BICC make television downleads to meet every requirement. Publication No. 357, giving full details of our up-to-date range of cellular polythene types is available on request.

BRITISH INSULATED CALLENDER'S CABLES LIMITED
21 BLOOMSBURY STREET, LONDON, W.C.1.
FEBRUARY 1957

In This Issue

51 Editorial Comment
52 High-Power Transistor Audio Amplifiers
54 World of Wireless
58 Output Transformerless Amplifiers
62 Short-Wave Conditions
63 Automatic Component Assembly.
69 B.B.C. F.M. Transmitter Performance
70 Limiters and Discriminators for F.M. Receivers—2.
75 N.T.S.C. Colour Information.
79 Technical Notebook
81 Letters to the Editor
83 Improved Sync Separator.
87 Books Received
88 Wideband V.H.F. Converter.
92 Negative Resistance.
97 February Meetings
98 Random Radiations.
100 Unbiased.

By K. M. McKee
By G. G. Johnstone
By E. L. C. White
By M. P. Beddoes
By G. P. Anderson
By "Cathode Ray"
By "Diallist"
By "Free Grid"

VOLUME 63 No. 2
PRICE: TWO SHILLINGS
FORTY-SIXTH YEAR OF PUBLICATION

Editorial, Advertising and Publishing Offices:
Dorset House, Stamford Street,
London, S.E.1

Telephone: WATerloo 3333 (60 lines)
Telegraphic Address: "Ethaworld, Sedist, London".
A Transistor Controlled Regulated Power Unit

The circuit diagram of the regulated power unit, shown below, demonstrates a novel application of transistors as control devices. They are especially suited for this type of circuit because of the high voltage gains which can be obtained with them when they are operated with large collector loads from high voltages. In the power unit described, a Mullard OC73 is used to control the current flowing through an EL38 series valve. One advantage of using a transistor in this type of regulated power unit is that a separate negative h.t. supply is eliminated.

The power unit has an output impedance of less than three ohms, and will deliver 100mA at any voltage between 40 and 84 volts regardless of quite large changes in the mains input voltage. For instance; if the mains input voltage rises from 186V to 242V, the output voltage will increase by only 0.4V at full load. Reducing the load from 100mA to zero produces a rise in output voltage of only 0.3V at 220V mains input.

CIRCUIT OPERATION

By connecting the transistor as shown in the circuit diagram it compares the output voltage with the reference voltage, and any difference produces a large change in the emitter current due to its high effective mutual conductance.

Since a transistor can be operated at very low currents, very high voltage gain is obtained by connecting the collector to negative h.t. through a 500kΩ resistor. The collector is connected also to the control grid of the EL38 through a 100kΩ grid stopper. Therefore the collector-to-base voltage of the transistor is equal to the grid-to-cathode bias of the valve, and is practically independent of the output voltage setting.

The output voltage is approximately equal to the reference voltage and can only differ from it by the base-to-emitter voltage of the transistor, which will be less than 0.1V. So the maximum output which can be obtained is determined only by the reference voltage. Although an 85V reference level is used in the circuit described, the design is almost identical for any reference level. The minimum output voltage of this power supply unit cannot be set below the bias voltage of the series valve and therefore it is limited to about 40V.

When the power unit is working, a drop in output voltage will cause the base of the OC73 to become negative with respect to the emitter. As a result, the collector current increases and the collector voltage becomes more positive, thus reducing the bias on the EL38 and compensating for the original change. Equilibrium will be reached when the output voltage reaches the same value as the emitter voltage.

Variations in the mains voltage have only a slight effect on the reference voltage, which is stabilised by the 85A2, and therefore the output voltage remains substantially constant.

CIRCUIT DESIGN

The full-wave rectifier circuit is of conventional design, with choke smoothing to give a ripple-free output to the series valve, an EL38, and to the voltage reference tube, an 85A2. The 85A2 is operated at a low burning current to minimise the change in the reference voltage when the circuit is loaded and the poor regulation of the rectifying circuit causes the unstabilised voltage to fall.

An EL38 was chosen for the series valve because it has a comparatively short grid base. This is important since it governs the maximum collector-to-base voltage when no current is being taken from the supply. To prevent the collector voltage exceeding the — 30V collector-to-base rating of the OC73, the output must be permanently loaded to about 10mA; 5kΩ forms the permanent bleeder resistor.

The stability of the output is limited by the stability of the reference source, and by using an independent reference voltage or running the 85A2 from a 150B2, the stability could be increased, and the output impedance reduced to at least half the value given.

Changes in temperature have negligible effect on the output voltage and impedance but an appreciable in-
EDITORIAL COMMENT

GUARANTEES AND GOODWILL

Some time ago there was a newspaper story about a disgruntled owner of a television receiver. After suffering from a series of breakdowns and failures to get satisfactory repairs, he took the set back to the dealer's shop and hurled it through the plate-glass window. Happily, the state of affairs revealed in the subsequent court proceedings hardly reflects the typical public attitude towards radio dealers, or, for that matter, towards broadcast receiver manufacturers. All the same, it goes to show there is not so much goodwill as we would all like to see.

Part of this lack of goodwill must be attributed to the unsatisfactory nature of the guarantees given by makers of broadcast receivers. As our contributor "Diallist" points out, these are far too complicated and in some respects appear to the purchaser to be ungenerous, to say the least, particularly in regard to valves and c.r. tubes. It will be interesting to watch the effect on the public of the recent announcement by the makers of Ambassador and Baird television sets, who are now giving an extra year's guarantee with the c.r.ts.

During last autumn there was a somewhat bitter correspondence in The Times on the onerous nature of guarantees. Though some of the letters were directed against makers of "consumer durables" in general, the radio industry got rather more than its share of reproach.

It may be argued that there is virtually no difference between the terms of the guarantees commonly given with broadcast sets and with other comparable articles. That may be true enough, but would Wireless World be excessively starry-eyed in thinking the time may well have come for the radio industry to lead the rest in trying to establish a brand-new kind of relationship between seller and buyer? The old legal maxim "let the buyer beware" seems to be utterly outmoded in a world where the complex products of modern technology go into the homes of buyers whose lack of knowledge leaves them completely in the hands of the sellers.

RADIO MILESTONES

Heinrich Hertz was born exactly one hundred years ago. Over-simplifying a little, it is often said that Marconi, by connecting an effective aerial to Hertz's oscillator, made the first significant step towards a workable radio system. It is true enough to say, in the same vein, that the second fundamental advance was made in 1906 when de Forest put a grid into Fleming's diode.

During the past year Dr. Lee de Forest has received many well-deserved honours to mark the jubilee of his invention. But the triode made virtually no impact on radio technique for at least six years. It was not until regeneration was introduced in 1912 that the triode offered outstanding advantages over existing devices. The regenerative receiver, with a sensitivity vastly greater than anything known before, opened up a new world, and also paved the way for the oscillating valve generator.

According to Armstrong, who opposed de Forest during prolonged patent litigation in America, the oscillating triode was the greatest of all radio inventions.
DEMONSTRATIONS of audio amplifiers built round a new range of transistors were given recently by the General Electric Company. The demonstrations were preceded by some discussion of the preferred basic design features of the amplifiers.

Suitable collector bias conditions are chosen from the current/voltage characteristics and it is then thought best to measure the small signal a.c. relationships at these conditions in order to derive equivalent circuit parameters. By this method the internal feedback, which in transistors can be significant at all frequencies, can be more easily taken account of. This procedure is not as complicated as it may seem, for several of the equivalent circuit parameters are found to be roughly the same in many circumstances.

Advantages of Class B Operation.—As regards the choice between class A or class B operation, there are stronger reasons for preferring class B with transistors than with valves.

In transistors the collector dissipation, and the way in which this varies with the input signal, are both considerably different for the two types of operation. Thus if we take the maximum allowable mean collector dissipation, we find that the maximum available power for two transistors operating in class B push-pull is five times that for the same pair in class A; and is, in fact, five times the allowable collector dissipation. If we take the power limit as being that at which the distortion starts to increase rapidly (caused by alteration of current gain with peak current) similar ratios and powers are also obtained.

Another important consideration is the input power required. Owing to the characteristics of transistors they can be operated to much lower voltages relative to the h.t. supply than the corresponding pentode valves so that the maximum theoretical efficiencies for class A and class B operation of $\frac{1}{2}$ and $\frac{2}{3}$ respectively can be very nearly achieved using transistors. Under quiescent conditions the power drain with class B operation of transistors is of the order of 0.1 of the maximum output power rising to 1.3 times the maximum power when this is being delivered. With class A operation there is a continual drain of about four times the maximum power.

Having regard to these two factors of available power and power input required, the best use of a.f. transistors will be made in class B battery amplifiers, i.e., in public address or in ordinary commercial battery receivers. Other factors supporting this view are their compactness and the low voltage supplies required. Furthermore, when a push-pull class B transistor amplifier is overloaded the "clipping" distortion produces little loss of clarity for public address purposes.

The common emitter type is preferred for both small and large signal amplifiers. This has the highest gain and any disadvantages can be conveniently avoided in circuits which reduce this gain. For example, the input resistance of such amplifiers is often undesirably low (e.g., when using a crystal pickup); and in order to increase this the simple addition of a series resistor is most convenient in spite of the loss of gain.

Phase Splitting Circuits.—In most of the amplifiers mentioned a transformer phase splitter was adopted. This gives a higher gain than if a transistor is used, but the size of the transformer may sometimes be a disadvantage. As the impedances concerned are low the transformer specification will be somewhat different from that in a valve amplifier. Thus the minimum primary inductance required for good l.f. response will be much less, being of the order of 50 millihenrys rather than 50 henrys. On the other hand the d.c. resistance must be very low necessitating thicker wire.

If a transistor is used to provide phase splitting the coupling condensers tend to charge up, and the forward bias on the output transistor necessary to reduce crossover distortion is decreased. The maximum available power is then decreased, though the frequency response is improved.

In such transformer phase splitting circuits with transistors, several new types of distortion arise; but apart from the normal panacea of negative feedback other techniques are available for considerably reducing these. Thus the changing input resistance as one transistor takes over amplification from the other every half cycle (the emitter resistance varies inversely with the emitter current) can be avoided by a small amount of forward bias (≈ 100 mV) to the emitter-base junction. Positive emitter current flows under quiescent conditions. Carrier storage effects producing ringing at a high frequency, which occur as well when the signal changes sign, can also be largely eliminated by bifilar winding of the secondary of the phase splitting transformer.

Phase changes in the transformers as well as in the transistors themselves of course limit the amount of feedback that can be supplied; but there is no difficulty in obtaining the roughly 7 dB overall feedback required to reduce distortion sufficiently in class B amplifiers, if an RC feedback loop is used to take some account of these phase shifts. The application of feedback in transistor circuits is also important for reducing the effect of variation among individual transistor characteristics in mass production or replacement.

Complete Amplifiers.—Seven different amplifiers have been made with maximum powers ranging from 250 milliwatts to 20 watts. They consist of an input amplifying stage, the phase splitting transformer, and a push-pull output stage. For the class B amplifiers the total harmonic distortion at maximum power was ≈ 8%. The 4-watt class A amplifier which was demonstrated (corresponding to the 20-watt class B amplifier using the same transistor) had 0.8% total harmonic distortion at 4 watts (0.5% at $2\frac{1}{2}$ watts) with 16 dB overall feedback. This distortion could have been reduced to 0.3% at 4 watts by using a class A push-pull driver stage. Power gains for both types of amplifier were ≈ 50 dB or greater.

The 250 mW amplifier corresponds to the usual battery radio valve output stage. However, in normal
Amplifiers

NEW RANGE OF TRANSISTORS

use the volume control is often set so as to cause overloading; so that an improvement in quality can be effected using a 1-watt amplifier, though a disadvantage is that the quiescent current drain is nearly doubled. There is no corresponding battery valve equivalent in this case.

A very compact battery-operated, 45 r.p.m., record player using the 1-watt amplifier was demonstrated. The battery life when supplying the turntable as well as the amplifier is about 15 hours using 5 U2 batteries. Although this may not seem very much; as the G.E.C. representative remarked, “15 hours worth of records take a very long time to play!”

The 250-mW amplifier for the output of a transistor a.m. receiver which was also shown in a very compact form, used a directly coupled 120-ohm centre-tapped loudspeaker voice coil. This increases the thermal stability in the output stage because of the d.c. resistance, but the application of overall feedback in two balanced loops is difficult. A single-ended push-pull output stage was described as a means of rapidly changing to twice the power supply voltage for a normal push-pull output stage; but there was no direct coupled loudspeaker application for this case.

As regards other applications of these transistors, low-noise pre-amplifiers developed include the usual bass and treble tone controls; and for a normal microphone (600-ohm output impedance) or pickup (“variable reluctance” or crystal) input signal, give signal to noise ratios of about 60 dB. Concerning the possibility of a transistorized tape deck the most difficult problem is the provision of erase power. Two EW70s (one of the new types of transistor) can be used in class B push-pull to deliver 2 watts at 35 kV/s, thus largely solving this problem.

Details of New Range.—The new G.E.C. transistors are all of the germanium junction p-n-p type. They are hermetically sealed and of all-metal construction; the metal can provides a heat sink, and facilitates the attachment of a radiator. The low-resistance base connection, which is also integral to the construction, besides providing good thermal contact, also enables the potential h.f. performance to be more fully realized.

Having regard to their general characteristics and maximum allowable collector dissipation there are essentially three new transistor types. These are known as the GET 4 and 6, GET 5 (formerly EW70) and the EW57 (provisional); and have allowable collector dissipations (at 45°C) of 50 mW, 400 mW and 4 watts respectively. The frequency cut-offs are \(\approx 250 \text{Kc/s} \) for the EW57 and greater than 1 Mc/s for the others.

The GET 6 is a low-noise version of the GET 4 and has a noise level well comparable with that in thermionic valves. The EW57 is also subdivided into three types according to the supply voltage required (6, 12 or 24 volts). All of these transistors have been in pilot production for about two years and should be in quantity production later this year.

With regard to the limiting operating conditions for these transistors there was thought to be good prospects of improvement. At present the maximum operating temperature is 50°C, but this can probably be increased up to about 70°C. If collector leakage currents become embarrassing silicon transistors (samples of which should be available before the end of the year) would be a complete answer and should function to well over 100°C.

The power limit should also see a major improvement with operation at high collector temperatures. Moreover experimental samples which maintain their current gains at high values of emitter current (another limiting factor) have also been produced.

COMMERCIAL LITERATURE

Printed Circuits.—An illustrated booklet for engineers and technicians on the available types of printed circuits and the problems of designing equipment using them. Rigid, flexible and flush-bonded types are discussed, also incorporated components, heating elements, and facilities offered for development and production. From Technograph Printed Circuits, 32, Shaftesbury Avenue, London, W.1.

Tape-to-Disc Transfer Service.—Details and prices in a leaflet from Sound News Productions, 59, Bryanston Street, Marble Arch, London, W.1.

Sound Reproduction Equipment (“New Orthophonic High Fidelity”), including amplifiers, loudspeakers, tuners, transcription unit and pickups. Price list from R.C.A. Great Britain, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middlesex.

High-Conductivity Copper Alloys, containing silver, cadmium, chromium, and tellurium. The last three decrease the conductivity slightly but give other desirable properties such as increased strength, resistance to wear and machinability. An informative booklet of 34 pages, containing many tables of properties, from the Copper Development Association, 55, South Audley Street, London, W.1.

High-Quality Loudspeaker in Helmholtz resonator enclosure measuring 22½ x 13½ x 13½ in. Power handling in excess of 6 W for low distortion, and level frequency response over 40–10,000 c/s. Leaflet from RGA Sound Services (Plymouth), 6, Conway Gardens, Enfield, Middlesex.

Small Capacitors suitable for loudspeaker crossover networks, claimed to occupy only 25–30% of space required by conventional types. Capacitances between 2 and 16 µF, working voltage 150 V d.c. Leaflet from A. H. Hunt (Capacitors), Wandsworth Road, London, S.W.18.

Variable Output Transformers (Regavolt) with self-aligning brushes to ensure maximum surface contact with windings. Four new types for normal mains voltages, with outputs variable over 0–275 V, currents between 6 and 10 A, and one new type for 115-V mains and output of 0–135 V at 15 A. Leaflets from the British Electric Resistance Company, Queensway, Enfield, Middlesex.

Microphones; crystal, ribbon, carbon and noise-cancelling types; also stands, table bases, transformers and other accessories. Illustrated catalogue from Lustraphone, St. George’s Works, Redbridge Road, Ilford, E.17.

Strain-Gauge Bridge, giving direct reading in percentage strain over the range 0.001% to 0.5%. Accuracy of measurement, ± 1%. Leaflet from the Croydon Precision Instrument Company, Hampton Road, West Croydon, Surrey.
I.S.M. Interference

RADIO interference from industrial, scientific and medical equipment is being considered by a committee set up by the Postmaster-General to advise him on the making of regulations prescribing limits of radiation.

The Wireless Telegraphy Act prescribes that the members of such advisory committees should either "possess expert knowledge of the matters falling to be dealt with" or "represent persons whose interests are likely to be affected" by any regulations made. The nineteen-man committee, of which O. W. Humphreys is chairman, therefore covers the interests of those concerned with both the cause and effect and includes representatives of the B.B.C., I.T.A., equipment manufacturers, air navigational specialists, production engineers, the medical profession and the viewer and listener.

V.H.F. Coverage

BY the opening of three more v.h.f. broadcasting stations (Wenvoe, replacing the temporary low-power transmitter, Sutton Coldfield and Norwich) a day or two before Christmas, the B.B.C. made good its promise to complete the first batch of ten stations by the end of 1956. To say "complete" is perhaps a slight exaggeration, for the Cardiganshire station at Blaen Plwy at present has only one of its three transmitters (Home Service) working. An eleventh station, at Penmon, was subsequently added to the original chain, but so far only one transmitter has been installed and this is radiating the Home Service with an e.r.p. of 1 kW.

The service now reaches 84% of the population.

<table>
<thead>
<tr>
<th>Light (Mc/s)</th>
<th>Third (Mc/s)</th>
<th>Home (Mc/s)</th>
<th>e.r.p. (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Hessary Tor (S. Devon)</td>
<td>88.1</td>
<td>90.3</td>
<td>92.5</td>
</tr>
<tr>
<td>Sutton Coldfield (Worwicks.)</td>
<td>88.3</td>
<td>90.5</td>
<td>92.7</td>
</tr>
<tr>
<td>Penrose Pikes (Co. Durham)</td>
<td>88.5</td>
<td>90.7</td>
<td>92.9</td>
</tr>
<tr>
<td>Meldrum (Aberdeenshire)</td>
<td>88.7</td>
<td>90.9</td>
<td>93.1</td>
</tr>
<tr>
<td>Blaen Plwy (Cardigans.)</td>
<td>88.7</td>
<td>90.9</td>
<td>93.1</td>
</tr>
<tr>
<td>Wrotham (Kent)</td>
<td>89.1</td>
<td>91.3</td>
<td>93.5</td>
</tr>
<tr>
<td>Holme Moss (Yorks.)</td>
<td>89.3</td>
<td>91.5</td>
<td>93.7</td>
</tr>
<tr>
<td>Penrose (Anglesey)</td>
<td>89.6</td>
<td>91.8</td>
<td>94.0</td>
</tr>
<tr>
<td>Norwich</td>
<td>89.7</td>
<td>91.9</td>
<td>94.1</td>
</tr>
<tr>
<td>Wenvoe (Glam.)</td>
<td>89.9</td>
<td>92.1</td>
<td>94.3</td>
</tr>
<tr>
<td>Divis (N. Ireland)</td>
<td>90.1</td>
<td>92.3</td>
<td>94.5</td>
</tr>
</tbody>
</table>

U.K. Display in New York

THE Institute of Radio Engineers' annual convention and show, which last year attracted 714 exhibitors, is being held in New York from March 18th to 21st. The Institute has offered an area of 1,200 sq ft for a collective U.K. display of radio and electronic equipment. Manufacturers interested in participating should communicate at once with the Board of Trade, Exhibitions and Fairs Branch, Lacon House, Theobalds Road, London, W.C.I. (Tel.: Chancery 4411, Ext'n. 436.)

Organizational, Personal and Industrial Notes and News

Tape Recording Patents

THE Armour Research Foundation has carried out extensive research during the past 15 years on all aspects of magnetic recording, and has filed over one hundred American patents; most of these have also been granted in the United Kingdom. John P. Skinner, manager of the A.R.F. Development Corporation, a subsidiary of the non-profit-making Foundation, stated during a recent visit to this country that to make an effective tape deck it is necessary to use principles contained in at least one of the A.R.F. patents.

It is understood on inquiry that licensing agreements have already been concluded by the A.R.F. Development Corporation, of Chicago, Illinois, with the following companies in this country: Boosey and Hawkes, Collaro, Garrard, E.M.I., Grundig, Simon, Tape Recorders (Electronics), Verdisk Sales, Walter (Tape Recorders), and Wright and Weaire.

Amateurs and TV Interference

A NEW policy regarding amateur interference with sound and television reception has been announced by the Post Office. In the past, if complaints were received of an amateur causing interference to television reception due to "blocking," the Post Office prescribed that he must not transmit during television broadcasting hours.

Under the new arrangement if an amateur is otherwise transmitting within the terms of his licence, but causes interference to sound or television reception and it can be demonstrated that a reasonable remedy, such as the fitting of a simple filter, is available to the owner of the receiver, "then the amateur will be allowed to continue operating after an interval of one month from the time at which the cure is explained and demonstrated to the complainant by the Post Office."

It is understood that this will apply to all cases of interference to sound and television reception where the amateur's transmissions are found to be within the terms of his licence.

Although B.R.E.M.A. has been informed of the new policy no official announcement has so far been made on behalf of receiver manufacturers.

NEW YEAR HONOURS

A number of those who played a leading part in the planning, production and laying of the Atlantic telephone cable were recipients of awards in the New Year's Honours List. They include J. N. Dean, chairman of the Telegraph Construction and Maintenance Company (Knighthood); R. J. Halsey, an assistant engineer-in-chief at the G.P.O. (C.M.G.); A. H. Roche, telecommunication engineer responsible for Submarine Cable System Development and Production Division, Standard Telephones & Cables (O.B.E.); E. F. Neve, foreman S.T.C. submerged repeater manufacturing shop (B.E.M.); and E. V. T. Perrins, technical officer Post...
Office Research Station, who has specialized in repeater test equipment (B.E.M.).

Sir Stanley Angwin, who recently retired from the chairmanship of the Commonwealth Telecommunication Board, and E. M. Jones, director, the Government Communications Headquarters, Foreign Office, are appointed K.C.M.G.

Three members of the G.E.C. Research Laboratories staff received awards—O. W. Humphreys, director, is appointed C.B.E.; E. G. James, head of crystal development, O.B.E.; and W. C. Cropper, group leader in charge of a special project for the Admiralty, M.B.E.

Among those appointed M.B.E. are Miss B. K. Chaplin, executive officer at the D.S.I.R. Wireless Research Station; W. H. Hopkins, works manager, E.M.I. Factories; G. W. Kilmister, first radio officer, R.M.S. Arundel Castle; E. L. Lyckett, assistant, B.B.C. outside broadcasts; H. Stark, signals officer, Civil Aviation Telecommunication Directorate, Ministry of Transport and Civil Aviation; and W. W. Syrett, export manager of Ecko's Radio Division.

Among overseas radio personalities who received honours are L. A. G. Hooke, managing director of Amalgamated Wireless (Australasia), a knighthood for "services to the radio industry in Australia"; T. W. Chalmers, former director of broadcasting in Nigeria, C.B.E.; T. D. Bangay, officer-in-charge, Government Wireless Station, Falkland Islands, M.B.E.; and G. R. Richardson, senior assistant controller of telecommunications, Nigeria, M.B.E.

PERSONALITIES

Sir Noel Ashbridge, who retired from the directorship of technical services of the B.B.C. in 1952 and became a director of Marconi's, has been elected an honorary member of the Institution of Electrical Engineers. The election is in recognition of his services to the Institution, of which he was president in 1941, and of "his outstanding contributions in the field of radio engineering, particularly in the development of the British sound and television broadcasting services."

After what must be a record for service with one radio company—over 54 years—R. D. Bangay has retired from Marconi's. In 1952 he celebrated his jubilee in the radio industry, the first man to do so. Soon after joining the company in 1902 he went to America for five years and helped in the installation of the first U.S. coastal radio station, at Babylon. He was concerned with the original experiments in air-to-ground communication, and in 1914 was placed in charge of the company's department established for the development of military radio equipment. Mr. Bangay was for some years chief of designs, and since 1935 has been managing director. He was the author of two books, published by Wireless World many years ago: "The Elementary Principles of Wireless Telegraphy" and "The Oscillation Valve."

L. C. Jesty, B.Sc., M.I.E.E., has left Marconi's, where for seven years he led the television research group, and has joined the Sylvania-Thorn Colour Television Laboratories at Enfield, Middlesex. He will be in charge of colour television research. Whilst at Marconi's he was in charge of a special project for the V.C.R. From 1927 to 1946 Mr. Jesty was on the staff of the G.E.C. Research Laboratories where in 1933 he started the c.r.t. research group, which was responsible for the introduction of the V.C.R.97. For three years prior to joining Marconi's he was in charge of advanced research at the Cinema-Television Laboratories.

The Radio Communication and Electronic Engineering Association has created the new post of technical secretary, to which J. F. Richardson, Grad.I.E.E., has been appointed. He will work under H. E. P. Taylor, recently appointed executive secretary. Mr. Richardson began his engineering training in 1939 with S. C. & H., since 1952 has been technical assistant to the director, Electric Lamp Manufacturers' Association.

Reginald A. Yeo has left the Admiralty Signal and Radar Establishment, at Haslemere, where he was head of the electronics division, on being appointed full-time member of the Australian Broadcasting Control Board. He was a principal scientific officer in the Royal Navy Scientific Service, and was concerned mainly with radio matters throughout his government service. He was delegate at the conference of the International Telecommunication Union at Atlantic City in 1947.

G. B. Jeffery, M.A., B.Sc., A.M.I.E.E., has left the Royal Aircraft Establishment, Farnborough, where for four and a half years he has been senior engineer in the data transmission section of the Electronic Engineering Department, and has joined R. B. Pullin and Co. He is technical sales manager of the Pullin-Kearfott Division, which, under a recent licensing agreement with the American Kearfott Company, Inc., will manufacture synchros, servomotors and tachometer generators. During the war Mr. Jeffery was a radar officer, R.N.V.R., and was on the staff of H.M. Radar School, H.M.S. Collingwood.

H. L. A. Foy, the new publicity manager of Decca Radar, Ltd., has been engaged on the operational aspects of radar since he joined the company two years ago. He was a specialist navigating officer in the Royal Navy, and since joining Decca has been particularly concerned with the introduction of "True Motion" radar.

C. Hardy and C. B. Speedy, Ph.D., B.E., Grad.I.E.E., have been appointed directors of Data Recording Instrument Company, Ltd., of Feltham, Middlesex, which previously operated as the Precision Electronic Developments, Ltd. Mr. Hardy was for many years at the Signals Research and Development Establishment of the Ministry of Supply, where he was working on data recording. Dr. Speedy has been engaged since 1945 on the study of electronics especially in relation to computers.

J. N. Macleod and C. Metcalfe have been appointed directors of Electric and Musical Industries, Ltd. Together with E. J. Emery, who was appointed a director last February, they have been appointed managing directors of the company, responsible, respectively, for the U.K. Record Division and the Oversea subsidiary companies (other than Capitol Records Inc. and its subsidiaries), the E.M.I. Electronics Division (commercial and industrial equipment), and the Domestic Electronics Division.

H. A. Lewis, M.B.E., T.D., B.Sc.(Eng.), A.C.G.I., M.I.E.E., who recently left Marconi's to become personal assistant to E. J. Emery, managing director of the Domestic Electronics Division of E.M.I., has been appointed a director of E.M.I. Sales and Service (Australia) Ltd.

D. L. Johnston, who in our October, 1954, issue described a transistor replacement unit for hearing-aid H.t. batteries, has left Fortiphone, Ltd., where he was manager of the component division, and has joined Automation Consultants and Associates, Ltd.
The following appointments are announced by Belling and Lee: D. W. Rippin, who has been outside technical representative, becomes export manager; J. E. Bailey, B.Sc., and R. E. Meldrum join the company as technical representatives to manufacturers, and A. Fender is appointed technical sales representative to the trade in the area centred on Newcastle-upon-Tyne.

L. C. Smith has resigned from Plessey's, which he joined ten years ago as technical representative. During the last war he was lieutenant-commander in the electrical branch of the Royal Navy and specialized in the maintenance of asdic. Before the war he ran his own service business in Birmingham for five years, prior to which he was a service technician with E.M.I. His address is 122, Whittaker Road, Derby.

Peter E. M. Sharp, A.C.G.I., B.Sc.(Eng.), A.M.I.E.E., whose three-year contract with China Engineers, Ltd., has ended, has returned to this country. He joined the Telegraph Construction and Maintenance Company in 1951, subsequently transferring to their agents in the Far East. His home address is 46, Hyde Vale, London, S.E.10.

OUR AUTHORS

Dr. E. L. C. White, of the research division of E.M.I. Electronics, who recently addressed members of the Television Society on alternatives to the American television system, contributes an article on page 75 covering some of the points discussed. Dr. White has been with E.M.I. since 1933 and has been associated with the late A. D. Blumlein in developing the Marconi-E.M.I. television system adopted by the B.B.C. During, and to some extent since, the war, he has been concerned with the development of radar display systems, but has more recently worked on colour television. Before joining E.M.I. he was for three years at Cavendish Laboratory, Cambridge, working on pulse methods of ionospheric research. He is 47.

Michael P. Beddoes, contributor of the article on an improved sync separator, went to Canada a few months ago, and is now assistant professor in electrical engineering at the University of British Columbia. After graduating in electrical engineering at Glasgow University he spent seven years in industry, and then in 1953 went to the City and Guilds College where he worked on television band-compressing systems. His industrial experience started at G.E.C., Coventry (as a post-graduate apprentice), and after service as a senior engineer at Plessey's he became assistant chief engineer of McMichael's radio division.

IN BRIEF

During November the number of television licences increased by 142,345 bringing the total to 6,433,417. Broadcast receiving licences, including those for television and 210,690 for car radio, totalled 14,424,236 at the end of November.

Bilingual Television.—The system for transmitting two sound programmes in a single sound channel described on p. 79 has actually been developed for use by the French television service in Algeria, which has both French and Arabic viewers. A complete description, with a photograph of the "decoder" unit, appears in the January issue of the French journal Télévision.

American TV in Germany.—Television on American standards is being radiated from two transmitters in Germany for the benefit of U.S. service men. The low-power stations, which operate in Band IV (470-585 Mc/s), are at Bitburg and Landstuhl. They transmit films, provided by the Armed Forces Television centre at Limestone, Maine, for seven hours a day.

The French Components Show will be held from March 29th to April 2nd at the Parc des Expositions, Porte de Versailles, Paris.

America's Institute of High-Fidelity Manufacturers is sponsoring a Hi-Fi Show in Los Angeles from February 6th to 9th.

An electronic computing service for industrialists and scientists has been introduced by the Battelle Institute at Frankfurt/Main, Germany. Enquiries regarding the service and the facilities provided are being handled in this country by the Electronics Division of Remington Rand, Ltd., Commonwealth House, 1-19, New Oxford Street, London, W.C.1.

Interference Suppression.—Another conference on radio interference (the third) is being organized by the Armour Research Foundation of Illinois Institute of Technology. It will be held in Chicago on February 26th and 27th.

Colour Television.—Sales of R.C.A. colour television receivers were expected to reach the forecast 200,000 for 1956. It is anticipated that half a million colour receivers will be produced by R.C.A. this year.

Special courses in higher technology, being held during the spring and summer terms at colleges in London and the home counties, are listed in a bulletin issued by the Regional Advisory Council for Higher Technological Education. It costs 1s 6d and covers a wide variety of courses, including radio and allied subjects, being held at twenty-nine colleges.

Lo.M. Television.—A permanent television station, to replace the temporary one which has been in use since December 1953, is to be built by the B.B.C. at Carnarvon, near Douglas, Isle of Man, by the end of this year. The original plan to build the permanent station on Snaefell has been dropped.

Peterborough is having a three-day audio fair starting on January 22nd. It is being organized by Camer and Cine Centre, of 14, Long Causeway, at the Grand Hotel where lectures and demonstrations are being given by representatives of audio equipment manufacturers. Each Saturday from 10 to 12 noon demonstrations of audio equipment are being given by Pamphonic Reproducers at their showrooms at 17, Stratton Street, London, W.1.

An inexpensive (25s) single-stage transistor audio amplifier, intended for working with a crystal receiver is being made by Warren's Radio, 88, Wellington Street, Luton, Beds.

A bibliography of high-fidelity sound reproduction has been compiled by K. J. Spencer, and is available from the Library Association, Chaucer House, Male Place, London, W.C.1; price 2s 6d. Approximately three hundred references, mostly later than 1947, are given. A more extensive bibliography of the subject is being prepared.

Portable Transistor Superhet.—The germanium diode detector in this circuit (January issue) has been drawn with the wrong polarity of connections. It should be reversed, so that a positive-going a.c. voltage is applied to the base of the 1st i.f. transistor.

Wireless World, February 1956
R.S.G.B. Membership.—The annual report of the Radio Society of Great Britain records that whereas during the past five years membership had declined by nearly 5,000, last year's decrease was only 57. The number of licensed amateurs in the Society actually increased by 95, bringing the total to 5,141. Non-transmitting members total 2,961.

Winning Design in the competition sponsored by the British Plastics Federation for young craftsmen to design articles in plastics materials' was for a 17-in portable television cabinet. The designer, E. J. Arundell, of Liverpool, receives 50 guineas.

Two 16mm Mullard sound films—one on cathode-ray tubes (lastling 32 minutes) and another on quality valves (27 minutes) are now available on free loan from the Central Film Library, Central Office of Information, Government Building, Bromyard Avenue, Acton, London, W.3.

The products and services of over seven thousand member firms of the Federation of British Industries, listed alphabetically under more than 5,400 headings, as well as lists of trade marks and trade names, are included in the 1957 edition of the "F.B.I. Register of British Manufacturers." French, German and Spanish glossaries are also incorporated in the Register, which is obtainable from our publishers, price two guineas, post free.

E.I.B.A.—A number of radio manufacturers are listed as donors to the Electrical Industries Benevolent Association in its 1956 Year Book. In addition, the Radio Industry Council gave £500, the B.B.C. £158, and the Radio Industry Clubs of London and Glasgow £350 and £140, respectively. The object of the Association is to assist deserving and necessitous persons who are, or have been, in "any branch of an electrical industry."

BUSINESS NOTES

Nine film scanners, each employing two film projectors and two television cameras, have been ordered by the B.B.C. from Pye. A feature of the equipment is that by the use of movable mirrors either camera can be focussed on a projector, thus minimizing the possibility of breaks in transmission.

An underwater television camera, which can be held by a frogman or diver, towed or fitted to a vessel, has been produced by Pye. Spherical in shape, it is intended for use at depths down to 3,000 feet. It incorporates a depth indicator from which readings are conveyed on the surface.

Type approval, covering humidity and temperature, has been granted by the Joint Service Radio Components Standardization Committee for Ferranti's 2-in sealed instruments—voltmeters, ammeters and milliammeters. Their 2¾-in and 3½-in instruments are classified as "design approved."

Communication on six v.h.f. channels is provided in the air traffic control system recently installed by International Aeradio at Vickers-Armstrong's airfield at Wisley, Surrey.

Two limiter stages are incorporated in the new Orthophonic high-fidelity f.m. tuner being produced by RCA Great Britain. The circuit employs seven valves, two crystal diodes and a tuner indicator.

Sales abroad accounted for £33M of the E.M.I. group's £53M turnover during the year ended June, 1956. The year's total was an increase of £11.4M on the previous twelve months.

Orders for millimetre-band telecommunication test equipment, valued at over £25,000 have been placed with Marconi Instruments by the Ministry of Supply. Each 6-ft rack-mounted assembly comprises electronically regulated power supply and a frequency stabilization system.

A distribution centre, including showrooms and service information department, for Ambassador and Baird receivers, has been opened at 131, Great Suffolk Street, London, S.E.1 (Tel.: Hop 0791). K. H. Yandel, sales director of Ambassador Radio and Television, Ltd., and P. Duer, southern area sales manager, are now at this address.

Shirley Laboratories, Ltd., which was formed in 1954 by A. W. Wayne (a contributor to Wireless World) for the manufacture of amplifiers, tuners and electronic instruments, has moved to 3, Prospect Place, Worthing, Sussex. (Tel.: Worthing 30536.)

Tape Recorders (Electronics), Ltd., have recently started production at their second factory at 784-788, High Road, Tottenham, London, N.17. The price of their Sound Cadet recorder has been reduced to 59 gns.

S.S. Electronics, Ltd., recently moved from Harrow to Chiltern Works, Severalls Avenue, Chesham, Bucks. (Tel.: Chesham 9009.)

The midland office of Marconi Instruments, Ltd., formerly situated at 19, are now at 24, The Parade, Leamington Spa.

Goodmans loudspeaker cabinet, formerly known as the Viscount and recently renamed Canberra, is now called Sherwood.

OVERSEAS TRADE

Since the formation of Decca Radar and Navigator A/S, Bergen, the Norwegian subsidiary of the Decca Radar and Navigator Companies, in February, 1955, orders have been secured for radar installations in more than 300 Norwegian ships. It has also established a chain of service depots. The company's new general manager is F. I. Willoch. He has taken over from E. Tyler who has returned to the London office.

According to a recently completed analysis of places to which Britain exports radio and electronic gear, the United States was the largest buyer of British radio equipment in the first six months of last year. The value of U.K. radio exports to the United States was £1.6M, nearly 8 per cent of the industry's total overseas trade. Incidentally, the bulk of this was for sound re-producing equipment.

Marconi's are installing a temporary 2-kW medium-wave broadcasting transmitter at Brunei, on the north-western coast of Borneo, preparatory to setting up a permanent 20-kW transmitter on Tutong, some 35 miles from the town. The permanent transmitter will be fed by a frequency-modulated radio link from Brunei. A receiving station with double reversible rhombic aerials in dual diversity for the reception of B.B.C. and Australian stations, and dipole arrays for the reception of less distant stations, is also being built.

A contract for a v.h.f. multi-channel radio-telephone system for India's Western Railways has been placed with Marconi's. The radio-telephone links, which will have a capacity of 48 two-way channels, will be between Bhanvagar and Surat, and Jamnagar and Rajkot.

Pye "Ranger" v.h.f. radio-telephone equipment, employing channel spacing of only 15 kc./s, was recently demonstrated in Toronto. This equipment is being made available immediately for those countries where there is intense frequency congestion.

Kelvin-Hughes echo sounders and radar have been fitted in the 47,000-ton tanker Eugenia Niarchos, the biggest yet built in this country.

