Full technical data and advice about individual applications are available on request.

EEV's new electron gun makes to CRT resolution

See the difference...
another clever switch by FOR the current slicers

High Voltage Cartridge. International Rectifier manufacture a complete range of high voltage cartridge rectifiers, moulded assemblies, super-power columns and high voltage tube replacements, covering the entire spectrum of EHT requirements from 1kV to 500kV. Current ratings range from milliamps to 75 Amperes (120° conduction).

For specialised applications that cannot be served by standard devices, I.R. maintain an experienced staff of sales, application, engineering and production personnel, ready to provide custom designs suited to your specific needs.

Complete technical and application data on high voltage devices is available from I.R.—the current slicers—now.

International Rectifier · Hurst Green · Oxted · Surrey · Telephone: Oxted 3215

WW—299 FOR FURTHER DETAILS
Don't take our word for it—test EEV flash tubes against the equivalents you're now using and learn why other users think so highly of those made by EEV. Incorporating extra heavy duty electrodes, EEV flash tubes are renowned for their reliability, long life (up to 10^6 flashes) and high conversion efficiency. EEV liquid-cooled and air-cooled xenon flash tubes for pumping laser rods offer a wide range of input energy levels and they are capable of operation at high repetition rates.

Full details of the range are available on request—but if your application calls for a flash tube that is not in the present range, tell us your requirement because we can probably make it for you.

Outstanding in quality, reliability and performance

EEV flash tubes

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy input per flash max. (J)</th>
<th>Arc length (mm)</th>
<th>Bore diameter (mm)</th>
<th>Voltage (kV)</th>
<th>Series inductance (uH)</th>
<th>Flash rate</th>
<th>Trigger voltage (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL615/7/3</td>
<td>600</td>
<td>76</td>
<td>7.0</td>
<td>2.5</td>
<td>400</td>
<td>1 per 15 sec.</td>
<td>12-16</td>
</tr>
<tr>
<td>XL615/9/4</td>
<td>1500</td>
<td>102</td>
<td>9.0</td>
<td>2.5</td>
<td>400</td>
<td>1 per 30 sec.</td>
<td>12-16</td>
</tr>
<tr>
<td>XL615/10/5.5</td>
<td>3500</td>
<td>140</td>
<td>10.0</td>
<td>2.5</td>
<td>400</td>
<td>1 per 30 sec.</td>
<td>16-20</td>
</tr>
<tr>
<td>XL615/10/6.5</td>
<td>5000</td>
<td>165</td>
<td>10.0</td>
<td>2.5</td>
<td>800</td>
<td>1 per 2 min.</td>
<td>20-25</td>
</tr>
<tr>
<td>XL615/13/6.5</td>
<td>10000</td>
<td>165</td>
<td>13.0</td>
<td>2.5</td>
<td>800</td>
<td>1 per 2 min.</td>
<td>25</td>
</tr>
</tbody>
</table>

ENGLISH ELECTRIC VALVE COMPANY LIMITED
CHELMSFORD, ESSEX. TELEPHONE: 61777 TELEX: 99103 GRAMS: ENELECTICO, CHELMSFORD
WWW.008 FOR FURTHER DETAILS

WWW.americanradiohistory.com
Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.

C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used — these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over £50,000 is spent annually in revising text material.)

Step-by-step progress is assured by the concise, simply written and easily understood lessons.

Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now—enrol with C.R.E.I., the specialists in Technical Home Study Courses.

C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering

City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

POST THIS COUPON TODAY FOR A BETTER FUTURE

Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.

My interest is City and Guilds [] please tick General []

NAME

ADDRESS

EDUCATIONAL BACKGROUND

ELECTRONICS EXPERIENCE

WW—009 FOR FURTHER DETAILS
'Spot on the target' is a dirty saying at EEV's vidicon plant because if minute particles of dust or dirt are left in vidicons during manufacture they can settle on the target and ruin the picture. Camera angles were restricted because it was risky to use vidicons upside down. To beat this problem EEV has invested many thousands of pounds in building the largest and most modern clean room in Europe so that EEV vidicons, made in these ideal conditions, are the cleanest on the market today. Because EEV vidicons can now be used upside down, CCTV cameras can be used pointing straight downwards—an obvious advantage in many monitoring applications. This scrupulous cleanliness is characteristic of all EEV vidicons and is one reason why users know that the EEV range will meet practically all requirements. EEV make vidicons with separate mesh and with integral mesh, with magnetic focusing and with electrostatic focusing, and some are made so rugged that they can be used in the nose cones of rockets. EEV also offers a choice of photosurfaces with its vidicons. Full details of the wide standard range are available in the EEV brochure. If your application is so special that none of the many vidicons we make will meet your requirements, we can probably make one specially for you.

EEV vidicons work in any position

Send for your free copy today.

ENGLISH ELECTRIC VALVE COMPANY LIMITED
CHELMSFORD, ESSEX TELEPHONE: 61777 TELEX: 99103 GRAMS: ENELECTICO, CHELMSFORD

WW—010 FOR FURTHER DETAILS
Technicians Marvel Over The Complete Perfection

Model JR-500SE
CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER
* Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
* Frequency Range: 3.5 MHz—29.7 MHz (7 Bands)
* Hi-Sensitivity: 1.5μV for 10 dB S/N Ratio (at 14 MHz)
* Hi-Selectivity: ±2 KHz at —6 dB ±6 KHz at —60 dB
* Dimensions: Width 13", Height 7", Depth 10".

Model 9R-59DE
BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER
* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical filter enabling superb selectivity with ordinary IF transformers.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: 2μV for 10 dB S/N Ratio (at 10 MHz)
* Selectivity: ±5 KHz at —60dB (±1.3 KHz at —60dB) When use the Mechanical Filter
* Dimensions: Width 15", Height 7", Depth 10".

TRIO ELECTRONICS INC. Tokyo, Japan

TO: B.H. Morris & Co., (Radio) Ltd.
Send me information on TRIO COMMUNICATION RECEIVERS & name of nearest TRIO retailer.

NAME:
ADDRESS:
English Electric now has a new TV camera tube, called an isocon, which can virtually see in the dark. The isocon operates on the principle of disregarding the specularly reflected beam of the image orthicon and using the beam scattered by the target. The magnitude of this beam increases with light level and, at low light level, gives a much better signal-to-noise ratio than that of an image orthicon. The dynamic range of the tube is also much greater, and noise in the darker parts of the picture is virtually eliminated.

Two experimental types are at present available – the 4½” P850 tube for viewing low intensity X-ray fluoroscopic screens and the 3” P880 for low scene illumination in TV where good results are obtained when the photocathode illumination is only 10^{-4} foot candles. The P850 will, moreover, produce acceptable pictures even where the photocathode illumination falls as low as 10^{-5} foot candles.

Apart from its obvious applications for TV generally – both colour and black-and-white – the isocon can be applied to a whole range of specialist applications. The P850, for instance, when designed into an X-ray image amplifier, makes it possible to reduce the X-ray dosage to a fraction of that formerly used. In night surveillance and reconnaissance systems the P850 isocon has shown it will provide good pictures at incident light levels well below 10^{-4} foot candles which is the level of starlight illumination. Its application in astronomy is also extremely promising. It will enable medium sized telescopes to participate in deep space and cosmological programmes and it offers impressive results when used with much larger telescopes.

Further detailed information on the isocon is available on request. EEV also provides a complete technical service which includes assistance with the design or redesign of camera equipment.

EEV image isocon

The tube that can see in the dark

ENGLISH ELECTRIC VALVE COMPANY LIMITED
CHELMSFORD, ESSEX
TELEPHONE: 67177
TELEX: 99103
GRAMS: ENELECTICO, CHELMSFORD

WW—012 FOR FURTHER DETAILS
Newmarket Transistors' distributors have several distinguishing features

An eye for detail
Little things like constant stock replenishment, reports on product development, new product pages for your Newmarket portfolio. Make sure you're on your area distributor's list.

A nose for reliability
Newmarket make a wide range of components with CV approval and sell them through selected distributors: that way service and product are equally reliable.

An ear for urgent calls
With all standard components off-the-shelf and quantities of hundreds within 24 hours (thousands take a little longer).

Teeth to match
Newmarket equivalents of competitors' components are often less costly, more reliable. All you need is the nerve to change. Ask for a Newmarket equivalent list.

You're not dealing with a far-flung post of a mighty electronics empire when you talk to a Newmarket distributor. He's a member of the team. Experienced, resourceful, fully-informed and fully-stocked. Try him. Your business is tomorrow and your Newmarket distributor is in tune with it.

face tomorrow's pace with Newmarket Transistors
the specialist semiconductor engineers with the distinguished personal service network:

Newmarket Transistors Limited, Enning Road, Newmarket, Suffolk. Call 0638-3381/4. Telex 81358
WWW-013 FOR FURTHER DETAILS
ANDERS SPEED EXPORTS

So you’re doing your bit and making equipment for far-away places? And you’re held up for meters? Like an O-5mA calibrated in pulsrekvens? Or a jonkmarström meter specially calibrated from \(10^{-10}\) to \(10^8\)? Or a straightforward (but impossible to locate) 100mA moving-coil job reading simply \(0-35 \text{ KГ/МИН}\)? Relax. No problem at all. Anders are legending most types of meters in all sorts of languages every day of the week—and as often as not calibrating them specially into the bargain. Hand lettering specialists are standing by for the one or two off. Fast, accurate techniques are here for the quantity orders. Ring us. You’ll find we are as fast at this sort of thing as we are at supplying standard meters off the shelf . . . and, as you know (or should know), that’s fast.

N.B. The variety of meters in our new catalogue is a revelation—and now we’ve got extensive new centralised premises for a better-than-ever service.

ANDERS METER SERVICE

Anders Electronics Ltd., 48-56 Bayham Place, Bayham Street, London, N.W.1. Telephone: 01-387 9092

WW-026 FOR FURTHER DETAILS
Ferrograph Series 7 - the simple recorder with thirty recording facilities

The Ferrograph Series 7 Tape Recorder is many instruments in one: if you just want to record without going into technicalities, it is the simplest instrument, handled by setting one or two basic controls. If, however, you need a recorder for hard, professional work, the Ferrograph will do it for you 24 hours a day, year in year out (that's why important communications centres specify it). If you need your recorder to produce the most complex effects, the Ferrograph recorder gives you a greater range of facilities than any other.

Available in Mono, and in Stereo with and without end amplifiers, embodying a unique range of recording facilities, including:
- All silicon solid-state electronics with FET input stages and wide input overload margins.
- Vertical or horizontal operation.
- Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.
- 3 motors (no belts). 3 tape speeds.
- Variable speed spooling control for easy indexing and editing.
- Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.
- Provision for instantaneous stop/start by electrical remote control.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recording and insertions.
- 8/4' reel capacity.
- Endless loop cassette facility.
- Internal loud speakers (2)—1 each channel on stereo, 2 phased on mono.
- 4 digit, one-press re-set, gear-driven index counter.
- 2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
- Signal level meter for each channel operative on playback as well as record.
- Tape/original switching through to output stages.
- Re-record facility on stereo models for multi-play, echo effects etc, without external connections.
- Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
- Three outputs per channel i.e. (1) line out—level response. (2) line out—after tone controls. (3) power output—8-15 ohms.
- Power output 10W per channel.
- Independent tone controls giving full lift and cut to both bass and treble each channel.
- Retractable carrying handle permitting carrying by one or two persons.

U.K. Retail prices from £150 incl. P.T.
See and hear Ferrograph Series 7 recorders at your local Ferrograph stockist, or post coupon for details and address of nearest Ferrograph specialist (or ring: 01-589 4485)

Ferrograph Series 7—there's more to it than meets the hearing.

To the Ferrograph Co Ltd, Mercury House, 195 Knightsbridge, London SW7
Please send me FREE brochure on Ferrograph Series 7 Tape Recorders □ Please OR send me the new Ferrograph Manual, for which I enclose £1 □ Tick
NAME
ADDRESS

WW—015 FOR FURTHER DETAILS
VALUABLE NEW HANDBOOK TO AMBITIOUS ENGINEERS

Free

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

ELECTRICAL ENG.

CIVIL ENG.

RADIO ENG.

MECHANICAL ENG.

AUTOMOBILE ENG.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446A ALDERSMATH COURT, ALDERSMATH, BERKSHIRE.

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

POST COUPON NOW!

TO B.I.E.T., 446A ALDERSMATH COURT, ALDERSMATH, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME ___
ADDRESS ___

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

WWW.AMERICANADIOHISTORY.COM
We had to! Each week, more and more of you are turning to us for your supplies of components because of our guaranteed by-return-of-post service. This means even greater stocks and an extended despatch department to keep pace with your growing demand, not to mention easier car parking facilities for those who wish to use our trade counter.

RS service is a by-word in the electronics industry. Our move to Epworth Street is one of our ways of making sure it always remains so.
STANFAST H.F. 30kW TRANSMITTER AMPLIFIER QT.8-A1
This self-tuning linear amplifier—for i.s.b. and d.s.b. telephony, and for single or multi-channel telegraphy—covers the frequency range 4-28MHz and accepts a low level modulated signal at final frequency produced by external drive equipment.

Cut the operational and maintenance costs of your HF radio station right now—with STANFAST

Here’s how

STANFAST Systems—the STC concept of automated h.f. radio stations—permit transmitting and receiving installation to be controlled completely by one man from a central location.

STANFAST Systems provide high speed frequency changing, automatic performance monitoring and rapid fault location affording optimum traffic handling capability and maximum revenue.

STANFAST Systems use the latest techniques in radio design, demand smaller sites and require less maintenance than hitherto. Initial capital cost is lower and return on investment is greater.

world-wide telecommunications and electronics

FOR FURTHER DETAILS
Mu
put all this...
mono
picture

Versatile Presentation
Integral protection. Push-through capability. And with the latest slim-line SUPERSQUARE tubes, a flatter faceplate, squarer corners and larger picture area.

Uniform Brightness
Consistent brightness of the whole screen area is the result of the Mullard formulated high efficiency phosphors and the TEMOS process. These ensure optimum settling conditions controlling the particle shape, size and coating density.

there's more in Mullard pictur

Mullard Limited, Consumer Electronics Division

www.americanradiohistory.com
Improved Performance
The advanced assembly jiggling techniques used by Mullard provide precision alignment of the gun components, minimize haze and ensure sharper focus.

Longer Life
The Mullard developed cathode nickel N441 coupled with the automated activation process and the most stringent raw material inspection ensure longer and consistent emission life.

ubes than meets the eye!...
What price performance like this?

Direct gating at 100 MHz...
costs just £784*in the Racal 801R Digital Frequency Meter

Like all 800 Series instruments, the 801R, the latest in the line, is custom-designed for specific function, combining excellent sensitivity with high input impedance and exceptional stability. Gate times of 10 mS to 10 seconds and the RACAL patent dynamic readout give operational flexibility—instant follow for fast tuning or resolution of 0.1 Hz. Remote control and BCD output are options of particular value to the Production Engineer. Measuring to 500 MHz (resolving to 1 Hz in just over one second) the 801/802 combination at £1076*is value engineering at its best, true RACAL performance.

*price in U.K.

- Measures 10 Hz to 100 MHz
- 1 MΩ & 15pF input impedance, 10 MΩ with your 'scope probe
- 50 mV sensitivity
- 2 parts in 10⁹ daily stability
- 500 MHz Resolution with fully automatic heterodyne converter 802
- Remote control and BCD output options
- 8-digit latched display

If you need any more convincing, get details and a demonstration by contacting:
Racal Instruments Ltd., Crowthorne, Berkshire, England.
Telephone Crowthorne 5652. Telex 84166

FOR FURTHER DETAILS
www.americanradiohistory.com
Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering.

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts. Voltages available 12v., 24v., 100/120v., 210/250v. Five bit sizes from 1/16" to 1/8".

MODEL WG150. For use on all circuits requiring a large number of joints. Power rating 150 watts. Voltages available 100/120v., 210/250v. Four bit sizes from 1/8" to 1/4".

W. GREENWOOD ELECTRONIC LTD.
21, Germain Street, Chesham, Bucks. Tel: Chesham 4808/9

WW-022 FOR FURTHER DETAILS
Sounds exactly what you want

Here's a professional tape recorder that you can use in the studio and in outside broadcast vans.

Philips Pro'12 meets a long standing requirement of studio sound engineers. This portable two-channel recorder is designed to meet the highest standards of sound quality and versatility expected of professional equipment, yet it is small and competitively priced.

Recording and playback quality of the Pro'12 is of a very high standard. Tapes prepared on a Pro'12 are suitable for immediate broadcasting. Even at the lowest tape speed of 3 3/4 in/s, the sound quality is at least equal to the DIN 45511 studio equipment specification.

It features: Twin-track stereo, twin-track mono and dual-track mono operation on 6.25 mm (1/4 in) wide tape (standard version). Extra quarter-track stereo (special version). Tape speeds of 9.5 and 19 cm/s (3 3/4 and 7 1/2 in/s). Unique "constant load" tape transport. Microphone, diode and line inputs for each channel.

• Facilities for mixing input signals of both channels. • Multiplex, sound on sound and echo effect. • Fade in and out and dubbing facilities. • Cueing and pause keys. • Line and monitoring outputs for each channel. • Monitoring with stereo headset or built-in loudspeaker, before or after tape.

VU-control of either channel. • End-of-tape switch. • Remote control connection. • Horizontal or vertical operation.

Technical data

Tape speeds
3 3/4 and 7 1/2 in/s (9.5 and 19 cm/s)

Tape
Longplay (1800 ft — 540 m) or
doubleplay (2400 ft — 720 m)

Reels
Cine type, max. 7 in (180 mm)

Playing time
for longplay tape on 7-inch reel:
at 7 1/2 in/s: 45 min
for doubleplay tape on 7-inch reel:
at 7 1/2 in/s: 60 min

Deviation on absolute tape speed
less than 0.8%

Wow and flutter
measured acc. to DIN 45507 with EMT 420,
at 7 1/2 in/s: 0.08% at 3 3/4 in/s: 0.18%

Frequency response
acc. to DIN 45511, playback
at 7 1/2 in/s: 60 ... 12000 Hz, 0.15 dB
at 3 3/4 in/s: 40 ... 18000 Hz, 0.25 dB
at 3 3/4 in/s: 60 ... 10000 Hz, 0.15 dB
at 3 3/4 in/s: 40 ... 15000 Hz, 0.25 dB
overall at 7 1/2 in/s:
60 ... 12000 Hz, 0.3 dB
overall at 7 1/2 in/s:
40 ... 18000 Hz, 0.5 dB
overall at 3 3/4 in/s:
60 ... 10000 Hz, 0.3 dB
overall at 3 3/4 in/s:
40 ... 15000 Hz, 0.5 dB
Signal-to-noise ratio
acc. to DIN 45455, with stereo,
at 7 1/2 in/s: 56 dB
at 3 3/4 in/s: 52 dB

Inputs
a. line: 100 mV, 100 kΩ
b. microphone: 0.1 mV (unbalanced),
suitable for microphones from 50 to 2000 kΩ
c. diode: 2.40 mV, 20 kΩ

Other inputs are available optionally

Outputs
a. line: nom. 0.775 V, max. 4 V, 10 000 Ω
b. monitor (stereo):
nom. 0.775 V, max. 4 V, 10 000 Ω
c. diode: 0.5 — 2 V, 100 kΩ

Power supply
110-117-122-220-245 V, 50 or 60 Hz

Power consumption: 80 W

Dimensions and weight
52 x 34 x 24 cm
(20 1/4 x 13 1/4 x 9 1/4 in);
23 kg (50.6 lb)

For detailed information please write for our 8 page Pro'12 brochure.

Electro-accoustics Division of
Philips Industries,
N.V. Philips' Gloeilampenfabrieken,
Eindhoven, the Netherlands

PHILIPS

WW-023 FOR FURTHER DETAILS

www.americanradiohistory.com
RADIOMASTS can offer you a tower for almost any purpose.
Not only for VHF, UHF or SHF radio systems, but for floodlighting, CCTV — or anything which requires a lot of height in a little space.

RADIOMASTS not only design, manufacture and erect all sorts of towers — we can plan a complete station or scheme for you.
We also make the cheapest professional up-to-120-foot mast in the World — at 38/- per foot including fitting your aerials.

RADIOMASTS hold stocks of most common aerial systems, cables and connectors. What we haven’t got we can quickly get for you.
Our installations can help practically anyone to do almost anything. Tell us if you think we can HELP YOU. Our girl June will note your enquiry and it will be actioned within 24 HOURS.

RADIOMASTS Ltd
19 CROSS STREET MOLTON
NORTHAMPTON
OE NN3 1RZ 0604 43726

NEW IMPROVED SOLDER REMOVER
Model SR2
• Now with Safe Loading Mechanism which does not recoil on release.
• Adjustable Suction Control.
• Re-positioned Release Button for better handling of tool.
Instantly removes unwanted solder from printed circuits and all other solder joints without damage to unit or component. Saves valuable time resulting in increased production.

Available from
W. GREENWOOD ELECTRONIC LTD
21 GERMAIN STREET, CHESHAM, BUCKS
Chesham 4808/9

WWW-024 FOR FURTHER DETAILS
WWW-025 FOR FURTHER DETAILS
NEW
Series 500
Amplifiers & Tuners

521 Stereo Amplifier (top photograph)
A superb new transistor amplifier from Armstrong with a performance that is second to none. It is based in circuitry and internal layout on the highly successful 421 amplifier which it supersedes. It has 25 watts power output per channel (continuous sine wave), a total of 50 watts, and all the facilities you could wish for in a top class amplifier. Inputs for magnetic and ceramic pickups, tape playback and radio, rumble filter, two treble filters, loudness control, tape monitor and headphones listening. Stabilised power supply, output transistor protective circuit and plug in modules for easy servicing.

523 AM-FM Tuner (lower photograph)
524 FM Tuner
Two alternative tuners to match the 521 amplifier in looks and performance. Both tuners provide high sensitivity and top quality on the FM band and, with the optional M4 Stereo Decoder added, give wonderful results on stereo radio.

For all those who want AM radio as part of their sound system, the 523 gives excellent coverage of the medium and long wavebands.

Each Series 500 model comes complete with high quality teak case, for which there is no extra charge. The full Armstrong range of high fidelity products recommended retail prices

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>521</td>
<td>£52.00</td>
</tr>
<tr>
<td>523 AM-FM</td>
<td>£61.10</td>
</tr>
<tr>
<td>524 FM</td>
<td>£39.10</td>
</tr>
<tr>
<td>425 FM Tuner-amplifier</td>
<td>£78.50</td>
</tr>
<tr>
<td>426 AM-FM Tuner-amplifier</td>
<td>£87.00</td>
</tr>
<tr>
<td>M4 Stereo Radio Decoder</td>
<td>£9.10</td>
</tr>
<tr>
<td>127 AM-FM Tuner-amplifier</td>
<td>£42.17</td>
</tr>
<tr>
<td>M5 Stereo Decoder (for 127)</td>
<td>£14.10</td>
</tr>
</tbody>
</table>

Have you read the review of the 426 Tuner-amplifier in the October Hi-Fi News? If not we will gladly send you a copy. For full details and technical specifications of all models, plus stockists list, post coupon or write mentioning 1WW69

Armstrong Audio Limited
Warlters Road, London, N.7
Telephone: 01-607 3213

WWW--026 FOR FURTHER DETAILS
Muriel has a new trimmer figure

(75, 84, 86)

New .75" Cermet Trimming Potentiometers in two models:— Models 84 and 86 with a power rating of 0.33W at 70°C.

Ask Muriel to send you samples for evaluation and it'll be no sooner said than done!

While you're about it, ask for samples from the complete Morganite range. It's a full range; not only does it have versions to MIL-R-22097C, but it includes a second series of ohmic values from the E6 range.

Morganite Resistors Limited is the only British company to offer you this choice. Morganite Cermet Trimming Potentiometers are made with precision to withstand the rough and tough of everyday operation. Component parts are examined up to 500X life size so that only the perfect are built into the product.

All Morganite Cermet Trimming Potentiometers are available in development batches—EX-STOCK.

Ring Muriel for facts and figures.

Morganite Cermet Trimming Potentiometers

MORGANITE RESISTORS LIMITED
Bede Industrial Estate, Jarrow, County Durham
Telephone: Jarrow 897771. Telex: 53353
MILLIONS OF OPERATIONS FOR 6d!

The GEC type RCX dry reed capsule will switch a 5W resistive load several million times and is suitable for fast low level applications where reliability and long life are required. It is hermetically sealed and has a contact resistance of not greater than 150 milliohms. A fully automated production unit has been set up to produce high quality reeds to an extremely severe Post Office telephone exchange specification, and the same modern techniques are being used on this industrial version which is offered at 6d in bulk quantities. Small quantities cost a penny or two more.

THE M-O VALVE CO. LTD.
BROOK GREEN WORKS • HAMMERSMITH • LONDON W6
TELEPHONE: 01-603 3431 • TELEX: 23435

WW—028 FOR FURTHER DETAILS
For technical sound recording everything points to Revox

Capstan motor of patented construction, cool-running, low-current consumption and wow and flutter better than international broadcast requirements.

Professional practice glass-fibre panel with integral gold-plated switch contacts.

Unique multi-bank micro-switch unit, providing on-off, speed and speed size/tension variations on one control.

Plug-in recording relay.

Plug-in 128 Kc/s bias oscillator obviates multiplex interference.

Plug-in power amplifiers (optional).

Separate spooling motors of original high torque, low weight construction.

Sealed mains input section and cabinet safety link socket.

Fully electronically stabilised power supply circuit.

Capstan motor servo control panel maintaining speed accuracy to better than 0.2% and incorporating electronic speed change from 73 to 3 ips.

Read head of capstan motor.

Tape transport logic control circuit panel.

Plug-in relays controlling all functions and eliminating damage from inadvertent mishandling.

Plug-in audio input/output amplifiers.

Now from the Willi Studer Factory comes the revolutionary Model 77 incorporating design developments based on experience gained in the broadcast field with the 37 and E2 Series Studer machines. The 77 is a studio quality machine compactly presented and offering features unique in this price class including total indifference to fluctuations in mains supply periodicity. With a wow and flutter level below broadcast standard requirements plus a linear response from 20-20,000 Hz at 73 ips. (±2 db) and an ultra low noise level, this new Revox will fulfill virtually every scientific and industrial requirement in the sonic band.

NAB version priced from £149.10.0 Tax Free

Write or telephone for further information to

C. E. Hammond & Co., Ltd., 90, High St., Eton, Windsor, Berks.
Telephone: Windsor 63368.
The Microphone with a Message

EV 635A

... a simple message. If you're looking for professional results, use a professional microphone.

Radio and TV media, film units and recording studios throughout the world demand the best and get it — in an EV 635A Omnidirectional dynamic microphone. It can be used on a stand, hand-held or as a lavalier and is practically indestructible under normal conditions of use. An internal shock absorber greatly reduces the pick-up of cable or other noises generated by external contact, and the steel casing provides excellent magnetic shielding. Used outdoors, the 635A withstands the effects of high humidity and temperature extremes, salt air and severe mechanical shocks. A four-stage pop and dust filter eliminates the need for an external windscreen.

Specifications

Element: Dynamic
Frequency response: 80-13,000 Hz
Polar Pattern: Omnidirectional
Impedance: Low (150 ohms)
Output level: 55 dB (O dB = 1 mw/10 dynes/cm²)
EIA sensitivity rating: 149 dB
Diaphragm: EV Acoustalloy
Case material: Steel
Dimensions: 6” x 11” dia
Finish: Non-reflecting matt satin nickel
Net weight: 6 ounces without cable
Cable connector: Cannon XLR-3-12 complete with 18’ 2-conductor shielded broadcast type cable
Accessories: Lavalier neck cord assembly and model 310 clip.png

For more information about the EV 635A, write the sole U.K. distributors:
KEF Electronics Ltd.
Tovil, Maidstone, Kent
Telephone Maidstone 57258

Every aspect of microphone manufacture is covered by the makers of ten million of them — Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there’s one in ten million for you. Please ask for full information.

PHILIPS

PHILIPS SOUND

Addlestone Road, Weybridge
Tel: Weybridge (97) 45511. Telex: London 262319
This year so far we've directly supplied

6 industrial giants, 89 large manufacturers, 392 smaller manufacturers, all three Armed Services, most government departments including 10 Ministries, 23 public corporations, 43 educational authorities and Universities and countless radio and television retailers in 1,162 cities, towns and villages in 38 counties.

Pinnacle

the largest single valve independent

Pinnacle

PINNACLE ELECTRONICS LIMITED ACHILLES STREET · NEW CROSS · LONDON S.E.14

Telephone: All departments—01-692 7285 Direct orders—01-692 7714

WW—033 FOR FURTHER DETAILS
FINGER BOARDS
- A WIRING SYSTEM FOR
integrated circuits
AND DISCRETE COMPONENTS

Made of plain XXXP base, these circuit cards are pre-pierced with .052" dia. holes on a square .1" x .1" hole matrix and are provided with a row of gold-plated copper contact fingers at one end for use with standard .1" pitch connectors. Rapid circuit assembly on these ready-to-use cards can be accomplished with point-to-point wiring either side using Vero terminal pins. Ideal for mounting TO 5 or Dual-in-line integrated circuits as well as discrete components.

VERO ELECTRONICS LTD.
Industrial Estate, Chandlers Ford, Eastleigh, Hants. S05 3ZR.
Tel: Chandlers Ford 2921/4. Telex: 47551
BRANCHES AND AGENTS THROUGHOUT THE WORLD

WWW-034 FOR FURTHER DETAILS

"Q-MAX" sheet metal punches
FOR QUICK AND CLEAN HOLES

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes—no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services—Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.

Obtainable from Radio, Electrical and Tool Dealers

WHOLESALE & EXPORT ENQUIRIES ONLY TO

WWW-035 FOR FURTHER DETAILS
Comprehensive range for civil and military authorities as well as domestic users in more than 50 countries.

Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEONEX LIMITED
2a WESTBOURNE GROVE MEWS
LONDON · W11 · ENGLAND

AVAILABLE ONLY FOR EXPORT

WW—036 FOR FURTHER DETAILS
... increase efficiency, improve staff mobility, speed up output and earn a corresponding bonus from higher profitability by specifying GEC-AEI Pocket VHF Transceivers.

The Courier series of fully transistorised FM and AM transceivers are amongst the smallest, lightest and most advanced of their type. They may be used in individual communications schemes, yet their complete flexibility enables them to be readily integrated into existing VHF systems.

GEC-AEI are major suppliers of VHF radio telephone equipment to the Home Office and independent Police Authorities.

Your Company will ask you for your recommendations. Have you got complete technical literature?

Communications Division

Information Centre. GEC-AEI (Electronics) Limited Communications Division Spon Street Coventry CVI 3BR
Telephone: Coventry 24155 A management company of The General Electric Company Ltd. of England

WWW—037 FOR FURTHER DETAILS
Timers

Wireless Accuracy

Approximately 30 prolonged provides the latest circuit timers.

Stockists:

YL2 GPA (Dept. 9)

Vv-15-1A

- 15/10 amps. c/o
- 100,000 ops.
- 1/11 each per 1,000

Sys Mini-Timer

Synchronous Motor & Clutch

- 10 million operations
- Instantaneous & timed out 3 amp contacts.
- Repeat accuracy ± 10/° 10 sec to 28 hrs. May also be used as impulse start and automatic reset.

Floatless Liquid Level Control

- 5 amp. output control contacts
- Solid state
- Octal base plug-in
- The most compact unit available, measures only 24 x 25 x 37.

Limit Switch

- 10 amp. 2 circuit
- 5 inch flexible actuator as illustrated
- As low as 53/9 each.

Omrone Precision Controls

Division of I.M.O. Precision Controls Ltd.

(Dept. W.W.9), 313 Edgware Road, London, W.2

Tel. 01-723 2231
STANSTED ESSEX
Stansted
3132
3437

SOUND SYSTEMS

A25 AND A80 AMPLIFIERS

Output
Harmonic Distortion
Signal to Noise Ratio
Frequency Response
Input Facilities

15 ohm or 8 ohm and 100V line with full output protection.
Less than 0.8%.
Better than 60db.
± 10 to 20kHz.
Channel 1: Mic. 100 micro V 100-50 balanced.
Channel 2: Mic. 100 micro V 20-50 balanced.
Auxiliary: Mic. 800V at 50Kohms.
Gain: 150mV at 1Mohm.
Tape: 80mV at 100Kohms.
Tone Controls: Treble and Bass lift and cut.
Volume Controls: Each channel and overall master gain control.

FRAHM Vibrating Reed FREQUENCY METERS

are widely used as standards in many industries because:

1) They are accurate (to ± 0.3% or ± 0.1% as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps. Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:

ANDERS METER SERVICE
ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-387 9092. MINISTRY OF AVIATION APPROVED

Printed Circuits

Printed Circuits

The production of all types of printed circuits, to customers' exact requirements, is covered by a fast, efficient design or prototype service.

Short runs present no problem, but capacity is available for fast quantity production, and the assembly of components.

If your project demands quality, quantity, speed and price control — ring Coventry 24155 today.

Printed Circuits Ltd.,
Spon Street Coventry CV1 3BR
Tel: Coventry 24155
A subsidiary of The General Electric Co. Ltd. of England

Printed Circuits

Printed Circuits
QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS – 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS – isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS – 12½” x 6½” x 4½”

Please send me full details of the QUAD 50 Amplifier

NAME
POSITION
COMPANY
ADDRESS

(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

WWW-044 FOR FURTHER DETAILS
NOW—Knight-Kits quality at new lower prices! ... and anyone can build them!

Simple, step by step instructions enable you to build these right-up-to-date Knight-Kits hi-fi units at a much lower price than similar made-up units. Acclaimed by reviewers, the Knight-Kits range offers equipment to everyone’s standards and specifications using professional components. Get your free Knight-Kits booklet now showing hi-fi units, ‘scopes and test equipment, plus car tuning, photographic and other interesting electronic kits. Here are some typical examples.

KG 865 50 Watts Stereo Amplifier
20 watts L.P. per channel. Response 1 dB. 16 to 35,000 Hz. All silicon transistors for stability and cleaner sounds. Wide power band width 20 to 15,000 Hz ± 1%, harmonic distortion 1%. LM 5686, 6L, 12L. Price new £3 19s. 6d. Postage 10s. Od. complete kit. Size: 8 x 3 x 6.

KG 795 Stereo Tuner
All silicon MOSFET F.M. "tuner", frequency response 1 dB. 30 to 35,000 Hz, harmonic distortion less than 1%, 50 to 100 MHz tuning range. Matched KG 865 or other amplifier Automatic stereo switch. £20 lid. 2d. Task case extra 45 ts. 6d. plus 1s. Od. tax. Price new £34 19s. 6d. 20,000 sounds. Wide lit. display. £34 19s. 6d. plus Is. Od. tax. £4 19s. 6d. plus 1s. Od. tax. Price new £4 19s. 6d. plus 1s. Od. tax.

KG 980 Stereo F. M. Receiver
Combines the KG 865 amplifier with 20 watts L.P. power amplifier and 20 watts F.M. channel 10 to 35,000 Hz. Tuning range 88 to 108 Mhz. Speaker outputs for 4 – 16 ohms, 6L, 5686, 6L, 12L. Task case extra £6 19s. 6d. plus 1s. Od. tax. Price new £34 19s. 6d. plus 1s. Od. tax. £4 19s. 6d. plus 1s. Od. tax. £5 19s. 6d. plus 1s. Od. tax.

Auto Analyzer
Test simple to assemble kit. Makes car tune-up and tune-up fast and easy with 300 ohm tachometer and visual check alone. £2 19s. 6d. plus 1s. Od. tax. £2 9s. 6d. plus 1s. Od. tax. £2 6s. 6d. plus 1s. Od. tax. 20,000 sounds. Wide lit. display. £39 19s. 6d. plus 1s. Od. tax. £49 19s. 6d. plus 1s. Od. tax. £59 19s. 6d. plus 1s. Od. tax. £69 19s. 6d. plus 1s. Od. tax.

Battery Charger Kit
Car battery charger for easy, quick, charging and prolonged battery life. Specially designed for home or car use. 110v. 220v. 240v. £3 19s. 6d. plus 1s. Od. tax.

Electronic Science Lab Kit, 100 in 1
Create over 100 transistor and valve projects with this components kit. Build crystal radio, crystal set radio, F.M. kit, crystal MIDI Hung Little Kit, & other. £20 1s. 6d. plus 1s. Od. tax.

Timing Light Kit
By checking frequency, synchronization, direction of double-pole breaker arms and spark plug advances, your car gets better petrol economy, more efficiency, and miles to the gallon. This high intensity type of timing light enables accurate checks to be made, especially in conjunction with the auto analyzer kit. KG 71A. £15 11s. Od. £15 11s. 6d. plus 1s. Od. tax.

Code Oscillator Kit
Code practice oscillator with bread board. Designed for learning international Morse code. £2 15s. 6d. plus 1s. Od. tax. £2 15s. 6d. plus 1s. Od. tax. £2 15s. 6d. plus 1s. Od. tax.

New 960 page Hobbies Manual
12 Hobbies Sections - over 12,000 units & components for dozens of Hobbies 16/6

Please send for: Free Knight-Kits brochure. A

Name

Address

electronic**ues (Prop. STC) Ltd.**
Edinburgh Way, Harlow, Essex.

TRANSIPACK® EMERGENCY

STATIC
- NO-BREAK POWER SUPPLIES
- FREQUENCY CHANGERS
- INVERTERS

BEST PERFORMANCE

DESIGN

DELIVERY

SIZES
up to 200 kVA

INDUSTRIAL INSTRUMENTS LIMITED
STANLEY RD., BROMLEY, KENT
Tel: 01-460 9212
Groms: Transpack Bromley

WW-046 FOR FURTHER DETAILS

Valradio TRANSVERTORS
(TRANSISTORISED D.C. CONVERTERS/INVERTERS)

Type B12/200S
Input: 12v ± 10% ± 25%
Output: 115-230v ± 10%. 50% ± Hz. 200w

Price £67.12.0

Other Sinewave Units ranging from 30w up to 200w are available from 12-24-50-110v D.C. input, prices £68.00 up to £75.00.

The "S" Range have been specially designed for operating frequency and waveform sensitive equipment such as video tape recorders, Hi-Fi amplifiers, precision instruments, etc.

Send for free information leaflet giving ratings specifications and application suggestions, peak output, minimum and maximum input voltages for each type. Also available, information giving circuit and details of emergency standby systems.

Call, Write or Tel: 01-890 4387

Export Enquiries Invited—Demands concern export sales, etc. Invited for export sales, etc. Invited for export sales, etc.

Valradio Limited, Dept. CI7
Tel: 01-890 4242
Browell's Lane, Feltham, Middlesex, England

WW-047 FOR FURTHER DETAILS
LEVELL PORTABLE INSTRUMENTS

R. C. OSCILLATORS

With DIGITAL or ANALOGUE frequency calibration

<table>
<thead>
<tr>
<th>TYPE</th>
<th>TG66A</th>
<th>TG66B</th>
<th>TG150</th>
<th>TG150M</th>
<th>TG150D</th>
<th>TG150DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
<td>0.2 Hz to 1.22 MHz</td>
<td>± 0.02 Hz below 6 Hz</td>
<td>± 0.3% from 6 Hz to 100 kHz</td>
<td>± 1% from 100 kHz to 300 kHz</td>
<td>± 3% above 300 kHz</td>
<td></td>
</tr>
<tr>
<td>ACCURACY</td>
<td>± 0.02 Hz below 6 Hz</td>
<td>± 0.3% from 6 Hz to 100 kHz</td>
<td>± 1% from 100 kHz to 300 kHz</td>
<td>± 3% above 300 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTORTION</td>
<td><0.15% from 15 Hz to 15 kHz</td>
<td><0.15% at 1 kHz, <0.3% from 50 Hz to 15 kHz, <1.5% below 50 Hz and above 15 kHz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINE WAVE OUTPUT</td>
<td>Source voltage variable from 30µV to 5V. Output impedance 600Ω at all settings.</td>
<td>Source voltage variable from 250µV to 2.5V. Output impedance <250Ω above 250mV, 600Ω below 250mV. Less than 1% variation of amplitude throughout frequency range.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQUARE WAVE OUTPUT</td>
<td>None</td>
<td>None</td>
<td>Variable up to 2.5V peak. Rise time 1% of period + 0.2μs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT METER</td>
<td>Expanded voltage scales and -2dB to +4dB. Scale length 3.5"</td>
<td>None</td>
<td>None</td>
<td>0 to 2.5V and -10dB to +10dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>4 type PP9 batteries, life 400 hours, or, A.C. Mains when selected by panel control</td>
<td>2 type PP9 batteries, life 400 hours, or, A.C. Mains when batteries are replaced by Level! Power Unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>7" x 10½" x 7" Weight 12 lb.</td>
<td>10" high x 6" wide x 4" deep. Weight 6 lb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRICES</td>
<td>£150</td>
<td>£120</td>
<td>£32</td>
<td>£42</td>
<td>£35</td>
<td>£45</td>
</tr>
<tr>
<td>+ Mains Power Unit</td>
<td>included</td>
<td></td>
<td>£7 10 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Leather Case</td>
<td>£5</td>
<td></td>
<td>£4 10 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts. Phone 01-449 5028

WW-948 FOR FURTHER DETAILS
ELCOM sound equipment

Multi-channel sound mixers built from a full range of modules to customer specifications and incorporating all facilities required in modern broadcasting, recording, television and film dubbing techniques. Standard designs available for 12, 24 and 36 channel desks.

ELCOM (NORTHAMPTON) LIMITED
WEEDON ROAD INDUSTRIAL ESTATE
NORTHAMPTON

ELCOM manufacture a full range of modules including input modules, output units, level amplifiers, equalisation units and p.p.m. units. Write for further information.

HAVE YOU A RELAY PROBLEM?

Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.

MICRO-SWITCH - TRANSISTORISED - HEAVY-DUTY - A/C LATCHING - "SPECIALS" MADE TO YOUR OWN DRAWINGS

No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY COMPANY LTD.
157 REGENTS PARK ROAD LONDON N.W.1. 01-722 8161

ACCUMULATOR PERFORMANCE.
DIRECT FROM A.C. MAINS.

Volradio CONTINUOUSLY VARIABLE HIGH CURRENT POWER SUPPLIES.

* TYPE: 250 V/R/30/20. PRICE: £131 S.G.

FEATURES
* 6-30 V. Continuously variable.
* 20 A, over the voltage range.
* Fully smoothed—low impedance.
* Output voltage stabilised.
* Complete with v/amp. meters.
* Suitable for 19in. racking.
* Incorporates heavy duty silicon rectifiers.
* Fixed outputs of 12 or 24 V. up to 24 amps also available.

APPLICATIONS
* Production testing and servicing of 0-12-24-28 v. equipment.
* Fuel pumps—D.C. motors—heaters — relays — windshield wipers, etc., etc. in: Vehicle and Boat electrical systems.
* Simulated 12 and 28 V. aircraft electrical supply.
* Servicing V.H.F. radio telephone within B.C.A.N.'s.
* Widely used by Ministry of Technology. (Ref.: No. 12K/CA305) and airline operators.
* 0-60: 0-120: 0-240 V. also available.

Avoid the extra expense of super regulation you may never need. We shall be happy to assist with your power conversion problems. Call, write or telephone 01-890 4837.

VALRADIO LTD., DEPT. PU/6, BROWELLS LANE, FELTHAM, MIDDLESEX, ENGLAND. Tel. 01-890 4342.

Has red tape been complicating your procurement of electronic components from the U.S.A.?

Let us help you cut through it!

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.
If you have designs on printed circuit boards you need Ferranti IC Sockets

Ferranti IC Sockets have proved themselves a real boon to Printed Circuit Designers. Used in experimental layouts, the sockets save time, temer and quite often IC's.

Use Ferranti IC Sockets in your layout in place of IC's — you can then insert, withdraw, replace IC's without time-wasting soldering and unsoldering operations.

Ferranti IC Sockets are available for use with 8 lead TO-5 (S8), 10 lead TO-5 (S10) and 14 lead Dual-in-line encapsulations (S14).

Full details of Ferranti IC Sockets available from:

FERRANTI
Ferranti Ltd., Electrical Connections Group, Dunsinane Avenue, Dundee. Telephone: 0382-89311.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS-trained man. Let ICS train YOU for a well-paid post in this expanding field.

ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.

Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. & G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. & G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEUR'S EXAMINATION.
* P.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examinations. Students coached until successful.

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, signal generator, multi-test meter, and valve volt meter—all under expert guidance. Transistor Portable available as separate course.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

INTERNATIONAL CORRESPONDENCE SCHOOLS
(Dept. 222) Intertext House, Parkgate Road, London, S.W.1

NAME
ADDRESS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

WW-054 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, WC1 Phone: 01/837/7937

WW-055 FOR FURTHER DETAILS
Designed to house SME precision pick-up arms in combination with leading makes of turntable, the Model 2000 Plinth System combines high-quality workmanship with ease of assembly. The basic unit is finished in selected veneers of teak, straight grained walnut, or rosewood. A one-piece lid in heavy acrylic is reinforced with a polished stainless steel trim.

Motor boards in matching veneers are ready cut and drilled for screw-driver assembly with the appropriate pick-up arm and turntable. The range, which will be added to from time to time, includes a blank board which can be cut to special order.

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

Write for details to:
SME LIMITED · STEYNING · SUSSEX · ENGLAND

WW-056 FOR FURTHER DETAILS
The Goldring cares...
we call it transduction seduction

Smooth, breathing, open and graceful that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable stylus assembly. It is as light as the cantilever itself - no massy magnets or coils to move! This direct approach provides a texture of sound transparency previously associated with direct-coupled pickups.

Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from Desk HP, Goldring Manufacturing Co. (Great Britain) Ltd., 486-488 High Road, Leytonstone, London, E.11, or from your nearest dealer.

WW—057 FOR FURTHER DETAILS

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who likes the Best.

FREE GIFT OFFER
Lightweight Telephone Headset value £4.66.6d to all Cash Buyers.
(Note. All these receivers have Internal Loud Speakers, but Telephone Headset is very useful for private operation.)

Used models occasionally available.

SEND 6d STAMP FOR LITERATURE TO
The Eddystone Specialists
SERVICES LTD.
51 COUNTY ROAD, LIVERPOOL, 4
ESTAB. 1933

WW—058 FOR FURTHER DETAILS

M. R. SUPPLIES, LTD.,
(Established 1935)

Universally recognized as suppliers of UP-TO-DATE MATERIAL, which does the job properly.

Immediate Delivery. Delivered insured. Prices net.

ELECTOR FLOW EXTRACTOR FANS. Undoubtedly today's greatest bargain for domestic or industrial use. For £50/60 with A.C. 1.5kW unit, 0, per hour. Easily installed, fitted wall-attached moves which open when motor is switched on and close when off. Only 6½ in. dia. Our net price only £29.96. (Depot) [2½].

MINIATURE RUNNING TIME Meters (Beacon). We have great demands for this remarkable equipment which now can supply simultaneously from store, 2950, 2600, 2200, 1850, and 1400 revolutions. Counting up to 1,980 hours, with 1½kW indicator. Only 1½ in. base, with clock-dial, depth 1½ in. Many industrial and domestic applications to indicate the running time of any electrical apparatus, ease to install. £62.50 (Rs. 175).

SYNCHRONOUS TIME SWITCHES. (Another one of our popular specialties) 290/290 v. A.C., for accurate pre-set switching operations. Beacons B.824, providing up to 3 on-off operations per 24 hours at any chosen times, with day-setting device free as standard. Capacity 20-amps. Complete housed 4 in. dia. 34 in. deep. £55.96 (Rs. 115). Also some excellent make new domestic models, no wiring and easy setting and installation. Portable with lead and 8mm plug, same size as above (free day-setting). £4.14.6d (Rs. 10). Full instructions with each.

ELECTRIC FANS (Papal), for extract or blowing. The most economical offer we have yet made. 290/290 v. A.C. induction motor—almost running, 3,400 r.p.m. 100 C.F.M. Only 4½in. square and 3½-deep. Ideal for domestic or industrial use. Easy mounting. £25.96 (Rs. 55).

SMALL GEARED MOTORS. In addition to our well-known range (List GM.146), we offer small open type A.P. Units 290/290 v. A.C. to suit motor, 0½, 1, 3, 5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60, 70 r.p.m., approx. 100 ft. long, with brass shaft projection each side and enclosed gear box. Suitable for display work and innumerable uses. Only 22.5d (Rs. 1).

MINIATURE COOLING FANS. 290/290 V. A.C. With open type induction motor (too inefficient). Normal. 9½ in. x 2½ in. x 2½ in. Fitted 8-bladed metal impeller. Ideal for projection lamp cooling, light duty extractors, etc., still only 59d (Rs. 1.25).

AIR BLOWERS. Eighty-watt unit fitted induction motor totally enclosed motor 290/290 v. 55 x 2.5 in. 1.5 hp. Model 290/290, 60 C.F.P. (free air) at 11 L 25 C.P.M. at 60 C.F.P. 8½ in. dia. £63.50 (Rs. 138). Model 290/290, 120 C.F.P. (free air) at 60 C.F.P. 11 L 25 C.P.M. at 60 C.F.P. 8½ in. dia. £90.96 (Rs. 192). (Established 257/257 v. 21 L 25 C.P.M. at 60 C.F.P. 8½ in. dia. £127 C.F.P. at 60 C.F.P. 8½ in. dia. £127 C.F.P. at 60 C.F.P. £120.50 (Rs. 255).

SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS (as mentioned and recommended in many national journals). 290/290 v. 60 c, 21½ in. 1½ L 25 C.P.M. with any 1½ to 6 hp. Quartz 3½ in. square. £63.50 (Rs. 138). Model 290/290, 220 C.F.P. (free air) at 220 C.F.P. at 11 L 25 C.P.M. at 220 C.F.P. 8½ in. dia. £90.96 (Rs. 192). Also high-torque model (R.C.C.I. 10.5 in. x 10.5 in. 6 r.p.m. £72.50 (Rs. 145). Small motor 10.5 in. £90.96 (Rs. 192).

SMALL GEARED MOTORS. 290/290 v. A.C./D.C. With two 1½ in. diameter wheels (front and rear surfaces). Beach mount, very useful household or industrial units. £63.50 (Rs. 138).

EXTRACTOR FANS. Ring mounted all metal construction. 1½ inch induction motor, silent operation. 21½ in. dia. 300 C.F.P. £15.96 (Rs. 32). Small motor 10.5 in. £63.50 (Rs. 138). Universal dia. 220 C.F.P. £63.50 (Rs. 138).

IMMEDIATE DELIVERY of Start centrifugal Pumps, including stainless steel (most models).

M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C.1
(Telephone: 01-636 2958)

WW—059 FOR FURTHER DETAILS
"STETOMIKE"
THE NEW STETOClip HEADSET
WITH
BOOM MICROPHONE

STETOMIKE is the new revolutionary Stethoscope type headset fitted with a Boom-arm Microphone.

STETOMIKE is practically weightless compared with the usual conventional cumbersome heavy headphones (with Boom-arm Microphone) at present being used.

STETOMIKE is ideal for children and adults, and due to its lightness can be worn for long periods without discomfort or numbness.

STETOMIKE is constructed of pale grey high tensile plastic parts of advanced design. It uses the latest Danavox sensitive balanced armature microphone capsule and magnetic earphones.

STETOMIKE employs a simple unit construction and in the event of unavoidable damage, all items are quickly replaceable on the spot, by the readily available Danavox spare parts service.

STETOMIKE is competitively priced and is directly available to manufacturers and relevant wholesalers.

STETOMIKE is ideal for many projects including speech trainers, telecommunications, radio communications, educational and industrial training equipment, audio equipment and with C.C.T.V. cameras and control of Radio and TV studio personnel and production staff etc. and many other applications.

TECHNICAL SPECIFICATION

BOOM MICROPHONE
Frequency response to 5000 Hz.
Sensitivity at 1000 Hz = -78db re 1 V/μ bar.
Load = 2000 ohms.
Impedance at 1000 Hz = 2500 ohms.
D.C. resistance = 360 ohms.

EARPHONE
Impedances available = 15, 60, 120, 250, 500, 1000, 2000 and 4000 ohms.
Frequency response = alternatives available.
Maximum power handling capacity = 30 mVA.

TERMINATIONS
Co-axial cordage to both microphone and earphones eliminating cross-talk.

Danavox (GT. Britain) Ltd.
Electro-Acoustic Components and Hearing Aids
Lloyds Bank Chambers - 186 Wardour Street
London - W.1
Telephone: REGent 1414/5/6

WW-060 FOR FURTHER DETAILS
The technician's first choice in tape decks is a Brenell-

Mk 5 Series 3 for spool sizes up to 8½" dia.
Mk 510 Series 3 for spool sizes up to 10½" dia.
Prices from £45.18.0. including tax.

Head assemblies to customer's specification

Take this opportunity of obtaining the same high quality deck as supplied to recording and broadcasting studios, including the BBC:

- 3 outer-rotor Papst motors
- Large, balanced flywheel
- 4 tape speeds
- Accommodation for up to 4 heads
- Digital counter
- Extremely low wow and flutter content

Also available:
Complete tape recorders, amplifiers, etc.:
for example:

The Brenell HI-FI Tape Link
which has been specially designed for use with 3-headed tape decks and your high-fidelity installation

Write for full specifications

Choose Brenell for Recorders of unsurpassed reliability and performance

Brenell

BRENELL ENGINEERING CO. LTD.
231/5 LIVERPOOL RD., LONDON, N.1. Tel: 01-607 8271 (5 lines)

CUT COSTS WITH SPRAGUE 36D SERIES CAPACITORS

With the following eight types you could halve your capacitor costs and design your ideal power supply at the ideal price.

<table>
<thead>
<tr>
<th>Price Range</th>
<th>11,000 µF</th>
<th>7,800 µF</th>
<th>14,000 µF</th>
<th>13,000 µF</th>
<th>42,000 µF</th>
<th>36,000 µF</th>
<th>24,000 µF</th>
<th>32,000 µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-100</td>
<td>100V</td>
<td>100V</td>
<td>75V</td>
<td>75V</td>
<td>30V</td>
<td>30V</td>
<td>25V</td>
<td>25V</td>
</tr>
<tr>
<td>69/-</td>
<td>66/-</td>
<td>56/6d</td>
<td>52/6d</td>
<td>47/6d</td>
<td>52/6d</td>
<td>44/3d</td>
<td>34/-</td>
<td>33/10d</td>
</tr>
<tr>
<td>45/-</td>
<td>42/6d</td>
<td>45/6d</td>
<td>34/-</td>
<td>33/10d</td>
<td>32/6d</td>
<td>42/-</td>
<td>32/3d</td>
<td></td>
</tr>
</tbody>
</table>

Microfarads come cheaper from WEL

WEL Components Ltd
5 Loverock Road, Reading, Berks. Tel: Reading 580616 9. Telex 84529

Ministry of Technology approved distributor.
If i'd only tried Pinnacle first...

revised 2nd Edition now available
(including 250 types added since original publication)

Pinnacle

The widest ranging and most comprehensive valve catalogue available from any independent supplier.

Pinnacle Electronics Ltd
Achilles Street • New Cross • London S.E.14
Telephone: All Departments—01-692 7285 Direct orders—01-692 7714

WW—064 FOR FURTHER DETAILS
Transmission Test Equipment?

Left: Hatfield Universal Milliwatt Test Set Type 747 offers laboratory standards of accuracy in portable form and out-dates the necessity for more than one instrument to standardise signal level when working with 75, 135/140 and 600 ohms circuits. Operational amplifier boosts thermo-couple output giving two outstanding advantages: (1) Rugged test band meter can be used; (2) Range -1dBm to +1dBm relative to 0dBm is expanded to cover scale length of greater than 4 in. The instrument is accurate to ±0.05dB up to 15 MHz; ±0.1dB 15 MHz -20 MHz and useful to beyond 30 MHz.

Right: Hatfield Portable A.F Level Measuring Set Type 758 with Level Oscillator frequency of 20 Hz to 20 kHz in 3 decades, accurate to ±1% ±0.5 Hz. Output 800 ohms balanced, earth free.

Above centre: Psophometer Type SPO 7525; left, Level Oscillator Type SPO 7806 and right Selective Level Meter Type SPO 7820. These three special instruments are made by us by arrangement with Transmission Division of G.E.C. (Telecommunications) Ltd., Coventry, who are responsible for the circuit designs. Ask for detailed literature and data sheets on the Hatfield Range of Transmission Test Equipment.

Hatfield have the answers

WW—065 FOR FURTHER DETAILS

DC DIFFERENTIAL AMPLIFIER
FE—153—BD
£38-10-0

low drift * low noise
high common mode rejection
small size * battery powered

Also:
wide range of general purpose dc amplifiers, bridge supplies and bridge units for instrumentation and control purposes.

FYLDE
Electronic Laboratories Ltd
Oakham Court, Preston, PR1 3XP
Telephone: Preston 57560

WW—066 FOR FURTHER DETAILS

NEW RANGE OF SOLID STATE A.C. MAINS AMPLIFIERS
Employing only high grade components and transistors

LTA15 15 WATT AMPLIFIER
High Fidelity Output switched Inputs
for Gram, 'Mike', Tape, and Radio.
Frequency Response 0-40,000cps—3dB.
Base Cutoff at 150KHz 200 at 40 cps.
Treble Control 15dB to 2000Hz at 15 Kcs.
Hum and Noise 80 dB.
Harmonic Distortion 0.2% at rated output.
Output 3.5-15 ohm Loudspeakers.

PTA30 HI-FI PUBLIC ADDRESS AMPLIFIER
A successor to our popular
Conchord 30 watt unit.
Input Sensitivity 2 mv (max.)
Output 30 watts.
Output Terminals or Loudspeaker or combi-
nation of Speakers with total imped-
ance between 3 ohms and 30 ohms.
Three individually controlled Jack Inputs
for mixes purposes.
Housed in fully enclosed stove enameled
steel case.
Controls Vol (1) Vol (2) Vol (3) with
mains switch, Treble 'lift' and 'cut', Bass
'lift' and 'cut'.