Representation of U.K. manufacturers of loudspeakers, selenium rectifiers and tape recorders is being handled by John R. Tilton, Ltd., of 51, McCormack Street, Toronto 9, to whom illustrated literature, with ex-works and c.i.f. Canadian port prices in Canadian dollars, should be sent.
Those of us who are in search of perfection in audio amplifiers must often have looked askance at the output transformer. In general it would be possible to reduce the non-linearities in an amplifier below any desired value by the application of a sufficient amount of feedback. However, as is well known, the output transformer produces undesirable phase shifts at the extreme ends of the audio spectrum which limit the amount of feedback which can be applied before instability sets in. These phase shifts also decrease the effective feedback at these extreme frequencies and this causes increased distortion in these regions. Varying core losses, hysteresis effects, matching variations, and incomplete coupling between the primaries also more directly increase the distortion, and this increase also is more pronounced at the frequency extremes.

Modern transformer design techniques of sectionalized windings, and particularly the use of C-cores, have to a large extent overcome these disadvantages in practice; but this has naturally given rise to an increase in price, and the fundamental limitations still remain.

Increased Possibility of Class B Operation.— Using loudspeakers of normal efficiency and impedance (15-ohm) in an average living room an accepted peak power requirement from the amplifier is of the order of fifteen watts. In this case if there is no output transformer we will obviously require currents of the order of one ampere from the output valves.

The problem of obtaining these currents is somewhat eased because in transformerless amplifiers class B operation of the output valves becomes more feasible than such operation is in an amplifier with an output transformer. Normally in class B operation using an output transformer incomplete coupling between the two half primaries produces transients when the valves cut off. These transients produce distressing audible distortion and are very difficult to eradicate, though a special bifilar transformer with both cathode and anode feeds designed by McIntosh and Gow does succeed in doing so.

In class B operation owing simply to the higher outputs the general distortion is higher but this is not seriously so and can, of course, be reduced by increased feedback.

High-Impedance Loudspeakers?— Allied to the difficulty of obtaining sufficient current from the output valves is that of matching, without too much distortion, the comparatively high valve impedance (of the order of a few thousand ohms) to the low impedance of the loudspeaker voice coil.

An obvious solution to both these problems is to use loudspeakers of higher impedance, but here the necessity of using thinner wire to keep the voice coil weight down produces its own problems. A few speakers of impedances in the range of 200-500 ohms have, however, been marketed, but there is not the usual variety of models available. Readers will realize the possibility that the newer electrostatic speakers will fit more smoothly into such a system, though their capacitive nature increases the matching problem.

In general by suitably paralleling output valves a transformerless amplifier for high-impedance loudspeakers can be adapted for low-impedance ones, so that the general features of the various designs can be considered without regard to the voice-coil impedance.

Straightforward Methods.— A first approach is simply to use normal circuits with the loudspeaker directly replacing the output transformer or load, bearing in mind that it will often be more convenient to connect the speaker in the cathode or low-voltage side of the valve.

Such designs generally involve capacitive coupling to the loudspeaker or direct current through the voice coil. Capacitive coupling requires almost impossibly high values of condenser for good low-frequency response and small phase shift in the case of low impedance loudspeakers, and may produce distortion due to hysteresis in the condenser.

Direct current in the voice coil would move it toward the positions of non-linearity for the suspension and non-uniformity of the magnetic field and in practice give a considerable increase in distortion. The possibility of increasing the linearity of the suspension (and thus decreasing the distortion), while maintaining sufficient restoring force to allow the required audio power to be developed, has already been largely exhausted in the design of conventional loudspeakers.

Distortion caused by a non-uniform magnetic field could be avoided by making the voice-coil longer than the field so that the same length is always immersed in the field. This arrangement is often used in bass loudspeakers where the increased weight of the voice-coil is less important. An equivalent method would be to lengthen the magnetic field but the larger magnets required would increase the cost. The alternative of having the voice-coil initially asymmetrical with respect to the magnetic field would require a change in the initial displacement for different amplifiers and is thus rather impracticable.

This simple approach also unfortunately needs a centre-tapped voice coil for normal push-pull operation. For “ultra-linear” operation two more tappings are even necessary! From the point of view of requiring as little and as practical a change as possible in existing loudspeaker design this approach is seen to be inadequate.

Some sort of balanced arrangement whereby direct current in the voice coil is avoided would be an improvement. A straightforward circuit along...
In order to obtain 12 watts of peak power in a 16-ohm loudspeaker 16 6AS7Gs were necessary. No distortion figures were quoted, and the damping was not very good (the output impedance was 23 ohms) but the authors did not use any overall negative feedback. In such cathode follower circuits low-impedance loudspeakers have an advantage in that the voltage requirements from the driver are not so serious as is usually the case.

Series Connected Output Stages.—Most other circuits use a series connected output stage, with either a single or push-pull input to this stage. In either case since the valve outputs in the load add together the optimum value for this load is less than half of that in the conventional push-pull arrangement. This type of circuit thus considerably eases the matching problem. It is also often easier to arrange d.c. connections between earlier stages and the output valves which improves the low frequency response and decreases the phase shift in this region.

Using a single input, series connected, output stage two commercial amplifiers have been developed, by Stephens and Philips, both for capacity connected high-impedance loudspeakers. Schematic diagrams for these are shown in Figs. 2 and 3. In both cases the signal from the lower output valve is fed to the grid of the upper so that the input signal varies the voltage across the output valves in opposite directions. More complicated power supply arrangements could have avoided the necessity of capacity connections to the loudspeakers. The circuit of the Stephens amplifier shows how d.c. connections between early stages may be arranged in this type of circuit. The resistor A provides negative feedback and serves to stabilize the bias on the 2A3s. With about 40 dB of feedback 3rd harmonic distortion is of the order of 0.4 per cent for 20 watts r.m.s. output into the 500-ohm load. Unfortunately, in both these amplifiers the voice coil does not provide a sole common load for the two output valves because they also partially load each other. Although cancelling of even harmonic distortion products could still be obtained by arranging for the output valves to give equal amounts of such distortion in the voice coil, this balancing would be difficult if not impossible, with the few variables available.

Push-Pull Series Connected Output Stages.—The last-mentioned disadvantage does not apply if the...
output valves are series connected with push-pull input. In this case the optimum output impedance is one quarter of that for normal push-pull operation. If, however, the phase splitter and output valves are not correctly designed together it is difficult to retain equal drive in the output valves as the loudspeaker impedance changes.

An example of this difficulty arises in an amplifier described by Dickie and Macovski. 7 Omitting a push-pull driver stage the phase splitter and output stages are schematically as in Fig. 4. Here it will be seen that the voice-coil load is coupled so that it provides feedback to the grid of the upper valve. Thus the input to this valve has to be increased and the resistor R 1 is made greater than R 2. However the variation of voice-coil impedance over the frequency range (which may easily be of the order of 5 to 1) prevents exact adjustment by this means except over a narrow frequency band. In this amplifier the effect of this impedance variation is reduced by suitably shunting the voice coil; an example of such a shunt being simply a .01-μF condenser and a 16-ohm resistor in series. This prevents the rise in impedance at high frequencies produced by the inductive voice coil and thus avoids instability caused by increased feedback and phase shift. The anode loads of the push-pull driver stage could also be adjusted to give better balance.

In this amplifier there is one voltage amplifying stage before the phase splitter and 3 6082 valves (26.5 volt versions of the 6AS7G) operating nearly in class B in the output stage. With 40 dB of overall feedback the harmonic distortion was 0.4 per cent for 25 watts r.m.s. into a 16-ohm load.

Essentially the same balancing difficulty arises in a variation of the circuit of Fig. 4 described by Onder. 8 Here instead of simply paralleling output valves to give increased power they are arranged in a bridge circuit (shown schematically in Fig. 5) which increases the optimum load to four times that for a parallel arrangement. Diagonal valves are run in phase, suitable driving voltages being obtained from a push-pull stage as in Fig. 6, this arrangement giving the necessary greater input to the upper tubes. An ordinary “concertina” phase splitter with suitable tappings on the loads could, of course, also be used. Here again using a balancing potentiometer as in Fig. 6, d.c. connections become possible. In this amplifier there is a “see-saw” type of phase inverter before the driver, and 2 6AS7G valves operating in class A in the output stage. With about 15 dB overall feedback the intermodulation distortion was 0.7 per cent for 9 watts into a 400-ohm load.

Equalization of Drive in the Output Valves.—If we return now to Fig. 4 equal drive in the output valves can be obtained very simply as described by Futterman, 6 by returning the earthy end of R 1 to the junction of the output valves as in Fig. 7. In this case both output valves are acting as cathode followers so that the voltage requirements from the phase splitter are large. However, the load is in the input to this valve in the correct sense to provide positive feedback so that a much lower voltage is actually required.

In the amplifier described in this reference (Ref. 9) there is a pentode, high gain, voltage amplification stage before the phase splitter. The cathode return from this pentode is taken to the tap of a potentiometer across the load so that varying amounts of negative feedback may be applied. There was in fact some difficulty in obtaining sufficient gain to give enough feedback to reduce the distortion sufficiently, but a phase splitter giving gain could be used. Using 14 type 12B4 valves operating in class B in the output stage, with 48 dB of overall feedback the harmonic distortion was 0.1 per cent for 20 watts into a 16-ohm load. Square wave tests on this and the amplifier of reference 7 already described give very impressive results even at
always developed between cathode and grid, so that the anode supply for the phase-splitter from the transistors, as described by Peterson and Sinclair, to take d.c. unbalance in these transistors but is contrary to the general philosophy of such amplifiers. Transistors have an encouraging future in transformerless amplifiers as their voltage requirements are much lower, and a considerably higher overall efficiency should be possible. In the Cossor circuit equal drive in the output transistors is obtained by a constant fraction of the output voltage. Feedback is a constant fraction of the output voltage. Furthermore, the degeneration caused by the speaker varies with its impedance, whereas the feedback is a constant fraction of the output voltage.

A disadvantage of this arrangement is that the distortion in the input to the lower valve is greater than to the upper as this input has to pass through an extra voltage amplifying stage (the phase inverter); and the even harmonics of this extra distortion cannot be cancelled in the output stage. Furthermore, the degeneration caused by the load in the upper valve. The amount of this negative feedback is adjusted to compensate for that produced by the load in the upper valve.

This general type of output stage has been recently applied to a transistor circuit by Cossor's. Transistors have an encouraging future in transformerless amplifiers as their voltage requirements are much lower, and a considerably higher overall efficiency should be possible. In the Cossor circuit equal drive in the output transistors is obtained by an input transformer. This transformer also avoids d.c. unbalance in these transistors but is contrary to the general philosophy of such amplifiers.

Returning again to Fig. 4, perhaps the best way of obtaining balanced inputs to the output valves is, as described by Peterson and Sinclair, to take the anode supply for the phase-splitter from the junction of the output valves as in Fig. 9. In this case the input voltages to the output valves are always developed between cathode and grid, so that the load does not produce a cathode follower effect in either valve and there is no unbalance. A disadvantage is the negative feedback produced by the load on the supply voltage for the phase-splitter. This circuit also is susceptible to d.c. connection.

The authors give a general discussion of this type of amplifier using transformers solely as matching devices. No practical details of a strict transformerless amplifier are given.

Extended Class A?—Another novel type of circuit that may perhaps be of value in these amplifiers was given the name, “extended class-A,” by the author. Here a triode and tetrode are run in parallel with their grids and anodes directly connected. The valves are biased for normal class A operation for the triode and this usually cuts off the tetrode, so that the arrangement acts as a triode for small signals. When the signal becomes sufficiently large (usually about one third of the maximum) the tetrode starts drawing current and increasingly controls the operation. This gives the transfer characteristic a slight curve but this is not serious. The circuit should combine the advantages of the low output impedance of triodes with the high current carrying characteristic of tetrodes. The idling anode current also is only about one third of the usual amount; or, in other words, for a given valve the maximum power obtainable is greatly increased.

Power Supplies.—It will be noted that the schematic diagrams in many cases envisage more than the usual number of power supplies, especially when those for screens and grids are worked out, and particularly if d.c. connections are desired. This complication is not as great as may be imagined when voltage doubling circuits, the avoidance of mains transformers, and direct series running of the heaters are considered. Moreover, due to the large amounts of negative feedback used, the hum in the output is generally reduced so much that chokes need not be used in the supplies. In fact, such chokes are often undesirable, as the impedance of the h.t. supply to the output valves must be low compared with the load to avoid loss of power.

Practical Choice of Output Valves.—To return to
some earlier remarks, one of the biggest practical difficulties is simply that of obtaining output valves that can pass the necessary current. Here from the cost point of view more than one valve will almost certainly be required for each side of the output stage. Bearing in mind that certain valves can be obtained very cheaply, it may be more economical to use a large number of one valve rather than fewer of another. Valves made primarily for other purposes, such as television line scan or current stabilization, can also sometimes be of use. The resultant optimum load should, of course, be made as small as possible, though increased distortion due to mismatch may be removable by sufficient feedback.

REFERENCES

SHORT-WAVE CONDITIONS

Prediction for February

The full curves given here indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths from this country during February. Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

B.B.C. Facts and Figures

Over 20% of the 14,519 members of the B.B.C. staff are classified as being in technical engineering.

The total staff engaged exclusively on work for the television service is 3,700—about 25% of the whole.

Nearly 24% of the £11M spent during the last financial year on the sound services (excluding overseas transmissions) was devoted to engineering. Of this sum £237,269 went to the Post Office for rental of lines.

Of the £7M expended on television, 42% (£2.95M) was debited to engineering. Over half a million pounds was paid to the Post Office for lines.

The Post Office received, in all, nearly £1M from the B.B.C. for the rental of lines during the year ended last March.

During 1955-56 the gross licence income was £25,736M. Of this sum the Treasury took £2.75M and the Post Office retained £1.784M, leaving the B.B.C. £21.2M.

Thirty-nine high-power, short-wave transmitters and 177 aerials are used for the B.B.C.'s external services.

Over 20,000 hours of B.B.C. recordings were transmitted in 1955, and during the last five months of the year tape accounted for 70% of the total.

These facts and figures are culled from the “B.B.C. Handbook, 1957” (B.B.C. 56), and the “Annual Report and Accounts of the B.B.C., 1955-56” (H.M.S.O. 6s).
WITH the remarkable rate of growth of the electronic industry during the past twenty years it is not really surprising that the production side has had little time to investigate fundamentally new methods of circuit construction. Development engineers have been more than fully occupied incorporating in their designs improved components and rapidly developing circuit techniques, and at the same time in maintaining prices at a level which compared favourably with competitors.

The conventional form of the electronic circuit appears to have been derived from the larger and more robust electrical power installation, in so far as both consist essentially of independently manufactured units interconnected by wires. While this form of electronic circuit offers flexibility in construction, its reproduction in quantity involves a multitude of point-to-point wires, terminals, insulators and metal fittings. The result has been a high labour content and the existence of numerous possible sources of error in assembly. It is significant that on a normal assembly line in the radio and television industry one inspector is required for every five operatives.

A further difficulty lies in the fact that random effects due to minor differences in wiring layout make it hard to obtain consistent standards of performance, particularly where high frequencies are involved. Moreover, the variable and complex nature of the layout itself allows very limited scope for employing mechanical aid to improve the rate and general efficiency of assembly.

Advent of the Printed Circuit.—It has become clear that if industry is to meet the demand for an increased volume of more complicated electronic circuits at reduced cost, the basic form of circuits would have to undergo a radical change in order to introduce the machine into every stage of production. Various schemes have been evolved using a variety of methods, several of which have involved producing complete electronic circuit assemblies from basic material. In this connection it has proved not at all easy to reproduce in the circuit elements that go to make up these assemblies the reliability and tolerances associated with orthodox components. After all, the characteristics of standard components have been built up as a result of years of development and production experience.

The form of assembly that has now gained wide acceptance is the combination of standard components and printed-wiring boards. Printed-wiring boards etched from copper-clad phenolic laminate have the great merit from the production standpoint that all conductor terminations are fixed in position and in a single plane. Above all, mechanized processing can be applied in turning out identical wiring boards, so forming a suitable basis for automatic assembly and subsequent mechanized operations.

It has been estimated in the report of a comprehensive survey conducted on behalf of the U.S. Navy that with assemblies produced in this way, the labour content is reduced thirty times in comparison with conventional methods; in both cases production capacity and rate were assumed to be constant. To assist in achieving this remarkable saving in human effort, the report recommends the adoption of automatic multi-station in-line machinery for the assembly of standard components on the printed-wiring boards.

Automatic Assembly Machinery.—Fully automatic assembly machinery may be divided into two types; programmed single-station machines and multi-station in-line conveyor systems. Programmed
single-station machines have a relatively low rate of output, are costly, and complicated in concept and action. Accurate programmed tapes are necessary; though once the tapes have been made, no other machine setting-up routine is necessary. The field of application lies chiefly in the assembly of batches of very short production runs.

The alternative is the multi-station in-line conveyor system where the intricate assembly operation is broken down into a number of easy stages, which in turn implies a series of simple and reliable mechanisms. Separate pre-set machines are mounted on a transfer conveyor, each machine (or station) inserting a single type of component into the printed-wiring boards as they pass down the line. The machines are arranged to operate simultaneously so that on completion of each machine inserting cycle an assembled wiring board emerges at the end of the line. Although the movements of an in-line transfer conveyor could hardly be described as fast, surprisingly high output rates of up to 1,200 assembled boards an hour can be regularly maintained. What is more, the conveyor may be extended to accommodate any number of additional machines without change of output rate; though a line of forty stations is now regarded as the practical upper limit.

Application in Industry.—Early in 1956, eighteen in-line transfer conveyors were in regular operation in the factories of leading United States electronic manufacturers. The most widely used system was that incorporating “Dynasert” automatic equipment. This machinery is now being developed and manufactured in this country, and is being made available to the British electronic industry by the Geo. Tucker Eyelet Company under the “Dynasert” trade mark.

The first of these conveyors to be installed in the United Kingdom is at present in production on a commercial basis at the Ekco factory at Southend, and a second is shortly to be in operation in the works of another well-known British radio and television manufacturer. During the past year, as a preliminary step to full automatic assembly, six other manufacturers have purchased machines modified as manually operated bench machines. These machines (which will later be described in greater detail) can readily be converted for use on a fully automatic conveyor.

Conveyor Operation.—The conveyor, Fig. 1, consists essentially of a transfer machine for transporting the printed-wiring boards, and bringing each in turn into an accurately located and firmly locked position beneath the inserting machine heads at every station. The phenolic laminate material of the printed-wiring board is unfortunately inclined to be dimensionally unstable, particularly after having been subjected to unavoidable temperature cycles during the etching and punching process. It has been found that mounting the board on a light alloy frame or pallet for assembly, as shown in Fig. 2,
assists accuracy of location and enables a range of board shapes and sizes to be accommodated without adjustment to the conveyor.

A simplified drawing illustrating the action of the conveyor and the circulation of the pallets is shown in Fig. 3. Pallets are stacked at the left-hand end of the conveyor and are released one at a time on to a set of twin conveyor belts (see C in Fig. 5) which are continually in motion while the conveyor is in operation. At the next station, printed-wiring boards are automatically fed beneath the ram plate of a pneumatic press, Fig. 4, which thrusts the board downwards between the spring clips on the pallet. The board is firmly held on the pallet by steel pins which fit into accurately punched location holes at the edges of the board, Fig. 2. One of the holes must be round, the remainder may be drawn to allow for any change that may have taken place in the lateral dimensions of the board.

The pallet with the board is now released and transported by the conveyor belts to the first inserting station, where it is lifted from the belts and solidly locked beneath the machine head. On completion of the inserting cycle, the pallet is once more released. In this way, a series of pallets carrying printed-wiring boards proceeds down the line until the board-unloading station is reached at the distant end. Here the reverse of the loading process takes place, with the boards being pushed from the pallets by a ram press acting from underneath. Fingers on arms incorporated in the unloader unit lift the boards, which then slide off down a chute (not shown). The empty pallets are tripped off the forward moving belts and descend by another chute to the lower return conveyor, where they pass back to the head of the line. It will be observed that only a small number of pallets is required to maintain circulation, plus a few extra to form a reserve in the stack.

The sequence of action in the conveyor is controlled electrically by timing relays in the master-control box indicated in Fig. 3. A micro-switch is mounted on the conveyor at each station, M in Fig. 5, which is tripped by a projection on the side
of each pallet, Fig. 2, when the pallet reaches a station. The micro-switches are connected in a series circuit, so that only when every pallet has arrived at its station will the circuit be complete, and the timing relay actuated in order to allow the insertion cycle to commence. The circuit thus serves as an interlock to arrest action should a serious conveyor stoppage occur, in which event a signal light on the machine control box in question is illuminated to attract attention. Switches fitted to each machine control box enable units to be operated independently or isolated from the main control circuit.

Component Inserting Units.—Over 70% of the components used by the electronic industry for radio and television equipment are of the axial-lead type, and the vast majority of these are of the 1/8-W resistor size or smaller. In considering the design of automatic inserting machines, it was obviously essential to develop a rugged and reliable unit at reasonable price to handle this particular range. The No 1 “Dynasert” component inserting machine illustrated in Figs. 5 and 6 has proved to be capable of maintaining an insertion reliability of better than 99.8%.

A high insertion reliability of this order is vital if the operation of a line of automatic machines is to be a practical proposition. For instance, if the machine insertion reliability was only 95%, according to the laws of probability with ten machines in line, 40% of the assembled printed-wiring boards would contain a misplaced component. On a similar conveyor having a machine insertion reliability of 99.8%, the corresponding figure would be less than 2%. Good mechanical design and precision workmanship in making machine inserting head parts are required for high insertion efficiency.

Apart from axial-lead components, machines are in course of development for handling flat and disc radial-lead capacitors, and a wide variety of printed circuit valve bases. Another machine of this type is also being developed for inserting printed circuit sub-assemblies, consisting of a number of components mounted on a small printed-wiring board. The sub-assembly may be made up, for example, of disc radial-lead capacitors, and a wide variety of components on leaving the reel slide through a right-angle at each end, and driven down and through the pre-punched holes in the board. On air being released in to a pneumatic cylinder, Fig. 6, which is mounted in the frame, F in Fig. 5, the tools are thrust downwards towards the printed-wiring board. In the process, excess length is trimmed from the leads, which are then formed through a right-angle at each end, and driven down and through the pre-punched holes in the board. The remaining wire trimmings are carried clear of the inserting mechanism by the tray T, Fig. 5, still attached to the tapes.

The pneumatic cylinder through a separate lever system raises two anvils, Fig. 7. The leads on emerging from the underside of the board are clinched over by the anvils in any preset direction, the leads being normally arranged to lie along the printed conductors, as indicated in Fig. 8. Experience of many millions of insertions in the U.S.A. has shown that leads clinched in this way greatly assist the formation of sound dip-soldered connections to the printed wiring.

Referring to Fig. 7, a resistor is represented in three of the stages of insertion and clinching. The overall cut-off length

\[I' = L + D + d + 2 \left(t + s + c \right) \]

Substituting the values of dimensions in the brackets, which are recommended in the majority of cases:

\[I' = L + D + d + 2 \left(\frac{s}{8} + \frac{r}{8} + a \right) \]

i.e., \[I' = L + D + d + \frac{1}{2} \] inches.

Production Change-over.—Lack of flexibility in production change-over has in the past rendered some previous systems of automatic assembly impractical under modern working conditions. This could scarcely be said of the multi-station in-line system, where adjustment from one layout of printed-wiring board to another usually takes less than six minutes per station.

Inserting machines are secured in position on
the conveyor by a single clamping screw. Setting is performed by lowering the tools in the inserting head with the leads of a component projecting towards the appropriate set of holes in a sample wiring board. The leads are aligned against the holes by rotating the head about a vertical axis, Fig. 6, and adjusting the unit itself about a base plate fixed to the conveyor frame. Punching errors between sets of component lead holes are clearly of no consequence provided the error is consistent on all boards.

The tools in the head are designed for one particular size of component body and lead-hole spacing. The principle adopted is that the lead-hole spacing is a function of the component dimensions rather than the printed circuit. To avoid mechanical difficulties and the high cost associated with small variable setting devices, it was decided to produce tools for a range of standard hole spacings, with dimensions of the most used components in mind. Special tools can, however, be made for any lead-hole spacings within the limitations imposed by the dimensions of the component and machine head.

A conveyor station may be converted from feeding
one component to another of different dimensions by substitution of (i) the machine, or (ii) the inserting head, Fig 7, or (iii) the tools in the inserting head. The change-over in (i) and (ii) may be carried out by an unskilled operator in a matter of minutes, (iii) involves the services of a skilled mechanic for about 20 minutes.

Semi-automatic Production.—For short production runs conveyor machines may be mounted on a worktable, Fig. 9, and employed as individual bench units. Only minor modification is required to the air control system of the conveyor model, for foot operation. Several such units could be adapted to cover a large percentage of the components needed for the circuits on most printed-wiring boards. Furthermore, by stripping the component-feed fittings from the head, a bench machine may be converted to a component cutting and forming unit, which is occasionally required by manufacturers for the preparation of special components prior to manual insertion.

Fig. 10 shows a close-up view of an optical location attachment fitted to the bench machine in Fig. 9. The arrangement projects two narrow beams of light on to a mirror, which reflects the light and produces two bright spots on the printed-wiring board. The board is quickly manipulated until the spots of light disappear down the required pair of holes, the foot pedal is depressed and the machine inserts and clinches the component. For a large batch of boards, it is preferable to use the arrangement as a setting-up aid for magnetic stops attached to the metal table, subsequently using the stops as a location jig for positioning the boards.

In comparison with manual performance of the same work, the machine shows a marked saving in time, and practically no operator fatigue has been experienced over long periods of operation.

Designing for Automatic Assembly.—Perhaps the most satisfactory feature of the new automatic production techniques from the point of view of the designer is that he has now almost complete control over the final performance of the circuit that he designs. If he succeeds in obtaining good results from a prototype in his laboratory, there is no reason why that performance should not be repeated in practically every model produced on the factory floor. On the other hand his responsibility is now much greater than it used to be. His design must be entirely free from error because it will often be an extremely costly matter to rectify a mistake once production has commenced. In the author's experience, most designers in the industry have welcomed the change and are only too willing to accept the increased responsibility entailed.

Many firms are now in the difficult stage of transition, where they are attempting to adapt designs and layouts that were intended for conventional wiring. This is nearly always a most difficult task to accomplish satisfactorily, and it is usually quicker to scrap the original layout and start again. In the United States, where now nearly 90 per cent of the mass-produced electronic equipment is on printed wiring, it has been found that three to five boards are most suitable for a television receiver, and one or two for a radio receiver. Hole-positional errors outside the tolerances required for automatic assembly, servicing problems, and breakages in punching, have turned the scales against the use of large-size wiring boards. It is now generally recognized in all fields of production engineering that the product must be designed with automatic production in mind.

Component manufacturers have also realized that parts developed for flexible wiring create serious mechanical problems in their assembly on printed circuits. The new tendency is for leads to become stouter and shorter, with larger and awkwardly shaped components fitted with snap-in type connections. Physical dimensions will have closer tolerances and a high degree of standardization among
various manufacturers' products will become increasingly important.

Advantages for the Future.—It might well be asked what is on the credit side for the effort and capital that will be expended in changing from the old to the new manufacturing techniques. There is little doubt that substantial financial savings will be possible in production costs, not so much by considering any single process on its own, such as automatic assembly, but by evolving a complete flow-through production system commencing with mechanized processing of printed wiring and followed by automatic assembly, mechanized dip-soldering, and automatic electrical testing. Among other outstanding advantages are increased uniformity and reliability of the final product with far less inspection, rapid production change-overs and a massive production potential available to meet any emergency or unforeseen increase in demand.

REFERENCES

B.B.C. F.M. Transmitter Performance

SOME insight into the standards of quality specified by the B.B.C. and provided by the manufacturers of the transmitters now being installed for the v.h.f. service is given in papers* recently read at the Institution of Electrical Engineers and to be published in the Proceedings (1957, Vol. 104, Part B).

Two systems of modulation are being used: the transmitters supplied by Standard Telephones and Cables make use of balanced reactance-valve modulation of a free-running oscillator whose centre frequency is controlled by reference, after frequency division, to a low-frequency crystal standard, and those supplied by Marconi's Wireless Telegraph Company rely on the "FMQ" system in which a low-frequency crystal-controlled oscillator is directly modulated by a balanced susceptance circuit† and followed by frequency multiplication.

The published figures for the performance of these two systems summarized below are expressed in different ways and are not directly comparable, but they indicate the high standards achieved in the frequency-modulated v.h.f. service.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Source distortion</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc/s</td>
<td>%</td>
<td>25 kc/s</td>
</tr>
<tr>
<td>0.03</td>
<td>0.2</td>
<td>0.62</td>
</tr>
<tr>
<td>1.0</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>7.5</td>
<td>0.13</td>
<td>0.19</td>
</tr>
<tr>
<td>10.0</td>
<td>0.18</td>
<td>0.2</td>
</tr>
<tr>
<td>15.0</td>
<td>0.13</td>
<td>0.22</td>
</tr>
</tbody>
</table>

"FMQ"

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Source distortion</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc/s</td>
<td>%</td>
<td>25 kc/s</td>
</tr>
<tr>
<td>0.03</td>
<td>-0.6</td>
<td>4</td>
</tr>
<tr>
<td>0.06</td>
<td>-0.1</td>
<td>10</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

REACTANCE MODULATOR

<table>
<thead>
<tr>
<th>Frequency (kc/s)</th>
<th>Reactance Modulation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>135%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>1000</td>
<td>69%</td>
</tr>
<tr>
<td>1500</td>
<td>53%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULATION</th>
<th>FREQUENCY (kh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>1500</td>
</tr>
</tbody>
</table>

A.F. RESPONSE (without pre-emphasis)

<table>
<thead>
<tr>
<th>kc/s</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.06</td>
<td>-0.1</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

F.M. NOISE (relative to 75 kc/s)

-62 dB

A.M. NOISE

-60 dB

CENTRE FREQUENCY STABILITY

2 parts in 10^6 for deviations at 30 c/s and 10 kc/s between 0 and 100 kc/s

<2.5 parts in 10^6 between 20 c/s and 15 kc/s with modulation 133% (75 kc/s = 100%)
The basic type of Foster-Seeley discriminator is shown in Fig. 1. A number of variants exist in practice, and these are discussed later. The audio output is the difference between the output voltages developed by the two diodes D1 and D2. At the centre frequency of the circuit, this output is zero, and the output swings above or below zero as the frequency of the applied signal shifts from its centre value. We shall assume initially that the diodes have 100 per cent rectification efficiency; the audio value. We shall assume initially that the diodes have 100 per cent rectification efficiency; the audio output is then equal to the difference of the peak values of the two r.f. voltages applied to the diodes.

Now let us analyse the r.f. side of the circuit. The transformation we shall employ is that shown in Fig. 2, the development of which was given in the first part of this article. The phase-difference transformer of Fig. 1 is then identical in performance with the arrangement of three tuned circuits shown. The "ideal" transformer T serves only to ensure that the current fed to its centre tap divides equally between the branches connected to its ends. We shall concentrate initially on the two tuned circuits connected between terminals 2, 3 and 2, 4. The parameters used are \(x = 2Q_d f_0 \) and \(R_s/2 \), the dynamic resistance of the tuned circuits. In the expression for \(x \), \(df \) is the shift of the signal from its centre frequency \(f_0 \), whilst the value of \(Q \) is given by \(R_s/L \). The centre frequency \(f_0 \) is given by \(f_0 = 1/2\pi\sqrt{L_s/C_s} = 1/2\pi\sqrt{L_p/C_p} \). The special values of \(x = \pm x_1 \) give the displacement of the resonant frequencies of each of the two circuits from the centre frequency. In the circuit shown in Fig. 2, the resonant frequency of one tuned circuit is given by

\[
\frac{1}{2L_p} f_0^2 \quad \text{and that of the other by} \quad \frac{1}{4L_p} f_0^2.
\]

These values are equal approximately to \(\left(1 - \frac{M}{2L_p}\right) f_0 \) and \(\left(1 - \frac{M}{4L_p}\right) f_0 \), respectively, and hence

\[
x_1 = 2QM/4L_p = QM/2L_p.
\]

This can be rearranged into a more convenient form as follows.

\[
x_1 = \frac{QM}{2L_p} = \frac{Q_k\sqrt{L_p/L_0}}{2L_p} \quad \text{where} \quad k = \text{the coupling coefficient}
\]

It is shown in the Appendix that if \(E_p \) and \(E_s \) are peak values voltages across the primary and secondary winding of the phase-difference transformer at resonance, then

\[
x_1 = (E_s/2)/E_p
\]

With a constant-current input I/2 to each of the two tuned circuits connected between terminals 2, 3 and 3, 4 the difference between the peak r.f. voltages between terminals 2, 3 and 2, 4 is given by

\[
E = IR_s/4 (a_1x + a_2x^3 + a_3x^5 + \ldots)
\]

where

\[
a_1 = 2x_1(1 + x_1^2)^{-3/2}
\]

\[
a_3 = x_1(2x_1^2 - 3)(1 + x_1^2)^{-7/2}
\]

\[
a_5 = 4x_1(8x_1^4 - 40x_1^2 + 15)(1 + x_1^2)^{-11/2}
\]

E is equal to the a.f. output provided that rectification efficiency is 100 per cent.

Except for the special case when the elements of the tuned circuit connected between terminals 1 and 2 become of infinite impedance, the input current, \(I \), to the centre tap of the "ideal" transformer T is not constant. Its value can however be calculated. If the input current to terminals 1, 2 is \(I_{in} \), then \(I \) is equal to \(I_{in} \) less the current flowing in the tuned circuit connected between terminals 1 and 2.

In order to simplify the treatment, we shall assume that the Q-values of the two circuits of the phase-difference discriminator transformer are equal. Additionally, we shall employ the relationship \(p = L_s/L_p \). The equivalent circuit can then be redrawn as shown in Fig. 3.

The relationship between \(I \) and \(I_{in} \) is then given by

\[
I = I_{in} \left[\frac{1 + 2x_1^2}{4 + x_1^2} \left(\frac{1 + x_1^2}{2} \right)^{1/2} \left(\frac{1 + x_1^2}{2} \right)^{1/2} \right]^{1/2}
\]

where \(n = kQ \) (see Appendix).

At first sight it would appear that the output

* B.B.C. Engineering Training Department.
for F.M. Receivers

In the first article of this series an equivalent circuit for the phase-difference transformer employed with the Foster-Seeley discriminator and the ratio detector was derived. This equivalent circuit enables these two forms of detector to be treated in the same manner as the Round-Travis circuit, already discussed, and in this part we shall discuss the Foster-Seeley circuit in greater detail.

Voltage depends upon three variables, \(x_1 \), \(p \) and \(n \). This is however, not true because

\[
x_1 = \frac{1}{2} b_0 \sqrt{\frac{1}{L_p} - \frac{1}{L_s}} = \frac{1}{2} b_0 \sqrt{\frac{1}{L_p} - \frac{1}{L_s}} = \frac{1}{2} n\sqrt{p}.
\]

Thus there are only two independent variables.

From the equation for \(I_1 \), it will be apparent that \(I_1 \) is independent of \(x \) only if \(x_1 = n \). This is the special case referred to above, when the inductance \(L' \) becomes infinite, capacitor \(C' \) becomes zero, and \(R' \) becomes infinite. In these conditions \(\sqrt{p} = 2n \) and hence \(I_1 = I_{in} \) as would be expected.

It was shown in Part I that the coefficient \(a_0 \) in the expression of the output voltage is zero when \(x_1 = \sqrt{1.5} \). In the phase-difference transformer, the same conditions apply when \(n = \sqrt{1.5} \), and \(L_s = 4L' \).

In the general case, when \(x_1 \) does not equal \(n \), we can express \(I_1 \) as a power series in \(x_1 \) as follows

\[
I_1 = I_{in} \frac{1 + x_1^2}{b_0 + b_2 x^2 + b_4 x^4}.
\]

where

\[
b_0 = 1
\]

\[
b_2 = \frac{1 - x_1^2}{(1 + x_1^2)^2} - \frac{1 - n^2}{(1 + n^2)^2}
\]

\[
b_4 = \frac{2x_1^2}{(1 + x_1^2)^4} + \frac{1 - 4n^2 + n^4}{(1 + n^2)^4} - \frac{1 - x_1^2}{(1 + x_1^2)^2} - \frac{1 - n^2}{(1 + n^2)^2}
\]

Inserting this value for \(I_1 \) in the expression for \(E \) gives

\[
E = \frac{I_{in} R_s}{4} \frac{1 + x_1^2}{b_0 + b_2 x^2 + b_4 x^4}
\]

where

\[
c_1 = (a_1 b_0)
\]

\[
c_3 = (a_1 b_2 + a_3 b_0)
\]

\[
c_5 = (a_1 b_4 + a_3 b_2 + a_5 b_0)
\]

The distortion introduced is represented by the terms in \(x^2 \) and \(x^4 \). To minimize distortion, therefore, it is desirable that the coefficients of these terms should be as small as possible. The dominant term is the coefficient of \(x^2 \), and this can be made equal to zero by appropriate choice of parameters. For this condition, \(a_1 b_2 + a_3 b_0 = 0 \), and substituting values this gives

\[
-x_1^2 (2x_1^2 - 3) (1 + x_1^2)^{-7/2} = 2x_1 (1 + x_1^2)^{-7/2} \times [(1 - x_1^2) (1 + x_1^2)^{-2} - (1 - n^2) (1 + n^2)^{-2}]
\]

This reduces to

\[
1 = 2(n^2 - 1) (1 + x_1^2)^{-7/2}
\]

The graph of \(x_1 \) plotted against \(n \) is given in Fig. 4. This shows that if \(n \) is less than 1, \(c_3 \) cannot equal zero. It also shows that if \(n \) is between 1 and 1.2 approximately, there is little margin for error in adjustment of \(n \), since \(x_1 \) is varying rapidly. The minimum value of \(x_1 \) occurs when \(n = \sqrt{3} \) at this value \(x_1 = 1 \). Above \(n = \sqrt{3} \), the slope of the curve is positive. This is of some importance, since \(x_1 \) is itself proportional to \(n \). If \(n \) departs from its correct value, it is desirable that \(x_1 \) should change in the same sense to minimize the value of \(c_3 \).

The graph of \(x_1 \) plotted against \(n \) does not indicate any specific optimum value for \(n \) and \(x_1 \). However,
To evaluate the distortion present with the circuit constants chosen, consider an input signal \(x_3 \cos \omega t \). The a.f. output is then

\[
E = 0.4 I_{vn} R_s \left[0.7x_3 \cos \omega t - 0.008 (x_3 \cos \omega t)^3 \right]
\]

We can expand \(\cos^3 \omega t \) by means of the identity

\[
\cos^3 \theta = \frac{1}{4} (\cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta)
\]

giving

\[
E = 0.4 I_{vn} R_s \left\{ 0.7x_3 \cos \omega t - 0.0025 x_3^3 \cos 3 \omega t \right\} - 0.0005 x_3^4 \cos 5 \omega t
\]

The reduction of the fundamental frequency component is negligible for the range of values of \(x_3 \) of interest, i.e. \(x_3 < 1 \). The percentage of third harmonic distortion is thus given by

\[
\frac{0.0025 \times 100 \times x_3^4}{0.7}
\]

\(x_3 = 1 \), this is 0.35 per cent. By employing a smaller value of \(x_3 \), a lower value of distortion is obtained, the distortion decreasing with \(x_3^4 \).

Consider a broadcast signal, with a deviation of 75 kc/s. If it is desired to operate the discriminator with 75 kc/s corresponding to \(x_3 = 1 \), the parameters of the circuit are determined by \(x = 2Q \frac{df}{f_0} \). With \(df = 75 \) kc/s at \(x = 1 \), and a centre frequency \(f_0 \) of 10.7 Mc/s, the value of \(Q \) is 71. If we assume the two tuned circuits of the phase-difference transformer each employ a tuning capacitor of 50 pF, the dynamic resistance \((R_s) \) is 22 k\(\Omega \). The input current \(I_{vn} \), is the peak value of the fundamental frequency component in the output of the preceding limiter stage; a typical value is 1 mA. The peak audio output is given by 0.28 \(I_{vn} R_s \), and in this example is 6.2 volts approximately.

It can be seen, from the expression for \(E \), that the audio output is proportional to \(I_{vn} x_3 \), where \(I_{vn} \) is the input current, and \(x \) is a measure of the frequency

(Continued on page 73)
Fig. 7. Alternative form of Foster-Seeley discriminator.

shift. If there is amplitude modulation present, the magnitude of I_{in} varies, but if $x = 0$, i.e. the signal is at the centre frequency there is no output due to a.m. For any other value of x, i.e. if the signal is mistuned or frequency-modulated, there is an output due to the amplitude modulation. Because the output is proportional to I_{in}^2, the a.m. and f.m. signals are multiplied together and there is complete cross-modulation. Thus a Foster-Seeley discriminator must be preceded by a limiter stage.

To complete the survey of the Foster-Seeley circuit, there are a number of practical points to be considered. The first of these concerns the diode load resistors. These should not be too large, as otherwise "diagonal clipping" can occur. Briefly this happens if the input to one diode falls rapidly. If the time constant of the load circuit is too great, the cathode potential cannot fall sufficiently quickly, and the diode may be cut off. For this reason, the diode load resistors are usually limited to 100 kΩ and the shunt capacitors to 50 pF.

This relatively low value of diode load in turn means that the damping imposed in the tuned circuits cannot be neglected. The input resistance of each diode at r.f. is $R_L/2\eta$, where R_L is its load resistance and η is the rectification efficiency. In the equivalent circuit of Fig. 3, the relationship between the resistances of the two tuned circuits connected between terminals 2, 3 and 2, 4 and that connected between terminals 1, 2 then differs from that postulated. The condition can, however, be re-established if an additional resistor equal to $R_L/(p-4)$ is connected between terminals 1 and 2, i.e. across the primary winding of the original circuit. However, the values of p employed in practice are often less than 4, implying that a negative resistance is required. This obviously cannot be realised in practice. It suggests, however, that the Q values can be equalized if the secondary Q value without the diodes connected is lower than the primary Q value. Given equal initial Q values, a

Fig. 8. Further alternative forms of Foster-Seeley circuit, with the secondary circuit centre taps produced by the capacitors.

Fig. 9. Foster-Seeley discriminator with tapped primary circuit.

Wireless World, February 1957
resistor can be connected in parallel with the secondary circuit to achieve this result. Its value can be calculated if it is remembered that the damping imposed on the primary circuit is R_l/η, whilst that imposed on the secondary circuit is R_t/η. In the example considered above, with equal primary and secondary circuit, the resistance would be $R_t/3\eta$. It is common practice to omit the r.f. choke L_c shown in Fig. 1, giving the circuit of Fig. 7. In this case it must be remembered that there is then additional damping equal to R_l, i.e. the analysis simplifies to the case when the tuned circuit in parallel with the input terminals vanishes. For this condition of operation, the optimum value of $\eta = \sqrt{1.5}$.

APPENDIX

The equivalent diagram for two circuits coupled by mutual inductance is shown below. The circuit equations are

$$E_p = jX_{cp}i_p$$
$$E_p = jX_{cp}(i_p - i_o)$$
$$0 = Z_{cp}' - j\omega M_{cp} - jX_{cp}i$$
$$Z_{cp} = jL_{cp} + 1/j\omega C_{cp} + R_p$$
$$Z_{cp} = jL_{cp} + 1/j\omega C_{cp} + R_s$$

where $X_{cp} = 1/\omega C_p$

In the region near the resonant frequencies (f_o) of the two circuits, $i_p > i$. Then

$$E_p = -jX_{cp}Z_{cp}oM$$
$$E_p = X_{cp}Z_{cp}oM + \omega^2 M^2 i$$

Near resonance $\omega L_p - 1/\omega C_p$ is approximately equal to 2$L_\delta\omega_0$, where δ_0 is the departure from $\omega = 2\pi f_0$. Similarly, $\omega L_p - 1/\omega C_p = 2L_\delta\omega_0$. This gives

$$E_p = jX_{cp}oM (r_p + 2jL_\delta\omega_0) (r_s + 2jL_\delta\omega_0) + \omega^2 M^2 i$$

Let

$$L_{cp'o}r_p = X_{cp}$$
$$L_{cp'o}r_s = X_{cp}$$

and $n = k\sqrt{Q_p/Q_s}$, where $k = M/\sqrt{L_pL_s}$.

$$E_p = \left(1 + jQ_p\right) \left(1 + jQ_s\right) + n^2 \cdot kQ_s \sqrt{L_p/L_s}i$$

Finally if $Q_p = Q_m$, $Q_mX_{cp} = R_{cp}$, and $Q_p = 2Q_\delta\omega_0/\omega_o = x$

$$E_p = \frac{R_{cp}(1 + jx)}{(1 + jx)^2 + n^2}$$

In the equivalent circuit discussed in the text, this voltage is that applied to the tuned circuit connected between terminals 1 and 2. If $i_1 < i_2$, then $I_1 = (1 + jx) I_{en}$. But the current I_1 fed to the centre-tap of transformer T is equal to $I_1 - I_2$. Hence

$$I_1 = I_{en} \left(1 - \frac{p - 4}{p} \cdot \frac{(1 + jx)^2}{(1 + jx)^2 + n^2}\right)$$

and

$$I_2 = I_{en} \left(1 + \frac{p - 4}{p} \cdot \frac{(1 + jx)^2}{(1 + jx)^2 + n^2}\right)$$

If $|I|$ is the magnitude of I and $|I_{en}|$ that of I_{en} then

$$|I| = \left|I_{en}\right| \left|1 + \frac{x^2}{1 + x^2(1 - x^2) + 2jx/(1 + x^2)}\right| \left|1 + \frac{x^2}{1 + x^2(1 - x^2) + 2jx/(1 + x^2)}\right|$$
In the absence of a really cheap and simple colour display device for domestic receivers—on which the success of colour television so much depends—it may be considered somewhat profitless to discuss the question of transmission systems. There is, however, one point of view which should be heard. This argues that the system should not be tailored to fit the display device (as with the N.T.S.C. system and the three-gun shadow-mask c.r.t.) but should be made as perfect as possible in the expectation that display and receiving equipment will eventually be developed to match it. Such is the theme of this article.

N.T.S.C. Colour Information
Where the System Fails Through Expediency

By E. L. C. WHITE,* M.A., Ph.D., M.I.E.E.

From the vast body of work that has been done on colour television in the last few years a number of principles have emerged which now find very wide acceptance.

First is the idea of "compatibility." This means that the colour signals must be sufficiently similar in form to existing monochrome standards to give good black-and-white pictures, with no untoward effects, on monochrome receivers of normal design. Thus colour can be added to selected programmes, and the proportion increased as warranted by the increasing numbers of colour receivers.

Secondly, it has been recognized that a compatible system can be achieved by rearranging the primary red, green, and blue signals into three other signals, one of which is representative of the brightness and therefore contains some of each of red, green and blue in suitable proportions. This brightness signal has the synchronizing pulses added to it, and is all that is needed for monochrome receivers.

The third principle is that the other two signals should only carry the colour information, as distinct from the brightness, and need only have a bandwidth which is a fraction of that of the brightness, or "luminance," signal.

Fourthly, there is the technique of adding the narrow-band colour signals, in the form of modulated sub-carriers, to the brightness signal within its normal frequency band. By adopting special frequency and phase relationships of the sub-carrier relative to the line scan, the objectionable effects of dot pattern on monochrome receivers and loss of detail resolution on colour receivers can be minimized. This technique has been, and still is, the subject of much controversy. In spite of its drawbacks, it will probably have to be accepted because of the scarcity of bandwidth in the radio-frequency spectrum available to television.

The fifth principle is the method of carrying the colour information, consisting essentially of two independent variables, on a single sub-carrier, by simultaneous phase and amplitude modulation. This is the subject which will be discussed here, with particular emphasis on the exact nature of the information carried.

As the N.T.S.C. system is now generally well known, it is a useful standard of comparison. Its salient features have already been discussed in Wireless World† but a short recapitulation of some of the relevant points will be useful here.

At the transmitting end, the primary red, green and blue signals from the camera, after individual gamma correction, are applied to proportional adding circuits to form three other signals E_x, E_y, and E_z. (Here the tick indicates that the signals are not linear but are formed from gamma-corrected primaries.) This gamma correction is to compensate for the non-linear light output characteristic of the receiver c.r.t., which usually follows a power law, so that the correction has to be an inverse power law. E_x is the luminance signal already mentioned, while E_y and E_z are known as "chrominance" signals.

E_x and E_z are used to modulate two orthogonal phases of a sub-carrier. Its frequency is an odd multiple of half the line scan frequency, to give dot interface. The final output, which also includes sync pulses and a colour sync "burst," is formed by adding to E_x the modulated sub-carrier. The signals are band limited in varying degrees, on principles already discussed in the previous Wireless World articles.

The Colour Sub-Carrier

An important feature of the system is that the vector diagram of the colour signal is very similar in form to the standard chromaticity diagram (the international reference frame for colour specification), with the origin shifted to white. This is shown in Fig. 1, where the sub-carrier vector is superimposed on the chromaticity diagram. Hue becomes related to phase, and saturation to amplitude, and for white the sub-carrier has zero amplitude.

Another feature, and one which is not always realized, is that the amplitude of the colour signal is not dependent only on saturation, but also on $^*E.M.I. Electronics, Research Division. This article is based on a lecture given recently by the author to the Television Society.

Wireless World, February 1957
brightness. This is a notable departure from the third principle enumerated above, and is, in fact, the main reason why the nature of the colour information transmitted by the N.T.S.C. system is open to question.

According to simple philosophy, the information should be pure chromaticity. This means dominant wavelength (or hue) and purity (or saturation), and corresponds to the familiar concept of colour quality, as distinct from quantity of light. This chromaticity information can be given, for example, by the \(x\) and \(y\) co-ordinates in Fig. 1, or suitable linear transformations of them. These are essentially functions of ratios, as already explained in Wireless World, and are independent of brightness.

The signals transmitted by the N.T.S.C. system, however, are not truly representative of chromaticity. They are "colour-difference" signals, as mentioned in previous articles and have been given the name "chrominance" by the N.T.S.C. to distinguish them from the idea of pure chromaticity.

There is another way in which the N.T.S.C. system departs from straightforward principles. This arises from the process of gamma correction. As already mentioned, the transmission system corrects for the non-linear electron-gun characteristics, or gamma, of the three-gun picture tube by interposing stages with an inverse power law between the linear signal sources and the proportional adding circuits.

From the short view, the reason is sound enough, as the alternative is to put the gamma correction immediately before the picture tube, which is uneconomical because it would be necessary in every receiver. However, the technique has several disadvantages, especially near saturated colours, and these are: (1) loss of luminance detail; (2) the system is no longer "constant-luminance," i.e. noise and interference in the sub-carrier band will produce brightness fluctuations as well as colour variations; (3) there is no non-linear relationship between the sub-carrier signal and the reproduced chromaticity, which, for example, renders the hue near the complementary colours much more critical with regard to sub-carrier phase inaccuracy than is that near the primary colours.

Fig. 2 shows how the loss of luminance detail arises near saturated colours. Gamma is taken to be 2.0—that is, a square-law characteristic. The effect of the narrow-band chrominance circuits on a step waveform is simplified by showing the output as a ramp function.

For a transition from red to blue at constant luminance, it will be seen that the square-law effect of the three-gun display-tube causes a dip in the displayed luminance. More striking, perhaps, is the blurring of the edge in a transition from dark blue to light blue. This is not due to the non-linearity, but to the fact that the colour signal is chrominance or colour-difference rather than chromaticity or colour ratio.

Thus the major portion of the brightness change is carried over the narrow-band chrominance signal.

American Modifications

The solution to all these problems is to send a pure chromaticity signal for the colour information, but first some palliatives suggested by the N.T.S.C. will be mentioned.

The first arrangement entails a correction to the transmitted signal which removes the loss-of-detail fault shown at the bottom of Fig. 2. Unfortunately this leads to poor compatibility since the correction is not required by monochrome receivers, and on these the edges would be unnaturally emphasized.

The next step considered by the N.T.S.C. was to see what could be done at the cost of introducing one non-linear circuit in a three-gun receiver. This also modified only the luminance signal. It has the advantage of being correct for monochrome receivers, but still gives non-linear colour-difference signals on the sub-carrier.

Finally, schemes were considered in which more than one non-linear circuit might be required in an ideal receiver. This led to the use of a true luminance signal, as mentioned above, and a linear type of colour signal. Three possibilities were considered.

In the first, the chromaticity information was to be transmitted linearly in terms of the sub-carrier amplitude. Because of possible objection to a large sub-carrier amplitude at low brightness levels (giving, for example, reduction of contrast on monochrome receivers) a second alternative was discussed in which a linear chrominance signal was to be used. Besides being no longer a ratio type of system, this went to the other extreme, and the N.T.S.C. favoured a compromise in which chromaticity multiplied by a gamma-corrected luminance signal was used.

In general the receiving equipment required to take advantage of these modifications is either somewhat complex and expensive, or, if simplified, has a tendency to introduce new faults, such as errors in brightness and hue.

Fig. 1. Standard chromaticity diagram, with spectrum wavelengths in millimicrons and N.T.S.C. primaries. The vector representing the colour sub-carrier is superimposed to show its relationship.
While it is essential to aim at a low-cost receiver—the absence of which is at present the main brake on the development of colour television—it may be questioned whether in the long run the three-gun tube is the best basis for this. Not only do three guns add to the expense of manufacture, but they bring with them all the problems of registration, which are by no means solved in existing designs, and necessitate two extra wideband video output stages capable of providing about 100 volts swing and a stable black level.

Fundamentally what is required is a single electron gun controlled by a brightness signal, and a screen consisting of a mosaic of differently coloured phosphor dots or strips, with some mechanism which ensures that the spot only excites appropriately coloured dots or strips depending on the colour signal.

Two types of single-gun tube have been successfully demonstrated using this broad principle. One is the Chromatron, or “Lawrence” tube, using a beam deflecting grid near the screen (see July, 1953, issue, p. 329) and the other is the Philco beam-indexing tube, in which the colour signal is applied to the gun in accordance with the position of the beam across the phosphor strips (see January, 1957, issue, p. 2). Both of these tubes have been used on the N.T.S.C. system. The receivers have needed somewhat greater complexity than those for the three-gun tube, but this is largely due to the N.T.S.C. system being tailored to suit the last-mentioned.

Consider the basic requirements of these single-gun tubes, in which the beam excites the three primary phosphors sequentially and the colour is controlled by gating the beam on and off at appropriate times. For peak-white the brightness signal is a maximum, and it is reasonable to adjust the phosphor efficiencies so that the desired reference white (e.g., Illuminant C on Fig. 1) is obtained when each phosphor is equally excited. The symmetry of this arrangement necessitates a brightness signal which is given by

$$E_b = \frac{E_R + E_Y + E_B}{3}$$

The symbol E_b is used because this “brightness” corresponds more to total energy than to total luminosity. The signal E_b is preferably gamma-corrected at the transmitter for the receiver electron-gun characteristic, and is transmitted instead of the signal E_X in the N.T.S.C. system.

To accompany this “symmetrical” brightness signal, a symmetrical colour signal is also required at the receiver. Such a signal could consist of a sub-carrier modulated in three different phases 120° apart by the three linear colour components E_R, E_Y, and E_B.

If the tube has a single beam control electrode, as in the existing Philco beam-indexing tube, then the colour signals, if they are to be used with the

Fig. 2. Illustration of how gamma-correction causes loss of luminance detail near saturated colours. Read from top (transmitting end) to bottom (receiving end).

Fig. 3. Schematic of a possible receiver for the symmetrical ratio signal using a single-beam c.r. tube.
minimum of processing, must be such that when added to the brightness signal in correct proportion they form the complete brightness and gaging signal to be applied to the tube. This implies that the colour signal amplitude is non-linearly dependent on brightness, as in the N.T.S.C. system. Such a system, therefore, has the faults of the N.T.S.C. system, and in addition is not a constant-luminance system even near white.

Schemes are possible in which the colour signals gate or select the beam after it has been generated under the control of the brightness signal. Such schemes, in which the phosphor-selecting signals depend on hue and saturation, but not on brightness, require a signal which is both symmetrical, as explained immediately above, and a ratio signal as described earlier.

Symmetrical Ratio Receiver

In Fig. 3 is shown how simple, at least in principle, could be a receiver for a beam-indexing tube with this "symmetrical ratio signal." The regenerated subcarrier frequency \(f_{sub} \) locked in phase to the colour sync burst, is mixed with the beam index frequency \(f_b \) to produce \(f_b + f_{sub} \). This is again heterodyned with the colour signal \(E_c \) of frequency \(f_c \) and instantaneous phase \(\phi \), the lower side-band giving \(f_c \) phase - \(\phi \). Thus we now have a signal of beam-index frequency, of amplitude proportional to \(E_c \) and phase - \(\phi \), which can be used to turn on the beam, to an amount controlled by the gamma-corrected \(E_b \) at the appropriate times to excite the desired combination of phosphors. The gun would require two independent control electrodes (e.g. a hexode gun), giving a direct multiplication of the two signals.

A linear ratio system such as the N.T.S.C. modified system mentioned above preserves detail brightness resolution under all conditions, and the hue variation with phase of sub-carrier is independent of saturation. The latter feature is true also of the symmetrical ratio system, but as it is not a constant-luminance system, there is luminance distortion at any edges where the chromaticity changes. It is, however, less subject to brightness noise originating in the colour transmitting channel than was, for example, the original RCA dot sequential system, which was similar in many respects except that it was not a ratio system.

Thus the average amplitude of the colour signals is greater in the proposed system, and the extra brightness noise, especially in the medium brightness areas, where noise is most visible, is not expected to be noticeable. In comparing it with the present N.T.S.C. system, it must be remembered that the last-mentioned is only nominally a constant-luminance system, and departs radically from this principle in or near saturated regions.

The fact that the symmetrical ratio system is not constant-luminance in operation can be shown to be due entirely to the use of gamma-corrected \(E_b \) instead of gamma-corrected \(E_v \) for the brightness signal, and does not depend on the form of the sub-carrier modulation so long as this is linear. Another effect of using gamma-corrected \(E_b \) is that the luminance displayed on monochrome receivers will be incorrect, but as the signal is still panchromatic the resulting monochrome picture is likely to be perfectly acceptable. Incidentally, it is important to note that good results can be obtained on a three-gun tube with this system.

Summarizing the differences between the N.T.S.C. system and the symmetrical ratio system, the fact that with a three-gun tube decoding is performed outside the tube permits independent weighting of the red, green and blue signals, while for single-gun tubes with internal decoding symmetrical signals are preferable. In the N.T.S.C. system the facility of independent weighting is used to construct a nominally constant-luminance system, but because the signals thus weighted are not linearly related to the light intensities, constant luminance is only achieved near white.

It is clear from the discussion above that there is no perfect combination of system and tube. In these circumstances it might be best to forget about expediency, which is always a doubtful guide, and look for a system which is itself as perfect as possible, in the expectation that tube and receiver design will then develop along the necessary lines to match the system, so as to give overall optimum economy and performance.

It may be assumed that such a system would have a true luminance signal, corrected for normal gamma, but it is not so obvious what the colour signal ought to be, beyond the fact that it should be linearly related to chromaticity. It is preferably symmetrical in the sense that any of the three saturated primaries should give equal amplitude, and preferably white is zero, but these two conditions cannot be realized simultaneously unless the divisor used to form the ratios is \(E_b \) and not \(E_v \).

Thus no firm suggestion is made, but a useful purpose will have been served if it is now appreciated that the N.T.S.C. system is not ideal. It is designed to fit a particular type of tube, which is not a really sound basis for choosing a system which must remain valid for many years to come.

Finally, several colleagues must be thanked for many helpful discussions during the preparation of this article, particularly I. J. P. James and E. J. Gargini.
Single-Pentode Flip-Flop, devised by T. E. Ivall, operates by using the valve as a pair of triodes connected in series—the bottom one acting as a cathode follower. A negative trigger pulse applied to the suppressor drives the anode, and hence the control grid, positive. Current is drawn through the screen grid, the cathode also goes positive, and, by virtue of the increased current through the cathode resistor, the suppressor is driven even more negative. A rapid cumulative action takes place, cutting off the top “trioode” and rendering the bottom one fully conducting. A positive going trigger pulse reverses the action. Because of the complete 360° phase shift round the loop the circuit can be operated as a sinusoidal oscillator with, say, an LC circuit in place of the anode load, or a simple RC combination in place of the potential divider connecting anode to grid. A valve with a short suppressor grid base (such as the old EF50) is the most suitable type.

Technical Notebook

Aluminium-Wire Speech Coils, used in loudspeakers to reduce the mass of the vibrating system, bring with them the problem of soldering the wire ends. Wharfedale Wireless Works, in collaboration with Muland, have solved the problem by dipping the wires into a small bath of molten solder agitated by ultrasonic energy. A cavitation effect in the solder removes the oxide film from the aluminium and effective tinning is achieved. Afterwards the tinned wires can be soldered in the ordinary way. A solder compound of 90 per cent tin and 10 per cent zinc is used in the bath at a temperature of about 320°C and the tinning operation takes 2-3 seconds. A recent improvement to the technique

Binary Coded Scales are now being used on electronically controlled machine tools and other equipment where it is necessary to measure a mechanical displacement with great accuracy. They convert the analogue type of indication, such as a pointer against a scale, into a series of digits which can be read off quickly so that the task of the human operator is greatly eased. The circular scale in the sketch (made by Hilger & Watts) is for indicating angular displacement in binary digital form. The binary scale is more economical in displacement detection than other scales (e.g., 0 to 9 in decimal requires ten elements compared with four in binary) and because there are only 0 and 1 elements involved it is easy to devise electrical pick-off systems for feeding the information into digital computers or other electronic data processing equipment. As well as the pure binary code, it is possible to use binary-coded decimal and other special arrangements.

Bilingual Television Transmission, with two different sound accompaniments to the picture, may be a desirable thing for some countries. A method of achieving this technically, devised by the French firm Radio-Technique, has been reported by the European Broadcasting Union. The two audio signals are arranged to modulate two interlaced trains of pulses transmitted in the normal sound channel—on the time-division multiplex principle. The time spacing of the pulses in each train is equal to the duration of a line scan, and the trains are phase locked to the line sync pulses. At the receiving end the method of separation is to apply a gating signal to one of the sound-channel f.s valves in such a way that only the pulses carrying the wanted sound accompaniment are allowed through. The gating signal is generated by shock exciting an oscillator circuit (tuned to the line frequency) from the line scanning circuits and then limiting the resultant complex waveform to provide the required gating voltage levels. By simply reversing the excitation leads either one or the other of the sound accompaniments is gated as required. It is claimed that a very simple and inexpensive “decoder” unit, using no valves, is all that is required to change an ordinary television set into a “bilingual” receiver.

“Too Old At—?” in our September, 1956, issue certainly revealed some interesting facts about people’s hearing, but it didn’t tell you at what stage of development or decay you have to be to hear electrical signals direct without an acoustic transducer. According to a report in the October, 1956, issue of Proc. I.R.E., engineers have experienced an audible response when standing six feet away from the horn of a radar set working at 1300 Mc/s with a peak power of half a megawatt. The pulse length was 2 usec and the p.r.f. was 600 c/s. The most sensitive part of the head proved to be at the sides at a point midway between the ears and eyes and slightly above them. The sounds heard were mostly high-frequency components without much of the 600-c/s fundamental, and people whose ear responses cut off at 5 kc/s heard them much less strongly than those who went up to 15 kc/s. A deaf man with a bone-conduction hearing aid heard nothing at all. Unfortunately, such experiments can be dangerous because high-power microwave radiation can produce cataracts of the eye.
has been a simplified method of maintaining the ultrasonic energy at the optimum frequency to ensure maximum soldering efficiency under all conditions.

Simple Linearity Control for television line scanning, devised by J. C. MacKellar and K. E. Martin of Mullard, consists of short-circuited turns made of foil underneath the line scanning coils on the c.r. tube neck. During scanning the e.m.f. induced in the short-circuited turns is proportional to the rate-of-change of scanning flux. It causes a current to flow which, because of the R and L of the turns, changes exponentially. The flux produced by this induced current opposes the scanning flux and, if the time constant of the turns is small compared with that of the generating circuit, the waveform of the correcting flux is more curved than that of the scanning flux. Thus the curved sections of the waveforms can be arranged to roughly match each other so that a substan­tially linear scan is obtained with very little decrease in amplitude. Adjustment of linearity is achieved by moving the short-circuited turns in relation to the scanning coils so that the flux linkage, and hence current induced, is varied. No “ringing” is caused, as with other types of linearity control. The sketch shows how a pair of the short-circuited turns can be con­structed. They are actually joined at adjacent edges as this simplifies manufacture to producing one foil instead of two. Non-linearity can be reduced to less than 5% and the efficiency compares favourably with existing types of control.

Efficient Rectifier Cooling is the reason for the unusual “mouth-organ” construction of the new Siemens & Halske selenium h.t. rectifiers recently shown to us by R. H. Cole (Overseas). The plates are held at the edges and are arranged in groups with spaces be­tween to give a series of “chimneys” for convection cooling. Then the edge-mounting gives a direct conduction cooling for each set of plates on to the aluminium case, which, in turn, is contact-cooled when it is held flat against a chassis by the fixing lugs. This edge-mounting of the plates has a distinct advantage over the more conven­tional contact-cooled rectifiers, where the plates are stacked parallel with the case side, since it cools all of the plates equally instead of just those at the outsides. The rectifier illustrates a 220-V 300-mA type and measures only 3½in x 1¼in x ¾in.

Simple Transistor Testing, using d.c. methods, may not give complete and detailed information, but it can still be useful in providing a general indication of characteristics. With this in mind, Mullard have introduced a simple instrument by which the possessor of this pack three of the more important junction transistor parameters, and the measurements are presented as direct meter readings. For the first parameter, base-collector short-circuit current gain, the tester takes of the approximately linear relationship between collector current and base current. This permits finite changes of current to be used to measure the parameter with an accuracy high enough for all practical purposes. Measurement is thus reduced to ob­erving the collector current pro­duced by a convenient known base current and transcribing it into a direct meter reading of base-collector current gain. The second parameter is the d.c. collector current for zero base current. Here, since the d.c. collector current is sensibly inde­pendent of collector voltage, direct metering of this parameter can be made. Finally, for collector turn­over voltage, the tester measures the collector-emitter turnover voltage for zero base current. A relatively high voltage is applied to the collector via a resistance, and the turn­over voltage is read directly from the meter.

Aluminium Soft-Soldering, normally very difficult because of the tena­cious oxide film which prevents “wetting” of the metal surface, should be made much easier by a special tool introduced by the Belark Tool and Stamping Company. With this, the surface of the aluminium is mechanically cleaned by a small steel-wire brush vibrating at 100c/s in the centre of the soldering bit (see illustration). Re-oxidization is prevented by working with a pool of molten solder round the bit which excludes the air while tinning is taking place. No flux is used, but the solder has to be the special blowpipe type (80% tin and 20% zinc) with a melting point of 220°C. The soldering bit is actually heated to approximately 500°C, and this is sufficient for soldering sheet metal up to 12 s.w.g. thickness and small castings. Two pieces of aluminium which have been tinned with this vibratory tool can afterwards be joined together by orthodox soldering methods.

Wider than Wide-Angle television c.r. tube recently introduced by RCA in America makes one wonder if the flat “picture-on-the-wall” display device will really be necessary after all. The tube is a 21-inch rectangular type (21EP4) and has a diagonal deflection angle as large as 110° (or a line scan angle of 106°, as shown)! This has reduced the overall length by about 2 inches advantage with the same size of screen and 90° deflection angles. Another feature is a narrow neck diameter (1¼in), which makes it possible to deflect the beam through the extra wide angle with only slightly more power than is required to scan a tube with a 90° angle. An electrostatic focusing system is incorporated for main­taining uniformity of focus over the whole screen. Other American tube manufacturers are following suit with the new angle.

Printed Magnetic-Cell storage device for holding binary information has recently been developed by RCA. An experimental unit has a capacity of 2,560 bits in a volume of only 2 cubic inches. It works on the magn­etic-cell matrix principle described in the December, 1956, issue (p. 596) but consists of a series of thin plates of ferromagnetic material with printed conductors joining the holes. This is possible because the fer­romagnetic storage medium is a ceramic-type material and therefore an insulator. The idea offers a great simplification in manufacture over the conventional matrix stores in which a complex pattern of wires has to be threaded through a great many tiny ferrite cores.

WIRELESS WORLD, FEBRUARY 1957
LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

Transistor Symbols

I HESITATE to add yet another transistor symbol to the great scrap-heap of suggestions that has accumulated already, but I think H. J. Cooke (December, 1956, issue) is working in the right direction and a simplification of his ideas might be worth considering. The following criticisms come to mind:

(1) The point transistor is practically finished, so why bother about it? Even its negative resistance characteristic, so useful for switching, can now be produced in junction devices.

(2) The graphical distinction between p-n-p and n-p-n junction types is not really essential, since this is usually obvious from the polarity of the transistor's power supply.

(3) Anything which involves rectangles or triangles, especially blacked-in ones, takes time to draw. (The ultimate choice of symbol will almost certainly be influenced by technicians who will have to sketch it rather than draw it on the backs of old envelopes.) In any case, enclosed areas do not capture the interest of the eye and suggest function so effectively as the active line.

(4) Mr. Cooke’s arrow for identifying the emitter of the junction transistors suggests that this arrow is in itself the emitter—whereas in reality the emitter is the left-hand junction between p- and p-type materials indicated by the adjoining rectangles in his drawing. Here again we have an element of redundancy and possible confusion.

A logical outcome of these criticisms would be a symbol something like that in the accompanying sketch. I am not particularly fond of it, but at least it is simple and has a familiar look about it without suggesting the physical construction of the point transistor.

London, S.E.5.

JAMES FRANKLIN.

Transistor Chaos

“CATHODE RAY” (November-December, 1956, issues) would find transistor symbols almost as chaotic here as in Britain. However, I would recommend to him the adoption of β for the common emitter current gain, since it is already used by the majority of American manufacturers. The symbol α can then be allowed to waste away.

Which of the resistor systems should be adopted is seemingly being decided by ease of measurement. No doubt this simplifies the work of the quality control section, but surely more emphasis should be placed on the ease of circuit design. The great advantage of the r_o, r_e, r_e system is that external impedances can often be added in directly. With the other systems the external values must be inserted in equations which often obscure the relative importance of the various components.

Canadian Westinghouse Company,
Hamilton, Ontario.

M. O. FELIX.

“High-Quality” Demonstrations

WHILE I agree with Mr. H. Glover (October issue) that the electronic organs are of limited value as test material for high-quality sound systems, I feel that he has overlooked one of their most important features.

It is well known that those organs produce low-pedal notes. This makes them particularly useful for demonstrating the bass capabilities of a loudspeaker. In particular the records of Lenny Dee, which a number of demonstrators used, have excellent pedal notes.

A larger than usual cone area seems necessary for their reproduction, and anything less than an 18-inch unit or, say, two 12-inch units in a suitable enclosure would appear to be inadequate.

Crowborough.

E. R. ASLIN.

Spare Parts

THE increasing complexity of the modern television and sound broadcast receiver prompts me to ask whether the time is not fast approaching when the manufacturers should, in fairness to the buyers of their products, be willing to supply spare parts directly to the private customer in the cases where he is willing and able to fit them.

I have been employed in the radio industry for over 21 years and I well know the arguments against supplying the general public with spares. These, I submit, were perfectly valid in the old days, but required only a reasonable ability as repairers and when circuits were simpler. Also, in those far-off happy days the general public knew very little of radio servicing and possibly cared less.

The position today is entirely different. There are now literally hundreds of firms employing radio “technicians”—for want of a better term—whose daily work involves far more ability than required to repair a radio receiver of half-a-dozen valves.

On the other side, there is reputed to be a shortage of 50,000 service technicians in the retail radio trade. This simply means that having paid possibly £100 for a television receiver, the customer is unable to obtain efficient servicing if and when it breaks down.

I would, therefore, respectfully suggest, sir, that there is a case for the manufacturers to supply parts at normal prices to anyone wishing to buy, provided he quotes the serial number of his receiver. This would prevent spare-time repairers stealing too much business from the dealers, some of whom show at times a lamentable lack of enthusiasm for service work.

The owner of a television receiver would surely not object and pay for spares unless he thinks he knows what he was doing. Even if he made a mess of the job, it’s his own property he is spoiling.

It seems ludicrous to me that a man whose working day is spent among complex electronic devices should be compelled to take a five-valve radio receiver to the local village radio shop to be repaired by someone who probably fills in time mending punctures!

Fakenham, Norfolk.

“TECHNICIAN.”

Tape Amplifier Design

I HAVE just seen R. C. Marshall’s letter in your June, 1956, issue, commenting on my tape amplifier design (November, 1954, issue). The claims suggested by Mr. Marshall certainly represent a sound approach to the design of this particular feedback amplifier, although it may be mentioned that the record amplifier was found to be absolutely stable even with the original values.

It is possible to replace the triode output valve V in the recording amplifier by a pentode. Using a large screen decoupling condenser, the amplifier oscillates with the recording head disconnected, but is stable if the recording head is connected. If a compara-
Electricity Board would do if his garage charged him for 100- and supplied him with 75-octane petrol?

Would he say, “Ah, well, the quantity is correct and the calorific value the same, so I will pay”? I somehow doubt it.

But already my voltage has been as low as 199 instead of 230, and winter hasn’t started yet. Seldom is my television picture quality worth watching between 7 and 9 p.m.

Last February it dropped to 177 volts and all the mains engineer can tell me is that they can’t find room for a sub-station anywhere.

Barnstead, Surrey.

A. R. TURPIN.

But What About “Agenda”? [Ed.]

“FREE GRID,” whom I have long regarded as a firm and sure Upholder of the classical basis of our language, seems to be losing his grip. Not once but twice in the January instalment of his incisive comments he treats “data” as singular. It is hardly surprising that in these days of very optional Latin this solecism should be increasingly common in technical circles, but one expects better of “Free Grid.” He must surely know that “ga = 3.6” and “n = 47” are valve data, and “rA = 13” is valve datum? Or will he soon be writing about “a phenomena” or “a cherubim”? If he lets the humanities down again I shall have to consider writing the “Second Thoughts on Love Theory” (large negative values) he so much dreads.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.”

At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a genuine “Cathode Ray.”

But What About "Agenda"? [Ed.]

“FREE GRID,” whom I have long regarded as a firm and sure Upholder of the classical basis of our language, seems to be losing his grip. Not once but twice in the January instalment of his incisive comments he treats “data” as singular. It is hardly surprising that in these days of very optional Latin this solecism should be increasingly common in technical circles, but one expects better of “Free Grid.” He must surely know that “ga = 3.6” and “n = 47” are valve data, and “rA = 13” is valve datum? Or will he soon be writing about “a phenomena” or “a cherubim”? If he lets the humanities down again I shall have to consider writing the “Second Thoughts on Love Theory” (large negative values) he so much dreads.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.

While on this tack may I also reproach—though more gently—“Diallist” (who, if I’m not mistaken, is another classical scholar) for referring to the present type of British TV as “monochrome”? White, as he well knows, is as far removed from monochrome as it could be, and would more aptly be named “panchrome.” At the same time I do sympathize with his reluctance to keep on using the clumsy and (if the contrast control is properly set) inaccurate expression “black-and-white.” It is time we had a better word.
Improved Sync Separator

Single-Pulse Frame Synchronizing for Good Interlacing

By MICHAEL P. BEDDOES,* B.Sc.(Eng.), D.I.C., A.M.I.E.E.

The composite synchronizing signal for British television consists of alternating trains of line and frame pulses. During the period in which the frame is being scanned, line pulses only are transmitted. In the small interval between the end of the frame scan and the frame flyback a group of pulses at twice line frequency is transmitted to provide a trigger for the fly-back of the frame timebase and also to maintain synchronous operation of the line timebase. In frames, this would cause the initiation of fly-back to vary between, for example, the first and second pulses of succeeding frames. Thus, although the frame lock might be considered to be satisfactory, perfect interlacing would only be possible over a strictly limited region within the locked range. According to Haantjes and Kerkhof, even though a timebase has a tendency towards irregular firing, a single, narrow and perfectly regular pulse will be conducive to the best interlacing. The single pulse frame sync separator described here is rather more elaborate than that developed by Haantjes and Kerkhof.

The process of obtaining the frame-sync signal from the video signal is normally done by cascading two separators. The output of the first (the picture/sync separator) is the composite sync signal, and that of the second (the frame/sync separator) is the frame sync signal. During each frame, the corresponding sync signal may be arbitrarily divided into a group of 202 line pulses and one of 8 frame pulses (Fig. 1). In order to provide a frame sync signal, the frame sync separator must have an output which is produced by the sudden transition from the line pulses to frame pulses, but not vice versa. The essentials of this particular circuit are shown in Fig. 2.

The triode V_1 is driven by the composite synchronizing signal. Its anode current is completely cut off by any sync pulse; in the conduction periods between pulses the full current flows. Thus, for the purposes of explanation, the circuit of Fig. 2 can be replaced by the simpler equivalent of Fig. 3 in which a resistance R (equal to the anode resistance of the triode) in series with a switch replaces V_1. The switch is held open during sync pulses only.

Taking the line pulses first, imagine that the switch (Fig. 3) has been closed for a considerable time, and

* University of British Columbia

Wireless World, February 1957
that the current \(i \) in the inductor has reached its steady value given by

\[
 i = I = \frac{V_{b1}}{R} = \frac{80}{14.7} = 5.43 \text{ mA}
\]

In the first line pulse, the switch is opened for 10 \(\mu \text{sec} \). During this period, the damping is removed from the tuned circuit and \(i \) will decay as part of a sinusoidal oscillation whose period, \(T_1 \) (governed by \(L \) and \(C_1 + C_0 \)), is 83 \(\mu \text{sec} \). However, because the switch is open for considerably less than \(T_1/4 \), the current in the inductor cannot reach zero.

Following the line pulse, the switch is closed for 90\(\mu \text{sec} \). During this period very heavy damping is again applied to the tuned circuit and the inductive current rapidly asymptotes to the steady value \(I \).