AN IDEAL UNIT FOR VOCAL AND INSTRUMENTAL GROUPS SUITABLE
FOR ANY KIND OF 'Mike' and INSTRUMENT PICK-UP, ALSO FOR
RADIO, TAPE, OR GRAM.

Available from your
Local Hi-Fi Dealer

Recommended Retail price
Size 9 x 3 x 5 in.

WWW—067 FOR FURTHER DETAILS

Linear Products Ltd
Electron Works, Armley, Leeds

WWW—066 FOR FURTHER DETAILS

www.americanradiohistory.com
ERIE Vibration-Proof Tantalum Type T41

Every T41 tantalum capacitor has more than one string to its bow. In addition to the supreme advantages of a solid tantalum construction, the T41 is proof against vibration and acceleration. It also has a moisture-proof nylon cladding in a flat rectangular package form for high component density.

Erie T41 solid tantalum capacitors are RIGHT ON TARGET for performance under arduous conditions.

Full details freely available on request from

Erie Electronics Limited
South Denes
Great Yarmouth, Norfolk
Phone: 0493 4911 Telex: 97421

WW—068 FOR FURTHER DETAILS
Loudspeakers for the Perfectionist

Celestion Studio Series

DITTON 15

Celestion's outstanding bookshelf system designed for the enthusiast. The sound reproduction of this proven enclosure is truly exceptional, the three radiators giving a smooth and effortless performance—from Bach to Basie—a superb recreation of the original in your home.

DITTON 25

The true sound of music—you'll hear it as you have never heard it before—every 'nuance' and 'timbre' is reproduced with breathtaking realism by Celestion's new Ditton 25. An elegant slimline High Fidelity system designed for luxury installations.

Fill in the coupon for free brochure detailing the complete Ditton Series and explanation of the exclusive Celestion Auxiliary Bass Radiator (ABR) which has revolutionised compact loudspeaker design.

Please send free brochure to:

NAME ____________________________

ADDRESS ____________________________

WW—069 FOR FURTHER DETAILS

ROLA CELESTION LTD., THAMES DITTON, Surrey. 01-398 3402

RADIONIC

RADIO & ELECTRONIC CONSTRUCTION SYSTEM

Simple versatile exciting to use

A No. 4 SET and 6-TRANSISTOR SUPERHET

Clear, simple and rugged this unique system can build almost any electronic circuit. It is used by two thousand academic and industrial teaching establishments throughout the U.K. and by hundreds on the Continent and world-wide. Selected by the Council of Industrial design for all British Design Centres.

RADIO SETS NOS. 1 to 4.

Provide a continuous course from simple diode detector through audio amplifiers to 6-transistor Superhet.

ELECTRONICS SET: (4 STUDENTS)

For practical study, demonstration or experiment over a wide range of the basic electronic circuits.

THEORETICAL CIRCUIT PRACTICAL LAYOUT

E/106 V.L.F. OSCILLATOR FOR METER DEMONSTRATION OF A.C. PRINCIPALS

<table>
<thead>
<tr>
<th>RADIO SETS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>£7 10 0</td>
</tr>
<tr>
<td>No. 2</td>
<td>£9 0 0</td>
</tr>
<tr>
<td>No. 3</td>
<td>£13 10 0</td>
</tr>
<tr>
<td>No. 4</td>
<td>£18 10 0</td>
</tr>
</tbody>
</table>

Electronics Set £19 7 0

POST FREE

FULL DETAILS FROM

RADIONIC PRODUCTS LTD., (WW91)
ST. LAWRENCE HOUSE, 29/31 BROAD ST.,
BRISTOL BS1 2HF

Telephone: 0272 25351

WWW—070 FOR FURTHER DETAILS

www.americanradiohistory.com
VOREXION

The CBL/TT solid state Tape Recorder uses 8 low noise Field Effects Transistors on its twin channel Mic., P.U. and Playback inputs to give low intermodulation distortion, and the 10 watts sine wave 15 watt speech and music amplifiers each have less than 0.05% harmonic distortion and less than 0.1% intermodulation distortion at 10 watts output. "Before and After" monitoring on phones and by internal or external speakers is catered for, and separate power amplifier volume controls allow the speakers to be independently controlled from the headphones. 30/50 ohms balanced line Microphone and P.U. inputs can be mixed with the other channel via crosstim and an echo control.

All the facilities of the valve model C.B.L. are provided plus a few extras... The series 7 deck has variable speed wind in either direction, solenoid operation, provision for an external switch for remote run or voice operated accessory, and still lower wow and flutter figures. Mono versions also available.

Speeds 1\(\frac{1}{2}\) / 3\(\frac{1}{2}\) / 7\(\frac{1}{2}\) i.p.s. or 3\(\frac{1}{2}\) / 7\(\frac{1}{2}\) / 15 i.p.s.

Weight: 52 lb.

Dimensions: 13\(\frac{1}{2}\)" x 22" x 9\(\frac{1}{2}\)".

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1db Peak Programme Meter. 4-6-8-10 and 12 way mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5v at 20K or alternative 1mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 c/s-20Kc/s ± 1db. Less than 0.2% distortion at 1 Kc/s. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1mW 600 ohms. Output 100-120v or 200-240v. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 c/s-20kc/s ± 1 db. 0.15% distortion. Outputs 4, 7.5, 15 ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms-15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms-15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4v on 100K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to 20,000 cps within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level.

Standard model 1-low mic. balanced input and Hi Z gram.

VOREXION LIMITED, 257-263 The Broadway, Wimbledon, S.W.19

Telephone: 01-542 2814 and 01-542 6242/3/4

WW—071 FOR FURTHER DETAILS

Telegrams: "Vortexion London S.W.19"
HEATHKIT Instrumentation for Laboratories

(Heathkit models available Ready-to-use, as well as in easy-to-build kit form)

The Latest and most practical innovation in electronic instrumentation is the exciting ultra-functional styling format from Heath. The instruments feature a unique cabinet frame consisting of the front and rear panels and side rails which completely supports the component chassis independently from the top and bottom cabinet shells. This allows complete freedom from assembly, check-out, and calibration. The sturdy side rails conceal retractable carrying handles. The die-cast front panel bezel styled in chrome and black, the black side rails, and the beige front panels and cabinet shells give the instruments an appearance as up-to-date as their functional performance.

Latest Solid - State High - Impedance Volt - Ohm Milliammeter ... IM-25
- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale
- 7 resistance ranges, 10 ohms centre scale with multipliers x1, x10, x100, x1k, x10k, x100k, and x1 meg...
- Measures from one ohm to 1000 megohms
- 11 current ranges from 15µA full scale to 1.5A full scale
- 11 megohm input impedance on D.C.
- 10 megohm input impedance on A.C.
- A.C. response to 100 kHz
- 6in. 200µA meter with zero-centre scales for positive and negative voltage measurements without switching
- Internal battery power or 120/240 volt A.C., 50 Hz
- Circuit board construction for extra-rugged durability.

Latest Solid-State Volt-Ohm Meter, IM-16
- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale
- 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of x1, x10, x100, x1k, x10k, x100k, and x1 megohm
- 11 megohm input on D.C. ranges, 1 megohm on A.C. ranges
- Operates on either built-in battery power or 120/240 volt A.C., 50 Hz
- Circuit board construction.

Latest Variable Control Regulated High Voltage Power Supply ... IP-17
- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1½% regulation for 0 to full load and ±10 volt line variation
- Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments
- Provides 0 to 100 volts D.C. bias @ 1 milliampere maximum
- Features separate panel meters for continuous monitor for output current and voltage
- Terminals are isolated from chassis for safety
- High voltage and bias may be switched "off" while filament voltage is "on"
- Modern circuit board and wiring harness construction
- 120/240 volt A.C., 50 Hz operation.

Latest Improved Version of the famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply ... IP-27
- Zener reference
- Improved circuitry is virtually immune to overload due to exotic transients
- 0.5 to 50 volts D.C. with better than ±15 millivolts regulation
- Four current ranges 50 mA, 150 mA, 500 mA and 1.5 amperes
- Adjustable current limiter: 30 to 100% on all ranges
- Panel meter shows output voltage or current
- "Pin-ball" lights, indicate voltage or current meter reading
- Up-to-date construction
- Unequalled performance in a laboratory power supply.

Many other instruments in range
- SERVO CHART RECORDERS
- SINE-SQUARE GENERATORS
- DECADE R and C BOXES, etc.

Full specification of any model gladly sent on request from:

DAYSTROM LTD
DEPT. WW1
GLOUCESTER, ENGLAND

Please use coupon to order models, or to send for FREE catalogue. Thank you!

WW-072 FOR FURTHER DETAILS
HEATHKIT Instrumentation for Industry

Here's Value in Oscilloscopes!

3" Portable General-Purpose Service Oscilloscope OS-2
KIT £24.18.0 Ready-to-use £32.18.0 P.P. 9/-

Vertical amplifier: Frequency response: ± 3 db, 2 Hz to 3 MHz. Sensitivity: 100 mV r.m.s. per cm; at 1 kHz. Input Impedance: 3.3 megohms shunted by 20 pF.
Horizontal amplifier: Frequency response: ± 3 db, 2 Hz to 300 kHz. Sensitivity: 100 mV r.m.s. per cm, at 1 kHz. Input Impedance: 10 megohms shunted by 20 pF.
Time base generator: Range 20 Hz to 200 kHz. Automatic lock-in sync; Retrace blanking Voltage calibrator: 1 volt, peak-to-peak, 50 Hz. Controls: Brilliance and smooth switch, Focus, Astigmatism, Time base range switch and fine Frequency, Vertical and Horizontal Gain, Vertical and Horizontal Position.

5" Wide-band General-Purpose Oscilloscope 10-12u
KIT £36.18.0 Ready-to-use £46.16.0 P.P. 10/6

Vertical sensitivity: 10 mV r.m.s. per cm at 1 kHz. Frequency response (referred to 1 kHz): ± 1 db, 6 Hz to 2.5 MHz; ± 3 db, 3 c/s to 4.5 MHz; ± 5 db at 5 MHz. Rise time: 0.05 microseconds or less. Input Impedance: (at 1 kHz) 2.7 Megohms at X1; 3.3 Megohms at X10 and X100. Horizontal sensitivity: 50 mV r.m.s. per cm at 1 kHz. Frequency response: ± 1 db, 1 Hz to 200 kHz; ± 3 db, 1 Hz to 400 kHz. Input impedance: 30 Megohms at 1 kHz. Time base generator: Range, 10 Hz to 500 kHz in 5 steps, variable plus 2 switch-selected pre-set sweep frequencies range. Synchronising: automatic lock-in circuit.

Compare the specifications of Heathkit models and see why Heathkit models are such excellent value!

Portable Solid-State Volt-Ohm Meter IM-17
KIT £13.12.0 P.P. 6/- Ready-to-use £18.10.0 P.P. 6/-

4 Billion Transistor Plan: 1 Field Effect Transistor and 1 Bifetron Transistor. 1 Bifetron Input Impedance on DC: 1 Megohm Input Impedance on AC: 4 DC Voltage Ranges: From 1 Volt Full Scale to 1000 Volts Full Scale. Accuracy ±2% of Full Scale. 4 AC Voltage Ranges: From 1 Volt Full Scale to 1000 Volts Full Scale. Accuracy ±2% of Full Scale. 10 Ohms Centre Read x1, 100, x10, x100. Resistance: 10 Ohms 100, x100, x1000. AC Frequency Range: 20 Hz to 20 MHz, Battery Powered. Battery Power. Portable case of polypropylene. Test leads are held in clips a jack for accessory probes.

Portable In-circuit Transistor Tester, IT-18
KIT £15.6.0 P.P. 6/- Ready-to-use £18.16.0 P.P. 6/-

- Tests transistors for DC gain, etc., Out of circuit and on board.
- Tests transistors out of circuit for low and high measures (100 mV, 1 volt, 10 volts, 100 volts, 1000 volts).
- Identifies unmarked dual transistors and unmarked NPN or PNP transistors.
- Matches XTR and XTR transistors.
- Capacitors without diodes and resistors.
- Ideal for 200 volt meter mode directly to DC Beta and Leakage. Two Beta modes, 10-20 and 20-10000. Ex-pandable leakage external mode, 0-5000 pA, 0-100 pA.
- Identifies signal detectors or even tachometer generators.
- Switchable leakage sensitivity, 0-1000 pA, or 0-100 pA.
- Identifies diode and triode mode. Portable, battery powered or external 12 volt supply. Easy to use due to circuit design. Portable, battery powered or external 12 volt supply. Easy to use due to circuit design.

FREE! CATALOGUE
Describes these and many more kits and ready-to-use models for Stereo/ Hi-Fi, Decks, Radio, Record Players, Tape Recorders, Amateur Radio, Antenna, Room, Education, Home and Hobby. Save money with Heathkit models. Mail coupon or write to Daystrom Ltd., Newmarket, Yat1-28691.

DAYSALOM LTD., Dept. W11 GLOUCESTER D18 8NE. Tel: 29431
- Enclosed is £ , plus packing and carriage.
- Please send model ()
- Please send FREE Heathkit Catalogue.
- Name
- Address
- City

Prices and specifications subject to change without notice.

SHOWROOMS: LONDON: Tottenham Court Road, BIRMINGHAM: St. Martin's House, Bull Ring, GLOUCESTER: Bristol Road
WWW-073 FOR FURTHER DETAILS

Wireless World, January 1969
Bullers CERAMICS

for the **ELECTRONIC INDUSTRY**

(and Electrical Appliance Manufacture)

Frequelex—for high-frequency insulation.

Refractories for high-temperature insulation.

Butlers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.

Phone: Stoke-on-Trent 54321 (5 lines)

Telegrams & Cables: Bullers, Stoke-on-Trent

AKG Headsets:

High fidelity reproduction with comfort

With any AKG Headset, you can be sure of perfect reproduction with no unnecessary background disturbance. Every AKG Headset is superbly designed to give maximum comfort combined with maximum efficiency.

AKG K20

Dynamic/Stereo Headphones

The best value in quality headsets: unparalleled reproduction at such low cost. with large cushioned ear pads. Balanced reproduction from 30-20,000 Hz.

AKG K50

Dynamic Moving-Coil Mono/Stereo Headphones

High-fidelity reproduction due to wide frequency response of 20-21,000 Hz. Available with 900 or 75 Ohm Impedance.

AKG K60

Dynamic Moving-Coil Mono/Stereo Headset

Robust double headband, soft ear cushions. Gives faithful reproduction with smooth bass response, and balanced middle and upper ranges. Frequency 20-20,000 Hz.

Find out more about AKG head-sets and microphones from:

WW—074 FOR FURTHER DETAILS

WWW.AMERICANRADIOHISTORY.COM
Looking for one like this?

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.

*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS
VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS
BETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071.

Jack Peters uses a WELLER

at work and at home!

Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the day—so he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.

The world's widest range of quality soldering tools offers:

TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting performance. For mains or low voltage.

RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder . . . 4 seconds and the job's done.

LOW INITIAL COST. The range of Marksman Irons—25, 40, 80, 120 & 175 watt—all have pretinned nickel plated tips.

There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

Weller Electric Limited
REDKILN WAY · HORSHAM · SUSSEX. Telephone: 0403 61747

WWW.AMERICANRADIOHISTORY.COM
CHASSIS and CASES

by Smith's
EDGWARE ROAD

H. L. SMITH & CO. LTD.
Electronic Components + Audio Equipment
287/289 EDGWARE ROAD, LONDON, W.2.
Tel: 01-723 3891

We shall be pleased to quote for all your component requirements.

BLANK CHASSIS
SAME DAY SERVICE

Of over 20 different forms made up to YOUR SIZE.
(“Maximum length 35in., depth 5in.”)

SEND FOR ILLUSTRATED LEAFLETS
or order straight away, working out total area of material
required and referring to table below, which is for four-sided
chassis in 16 s.w.g. aluminium.

Output power
Distortion-

BLANK CHASSIS
SOLID

48 sq. in. 5/- 176 sq. in. 10/4 304 sq. in. 15/8
80 sq. in. 6/4 208 sq. in. 11/8 336 sq. in. 17/4
112 sq. in. 7/9 240 sq. in. 13/3 368 sq. in. 18/4
144 sq. in. 9/- 272 sq. in. 14/4 and pro rata.

P. & P. 3/-.
P. & P. 4/6.

Discourages for quantities. More than 20 sizes kept in stock for
callers.

FLANGES (3in., 6in.), 6d. per bend.

STRENGTHENED CORNERS 1/- each corner.

PANELS: Any size up to 3ft. at 6/- sq. ft. 16 s.w.g. (18 s.w.g.
5/3). Plus post and packing.

THE TOA ‘BLUE-LINE’ RANGE
of solid state and valve amplifiers

SOLID STATE (AC/DC operation)
Model TA-266 (30 watts R.M.S.) £67.9.5 retail

Specification

Power supply: AC mains (50Hz/60Hz)
DC 12 volts 1.2 volts battery
Power consumption: AC. 25W at non-signal
110VA at rated output
140VA at max. output
DC. 0.7A at non-signal
1.7A at rated output
7.0A at max. output

Output power: Rated 30 watts
Max. 45 watts
Distortion: 3% at 30 watts

Output impedance: Low 4Ω, 6Ω, 16Ω
High (Balanced type) 16Ω (100 volts max).
33Ω (100 volts line)

Model TA-267 (60 watts R.M.S.)
£85.14.3 retail

Also available – Valve Models
HA-355 (10 watts R.M.S.)
HA-397 (70 watts R.M.S.)
E26.6.2 retail
£90.13.4 retail

All in strong and attractive steel cases

THE TOA system

Over 200 items in the range
including microphones, stands, megaphones
portable and rack-mounting equipment.

Sole importers and distributors:
AUDIO & DESIGN (SALES) LTD.,
40 QUEEN ST., MAIDENHEAD, BERKS.
Telephone: Maidenhead 25204 Telegrams: AUDICTION, Maidenhead.

WWW-078 FOR FURTHER DETAILS

THE PA-100
Background Music Machine
incorporating a 15 watts R.M.S.
amplifier and paging system.

Adaptability—Reliability
—Design and Quality

Push-in-and-out cartridge
track selector.
4, 8, 16Ohm plus 70v and 100v tappings.
Microphone and phonograph input.
£99.17.3 retail.

WWW-080 FOR FURTHER DETAILS
The new
‘WESTMINSTER’
solid-state radiotelephone
...from PYE
designed for world markets

The new range of ‘Westminster’ solid-state radiotelephones is ready for operation anywhere in the world. Pre-production models successfully endured every possible combination of adverse climatic, regional, shock and vibration extremes for over a year. This exacting field-test programme has proved the ‘Westminster’ range of radiotelephones suitable for global operation. The ‘Westminster’ range is type-approved in many countries; dash, universal or motorcycle versions are available.

Telephone: 0223 61222 Telex: 81166
Another Connoisseur Precision in Sound 1st

Now—for the first time a

TURNTABLE KIT

Now available to you is the world famous BD.1 TURNTABLE in Kit Form for only £11.2.4d. including p.t. The design is simplicity itself and the Turntable can be assembled by any person using the special spanner provided, a pair of pliers and a screwdriver.

This is a silent 2-speed Belt Drive turntable with a performance that will meet the requirements of the discerning enthusiast.

Fullest details on request to:

A. R. SUGDEN & CO (Engineers) LTD.
Market Place, Brighouse, Yorkshire.
Tel: 2142

WW—082 FOR FURTHER DETAILS

UECL have a completely new range of integrated circuits from Melco

available for the first time complete DTL, TTL and Linear circuits including:

DTL CIRCUITS
M5930P Dual 4-Input Expandable NAND Gate
M5932P Dual 4-Input Expandable Buffer
M5933P Dual 4-Input Exander
M5936P Hex Inverter
M5944P Dual 4-Input Expandable NAND Power Gate
M5945P Single R-S/J-K Clocked Flip Flop
M5946P Quadruple 2-Input NAND Gate
M5962P Triple 3-Input NAND Gate
M5973P Fast Hex Inverter
M5948P Fast single R-S/J-K Clocked Flip Flop
M5949P Fast Quadruple 2-Input NAND Gate
M5963P Fast Dual 4-Input Expandable NAND Gate
M5983P Fast triple 3-Input NAND Gate
M5982P Dual J-K Clocked Flip Flop (Common T, R̅)
M5983P Dual J-K Clocked Flip Flop (Common T, R̅)
M5985P Dual J-K Clocked Flip Flop (Common T, R̅)
M5956P Dual J-K Clocked Flip Flop (Separate T)

TTL CIRCUITS
M5304P Dual 4-Input Gate Exander
M5310P Single 8-Input NAND Gate
M5320P Dual 4-Input NAND Gate
M5325P Dual 4-Input Line Driver
M5330P Triple 3-Input NAND Gate
M5340P Quadruple 2-Input NAND Gate
M5352P Dual 2-Input Expandable AND-OR-INVERT Gate
M5373P Dual J-K Master-Slave Flip Flop
M5375P Single J-K Master-Slave Flip Flop
M5391P 8-Bit Shift Register

LINEAR CIRCUITS
M5101P 1-Watt Audio Amplifier
M5113T Wide-Band Amplifier-Discriminators
M5104P 0.7 Watt AM Radio

All above logic devices available in 14 lead Dual-in-line plastic packages. Linear circuits available in DIL or TOS

ULTRA ELECTRONICS (COMPONENTS) LIMITED
Microelectronics division 35-37 Park Royal Road, London, N.W.10 Telephone: 01-965 5744
Melco: Mitsubishi Electric Corporation

WW—083 FOR FURTHER DETAILS
Cameras a plenty... but how quickly can you find the right low cost tube?

There is a growing range of closed-circuit equipment available, ranging from the simple black and white camera to sophisticated full-colour facilities. The time inevitably arrives when a replacement vidicon tube is needed quickly. This is the service EMI sets out to provide. Our vidicon range provides a type for virtually every camera, where reliability, good resolution and high sensitivity are required.

Send for the EMI Vidicon replacement chart. Then, when you need a tube, simply contact your distributor or EMI.

WW-084 FOR FURTHER DETAILS
EC 19 coating unit

This is the latest addition to the General Engineering range of Vacuum Coaters. It's the EC19, manually or automatically operated, which can be supplied with a comprehensive range of accessories: electron beam evaporation unit, quartz crystal mass and rate monitor, substrate heaters and work holders to suit all applications.

Further details from
VACUUM PRODUCTS DIVISION
General Engineering Co. (Radcliffe) Ltd.
STATION WORKS, BURY ROAD, RADCLIFFE, MANCHESTER.
Telephone: 061-723 3271 & 3041 Telex: 66200 Generalad Mchr.

DOLBY LABORATORIES INC.
announce
New Increased Production Facilities
New Low Prices

Because of the requirement for standardisation in the recording and exchange of master tapes, we have travelled more than 200,000 man-miles in the past two years to introduce our noise reduction system and to select and train our distributors in eighteen countries. Already over three hundred A301 units are in use by more than seventy studios throughout the world.

We now proudly announce that this international challenge has resulted in our third move to larger premises. We have just opened our new 10,000 square-foot laboratory, offices and factory in central London. For us, this expansion means greater facilities for research, development and production—and for you the user, LOWER PRICES, together with the advantages of an even larger network of Dolby equipped studios.

New A301 price: £560 f.o.b. London
$1495 f.o.b. New York

If your studio is not in the network, write or telephone now for a complete price list and full technical information.

Leasing facilities are now available in the U.K. and the U.S.A.

DOLBY LABORATORIES INC.

New U.K. address:
346 Clapham Road · London S.W.9. Tel: 01-720 1111 Cables: Dolbylabs London

WW—085 FOR FURTHER DETAILS
A NEW NOMBREX INSTRUMENT
TO THE SPECIFICATION YOU REQUIRE
AT A PRICE YOU CAN AFFORD

STANDARD MODEL 29-S
- 150 KHz to 220 MHz—all on fundamentals.
- Eight clear bandspread scales. Total length 40”.
- Smooth vernier tuning control—ratio 7 ½:1.
- Magnifier cursor for clarity and accuracy.
- Scale accuracy and discrimination ±1.5% or better.
- Unique electronic scale calibration control.
- Rapid spin wheel tuning as optional extra.
- Modulation—variable depth and frequency.
- Variable A.F. signal available externally.
- Provision for external A.F. modulation.
- Stabilized supply for long-term accuracy.

XTAL CHECK MODEL 29-X
Includes all the versatile advanced features of the Standard Model 29-S

AND

Integral Crystal Oscillator providing calibration check points throughout all ranges, for adjustment of scale accuracy to ±0.02%. The crystal marker signal is available at R.F. socket for use externally.

PRODUCTION RELEASE—FEBRUARY 1969
WE ARE NOW BOOKING SAMPLE AND QUANTITY ORDERS:
DELIVERY IN STRICT ROTATION.
TRADE AND EXPORT ENQUIRIES INVITED
OUR CURRENT MODEL 31 WILL CONTINUE TO BE AVAILABLE.

THE DOLBY A301 AUDIO NOISE REDUCTION SYSTEM

Making the Master Recordings of the Future

Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10–15 dB reduction of hiss. These improvements, of breakthrough magnitude, are valid at any time—even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

A301 features: Easy, plug-in installation—solid state circuitry—modular, printed circuit construction—high reliability, hands-off operation. Performance parameters such as distortion, frequency response, transient response, and noise level meet highest quality professional standards.

NEW Remote Changeover option cuts costs, enables one A301 unit to do the work of two.

NEW NAB and DIN level setting meters simplify recorder gain calibration.

333 Avenue of the Americas · New York · N.Y. 10014
(212) 243-2529 · Cables: Dolbylabs New York
RESLO SOUND

microphones

Precision engineered
give the sensitive acoestical performance required today

Cardioid Pencil Dynamic Microphone
improved version of the well known Reslo CPD microphone. Most suitable
for:
High Quality Music Recording.
General Sound Reinforcement.
Loud close singing or speaking if
used with an amplifier incorporating reasonable
bass cut.
Frequency response is smooth over the
range 70 c's to 16 Kc's.
Rear response better than 20dB below
the front from 100 c's to 1 Kc's and over
14dB from 1 Kc's to 16 Kc's dropping
to 30dB at upper presence frequencies.
Impedance values: CPD2/L - 30/50
ohms of 600
ohms.
Supplied with 18' of dual
impedance cable
£17.15.0.
CPD2/M - 200 to 300 ohms. £17.10.0.
CPD2/H - 30/50 ohms or HI-2. £17 15.0.
Appropriate cable set to order.

An improved unidirectional (super cardioid) high output
hand or stand microphone, incorporating an internal anti-
pop filter. Supplied in a black presentation case with 18ft. of
directly connected screened
cable. Available in low, medium
and high impedances.
Recommended Retail Price:
UD1/L (50 or 600 ohms) £19 10s. Od
UD1/M (200-300 ohms) £19 5s Od
UD1/H (High impedance only) £19 10s Od

lightweight microphone floor stand with
folding legs. Adjustable from 3ft. 7in. to 5ft.
Weight 4.3 lb. Feet spacing 18in. Folded length
37in. Finish: Legs and outer tube matt
black inner tube satin silver.
£17 15.0.
MS100A
Solid leg microphone floor stand. Adjustable from 3ft. 4in. to 5ft.
Weight 11.8 lb. Shown fitted with MS175 Boom
attachment fully adjustable
(length from fulcrum) 2ft. 8in. to 4ft. Weight 8lb. 10oz.
Type MS100A with Hammertone enamelled outer
tube and polished chrome inner tube and filament—£8 6s Od
Type MS110A with all polished chrome tubes—
£8 6s Od
Type MS175 Boom attachment—£7 14s 6d

How do you measure the extra quality
of EMI speakers?

Listen!

EMI are famous throughout the world
for High Quality sound reproduction. Now
our audio design engineers have
developed loudspeaker systems suitable
for home use.
These EMI Loudspeaker Systems, specially
matched, produce every detail of
the original sound over the full audio
spectrum, at high and low listening
levels.
They have many exclusive features. The
range includes the unique 950 system
with a 19 inches x 14 inches bass unit,
power output 50 watts R.M.S.

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD. HAYES, MIDDX. TEL: 01-573-3888 EXT. 667
WW—089 FOR FURTHER DETAILS

RESLO SOUND LIMITED

SPRING GARDENS, LONDON ROAD, ROMFORD, ESSEX
Tel.: Romford 61926 (3 lines) Telex 25356
WW—088 FOR FURTHER DETAILS
From Claude Lyons—leaders in voltage control for over 30 years—an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.

The Regulac® range of hundreds of models includes ganged assemblies for parallel and three-phase operation, dual-output, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.

Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.
Celestion PA

Loudspeakers for all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome.

Driver Units

Pressure type units are available with or without tapped 100V line transformers. The following 'built-in' features are on all models—High Sensitivity. Weatherproof. Phase Equalising Throat and Self-centring Diaphragm Assembly.

Re-entrant Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

Loudspeaker in Glass Fibre

The Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks, chemical plants, plating shops, etc., where protection from the weather or corrosive atmosphere is vital.

Rola Celestion Ltd.
THAMES DITTON, SURREY
TELEPHONE 01-398 3402 TELEX 266 139
WW—091 FOR FURTHER DETAILS

Adamin

MODEL 15

MICRO SOLDERING INSTRUMENT

- EXTREME VERSATILITY
 Range of 8 interchangeable bits, from $\frac{3}{16}$ in. (.047 in.) to $\frac{7}{16}$ in., including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE
 Length 7$\frac{1}{4}$ in. Weight $\frac{1}{2}$ oz. Max. handle dia. $\frac{7}{16}$ in.

- EXTRA-HIGH PERFORMANCE
 Heating time 90 secs. Max. bit temp. 390°C. Loading 15 watts—equals normal 30/40-watt iron.

- ALL VOLTAGES
 The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/5.

Light Soldering Developments Ltd
28 Sydenham Road, Croydon, CR9 2LL
Tel: 01-688 8589 & 4559
WW—092 FOR FURTHER DETAILS

www.americanradiohistory.com
DECCA SPECIAL PRODUCTS

DECCA
the world's leading manufacturer of records and the means of playing them

The Decca DK 30 Ribbon Speaker

This new Decca product has been designed to cater for the growing number of high power amplifiers, particularly transistor type now available on the market. Able to cope with high outputs (up to 30 watts), these superb units retain the great advantage inherent in ribbon speaker principle - lowest possible mass to give a tremendously wide and smooth frequency range. Crisp, effortless response.

Please send me details of the DK 30 speaker.

NAME

ADDRESS

WW169

DECCA

Radford Laboratory Instruments Ltd.

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz Hybird design using valves and semiconductors.

Specification

Frequency Range: 5 Hz-500 kHz (5 ranges).

Output Impedance: 600 Ohms.

Output Voltage: 10 Volts r.m.s. max.

Output Attenuation: 0-110 dB continuously variable.

Sine Wave Distortion: 0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz.

Square Wave Rise Time: Less than 0.1 microseconds.

Monitor Output Meter: Scaled 0-10, and dBm.

Mains Input: 100 V-250 V, 50/60 Hz.

Size: 17.1 x 11 x 8in.

Weight: 25 lb.

Price: £150.

DISTORTION MEASURING SET (Series 2)

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%.

Direct reading from calibrated meter scale.

Specification

Frequency Range: 20 Hz-20 kHz (6 ranges).

Distortion Range: 0.01% to 0.001% (9 ranges).

Sensitivity: 100 mV to 100 V, (3 ranges).

Meter: Square law r.m.s. reading.

Input Resistance: 100 kOhms.

High Pass Filter: 3 dB down at 350 Hz, 30 dB down at 45 Hz.

Frequency Response: ±1 dB from second harmonic of rejection frequency to 250 kHz.

Power Requirements: Included battery.

Size: 17.1 x 11 x 8in.

Weight: 15lb.

Price: £200.

Descriptive technical leaflets are available on request.

Radford Laboratoy Instruments Ltd.

Ashton Vale Road, Bristol 3

Telephone: 6623013

www.americanradiohistory.com
Performance plus versatility with the D53

- 5” rectangular double beam mesh tube.
- Signal and sweep delay.
- Choice of differential, ultra high gain, or wide band plug-in Y Amplifiers.

The Telequipment D53 is a sophisticated laboratory oscilloscope at a down-to-earth price. It offers all the extra facilities likely to be required in a general purpose oscilloscope for some time to come.

Send for full details now.

TELEQUIPMENT LTD - 313 CHASE ROAD - SOUTHGATE - LONDON N14 - TEL: 01-882 1166

WW—095 FOR FURTHER DETAILS
This month's cover symbolizes the analysis of speech sounds into the phonemic components required for electronic speech recognition, as described in W. D. Gilmour's article. The chart is a speech spectrogram, provided by the speech recognition group at the National Physical Laboratory, and contains time, frequency and intensity information.
Why we decided to make every part in this PAL delay line

The PAL delay line is a precision item. But it also has to be inexpensive, and therefore mass-produced. The problems involved in getting the delay time of 63.943μS—an adjustment to a few thousandths of a microsecond—for just one, are quite formidable. To achieve it on an assembly line is practically impossible, unless you have everything under your own control.

When the PAL system was being developed, we found ourselves in an excellent position to develop the special glass delay line needed for the chrominance decoder. Delay lines weren't new to us. For the previous five years we'd been producing them for the computer industry. We therefore had considerable experience. Experience which few others in the television industry had and which enabled us to develop our delay line in parallel with the development of colour television itself.

Critical factors. The set designer's demands pose problems in design and in production (remember we're concerned with price too!). Our considerable experience gained in the computing industry made the design problems relatively easy to overcome. But marrying them to mass-production was something quite new. Again we were fortunate in having vast experience in mass producing complex items for other areas of the electronics industry.

Any old glass? The Mullard delay line is made of glass and works on an electromechanical principle. The glass is specially compounded to ensure consistent behaviour propagation velocities and good stability with changes in temperature. The blocks are cast to ensure complete uniformity and an absence of any internal stressing. One end is ground with two optically flat faces which are at a slight angle to each other and to which two transducers are connected. The electrical television colour signal enters one transducer and is converted into vibrations. These vibrations travel through the glass until they are reflected back from the end face to the second transducer. This converts them back into an electrical signal. In this way we halve the size of the delay line and help save space within the set.

Ground away. The end of the glass block opposite the transducers is then ground away under automatic control until the response is exactly right. We have found that this construction—apart from saving space—greatly simplifies the problem of delay time adjustment to 63.943μS at 4.433619MHz.

Insertion loss. While the glass has some effect on the insertion loss, the major loss is in the transducer and the coupling to the glass. The transducers themselves have been developed from ceramics selected for their long term stability as well as good mechanical properties. We have further reduced insertion loss by developing a new metal deposition technique and adhesives which create an intimate bond. As a result the overall insertion loss is only about 13dB over the bandwidth 3.43 to 5.23MHz.

The final step is the assembly of the delay line on its mounting plate with the associated input and output coils before final testing and inspection.

Worth it? Right from the beginning we've had everything under our control. So we can be sure that the product will give consistent service. And that we're producing it at the best possible price.

Consistently achieving these two aims with all our products has helped us build our reputation. A reputation which stretches across the electronics industry. Before we embark on any new project we can draw on the insight and experience we have gained—sometimes from unusual areas. We can employ our resources to provide the technically excellent products our customers demand.

Mullard components for consumer electronics

Mullard Limited
Consumer Electronics Division
Mullard House, Torrington Place
London W.C.1.
Our Friend and Enemy

The arrival of a new year reminds us of a phenomenon which is widely used in electronics but also greatly misunderstood. *Time* is an essential part of all the evenigraphs in this journal which we call oscillograms or waveform diagrams. Without it they would all be vertical lines, differing only in length. It is a phenomenon which, because we confidently represent it as a spatial dimension (usually a straight horizontal line with the future on the right), we think we have fully understood. How typical of the intellectual arrogance of man that once he has locked up a phenomenon in a concept, once he has labelled and categorized it and drawn a picture of it, he considers that he has mentally disposed of it! Perhaps it is just as well we are arrogant. How else would electronics engineers have the nerve to tackle such formidable operations in the time domain as those required in the advanced television standards converter described in this issue? If they stopped to consider, for example, whether they are really measuring this quantity which they think they are measuring—having assumed it is a measurable quantity—they would not have the courage to continue.

Doubtless some eyebrows will be raised at the suggestion that time may not be measurable. But is it? Clocks, c.r.o. timebases, power alternators, atomic frequency standards are really only oscillators, working away on their own. They are self-maintaining repetitive devices, modelled by man on the natural mechanism by which he attempts to measure time, the rotation of the earth. In order to measure something it is usually necessary to apply the measuring instrument to the quantity to be measured—the ruler to the line drawn on paper, the voltmeter to the battery. It is difficult to see how a clock, whether mechanical or electronic, can be "applied to" or still less "connected to" time. It is just an enclosed system, sensitive to nothing but the internal parameters which govern its repetitive behaviour. The best it can be said to do is to set up a human definition of time. The only measurement we can really be sure a clock performs is to count and scale the oscillations it itself produces.

Another assumption which engineers can be forgiven for making is that time passes with a certain velocity—either it passes us or we are travelling along a time dimension laid out like a railway track. We assume that the velocity is constant and that the displacement of the point "now" relative to the time dimension is continuous and linear, like the electrical ramp function used in a c.r.o. timebase. But for all we know time may really be proceeding in an erratic manner, continually speeding up and slowing down. (Everyone's experience suggests that it may well do so!) If this were so, and our clocks are assumed to be independent mechanisms, it might be thought that the clock oscillations would show a corresponding erratic variation of frequency. On the other hand, since everything would be affected by this time behaviour, including our perception of the clock frequency, we would not be aware of any change in that frequency.

To find out the truth of the matter one would, of course, need some external reference against which one could observe the behaviour of time—a fifth dimension if one considers time as being the fourth. . . . At which point we will not venture to say more except to wish our readers A Happy New Cycle!
Watch Your Diode Measurements!
by ‘Cathode Ray’

So you thought I was permanently earthed? No; just getting on with something else. And in the course of it I found that there still seems to be a lack of adequate warning about the possibilities of error in measuring voltages with the simple diode rectifier, two versions of which are shown in Fig. 1.

The books tell you that provided CR (in megohm-microfarads) is large enough compared with the time period (in seconds) of each cycle of the a.v. input, the average d.v. output \(V_d \) is very nearly equal to the peak value of the a.v. \(V_{a(peak)} \). That is because \(C \) charges up to the peak voltage through the diode \(D \), and hasn’t time to discharge noticeably before the next peak comes. A few of the books are sufficiently forthcoming to go on to tell you about the input impedance of this kind of rectifier. For (a), supposing the diode to be perfect, it is equal to \(R/2 \). Even fewer books tell you that for (b), which is the more likely one to be used, it is \(R/3 \), and at least one of them (failing to see that \(R \) is now continuously across \(V_a \) so draws a.c. as well as d.c.) lets you think that it too is \(R/2 \).

Apart from the mistake just mentioned, this is all right so far as it goes. The trouble is that it doesn’t go nearly far enough, even for basic requirements. And a search in the I.E.E. Library for necessary information on the subject in books dealing with electrical measurements drew a complete blank. I am not counting “Radio & Electronic Laboratory Handbook” by M. G. Scroggie, because he writes what I tell him. (If there are any others that escaped my search will the authors please let me know so that I can give them due credit.) The said Scroggie wrote about it at great length in the Wireless World issues of March 1952 and June and July 1954, and mathematically in Wireless Engineer of February 1955, but as some of you may then have hardly been out of the playpen I am moved to deal with the subject now, at much less length.

There are two ways in which either of these rectifier circuits can be used for measuring alternating voltages. One is simply to connect a microammeter in series with resistor \(R \). Then, if \(R \) is the resistance of this resistor in megohms, each microamp signifies \(R \) volts of \(V_d \), and so (approximately) of \(V_{a(peak)} \). If the instrument is to disturb the voltage being measured any less than your ordinary voltmeter does, \(R \) must be large and the microammeter consequently a low-reading and therefore expensive and fragile one. The other method is to use a stable type of amplifier to energize a more robust meter.

If \(R \) is very large, you are liable to run into trouble with diode reverse current (leakage); remember, the diode is assumed to be perfect, which means alternately zero and infinite resistance. So 1M\(\Omega \) is likely to be on the high side (it rules out all germanium diodes, for a start). However, for the sake of argument let us suppose it is attainable. Does it give you the impression that it will ensure a very high input resistance compared with your metal-rectifier voltmeter?

We already know that to find the effective input resistance (call it \(R' \)) we must divide our 1M\(\Omega \) by at least 2. And unless we are to be confined to measurements between points that are conductively connected—no series capacitors—and have no bias voltages, we must use Fig. 1(b), which means dividing by 3. And because that variety has the full a.v. across \(R \), in practice one must filter it out to some extent. That further reduces \(R' \), as we shall see later. So if we allow for this, and a bit more for the imperfectness of the diode, \(R' \) is unlikely to be much above 300k\(\Omega \).

That still seems quite a lot compared with an ordinary low-reading a.v. meter, which at best is likely to be only one or two kilohms per volt. But what does it mean?

This is where we have to look more closely at the way the diode peak voltmeter works. Variety a is perhaps a little easier to study, though the principle is essentially the same for both. During the first positive half-cycle, \(D \) conducts and \(C \) is charged nearly to the peak input voltage. \(C \) and \(R \) have both been made large enough to hold nearly all this charge until the next positive peak arrives to make up any loss. Fig. 2 shows how a.v., d.v. and current vary during each cycle. The larger the product \(CR \), the less \(C \) discharges and the nearer the average \(V_d \) is to \(V_{a(peak)} \). If you wonder why people don’t leave \(R \) out altogether in order to make the output exactly equal to the peak input and the instrument resistance infinite, the answer is that the backward resistance of the diode is more or less in parallel with \(R \) (via the source of \(V_a \)) so would have to be infinite too; and, if it were infinite, \(C \) could never discharge, so the meter could only be used to measure voltages higher than the last one!

The point to notice in Fig. 2 is that the more nearly \(V_d \) comes up

Fig. 1. Two forms of the single-diode peak rectifier. Type (a) cannot be used if the source of \(V_a \) includes a d.v. component or a series capacitor, so (b) is more often adopted.

Fig. 2. Input and output voltages and input current for the Fig. 1(a) circuit.
Wireless World, January 1969

Fig. 3. Showing the Fig. 1(a) rectifier circuit applied to the voltage E to be measured, in series with its equivalent source resistance, r_d. r_d is the resistance of the diode during its conducting phase.

Fig. 4. Percentage by which V_d is less than E_{peak} as a function of the ratio r/R. Graph (b) shows the low-error range more clearly. r is nearly or exactly r_d.

Fig. 5. Ratio r/R sufficient to cause 1% net (or true source-resistance) error, as a function of r_d/R.

With $V_{a(peak)}$ the shorter the time available for charging and the sharper the pulse of current that has to be supplied by the voltage being measured. So the meter, which (if R in Fig. 1(a) is $1\, \text{M} \Omega$) has an effective resistance R' of $0.5\, \text{M} \Omega$, is not at all like a $0.5\, \text{M} \Omega$ resistor. Most of the time it is (except for diode leakage) an infinite resistance, but during the remainder of the cycle its resistance is quite low; in fact, if the impedance of C can be neglected, it is only the forward resistance of the diode. This has two very undesirable results when measuring the voltage of a high-impedance source—which presumably is what an "electronic" voltmeter is expected to do better than other types. The heavy current load at the input voltage peak cuts that peak and causes a corresponding error in the reading. And the waveform is distorted, so even if the diode meter were being used only to show relative audio level it would have a disastrous effect on fidelity.

On the other hand, if it was used to measure the voltage across a resonant circuit it really would behave towards it like a resistor of value R', because such a circuit stores enough energy to meet a fluctuating load, just like the oscillating flywheel in a watch or clock.

If you get an electronic voltmeter beginning with a diode, the input resistance specified by its maker will probably be R', which is valid only for tuned circuits. It is quite misleading for measurements on resistive circuits. For a 1% source-resistance error, a Fig. 1(a) diode voltmeter with R even as high as $1\, \text{M} \Omega$ is actually worse, on ranges above $30\, \text{V}$, than an ordinary $1,000\, \Omega$ a.c. voltmeter!

As the cited articles show, this error can be calculated from one thing—the ratio between the source resistance and R. Conveniently, it is the same for both of the circuits in Fig. 1, in spite of the fact that the small input resistance and consequentially has the larger error when measuring across a resonant circuit. The aforementioned calculation assumes that the diode has zero forward resistance. But if instead of source resistance in the ratio we use a resistance r, the calculated error holds good for r meaning either source resistance or diode forward resistance. Better still, provided that the ratio is less than $1:10$ (as it must be if the error is to be less than about 37%) r can be taken as source resistance plus diode forward resistance, $r_s + r_d$, as shown in Fig. 3. "Error" is the percentage by which V_d is less than E_{peak}, the voltage being measured; to be precise, $100 \frac{E_{peak} - V_d}{E_{peak}}$.

Fig. 4(a) is a curve of error against r/R, and (b) is an enlargement of the top part of the graph to show smaller errors more clearly. These curves apply, with gratifying exactness, to both calculated and measured results, so can be accepted with confidence, the more so as no one has shot them down since they were displayed in 1954.

As an example of their use, let us suppose R is $1\, \text{M} \Omega$ and we want to know the highest resistance a source of voltage can have to cause an error not more than 1%. Against 1% in (b) we see $r/R = 0.0003$. So the r in question is only $300\, \Omega$. The diode forward resistance alone may well be as much as that, in which case nothing is left for source resistance.

Two comments can be made on that, one depressing, the other encouraging. The first is that as the voltage drop in the diode is reduced its resistance increases. So the more we try to reduce this error the more we increase its cause. (The "bottom-bend" distortion of the scale at very low readings is due to this.) The second is that we are reckoning error by comparison with an ideal diode having zero r_d. In other words, our "error" is the difference between E_{peak} and V_d, which includes the difference shown in Fig. 2 between $V_{a(peak)}$ and V_d. The 1% error in the above example (assuming $r_d = 300\, \Omega$) is wholly of the latter kind, internal, and can be allowed for in the calibration. More, by artificially increasing r_d and allowing for the resulting drop in meter deflection in the calibration, we can make the instrument less sensitive to external or source resistance, r_d.

Fig. 5 shows the extent of this. In our example the allowable source resistance for a 1% error compared with the ideal (gross error) was, as we have seen, zero. By absorbing this 1% in the calibration, we make 2% the relevant point in Fig. 4(b), from which we get $r/R = 0.0009$, or $r = 90\, \Omega$. Of this, $300\, \Omega$ is the diode, so $600\, \Omega$ is allowable as source resistance for a net error of 1%. This corresponds to $r_d/R = 0.0003$ in Fig. 5, giving 0.0006 for r/R, as above.

Suppose now we put $1,700\, \Omega$ in series with the diode, to bring r/R up to 0.002. That allows r/R to be 0.001, or $r = 1,000\, \Omega$. An incidental advantage is that r_d, being now mostly in the form of a resistor, is more precisely known than the diode forward resistance itself, which varies greatly during the conduction phase. We could of course increase the allowable r_d for 1% error (or reduce the error for a given r_d) by augmenting r_d more, but Fig. 5 shows that the amount needed goes up drastically for even a limited benefit, and the meter deflection for a given voltage is thereby reduced. Worse still, stray capacitances become much more effective in reducing the highest frequency at which accurate measurements can be made.

There is of course also an error at the low-frequency end if the reactance of $\frac{1}{\omega C}$ is not small compared with R. A slight consolation is that when this error is serious the instrument is less affected by source resistance.

I mentioned earlier that the source-resistance error (but not the...
equivalent input resistance to resonant circuits, \(R' \) for the Fig. 1(b) circuit is practically the same as for (a). And, earlier still, that in practice (b) needs some kind of filter to reduce the a.v. component in the output. Fig. 6(a) and (b) are two such circuits. Note that in (b) \(R_1 \) and \(R_2 \) act as a potential divider, reducing the d.v. output. These circuits are assumed to work into substantially infinite impedance—a.m.s.f.e.t., perhaps. Even for these circuits the \(r \) error is practicaly the same as before, up to about 10\% if \(R \) is taken as \(R_1 \) in Fig. 6(a) and as \(R_1 + R_2 \) in (b), and \(R/R_2 \) in either is not large. To complete the story, here is a table of \(R' \), approximately.

It is useful when working with energy-storing circuits.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>(R')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1(a)</td>
<td>(R/2)</td>
</tr>
<tr>
<td>Fig. 1(b)</td>
<td>(R/3)</td>
</tr>
<tr>
<td>Fig. 6(a)</td>
<td>(R_1 + R_2)</td>
</tr>
<tr>
<td>Fig. 6(b)</td>
<td>((R_1 + R_2)R_3)</td>
</tr>
</tbody>
</table>

For assumptions and derivations, see the Wireless Engineer paper cited.

The whole of the foregoing article can perhaps be put with devastating clarity and brevity into the statement that the single-diode peak voltmeter is not a very good one. So next month we take a look at a two-diode circuit.

Books Received

Systematic Electronic Fault Diagnosis by T. H. Wingate is an intriguing book. It is a programmed course of instruction in fault finding to be applied to electronic equipment in general. The examples used in the programme are mainly to do with the superhet receiver in valve and transistor form. However, these examples are only used to illustrate the programme and fault diagnosis on any electronic equipment is claimed to improve by the use of this programme. The minimum knowledge required for entry to the programme is that of the operation of a superhet receiver. Experience with multimeter oscilloscopes and signal generators is an advantage to the student, and so is a knowledge of the theory of measurements. The text is scrambled so the reading sequence is not the printed sequence. Numbered frames of information and questions lead, by the answers given, to other numbered frames. If you make a mistake you are told so and referred back to the frame containing the original question. The direct teaching sections of the book have the headings—symptom analysis, equipment inspection, signal injection and signal tracking, voltage and resistance measurements, repair and replacement, and performance checks. Then follow three valve problems, a section on transistor techniques, and three transistor problems. Sectional tests are given, and a short but succinct reading list precedes a revision flow chart and valve and transistor superhet receiver circuits. Frames 383. Price 17s 6d. Sir Isaac Pitman & Sons Ltd., Pitman House, Parker Street, Kingsway, London W.C.2.

Transistorized Amateur Radio Projects, by Charles Carignella, W6NJV, is a thoroughly practical book of twenty do-it-yourself circuits. Many of the projects are accompanied by suggested printed circuit board layouts, for which there are thin-paper negatives included at the back of the book. These negatives can be cut out and used directly in etching a printed-circuit board. The projects vary in complexity but are grouped according to function—converters, transmitters, power supplies, test equipment, and accessories. Complete circuit descriptions are given in every case, along with full constructional details, photographs and complete parts lists. Choice between the transmitters is used extensively if the projects, which include an electronic c.w. keyer, a code practice oscillator, a transmitter tester, a field strength meter, a speech compressor, low and high-powered regulated power supplies, an 80- and 40-metre novice c.w. transmitter, 2- and 6-metre voice transmitters, and low noise 2-, 6-, 10-, 15- and 20-metre converters. Pp. 128. Price 2s. W. Foulsham & Co. Ltd., Slough, Bucks, England.

Radio, by David Gibson, is a teach yourself book suitable for any intelligent child from about 9 years onwards. Absolutely no knowledge of electricity or electronics is assumed in the reader, the essential physics being lucidly covered in the first chapter on radio components. The real purpose of the book is as a guide to the construction of three types of receiver—crystal set, t.r.f., and a four-transistor superhet—and a two-transistor amplifier. The layout of components is lavishly illustrated with excellent colour photographs. (For attractive presentation the book could hardly be bettered.) The book ends with a recommendation on aerials, and a brief but interesting introduction to short-wave listening. Pp 87 (plus a single page indices); price 12s 6d. Brockhampton Press Ltd., Salisbury Road, Leicester, LE1 7QS.

Low-Noise Microwave Amplifiers, by H. N. Daglish, J. G. Armstrong, J. C. Walling and C. A. P. Foxell, is a review of the various types of low-noise microwave amplifiers available. The importance of such amplifiers lies in their use in low-noise microwave receivers, which, as the authors note in the introduction, could have been an alternative title for the book. After an introduction discussing the problem of noise and its various natural sources, seven chapters are devoted to discussing the categories of low-noise amplifiers, for microwave frequencies. The chapter titles are: travelling-wave tubes, low-noise electron-beam devices, solid-state masers, varactor-diode parametric amplifiers, microwave-mixer and detector diodes, tunnel-diode amplifiers, and microwave low-noise transistor amplifiers. There are nine pages of references and a concise index. Pp. 167. Price 45s. The book is published, in association with the L.E.E., by Cambridge University Press, Bentley House, 200 Euston Road, London N.W.1.

The Promise of Space, by Arthur C. Clarke. The author, well-known for his science fiction writing, relates man's achievements in space over the past 20 years to what he sees as the possibilities in space technology in the 1970s and beyond. The book is, their only concern with space crafts and the means of propulsion, but inevitably communication and telemetry techniques are discussed. It was, of course, Arthur Clarke in his article "Extra-terrestrial relays" in the October 1945 issue of Wireless World who first outlined the principles of synchronous communication satellites—a idea which he put forward in a letter published in W.W. the previous February. Pp. 345. Price 70s. Hodder and Stoughton Ltd., Warwick Lane, London E.C.4.

Covering, as it does, the years 1918-1939 Vol. 2 of Leslie Bailey's B.B.C. Scrapbooks inevitably includes many references to the beginning of broadcasting and television. John Logie Baird's advertisement appealing for "someone who will assist (not financially) in making working model" for "seeing by wireless", which appeared in the personal column of The Times is reproduced. In the section "Television Begins" Baily was, at the time wireless correspondent of the Yorkshire Evening News writes "it is astonishing to know that his [Baird's] knowledge of radio techniques ... was so limited that he went to ... The Wireless World for help over the design of amplifiers." Pp. 208. Price 60s. George Allen & Unwin Ltd., Park Lane, Henley Hempstead, Herts.
Electronic Speech Recognition

A two-part article on the phonemic elements of speech and circuit techniques employed in their identification. This month: basic principles

by W. D. Gilmour, B.A., M.I.E.E.

The automatic recognition of a spoken language (in this article, English only is considered) can serve many obvious or not so obvious purposes. Thus commands could be spoken into a computer, or mechanisms controlled by voice inputs. Telephone numbers could also be requested verbally from a suitably equipped exchange. However, all existing recognising machines are not completely accurate, the best giving overall accuracies of not more than 90-95%, so that some form of storage of the whole message is required before it is entered into the controlled machine itself. The ultimate usefulness of the method in practical applications will thus depend on the characteristics of the system as a whole. As a simple example, 'voice dialling' of telephone calls in a simple step-by-step Sirower system would not be economic, because of the requirement for storage of the whole number for verification before transmission; however, with a computer-controlled exchange, the additional storage could easily be provided, and the elimination of the errors due to incorrect dialling, combined with the elimination of the dial and its associated apparatus, could prove economically viable, especially since some form of central processor, which could serve all lines on a time-sharing basis, would be already available.

At present some use of the automatic recognition of spoken digits is being attempted for tasks such as the sorting of parcels and stocktaking, where it is convenient for the operator's hands to be free for other tasks, but it is believed that no more complicated applications are yet in use.

The remainder of Part 1 of this article will deal with the basic characteristics of speech. Part 2 will describe the types of circuit which form the basis of practical special purpose recognition machines and will consider how these basic circuits can be built up into a complete mechanism.

Speech recognition is, of course, one specialised form of pattern recognition, and a general purpose pattern recognition information could recognise speech. On the other hand the variability of the input is greater than in many other pattern recognising applications, in that nominally identical utterances spoken by different speakers, or by the same speaker at a different time, are widely different; but conversely the total number of patterns to be distinguished is seldom more than about fifty, and the time sequence of the components of these patterns is invariant for any master pattern. For reasons such as these, there is still a considerable future for special purpose apparatus in this field at least as a pre-coder for a more generalised piece of equipment, and the use of general purpose pattern recognition equipment will not be considered further in this article.

The basic characteristics of speech

Full descriptions of the production and characteristics of speech are available. In this article abnormal forms of speech, such as whispering and singing will not be considered, and the basic speech forming mechanism can be considered to be the set of resonant cavities formed in the nose and mouth by suitable placing of the tongue, teeth and other articulators. These cavities are excited by a pressure wave periodically released by the opening of the vocal chords in voiced utterances, or for unvoiced utterances by a white noise source formed by a constriction in the system.

In men the chopping frequency set by the vocal chords generally lies between 100 and 150 Hz, and for women at about double this frequency range. Phoneticians discriminate definitely between voiced and unvoiced utterances, but in reality the discrimination is often not at all well marked, and either the characteristic changes during the utterance or else the white noise and vocal chord contributions to the driving waveform are approximately of equal energy. In broad outline the method of forming speech sounds is shown in Figure 1, which shows the state of affairs for a voiced continuing sound. The vocal chords produce a line spectrum as shown in (a). The resonant cavities have a transfer function as shown in (b), thus giving the combined output (c). The concentration of energy at the resonant frequencies of the cavities leads to the concept of formants and formant frequencies. Formants are defined as the peaks of acoustic energy created as described above. It is found experimentally that most voiced utterances have three formants: the first in the range 200-750 Hz; the second between 750 and 2200 Hz; and the third generally above 2200 Hz. In unvoiced utterances the first formant is generally seldom observed, but well marked second and third formants can be seen in spectrograms. One such spectrogram is to be seen on the front cover of this issue.

It is convenient to split speech sounds into phonemes, which may be defined as the shortest segments of a language, which, if substituted one for another, convert one word into another. Many workers doubt the validity of the concept of phonemes, at any rate as far as machine analysis is concerned, finding less differentiation between some nominally distinct phonemes than between nominally identical phonemes spoken in different context or by different voices. To some extent this criticism is valid, but by a judicious use of differing parameters it becomes possible to differentiate many phonemes, which may not necessarily be those used by phoneticians, under most contextual restraints and for the majority of voices. In doing so, the large amount of decoding necessary if the alternative syllabic approach is adopted is avoided.