Inductive current follows a pattern similar to that outlined for the first pulse. This pattern is repeated for each line pulse in the long train of 2021 line pulses.

Experimentally, it was easier to observe the voltage waveforms at A and B than the current in the inductance. From Fig. 4, during a line pulse \(v_A \) is elevated, implying the decay of \(i \). In the subsequent period, the waveform of \(v_A \) indicates, also by implication, that the steady value \(I \) is reached at about the middle of the line scan. Nowhere within this cycle has the current in the inductor or in the diode reversed sign and therefore no output should, nor indeed does, appear at B.

Frame Pulse Pattern

Taking the frame pulses next, at the instant of the middle of the frame pulse, assume that the current \(i \) in the inductance is zero (Fig. 5) but the voltage across it, \(v_{\text{BA}} \) maintained by the charge in \(C_0 \), is positive. The switch (Fig. 3) is open. The potential \(v_B \) will be held constant by the charge in \(C_1 \). Although the potential \(v_B \) cannot be decreased because of the diode action, it can be increased. Therefore, during the decay of the charge in \(C_0 \), voltage \(v_B \) is elevated as part of a sinusoidal oscillation with a period \(T_2 \) (governed by \(L \) and \(C_2 \)) of 37 \(\mu \text{sec} \).

The switch remains open for 20 \(\mu \text{sec} \), in which period approximately half a cycle of the oscillation can take place. At the end of this period the potential difference, \(v_B - v_{A} \), is now a maximum but beginning to diminish. During the ensuing conduction interval, the switch is closed for 10 \(\mu \text{sec} \), and the current through \(R \) rapidly reduces the potential \(v_A \). Concurrently, \(v_B - v_A \) is also diminishing. In the middle of this conduction period* the potential of \(B \) falls to h.t. voltage and the diode closes. Immediately the mode of operation changes. The current in the inductance increases in the remaining 5 \(\mu \text{sec} \) of the conduction period.

During the period of the next frame pulse, the switch is opened for 40 \(\mu \text{sec} \). The charge in \(C_1 \) reduces the current in the inductance and, simultaneously, the potential of \(A \) is elevated as part of a sinusoidal oscillation of period \(T_1 \) (83 \(\mu \text{sec} \)). In the instant a quarter of this period (20 \(\mu \text{sec} \) later), the current in the inductance will be zero, and the voltage across it, \(v_A - v_{\text{BA}} \), will be positive. Thus, after this instant, a pattern follows which is similar to that already outlined. This pattern will be repeated for each frame pulse in the train of 8 frame pulses.

Experimentally, it was easier to observe the voltage waveforms \(v_A \) and \(v_B \) than the current \(i \) in the inductance. From Fig. 6, the potential \(v_A \) is elevated during the first half of the frame pulse, implying the decay of \(i \). During the second half \(v_A \) is seen to be sensibly constant, held thus by the charge in \(C_1 \). During the subsequent conduction period \(v_A \) is seen to decay rapidly. It is elevated once again during the first half of the subsequent frame pulse.

From Fig. 7, during the first half of the frame pulse, when the inductive current and also the diode current are falling to zero, the potential \(v_B \) is seen to be constant, held thus by the action of the diode. During the second half of the frame pulse when the diode is open, this potential can be seen to increase rapidly, but it decays even more rapidly during the ensuing conduction period. In steady-state, therefore, a single narrow pulse of voltage appears during each frame pulse and at first sight it might appear that what has been described is but one more circuit for separating the trains of frame pulses*\(^4\) from the composite sync signal. This impression, however, is misleading, as will be shown below.

During the line pulses, the power supplied to the circuit (from considerations of the mark-to-space ratios) is 36 times that during the frame pulses.

* See appendix.
During a succession of frame pulses, the magnitude of the voltage pulses at B is, of course, proportional to the square root of the power) from the valve. It is therefore to be expected that in the transition, line to frame, the first frame pulse should exceed its fellows by a factor of \(\sqrt[3]{36} = 6 \). This prediction appears to be verified from Fig. 8. After the train of frame pulses, the operation of the circuit very soon approximates to the steady-state conditions for a succession of line pulses for which there is no appreciable output at B.

Complete Separator Circuit

The circuit for a complete line and frame sync separator is given in Fig. 9. A multiple valve, V(a) and (b), performs most of the necessary operation. The pentode portion, V(a), is a classical picture-sync separator. Its input is the vision-plus-sync signal, while its output consists of the composite sync signal only. This signal synchronizes the line timebase. The triode V(b) is the frame-sync separator. Its input is the composite sync signal from V(a), while its output consists of narrow pulses which are employed to synchronize the frame timebase.

In order to limit the anode dissipation of V(b) it is fed with reduced h.t. During normal operation this valve consumes 6 mA at 80 volts: when the drive is removed the current consumption falls to 4 mA.

In discussing the performance of the circuit, one must consider the effects of interference by noise. If the frame sync-separator is either the simple RC integrator, or the more elaborate "train separator," the derived sync-signal is 400 \(\mu \)sec or more in duration. Therefore, in order to completely mask the frame pulse by noise, a burst of such interference must last continuously for a period which is much longer than 400 \(\mu \)sec, and must coincide with the period when the sync pulses would normally occur.

For the new separator, the critical period in the composite sync signal is considerably shorter; a much shorter continuous burst of noise will therefore be sufficient to destroy the frame lock. Now the probability of obtaining a continuous burst of noise must vary inversely as its duration. Thus, in order to achieve increased precision of frame synchronism by this method, one of the prices to be paid is reduced noise immunity.

There is also the question of variations of performance between samples of the circuit manufactured by normal mass-production techniques. This frame sync circuit was employed in a production run of over a thousand television receivers with satisfactory results. The tolerances allowed on the component values were the usual \(\pm 20\% \) of...
nominal, while the permitted variation in the value of the inductance L (Fig. 2) was even greater, only a minimum value of 100 mH being specified7. Such variations in the circuit values naturally produced observable changes in the waveforms. Between different receivers there was a variation in the number of minor pulses which followed the primary sync pulse; also, there appeared to be a small variation in the actual magnitude of this pulse. In spite of these variations, however, the resulting frame lock remained very precise, and the range of excellent interlace appeared to be substantially independent of the setting of the frame hold adjustment, provided of course that operation was within the synchronous range.

REFERENCES

APPENDIX

TWO numerical analyses will be made, one for the line pulses and the other for the frame pulses. In each analysis, a particular set of initial conditions will be assumed for a particular instant in the cycle; this set will then be shown to be repeated at an instant one period later.

For the line pulses, imagine that just previous to a line pulse the current i in the inductance (Fig. 5) has reached the steady value I (formula 1). During the line pulse, the switch (Fig. 3) is held open for 10 μsec and the charges to be repeated at an instant one period later. This set will then be shown to be substantially independent of the setting of the frame hold adjustment, provided of course that operation was within the synchronous range.

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>

Mathematically, the initial 12 volts can easily be accounted for by the following device. Consider that for all time 12 volts is applied between B and D but that a step of —92 volts is applied suddenly superimposed at \(t = 0 \). Then, for \(t > 0 \), the —92 volts and the steady +12 volts add to produce the same effect as applying the —80 volts step, while, for \(t < 0 \), the effect is that produced by +12 volts alone. Thus the current in the inductance is given by

\[
i = \frac{92}{R} \left[\frac{\sin t}{\sqrt{L/C}} - \frac{1}{4CR^2} \right] \exp \left(-\frac{t}{2CR} \right) - \frac{12}{R} \quad (4)
\]

where \(t \) is in microseconds from the closing of the switch and \(i \) is in milliamperes. Because of the heavy damping, the transient terms in (5) decay extremely rapidly. For example, after 90 μsec (the time for the line scan) the net current is 5.43 + 0.023 = 5.47 mA, where the value 0.023 is the contribution from transient terms. Thus, the initial conditions assumed one period ago have substantially been repeated and the reasoning has completed a full circle.

On even frames, a conduction pulse of 90-μsec duration precedes each train of frame pulses. On odd frames, however, the corresponding conduction pulse is only 40 μsec, and the inductive current immediately before the frame signal is obtained by substituting \(t = 40 \) in (5). This gives \(i = 5.35 \) mA. Now, the current in the inductance immediately before the frame pulses can be regarded as proportional to the height of the first frame pulse. Therefore, the slight variation of this current (5.47 and 5.35 mA) ought to produce a corresponding variation in the magnitude of the frame pulse. Such variation was indeed observed but the small amount of this effect (2.5%, computed) would probably not affect the quality of interlace. This variation could be reduced still further by using a valve with a lower anode resistance (Fig. 2).

For the frame pulses, at an instant in the middle of a frame pulse (Fig. 5) assume the following.

(1) The current in the inductance is zero.
(2) The potential at A is elevated 8 volts above h.t.
(3) The potential at B is still at h.t., but the diode current is zero.

The voltage difference across the inductance is only

\[
i = \frac{92}{R} \left[\frac{\sin t}{\sqrt{L/C}} - \frac{1}{4CR^2} \right] \exp \left(-\frac{t}{2CR} \right) - \frac{12}{R} \quad (4)
\]

where \(t \) is in microseconds from the closing of the switch and \(i \) is in milliamperes. Because of the heavy damping, the transient terms in (5) decay extremely rapidly. For example, after 90 μsec (the time for the line scan) the net current is 5.43 + 0.023 = 5.47 mA, where the value 0.023 is the contribution from transient terms. Thus, the initial conditions assumed one period ago have substantially been repeated and the reasoning has completed a full circle.

On even frames, a conduction pulse of 90-μsec duration precedes each train of frame pulses. On odd frames, however, the corresponding conduction pulse is only 40 μsec, and the inductive current immediately before the frame signal is obtained by substituting \(t = 40 \) in (5). This gives \(i = 5.35 \) mA. Now, the current in the inductance immediately before the frame pulses can be regarded as proportional to the height of the first frame pulse. Therefore, the slight variation of this current (5.47 and 5.35 mA) ought to produce a corresponding variation in the magnitude of the frame pulse. Such variation was indeed observed but the small amount of this effect (2.5%, computed) would probably not affect the quality of interlace. This variation could be reduced still further by using a valve with a lower anode resistance (Fig. 2).

For the frame pulses, at an instant in the middle of a frame pulse (Fig. 5) assume the following.

(1) The current in the inductance is zero.
(2) The potential at A is elevated 8 volts above h.t.
(3) The potential at B is still at h.t., but the diode current is zero.

The voltage difference across the inductance is only

\[
i = \frac{92}{R} \left[\frac{\sin t}{\sqrt{L/C}} - \frac{1}{4CR^2} \right] \exp \left(-\frac{t}{2CR} \right) - \frac{12}{R} \quad (4)
\]

where \(t \) is in microseconds from the closing of the switch and \(i \) is in milliamperes. Because of the heavy damping, the transient terms in (5) decay extremely rapidly. For example, after 90 μsec (the time for the line scan) the net current is 5.43 + 0.023 = 5.47 mA, where the value 0.023 is the contribution from transient terms. Thus, the initial conditions assumed one period ago have substantially been repeated and the reasoning has completed a full circle.

On even frames, a conduction pulse of 90-μsec duration precedes each train of frame pulses. On odd frames, however, the corresponding conduction pulse is only 40 μsec, and the inductive current immediately before the frame signal is obtained by substituting \(t = 40 \) in (5). This gives \(i = 5.35 \) mA. Now, the current in the inductance immediately before the frame pulses can be regarded as proportional to the height of the first frame pulse. Therefore, the slight variation of this current (5.47 and 5.35 mA) ought to produce a corresponding variation in the magnitude of the frame pulse. Such variation was indeed observed but the small amount of this effect (2.5%, computed) would probably not affect the quality of interlace. This variation could be reduced still further by using a valve with a lower anode resistance (Fig. 2).

For the frame pulses, at an instant in the middle of a frame pulse (Fig. 5) assume the following.

(1) The current in the inductance is zero.
(2) The potential at A is elevated 8 volts above h.t.
(3) The potential at B is still at h.t., but the diode current is zero.

The voltage difference across the inductance is only

\[
i = \frac{92}{R} \left[\frac{\sin t}{\sqrt{L/C}} - \frac{1}{4CR^2} \right] \exp \left(-\frac{t}{2CR} \right) - \frac{12}{R} \quad (4)
\]
maintained by the charge in C_1. Because the potential of
A (Fig. 3) is fixed by the charge in C_1, the potential of B, or v_B, will increase rapidly as part of an oscillation whose
period T_2 is governed only by L and C_2. Here $T_2 = 37$
μsec. Thus, if time t is measured in microseconds from
the commencement of the frame pulse

$$v_B = (v_{A,t} + 8) - \cos \frac{2\pi}{T_2} (t - 20) \quad (6)$$

where the first main term is the voltage at A and the second
term is the voltage of B relative to A.

In a low-loss oscillatory LC circuit, the peak kinetic
energy in the inductance very nearly equals the peak
potential energy stored in the capacitance; i.e.,
$$\frac{1}{2} L i^2 + \frac{1}{2} C V^2$$
where V is the peak voltage across the capacitance
and I_1 is the peak current in the inductance. Thus, the
peak current which will flow into the inductance is given by

$$I_1 = 8 \sqrt{\frac{L}{C}} = 0.436 \text{ mA, and therefore the current in the}
\text{ inductance is given by}$$

$$i = - I_1 \sin \frac{2\pi}{T_2} (t - 20) \quad (7)$$

From (6), it is clear that v_B can complete rather more than
half of the cycle at T_2 in the 20μs pulse remaining in the frame
pulse; and at the end of this ($t = 40$), B will be elevated
16 volts above h; while, from (7) the inductive
current will be approximately zero.

During the 10μs of the next conduction period, the
switch is closed. Because there is no diode conduction,
the potential of A can fall exponentially:

$$v_A = 88 \exp - \frac{t - 40}{T_2} \quad (8)$$

where T_2 is the time-constant formed by R and C_2 and
has the value of 22 μs. During this time also

$$v_B = v_A + \text{voltage of } B \text{ relative to A}$$

$$= 88 \exp - \frac{t - 40}{22} + 8 [1 - \cos \frac{2\pi}{37} (t - 20)] \quad (9)$$

The instant that $v_B = V_{A,t}$, the diode again conducts and
the mode of operation changes. From (9) this instant
occurs at $t = 45$; i.e., 3 μsec after the start of the conduction
period; while from (7) the corresponding inductive current is
$+0.373 \text{ mA}$. Also at this instant

$$v_A = 88 \exp - \frac{45 - 40}{22} = 70 \text{ volts} \quad (10)$$

In the 5 μs remaining in the conduction pulse the diode is
closed, and consequently the inductive current will be
given by formula (5), though with the initial constants
appropriately altered:

$$i = 5.45 - \frac{70}{14.7} [0.265 \sin 0.716 (t - 45) +$$

$$\cos 0.716 (t - 45)] \exp [-0.0198 (t - 45)]$$

At the end of the conduction period ($t = 50$)

$$i = 5.45 - 4.76 [0.265 \sin 0.716 (t - 45) +$$

$$\cos 0.716 (t - 45)] - 0.0794 \quad (11)$$

$$= 1.03 \text{ mA}$$

In the next frame pulse, the switch is again opened. The
current in the inductance and the voltage at A are
respectively given by (2) and (3) with I reduced to 1.03 μA.

Thus $i = 1.03 \cos 2\pi \frac{t}{83} (t - 50)$

and

$$v_A = V_{A,t} + 2\pi 1.03 \sin 2\pi \frac{t}{83} (t - 50) \times 10^{-3}$$

where t is once again measured from the beginning of the
previous frame pulse and $L = 100 \mu$H.

At $t = 70$, from (11) $i = 0$ and $v_A = 88$ volts. These
conditions obtain at the middle of the frame pulse and
therefore the reasoning has completed the full circle
correctly.

During the train of frame pulses, it has been shown that
the current in the inductance immediately before a frame
pulse is 1.03 μA, whereas the corresponding current
immediately before the first frame pulse is of the order of
5.4 μA. Thus, the first frame pulse should exceed its
fellows by a factor of 5.4. This in fact seems to be
supported experimentally and closely follows the ratio
derived by energy considerations alone in the main text.

BOOKS RECEIVED

Mathematics for Electronics with Applications by
H. M. Nodelman and F. W. Smith. The mathematical
processes useful in electronic engineering are discussed in
theory and their application to specific problems is
illustrated. Sections are devoted to the use of dimensions in
checking formulae, the solution of networks by determinants and matrices, the applications of series in
non-linear circuits (e.g., intermodulation testing),
methods of transient analysis, and the use of Boolean
algebra in the analysis of switching circuits. Pp. 391;

The Application of Phase-coherent Detection and
Correlation Methods to Room Acoustics: B.B.C.
Engineering Division Monograph No. 9 by C. L. S.
Describes modifications of the pulsed gliding tone
technique of displaying the transient response of rooms,
while from (7) the inductive
current will be approximately zero.

During the 10μs of the next conduction period, the
switch is closed. Because there is no diode conduction,
the potential of A can fall exponentially:

$$v_A = 88 \exp - \frac{t - 40}{T_2} \quad (8)$$

where T_2 is the time-constant formed by R and C_2 and
has the value of 22 μs. During this time also

$$v_B = v_A + \text{voltage of } B \text{ relative to A}$$

$$= 88 \exp - \frac{t - 40}{22} + 8 [1 - \cos \frac{2\pi}{37} (t - 20)] \quad (9)$$

The instant that $v_B = V_{A,t}$, the diode again conducts and

The Gramophone Handbook by Percy Wilson, M.A.
Guide to the choice, installation and maintenance of equipment for the reproduction of gramophone records,
with chapters on the care of discs and an introduction
to tape recording and reproduction. Pp. 227; Figs. 56.
Price 15s. Methuen and Co., Ltd., 36, Essex Street.

Television Explained by W. E. Miller, M.A.,
M.Brit.I.R.E. Sixth edition, revised by E. A. W.
Spreadbury, M.Brit.I.R.E., of a guide to the function­
ing of the component parts of the modern television
receiver, together with a chapter on installation and
initial adjustment. Pp. 184; Figs. 87. Price 12s 6d.
Iffle and Sons Ltd., Dorset House, Stamford Street,
London, S.E.1.

The Morse Code for Radio Amateurs by Margaret Mills.
Advice on learning the code together with a graded series of exercises designed to give
fluency up to a speed of 12 words per minute or more,
and a glossary of amateur abbreviations. Pp. 18. Price
Wideband V.H.F. Convertor

PREPARING FOR THE INTERNATIONAL GEOPHYSICAL YEAR

By G. P. ANDERSON, A.M.I.E.E.*

As readers of Wireless World are aware, we are approaching a maximum in the 11-year cycle of sunspot numbers, and present indications are that this maximum is going to be higher than ever previously recorded, at least during the time that it has been possible to correlate activity on the sun with its effect on radio propagation on the earth. To the average enthusiast, the most interesting and easily observable effects are to be found on the frequencies ranging from 20 to 60 Mc/s or thereabouts, and this article describes apparatus that will enable the reader to extend the tuning range of a shortwave receiver to include this band.

During the last period of “sunspot maximum”, signals from all over the world were being heard on frequencies up to about 50 Mc/s; many trans-Atlantic contacts were made by amateurs on frequencies of the order of 50 Mc/s, but attempts on frequencies only a few megacycles higher (56 Mc/s) did not meet with the same success. During last winter American signals were being heard regularly on frequencies up to 36 Mc/s, and sometimes higher, with very simple indoor aerials, and, of course, the 28-Mc/s amateur band was open to the world almost daily.

Apart from possible ionospheric paths, a fair indication of tropospheric propagation conditions on v.h.f. can be obtained by monitoring the B.B.C. television channels, and a French TV station on about 41 Mc/s will serve as a useful sign that the 145-Mc/s amateur band is open in that direction. Final plans for the International Geophysical Year have not yet been published, but it is possible that some interesting signals may be radiated on v.h.f. in connection with this event.

Design of V.H.F. Convertors.—Due to the strength of signals when propagation conditions are favourable, fairly simple apparatus is often quite satisfactory, and a t.r.f. or “straight” receiver using modern valves could be used. However, a superheterodyne convertor used in conjunction with a shortwave receiver, or a broadcast receiver with a shortwave range, will produce much more satisfactory results. Such a convertor changes the frequency of an incoming signal on, say, 50 Mc/s, to a lower frequency, that can conveniently be about 5 Mc/s, and this “converted” or “translated” signal is then passed to a receiver tuned to 5 Mc/s.

In order to include the frequencies likely to be of most interest, the tuning range of the convertor should extend up to at least 60 Mc/s; the lower limit can conveniently be arranged to overlap the upper frequency of the existing receiver, thus, in effect, extending its tuning range. Although it is possible to use a switched system of coil changing, the writer preferred to use plug-in coils to minimize switching and other losses.

The simplest method of changing the frequency

* Amateur Radio Station G2QY.

Fig. 1. Theoretical circuit of the S-valve convertor. The power supply is built on the same chassis.

Wireless World, February 1957
of the incoming signal is by means of a single valve of the heptode, triode-hexode, or similar type, in which one part of the valve serves as an oscillator and the voltage produced is injected into the electron stream of the other section, which functions as a mixer. Whilst such a unit is perfectly capable of giving a good performance, it suffers from the severe drawback that a strong signal is radiated from the oscillator. This may fall in the television bands and cause interference on local TV sets.

We can minimize this trouble, and at the same time obtain a useful improvement in performance, by inserting an r.f. amplifier between the aerial and the mixer; still further isolation of the oscillator voltages may be obtained by using separate valves for the oscillator and the mixer, and using loose coupling between them for oscillator voltage injection. A further refinement is a stage of amplification at the translated frequency, thereby isolating the mixer from the effects of any changes in the main receiver, as well as giving some additional amplification. For convenience of operation all stages should be ganged, and it is useful to have an aerial trimmer and a gain control available on the front panel of the converter.

The unit shown incorporates the features dis-

LIST OF COMPONENTS

Capacitors
- C13, C14, C16: 20 pF trimmer
- C20: 10 pF variable
- C30, C20: 50 pF variable
- C40, C10: 470 pF
- C17, C13, C18: 0.01 pF (Hi-k)
- C48, C50: 1000 pF (Hi-k)
- C9: 10 pF
- C13, C18, C25: 0.01 pF
- C14, C19: 47 pF
- C15: 4.7 µF
- C20: electrolytic.

(Unless otherwise specified, capacitors can be silvered-mica or ceramic.)

Resistors
- R1, R2, R3, R4: 4.7 MΩ 1W
- R5, R6, R14: 270 Ω 1W
- R7: 6.8 kΩ 1W
- R8: 22 kΩ 1W
- R9: 100 kΩ 1W
- R10, R11: 10 kΩ 1W
- R12, R13: 470 kΩ 1W

WIRELESS WORLD, FEBRUARY 1957
cussed here, and includes simple voltage stabilization of the h.t. supply to the local oscillator. The power supply for the convertor is included in the unit. Plug-in coils are used, the range from 15 to 85 Mc/s being covered with four sets of three coils. The tuning capacitors are ganged and an aerial trimming control is provided on the front panel to compensate for the loading effect of different aerials. The trimmer also simplifies the "tracking" problem in a three-circuit tuner of this type. The other controls are: i.f. gain; convertor in/out switch, for changing the aerial over to the main receiver, and a mains on/off switch.

The circuit is shown in Fig. 1, and it will be seen that 6AK5 valves are used for the r.f. amplifier, mixer and i.f. pre-amplifier. A 6C4 valve serves for the oscillator. The h.t. voltage to the latter is stabilized by a VR105/30, the value of R18 depending on the voltage of the h.t. line. The value shown is suitable for an h.t. voltage of about 200. The circuit is fairly orthodox, but the need for R1 and R4 may not at first be apparent; they provide a d.c. path to earth for the grids of their respective valves when the coils are removed for changing the range. The capacitor C3 across the mixer valve was not found to be necessary in the model shown, but from experience the writer has had with other v.h.f. convertors, it may be needed to prevent oscillation at the mixer output frequency. The power consumption of the convertor is 1.3A, at 6.3V, and 40mA at 200V.

The main points to watch when constructing apparatus for the higher frequencies have frequently been stressed; summarized they amount to this: Unless the writer has had with other v.h.f. convertors, it may be needed to prevent oscillation at the mixer output frequency. The power consumption of the convertor is 1.3A, at 6.3V, and 40mA at 200V.

The points to watch when constructing apparatus for the higher frequencies have frequently been stressed; summarized they amount to this: Unless the writer has had with other v.h.f. convertors, it may be needed to prevent oscillation at the mixer output frequency. The power consumption of the convertor is 1.3A, at 6.3V, and 40mA at 200V.

The coils were wound on 1-in diameter formers, provided with 1-in dust cores for adjustment of inductance. The particular type specified in the schedule is made of polystyrene, and use may be made of the low softening temperature of this material to secure the turns of wire during the winding process. The writer found it convenient, after soldering one end of the wire in Pin 3, to bend it at right angles just above the flange of the former (see Fig. 2), and to hold the wire so that it is resting against the body of the former. If now the wire is heated by carefully applying a soldering iron to it at a point near to the body of the former as shown, it will be found that after a very short time the wire begins to sink into the polystyrene. The iron should now be removed, and the wire and former held in position for a few seconds to allow the polystyrene to harden. Winding the coil may then proceed, keeping the wire taut, separating the turns, and, if felt necessary, repeating the heating process at intervals. After the required number of turns has been put on, the last turn should be secured in the same way as the first and the end inserted into Pin 6 and soldered. The other winding may be added in the same way, and to complete the coil a coating of polystyrene varnish should be applied, which will effectively "embalm" the windings, and prevent any risk of turns moving during handling. If formers of clear polystyrene are used they may be colour coded by applying a coat of paint to the inside of the former.

The coils used in the prototype unit plug into standard octal sockets, which may be colour coded to correspond to the appropriate coils. These sockets, like the valveholders, should be of high-grade ceramic or similar material, with good v.h.f. properties. Details of the windings are given in Table I, from which it will be seen that certain ranges are "padded" with extra capacitance in order to spread the tuning over the more populated frequencies; with one exception these capacitors are fitted in the wiring of the convertor (at C1, C4 and C3), and are brought into circuit by joining tags 3 and 4 of the appropriate coils. It may also be observed that Band B includes both the 21- and the 28-Mc/s amateur bands.

Provided the layout and coil data are followed fairly closely, no difficulty should be encountered in aligning the convertor to provide an output signal for a set tuned to 5 Mc/s. The first step is to adjust the i.f. pre-amplifier to this frequency, and this may be done by setting "i.f. gain" to maximum (with the convertor switched on and connected to the receiver), and adjusting the d.c. in L1, L3 and L4 for maximum "noise" in the loudspeaker. The ranges covered by the oscillator may then be set using a signal generator or a grid-dip oscillator, and remembering to adjust the inductance at the low frequency end of each range, and the capacitance trimmer at the high frequency end, if necessary.

In the prototype unit one value of capacitance served for most ranges, but due to differences in wiring it may be necessary to use different values for each range, in which case the capacitances could be mounted on each coil; this was done in the case

<table>
<thead>
<tr>
<th>Range</th>
<th>Coverage</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15-22 Mc/s</td>
<td>2</td>
<td>81</td>
<td>2</td>
<td>81</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>B</td>
<td>21-30 Mc/s</td>
<td>1</td>
<td>54</td>
<td>2</td>
<td>54</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>C</td>
<td>30-53 Mc/s</td>
<td>1</td>
<td>24</td>
<td>2</td>
<td>44</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>40-85 Mc/s</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>34</td>
<td>2</td>
<td>31</td>
</tr>
</tbody>
</table>

Notes

- All are wound with 22 s.w.g. tinned copper wire, on 1-in. diam slug-tuned formers (Denco Maxi-Q, 6-pin octal based). Enamelled wire may be used if preferred. Turns are spaced by the diameter of the wire.
- Individual pairs of coils for each range (i.e. L1 and L2, L3 and L4, L5 and L6) are wound on the same former, end to end with about 1/16-in spacing between them.

90

WIRELESS WORLD FEBRUARY 1957
of L_n (Range C), where an additional 13 pF was needed. The value of the paddler capacitor C_{17} appears to be a good compromise and gives satisfactory tracking over all bands. However, some experiments may be useful in individual cases to obtain optimum results.

Having adjusted the oscillator range, the signal frequency circuits may be aligned, again adjusting the inductors for maximum signal near the low frequency end of each range, and the capacitors at the h.f. end. (This subject has been dealt with thoroughly in a number of publications and the reader is referred to them if he should require further information.)

Switch S_1 enables the convertor to be put in or out of circuit without having to manually change-over plugs, and in the "out" position the aerial is connected to the main receiver, and the convertor is disconnected.

Aerials

Aerials.—The unit may be used with more or less any length of wire as an aerial, and if a single "long wire" aerial is used, it should be connected to terminal D_3 of the convertor, D_1 being strapped over to the earth terminal E. Care should be taken to make these connections correctly, so that the aerial is connected to the output socket when S_1 is set to "out."

On the higher frequencies, however, greatly improved results can be obtained by using resonant aerials; that is, aerials the lengths of which are chosen to tune to the particular frequencies in which one is interested. A convenient length consists of a half-wavelength of wire, that is, one 5 metres long for reception on 10 metres, and although such an aerial connected as described for a "long wire" will give good results, its efficiency is severely limited by the fact that, being only a short length of wire, most of it will be screened by being inside a room. It is preferable, therefore, to place the half-wavelength of wire as high and as clear of buildings as possible, and connect it to the receiver by a transmission line, that will convey signals from the aerial with little loss, and at the same time pick up minimum signal itself, thus reducing the effects of man-made static. Much information has been published on aerial design, but for the purpose of this article it will be sufficient to give the formula for determining the length of a half-wave aerial; this is

$$l (\text{feet}) = \frac{462}{f (\text{Mc/s})}$$

If the wire is cut at the centre and an insulator inserted to separate the two halves, and a length of suitable feeder used to connect it to the receiver, it can be erected well away from the house. Balanced feeder of the correct characteristic impedance of 75 or 80 ohms is available, but an alternative may be made from electric light "flex," preferably plastic insulated, which has approximately the same impedance. It is, however, more "lossy," and is liable to be even more so in damp weather. In either case the ends of the two conductors forming the feeder should be connected to D_1 and D_3, the strap from D_1 to E not being required; terminal E may be connected to earth. Coaxial feeder of the type used for connecting TV aerials and receivers would be satisfactory also, the centre conductor being connected to D_3 and the sheath to D_1.

The half-wave aerial favours reception of signals from directions at right angles to its length, and this factor can be made use of if reception is required mainly from a particular direction; but for general (or omni-directional) coverage the aerial may be erected in a vertical position. As a half-wavelength at 28 Mc/s is about 16 ft and at 50 Mc/s only about 9 ft it is quite a practical proposition to erect such an aerial. The design of more elaborate aerials and arrays is beyond the scope of this article, and in any case such aerials are unnecessary for the listener who only wants to hear "what's going on" on the very high frequencies.

CLUB NEWS

Birmingham.—A demonstration of high-quality sound reproduction will be given by members of the West Bromwich and District Amateur Radio Society by a representative of Whiteley Electrical Radio Company on February 15th. At the first meeting in February (1st) G. A. Swinnerton (G6AS) will speak on operating in the 200 Mc/s bands. In addition to the fortnightly meetings held at 7.45 at Church House, High Street, Erdington, there are instructional and constructional classes every Tuesday and Wednesday evening, and the club station (G3JBN) is available every day for use by members. Sec.: G. N. Smart, 110, Woolmore Road, Erdington, Birmingham, 23.

Bradford.—The subjects to be covered by speakers at the meetings of the Bradford Amateur Radio Society on February 12th and 26th are respectively, oscilloscopes (by G. F. Caven), and transformers (by P. Howarth). Meetings are held at 7.30 at Cambridge House, 66, Little Horton Lane. The fortnightly meetings are preceded by half-hour mrose classes. Sec.: F. J. Davies (G3KSS), 39, Pullum Avenue, Eccleshill, Bradford, 2.

Bury.—The February meeting of the Bury Radio Society will be held at 8.00 on the 12th at the George Hotel, Kay Gardens, when H. A. Rothwell (G6QT) will demonstrate an all-transistor broadcast receiver. Sec.: L. Robinson, 56, Avondale Avenue, Bury.

Leicester.—Dekatrons and other counter tubes will be covered by M. H. Kind (G3KZX) in his lecture to the Leicester Radio Society on February 18th at 7.30 at 91, Swannington Street. Sec.: M. H. Kind, 91, Swannington Street.

Newbury.—J. H. Etheridge, of Cinema-Television, will speak at the flying-spot particle resolver at a meeting of the Newbury and District Amateur Radio Society on February 22nd. Meetings are held at 7.30 at Elliott's Canteen, West Street. Particulars are obtainable from 83, Newtown Road, Newbury.

Sidcup.—The next meeting of the Cray Valley Radio Club will be held at the Station Hotel, Sidcup, on January 22nd at 5.00. G. Usher (G2CCD) will give a talk entitled "Antennas for the amateur." Sec.: W. G. Wards (G3JHC), 49, Dulverton Road, London, S.E.9.

Wellingborough.—On February 28th G. Abrams will address members of the Wellingborough and District Radio and Television Society on "Basic audio amplifiers." Arrangements are being made for a Mullard lecture and film on valve manufacture on the 21st. Meetings are held each Thursday at 7.30 at Silver Street Club Room. Sec.: P. E. B. Butler, 84, Wellingborough Road, Rushden.
NEGATIVE RESISTANCE

The Answers to Last Month's Questions

By "CATHODE RAY"

A FRENCH reviewer* has remarked that it is my custom to take supposedly simple things and show how obscure they are; and then, when the fog has become really dense, to wave a magic wand and clear it away. That may be all very well when the fog obeys, but last month it tended to thicken continuously, necessitating a postponement of the trick. In case you haven’t meanwhile found your own way out or lost interest, the attempt will now be made, with apologies for any inconvenience.

The problem, you may remember, concerned negative resistance—as provided, for example, by dynatron or transistor—in circuit with positive resistance. Both kinds of resistance can be represented as voltage/current graphs. Fig. 1 shows the characteristic curve of a dynatron; between A and B its resistance is negative, indicated by the line sloping the "wrong" way—current decreasing with rise in voltage. The straight line represents the linear positive resistance R; and to see how the total voltage V is shared between it and the dynatron we plot it to an inverted voltage scale, beginning at V0, as its zero and increasing positively downwards. So the downward slope of this line indicates positive resistance all the way. The amount of resistance appears as steepness of slope. The only points on the diagram corresponding to equal current through both resistances are those which are common to both lines.

With two positive resistances only one such point is possible, but a peculiarity of negative resistance is that the same total voltage can sometimes be divided between the two resistances in more than one way, with different currents; for example, P, Q and S in Fig. 1.

We found by experiment that we could set the circuit to point P by tying down the junction between positive and negative resistances to a tapping V0 on the voltage source, but that this point was unstable, because immediately the tapping was disconnected the voltage flipped to Q or S and stayed there. If, however, R was lower, as in Fig. 2, only one situation was possible.

Again by experiment we found that the negative resistance provided by a point-contact transistor with common base bias has a different kind of V/I curve, as in Fig. 3; but that in spite of the fact that at any two voltages the relative slopes of the positive and negative resistance are the same as in Fig. 2, this circuit turns out to be unstable and flips to Q or S just like Fig. 1. So our theory, based on Figs. 1 and 2, that the circuit is unstable when R is greater than the negative resistance and stable when it is less, broke down, and we were faced with Thomas Roddam's poser—how can the circuit, set to P, know whether it is stable or unstable without going to see which way the negative resistance bends? And how can it do that if it is stable? And how can it do it anyway, seeing that it can't move from P without being more than one current or voltage in the same place at the same time, which is impossible?

We had been given a possible clue to the last of these questions by Mr. Roddam, when he pointed out that no real circuit is free from reactance. In practice

*F. A. Toute La Radio, November 1955, p. 391.
there is always some stray capacitance across the dynatron in Fig. 1, and the current from this as its voltage changes between P and S or Q is in the right direction to bridge the current gap between the two lines during this change, and the amount of current required controls the speed of the change. We demonstrated this by making the capacitance large, slowing the process down so much that we could easily follow it on milliammeters.

That particular problem seemed to have been disposed of very neatly until we applied it to the transistor circuit. Because the two lines above and below P in Fig. 3 are on opposite sides of one another as compared with Fig. 1, the capacitance current is only in the right direction to bridge the gap between the two lines when the voltage is moving towards P, which therefore ought to be a stable point. But experiment showed that even with as much as 300 μF across the transistor it was most definitely unstable!

Meanwhile we had got no nearer the answer to Roddam's question; and our shunt capacitance theory, demonstrable though it was in connection with Fig. 1, led us into the most frightful dilemma with Fig. 4, which illustrates the transistor in series with a high resistance and shunted by a capacitance. Near P it is identical with Fig. 1, so presumably the slightest displacement causes capacitance current that displaces it more, and so on, just as happened with the dynatron; but the current gap, instead of closing up at Q or S, widens continuously, causing the capacitance voltage to change faster and faster; but the negative resistance characteristic makes that impossible, for the voltage change actually reverses! We tried it, and found that the current and voltage oscillate continuously to and fro between the bends. But how does it manage to get into reverse there, contrary to our current-gap theory? And how is P in Fig. 4 unstable in spite of there being only one intersection, as in the stable Fig. 2?

Two Kinds of Resistance

It was with all these awkward questions unanswered that I was callous enough to leave you last time. In the meanwhile I have thought up some answers, which I hope will have been worth waiting for.

It is difficult to know where to start, but first of all let us tackle the question why P in Fig. 2 represents a stable condition whereas in Fig. 3—which in the region of P is absolutely the same—it is unstable. That was the original Roddam problem.

Because diagrams of various kinds are such valuable mental aids, there is a danger of relying on them too completely, overlooking their limitations. Our ideas (if you will pardon my assuming that you, too, were taken in) last month were heavily based on voltage/current graphs, in which negative resistance appears as a slope downward from left to right. From this point of view there is no difference whatsoever between a portion of negative-resistance characteristic plotted from a dynatron and one from a transistor, provided their slopes are both the same. Yet they behave quite differently in practice. Since negative resistance is a particular relationship between current and voltage, and it is that relationship which is expressed by the graph, can two identical pieces of graph possibly represent different kinds of negative resistance?

The difficulty in seeing a difference between two resistances that appear identical may perhaps be that we are too much under the spell of Ohm's law. If we increase the e.m.f. applied to a 500-ohm resistor by 10 volts we know that the current through it will rise by 20 milliamps. We also know that if we increase the current through it by 20 milliamps the p.d. across it will rise by 10 volts. Cause and effect are interchangeable. It is the same with pressure and rate of water flow through a pipe. But if a fireman uses the water to knock a man down, cause and effect are not interchangeable. A man falling down doesn't necessarily cause water to gush out of a hose. And because the relationship between current and voltage in a valve or transistor can be graphed in the same way as for a resistor, it does not entitle us to assume that the same reversible cause-and-effect holds good. We have already seen that although the passing of I, milliamps through the device illustrated in Fig. 5 necessarily causes the p.d. across it to be Vp volts, applying Vp volts to it doesn't necessarily drive I, milliamps through it. It might be I,. Or I,,. In this case it is only by regarding current as the cause and voltage the effect that we can get an unambiguous result. This kind of negative resistance is therefore called current-controlled. Conversely, the dynatron is a voltage-controlled negative resistance.

The persistent inquirer will object that distinguishing them by these names doesn't properly
reduce the voltage available for driving current from emitter to base. So \(I_e \) falls. That immediately causes a bigger fall in \(I_b \), which makes the base less negative; that is, the base potential rises to meet the falling emitter potential, further reducing \(I_b \). So the slightest reduction in \(V_e \) causes \(I_b \) to fall with a trigger action, the rate of cut-off being limited only by the time taken by the electrons and holes inside the transistor to do their stuff, as studied by us in the last September issue. The process is only saved from going on for ever by the top bend, where the transistor input resistance becomes positive and a stable position \(Q \) is taken up. If the trigger had been pulled in the other direction—it can be now, by raising \(V_e \) until the hump above \(Q \) has been cleared—it flies to the alternative stable point \(S \).

Effect Follows Cause

We see, then, that an actual transistor circuit reacts to a voltage change near \(P \) in exactly the opposite way to that predicted by the V/I diagram. This is because it is a current-controlled negative resistance, so is affected by the applied voltage change only in so far as that changes the input current, which in turn changes the input voltage in the opposite direction. But it can’t work in the reverse order, any more than the man falling down can make water come out of the hose. It is true that if, when we lowered \(V_e \), some playful demon had intervened for a microsecond or two, increasing \(I_e \) just in advance of us, our action would have sustained this result after the demonic influence had disappeared, for the increase in \(I_e \) would by then have made the base move considerably more negative than the emitter, so *increasing* the voltage between them and hence also \(I_b \) and \(I_e \), in accordance with Fig. 3. Presumably also a shunt capacitance would then have acted always in such a way as to turn any excursions back towards \(P \), so making it a point of stability. But science is based on the assumption that demons, if any, do not interchange cause and effect in this way; and Fig. 3 is invalid for control by voltage. Hence the complete and instant failure of every experiment I could devise to hold the circuit at \(P \).

Incidentally, my fanciful closing remark last month (about my having to see this month’s issue to get the answers) was really a rather subtle clue, because the only reason for its fancifulness was its reversal of cause and effect.

The problem of the gap between the two lines when moving from \(P \) to \(Q \) or \(S \) does not arise, because the extremely brief period of the journey is occupied by the internal electronic processes I mentioned, during which time the transistor has no static characteristic curve that one can draw on a V/I diagram.

In the same way it can be seen that because the negative resistance of a dynatron is voltage controlled it is unstable with a resistance *greater* than the negative slope, as at \(P \) in Fig. 1, whence there would be a flip to \(Q \) or \(S \) even if all shunt capacitance could be completely removed. The fact that the capacitance explanation is also true for this particular arrangement is just one of those awkward coincidences that make it so easy to confuse two different issues and draw fallacious conclusions. Fig. 1 is just Fig. 3 with current and voltage interchanged; it is,

(Continued on page 95)

Fig. 6. Diagram of transistor circuit used to experiment with current-controlled negative resistance.
in fact, the dual* of Fig. 3, and since the dual of
shunt capacitance is series inductance we would
expect series inductance to have the stabilizing
influence we sought from shunt capacitance in the
transistor circuit. The diagram with which we
"proved" the stability of P in Fig. 3 also serves for
inductance in Fig. 1 if dualized by interchanging
current and voltage (Fig. 7), for the current-bridging
effect of the changing voltage across the shunt capacitance
becomes a voltage-bridging effect due to a
changing rate of current through the series inductance.
But, as with the transistor, this stabilizing
effect is of academic interest only, for it is over-
ridden by the impossibility of effect preceding cause.

In short, the answer to our original question
(How does the circuit know whether it is unstable,
as in Figs. 1 and 3, or stable, as in Figs. 2 and 4,
without departure from P to see whether the negative resistance curve closes in to a Q and S or opens out?) is that a given negative slope around P in a
V/I graph can represent either of two different kinds of negative resistance—current-controlled and voltage-controlled—and since this nature of the negative resistance in the actual circuit determines which is cause and which is effect, and effect is bound to follow cause, the stability or instability is determined. We have already studied Fig. 3 at length and seen why P is unstable. In Fig. 2, where the diagram at P is identical, the situation represented is nevertheless different, because a slight lowering of voltage is a direct cause in its own right, which increases the current, which in turn raises the voltage until it is a sufficient level to change the state of flux and doesn't really exist as a static curve.

The gap between the negative and positive resistance characteristic curves needs no filling, because during the flip the negative-resistance characteristic is in a state of flux and doesn't really exist as a static curve.

The second thing to recall is that in attempting to set the circuit an impossible and absurd task we stumbled across oscillation instability—with capacitance across the transistor and a high resistance in series, as represented by Fig. 4. (Incidentally, the same thing happens with a dynatron and low resistance (Fig. 2) if there is inductance in series—as the dualists among us would expect.) Theory seemed to indicate that the nightmare "irresistible-force-and-immovable-object" situation would take charge, the speed of flip increasing to infinity and even beyond. But the thing oscillated to and fro,

Oscillations or Flips?
It seems (I hope so, anyway) that we are both right as far as we go. The discrepancy is removed if we recognize two kinds of instability: the kind we have been considering, which we might call flip instability; and the kind Roddam was considering, which we might call oscillation instability. Our kind is the inability of a circuit with negative-resistance to stay at the middle point of three; for example, P in Figs. 1 and 3. The reason is the fact that effect comes after cause, not before; a fact that over-rides anything that reactance can do. The gap between the negative and positive resistance characteristic curves needs no filling, because during the flip the negative-resistance characteristic is in a state of flux and doesn't really exist as a static curve.

The second thing to recall is that in attempting to set the circuit an impossible and absurd task we stumbled across oscillation instability—with capacitance across the transistor and a high resistance in series, as represented by Fig. 4. (Incidentally, the same thing happens with a dynatron and low resistance (Fig. 2) if there is inductance in series—as the dualists among us would expect.) Theory seemed to indicate that the nightmare "irresistible-force-and-immovable-object" situation would take charge, the speed of flip increasing to infinity and even beyond. But the thing oscillated to and fro.

*Wireless World, April 1952; also Second Thoughts on Radio Theory, Chap. 35.

Fig. 7. A series inductance L makes possible a gap V₁₁—V₁₀ between the voltages across dynatron and resistance R, provided that the current through all three circuit elements is changing in the direction away from P.
and we haven't found any explanation for the reversal at each bend.

When I put an oscilloscope across R, in the transistor circuit it showed that the speed of flip was indeed very great. One could tell not only by the fact that during it the trace was as near vertical as one could see, indicating an immeasurably small time period, but this vertical trace was almost invisible, showing that the ray was moving at very high speed. However, the speed of current change could never actually reach infinity, for at least two reasons. The first is the already-mentioned finite speed of electronic action inside the transistor, which renders the negative-resistance curve invalid at very high rates of change. The second is that every circuit has some inductance, and however small it was it would set up an infinitely large voltage if the current changed infinitely fast. So the current from the shunt capacitance not only causes an increasing horizontal separation of the two working points P_1 and P_2, but also a vertical separation, representing the voltage of self-induction. One can therefore visualize the two points starting off side by side; then one rising above the other, overtaking it horizontally, and driving the other in the opposite direction, where it follows.

In a transistor circuit without added inductance, in which oscillation is of a sawtooth and pulse (or relaxation) type, my guess is that the electronic time delay is likely to be the larger influence. If inductance is added in series with the capacitance, one gets an acceptor circuit which is in effect a low-impedance dynamic load in parallel with R, swinging it round from the Fig. 4 position to the flip-unstable position (Fig. 3). But now it is not merely flip-unstable, for being a dynamic or oscillatory load the inductance reverses the motion smoothly at the end of each half-cycle, and oscillation is more nearly sinusoidal.

The behaviour of the dynatron, with series inductance to convert the stable Fig. 4 into oscillation instability, is the dual of what I have just described. But the electronic action is much swifter in the dynatron, and the inductance is invariably shunted by at least some self-capacitance, making a rejector circuit, so my guess is that capacitance is here the main reversing influence. The effect of the high-impedance oscillatory circuit in series with the comparatively low R in Fig. 2 is to swing the load line up to the Fig. 1 position.

So in the end we find that, out of Figs. 1-4, 1 and 3 are the unstable ones, and 2 and 4 the stable. This is on the understanding that 2 and 4 do not have hidden about them enough reactance to bring the load line at some frequency or other into the 1 or 3 position.

If R in Figs. 1 and 3 is a simple positive resistance it is effective at all frequencies down to zero, and there is no reversing agent, so it just flips once to a stable point, Q or S. Supposing there could be no reactance at all the speed of slip would be governed entirely by the speed of electronic processes in the negative-resistance device. During this short period its characteristic curve would be changing in such a way as to eliminate any gap between itself and the resistance line. Reactance slows the flip by filling a current or voltage gap.

If R is the dynamic resistance of a resonant circuit it depends on frequency. The simplest sort, having one lumped inductance L and one capacitance C, in addition to inevitable resistance, is over-all resistive at only one frequency. If L and C are in series, the result is an acceptor circuit, which at resonance is a low resistance, and therefore likely to form an unstable combination with a current-controlled negative resistance. If indeed its resistance is lower than the negative resistance, continuous oscillation will result at the frequency of resonance, for the integration of current and voltage twice during each cycle causes reversal at the bends by a combination of the current-gap effect studied last month and the voltage-gap effect illustrated in Fig. 7. Because current is the thing common to both L and C in a series circuit, it is easy to remember (even apart from Fig. 3) that it is the appropriate kind for oscillation with current-controlled negative resistance.

Conversely, the parallel-resonant or rejector circuit, in which the same voltage is across both L and C, is the one for voltage-controlled negative resistance; it provides the high dynamic resistance which Fig. 1 shows is needed for instability. In spite of the appearance of Fig. 1, it is effectively in parallel with the negative-resistance device; the battery V is there simply as bias, and at the frequency of oscillation can be regarded as a short-circuit.

The dynatron and the point transistor with base bias resistance are not much more than technical curiosities, which would hardly justify the time we have given to them. But they typify the much more used devices in which negative-resistance is created by positive feedback. So the same principles apply to all kinds of positive-feedback circuits, which would be quite something even if we didn't remember that most negative feedback is positive at some frequencies.

Chromium Nitride Resistors

RESISTORS of small dimensions and very high stability are sometimes required for special types of equipment, and investigations at the Battelle Institute in America have shown that it is possible to meet these requirements with resistors constructed of films of chromium nitride (Cr-N), or of chromium-titanium nitride (Cr-Ti-N). Films of these materials are deposited on ceramic bases by the vacuum-evaporation method and resistors of up to several megohms can be made having temperature coefficients of resistance less than 0.01 % per degree C.

Nitriding is carried out at temperatures ranging from about 950°C to 1250°C and the films so treated exhibit wide ranges of temperature coefficient and of resistance per square. Under certain conditions the temperature coefficient changes from positive to negative and the investigations point to the possibility of producing a wide range of resistors with near-zero temperature coefficients. The stability is greatly improved by mounting the resistors in sealed glass containers.

2. The normal expression for resistance of a conductor is given by:

\[R = \frac{\rho \times l}{w} \]

where \(R \) = resistance in ohms, \(\rho \) = resistivity in ohm-cm, \(l \) = length, \(w \) = thickness and \(w \) = width in cm. Resistance of films of constant \(R \) and \(l = w \) is known as "resistance per square."
FEBRUARY MEETINGS

LONDON
4th. I.E.E.—“The importance of research in hearing and seeing to the future of telecommunication engineering” by Dr. E. O. Cherry at 5.30 at Savoy Place, W.C.2.

8th. Television Society.—“Scatter propagation and its application to television” by J. A. Saxton (D.S.I.R. Radio Research Station) at 7.0 at 164 Shaftesbury Avenue, W.C.2.

12th. I.E.E.—“The structure of the single-trace high-speed oscillograph” and “The design and performance of a single-trace high-speed oscillograph with very high writing speed” by M. E. Haine and M. W. Jervis at 5.30 at Savoy Place, W.C.2.

13th. Radar Association.—“Automation: computer-controlled machine tools for small quantity production” by D. T. N. Williamson (Ferranti) at 7.30 at the Anatomy Theatre, University College, Gower Street, W.C.1.

14th. British Kinematograph Society.—“Photo-electronic aids to photog. etry” by Professor J. D. McGee at 7.15 at the Royal Society of Arts, John Adam Street, Adelphi, W.C.2.

15th. B.S.R.A.—“Some recent developments in amplifiers” by F. Langford-Smith at 7.15 at the Royal Society of Arts, John Adam Street, W.C.2.

15th. Institute of Navigation.—“Navigation and traffic control over the north Atlantic” by D. O. Fraser at 5.15 at the Royal Geographical Society, 1, Kensington Gore, S.W.7.

15th. Physical Society and Institute of Physics.—“Nucleonics in non-destructive testing” by Dr. R. W. B. Stephens at 6.30 at 47 Belgrave Square, S.W.1.

20th. I.E.E.—“The Stereoscopic recording and reproducing system” by H. A. M. Clark, Dr. G. F. Dutton and P. B. Vanderlyn at 5.30 at Northampton Polytechnic, St. John Street, E.C.1.

21st. Television Society.—“The design of oscilloscopes for television laboratory work” by O. H. Davies (Consort) and D. A. Drew at 5.30 at Savoy Place, W.C.2.

26th. I.E.E.—Discussion on “The analysis of waveforms” opened by A. Cooper and D. A. Drew at 5.30 at Savoy Place, W.C.2.

27th. Brit. I.R.E.—“Some applications of nucleonics in medicine” by Dr. R. W. B. Stephens and P. B. Vanderlyn at 5.30 at the London School of Hygiene and Tropical Medicine, Keppel Street, W.1.

BELFAST
12th. I.E.E.—“Electronics and automation” by Dr. H. A. Thomas at 6.30 at the Engineering Department, Queens University.

BRISTOL

27th. Institution of Production Engineering.—“The use of transistors in radio and television” by Dr. A. J. Biggs at 6.15 at Kings College.

CAMBRIDGE
19th. I.E.E.—“Electronics and automation” by Dr. H. A. Thomas at 8.0 at Cavendish Laboratory, Free School Lane.

CARDIFF

CHESTER
27th. Society of Instrument Technology.—“Computer-controlled machine tools” by G. S. Kerram (Ferranti) at 7.0 in the Board Room of Chester and District Hospital Committee, 5 Kings Buildings, King Street.

EDINBURGH
22nd. Brit. I.R.E.—“The field evaluation trials of electronic equipment” by H. Holmes and “The electronic manipulation of digits applied to statistics” by J. Kyles at 7.0 at the Department of Natural Philosophy, University of Edinburgh.

GLASGOW
14th. Brit. I.R.E.—“The earth satellite project” by P. H. Tanner at 7.0 at the Institution of Engineers and Shipbuilders, 39, Elmbank Crescent.

LINCOLN
28th. Institution of Production Engineers.—“Electronic control” by J. A. Stokes at 7.30 at the Ruston Club.

LIVERPOOL
14th. Brit. I.R.E.—“Radioactivity and its measurement” by E. W. Pulsford at 7.0 at the Chamber of Commerce, 1 Old Hall Street.

MANCHESTER

12th. Society of Instrument Technology.—“Computing technique applied to measurement and control” by J. Wills at 7.30 at the College of Technology.

13th. I.E.E.—“Frequency-modulated quartz oscillators for broadcasting equipment” by W. S. Mortley at 6.45 at the Engineers’ Club, Albert Square.

NEWCASTLE-ON-TYNE
18th. I.E.E.—“The use of transistors in radio and television” by Dr. A. J. Biggs at 6.15 at Kings College.

RUGBY
26th. I.E.E.—“The B.B.C. sound broadcasting service on very-high frequencies” by E. W. Hayes and H. Page at 6.30 at the College of Technology and Arts.

WOLVERHAMPTON
13th. I.E.E.—“An automatic system for electronic component assembly” by K. M. McKee at 6.0 at the Wolverhampton and Staffordshire Technical College, Wulfruna Street.

January Amendment
In place of the I.E.E. discussion on January 29th on the performance of d.c. amplifiers, mentioned last month, four papers will be read, including “A bridge network for the precise measurement of direct capacitance” by A. C. Lynch, and “A simple transformer bridge for the measurement of transistor characteristics” by W. F. Lovering and D. B. Britten.

TRIX sound equipment serves the world
Johannesberg Station, a key-point of South African Railways, informs its millions of passengers a year, through TRIX sound equipment, further proof of the reputation TRIX equipment enjoys throughout the world for all that is finest in perfect sound diffusion.

THE TRIX ELECTRICAL CO. LTD.
MAPLE PLACE, TOTTENHAM CT. RD., LONDON, W.1
Guarantees

TO ME it has always seemed ridiculous that a new sound or television receiver should not be covered by a single comprehensive guarantee. As it is, there is a twelve months' set-maker's guarantee, but this does not cover the valves and cathode-ray tube for which there are separate three- and six-month guarantees. And there's another absurd point. The purchaser isn't covered at all for consequential damage caused by the failure of a particular component. Suppose, for example, that the breakdown of a capacitor damages several valves. Then the only free replacement to which you're entitled is that of the capacitor. The valves, you see, didn't blow up through any defect in their materials or manufacture. That kind of guarantee isn't worth having.

Twelve Months' Comprehensive

What I'd like to see is a comprehensive 12-month guarantee for the whole set covered by a single registration card, returnable by the purchaser to the manufacturer of the set. After all, the set manufacturers pay the piper and they can call the tune. If they stuck out for comprehensive twelve-month guarantees to them by valve and cathode-ray tube makers, they'd get them. I'm sure that the result would be increased sales. A hesitant customer is much more likely to take the plunge if he can feel that he knows exactly where he is with his set for the next twelve months. I've heard not a few people say that they won't buy a television set with its big array of valves and its cathode-ray tube until valve and tube makers show sufficient confidence in their products to guarantee them for more reasonable periods.

An Old Stager

THE OTHER day I was shown what must be one of the oldest wireless receivers still at work. Built in 1923 or 1924, it had originally five "R" valves—and what the output from its horn loudspeaker must have sounded like one shudders to think! It now has four 2-volt triodes and a power valve feeds a moving-coil loudspeaker. These are almost the only alterations that have been made. Few repairs had been needed, I was told; but valve replacements had naturally been necessary at intervals. Still in its original home-made cabinet, it is a strange-looking thing and vastly bigger than the five-valve set of today. I imagine that the sets—both sound and television—that we think so neat to-day will look just as cumbersome and as weird to those who see them in museums thirty odd years from now. Transistors will undoubtedly reduce the size of both, and flat cathode-ray tubes will slim television sets till they measure no more than five or six inches from back to front.

Direct or Projection?

THE FLAT cathode-ray tube will undoubtedly be perfected both in this country and in America. But are big tubes the best answer to the demand for big pictures? Myself, I very much doubt it. I've always thought projection the sounder and more scientific way of providing a large-sized television image. One wonders why it has not caught on. The number of projection sets seems to grow less at each succeeding Radio Show. Amongst its advantages are that, size for size, the projected picture is usually a good deal less liney than the directly viewed. Then there's the difference in cost when a new cathode-ray tube is needed. I believe that what has hindered the progress of the projection receiver is that the optical system needs rather skilful adjustment and that servicemen capable of carrying this out are too few and far between.

Holme Moss or Emley Moor?

A FRIEND who has recently been in Leeds tells me that he heard one or two complaints of interference by the v.h.f. sound transmissions from Holme Moss with television programmes from the same station. This, if it's a fact, is rather a curious business. The television frequencies are 48.25 Mc/s (sound) and 51.75 Mc/s (vision). Those used for v.h.f. sound are 89.3, 91.5 and 93.7 Mc/s. Further, vertical polarization is used for v.h.f. One imagines, too, that the v.h.f. carrier frequencies must have been carefully chosen to avoid any chance of their interfering with television reception. Will any reader living in those parts and who can throw light on the matter please let me know? I'd have thought myself that interference would be more likely to come from the I.T.A. Emley Moor station, working in Channel 10.
were actually that what now look like gaps will only take account of stations that are under construction. A possible explanation is that the map showing the locations of European transmitters, for the French authorities are determined to make television a success in their country. A vision of any sort. I'm sure there's some very good reason for the odd looking distribution of the transmitters, for the French authorities undoubtedly know their business and are determined to make television a success in their country. A possible explanation is that the map only takes account of stations that were actually in use last July and that what now look like gaps will soon be filled by transmitters still under construction.*

THE MAP in the December W.W. showing the locations of European television transmitters gives one the impression that those of the French system are rather queerly distributed. Except for Paris and Bourges all the stations seem to be near the north coast and the northern and eastern frontiers. Many important towns must be very much in fringe areas, if they get a TV service of any sort. I'm sure there's some very good reason for the odd looking distribution of the transmitters, for the French authorities undoubtedly know their business and are determined to make television a success in their country. A possible explanation is that the map only takes account of stations that were actually in use last July and that what now look like gaps will soon be filled by transmitters still under construction.*

* R.T.F. plans to have some twenty stations operating by the end of 1957.—Ed.
Crystal Jubilee

I SPEAK subject to correction but, to the best of my knowledge and belief, last year we should have celebrated the jubilee of the crystal detector which first came into use in 1906. As we all know, the crystal followed the valve which in the form of a diode rectifier was patented by Fleming on November 16th 1904. The crystal subsequently came into its own as it had a better characteristic curve than Fleming’s diode and so was more sensitive.

I have little doubt that many of you veterans will tell me that I am all wrong and that you used a crystal rectifier long before 1906. What I really have in mind is its commercial use which in 1906 meant in ship and shore stations.

It is always difficult to fix a date for the first use of a particular technique. It is generally agreed that the magnetic detector started to come into commercial use in 1902 when it rapidly displaced the coherer. But this particular magnetic detector was really only the first commercial version fathered by Marconi; the one with the continuously moving iron band. Rutherford used a magnetic detector of sorts to receive signals across Cambridge in 1897.

A Bucolic Bugbear

WRITING in a journal which circulates only among members of the radio trade, a dealer calls attention to the large number of battery sets in use in country districts which have no electric power supply.

Owing to the high cost of using dry cells continuously for L.T. supply, two-volt accumulators still flourish to a remarkable extent, and this dealer alone handles over 100 each week. I must confess that this rather surprises me as accumulators are messy things to have in the house but, worse still, have to be lugged periodically to the charging station and brought home with the week’s shopping.

Surely the obvious thing to use as a substitute for a dry L.T. cell is the parent from which it sprang; namely, the ordinary wet Leclanché cell. It is true that this can be equally as messy as an accumulator but it does not have to be taken to the charging station. Whatever can be done by the small dry cell can be done very much more economically by a wet one as it only needs a new zinc electrode at very infrequent intervals.

Polarization is the bugbear of A Bucolic Bugbear.

Teledynamics?

THE EDITOR and I have, in recent months, both written about the transmission of power by radio. No doubt it will be many years before serious consideration is given to this question. But one day power transmission by wireless will “arrive” and we ought to coin a proper portmanteau word for it. We don’t want to be caught napping as we were in the case of television and have a horrible hybrid word like “dynamission” foisted on us by the lay press.

I cannot think of a good and correct word offhand; all that suggests itself is “teleodynamics.” While correctly derived, this word doesn’t suggest the idea of radio transmission any more than “telearchics” suggests radio control.

I am not too fond of any of these “tele” words in any case. The word “telephone” does not, for instance, suggest the idea of transmission by wire or by any form of electrical energy. It would be equally correct to apply the word “telephone” to a speaking tube.

Destaticizing?

I HAVE previously denounced as mere superstition the dainty little trailing chains which many motorists use to destaticize (what a word!) their car bodies and so eliminate the travel sickness to which many people are prone. If it be other than superstition why is it that railway travellers are not immune from sickness, for few things are more firmly earthed to the rails than a railway carriage? Why, too, don’t cyclists suffer from sickness for their machines are as much insulated from the road as a car?

A correspondent has, however, put forward an argument which to him seems to prove that the destaticizing chain is really effective in preventing travel sickness even in cases where the psychological effect of auto-suggestion can be ruled out.

It appears that a dog owned by a colleague of my correspondent, which has always been prone to car sickness, has been completely destaticized by the wearing of one of these dangling chains. Therefore, argues my correspondent, the chain must work by physiological rather than by psychological means as the dog does not know that its sickness is caused by an ambient static which the dangling chain removes.

Now whatever our views about the modus operandi of telepathy it is well known that a dog readily picks up the mood of a human being and more especially that of its master. It is also well known that this phenomenon is due, not to telepathy, but to teleolfaction. Human and other beings exude a certain amount of perspiration even in an arctic temperature, and the odour of the perspiration varies with the emotions.

We have all heard of the “odour of sanctity” and Shakespeare speaks of the “disdour of impiety.” There is, in fact, a characteristic odour associated with every motion, and a dog, with its keen sense of smell, sorts them out. Thus a strange dog is apt to attack people who are afraid of it as they emit an odour of fear.

Obviously my correspondent’s colleague, who owns this particular dog, has great faith in the dangling chain and he must, therefore, exude an odour of fear which is not necessarily akin to the odour of sanctity—which his dog readily picks up.

NEWNHAM NYMPH

Now it is up to some of you classical boffins from Balliol to lend me a hand and justify your existence. I feel sure the “Greeks had a word for it” but it needs a lot of excavating by some of the Bodleian boys. However, it is really women who never seem to be at a loss for words, and so perhaps I had better call on the Newnham nymphs for help in this matter.
The "AVO" Valve Characteristic Meter, Mk. III is typical of the ingenuity of design and high standard of workmanship that exemplify all of the multi-range instruments in the wide "AVO" range.

It is a compact and comprehensive meter that will test quickly any standard receiving valve or small transmitting valve on any of its normal characteristics under conditions corresponding to a wide range of D.C. electrode voltages. The method of measuring mutual conductance ensures that the meter can deal adequately with modern T.V. receiver valves. It does many useful jobs too numerous to mention here, but a completely descriptive pamphlet is available on application.

List Price £75 complete with Instruction Book and Valve Data Manual.

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.

AVOCET HOUSE • 92-96 VAUXHALL BRIDGE ROAD • LONDON • S.W.1 • VICToria 3404 (9 lines)
T.V. Waveform & Alignment Generator

for all T.V. systems

NEW!!!

MODEL 94A

4 BASIC INSTRUMENTS INCORPORATED IN ONE

T.V. PATTERN GENERATOR

Modulation. All patterns FULLY INTERLACED with accompanying line and frame blanking, synchronizing (and equalizing on 625, 525 lines) signals. Three gradation patterns providing relatively high, medium and low frequency transients. Cross grid patterns for linearity checking. Cross bar pattern on which 1.5, 2, 2.5, 3, 3.5, 4, 4.5 Mc/s definition bars can be displayed. Horizontal bars. Vertical bars with switched Mc/s bars. White raster, Black raster, and sound.

Output—R.F. Three position attenuator, 0, —20 and —40 db relative to 100 mV.

Output—Video. From cathode follower 2Kohms direct, positive of negative 3V peak to peak.

Output—Synchronizing. Additional sync. output from 2Kohms through 8µF 10V peak to peak positive going waveform comprising line and frame synchronizing pulses, interlacing signals (and equalizing pulses on 625 and 525 lines).

Audio. From cathode follower 2Kohms direct. Variable A.F. voltage at 1000 c/s approx. 3V peak-to-peak maximum. Optional mains lock facility.

(1) T.V. Pattern Generator. (2) A.M. Signal Generator with variable audio output.

(3) F.M. Signal Generator. (4) T.V. Sweep Oscillator.

7 expanded bands cover frequencies:

(1) 4 to 7 Mc/s. (2) 8 to 14 Mc/s. (3) 15 to 22 Mc/s.

(4) 30 to 45 Mc/s. (5) 45 to 80 Mc/s. (6) 85 to 145 Mc/s.

(7) 150 to 220 Mc/s.

ALL ON FUNDAMENTALS

Main features of A.M. Signal Generator, F.M. Signal Generator & T.V. Sweep Oscillator:

Power supply: 105/125 V. or 200/250 V. A.C., at 40/100 c/s. Consumption 70 watts.

Weight: 50 lb. Dimensions: 17 in. x 9 in. x 8 in. (43 x 23 x 20 cm.)

Finish: Steel case in grey hammer finish with Perspex escutcheon

LIST PRICE £75.0.0.

CREDIT TERMS AVAILABLE
WRITE FOR LITERATURE

INSTRUMENTS LTD.
The MY3-275 triode has been introduced by Mullard for audio power amplification at high levels. It has a thoriated tungsten filament and its maximum anode dissipation is 275W. Under typical class 'AB2' conditions, two of these valves in push-pull will provide an output of more than 1kW. Further data for the MY3-275 and other large output valves and details of Xenon and Mercury Vapour rectifiers for associated power supplies are readily obtainable from the address below.

Abridged Data for the MY3-275
(Services Type Numbers CV1252 and CV1619)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_f</td>
<td>1.40 V</td>
</tr>
<tr>
<td>I_f</td>
<td>6.5 A</td>
</tr>
<tr>
<td>P_a</td>
<td>275 W</td>
</tr>
<tr>
<td>g_m</td>
<td>8.5 mA/V</td>
</tr>
<tr>
<td>u_a</td>
<td>16</td>
</tr>
<tr>
<td>r_a</td>
<td>1900 Ω</td>
</tr>
</tbody>
</table>

*Measured at $V_a=2000$V, $I_a=160$ mA

Typical operation for two valves in class 'AB2' push-pull

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_a</td>
<td>3000 V</td>
</tr>
<tr>
<td>I_s</td>
<td>2x60 mA</td>
</tr>
<tr>
<td>I_s (max signal)</td>
<td>2x280 mA</td>
</tr>
<tr>
<td>R_{a-a}</td>
<td>13,800 Ω</td>
</tr>
<tr>
<td>P_{out}</td>
<td>1300 W</td>
</tr>
<tr>
<td>D_{tot}</td>
<td>3 %</td>
</tr>
</tbody>
</table>

MULLARD LIMITED, COMMUNICATIONS & INDUSTRIAL VALVE DEPARTMENT
for the closest approach to the original sound

The criterion, as always, is that the reproduced sound shall be the closest approach to the original—that the enjoyment and appreciation of music may be unimpeded. This is reflected throughout the design of the QUAD II. It is reflected, too, in the straightforward and logical system of control, achieved without the sacrifice of a single refinement or adjustment capable of contributing to the final objective.

Send for further details and booklet.

QUAD II AMPLIFIER

HUNTINGDON, HUNTS · Telephone: HUNTINGDON 361.
End background hiss...

with the

NEW

WEARITE

DE-FLUXER

—a simple, easily operated trouble-free device for depolarising the heads of tape recorders and players.

★ It ensures the maximum signal/noise ratio from any tape recorder.
★ Protects valuable recorded tapes from cumulative background noise and the gradual attenuation of the higher frequencies.
★ Is extremely simple to use without removing head screening cans.
★ Permits selective tape erasure during editing.

The Wearite Defluxer is a "must" for all tape recorder hi-fidelity enthusiasts and for the professional recordist.

Price: £2.10.0

WRIGHT & WEAIRED LTD

131 SLOANE STREET • LONDON • S.W.1 • Tel: SLOane 2214/5 & 1510
With or without ears!

Whether you are a radical and like to use modern methods of assembly or whether you are a conservative and prefer the tried and trusted methods, Dubilier can supply you with the capacitors you require.

For example, Dubilier can supply you with electrolytic capacitors for television receivers made either for ear mounting* or clip mounting. In either case they are manufactured with the high ripple current sections required for this purpose. These capacitors are assembled and sealed in seamless drawn aluminium cans.

*For fixing ear mounting types, only four slots are required in the chassis. The capacitor is dropped into these slots and a slight twist of the ears secures capacitor firmly. Alternatively, a bakelite mounting plate can be supplied for use in those cases where isolation of the capacitor can from chassis is required.

<table>
<thead>
<tr>
<th>Capacitance (µF)</th>
<th>D.C. Wkg. Voltage</th>
<th>Dimensions</th>
<th>Ripple Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100—200</td>
<td>275—275</td>
<td>4" x 1½"</td>
<td>700—300</td>
</tr>
<tr>
<td>50</td>
<td>280</td>
<td>3" x 1½"</td>
<td>500</td>
</tr>
<tr>
<td>100</td>
<td>280</td>
<td>2½" x 1½"</td>
<td>550</td>
</tr>
<tr>
<td>50—100</td>
<td>350—280</td>
<td>3" x 1½"</td>
<td>500—200</td>
</tr>
<tr>
<td>50—100</td>
<td>280—280</td>
<td>3" x 1½"</td>
<td>450—200</td>
</tr>
<tr>
<td>200—500</td>
<td>350—350</td>
<td>4" x 2"</td>
<td>700</td>
</tr>
<tr>
<td>64—120</td>
<td>350—350</td>
<td>4" x 1½"</td>
<td>500</td>
</tr>
<tr>
<td>100—200</td>
<td>350—280</td>
<td>4" x 1½"</td>
<td>900—300</td>
</tr>
<tr>
<td>100—200</td>
<td>350—280</td>
<td>4" x 1½"</td>
<td>700</td>
</tr>
<tr>
<td>60—100</td>
<td>350—350</td>
<td>4" x 1½"</td>
<td>500—200</td>
</tr>
<tr>
<td>60—250</td>
<td>350—350</td>
<td>4" x 1½"</td>
<td>700—400</td>
</tr>
<tr>
<td>100—100</td>
<td>350—350</td>
<td>4" x 1½"</td>
<td>550—200</td>
</tr>
<tr>
<td>100—200</td>
<td>350—350</td>
<td>4" x 1½"</td>
<td>900—300</td>
</tr>
</tbody>
</table>

DUBILIER

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3
Telephone: ACOrn 2241
Telegrams: Hivoltcon Wesphone, London

DV165A
Plessey makes available to Overseas Industry a range of superior components, including many interesting developments for 90° scanning angle receivers.

for American and Continental high definition systems...

This range incorporates not only many new items, but also improvements on established designs; and a continuation of research into basic materials and methods of production has resulted in components of high performance at economic cost. Overseas Design Engineers and Equipment Manufacturers are invited to write for full information.

...T.V. components by Plessey
LONG-DISTANCE ISB TELEPHONY SYSTEMS

ISB telephony has made long-distance word-of-mouth communication possible between subscribers on widely separated local land-line or radio-telephone systems which are linked to a national or international HF radio-telegraphy service. Marconi’s have been pioneers in developing ISB telephony facilities. As with other types of communication systems, Marconi’s can offer unrivalled facilities and experience to those contemplating ISB telephony. From the initial technical consultations to the maintenance of the system in service and the training of the staff to operate it, Marconi’s alone can undertake the whole project.
COMPLETE COMMUNICATION SYSTEMS — all the world over

MARCONI’S & A.T.E. Co-operation between Marconi’s and Automatic Telephone and Electric Co. Ltd., now brings together an unrivalled wealth of knowledge and experience for the benefit of all whose work lies in the field of telecommunications.

The Lifeline of Communication is in experienced hands

MARCONI
Complete Communication Systems

MARCONI’S WIRELESS TELEGRAPH COMPANY LIMITED, CHELMSFORD, ESSEX
Designed to measure the value of iron cored chokes and similar inductors in the range 0.01H to 1000H of Q value not less than 2.

Provision is made for passing any current up to 1 Amp d.c. through the winding and selectable a.c. excitation voltages of 1, 2, 5, 10 and 20V r.m.s. are provided.

Full technical information is available on request.
This is the COMPLETE Radio and Television Servicing library—1,850 models including latest RADIO SHOW sets. Here, at instant call, are all the popular models which you are ever likely to be called upon to service—including circuits and data difficult to come by. This Newnes set is worth the cost a hundredfold! It covers TV from single station models to the LATEST 21in. 13 channel receivers; Band III converters; radios, radiograms, portables, including latest VHF/FM and Transistor Models; Car Radios—and in addition Technical and Progress Sections to keep you abreast of latest servicing techniques. This up-to-the-minute all-embracing set can pay for itself within a few days of receiving it—this is fact! You can prove it to the hilt by claiming FREE Examination—apply NOW and see for yourself. But do it AT ONCE—the demand will be terrific!

Complete list of makes on back and practical FREE GIFT FOR ALL! SEE NEXT PAGE

When you have filled up coupon on right—
SEE OVERLEAF
FOR METHOD OF FOLDING THIS POST-PAID LEAFLET
This is a Newnes publication and worthy of your immediate attention. Claim your copy and judge for yourself—there is no cost or obligation. Simply cut out this page and post—you will not spoil your "Wireless World."

Please send me Newnes RADIO AND TELEVISION SERVICING without obligation to purchase. I will either return the work within eight days or I will send the first payment of 12s. 6d. eight days after delivery, and you will then send me the HANDY ENLARGER. Thereafter I will send 10s. 6d. monthly until £9 12s. 6d. has been paid. Cash price within eight days is £9 5s. 6d.

Name
Address
Occupation
Your Signature

(Or your Parent’s Signature if under 21) RTV 2N
YOUR SET WILL EARN POUNDS

Owners said of the last edition—More than repaid the cost in a short period (E.F.B. Wolvercote); One glance was enough to convince me of their worth (J.F.B. Leicester); Of immense help and in constant use (T.A. Uxbridge); A boon and a must (J.S. Manchester).

This new edition is even more valuable!
MORE MODELS AND MORE MAKES • MORE CIRCUITS AND DIAGRAMS • MORE PAGES—350 MORE!

AND IN ADDITION
NEWNES HANDY ENLARGER

Just what you need to follow intricate circuits easily—stand it on any diagram and it enlarges every detail. Magnifies small print, too. There is one for you FREE and post paid on retaining Newnes RADIO AND TELEVISION SERVICING after examination. It comes to you boxed and with polisher to keep the enlarging lens crystal clear.

1,850 MODELS INCLUDING LATEST RADIO SHOW SETS

SERVICING DATA FOR—

Ace, Alba, Ambassador, Argox, Baird, Banner, Beethoven, Bush, Champion

PLUS 2 YEARS’ FREE POSTAL ADVISORY SERVICE

ACT NOW! NOTHING TO PAY FOR 7 DAYS’ EXAMINATION

POSTAGE will be paid by
George Newnes Ltd.
ANTIFERENCE AERIALS

BAND I
A complete range of Antex (illustrated) Dipole, ‘H’, Fringe and Indoor models is available. Outdoor models can easily be adapted for Band III by adding Band III Grip-on aerials as 350/1C below.

BAND II
Indoor and outdoor models to suit all conditions and to provide the very best results for VHF/FM equipment. Models for fitting to existing TV masts are available.

BAND III
3, 5, 8, 10 element and Stacked Arrays for outdoor installation and a comprehensive range of indoor models.

HILO
17 models to provide perfect Band I/Band III reception with only one aerial. All incorporate the patented Electronic Coupling exclusive to Antiference.