As an example of these effects the words 'kill' and 'col', which in the simplest phonetic notation differ in the vowel only, can be considered. If these words are spoken it will be found that the positions of the articulators for both the 'k' and the 'l' sounds will differ considerably, and these differences show up instrumentally. On the other hand both 'k's will have the same lag from the initial release of pressure to the start of the subsequent voicing, and for all voices this pause will be very much longer than that for a 'p', with which 'k' could be confused on the basis of a simple frequency analysis. At the other end of the frequency scale for 'k', allowing for the effects of context, confusion could occur with 't', but here separation could be achieved by the higher energy content and longer pause for 'k'.

Similarly, the terminal 'l', which might instrumentally be confused with the final sound of the diphthong 'ou', can be separated therefrom by a higher second formant frequency.

Thus, by using all the available clues: energy, frequency analysis, and timing, it is possible to draw up a set of descriptors capable of separating most phonemes, or at least of grouping them into larger groups, from which unambiguous words can be formed.

Voices vary from each other, quite apart from differences due to dialect, in a number of ways:

In amplitude. However, a given speaker under quiet ambient conditions tends to hold his level to within ± 6 dB for quite long periods. Shouting can increase the level by 20 dB or more.
In resonance. As shown in Fig. 1, the peaks in the driving spectrum do not necessarily coincide with the formant resonance, but if they do the formant will naturally be enhanced. Some speakers tend to adjust their pitch to obtain this effect, others do not. In addition some speakers seem to have abnormally low and others abnormally high damping of their cavities. In speed and manner of talking. Speed can be controlled to a certain extent in experimental work by using a metronome, but it is much more difficult for a speaker to regularize his division of time on the different syllables within a word. Some vowels, such as 'oo' (zoo) are naturally stretched, whereas others such as 'a' (bat) are naturally cut short. Some speakers accentuate such differences, others minimize them, and a machine cannot be expected to receive much help from any attempt to standardize these features.

In the proportion of high frequency energy present. Some speakers produce very high amplitudes of high frequency components on fricative sounds, even to the extent of almost whistling their 't's and 's's. A simple machine would class such speakers as 'abnormal' and refuse to respond to their utterances. A more complex machine could invoke the statistical features of speech to insert suitable audio weighting circuits to obtain a statistically normal specimen of speech from the abnormal input.

In testing any mechanical recognition system, therefore, a large number of voices should be used. However, a single voice shows considerable variation from day to day, and if a satisfactory performance can be obtained on one voice over a protracted period of testing, it is to be expected that the performance on other voices might be adequate. On the other hand, as a machine learns its master's voice, so does the master learn the best way to present phonemes to the machine, subconsciously aiding it by his dictio, so that the only final valid test is to present a number of untrained voices to the machine. Because of the day-to-day variability of voices, the use of recorded material is to be deprecated, unless each sample is used for a few runs only. It is also illuminating to watch the machine make mistakes, which are seldom likely to be identical on nominally identical samples.

It is well known that speech remains intelligible to man when it is severely distorted in amplitude. Thus the intelligibility of 100% clipped speech is only slightly degraded. The effect of phase distortion on speech is also slight, but not entirely negligible as simple experiments with a tape recorder running backwards will confirm.

On the other hand it is known that intelligibility suffers at once if the frequency content is distorted, particularly if harmonic relationships are upset. Thus speech doubled overall in frequency (e.g. the 'Chipmunks') is barely intelligible, although smaller shifts can be tolerated. However, a single sideband signal with a misplaced carrier becomes un intelligible if the error in the carrier frequency is no more than a few tenths of hertz. Similar problems occur with divers breathing a helium/oxygen mixture. It thus appears, prima facie, that the frequency content of speech is its most important characteristic for human intelligibility. Further experiments using low and high pass filters show that much of the information content is contained in the second and third formants.

In man, the mechanism by which sound energy is applied to the inner ear is straightforward, but much less is known about the processing of the energy within the inner ear and in the brain. The cochlea is believed to act as a lossy transmission line, so that high frequencies are attenuated close to the input (the stapes), whereas lower frequencies can propagate further inwards. Receptor organs are provided down the whole length of the cochlea, and it can be shown that relatively simple groupings of the outputs from these organs will enable local maxima and minima in the frequency-time pattern; positive and negative slopes; and local transitions in any of these quantities to be determined locally before the composite signal is applied to the brain.

A machine of feasible complexity is unlikely to possess man's great adaptability to differing voices, dialects, and speeds and manners of talking. Nearly all machines so far built are much better at recognising their master's voice than the voices of strangers. In addition no speaker fails to elide certain phonemes and in connected speech the gaps between words are often very difficult to observe, and are nearly always less pronounced than pauses before unvoiced stops such as 'K'. At present therefore all machines attempting to identify phonemes rather than, say, words, require that the speech input should be spoken slowly and clearly, with interword gaps accentuated.

Phonetic alphabets are necessary in speech work because there are some 40 basic phonemes in spoken English. Any degree of phonetic complexity can be allowed for in an alphabet, but for non-specialists an alphabet with as many symbols as possible corresponding to normal English usage is preferable. Such an alphabet is the Initial Teaching Alphabet, now used in some primary schools, and the phonetic values of these symbols are given in Table 1.

Classification of phonemes

In this section the phonemes are classified by those features which have been found most reliable for machine recognition. These features may not be those used by the ear. Thus most voiced utterances are best classified for machine recognition by the period of the first formant, timed from the voicing instant; the ear, however, does not seem to make much use of this feature. The instrumentation of the measurements in a typical system will be described in Part 2 of this article, but to avoid repeating Table 1, codings which will be referred to later are given now. Briefly, the A coding refers to the period of the first formant, the B coding refers to the frequency of the second formant with B1 high, and the C coding similarly refers to the frequency of the third formant. G refers to the level of sound pressure, with G7 representing a high level and G0 silence.

The major groups of phonemes used will
Table I: The Initial Teaching Alphabet and coded values

<table>
<thead>
<tr>
<th>Character</th>
<th>Example Group</th>
<th>Codings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>cat VC-V</td>
<td>1 5 7</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>ant VC-V</td>
<td>3 5 7</td>
<td>B3 held for 50 ms. min.</td>
</tr>
<tr>
<td>h</td>
<td>hot VC-V</td>
<td>1 4 7</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>put VC-V</td>
<td>1 4 7</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>head VC-V</td>
<td>1 2 7</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>hair VC-V</td>
<td>3 4 7</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>fer VC-V</td>
<td>2 4 7</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>rid VC-V</td>
<td>3 1 7</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>wood VC-V</td>
<td>1 2 7</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>head VC-V</td>
<td>5 6 2 5</td>
<td>some special coding</td>
</tr>
</tbody>
</table>

Legend:	A = OR.
/ -D	Immaterial

The vocal tract is more or less constricted, causing some diminution in energy, and in extreme cases a fricative-like quality to the utterance. Glides can occur between vowels, and it is important to distinguish between glides and diphthongs. For these reasons special circuits are often needed to select this group.

Diphthongs (VC-D) are approached relatively lightly damped and relatively more complex. They are approached as a glide or a vowel. The nasal (VC-N) is produced by blanking off the opening cavity and widening the nostril, so that most acoustic energy is radiated from the nostrils. With a conventional microphone considerably less energy is received from nasals than from voiced consonants with the oral cavity unobstructed.

Voiced fricatives (VC-F) are produced by forming a constriction in the oral cavity and thus adding high frequency random noise to the voiced sound. It is interesting to note that the peak amplitude often occurs half way between voicing instants with this group. The energy radiated and the amount of high frequency energy present vary very greatly from speaker to speaker and with context, so that the weaker members of this group (‘v’ and ‘f’) are among the most difficult phonemes to detect. Unvoiced continuants (VC) are pronounced in this group. The energy in the group can also be in the oral cavity and the utterance sustained indefinitely with the vocal tract unvoiced. There are aspects we cannot describe with the present basic set to these phonemes. For some this group can be adequately described and some aspects are of considerable importance, but the volume of speech and the relatively high amount of high frequency energy during the speech are finally still constricted. The acoustic pattern emerging from these actions depends very much on context, but there are certain invariant characteristics relating the timing of the silent period and the high frequency content of the burst to the phonemic identification. Depending on whether the vocal chords are in use during the building up of pressure and during the subsequent release, stops may be divided into voiced (VS) or unvoiced (US) categories. The unvoiced 's' and 'f' are the equivalents of 'v' and 'h' respectively, and '3' , and the 'z' , respectively, although it is difficult to make much use of this fact.

Stops (S). To form a stop, air pressure, from a voiced or unvoiced source, is allowed to build up behind an occlusion in the vocal tract and is then suddenly released. There is thus a period of silence whilst the pressure is building up, followed by a burst of high frequency energy when the opening is still constricted. The acoustic pattern arising from these actions depends very much on context, but there are certain invariant characteristics relating the timing of the silent period and the high frequency content of the burst to the phonemic identification. Depending on whether the vocal chords are in use during the building up of pressure and during the subsequent release, the stop may be divided into voiced (VS) or unvoiced (US) categories. The unvoiced stops ‘p’, ‘t’, and ‘k’ are the equivalents of ‘v’, ‘h’, ‘z’, and ‘3’, respectively.

The aspirate ‘h’. This phoneme is so very variable that its machine recognition is difficult. It can occur voiced or unvoiced, with energy distribution greatly affected by context. It also has to be differentiated from the normal wheezes and breath tones which occur in some speech from time to time.

Table I shows the phonemes arranged in the groups, but before describing how a simple apparatus can be made and the performance of these phonemes, a few general notes on technique may be useful.

The remarks made above on the inadvisability of using recorded materials should be noted.

To display waveforms in raw or processed forms a storage cathode ray oscillograph is invaluable, as many samples can be compared with such an instrument in a way that would not be economically possible by any other method. The instant availability of the record is also most useful. The Sonagraph type of instrument which displays a complete frequency spectrum of a 2s sample of speech has been found to be of limited value, partly because of the time taken to process the record, and partly because the resolution of the very important first formant region is low. A more fundamental objection is that the analysis is on a frequency basis instead of on a period basis, timed from the voicing transition. A very full record of typical spectrograms of phonemes, alone and in combination, is available. A more useful instrument, although still working in frequency bands, is the Hewlett-Packard Noise Analyser, which has a reasonable resolution in the first formant region and an instantaneous display with frequency facilities.

The microphone used has to meet a number of conflicting requirements:

a) It must be capable of being used close to the lips in order to reduce the effects of ambient noise, yet,

b) It must be insensitive to breath tones.

c) It must be free from resonances.

d) It should have some directional properties, again to reduce outside interference.

e) It should be insensitive to the movement of the user, and should ideally move with his head, thus preserving a constant distance from lips to microphone.

It has been found that a good quality noise-cancelling magnetic microphone, carried on a head-mounted boom so that the active area of the microphone is opposite the point of the chin and separated therefrom by 4cm, proves satisfactory for most subjects. Every effort should be made to minimize all other sources of noise, including echoes of the speaker's voice, for speech recognition is difficult enough without producing a crop of spurious masking noises.

REFERENCES

The simple special purpose phonetic equipment to be described in Part 2 makes use of a combination of analogue and digital circuits. The analogue circuits consist of filters, amplitude selecting circuits, amplifiers with a.g.c., and various inhibiting circuits. Most of the analogue signals are then digitised using course quantization. Frequency-to-voltage converters are also used.
Full-screen TV Standards Converter

Changes American to European standards without reducing picture size and allows output to be locked to local sources

by R. E. Davies, M.A.

Owing to the fact that different television standards have been adopted by various countries, exchanges of programme between them require the use of television standards conversion, unless the exchanges are carried out by means of cine film. Early forms of standards converter relied upon the image-transfer principle, in which the picture to be converted is displayed on a suitable cathode-ray tube and is viewed by a camera working on the required standards; this method inevitably introduces significant picture impairments due to the characteristics of the cathode-ray tube and camera-tube used. With the advent of BBC-2 operating on 625-lines, it became necessary to develop a fully satisfactory method of converting signals generated on this system to the 405-line standard. All-electronic "store-memory" converters, which rely upon identical input and output field frequencies, were evolved and are in wide use today. With the increasing use of video tape recording and communication satellites, the exchange of programmes between countries using the 50 fields-per-second and 60 fields-per-second standards have become an almost daily occurrence; in the past these exchanges have relied upon converters exploiting the image-transfer principle. However, more and more countries are transmitting in colour and a pressing need for high-quality colour conversion has arisen. Image-transfer conversion for colour poses severe problems and, although some success has been recently achieved by using such methods, it was considered essential that an all-electronic converter, suitable for exchanges in colour and effecting the necessary change of field frequency, should be developed. In 1964 development of two such all-electronic converters was started in the B.B.C. The converters required sufficient storage to hold one field of a television signal and came to be known as "field-memory" converters. The proposals were based on the use of ultrasonic quartz-delays as the storage media since these seemed to offer the best chance of success in a reasonable time.

The first all-electronic converter was completed in 1967 and, on account of its relative simplicity, has two disadvantages. Firstly the size of the converted picture is reduced, and secondly, the output field frequency is rigidly locked to the input field frequency in a 5 to 6 ratio. The European and American colour field frequencies are respectively 50 Hz (exactly) and 59.94005 Hz, with relatively tight tolerances, and thus converted "live" signals are non-standard.

The second, more advanced, converter was completed recently. It does not suffer from the above disadvantages and, moreover, has the useful facility that the signal can be locked to local sources, allowing mixing, fading and like processes to be carried out with local signals.

The first major use of the B.B.C. advanced converter was for live coverage in Europe of the Mexico City Olympic Games. The signals were generated on the 525-line standard and were transmitted by satellite to Goonhilly and thence by landline to London. After conversion the 625-line signals were distributed both in the U.K. and to other countries via the Eurovision and O.I.R.T. links; a total of nine broadcasting organisations transmitted the pictures in colour and a further nineteen transmitted them in black-and-white.

Principles of the Advanced Converter

A televised scene is described by means of discrete fields which are analogous to the frames of a cine film and show the successive positions of moving objects at regular intervals of time. Each field is divided into a number of discrete lines, each describing the brightness and (colour) of a narrow horizontal strip of the scene. In all modern television systems the interface principle is used in which the lines interchange with each other on two successive fields. Half of the lines form field number 1 and all odd-numbered fields thereafter, while the other half form field number 2 and even fields thereafter. Two successive fields form a complete picture. The U.K. standard contains 625-lines per picture (i.e. per two fields) and the field frequency is 50 per second. The American standard contains 525-lines per picture at 60 fields per second.

The converter takes an input signal at the American standard and converts it to the U.K. standard by electronic processing. The conversion consists essentially of two processes. Firstly, the input line signals are used to construct, by interpolation between them, a set of output line signals; secondly, these signals are subsequently each delayed by an appropriate amount so that they occur at the correct times relative to a train of synchronizing pulses at the output standard.

Fig. 1 shows the relative positions of lines at the two standards on a screen, with the vertical scale considerably expanded. The left-hand set of lines at the 525-line standard are more widely spaced than those on the right at the 625-line standard. The simplest way of producing 625 lines given a set of 525 would be to choose the nearest one in each case. For example, in Fig. 1 lines No. 1, 2 and 3 on the left can be used for lines No. 1, 2 and 3 on the right, line No. 4 on the left must be used for both lines No. 4 and 5 on the right; and lines No. 5, 6, 7 and 8 on the left can be used for lines No. 6, 7, 8 and 9 on the right. Thus some sequences of input: 525 lines can be used directly as output lines, but approximately once every five lines an input line must be repeated. A

* B.B.C. Research Department.

† Interpolation means the process by which a new intermediate signal value may be derived from two existing values.
complete output field of 312½ lines can be constructed by repeating just 30 lines of an input field of 262½ lines.

The effect of repeating lines is illustrated in Fig. 2 which shows the appearance of a diagonal edge in the picture. At the 525 standard shown on the left, the edge is straight but if lines are repeated (here lines 2 and 7) to form a 625-line picture the edge takes on a serrated appearance as shown on the right of Fig. 2. This problem was encountered in the development of line-store converters between the 625- and 405-line standards and was overcome by interpolating between successive lines. Each output line is synthesized as a mixture of the video signals of two input lines in a ratio depending on the relative positions of the input and output lines. Fig. 3, which corresponds with Fig. 1, illustrates this process and shows a possible set of interpolation ratios which could be used. These ratios are the fractions marked on the diagram. Line signals are now repeated but it should be noted that output lines Nos. 1' and 2' are both generated from both input lines Nos. 1 and 2 and will appear simultaneously. As before 50 extra lines will be produced for each complete field.

To display the output lines sequentially, delay must be introduced into the signal path each time an extra line is generated. If the line durations on the two standards were identical, a delay unit equal to a line would be suitable. However, the actual line durations are approximately 63.5 μs for the 525-line standard and 64.0 μs for the 625-line standard and the actual delay unit is chosen to make the output field of the correct duration. Since 50 extra lines are added to each field, 50 extra delay units are introduced and the delay unit must be one fiftieth of the difference between the field durations. In practice the value of the delay unit is 66.3 μs approximately. While this choice of unit will result in correct output field duration, the timing of output lines will be in error by at most a few microseconds due to the difference in line durations between the standards.

The increase of delay in the store for one field is about 33 ms. The following fields can be treated similarly so that a further 33 ms of delay must be introduced for each one. The process of increasing delay cannot continue indefinitely; however, after five input fields the delay has increased by 5 × 33 ms, i.e. 161 ms which is equal to the input field duration. A complete field is now stored in the delay units and it is possible to omit the next input field. The following input field can be used to form the next output field if the delay is returned to zero and there will be no interruption in the output signal. Fig. 4 shows a sequence of input fields and the derived sequence of output fields. Input fields Nos. 1 to 5 form output fields Nos. 1 to 5.

Input field No. 6 is omitted and output field No. 6 is formed from input field No. 7. In the long term the increase in the number of lines is balanced by the decrease in the number of fields and there is no overall accumulation of delay.

The omission of fields causes disturbances to the portrayal of movement in the television picture. A moving object in the scene appears to move smoothly for five fields but "jerks" to an unexpected position in the sixth field. This results in a "udder" at the frequency of field omission, namely 10Hz. To reduce this effect a process of interpolation between successive fields is employed in the same way as interpolating between successive lines was used to improve the portrayal of diagonal edges.

Practical Conversion System

Fig. 5 is an outline block diagram of the conversion system. The synchronising pulses associated with the input 525-line signal are fed from the sync-pulse separator to a logic unit which supplies waveforms to control the actions of the interpolator and the delay store.

The interpolator contains a line delay and a field delay so that adjacent lines of a complete input picture can be made available simultaneously. These are mixed in appropriate ratios to form line signals suitable for the output standard.

On account of the difficulty of maintaining accurate matching between different signal paths, frequency modulation of a carrier is used for transmission through the delays and signal mixing is carried out by averaging the modulation frequencies. Mixing is limited to the proportions ⅓, ⅔ and ⅚. Two signal connections to the delay store are necessary to accommodate the extra lines.

The delay store consists of a number of ultrasonic delay units and it is arranged by means of switches that the signal can traverse each delay and bypass it. The delay durations are approximately in binary progression and the action is illustrated in Fig. 6.

Fig. 6(a) shows the arrangement of the first three stages of a delay store. The delay durations are binary multiples of a unit, and the switches have two alternative states, also shown in the figure. Fig. 6(b) shows the switches in the "all-up" position so that signals entering the store at terminal A will traverse the store with no delay. If now an extra line signal is transmitted from terminal B, coincident with a line at A, it will traverse the 17 delay and emerge immediately following the line which entered at A. By changing switch 2 to the "down" position at this time, one line may be made to emerge from the store following the other. The new path for signals requiring 17 delay is shown in Fig. 6(c). The next extra line can now enter the store at A and traverse the 2T delay, thereby arriving at switch 3 in time to be fitted into the sequence. Fig. 7 is a more complex diagram showing the increase of delay from 0 up to 3T units. It can be shown that the process can continue with an indefinite number of binary delays. When the maximum delay is reached the path which traverses all the delays is in use (i.e. entering at B in Fig. 6(b)) and it should be noted that the other path is also set up in which there is no delay in circuit. This path can be used immediately after a field is omitted when the delay returns to zero.

Following the delay store (see Fig. 5) timing errors due to differences between the line durations of the 525 and 625 standards and to imperfections in the delay store are removed in the timing corrector. In practice, since the input and output standards are not locked together in a fixed ratio, it is necessary to introduce a signal rather greater than a line duration to accommodate slow changes in the relative phase of the two standards. A device similar to the line-store converter is used. The signal conversion is now complete and there remains only the addition of output standard synchronising pulses in the final processing unit.
Although, in principle, an electronic converter with sufficient bandwidth can handle colour signals equally as well as monochrome, certain difficulties arise in connection with the coding system. The incoming American N.T.S.C. signal is first transcoded to an intermediate colour system which is similar to N.T.S.C. but uses a higher sub-carrier frequency. After conversion, the signal is transcoded again to the PAL system as required for the 625-line standard.

Future Developments

The advanced converter can accept both line and video tape recorded programme generated on the American standard and can handle both colour and monochrome signals. It is intended shortly to produce a converter working from the European 625-line standard to the American 525-line standard. Similar techniques will be used.

The use of a converter working on these principles to synchronise colour signals from remote sources on the same nominal scanning standards has also been suggested. It is operationally advantageous in a broadcasting system to have all signal sources synchronised together to allow mixing and cutting between them. A solution to this problem is already available but can be used only in certain circumstances.

Acknowledgement.—The author wishes to thank the Director of Engineering of the B.B.C. for permission to publish.

References
News of the Month

Old thinking, new methods and television

The television picture information employs an eight-bit p.c.m. code and a 7-bit code is used for the position of difference signals.

The principle of transmitting television frame difference signals was described in an article "Saving Television Bandwidth" which appeared in the April 1953 issue of Wireless World and details of the Picturephone were given in the February 1968 issue.

Thick-film domestic electronic equipment

The advantages of using thick-film circuits in domestic electronic equipment has been clearly demonstrated by the AEG-Telefunken Banjo Automatic 101 a.m./f.m. radio receiver. This receiver incorporates a thick-film tuner, i.e. amplifier and audio amplifier (not the output stage) as separate modules. The receiver was released for sale in Germany in the autumn of 1967 and during the first six months not one module was returned for service. Since then returns, said to be barely recordable, have amounted to only a very small fraction of one per cent.

It is usual, after designing a circuit for thick-film production, to build it first in discrete component form so that all "bugs can be ironed out". The circuit is then drawn in a form compatible with thick-film techniques.

In a typical manufacturing process the conductor pattern would first be screen printed and then fired at 760 to 1000 °C on an alumina ceramic substrate. The firing fuses the conductor pattern into the substrate. A resistor pattern is then overprinted and fired on to the substrate and the values of the resistors are adjusted by sand-blasting part of the composition away. Capacitors are laid down by depositing first the bottom electrode and firing and then printing on a dielectric layer which is allowed to dry before depositing and firing the top electrode. Conductor cross-overs can be made by printing an insulating glaze on a fired conductor and depositing another conductor on top. Finally, lead-out wires, transistors and large capacitors are added as discrete components and the whole assembly is tested before encapsulation in a suitable protective coating. All the chemicals used by Telefunken were produced by Dupont. Telefunken are at present designing thick-film modules for television and record player applications.

University-industry scheme bears fruit

In 1966 Professor Heginbotham of the Department of Production Engineering and Production Management at Nottingham University presented his ideas on automatic assembly methods for production lines. As a result of the interest aroused a consortium of five interested firms was formed, who contributed £300 each. In return each firm received a basic "pick and place" machine. This machine lifts a component and positions it in its allotted place ready for fixing. The long-term hope was that firms would ask the department to develop the basic prototype into a machine more suited to their particular needs. For this, the firms would supply the necessary finance.

The plan is working well and detailed discussions are in progress with a number of firms. The first product to emerge from the scheme will be a machine for electron gun assembly that will be used at the Simonstone plant of Mullard Ltd. The machine forms the grid 3 assembly by placing together three components and making eight welds.

GaAs diodes for microwave applications

Nippon Telegraph and Telephone Public Corp. and Hitachi Ltd, both in Japan, have developed a series of gallium arsenide diodes for microwave communications.

The efficiency of microwave diodes is determined in part by electron mobility. The time it takes for electrons to travel through the crystal of the diode base is critical because it limits frequency response. The maximum electron velocity is greater in gallium arsenide than in the commonly used germanium. However, unwanted impurities in the crystal have so far limited practical use of GaAs devices.

A Hitachi-NTT team has solved this problem through development of a special purifying process which increases electron mobility in the gallium arsenide crystals to a
figure which is close to the theoretical limit.

In practical microwave relay experiments a GaAs Gunn diode was used as an oscillator, replacing the conventional klystron. During 8,500 hours of continuous operation, the GaAs device achieved outputs of 150mW at 13GHz and 250mW at 10GHz, as a result of the low transit time characteristics of the purified crystal.

The high electron mobility lowered the noise of the Gunn diode, both in frequency and amplitude. The Gunn diode also outperformed the klystron in thermal characteristics.

In all, two types of diode have been produced and successfully tested under the joint research programme. These are bond-type for frequency multiplication and mixing, and diffusion-type for frequency multiplication.

European Physical Society
The European Physical Society came into being on September 26th, 1968, in Geneva. Its inaugural conference will take place in Florence from the 8th to 12th of April. One of the sessions, which will be of particular interest to Wireless World readers, is on quantum interest.

Anyone wishing to attend the conference should write for an application form to the Secretariat, European Physical Society, P.O. Box 1227 Carouge, Geneva, Switzerland.

Antarctic survey employs satellite navigation
Equipment is to be fitted to the vessel Shackleton to enable it to employ the satellite navigation system on its latest exploratory mission. The object of the trip, which is organized by the British Antarctic Survey, will be to investigate the Scotia Ridge where normal optical navigation is very difficult because of persistent cloud cover.

The equipment will consist of a Magnavox satellite navigation system operating in conjunction with a Hewlett-Packard computer. The ship's position will be read-out every two hours to an accuracy of about 100 yds. Using the system it will be possible to relate magnetic and seismic data from different voyages to each other and the sea bed.

The satellite navigation system to be fitted in the Shackleton.

Omega coverage extended
The coverage of the Omega radio navigation system is to be extended to cover all parts of the world before the end of 1972. The four transmitters in operation at the present time allow accurate position fixing to be carried out (within one mile) in the north Atlantic and in the eastern section of the north Pacific.

The additions to the system, as announced by the American Defense Department on October 22nd, will consist of another four transmitters sited to cover the western Pacific, the Tasman sea, the Indian Ocean and the southern tip of South America. Rather than seek permission to erect and operate American stations on the territory of other countries, the intention is to enlist the countries concerned in a joint operation to the advantage of navigators of all nations.

During the past year American representatives have discussed the question of siting the transmitters with officials from countries in which the stations might be located. These overtures have been met with a "general enthusiasm" for the joint venture scheme.

The first U.K. merchant ships to install an Omega receiver are the Manchester Challenge and the new Cunard liner Queen Elizabeth 2. These receivers are manufactured by the Northrop Corporation of America and marketed in the U.K by Marconi Marine.

A replacement for the t.w.t.? Germanium avalanche diodes have converted direct current to both pulsed and c.w. power at room temperature with an efficiency of 43% at the American Bell Telephone Laboratories. This represents more than three times the maximum efficiency obtained with the earlier Impatt (for impact avalanche transit-time) mode of operation first reported by Bell Labs in early 1965. When operating in the new mode, the germanium diodes produced 5.3W of c.w. power at 450MHz, and 7.5W of pulsed power at 3GHz.

The new mode of operation resembles the Impatt mode during part of a cycle, but long delays due to "trapped" carriers occur during the rest of the cycle. Therefore the new mode has been named Trapatt, for TRApped Plasma Avalanche Triggered Transit.

Last year scientists at R.C.A. had obtained high efficiencies from pulsed silicon avalanche diodes at u.h.f. (from 500 to 1000MHz). These results were explained by saying that microscopic filaments were formed within the diodes. Because the enormous current densities that would occur in a filament would almost certainly preclude continuous operation, which is essential for most communications applications, only limited importance was attributed to the early results. The recent work established an alternative mechanism for high efficiency operation and in addition revealed natural phenomena which suppress filament formation in diodes operating in the Trapatt mode.

High efficiencies were observed at Bell Laboratories early in 1968 during studies of a wide variety of Impatt diodes. The formation of new modes of oscillation in these diodes depended critically on the external circuit conditions.

Therefore, several computer programmes were developed to simulate the new modes of oscillation. Precise measurements of experimental circuit and diode parameters provided the input data for these simulations. Computer-generated displays were then made to show how certain interdependent physical and electrical parameters within the diode vary as a function of time.

Essentially, it was discovered that the high efficiencies were the result of an alternate cycling of the diode between a zero-voltage, high current state (the "trapped plasma"), and an Impatt period, which is a high-voltage, low current state. The output frequency of a Trapatt diode is at most one half that of a corresponding Impatt diode.

The new communications centre recently commissioned by the Parts and Accessories Department at Vauxhall Motors, Dunstable headquarters. The object of the centre is to speed up the supply of spare parts to the trade. The centre has the largest telephone answering system in the U.K., a teleprinter terminal and a computer visual display installation. Roughly 2,500 orders for spare parts, from a 58,000 item stock inventory, are processed each day.
In addition to explaining the high efficiencies exhibited by a diode in the Trapatt mode, the analysis of the computer output also suggests that it may be possible to simulate on a computer a whole family of related microwave power generation modes, as yet unknown and unobserved.

For at least some applications, Bell Labs claim that avalanche diodes operating in the high-efficiency Trapatt mode may eventually replace the high-frequency travelling-wave tube, one of the last members of the electron tube family to be threatened by the continuing trend to solid-state devices.

The Trapatt mode was described in two letters to the Proceedings of the I.E.E.E., September issue.

New cable links to the Continent

A £3M contract has been awarded to Submarine Cables Ltd., of the GEC-AEI group, by the Post Office. The contract is for three submarine cable systems to be installed between the U.K. and Germany, the U.K. and Belgium and the U.K. and the Netherlands.

The cable systems, which employ transistor repeaters and have a design life-time of 25 years, use 21 supergroups in each direction providing 1,260 telephone circuits at 4kHz intervals. Where local conditions render it prudent the cables will be armoured.

New display contract for Heathrow

Recommendations are being drawn up by the British Airports Authority's consultants Electronic Facilities Design Ltd on new display equipment for Heathrow airport.

The new equipment will be needed because of the impending introduction of the Boeing 747, America's "Jumbo Jet", in 1970. The seating capacity of the new aircraft is 490, meaning that during peak periods baggage and passenger reception facilities will have to handle 5,000 arrivals per hour.

Various display systems being demonstrated to the British Airport Authority at Heathrow. The large display at the centre of the picture is an Eidophor.

To cope with this flow comprehensive display and information equipments will be required. Various electronic and mechanical keyboard-operated displays are being evaluated for the system. It will be interesting to see if the "wired in" displays systems will win the day over the more expensive, but more flexible, software controlled displays.

Lidar applied

The diversity of the work carried out at the Ministry of Technology's Warren Springs Laboratory at Stevenage, Herts, can be assessed in a recently published annual report (H.M.S.O., price 9s 6d). The Laboratory's committee says that six firms have derived a new annual turnover of over £1M after spending only £15,000 on sponsored research at the laboratory.

The laboratory has purchased a Lidar system (Laser Radar—see "News of the Month" September 1968, p.307) to study the mechanics of smog production. Work on pollution of the atmosphere has shown that the importance of carbon monoxide as a pollutant may have been over-emphasised in the past and further work is going on to confirm this.

The twelve one-week courses on computer control of chemical and process plant held by the laboratory were well attended and the possibility of holding more is being discussed with a number of firms.

Methods of handling powdered and granular materials, of increasing importance in these days of thick film circuits, is also being studied.

Single-tube colour camera

A single-tube colour television camera has been produced by R.C.A. that will be available in this country shortly at about half the cost of a conventional colour television camera. The operating principle is quite straightforward. Light from the scene to be televised passes through a striped filter before impinging on the target of a vidicon tube. The filter is divided into 250 vertical strips, alternate strips passing only red or only blue light.

The target is scanned in the normal way. However, in scanning, the electronic circuitry takes into account the fact that known sections of the target correspond to the blue component and other sections to the red component of the scene being televised. The signals corresponding to red and blue can therefore be reconstituted and by normal mixiing the green signal can also be formed.

The camera will be available initially with an N.T.S.C. output only. The camera weighs about 45kg and is 25cm high, 12.5cm wide and 63cm long.

Military electronics in the '80s?

"Electronics: The Armor of the Eighties," was the theme of the address by Russel D. O'Neal, assistant secretary of the U.S. Army at the Army Concept 85 Symposium, jointly sponsored by the Electronic Industries Association and the Army's Combat Development Command in America.

Gazing into the crystal ball and attempting to foresee the use that will be made of electronics in the eighties, Mr. O'Neal said; "I think we derive a clue to one answer by examining two contemporary systems. The counter-mia mean radar, in use on the battlefield today, detects and tracks mortar shells in flight in order to compute the position of the mortar from which they were fired. The Sentinel radar system detects and tracks ballistic missiles with such precision that defensive missiles can be launched and guided to intercept them."

He said that on the basis of these two systems, "one is entitled to make a speculative extrapolation. I suggest for your consideration small, fast-scanning, phased-array radars, perhaps aided by infrared and able to detect and track incoming bombs, artillery shells and mortar rounds. Then counterweapons will be speedily, automatically and precisely directed against the incoming munition and will destroy or disable it before it arrives..."
within lethal radius of its target.”

In addition to the detection, location and guidance aspects of electronics, Mr. O’Neil noted that electronic warfare would probably take place in the form of computer-controlled jamming devices. “Even laser range finders will be attacked and disabled electronically,” he said.

Integrated circuit logic systems design and practice

This is the title of a one-week course being held jointly by Mullard and the Northern Polytechnic in London. At the time of writing (late November) the first course has just been completed and according to the sponsors has been a great success. In all, seven courses are to be held at the rate of one each month for about twenty engineers.

The courses are intended for engineers as yet unfamiliar with the subject. The sessions are arranged to move progressively from an introduction to the theory of logic, to the use of integrated circuits in typical systems. A good deal of emphasis is being placed on practical work.

Interested readers should contact the Department of Electronic and Communications Engineering, Northern Polytechnic, Holoway Road, London N.7. The fee for the course, which includes all meals and hotel accommodation, is £26 16s 9d.

Weather radar ring completed

The last of the eight wind-finding and weather-watching radar units to be installed in Australia has been commissioned at Darwin airport, Northern Territory.

Known as the WF 44, the radar has been designed and manufactured by Plessey Radar Ltd., at a cost of $1180,000 a unit. The other units are at Brisbane, Queensland, Laverton, Victoria, Mt Gambier, South Australia, Forth Hedland, W.A., Port Moresby, Territory of Papua-New Guinea, Sydney, N.S.W. and Woomera, S.A.

The radar has a dual role—it can be used to detect winds in the upper atmosphere for military, civil aviation, and general forecasting purposes, and to detect tropical cyclones.

This fully-automatic equipment records signal generator frequency drift at the Fleetville Works of Marconi Instruments in St. Albans. Checks are carried out at two temperatures over a 15-hour period. The equipment was designed and assembled by the company’s test gear maintenance section.

and storms up to 150 miles away.

Meteorologists at Darwin will be able to provide airline pilots with up-to-the-minute forecasts and warnings of extreme weather conditions at take-off and landing, particularly during the wet seasons when turbulence and thunderstorm activity are at their maximum.

Diploma of measurement and control

The Institute of Measurement and Control has established its own diploma which is roughly equivalent to H.N.D. Accordingly an examination will be held in north and south England and in Scotland based on a syllabus designed by the Institute which has been used for guidance for many years in several schools and colleges.

The announcement was made by D.C. Nutting, president of the Institute, at the annual dinner of the Manchester section on November 14th. The diploma will have value in fields other than those of measurement and control, as Mr. Nutting said: “It may be called a diploma of a certain proficiency in automation, because automation depends entirely on control, which, in turn, cannot be exercised without measurement”.

A further part two qualification specified by the Institute will allow the successful candidate to proceed to corporate membership. Details of part two will be announced by the Institute in the near future and will be comparable to a degree.

Martel contract

An order worth several million pounds sterling has been placed with The Marconi Company by the Ministry of Technology, for television guidance systems for the first production models of the Anglo-French Martel guided missile.

This order follows a successful series of firing trials in which the performance of the complete missile system was confirmed. The missile is now being evaluated by the Joint Services Technical Unit, based at Boscombe Down. The missile has been developed jointly by Marconi (guidance), Hawker Siddeley Dynamics and Engins Matra of France.

A small sensitive television camera, carried in the nose of the missile, provides a high-quality picture from which any type of target can be positively identified.

This “Missile-eye-view” is transmitted back to the launching aircraft, where the observer is able to follow the missile flight on a high-brightness television monitor.

A joystick control in the cockpit enables him to adjust the field of view of the camera, over a command radio link. Control signals are then generated within the missile itself to align the flight path with the axis of the television camera.

TV licence fees

The increase in the television licence fees announced by the Postmaster General on July 23rd come into effect on January 1st when the monochrome licence is increased from £3 to £6 and that for colour from £10 to £11. The sound radio licence remains £1 5s.

The Regulations laid before Parliament on November 19th also introduce a new licence for Old Persons’ Homes. This will cover the use by residents of sets in their own rooms and the fee will be 1s per resident. Homes will be eligible for the new licences provided they meet the following conditions:

(a) the purpose of the Home is to provide accommodation for pensioners;
(b) they have some communal facilities for their residents;
(c) they are provided by a local authority, or registered with the local authority, or provided by a housing association in collaboration with the local authority.

The existing Old Persons’ Homes Licence introduced on March 1st, covers the use by residents only of battery-operated sets. The new licence covers both mains- and battery-operated radio and television sets. The Postmaster General announced this extension on July 25th.

The concession applies only to sets privately owned by residents and used in their own rooms. Any communal sets will still need to be licensed at the standard fee.

British t.t.l. range receives C.N. approval

Ferranti Ltd. announces that C.N. (Common Network) approval has been granted by the design authority, the Royal Radar Establishment, Malvern, for t.t.l. integrated circuits in the Micronor 5 range. The qualification approval covers 32 plastic dual-in-line and flat-pack devices in the military series 5400E and 5400F, and in the industrial series 7400E and 7400F. This is the first occasion on which such approval has been granted for wholly British-designed, developed and produced t.t.l. integrated circuits.

Naval contract

The digital Systems Department of Ferranti Ltd., with Decca Radar Ltd. as a major subcontractor, has been awarded a contract worth over £1m to meet the Royal Navy's requirement for an automated operations room for frigates and similar ships. The system is known as Computer Assisted Action Information System (C.A.A.I.S.).

The equipment, based on a FM1600B computer, correlates information from sonar, radar and other electronic aids to target tracking and presents it in an easily assimilated form.
Circuit Ideas

The first selection of readers' designs submitted in reply to our open invitation

A unity gain amplifier for very low frequency filters

Active lowpass filters require amplifiers having precise gain, low offset, and low drift. A convenient system is to use amplifiers with full voltage feedback, that is, with precisely unity gain in a network such as that of Fig. 1 which has a second order Butterworth response.

Where the cut-off frequency is 1 Hz or less the resistors R may well exceed a few megohms in value, calling for an amplifier with a.f.t. input stage.

As the cheapest f.e.t. opamps are still around the £8 mark, the circuit of Fig. 2 is proposed for v.f.f. filters. Brief characteristics are as follows:

Open loop gain 50dB
Input current 10^-11 amp
With full voltage feedback,
Output impedance 0.1 ohm
Input impedance 5 PF
Frequency response flat to 100kHz
Max. unloaded output swing (± 9 volt supplies) 8V peak-to-peak
Supply tolerance ± 6V to ± 15V
Current consumption 6mA

Fig. 1. Active configuration for second order Butterworth response using a unity gain amplifier.

Fig. 2. Unity gain amplifier.

Min. recommended load resistance ... 1kΩ
Approximate cost of materials is £1.8s.
N. BETT, Cavendish Laboratory, Cambridge.

Extra diode improves noise limiter

In view of the importance of good impulse-noise limiting in the reception of a.m. signals, particularly under v.h.f. mobile conditions, the following modification to the well-known self-adjusting shunt diode noise limiter may be of interest.

The conventional circuit using thermionic diodes is shown in Fig. 1 and is quite effective. When, however, the circuit is used with semiconductor diodes in a transistor i.f. amplifier of relatively low output voltage, the performance is found to deteriorate as the receiver input signal drops in amplitude, and this is because the knee in the diode forward characteristic sets a limit to the lowest attainable clipping level.

The measured forward characteristics of several diodes are shown in Fig. 2 and it will be seen that the minimum clipping level attainable with a silicon junction diode is about 550mV and with a germanium gold-bonded device, about 250mV. In order, therefore, that the clipping level should be self-adjusting right down to the receiver noise level, the knee voltage must always be "backed-off".

As shown in Fig. 3, this result may be achieved by simply adding an extra diode D2 to the conventional forward-based detector circuit. The back-off diode should be of the same type as the shunt diode, D1; however, if the supply voltage is stable and ambient temperature variations are small, D2 may be replaced by an appropriate resistor with little loss in performance. Because of their relatively high slope resistance, the performance of point contact diodes is inferior to that of germanium gold bonded devices.

When the circuit of Fig. 3 was tested with a transistor receiver covering the 70MHz amateur band, excellent suppression of car ignition interference was observed, even in the absence of a received carrier and with a peak-to-peak receiver background noise output at D2 anode of only 150mV.

DAVID A. TONG, Chemistry Department, Glasgow University
High Performance Automatic Gain Control

Circuitry employing high level detection and amplified and delayed a.g.c., for improved linearity at small signal levels, and obtaining greater audio output

by L. Nelson-Jones, M.I.E.R.E.

With the exception of certain specialized communications equipment, the majority of a.m. receivers, and tuners have some form of a.g.c. system to allow for widely differing signal levels, and to combat fading. Some years ago when thermionic valves were the rule for all such receivers, the a.g.c. performance of all but the cheapest receivers was of quite a high order. However with the almost complete takeover by semiconductors, particularly in the consumer market, the performance of many a.g.c. systems seems to have taken a big step backwards.

The almost universal use of low level detection systems may be one of the reasons for this state of affairs. The low level detector performs well from the detection point of view, but in producing only a low level of d.c. output, does not lend itself well to the requirements of an a.g.c. system, or the inclusion of accurate a.g.c. delays.

High level detection

Some three years ago the author started developing a high level detection system which incorporated delayed, but not amplified, a.g.c. This first step in itself gave much improved results, and was incorporated in a very successful automobile broadcast receiver.

Fig. 1 shows the circuit used. The delay of the application of a.g.c. comes from the emitter potential of the controlled stages. The transistor Tr1 being reverse biased until the emitter potential of Tr1 exceeds that of the controlled stages. The high level detector is a conventional diode circuit, but instead of a resistor, the diode load is the input of an emitter follower, resulting in a high value of load resistance, and enabling the whole secondary winding of a typical double tuned i.f. transformer to be coupled to the detector. The result is a d.c. rectified output linear up to several volts at the emitter of Tr1. The limit to linearity being set by overload of the last i.f. amplifier. The detector diode and emitter follower are forward biased by the small voltage developed across the 330 ohm resistor in order to further improve the linearity at small signal levels. The greater complexity of the high level detector is offset to some extent by the much higher level of audio output obtained at the emitter of Tr1, (typically 200-600 mV r.m.s. for 30% modulation).

Amplified a.g.c.

Further development of the high level detector has led to a circuit having a similar number of components, but giving amplified, and delayed a.g.c.—see Fig. 2.

The high level detector itself is very similar to that of Fig. 1, except that silicon devices are used, and the forward bias is derived from two forward biased diodes D1 and D2. Now however instead of using an emitter follower in the a.g.c. control system, a p-n-p transistor Tr2 is connected in the collector circuit of the n-p-n emitter follower of the high level detector. This transistor is caused to conduct, producing a.g.c. current when the collector current of Tr2 rises to a point where the voltage drop across the collector resistor R1 exceeds the forward voltage required to cause Tr2 to conduct, i.e., when Rbe.RD1 > Vbe. The emitter potential of Tr1 will then have risen to a value of

\[
\frac{V_{be}R_{2}1 + \beta}{R_{1}}
\]

which for \(\beta \gg 1 \) approximates to

\[
\frac{V_{be}R_{3}}{R_{1}}
\]

An emitter voltage of \(+2\) volts was decided upon, giving a value of \(R_{1} = 1.5 \text{ k}\Omega \) with a 5 k\Omega\ emitter resistor (volume control, potentiometer with log track).

\(R_{1} \) is bypassed by an electrolytic capacitor in order to eliminate the audio component of the collector current of Tr1. The a.g.c.

Fig. 1. Tr1 provides a high value of load for detector diode D1 in the high level detector circuit. Tr4, when the emitter of Tr1 becomes more negative than the emitter of Tr2.

Tr3 controls the current in Tr5 and
current from Tr2 may be used in a number of ways, for instance:

A resistor may be connected as shown in Fig. 3 so that an increase in current in Tr2 causes a decrease in current in Tr3, the controlled stage. This is of course normal reverse bias a.g.c., and has a number of disadvantages. First the controlled stage is called upon to handle the largest signals when it is least able to do so, through lack of current. Secondly under these conditions of low gain, and hence low current in the controlled stage, severe distortion of the modulation envelope can take place, unless very careful attention is paid to the application of the control current to the various controlled stages. It is also necessary to bypass the emitter resistor of the controlled stages to both r.f. and a.f. in order to combat distortion, as shown in Fig. 3. This is a point often overlooked by designers.

There is the alternative method of control, using the collector current of Tr2 to vary the loss of a diode attenuator network. A suitable circuit is shown in Fig. 4. The diode network is used to shunt some high impedance point in the amplifier, so that the stage gain is progressively reduced by increasing current in Tr2.

The use of a balanced circuit with two diodes ensures that the collector resistor of Tr2 does not also shunt the signal path, and that the attenuator has a large linear region for both positive and negative going signals, since the Vf/Ii curvature of the two diodes will cancel to a large extent so far as signals applied to the junction of the two diodes are concerned. The capacitor connected across the diodes ensures that the diodes are effectively in parallel at radio frequencies, whilst being in series to the d.c. control signal. The resistor shown dotted, is needed to ensure that there is a sharp knee to the a.g.c. characteristic. The diode current required to produce quite appreciable gain reduction in such a circuit is only of the order of a few microamperes, at which current the control transistor Tr2 will have little current gain. The resistor bypassing the diodes ensures that the current in Tr2 reaches a level at which the transistor has reasonable gain before the diodes begin to conduct. With a bypass resistor of 4.7 kΩ and with silicon diodes, the a.g.c. action begins when the collector current of Tr2 reaches approximately 250 μA.

Practical application of the a.g.c. system

It is normal in a receiver to apply a.g.c. to more than one stage, and also to apply additional delays to the various stages so that control is first applied to the later stages, and then to earlier stages as the signal level rises. This staggering of the application of control is necessary in order to obtain the best overall signal to noise ratio.

Having established the level of signal at which the a.g.c. control loop commences to function, it is necessary to modify the control circuits to all but the final controlled stage to ensure that they come into operation in the correct sequence. Figs. 5(a) and 5(b) illustrate two ways in which this may be achieved.

In Fig. 5(a) a zener diode is used so that the current in the diode attenuator connected to the earlier stage does not commence to flow until the current in the diode attenuator connected to the later stage has already produced considerable attenuation of the overall gain. The resistor shown dotted is sometimes needed to ensure a smooth transition as the first attenuator takes over.

In Fig. 5(b) a similar effect is produced by the reverse bias applied to the attenuator diodes.

Although many good transistor a.g.c. systems must have been designed over the last few years, very little seems to have been published about them, whereas nearly all textbooks, and manufacturers’ literature contain simple a.g.c. systems, using low level detection and unamplified a.g.c.

The author has therefore attempted to
attenuation normally a.g.c. commences. has risen 40 dB, chosen to range of the important have also levels the detector, or insufficient power bias a.g.c. stages does important. outline one method of approach which has found to be most effective in producing a good a.g.c. performance, providing of course that it is correctly applied. It is important to ensure that overloading of stages does not take place. In this respect it is most important that no reverse bias a.g.c. is applied to the i.f. stage driving the detector, or insufficient power will be available, the stage will overload at high levels of signal, and a high level of distortion will be present in the detected output. It is also important to ensure that the delays chosen to separate the levels of operation of the a.g.c. loop on the various stages should have a small overlap. For example it is important to ensure that if the control range of the last controlled stage is say, 40 dB, then the second control loop must come into operation just before the signal has risen 40 dB above the level at which a.g.c. commences. This aspect is not normally a problem with diode attenuators since their effect is an increasing attenuation up until Tr2 bottoms, so that it is obvious that earlier attenuators must come into operation before this point or they will be totally ineffective. It is therefore only necessary to set suitable voltage levels for the changeovers, bearing in mind the available voltage excursion at the collector of Tr2. The exact changeover points must be the subject of experiment, especially if the optimum noise and intermodulation performance is being aimed at, and in this respect a diode attenuator at the input of the receiver can greatly assist in reducing intermodulation, and may also be of assistance in protecting the input stage from voltage surges due to static. On the subject of noise and intermodulation the author would refer his readers to a most excellent book by Rheinfelder on these subjects.

Finally, Fig. 6 shows the system described, as applied to a recent automobile broadcast receiver, an application where a.g.c. is of great importance. The performance achieved is illustrated in Fig. 7. A transistor is used in the r.f. stage, with a diode attenuator at the aerial input. The mixer and oscillator stages use n-channel f.e.t.s. The f.e.t. of the mixer stage is used with a transistor to form a cascode arrangement allowing a higher value of load impedance without instability problems. A low level of oscillator injection is used to reduce intermodulation and spurious responses. The f.e.t. oscillator stage is zener diode stabilized.

In Fig. 6, it will be seen that there is an additional electrolytic connected to the collector of Tr2. This capacitor provides the a.g.c. time constant together with the capacitor in the base circuit of Tr2. This arrangement results in a fast attack time and a slow decay time. The relative rate of decay to attack can be controlled by the value of the capacitors used, particularly the value of the capacitor in the collector circuit of Tr2. In an automobile receiver a moderately slow decay has been found desirable with a very fast attack time, in order to both protect the listeners ears from sudden blasts of sound when tuning across the band, and to prevent sudden blasts of noise as the vehicle passes under screening-structures, such as railway bridges. Finally a word of warning. It is tempting to place a small capacitor across the emitter resistor of Tr2 to further remove residual r.f. from the audio output, but to do so will cause a very adverse ratio of d.c. to a.c. load as seen by the detector, resulting in an inability to handle high modulation percentages. The input impedance of the a.f. stage following the detector should therefore be resistive and including the intermediate frequency and the response of the amplifier should be arranged to remove the small residual i.f. component.

REFERENCE

“Noise in Transistor Circuits”

In Part 1 of this article (Nov. issue) the footnote to the middle column of page 392 should read as follows:

***The shot-noise formula is usually given in the form of equation (9), i.e. \(I = 2qB \). If, however, the device giving shot noise is fed with constant current, then the shot-noise voltage across it is given by: \(V_n = 2qB/\gamma \), where \(\gamma \) is the small-signal a.c. resistance of the device.

In Part 2 (Dec. issue) the following corrections should be made to Fig. 9. In diagram (b) the formula for the right-hand noise current generator should be \(\sqrt{2q} \). In diagram (c) the right-hand current generator should be labelled \(-g_m \) of.
Further Bailey amplifier mods

I read with interest the modifications of the 30-watt amplifier by Dr. Bailey in the November issue. It seems that I am not the only person who has been troubled by the reversible output electrolytic which is both big and expensive. Maybe it will be of interest to your readers to see how this capacitor can be eliminated if a power supply with positive and negative rails is used. As the main reason for using the output capacitor is to avoid d.c. voltages across the speaker, it is obvious that a heavy negative d.c. feedback could do the same thing. A double RC filter with a long time constant is used. In order to ensure good a.c. attenuation in the feedback loop, the bias resistors of Tr, have been changed. The lower part is in fact formed by the filter resistors in series with the speaker. No bad behaviour of the modification has been noticed, and it has further been possible to put a complete stereo-amplifier into a box measuring only 28 x 19 x 5 cm³.

Ole Holmskov,
Horning,
Denmark.

The author replies

I was very interested to read the letter from Mr. Holmskov. I quite appreciate his point regarding the size and cost of the output capacitor and agree that it would be better if it could be omitted entirely. For most speaker systems the amplifier will be quite safe with the capacitor omitted, even in the original circuit, but difficulties arise if the output is short-circuited owing to the very low output impedance. As the d.c. output impedance is so low (10 to 20 milliohms), then only a very small offset voltage will cause a large current to flow in a short-circuited output. This will eventually destroy at least one of the power transistors unless an extremely large heat-sink is used. The same problems apply where the amplifier is used to drive into a transformer. What is required therefore, is a high output impedance at d.c., and negative current feedback at d.c. is therefore to be preferred to additional voltage feedback. I have not looked at possible means of doing this, but with one or two additional transistors it may be possible.

I therefore feel that the possibility of catastrophic failure exists in Mr. Holmskov's circuit, although admittedly under conditions of misuse. Nevertheless, amplifiers are liable to misuse, so I cannot help feeling that any loss in possible reliability is to be avoided, even at the cost of using an output capacitor.

Arthur R. Bailey

Helical u.h.f. aerials

Mr. Davies' article in the November issue in which he describes a helical aerial for the reception of Bands IV and V, prompts us to give a reminder that good aerial performance is an important factor in obtaining the best results from the u.h.f. television transmissions. Any suggestion which promotes the use of good domestic aerials is certainly to be welcomed. Whilst not wishing to detract from Mr. Davies' intentions in this direction, we must point out a serious drawback to the general adoption of circularly polarized receiving aerials.

In planning for national u.h.f. coverage of up to four television programmes with a limited number of available channels, it is inevitable that the same channels must be shared by a number of transmitters and relay stations. By employing horizontal polarization for the transmitters and vertical polarization for the relay stations, and assuming certain minimum performance characteristics for the viewer's aerials, it is possible to plan for acceptably low levels of co-channel interference. The assumed aerial characteristics in this context relate to the discrimination against the opposite polarization (i.e. against vertical polarization if the local transmissions are horizontally polarized and vice versa) and to the horizontal pattern which provides directional discrimination. (Recommended minimum characteristics are laid down by the C.C.I.R.) As a circularly polarized aerial will respond equally to any orientation of linear polarization, it will give insufficient protection against co-channel interference. To put it another way, the widespread use of aerials having no discrimination between horizontal and vertical polarization would have the effect of reducing the service areas of transmitters, because the limit of service would correspond to higher field strengths (up to 8 dB higher) to achieve the same standard of reception.

Mr. Davies suggests that the helical aerial is less prone to "flutter" effects. Whilst it is true that a radio link using circularly polarized aerials at both the transmitter and receiver terminals has some immunity from the effects of random reflections, it is difficult to see why helical aerials should be better on the average in this respect when the transmissions are linearly polarized.

J. L. Eaton
L. F. Tagholm
B.R.C. Research Department
Tadworth,
Surrey.

Editorial comment

The writers are perfectly correct, of course, in pointing out the potential danger of co-channel interference in some areas, if aerials which do not discriminate against the polarity of transmission of the unwanted station are used. We would go further and emphasize that this danger is not always appreciated on initial installation because all the u.h.f. transmitters planned for national coverage are not yet operating, and interference which is absent at that time may appear at some time later. The opening paragraph of the article did state that the characteristics of the helical aerial may be a disadvantage in some areas, and the question of co-channel interference is a case in point. However, while the transmission polarization may remain reasonably constant throughout the normal service area, the wave may arrive at a more distant receiving aerial displaced from the true vertical or horizontal, and in these cases the helical aerial may be used with advantage. The distance between transmitter and receiver at which the aerial described was used was 65 miles and while this is well outside the designated service area for the Oxford transmitter, there are many cases where viewers attempt reception from adjacent

www.americanradiohistory.com
areas until their locality is served by its own transmitter. It may be that even in urban areas with four local transmitters in operation, due to multiple reflections, the four waves may arrive at different angles of polarization. As regards the statement that the helical aerial is less prone to "flutter", this was based entirely on the author's practical experience. The aerial shown in our photograph is erected on a bungalow in the flight path of a large airfield which is approached by aircraft at a height of 500ft. Under these conditions, when using a conventional horizontal Yagi array, large colour changes are produced on a colour receiver, but not when using the helix.—ED.

Correction
It has been pointed out by E. H. Davies, the author of the article "A Helical Aerial for Bands 4 and 5", that the dimension S in Fig. 4 should have been drawn from the centres of the tubes.

Frequencies for amateur TV transmitters
From a report appearing in The Engineer for 11th October 1968, it is understood that Mr. J. R. Brinkley of S.T.C. is urging that the lower limit of the ultra-high frequency band allocated to business radio should be extended downward from 450 to 420 MHz.

I wish to draw the attention of your readers to the fact that the bands from 425 to 429 MHz and 432 to 450 MHz are allocated on a shared basis to the Amateur Service and other users. This portion of the spectrum which Mr. Brinkley wished to annex is extensively occupied both by communications stations and some 70 privately owned television transmitters in all parts of the United Kingdom.

D. S. Reid,
British Amateur Television Club.

Until recently, the Amateur Service occupied a continuous band of frequencies from 426 to 450 MHz on a shared basis with other services. The G.P.O. told Wireless World that the other users, whose identity they cannot disclose, now have exclusive use of frequencies between 429 and 432 MHz and to compensate for the loss of this band of frequencies, the amateur band has been extended down to 425 MHz. (See also “United Kingdom Licence Changes” in this month’s “World of Amateur Radio”).