Specially Designed EXPORT RANGE
Antiference offer a specially developed range of competitively priced Television and VHF/FM aerials for export including Horizontally or Vertically Polarised Single or Stacked Yagi Arrays, Broad-Band and All-Band types for International Frequencies including Continental (C.C.I.R.) and American channels.

The well-known Antiference features of pre-assembly and robust construction combine with specially designed features to withstand the most extreme climatic conditions and to meet the varying technical requirements of countries abroad.

Our Export Department will, on request, be pleased to give full details of this specially designed Export Range. Fully detailed literature showing current models and prices available on request.
When it’s RELAYS contact

Upper Illustration; Series 596. D.C. operated, Max. V. 140. Contact rating up to 5A, continuous. Switching: One to six poles in various combinations. Overall size: 1 7/16'' long by 1 3/32'' wide by 1 25/32'' deep. Coil consumption 0.5 to 3 watts.

Lower Illustration; Series 590. A.C. operated, Max. V. 250. Contact rating up to 5A, continuous. Switching: One to four poles in various combinations. Overall size: 1 7/16'' long by 1 3/32'' wide by 1 25/32'' deep. Coil consumption 2 or 4 VA.

Coils are wound for standard voltages up to 250V A.C. and 140V D.C. Coils can be supplied vacuum impregnated if required.

Please write for illustrated leaflet.

Magnetic Devices LTD.

EXNING ROAD NEWMARKET

Telephone: Newmarket 3181/2/3

Telegrams: Magnetic Newmarket.
WHAT AN LP STYLUS OUGHT TO BE –
THEORETICAL PERFECTION

WHAT IT OFTEN IS –
WRONG SHAPE
CHIPPED OR ROUGH SURFACE

ACOS X500

REPLACEABLE STYLI, AS FITTED TO ALL ACOS CRYSTAL AND CERAMIC PICK-UP CARTRIDGES
HAVE PERFECT SHAPE, SIZE AND FINISH

ACOS Styli have to pass a quality inspection at x 500 magnification. Only in this way can some faults, which may have important effects on reproduction or record or stylus wear, be reliably detected. The standards we set ourselves are high but practical. They are reflected not only in ACOS products but also in the record reproducing equipment in which ACOS pick-ups or cartridges are fitted.
MODEL HF25

The amplifier has been critically designed to give living expression to recent improvements in recording and broadcasting techniques. Clear life-like reproductions ensured by the low harmonic distortion and by the infinite damping factor. 25 watts undistorted output is ample for any home system.

MODEL HF25A

The pre-amplifier has phono-jack inputs for radio, microphone, pick-up, tape recording and 4 equalisation positions for U.S. LP, EUR. LP (R.I.A.A.) U.S. 78 and EUR. 78. Amplifier can be controlled from distances of 20 ft. without loss of performance. In walnut and sycamore veneered cabinet or chassis form.

PACKAGED HI-FI

These small matching Pye plug-in units are bringing high fidelity to the ordinary listener at a price he can afford. They’re simple to operate, install in minutes and blend at once with modern furnishings.
MORGANITE Carbon Resistors and Potentiometers fit into Printed Circuitry!

Over the years MORGANITE Resistors and Potentiometers have attained a unique reputation for reliability and service. Now with the introduction of printed circuitry they have swiftly proved their worth in this new field.

MORGANITE Resistors, with their silver-plated copper wires, are particularly suitable for this type of work, while the MORGANITE Type A Potentiometer, the most popular control for radio and television, has been successfully adapted for both horizontal and vertical mounting.

MORGANITE Carbon Resistors. Type R (1 watt) Type T (¼ watt).

MORGANITE Type A Potentiometer, with D.P. Switch, for vertical mounting. Also available without switch, and for horizontal mounting.

MORGANITE Type A Multi-Unit Potentiometer, with D.P. Switch, for horizontal mounting. Also available without switch.

Manufacturers' and export enquiries direct to
MORGANITE RESISTORS LIMITED
Bede Trading Estate, Jarrow, County Durham.

Wholesale and retail distributors' enquiries to
EDISON SWAN ELECTRIC CO. LTD., 155, Charing Cross Road, London, W.C.2.
Suppressor Choke Cores

Integral terminations at both ends ensure a wide field of application for these cores in the construction of self-resonant chokes for TV interference suppression. Indeed, this is an outstanding design feature for many types of R/F coils and chokes required in small lightweight equipment. High internal resistance means that the shunting effect on the coil is negligible. The range of materials and terminations is such that most frequencies, particularly Band III, are adequately covered.

Literature and sample cores are readily available to Design Engineers on request.
TIME/TEMPERATURE CURVE CHART from the SUPERSPEED SOLDERING IRON TIP/TEMPERATURE TIME CHECK

The effect of different voltages on initial heating-up time is shown. Whilst 4V is the standard voltage normally employed, 6V will cause no harm, and accumulators are a useful source of current supply.

* Activated by light thumb pressure on the switch ring. When pressure is released, current is automatically switched off—thus greatly reducing electricity consumption, wear on copper bit and carbon element.

* Length, 10 in.; weight, 31 ozs.; can be used on 2.5 to 6.3 volt supply (4 volt transformer normally supplied) or from a car battery.

* More powerful than conventional 150-watt irons; equally suitable for light wiring work or heavy soldering on chassis.

* Simple to operate; ideal for precision work.

* Requires minimum maintenance—at negligible cost; shows lowest operating costs over a period.

For full particulars, including guarantee terms and free trial facilities, please write to the sole concessionaires in this country—

ENTHOVEN SOLDERS LTD. (Industrial Equipment Division)
Dominion Buildings, South Place, London, E.C.2 MONarch 0391

Switch to the

Superspeed

Soldering Iron

as being used by the
Royal Society Antarctic Expedition
for the International Geophysical Year.
Hunts announce their new ranges of Tubular and Disc Ceramics. Precise in their characteristics and robust in design, these capacitors are available in High-K and High-Q Tubulars and in High-K Discs. Working Voltage 500 v D.C. or 300 v A.C. Minimum quantity 6 of any one capacitance.

A. H. HUNT (Capacitors) LTD.
WANDSWORTH, LONDON, S.W.18 BAT 1083-7
And in Canada HUNT CAPACITORS (Canada) LTD. AJAX, ONTARIO
Factories also in Surrey and North Wales
ELMAG High Fidelity Units
Designed to give good quality at domestic volumes. For a power output stage providing more than 4 watts, 2 or more speakers are recommended.

- Flux Density 8,000 gauss (27,500 Maxwells).
- Frequency Response 40-12,000 c.p.s.
- 9 x 5in. Model 59T. Price 38/2 inc. P.T.

All prices are for speakers without transformers.

TRADE TERMS: 33 1/3%
Garrard World's Finest
MODEL 301 transcription turntable

As used by the B.B.C. and many other broadcasting stations throughout the world.

Gentlemen:

January 16, 1956

We have tested the three Garrard Model 301 Turntables which the undersigned selected at random from sealed unopened cartons in your warehouse stock. These three bore the following serial numbers: 867, 937, 3019. We used a standard Model WB-301 mounting base without modification, a Leak tone arm fitted with their LP cartridge, and a complete Leak preamplifier and power amplifier, model TL/10.

Pickup and amplifier system conformed in response to the RIAA-new AES-new NARTB curve within ± 1 db.

Standards referred to below are sections of the latest edition, National Association of Radio & Television Broadcasters Recording and Reproducing Standards.

Our conclusions are as follows:

Turntable Speed
Measurements were made in accordance with NARTB specification 1.05.01, using a stroboscope disc. In every case, speed could be adjusted to be in compliance with section 1.05, i.e. within 0.3%. In fact, it could easily be adjusted to be exactly correct.

Wow
Measurements were made at 33-1/3 rpm in accordance with NARTB specification 1.11, which calls for not over 0.20% deviation.

<table>
<thead>
<tr>
<th>Garrard Serial No.</th>
<th>Wow</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
<td>.17</td>
</tr>
<tr>
<td>937</td>
<td>.13</td>
</tr>
<tr>
<td>3019</td>
<td>.15</td>
</tr>
</tbody>
</table>

These values substantially agreed with those given on Garrard's individual test sheets which are included with each motor.

Rumble
Measurements were made in accordance with sections 1.12 and 1.12.01, using a 10 to 250 cps band pass filter, and a VU meter for indication. Attenuation was the specified 12 db per octave above 500 cps and 6 db per octave below 10 cps. Speed was 33-1/3 rpm.

Mr. C. J. LeBel
President of the Audio Instrument Co., Inc.;
Chairman of one of the groups which prepared the NARTB Standards; Founding member of the Audio Engineering Society, past president; Member of the Acoustical Society of America.
Audio Instrument Co., Inc., makers of special high calibre test equipment for use in laboratory measurements.

Garrard 301 has been designed to provide the professional user and quality enthusiast with a unit supreme in its class—truly the world's finest transcription turntable for home use!
to those seeking finest results in a transcription turntable

TESTED: for performance by Audio Instrument Company, Inc., an independent laboratory.

RESULTS: Garrard Model 301 tested even better than most professional disc recording turntables...sets a new standard for transcription machines!

Read Mr. LeBel's report below

Signal to Rumble Ratio,

Using Reference Velocity of 7 cm/sec at 500 cps

This reference velocity corresponds to the NARTB value of 1.4 cm/sec at 100 cps.

Garrard Serial No.	DB
867 | 52
937 | 49
3019 | 49

The results shown are all better than the 35 db broadcast reproducing turntable minimum set by NARTB section 1.12. In fact they are better than most professional disc recording turntables.

Signal to Rumble Ratio,

Using Reference Velocity of 20 cm/sec at 500 cps

Garrard Serial No.	DB
867 | 61
937 | 58
3019 | 58

We include this second table to facilitate comparison because some turntable manufacturers have used their own non-standard reference velocity of 20 cm/sec, at an unstated frequency. If this 20 cm/sec were taken at 100 cps instead, we would add an additional 23.1 db to the figures just above. This would then show serial number 867 to be 84.1 db.

It will be seen from the above that no rumble figures are meaningful unless related to the reference velocity and the reference frequency. Furthermore, as stated in NARTB specification 1.12.01, results depend on the equalizer and pickup characteristics, as well as on the turntable itself. Thus, it is further necessary to indicate, as we have done, the components used in making the test. For example, a preamplifier with extremely poor low frequency response would appear to wipe out all rumble and lead to the erroneous conclusion that the turntable is better than it actually is. One other factor to consider is the method by which the turntable is mounted when the test is made. That is why our tests were made on an ordinary mounting base available to the consumer.

Very truly yours,

AUDIO INSTRUMENT COMPANY, INC.

C. J. LeBel

Now there's a Garrard for every high fidelity system

MODEL 301 RC 98/4 RC 88/4 RC 121/4 TPA 10

GARRARD ENGINEERING & MANUFACTURING CO., LTD., SWINDON, WILTS., ENGLAND
Miniature Crystal Oven

This miniature oven has been designed specifically for accurate temperature control of Ministry Style "D" (Cathodeon Type 2M) Crystal Units. It is particularly recommended where the requirement is for a frequency stability better than .0002% over a wide range of ambient temperatures.

Centre tapped heater for 6.3 or 12.6 volt supplies.
Current consumption 0.73 amp. at 6.3 volt.
Temperature differential ±2°C within a temperature range 75°C to 85°C.
Temperature control within the ambient range—20°C to +70°C.
Heating time less than 5 minutes from ambient temperature to 85°C.
Precision bi-metallic contacts with provision for On/Off indicating lamp.
Low loss Mycalon base.
Weight 1½ oz. (43 grammes).
Overall Dimensions 1½” x ½” x 2½” long (3.2 x 2.0 x 6.6 cm.).

CATHODEON CRYSTALS LIMITED
LINTON CAMBRIDGESHIRE
TELEPHONE LINTON 223
G.E.C. Valves for Voltage Stabilisation

The A2293 is a new low impedance triode particularly suitable as the series valve in stabilised power packs. List price 27/-.

RATINGS

- $V_h = 6.3$ V
- $I_h = 0.95$ A
- $V_a = 300$ max. V
- $I_a = 120$ max. mA
- Base = B9A

$g_m^* = 12$ mA/V

$r_a^* = 375$ Ω

$p_a = 0.15$ max. W

*Measured at $V_a = 150$V, $I_a = 100$mA

For further details write to the G.E.C. Valve & Electronics Dept.

The RCA FM Tuner incorporates many new refinements, enables you to realise the great advances made in broadcasting bringing into your home a thrilling, living, realism.

- **Precision Tuning**
 The new RCA Electron Ray Tuning Indicator makes exact tuning simplicity itself.

- **No interference**
 The FM system coupled with RCA circuitry results in exceptional signal-to-noise ratio.

- **Extended Tuning Range**
 87.5-108 Mc/s covers the entire international F.M. broadcasting band.

- **Great Sensitivity**
 2 microwatts for 20 db quietening—extends the 'fringe' 7 valves plus 2 crystal diodes and Electron Ray tuning indicator.

- **High Fidelity**
 Wide range response within 1 db from 20-15,000 c/s for true High Fidelity reproduction.

- **No Matching Problems**
 Adjustable output levels.

- **Automatic Frequency Control**
 Ensures complete freedom from drift.

- **Power Requirements**
 230-390 volts D.C. at 40 milliamps H.T. supply. 6.3 volts, 2.25 amps heater supply (available from RCA New Orthophonic High Fidelity power amplifier).
Thousands of LAB Continuous Storage Units are daily solving the problem of control and storage of the great range of resistors. Compact, and capable of storing up to 720 separate resistors, LABpak make selection positive, simple and speedy. Now that Ceramicaps, Histabs and Wirewound resistors have been added to the carded range the usefulness of LABpak storage units is enhanced.

FREE with any purchase of the LABpak range, these units are the complete answer to the storage problems of small production units, laboratories, etc.

MAKE UP YOUR ORDER TODAY — DELIVERY EX-STOCK

All LABpak resistors are carded in ohmic value, rating and tolerance, colour indexed and tabbed for easy selection.

The LAB Continuous Storage Units are available from your normal source of supply, but more detailed information and literature can be obtained from

THE RADIO RESISTOR COMPANY LIMITED

50 ABBEY GARDENS, LONDON, N.W.8 - Telephone: Maida Vale 5522
It is gratifying to know that in a world of rising prices our policy of maintaining, and, in many instances, reducing prices has resulted over the years, and especially at this period, in ever increasing sales.

We carry a stock of 2,000 types of receiving, transmitting and special purpose tubes, and invite your enquiries not only for commercial grade tubes but also for those tested to C.V., JAN and MIL specifications.

Our Organisation is A.R.B. Approved.

If you are not already on our Mailing List, please send for latest Price and Stock Lists.

HALL ELECTRIC LTD
Haltron House, 49/55 Lisson Grove, London, N.W.1
They say we make a perfect pair...

To be exact, this is the 12 pin version of the Multi-Way Plug and Socket range, which covers 4, 8, 12, 20 and 28 ways. The range features unusually low insertion pressures, and embodies considerable experience in meeting humid conditions. Designed to overcome as far as possible the difficulties encountered when using this type of connector in rack mounting applications, they have greater latitude in matching up than any comparable product, and are in use throughout the world in Radio, Television and Telecommunications equipment by such renowned firms as:-

A.I.D. & A.R.B. - APPROVED

POWER CONTROLS
LIMITED

EXNING RD., NEWMARKET

PHONE: NEW 3181/2/3
LOW-INERTIA MOTORS
- Linear voltage/speed characteristic
- Starting power: 6 microwatts
- Permanent magnet
- Nom voltages: 1.5, 6, 12 and 24 v, d.c.

D.C. TACHO GENERATOR
- Linear voltage/speed characteristic
- Compact design for standard fixing
 - Synchros size 11, grade 2
 - Output voltage: 5.75 per 1000 rpm.
The Advance type B4 is a tried and proven generator which is essentially simple to use. One special feature is the accuracy of the R.F. output over the entire frequency range, achieved by the use of a crystal voltmeter and the subsequent elimination of all circuits having poor frequency characteristics.

Model A 100 kc/s—80 Mc/s in six bands
Model B 30 kc/s—30 Mc/s in six bands
Calibration accuracy of both models is ±1%

Nett price in U.K. £60.0.0

Full technical details in Folder W38
QUESTION

"Why don't dealers stock and recommend our Amplifiers and Tuners, etc?"

ANSWER

 "Because they cannot afford to do so as they give us a discount to YOU (the public)."

This direct trading explains why our products, though in the top class, are so much cheaper than our competitors'.

What we are and what we do.

Firstly we are quite large manufacturers of Audio Amplifiers, Radio Feeder Units, Portable Record Players, Speaker and Amplifier Cabinets, and custom built Complete High Fidelity Radio and Record Reproducers.

Secondly we are Dealers of Gramophone Units, Autochangers, Speakers, Tape Recorders, etc., etc.

We recommend only that which we know to be of good performance and of sound construction. We are not in the group of traders who will sell job lines at apparently low prices because they are obsolete or faulty. On the other hand our finances are such that we do not have to sell you an expensive article if we know that a less expensive unit will do your job perfectly.

If any reader should have his mind set on a high-priced amplifier of another make and would like to save money if possible, we should like to make the following clear-cut offer: If he buys one of our "Symphony" Amplifiers or Tuners and is not entirely satisfied with it, he may return it for full credit against any other amplifier or tuner on the market.

It should be emphasised at this stage that we can supply any Amplifier, Radio Tuner, etc., advertised by others.

Our chief Engineers, who is operating a Technical Guidance Service, is available daily including Saturdays from 10 a.m. to 6 p.m. or will deal with enquiries by return of post.

Our new illustrated Catalogue and supplement will be a great boon to those desiring quality equipment for moderate expenditure. Send in the 2d. stamps for your copy now. It may well save you money.

Our equipment is on demonstration at our showroom in conjunction with a variety of Pickups, Speakers, etc. If you can possibly call we shall be pleased to see and help you.

H.P. facilities available.

It is essential to mention "Wireless World" when requesting Catalogue or when ordering.

32 WIRELESS WORLD

FEBRUARY, 1957

WIRELESS WORLD

NORTHERN RADIO SERVICES

DEPT. WW., 11, KING'S COLLEGE ROAD, ADELAIDE

ROAD, LONDON, N.W.3.

Phone: PRince 3314

Tubes: Other Types and Gasket Fane.

25/13, 13, 38, 107 and 187.
LOW NOISE TRAVELLING WAVE TUBES

The range designed by English Electric Valve Company includes low noise, voltage amplifier and power tubes, with outputs from 1mW to 16W.

Type N1005M illustrated is a low noise tube specially designed to operate over a frequency range of 3600-4200 Mc/s. It permits the use of r.f. amplification in radar, tropospheric scatter and other microwave equipment.

Full particulars of this tube and other units specially designed for use in the higher frequency bands are available on application.

<table>
<thead>
<tr>
<th>E.E.V. Type</th>
<th>Function</th>
<th>Centre Frequency (Mc/s)</th>
<th>Maximum Output</th>
<th>Noise Factor (dB)</th>
<th>Gain (dB)</th>
<th>Plate Volts</th>
<th>Collector Current</th>
<th>Focusing Field (Gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.1001</td>
<td>Power</td>
<td>2000</td>
<td>16W</td>
<td>-</td>
<td>26</td>
<td>2600</td>
<td>40mA</td>
<td>600</td>
</tr>
<tr>
<td>N.1002</td>
<td>Low Noise</td>
<td>2000</td>
<td>1mW</td>
<td>10</td>
<td>24</td>
<td>550</td>
<td>200µA</td>
<td>200</td>
</tr>
<tr>
<td>N.1004</td>
<td>Power</td>
<td>4000</td>
<td>4W</td>
<td>-</td>
<td>21</td>
<td>2600</td>
<td>20mA</td>
<td>450</td>
</tr>
<tr>
<td>N.1005M</td>
<td>Low Noise</td>
<td>4000</td>
<td>1mW</td>
<td>11</td>
<td>22</td>
<td>360</td>
<td>200µA</td>
<td>350</td>
</tr>
<tr>
<td>N.1013</td>
<td>Amplifier</td>
<td>2000</td>
<td>200mW</td>
<td>20</td>
<td>32</td>
<td>650</td>
<td>4mA</td>
<td>300</td>
</tr>
<tr>
<td>N.1017M</td>
<td>Low Noise</td>
<td>1200</td>
<td>1mW</td>
<td>10</td>
<td>20</td>
<td>700</td>
<td>200µA</td>
<td>200</td>
</tr>
<tr>
<td>N.1018M</td>
<td>Amplifier</td>
<td>4000</td>
<td>100mW</td>
<td>20</td>
<td>30</td>
<td>630</td>
<td>2mA</td>
<td>350</td>
</tr>
</tbody>
</table>
A remarkable new instrument for Physicists

50 micro-ohms to 10,000 megohms - 0002 picofarad

WAYNE KERR
UNIVERSAL BRIDGE
B.221

SPECIFICATION

BRIDGE ONLY: Capacitance: 0.0002 pF to 10 μF in 7 ranges. Accuracy ± 0.5%. Conductance: 0 - ± 100 mho in 7 ranges. Inductance: 1 mH to infinity in 7 ranges. Measuring Frequency: 10,000 radians/sec. (1592 c/s.) Power Supply: 110/115 and 200/250 V 40/60 c/s. Dimensions: 17" x 7" x 11½" high. Weight: 25 lbs. approx.

WITH LOW IMPEDANCE ADAPTOR: Capacitance, (μF = 100,000μF in 4 ranges. Resistance: 0-100Ω in 4 ranges: Discrimination on lowest range 50μΩ). Inductance: 0-10 mH in 4 ranges. Discrimination on lowest range 5μH.

PRICES: Bridge, £175. Low Impedance Adaptor £15.
Accuracy to 0.25% is achieved with complete stability.

Two decades and a continuously variable control indicate independently the resistive and reactive terms to four significant figures.

Discrimination is to 0.01% of full scale reading.

Test leads of any length do not affect accuracy.

Transformer ratio arm principle allows measurement in any quadrant of the complex plane.

Adaptors for measurement of conductivity, dielectric constant and loss factor of solids and liquids.

Lowest capacitance range is 0-1 pfd. with -0002 pfd. first scale reading.

Low Impedance Adaptor extends resistance and inductance range to 50 micro-ohms and 5 millimicrohenries. This covers:

- Dry joints, earth-bonding efficiency, switch contact resistance, cable connectors, valve base connections, and general circuit strays.
for radio ceramics

STEATITE & PORCELAIN PRODUCTS LTD.
Stourport-on-Severn, Worcestershire. Tel: Stourport 111. Telegrams, Steatain, Stourport
HIGH EFFICIENCY POT CORES

These new Mullard 14mm and 18mm pot cores are completely self contained, simple to mount and easily adjusted after mounting. Unique features include single hole fixing and two or four way terminal plates. Adjustments of inductance are made by means of a screw which varies the position of a magnetic shunt in the centre of the core; in many cases this eliminates the need for trimming capacitors. Designers will see from the brief characteristics listed here that Mullard adjustable pot cores are particularly suitable for use in high grade communications equipment, tuned circuits and filter networks. Those requiring further technical details are invited to write to the address below.

14mm Pot cores
Four types available LA32-35
Air gaps From 0.2mm - 0.5mm
Frequency range 10 Kc/s - 100 Kc/s
Q values in the higher frequency range > 200

18mm Pot cores
Four types available LA42-45
Air gaps From 0.3mm - 1.0mm
Frequency range 10 Kc/s - 100 Kc/s
Q values in the higher frequency range > 300

Mullard
'Ticonal' permanent magnets
Magnadur ceramic magnets
Ferroxcube magnetic cores
The ideal small junction Transistor...

XFT2

ACTUAL SIZE

For Hearing Aids and other Audio Frequency applications

Incorporating a germanium junction element manufactured and supplied by

Encapsulated in a seamless metal can, its dimensions are only $4.75 \times 3.1 \times 7.5$ mm.

ARCOLECTRIC SWITCHES

M.30: 10-amp. Toggle Switch.
T.600: 3-amp. Toggle Switch.
S.936: Push Switch, available normally On or Off.
K.75: Small Pointer Knob for $\frac{1}{8}$in. spindles.

Write for Catalogue No. 129

ARCOLECTRIC SWITCHES LTD
CENTRAL AVENUE, WEST MOLESEY, SURREY
this is the smallest all-aluminium electrolytic capacitor yet!

Design Engineers concerned with transistor circuitry for hearing aids, midget transmitters and receivers and other miniaturised equipments, will welcome this new range of sub-miniature electrolytic capacitors by Plessey.

This superior all-aluminium capacitor is made possible by an advanced application of etched foil construction. Four case sizes are available; 0.1" x 1/8", 1/4" x 1/8", 1/4" x 1/4", and 1/4" x 1/4".

Temperature range is -15°C to +60°C. Capacities available are from 0.5μfd to 50μfd according to working voltages which range from 1.5v to 70v. Plastic insulating sleeves can be fitted if required. Extensive details and data tables are set out in Plessey Publication No. 847, which is offered on request.

Sub-miniature Electrolytic Capacitors by Plessey

COMPONENTS GROUP • SWINDON COMPONENTS DIVISION
KEMBREY STREET • SWINDON • WILTSHIRE • TELEPHONE: SWINDON 5461
These units are a development from our type "D" feedback cutterhead and have similar mechanical and electrical constants but are operated from a single winding. They may be used in conjunction with any high grade power amplifier.

SENSITIVITY—3 volts input for 1 cm/sec at 78 R.P.M.

IMPEDANCE—15 ohms at 1000 c/s

FREQUENCY RESPONSE—±3 db—50 c/s to 10 Kc

6 db at 20 Kc

DISTORTION—2% at 1000 c/s

WEIGHT—6 oz. (184 grams)

STYLUS HOLE—0.064" or 0.0625" as required

FITTING—Direct mounting on Presto and similar machines

*Also available in horizontal form, type C/H

Write for full details

GRAMPIAN REPRODUCERS LTD

17 Hanworth Trading Estate

Feltham • Middlesex • England

Telephone Feltham 2657

Western Hemisphere, Reeves Equipment Corp., 10 East 52nd St., New York 22, N.Y.

Australian Agent, Simon Gray Pty. Ltd., Elizabeth St., Melbourne 1., Australia.
Thorn pillar lampholders for the illumination of instrument panels...

Originally designed for aircraft control panels (and widely used throughout the British aircraft industry) these Thorn pillar and bridge piece lampholders are of universal application for industrial use wherever instrument panels require illumination. A full range of these components is available.

...and bridge pieces

The special advantage of Thorn pillar and bridge pieces is their notable economy of panel space and the clear illumination they provide. Wiring arrangements are extremely simple and bridge pieces can be quickly added to existing control panels without any difficulty.

The present range of bridge lighting units is as follows:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Description</th>
<th>Lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mk. G4B Gyro Compass</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>Artificial Horizon</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>Large S.A.E. Case (4BA screws)</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Small S.A.E. Case (4BA screws)</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>Horizontally mounted Double Desynn</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Large S.A.E. Case (2BA screws)</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>Small S.A.E. Case (2 BA screws)</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>Large Air Ministry Case</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>Instruments with 3" P.C.D. fixing</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>Double Desynn mounted vertically</td>
<td>2</td>
</tr>
</tbody>
</table>

Space saving: All these components are of minimum size because they are designed round the unique Atlas Midget lamp only 0.575" long and 0.249" in diameter.

Three types of Thorn midget panel bulbs are available.
- 28 volts 0.04 amps
- 12 volts 0.1 amps
- 6 volts 0.1 amps

Write for illustrated brochure giving full details

Thorn Electrical Industries, Aircraft Components Division, Great Cambridge Road, Enfield, Middlesex. Tel.: Enfield 5340
NOW AVAILABLE

<table>
<thead>
<tr>
<th>Way</th>
<th>Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>24 way connector</td>
<td></td>
</tr>
</tbody>
</table>

* Gold plated Contacts
* Nylon loaded P.F. mouldings
* Easy insertion and withdrawal

Send for full technical information to
THE McMURDO INSTRUMENT CO. LTD., ASHTEAD, SURREY

McMURDO Red Range Connectors

Send S.A.E. for details of requirements not listed here.

Come and see the NEW SOUN

.. available on the M.O.S. Personal Credit Plan

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Cash</th>
<th>Credit</th>
<th>Hire Purchase</th>
<th>Export Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor 2-speed Standard</td>
<td>50 0 0</td>
<td>12/3</td>
<td>12/3/4</td>
<td>12/3/4</td>
<td>12/3/4</td>
</tr>
<tr>
<td>Editor Super Hi-Fi</td>
<td>65 9 0</td>
<td>129/4</td>
<td>129/4</td>
<td>129/4</td>
<td>129/4</td>
</tr>
<tr>
<td>Platonic Plus</td>
<td>95 0 0</td>
<td>99/10</td>
<td>99/10</td>
<td>99/10</td>
<td>99/10</td>
</tr>
<tr>
<td>Sound Cadet</td>
<td>109 10 0</td>
<td>109/-</td>
<td>109/-</td>
<td>109/-</td>
<td>109/-</td>
</tr>
<tr>
<td>Grundig TK820</td>
<td>195 25 0</td>
<td>195/7</td>
<td>195/7</td>
<td>195/7</td>
<td>195/7</td>
</tr>
<tr>
<td>Grundig TK5</td>
<td>54 12 0</td>
<td>54 12 0</td>
<td>54 12 0</td>
<td>54 12 0</td>
<td></td>
</tr>
</tbody>
</table>

E & G MAIL ORDER SUPPLY CO.

33 Tottenham Court Road, London, W.1.
Tel: MUSEum 6667
Solderless terminals
speed assembly
eliminate rejects

The AMP precision method of wire termination reduces
production costs and provides connections of the highest
electrical and mechanical efficiency. The use of AMP
precision crimping tools and automatic machines achieves
exceptionally high rates of output, a uniformly high
standard of quality and elimination of human error.
AMP terminations and connections are of particular
value in electronics and aircraft installations. They
withstand vibration, corrosion and provide high tensile
strength, with low resistance, and no noise at R.F.

AMP terminals are made for every
type and size of wire.

Certi-crimp hand tool.
Positive closure ensured

Automatic wire terminator
Operates at up to 4,000 an hour.

Pneumatic hand tool.
Eliminates operator fatigue.

Ahead of the present — abreast of the future

AMP terminals are made for every
type and size of wire.

AIRCRAFT-MARINE PRODUCTS (GT. BRITAIN) LTD.
London Sales Office: 60 KINGLY STREET, LONDON, W.1. Tel: REGent 2517/8
Works: SCOTTISH INDUSTRIAL ESTATES, PORT GLASGOW, SCOTLAND

Brochure W.W. sent
or demonstration at
your own works on
request.

AMP terminals are made for every
type and size of wire.

AIRCRAFT-MARINE PRODUCTS (GT. BRITAIN) LTD.
London Sales Office: 60 KINGLY STREET, LONDON, W.1. Tel: REGent 2517/8
Works: SCOTTISH INDUSTRIAL ESTATES, PORT GLASGOW, SCOTLAND

Ahead of the present — abreast of the future
HARTLEY-TURNER
HIGH FIDELITY
LOUDSPEAKER
SYSTEM

The Hartley-Turner “Boffle” loudspeaker enclosure, when used in conjunction with the Hartley Type 315 Loudspeaker, constitutes a complete loudspeaker system, with a performance that surpasses many units sold at a much higher price.

Remarkably compact, the overall volume being only 3½ cubic feet (18in. cube), this system will reproduce the entire audio frequency range without false colouration and without the need for additional high frequency units.

PRICE
Type 315 Loudspeaker .. £10 10 0
(4 ohms or 15 ohms Impedance. Please state when ordering)
Boffle Enclosure £9 0 0
Carriage Paid in Great Britain.

H. A. HARTLEY CO. LTD.
66, WOODHILL, WOOLWICH,
LONDON, S.E.18.
Telephone : Woolwich 2020 (Ext. CB.32)
It is no exaggeration to term Parmeko's Leicester factories "the most extensive specialised small-transformer plant in Europe". Neither is it an overstatement to say that most electronic and electrical engineers translate the word TRANSFORMER into

PARMEKO

PARMEKO LIMITED, Percy Road, Leicester, England
FLEXIBLE REMOTE CONTROL OUTFITS

offering facilities for making prototype flexible remote controls as required, without flexible casing.

The Remote Control Flexible Shafts in these Outfits cover the range of torque loadings required for volume controls, wave change switches and condensers used in electronic, radio and television equipment.

No. 130 (.130 in. dia.) for controls up to 4 inches long - £7
No. 150 (.150 in. dia.) for controls up to 6 inches long - £7.10

Longer controls with flexible casing made to order. Detailed Parts List available upon request to Dept. W.

WEYRAD

HIGH PERFORMANCE I.F. TRANSFORMERS

THE LATEST VERSIONS OF OUR P4 SERIES ARE THE RESULT OF CONTINUOUS DEVELOPMENT AND REPRESENT THE LAST WORD IN MECHANICAL AND ELECTRICAL DESIGN.

THESE TRANSFORMERS ARE PARTICULARLY SUITABLE FOR LARGE-SCALE PRODUCTION AND SPECIAL TYPES ARE AVAILABLE FOR MANUFACTURERS.

THE TECHNICALITIES QUOTED BELOW APPLY MAINLY TO THE STANDARD P4/LJ AND P4/LK VERSIONS WHICH ARE AS ILLUSTRATED.

CAN 1 in. SQUARE x 21 in. HIGH WITH FIXING FEET.
LITZ WOUND ON MOULDED FORMER WITH CIRCUIT CONNECTIONS TO BASE.
OPERATING FREQUENCY 465 Kc/s.
NOMINAL "Q" 110
BANDWIDTH 9 kc/s at - 6 db

THE P4/LK HAS SIMILAR CHARACTERISTICS BUT IS FITTED WITH A TOP CAP GRID CONNECTION.

FULL DETAILS OF THESE AND OTHER COMPONENTS ARE GIVEN IN OUR ILLUSTRATED CATALOGUE—PRICE 6d.

WEYMOUTH RADIO MANUFACTURING CO., LTD., CRESCENT STREET, WEYMOUTH, DORSET.
The TF 1064 and TF 1065 are complementary instruments. Together, they fulfil all the main testing requirements for mobile transmitter/receiver equipments. Each is completely self-contained and, being light and portable, they are particularly suitable for use in the field.

Signal Generator TF 1064 provides r.f. outputs—f.m. or a.m.—in the ranges 68 to 174 and 450 to 470 Mc/s, i.f. outputs at five spot frequencies, and also an a.f. output.

Test Set TF 1065 comprises an r.f. power meter and deviation indicator for use up to 500 Mc/s, a dual-impedance a.f. power meter, and a multi-range voltammeter.

Each instrument can be supplied separately.
STABILISED POWER
for transistors and
sub-miniature valves

H.T. REGULATION
BETTER THAN .03%

H.T. 22.5 to 150 v D C
L.T. 1.25 v 1.4v 2.8 v 6.3 v

May we send leaflet No. 109B?

LION WORKS, HANWORTH TRADING ESTATE
FELTHAM MIDDLESEX
TELEPHONE: FELTHAM 3567 & 2922

Connoisseur

3 SPEED MOTOR

The turntable with a 4% variation on all three speeds.

The Connoisseur motor is made for the perfectionist. It is one of the finest turntables in the world.

The speed change is arranged mechanically and gives a 4 per cent variation on all speeds. A synchronous motor, which is virtually vibrationless with low noise level and hum induction, maintains a constant speed at all settings. There is no braking action to obtain speed change.

The 12in. turntable is lathe turned in non-ferrous metal. The main spindle, which is precision ground and lapped to mirror finish, runs in phosphor bronze bearings.

A sound, precision engineering job, the Connoisseur motor provides the foundation for perfect reproduction.

A. R. SUGDEN & CO. (ENGINEERS) LTD.
WELL GREEN LANE, BRIGHOUSE, YORKSHIRE.

OVERSEAS AGENTS:
SOUTH AFRICA: W. L. Proctor (Pty.) Ltd., 63, Strand Street, Cape Town.
CANADA: The Astral Electric Co. Ltd., 44, Danforth Road, Toronto 13, Ontario.
NEW ZEALAND: Turnbull & Jones Ltd., Head Office, 31, Nathan Road, Hong Kong.
HONG KONG: The Radio People Ltd., 31, Nathan Road, Hong Kong.

MAIN DISTRIBUTORS:
AUSTRALIA: British Merchandising Pty. Ltd., 183, Pitt Street, Sydney, and I. H. Magrath (Pty.) Ltd., 208, Little Lonsdale Street, Melbourne.
EAST AFRICA: International Aredio (East Africa) Ltd., P.O. Box 3133, Nairobi.
MALAYA: Eastland Trading Co., 1, Prince Street, Singapore.
The SHERWOOD Loudspeaker Cabinet

Designed to load the Axiom 150 Mk.II or the Axiom 22 Mk.II loudspeakers. When mounted, the response of these loudspeakers is extended down to 20 c.p.s. free from any objectionable resonances above this frequency. This Cabinet incorporates an Acoustical Resistance Unit as the essential component in this system of loudspeaker loading. Available in mahogany and walnut veneers.

Post the coupon for full details and prices.

...a loudspeaker typical of Goodmans fine Full Range High Fidelity Loudspeakers...

the Axiom 150 Mk. II

AXIOM 150 Mk.II
Nominal diameter 12 inches; fundamental resonance 35 c.p.s.; voice coil impedance 15 ohms at 400 c.p.s.; maximum power capacity 15 watts peak A.C.; flux density 14,000 gauss.

AXIOM 22 Mk.II
Similar to the Axiom 150 Mk.II loudspeaker but employs a more powerful magnet system resulting in extremely high electro-acoustic efficiency giving clear realistic reproduction up to the full rated power of 20 watts. Frequency range of 30-15,000 c.p.s. free from sub-harmonics and bass modulation effects.
Fundamental resonance 35 c.p.s.; voice coil impedance 15 ohms at 400 c.p.s.; maximum power capacity 20 watts peak A.C.; flux density 17,500 gauss.
... an outstanding NEW Tape Deck

Specially developed and designed for bulk supply to recorder manufacturers only

Compact in size and highly efficient in operation, it incorporates all the vital features so essential to the successful marketing of complete, high-fidelity tape recording instruments. Contemporary and luxurious in appearance, the Deck surface has a finish that is washable and highly resistant to any form of mechanical damage. All metalwork is Gold Hammered finish. Available with NEW precision revolution counter or large visual tape indicator plate for playing time indication, according to choice.

Detailed specification on request.

TRUVOX LIMITED
Sales Dept., 15 Lyon Road, HARROW, MIDDX. Telephone: Harrow 9282

Another DALY Electronic Achievement

CAPACITORS IN REDUCED SIZES WITH FULL VALUES AND WORKING VOLTAGES

SEND NOW for new leaflets with up-to-date information on this new range of capacitors

DALY has succeeded in maintaining full capacity values and working voltages in more compact designs specially suited to ultra-modern equipment.

PHOTO-FLASH EQUIPMENT - DEAF AIDS - PRIVATE TELEPHONE INSTALLATIONS - AMPLIFIERS - D.C. POWER UNITS - SPOT WELDING EQUIPMENT - TEST GEAR - MAGNETISATION EQUIPMENT

Behind DALY capacitors lies 20 years of making only electrolytics, highly specialized experience which engineers throughout the world are finding invaluable, and which is readily available to you.