ED.

Improper oscillations in transistors
Everyone well acquainted with the literature on the parameters of available transistors knows that one resistor and one capacitor cannot cause a transistor to oscillate. The limit of phase-shift of a single RC combination, the known phase shifts within the transistor itself, the rigid limits of voltage and current magnification in the three usable configurations; all these considerations seem to rule out such a possibility completely.

Happily, the transistor (like the well-known Columbian egg) does not read, and can therefore be persuaded to oscillate cheerfully under the conditions mentioned. There is but one proviso: the transistor employed must be of an appropriate species, namely one of planar or similar internal geometry, of reasonably high gain, and preferably of the high-frequency type.

Since the general introduction of silicon planar, high-frequency transistors, there have been occasional complaints of "spurious oscillations" when these newer devices have been directly substituted for the older types. What follows is not intended to provide an anodyne for the resulting headaches but, on the contrary, to elevate the oscillations themselves to a position of respectability, by giving them the dignity of a definition and a name.

For convenience and brevity, any transistor that can be induced to oscillate in a circuit recognisably similar to that in Fig. 1, will be said to exhibit "P-effect." The circuit shown represents the minimum necessary conditions under which the presence of the effect may be registered. Since C need only be very small in practice (a few pico farads), it might well be represented by the effects of associated wiring. This is mentioned so that anyone wishing to check the writer’s conclusions may take the obvious precautions.

The components R and C act effectively as timing elements, R doubling roles as a supplier of current bias to the transistor.

To produce the effect in a practical circuit, select a high-gain transistor, and with C equal to 0.01 μF and R a variable resistor of, say, 1 megohm, adjust the bias until, with a supply voltage of 9 volts, around 10mA flows in the supply line. An audible tone may now be extracted at medume impedance from the base, or at low impedance from the supply line, the source impedance (assuming a battery to be used) providing the load.

By inspecting the resulting waveform (Fig. 2) the nature of the oscillation is immediately apparent. The steep transients and the familiar saw-tooth shapes, show that the term “relaxation oscillator” is appropriate.

As might be expected, the frequency is roughly proportionate to the inverse of the RC product, and the simple modification to the circuit shown in Fig. 3 allows this to be verified over a fair range of frequencies.

The addition of a second resistor (Fig. 4) may obscure the basic simplicity of Fig. 1, but introduces the interesting feature of serial charging of capacitor C, R2 being now the principal timing element.

The introduction of a current limiting resistor is a natural temptation, especially as this can function as a formal load against which to extract the signal. The results of such modifications are interesting. P-oscillations tolerate only trivial loads in both emitter and collector circuits. Moreover, the effects of both types of load are very similar. It appears, indeed, that the transistor “sees” such loads merely as an addition to the source impedance.

Predictably, P-oscillations are readily synchronised with sharp pulses applied to the base of the transistor, at a frequency slightly higher than the free-running value. This feature immediately suggests a number of practical uses.

In a letter, commentary must necessarily be abbreviated, so the following five short notes must do duty for a more elaborate analysis.

1. Thermal stabilization by feedback resistor (Fig. 5) is the more practical method.

2. Transistor noise in P-mode operation is a problem, but not an insuperable one.

3. Extended practical tests show that P-oscillation is not a destructive process.

4. The range of frequencies obtainable is surprisingly great; the ratio 1000:1 is typical.

5. At the upper frequency limit, the waveform closely approaches to a sinusoid of diminished amplitude.

Naturally, the writer has his own views on the precise nature and cause of these oscillations, but the need for brevity precludes comment on this relevant aspect.

D. B. Pitt
Nottingham
The new EMITAPE Atonic range of low noise tape

Silence

don't buy any tape buy EMITAPE

EMITAPE LIMITED
HAYES MIDDLESEX
ENGLAND

WW—097 FOR FURTHER DETAILS
COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items:

- CN 15 watts 240 volts miniature model (\(\frac{1}{8}\)") bit • 2 interchangeable spare bits (\(\frac{1}{8}\)" and \(\frac{1}{4}\)"") • reel of resin-cored solder • heat sink • cleaning pad • storage space for lead and plug. 49/6

DE-SOLDERING KIT

Efficient de-soldering is assured with this high speed method from Antex. Soldered joints soon dissolve leaving a clean finish, thanks to the exclusive Antex-designed suction nozzle. Operation is by compressed air from an airline or foot-pump. No vacuum supply is needed.

Two models are available, complete with 6 ft. nylon airline, 6 ft. 3 core flexible lead and \(\frac{1}{4}\)" BSP Male and \(\frac{1}{4}\)" Male Adaptors.

- T.P.I. Male Adaptors. 84/- (Nett Trade)
- Complete with foot-pump 99/6 (Nett Trade)

CN 15 watts, fitted \(\frac{1}{8}\)" Ferralclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from .040 (1 mm) up to \(\frac{1}{8}\)" for 240, 220, 110, 50 or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares—World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.

Antex, Mayflower House, Plymouth, Devon.

Telephone: Plymouth 67377/8 Telex: 45296

Giro No. 258 1000
Balanced and Stabilized Power Units

A balanced voltage supply unit and an economical voltage stabilizer

by C. F. Ho,* M.Sc.(Eng.), M.I.E.R.E.

In circuit development work a power supply with both positive and negative outputs relative to a common terminal is often needed. To use two separate power packs to achieve this end is undesirable as there is a perpetual shortage of power supplies in most laboratories. Fig. 1 shows a circuit which permits the formation of two balanced supplies from a single unbalanced one. It was constructed as an adapator to be used with the economical voltage stabilizer; however, it may be employed with any conventional voltage regulator.

The circuit operates as follows: A voltage divider, R_2, R_3, and R_4, establishes a reference voltage at the base of transistor T_3 which is equal to half the input voltage. T_{r1} and T_{r2} form a differential amplifier where the base of T_{r1} is in the negative feedback path from the emitters of transistors T_3 and T_6. When unbalanced loads are connected to the output terminals, the output common terminal's potential tends to shift up or down with respect to the positive or negative rails. The resultant difference voltage, which occurs between the bases of T_3 and T_6, is amplified by the two differential amplifiers and is used to turn on T_{r1} or T_{r3} thus correcting the output voltage at the common terminal.

The component values shown in the circuit can provide an output of up to 12V at a maximum current of 250mA. Larger output current is obtainable by replacing T_{r1} and T_{r3} with higher power transistors. Resistors R_{13} and R_{15} need not be used if the input voltage regulator is current limited.

Economical voltage stabilizer

The voltage regulator, the circuit of which is shown in Fig. 2, is conventional. The potential divider, R_5, R_6, R_7, and R_8 sample the output voltage. An emitter-coupled differential amplifier formed by transistors T_{r5} and T_{r6} compares this sample with a reference voltage and the resultant difference signal is amplified by transistors T_{r1} and T_{r2} and applied to the base of the control element T_{r4} and T_{r5}. A pre-regulator, T_{r4}, is employed to improve the input voltage regulation and to reduce the output resistance of the regulator.

Short-circuit protection is incorporated by means of T_{r4}. Under normal operation, T_{r4} is not conducting. When the regulator output is short-circuited or overloaded, the potential at the base of T_{r4} becomes more negative than that at its emitter. Thus, the collector current of T_{r4} flowing through R_8 is applied to the base of T_{r5} and is sufficient to saturate the latter. The control element has its base at ground potential and is turned off instantaneously. As soon as the short-circuit is removed, the regulator is restored to its normal operation. The overload trip-current is set by R_9.

The output voltage of the regulator can be varied from 0 to 25V at 500mA. Output resistance is less than 0.1Ω and maximum peak-to-peak ripple voltage is not more than 200μV.

All diodes are formed by the base emitter junctions of CS9013 transistors. Incidentally all transistors are Fairchild planar silicon types.

*University of Hong Kong
Digital Exposure Timer

Stable exposure times are obtained from a timer having a logarithmic scale with eighth-root-of-two intervals.

by G. Coates, B.Sc.

A reader's letter in Wireless World brought attention to the fact that present photographic exposure timers were not designed with photographers in mind! This timer is an attempt to resolve the position. It can increase exposures in increments of one-eighth stops; can time subsequent exposures at the same setting to within 10 ms; and has an accuracy of better than one percent.

The main components, transistors, diodes and resistors, can be bought from advertisers in this journal for about 3d, 2d, and 1½d each, respectively. In this way the timer can be built for less than £10 including the case.

Although the timer has been designed as an enlarger exposure timer, sufficient details are given to enable the basic design to be modified to suit other applications.

The circuitry is quite extensive, and care should be taken to test surplus components before use, otherwise fault-finding becomes somewhat tedious.

Determination of the binary equivalent of each state

For photographic purposes a timer is required whereby the ratio of each time increment to the one following is a constant.

If successive times of

\[T; a_1T; a_2T \ldots \text{etc.} \]

are required, then:

\[\frac{a_1T}{T} = \frac{a_2T}{a_1T} = \frac{a_3T}{a_2T} \ldots \text{etc.} = \text{a constant.} \]

depends upon the ratio of each time increment to the one following.

therefore:

\[a_1 = a_2 = a_3 \ldots \text{etc.} \]

If \(n \) divisions are required between binary stages, then:

\[a_nT = 2^T \text{ or } a_n = 2. \]

From (1),

\[a_n = a_1^n = 2 \]

\[a_1 = \sqrt[8]{2} \]

and,

\[a_2 = \sqrt[8]{8}; a_3 = \sqrt[8]{8} \ldots \text{etc.} \]

Appendix I gives a rigorous proof that the time divisions for each state can be found on the counter by sampling the binary equivalent of the appropriate root of two. These binary numbers are independent of the basic time interval \(T \).

The time between one stage on the counter and the next can therefore be divided into any number of parts according to the basic law of the \(n \)th root of two.

Appendix II shows how to calculate the binary equivalent of \(2^{\sqrt[8]{2}} \), so that the reader can construct a decoding network for a greater or lesser number of divisions between stages. For the timer described, however, the binary equivalents of \(2^{\sqrt[8]{2}} \); where \(a = 0,1,2 \ldots 7 \) are given in the table below.

<table>
<thead>
<tr>
<th>Power of 2</th>
<th>Equivalent Binary No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000000</td>
</tr>
<tr>
<td>8/8</td>
<td>1000100</td>
</tr>
<tr>
<td>1/4</td>
<td>1000101</td>
</tr>
<tr>
<td>1/2</td>
<td>1000111</td>
</tr>
<tr>
<td>1/16</td>
<td>1000110</td>
</tr>
<tr>
<td>1/32</td>
<td>1000111</td>
</tr>
<tr>
<td>1/64</td>
<td>1000101</td>
</tr>
<tr>
<td>7/8</td>
<td>1101011</td>
</tr>
</tbody>
</table>

Principle of operation

The timer is basically two binary counters, connected in series, which count 10 ms pulses derived from the 50 Hz mains. The counters count to a number which is selected according to an 8th-root-of-2 law, thus giving "eighth stop" times. One counter determines the "full stop" and the other adds the fractions between "stops".

Consider a 4-stage binary counter. The waveforms of the output voltages of each stage are shown in Fig. 1.

The timer is arranged to switch on at \(T_0 \) and switch off between times \(T_1 \) and \(T_2 \). Time \(T_2 \) is twice \(T_1 \) i.e. it is one time value greater than \(T_1 \), because cascaded binary stages divide by two. During the period \(T_1 \) to \(T_2 \), the timer exists in eight different states. The outputs of the bistables are 1 or 0 (representing output
levels of +9 V or -9 V) and a binary number, between 1000 and 1111, can be written for any particular state. State 1100 would, for example, be 1.5 \times T_1.

If only one intermediate value between T_1 and T_2 were required, then this would be 2^{1/2} T_1 = 1.414 T_1. There are eight possible states, representing 1.000T_1; 1.125T_1; 1.250T_1, etc. As 1.375 is nearest to 1.414, this could be chosen.

The binary equivalent of 1.375 is 1.011, and therefore the desired intermediate state would be when the output of stages 1; 3 and 4 are at 1; and stage 2 at 0.

The outputs of the binaries are fed into a NAND gate, the diodes forming a tree as shown schematically in Fig. 1. It is not necessary to use the complement output of the binary stage (at 0), as there is no ambiguity in this circuit.

There is an inaccuracy in following the \(n \sqrt{2} \) law, because 1.375 was chosen as the nearest “fit” to 1.414. The absolute accuracy for each value of \(n \) is different, but calculable, as shown in appendix III. The inaccuracy can be made as small as required by using a larger number of stages. The prototype timer has a seven-stage counter, increasing the \(n \)-root-two-law accuracy to 0.85\% or better.

With seven stages, 64 (= \(2^6 \)) states are possible, of which eight are chosen to give the nearest fit to the timing law, giving eight time values. In fact a greater number of divisions could be easily made, as the additional complexity of, say, twelve divisions would be very small (a matter of adding twelve diodes to the decoder).

A greater number of stages will increase the minimum timing period \(T_{min} \) for a given input frequency, as this is divided by two for each stage. In this design, the number of stages, \(k \), is related to the minimum timing period, \(T_{min} \), and the input f-frequency, \(f \), by the expression:

\[
T_{min} = \frac{2^{k-1}}{f}
\]

The accuracy of “fit” to any law is a function of the number of stages, and is 100 x 2^{-\%} or better.

This seven-stage counter will time between \(T_1 \) and \(T_2 \) only. Times in excess of \(T_2 \) can be obtained by reducing the input frequency. A nine-stage binary divider feeds the counter, so that nine ranges, each one time-value wide, can be selected, by adding the desired number of divider stages in front of the counter.

The outputs of the binaries are reset to 1 at the start. The first pulse sets all the stages to 0, switches the output on, and the count begins. The circuit is arranged to operate in this way, as otherwise the output would not necessarily switch on at the start of an input pulse.

Although the frequency of mains can fluctuate by more than 1\%, variations of this order only occur during periods of winter peak demand: normally fluctuations are smaller than this. For photographic purposes the error is negligible. Obviously, the accuracy could be increased up to the limit set by the decoding error by deriving the counter input from a crystal controlled oscillator.

Detailed description

The timer utilizes sixteen bistable circuits. The bistable circuit used in the prototype is given in Fig. 2, and is that of a "pre-assembled logic unit" offered by one of the advertisers in *Wireless World* for 5/- each.

Almost any bistable circuit is usable and that given for the *Wireless World* digital computer could be used as an alternative, with appropriate changes in the line voltages.

Since times are derived from the 50 Hz mains supply, to obtain the required accuracy the decoder requires seven binary stages. Thus the smallest setting of the timer is \(2^7 \times 10^{-2} \) = 1.28 s. The longest period required is 10 minutes, i.e., 50,000 x 10 ms. The maximum count where 16 stages are used is \(2^{16} \) which is 59,904, equivalent to a duration of 9 minutes 59.04 seconds. 16 stages are therefore required.

The counter logic diagram, and decoder circuits are shown in Fig. 3. 10 ms pulses in antiphase are fed into a pre-selected binary stage by \(S_{1a} \) and \(S_{1b} \). \(S_1 \) allows for selection of the basic time periods, each equivalent to an increase in exposure of one stop. The time values are numbered from 1 to 9 in the prototype, as it is quite unnecessary to know the time in seconds for photographic purposes. Switching to the next higher time unit will double the timing period, which is precisely the method best suited for timing exposures.

One-eighth time values are selected from the outputs of \(B_{1a} \) to \(B_{1e} \) inclusive. These outputs are fed into a diode decoding network, the appropriate fractional time values being selected by \(S_2 \). \(S_1 \) provides a one-stop increase or decrease in exposure whatever the position of \(S_2 \).

Although the decoder looks complicated, it represents only the diode inputs of a diode-transistor NAND gate, \(G_1 \). The diodes are connected to the outputs of the bistable stages according to the presence of a 1 in the binary equivalent of each state.

\(B_{1f} \) is bistable, the purpose of which is to lock off the output after one timing period.

\(G_3 \) is a NAND gate which drives the thyristor through a pulse amplifier. The load is on when the output is 0.

The operation of the circuit is as follows:

Assuming the a.c. load to be off, the output of \(G_3 \) will be 1. \(S_4 \) is pressed closed, driving the reset line to 1. This holds all the counter stages at 1 and drives the output of \(B_{1f} \) to 1. As all stages of the counter are at 1 initially, \(G_1 \) output will be at O, whatever the position of \(S_2 \). This output is connected to the input of the NAND gate, \(G_3 \), and the output of \(G_3 \) will therefore be at 1, holding the a.c. load off.

If \(S_5 \) is now released, the counter will be allowed to count. The
first 10 ms pulse will ripple through the counter changing all the outputs to O. G₁ will go to I, and G₂ to O, as both the inputs of the gate will be at I. The a.c. load will switch on as a result. The bistable, B₁, will not be affected, as a positive pulse through gate G₂ is required to switch it.

The count continues until all the diodes in the selected decoding tree, and D₂₀, are connected to I outputs. The effect of this is to turn the output of G₁ to O for the duration of 10 ms. A positive pulse through G₂ switches the bistable so that gate G₁ goes to p, and remains at I whatever the state of G₂; as the output of B₁ is I, and cannot be reset to 0 until S₅ is again pressed. G₅ thus switches the a.c. load off.

C₁ is included in the circuit of G₁ so that it's input has an inherent delay. This is necessary as when the counter ripples through a pulse to the end of the counter, (i.e. when B₁₂₃ is about to change to I), the decoder diodes “see” a I on each stage for a short transient period.

C₁ is selected such that the gate does not pass this transient, but passes the 10 ms pulse at the end of the timed period.

S₅b includes a position to allow manual operation of the unit. One of the inputs of G₁ is held at O by D₂₀ connected to the oV rail. No pulse can now be passed through G₁, and the timer does not switch off until the stop button, S₅b, is pressed.

S₅ may be used when timing to switch off the load before the end of the count. This is useful too when the apparatus is initially switched on, should B₁₇ fall into the “wrong” state.

The focus position of S₅ allows the lamp to run at half-power, by gating the output so that one cycle in two is passed.

The same effect could have been obtained by half-wave rectifying the lamp supply, but in this case direct current could be drawn from the supply. This is undesirable, as it is usual for the lamp supply to be taken via a constant voltage transformer, when colour prints are made with an enlarger. (Variation in supply voltage would cause a variation in colour balance in the print). The operation of the constant voltage transformer would be adversely affected should it pass direct current.

20 ms pulses are obtained from the Q output of the bistable following the input bistable, selected by S₁₀. The output goes to O about 3 ms after the start of a half-cycle, thus it is not possible to apply these pulses directly to the output gate, G₂₉, as the Thyristor would have fired at the start of one of the two half-cycles which must be suppressed. The pulses are applied to a monostable, such that a positive-going pulse on the input causes the output to drop to O for about 27 ms.

Whilst S₅ is in the “focus” position, the inputs of G₂₃, G₂₅, and G₃, are arranged to be at I. A O on the input from the monostable will therefore cause the thyristor to stop conducting at the end of the current half-cycle. When S₅ is in either of the other two positions, the monostable will remain off, with the output at I, and will not affect the other modes of operation.

As the output of the monostable drops to O some 3 ms after the start of a half-cycle, it can only inhibit the output of the timer for the two subsequent half-cycles, and the duration of the quasi-stable state must be such that the monostable output returns to I at the end of the second half-cycle. Resistor R₂₅ in the monostable should be selected to achieve this. The value used in the prototype was 68 kΩ. If an oscilloscope is not available for selecting this value, a d.c. voltmeter can be inserted across the lamp: R should be varied until the needle oscillates about its unenergised position.

The 50 Hz input to S₈b is derived from a 12 volt winding

Fig. 3. Counter logic diagram and decoder circuits.
on the mains transformer. The diodes, D_{19} and D_{39}, provide pulses in antiphase for driving the d.c. inputs of the bistables.

The full circuits of the monostable, gates and thyristor output are shown in Figs. 4 and 5. The connexion of these circuits to the bistables is straight forward, and is indicated in Fig. 2, which also shows the diode decoding network connexions.

Power supplies

Supplies of $-9V$ and $+6V$ are required. The power supply, stabilizer regulates with only a small voltage drop across the series transistor. Also, it is cheap to construct with selected surplus transistors.

The power-supply circuit diagram is shown in Fig. 6. The prototype was designed to be used with a constant-voltage transformer, which had an isolated secondary winding.

The bridge rectifier, D_{24} to D_{29}, connects each of the two poles of the supply alternately to the $-9V$ rail, which is therefore connected to the earthed chassis.

If the timer is to be used without an isolating transformer, either the components must be screened from earth (the screen being connected to the $-9V$ rail) or an alternative method of switching incorporated which does not require the circuits to be floating, otherwise 50Hz hum will cause maloperation of the timer.

The 10 ms pulses are obtained from (B) and (C) (Fig. 6). These pulses are, in fact, half-sine waves: this does not matter, as the bistable connected to them will square them up for the following stages.

The n-p-n transistors of the stabilizer should be silicon planar types, and the series stabilizer transistor Tr_5 (Tr_{10}) should be germanium. This is essential, as the voltage across R_{17} (R_{18}) should be as large as possible for the efficient working of the stabilizer, but is limited to the difference between the base-emitter voltages of Tr_5 and Tr_6 (Tr_7 and Tr_8). Loop instability is avoided without the use of a capacitor by selecting a high-frequency transistor for Tr_5 (Tr_{10}), and a low-frequency transistor for Tr_6 (Tr_7). R_{19} should be selected to give a voltage of $-9V$, and R_{21} to give $+6V$.

Fig. 5. Power control circuit.

Fig. 6. Power supply circuits.
Construction

The bistables and gates were built on a 5" × 3½" piece of Vero-board, and the power supply on a piece 3½" × 2½". The high packing density to achieve this was facilitated by pre-assembling the bistable circuits—the photographs make this clear.

No indicator lamps were used in the prototype, as the timer is used for colour printing which is carried out by the author in complete darkness—even a red light would affect the colour emulsion.

Operation

The mode of operation is selected by S_n. In the auto position, the exposure is made by depressing and releasing the start button, S_o, the duration being set by the position of S_1 and S_p. This can be cut short, if required, by depressing the stop button.

The focus position allows the lamp to be run at half power. In this way a larger lamp can be used in the enlarger without overheating it, as it is left on for the longest period whilst the desired size and framing of the print is chosen. The final focusing can be carried out at full brightness by pressing and holding the start button. Alternatively, the manual position of S_n can be used, which allows the exposure to commence by pressing S_o, and finish by pressing S_p.

The timer described offers a method of timing based on a logarithmic law, with high accuracy and repeatability, and can be used for timing enlargements in black-and-white and colour.

Nearly all serious amateur photographers who process their own colour prints use the "white light" (one-exposure) method; whereby the colour corrections are made by inserting subtractive colour filters in the path of the light. This timer enables the tri-colour (three-exposures through red, green and blue filters) method to be used too. This has hitherto been almost impossible, as the inaccurate repeatability of other methods of timing made the cancellation of colour imbalance a matter of chance.

The timer also allows small adjustments to the exposure to be made without affecting the colour balance.

When used with the "white light" method, the timer allows the use of logarithmic filter factors, (see App. IV). This simplifies the calculation of exposures when changing filters to addition and subtraction, instead of multiplication and division.

The spare Vero-board connector indicated in Fig. 7 is reserved for circuitry allowing audible indication of completed timing periods.

No further details are given here, but the author hopes to publish details shortly.

Appendix I

Consider a counter of k stages, with an input pulse period of τ_s secs, then the period of the next stage is τ_{s-1} secs, etc. to the first stage, the period of which would be τ_1 secs.

The k-stage counter could exist in 2^k different states. If the counter started counting from zero to a number, then the time T, taken to reach this number would be:

$$ T = \phi \tau_k = 2^{1-k} \phi \tau_1 $$

where ϕ is an integer.

Expanding,

$$ T = a_1 \tau_1 + a_2 \tau_2 + a_3 \tau_3 + \ldots + a_{k-1} \tau_{k-1} + a_k \tau_k $$

The coefficients, a_1, a_2, etc. can have the value of 0 or 1, as the output of each stage of the counter can only be one of two states.

Thus:

$$ a_1 a_2 a_3 \ldots a_{k-1} a_k $$

is a binary number equal to ϕ

In this design selection can be taken from only half of the possible states of the counter, as states are selected only when $a_1 = 1$.

ϕ is therefore an integer between 2^k-1 and 2^k; there are $2^k-1=2^{k-1}$ integers, of which n are chosen so that $T = 2^n/\tau_1$ (a = an integer between 0 and $n-1$)

$$ \phi = 2^n/2^{k-1} $$

The binary equivalent of each state is therefore obtained by calculating the binary number equal to the appropriate root of 2 and multiplying it by 2^{k-1}. (This, in effect, merely removes the "decimal" point from 2^n expressed in binary form).

Appendix II

Calculation of the binary equivalent of $2^n/2^k$

If a binary number equal to $2^n/2^k$ is written:

$$ 1a_1 a_2 a_3 a_4 \ldots a_n $$

(the most significant digit must be an 1)
Then, \(a_1 = \frac{1}{2} \) (decimal) \(a_1 = 2^{-1} \) or O
\(a_2 = \frac{1}{4} \) \(a_2 = 2^{-2} \) or O
\(a_3 = \frac{1}{8} \) \(a_3 = 2^{-3} \) or O
\(a_n = 2^{-n} \)

Each digit may, of course, be zero, depending on the number changed to binary notation.

The decimal fraction of \(2^m - n \) is first calculated, and all possible coefficients of the binary number are subtracted from the fraction. A 1 is written for each possible subtraction, and a 0 for each impossible one.

The following example will make this procedure clear.

Example

Calculate the binary equivalent of \(2^1 \)

\[
\begin{align*}
\log_{10} 2 &= 0.3010300 \\
\text{antilog} &= 1.414214
\end{align*}
\]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.414214</td>
<td>1</td>
</tr>
<tr>
<td>0.414214</td>
<td>10</td>
</tr>
<tr>
<td>0.25</td>
<td>01</td>
</tr>
<tr>
<td>0.125</td>
<td>001</td>
</tr>
<tr>
<td>0.0625</td>
<td>0001</td>
</tr>
<tr>
<td>0.03125</td>
<td>00001</td>
</tr>
<tr>
<td>0.015625</td>
<td>000001</td>
</tr>
<tr>
<td>0.007813</td>
<td>0000001</td>
</tr>
</tbody>
</table>

The binary number equal to \(2^1 \), to seven significant digits.

\[1.011001 \]

and the “binary equivalent” is 1011001.

Appendix III

Calculation of errors

The decoding error is the ratio of the decimal equivalent of the binary number used for decoding, to the actual decimal number. For example, the decimal equivalent of 1011001 is

\[1 + 0.25 + 0.125 \ldots \text{ etc.} = 1.421875. \]

The percentage error is, therefore,

\[
100(1.421875 - 1.414214) = 0.542\%
\]

The maximum percentage error is plus or minus the duration of the \((k + 1)\)th. significant digit, as a percentage of \(2^{1/2} \).

Hence:

Maximum decoding error = \[\pm 100.2^{-k}.2^{-1/2}\% \]

The maximum error for this equipment is therefore, \[\pm 0.85\% \]

Appendix IV

Filter factor conversion table

To find the logarithmic value of the filter factor, (filter value \(F_v \)) read the time value in the top row, and the fractional time value in the left column, for the appropriate factor.

E.g. find the filter value of 6: Nearest factor = 6.2; \(F_v = 2^{1.8} \).

<table>
<thead>
<tr>
<th>(F_v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>8.0</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>1.1</td>
<td>2.2</td>
<td>4.4</td>
<td>8.7</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>1.2</td>
<td>2.4</td>
<td>4.8</td>
<td>9.5</td>
<td>19</td>
</tr>
<tr>
<td>38</td>
<td>1.3</td>
<td>2.6</td>
<td>5.2</td>
<td>10.5</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>1.4</td>
<td>2.8</td>
<td>5.7</td>
<td>11.5</td>
<td>23</td>
</tr>
<tr>
<td>58</td>
<td>1.5</td>
<td>3.1</td>
<td>6.2</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>1.7</td>
<td>3.4</td>
<td>6.7</td>
<td>13.5</td>
<td>27</td>
</tr>
<tr>
<td>78</td>
<td>1.8</td>
<td>3.7</td>
<td>7.3</td>
<td>14.5</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>4.0</td>
<td>8.0</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

When changing filters, the sum of the filter values of the old pack is subtracted from, and the sum of the filter values of the new pack is added to, the exposure (in time values).

Tables for fractions other than \(\frac{1}{2} \) can be calculated from the expression:

\[
F_v = 2^{F_v}
\]

REFERENCES

H.F. Predictions—January

Ionospheric and magnetic storms are becoming more frequent, a rough pattern being two disturbed periods per month spaced by about ten days. The 27-day recurrence cycle, which is moderately successful as a basis for long-term forecasts, places the first disturbance around the 5th to 9th. Paths crossing the auroral zones are subject to a variable excess, sometimes total, absorption. Most of the variations can be overcome by operating near the FOT as indicated by the Montreal LUF curve. When this correction is not required the predicted LUF drops to 3MHz from 22.00 to 08.00 G.M.T. and peaks to 8MHz at 16.00. All LUFs are calculated by Cable & Wireless for reception in the U.K. of point-to-point telegraph transmissions at quiet sites with directive aerials.
Several photographs show the layout of components on the printed-circuit i.f. board. The main copper area is at chassis potential and the -20 V supply line is a copper ring around the periphery of the board. As explained in Part 7, the positive of the supply is the earthy side.

The transistors used in the vision i.f. stages are types BF167 for the first stage and BF173 for the other two. These are metal case types with a small projecting tag. Held upside down with this tag towards one and looking at the four connecting wires, the connections are base, emitter, collector and screen, starting with the wire to the left of the tag and going round clockwise. The BF184 for the video stage has the same connections.

In the sound i.f. amplifier BF194 transistors are used. These are in moulded cases and held upside down with the flat side of the case towards one the connections are base, emitter, collector, starting from the left. Apart from their cases the BF184 and BF194 are substantially identical.

The BC108, used for the a.g.c. circuits, is a metal-case type with a tag at the side, like the BF167, BF173 and BF184, but there are three leads only. Note particularly that the order of connection is different; going clockwise and starting with the lead on the left of the tag, the order is emitter, base, collector.

Before mounting them it is a good plan to check all transistors and diodes with an ohmmeter. With the Model 8 Avometer on the ohms range, the forward resistance between base and emitter is about 1.8 kΩ and the back resistance is too high to indicate; between emitter and collector the resistance both ways is too high to indicate.

The BC108 type has a somewhat lower forward resistance between base and emitter, around 1kΩ. Diodes have a lower
forward resistance which varies from about 500Ω to 1kΩ according to type, and a back resistance too high to indicate.

The test is a rough one and shows only gross defects. Nevertheless it definitely indicates a broken-down junction, for this will show low resistance in both directions. The test is also useful when the components are wired in circuit, but it is then less definite for there are nearly always other resistances in shunt which prevent an infinite reading of back resistance from being obtained. However, usually the resistance read in the forward direction will be lower than that in the backward.

The test can also be used to indicate the 'way round' of diodes for in some types this is not always completely clear from their marking. The forward direction of low resistance is, of course, with the positive of the ohmmeter battery applied to the anode and the negative to the cathode. It is all a little confusing, however, because it is the cathode of the diode which is indicated in red when a coloured marking is adopted because, when a diode is used as a rectifier, the d.c. output is positive at the cathode.

Then with the usual multi-range meter the terminal marking and lead colours are normally arranged to indicate polarity for the measurement of an external voltage, which means that when used as an ohmmeter with an internal battery the polarity of the voltages available at the leads for external use is the other way round. Thus, with the usual meter, forward conduction of a diode is obtained when the positive terminal of the meter is connected to the diode cathode!

It is advisable, of course, to check all components before mounting them. One does occasionally meet with good parts which are wrongly marked. In colour coding, brown and red or yellow and orange can be mistaken for each other in some lights, especially if all the resistors are not of the same make. This warning is not just academic, it actually occurred in the development of the equipment. A resistor coded for 4.7kΩ turned out to be 47Ω, this was actually wrongly marked for there was no question but that the band was red.

When mounting components on the printed circuit it is advisable to bend over the ends of the leads before soldering. It is advisable, however, not to have the component resting on the board on one side and the leads bent tightly on the other. With the component resting on the board and the leads through the mounting holes in the board, bend the leads at right angles with about 1/16-in clearance from the board. Then solder the leads to the board so that the component itself stands clear of the board by this amount.

This greatly facilitates the removal of the component if it should ever be necessary. By applying a soldering iron alternately to the two leads while pressing gently on the component it can be pushed back against the board so that the bent ends of the leads stand clear and can be straightened. A second application of the iron then allows the component to be easily removed.

Under view of the printed-circuit board. The two capacitors marked 0001 μF are not shown on the circuit diagram. As explained in the text, they are extra capacitors to reduce feedback. They may or may not be necessary and, in some cases, others may be required.
In Part 7 the type numbers were given of Brayhead coil formers and cans. These are no longer available but identical parts can be obtained from Neosid under different type numbers. With two exceptions, all formers are type 722/1 with cans 7100. The exceptions are \(L_{17,18}\) and \(L_{16,17,18}\), which have 722/4 formers and 7101 cans. All formers required a terminal base 5027. They all have a diameter of \(\frac{1}{2}\) in.; the available winding length of the short ones is \(\frac{2}{3}\) in. and that of the long ones \(1\frac{2}{3}\) in. \(L_{17,18}\) and \(L_{16}\) have Neosid long screw cores \(4 \times 0.5 \times 12.7\); all other coils have short cores \(4 \times 0.5 \times 6/900\).

In particular, do not bend over the tags of the coil cans. If they are bent over the cans are very difficult to remove and in the process the tags usually break off. Let the tags pass straight through the board and let the solder pile up round the tags.

Details of the coils are given in one of the drawings (Fig. 1.) and in most cases the winding is straightforward. The vision-detector and the ratio-detector couplings are the most difficult because the whole detector circuits are included in the cans as well as the coils. The difficulty arises because there is little room within the cans and great care must be taken to avoid

Fig. 1. In Part 7 the type numbers were given of Brayhead coil formers and cans. These are no longer available but identical parts can be obtained from Neosid under different type numbers. With two exceptions, all formers are type 722/1 with cans 7100. The exceptions are \(L_{17,18}\) and \(L_{16,17,18}\), which have 722/4 formers and 7101 cans. All formers required a terminal base 5027. They all have a diameter of \(\frac{1}{2}\) in.; the available winding length of the short ones is \(\frac{2}{3}\) in. and that of the long ones \(1\frac{2}{3}\) in. \(L_{17,18}\) and \(L_{16}\) have Neosid long screw cores \(4 \times 0.5 \times 12.7\); all other coils have short cores \(4 \times 0.5 \times 6/900\).
short-circuits to the cans. Physically small components and sub-miniature diodes are essential.

The board is mounted on a pair of hinges alongside the luminance-amplifier board and connected thereto by leads of just sufficient length to permit either board to be lowered to the horizontal position with the other vertical. This can be done without the video lead exceeding about 3 inches, and the length of the others is not important. On the vision side all coil cores except that of the detector coupling are adjustable from the top; only the detector is adjustable from the bottom. On the sound side, however, each can has two cores, one adjustable from the top and the other from the bottom.

Details of the delay line will be given in a future article. It is not necessary until the colour circuits are brought into operation and on monochrome it serves no useful purpose save to provide some i.f. filtering. Until the colour circuits are operating, therefore, it can be replaced by an r.f. choke, which can be a duplicate of L3.

The tuner used is a commercial one and is the A.B. Metal Products "U.H.F. Quarter Wave Transistor Tuner". The connections for it are given in Fig. 2. This has two transistors, one acting as an r.f. amplifier and the other as a mixer-oscillator. This particular tuner consumes about 6mA at full gain and about 10mA at low gain, at 12V. For \(R_{1} \), resistor \(R_{32} \) is made 560Ω and \(R_{33} \) is 100Ω and a resistor of 2.2kΩ is connected between the two, but at the tuner end. This arrangement gives a tuner supply which varies between about 10V and 12.5V with a.g.c. and brings the negative tuner line above the -20V line by the proper amount to give the correct minimum bias to the r.f. stage.

The drawings show the tuner connections. In addition to the components which are mounted on the underside of the printed circuit board of the tuner and which are supplied with \(R_{1} \), a 470-Ω resistor \(R' \) is connected as shown for the emitter resistor of the r.f. stage; a 2.2kΩ resistor \(R'' \) is connected between the tuner positive and negative lines and a capacitor \(C' \) of 68pF is connected between the X terminal and the tuner case, the coaxial output cable being joined across this. This cable should not exceed 2ft in length and the capacitance actually used for \(C' \) must be modified in accordance with the length of cable actually used so that the total measures 72pF.

In normal commercial practice receivers are dual standard and cover Bands I, III, IV and V. This receiver is 625-line only and covers only Bands IV and V. The usual practice is to employ virtually two tuners, one for v.h.f. and the other for u.h.f. even if they are not physically separate. Generally, on u.h.f. the v.h.f. mixer is converted to an i.f. amplifier. The net result is that on u.h.f. there is one more i.f. stage operative than on v.h.f.

We are using a u.h.f. tuner feeding straight into a normal i.f. amplifier. The usual extra stage is missing and so the total gain is lower than is normal in commercial practice.

It was felt to be undesirable to fit an extra i.f. stage to the main amplifier because it was thought unlikely that adequate stability could be achieved. A trial shows that the sensitivity without this extra stage is adequate for many, if not for all, purposes. Used in central London with a normal u.h.f. aerial on the top of an eight-storey building, BBC-2 can be received well. A detector output of some 4V p-p can be obtained at well below maximum gain. If greater sensitivity is needed, it is not difficult to build a single i.f. unit which can be fitted to the tuner, and its separation from the i.f. amplifier proper will greatly ease stability problems.

Many tuners, of course, are designed for all television bands and if one of these is used it will include this extra i.f. gain. The tuner employed must be left to the constructor's choice, for it must be remembered that television tuners are not things which are normally freely available on the retail market, just because there is little demand for them.

Any tuner should be usable with changes only to the feed resistors \(R_{3} \) and \(R_{4} \) and, possibly, to the coupling capacitance, but the constructor will have to work out for himself just what is needed.

Whatever is used, a good slow-motion drive is essential. Tuning for colour is much more critical than for monochrome, and so the constructor must be prepared to fit a different drive from the one provided with the tuner if a practical test shows it to be desirable.

We now come to alignment. It is almost essential to use a swept-frequency signal generator (wobbulator) and oscilloscope. A normal signal generator is also needed.

For the initial alignment of the amplifier disconnect the tuner i.f. input and plug the output leads of the signal generator into the input socket of the amplifier. Use an isolating mains transformer to feed the equipment for safety's sake and to ensure that the signal generator is not damaged as it may be if it is earthed and the receiver is live to the mains. Connect a voltmeter (e.g. Model 8 Voltmeter on 10-V range) across \(R_{1} \). It is advisable also to connect a 0.001-μF, or thereabouts, capacitor across this resistor as a temporary measure to reduce the chance of the voltmeter leads introducing instability. Connected at this point the meter introduces less stray feedback than if joined to the detector load. Disconnect one end of \(D_{1} \) to render a.g.c. inoperative.

Set the signal generator (s.g.) to 37MHz and adjust the core of \(L_{3} \) for maximum output. The s.g. will have to give a large output at first, and this must be reduced as necessary for a reasonable indication on the meter. When possible work at about 2V output.

If no indication can at first be obtained, connect the s.g. between chassis and the base of \(T_{13} \), inserting a 0.001-μF capacitor. There should then be no difficulty in obtaining sufficient output and, normally, an input of 20mV is needed for 2V output. The s.g. is unmodulated, of course.

Having tuned \(L_{3} \), adjust \(L_{2} \) and \(L_{3} \) in turn for maximum output at 38.5MHz and 35.5MHz respectively with the s.g. connected to the input socket. Leaving the s.g. so connected adjust \(L_{12} \), \(L_{2} \), and \(L_{3} \) for minimum output at 33.5MHz, 41.5MHz and 31.5MHz respectively. These adjustments are very critical and when the settings are nearly right the full output of the s.g. will probably be needed, and it may also be desirable to put the output voltmeter on the 2.5-V range.

It may happen that the tuning of the 31.5-MHz trap is much less determinate than the others. This is because it is trapping at a frequency at which the 33.5-MHz trap is still giving quite a lot of attenuation and the s.g. output may consequently not be enough to give a clear indication of proper tuning. If no reasonable proper setting can be found, screw the core temporarily lowered to a minimum.

Fig. 2. Printed-circuit board of the tuner used in the development model. The actual arrangement used will depend upon the actual tuner employed and so must be worked out by the individual. In all cases, however, 0.001-μf capacitors should be connected between the aerial feeder and tuner, with 1-MΩ resistors as shown. This is because the chassis is live to the mains and the capacitors must be of at least 350V working.
right into the coil to make sure that at least it is not tuned above its correct frequency.

Now connect the s.g. between chassis and the emitter of the mixer stage in the tuner with a 0.001µF capacitor in series and connect the tuner cable to the i.f. board. Tune the i.f. circuit in the tuner for maximum output at 36MHz, and then L1 of the i.f. amplifier. This completes the initial, somewhat rough, adjustments.

Replace the s.g. by the wobbulator and set it for a sweep of at least 15MHz centred on 37MHz. If it has no internal marker system or one of doubtful accuracy use the s.g. to provide a marker. The output to feed the oscilloscope can be taken from R1, or from the output of the delay line but with the latter the trace will be inverted. Adjust the controls to obtain a trace of reasonable amplitude. With the usual linear vertical amplifier of the oscilloscope it will not be possible to see at the same time the response within the pass-band and that due to the traps outside it. If there is a beautifully flat-topped response in the pass-band, beware; something is probably overloading!

To see the trap response it is necessary greatly to increase the input and overloading will then occur within the pass-band. Set up in this condition so that the three troughs of the traps, two below the pass-band and one above, can be seen. Set the marker to 33.5MHz and adjust L2 so that the trough occurs precisely at this frequency. Then set the marker to 31.5MHz and similarly adjust L4; it should now be quite easy to see when this is correctly tuned. Repeat with L3, and the marker at 41.5MHz.

Now reduce the input so that the pass-band response shows clearly. Vary the i.f. gain control. Full gain will not normally occur with the control fully at one end of its travel. Starting from the maximum-gain end, the gain will usually increase slightly at first, reach a maximum and, as it is turned further, will steadily decrease. This arises because there is an optimum bias on Tr for maximum gain. If R27 and R28 are chosen to provide this optimum bias with R29 at minimum-resistance, there is a danger that in some cases maximum gain would not be obtainable because of adverse component tolerances. In other cases, with tolerances the other way, the condition of reduced gain at minimum R29 could still occur. To avoid this R28 has been deliberately chosen so that with all likely tolerances maximum gain will be obtainable.

Increase R29 from the position of maximum gain, at the same time increasing the input if necessary and watch the shape of the response curve. Ideally, the shape of the curve should not change; in practice, it will do so. There are two factors which make it change. One is the variation of input and output impedance of Tr, with base bias. This cannot be avoided and the amplifier has been designed to minimize this effect. It will cause some change, but not a great amount. The second factor is feedback in the amplifier. The first thing to look at, of course, is the connection to the oscilloscope. Screened cable will, of course, be used, and a by-pass capacitor across R1, has already been recommended. There should be no trouble from this, therefore, but if touching the emitter affects the trace try 10kΩ in series with the oscilloscope lead and a further by-pass capacitor after it. Apart from this, try extra by-pass capacitors around the chassis, of 0.001–0.002µF. The capacitors mounted on the underside of the board, and visible in the photographs, are for this purpose and proved sufficient. The original hand-made model, which was referred to last month, actually needed rather more, which is a little surprising in view of the higher conductivity of copper sheet compared with deposited copper. One cannot guarantee that exactly the same by-passing will be needed in every case.

At this stage do no more than endeavour to reduce the change of shape with gain by extra by-passing. It will normally suffer a further reduction as the circuits are aligned for the proper bandwidth, for this will reduce the maximum gain and so the effects of any internal feedback.

The response at the high-frequency side of the pass-band is affected mainly by L4, and L1, is adjusted mainly for symmetry of response. The coil in the tuner has very little effect on the shape of the response for it is heavily damped by the mixer; it is normally adjusted for maximum amplitude of the trace. At the low-frequency end of the pass-band L1, and L2, have most effect.

Set the gain control for an output at least 6dB below maximum and if the equipment permits about 10dB below. Adjust L3, for the best symmetry. Set the marker at 39.5MHz and adjust L0, so that the marker appears half way down the high-frequency side of the response trace. At the same time adjust L5, as necessary, to preserve a rough symmetry.

Set the marker at 35MHz and now adjust L2, and L0, so that the marker is half way down the trace on this low-frequency side, again adjusting L3, as necessary, for symmetry. If it is possible to obtain a 6-dB response at a frequency lower than 35MHz down to a minimum of 34.5MHz, well and good, but it is unlikely that it can be brought much below 35MHz since the bandwidth is limited by the trap circuits. Variations are likely to arise only because of tolerances on the capacitors in the traps.

The i.f. carrier is to be set at 39.5MHz and the 6-dB bandwidth must not be less than 4.5MHz if the colour components of the signal are to be passed. If it is a little greater, up to the maximum of 5MHz, definition will improve a little but there is a greater likelihood of sound-channel interference.

The aim in adjustment should be to secure a 4.5-MHz, or slightly more, bandwidth and within the passband the trace should be symmetrical and smoothly rounded with the maximum just below 37MHz.

When this has been achieved as nearly as possible increase the gain while watching the trace, and reducing the wobbulator output as necessary. Notice how the shape of the trace varies. If all is well the total bandwidth may increase slightly, although not to an extent which is noticeable without actual measurement. The curve is likely to become double-humped and the low-frequency hump may be a bit higher than the other. Readjust L1, for equality of height of the humps and measure the peak-to-trough ratio and the 6-dB bandwidth. If the peak-to-trough ratio does not correspond to a ratio in excess of 1 dB, if the 6-dB bandwidth is not less than 4.5MHz, and if the 6-dB point still falls at 39.5MHz all is well, but it is now necessary to check that at low gain the response has not deteriorated too much. If it has, then a compromise adjustment may be needed. In general, it is more important to have the proper response at 6-10dB below full gain than at full gain, because the amplifier will rarely have to operate at full gain. If it did a.g.c. would not be working; for a.g.c. to work at all the i.f. gain must always be below maximum, for it comes into action first on the i.f. amplifier.

If it should happen that the shape of the response is affected much more than has been indicated by the gain control, then one must get down seriously to tracing the causes of feedback in the amplifier, for such feedback is almost certainly the cause of the trouble.

The sound i.f. amplifier is adjusted using the s.g. set at 6MHz. Connect it through a capacitor between chassis and the bases of Tr5 and Tr7, in turn, adjusting L16 first and then L14, and L15.

Fig. 3. Dummy tuner which can be used in place of an actual tuner for i.f. alignment.
for maximum output as read on a voltmeter connected across C_{42}. Then connect the s.g. between chassis and the base of T_{49}, again with a series capacitor, and adjust L_{19} and L_{10}. Readjust all cores except L_{13} carefully for maximum output. Set the s.g. output so that there is some 3V to 6V across C_{42}. Pick a pair of matched resistors of some 80-200kΩ. The exact value is unimportant but it is necessary that they should be alike within some 1%. Connect them in series across C_{42} and join a milliammeter from their junction to the junction of R_{48} and C_{41}. The 1-mA range of the meter can be used at first and reverse the meter leads if it reads wrong way. Adjust L_{19} for zero current. Turning the core one way will increase the current, turning it the other way will reduce it. It does not follow that the way of reducing current is the correct one, for the initial setting may be one which is right outside the range of the discriminator. If turning the core to reduce the current does not bring it to zero and then reverse the current, turn it the other way. It should then pass through a maximum, come right down to zero and then reverse. For a precise zero setting reduce the meter range to 50µA and check the zero-setting of the meter.

Now readjust the primary L_{13} for maximum voltage across C_{42}, and then check the zero setting of L_{19}.

With the signal generator still applied to the base of T_{49} and still set at 6MHz connect an oscilloscope to the collector of T_{49}. The oscilloscope must be one having a Y amplifier which gives at least fair gain at this frequency and the input to T_{49} should be no more than is needed to give a reasonable height of trace. Adjust L_{19} for minimum output. If the timebase can be adjusted to observe the waveform it will probably be found that this minimum is at 12MHz, the second harmonic of the input, the fundamental output being too small to be seen. This arises partly because of harmonics in the source but mainly because the input is being applied to a transistor which is initially biased at cut-off and which thus acts as a good harmonic generator.

Now set the s.g. to 4.43MHz and adjust L_{10} for minimum output. This circuit will give only a small reduction of output when tuned.

When aligning the amplifier it is neither necessary nor desirable to have the timebases and luminance stage operating. They can all be put out of action by removing the fuse F_1 of Fig. 1, Part 4, so that only the transistor power supply is operative.

With only tuner and i.f. amplifier working, one can search for a signal using the oscilloscope connected to the emitter of T_{49} as an indicator, although it is helpful to have an audio amplifier and loudspeaker connected also. When tuned for maximum vision signal no trace of the colour burst will be visible. Tuning to the 6-dB point at 39.5MHz should make the burst distinctly visible. As transmitted it has the peak-to-peak amplitude equal to that of the sync pulse, but as displayed on the oscilloscope it will have an amplitude of only about one-half of this, since it falls at or near the other 6-dB point of the response curve. For it to be seen at all, of course, the oscilloscope itself must be able to respond to it and it is necessary, therefore, for its amplifier to have a response extending to at least 5MHz. This will also be necessary for checking in the colour circuits.

If the colour burst is not obtainable, do not at once conclude that something is wrong. BBC2 does not always transmit a colour signal; there are occasions when only a monochrome picture is transmitted and with this there is no colour burst!

There are two controls on the i.f. board which must be set on a signal. They are R_{29} and R_{30}. Set i.f. Gain, and R_{30} Set Signal Level. With a weak signal both will have to be set for maximum output. With a moderately strong signal a.g.c. will control so well that R_{29} may appear to have little effect, for as i.f. gain is increased by this control a.g.c. acts to offset its action. It does, however, affect the ratio of i.f. to r.f. gain and so may under some conditions of signal strength affect the signal-to-noise ratio. In general, therefore, R_{29} should be adjusted for the best results while watching a picture.

The normal operating output at the emitter of T_{49} is about 4V p-p of vision signal including sync pulse, i.e., from the tip of the sync pulse to peak white. This gives an output signal to the picture tube which is normally greater than is necessary and which is reduced to the proper value by the contrast control. If the signal is strong enough, the output should be adjusted to 4V p-p by means of R_{48}. The minimum output from T_{49} for a reasonable picture with the contrast control at maximum is about 2V p-p.

A table of voltages in the i.f. board is included with this article. Those for the no-signal condition should reproduce themselves reasonably closely in different amplifiers. Those for the signal condition naturally apply only for a particular signal input and are included only to give some guidance about the sort of changes which occur with a signal.

In conclusion, if it is desired to carry out i.f. alignment without a tuner it can be done fairly well by using a dummy tuner coil. Make another coil identical with L_{19} and connect it in the arrangement shown in Fig. 3. For an s.g. of 50Ω output impedance the two resistors are not needed; but with the usual 75Ω output they are wanted. The connection between the dummy and the i.f. board is made using the piece of cable which will be used with the tuner. The coil in the dummy is then treated just as if it were the i.f. coil of a tuner. The coil is a reasonable approximation to an actual tuner output circuit, but final alignment must always be done with the actual tuner.

Notes

In the photographs of the luminance amplifier in Part 6 a capacitor is shown labelled C_{22}. This is in error. It should be labelled C_{21}. In Fig. 1, Part 7, the Set i.f. level control is labelled R_{35} instead of R_{36}.

The printed-circuit board used for the i.f. amplifier described in Part 7 and in this article was supplied by Stannmore Electronic Services of 40 Coledale Drive, Stanmore, Middlesex. It costs 22s. 6d. plus 1s. 6d. postage.

Additional Reading

The various types of code systems described in Part I (Nov. 1968) can be displayed pictorially in a form which has become known as the Karnaugh map, after M. Karnaugh, its inventor. A simplified treatment is given here to introduce mapping methods to readers who are unfamiliar with the technique. In what follows positive logic levels (see Part I) are assumed, unless a statement is made to the contrary.

In the discussion of logic in Part I it was shown that the whole population of any community could be divided into binary combinations. If the whole population is represented by the area inside the whole rectangle in Fig. 9(a), then its division into two sections comprising those who are A, and those who are not A (A) is as shown. The fact that the two divisions are equalled areas in all the maps is of no mathematical significance. In the figure A is allocated the value or "weight" of unity while A is given zero value.

When two variables A and B are considered there are 2^2 or 4 possible combinations. These are shown by placing two one-variable maps side by side as in Fig. 9(b). Variable A is now given the value 10 or 11 and B the value unity or 01. Both A and B have zero or 00 value. The upper left-hand cell in Fig. 9(b) is the intersection of A and B. It is therefore given the value 00 or zero. The upper right-hand cell is the intersection of A and B and has the value 10 or 2. Other cells are located in this manner.

A three-variable map comprises two two-variable maps placed side by side as shown in Fig. 9(c). A feature of the Karnaugh map is that it shows the change in the binary combination when moving from one cell to an adjacent one. It is a unit-distance change. That is, the code combination changes by only one bit. Consider cell AB (100). The adjacent code combinations are 010, 100 and 110 which are unit-distance changes from 110.

A four-variable map comprises two three-variable maps placed side by side as shown in Fig. 9(d). Here the weights given are A = 1000, B = 0100, C = 0010 and D = 0001 with A = B = C = D = 0000. As the Karnaugh map increases in size it is necessary to provide a method of locating the cells and to this end the code combinations of A and B are listed along the top of the map and combinations of C and D are shown down the left-hand side of the map. The code combinations for the various cells are as shown and these should be noted that the change between adjacent cells is again unit-distance. Inspection of the top and bottom rows of the matrix shows that each cell at the top of a column may be regarded as being adjacent to the cell at the bottom of the column since the change between them is a unit-distance one. This leads to the idea of a cylindrical version of the map in Fig. 10 in which the top and bottom of Fig. 9(d) are joined. Inspection of the left-hand and right-hand columns of Fig. 9(d) shows that adjacent cells exist. All adjacent cells can be connected by joining the ends of Fig. 10 together to form a toroidal shape.

A five-variable map is constructed by placing two four-variable maps side by side and a six-variable map by placing two five-variable maps side by side. This is about...
the useful limit of the Karnaugh map since both five- and six-variable maps call for considerable mental gymnastics in their use.

Minimisation using the map method

Logical problems are presented in many forms and it is often necessary to reduce the problem to its simplest form, known as the minimal form.

Consider the statement

\[Y = \overline{A}.B.C.D + A.B.\overline{C}.D + \overline{A}.B.C.D + A.B.C.D \]

Each term is shown on the Karnaugh map in Fig. 11 as a "1"; the expressions in the other cells, being non-existent, have the value zero. The simplest expression for \(Y \) can be deduced either by a process of logical algebra from the above expression or from the Karnaugh map. The latter method is discussed here.

By associating blocks of adjacent cells in binary groups i.e. 2, 4, 8, 16 etc., the simplest expression can be obtained. In Fig. 11 the four cells are all adjacent to one another and can be grouped as the intersection of \(B \) and \(D \), giving

\[Y = B.D \]

When an odd number of cells has to be grouped, three in Fig. 12, it is not usually possible to reduce the relationship to the simple form above. Here binary groupings of adjacent cells are made until all the cells marked with 1s are covered. In Fig. 12 the minimal solution obtained by this method is the logical sum (OR) of the two groups of 1s enclosed in the full lines, that is

\[\overline{A}.B.D + B.C.D = B.D(\overline{A} + C) \] (1)

An alternative approach is to say that the three 1s in Fig. 12 describe the area which is \((B \text{ and } D)\) and not the cell \(A.B.C.D \), that is

\[B.D.A.B.C.D \] (2)

The form of network which satisfies Fig. 12 which is finally chosen is dependent on which of equations (1) or (2) is the most convenient. If the function \((A + C)\) is formed at some other point in the network and the function \(A.B.C.D\) is not, then the form given by equation (1) is used, otherwise the network of equation (2) may offer advantages. The logical network satisfying equation (1) is shown in Fig. 13.

The minimal network is the one which gives the minimum number of logic gates together with the minimum number of interconnections between them.

"Can't happen" conditions

In many code sequences certain combinations cannot be allowed to occur. These are described as "can't happen" conditions and are utilized in minimisation techniques to give simple solutions.
Decimal to non-decimal code conversion

The logical network required to convert a decimal code to a non-decimal code is obtained by inspecting the columns of the binary code. If it is required to convert the decimal code to the 8421 b.c.d. there are ten input lines S, W, 2, 7, 8 and 9, one of which is at the logical “1” level and the others at the “0” level. The four output lines from the network are designated A, B, C, and D, where A is the most significant bit.

Inspection of the A column of table 13 shows that the A-line must provide an output when either the 8-line or the 9-line is energised. This is expressed symbolically as

\[A = 8 + 9 \]

Here no mathematical significance can be applied to the plus sign. The other columns yield the following expressions from which the code converter network in Fig. 19(a) is drawn.

\[B = 4 + 5 + 6 + 7 \]
\[C = 2 + 3 + 6 + 7 \]
\[D = W + 3 + 5 + 7 + 9 \]

If the decimal input is to be converted to the unit-distance code in table 13 the logic required is defined by the following which result from an inspection of each column of the code. The logical block diagram is shown in Fig. 19(b).

\[A' = 4 + 5 + 6 + 7 + 8 \]
\[B' = S + W + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = "1" \]
\[C' = 2 + 3 + 4 + 5 \]
\[D' = W + 2 + 5 + 6 \]

It is of interest to note that in the unit-distance code the B’-line remains at the logical “1” level irrespective of the states of the input lines and that the decimal 9 input line is redundant since no connections are made to it. In both networks the S-line is redundant.