DALY ELECTROLYTIC CAPACITORS
CONDENSER SPECIALISTS FOR OVER 20 YEARS

DALY (CONDENSERS) LTD., WEST LODGE WORKS, THE GREEN, EALING, LONDON, W.5 Phone: EALING 3127-8-9 Cables: DALYCON, LONDON
"Hitemp" Transformers

- Operational temperatures up to 250°C.
- Suitable for high altitude operation.
- Saving in size and weight.

Originally designed for supersonic aircraft, the "Hitemp" range of transformers has many applications throughout the electrical field.

Ceramic Valves

- High permissible temperature of operation.
- Ruggedised construction.
- Reduced dimensions.

The Ferranti range of Ceramic Valves includes power rectifiers, stabiliser triodes and R.F. power oscillators and amplifiers.

FERRANTI LTD., FERRY ROAD, EDINBURGH
Tel: Granton 89181
WE PROUDLY PRESENT OUR LATEST HIGH STANDARD LOW PRICED INSTRUMENT WHICH WE KNOW WILL BECOME A PRIZED AND INDISPENSABLE POSSESSION IN EVERY CONSTRUCTOR’S SHACK

MODULATED TEST OSCILLATOR MTO.1

★ Provides a modulated signal suitable for I.F. alignment also trimming and tracking R.F. circuits.
★ Frequency is continuously variable from 170-475 kc/s and 550-1,600 kc/s.
★ Operates from a single 9 volt grid bias battery (not supplied) which is housed within the unit.
★ The case is manufactured from steel and is finished in matt black cellulose. The front panel is gloss black bearing white lettering. Dimensions are 5 3/4in. x 4 3/4in. x 3in.
★ Supplied with full operating instructions.

PRICE £3/15/-. Obtainable from all reputable stockists or from works. General Catalogue covering technical information on full range of components, 1/- post paid.

DENCO (CLACTON) LTD (DEPT. W.W.)
357/9 Old Road · Clacton-on-Sea · Essex

STOP PRESS: "MULLARD" TAPE RECORDER Amplifier Chassis, Type "A," 31/6; Type "B," 31/6. Power Pack Chassis, 11/6. "MULLARD" 20-WATT AMPLIFIER Chassis and Base, 34/-; Pre-amp Chassis, 35/-; Transformer Covers (3), 32/-. 60 Kc/s TAPE OSCILLATOR COILS, TDOI, For High Impedance Erase Heads (Truvox, etc.), 5/-. TDO2, For Low Impedance Erase Heads (Brenell and Collaro), 5/-. 20-WATT AMPLIFIER Chassis and Base, 34/-; Pre-amp Chassis, 35/-; Transformer Covers (3), 32/-. 60 Kc/s TAPE OSCILLATOR COILS, TDOI, For High Impedance Erase Heads (Truvox, etc.), 5/-. TDO2, For Low Impedance Erase Heads (Brenell and Collaro), 5/-.

ABIX
ADJUSTABLE STEEL SHELVING

The illustration shows a typical installation of ABIX Steel Shelving, supplied to a well known Paint Manufacturer. Note the easy access to the Shelving and the orderly appearance. ABIX Steel Storage Equipment is supplied in a number of Standard components which can be used to make up an infinite variety of assemblies to suit your particular need. These components can be erected and dismantled by unskilled labour in a minimum of time. They are Steel throughout, Stove Enamelled Olive Green. All fixing bolts are sherardised. Catalogue upon request. Our Representative will be pleased to call and submit schemes and prices if required.

OTHER ABIX PRODUCTS: SINGLE & DOUBLE SKIN PARTITIONING, CLOTHES LOCKERS, MATERIAL RACKS, SLOTTED ANGLES (JUNIOR, UNIVERSAL, SENIOR) CAR & MOTOR CYCLE SHELTERS, TOOL LOCKERS & STEEL CYCLE STANDS.

ABIX (METAL INDUSTRIES) LIMITED
FACTORY EQUIPMENT SPECIALISTS
TAYBRIDGE HOUSE, TAYBRIDGE ROAD, BATTERSEA, LONDON, S.W.11
Phone BATtersea 8666/7
MINIATURE
CERAMIC CAPACITORS
FIXED & VARIABLE

FINISH: STOVE ENAMELLED OR BAKELITE COATED

Wide choice for Radio, T.V., all Electronic Appliances application and Interference Suppression

TYPES
DISC—3 Types
TUBE—All Types
PEARL

DISC TRIMMERS
TUBE TRIMMERS
WIRE TRIMMERS

Please apply for further details and Prices

STEATITE INSULATIONS LTD.,
25 SOMERSET ROAD, EDGBASTON, BIRMINGHAM, 15.

Telephone: . . . EDGBASTON 5381/2.
Telegraphic Address: "STEATITE-BIRMINGHAM, 15"
MASTERTAPE is renowned for its low background noise. Our many customers confirm this fact. A trial will convince you of the truth in this statement. Professional quality can be yours.

Mastertape

If your dealer has no stock, write direct to:
M.S.S. Recording Co. Ltd., Colnbrook, Bucks.

Tel. Colnbrook 430

VITAVOX

GP.1 PRESSURE UNIT
For sound reinforcement and dual-channel loudspeaker systems.

CN.148 (20 watts) £9.00d.

Full details on request from:
VITAVOX LIMITED
Westmoreland Road, London, N.W.9
Telephone: COLindale 8671
Modern engineering, testing, and production techniques demand test instruments with high precision, practical operating features. RCA VoltOhmysts are especially suited for operation over extended periods under rigorous production-line and field conditions: electronically protected meters; accuracy unaffected by normal line voltage fluctuations; easy-to-read expanded scales; one zero-setting holds for all voltage and resistance ranges; accessory probes extend all DC voltages, and extend frequency response to 250 Mc. All RCA VoltOhmysts are tested and calibrated to the highest laboratory standards. Remember, only RCA makes the VoltOhmyst.

Features

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Master VoltOhmyst WV-87B</th>
<th>Senior VoltOhmyst WV-98A</th>
<th>Junior VoltOhmyst WV-77C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>0.02-1500v</td>
<td>0.02-1500v</td>
<td>0.05-1200v</td>
</tr>
<tr>
<td>AC (rms) Voltage</td>
<td>0.1-1500v</td>
<td>0.1-1500v</td>
<td>0.1-1200v</td>
</tr>
<tr>
<td>AC (peak-to-peak) Voltage</td>
<td>0.2-4200v</td>
<td>0.2-4200v</td>
<td>0.2-4200v</td>
</tr>
<tr>
<td>Resistance Current</td>
<td>0.2-10000meg.</td>
<td>0.2-1000meg.</td>
<td>0.2-10000meg.</td>
</tr>
<tr>
<td>Accuracy.§</td>
<td>±3%</td>
<td>±3%</td>
<td>±3%</td>
</tr>
<tr>
<td>DC current</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AC current</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>±3%</td>
<td>±3%</td>
<td>±3%</td>
</tr>
<tr>
<td>AC Voltage</td>
<td>±3%</td>
<td>±3%</td>
<td>±5%</td>
</tr>
<tr>
<td>All full scale points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEND THIS COUPON FOR COMPLETE INFORMATION

RCA INTERNATIONAL DIVISION—DEPT. TE-49-A
RADIO CORPORATION OF AMERICA
30 Rockefeller Plaza
New York 20, N.Y., U.S.A.

Please send details and descriptions on VoltOhmysts

MY NAME

COMPANY

ADDRESS
The EDDYSTONE '820' V.H.F. F.M. Radio Unit

HAS SUCH EXCELLENT EFFICIENCY AND STABILITY IT CAN BE USED SUCCESSFULLY IN MANY BADLY SCREENED OR EXTREME FRINGE RECEPTION AREAS.

Built by Britain's leading manufacturers of V.H.F. communications equipment and of superb construction and workmanship. The fully tuned pre-amplifier, separate limiter and Foster Seeley discriminator combine to ensure the highest performance.

Self-powered, easy to mount and install, the '820' adequately meets the needs of the enthusiastic music lover.

LIST PRICE £39.18.0 (Including Purchase Tax)

Please write for fully descriptive brochure to:

STRATTON & CO LTD - BIRMINGHAM 31

The Recorder which Sells on the Strength of its Quality

An instrument of professional quality for the high-fidelity conscious, achieving a truly high standard of recording and play-back at a remarkably moderate price. Automatic equalisation of output at each speed ensures perfect reproduction. Incorporating the new Collaro Tape Transcriber, upper and lower track recordings can be made in quick succession without spool reversal while a safety device prevents accidental erasure. Three speeds; 3in., 7/16in. and 15in. per second.

Spectone

The Living Truth in Sound

72 GNS.

Including microphone

Write for Leaflet with Full Specification.

SPECTO LTD. VALE RD. WINDSOR
Loud-speaker manufacturers to the Radio Industry since 1930.

REPRODUCERS AND AMPLIFIERS LTD.
WOLVERHAMPTON, ENGLAND

TELEPHONE: 2241/3 CABLES: AUDIO
have you a DC ‘bug-bear’?

No longer need D.C. current be a ‘bug-bear’. The Felgate ELECTRONIC INVERTER will transform 200/250 volt D.C. current to operate almost any A.C. apparatus needing a power of between 25 and 78 watts. The instrument consists of a hard valve push-pull power amplifier driven by a separate oscillator; there are no moving parts. It is silent in operation and its frequency is very stable. Measuring 9" x 6½" x 3½" it can be fixed inside a large instrument such as a radiogram, with control switch on the dial.

PRICE £12. (no P.T.)

See your dealer today. If any difficulty write to:
FELGATE RADIO LTD. FELGATE HOUSE, STUDLAND STREET, HAMMERSMITH, W.6.

--

FELGATE electronic inverter

CITY SALE & EXCHANGE LTD

WHARFEDALE

SUPER 12/GS/AL SPEAKER

A high flux density (17,000 lines) gives excellent transient response and sensitivity with wide frequency range.

Tax Free

£17-10-0

WHARFEDALE

A NEW ARMSTRONG AM/FM RADIOGRAM CHASSIS P.B.409.

This has 9 valves, 6 watts push-pull output, piano key selectors, independent bass and treble controls and magic-eye tuner. 28 gns. cash or £4/- deposit and 8 monthly payments of £2/6.

FOR PICK-UP PERFECTION

The new B.J. Super 90.3 plug-in shells supplied with each arm, will take all popular cartridges, £14/6/6.

PART EXCHANGE & EASY PAYMENTS ARRANGED

We will give you a quotation of a complete HiFi set up including cabinet if required. We maintain separate workshops staffed by fully qualified sound engineers, and every installation is very carefully tested before despatch.

93-94 FLEET STREET, LONDON, E.C.4

Phone: FLEet St. 9391/2
variable high power Amplifiers

For the past 20 years, W. Bryan Savage Ltd. has specialised in a wide range of high power amplifiers for use in various branches of industry. This experience has been more recently successful in the wide and varied field of fatigue testing.

TYPE 10 10 KILOWATT AMPLIFIER
This is the latest addition to the Savage range of amplifiers—it is suitable for driving the Goodman Vibrator VG108 or VG109 and the American MB C25H.

OUTPUT: 10 kVA when Power Factor of load exceeds 0.8.
OUTPUT VOLTAGES: From 411 V to 330 V.
FREQUENCY RANGE: 40 c/s-10,000 c/s at 10 kW. 30 c/s-6.5 kW. 20 c/s-2.5 kW.
HARMONIC DISTORTION: Less than 3% at 10 kW at 1 kc/s.
SENSITIVITY: 160 mA at 600 ohm for 10 kW output.
OUTPUT VOLTAGE REGULATION: 33%.
NOISE: 70 dB below 10 kW.
MAINS SUPPLY: 350-450 volts 50 c/s 3 phase.

<table>
<thead>
<tr>
<th>Power</th>
<th>Type</th>
<th>Frq. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Watts</td>
<td>"VLF"</td>
<td>3 c/s to 6 c/s</td>
</tr>
<tr>
<td>1 kW</td>
<td>"VLF"</td>
<td>6 c/s to 2,000 c/s</td>
</tr>
<tr>
<td>1 kW</td>
<td>Mark II Star</td>
<td>50 c/s to 10 kc/s</td>
</tr>
<tr>
<td>1 kW</td>
<td>"LRF"</td>
<td>5 kc/s to 100 kc/s</td>
</tr>
<tr>
<td>10 kW</td>
<td>Type 10</td>
<td>40 c/s to 10 kc/s</td>
</tr>
</tbody>
</table>

W. BRYAN SAVAGE LIMITED

FOR FATIGUE TESTING for Guided Missiles, aircraft and all forms of Industrial components

TYPE V 1000 — This vibrator is designed to produce a peak alternating thrust of ± 500 lbs. (unblown) at 1 kW. A forced draught into the vents provided in the base will allow increased input current for a correspondingly increased thrust. Unit construction has been adopted and careful attention to detail has produced a vibrator that can quickly and easily be stripped and reassembled should repairs become necessary—the design is such that no routine maintenance is required.

17, STRATTON STREET, LONDON, W.1 Telephone: GROsvenor 1926
The Armstrong

Specialists in High Quality Reproduction for over 20 years.

Super Radiogram

THE FINEST IN
RADIOGRAM REPRODUCTION

★ 8 watt Push Pull Amplifier with negative Feedback.
★ Separate High Sensitivity VHF/FM Tuner.
★ Twin speaker system with crossover network incorporating the WHARFEDALE Golden 10 in. and special aluminium voice coil treble unit.
★ Beautifully styled and hand-made cabinet finished in walnut.
★ Latest COLLARO 4 speed High Fidelity Autochanger.

Post this coupon for descriptive literature and details of Hire Purchase and Home Trial facilities to Armstrong Wireless and Television Co., Ltd., Walters Rd., London, N.7. (NORth 3213)

Name...
Address ..

WF

PRICE AM/FM Model £102.8.6. incl. tax AM Only Model £90.8.0.

DEMONSTRATIONS at our Holloway Showrooms weekdays (inc. Saturday) 9-6 p.m. TRIAL IN YOUR HOME. Your money will be refunded if for any reason whatever you are not satisfied after 7 days' trial. FULL GUARANTEE for 12 months. CREDIT TERMS available.

Bullers CERAMICS

FOR INDUSTRY

We specialise in the manufacture of—PORCELAIN for general insulation
REFRACTORIES for high-temperature insulation
FREQUELEX for high-frequency Insulation
PERMALEX & TEMPLEX for capacitors

High quality material and dimensional precision are attributes of Bullers die-pressed products. Prompt delivery at competitive prices.
MINIATURE OSCILLOSCOPE

Weight—approx. 15 lb. Size—$13\frac{1}{2}'' \times 8'' \times 5\frac{1}{2}''$ approx. Finish—Dark Battleship Grey.

Designed as a general-purpose instrument, the Metrovick miniature oscilloscope is particularly useful for radar servicing. Its light weight and compact construction result in a portable and robust instrument designed to withstand rough use, so that it has now become standard equipment for the fighting services.

SPECIFICATION

SUPPLY: With A.C. Power Pack (CT52)—100/125 v., 200/250 v., 50/60 c/s.; 180 v., 500 c/s. With D.C. Power Pack (CT84)—28 volts D.C. Power consumption 50 VA approx.

CATHODE RAY TUBE: Hard tube—2\(\frac{1}{4}\)in. diameter screen. Standard tube fitted has Green screen with medium afterglow. Alternative tubes can be fitted.

TIME BASE: Free-running linear time base, paraphase amplifier and synchronising. Repetition range 10 c/s to 40 Kc/s. Single-sweep linear time base with paraphase amplifier, triggered by 30-volt pulse. Repetition range—50 c/s to 3,000 c/s. Sweep range—50 milliseconds to 3 microseconds.

Y PLATE ATTENUATOR: Resistance attenuator, capacitance compensated. Flat response—3 db from D.C. to 100 kc/s. Fixed attenuation of 14 db. (5 times).

Y PLATE CONNECTION: Direct or series capacitor connection. Input resistance—2.5 megohms. Input capacitance—50 pf. approx.

Y PLATE AMPLIFIER: 1. Max. gain of 38 db. (80 times) flat to 3 db from 25 c/s to 150 Kc/s. 2. Max. gain of 28 db. (25 times) flat to 3 db from 25 c/s to 1 Mc/s.

CALIBRATION: An internal supply of 50-volt peak ± 10%, sine wave, at the supply or vibrator frequency.

DELAY LINE: A delay network brought to the Y plate switch, and the displayed signal is delayed by approximately 0.5 microseconds, having its source impedance of 75 ohms.

RATING: Continuous operation at ambient temperatures between—32° C. and + 50° C.

Write for leaflet 652/14-1 for technical details

METROPOLITAN-VICKERS

Member of the A.E.I. group of companies
THE WIRELESS WORLD

THE RD JUNIOR

FM UNIT

with

Automatic Frequency Control

COMPLETE PRICE £24.17.0. INCL.

PART OF A COMPLETE HIGH FIDELITY SYSTEM

Literature available post free on request; send also for details of companion equipment in the RD JUNIOR Home High Fidelity System—the RD JUNIOR Amplifier and Control Unit and the RD JUNIOR Corner Horn enclosure.

NEW FACTORY: In order to be able to meet the steadily increasing demand for our products we have now moved to a larger and better equipped factory. Our sole address, to which all enquiries should be sent, is now as below.

ROGERS DEVELOPMENTS (ELECTRONICS) LTD.

"RODEVCO WORKS," 4-14, BARMESTON ROAD, CATFORD, LONDON, S.E.6

Telephone: Hither Green 7424

INSULATED TELEVISION DOWNLEAD CABLES

To meet the exacting demands being made on the efficiency of aerial systems, the Glover range of Cellular Polythene insulated downleads have been designed to utilise the superior electrical properties of this new form of polythene.

Details of three designs are given as being most representative of modern practice.

The two Cables G.R.1., G.R.2. are intended for use in the service area and one G.R.3. for use in fringe areas and in situations where interference is high.

W.T. GLOVER & CO. LTD.

MEMBERS OF THE C.M.A.

TRAFFORD PARK, MANCHESTER 17

TRAFFORD PARK 2141
30 c/s — 20 Mc/s

OSCILLOSCOPE

Type 830

Y PLATE AMPLIFIER:
Frequency Response:
±2.5 db from 30 c/s-20 Mc/s.
Sensitivity:
75 millivolts per cm.
Rise-time:
30 Millimicroseconds.

TIME-BASE:
Ranges:
0.05 second to 1.5 microseconds
Operation:
Triggered or repetitive.
Expansion:
Variable up to 5 times.
Traverse:
A traverse control enables any portion of the expanded time-base to be viewed.

E.H.T. VOLTAGES:
1, 2 or 4 kV.

THE OSCILLOSCOPE TYPE 830 has been designed for general wide-band frequency work and is particularly suitable for observing pulse waveforms with very fast rise-times. The frequency response of the Y amplifier is flat from 30 c/s to 20 Mc/s and the time-base provides writing speeds up to 20 cms. per microsecond.

The mechanical design is the same as that employed in the Airmec Oscilloscope Type 723, the Cathode Ray Tube being mounted vertically and viewed through a surface aluminised mirror. The instrument may therefore be used in conjunction with the Airmec Oscilloscope Camera Type 758.

AIRMEC LIMITED
HIGH WYCOMBE BUCKINGHAMSHIRE ENGLAND

IMMEDIATE DELIVERY
PRICE £175

Full details of this or any other Airmec instrument will be forwarded gladly upon request.

Telephone: High Wycombe 2060
Cables: Airmec, High Wycombe
"YOU CAN RELY ON US"

Stockists of all Radio and Electronic components for manufacturers, laboratories, Educational authorities, and the amateur.

MULLARD 510 AMPLIFIER AND G.E.C. 912 AMPLIFIER—ALL PARTS STOCKED AND AVAILABLE ON H.P.

INCLUDING ELCOM, BULGIN, TCC, HUNTS, DENCO, ETC.

DETAILED LISTS ON ABOVE AVAILABLE

ALL AVO, TAYLOR, INSTRUMENTS FROM STOCK

NEW CATALOGUE AVAILABLE 2½d. STAMP.

Radio Servicing Company

82, SOUTH EALING ROAD, LONDON, W.S.

Telephone: EAL. 5737

Next to South Ealing Tube (TURN LEFT) 9 to 6 p.m., Wed. 1 o'clock.

Precision built components

Jackson "O" Gang Condenser

CAT. No. 5250

Miniature model in 1 or 2 gang, capacities up to 365pf swing, front area 1½" × 1-17/32" including sweep or vanes, length 1 Gang 1", 2 Gang 1½", Spindle ¾" dia. × ½" long.

Aluminium vanes, cadmium plated steel chassis.

Price

1 Gang 7/6 2 Gang 11/6

It's reliable—if it's made by Jackson's.

Write for fully illustrated catalogue.

Jackson Bros.

London Limited

ELECTRO-ACOUSTICS
in
BOND STREET W.1.

what's this?

PHILIPS NOVOSONIC 15 watt AMPLIFIER
FREQUENCY RESPONSE CURVE

it's new

and on view at our luxurious
BOND STREET SALON

Now you can hear the best of Audio-Acoustical equipment in conditions comparable with those at home... study the performance of the products of leading makers... obtain expert guidance on technical matters, including, if required, the installation of equipment in your own home by our specialist engineers.

BOYDS
33 NEW BOND STREET
LONDON, W.1

TO BOYD LTD., 33 NEW BOND ST., LONDON, W.1
Please send me details of Hi-Fi equipment

NAME ____________________________
ADDRESS ____________________________

It is understood that this places me under no obligation to buy.
a transmitting all communications

<table>
<thead>
<tr>
<th>Valve Output Power in Watts</th>
<th>Type Number</th>
<th>Frequency in Megacycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>TY7-6000A</td>
<td>20 30 40 50 60 80 100 200 300 400 600 800 1000 2000 3000 4000</td>
</tr>
<tr>
<td>10,000</td>
<td>TY7-6000W</td>
<td></td>
</tr>
<tr>
<td>9,900</td>
<td>TY6-5000A</td>
<td></td>
</tr>
<tr>
<td>9,900</td>
<td>TY6-5000W</td>
<td></td>
</tr>
<tr>
<td>4,100</td>
<td>QY5-3000A</td>
<td></td>
</tr>
<tr>
<td>4,100</td>
<td>QY5-3000W</td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td>TY4-500</td>
<td></td>
</tr>
<tr>
<td>1,440</td>
<td>TY4-350</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>QY4-250</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>QY4-500A</td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>TY3-250</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>TY2-125</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>QY3-125</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>QY3-65</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>QY1-150A</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>QYQV06-40A</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>QQV07-40</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>QQV06-20</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>QQV03-20A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>TD01-100A</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>QQV04-15</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TD04-20</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>QQV03-10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>QQV03-12</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>QV04-7</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>QQV02-6</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>TD03-10</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>TD03-10F</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>TD05-12</td>
<td></td>
</tr>
</tbody>
</table>
valve range for equipment

This extensive range of work-proven transmitting valves fills the wide and diverse needs of communications equipment manufacturers. The performance of this valve group extends to frequencies as high as 3,000 Mc/s for 0.5W and to powers up to 6.9kW at lower frequencies.

The Mullard technical advisory service is always at the disposal of manufacturers to answer questions relating to the applications and suitabilities of these valves.

Transmitting Valve Data

The chart on the left has been compiled to acquaint designers with the range and scope of Mullard transmitting valves available for communication purposes, and to facilitate the selection of suitable types for given applications. The power quoted is the maximum valve output available with Class C telegraphy operation up to the frequency indicated by the junction of the solid and broken lines. The extent to which a valve may be used at higher frequencies with reduced ratings is given by the broken line. More detailed information may be obtained from a leaflet on this range of valves and from individual data sheets—all of which are available on request at the address below.
For a regular smooth response curve

You need a PHILIPS dual-cone loudspeaker

(Made in Holland)

PHILIPS ELECTRICAL LTD
Musical Equipment Department, Century House, Shaftesbury Avenue, London W.C.2.

A special dual-cone design distinguishes Philips high fidelity speakers, resulting in energy transmissions that are almost independent of frequency. This ensures that, in an ordinary room, sound pressure within an angle of 90 degrees does not vary by more than six decibels; while the excellent spatial distribution of acoustic energy — even at the highest frequencies — is obtained by Philips choice of coupling factor between high-range and low-range cones.

The small cone acts as a high note radiator for frequencies above 10,000 cycles and also as a diffuser for frequencies below 10,000 cycles from the large cone. The large cone itself acts as a low note radiator below 10,000 cycles, and as a reflector for the high notes above this frequency. The distribution of sound over the entire frequency range is thus much wider than on a normal loudspeaker.

These loudspeakers have a very smooth response curve combined with a low resonance frequency.

The Philips dual-cone loudspeaker comes in two sizes: 8" and 12", price 6½ gns. (tax paid) and 10 gns. respectively. There is also a single-cone loudspeaker, available in the same two sizes: price £5 2s. 6d. (tax paid) and £10 0s. 0d. respectively.

N.B. Any of these speakers may be used on their own or with another suitable loudspeaker using a crossover unit.

For full details write to:

PHILIPS ELECTRICAL LTD
Musical Equipment Department, Century House, Shaftesbury Avenue, London W.C.2.

BRADMATIC (REGD. TRADE MARK)

PRECISION HI-FIDELITY MAGNETIC SOUND HEADS

ANNOUNCING OUR NEW MINIATURE MAGNETIC SOUND HEADS

These heads incorporate all the features of our well known standard heads being of the same type of construction but are only 15 mm. in diameter.

Types available:

- Type M6RP (Record/Play)
- Type M5RP (Record/Play)
- Type M5R (Record)
- Type MSE (Erase)

Full details on application

BRADMATIC for hi-fi tape recording apparatus

Tape Desks, Magnetic Heads, Amplifiers & accessories

Write for details. Private or Trade supplied.

BRADMATIC LIMITED
Station Road, Aston, Birmingham 6

JASON "ARGONAUT"

A.M. F.M. TUNING UNIT for building as a Tuner or Receiver

The Jason "Argonaut" will be found ideal for those wishing to enjoy selected reception of overseas transmissions as well as the superlative quality of F.M. It is recommended particularly for experienced builders, and may be built as a tuner-unit, or self-powered unit with quality output stage. The chassis, supplied ready punched, accommodates either version. F.M. sensitivity—15 microvolts. Switching and wiring are absolutely straightforward. Supplied with chassis, dial and specially designed Jason tuning assembly. Centre front-panel holes are blocked by easily removed plastic discs.

Book of the Jason "Argonaut" by Data Publications, 2/- (2/3 post paid).

All parts (less valves) to build tuner, £10 10/-.
All parts (less valves) to build as complete receiver, self-powered, £11 10/-.

OTHER JASON SPECIALISED F.M. EQUIPMENT

Jason quality F.M. Tuner kit: Jason Station-switched F.M. tuner, assembled. FROM LEADING STOCKISTS EVERYWHERE, or in case of difficulty, please write direct to—

JASON MOTOR & ELECTRONIC CO.
328, CRICKLEWOOD LANE, LONDON, N.W.2
Telephone: SPEedwell 7030
Important news for electronic engineers

For 33 years Wireless Engineer has served the world's leading engineers, designers and technicians, publishing original work of eminent physicists and research engineers. Now, under the new title of Electronic & Radio Engineer, and with a 40% increase in content, its influence has been extended to include information of more immediate application in both electronics and radio. With the continued support of an advisory board representing Universities, the D.S.I.R., the B.B.C. and the Post Office, and with an enlarged Abstracts section, the new Electronic & Radio Engineer will prove indispensable to all concerned with design, development, production, and industrial application of electronic and radio apparatus. Begin your readership with the February issue. Complete and post the coupon NOW.

A representative selection from the contents of the February and subsequent issues:

THE B.B.C. RADIO MICROPHONE. By F. A. Peachey and G. A. Hunt. A microphone without trailing cables is provided in the form of a miniature f.m. transmitter carried on the person.

MICROWAVE DISSIPATIVE MATERIAL. By M. Y. El-lbiary. Preparation and microwave electrical characteristics of plastic loaded with fine iron powder.

MULTIPLE RESONANCE FREQUENCIES. By W. W. Fain. An empirical formula for multiple resonance frequencies derived from measurements of a number of coils.

NON-LINEAR CIRCUIT EQUATION. By J. Irving and N. Mullinex. Solving non-linear equations by a perturbation method.

SOLEONIDS FOR AIRBORNE APPLICATIONS. By A. S. Gutman. Design of solenoids so as to achieve minimum weight taking into consideration the equivalent weight of operating power supplies and cooling equipment.

DILEMMAS IN TRANSMISSION-LINE THEORY. By R. A. Chipman. Some problems of r.f. transmission lines are examined and simple but exact transmission-line formulae developed.

THE MULTI-REFLECTION KLYSTRON. By B. Melzer. Possible efficiency is considered and a suitable electrode configuration described.

POST THIS COUPON TODAY
TO ILLIFFE & SONS LTD., DORSET HOUSE, STAMFORD ST., LONDON, S.E.1

Please enter my subscription to Electronic & Radio Engineer, for 1 year (12 issues) Remittance value £2.9.0 enclosed*

Please send me a specimen copy of Electronic & Radio Engineer

ADDRESS

*Overseas Readers. Take advantage of our introductory offer of 3 years' subscription for the price of 2. Remit £4.15.0 by International Money Order or Banker's Draft today.
THE DYNATRON VHF TUNER UNIT

PROVIDES TRUE HIGH FIDELITY LISTENING

- 7/8 VALVE TUNER
- PRE-TUNED 4 FIXED FREQUENCIES
- AUTOMATIC FREQUENCY CORRECTOR

The first version of this tuner appeared over 2 years ago and was an immediate success. It became the first British pre-tuned tuner and is now generally recognised amongst radio engineers as the most advanced unit available today. It is used by the B.B.C. and relay organisations as both a main and monitor receiver.

Constant stability has been obtained by a perfected system of automatic frequency correction and four correctly tuned channels are provided by rotary switch. Maximum freedom from noise and distortion is secured by the use of a Foster-Seeley detector with two limiter circuits, the now accepted method of combating multi-path reception distortion. The compact chassis can be operated from each end by means of a single shaft with flexible couplings giving, if necessary, "off centre" operation and permitting simple installation in most radiogramophones. It is the idea instrument to complete a high fidelity audio installation.

Two models, one with a low voltage output, 2 of a volt and the other with an extra valve as LF store giving 2 volts output, are offered. A separate power unit is also available.

Write for full details of the latest Dynatron FM Tuner and learn what true high fidelity listening means.

DYNATRON

DYNATRON RADIO LIMITED
Dept. TU103, Maidenhead, Berks.

POST OFFICE TYPE

3,000 and 600 relays to specification

- Specialists in tropical and Services jungle finish
- GUARANTEED TO FULL A.I.D. & I.E.M.E. STANDARDS
PROMPT DELIVERIES, PROTOTYPES 7 TO 10 DAYS

Manufacturers to H.M. Govt. Deps. and leading Contractors
L. E. SIMMONDS LTD.
5 BYRON ROAD, HARROW, MIDDX.
Telephone: Harrow 7171/9

1.5 VOLT STABILIZERS

THE A.E. RANGE OF HERMETICALLY SEALED LOW VOLTAGE STABILIZERS

Max. operating currents: 20 mA to 1 A.
A.C. Resistances (pulsating D.C.): 10 to 0.050.
Ambient temp. limits: -5°C to 70°C.
Useful frequency range: up to 10 MHz.
Also available with small "emergency" storage capacity. Suitable for operation in series and parallel. "Filter action" of 400 mA type at 50 c/s equivalent to 60,000µF. Applications include: "Fixed bias" operation, protective ccts., D.C. heater supplies, reference potentials, semi-conductor circuitry.

Brochure from Sole Concessionaires:
MERCIA ENTERPRISES LTD.
30 Silver St., Coventry.
from the new Mullard catalogue

Precision Pulse Generator

L141

The pulse generator type L.141 provides two main pulses with accurately controllable amplitude, duration, p.r.f., and separation, together with additional pulses for triggering or synchronising.

The amplitude of the two main pulses is continuously variable between 300µV and 100V, their duration from 0.5 to 100µs, and the separation between them from 0 to 100ms.

An internal oscillator provides repetition frequencies from 1c/s to 100kc/s.

Transistor Tester

L264

The Mullard Transistor Tester has been developed to provide a rapid means of checking general characteristics and ascertaining if a transistor has been damaged in circuit. Facilities for measuring the important parameters, α, base-collector short-circuit current gain, as well as Ic0 and the collector turnover voltage are provided. Although designed as a simple testing unit, it has an accuracy of ±5%.

Dual Trace Oscilloscope

L1012

This high grade, general purpose instrument incorporates two identical amplifiers with sensitivities of 20mV/cm over a bandwidth of 4Mc/s. Voltage measurements (±5%) and time measurements (±10%) are by null methods. The time base may be free running or triggered, and sweep speeds are from 0.1µs/cm to 10ms/cm.

Television Line Selector

L196

The L.196 enables any normally triggered oscilloscope to give a jitter-free display of one or more lines from a television video signal. It can be used on transmitter and receiver units to display depth of modulation, d.c. levels, bandwidth, blanking, synchronizing pulses and for the examination of similar waveforms in detail.
We style the sets that set the style most wanted overseas

Superbly presented "Continental" cabinet stylinngs in rich, dark walnut with ebony and gilt reliefs and large glass dials. High performance, long range and new design speaker capable of very wide frequency response producing a realism of sound reproduction hitherto unknown.

MODEL No. 5656
With High Fidelity sound. Six wavebands, five valve superheterodyne with electrical bandspread on 4 short wavebands.

MODEL No. 7856
With High Fidelity sound. Seven valves, eight wavebands.—Six electrically bandspread Twin speakers A.C. mains.

MODEL No. 9856

THE BRITISH NATIONAL RADIO SCHOOL
ESTD. 1940
NOW IN OUR SIXTEENTH YEAR AND STILL
NO B.N.R.S. STUDENT HAS EVER FAILED
to pass his examination(s) after completing our appropriate study course.

Our Secret?
Sincerity, Long Experience, Family Ownership, Pride of Service and a genuine attempt to mould the "Course" to the student.

A.M.Brit.I.R.E. and CITY and GUILDS Radio and Telecommunications Exams, etc., etc.

PRINCIPAL,
BRITISH NATIONAL RADIO SCHOOL
2, CANYNGE ROAD, CLIFTON, BRISTOL, 8
Tel. BRISTOL 34735

Telephone: MUSEUM 2958

The choice of quality minded people
BRIGHOUSE, YORKSHIRE, ENGLAND.
Protection against damage from IMPACT and VIBRATION

"BARRYMOUNT" Cup-type Isolators are designed primarily to absorb high-impact shocks with concurrent isolation of frequencies above 40 c.p.s. and general sound isolation. Utilisation of rubber in compression with substantially equal stiffness in all directions provides a smooth load-deflection curve. Load ratings indicated for Mobile Applications (including shipboard installations) are such as to ensure a vertical natural frequency between 25 and 35 c.p.s. The design and assembly of the metal parts are such that they are self-captivating for maximum security. Samples are available immediately ex stock.

for:—

★ MOBILE electronic and electrical equipment.
★ MILITARY and GUIDED MISSILE instrumentation.
★ SHIPBORNE sensitive equipment.
★ PROVIDING the optimum combination of impact isolation, vibration isolation, noise reduction, stability for the mounted unit.

Write for technical bulletins:
CEMENTATION (MUFFELITE) LTD., 20 Albert Embankment, London, S.E.11. Tel.: RELiance 6556
IN-LINE AERIALS WITH COMBINED COUPLING

The first combined Aerial patented and offered, needing NO MATCHING LINES, ONLY ONE JUNCTION BOX from which both frequencies are fed to a common downlead, and NO FILTER. Maximum energy transfer is gained by supplementing direct coupling with additional electronic coupling obtained by the "arrow" formation of the Band III elements corresponding exactly with the lobes of the larger elements polar diagram when receiving Band III. The folded dipole has been retained, being found essential for accurate matching at the higher frequency. Furthermore, this design allows the full use of reflectors and consequent advantage of high directivity.

WOLSEY

Pacemakers to the Aerial Industry

WOLSEY TELEVISION LIMITED

43/45 Knight's Hill, West Norwood, London, S.E.27

Telephone: GIPpsy Hill 2207

(Electronics Division, Gas Purification & Chemical Co. Ltd.)

W21

RELAYS

P.O. TYPES
MANUFACTURED
TO YOUR
SPECIFICATION
PROMPT
DELIVERY

3000 TYPES
COILS up to 80,000
cONTACTS up to 8 c/jo's
Tropicalising and impregnating to order. 620 and HIGH-SPEED TYPES also supplied.

LARGE STOCKS OF KEYSWITCHES

THE KEYSWITCH CO.
ALL POST OFFICE EQUIPMENT
Enquiries to Sales Manager
126 KENSAL ROAD, LONDON, W.10
Contractors to Home & Overseas Governments & H.M. Crown Agents

EDDYSTONE COMMUNICATION RECEIVERS

Model 840A illustrated
Cash Prices and Statutory Terms

<table>
<thead>
<tr>
<th>Model</th>
<th>Cash Price</th>
<th>Deposit</th>
<th>8 Monthly Payments of</th>
</tr>
</thead>
<tbody>
<tr>
<td>820</td>
<td>£48 0 0</td>
<td>£4 6 0</td>
<td>£4 6 0</td>
</tr>
<tr>
<td>840A</td>
<td>£55 0 0</td>
<td>£6 8 0</td>
<td>£6 8 0</td>
</tr>
<tr>
<td>750</td>
<td>£78 0 0</td>
<td>£9 2 0</td>
<td>£9 2 0</td>
</tr>
<tr>
<td>818</td>
<td>£110 0 0</td>
<td>£13 16 0</td>
<td>£13 16 0</td>
</tr>
<tr>
<td>680X</td>
<td>£150 0 0</td>
<td>£14 0 0</td>
<td>£14 0 0</td>
</tr>
</tbody>
</table>

Cash price if paid in 6 months by Bankers order.
Carriage paid per passenger train.

Model 840A is for A.C. or D.C. 110/250 v.; 750 and 680X 110/240 v.
A.C. These sets are the choice of the discerning professional and amateur users. Descriptive literature gladly forwarded.

Latest EDDYSTONE Component Catalogue 1/-

The Eddystone Specialists

SERVICES LTD.,

55 COUNTY ROAD, LIVERPOOL, 4
Telephone: MINTREE 1445
Branch address: MARKET CROSS, ORMSKIRK
WODEN TRANSFORMER CO. LTD.
BILSTON, STAFFS. Tel. BILSTON 41959

TRANSISTORS

CAST RESIN TRANSFORMERS
Give complete mechanical and climatic protection for core and windings. Good heat dissipation.

HERMETICALLY SEALED "C" CORE UNITS
A complete range covering transformers from 1 Va to 2 kVA and the usual range of chokes.

POTTED COMPOUND FILLED TRANSFORMERS
A wide range of capacities for transformers and chokes. Complete reliability. Suitable for exacting industrial and climatic conditions.