![Fig. 17. The completed code converter using positive logic AND gates for (a) the 8421 b.c.d. and (b) a unit-distance code.](image)

![Fig. 18. Modification of the code converter to use NOR gates.](image)

![Table 14—Code converter logic for table 13](table)

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>8421 b.c.d. to decimal logic</th>
<th>Unit-distance code to decimal logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>A, B, C, D</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>W</td>
<td>A, B, C, D</td>
<td>B, C, D</td>
</tr>
<tr>
<td>2</td>
<td>A, B, C, D</td>
<td>A, C, D</td>
</tr>
<tr>
<td>3</td>
<td>A, B, C, D</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>4</td>
<td>B, C, D</td>
<td>B, C, D</td>
</tr>
<tr>
<td>5</td>
<td>A, C, D</td>
<td>A, C, D</td>
</tr>
<tr>
<td>6</td>
<td>A, C, D</td>
<td>A, B, D</td>
</tr>
<tr>
<td>7</td>
<td>A, B, C, D</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>8</td>
<td>A, B, D</td>
<td>A, B, D</td>
</tr>
<tr>
<td>9</td>
<td>A, B, C, D</td>
<td>A, B, C, D</td>
</tr>
</tbody>
</table>
Non-decimal to non-decimal code conversion

Utilising the principles already outlined a non-decimal to non-decimal converter can be developed using decimal as an intermediate stage. The block diagram of such a converter is given in Fig. 20. This process might at first be thought uneconomic, but inspection of the Karnaugh maps often yield a degree of simplification in the overall result. Depending on the type of logical devices used, intermediate decimal values may not be available in the final form of the converter.

Suppose it is necessary to convert from code M to code N in table 15. The grouped in Fig. 22 together with appropriate "can't happen" conditions. The area representing A' encompasses the cells W', 2, 5 and 6 which is the area C and not the area represented by cell 3, that is

\[C' = \overline{C}.3 \]

Following this line of reasoning the following equations for \(B' \) and \(C' \) are obtained

\[B' = B.S \]
\[C' = A.3 + C.S \]

Cell \(S \) is defined by any of the following three combinations: \(A.B.C.D, B.C.D, A.B.D \) and cell \(3 \) by any of \(A.B.C.D, A.B.D, B.C.D. \) if we select the combination \(B, C \) and \(D \) as input lines to generate \(S \), then \(S \) is generated by the NAND gate shown in Fig. 23. Similarly \(3 \) is generated by a NAND gate with input lines \(A, B \) and \(D \). The network shown in Fig. 23 assumes positive logic levels throughout.

The final form of the converter can be modified to use other gates in the manner described earlier in the article by inverting the logic levels.

Acknowledgement. The author wishes to thank the Principal of the North Staffordshire College of Technology for permission to publish this article.

REFERENCES

Fig. 20. Schematic diagram for a non-decimal to non-decimal converter.

Fig. 21. Karnaugh map for code M.

Fig. 22. Grouping of cells on the Karnaugh map to give the logic to convert from code M to code N.

Table 15—Non-decimal to non-decimal code conversion

<table>
<thead>
<tr>
<th>Position in the code</th>
<th>Non-decimal code M</th>
<th>Non-decimal code N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8 to 15</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

S = "Start" or zero.
W = First code combination or number one.
X = "Can't happen" condition.

Karnaugh map of code M is drawn out in Fig. 21 showing the intermediate decimal-coded values of each cell. Inspecting the columns of code N gives the following logical equations.

\[A' = W + 2 + 5 + 6 \]
\[B' = 2 + 3 + 4 + 5 \]
\[C' = 4 + 5 + 6 + 7 \]

The areas representing \(A' \), \(B' \) and \(C' \) are

Fig. 23. Block diagram of the non-decimal to non-decimal code converter.

Our Next Issue

Operational Amplifiers. High-gain d.c.-coupled amplifiers, usable for a multitude of functions in electronics, are now widely available in packaged and integrated-circuit form. The first article of a short series will deal with their electrical characteristics and describe methods of testing them.

Solid-state Multimeter. Constructional details of a high-impedance f.e.t. multimeter, which incorporates some novel circuitry, will be given. The instrument has 18 ranges covering a.c. and d.c. voltage, and ohms.
B.B.C. Sound-in-Vision System

Pulse code modulated sound inserted in a video waveform allows full television transmission on a single circuit

The distribution of B.B.C. television programmes from studio centres to the transmitting stations uses an extensive network of G.P.O. cables and microwave links. Separate circuits, and often different routes, are used for the vision and sound. A useful simplification of operational requirements would result if the vision and sound signals were to share a single circuit. Such a system has been developed by the B.B.C. Research Department for use with 625-line television signals. If adopted, this system would save £100,000 each year in G.P.O. land-line charges.

The System

The B.B.C. sound-in-vision system is essentially a form of time-division-multiplex in which the circuit is available to the sound signal for a period of 3.8μs within each 4.7μs line synchronizing interval, and the vision signal occupies the circuit during the remainder of the time; these 3.8μs periods are symmetrically disposed with respect to the leading and trailing edges of the line synchronizing pulse. The leading edges of the line synchronizing pulses are preserved during transmission.

The sound signal is sampled at twice the television line frequency. This permits an audio bandwidth of 14kHz to be transmitted. The two samples produced during each line period are converted to pulse code modulation (p.c.m.) signals; the two groups of pulses are then delayed, compressed in time and inserted into the television waveform during the next line synchronizing interval.

The system uses a 10-digit binary code. Thus, 20 sound pulses together with a marker pulse which identifies the start of the sound pulse group, i.e. 21 pulses in all, are accommodated within each line synchronizing period. An example of the resulting sound-in-vision signal is shown in Fig. 1.

In order to provide room for the sound pulses throughout the field blanking interval it is necessary to extend alternate equalizing pulses from 2.35μs to 4.7μs, but no other changes to the video signal are necessary before the sound pulses and video signal are combined.

At the receiving terminal the sound pulses are extracted and reconverted to normal audio signals and the video waveform is restored to standard form.

The sound pulses are of the 2T form, that is, a raised cosine having a half-amplitude duration of 182ns. The complete group of pulses occupies only 3.8μs; the spacing between the pulses is therefore 173ns. It will be noted from Fig.1 that two adjacent pulses combine to give an overall amplitude slightly higher than that of a single pulse; this is because with 173ns spacing, the signal amplitude at the peak of a pulse may contain contributions from pulses immediately preceding and following it.

Pulse code modulation and the use of high-amplitude pulses ensure that the sound signal is immune from all but the most severe interference and distortion. However, it is equally important to ensure that the presence of the sound pulses does not in any way impair the vision signal. If the phase and/or amplitude of low-frequency components are not correctly preserved by the transmission circuit, the post-line-synchronizing blanking level may be perturbed by variation in the mean level of the sound pulse groups preceding it. The pulse groups are therefore arranged within the line-synchronizing period in such a way as to reduce variation in their mean level to a minimum. The techniques used rely on the fact that substantial changes in the pulse groups representing consecutive samples of the sound signal are rare, and that the changes that do occur are most likely to affect the least significant digits. First, one of the two pulse groups within each synchronizing pulse is complemented—that is, one...
are exchanged for zeros and vice versa. Secondly, the two pulse groups are interleaved, so that the nth digits from each group appear consecutively. Finally, the digits are arranged in the reverse of the normal order, so that the least significant instead of the most significant digits come first. Thus the complete pulse train is made up as follows: marker pulse, the two least significant digits, one of which is complemented, and so on, ending with the two most significant digits. The complementing and interleaving of digits from alternate groups provides a signal of the form shown in Fig.1, which shows the sound-in-vision waveform with a d.c. input applied to the color.

The digit train is gated into the television waveform during the 3.6 μs interval, and any noise or other irregularities present in the incoming television waveform during this period are therefore removed. The leading edge of the synchronizing pulse is, as already mentioned, left untouched because it is the main timing reference of the composite video waveform.

The Equipment

A block diagram is shown in Fig. 2. The compressor and expander form a syllabic companding system which ensures that the mean signal level into the analogue-to-digital converter is as high as possible. The compressor does not take the usual form, but is actuated only by high frequency components in the signal, which have been boosted in a pre-emphasis unit. It gives an improvement of 13dB in the signal-to-noise ratio of the p.c.m. system and thus renders the 10-digit system slightly better in this respect than one which used 12 digits but no compander.

The analogue-to-digital converter samples the audio-frequency signal presented to it at two-rate line, and delivers an output in p.c.m. form to the combiner unit. This unit accepts the vision signal, clamps it during the back porch, and inserts the sound pulses.

The reverse procedure is carried out at the receiving terminal. The combined sound-in-vision signal is fed to the separator unit from which a clamped and restored vision signal is produced. Separated sound pulses are decoded in the digital-to-analogue converter which delivers an audio-frequency signal.

Many picture monitors required at points along the link will not lock if a sound-in-vision signal is connected to them. A cheap and simple pulse code remover has therefore been developed which removes the sound pulses from the inputs to such picture monitors so that they may continue to be used in the normal way.

The input and output terminals of the sound-in-vision equipment handle sound and vision at normal levels and impedances—sound at zero level into 600 Ω, vision at 1 volt peak-to-peak into 75 Ω. The complete sending and receiving terminal equipments each occupy a height of about 14in within a normal 19in bay. Extensive use is made of integrated circuitry for the digital operations together with discrete transistor circuits for the analogue operations.

Performance

The equipment will accommodate variations in line frequency up to ±1 part in 50 and will operate satisfactorily in the presence of moderate amounts of distortion on the circuit. If the maximum levels of all forms of non-linear distortion in the equipment exceed two times the longest U.K. vision links in tandem are present simultaneously, the system will tolerate an additional 12dB degradation (to 27dB unweighted) in the signal-to-noise ratio. Provided that the presence or absence of sound pulses can be correctly detected, distortions and noise on the link have no effect at all on the decoded sound signal.

The p.c.m. sound channel has the following characteristics:

- Response / Frequency characteristic:
 - ±0.5dB 50Hz to 10kHz
 - ±0.7dB 30Hz to 14kHz
- Non-linear distortion for full modulation at 1kHz:
 - 0.1% 2nd harmonic
 - 0.07% 3rd harmonic
 - 0.02% 4th harmonic
- Signal to noise ratio 70dB (r.m.s. signal/r.m.s. weighted noise)

Announcements

Marconi and Elliott have rationalized their avionic interests and established a new service depot for London's airports. For many years Marconi has maintained a depot within the Heathrow airport for the repair of airborne navigation and communication equipment. This will be closed next spring and the service depot moved to the Elliott-Automation establishment at Staines on which it will serve other major airports including Gatwick, Luton and Stanstead.

Microwave Systems Ltd., Hunting Gate, Hitchin, Hertfordshire, have been appointed exclusive agents in the U.K. for Frequency Engineering Laboratories of Farmingdale, New York, U.S.A., manufacturers of test and measuring equipment.

As from January 1st, Fluke International Corporation, of Waford, Herts, will become sole distributors for the entire range of Burr-Brown operational amplifiers for the U.K. and Eire.

Polymet Consultants Ltd., The Ancient House, Ardleigh, Nr. Colchester, Essex, have been appointed sole U.K. distributors of crystal and crystal products manufactured by Minimare, Kristall-Chemie GmbH & Co., Meibis, of West Germany.

An agreement has been concluded between Marconi International Marine Co. Ltd. and the Northrop Corporation, California, U.S.A., under which Marconi Marine have exclusive rights for the marketing of Omega receivers in the U.K. and the Republic of Ireland.

Thorn Electrical Industries Ltd. has acquired for Thorn Hendra Ltd., the whole of the share capital of Greenberg Engineering Ltd., manufacturers of coaxial connectors, inter-series adaptor kits, attenuators and probes.

The Leeds University Television Centre, at present under construction, has placed orders with EMI Electronics Ltd. for television equipment to the value of £100,000. The new centre will consist of two main studios, demonstration classroom, control rooms, central operations room and a technical equipment area. The equipment includes seven EMI camera channels type 206, and vision mixers.

Storno Ltd., of Camberley, Surrey, have been awarded a £220,000 contract by the Ministry of Defence (Navy), for the supply of c.w.f./f.m. portable radiotelephones.

Plessey Radar has received a £237,000 contract from the Ministry of Technology, for two radio environmental monitors for use with instrument landing systems. These are designed to increase safety levels during aircraft blind-landing by monitoring potential radio interference in the vicinity of aircraft immediately prior to touchdown.

Granger Associates Ltd., announce that their parent company, Milacast Ltd., California, has received a $335,000 contract for their high frequency s.s.b. transmitters, receivers and accessories for an inter-island communications network in the western Pacific.

The Automobile Association has placed an order with Pye Telecommunications Ltd., valued at £50,000, for additional sound equipment to be used with the mobile telephone network. The scheme will now cover the whole of the British Isles.

Deca has been awarded a contract by the United States Coast Guard for the installation of river radars in 25 push tow boats operating on the Mississippi and its tributaries, and based in St. Louis, Missouri.

Pye TVT Ltd., of Cambridge, have been awarded a contract to supply equipment for a new sound-casting centre, by the Government of Gambia. Pye will supply equipment for two general purpose studios, a continuity suite, a talk studio and control rooms associated with these.

Ferranti Ltd., of Edinburgh, have been awarded a contract by the Ministry of Technology for the design and supply of an experimental airborne laser ranging sensor.

Plessey Electronics Group have received an order valued at £300,000 from the British Overseas Airways Corporation for the supply of Plessey "AIDS" (Aircraft Integrated Data Systems) Type PV 740 for B.O.A.C.'s fleet of Boeing 747 aircraft.

Dynamo Ltd., of Chertsey, Surrey, have received orders to the value of nearly £400,000 from American companies for more than 300 of their 71 Series oscilloscopes.

The Boeing 747 "Jumbo-Jet", is scheduled to make its inaugural flight from Seattle in late December. Nineteen Boeing 747s have been ordered by B.O.A.C., Air France and Lufthansa and all of these aircraft are fitted with dual Marconi AD370, automatic direction finding equipment.

Wayne Kerr is setting-up a technical advisory service at his Cheshire, Surrey, laboratories. This is in addition to the departments dealing with the normal sales enquiries which remain at New Malden.

Plessey Communications Systems Ltd., have moved from offices at 8 Arundel Street, London W.C.2 to new headquarters at Tolworth Rise, Surbiton, Surrey. Involved in the move are the sales administration office, service H.Q., and accounts departments as well as the London service depot operating at present from Marshalsea Road, S.E.1.

The London service department of the Ferrograph Company Ltd., has been transferred from 84 Blackfriars Road, S.E.1, to Edgware Road, Colindale, N.W.9. (Tel.: 01-205 5575)

Dulby Laboratories, of 590 Wandsworth Road, London W.8, have moved to new premises at 348 Clapham Road, S.W.9. (Tel.: 01-720 1111)

General Instruments (U.K.) Ltd., have moved their London sales offices to Sunbury Way, South Ruislip, Middx. (Tel.: 01-845 1288)

Britempex Ltd., of 16-22 Great Russell Street, London W.C.1, have moved to 8-12 Rickett Street, London, S.W.6. (Tel.: 01-385 0883)

Harmsworth Towney and Co., component distributors, have moved to new premises at Wellington Road, Teddington, Middx. (Tel.: Teddington 2646)

The new address of the Radio Society of Great Britain is 33 Doughty Street, London W.C.1. (Tel.: 01-837 8688)
Personalities

Major-General Eric S. Cole, C.B., C.B.E., has retired from the managing directorship of Granger Associates, of Weybridge, Surrey, which he joined on its formation in 1963. Major-General Cole, who is continuing as a director of the company, retired from the Army in 1961. His last appointment was that of director of telecommunications at the War Office. He is well known in amateur radio circles (his call sign is G2EC) and was president of the Radio Society of Great Britain for 1960/61. Granger Associates' new managing director is Robert J. F. Whistler, B.Sc., M.I.E.E., who has also been with the company since it started, initially as a sales engineer. He has been a director since 1965, and deputy managing director for the past year. Mr. Whistler, aged 48, was commissioned in Royal Signals in 1939 and retired with the rank of major in 1962. He received an external London University degree in engineering from the Royal Military College of Science.

Luis Alvarez, professor of physics at the University of California Radiation Laboratory and a director of the Hewlett-Packard organization since 1957, has been awarded the 1968 Nobel Prize for physics. In announcing its selection, the Swedish Academy of Science cited Professor Alvarez' "decisive contributions to elementary particle physics, particularly his discovery of a large number of resonance states, made possible through his development of the technique of using hydrogen bubble chamber and data analysis". The prize, created by Alfred Nobel and first awarded in 1901, this year is valued at £29,000.

"For his distinguished contributions to optics, especially by establishing the principles of holography" Professor D. Gabor, F.R.S., has received the Rumford Medal of the Royal Society. Dr. Gabor is emeritus professor of applied electron physics in the University of London, senior research fellow at Imperial College of Science & Technology, London, and staff scientist in the C.B.S. Laboratories, Stanford, U.S.A. Dr. Gabor, who is also well known for his original work on the flat "picture frame" television tube, came to this country from Hungary in 1934 and worked in the B.T.H. Research Laboratory, Rugby, until he joined the staff of Imperial College in 1949.

B. W. Manley, B.Sc., D.I.C., F.Inst.P., is appointed commercial product manager for professional valves and tubes in Mullard's Industrial Electronics Division. Mr. Manley joined Mullard Research Laboratories after graduating from London University in 1953. Initially he was concerned with microwave devices and electron-beam focusing systems. In 1957 he was put in charge of a group dealing with storage and camera tubes. Latterly, as a section leader in the Vacuum Physics Division of the Laboratories, he has been associated with research in the field of image intensifiers for military and civil applications and electron multipliers.

J. V. S. Tyndall has become commercial manager of the Industrial Electronics Division of Mullard Ltd. He joined the company's technical service department in 1944 and transferred to the valve measurement and application laboratory in 1949. He went over to the commercial side of the company in 1951 and in 1958 was appointed commercial product manager of the electron optics group. From 1966 until recently Mr. Tyndall was general manager of Mullard Ipg. in the United States.

C. B. Charleton, B.Sc., A.R.I.C., has been appointed chief engineer of Advance Filmcap Ltd., the new capacitor subsidiary of Advance Electronics Ltd. He will head the Design Engineering Department of the new plant at Wrexham, Denbighshire. Mr. Charleton was latterly with the Dublinter Condenser Company, prior to which he was research manager with Hunts' Capacitors Ltd. and divisional manager of the T.M.C. Component Division.

B. H. Paren, M.I.E.E., has been appointed director of the Telecommunication Engineering & Manufacturing Association in succession to R. A. Moir, O.B.E. Mr. Paren has been engaged in the contract and technical liaison side of the telecommunications industry in and co-ordinating its affairs with the Post Office. He is a member of the Joint Electronic Research Committee set up by the Post Office and industry.

With the Plessey Electronics Group reorganization of its Radio Systems Division, which will now comprise the Avionics Systems Unit, the Commercial Systems Unit and the Defence Systems Unit together with the Development Laboratories at Ifford, West Leigh (Hants.) and Braxted (Essex), three new appointments have been made. W. T. Eastwood, formerly chief engineer at West Leigh, becomes manager of the Avionics Systems Unit, responsible for the Division's activities in airborne communications and electronic equipment. B. A. Coutant, formerly general sales manager of the Division, becomes manager of the Commercial Systems Unit with responsibility for civil communications equipment. D. S. Tamall, formerly chief engineer at the Ifford Development Unit, will manage the Defence Systems Unit which handles a wide range of ground and airborne communications and electronic systems.

I. W. Dick, who joined the seagoing radio officer staff of Marconi Marine in 1949 after service with the Royal Air Force, has become commercial manager. He transferred to the company's shore staff at Liverpool in 1955 and three years later was sent on special missions to Peking and Shanghai before taking over as representative, South-East Asia. In 1962 he joined Norsk Marconikompani A/S, Oslo, as general manager, and has since become managing director. Since October, 1967, he has been at Chelmsford in the capacity of management executive.

M. T. Marwood, appointed administration manager of Marconi Marine, joined the company in 1965 as management executive and in 1966 was placed in control of the company's sound systems activity. He served for twenty-two years in the Royal Navy, rising to the rank of lieutenant-commander, and on retirement from the Service in 1958 joined the telecommunications division of A.E.I. From 1961 until he joined Marconi Marine he was sales manager, marine communications department.

Kenneth Finney has been appointed export manager, Western Hemisphere, by British Insulated Calender's Cables Ltd. Mr. Finney served with Armoured Wireless and Electric Company in India from 1946 to 1952, first as managing director of its local trading company and later as liaison officer to the Indian government. In 1955 he returned to London as export manager of A.T. & E. (now part of Plessey) and since 1959 has been managing director of the Plessey Company's Brazilian subsidiaries.

Vic. Newman, Grad.I.E.E., aged 36, has been appointed commercial manager of the newly formed Instrument Division of Courant Electronics, of Reading. He joined Courant last year, as regional sales manager, from Plessey Automation where he was assistant sales manager for optical character recognition computer peripherals. Prior to that Mr. Newman was with Advance Electronics Ltd., for four years. Before coming into the electronics industry he served with the Royal Navy and specialized in radar and radio communications.

Max Settelman, manager of S.T.C.'s Aviation Division, has been elected chairman of the steering committee of the European Organization for Civil Aviation Electronics. Set up in Lucerne in 1963 EUROCAE now has member organizations from Belgium, France, Italy, the Netherlands and the U.K. Mr. Settelman joined S.T.C.'s associated company in Switzerland in 1945 on leaving the R.A.F. where he had been a technical signals officer.

OBITUARY

Philip Lever, who died on 7th November at the age of 68, had been joint managing director of E. R. (Factors) Ltd., of Harrow Road, London W.9, since the formation of the company over 35 years ago. He was also managing director of Lasky's Holdings Ltd.
if you prefer to monitor with an oscilloscope instead of a meter...

here's a professional-quality 1" tube at a lowest-ever price!

Once again, Thorn-AEI's renowned production engineering techniques have made possible a 1-inch cathode ray tube, built to professional performance standards, at a price far lower than that of current competition—with quantity discounts to reduce it still further.

The BRIMAR D3-130GH 1-inch tube has been specially designed for use in monitoring aspects of equipment performance where simple voltmeter and milliammeter readings are inadequate. Built into installations, it will save 'down-time' by early detection and quick location of faults.

Features include: Electrostatic focusing and deflection, small spot size, freedom from trapezium distortion, good uniformity of focus. High sensitivity makes it ideal for transistor operation.

Typical Operation

- $V_h = 6.3V$
- $I_h = 0.3A$
- $V_{a1+a3+a4} = 1000V$
- $V_{a2} = 100V$
- V_g (cut-off) $= -20$ to $-48V$
- $S_y = 58$ to $88 V/cm$
- $S_x = 80$ to $120 V/cm$

For full technical data and prices, write or phone:

Thorn-AEI Radio Valves & Tubes Ltd.,
7 Soho Square, London, W1V 6DN Tel: 01-437 5233

WW—099 FOR FURTHER DETAILS
TS Distortionless Servomechanical Stabilisers provide high-speed, accurate stabilisation without distortion of waveform. Accuracy ±0.25%. Correction speed up to 60/100 volts per sec. Unaffected by load, frequency or power factor variations. 1 to 120 kVA single phase and up to 360 kVA three phase.

BTR Solid-State Electronic Stabilisers give high accuracy with extremely low distortion and no moving parts. Basic models: ±0.3% accuracy, 3% max. distortion without any filtering. Unaffected by load or frequency variations. Filtered models also available. 400 VA to 10 kVA.

CVR Constant Voltage Regulators offer considerable advantages over conventional constant voltage transformers at remarkably low cost. ±0.3% accuracy, 3.5% max. distortion without any filtering. Unaffected by load or frequency variations. 360, 600 and 1200 VA.

The range also includes VB tap-changing types and PST high-current stabilised d.c. supplies.

For full details write to Publicity Department, Hoddesdon.

Claude Lyons
Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161 Telex 22724
76 Old Hall Street, Liverpool L3 9PX. 051-227 1761 Telex 62181
"Safety precautions in the use of electrical equipment" is a booklet prepared by the Imperial College of Science and Technology. Its aim is to draw attention to the hazards involved in all kinds of laboratory and workshop activity, and to point out the precautions which must be taken. The booklet is available from The Registrar, Imperial College, London, S.W.7 at 3s per copy.

A leaflet called "High-gain Horns" describes a range of nine horn aerials for operation from 1.12 to 12.4GHz that give a nominal 28dB gain. Demnary Bonards, 1313 N. Lincoln Avenue, Pasadena, CA 91103, U.S.A.

WW 401 for further details

WW 411 for further details

Brief details of the Tektronix S-130 digital measuring system are given in a leaflet we have received. It is intended to measure the performance of active devices under simulated operating conditions. A disc storage unit enables details of 1600 measurements, which can be carried out at a rate of 100 per second, to be stored. Tektronix U.K. Ltd, Beaverstone House, Harpenden, Herts.

WW 412 for further details

"Loudspeakers for the Perfectionist" is a booklet that gives technical information on the Ditton 10 Mk II and the Ditton 13 and 25 loudspeaker systems. Rola Clesion Ltd, Ferry Works, Thames Ditton, Surrey, England.

WW 413 for further details

The 1968/69 catalogue of High Industry is now available. Among the new items are a 30-W FM stereo receiver (AR-14) and an FM stereo tuner (AR-17). Also introduced is the analogue digital designer (EU-801A), which is an advanced logic trainer using t.l. integrated circuits, and the 805 digital instrument. The 805 is a multi-function instrument with the following operating modes: event counter, frequency meter, digital voltmeter, ratio meter, time-interval meter, period meter, and voltage integrator. The logic employed is compatible with the EU-801-A. Daystrom Ltd, Gloucester GL2 6EE.

WW 414 for further details

Stentorian loudspeaker systems, types L.C.93, 94 and /95, from Whitley Electrical are described in a leaflet we have received. Also included in the leaflet, in tabular form, is a list of other high-fidelity loudspeakers with technical data and mounting details. Whitley Electrical Radio Co. Ltd, Mansfield, Notts.

WW 415 for further details

The application manual for the Sinclair 10-W integrated circuit audio amplifier shows how the amplifier can also be used as an intercom amplifier, a d.c. amplifier and sirens/burglar alarm. It shows how the tone control circuits are wired and gives instructions for stereo operation. Sinclair Radionics Ltd, 22 Newmarket Road, Cambridge.

WW 416 for further details

An analogue computer for teaching purposes that will perform a variety of mathematical functions including third order differential equations manufactured by A. M. Lock & Co. is described in a leaflet produced by them. Two or more computers can be linked together to solve more complex problems. A. M. Lock and Co. Ltd., Prudential Buildings, Union Street, Oldham, Lancs.

WW 417 for further details

Reed relay catalogue, Reed relays in a variety of packages with various contact configurations capable of handling currents up to 1.5A and voltages up to 5kV are covered in this catalogue. Electrothermal Engineering Ltd, 270 Neville Road, London E.7.

WW 418 for further details

Panel mounted holders for Mallory Batteries produced in Ireland by the Coleraine Instrument Co., and marketed in this country by H. Tinsley and Co. Ltd, Werndee Hall, South Norwood, London S.E.25, are the subject of a leaflet we have received. The holders, which are made in a variety of sizes for panel thicknesses up to 9.5mm, are made from nickel plated steel (as are the batteries), thereby reducing the danger of corrosion.

WW 419 for further details

"Guide to Modular systems" is a 16 page booklet produced by Aim Electronics describing a family of modules that cover three branches of measurement technology: i.q. signal recovery, pulse generation and waveform sampling. The modules can be fitted into a racking system and interconnected to produce the required test set-up. Aim Electronics Ltd, 71-73 Fitzroy St, Cambridge.

WW 420 for further details

A variety of test equipment, the majority of which is for audio, radio and television (including colour television), is described in a new short-form catalogue produced by Grumman (Great Britain) Ltd, London S.E.26.

WW 421 for further details

"Electronic Instruments" describes a range of pulse generators, a d.c. micro-volt ammeter and an r.f. microvoltmeter manufactured by Lyons Instruments. It also lists other companies and their products for which Lyons have the agency. Lyons Instruments Ltd, Hoddesdon, Herts.

WW 425 for further details

WW 410 for further details

"Control Instruments", the catalogue of Ether Ltd, gives details of potentiometric indicating temperature controllers, potentiometric indicators, "scanners", temperature regulators, indicators and controllers, strip-chart recorders, strain gauge indicators, thyristor assemblies and various types of transducers. Ether Ltd, Caxton Way, Stevenage, Herts.
New Products

Stereo Decoder
A stereo decoder unit which contains its own mains power supply and is suitable for use with valve or transistor f.m. tuners has been introduced by Averine Electronics. Constructed on a glass fibre p.c. board the decoder is easily incorporated into a hi-f system and is fully compatible. Indication of a stereo broadcast is given by a pilot lamp which may be mounted in any convenient position. Hum and noise is said to be -70dB and channel separation -30dB. Frequency response is 50Hz-18kHz ±1dB. The size of the decoder module is 101 x 50.5 x 25.3mm and the price £9.5s. Averine Electronics, P.O. Box 6, Ruislip, Middx.
WW 330 for further details

Frequency Doubler
Specialists in signal recovery equipment, Brook-deal Electronics are now marketing an advanced version of their wideband sinusoidal frequency doubler, type 423. This instrument is regarded by the makers as an essential part of phase-sensitive detection systems and it was developed specifically for use in the reference channel of a "lock-in" small recovery system where the required signal is at twice the frequency of the modulating waveform. Its operation is very simple; when a sine wave is applied at the input, one double the frequency is available at the output. The wideband feature eliminates the risk of phase/ frequency errors. Input impedance is 250kΩ and 20pF; output impedance 600Ω at 3V r.m.s. maximum. Frequency range 1Hz to 30kHz. A built-in meter indicates 1-3V r.m.s. The 423 operates from normal mains supplies, weighs 2.3kg and measures 87 x 218 x 285mm. Brook-deal Electronics Ltd., 2 Myron Place, Lewisham, London, S.E.13.
WWW 301 for further details

High-voltage Germanium Power Transistors
Two epitaxial-base germanium power transistors from Motorola, the 2N5524 and the 2N5525, combine low saturation voltage (typical of germanium transistors) with high voltage capability and fast switching speeds (typical of silicon transistors). The collector cut-off current is only 7mA maximum at the rated |V(Bf)| (325V for the 2N5525 and 250V for the 2N5524) along with maximum |Ic| of 0.5V and V(Bf) of 0.75V at 10A collector current. Minimum gain is 20 at 5A, and power dissipation is 50W at a case temperature of 25°C. Minimum fI for both transistors is 2MHz. Maximum switching speeds at 5A collector current are 15 µs, 10 µs, and 7 µs. The units are packaged in TO-3 cases. The quantity price (100 or more) is £13.1s 1d for the 2N5524 and £2.4s 1d for the 2N5525. Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middx.
WWW 310 for further details

White Reference for Colour Television
By fitting a colour matching fluorescent tube in place of the normal high-efficiency tube in their inspection lamp, and using neutral-density filters, Biocube of Aylesbury, have produced an Illuminant D reference source for the adjustment of colour television receivers. Illuminant D is the new reference white (colour temperature 6500°K), recently adopted by the B.B.C. in place of Illuminant C, for colour TV transmissions. A neutral density step-wedge film fitted over the tube is compatible with the colour TV test card and allows adjustment of the grey scale. The instrument can be offered-up to the step-wedge pattern on the screen for direct comparison. The instrument is available in 240V 50Hz or 110V 60Hz versions fitted with 4 metres of mains lead. Its price is £10 and delivery is six weeks. Biocube Controls Ltd., Biester Road, Aylesbury, Bucks.
WWW 525 for further details

Radiotelephone Frequency Calibrator
Although all v.h.f./u.h.f. mobile radio telephone equipment in this country uses crystal-controlled oscillators to meet the stability specification of the licensing authority, the crystal must be frequently checked against ageing and environmental drift effects, to ensure that the equipment is kept "on channel." To meet this requirement, Racal In-

struments have produced a v.h.f./u.h.f. calibrator with an accuracy which is claimed to be better than 1Hz using a zero-beat technique. To achieve this without the use of synthesizers or digital frequency meters, it is fundamentally necessary that in the system under test, the transmitted frequency and the channel spacing should be harmonically related, as is the case in the U.K. It is also necessary to know the approximate frequency of the channel under test. Because the channel frequency is a multiple of the channel spacing frequency, the transmitted waveform of any channel can be sampled at channel spacing frequency. If the channel frequency is correct the sample will always be taken at the same point in the waveform and the calibrator will give a dc output. If the frequency being measured is incorrect, successive samples will occur at different points on the waveform, and an a.c. component will be generated. The calibrator is called type 850 and is based on the Racal type 840 5-MHz oscillator. This provides a locking signal to a 1-MHz stage, the output being further divided by 10, then by 2, 4 and 8 respectively giving sample rates of 50, 25 and 12.5kHz. A 0.8ns gate pulse is applied to a sampling gate receiving the input signal. The instrument is normally operated using a telescop-ic aerial, but where high noise levels make opera-tion difficult it can be coupled directly to the v.h.f./u.h.f. equipment. Available in either bat-tery- or mains-operated version, the 850 measures 108 x 229 x 298mm and weighs 3.6kg. The cost is about £200. Racal Instruments Ltd., Crowthorne, Berkshire.
WWW 337 for further details

Industrial Radar
A new industrial tool, in the form of a miniature battery-operated radar, can measure velocities of up to 100 m.p.h., whether a body is travelling in a straight, angled or curved path. In addition it can measure high rotational speeds of the order of 1 million r.p.m. The instrument, called Allscott Mini-Radar type MRJS, is fully portable (operation is from a 12V battery) and is also provided with facilities for connection to external instruments such as a digital counter or oscilloscope. The basis of the Mini-Radar is a Gunn-effect diode which generates a power output of 5mW maximum c.w. at 13.4GHz. Data recovery circuits include 16 semiconductors, of which 8 are i.c.s, all mounted on a printed circuit. Indication of target speed is shown on a moving coil meter at the rear of the case, the range and sensitivity depending largely on the radar cross-section area of the target. Beam width is 28° (3dB) in E plane and 35° in H plane. The unit is in a cast aluminium case measuring approximately 120 x 95 x 60mm

WW 306 for further details

TV Transmitter Devices

Among new devices shown by Mullard at the last International Broadcasting Convention and Exhibition, were three ceramic-to-metal tetrodes for use in Bands I and III television transmitters. They were types YLI420, YLI430 and YLI440, intended for use in broadband amplifiers and they have maximum anode dissipation of 6, 12 and 1.5kW respectively. All are forced air cooled.

Another new device for television transmitters and translators was a multi-cavity air-cooled klystron type YK1005. Under typical operating conditions in a television transmitter it can deliver an output power of 10kW. Permanent magnet focusing and depressed collector operation simplifies cooling problems. Mullard Ltd., Torrington Place, London, W.C.1.

WW 317 for further details

Temperature-stable Reference Diodes

Three reference diodes from SGS-Fairchild have temperature coefficients that are almost zero. Compared with zener diodes, which have a temperature coefficient of greater than 1000 parts per million per degree centigrade, the new diodes, types BZX45, BZX44 and BZX43, have coefficients of 50, 20 and 10 parts per million respectively.

Each unit consists of two diodes on one silicon chip in a TO-18 can. One diode is a zener working in the reverse condition, and the other is an ordinary diode working in the forward condition. All three new diodes have a nominal zener voltage of 6.7V ± ½%, and maintain their temperature coefficient characteristic at a current level of 100μA over the temperature range 0 to 100°C.

Also, the dynamic impedance is low. SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.

WW 309 for further details

Low-cost Laser

In an effort to beat American competition in the European market for low-priced lasers, Scientifica, London, has produced a new portable model B17/L.

Functionally similar to the existing B17 gas laser range, its special feature is the ease with which the output wavelength can be changed. The wavelength is normally 6328Å but it can be changed to 11523Å or 33912Å if desired. Uniphase power output is approximately 1mW. The laser is normally supplied with one spherical and one plane mirror. Solid-state electronics incorporate the time delay and automatic trigger. The laser tube is a d.c. hot cathode type and the beam width at the exit aperture is 2mm. Dimensions are 90 × 128 × 425mm and weight approximately 4.5kg. It is mains operated. Price £160. Scientifica and Cook Electronics Ltd., 148 St. Dunstan's Avenue, Acton, London, W.3.

WW 305 for further details

I.F. Amp/Discriminator I.C.

Housed in a plastics dual-in-line package, an integrated circuit, type PA189, by General Electric of America performs the function of a high-gain i.f. amplifier and discriminator for use within the consumer market. It may be adapted to meet a wide variety of television and f.m. receiver requirements. These devices are available at £2 1s each for small quantities from Jermyn Industries, Vesty Estate, Sevenoaks, Kent.

WW 311 for further details

Counter/Timer

Monsanto model 105A, 12.5MHz counter/timer is a later version of model 100A embodying the additional features of b.c.d. output and provision for an external timebase. It is a half-rack unit employing i.c.s and it can measure frequency from 5Hz to 12.5MHz, frequency ratio of 1-10 1, and time interval or single period of 10μs to 10 sec. The crystal-controlled clock stability is better than 5 parts in 10/day and sensitivity is 50mV r.m.s. A 1MHZ internal frequency standard is available at the rear panel and an external frequency standard of 3Hz-5MHz can be applied to the unit. Slave units connected in cascade can be used to extend range or resolution in multiples of 5 digits. Monsanto are in New Jersey, U.S.A. and their British Agents are, G. & E. Bradley Ltd., Electrical House, Neasden Lane, London, N.W.10.

WW 303 for further details

Office Intercom System

A new advanced type of intercom system manufactured by Philips and marketed by Pye T.V.T. Ltd., is claimed to supersede the conventional internal telephone system by offering several advantages. These include simple installation and expansion of the system and instant contact (conversation is possible with any position at the touch of a button). No central exchange is required and facilities for group calling are provided. The Philips intercom system can be supplied in two versions, type M100 and type M30 according to the facilities required. The M100 comprises a control unit and a continuous 8-pair cable which runs through the premises and to which the control unit and up to 100 stations are connected in parallel. The control unit is small and silent in operation and can be mounted in any convenient place, on a wall. Each office has its own output socket into which can be plugged any of the following stations: (1) master station, fitted with the full range of number and function selection keys; (2) executive station, similar to master station but allowing incoming calls to be routed to secretary station; (3) secretary station, similar to master station but with separate line to executive station and (4) substation which can receive and answer calls but from which calls cannot be made.

All stations are available with handsets fitted if it is required to make confidential calls. A station can be moved and plugged in to any socket in the system without changing the number. The M30 differs from the M100 by being an "all-master" system capable of accommodating up to 30 stations. A 2-pair cable is required with a maximum length of approximately 800 metres. Besides enabling any position to call any other position, the M30 also has group calling facilities. When a person is absent, his station can be locked-out and any calling station will then receive a visual "engaged" signal. Both intercom systems use transistors throughout and operate from 110 to 245V, 50 or 60 Hz. Pye T.V.T. Ltd., Addlestone Road, Weybridge, Surrey.

WW 314 for further details

Television Modulator

To convert domestic off-air television receivers to enable them to receive video signals direct from a c.c.t.v. system, General Avionics has produced shortly be released separately at about 14m each. Holdings of Blackburn Ltd., Mincing Lane/Darwen Street, Blackburn, Lancs.

WW 308 for further details
a sound-vision modulator, series 400. The series includes four models designed to cover 625-line v.h.f. and u.h.f., 405-line v.h.f. and the American 525-line standard. The modulator is crystal-controlled at the chosen channel frequency and preset gain controls provide for input levels above those specified. Video input is 0.3V composite minimum and input impedance is 75Ω video, 5kΩ audio. The r.f. output is sufficient to drive up to 12 receivers. Mains or dry battery driven versions are available. Dimensions are 219 x 120mm and the price £30 12s 6d. General Avionics Associates Ltd., Victoria House, Victoria Road, Woking, Surrey.

WW 307 for further details

Inverter Series
'S' series inverters by G & R Electronics are 400 Hz, stabilized, sinewave, single- or three-phase modular units in various ratings from 50 to 500 VA, with nominal 24V d.c. input. Compatible units are available to convert the input required to normal a.c. mains. The normal output voltage is 115V, but alternatives are available to order including separate low power 20 or 26V a.c. outputs. Output is stabilized against load and input changes and output power is limited under excess load conditions by means of a re-entrant limiting circuit. This enables the units to be employed for motor starting and other high inrush loads where the initial load presented may be as much as ten times the normal running load. The waveform satisfies the requirements of synchro and servo systems. Synchronization facilities can be provided to lock frequency to an external 400Hz signal. The illustration shows a three-phase 100 VA unit designated 35–100 G & R Electronics Ltd., 23 New Street, Salisbury, Wilt.

WW 329 for further details

R. F. Switching Diode
A new silicon alloy switching diode, intended for power applications, such as aerial duplexing at base stations and transmitter/receiver isolation in mobile radio telephones, where previously electromechanical devices were used, has been introduced by M.C.P. Electronics. Type PSV100 is a p-n junction device available in a choice of three packages. Sealed in a DO-14 package it has the suffix "L" and is capable of switching 18W of power in a s.p.d.t. circuit between 20 and 250MHz, into a 50Ω line. Suffixes "J" and "K" will handle 50W. M.C.P. Electronics Ltd. Station Wharf, Alperton, Middlesex.

WW 313 for further details

Low-drift Op Amps
Ultra-low drift operational amplifiers types ADL–72A and ADO–72B by Fairchild Controls have guaranteed temperature coefficients of 0.5 and 1μV per deg C respectively. Long term stability is typically 10μV/week. Other features are high gain (100,000,000), high common-mode rejection (250,000:1), high power supply rejection (50μV/V) max) and input and output protection. The gain/bandwidth product is typically 800kHz and gain roll-off is typically 6dB/octave. The amplifiers are designed to operate over a voltage range of –6 to –20V and are housed in low profile, 37 x 10mm packages. Fairchild Controls, 423 National Avenue, Mountain View, California 94040. European office: Seesirasse 233, 8700 Kunsacht, Zurich, Switzerland.

WW 335 for further details

New Triacs
Three new triacs announced by Quandor Electronics comprise two 6–A types in a choice of either TO–48 or TO–66 case, and a 10–A version in a TO–48 case. All types are available with voltage ratings of 200, 600 and 800V and feature high triggering sensitivity in the normal operating modes. These devices are suitable for use in power control applications in a.c. circuits. Quandor Electronics (Semiconductors) Ltd., Slack Lane Derby.

WW 336 for further details

Precision Potentiometers
A new range of single-turn precision potentiometers in which the resistive element is of conductive plastics is announced by Pandect of High Wycombe, who claim that this type of track offers virtually infinite resolution coupled with exceptional reliability and long service life. Produced in five of the international frame sizes for synchro servo units (sides 11, 15, 18, 20 and 30), the potentiometers are intended mainly for instruments and electronic equipment with stringent requirements. In construction, ganging of multiple units on a common axis is provided for, up to a maximum of 8 elements. The range includes: standard and special resistance values and linear non-linear and sine/cosine versions. Resistance values are typically 500Ω to 25kΩ (standard) and 250Ω to 200kΩ (special). Operating torque range from 2471.5 to 6355.3μNm. Ambient temperature range is 55°C to +125°C and size and power ratings as the mobile units operate from a.c. mains and can be controlled remotely via land-line if required. FieldTech Ltd., London Airport, Hounslow, Middlesex.

WW 332 for further details

Mobile R/T
A range of new solid-state mobile radio-telephones by Philips is being marketed in the U.K. by FieldTech Ltd. Designed for use in all types of road vehicles and smaller marine crafts, the equipment comprises a v.h.f. or u.h.f. transmitter/ receiver and built-in loudspeaker in a case measuring 230 x 230 x 65mm. The same case can house 3, 10 or 20W v.h.f. or 5/10W u.h.f. versions with provision in the basic unit for selective calling without requiring add-on units. Channel spacing of 12.5kHz is used, and up to 12 channels can be accommodated. A portable version is available powered by an internal accumulator which is automatically re-charged from the vehicle's battery when the set is placed in the mounting tray. Base stations of the same physical

WWW.americanradiohistory.com
service life 5 x 10³ cycles. Pandect Precision Components Ltd., Wellington Road, High Wycombe, Bucks.

WW 334 for further details

I.C. Breadboard
Model ICB727 has been added to the range of i.c. breadboards by Spectrum Electronics giving provision for the connection of 8 sixteen-lead and 4 fourteen-lead dual-in-line circuits. It features solderless inter-connections throughout and is claimed to reduce damage to i.c.s to a minimum.

Each pin of the 12 i.c. sockets is brought out to a four-way socket which can be connected to any adjacent socket by colour-coded leads. Common power and earth points are available at each socket, terminated in 2mm binding posts. Two storage drawers are provided for i.c.s and leads. The ICB727 measures 160 x 160 x 160mm, weighs 680g, and costs £19 each for small quantities. Spectrum Electronics Ltd., Deneway House, Porters Bar, Hers. WW 318 for further details

Miniature Terminals
A new series of miniature terminals, type L1726, with a current rating of 10A and a breakdown voltage greater than 4kV d.c. is announced by Belling & Lee. It includes a captive head available in six colours and a socket in the top for plugging-in auxiliary miniature connections. The cross-hole in the clamping gap accepts wires up to 1.9mm diameter, i.e. 15swg. solid wires or 40/0076 stranded conductors. A 5.3mm mounting hole is required, the stem is terminated in an integral solder spil for rear-of-panel connections. Belling & Lee Ltd., Gt Cambridge Road, Enfield, Middx. WW 319 for further details

Simple Programming Board
To assist error-free programming, a new 40 x 20 matrix board with 6.4 x 12.7mm hole spacing has been developed by Seal electro. The new board provides mechanical separation between each distinct programme function and the extra space between holes makes for easier marking. Silver-plated contacts are used. Seal electro Ltd., Walton Road, Farlington, Portsmouth, Hants. WW 331 for further details

Epoxi-packed Complementary Transistors
S.T.C. Semiconductors has extended its range of epoxi-packed epitaxial transistors with complementary types BSW72-75 (p-n-p) and BSW82-

versatile trigger circuit
A multiple function trigger circuit, now available from Westinghouse Electric Corporation in an eight-pin dual-in-line package, will operate at low voltage (e.g. 3V) and handle high surge currents (2 amp through the silicon controlled rectifier). Other features of the unit include low standby current, high sensitivity, and a choice of three input channels to fire the thyristor. Agents: Ultra Electronics (Components) Ltd., Microelectronics Division, 35-37 Park Royal Road, London, N.W.10. WW 324 for further details

Spectral Analyzer
Among laser equipment shown at the symposium on the “Engineering Uses of Holography,” at the University of Strathclyde in Glasgow, in September, was a high-resolution spectroscopic system, designed for use in the analysis of c.w. gas laser mode structure, introduced by Spectra-Physics of America. It comprised an analyzer head and an electronic control unit which provides the driving and display circuitry necessary to produce a trace of laser mode intensity at optical frequency on the screen of a c.r.t. An outstanding feature of the optical spectrum analyzer, designed model 420, is the use of a mode-degenerative, confocal interferometer in the analyzer head. This is aligned at the factory making alignment of the head to the incident beam easy in use. Applications of the 420 include observations of the transverse mode structure of lasers, monitoring the output of “single-frequency” lasers, detection of phase-locking effects and study of the general characteristics of mode structure in lasers. Two alternative analyzer heads are available, models 421 and 422. Model 421 is designed for use with helium-neon 632.8nm lasers and has a free spectral range of 2GHz, while model 422 is designed for use with argon-ion lasers and has a free spectral range of 10GHz. The control unit provides the scanning and bias voltages for the analyzer head as well as the horizontal sweep voltage for a Tektronix 560 series oscilloscope. It can be used with both analyzer heads. An optional optical isolator, comprising a disc of plastics circular polarizing sheet mounted in a rotatable housing, prevents any back-scattered light from feeding back into the laser. Although the analyzer heads do not specularly reflect the laser beam back on itself, the use of an optical isolator is generally desirable. U.K. office: Spectra-Physics S.A., Queensway Estate, Glenrothes, Fife, Scotland. WW 315 for further details

Lockable I.C. Sockets
Oxley Developments are marketing a socket designed specially for the interconnection of integrated circuits of the d.i.l. type (2 x 11 con-
tacts). The socket contains a locking device which clamps the male and female contacts together firmly holding the plug-in unit in place and keeping the contact resistance to a minimum. When the socket is in the unlocked position, modules can be inserted or extracted. Oxley Developments Co. Ltd., Priory Park, Ulverston, North Lancs. WW 322 for further details

Desk-top Calculator
At the recent Electronic Instruments Exhibition, Manchester, Hewlett Packard showed a programmable desk-top electronic calculator, designed to perform complex operations commonly encountered in scientific and engineering problems. It is designated type 9100A. The keyboard includes functions such as logarithms, exponentials, hyperbolic and trigonometric functions and their inverse, as well as co-ordinate transformations. All keys are labeled in English or common mathematical symbols. The 9100A has wide application in the...
solution of problems in a.c. circuits and in aeronautics, stress analysis and triangulation problems. Hewlett Packard, 224 Bain Road, Slough, Bucks.

WW 328 for further details

Silicon Solar Cells

A range of silicon solar cells now available from Phocean Controls have a peak spectral response (360 µm) which corresponds with the maximum sensitivity of the human eye. This feature, coupled with their very rapid response times, makes the cells suitable for a wide range of industrial and commercial photo-electric applications. They are sensitive to low illumination levels, require no bias voltage supply and have a stable output. These cells are claimed to have a useful sensitivity in the blue region, the total spectral response range being from 400 to 1100 nm. Half-sensitivity spectral width is 440-770 nm. Electrical output ranges from 10 nm at 32 lux to 300 A at 1076 lux and output is constant over the temperature range —50 to +13°C. The cells are mounted in acrylic resin cases, metal cans with glass windows or epoxy coated, and can be supplied with effective sensitive areas from 0.123 cm² to 2 cm². Phocean Controls Ltd., Randalls Road, Leatherhead, Surrey.

WW 339 for further details

Video Level Generator

A test signal at line frequency, similar to the C.C.I.R. test signal No. 2 but with the front porch and set-up interval omitted, is provided by type SNF video standard level generator made by Rohde & Schwarz. Output voltage is 1 V p-p with a stability of ±1%. A sinewave burst having the same frequency as the colour sub-carrier is included for checking conditions at colour sub-carrier level. The generator is suitable for checking the level of the leads.

New Photodiodes

Two subminiature sensitive photodiodes announced by Mullard are designed for use in high-speed punched card and tape reading machines. Types BPY68 and BPY69, they are symmetrically diffused silicon devices that can operate with a positive or negative bias. Their spectral response extends from 0.6 to 0.97 µm, with a peak occurring at approximately 0.82 µm. The BPY68 is a silicon version of the germanium photodiode type CAP12, which has a similar envelope, but with a sensitivity of 0.3 µA/lux compared with only 0.05 µA/lux for the CAP12. Its diameter is approximately 2.8 mm and (excluding the leads) its length is 9.5 mm. The diameter of the BPY69 is only 2.1 mm—equal to that of the pitch of the holes in punched tape. The sensitivity of the BPY69 is 0.15 µA/lux. Both diodes are fitted with an integral glass lens. They have a maximum breakdown voltage of 60 V and a dark current of not more than 50 nA. Mullard Ltd., Torrington Place, London W.C.1.

WW 316 for further details

Portable Soldering Tool

A new departure in soldering tools, the Express 2000 is a battery-operated portable type, powered by a rechargeable nickel-cadmium cell. It is intended for intermittent soldering jobs, the number of joints that can be made on one fully-charged battery being in excess of 100. The battery itself has a working life of 3000 charge cycles and is supplied with the tool. Two bits, of 3 mm tip and 1.5 mm tip, are supplied. The Express 2000 costs

I.C. Audio Amplifier

Recently introduced to the General Electric (U.S.A.) range of i.c. linear amplifiers, type PA234 1W audio amplifier is available from Jermy Industries in development quantities at 15s 9d each. This i.c. operates from a supply voltage of 9.25 V and is compatible with 8, 16 and 22 Ω loads. A cooling tab facilitates heat sink connection, but the package will dissipate 750 mW in free air at 25°C. To complete the amplifier circuit the number of external passive components required is only three capacitors and three resistors. The circuit illustrated below has input impedance of 100kΩ, an output impedance of 2 Ω and 1W output with an input of 600mV. Jermy Industries, Vestry Estate, Sevenoaks, Kent.

WW 312 for further details

M.O.S. Switches

Two m.o.s. multiplex switches, type µM3700 (4-channel switch) and type µM3705 (8-channel switch), produced by SGS-Fairchild to complement their existing devices, are available in two versions to cover different signal ranges of —5 V to +5 V and 0 to 5 V and are suitable for operation over the temperature range —55°C to +85°C. The 3700 is a 14-lead flat pack device and the 3705 is a 16-lead d.i.l. device. Both are intended as basic switching elements for signal routing applications such as airborne or ground instrumentation and can be employed in analogue and digital data transmission. SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.

WW 320 for further details

"Pocketfone" Car Adaptor

Users of Pye a.h.f. "Pocketfone" receivers can now obtain an adaptor which enables the receiver to work inside a car without the disadvantage of screening. When the receiver is clipped into the adaptor it is automatically connected to a trickle charger which charges the internal battery, and an amplifier in the adaptor unit with a separate loudspeaker boosts the output up to 3W via a separate volume control. Pye Telecommunications Ltd., Cambridge, Cambs.

WW 302 for further details

TV transmission paths with PAL, N.T.S.C. and SECAM systems. Rohde & Schwarz, 80 Mühldorferstrasse, Munich, Germany.

WW 327 for further details
Wireless World, January 1969

Marconi
—pioneers of S.S.B and I.S.B
—announce the newest in an extensive range of receivers

The new HYDRUS high quality low-cost H.F receiver for international point-to-point services

FREQUENCY RANGE 1.5 TO 30 MHz

HYDRUS offers
★ Exceptional versatility
★ Very high reliability
★ All solid-state, incorporating the latest field effect transistors
★ High stability
★ Frequency synthesis tuning
★ Fast re-tune and change of operating mode
★ Panclimatic operation
★ Available for operation in many transmission modes

The Marconi Company Limited
Radio Communications Division
Chelmsford, Essex, England

AN 'ENGLISH ELECTRIC' COMPANY

Dual diversity version
WW—101 FOR FURTHER DETAILS
this is one data transmission system we can't check...

... the only one

Modern data transmissions go farther and faster, and must be even more accurate and reliable. Only Trend can provide the sophisticated equipment necessary to test such systems.

If you use or manufacture data transmission systems, tap out a message to:

Trend Electronics LTD

Data Transmission Division

St. John's Works, Tylers Green, High Wycombe, Bucks.
Tel: Tylers Green 322 654

www.americanradiohistory.com
Test Your Knowledge

8. Electromagnetic Radiation

1. One of the following forms of radiation is not electromagnetic:
 (a) radiation
 (b) x-ray radiation
 (c) radiant heat
 (d) microwaves.

2. A travelling electromagnetic wave in free space has electric and magnetic fields which are:
 (a) in phase and in the same direction
 (b) in the same direction, but have an arbitrary phase relationship
 (c) in phase and at right angles to one another
 (d) at right angles, but have an arbitrary phase relationship.

3. The direction of propagation of an electromagnetic wave in free space is:
 (a) along the electric field
 (b) along the magnetic field
 (c) in the plane of the electric and magnetic fields and bisecting the angle between them
 (d) perpendicular to the surface containing the electric and magnetic fields.

4. The direction of polarization of a linearly polarized electromagnetic wave is taken as:
 (a) the direction of the electric field
 (b) the direction of the magnetic field
 (c) the direction bisecting the angle between the electric and magnetic fields
 (d) the direction of propagation.

5. At a fixed point in a medium in which a circularly polarized plane electromagnetic wave is propagating:
 (a) the electric and magnetic fields both rotate and vary in amplitude sinusoidally with time
 (b) the electric and magnetic fields both remain constant in amplitude, but rotate in direction with the passage of time
 (c) the electric field remains constant in amplitude and rotates while the magnetic field remains fixed in direction but varies in amplitude sinusoidally with time
 (d) the magnetic field remains constant in amplitude and rotates while the electric field remains fixed in direction but varies in amplitude sinusoidally with time.

6. With reference to plane electromagnetic waves the relationship between circular polarization and linear polarization is:
 (a) none
 (b) only that a circularly polarized wave can be formed by combining together two linearly polarized waves
 (c) only that a linearly polarized wave can be formed by combining together two circularly polarized waves
 (d) a linearly polarized wave can be formed from two circularly polarized waves and a circularly polarized wave can be formed from two linearly polarized waves.

7. 3×10^8 metres per second is the velocity of:
 (a) plane electromagnetic waves in free space only
 (b) plane electromagnetic waves in any medium
 (c) all forms of electromagnetic radiation in free space only
 (d) all forms of electromagnetic radiation in any medium.

8. The ratio of peak electric to peak magnetic field strengths in a travelling transverse electromagnetic wave:
 (a) is the same in all cases
 (b) depends on the shape of the wavefront
 (c) depends on the medium in which the wave is propagating
 (d) depends on the intensity of the wave.

9. The electric field strength of an electromagnetic spherical wave in a loss-free isotropic medium:
 (a) does not vary with distance from the centre
 (b) falls off linearly with distance from the centre
 (c) falls off as the square of the distance from the centre
 (d) falls off as the fourth power of the distance from the centre.

10. An isotropic dielectric medium which supports a transverse electromagnetic wave:
 (a) is non-dispersive in all cases
 (b) is dispersive in all cases
 (c) is non-dispersive if the permittivity is proportional to frequency
 (d) is dispersive if the permittivity varies with frequency.

11. The total reflection of a plane electromagnetic wave at the boundary between two isotropic media can only occur if:
 (a) the phase velocity in the medium in which the wave is propagating is less than the phase velocity which the wave would have in the medium beyond the boundary
 (b) the permittivity of the medium beyond the boundary is greater than that of the medium in which the wave is propagating
 (c) the medium beyond the boundary contains free charges
 (d) the boundary between the two media is abrupt.

12. In order that a parallel beam of electromagnetic radiation may propagate:
 (a) the diameter of the beam must be very large compared to the wavelength
 (b) the radiation must be at light frequencies or above
 (c) the radiation must be monochromatic
 (d) the medium must be free space.

13. The quantum theory implies that the energy associated with an electromagnetic wave exists in the form of a stream of particles called photons:
 (a) in all cases
 (b) only if the radiation is incoherent
 (c) at optical frequencies and above, but not at lower frequencies
 (d) unless the radiation is monochromatic.

14. Electromagnetic radiation is coherent if:
 (a) its energy is not quantized
 (b) its wave fronts are plane
 (c) it is produced by currents flowing in a conductor, not by atomic emission
 (d) the phase difference between the oscillations at any two points in the medium does not change with time.

15. The most important difference between light produced by a laser and light produced by any other available source is that the laser light:
 (a) is coherent
 (b) is at a fixed frequency
 (c) is not quantized
 (d) can be pulsed.

16. A small generator situated in space far from the earth or any other body emits a parallel beam of electromagnetic radiation. As a result of this the generator will:
 (a) rotate about a fixed axis
 (b) move in the direction of the beam propagation
 (c) move in the opposite direction to the beam propagation
 (d) move in a direction perpendicular to the beam.

Answers and comments, page 51

"Test Your Knowledge—7"

In the set of questions on Valves (December 1968 issue, p.470) some words were accidentally omitted from question 3. The end of the question should read as follows:—

(c) a rise in temperature of the cathode due to ion bombardment
(d) an increase in the anode area due to thermal expansion.
1969 U.K. Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON
Jan. 6-11 R.H.S. Hall
Inventions and New Products Exhibition
(Business Conferences & Exhibitions, Mercury House, Waterloo Rd., London S.E.1)
Jan. 13-17 U.S. Trade Center
American Computer Display Equipment
(U.S. Trade Center, 57 St. James's St., London W.1)
Mar. 10-13 Alexandra Palace
Medical Engineering and Automation Exhibition
(Industrial Expositions, 9 Argyl St., London W.1)
Mar. 10-14 Earls Court
Electronic Production Equipment Exhibition
(Industrial Expositions, 9 Argyl St., London W.1)
Mar. 11-13 Kings Head, Harrow
Public Address Show
(Assoc. of Public Address Engrs., 394 Norhtolt Rd., Harrow, Middx.)
Mar. 25-29 Earls Court
Labaratory Apparatus & Materials Exhib.
(U.T.P. Exhibitions, Racquet Court, London E.C.4)
Apr. 21-25 Savoy Place
Switching Techniques for Telecom Networks
(I.E.E., Savoy Pl., London W.C.2)
Apr. 22-30 Olympia
Engineering and Marine Exhibition
(F. W. Bridges & Sons, Commonwealth House, New Oxford St., London W.C.1)
May 6-8 Savoy Place
Power Thyristors and their Applications
(I.E.E., Savoy Pl., London W.C.2)
May 20-23 Olympia
Electronic Component Show
(Industrial Exhibitions, 9 Argyl St., London W.1)
June 10-20 I.M.E., Mark Lane
Marine and Shipping Conference
(Institute of Marine Engineers, 76 Mark Lane, London E.C.3)
July 2-4 Middx. Hosp. Medical Sch.
Lasers in Medicine
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
Sept. 2-6 Grosvenor House
Educational & Training Technology
(I.E.E., Savoy Pl., London W.C.2)
Sept. 8-12 Savoy Place
Microwave Conference
(I.E.E., Savoy Pl., London W.C.2)
Sept. 15-17 Savoy Place
Trunk Telecommunications by Guided Waves
(I.E.E., Savoy Pl., London W.C.2)
Oct. 1-4 R.H.S. Hall
R.S.G.B. Radio Communications Exhibition
(P. A. Thorgood, 35 Gibbs Green, Edgware.)
Oct. 16-22 Olympia
Audio Fair
(C. Rex Hassan, 42 Manchester St., London W.1)
BELFAST
Sept. 9-12 Queen's University
Nonlinear Optics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
BIRMINGHAM
May 2 & 3 Grand Hotel
Service—its place in Marketing
(Society of Service Managers, 1 Tichborne Close, Frimley, Surrey)
BRIGHTON
Feb. 16-21 Hotel Metropole
Oceanology Conference
(G.F.S. Exhibitions, 6 London St., London W.2)
Sept. 21-26 University of Sussex
Nuclear Structure & Elementary Particle Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
CAMBRIDGE
Mar. 26-28 Selwyn College
Elementary Particles
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
Sept. 8-12 St. John's College
Man-machine Systems
(D. Whitfield, Applied Psychology Dept., University of Aston, Birmingham 4)
CANTERBURY
July 23-25 University of Kent
Digital Methods of Measurement
(I.E.E., 9 Bedford Sq., London W.C.1)
CRANFIELD
Mar. 23-25 College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matthews, Department of Flight, College of Aeronautics, Cranfield, Beds.)
DURHAM
Sept. 16-18 The University
Applications of Dynamic Modelling
(I.E.E., Savoy Pl., London W.C.2)
EASTBOURNE
May 6 & 7 Grand Hotel
Automated Inspection
(Scientific Instrument Research Assoc., South Hill, Chislehurst, Kent BR7 3EH)
June 3-5 Congress Theatre
Microelectronics Conference
(I.E.E., Savoy Pl., London W.C.2)
EKETER
Sept. 16-19 The University
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
KINGSTON-ON-THAMES
Apr. 1 & 2 Col. of Technology
Digital Storage Techniques
(Dr. R. V. Sharmar, College of Technology, Penrhyhn Rd., Kingston-on-Thames)
MANCHESTER
Jan. 7-9 The University
Solid State Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
Mar. 31- Apr. 3 The University
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
June 30-July 3 U.M.I.S.T.
Computer Science & Technology
(I.E.E., Savoy Pl., London W.C.2)
Aug. 25-29 The University
Datafuir
(Brit. Computer Soc., 23 Dorset Sq., London N.W.1)
Sept. 29-Oct. 3 Bellvue Electronics, Instruments, Controls & Components Show
(Instit. of Electronics, Balderschote, Rochdale, Lancs.)
NORWICH
Apr. 15-18 University of E. Anglia
Physics of Liquids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
NOTTINGHAM
Mar. 25-27 The University
Interactions among Elementary Excitations
in Solids and Liquids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
PLYMOUTH
Jan. 14 & 15 Col. of Technology
Position Measurement & Instrumentation
(R. T. Macderrmott, Dept. of Elec. Eng., College of Technology, Plymouth)
SOUTHWEST
Mar. 25-27 The University
Lasers and Opto-Electronics
(I.E.R.E., 9 Bedford Sq., London W.C.1)
Apr. 15-18 The University
Computer Aided Design
(I.E.E., Savoy Pl., London W.C.2)
YORK
Apr. 16-18 The University
Thra Films Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
Overseas Conferences and Exhibitions

JANUARY-MARCH
Jan. 21-23 Chicago
Reliability Symposium
(R. Brewer, Associated Semiconductor Manufacturers Ltd., Millbrook Ind. Est., Southampton, SO9 7H8)
Jan. 28-31 Ellenville, N.Y.
Information Theory
(J. Wolf, Dept. of Elec. Eng., Polytechnic Institute of Brooklyn, 333 Jay St., Brooklyn, New York 11201)
Feb. 10 & 11 Washington
Transducer Conference
(H. P. Kalmus, Harry Diamond Laboratories, Dept. of the Army, Washington, D.C. 20436)
Feb. 19-21 Philadelphia
Solid-State Circuits Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
Mar. 4-8 Basel
Industrial Electronics Exhibition
(Secretariat INEL 69, CH-4000, Basel 21)
Mar. 5-7 Washington
Accelerator Engineering & Technology
Mar. 5-16 Sao Paulo
British Industrial Exhibition
(Industrial & Trade Fairs, Commonwealth House, New Oxod St., London W.C.1)
Mar. 6-11 Paris
Festival du Son
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15e)
Mar. 24-27 New York
I.E.E.E. Convention & Exhibition
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
Mar. 24-28 Paris
Remote Data Processing
(Soc. Franaise des Electroniciens et des Radio-techniciens, 10 av. Pierre-Larousse, Malakoff)
Mar. 29-Apr. 2 Paris
Components & Electro-acoustics Show
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15e)
World of Amateur Radio

United Kingdom Licence Changes
Effective November 1, 1968, United Kingdom amateur sound and television licences were amended in respect of the 4-metre and 70-cm bands. The width of the 4-metre band has been extended downwards by 75kHz to provide a total bandwidth of 675kHz (70.025 to 70.7MHz) while the 70-cm band has been split in two with the lower section falling between 425 and 429MHz and the upper section between 432 and 450MHz. Further amendments include the extension of the 450MHz. The change has been brought about by the allocation of a band of frequencies between 429 and 432MHz to a new service in the U.K. The amendments to the 70-cm band have led to an alteration in the frequency limits for amateur television which is now permitted between 425 and 429MHz and 432 and 445MHz.

Christoforo Colombo Prize
Charles Newton (G2FKZ) of London, has been awarded the Christoforo Colombo prize in the technical section of the 16th International Communications Conference in Genoa, Italy. The citation reads "For the careful work carried out during the International Geophysical Year, for the study of the phenomenon of radio electrical propagation in the presence of aurora borealis and for the scientific works presented to high level conferences which are a clear mark that the radio amateurs' work has already reached high scientific importance". The award, announced by the president of the Italian Ministers' Council during the closing session of the conference, is the first formal recognition by an international professional body in recent times of the work of United Kingdom radio amateurs.

Canadian Amateur Radio History

"From Spark to Space", is the title of a history of amateur radio in Canada produced by a small group of members of the Saskatoon Amateur Radio Club. Of special interest from the United Kingdom point of view is the account of the early transatlantic tests as seen through the eyes of Canadian participants, particularly Major William Barrett (VE1DD), of Halifax, who also recounts how the Royal Order of Transatlantic Brasspounders came into existence. The ROTAB trophy, donated by the late Gerald Marcuse (G2NM), is the premier award of the Radio Society of Great Britain.

The September Floods & the R.A.E.N.
Although a full report on the part played by the Radio Amateur Emergency Network during the September floods has not been published, sufficient is known to record that the user services in the badly affected Surrey area failed to call upon the network until a somewhat late hour. When help was sought, no time was lost, and the Surrey group put in a 5-day stint, working from 9 a.m. to 8 p.m. daily, in the flood area.

One unforeseen use of the network was to direct a petrol tanker supplying fuel for the 112 drying machines manned by about 200 R.A.F. personnel who were not equipped with radio. Base stations working on 4 metres were installed at Molesey and Esher and these were supplemented soon afterwards by a further link on 2 metres. With the assistance of G3O0X/G2AVC at Hounslow, acting as mobile control, up to five messages were passing every minute during the peak period. Altogether about 200 messages were accounted for in written form. Out of a total membership of 37 in the Surrey R.A.E.N. group, 20 took an active part in the operation.

New R.S.G.B. Headquarters
After a stay of 23 years at New Ruskin House, Little Russell Street, London, W.C.1, the headquarters of the Radio Society of Great Britain has moved to 35 Doughty Street, W.C.1. The new building was acquired for the sum of £32,500 and a further sum (£8,000) has been spent on redecorations and the installation of central heating, furnishings, etc. With the change the society has lost its cryptic telephone number "7373", the new one being 837 8688.

Royal Naval Amateur Radio Society
W, Metcalfe (G31IP), honorary secretary of the Royal Naval Amateur Radio Society, has moved to Edmonton, Canada. The new secretary is radio superintendent R. Malcolmson who may be contacted c/o H.M.S. Mercury, Leyden, Hants. Associate membership of the society has been extended to include members of the Merchant Navy and foreign navies. The next-on-the-air Morse code practice run will commence at 1900 hours on January 7, 1969, on 3520kHz.

Christmas Lecture
The education committee of the Radio Society of Great Britain is preparing material for a Christmas lecture dealing with amateur radio to be given at the Science Museum London, on January 4, 1969. The lecture will be delivered once in the morning at 11 a.m. and again in the afternoon at 3 p.m.

Another History Planned
Mrs Louise Moreau (WB9BBO), 1036 East Boston Street, Altadena, California, 91001, is preparing a history of women radio amateurs and is particularly interested in obtaining information and anecdotes about some of the early lady operators. Miss Barbara Dunn (G6Y1), who is still active, was England's first lady amateur with Mrs Dorothy Burns (G2M2A), occupying the same position in Scotland. Both ladies were first licensed about 40 years ago.

Amateur Radio Conference in Brussels
More than 40,000 radio amateurs in Europe, Asia and Africa will be represented by delegates from upwards of 30 members from societies in the International Amateur Radio Union (Region 1 Division) at a triennial conference to be held at the Hotel Metropole, Brussels, from May 5 to 9, 1969. Papers covering a wide range of subjects are at present being prepared by member societies and will be issued early in the new year as conference documents. The conference is being organised, on behalf of the executive committee of the division, by the Belgian national society (U.B.A.).

Top Band Transatlantic First-timers' Test
European radio amateurs who have not yet succeeded in making a transatlantic two-way contact on Top Band (160 metres) are reminded that a series of tests for their special benefit will take place on February 2, 1969, between 0300 and 0730 g.m.t. Reports of contacts made during the tests should be sent to the organiser, Stewart S. Perry (W1BB), 36 Pleasant Street, Winthrop 20152, Mass, U.S.A. Participants should call "CQ DX TEST FT FT".

Northern Radio Societies Association
R. M. Clarke (G8AYD), Hillside, Quickedge Road, Mossley, Ashton-upon-Lyne, Lancs., gives notice that a convention of the ten societies forming the N.R.S.A. will be held in the Cumberland Suite, Belle Vue Gardens, Manchester, on Sunday, April 27, 1969. In the past more than 4,000 people have attended N.R.S. conventions which have become one of the largest events in the amateur radio calendar. Mr. Clarke, who is manager of the convention, will be pleased to hear from any organisation desirous of reserving stand space.

John Claricoats G6CL
January Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON
2nd, I.E.E.—Discussion on "Harmonic generators using varactors and step recovery diodes" at 17.30 at Savoy Pl., W.C.2.
7th, S.R.T.—"Transistor audio amplifiers" by D. R. Hyde at 17.30 at the London School of Hygiene & Tropical Medicine, Keppel St., W.C.1.
8th, I.E.R.E.—"Speech and vocoders" by L. C. Kelly at 18.00 at Bedford Sq., W.C.1.
9th, Inst. of Electronics—"Linear integrated circuits" by J. R. Whitbread at 18.45 at the London School of Hygiene & Tropical Medicine, Keppel St., W.C.1.

BRADFORD
9th, I.E.E.—"Computer aided electronic circuit design" by P. E. Love at 19.00 at the University.

BRISTOL
15th, I.E.E., I.E.E. & R.A.E.—"Practical uses of navigational aids" by W. J. Inglefield at 19.00 at the University.
16th, I.E.E.—"Technician courses, examinations and awards" by J. Cotterell at 18.30 at the Technical College.

CAMBRIDGE
30th, I.E.E.R.E. & I.E.E.—"Inertial navigation" by Prof. A. Sisarion at 20.00 at the University Eng. Labs., Trumpington St.

CARDIFF
6th, I.E.E.—"Concorde" by H. Hill at 18.00 at the Inst. of Science & Technology.
15th, I.E.E.—"Linear microelectronics" by S. O. Davison at 18.30 at the Inst. of Science & Technology.
15th, I.E.E.—"The laser beam and its applications" by C. S. Grace & L. G. Penhale at 19.30 at the Inst. of Science & Technology.
17th, S. E.R.T.—"Communications in space" by G. L. Griffiths at 19.30 at the Llandaff Technical College, Western Avenue.

CHELMSFORD
21st, I.E.E.—"Underwater telemetry" by G. Pearce at 19.00 at the Civic Centre, Duke St.

CHESTER
6th, I.E.E.—"Computer aided design using light pen techniques" by D. B. Welbourn at 18.30 at the Town Hall.

CHRISTCHURCH
8th, I.E.E.—"Lasers in electronic systems" by D. Briggs at 18.30 at the King's Arms Hotel.

EDINBURGH
7th, I.E.E.—Colloquium on "Meteorisation in electrical engineering" at 18.00 at the Carlton Hotel.
8th, I.E.E.—"Automatic character recognition by computer" by Dr. A. Coombs at 19.00 at the Napier College of Science & Technology, Colinton Rd.

EYVESHAM
14th, I.E.E.—"Electronic telephone exchanges" by V. E. Mann at 19.00 at the B.B.C. Club.

FARNBOROUGH
7th, I.E.E.—"Stereophonic broadcasting" by G. J. Phillips at 18.30 at the Technical College.
16th, I.E.E.—"Thin film technology" by R. G. Finch at 19.00 at the Technical College.

GLASGOW
9th, I.E.R.E.—"Automatic character recognition by computer" by Dr. A. Coombs at 19.00 at the University of Strathclyde.
13th, I.E.R.E.—"The impact of integrated circuits on the role of circuit designer" by A. G. I. Cressell & R. T. Towell at 18.00 at Strathclyde University.

HULL
30th, I.E.E.—"World communications" by Prof. C. Cherry at 18.30 at the University.

LEEDS
28th, I.E.E.—"Microelectronics and the future" by Prof. G. D. Sims at 18.30 at the University.

LEICESTER
21st, I.E.R.E.—"Application of research to industry" by J. Dixon at 18.30 at the University Physics Lecture Theatre.

LIVERPOOL
15th, I.E.E.—"Radioactive measurements" by C. Goodwin at 19.00 at the Dept. of Electrical Eng's, University.
20th, I.E.E.—"Electronics in marine applications" by M. Adams at 18.30 at the University.
29th, I.E.E.—"The technician and his training in modern industry" by H. L. Hazlegrove at 18.00 at the University.

MANCHESTER
6th, I.E.E.—Christmas Holiday Lecture: "Solid state technology" by Prof. E. A. Ash at 11.00 and 15.00 at the Institute of Science & Technology.
29th, I.E.E.Grads.—"Electroluminescence" by A. R. Peaker at 18.45 at U.M.S.T.

MIDDLESBROUGH
22nd, I.E.E.Grads.—"The engineer and society" by G. Baker at 18.30 at the Cleveland Scientific Institution.

NEWCASTLE-UPON-TYNE
8th, S.R.T.—"Medical Electronics" by E. Chicken at 18.45 at the Charles Trenvall College.

OXFORD
8th, I.E.E.—"Pulse code modulation" by G. H. Bennett at 19.00 at the College of Technology.

PLYMOUTH
8th, R.T.S.—"The lead oxide vidicon and its use in colour cameras" by B. Pever at 19.30 at the Studios of Westward Television Ltd.

PORTSMOUTH
7th, I.E.E.Grads.—"Colour television" by H. J. Bradley at 18.30 at the College of Technology.

READING
16th, I.E.E.—"Modern tools of systems engineering" by G. C. Tutt at the J. J. Thomson Physical Lab., the University.
21st, I.E.R.E.—"Some unusual applications of thyristors" by J. H. Gibbons at 19.30 at the Gt. Western Hotel.

RUGBY
21st, I.E.E.Grads.—"Colour television engineering" by C. B. B. Wood at 18.15 at the College of Engineering Technology.

SHEFFIELD
8th, I.E.E.—"Recent advances in computer aided design service for industry" by E. Wolfendale at 18.30 at the University.

SOUTHAMPTON
21st, I.E.R.E.—"Satellite earth stations" by Dr. G. H. Bryant at 18.30 at the University.

STAFFORD
13th, I.E.E.—"Applications of lasers" by Prof. E. D. R. Shearman at 19.00 at the College of Technology.

STEVENAGE
16th, I.E.E.—"Microelectronics" by K. J. Dean at 19.30 at the College of Further Education.

SUDBERUR
23rd, I.E.E.Grads.—"Colour television" by P. H. Beards at 18.30 at the Technical College.

SWANSEA
9th, I.E.E.—"Introducing integrated circuits" by P. Cooke at 18.15 at the University College.

SWINDON
7th, I.E.E.—"Benefits and implementation of metering" by A. J. Gilbert at 18.15 at the College.

WINCHESTER

www.americanradiohistory.com
Knowledge Answers

The electric proportional given solid angle verse of the phase velocity polarized plane together amplitude and opposite

wireless world, the law 16. (c).

15. (a). Solution of the

11. phase velocity the medium ary

10. (d). The phase velocity is \(V = \sqrt{\frac{c}{\mu}} \) where \(c \) is the velocity of light in vacuum, and \(\mu \) is the magnetic permeability of the medium.

9. (b). Since the power propagating out through a given solid angle is constant the intensity is inversely proportional to the square of the distance from the centre. The electric field strength is proportional to the square root of the intensity.

8. (c). For any transverse electromagnetic wave the phase velocity is \(V = \sqrt{\frac{c}{\mu}} \) where \(c \) is the speed of light in vacuum, and \(\mu \) is the magnetic permeability of the medium.

7. (c). This is the wave-impedance; its value for transverse electromagnetic waves in a given medium is \(Z = \sqrt{\frac{c}{\mu}} \).

6. (d). Two circularly polarized plane waves of equal amplitude and opposite senses of rotation propagating together in the same direction add to form a linearly polarized plane wave. Two linearly polarized plane waves of equal amplitude with their directions of polarization at right angles and their phases differing by \(\pi/2 \) propagating in the same direction add to form a circularly polarized plane wave.

5. (b). The electric and magnetic fields remain at right angles and rotate together.

4. (a). Solution (a) is a common fallacy.

3. (d). This is the direction of the "Poynting vector".

2. (c).

1. (a). \(\alpha \) radiation consists of a stream of helium nuclei.

A new, all moulded, panel mounting Fuseholder accepting 1" x \(\frac{1}{4} \)" fuses rated at 250V. 5Amp. The body is moulded from polished black phenolic material, fixed to panel by two 6BA bolts and has fitted connection tags accepting solder or 187 series push-on-tabs. The front fuseholding cap is moulded from red phenolic material, fixed by Bayonet action, flush to the body front when fitted and has a screwdriver slot to aid removal.

SEND FOR BROCHURE No. 1532/C FREE ON REQUEST

A. F. BULGIN & CO. LTD., BY-PASS RD., BARKING, ESSEX.

MANUFACTURERS OF ELECTRICAL AND ELECTRONIC COMPONENTS

TEL: 01-594 5588 (12 LINES) Private Branch Exchange.

WW—103 FOR FURTHER DETAILS
Real and imaginary

By "Vector"

"All we like sheep . . ."

So help me, I hadn't intended to return to the subject of takeovers (oh, very well, Dr. Stickler, if you insist, takeover) but to judge from correspondence received it's a subject that could do with some more airing.

In the November issue I instanced the case of one Joe Tymebase, a research and development man in his fifties, who got the chopper as a consequence of a financial takeover. Now Joe was fictional in the sense that I had had no one person in mind when I wrote the piece. As they say on the fly-leaf of a novel, any resemblance to persons living or dead is purely coincidental.

Then, a few days after publication, came a letter signed 'Joe Tymebase' and with it four pages of autobiography which followed the fictional Joe's career in every single particular, but with added detail. And this wasn't fiction; it was set down as fact.

So closely did the one tally with the other that it gave me rather a turn. If Rodin, having put the final touches to The Thinker, had been tapped on the shoulder by it and asked for a cigarette, I know how he would have felt. As for me, I'm considering hiring electronics and applying for a job in the Civil Service which appears to be the only area of expansion.

Joe's letter was disturbing; all the more so because it isn't a diatribe against the wicked bosses. Taken at its face value, it's a straightforward bit of reportage, restrained and with a leavening of wry humour (you have the knack, Joe, if I may quote the Editor). Unfortunately Joe didn't give his real name or address so I couldn't contact him for verification. All one can say is that his story has the ring of truth.

Joe, it seems, was 35, in a senior position after 30 years with his firm and regarded by one and all as 'fireproof'. Before the takeover there was a lot of smooth talk about expansion and the additional labour that would be required. Who could blame him for feeling safe?

The takeover completed, a new and amalgamated R & D department was built in another district and Joe's advice was sought and taken regarding the equipment. The new district was described in the Works magazine as 'lying in the heart of the beautiful countryside, with all local amenities' (Joe went house-hunting there and found that the local amenities appeared to consist of used car dumps).

He describes how the crunch came and he and 499 associates of similar age received the copper handshake. The publicity boys, adept at constructing silk purses out of sow's ears, published numerous pictures of happy employees who had decided to retire.

This done (says Joe) a rumour was circulated around the company 'another 500 in two months' time'. At this, many of his not-so-old ex-colleagues saw the red light and got out under their own steam. This was exactly what was wanted; it enabled young blood to be recruited (at cheaper rates) in true American tradition.

There is much more, but the ending must suffice. Joe was luckier than most; after a time on the Labour Exchange he got a job, but not in electronics. As he points out, it was an classic example of the Selective Employment Tax in reverse—the transfer of highly skilled personnel from essential industry into a non-essential occupation.

Now, before we get too hot under the collar, we must be fair about all this. There may be another side to the story and I hope Joe will not misunderstand me when I say that for all we know he may be the type who's born with a chip on his shoulder (although I've never known one who lasted 30 years with one firm).

But that is not the real issue. Even if his account is also fiction—and something tells me that it isn't—we all know too well that there is absolutely nothing to prevent this situation occurring anywhere and at any time if expediency (in the form, perhaps, of share-juggling) dictates. That is the point. That is the essential wrongness of it all.

Vulnerability of R & D

"Takeover" executions are not, of course, exclusive to electronics engineers but, because of the high proportion of R & D in our industry (the second highest of all manufacturing industries), they are more vulnerable. Inevitably, when two major concerns merge the most likely sections to come under the chopper are the duplicated R & D. Moreover, ours is a "man power" based industry, with a higher content of personnel per £1000 of output than the large "plant and machinery" based industries like petroleum or detergents for instance.

If we try to find the root cause within the electronics industry we shall fail because we are being far too parochial. This evil is a world cancer whose fibres are everywhere. It is aptly summed up in an advertisement I saw the other day which says "Working for money is a poor way of making money". We are all tainted with this philosophy; Mister Average has his football pools and his bingo hall. Mister Tycoon has his stocks and shares to manipulate. There is no fundamental difference. We are all conditioned to it by an educational system which, while paying lip-service to the humanities, has as its yardstick of success the acquisition of money. Some manage to evade the trap; but the Old Boy who is invited to give a masterclass on Prize Day or not the one who has become a doctor in a dockland slum but the one who has made a million.

In the days of the dark satanic mills the poor had two things which made life tolerable—the bottle or a faith in a hereafter. In the Welfare State we can't afford the bottle and our faith is confined to material things. Inevitably we have become predatory animals with the business world a natural jungle; so don't blame Mister Tycoon when the chopper falls, Joe. It's just that tycoons happen to have more killer instinct than the rest of us.

The bigger the organization, the easier the executions become, for remoteness is a significant factor. Few of us, I imagine, would enjoy a steak if a daily wallow in a slaughter-house was made obligatory. Similarly, it is easy to sack 500 human beings if they are merely names on a list; not so easy if you know that Jim Smith's wife is crippled with arthritis or that the future of Harry Brown's son at university depends on a stroke of your pen.

So what to do? If the human race was sensible it would reform its educational system to teach tomorrow's children that moral responsibility to their fellows is more important than arithmetic. In short, it should create a situation in which the original Fry's and Cadburys and (in our own field) the Frank Murphys, would constitute a norm and not misguided freaks.

But we won't, of course. In the electronics industry we shall probably do nothing at all and continue to be bought and sold at auction like sheep. I don't think rabid trade unionism is the answer, either. Then what?

Protection from the Learned Societies?

If we must deal in palliatives rather than in cures, then the suggestion I made in the November issue, namely that the Learned Societies should take a hand. After all, the main aim of such is to protect the status of the qualified engineer and there isn't much status attached to being bought and sold is there? There is a precedent in the British Medical Association, which seems to be able to look after its members very effectively.

"This isn't asking for the moon. It's just common justice that the men who make the profits for the shareholders should have some say in the fortunes of their company and enjoy a degree of protection which at present is singularly absent.

www.americanradiohistory.com
Wireless World, January 1969

Forget the rest—choose the latest and best from I.M.O.

I.M.O. VARIABLE VOLTAGE TRANSFORMERS

MOST MODERN IN DESIGN AND VERSATILE IN PERFORMANCE TO MEET THE EFFICIENCY NEEDS OF THE WIDEST RANGE OF INDUSTRIAL APPLICATIONS

Fully rated current consistent at all points along the winding. 'SLIDE-TRANS' & 'SLID UP' MODELS. Fitted Screw Terminals and Socket. Input 230v AC 50/60 c.p.s. 0 to 260v Output ALL MODELS. Smooth Continuous Adjustment. All Models Shrouded for Safety. Bench or Panel Mounting.

1 Amp. £5.10.0
5 Amp. £9.15.0
10 Amp. £18.10.0
20 Amp. £37.0.0
2.5 Amp. £6.15.0
8 Amp. £14.10.0
12 Amp. £21.0.0
C. & P. Extra

COMPLETE PHOTO-ELECTRIC SENSOR in one unit

- Reflective Type with Built-in Light Source
- Will also operate from Remote Light Source
- Matchbox Size
- Senses any object—colours, thick smoke

Operates from 12 V A.C. Output signal 0.2 amp. 100v. dependent on quantity.

Approximately £5.10.0

Synchronous motor CAM TIMERS

- Quicker Deliveries
- 1-72 Adjustable Cams
- 10 amp. Changeover Micro-Switches Fitted, Screw or 25" Amp Terminals
- Designed for Continuous Operation

Special Cams and Programming to Customers' requirements. Question for 50 and upwards

20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agents for overseas Govt.

Latest Design Heavy Duty 12/24 Volt D.C.

Output: Adjustable up to 20 Amps. Continuous at 12/24 volts.

Fully Fused, Neon Indicator, 0-20 amp. meter. Size 16 x 12 x 20in. high, in heavy gauge steel cabinet. Grey Hammer finish. Weight 50 lb.

Only £32.10.0 plus 40/- C. & P. G.B. (India)

LATEST SOLID STATE VARIABLE VOLTAGE CONTROL

- Completely sealed
- Compact
- Panel mounting

230 v. A.C. Input 25-230 volts output. 5 amp. model £8/7/6 P. P. Extra 10 amp. model £13/15/-

CONSTANT VOLTAGE TRANSFORMERS AUTOMATIC MAINS STABILISER

- No attention
- No Maintenance
- No Moving Parts
- Corrected Wave

Input: 195-250v. A.C.
Output: 240v. A.C.

Accuracy: ±1%
Capacity: 2 models available; 150 watts or 225 watts

Maintain "step-on" tachometer readings at all times. Fitted signal lamp and switch.

Weight: 21 lb.
Size: 10 x 6 - 4in. high.

£12.10.0 C. & P.

30 Amp. LT. SUPPLY UNIT

Up to 24 v. D.C. With Smooth Steepless Variation

Designed for Continuous use at max. loading

- Fitted voltmeter and ammeter.
- Instantaneous overload cut-out.

Input: Xtins A.C. Robust construction. 2 tone finish, steel case.

C. & P. 40/- G.B. (India)

£55.0.0

Entirely suitable for plating plants, Laboratory supplies, etc.

5 Amp. A.C. & D.C. VARIABLE SUPPLY UNIT

Specification:
Input: 240v. A.C.

- Smooth stepless voltage variation from 0-Max.
- Current consistent throughout the controlled range.

Ammeter and voltmeter fitted, neon indicator.
- Fully fused input and output.

Strong steel case, with carrying handle and rubber feet. 11 x 7 x 14in. high. Made in England.

£30.0.0 C. & P. 40/- Gt. Britain (India)

Current production—Buy direct from Manufacturer

WWW.americanradiohistory.com
NEW HIGH VALUE HIGH QUALITY STEREO AMPLIFIER

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S. INTO A 8 Ω LOAD AND 10 WATTS R.M.S. INTO A 15 Ω LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICK-UP, TUNER AND TAPE. SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE.

DETAILED ILLUSTRATED LITERATURE AVAILABLE ON REQUEST. TRADE ENQUIRIES INVITED.

WELBROOK ENGINEERING ELECTRONICS LTD.
BROOKS STREET, HIGHER HILLGATE,
STOCKPORT, CHERSIRE 061-480 4268

FERRANTI DESIGNED HI-FI AUDIO EQUIPMENT AVAILABLE IN KIT OR BUILT-UP FORM. DETAILS AND PRICE-LIST ON REQUEST.

PRICE £48
COMpletely ENCLOSED—PANEL MOUNTING TEAK CABINET EXTRA.

A.C. SOLENOID TYPE SAM

Continuous Rating
14oz. at 1/4in
Instantaneous
up to 5 1/2lb.

Fitted with stainless steel guides—6 times the life. Larger and smaller sizes available—also transformers to 8kVA 3-phase.

R. A. WEBBER LTD.
KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65-7228'9

AVONCEL TROLLEYS
FOR HOME AND EXPORT
LARGE RANGE OF STANDARD MODELS from £10. Also CUSTOM BUILT TO SUIT YOUR EXACT REQUIREMENTS
LOW COST • TOP QUALITY • QUICK DELIVERY QUANTITIES: 1 OFF TO 1,000 OR MORE

AVONCEL

AVON COMMUNICATIONS AND ELECTRONICS LTD.
318 BOURNEMOUTH (HURN) AIRPORT, CHRISTCHURCH, HAMPSHIRE
TEL: NORTHSOURE 3774 TELEG: AVONCEL CHRISTCHURCH

TO: NOMBREX LTD
Exmouth, Devon, England
Please forward leaflets of your full range to—
NAME

Please forward leaflets of your full range to—
NAME

Please enclose 6d. stamps

Trade and Export enquiries please attach letterhead or Trade Card.

NOMBREX

BRIEF SPECIFICATION

• INDUCTANCE: 4 RANGES 1μH-100H
• Q FACTOR: 0.1 to 1,000
• TANδ; 10 to 0.001
• ACCURACY: INDUCTANCE ± 5% + 1μH
• 0.6 tan δ ± 10%
• DIRECTLY CALIBRATED SCALES
• EDGWISE BALANCE METER
• BRIDGE SENSITIVITY CONTROL
• FULLY TRANSISTORISED

Send coupon for full technical leaflets of this and other Nombrex transistorised instruments

INDUCTANCE BRIDGE
MODEL 33 £20.0.0
Postage and packing—6s. 6d. extra

WWW.AMERICANRADIOHISTORY.COM
NEW HI-FI PARASTAT
Gramophone Record Maintenance and Stylus Cleaning Kit

Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pointed tips of the Hi-Fi Parastat Brush positively explore every detail in the record groove to provide the high degree of record cleanliness necessary when using ultra lightweight pick-ups tracking at 2 grammes or less. The cover pad in the lid of the case is provided for the purpose of cleaning and activating the brush which when enclosed within the case is kept at the correct level of humidity required to control all static at the working surface. Perfectly clean records must be played with a perfectly clean stylus and an integral part of the kit is the new Watts Stylus Cleaner which provides a safe and efficient method of cleaning the stylus.

Supplied complete with instructions, 1 oz New Formula dispenser, Distilled Water dispenser, spare pad cover and ribbons. Price 4/- plus 1s 3d P.T.

Replacements: 1 oz New Formula dispenser 4/-, Distilled Water Dispenser 4/-, Pad Cover and Ribbons 1/-.

A GUIDE TO THE BETTER CARE OF LP AND STEREO RECORDS

'DUSTBUG'...Manual Model Mk.IIA

A dual purpose record maintenance device. Keeps new records in perfect condition. Removes dust, fingerprints, and scratches. Automatic Record Cleaner. Easily fitted to any transcription type tonearm. Provides a simple and effective method of removing static, and dust while the record is being played. Surface noise and record and stylus wear is reduced, resulting in cleaner reproduction. Complete with 1 oz New Formula Dispenser and Instructions. Price 18/9 plus 4/5 P.T.

For Accessories: Set of Sponge Covers 2/6, Cleaning Cleaner 3d.

'PARASTATIK'...Disc Preener

Keeps new records like new. Expressly designed for use with records which have not had previous antistatic treatment. Complete with Instructions. Price 6/9.

For Accessories: Packet of 4 wicks 2/-.

AHOJA PA SYSTEM

PRESENTS - 1969 - RANGE PROFESSIONAL QUALITY
PUBLIC ADDRESS AT AMAZINGLY COMPETITIVE PRICES.

Model 50 - ATR - 50 Watts
8 Models in all Transistor A.C. Mains and Battery Operation, Power Output from 15 - Watts to 50 - Watts. Built to International Standards. Also Mixers & Pre-Amplifiers.

Model A - 100

Wide Range of unidirectional Microphones

Breakdown Proof Driver Units, Reflex Horns and Sound Column Speakers.

AHUJA P. A. SYSTEM are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

AHUJA RADIOS, (P) DARYA GANJ DELHI-6, (INDIA)
Issued by Engineering Export Promotion Council Calcutta (India)

WW—107 FOR FURTHER DETAILS

WW—108 FOR FURTHER DETAILS
PEAK SOUND

aids to economical hi-fi

ES/10-15
BAXANDALL SPEAKER

"Rolls-Royce standards" SAYS RALPH WEST.
Hi-Fi News
OCTOBER, 1968

The immediate impression was of a thoroughly good speaker, smooth and effortless ... voices both speaking and singing were uncannily real once again we see the possibility of Rolls-Royce standards from comparatively cheap components ... when you know how." Hi-Fi News Test Report, Pages 1208/1211, Oct 1968.

A REVOLUTIONARY ADVANCE IN DESIGN LOGIC
THE PEAK SOUND ES/10-15 is the designer-approved kit of the sensational loudspeaker designed and described by P. J. Baxandall in Wireless World(Aug., Sept. 68). The frequency response extends from 60-14,000 Hz (100-10,000 Hz ± 3dB). Everything is supplied to specification—the 18" x 12" x 10" aforomsia tea cabinet is cut and drilled for simple assembly, the equalising circuitry is ready-made for immediate installation. The finished product is completely professional. It will astonish and delight you beyond words. See what hi-Fi / stereo says in its full detailed report in their October issue. It is hard to believe so modestly priced a speaker could get so glowing a report.

a new
Peak Sound
hi-fi power amplifier

THE PEAK SOUND PA/12-15 is a new power amplifier of excellent design and performance. Features include Class B output of 12 watts R.M.S. into 8 ohms; 43dB neg. feedback; frequency response from 10 Hz to 45 Hz ± 0.5dB; distortion at max. output less than 1.1%; input sensitivity—400mV, power requirement 45V D.C. which can be obtained from the Peak Sound heavy duty power unit [price £5.50]. Size 5" x 3" x 1". Selected high gain closely matched transistors are used throughout. Full instructions are provided. This sensibly designed unit will appeal to all for whom reliability and good design are important. Pre-amp details available.

From dealers or sent direct in case of difficulty, POST FREE.

PEAK SOUND (HARROW) LTD.
32 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY. EGHAM F216

<table>
<thead>
<tr>
<th>To PEAK SOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please send</td>
</tr>
<tr>
<td>for which I enclose £</td>
</tr>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>ADDRESS</td>
</tr>
</tbody>
</table>

Block letters please

WWW-109 FOR FURTHER DETAILS

PRECISION PRESSINGS
Accurate components at competitive prices

produced by progressive tooling and multiform methods

JOHN SMITH LTD.
20 SPON LANE - WEST BROMWICH - STAFFS. TEL. 021-553 2316 (3 LINES)
WOODS LANE - GRADLEY HEATH - WALSALL - WORCS. TEL. CR 69285 (3 LINES)

WW-110 FOR FURTHER DETAILS

HOWELLS RADIO LTD.
MINISTRY OF AVIATION INSPECTION APPROVED

TRANSFORMERS
STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION:
0.50KVA, 60/40 CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
Driver 22/6 Carr. 2/-
Mains 29/6 Carr. 4/6
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-

*MAINS TRANSFORMERS
350-0-350 v. 60 mA, 6.3 v. 2 A £1/15/-
500 v. 300 mA, 6.3 v. 4 A, 6.3 v. 1 A £3/12/-
500-0-500 v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A £4/10/-
525-0-525 v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A £5/5/-

*LOW VOLTAGE
30-0-30 v. 4 A £12/6. Carr. 5/6.

*PRIMARIES 10-0-200-220-240 v.
70V LINE MATCHING TRANSFORMERS
Fitted with terminal panel, taps at 0.5, 2, 4 and 8W into 15 ohms
Carr. 2/-
FLYING leads, taps at J1, J1, 1, 2 and 4W into 3 ohms 14/6d. Carr. 2/-

CHASSIS, CABINETS & PRECISION METALWORK

ELECTRONICS — DEVELOPMENT & ASSEMBLY
CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411

WWW-111 FOR FURTHER DETAILS

www.americanradiohistory.com
Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulability and switching capabilities to provide infinite possibilities as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc., etc.

INFRA-RED PHOTO RECEIVER — MSP3
Ultrasonic sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links reception. Spectral response 9500. A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and free washing.
85/- post free

MAX RATINGS
Total dissipation (in free air, T = 25°C) 0.4W. Operating Temperature 25°C. Output Current Intensity 100µA. Voltage 25V. Maximum Current 500mW.

Supplied complete with suitable lenses, full Technical Data and Application Sheets. Including Line of Sight Speech Link.

Infra-red devices (except 31F2) are supplied complete with suitable lenses, photoelectric data and technical application information.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
Insensitive light sensitive resistsors which require only simple circuitry to work as light triggering units in a wide range of devices, such as: fleshing or breakdown lights, exposure meters, brightness controls, automatic porch lights, etc. Not polarity conscious — use with A.C. or D.C. Spectral response covers whole visible light range.

MKY251
Epoxide sealed 1 in. diam. x ½ in. thick. Resistance at 100 Lux — 700 to 3000 ohms. Maximum voltage 200 A.C. or D.C. Maximum current 500mW.
12/6 post free

MKY101-C
Epoxide sealed ½ in. diam. x ½ in. thick. Resistance at 100 Lux — 500 to 2000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current 50mW.
10/6 post free

MKY71
Glass sealed with M.E.S. base. Glass envelope ¼ in. diam. overall length 1 in. Resistance at 100 Lux — 50 Kohms to 15 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75mW.
8/6 post free

CADMIUM SELENIDE CELLS (Cdse)
These have a higher dark resistance in a given period than Cadmium Sulphide Cells, indicating much faster response. Suitable for all Cds applications plus applications in chopper, electronic musical instruments, computer and other sophisticated circuitry. Time response shown in mumetrons is dark resistance measured 10 secs, after 405 Lux light intensity is interrupted.

MKB5H
Hemispherical metal sealed, 1 in. diam. x ½ in. thick. Time response 100 megohms. Resistance at 1,000 Lux — 1 Kohm to 10 Kohms. Residence at 10 Lux — 50 Kohms to 1 megohm. Maximum voltage 50 A.C. or D.C. Maximum current 10mW. Continuous current 5 mW.
16/6 post free

MKB12H
Hemispherical metal sealed, 1 in. diam. x ½ in. thick. Time response 100 megohms. Resistance at 1,000 Lux — 1 Kohm to 10 Kohms. Residence at 10 Lux — 1 Kohm to 10 Kohms. Maximum voltage 50 A.C. or D.C. Maximum current 80 mW. Continuous current 50 mW.
16/6 post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting devices; luminous fluxmeters, exposure meters, colorimeters, etc., Spectral response covers visible light range.

Type 1 —1½ x ½ in. Output 1 mA at 0.6 volts at 1,000 Lux
5½/- post free

Type 2 — 28 x 18 mm. Output 500 µA at 0.6 volts at 1,000 Lux
3½/- post free

Type 3 — 100 x 50 mm. Output 4 mA at 0.6 volts at 1,000 Lux
22½/- post free

INFRA-RED TRANSMITTERS & RECEIVERS

GALLIUM ARSENIDE LIGHT SOURCE — MGA 100
Filamentless, infra-red emitter in a robust, sealed cylindrical canical with beam to facilitate optical alignment and heat sinking.
35/- post free

MAX RATINGS
Forward current 15 max. D.C. — 400mA. Forward peak current 10 max. (pk) 60A
Power dissipatation 1500W. Dissipating factor for Tua greater than 28°C 7.5mW/°C.
Reverse voltage Ve max 1-0V.
When mounted on an aluminum heat sink 1 in x 1/4 in x 3 in.
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

MICRO-MINIATURE INFRA-RED DETECTOR — 31F2
Silicon NPN photo-diode of phosphor bonded construction, suitable for punched card readers, counters, film sound track, etc.
28/6 post free

PHOTOCOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting devices; luminous fluxmeters, exposure meters, colorimeters, etc., Spectral response covers visible light range.

Type 1 —1½ x ½ in. Output 1 mA at 0.6 volts at 1,000 Lux
5½/- post free

Type 2 — 28 x 18 mm. Output 500 µA at 0.6 volts at 1,000 Lux
3½/- post free

Type 3 — 100 x 50 mm. Output 4 mA at 0.6 volts at 1,000 Lux
22½/- post free

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as electricity is conducted by copper wires. Fibre optics make it possible to control, measure, correlate, split, reflect or transfer light from one surface to many places at once and to operate photo devices, logic circuits, or illuminate in ways never before possible. Proops offer both glass fibre optics or inexpensive Chlorite plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS
All the basic components needed to demonstrate new ways to use light in serious applications with glass fibre optics consisting of thousands of Fibers finely bonded in a flexible sheet with ferrules, optically polished ends. Kits includes 12, 16, and 24 inch standard light guides in 1.5, 3 and 6 mm widths. 24 inch twin exit guide with 2 x 1 mm. outputs. 'Narrow band' guide with 2 x 3 mm. outputs, adapters and battery operated light source. Supplied complete with card wallets containing technical data and illustrated applications.
£16 post free

LOW-COST CROFON FLEXIBLE LIGHT GUIDE

Newly developed plastic light transmitting media made by Du Pont and consisting of 64 special plastic fibres, each 0.10 in. diam. and bundled together in a tough, flexible sheath. Can be used for many serious projects and inexpensive prototype work. Ends can be left flat, dyed, or cuffed with epoxy resin. Temp. range —40° to 176°. No loss of light through bundling. 12-page data and applications booklet supplied.
8/6 per foot post free

Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT — CA3020
Complete Audio or Service Amplifier in one tiny package! Preamp, phase inverter, driver and power output function in a single package only 1½ in. diam. & ¼ in. High Operates from single D.C. supply of 3.5 to 9 volts, gives maximum output of more than 1 watt for 22 mA consumption. Low distortion, high gain is coupled with built-in temperature compensation (-55° to 122°C) and wideband operation. Complete with data and circuit applications information.
42½/- post free

RCA TRIAC — CA40432
Suitable for light dimming and motor control circuits. Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C. operation up to 250 volts; controls currents up to 1440 watts. Size only ½ in. diam. x ¼ in. in high. Complete with heat sinks, data and applications information.
45½/- post free

Proops Bros. Ltd., 52 Tottenham Court Road, London WIP OBA
Telephone: 01-580 0141

WW—112 FOR FURTHER DETAILS
12 WATT INTEGRATED
HI-FI AMPLIFIER & PRE AMP

12 watts R.M.S. continuous sine wave output

This is the recommended amplifier for those requiring greater power and a high degree of versatility. This eight special-transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The Z.12 performs satisfactorily from a wide range of voltages and it can readily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the Z.12 to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size—3”x1¼”x1½”. Class B Ultralinear Output: Frequency response from 15 to 50,000Hz +1dB Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohms speakers may be used in parallel. Input 2 mV into 2Kohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak): 15 watts music power (30 watts peak); Power requirements 6-20V.d.c. from battery or PZ.4 Mains Supply Unit. Ready built, tested and guaranteed.

89/6

SINCLAIR STEREO 25
De Luxe Pre-amplifier and Control Unit for Z.12 or any other good stereo assemblies. Switched inputs for P.U. (equalised to R.I.A. curve from 50 to 20,000 Hz within +1dB). radio, and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/Balance/Input are solid aluminium. Size—6½”x2½”x2½” plus knobs. Built, tested and guaranteed.

£9.19.6

SINCLAIR PZ.4
STABILISED MAINS POWER SUPPLY UNIT
Heavy duty transistorised power supply unit to deliver 18V.d.c. at 1.5A. Designed specially for use with two Z.12 Amplifiers, etc., together with Stereo 25. Built, tested and guaranteed.

£4.19.6

SINCLAIR MICROMATIC
● tunes over medium waves
● remarkable range and power
● magnetic ear-piece

SINCLAIR MICROMATIC tunes over medium waves, remarkable range and power, magnetic ear-piece.

SINCLAIR RADIONICS LTD. 22 Newmarket Rd. Cambridge. Tel. OCA-3 52731

FOR FURTHER DETAILS
www.americanradiohistory.com
Acclaimed by all who heard it at the 1968 Audio Fairs

SINCLAIR

Q.14

the most challenging loudspeaker development in years

- ACOUSTICALLY CONTORRED SOUND CHAMBER
- FREQUENCY RESPONSE 60-15,000 Hz
- LOAD HANDLING CAPACITY UP TO 14 WATTS
- BRILLIANT TRANSIENT RESPONSE
- 8 OHMS IMPEDANCE
- OF COMPACT AND ORIGINAL DESIGN
- AN ALL-BRITISH PRODUCT

Price is no longer an obstacle to the enjoyment of high-fidelity loudspeaker reproduction; nor is size a problem either. In the Sinclair Q.14 you will find a loudspeaker of such remarkable quality and so compactly and attractively styled that you will want to change to Sinclair as soon as you hear it. At Trade Exhibitions and both the 1968 Audio Fairs, experts have been greatly impressed on hearing the Q.14 against speakers costing many times more, proving beyond question that good reproduction does not have to be expensive. Tests by an independent laboratory with a Q.14 drawn from stock show exceptionally smooth response between 60 and 15,000 Hz and well sustained output beyond both these figures. Its remarkable transient response ensures beautifully defined separation of voices, instruments, etc. Much of the success of this Sinclair design comes from the use of materials quite different from those to be found in conventional speaker manufacture, and the unusual contours of the seamless, sealed pressure chamber allow the Q.14 to be conveniently positioned on shelves, the floor, in wall corners or flush mounted. The Sinclair Q.14 is finished in matt black with solid aluminium bar trim on the front. Size: 9½ in. square x 4½ in. deep. Try it in your own home by sending off the order form today. If you are not satisfied your money plus the cost of posting the Q.14 back to us will be returned in full.

POST FREE ANYWHERE IN THE U.K. £7.19.6

SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.

SINCLAIR RADIONICS LIMITED
22 NEWMARKET ROAD, CAMBRIDGE
Telephone: OCA3-52731

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

To: SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE.
Please send POST FREE

NAME
ADDRESS

For which I enclose cash/cheque/money order.

WW-114 FOR FURTHER DETAILS
R.S.T. VALVE MAIL ORDER CO.
BLACKWOOD HALL, 16A WELLFIELD ROAD
STREATHAM, S.W.16

TELEPRINTERS • PERFORATORS
REPERFORATORS • TAPEREADERS
DATA PROCESSING EQUIPMENT

Codes: Int. No. 3 Mercury/Peasants, Elliot 863,
Binary and special purpose Codes.

2-5-6-7-8- TRACK AND
MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL

ACCESSORIES

Picture Telegraph, Devis-Fax Morse Equipment; Pens Recorders;
Switchboards; Converters and Stabilised Rectifiers; Tape
 Holders, Pullers and Fast winders; Governed, Synchronic
and Phonie Motors, Teletypewriter Tables and Cabinets, Silence
 Covers; Distortion and Delay Testers; Send/Receive Low
and High Pass filters; Teletypewriter, Morse, Telebelos Paper, Tape
and Ribbons; Potentiometers and Specialised relays and Bases; Terminals
V.F. and F.M. Equipment, Telephone Carriers and Repeaters
 Multiplex Transmitters; Diversity; Frequency Shift, Keying
Equipment; Lint, Mains Transformers and Suppressors; Racks and
Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches;
Cords, Wires, Cables and Switchboard Accessories; Tele-
printers-Types; Stereophonic and Electronic Forks; Cold
Cathode Matrics; Test Equipment; Oscilloscopes; Miscellaneous
Accessories and Spares.

W. BATEY & COMPANY
Gantsy Works, Ackman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines)
STD: 044 282
TELEX 02362

WWW—115 FOR FURTHER DETAILS

SPECIALIST SWITCHES
are again giving the fastest switch service in the world
FROM THEIR NEW AND LARGER
PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to
specification. There is one limitation (standard 2.1
long spindles), but this is not important when you
are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

Please note our address:
SPECIALIST SWITCHES
P.O. Box 3,
CHARD, SOMERSET

Write for design charts and prices or
TELEPHONE—CHARD 3439

WWW—116 FOR FURTHER DETAILS

Vacant today and released to A.R.H. specification if required.

All valves brand new and
boxed
Special 24 Hour Express Mail
Order Service
Postage 6d. per Valve
SEND S.A.E. FOR LIST OF 6,000 TYPES

Mon.—Sat. 9 a.m.—5:45 p.m.
Closed Sat. 1:30 p.m.—3:30 p.m.
Open Daily to Callers
Tel. 01-749 0119/1649
Sensational R.S.C. High Fidelity Stereo Package Offers

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.

SSENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.

SSENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.

SSENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.

SSENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.

SSENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

Package 1 13 Watt System

- Garrard SP25 Mk. II
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £212.00

Package 2 30 Watt System

- Garrard SP32 Mk. II Turntable
- Concord 1" Horn/Tweeter
- Stereo Transformer
- £232.00

Special inclusive price. Fully wired units ready for use.

75 Gns. Curr.

54 Gns. Curr.

104 Gns. Curr.

120 Gns. Curr.

49 Gns. Curr.

6 Gns.

6 Gns.

9 Gns.

9 Gns.

12 Gns.

12 Gns.
MORE TO CHOOSE FROM LESS TO PAY

SUPERB NEW TRS MONO STEREO F.M TUNER

This advanced design hi-fi mono/stereo FM tuner comes in easy-to-assemble prepackaged units engineered to the highest standards of efficiency and performance. Validable refinements include switchable A.C., automatic noise suppression, flywheel tuning, excellent signal-to-noise ratio, and greater than 5 microvolts. Stereo can be added on to chassis as required. Golen I.F. amplifier. Stylish to match the TRS Stereo 4-4.
S.A.E. brings chassis and tuning to a complete unit for $21.00. Add-in Stereo Unit and indicator light $10.00 (p. 2/6). Power Unit $23.60 (p. 2/6). Simples Cabinet $17.66 (p. 2/6). Total price for make operation $86.00 post free.

TRS STEREO 4-4 INTEGRATED AMPLIFIER

A TRS design based on newly developed Mullard 4 watt modules. Complete with code. Suitable for Harman, etc. (will fit 3 to 15 ohm, 73. Blues and treble out. £12.00 (p. 3/6). The excellently engineered layout requires only wiring behind controls and modules. Complete with metal chassis and T.R.S. simple speaker cabinet for instant assembly. Simples and knobs, switches.

Amplifier Kit £19.60 (p. 3/6). T.R.S. Power Unit £23.60 (p. 2/6). TRS-Inlay Kit £21.00 (p. 2/6).

TRS-ULLMARD AMPLIFIERS & PRE-AMPS

A deservedly popular unit for domestic use, this is a superbly powerful high performance instrument. It is fully transistorised. Provides tuning on long, medium and F.M. wavebands. Also tone and volume control. Choice of set-ups. Excellent sensitivity, Permissability tuning on F.M., Large clear illuminated dial (1.576 in.), with station lamps, 6.14V, good next feedback. Magic eye 3W output, A.C. 220-250V. Circuit diagrams available. Alkaline, tested and ready for use. (Circuit, 10d. 5A. S.A.E. brings full details.

7 VALVE AM/FM/RG CHASSIS

The finest materials are used by TRS in this famous range of valve-amplified stereo and mono amplifiers. Well-styled knobs and escutcheon plates are provided as well as plugs and sockets as necessary. S.A.E. brings full technical details.

TRS PRE-AMP GP.1

This efficient and very versatile general purpose pre-amp by TRS has many applications, such as for P.T.F. (p. 7/6). Uses high gain BC 108 silicon transistor and assemblies on a 6 inch board. For 2000 operation. Complete with instructions. (P.I. 1/6).

2/4 CIRCUIT AMPLIFIER

A high efficiency amplifier designed for the most discriminating using a 12v, 15v, 12/15V. Suitable for high performance. Complete with knobs and control panel. Also complete with 440, 220 and 110V supplies.

TRS FM DECODER

This is a very efficient FM stereo decoder based on Mullard design and produced by T.R.S. It is quite easily repairable and complete with knobs and push switches. Includes new in-circuit, Carriage and packing on any one of above 7/6. Complete with 9/15 v. operation. Complete kit with 9v, 300v, no specification already aligned. £5 5 0

WIRE WOUND RESISTORS—COATED TYPES

Stand. values 25 ohms—10,000 ohms, 5W. 1/8, 1W. 1/8, 1/8, 1/16, 1/32, SPECIAL VALUES 1/5K—35Kohms 2W.

PRE-SET WIRE WOUND POTS. Slotted Knurled Knob T.V. Type 25 ohms—350Kohms 1/2, 1/4, 1/8, 1W. 1/8, 1/4, 1/2, 1W. 1/2, 1W. 1/4, 1W. 1/4, 1W. 1/2, 1W. 1/8, SLIDER PRESETS 1W. 2—12.M, 2W. 10/6—5K 2/6.

SKELETON PRESETS for P.I.C./circuit use. 100 ohms £1.5 5, 2W. £2.6. 4W. £4.7.

STANDARD W.W.W. POTS. Long Spindle 1/2W. values 5000 ohms each 6/6, 100,000 ohms each 6/6. VOLUME CONTROLS 1/8, dia. Long Spindles. Pushbutton makes all values available, including 100,000 ohms. Guaranteed 12 months. Log or Linear tracks. Less 2W. 10/6, £1.3. Log, 1/4 inch tracks. Centre Tapped 1 Megohm, Log, 1 Megohm less 6/6, 5/6, Twin Ganged Stereo 13 long Spindles. All values 100K to 10 Megohms with DP Sw., £6, 10/6.

STEREO BALANCE CONTROLS 1/8, dia. Long Spindles, 3 position. Balanced £1.2, £1.6, £2.6, £32. VERBOARDS—All standard sizes including 12 x 12 x 12 x 12, £1.7, 1/2, £2, 12, 3/2, £3, 12. £4, 11/2, £7, 12, 1/2, £6, 11/2, £9, 11/2.

WIRE WINDING KITS

All values 25 to 1000 ohms to 10 megohms, 1/10w. £4, 1/8. 1w. (below 25 ohms) £5, 1/4. 1w. (25 to 1000 ohms) £6, 1/4. 1w. (1000 to 10 megohms) £7, 1/4.

CONDENSOERS Siver Mica. All values 2 pf. to 1000 pf. 6d. ea. to 60 pf. £1, 6/6. To 600 pf., £3, 1/4, 1w. to 2000 pf. £7, 3/2, 2w. To 2000 pf., £10, 1w. To 5000 pf. £17, 3/2, 2w. To 10,000 pf. £27, 6/6.

ALUM. CHASSIS. 18g. Plain undrilled folded 4. £1, 6/6. 5/2; 6, 8, 6, 6/6. 10 x 71/6, 12 x 6, 6, 8, 6, 10 x 71/6, 12 x 6, 8, 6, 10 x 71/6, 12 x 6, 8, 6.

EXPANDED ANODISED METAL—Attractive. Gilt Finish. £5.00. 5in., diamond mesh or finer mesh. 5 in. per ft.

VAIRAI—Latest I.C.T., speaker covering. Mottled Light Grey, Orkney White, etc. Fully padded, £10. £10, £10, 10/6. £10. £10.

BONDAOCUST—Speaker Cabinet Acoustic Wadding. 18in. wide, 3/2 ft. £6, £6 per yard.

WIRELESS WORLD, January 1969

58

Radio Component Specialists

70 BRISTOL ROAD

SUSSEX

A few moments from Thornton Heath Stn. (59. Thornton Section) Buses from all ports

Phone: 01-684 2188

8.0p. daily

1.0p. Wed.

1.0p. 1st. 1.5p. 2nd.

www.americanradiohistory.com
Rapid Mail Order Service

All Goods Brand New • Attractive Discounts

New Semiconductors

* Unbeatable Value in New Semiconductors

30 Watt BAILEY AMPLIFIER complement
M1481 NPN matched pair output $2.19
M1491 NPN matched pair drivers $1.10
40361 NPN matched pair drivers $1.10
Total for one channel $7.89 list; with 10% discount only $6.13.
Total for four channels list; with 15% discount only $12.11.

Power Supply Kit (single rail) $4.10

G.E. 2N2962 plastic range: 18V 200mW
Red spot $2.75 to 110v
Orange spot $2.70 to 120v
Yellow spot $2.75 to 150v 200w
Green spot $2.75 to 470v 200w
2N2962, our choice of colour 2/2 each, 10 for 21/-x.

High reliability ceramic types available:

- 2N2926 red 3/8; yellow 4/3; yellow 4/3; C52925 25V 2 235 to 470V.

Texas Sxelar range

BC176 SERIES

30V 200mA, 0.5-ampere fast recovery $2.70
2N3704 $2.70
2N3705 $2.70
2N3703 $2.70
2N3702 $2.70
2N3701 $2.70
2N3700 $2.70

BC167 SERIES

180V 200mA, 0.5-ampere fast recovery $9.00
2N5615 $9.00
2N4016 $9.00
2N4015 $9.00
2N5614 $9.00
2N5613 $9.00
2N4014 $9.00
2N4013 $9.00

Kensington Noise: 0.1mA to 50mA $2.70
NEW 100's: 0.1mA to 5533 to 6mA/V $2.70
for 2N2947 $3.70
5K noise: 0.1mA to 5533 $2.70
NEW 100's: 0.1mA to 5533 $2.70
for 2N2846 $3.70
2N2845 $4.70
2N2844 $5.70
2N2843 $6.70
2N2842 $7.70
2N2841 $8.70
2N2840 $9.70

For Further Data on the above Semiconductors and many others, see our catalogue price list — only post free.

Zener Diodes

3V to 27V 500mA 400V all preferred voltages, 4/6 each.

Peak Sound Outputs

Amp Kit N1000: adhesive copper strap. 5ft. x 1in. 41/2, 100ft. x 1in. 30m. Perforated board 0.1mm. matrix 5in. x 4in. 4/6 each.

Peak Sound Outputs asadvertised

Super Quality New Resistors

Carbon film high stab, low noise:

- 10W 1% 1/8 3/8 5/8 3/4 7/8 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 4 1/2 5 5 1/2 6 6 1/2 7 8 9 10 20 30 40 50 60 100 watt.

- 1/4W 1% 1/8 3/8 5/8 3/4 7/8 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 4 1/2 5 5 1/2 6 6 1/2 7 8 9 10 20 30 40 50 60 100 watt.

Quality Carbon Skeleton Pre-sets:

- 100Ω, 250Ω, 500Ω, 1kΩ, 2kΩ, 5kΩ, 10kΩ, 20kΩ, 100kΩ, 200kΩ, 500kΩ, 1MΩ, 2.5MΩ, 5MΩ, 10MΩ, 20MΩ, 100MΩ available in horizontal or vertical mounting each.

Electrolitics

Sub-Min. C426 Range ($1.20): 0.64uf, 1.40, 1.65, 2.51, 2.54, 4.10, 4.40, 6.45, 8.64, 10.50, 6.25, 9.40, 10.25, 15.16, 16.10, 25.16, 30.16, 40.25, 50.64, 64.25, 90.64, 100.25, 125.00, 125.10, 162.50, 200.64, 200.25, 200.10, 50.325, 320.25, 400.64, 500.00.

Miniature ($1.20): 5mfd, 110v, 125v, 220v, 500v, 1000v, 1500v, 2000v, 2500v, 3000v, 3500v, 4000v, 4500v, 5000v.

Potentiometers

(standard spindle): 100Ω to 100MΩ, 5kΩ to 50kΩ, 1MΩ to 200kΩ each. Dials, long spindle, 10kΩ, 25kΩ, 50kΩ, 100kΩ in log, 10kΩ in log, 10kΩ.

Electrovalue Service Includes

Component Description: $1.00 for total price exceeding $10 list.
Post and Packing: $1.00 for total price exceeding $10.
Overseas Orders Welcomed—Capture at cost.
Catalogue—Send 1/- for latest catalogue containing data on 200 up-to-date semiconductor devices from stock as well as many other components, also transistor equivalents table. Invaluable to every serious experimenter and designer. Everything at best possible price.

Electrovalue

Dept: WW.1, 32A St. Judes Road, Englefield Green, Egham, Surrey.
Lasky's HI-FI SPECIAL

TRIO Model TK-500E

SOLID STATE

FM MULTI-PLEX STEREO TUNER

Another great Lasky’s special purchase—the TK-500E is a truly outstanding FM Multi-plex Stereo Tuner by TRIO—Japan’s top rated manufactured Hi-Fi equipment. The extremely sophisticated circuits incorporate many unique TRIO features including: Automatic electronic switching of FM wave groups and mono modes will serve indicator button; later-station loser tuning circuit; audio cueing; hi-fi tuning; low noise limiter; switchable audio range (1000–100KHz); and 2 IF stages assure the highest selectivity and frequency. Filter tuning control; Low noise limiter stereo, mono and tape outputs. RECOMMENDED:

TUNING: 31 transistors, 10 Germanium and 8 Silicon diodes and 1 Laser diode. 3 savers. Frequency range: 80-20,000 c/s. Sensitivity: 0.5 µV 100KHz + 1 dB. Channel separation: better than 58dB. Distortion less than 0.6%, at 400 c/s –0.6%. Dynamic range: 80dB. Superbly styled and finished luxury cabinet and brushed nickel knobs. Made in Japan by TTC. Each

Lasky’s Price £8.8.0

2 for £16

GARRARD RECORD PLAYERS
AUTOCHANGERS

500S

$55.00

RL-30

$35.00

200S + with stereo cart

$25.00

AT-69 Mk. III

$21.00

AT-79

$21.00

AT-92

$21.00

GARRARD BASES

Whi 45/50 Whi 64/88 Whi 65/81

$6.00

CLEARVIEW PERSPECTIVE COVERS

GARRARD 30/40 30/45 30/48 30/50 30/55

$6.00

SPECIAL QUOTATIONS FOR QUANTITIES

£5.25 X 50

£4.50 X 90

£10.50 X 80

£8.40 X 40

£7.60 X 12

£6.00 X 6

£5.25 X 10

£4.50 X 10

£3.00 X 10

£2.25 X 9

£1.75 X 9

£1.50 X 8

£1.25 X 8

£1.15 X 7

£1.00 X 7

£0.90 X 6

£0.75 X 6

£0.70 X 5

£0.50 X 5

£0.45 X 4

£0.40 X 3

£0.35 X 3

£0.30 X 2

£0.25 X 2

£0.20 X 1

£0.15 X 1

£0.10 X 1

£0.07 X 1

£0.05 X 1

£0.03 X 1

£0.01 X 1

NEW INTERNATIONAL TAPE!

FAMOUS AMERICAN MADE TAPE AT RECORD LOW PRICES

Quote for Quantity

Branches

207 EDGWARE ROAD, LONDON, W.2

Tel: 01-723 3271

Open all day Saturday, early closing 1 p.m. Thursday

33 TOTTENHAM CT. RD., LONDON, W.1

Tel: 01-636 2605

Open all day, 2 a.m. to 6 p.m. Monday to Saturday

152/3 FLEET STREET, LONDON, E.C.4

Tel: FL 85 2833

Open all day Saturday, early closing 1 p.m. Thursday

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVE LLC, TOWER HAMLETS, LONDON, E.1. Tel: 01-790 4821

Lasky's Price £9.19.6 P. & P. 5/-

OUT NOW!

This year we celebrate our 36th anniversary by bringing to you this great new edition of our "AUDIO-TRONICS PICTORIAL." Now 16 colour pages in large 16" x 11" format, simply packed with 1,000s of items from our vast stocks of EVERYTHING for the Radio and Electronics Hobbyist, Hi-Fi Enthusiast, Service-man and Radio Ham. Plus 100s of Lasky's exclusive STAR PRICE Bargains.

Lasky’s Price £8.7.6 P. & P. 5/-

FANTAVOX Model TV-1008 VHF AIRCRAFT BAND AND AM RECEIVER

The first pocket size Receiver of its type offering you "similar" anywhere to the aircraft air-band and AM receivers covered by 106-157 Mhz in addition to full AM medium wave band. Made in Japan by TTC. An extremely sensitive 10 transistor and 2 diode, superbly styled, tuned and finished receiver and cabinet and brushed nickel knobs. Made in Japan by TTC. Each

Lasky’s Price £8.2.0

3 IN 1 MICROPHONE LEAD

1000s/£1.00

HIGH FIDELITY CENTRES

42 TOTTENHAM CT. RD., LONDON, W.1

Tel: 01-580 2573

Open all day Thursday, early closing 1 p.m. Saturday

118 EDGWARE ROAD, LONDON, W.2

Tel: 01-723 9789

Open all day Saturday, early closing 1 p.m. Thursday

LOW PRICES

This year we celebrate our 36th anniversary by bringing to you this great new edition of our "AUDIO-TRONICS PICTORIAL." Now 16 colour pages in large 16" x 11" format, simply packed with 1,000s of items from our vast stocks of EVERYTHING for the Radio and Electronics Hobbyist, Hi-Fi Enthusiast, Service-man and Radio Ham. Plus 100s of Lasky's exclusive STAR PRICE Bargains.

Lasky’s Price £9.19.6 P. & P. 5/-

HITACHI SHORT WAVE ADAPTOR—Model WM-20

New from Hitachi—world famous for high quality transistor radios—a push-button Short Wave adaptor enabling you to receive all short wave broadcasts in the 3-32 KHz waveband. The WM-20 adaptor is suitable for use with any make or model of AM or SW radio covering the 3-3200 KHz in any make or model of car or 12 V, positive or negative ground. The WM-20 will be seen to have 10 push buttons which cover meter bands from 3 to 12, 10, 100, 300 and 1200 KHz, respectively. In the case of the panel by a selected pair of SW short waves. It is also provided with a "correction" circuit, which enables SW to blend most efficiently with the existing receiver. A battery operated where the current demand is less than the maximum demand of the receiver, the WM-20 will work in a very similar way to the Hitachi SW airborne type. FM and SW will be given to the operator. Weight approximately 1 lb. Current consumption 150 mA. Last Price £18.4.9

118 EDGWARE ROAD, LONDON, W.2

Tel: 01-723 9789

Open all day Saturday, early closing 1 p.m. Thursday

ww.americanradiohistory.com
MULTIMETERS for EVERY PURPOSE!

LAFAYETTE DE-LUXE 100 VOLTS/AMPERES/TEMPERATURE Giant 7pin. Instant 10 meter protection. 0/1/10/00/0000 v. D.C. 0/5/25/125/600 milliamps. 0/10/100/1000 amp. A.C. 0/10/100/1000 volt. 0/10/100/1000 Hertz. 100,000 ohm. £18.10.- P. F. 28.

NEW MODEL 500 50,000 D.V.P. with overload protection, square scale 1.25 x 2.5 in. £5.16.3.

MODEL TE-50 50,000 D.V.P. Mirror scale overload protection. 0/5/25/125/600 milliamps. 0/5/25/125/600 v. D.C. 0.1/1/10/100/1000 mA. 0.05/0.5/5/50/500 mA. £11.16.3. P. 3/6.

MODEL TE-50A 50,000 D.V.P. with overload protection, scale. 0.1/1/10/100/1000 mA. 0.05/0.5/5/50/500 mA. £6.17.6. P. F. 3.

MODEL TE-50B 50,000 D.V.P. with overload protection, square scale. 0/1/10/100/1000 amp. D.C. 0.1/1/10/100/1000 v. D.C. £9.16.3. P. F. 3.

MODEL TE-70 50,000 D.V.P. with overload protection, mirror scale. 0.5/2.5/12.5/62.5/312.5 milliamps. £15.16.3. P. F. 3.

MODEL TE-70A 50,000 D.V.P. with overload protection, mirror scale. 0.5/2.5/12.5/62.5/312.5 milliamps. £12.16.3. P. F. 3.

NEW STAR SR-200 SSB AMATEUR RECEIVER

An exciting new receiver covering 6 amateur bands (10/11/12/13/14/18 M SCALE) and over 1000 short wave channels. For general use and SSB. £16.6.8. P. 34/3.

GARRARD FULL RANGE SILENER DECKS.

- Fully automatic
- CCIR Mark III
- Complete £12.12.0.

NEW CATALOGUE

Nearly 200 pages giving full details of a comprehensive range of COMPONENTS, TEST EQUIPMENT, COMMUNICATION EQUIPMENT and HI-FI EQUIPMENT.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering 260 Kc to 30 Megs, and included in the £19.19.6. receiver. In addition, the £27.10. receiver with Crystal Mains Tuning, and the £49.19.6. receiver with Crystal Mains Tuning and telephone facilities.

NEW LAFAYETTE SOLID STATE HF600 RECEIVER

5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE. To meet the demand for a more compact and solid state receiver, we are offering the HF600, a 5 band AM/CW/SSB receiver covering 1.8 to 19.5 Megs. This receiver incorporates coaxial amplifier on all bands and double tuned crystals. Incorporates ceramic controlled filters. £27.10.- P. F. 28.

GARRARD RECORD DECKS.

- Fully automatic
- CCIR Mark III
- Complete £12.12.0.

NEW LAFAYETTE 224T TRANSISTOR STEREO AMPLIFIER

10 watt (8 ohm) output. Amplifier stage 50 watts at 8 ohms. Operating cost 10 cent per hour. Complete £12.12.0.

E.M.I. SINGLE PLAYERS

- 4 speed with separate arm and cartridge £28.9.0.

COMPUTER TAPE

- 0.19 in. on 10 in. reel. £10.0.0.

OPEN 9 a.m. to 6 p.m., every day Monday to Saturday. Trade supplied.

www.americanradiohistory.com
CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS FULLY STABILISED

EXCEPTED TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220-240v.

No. SEC. TAPS AMPS PRICE CARR.
1. 2-12-30-40-50 10 6 $19 6 8/6
2. 25-30-40-50 10 6 $19 6 8/6
3. 25-30-40-50 5 3 $12 6 7/6
4. 25-30-40-50 2.5 2 $12 6 5/6
5. 25-30-40-50 1.5 2 $15 6 6/6
6. 25-30-40-50 1 2 $15 6 7/6
7. 25-30-40-50 0.5 2 $15 6 8/6
8. 25-30-40-50 0.25 2 $15 6 9/6
9. 25-30-40-50 0.125 2 $15 6 10/6
10. 25-30-40-50 0.0625 2 $15 6 11/6
11. 25-30-40-50 0.03125 2 $15 6 12/6
12. 25-30-40-50 0.015625 2 $15 6 13/6

Note: By using the intermediate taps many other voltages can be obtained.

Example: No. 1, 7-8-10-15-17-21-33-40-50V.
2. 4-8-12-17-22-30-44-50-60V.
3. 3-5-7-9-11-14-19-22-28-33-40-50V.

CONSTANT VOLTAGE TRANSFORMERS

By Advance. Input 190-260 v. 50 cycles.
Output 230 v. at 60 watts. Type M.T. 161A. £4 15s. P.P. 7/6.

DIGITAL HOUR METERS

6 Fag. inc. 1/100ths, 1/20ths, 40v. A.C. but complete with transformer for 240v. A.C. operation. All in plastic cases. (Size 6 x 6 x 3 in.) Conditions as new. 40/-. P.P. 5/-.

SCOTCH MAGNETIC TAPE. Type 3M 459. 1m. 3600 feet. Suitable for recording. Brand new in metal-ended cartons. List Price £16/-10/-. Our Price £13/10/- P.P. 5/-.

1. ULTRASONIC CLEANERS

(BrandDept. B.E.352) 60 watt model. Supplied Brand New in stainless steel tank (9 x 6 x 4 in.). £60. Carr. 20/-. •

2. FAST NEUTRON MONITORS

(BrandDept. 1407C) for measuring neutrons in the energy range 0.1-10 mev. £100.

3. RADON MONITORS

(BrandDept. BN 110 M.V.) 0.5/50/500/5,000 c.p.s. Brand new. £100. Alpha and Beta Gamma probes available at extra cost.

4. ELECTRONIC RADIATION MONITORS

(BrandDept. BN 132) 0.5/50/500/5,000 c.p.s. With built-in Gamma probe. Brand new £50 complete with carrying harness.

S.A.E. for literature. 10% discount for Educational Authorities.

LARGE CAPACITY ELECTROLYTICS. 2,000 p. 180v. 4,000 p. 360v £15. 6,000 p. 360v £20. 10,000 p. 360v. £20. 16,000 p. 15v. 25,000 p. 15v. each. All 4 x 2 in. screw terminals. P.P. 1/- 6a.

SPEAKER BARGAINS. E.M.I. 13 x 8 in. with double tweeter 15 ohm. 45/- each. P.P. 5/- As above less tweeters 3 or 15 ohm. 45/- each P.P. 5/-

FANTELE 12 x 20 watt (Dual Cones). 86/- each. P.P. 9/6-

CAR RADIO SPEAKERS 7 x 4 in. 3/0 in. 15/- each. P.P. 2/6

EXTRACTOR/BLOWER FANS (Papst)

100 c.f.m. 4 x 12* 2 x in. 2800 r.p.m. Wonderful buy at 50/- ea.

SPEAKER SYSTEM (20 x 10 x 10 in.). Made to spec. from 1 in. booms for top and black lincs with trimmers. £25.

PHOTO MULTIPLIERS (RCA) and 6262 £15 ea.

SILICON DIODES Rs20W2 Kit, £4. Rs240 3/- ea. 30/- Doz. Rs280 4/- ea. 40/- doz. 15/- P.P. 10/6-

TRANSFORMERS

3 PHASE L.T. TRANSFORMERS (Gardiner’s C.C. Core), Prim. 115v. Sec. 60v. 1A. 2A; 2A 3A 3A 5A 10A. Delta connected throughout. £6 ea. P.P. 10/-

L.T. TRANSFORMER Prim. 200/250v. Sec. 0/30v 50/60v 270v. Amp. £7.10 15 amp. £5.15 P.P. 12/6

L.T. TRANSFORMER Prim. 200/250v. Sec. 0/30v 50/60v 270v. Amp. £7.10 15 amp. £5.15 P.P. 12/6

STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 0/30v 50/60v 270v. 1/5 A. 2A 3A 5A 10A. £7.15 P.P. 12/6

L.T. TRANSFORMERS Prim. 240v. Sec. 0/30v 50/60v 270v. £7.15 P.P. 12/6

L.T. TRANSFORMERS Prim. 240v. Sec. 0/15v 30v 10A. £5.10 15 amp. £3.15 P.P. 12/6

ELECTRIC SLIDE METERS (1/2) 25 amp. L.R. 240v. A.C. £5. P.P. 5/6-

QUARTERLY ELECTRIC CHECK METERS 40 amp. 240v. A.C. 20/- P.P. 5/6-

COPPER LAMINATED PRINTED CIRCUIT BOARD (81) 3 x 4 in. 2/6 sheets. 5/- (10 in.) Alto 11 x 6 in. 4/- ea. 3/0 10/-

BULK COMPONENT OFFERS

100 Capacitors (latest types) 50p to 5£ 250 Resistors and 1 watt 25/- 250 Hi-Fi Resistors and 1 amp 50/- 250 6.3 volts, 50/- each. 12 Precision Resistors £1 (several standards included). Precision Capacitors 1 and 2% (several standards included). 12 Electrolytics (minimum and standard sizes).

ANY ITEM 12/6. ANY 5 ITEMS 50/-

TELEPHONE DIALS (New) 20/- ea.

Amplified Telephone Handset (170) 27/6 P.P. 2/6

EXTENSION TELEPHONE (Type 786) Black or 2 tone Grey. 46/- P.P. 5/-

UNISELECTORS (Brand new) 25-watt 5 kw. 3 watts 36v, 100w 3 o.m. 0 watt 3 watt 75v 5/-

COMPUTER LOGIC BOARDS. Containing 42240, 10 2X31, 10 251, 30 250 P.C. Board containing 14 BC121, 2 BC122, 2 trimpots, etc. 20/- ea.

CONTINUOUS LEVEL MONITORS (BrandDept B307) complete with Sensing Probe. £25.

Transistorised PROXIMITY SWITCHES (BrandDept B315) sensing speed 120 per min. £16.

LEVEL CONTROLLER (BrandDept B365) £8.

LIGHT 270V 3PH. (Bunred B2390 750 interruption per min. comprises: Light Source, Sensing Head and Control Unit.) £15. S.A.E. Literature.

COLD CATHODE TUBES (Hypex XC 225) 2/- ea. Quantity quotations on request.

PATTICK & KINNE 81 PARK LANE - ROMFORD - ESSEX ROMFORD 44473
CHOOSE A L15 FROM COMPLETE SYSTEMS
SOLID STATE AND SUCCESS ASSURED
thing quality other professional equipment selling from Dinsdale Mono
Ask ALL TUNERS for VISIT OUR NEW ALL UNITS AVAILABLE SEPARATELY
PORTABLE GEIGER COUNTERS
BUILD A QUALITY TAPE RECORDER
VHF FM SUPERHET TUNER MKII
NEW MODELS MALLORY LONG LIFE MERCURY BATTERIES
GARRARD RECORD DECKS
FULLY ILLUSTRATED CATALOGUE
Your store has not yet been set up to view this product.

ENGLANDS LEADING COMPONENT & EQUIPMENT CENTRES
SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT

Monor Stereo Audio, Equipment develop-
ed from Dinsdale Mk II each unit or system will compare favourably with
other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITY—
CHOOSE A SYSTEM TO SUIT YOUR
NEEDS AND SAVE POUNDS
All units available separately.
SEND FOR FREE BROCHURE (No. 21) TODAY!

INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS
Complete with full Bass Treble. Volume and Selectors Controllers
M466 12 WATTES STEREO
We are pleased to offer two new designs with the choice of either mono or stereo. These
BRITISH DESIGNED UNITS provide the utmost in many ways. being suitable for use with all types of
PICK-UP MICROS DECKS AND MICROPHONES with fantastic power and quality with
far greater adaptability, with freedom for battery or mains operation. Output is from 3-16 OHMS.
Whether you require a home or Portable Hi-Fi Installation, electronic guitar, P.A. System, Intercom or
for commercial listening satisfaction choose one of the
Including full Finished Travelling Case.
New £10.0.0 MONO WILL FILL THE BILL
M467 STEREO

£8.10.0 Standard £16.10.0
ON THE STEREO
M467 OPTIONS MAINS UNIT 280 42-64 p.p.
Transforms to other forms
Illustrated leaflets 12 and 14 FREE on request. Demonstrations Daily at our 306 Earwadge Rd. Branch

PORTABLE GEIGER COUNTERS
For compact, simple operation, high sensitivity, and convenience, the F.G.E. Portable Geiger Counter is
ideal for home or on the road. It is used by amateurs, foresters, chemists, etc., for detecting low levels of
radioactive substances. It is also used in medical research and industry and is equally
well adapted for detecting and measuring the activity of radioisotopes and their products in the human
body. The G.M. tube is fitted within a lead housing, with a long life to last many years. Also, the
electronic circuitry, made up in a small housing, is both simple and reliable, making it ideal for
home or on the road. The counter is supplied complete with instruction manual, adjustable
sensitivity control, and a carry case. It can also be used as a detector for radioactivity.

NEW MODELS
NOMEX TRANSMITTERS
Test Equipment PRICE List leaflet
MODEL
Price
S. d. N. a.
22 Power Supply
14 00 22
22 Audio Generator
19 10 26
31 R.P Generator
10 10 25
31 C.R. Bridge
10 10 26
31 Inductance Bridge
20 0 28

VHF FM SUPERHET TUNER MKII
M466-12 GULLWING DECKS- 64 GIOIDS- 300 KILOHERZ-PRINTED CIRCUIT CONSTRUCTION
HIGH FIDELITY REPRODUCTION MONO AND STEREO
This latest addition to the F.G.E. range is a new high quality VHF FM Superhet
with he high audio bandwidth and selectivity. It has been designed to
meet the needs of serious amateurs and professionals. The circuit is
completely new and the results are outstanding. It is a completely
self-contained unit, with all parts supplied. It is supplied complete
with instruction manual, and is fully guaranteed.

MULLARD 1 WATT AMPLIFIER
PORTABLE MONO STEREO AMPLIFIER £14.10.0
Mullard makes Vacuum, Radio, Audio, Guitar, Precision, Cryptoc, Record Player, Amplifier.
Optional Yokes complete Wood cabinet £13.24-11.20 £4.50 for sale.
Ask for leaflet 9.

TRANISTORS SEMICONDUCTORS
COMPLETELY NEW 1969 LIST OF
1000 types. Send for your FREE COPY TODAY (List 36)
S.C.R.'s from 5.-
Field Effect Transistors from 9.-
Power Transistors from 9.-
Diodes and Rectifiers from 1.6

BRAND NEW ALL below list price
2059 Monoxide 50¢-.
5004 300uF 100V 75¢-
5509 1000uF 25V 2.75-
7420 500uF 50V 6.50-
2059 300uF 125V 50¢-
3300 1000uF 50V 1.00-
4700 100uF 25V 1.00-
4722 100uF 10V 1.00-
4700 1000uF 50V 5.00-
4722 1000uF 30V 7.00-
4768 1000uF 25V 10.00-
Send for Illustrated brochures 16, 17

Send today 76 Post etc.£2.

303 Edgware Road, London, W.2. Mail Order Dept.
309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Decks (01) 723-2683

FOR ALL LEADING MAKES
AMPLIFIERS TUNERS DECKS SPEAKERS MICROPHONES

ALL WITH DISCOUNTS
Ask for Hi-Fi. Stock List Leaflet 15, 17.

Visit our New Hi-Fi Centre at 306 Edgware Rd.

HENRY'S RADIO LTD HR
OPEN MON-SAT. 9 a.m.-6 p.m. THURS. 9 a.m.-9 p.m.
IOW. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-Amp.

Specifications: R.M.S. Power Output (into 8 ohm speaker)
10 watts

Sensitivity: 0.5% or lower (at 1KHz).

THE VISCOUNT

Integrated High Fidelity Transistor Stereo Amplifier

Specifications: Output: 10 watts per channel into 8 ohm speakers

Price: £30 plus 7/6 & p. & p. in addition.

Notes:
- Bi-Pak Semi-Consolidators are available in 500 Chesham House, 150 Regent Street, London, W.1

The Dorset

7-transistor fully tunable M.W.-L.W. superhet portatile, with warm facility. Set of parts for limited measured and pre-alignment techniques makes this simple to build. Complete with aerial, mains filter, and loudspeaker leads.

Mains Power Pack Kit: £1.6 extra.

Price: £55.00 plus 7/6 & p. & p. Circuit 2/6. FREE WITH PARTS.

The Elegant Seven MK. III (350W Output)

7-transistor fully tunable M.W.-L.W. portatile. Suitable for parts. Complete with all components, including ready etched and drilled printed circuit board—back printed for foolproof construction.

Mains Power Pack Kit: £1.6 extra.

Price: £49.96 plus 7/6 & p. & p. Circuit 2/6. FREE WITH PARTS.

50 Watt Amplifier AC Marks 200-250V

TI-CLASSIC

Controls: Selector switch, Tape Speed Equalisation Switch (7 and 7 1/2 in.).

THE RELIANT 100 SOLID-STATE HIGH QUALITY AMPLIFIER

Specifications: Output: 10 watts per channel into 8 ohm speakers

Price: £5.60 plus 7/6 & p. & p. in addition.

Notes:
- Bi-Pak Semi-Consolidators are available in 500 Chesham House, 150 Regent Street, London, W.1
One of the most versatile receivers ever made. Operates
in 9/6 volt or 12 volt A.C. or D.C. Complete with
pair of heavy duty P.D.T. contacts which are ideal
for switching up to 20 amperes. Priced to suit, current
switching contacts. Metal base-plate. Enamelled
terminal block. Ideal for aerial changeover units. Or
car home security alarm, model instructions etc. With
nearly 60,000. Size 3 x 2 1/2 in. approx. Special
price of 17/6 each, p.a. & 5/- Two for 30/- post free.

MINIATURE MOVING COIL SPEAKERS
1 1/2 in. diameter. Order 3 1/2 each, p.a. & 8/. Two for
6/6 post free. Four for 15/- post free.

HANDY POWER PACK KIT
Genuine of Malta, Transformer, R.M.R. Rectifiers,
and chokes etc. Also Rectifiers, full circuit and
instructions. Input 32 volt A.C. and output 12 volt
A.C. with 300 watt capacity. For 12 volt cars, scooters,
trucks, and powerful aerials. A.C./D.C. power pack kit.
S.T.R. model. Ideal aerial for TX/R
for amateur
radio enthusiasts, Universities and Laboratories.

1.6volt High Speed Rectifier
A 1.6volt high speed rectifier. Specified for use
in valve microphone output circuits. Can be
equally used in any 1.6 volt circuit. For
5/6 each, order 5/-.

12V ELECTRIC MOTORS
Two 12 volt electric motors for
12 volt car battery.

FREE POST & PACKING CARRIAGE & INSURANCE:
Send for full list and price details. Write on
any envelope.

NEW PRODUCTS!

AERIAL TUNER UNITS
for TV/R.S.T be. Will load almost anything.
Cathode control diode. Ideal to operate in an
emergency. Ideal for radio amateurs and 8.W.L.X.
2/- each, p.p. post free.

HEAT LIGHT SPEED CONTROL UNIT
An Electronic unit capable of controlling electrical
equipment up to 2,500 watts capacity. Flapper
control of all 240 volt electrical equipment for
all types of lighting arrangements, fluorescent light.
Spot lights, valves etc. Flapper control of all
ideal dimming unit. Ideal for controlling all types
of electric drills and up to 2 h.p. electric motors for all
applications. Ideal for all types of electric heaters.
Suitable for both direct and alternating current.
Complete with all contacts built in 30 mins. Our Price only
6/6 each. A.C. or D.C. O.D. I. required.

SCOOP PURCHASE TRANSFORMER SALE
Bulk purchase enables us to offer the following transformer
at a really low price. Made by a famous manufacturer - all fully tested and guaranteed.
CHARGERS TRANSFORMERS 220 volts. 2 and
5 amperes, 31/2 and 17 1/2 volts.
TRANSMITTER POWER PACK TYPERS 42 volt
2 amperes, 6 volt 2 1/2 amp, 24 volt 12 amperes.
12 volt 12 amperes.

COLLAPSIBLE AERIAL IN 5 SECTIONS
CLOISED 13' OPEN 5-6

ROBUST METAL BOXES
Three superb 20 SWG steel cases are complete with
brush lid and clasp. Made to rigid specifications.
Cost over £5 each to make. Biscuit size. Order
2 at 7/6 each, 12 at 6/- each. Three for 15/- post free.

INSTAL YOUR OWN TELEPHONE SYSTEM
New arrival direct to the general public. Brand
new with high O.P.T. specification. Absolutely complete with bell, standard connecting cable and junction boxes. Ideal for use in house
office, shop or factory. Provides a rapid inter-
communicating system. Special offer 17/6 each.
Sets for 30/- add £1 per phone. A four phone set
post free. Ordinary telephone receivers less dial and
electric £2 each, p.a. Two sets 35/- post free.

INSTALL A LI-ON OR TRADITIONAL TELEPHONE SYSTEM

RECEIVER POWER SUPPLIES
A 12 Volt CAR BATTERY
A specially designed POWER CONVERTER (d.c.-d.c. model).
A 12 volt INPUT gives a 500/900 volt OUTPUT.
Enables you to run up to 220 watt TV/C.N.T. TELEVISION and LIGHTING equipment.
Turbos of all types. Indispensable to caravanners,
Yachtsmen and walkers. The unit is contained in
a compact steel case. Complete with
connecting leads, battery clips and full instructions.
No current drain. Order 3/- each, p.p.
Our price while stocks last 6/- 10/- carriage and insurance 12/- O.D. I. required.

TELEVISION LIGHTING DRILLS ETC.
12 Volt CAR BATTERY

UNIVERSAL BATTERY ELIMINATOR
Run all your transistor equipment directly from
your car battery. The most economical way of running Transistor Radios, B.F.M. Equipment. Record-
Players, amplifiers etc. No more expensive batteries to buy. All the units are contained in an attractive
suitcase, complete with all accessories. Mk. 1 Model-replaces all 9 volt
batteries. £9. Mk. 2 Model-completes with instructions. 49/- post free.

VALVE SALE
607-8/- each. Three for 14/-, 49/- 3/- each. Three for 7/-, 6/- 6/- each. Four for 12/- 6/- each. Four for 18/- 6/- each.
24 6/- each. Three for 24/- 6/- each. Three for 36/- 12/- each. Total price list sent free.

MORSE PRACTICE OSCILLATOR SET
Complete with "Hints on Learning more" manual.
Fully Transistorised. 11/6 p.a. & 6/- post free.

MAY BE BOUND AS A BOOK

PARACHUTES
We have a large quantity of SUPPLY PARA-
CHUTES for each Squadron in the
Army and from the largest parachute manufacturer in Britain.
Complete with all accessories. Available in lots of 50 at £1,000 each. Also available at 50/- each.

Levering the thrill of a 800 at sea. Maro shipping
from all over the world. Covers the complete user.
Stroller, cruiser and amateur hands. A little
little light. Attractive stainless steel. finish, 7 in.
3 x 3 x 3 in. Fully transistorised 6 volt battery
inside. Made of headphone. Band new direct from makers. Complete with all contacts built in 30 mins. Our Price only
6/6 each. A.C. or D.C. O.D. I. required.

PLUG IN TR/RX FOR MAIN POWER SUPPLY SET

UNLESS OTHERWISE STATED NO POST FREE OR POSTAGE

IMPEDEANCE MATCHING UNITS
These simple pieces of equipment will match a high
impedance output to a low impedance load such as
speaker or headphones. Also will match a low
impedance output to a high impedance load. Ideal
for all types of matching, radios, microphones, p.a.
gestion, galvanic, in a compact plastic case. Only 17/6 each, p.a. & 10/- Two sets 25/- post free.

BATTERY CHARGER RECTIFIER
Three superb 20 SWG steel cases are complete with
brush lid and clasp. Made to rigid specifications.
Cost over £5 each to make. Biscuit size. Order
2 at 7/6 each, 12 at 6/- each. Three for 15/- post free.

SILICON RECTIFIERS BY200 to 250 watt equivalent
tested 4/11 each 3 for 12/- 6 post free.

AMERICAN RADIO HISTORY
Dept. 901W, 34 Cownard Yard
Mill Street, March Lane, L 9
Charles Village for a demonstration.

ROBUST METAL BOXES
Three superb 20 SWG steel cases are complete with
brush lid and clasp. Made to rigid specifications.
Cost over £5 each to make. Biscuit size. Order
2 at 7/6 each, 12 at 6/- each. Three for 15/- post free.

Our price while stocks last 6/- 10/- carriage and insurance 12/- O.D. I. required.

www.americanradiohistory.com
NO EXCUSES! NO DELAYS! FROM STOCK!

VARIABLE-VOLTAGE TRANSFORMERS

MULTIPLE USES Variable voltage transformers are among the most versatile electrical components you can buy. They are used in almost every part of the world, from home appliances to industrial equipment. They can be used to raise or lower voltage levels, to power different types of equipment, and to provide a safer voltage output. Here are some of the many uses of variable voltage transformers:

1. **Lighting:** Variable voltage transformers are commonly used in lighting applications to control the intensity of the light. They can be used to adjust the brightness of lights in homes, offices, and other buildings.

2. **Heating and Cooling:** Variable voltage transformers are used in heating and cooling systems to control the temperature of the environment. They can be used to adjust the temperature of water and air in homes, offices, and other buildings.

3. **Telecommunications:** Variable voltage transformers are used in telecommunications equipment to provide the correct voltage levels for different components. They are used in telephones, computers, and other electronic devices.

4. **Power Generation:** Variable voltage transformers are used in power generation systems to control the output voltage of generators. They are used in power plants, factories, and other locations where electricity is generated.

5. **Distillation:** Variable voltage transformers are used in distillation processes to control the temperature and pressure of the distillation column. They are used in chemical and pharmaceutical industries.

6. **Aerospace:** Variable voltage transformers are used in aerospace applications to control the voltage levels for different components. They are used in airplanes, satellites, and other space vehicles.

7. **Medical Equipment:** Variable voltage transformers are used in medical equipment to control the voltage levels for different components. They are used in hospital rooms, operating theaters, and other medical facilities.

8. **Military:** Variable voltage transformers are used in military applications to control the voltage levels for different components. They are used in military vehicles, aircraft, and other military equipment.

9. **Acoustics:** Variable voltage transformers are used in acoustics to control the voltage levels for different components. They are used in music recording, broadcasting, and other audio applications.

10. **Automotive:** Variable voltage transformers are used in automotive applications to control the voltage levels for different components. They are used in cars, trucks, and other vehicles.

In summary, variable voltage transformers are versatile electrical components that can be used in a wide range of applications. They are used to control the voltage levels for different components, and can be used in almost every part of the world.

Wireless World, January 1969

ELECTRIC CLOCK WITH 15 AMP. SWITCH

Made by Smith's those marks are so fitted to make top quality clocks for

clock the case is multi-driven and

control the output. The clock is multi-driven and frequency

toons the correct Intro

to keep the

to offer

insurance. 2/9.

INFRA-RED

HEATERS

Make up one of three latest type heaters

DRILL CONTROLLER

Electrically controlled switches are

VARYLITE

Will dim fluorescence or halogen lighting up to 600 W. from full brilliance
to nick. Priced in M.S. Plasted plate, same size and fitting as standard wall

SPRING COILS

ELECTRONICS (CROYDON) LTD

Dept. WW, 266 London Road, Croydon CR0-2TH

SERVICE TRADING COMPANY
SERVICE TRADING CO.

LIGHT SENSITIVE SWITCHES

220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special relay with 3 x 3, 55 volts, mains contacts. Price incl. circuit 47c., plus 2 1/2c. & P.

PHOTO ELECTRONIC COUNTER
Can be used for simple experiment. 240-230 v. A.C. Photo-electric cell, transistor, play relay, etc., together with clear circuit diagram. £2 1/2, plus 3 1/2c. & P. With reconditioned cell, £2 4/6, & P. 3 1/2.

LIGHT SOURCE AND PHOTO CELL
Precision engineered light source with adjustable unit for 240-230 v. A.C. ventilated lamp housing to take MBC bulb. Separate photo cell mounting assembly for ORP-12 or similar cell with optical window. Both units incorporate single hole fixing. Price per pair £2 5/6 plus 3 1/2c. & P.

ULTRA VIOLET BULBS

Set of 4 Colours £5 15/6. 1 1/2 volt cells. Incorporated for use with 240-230 v. A.C. transformers. Price £2 15/6 plus 3 1/2c. & P.

STROBE! STROBE! STROBE!

The Strobe is one of the most useful and interesting instruments in the physics laboratory or workshop. It is suitable for a large variety of speeds. Many uses can be found in the psychiatric and photodynamic treatment of certain nervous and psychiatric cases. It is a useful tool for the electronic and instrumentation business. It is used in a great deal in the motor industry where it is a very useful tool in testing and an interesting scientific device.

EXPERIMENTERS "ECONOMY" KIT. 1 to 36.

INDUSTRIAL "ADVANCED" KIT. 1 to 80.
Flash per sec. Uses the same flash lamp as the above but uses in addition a high voltage transformer. Uses full isolated from the mains supply by specially designed insulated transformer and stabilised circuit. High output flash tube. Price £10 15/6 each. Plus 1/2c. & P.

PARVALUX TYPE SD-19
230/250 VOLT AC REVERSIBLE GEAR MOTOR
30 R.P.M. 40 lbs. Position of dry spindle adjustable to 3 different angles. Mounted on special cast aluminium base. Ex-equipment. Tested and in first-class running order. A ready-to-use motor offered as a fraction of maker's price, £17 15/6 each. Plus Postage 1/2c. & P.

Latest American, New, Plastic THYSTOR
400 P.I.V. 8 amp. Complete with data sheet. £10 15/6 each. Plus 1/2c. & P. Double insulators for safety. Price £3 15/6 each. Plus postage 1/2c. & P.

"AVO MODEL 7XU" PANCLIMATIC
Offered fully tested and in excellent condition. Complete with carrying case, leads and instructions. £1 4/-, plus 10/- Reg. Post.

"AVO" 35,000 VOLT D.C. MULTIPLIER
For CTET, Voltage measurement complete with leads. New and boxed. 3/-, P. & P. 6/6.

NICKEL CADMIUM BATTERY
Sintered Cadmium Type 1./2, 7A.M. Size: height 3 1/2, width 3 3/4, depth 1/2. German 1933. German 1933.

34R SILICON CONTROLLED RECTIFIER
4 x 5 volt unit series connected, output up to 2 x 20 mA. in sunlight, 30 times the efficiency of other units compared. As used in power Earth Satellites, 45c./P. & P. 1 6/6.

PRECISION INTERVAL TIMER

L.T. TRANSFORMERS
All primaries 220-240 volts. Type No. Price.

220/240 volts. Type No. Price.
Wilkinson's FOR RELAYS
P.O. TYPE 3000 AND 600
BUILT TO YOUR REQUIREMENTS—QUICK DELIVERY
COMPETITIVE PRICES—VARIOUS CONTACTS
DUST COVERS—QUOTATIONS BY RETURN
LARGE STOCKS HELD OF MINIATURE SEALED RELAYS
INCLUDING HIGH SPEED G.E.C. • SIEMENS • S.T.C. • ERICSSON • E.M.I. • BEST MAKES
25,000 IN STOCK DETAILED LIST ON REQUEST

CONNECTING WIRE 1/001, 5/015, or 14/014
PVC covered in various colours 100 & 360 yard reels.
£4 net 1,000 yard reel.

LEDEX SOLENOID DRIVENWAFER SWITCHES
BIPS 58, Price 90/-, 11 Way and off. 3 to 24 Pole;
slot 4 Pole 12 Way and 54 Pole on/off.

SOLENOIDS type 83 in stock at 17/6 each.

CERAMIC AND PAKOLIN WAFER SWITCHES
available from stock at keen prices. Send for list.

P.O. STANDARD RACKS on 12 channel sldes drilled
for 10m, include heavy angle base, 150/-, 250/-.
Disk Units for Baths 30/-, or 7/6.

HYGROMETER, reading humidity, in round by
Norevett and Zunahi, priced 6/100, 45/-, post 3/-.

MINIATURE BUZZERS, 12v, with tone adjuster, 7.4.

SPECIAL OFFER
43.500 Condensers 0.1 mfd 500 volts T.M.C.
 standardized 61/- per 1000. Suitable for aerial work.

PLASTIC-FILM CONDENSERS TMC 121001LM
0.01 mfd 500 volts also 1 mfd 1%, 1050 VDC 25 each.

AIR BLOWERS. 200-250 volt, A.C. cylindrical 7in.
7m, suitable for intake or extraction. 15/6d b.p. £10.

ELCOM STUD SWITCHES
Three on 3 Panel break before make action 50/- ea.
GEARED MOTORS. 3 Phase 50 Hz, 1500 rpm. 3 mfd.
0.1 volt, very powerful, 24 v or 32 V. A.E.C. 3/-,
can be fitted with A.R.R. motor 15/- ea.

SUB-MINIATURE LAMPS. Flaring leads 0.75 volt
20/- each.

DOUBLE HEADPHONES. Balanced structure
£4 5/6 each, Post 17/6.

MICRO SWITCH. Burgess MK5188, robust die cast
case 500 volt, 6 amp. Price 12/- ea.

BATTERY CHARGERS at special prices made by
Wireless World, 1/10 each.

LI -WILKINSON (CRYDON) LTD.
ONGLY HOUSE LONGLEY RD. CROYDON SURREY
W. MILLS
3 B. TRULOCK ROAD, TOTTENHAM, N.17
Phone: Tottenham 9213

LATEST RELEASE OF
RCA COMMUNICATION RECEIVERS AR88

MARCONI SIGNAL GENERATORS
TYPE TF-144G

Freq. 85Kc/s-25Mc/s in 8 ranges. Incremental: +/−1% at 1Mc/s.
Output: continuously variable 1 microvolt to 1 volt.
Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100V-1 volt
52.5 ohms. Internal Modulation: 400 c/s sinewave 75% depth.
External Modulation: Direct or via internal amplifier. A.C. mains
200/250V, 40-100 c/s. Consumption approx. 40 watts. Measurements:
191 × 121 × 10 in. The above come complete with Mains
Leads, Dummy Aerial with screened lead, and plugs. As New, in
Manufacturer’s case, £40 each. Carr. 30/-.
DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

W. MILLS

S.A.E., for all enquiries. If wishing to call at
Stores, please telephone for appointment.
WIRELESS

AUTO TRANSFORMER: post price

CALIBRATION TACHOMETER

10 switch, RACK -778 24 v.

Tuning Indicator; HRO RECEIVER. (either type)

transformer £5, D.C. input.

Dinghy transmitter. SCR £5 watt £1 coil each, £2 carr.

£1 1.2 v. 75 mfd.

8/19/6 each, £1 carr.

£2 115/ -.

£2/5,- each, post 4-

230/115 v., 300 v, 28 v.

300/ -.

FR -67/U. This instrument is direct reading and the results are presented directly in digital form. Counting range: 20-100,000 events per sec. True Rate Crystal Freq: 100 Kc/sec. Power supply: 115 v, 50/66/-, £100 each, carr.

CT.49 ABSORPTION AUDIO FREQUENCY METER: freq. range 450 c/s-

CATHODE RAY TUBE UNIT: With 3in. tube, colour green, medium persis-

APNI ALTIMETER TRANS.REC., suitable for conversion 420 Mc/s, com-

GEARED MOTORS: 24 v., direct current 150 ma., output 1 r.p.m., 30/-

MOTORISED ACTUATOR: 115 v. A.C. 400 c/s single phase, reversible,

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

Model MP-4: 28 v. D.C. @ 2 amps, 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price £2 each, postage 4/- (ex equipment).

Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermitent, output 75 watts, 50 c/s, each, postage 4/-.

MARCONI DIVERSITY RECEIVERS: Consisting of 2 x CR.150’s and associated equipment. £175 each. Carr. £5.

CANADIAN C12 TRANS/REC: Freq. 1.75-16 Mc/s on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond., complete set £50. Used condition working order £35. Carr. on both types £2/10/- each, post 7/6.

COAXIAL TRANS/REC: 2 circuits, £3 each.

PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR: Type 219, 100-1,000 Mc/s. (New) £60 each, post 12/-.

FREQUENCY: Type 520/1, 0.250-1.0 KMc/sec. (New) £75 each, post 12/-.

FIXED ATTENUATOR: Type 20.2-10.0 KMc/sec. (New) £5 each, post 4/-.

99

W WILLS

3-B TRULOCK ROAD, TOTTENHAM, N.17
Phone: Tottenham 9213

CALLERS BY TELEPHONE APPOINTMENT ONLY
NEW STANDARD CASES FROM OLSON

<table>
<thead>
<tr>
<th>Type</th>
<th>Width Dim. A</th>
<th>Height Dim. B</th>
<th>Depth Dim. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>25A</td>
<td>2 3/4</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>25B</td>
<td>2 3/4</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>26A</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>26B</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>27A</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>27B</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>28A</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>28B</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>30B</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>31A</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>31B</td>
<td>2 1/2</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>40A</td>
<td>3 1/8</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>40B</td>
<td>3 1/8</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
<tr>
<td>40C</td>
<td>3 1/8</td>
<td>1 1/8</td>
<td>7/8</td>
</tr>
</tbody>
</table>

Quotations gladly given for customers' own specifications and special requirements.

WRITE FOR FURTHER DETAILS TO
OLSON ELECTRONICS LTD., FACTORY NO. 8
5-7 LONG ST. LONDON E2
TEL: 01-739 2343

WW—122 FOR FURTHER DETAILS

THE SAFEST, QUICK AND HANDY CONNECTOR FOR ELECTRICAL APPLIANCES IS NOW AVAILABLE EXACTLY

LONDON MICROPHONES

Quality sound—at low cost

The London Microphone range offers you quality microphones, good characteristics—and good looks, too, at remarkably low cost. Made in Britain.

NEW to the range: LM300 dynamic cardiod microphone incorporating top-quality moving coil capsule. Gives maximum front-to-back ratio over a frequency range of 50-1000 Hz, with no equalizing, low noise, robust metal case, natural finished finish.

Low imp. Dual imp.
LM 300 (Cardiod) £11 10
LM 200S £5 10
LM 300 £4 19 6
LM 100 £3 3 0

Home or overseas trade enquiries welcome. Write or ring for details.

LONDON MICROPHONE CO. LTD.
182-4 CAMDEN HILL ROAD, LONDON, W.6.
Tel: 01-727 0711. 24 Hr Answering Service. Telex 23894
Silicon N.P.N. Transistors, similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at £1 each or £5 per 25.

Transistors 12000, OC203, OC204, all at 2/- each.

AS22, 2N753, BS28, 2N446, 2S434A, 2S345A, 2S345B, 2S371A, 2S378A, all at 1/- each.

Transistors similar to OC44, OC71, OC72, all 1/- each.

Unmarried, unstamped transistors, 7½ for 50.

Light Sensitive Transistors (similar OCP 71), 2/- each.

30 watt transistors (AS217), 10/- each.

OP2 12 Cadmium sulphide light resistors 9/-.

Rectifiers

BY100, 800 p.v., 2/- each, 24/- per doz., £7.10/- per 100, £30 per 1,000.

BY213, 6-m.p.v., 400 p.v., available on request.

Mullard Polystyrene Capacitors

Far below cost price:

- 0.001µF 400 volts 3d
- 0.005µF 400 volts 3d
- 0.01µF 400 volts 3d
- 0.022µF 400 volts 3d
- 0.1µF 400 volts 3d
- 1µF 400 volts 3d

Very Special Value Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. 10/- per 100, 5/- per 1000.

Paper Condensers, Mixed Bags, 0-001 to 0.5µf, 1/- per 100.

Resistors

Give-away offer! Mixed types and values, 1 to 1 watt, 6/- per 100, 5/- per 1000. Individual resistors 3/- each. Also, 1 to 3 watt close tolerance. Mixed values. 7½/- 100, 5/- 1000.

Wire-Wound Resistors. 1 watt to 10 watts. Mixed bags only. 16 for 10/-.

Record Player Cartridges

ACAS

- GP 67/2 Mono £1.50 complete with needles.
- GP 91/3 Stereo Commercial £1.80
- GP 94/1 Ceramic £1.75

Small pick-up arms complete with cartridge and needle, 10/- only.

UNREPEATABLE OFFER!

Giant Selenium Photo-Cells, output upwards of 5ma at -6V

FEW ONLY 10/- EACH

Transistorised Signal Injector Kit

R.F./I.F./A.F. 10/- only

Transistorised Signal Tracer Kit 10/- only

Transistorised Rev. Counter Kit 10/- only

Veroboard

21in. x 17in. 0.15in. matrix 1/1

21in. x 17in. 0.15in. matrix 11/-

21in. x 17in. 0.10in. matrix 12/-

3in. x 3in. 0.15in. matrix 3.11

3in. x 3in. 0.15in. matrix 4.11

3in. x 3in. 0.15in. matrix 5.11

3in. x 3in. 0.15in. matrix 6/-

Spot Face Cover 7½/6 Pin Insert Tool 9/- Terminal Pin 3/6 for 36.

Special Offer!

Five 21in. x 17in. Boards and a cutter 8/6.

Multimeters. 20,000 ohms per volt.

Ranges: a.c. 1,000V, 500V, 100V, 10V. d.c. 250mV, 25mV, 50V, 500V, 250V, 25V, 2V.

Resistances: 0.001Ω and 8Ω.

Special price 6/- only.

Electrolytic Condensers

0.25µF 3 volt 4 µF 4.5 volt 6 µF 6.3 volt 3200V 10 volt

1µF 6 volt 4.5µF 25 volt 25µF 12 volt

2µF 20 volt 5µF 125 volt 100µF 6 volt

2.5µF 16 volt 6µF 6 volt 30 µF 6 volt

3µF 8 volt 3µF 10 Volt 10µF 6 volt

3.5µF 300V 6.8µF 9 volt 12 volt

5µF 16 volt 8µF 50 volt 64µF 25 volt

6µF 25 volt 10µF 630 V 100µF 4 volt

7µF 25 volt 10µF 1600V 100µF 4 volt

22µF 25 volt 10µF 1000V 100µF 4 volt

All at 1/- each.

Skelenton Pre-set Potentiometers

1000Ω

100KΩ

500KΩ

1000Ω

100KΩ

500KΩ

6d. each.

Pre-set Sliders

Small Transistor Output Transformers 2½ each.

Small Transistor Driver Transformers 2½ each.

Crystal Transformer Mikes 10/- each.

Crystal Tape Recorder Mikes 12/- each.

Orders by post to:

G. F. MILLWARD
DRAYTON BASSETT. NEAR TAMWORTH. STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/-.

Stamped addressed envelope must accompany any enquiries.

For customers in Birmingham area goods may be obtained from Rock Exchangers. 231 Alum Rock Road, Birmingham 8.
Thanks to a bulk purchase we can offer
BRAND NEW
P.V.C. POLYESTER & MYLAR
RECORDING TAPES

Manufactured by the world-famous reputable
British tape firm, our tapes are screened in polyethylene
and have fitted leaders, etc. Their quality is as good
as any other on the market, in no way are the tapes
guilty and are not to be confused with imported,
used or sub-standard tapes. 24-hour dispatch service.
Should goods not meet with full approval, purchase
price and postage will be refunded.
S.P. 3m. 160ft. 25. 5m. 600ft. 4½.
5m. 900ft. 8. 7m. 1,200ft. 9.
L.P. 5m. 1,250ft. 10. 7m. 1,500ft. 13.5.
D. ponds. 5m. 1,800ft. 14. 7m. 2,000ft. 20.
Postage on orders 1½
We can also offer, BRAND NEW PRE-RECORDED
LANGUAGES COURSES IN GERMAN, FRENCH,
SPANISH AND ITALIAN.
Each course consists of 26 step-by-step lessons
recorded at 15 i.p.s. suitable for two- and four-track
machines and supplied complete with handbook.
Normal retail price 59.6.
Our price 199.4 per course.

STARMAP TAPES
28 LINKSCROFT AVENUE
ASHFORD, MIDDX.
Ashford 53020

AMATRONIX LTD (WW)

DISCOUNT TRANSISTORS. Quantity prices (in
brackets) when you buy ANY FIVE, same type or
MIXED, ALL NEW. GUARANTEED TO SPEC.
No minimum. Quick delivery. 10% cash on delivery.
AD517/2 (45/75) BF517 (30/50)
BF522 (10/25)
BF107/2 (5/10) BF107 (10/25)
BF241/2 (15/35) BF241 (25/50)
BF150/2 (5/10) BF150 (10/25)
BF160/2 (5/10) BF160 (10/25)
BF195/2 (5/10) BF195 (10/25)
BF215/2 (5/10) BF215 (10/25)
BF245/2 (5/10) BF245 (10/25)
BF247/2 (5/10) BF247 (10/25)
BF306/4 (15/35) BF306 (25/50)
BF307/4 (15/35) BF307 (25/50)

HIGH SLOPE R.C.A. MOSFETS
Dyads in FET's. High current gain design, depletion
mode. Ideal e.g. to v.t.o.l. Triode 4046, 4.5mA V, 2.25W.
Purp. N.P. 245/3, 245/4, 245/5. (200). (500)
(500) All this for only 8 1/2 (76). Tetode 3N140, 16mB p.n.,
3.25V D.C. 85mA. Hi-Fi, tape recorder, r.f. ampl.
Amplifier Packs Components (Kens) and Kits.

AMPLIFIER PACKAGES (Component Kits)

AX21 9V, 20W.M in 10-15 shows. 179.
AX4 18V, 2x0W or 2x4W. low distortion, 25W.
AX4 18V 2x0W or 2x4W, low distortion, 25W.
RECEIVER PACKAGE AXE
Complete component kit, everything except case and
bass driver. J.B. Dilemian tuning cond in, g.p.m., brand
new top-grade miniature components. The ideal set for
the engineer constructor, easy to build but much more than
a kit. Includes: BJJ60, RFI41, 3020, 3000, 12Q1, 12Q5.
Low earphone reception, but x 8-ohm speaker can also be
used. Only 101/2.
LOW-COST LININS
AUDIO POWER HFCH T7124 A, 1W, 2Wx3 channels, 324.
CAR190, 155mA 18V, high gain, wide band (needs p.n. 150);
300, 333mA 30V. L.R.23, 150mA 150V, M.P.112, 222mA
70mA contact socket, 8-18 (5,000), ELECTROLYTIC, ion.
100mF 1.5V 100mF 100V, 100mF 100V.
TAA120, 15-
MINIATURE POWER PACK COMPONENTS
M7 MAINS TRANS, 0.20-25V, 90-9V, 80mA, size 1/2",
with data sheet giving regulation curves for pushpull
bridge and voltage doubler rectifiers, 111, TINY
SUBMINIATURE BRIDGE (axial-pin) rated 50mV. rect.
tube, 100mF 0.25V, 100mF 0.5V, 10mF 8V, 100mF 25V.
Sockets, 100mA, 120mA, 25mA. Pin 0.1", 0.05", 0.035.

ALL TYPES OF FITTINGS & FINISHES.
Cash on order. Mail order only.
396 SEDDON ROAD, SOUTH CROYDON.
SURREY. CR2 ODE

Your choice of Live Sockets - Instantly!
A Lexor DIS-BOARD gives you up to 6 sockets from one power or permanent fixing, compact units.
We offer safety, as a further advantage. Over 1,000 types of combinations available from stock.
Branches from LEXOR DIS-BOARDS LIMITED,
Ashley Old Road, Coventry.
Telephone 72414 or 72207

BUILD YOURSELF A QUALITY TRANSISTOR RADIO!

"NEW LOOK" BELLOX SIX WHD. F. 3 WAVE.
[....] FACTORY PHONE 211.
BROADS, with BEETERS AND EAR.
[....] (or two transistors), PFM. F. 4.
S. 1.3, P. 1.0. Price includes W. (time with parts).
SLIDEWIRE WHEATSTONE BRIDGE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Sensitivity</th>
<th>Battery Voltage</th>
<th>Output Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
</tbody>
</table>

SILICON POWER RECTIFIERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Current</th>
<th>Output Voltage</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
</tbody>
</table>

SILICON "TOP HAT" RECTIFIERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Current</th>
<th>Output Voltage</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1V2</td>
<td>1051.17</td>
</tr>
</tbody>
</table>

Multimeters

THYRISTORS

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
<td>1051.17</td>
</tr>
</tbody>
</table>

Valves First Quality

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
</tr>
<tr>
<td>1V2</td>
<td>1051.17</td>
</tr>
</tbody>
</table>

Integrateed Circuit Amplifiers

- **R.C.A. Type CA220D to 5.**
 - **0.17 m.a. to 100 m.a.**
 - **V. 50% of Full Range.**
- **Gain.**
 - **0.001 to 1000.**

Portable Rnketor Bridge

- **Range**
 - **100 mA to 1000 mA.**
- **Output.**
 - **0 to 100 mV.**

Diey Reed Inserts

- **Glass dry Reed Inserts.**
 - **100 ma.**
 - **10 mV.**

Multimeters Type 108-A

- **Operating Range**
 - **0.00 to 1000 V.**
- **Gain.**
 - **0.1 V. to 100 kV.**

Type M616

- **Operating Range**
 - **100 mV to 100 V.**
- **Gain.**
 - **0.1 V. to 100 kV.**

Stereo Precision Portable Meter.

- **Operating Range**
 - **0.00 to 100 V.**

KTR

- **Operating Range**
 - **0.00 to 100 V.**

Multimeters Type 108-A

- **Operating Range**
 - **0.00 to 1000 V.**

Type M616

- **Operating Range**
 - **100 mV to 100 V.**

KTR

- **Operating Range**
 - **100 mV to 100 V.**

Head Office:

44a WESTBOURNE GROVE, LONDON, W.2.

Tel.: PARK 5411/23

Cables: ZABER LONDON

Retail branch (personal callers only)

85 TOTTENHAM COURT RD., LONDON W.1. Tel.: LANGham 6493

WL--12 FOR FURTHER DETAILS
150,000 electronic engineers in Paris

This concerns YOU DIRECTLY!

SALONS INTERNATIONAUX DES
COMPOSANTS ÉLECTRONIQUES
ET DE L'ÉLECTROACOUSTIQUE

FROM MARCH 28th TO APRIL 2nd 1969 - PORTE DE VERSAILLES - PARIS

This is the oldest Components Exhibition started in 1934. It became International in 1956 and has proved increasingly successful each year with a growing number of exhibitors and visitors. In 1969, the International Exhibition of Electronic Components will be bigger and better than ever: 1,000 exhibitors from 20 countries... 150,000 visitors from all over the world... are expected.

INTERNATIONAL CONFERENCE ON REMOTE DATA PROCESSING

Scientific, technical and economic aspects. Program and registration conditions on request.

FROM MARCH 24th TO 28th 1969 - PARIS

S.D.S.A. - RELATIONS EXTÉRIEURES - 16, RUE DE PRESLES - 75 PARIS 15e - FRANCE

CALL FOR INFORMATION: FRENCH TRADE EXHIBITIONS - LONDON - PHONE: 589.01.85

WWW—129 FOR FURTHER DETAILS
THE COLLEGE OF AERONAUTICS

The following appointments are to be made in the High Frequency Section of the DEPARTMENT OF ELECTRICAL AND CONTROL ENGINEERING and are open to candidates who have experience in the radio, radar or electronic fields.

TECHNICAL OFFICER

The vacancies are in the high frequency and radar laboratories which are concerned with postgraduate teaching and research in radar, radio and microwaves. Experience in the aviation field is not an essential requirement.

The TECHNICAL OFFICER will supervise the day-to-day activities in the laboratories and be responsible for the construction of specialised experimental equipment. Candidates should have passed the graduateship examination of the I.E.E., I.E.R.E., or possess a H.N.C. or equivalent qualification. Salary in scale rising to £1,517 p.a.

The TECHNICIAN, who will have received relevant training and experience, will be remunerated in a scale rising to £1,007 with a supplementary allowance of £50 p.a. for possession of a H.N.C. or equivalent qualification.

37 hour week of five days, generous holidays, staff superannuation and sick pay schemes.

Application form from Staff Records Officer, The College of Aeronautics, Cranfield, Bedford.

ASSISTANT FORCE WIRELESS OFFICER

Required by the GOVERNMENT OF BOTSWANA POLICE DEPARTMENT to serve on exchange for one tour of 2-3 years in the first instance. Salary in scale equivalent to £1,524-£2,094 a year, inclusive of Inducement Allowance, point of entry according to experience. Gratuity at rate of 25% of aggregate salary plus Inducement Allowance. Generous paid leave. Furnished accommodation at moderate rent. Education Allowance. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 30-45 years, should possess City and Guilds Intermediate Certificate or equivalent, or practical experience preferably in the Police or Armed Forces giving comparable ability. Several years' experience in the electronics or radio field preferably in connection with H.F., S.S.B. and V.H.F./F.M. and ideally in Police communications are required.

The officer will undertake installation, operation and maintenance duties on police radio network comprising H.F., S.S.B. or V.H.F./F.M. stations up to 500 watts throughout Botswana.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K 681122/WF.
Exceptional opportunities for
WIRELESS TECHNICIANS

The Home Office requires Wireless Technicians to work on installation and maintenance of V.H.F. and U.H.F. communications systems at various locations in England and Wales.

WE OFFER

* Starting salary of up to £1130 (according to age), rising to £1304 with additional allowances of up to £125 if working in the London area
* Good prospects of promotion, the top technical posts draw more than £2300 a year and staff who obtain professional qualifications may rise still further
* 40 hour week with overtime payable
* 18 working days paid holiday a year, rising to 30 days, plus public and privilege holidays amounting to 8½ days
* Excellent prospects of qualifying for a pensionable post after one year's service

WE REQUIRE

* City and Guilds Intermediate Telecommunications Certificate or evidence of an equivalent standard of proficiency
* Sound practical experience of construction and maintenance of V.H.F. and U.H.F. equipment
* Working knowledge of modern workshop techniques

Further information, please, about the work, pay and prospects of a WIRELESS TECHNICIAN.

NAME

ADDRESS

Post to: Director of Telecommunications Home Office, Room 208, Horseferry House, Dean Ryle Street, London S.W.1.

"SEA" THE WORLD WITH DIGITAL

FIELD SERVICE ENGINEERS of a high calibre are required for the servicing and maintenance of our computers aboard ships in all parts of the world. Applicants should be qualified to B.Sc., H.N.D., or H.N.C. standard or equivalent and have relevant experience in the computing or allied technologies.

Tours of duty will be of approximately 90 days duration followed by leave. Attractive bonuses will be paid on the completion of each tour.

These positions would probably suit ex sea going Radio Officers.

Applications in confidence should be sent to the Personnel Department, Ref. WW35

Digital Equipment Co. Limited
Arkwright Road, Reading, Berks.
Tel: ORE4-85131

MARCONI

ELECTRONIC TEST ENGINEERS

Our Test Department is responsible for testing and fault finding on a wide range of Marconi equipment; airborne communication and navigation aids, radar; broadcasting; and space, radio and line communications. There are excellent career prospects both within the Test Department and in other areas of the expanding Marconi Company.

We wish to hear from men with a proven career record in the electronics industry, who, preferably should have gained qualifications to at least C & G Telecommunications Intermediate standard.

Members of H.M. Forces in the electronic fitter categories would find these positions of particular interest.

Please write for brochure to Mr. M. J. Shepherd, Staff Personnel Officer, Chelmsford Works, The Marconi Company Limited, Marconi House, Chelmsford, Essex, quoting reference WW/E/42.

THE MARCONI COMPANY LIMITED—AN ENGLISH ELECTRIC COMPANY
Test Engineers

Decca Radio and Television require Test Engineers for their Test Gear Laboratory.

Applicants should possess an O.N.C. and have at least one year's experience in Television.

This is interesting and varied work with good pay and conditions.

Apply quoting reference R/T 113 to:
Personnel Officer
Decca Radio and Television
15/17, Ingate Place
Queenstown Road
Battersea, SW8

Our Test, Test, and Test again, Engineer

The chap who is experienced enough to work with minimum supervision . . . flexible enough to assimilate new techniques . . . and resourceful enough to think of some answers as well as finding the snags . . . that'll be the chap who'll be our new Test Engineer.

And an interesting future he will have—working on latest state-of-the-art and integrated circuit equipment over a full range of SSB and ISB transmitters and receivers from watts to kilowatts, including new narrow-shift F.S.K. systems with frequency synthesis.

If you are interested, and want to know more, write or ring:

Mr. P. J. Horwood,
Senior Test Supervisor,
REDIFON LIMITED,
Broomhill Road, Wandsworth, S.W.18
Telephone: 01-874 7281

www.americanradiohistory.com
GRADUATE ELECTRONIC ENGINEER

to join an established Electronics Laboratory situated at the Company's Headquarters at Leeds.

The work will involve the design and development of digital techniques for data processing, non-destructive testing and control systems.

The successful candidate will be involved in both practical and theoretical work and must possess sufficient motivation to see a project through from the idea stage to a piece of proven production equipment.

The Company offers attractive conditions of employment including a Pension and Life Assurance Scheme and Profit-Sharing Scheme.

Written applications, containing full details of age, qualifications, experience and present salary should be marked 'Reference 38221 - Confidential' and addressed to:

The Senior Appointments Officer,
Company Personnel Services,
Yorkshire Imperial Metals Ltd.,
P.O. Box 166,
Leeds, LS1 1RD.

MARCONI INSTRUMENTS LIMITED
AN ENGLISH ELECTRIC COMPANY

SENIOR TELECOMMUNICATIONS INSTRUMENT TEST TECHNICIANS

If you have a thorough knowledge of r.f. circuitry and measuring techniques and are familiar with the use and maintenance of telecommunications test gear, we have a number of opportunities in our Production and Proprietary Service Departments at St. Albans and also in our Government Service Unit at Luton which should be of interest to you.

These challenging jobs involve testing complex new products with limited guidance and servicing and recalibrating a wide range of equipment to Company or Customer specifications under conditions which may call for individual responsibility in devising test methods and procedures.

These positions offer the experienced technician an opportunity to broaden his experience and to progress to posts of even higher technical responsibility.

Working environment and conditions of service are attractive and include an excellent pension scheme and free life assurance. Some assistance may be given with re-location in appropriate cases.

Please apply in writing, stating experience, salary, age and qualifications to:

The Recruitment Manager (WW 2890J),
Marconi Instruments Limited,
Longacres, St. Albans, Herts.
TECALEMIT (ENGINEERING) LIMITED

PLYMOUTH DEVON

ELECTRONICS ELECTRICIAN

Preferably within the age range of 25-35 for the maintenance and development of electronic equipment and controls.

A working knowledge of transistor techniques is essential and previous experience in Industrial Electronics an advantage.

Academic qualifications are desirable but the primary requirement is for a man of good practical experience and ability.

Please apply in writing stating career to date and present salary to:

PERSONNEL OFFICER

TECALEMIT (ENGINEERING) LTD.,

PLYMOUTH, DEVON

A member of the Tecalemit Group of Companies

UNIVERSITY OF EAST ANGLIA

Applications are invited for the post of **LANGUAGE LABORATORY TECHNICIAN**

in the Language Centre. Candidates should have some knowledge of radio and experience with tape recorders and preferably also experience of recording. Salary will be at a point on scale £722-£1007 or £692-£977 per annum.

Applications should be sent to The Director, Language Laboratory, University of East Anglia, University Plain, Norwich, NOR 88C, as soon as possible.

SWITZERLAND

SERVICE ENGINEER

Service Engineer, single, wishes work in Switzerland. 20 years’ experience Radio, TV, etc. 14 years self-employed. Terrestrial, clean licence. Willing to train for specialised equipment.

J. BATEMAN, 22 Sutherland Avenue, Burnham-on-Sea, Somerset.

RADIO SYSTEMS DIVISION

The work in the Development Unit at West Leigh is expanding and covers the whole spectrum of electronic equipment design.

If you are working in any field of Design & Development of Electronic Equipment and are looking for New Opportunities we would like to hear from you

If you are between 25 and 35 years old and qualified to HNC and/or degree standard then write, or post the coupon, please, in confidence to The Personnel Officer, The Plessey Company Limited, West Leigh, Havant, Hants, quoting HAV/145/E.

The laboratories are located in the grounds of West Leigh House. The site is close to the sea and to the South Downs, and is well placed for housing, shops, schools, recreational and cultural facilities.

PLESSEY Electronics
It’s Racal ‘quality year’

And we are looking for a good quality Service Engineer to help us maintain our standards of after sales service.

Specification:-
Wide general experience
Good knowledge of circuit applications
Experience with H.F. S.S.B. Communications Equipment

Optional Extras:-
City & Guilds or O.N.C. or H.N.C.

Power Consumption:--
Approximately £1,350

Applications in writing please to--

Mr. P. Cousins,
Group Personnel Manager,
Racal Electronics Limited,
Western Rd., Bracknell, Berks.

RACECOURSE TECHNICAL SERVICES LIMITED

OPERATE A
TELEVISION UNIT FOR HORSE RACING

and require a

TELEVISION ENGINEER
for operation and maintenance of the MCR.

QUALIFICATIONS
* HNC. City & Guilds or equivalent
* Experience in operation and maintenance of high grade television equipment
* Willing to travel

APPLICATIONS

The Company is planning further expansion in the fields of television and electronics
* Good salary and prospects
* Expenses paid on location

Applications stating age and experience should be sent to--

RACECOURSE TECHNICAL SERVICES LTD.,
88 Bushey Road, Raynes Park, London, S.W.20.

Government of ZAMBIA
REQUIRES

POSTAL ENGINEERS

TELECOMMUNICATIONS, PLANNING and EVALUATION

Professional Engineers required for telecommunications by the GOVERNMENT OF ZAMBIA, General Post Office on contract for one tour of 36 months in the first instance. Commencing salary according to experience in scale. Kwacha 2784 rising to Kwacha 4464 a year (£Stg.1624–£Stg.2605) plus inducement allowance of £Stg.348–£Stg.429 a year. Gratuity 25% of total salary drawn. A direct payment of £Stg.233–£Stg.350 is also payable direct to an officer’s home bank account. Both gratuity and supplement are normally TAX FREE. Free passages. Quarters at low rental. Children’s education allowances. Liberal leave on full salary or terminal payment in lieu. Special terms of service apply to serving civil servants including employees of the General Post Office.

Candidates should have a recognised degree in telecommunications or electrical engineering or equivalent qualification. This should be followed by several years of experience with a telecommunications organisation. The duties of the posts are varied. They include planning of trunk and telegraph multiplex systems and radio systems, also the technical and economic evaluation of local and trunk line development policy in the field of underground cables and open wire lines.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K/6110/WF.
Expansion at Westrex

Westrex Co. Ltd., famous for their Telecommunications, Public Address and Cinema Projection and Recording Equipment, offer new opportunities to help meet their rapid expansion.

DEVELOPMENT/DESIGN ENGINEER

For specialised work associated with motion picture and public address equipment including audio frequency amplifiers, power units, filters, network, etc.

Location: Cricklewood

DEVELOPMENT/DESIGN ENGINEER

For specialised electro-mechanical, telegraphic apparatus associated with data processing and computer peripheral units including logic circuitry and sophisticated mechanical devices.

Location: Cricklewood

SENIOR FIELD ENGINEER

For work associated with data processing and computer peripheral units referred to above, based on London but must be willing to travel in this country. Car and expenses provided.

SENIOR DRAUGHTSMAN

For specialised light, electro-mechanical work, associated with motion picture, public address and telegraphic type of equipment.

Location: Cricklewood

All Applicants must have a sound technical background plus several years practical experience. Initiative and the ability to accept responsibility will lead to promotion. Excellent salary and prospects to the right applicants.

Apply in writing to: The Chief Engineer, WESTREX COMPANY LIMITED, 152 Coles Green Road, London, N.W.2, or telephone 01-452 5401 Extension 12.

Radio Technicians enjoy exciting new scope now in Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be £569 (at 19) to £1,130 (at 25 or over); scale maximum £1,304 (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

Write for details to: Mr. T. H. Mallett, B.Sc. (Eng.), C.Eng., M.I.E.E., Room 705, The Adelphi, John Adam Street, London W.C.2, marking your envelope 'Recruitment'.

Name

Address

Not applicable to residents outside the United Kingdom.
Computer Engineering

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of £900-£1150 per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

Electronic Technicians

Ampex Quality Control Department now has vacancies for electronics technicians. Successful applicants will be responsible for fault finding and testing a complete range of sophisticated magnetic recording equipment.

Experience gained in the electronic industry or radio or television servicing would be an advantage or a qualification of O.N.C. standard.

Attractive salary based on qualifications and experience will be paid and the company operates an excellent range of Life Assurance and Pension Schemes, etc.

Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, (Tel.: Reading 84411).

GOVERNMENT OF THE GAMBIA

REQUIRES

BROADCASTING ENGINEER

to serve on contract for one tour of twenty four months in the first instance. Salary in scale up to £2424 a year (point of entry according to experience) which includes an allowance normally tax free, of £572 to £900 a year paid direct to officer's bank account in U.K. by British Government. Gratuity of 25% of aggregate emoluments drawn. Low income tax. Generous paid leave. Education and Outfit Allowances. Furnished accommodation at reasonable rental. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 25-45 years, must possess City and Guilds Intermediate Certificate, O.N.C. in Telecommunications or B.B.C. Grade 'C', and should preferably have experience of medium and short wave transmitters and

in operating and maintaining sound broadcast studio equipment in a tropical country. The engineer will be responsible for the operation and maintenance of all the technical equipment in the studio building, which will include three studios, a main control room, outside broadcast and recording equipment, the air conditioning plant and an emergency diesel generator.

He will also be required to undertake extensive technical staff training.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference MzK/681009/WF.
We are one of the World's leading design-
ers and manufacturers of Flight and Radar Simulators and we export a high proportion of our products. Ours is a highly sophisti-
cated complex product, incorporating both
digital and analogue computers, which
provides a fascinating challenge to Engi-
neers of all grades.

We have vacancies for:

ELECTRONIC ENGINEERS

DEVELOPMENT ENGINEERS

SYSTEMS ANALYSTS (TECHNICAL)

SERVICE ENGINEERS

SYSTEMS TEST ENGINEERS

TECHNICAL AUTHORS

DRAUGHTSMEN

LECTURERS

We are based in Crawley, 26 miles from
the sea and 31 miles from London.
We have a contributory Pension Scheme
coupled with free Life Assurance, and a
good sick pay scheme. Canteen and
Social Club facilities are available.
If you are interested in joining us, write
immediately giving brief details of career
and quoting reference WW169 to:

H. C. Hall, Personnel Manager

REDIFON LIMITED

Gatwick Road, Crawley, Sussex
Telephone: Crawley 28811

REDIFON

A Member Company of the Rediffusion Organisation
SITUATIONS VACANT

A FULL-TIME technical experienced salesman re-
quired for retail sales: Write giving details of age,
previous experience, salary required to: Personnel
Manager, The Marconi Company Limited, Wembley
Works, Wembley Road, Wembley, Middlesex. Tel: 01-902 9421

RADIO & TELEVISION SERVICING
RADAR THEORY & MAINTENANCE

This private College provides efficient theoretical and practical training in
the abve subjects. One-year day courses are available for beginners and shorter
courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern
Road, Earl's Court, London, S.W.3. Tel: 01-373 8721.

STAVELEY-SMITH CONTROLS LIMITED

SERVICE ENGINEERS

Vacancies exist for Marine and Industrial Electronic Service Engineers in our
London (Barking), Manchester, Liverpool and Birmingham and Glasgow Depot areas.

Applicants must be either ex-seagoing personnel and/or experienced Industrial
Service Engineers, resident within ten miles of depot.

All applicants must hold clean driving licence, be willing to travel and be of
British birth.

All positions are Staff, with contributory Superannuation.

Apply in writing, stating experience to:-
68 Grosvenor Street, MANCHESTER, 1.

ADMIRALTY CABLE SHIPS
“BULLFINCH” and “ST. MARGARETS”
(each 1511 tons gross) based at Plymouth require:

RADIO OFFICER (man only) aged at least 20 and normally under 35 with
at least 2nd Class PMG Certificate.

SALARY: £1,239—£1,892 plus free victualing. Non-contributory pension.

WRITE to Civil Service Commission, Savile Row, London, W.1 2AA, or
telephone 01-734 6601, ext. 229 (after 4.30 p.m. 01-734 6646 “Ansafone” Service),

Marconi

Test Engineers

AT MARCONI WEMBLEY

Due to a further expansion of the Test Department, applications are invited from
ELECTRONICS and TELECOMMUNICATIONS ENGINEERS to fill positions at the Company's Wembley establishment.

Applicants are expected to have a knowledge of Circuity and be able to undertake testing and fault finding of a wide range of Communications Transmitters and Receivers, Data Handling Equipment, Radar, and a variety of Electronic Aids. Domestic Radio/TV service engineering experience is unsuitable.

We are looking for Engineers with several years' production test experience in these fields or for ex-Regular Service Technicians with appropriate Forces' training and experience.

A 37-hour, five-day week is worked (8.30am-4.24pm) with occasional paid overtime. We are well served by frequent rail and road transport services from most areas.

Marconi

Please apply by letter giving name, age and previous experience and present salary, quoting reference WVV/v.2 to: D. M. McPhail, Personnel Officer, The Marconi Company Limited, Wembley Works, Lancelot Road, Wembley, Middlesex. Tel: 01-902 9421 AN ENGLISH ELECTRIC COMPANY

Wireless World, January 1969
ARTICLES FOR SALE

BRIT KITS and TV SERVICE SPARES. Suitable for Colour—Leading British makers dual 405/625 superheterodyne tuner components. Includes 405/625 transistored sound & vision IF panels £2.50 each, P/P £4. 405/625 transistored IF panels £3.50 each, P/P £6. Block or Mixer valves, paper tube driven, five miles delivery radius, knex leads. E3.50 2.50 P/P 4.50. Scope, Mullard CVI, etc. £25. Ask about components. 97/6. UHF IF transformers £3.50, UHF I & Q transformers £5.50. ID3551. P/P £6. 405/625 IF/RF transformers £3.50 each. Low IQ transformers £2.50. Get our stock list for other items. All our stock is in excellent condition just £1.50 per panel. E3551. P/P £2.50. \[For a knowledge of laboratory work practice, and basic physics, would be advantageous. Assistance given in finding local accommodation. Applications, stating age, experience, etc., to be sent to: \]

THE PERSONNEL MANAGER

OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY ROAD, ULVERSTON, NORTH LANCASHIRE

TECHNICIAN

Progressive Electronic Component Manufacturers, situated in the Lake District, require a Technician to work in close conjunction with Electronic Engineers and Physicists, in the development, and subsequent production, of precision glass components. The successful applicant should be capable of working on his own initiative. A knowledge of laboratory work practice, and basic physics, would be advantageous. Assistance given in finding local accommodation. Applications, stating age, experience, etc., to be sent to: **THE PERSONNEL MANAGER**

ELECTRONIC TEST ENGINEERS

PYE TVT LIMITED, WEYBRIDGE DIVISION wish to appoint Engineers to work on a wide range of professional television equipment for a world wide market.

Engineers appointed would be required to work on colour and monochrome equipment incorporating the latest transistor/pulse circuitry techniques.

Previous experience of professional television equipment is not essential, but applicants must have a sound knowledge of transistor circuitry, plus experience of equipment testing.

We offer attractive salaries and conditions, making this a worthwhile career opportunity.

To apply:

Personnel Officer

PYE TVT LIMITED

WEYBRIDGE DIVISION

Addlestone Road

Weybridge, Surrey

REDIFFUSION

COLOUR AND MONOCROME TELEVISION RECEIVER DESIGN

Two senior engineering appointments are to be made in our new and well-equipped Engineering Laboratories conveniently situated SW5 of London near to Kingston-upon-Thames. These opportunities are created by the expansion of our activities, including colour television, and applications are invited from engineers experienced in the following fields:

1. TELEVISION RECEIVER DESIGN AND DEVELOPMENT
2. MECHANICAL DESIGN OF TELEVISION AND TEST EQUIPMENT

These positions will be particularly attractive to engineers intent on taking on a high degree of responsibility and establishing themselves in key positions within the Company.

Salaries will reflect ability and experience and assistance with rehousing will be given. Applications should state brief details of experience, qualifications and age and will be treated in strict confidence.

Two further vacancies are available for younger engineers who wish to gain experience in design for production. Day release for studies will be granted.

Chief Engineer: **REDIFFUSION VISION LIMITED**

Fullers Way South, Chessington, Surrey. Telephone No. 397 5411
WANTED. all types of communications receivers and test equipment. --Details to J. T. & J. Electronics, Ltd., Ashley Old Hall, Ashley Rd., London, E.11. Tel. 4986.

WANTED. cockpit radios, tape recorders, mail order, type 21. --Details to Jim, 343 Argyle St., Glasgow, G.2. [61]

RADIOCITY LTD., desire to purchase surplus radio and television receiving equipment. --Details to 41-49 Kingsway, London, W.C.2. [63]

WANTED. all types of communications receivers and test equipment. --Details to J. T. & J. Electronics, Ltd., Ashley Old Hall, Ashley Rd., London, E.11. Tel. 4986.

WANTED. televisions, tape recorders, recorders, new valves, transistors, etc. --Shawn Willee, 37 High St., West Bromwich, Staffs. Tel. 6958. [64]

WANTED. --back copies of Wireless World, June-October, 1968, up to 5/- a copy. T. Bosanquet, 4 Pound House, Porden, Wellsdown, Mon. [65]

WANTED. --back copies of Wireless World, June-October, 1968, up to 5/- a copy. T. Bosanquet, 4 Pound House, Porden, Wellsdown, Mon. [65]
GOVERNMENT OF ZAMBIAN

REQUIRES

RADIO SPECIALISTS

on contract for one tour of 36 months in the first instance. Salary according to experience in scale base Kwacha 2460 rising to Kwacha 3000 a year (LSTG.1919-2456 including Inducement Allowance). A direct payment of LSTG.233-268 a year is also payable direct to an officer's home bank account. Gratuity 25% of total salary drawn. Both gratuity and supplement are normally TAX FREE. Liberal leave on full salary or terminal payment in lieu. Free passages. Quarters at low rental. Children's education allowances. Outfit and plain clothes allowances. Contributory pension scheme available in certain circumstances. Candidates, who will serve in the rank of Inspector of Police, must have completed an approved apprentice-

ship of five years or hold a Service Trade Certificate or equivalent qualification and have had at least six years post-qualification experience in the installation and maintenance of modern low and medium power H.F. equipment, S.S.B. and I.S.B. equipment, and of V.H.F. equipment including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred. Duties include travel by road and air, and the training of Zambia officers for City and Guilds.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1 for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K 6724 WF.

TELECOMMUNICATIONS TECHNICIAN

BP require a Telecommunications Technician for Libya. Applicants aged 25-35 should possess City and Guild Technician standard 4th year or equivalent, and have several years experience in maintenance of as many as possible of: Linear amplifiers and associated drive units, V.F.T. terminal equipment, Autospec error correcting equipment, modern communications receivers, small telephone exchanges and teleprinter equipment.

The post does not provide married accommodation but frequent and generous home leave is granted. Initially the posting is intended for one year.

Please write, giving details of age, qualifications and experience quoting reference R.10367/8WW to

Mr. P. J. Montanjees, External Recruitment,
The British Petroleum Company Limited,
P.M.G Certificates, and City & Guilds Examinations. Also many non-examination courses in Radio, TV and Electronics. Study at home with world famous B.T.H. Write for free prospectus to (CS. Dept. 442, Interlect House, London, S.W.11.)

TV and radio A.M.I.R.E., City & Guilds. R.T.E.B.; N.E.C. etc. on satisfaction or refund of fee terms; thousands of pass; for full details of exams and home training courses (including practical equipment) in all branches of radio, TV, electronics, etc., write for 132-page handbook:— please state subject.—British Institute of Engineering Technology (Dept. 11000) Aldermaston Court, Aldermaston, Berks. [11]

BAILEY 30 WATT AMPLIFIER
(Unit 0.1% THD 20Hz-25kHz)—See May/Nov. WW.

The finest kit available as supplied by us to Industry and Govt. Send for free details.

10 Transistors as specified & Pcb £10.00
20 Transistors as specified & 2 Pcb £10.00
R1-R27 & Pot 1/6
CI-C6 (Mullard) 9/6
Mullard Capacitors 2500µfd/64w 15/6 each
Finned solid Ali Heatsinks 4x 4in. 12/6 each
Drake Transformers 22[0-02V1 at 2a 45-
Texas 1500x20 Bridge Rects 200v/2a 45-
Photoscopes of May and Nov. articles 8/6 set
C24 36 500µfd/25v 1/6
MOTOROLA IC STEREO PREAMP (0.1%THD) £3
(As described on page 332 September WW)
A.1 FACTORS, 72 BLAKE RD, STAPLEFORD, NOTTS. [14]

KINGSTON-UPON-HULL Education Committee.

FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate.—Information from College of Technology, Queen's Gardens, Kingston upon Hull. [14]

E.M.I. TAPE RECORDER
Model T.R.S2/2c
NEAR MINT CONDITION
£150
A. E. WRIGHT & SON
10 Church Street, Dowlands, Glam.

BOOKS, INSTRUCTIONS, ETC.

MANUALS, circuits of all British ex-W.W. 1939-45
Published equipment and instruments from original B.M.E. instructions; a. a. for list, over 100 types—W. H. Bailey, 194a, Market Road, Thornton Heath, Surrey. C.4t-8pg. [46]

Patentee offers Design of Electro-Mechanical device for development by British manufacturer. The Design employs large numbers of Solenoids and identical P.C.S. and should be simple and cheap to produce for home and overseas markets. Interested principals of specialist firms are invited to write for a copy of drawings and specification with option on sale rights to:

G. R. GREEN,
Red Roofs, Bath Road, Taplow, Bucks.

ELECTRONICS TECHNICIAN
required by University Laboratory Department in IRELAND

Duties will include construction of miniature transmitters, laboratory maintenance. Salary £1,150 to £1,400 according to qualifications and experience. Applications with names of two referees to BOX NO. 5050.

NEW FROM ILIFFE

Colour Receiver Techniques

This book is based on 12 articles printed in 1967 in the "Wireless World" and is one of the first publications to give an account of current U.K. practice in the design of colour television receivers.

The style of this book is simple and clear, with a minimal use of mathematics, presenting a logical, easily assimilated guide to the complexities of colour television receivers, starting with a clear exposition of the characteristics of the U.K. PAL "swinging burst" signal.

The general plan of a colour receiver is discussed thoroughly before dealing with the designers of individual sections (including the aerial—treated as part of the receiver). After a chapter reviewing the sections in relation to a complete receiver, the book concludes with two essentially practical chapters on colour test equipment and servicing procedures.

CONTENTS

The Colour Television Signal
The Colour Tube
Colour Decoding "Matrix" Circuits
Sorting out the Colour Signals
Aerials for Colour Television
Colour TV Test Equipment

Elements of the Colour Television Receiver
Using a Three-coloured Pencil of Light
Replacing the Missing Colour Subcarrier
D.C. Power Supplies
Circuit Round-Up
"Setting Up" a Colour TV Set

88 pp. 79 illustrations. 35s. net, 36s. by post

ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C.1

www.americanradiohistory.com
Wireless World, January 1969

HARVESTER'S SUPER MONO AMPLIFIER
A superb quality gram amplifier using a double wound magnetic transformer, £200 resistors and 6HC8/6E2C triodes provides extra wide signal power and offers a new output stage, gain stage 3 stages. Output signal 0.15, Volume and tone controls. Classic size only 7½, w. 5½, d. 15 in. 36 30 - 5,000 - 15,000. A.C. mains 230/110V. Available Brownhill, New London, 2nd and 4th thursdays of each month. Further details on request. Our Rock BOTTOM!...

49.6 £ 3.9 P. A.

TRANSISTOR STEREO 8 + 8 Mk. II
New using Silicon Transistors in every stage except on-chip coupling indicator. A new reliable high quality Hi-Fi Stereo Amplifier. Uses twelve transistors, all new, and with separate output transistors. All transistors are fully integrated package. With Bass, Treble and Volume control. Class A, no power supply. Output power stage 400 milliwatts. Stage output 400 milliwatts, each transistors 400 milliwatts. Price £295.00 each.

P.S.: FREE Stand included.

4.0 £ 0.3 P. A. C.

ƯHZYATG! VINTAGE PLAYER
Heavy 8½ metal platen. Low cost, manual 3000, 3500, shaded motor 900, high. Complete with latest type integracum pickup arm and metal cartridge with dust cap for £2.00 each. Limited NUMBER ONLY.

5.0 £ 0.4 P. A. C.

QUALITY RECORD PLAYER AMPLIFIER MK. II
New using Silicon Transistors in every stage except on-chip coupling indicator. A new reliable high quality Hi-Fi Stereo Amplifier. Uses twelve transistors, all new, and with separate output transistors. All transistors are fully integrated package. With Bass, Treble and Volume control. Class A, no power supply. Output power stage 400 milliwatts. Stage output 400 milliwatts, each transistors 400 milliwatts. Price £295.00 each.

Prices include delivery and fitting.

QUALITY PORTABLE RECORD PLAYER...

$E P R E

HARVENER SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W.19
S.A.E. all inquiries. Open every day (Saturday 1 P.M.)

DIOTRAN SALES
P.O. BOX 5, WARE, HERTS.
TEL. WARE 3442

LOWEST PRICES PAID FOR VINTAGE RACK MOUNTING DOUBLE SIDED CABINETS
having the following unique features

P. HARRIS
ORGANFORD — DORSET
WESTBOURNE 6063

DIOTRAN SALES
P.O. BOX 5, WARE, HERTS.
TEL. WARE 3442

LOWEST PRICES PAID FOR VINTAGE RACK MOUNTING DOUBLE SIDED CABINETS
having the following unique features

P. HARRIS
ORGANFORD — DORSET
WESTBOURNE 6063

EXCLUSIVE OFFERS

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGHER X 30 INCH DEEP TOTALLY ENCLOSURED 19 INCH RACK MOUNTING DOUBLE SIDED CABINETS

In a separate room we have a large quantity of "like" and "new" items that we cannot sell—please send us your wants list and we can probably help you acquire what you want.

Additional shapes, sizes, and styles can be provided to meet your needs. Please let us know what you are looking for.

P. HARRIS
ORGANFORD — DORSET
WESTBOURNE 6063
WE ARE BREAKING UP COMPUTERS
COMPUTER PANELS (as shown) 55/- 85/- 10/-
Panels 100/- 400/- 900/-
100/- 400/- 900/-
EXTRACTOR BLOWER 100/- 200/- 300/-
ELECTRICAL COOLERS 30/- 60/- 120/-
SPECIAL AUTUMN OFFER B.B.C.-2 & COLOUR TV AERIAL
for fringe areas

WE BUY
any type of radio, television, and electronic equipment, components, meters, plugs and socket, valves, and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields & Mayco Disposals,
21 Lodge Lane, London, N.12
RING 445 2713

SPECIAL AUTUMN OFFER
B.B.C.-2 & COLOUR TV AERIAL

WANTED—
Redundant or surplus stocks of Transformer materials (Laminations, C, Cored, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Baxelite sheets, etc. Good prices paid

J. BLACK
44 Green Lane, Hendon, N.W.4
Tel. 01-203 1813 and 3033

LAWSUN BRAND NEW TUBES

Complete fitting instructions are supplied with every tube.

Terms: C.W.O. Carriage and Insurance 15/-

LAWSUN TUBES
18 CHURCHDOWN ROAD
MALVERN, WORCS.

Tel. MAL 2100

FOR FURTHER DETAILS

12’-14’ 10 : 0
14’-16’ 10 : 0
16’-18’ 10 : 0
18’-20’ 10 : 0
20’-22’ 15 : 0

LAWSUN PRODUCTS LTD.
Dept. W 247 Humber Avenue

COVENTRY

Telephone: Coventry 21214 Hours: Mon.-Sat. 9 a.m.-6 p.m.

www.americanradiohistory.com
SILDOLE FUSES 15 amp, 1/6 ea, 15¢ per doz.

HEADPHONES. Carbon H/Mics, 3-1/2 ft. £1.6, £1.8, £2.5, £2.98 each. Mics, with ear muff and wired M/C mic, 121/2 ft. £2.5, P. & P. 2/6. £3.0. 10 Assembly M/Coll with M/C Coll Mic, £12.5, P. & P. 2/6.

TRUVOX LOUDSPEAKERS. Re-entrant type, ideal for public address units. 10-12 in. with 1/4" dia. voice coil, waterproof wooden cases, complete with steel baffle designed to produce directional reproduction at 5 watts. 7.5Ω 2/6/8 each. Carr. 5/1.

SMALL MORTORS. 12-24 V. D.C., re-veible, with gear reduction 10-20, with 24V. attach. 10-12, ea. with fan assembly, 10-12 ea.; each item price 5/1.

TRANSMITTER. BC 625, part of 'T/R.' SCR512. For spares only. Chassis only. Complete with valves except 822s and Relay. 21½ ea. Carr. 4/1.

SIEMENS HIGH SPEAKERS. H400, 50-50 ohms. 55-60 ea.; Type H600, 250-500 ohms. 8-10 ea.; Type H968, 1,700-1,100 ohms. 8-9 ea.; Carr. 7/6.

"TELE." TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gain, for each station. Supplied in new condition and tested. 50-50 per pr. Carr. 7/6.

POST OFFICE TYPE RELAYS. 3,000 sets. 12 V. D.C. £1.25 each. £1.00 ea. Carr. 5/1.

MURSE keys. No. 8 assembly complete with leads and terminals and key. £1.50 ea. Carr. 7/6.

VIBRATORS. 12 v. 4 pin, 12 V. Flessey Type 125R7. Syn. 7/6 ea. Carr. 1/1.

ELECTRO MAGNETIC RELAYERS. Required to complete 9999, call res. £200. £5 ea. Carr. 1/1. Not re-sellable, ex-equipment.

MODULATION TRANSFORMERS. 150 watts, suitable for pair 813s, driving 313s. Size 6in. £6 5½. Syn. £5 5½. Brand new, boxed. Price £12 5½ Carr. 4/1.

200 AMP 24 V.D.C. GENERATORS. Type P3 ex-Air Ministry, £5 5½ ea. Carr. 1/1.

Generators. Type 2, 000 watts, 30 V. D.C. £6 5½ ea. Carr. 5/1.

Rotary Converters. Type B. D.C. Input 24 v., A.C. Output 115 v. 400 c.s, 3 phase, 1.8 amps. £5 5½ ea. Carr. 1/1.

Invertors. Type 201A (UBS360). D.C. 32 ½ v. r.p.m. 8,000, A.C. 115 v. 1600 c.s. single phase. £16 5½ ea. Carr. 1/1.

Above all items ex-gov. stock, in used condition.

CONDENSERS. .1 mfd, 1500 v. Sprague, paper. 8d. ea., 7/6 doz.

EQUIPMENT TERMINALS. Ex-equipment. Black only. will take spade and tractor and wender plug. 1½ pr., 1½ doz. pairs. P. & P. 1/1 8½ doz.

POTTERY METERS. 24 V.D.C. Consisting of 9-4690 Relays. 500-500 £3 6½ S. 45 600 Electro Mag. counters, etc. £3 10½ ea. Carr. 4/6.

W.5. 19 VARIOMETERS. 17/6. £5 4½ P. & P. 4/6.

S.T. MINIATURE SEALED RELAYS, TYPE 416F, 24V D.C. 1500 ohms. £1 10½ each. £1 9/6 doz. £1 8½ doz. £1 6½ doz.

SMALL D.C. MOTORS. 2½ in. 1½ in. 1½ in. Rated 24 v. will work on 12 v. 3½ in. length drive shaft. Ideal for model makers, etc. 1½ 6½ doz.

VOLTAGE-SELECTORS

OLSON DISTRIBUTION PANELS

Complete with fixing brackets and 4 plastic feet, 6ft. cable 13A, plug and spare fuse

4 SOCKETS 13A. £4.19.6
6 SOCKETS 13A. £5.17.0
5 SOCKETS 5A. £6.10.0
6 SOCKETS 5A. £6.15.0

PLUS POSTAGE AND PACKING 6/6

OLSON ELECTRONICS LTD., 5-7 LONG ST., LONDON, E.2.
TELEPHONE: 01-739 2345

OLSON

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London, W.C.2

Tel: 01-936 3070

WW—130 FOR FURTHER DETAILS

TRICKETT

70 PARK ROAD, CONGRESBURY, BRISTOL

Schools 15% off. Goods over 10s. P/P free except where shown.

STABILIZED P/F's. £200/350V. 50 c/s. P/P. Type 1. Transistor O/P 15V. D.C. 1.5A.
Type 2. Transistor O/P 30V. D.C. 1.5A. £5 ea. P/P 10s.
Type 3. Valve O/P 300V. D.C. 1.5A, 6.3V. 1A. £2. Type 4. Valve O/P 30/400V.
D.C. 150 Ma. and 6.3V. 5A. £2.4.1500 P/P. £1.15.0

ADVANCE CONSTANT VOLTAGE TRANS. 10/100V. 50 c/s. O/P 220V. R.P.S.
600 Watts. £12. P/P £1.10.0

MINIATURE HOUR METERS. Singen Weston 30/350V. 50 c/s. 0-9999 and details,
new at £3 each and 35s.

ENGLISH ELECTRIC H.R. CARTRIDGE FUSES, 60A. 1a. each. 10s. each.

MINIMAX PHASE OVERLOAD CUTOUT. 220/340V. 7.5 H.P. 450/550V. 1 H.P.
1000 A.

DIRECT ELECTRO-THERMAL PRECIPITORS 0.1/. W.W. List of values & use for
bridges, colonnades, etc.

MAGNETIC DEVICES Ltd. 4P. 2. 24V. D.C. all 10s. ea.

HEAVY DUTY INSULATED TERMINALS. 2d. each. 1a. doz. 6 med. Mf'd.:
10 med. med. 5 med. med. at December Advert. CV3290 £1.50. 645 £1.95. FC72
at December Advert. OC470. 2N706. 1a. ea. £1.95. OC139. 1a. doz. £3.40.

NEON LIGHTING LAMPS. 15V. 1a. per 100. £5.60.

REED RELAY 2000/2350W. 24-60V. 1a. 10s. doz.

RODNEY RECORDER cooks. 6V. 6-28V. £4.40. NEW £12.

TEXAS INSTRUMENTS Dynamically Controlled Welder. model C.P.W.A. 269A. £135
VALVES. £1. FNC. new. £4. Doz. £11.25.

MORE IN DECEMBER ADVERT. C.W.O. Please.

WWW—134 FOR FURTHER DETAILS

ADJUSTABLE HOLE & WASHER CUTTERS

The right tool for trepanning holes 1/12" in diameter

Adjustable hole and washer cutters 18° Tungsten High Speed Tool bits

For full details request a copy of our Illustrated Brochure.

AKURATE ENGINEERING CO. LTD.
Cross Lane, Hornsey, London, N.8
TELEPHONE: 01-349 2470

WWW—132 FOR FURTHER DETAILS

7/0076 R.F. Cable Black Sheathed Bicc ref. T3171 and equivalent. 100 yard coils at 30/-
each including postage and packing. Price for larger quantities on application.

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C", "E" cores. Case and Frame assemblies.

UNISTORS large quantities available £12 per 1,000 types 03/2, 03/5 and 08/5.
Full details and samples on request.

J. Black
44, GREEN LANE, HENDON, N.W.6.
Tel: 01-203 1855

WWW—135 FOR FURTHER DETAILS

Quartz Crystal Units

ECONOMICAL!
ACCURATE!
RELIABLE!

Write for illustrated brochure & price list

THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works. Wellington Crescent
New Malden. Surrey. 01-842 0334 & 2888

WWW—136 FOR FURTHER DETAILS

Grampian Reproducers Ltd
Hanworth Trading Estate, Feltham, Middlesex

WWW—135 FOR FURTHER DETAILS
Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Electronics—one of these courses will help YOU get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:
- Radio/TV Eng. & Servicing
- Audio Frequency
- Closed Circuit TV
- Electronics—many new courses
- Electronic Maintenance
- Instrumentation and Servomechanisms
- Computers
- Practical Radio (with kits)
- Printed Circuit Design on Electronic Fundamentals

Guaranteed Coaching for:
- C. & G. Electronic Servicing
- Radio Amateur’s Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

Start today—the ICS way

INTERNATIONAL CORRESPONDENCE SCHOOLS
Please send FREE book on.

Name:

Address:

POSTAGE FREE 1.69

WWW—142 FOR FURTHER DETAILS

PRINTED CIRCUITS

LARGE AND SMALL QUANTITIES
FULL DESIGN AND PROTOTYPE FACILITIES—LATEST RATIONAL PRICES. ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY & PARTNERS
18, GREENACRES ROAD
OLDHAM, LANCs.
Tel. 06-844 0939

WWW—142 FOR FURTHER DETAILS

FOR YOUR . . .

SYNCHRO & SERVO REQUIREMENTS!
SERVO & ELECTRONIC SALES LTD.
43 HIGH ST., ORPINGTON, Kent.Tel: 3306, 33976
Also at CROYDON, Tel: 01-688 1512
and LYDD, KENT, Tel: LYDD 252

WWW—144 FOR FURTHER DETAILS

AMERICAN TEST AND COMMUNICATIONS EQUIPMENT
★ GENERAL CATALOGUE AN/103 ★
 Manuals offered for most U.S. equipments

SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. Clwyd 289

WWW—144 FOR FURTHER DETAILS

CONNECTORS

 Most Manufacturers’ Surplus Stocks are Sold to United Electronics

We pay the highest prices

Contact
Mr. Astor or Mr. Kahn

UNITED ELECTRICAL LTD
12/14 Whitley St., London, W.1
Tel. 01-580 1515

WWW—145 FOR FURTHER DETAILS

BAILEY 30W AMPLIFIER

All parts are now available for the 60-valt single supply rail version of this amplifier. BAILEY has designed a new Printed Circuit intended for edge connector mounting. This has the components locations marked and is slotted for treble and bass. Size is smaller at 4in. by 2in. Price in SBKB material 11/6d. In Fibreglass 14/6d. Overall size 1 1/2" x 2 1/2" x 3 1/2". Fibreglas 14/6. This does not have component locations marked.

BAILEY 20W AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer with bifilar winding unboxed and special 218V primary for use with C26 Thermistor, 35/4d., post 5c.

DINSDALE 10W AMPLIFIER

All parts still available for this design including our new power amp. P.C. Board with power transistors and heat sinks mounted in 10c. P.C. All parts for stereo cost approximately £24.

Reprint of articles 5/4d. post free.

HART ELECTRONICS
321 Great Western St., Manchester 14
The firm for “quality”.

Personal callers welcome, but please no call on closed day Saturday.
valuable books
for the radio and
electronic engineer!

Generation of High Magnetic Fields

A comprehensive study of the subject covering the whole range of the techniques which may be employed and also the whole range of possible fields up to the extreme limits.

160 pp. 81 illustrations. 80s. net. 81s. 6d. by post.

Transistor Bias Tables
Vol. II: Silicon. E. Wolfendale, B.Sc.(Eng.), F.I.E.E.

This collection of accurately computed tables has been compiled to assist anyone wishing to design or build a transistor amplifier. The tables are on similar lines to the author's previous transistor bias tables for germanium transistors but a more sophisticated computer programme has been written which enables a greater degree of optimisation to be built into the compilation of the tables. This should enable the tables to be used directly to provide the values of the three resistors required for the conventional bias circuit for silicon transistor.

82 pp. 25s. net. 26s. 6d. by post.

Electronics and Instrumentation

Robert L. Ramey

Provides a sound groundwork for understanding the basis of existing instruments and their applications; also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.

55s. net. By post 58s. 321 pp. 128 illustrations.

ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C.1
Wireless World, January 1969

DAMAGED METER?

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glasier & Co. Ltd. We specialise in the repair of all types and makes of Voltmeters, Ammeters, Micrometers, Multimeters, Thermometers, Recording Instruments, Leak Detectors, Temp. Controllers, all types of Bridges & Insulation Testers, etc.

As contractors to various Government Departments we are the leading Electrical Instrument Repairs in the Industry. For prompt estimate and speedy delivery send defective instruments by registered post, or write to Dept. W.W.—

L. GLASER & CO. LTD.
1-3 Harry Street, London, E.C.1
Tel.: Clerkenwell 5483-2

SURPLUS HANDBOOKS

- 19 set Circuit and Notes 6/6 p/p Net.
- 2156 set Circuit and Notes 8/6 p/p Net.
- 26 set Working Instructions 5/6 p/p Net.
- 56 set Technical Instructions 7/6 p/p Net.
- BC.301 Circuit and Notes 5/6 p/p Net.
- 19 set Circuit and Notes 2/6 p/p Net.
- B.107.Circuit and Notes-..-..-..-.-. as above.
- 07 set Circuit and Notes 6/6 p/p Net.

E2 set Bender and Breaker circuits 7/8 post free.
Reader Colour Code Indicators £1/0 d.
R.A.E. with all enquiries please.
Postage rates apply to U.K. only.

INSTRUCTIONAL HANDBOOK SUPPLIES

Dept. W.W., Talbot House, 38 Talbot Gardens, LEEDS 8

WW—146 FOR FURTHER DETAILS

BAKER 12in. DE-LUXE MKII LOUDSPEAKER

Suitable for any Hi-Fi System.
Provides: truly rich sound intersecting the musical spectrum virtually flat from 25-18,000Gcs. Latest double cone with special "Ferrata" ceramic magnets.

Price £9 Post Free

MINETTE AMPLIFIER

For Hi-Fi. Record Players. A.C. Mains Transformer. Chassis size: 31 in. x 4 in. x 8 in. High Valves ECL82. E280.

Two stage negative feedback. Quality output 3 ohm matching. Bargain offer complete with engraved control panel, valves, knobs, volume and tone controls, wired and tested.

Price 79/6

TRANSISTOR AMPLIFIER HI-GAIN

Many uses: Intercoms, Baby Alarms, Guitar Practice, Telephone or Record Player Amplifier. 100V input.

THE INstant BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER

200/250 A.C. Head Leaflet S.A.E.

EXTENSION SPEAKER

Black plastic cabinet speaker with 20ft. lead for transistor radio, intercom, mains radio, tape recorder.

Price 30/-

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.1

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 7/- PER LINE. Average seven words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 1/-.
- Charges etc., payable to "Wireless World" and crossed "A & Co."

NAME
ADDRESS

REMITTANCE VALUE..... ENCLOSED

NUMBER OF INSERTIONS

Please write in block letters with ball pen or pencil.

R, C & L BOXES

CAPACITY 15pf to 111μF RESISTANCE 0.1Ω to 100Ω INDUCTANCE 1mH to 10H VOLTAGE DIVIDERS and WHEATSTONE BRIDGES

LIONMOUNT & CO. LTD.
BELLEVUE ROAD, NEW SOUTHGATE, LONDON, N.11, ENGLAND
Tel: Enterprise 7047

WW—147 FOR FURTHER DETAILS

GODLEYS

SHUDEHILL, MANCHESTER 4

Telephone: BLACKFRIARS 9432

Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

www.americanradiohistory.com
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 105-118
EITHER WAY you’re right, using ADCOLA Instruments

For increased efficiency, find out more about our extensive range of ADCOLA Soldering Equipment—and we provide:

★ 3 DAY REPAIR SERVICE ★ INTERCHANGEABLE BITS—STOCK ITEMS ★ SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in co-operation with industry and developed to serve a wide range of applications. There is an ADCOLA tool to meet your specific requirement. Find out more about our extensive range of efficient robust soldering equipment.

ADCOLA PRODUCTS LTD
Adcola House · Gauden Road · London · SW4
Tel: 01-622 0291/3 Grams: Soljoint, London, SW4
TO MANUFACTURERS OF
SOLDERED JOINTS

ERSIN

Wireless World, January 1969

5 CORE SOLDER

STANDARD GAUGES IN WHICH MOST ALLOYS ARE MADE AND LENGTHS PER LB. IN FEET.

<table>
<thead>
<tr>
<th>S.W.G.</th>
<th>INS.</th>
<th>M.M.</th>
<th>FT. PER LB</th>
<th>SAVBIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7/8</td>
<td>2.22</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1/2</td>
<td>1.27</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5/32</td>
<td>0.80</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1/8</td>
<td>0.32</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1/32</td>
<td>0.16</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/64</td>
<td>0.09</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

STANDARD ALLOYS INCLUDE LIQUIDUS MELTING TEMP.

<table>
<thead>
<tr>
<th>TIN/LEAD</th>
<th>B.S. GRADE</th>
<th>C.</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60/40</td>
<td>K</td>
<td>188</td>
<td>370</td>
</tr>
<tr>
<td>Savbit No 1</td>
<td>-</td>
<td>215</td>
<td>419</td>
</tr>
<tr>
<td>50/50</td>
<td>F</td>
<td>212</td>
<td>414</td>
</tr>
<tr>
<td>45/55</td>
<td>R</td>
<td>224</td>
<td>435</td>
</tr>
<tr>
<td>40/60</td>
<td>G</td>
<td>234</td>
<td>453</td>
</tr>
<tr>
<td>30/70</td>
<td>J</td>
<td>255</td>
<td>491</td>
</tr>
<tr>
<td>20/80</td>
<td>V</td>
<td>275</td>
<td>527</td>
</tr>
</tbody>
</table>

HIGH AND LOW MELTING POINT ALLOYS

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>DESCRIPTION</th>
<th>MELTING TEMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.L.C.</td>
<td>Tin/Lead/Cadmium with very low melting point</td>
<td>145 293</td>
</tr>
<tr>
<td>L.M.P.</td>
<td>Contains 2% Silver for soldering silver coated surfaces</td>
<td>179 354</td>
</tr>
<tr>
<td>P.T.</td>
<td>Made from Pure Tin for use when a lead free solder is essential</td>
<td>232 450</td>
</tr>
<tr>
<td>H.M.P</td>
<td>High melting point solder to B.S. Grade 55</td>
<td>296 565 574</td>
</tr>
</tbody>
</table>

EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.

EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.

The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be released under AID authority and conforms with USA QQ-S-571d.

ADVANTAGES OF EXTRUSOL

1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF MANUFACTURE UNTIL IT IS USED

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is 215°C - 415°F. Ministry approved under ref. DTD/900/4535.

Solder Tape, Rings, Preforms and Washers. Cored or Solid, are available in a wide range of specifications.

MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD HERTS. PHONE HEMEL HEMPSTEAD, 3636. TELEX 82363

WW—002 FOR FURTHER DETAILS

www.americanradiohistory.com