SHROUDED AND OPEN-TYPE TRANSFORMERS
Combines first-class engineering with a popular highly competitive product. Vacuum impregnated and rigidly tested.

MICROPHONE TRANSFORMER
For use with moving coil microphone, minimum hum, pick-up and maximum efficiency.

In addition to the types shown, we manufacture a great variety of Transformers for all electronic applications. Also Power Transformers up to 750 kVA.

Catalogues available on request.

PHILIPS 10-WATT NOVOSONIC HI-FI EQUIPMENT
SOUNDS SUPERLATIVE — AND LOOKS SUPERB
It consists of two separate units, each a beautiful piece of high-quality furniture. One contains the two speakers: 12 in. for bass (in a special acoustically treated enclosure) and 7 in. dual-cone for treble. The other houses the 10-watt amplifier, with its adjustable controls for treble, bass, and tone and provides space for any type of sound source—record reproducer, radio, or tape deck. **Price 77 Gns.**

PHILIPS 3-SPEED RECORD CHANGER complete with Philips Diamond Stylus for L.P. and Sapphire for 78 r.p.m. records. **Price 18 Gns.**

"POLYMAX" UNBREAKABLE INSULATORS

“Q-MAX” CHASSIS CUTTERS
The easiest and quickest way of cutting holes in SHEET METAL.

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8"</td>
<td>12/6</td>
</tr>
<tr>
<td>3/32"</td>
<td>13/6</td>
</tr>
<tr>
<td>3/16"</td>
<td>15/6</td>
</tr>
<tr>
<td>1/8"</td>
<td>16/6</td>
</tr>
<tr>
<td>1/4"</td>
<td>18/6</td>
</tr>
<tr>
<td>3/16"</td>
<td>20/6</td>
</tr>
<tr>
<td>3/32"</td>
<td>22/6</td>
</tr>
<tr>
<td>1/4"</td>
<td>23/6</td>
</tr>
</tbody>
</table>

Price 12 Gns. Complete.

" Q-MAX " MODEL G.D.O.—IA GRID DIP OSCILLATOR
is an ideal instrument for the determination of tuned circuit resonant frequency, tuning transmitters without application of power, for the determination of coil mutual and stray inductances and both fixed and stray capacitances. Covers 1.5 to 300 Mc./s. in eight ranges. **Price 12 Gns. Complete.** (Or 6 Gns. Dep. and 12 monthly payments of 11/7.)

" Q-MAX " UNBREAKABLE INSULATORS

25, HIGH HOLBORN, LONDON, W.C.1
Tel. HOLborn 6231/2

A VACANCY OCCURS ON OUR SALES STAFF FOR A FULLY TECHNICAL SENIOR SALES.

ALL COMPONENTS FOR
OSRAM 912 PLUS
MULLARD 5/10
ALSO LAB & WELWYN
HI-STABS & TCC
PRECISION CONDENSERS
S.R. 3-4 WATT AMPLIFIER

PRICE £5.15.0 plus 3/6 postage and packing

High quality three valve three watt amplifier for A.C. Mains 200-250 volts. Four controls give a wide tone variation. 3 ohm speaker output. Chassis fully isolated. Valve line-up: 6SG7, 6V6, 6X5. Bronze finished chassis size 8in. x 4in. x 5in. high. Supplied built and tested, and guaranteed for twelve months (90 days valves).

BUREAU CABINET

A well-designed bureau-type cabinet in a medium size. Veneered in a highly figured walnut. Outside dimensions: length 294in., depth 16in., height 32in. Sloping control panel on right-hand side approx. 13in. x 101in. Removable baseboard on right-hand side approx. 13in. x 13in. Large storage compartment located inside the cabinet, above motor board. **PRICE** 12 GNS. Packing and carriage terms: Cash with order or C.O.D. (U.K. and N. Ireland only).

THE SUPEREX "55" BATTERY PORTABLE

BUILDING COST £7.15.0 plus 4/- carriage

REPLACEMENT CHASSIS. Complete A.M. and A.M./F.M. Radiogram Chassis and Tuner Units. Ready built and fully guaranteed. Only require connecting to speaker and mains. A cheap way of modernising your old radiogram. **PRICE** £7.15.0 plus 4/- carriage.

QUALITY SPEAKERS. A good quality speaker is an essential part of any radio or sound system. Always in stock, speakers from 3in. to 12in. by GOODMANS, WHITELEY, WHARFEDALE, G.E.C. and ELAC.

SUPERIOR BUREAU

An elegant cabinet in richly figured walnut veneer, internal panels in polished sycamore. A drop front lid covers a sloping, uncut control panel (16in. long x 10in. high) alongside which is an uncut baseboard (15in. long x 13in. back to front). The inside of the drop front lid is panelled in beige leatherette. In the lower part of the cabinet are two large storage cupboards (13in. high, 7in. wide, 16in. deep). The lid and cupboard handles are in chased Florentine bronze. Overall dimensions (33in. high, 34in. long, 16in. deep) **PRICE** 16 1/2 GNS. Plus 25/- carriage.

ALWAYS "FIT"

CASTORS

THE WORLD'S BEST

CONTRACTING TUBE ADAPTOR

For 7/8", 1", 1 1/8", 1 1/4" tubes, Quickgrip Adaptors are fitted by hand as no tools are required. 2", 2 1/2", 3", and 4" wheels may be used.

HUNTON will cut your press tool costs for PROTOTYPE and PRE-PRODUCTION RUNS!

THE UNIVERSAL BOLSTER OUTFIT

USING STANDARDISED PUNCHES AND DIES FOR SHEET METAL PIERCING AND BLANKING ON FLY PRESSES

STUDY THESE ADVANTAGES

- To get you started—standardised Punches and Dies 3in. to 3 1/2in. dia. in 1/32in. sizes from stock.
- With short notice, Standardised Tools or square, oblong and other shapes.
- Adjustable Gauges for exact location of work. Automatic and Positive Stripping of material from Punch.

IN London and Home Counties ask for a practical demonstration in your own works. Alternatively, write for illustrated price list W.W. HUNTON LIMITED

Tel.: Euston 1477 (3 lines). Grams: UnioneXh. London.
Ashdowns Limited is a subsidiary of Pilkington Brothers Limited. "ASHLAM" & "UNDULITE" are the registered trade marks of Ashdowns Limited.

Ashdowns Limited
ASHDOWNS LIMITED
ECCLESTON WORKS, ST. HELENS, LANCs. Tel: St. Helens 3206

GLASS FIBRE REINFORCED MOULDINGS
"ASHLAM" LAMINATES
GLASS FIBRE REINFORCED LAMINATES
VACUUM FORMED THERMOPLASTIC SHEET & FABRICATIONS
"UNDULITE" TRANSLUCENT CORRUGATED SHEETS

PLASTICS AT YOUR SERVICE

PRECISION High Fidelity
4 SPEED TRANSCRIPTION UNITS
WITH VARIABLE SPEED ADJUSTMENT.

MAIN FEATURES

- Speed continuously variable from 29 r.p.m. to 86 r.p.m. Pre-set adjustable "click-in" position for 78, 45, 33 1/3 and 16 r.p.m. Playing old celebrity discs requiring speeds above 78 r.p.m. Tuning record pitch to a musical instrument. Correcting for mains frequency variations.
- Accurately balanced heavy precision made turntable eliminates Wow and Flutter.
- Unique VERTICAL EDGE-DRIVE PULLEY principle, eliminates Rumble.
- Less than 1% change in speed for up to 13% change in Line Voltage.
- Large resilient 4-pole constant velocity motor.

TYPE GL50/4 Low Loading velocity operated
Price £15.15.0
Automatic Stop P.T. £6.2.10

TYPE GL55. Without Pick-up. FITTED WITH BAND LOCATION DEVICE
Price £12.12.0
P.T. £4.18.4

TYPE GL56. Complete with Pick-up. FITTED WITH BAND LOCATION DEVICE
Price £16.16.0
P.T. £6.11.0

DIAMOND STYLUS EXTRA
£3.15.0
P.T. £1.9.3

Write for technical reports to—
THE GOLDRING MANUFACTURING CO. (GT. BRITAIN) LTD.
486/488, HIGH ROAD, LEYTONSTONE, LONDON, E.II. LEYtonstone 8343-4-5
EXECUTIVES REQUIRE CRISP, CONCISE
REPORTS—DICTATE THOSE DETAILS IN
YOUR CAR—VALRADIO DC/AC
CONVERTERS
MAKE DICTATING MACHINES AND
TAPE RECORDERS MOBILE

For use too with Record
Changers, Radiograms,
Electric Gramophones, Television
Receivers, and T.V. from country house
lighting plants. (Prices according to
instrument.)

INPUTS : ENTRÉES . ENTRADAS
6, 15, 24, 30, 50, 110 or 220/250 v.
OUTPUTS : SORTIES . SALIDAS
110 v. or 230 v. AC, 50 or 60 c/s., 30 to 300 w.

Prices DC/AC Converters:
From £8/1/- for Small Motors.
From £11/10/- for Radiograms (including 3-speed Types).

Units complete and ready for use. VALRADIO. Write for
descriptive folder, WW; C. ACCEPTED AS THE STANDARD by RADIO
MANUFACTURERS, the Trade and the Aircraft industry.

Les rapports destinés aux chefs de service doivent être rédigés d’une
façon bien concise—dites-le donc dans votre voiture!

Les convertisseurs C.C./C.A. " VALRADIO " consentent la mobilite aux
machines à dicter et aux enregistreurs sur bandes.

Tambien pueden utilizarse para cambiadores de discos radio-combinados,

The relations destinées à les chefs de service ont à être rédigées d’une
façon bien concise—dites-les donc dans votre voiture!

Les rapports destinés aux chefs de service doivent être rédigés d’une

Las relaciones destinadas a los jefes tienen que redactarse de modo muy
conciso-díctenlos en el coche!

Those details in reports—dictate.

MOBILE TAPE RECORDERS

MACHINES AND MAKE DICTATING
CONVERTERS YOUR CAR!

THOSE DETAILS IN
REPORTS—DICTATE CRISP, CONCISE
EXECUTIVES REQUIRE
THAT.

S. G. Brown provide Headphones and asso-
ciated equipment for all known purposes.

S. G. Brown, Ltd.

SHAKESPEARE STREET, WATFORD, HERTS.
Telephone: Watford 7241

A NEW Dulci Triumph
IN SOUND REALISM!

At low cost!

Model G.A.4
HIGH FIDELITY AMPLIFIER
4-watt 4-valve circuit with a frequency response of 40-15,000 c.p.s.
Next Control Panel, size 6in. x 4in. on fly leads for individual
mounting (main chassis, 14in. x 4in. x 5in.). Input selector
switch matching to Radio, L.P. and 78 r.p.m. records. Separate
Bass and Treble Controls giving wide range of cut and lift.
Volume Control Mains Switch, Rotatable Mains Transformer for
hum cancellation. Price £9/9/-.\n
MODEL H.4.T
A Self Powered AM/FM TUNER
CHASSIS. Designed for high
sensitivity and quality per-
formance. Covering V.H.F.,
Short, Medium and Long
Wavebands. Ideal for use with
high-fidelity Amplifiers.

Direct from Manufacturers to all other Enthusiasts
Write for details to Ref: W.W.

THE DULCI COMPANY LTD
97/99 PILLERS ROAD LONDON W.W.2. Wiltsepden 6678

Good ELECTRICAL EQUIPMENT

is Better with NEON

HIVAC INDICATOR LAMPS

MAY WE SEND YOU A DETAILED FOLDER?

HIVAC LIMITED
STONEFIELD WAY, VICTORIA ROAD
SOUTH RUISLIP, MIDDLESEX
Telephone: Ruislip 3366
ARE THESE YOUR PROBLEM?

If so, then we can help you! The efficient and highly adaptable Dynatron Cabinet Racks and Instrument Cases are used extensively by Government Departments and Research Establishments. As instrument manufacturers of wide experience, we are aware of the problems which can arise from inefficient racks and cases. We have made it our business to design and produce a standard range of high quality Cabinet Racks and Instrument Cases, which will meet exacting requirements and are available at competitive prices.

Alternative types of cabinet racks are available—open or with doors and they can be supplied with or without a mobile base. Constructed of the best quality steel, outstanding features include ample ventilation, cable entry facilities, bonded posts and mains input junction box together with earthing bus bar and cable clamps. In fact nothing has been left to chance and all racks can be supplied finished in any specified colour.

Our instrument cases uphold the same standard of design and workmanship. They are constructed of steel with ample ventilation louvres, and facilities are provided to enable stacking. A cooling unit if required and finished in any specified colour.

Let us know your problem; it can probably be solved from our standard range; if not, we would be pleased to quote to your individual specification.

MODERN ELECTRICS LTD.

Export enquiries invited.

164 Charing Cross Road, London, W.C.2.

GARRARD AUTO UNITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10S6</td>
<td>£19 17 7</td>
</tr>
<tr>
<td>10S8</td>
<td>£17 10 8</td>
</tr>
<tr>
<td>10S12</td>
<td>£13 13 10</td>
</tr>
</tbody>
</table>

TRANSCRIPTION UNITS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garrard 301</td>
<td>£28 11 0</td>
</tr>
<tr>
<td>Leoni</td>
<td>£17 10 4</td>
</tr>
</tbody>
</table>

SPEAKERS

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.B. Stentorian</td>
<td>£17 10 4</td>
</tr>
<tr>
<td>HFB16</td>
<td>£4 17 0</td>
</tr>
<tr>
<td>TB16</td>
<td>£6 10 0</td>
</tr>
<tr>
<td>HFB12</td>
<td>£4 3 6</td>
</tr>
<tr>
<td>HP12</td>
<td>£4 8 6</td>
</tr>
<tr>
<td>HFT012 Universal coil</td>
<td>£4 19 9</td>
</tr>
</tbody>
</table>

GOODMANS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axiom 150 Mk II</td>
<td>£10 15 9</td>
</tr>
<tr>
<td>Axiom 22</td>
<td>£15 9 0</td>
</tr>
<tr>
<td>Axiote</td>
<td>£16 8 6</td>
</tr>
</tbody>
</table>

WHARFEDALE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJCSCS</td>
<td>£17 10 0</td>
</tr>
<tr>
<td>Super I2CS/AL</td>
<td>£17 10 0</td>
</tr>
<tr>
<td>V12/C5</td>
<td>£10 5 0</td>
</tr>
<tr>
<td>Golden 10 CSB</td>
<td>£6 14 11</td>
</tr>
<tr>
<td>Super BC/AL</td>
<td>£6 11 1</td>
</tr>
<tr>
<td>Super 3</td>
<td>£6 11 1</td>
</tr>
<tr>
<td>Bronze 10</td>
<td>£4 17 3</td>
</tr>
<tr>
<td>Bronze 12</td>
<td>£3 10 0</td>
</tr>
<tr>
<td>W.B. Crossover Unit</td>
<td>£1 10 0</td>
</tr>
<tr>
<td>W.B. Tweeter Unit</td>
<td>£4 4 0</td>
</tr>
<tr>
<td>Kelly Ribbon Tweeter</td>
<td>£12 0 0</td>
</tr>
</tbody>
</table>

TEST EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVO</td>
<td>£38 10 0</td>
</tr>
<tr>
<td>AV 13</td>
<td>£35 5 0</td>
</tr>
</tbody>
</table>

ADVANCE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.I. (Sig./Gen.)</td>
<td>£28 0 0</td>
</tr>
<tr>
<td>E2 (Sig./Gen.)</td>
<td>£32 10 0</td>
</tr>
<tr>
<td>P.I.</td>
<td>£22 5 0</td>
</tr>
<tr>
<td>J.I.</td>
<td>£6 15 0</td>
</tr>
</tbody>
</table>

COSSOR

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope</td>
<td>£120 0 0</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>£104 0 0</td>
</tr>
</tbody>
</table>

TAYLOR

All new Taylor Test Gear In stock

PICKUPS AND PLAYERS

ACOS, DECCA, COLLARO, CONNOISSEUR, LEAK, FERRANTI, B.J. GARRARD, PHILIPS.

MICROPHONES

ACOS

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic 22 (Crystal)</td>
<td>£16 0 0</td>
</tr>
<tr>
<td>Mic inserts for above</td>
<td>£1 10 0</td>
</tr>
<tr>
<td>Mic 33-1 (Crystal)</td>
<td>£10 0 0</td>
</tr>
</tbody>
</table>

LUSTRAFPHEN

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/C High Imp.</td>
<td>£15 5 0</td>
</tr>
<tr>
<td>LF95 Dynamic</td>
<td>£10 6 0</td>
</tr>
</tbody>
</table>

RESLO

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMSC (low imp.)</td>
<td>£6 0 0</td>
</tr>
<tr>
<td>XBLT</td>
<td>£6 15 0</td>
</tr>
</tbody>
</table>

FILM INDUSTRIES

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribbon</td>
<td>£15 0 0</td>
</tr>
</tbody>
</table>

MICROPHONE STANDS

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor, 3 extensions</td>
<td>£12 6 0</td>
</tr>
<tr>
<td>Table Stand</td>
<td>£1 5 0</td>
</tr>
</tbody>
</table>

LEAK AMPLIFIERS

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL10 complete</td>
<td>£28 7 0</td>
</tr>
<tr>
<td>Point 1, TL12</td>
<td>£34 7 0</td>
</tr>
<tr>
<td>Point 2, TL25</td>
<td>£40 0 0</td>
</tr>
</tbody>
</table>

QUAD, Mk II | £42 0 0 |

MULLARD

<table>
<thead>
<tr>
<th>Mic</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.A.R. + 4 wst</td>
<td>£10 8 0</td>
</tr>
<tr>
<td>TRX 4 wst</td>
<td>£16 10 0</td>
</tr>
</tbody>
</table>

ALL GARRARD, CONNOISSEUR, DECCA and COLLARO HEADS, SAPPHIRE and DIAMOND STYLIS for the above HEADS NOW AVAILABLE.
METERS

To B.S. 89 Calibrated and scaled to your requirements.

DEVELOPMENT & PRODUCTION PROBLEMS ASSISTED BY PROMPT DELIVERY

Stackists of:

- ERNEST TURNER, BALDWIN, EAC, WEIR and LEADING MANUFACTURERS INSTRUMENTS.

MOVING COIL, MOVING IRON, THERMO COUPLE, ELECTROSTATIC.

CIRCULAR (Flush or Projecting), SQUARE, RECTANGULAR, & INDUSTRIAL PATTERNS.

We can supply meters with Non-Standard Current and Voltage Ranges to any specification. DELIVERY 14-21 days.

Manufacturers of:

- ELECTRONIC TEST EQUIPMENT, NETWORK ANALYSERS, EDUCATIONAL, GEOPHYSICAL and SPECIAL INSTRUMENTS, PORTABLE MULTIRANGE TEST SETS at 1 megohm per Volt, ELECTRONIC INSULATION TEST-SETS.

May we quote for your requirements?

ANDERS ELECTRONICS LTD.

91, HAMPSTEAD RD., LONDON, N.W.1.

Euston 1639

BROOKES Crystals

for DEPENDABLE frequency control

Illustrated above is a Type SJ Crystal Unit from a range covering 3-20 mc/s, and on the right is a Type SM Crystal Unit from a range covering 3-20 mc/s.

All Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose—let us have your enquiry now.

Brookes Crystals Ltd

Suppliers to Ministry of Supply, Home Office, B.B.C., etc.

181/3 TRAFALGAR ROAD, LONDON, S.E.10

Phone: GREenwich 1828 Grams: Xsals Green, London

P.C.A. RADIO

Offices and Works

BEAVOR LANE, HAMMERSMITH, LONDON, W.6

Telephone : RIV 8006/7

WALMORE ELECTRONICS LIMITED

PHOENIX HOUSE, 19/23 OXFORD STREET, LONDON, W.1.

Telephone : GErard 0522 Cables : Valvexpor

For immediate response Telex London 8752.

EXPORTERS OF RADIO, TELEVISION AND INDUSTRIAL TUBES, HAVE PLEASURE IN INTRODUCING THEIR BRAND

RADIO

WALRAD TUBE

AND INVITE ENQUIRIES FROM BUYING AND CONFIRMING HOUSES EXCLUSIVELY FOR EXPORT

SUPPLIERS OF RADIO COMPONENTS ELECTROLYTICS, AND CATHODE RAY TUBES.
INTRODUCING THE LINEAR ‘DIATONIC’
A HIGH FIDELITY ULTRA LINEAR AMPLIFIER WITH INTEGRAL PRE-AMP

A special feature is the compactness of the unit. Full advantage has been taken of latest component miniaturisation developments to produce a 10-watt Hi-Fi push-pull amplifier incorporating tone control preamplifier stages within the measurements of 10 x 6 x 6in.

In addition two high impedance input sockets are provided for microphone and gram, etc. Each input has its associated vol. control, five B.V.A. (Mullard) valves are employed, ECC83, ECC83, EL84, EL84, EZ81.

H.T. and L.T. power supply point is included for a radio tuner.

L45 MINIATURE 4/5 WATT QUALITY AMPLIFIER
Size only 6 x 5 x 5in. high, 12 d.b. Negative Feedback. Sensitivity 30 m.v. for full output. 3 Mullard valves, ECC83 Twin Triode, EL84 Power Output, EZ90 Rectifier. Separate Bass and Treble Controls. Mains switch incorporated in control. For 200-250v. 50 c.p.s. A.C. mains. An ideal unit for use with Gram, or ‘Mike’.

Retail Price £5-19-6

TRADE AND EXPORT ENQUIRIES to
LINEAR PRODUCTS LTD.
5-9 MAUDE STREET, LEEDS, 2.
Tel. 23116

completely revised and greatly enlarged edition of a popular book

TELEVISION EXPLAINED 6th Ed.

By W. E. Miller, M.A. (Cantab.) M.BRIT.I.R.E

Revised by E. A. W. Spreadbury, M.BRIT.I.R.E.

Television Explained is specially written for those who require a simple, non-mathematical, but fully comprehensive description of the British television system and how receivers are designed to work with it.

The sixth edition has been completely revised, and enlarged to about twice the size of the previous edition in order to cover many recent advances in television receiver design.

Assuming a knowledge of sound radio receivers, but requiring no previous knowledge of television circuits, this new edition will prove more valuable than ever to students, engineers and technical-minded owners of television receivers.

The immense popularity of this unique book is illustrated by the consistently large demand for the previous editions.

Over 40,000 copies have been sold.

Contents:
- Aerials
- The Signal
- The Receiver Outlined
- Five-Channel tuning in Band 1
- Multi-Channel Tuners
- The Vision I.F. Amplifier
- Video and Sound Circuits
- The Cathode-Ray Tube
- Time-Base Oscillators
- Time-Base Output Circuits
- Synchronization
- Automatic Gain Control
- Single-Channel Receivers
- Receiver Installation and Operation
- Appendix
- Abbreviations

8½ x 5½ 182 pp and 9 pp of plates 12s. 6d. net by post 13s. 3d. from all booksellers

Iliffe & Sons Limited Dorset House Stamford Street London S.E.1
ARDwick 5762.

V-H-F

FOR THE NORTH

LANCASTER HI-FIDELITY COMPANY

RETAIL THE FOLLOWING F.M. TUNERS

SALES: PYE: T.S.L.: ACOUSTICAL.

Most of the above are for immediate delivery ex-stock and items in short supply are allocated in strict rotation.

IF YOU LIVE IN THE NORTH why send 200 Miles for your Tuner when you can deal with a local enthusiast.

AERIALS - SERVICE - SPARES - ADVICE

We also stock the Armstrong Radiogram chassis models A.F.105 and P.3409.

L.H.F 144 OXFORD ROAD, MANCHESTER, 13

Buses 41 or 42 to "Roxy Cinema."

If coming by car, drive towards the University.

ASK ARTHURS FIRST

LARGE STOCKS OF VALVES and C.R.T.s. METERS, Avo, Advance, Taylor and Cossor Oscilloscopes in stock. AMPLIFIERS, Leak, Trix & Quad. GRAM UNITS, Garrard & Collaro. Collaro TRANSCRIPTION UNIT 2010PX.

LOUDSPEAKERS, Goodmans, Wharfedale, WB, Tannoy and leading makes. PICK-UPS and STYLI of most makes. TAPE RECORDERS, Grundig, Phillips Truvox, Playtime & Ferrograph.

LATEST VALVE MANUALS

Mullard, 10/6; Osram & Brimar No. 6, 5/- each; Osram Part-2, 10/-.

Postage 9d. each extra.

PARTICULARS ON REQUEST

Terms C.O.D. OR CASH with order.

PROP'S: ARTHUR GRAY LTD.

GRAY HOUSE, 160-162 CHARRY CROSS ROAD, LONDON, W.C.2.

TEMple Bar 5833/4 and 4765 Cables: TELEGRAY, LONDON

IMPREGNATE

your coils with ease

BLICKVAC

High Vacuum Impregnators meet the most stringent specifications and yet are easy to handle. Full range of models available to meet the needs of the large-scale producer, the research laboratory or the small Rewind shop.

Outstanding Features:

- Ease in control.
- Ease in cleaning.
- Elimination of vibration.
- Unequalled flexibility and performance.
- Simple attachment of auxiliary autoclaves.
- Units available suitable for Varnish, Wax, Bitumen and Potting Resins.

Users include M.O.S., N.C.B., G.E.C., Pye, Marconi, Metro-Vick.

If your problem is COIL IMPREGNATION or impregnating or casting with Potting Resins consult:

BLICKVAC ENGINEERING LTD.

Bede Trading Estate, Jarrow. Co. Durham.

Jarrow 89/7155 96/100 Aldersgate Street, London, E.C.1.

Monarch 6256/8

STL TRANSFORMERS

based on sound design and are manufactured to the highest standards called for in the electronic and communication fields. Consult us for your next transformer requirements.

NB. MANUFACTURERS AND TRADE ONLY

STEWART TRANSFORMERS Ltd.

75, KILBURN LANE, LONDON, W.10 - LADbroke 2296/7
THE GRAMPIAN 5 - 10 B HIGH QUALITY AMPLIFIER

The separate control unit or the combined pre-amplifier and control unit can be fitted in the top or front of the cabinet, and the main amplifier, connected to the control unit by the special leads supplied, may be placed wherever it is convenient. There is no doubt whatever that music lovers will find this amplifier provides them with a means of obtaining the perfect quality reproduction they so much desire.

With separate control panel
£21 10 0

With combined control panel and pre-amplifier
£27 0 0

GRAMPIAN REPRODUCERS LTD
Makers of quality high-fidelity equipment
17 HANWORTH TRADING ESTATE, FELTHAM, Middx.
Telephone : Feltham 2657/8
Telegrams : Reamp, Feltham

VICKERS VISCONT uses
PYE MICROSWITCHES

—another proof of the technical superiority of Pye British-designed microswitches! Write for full details of the complete range.

PYE LIMITED, SWITCH DIVISION
OTEHALL WORKS, BURGESS HILL, SUSSEX. TEL : BURGESS HILL 2791/2
THIS MAGNIFICENT RECORDER TAKES EVERYTHING IN ITS STRIDE

The remarkable performance on standard or pre-recorded tapes of the Celsonic high-fidelity magnetic Tape Recorder is world famous. It also takes in its stride the superimposing of words over music and the conversion of silent films to sound.

Long playing times possible on reels up to 3,280ft. Full track and half track available.

EXCEL SOUND SERVICES LTD., (Dept. W.D.K.)
Garfield Avenue, Bradford 8, Yorkshire. Tel.: 45027

Please PRINT your name and address.

We want to buy:

BC312, BC342, BC348 (R model only)
BC221, TS174 or 5
BC610

ALTHAM RADIO CO.
JERSEY HOUSE - JERSEY STREET
MANCHESTER 4
Telephone: Central 7834/56

Largest stocks in Europe of Government surplus material.

This magnificent recorder

Cubicle

Strictly constructed portable steel case with lifting handles, adequately ventilated, finished in attractive grey "hammer" buff finish.

Dimensions

Height 17½ins. by length 20ins. by width 18½ins.

Weight 34 lb.

Control

Continuously and smoothly variable from zero to 2,500 volts by means of continuously variable regulating transformer.

The test voltage is applied smoothly without high stress from voltage surges.

BAND III CONVERTERS

Complete Kit 65/-.
Completely Wired 80/-

SWITCH-TUNED F.M. TUNER. Complete Kit with Automatic Frequency control available.

Ferrite Rod Aerial

Will improve selectivity

For Mains or Battery use.

THE IDEAL PORTABLE HIGH VOLTAGE TEST SET

Send for details:

CELSONIC

EXCEL SOUND SERVICES LTD., (Dept. W.D.K.)
Garfield Avenue, Bradford 8, Yorkshire. Tel.: 45027

Send 7½d. in stamps for circuits, practical drawings of F.M. Tuner, Band III Converter, various T.R.F. and Superhet circuits, Switching circuit, Price Lists, etc. Components and information supplied concerning most published circuits in WIRELESS WORLD, PRACTICAL WIRELESS, RADIO CONSTRUCTOR.

DEPT. W.W. 7. 418 BRIGHTON RD., SOUTH CROYDON, SURREY.

Telephone: CROYdon 5140/9
MUREX ‘SINCOMAX’ MAGNETS

are used in this E.E.L. GALVANOMETER UNIT

In this new E.E.L. Galvanometer made by Evans Electroselenium Ltd. Murex ‘Sinomax’ magnets are used to meet the need for low leakage, high flux density and magnetic stability.

MUREX LIMITED (Powder Metallurgy Division) RAINHAM - ESSEX
Telephone: Rainham, Essex 3322 Telex 8632 Telegrams: Murex, Rainham-Dagenham Telex.
LONDON SALES OFFICE: CENTRAL HOUSE, UPPER WOBURN PLACE, W.C.I.

WEBB’S offer Three Tried and Tested F.M. Units ... for quality reception of the B.B.C.

Hear these excellent units playing with all the leading makes of amplifiers and speakers at WEBB’S.

LOWTHER F.M. “ Mk III,” the improved version of a famous tuner, high-grade workmanship and perfect quality of reproduction. Price £30/15/7

JASON F.M. UNIT, unbeatable in its price range. Excellent design and workmanship, will work with any amplifier. Price £16/12/7

EDDYSTONE “820” F.M./A.M. Unit, made by Britain’s leading V.H.F. engineers, the “820” combines high sensitivity with the utmost reliability. Self-powered for easy connection. Three pre-set medium and long-wave stations plus quality reception on F.M. Price £39/10/6

And Three Receivers ... for distant signals

EDDYSTONE “840A” Communications Receiver. has a specification to delight all short-wave enthusiasts. Precision tuning and great sensitivity brings the world to your fingertips. For AC/DC operation, 110/240 volts. Price £65

EDDYSTONE ‘750’ Communications Receiver, uses eleven valves in a highly efficient double superhetetodyne circuit. Price £78

EDDYSTONE ‘680X’ Communications Receiver, fifteen valves including push-pull output, combines great range and good reproduction. Price £130

Any apparatus can be supplied under extended terms, also on WEBB’S “Six Months No Interest” Plan.

WEBB’S Radio
14 SOHO STREET, OXFORD STREET, LONDON, W.I
Telephone: GERard 2089

Shop Hours 9-5.30 (Thursdays 7 p.m.) Saturdays 9-1 p.m.
YOU'RE ON THE RIGHT TRACK with EGEN components

In design, dependability, accuracy and freedom from wear these Egen components are quite outstanding. They are backed by unrivalled experience of the requirements of television and electronic equipment manufacturers.

DUAL POTENTIOMETERS

with concentric operating spindles. Incorporating many outstanding design features, including multiple contact rotors and thorough screening between sections. Control spindles can be supplied to suit customers' requirements. Type 136 less switch. Type 137 with SPST switch. Type 138 with DPST switch.

PRE-SET POTENTIOMETERS

Completely enclosed in high-grade phenolic mouldings. Solder tags heavily silver-plated for quick soldering. Fully insulated spindles with integral control knobs. Tapped for 2-hole 6 B.A. fixing on 1/2" centres. Type 126, wire-wound. Type 127, carbon.

MINIATURE POTENTIOMETERS

1/2" diameter: utmost reliability within a very small compass. Positively located soldering tags, silver-plated for easy soldering. All steel parts rustproof. Standard values available, from 5000 ohms to 2 megohms. Type 115 less switch, Type 105 with specially designed 2-pole Q.M.B. switch.

CONCENTRIC SWITCH POTENTIOMETERS

Thorough screening between switch and potentiometer. Concentric operating spindles give independent operation of switch or potentiometer with 'one-control' simplicity. Quick make-and-break action mains switch. Knob location to suit specified requirements. Type 154 with SPST switch, Type 155 with DPST switch.

The wide range of EGEN controls includes also: Standard Carbon Potentiometers Type 102, Pre-set Resistors, Inductance Coil Assemblies, Sub-Miniature Potentiometers, (for use in miniature electronic apparatus) and TV Aerial Plug and Socket.

EGEN ELECTRIC LIMITED
CHARFLEET INDUSTRIAL ESTATE
CANVEY ISLAND - ESSEX - Phone: Convey Island 691/2
BUILT TO THE HIGHEST STANDARD!

CABINETS

CAT. NO. CAB/02. A well-designed Bureau-type Cabinet in 3 medium size. Vennered Walnut. Outside dimensions, length 35in., height 15in., depth 20in. Sliding control panel on right-hand side approx. 15in. x 10in. Removable boardead on right hand side approx. 121/2in. x 15in. Large record compartments inside the cabinet, located at the top on left-hand side. CASH ONLY 15/- Free. Packing and carriage 50/-.

CAT. NO. CAB/03. A magnificent Bureau-type Cabinet in specially selected Walnut veneered exterior. Light Walnut veneered interior with Baxio lining to match. Outside dimensions, length 35in., depth 21in., height 35in. Sliding control panel on right-hand side approx. 15in. x 15in. Removable boardead on right hand side approx. 15in. x 15in. Two full sized felt lined compartments in the lower half. CASH 105/-. Or on Credit Terms. Packing and carriage 20/-.

CAT. NO. CAB/04. Walnut veneered de luxe cabinet with synchronous sound interior and pull-out base on the right hand side running on high quality ball bearings. Large inlaid covered bottle-board with speaker cut-out of right hand side below chassis control panel. Overall size 25in. long x 61in. high x 16in. deep. CASH £13/11/0- or on credit terms.

CHASSIS AND TUNER UNITS

CAT. NO. C/SM/4272. Complete radio Chassis of latest Design and Technique. 5 valves, 4 wavebands including FM/VHF band. Push Pull output stage, including special 10in. high-float speaker, A.C. 300/500 volt 50 cycles only. Secretly fit multi-coloured glass dial of the horizontal type. Slow motion tuning drive. Full provision of Automatic Volume Control. Negative feedback from output transformer secondary. Sockets provided for Aerial, Earil, Gram, Pick-up and Extension Speaker. Connections provided to Gram. Motor controlled by Chassis On/Off switch. All inductances have an exceptionally high Q value. The Audio Section is designed for the reproduction on Radio and Gramophone. The tone controls have been given a wide range to embrace all types of recordings. Cash 50/-. Or on Credit Terms. Packing, and carriage 5/-.

AMFM FOUR WAVEBAND TUNER CHASSIS. Six valves Supertuner with permeability tuned FM/VHF band. Magic Eye Tuning. FM band selectivity of 6:1 microwatts. Minimum oscillatory radiation. Less than 20 kilocycles drift. Signal to noise ratio better than 20db. Size 15in. long x 6in. high x 10in. deep. Guarantee 12 months for chassis and 3 months for valves. 55/-. Single Waveband FM Tuner Units

COMPLETE RADIO CHASSIS. Six valves Superhet with permeability tuned FM/VHF band. Magic Eye Tuning. FM band selectivity of 6:1 microwatts. Minimum oscillatory radiation. Less than 20 kilocycles drift. Signal to noise ratio better than 20db. Size 121/2in. long x 61in. high x 10in. deep. Guarantee 2 years for chassis and 1 year for valves. 65/-. Single Waveband FM Tuner Units

ALL FULLY GUARANTEED. Generous extended credit terms on orders exceeding £15. Dealers supplied at full discounts.

DOMESTIC DIRECT SALES LTD

90 JUDD STREET, LONDON, W.C.I. Telephone TERminus 9876.

TELCON CELLULAR POLYTHENE INSULATED DOWNLEADS

This range of 75 ohm coaxials has been especially designed for the reception of Band II (FM sound 87.5 - 108 Mc/s.) and Band III (Television 174 - 216 Mc/s.).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mc/s.</td>
<td>1.3</td>
<td>1.5</td>
<td>1.0</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>3.0</td>
<td>3.4</td>
<td>2.3</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>4.3</td>
<td>4.8</td>
<td>3.2</td>
<td>3.6</td>
<td>2.2</td>
</tr>
<tr>
<td>200</td>
<td>6.3</td>
<td>7.2</td>
<td>4.9</td>
<td>5.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Dimensions (inches)

Centre Conductor: 1/0.022 7/0.0076 1/0.029 7/0.010 1/0.044

Over Cellular Telcothene: 0.003 0.003 0.128 0.128 0.200

Over Wire Braid: 0.117 0.117 0.152 0.152 0.230

Over Telcocon Sheath: 0.157 0.157 0.202 0.202 0.290

Please ask for a copy of Publication TVS

TELCON CABLES

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD.

MERCURY HOUSE, THEOBALD’S ROAD.

LONDON, W.C.I. HOLBORN 8711

BRANCHES: BIRMINGHAM, CARDIFF, MANCHESTER, NEWCASTLE AND NOTTINGHAM
A Two-in-One Testimonial!
Both Dealer and Customer are delighted

14 Soho Street,
27th November, 1956.

Dear Mr. Briggs,

We recommended and sold an old (overseas) customer of ours the Wharfedale W/15CS speaker, Super 8/CS, Super 3 and HS/CR3 crossover and you may be interested to read his report as follows:

I have received in perfect condition the Wharfedale speakers brought out by my wife. The 15in. unit is mounted in a brick corner enclosure of 10 feet/cubic volume with brick floor and 1½ marble top, with tuned port. The effect of the three speakers is most impressive and the improvement over my former installation is very marked. The bass is not at first so noticeable although much clearer, but frequency runs show that all the bass is there and organ recordings are startlingly realistic. The chief improvement is undoubtedly in the natural quality of the sound. The piano was formerly always distinguishable from a record if heard outside the room. This is no longer the case and a listener upstairs, when the installation is working in the drawing room downstairs, would find it difficult to identify whether the sound was a recording or the real thing. In order to achieve balance it was found necessary to reduce the output on the top and middle speakers with the volume controls supplied for this purpose.

Wharfedale WIRELESS WORKS LTD.
IDLE, BRADFORD, YORKS. Phone: Idle 1235-6

CABINETS
MANY & VARIOUS DESIGNS IN
BUREAU, PIANO, CONSOLE &
TABLE MODELS
The Contemporary Cabinet
MK III/W
Stylish in a pleasing burnished full
grained walnut veneer (as Illus.).
It is of an ultra modern appearance
and is well suited to the modern
trend of furniture design. Size of
uncut deckboard 12½in. x 25¼in.,
overall height with lid closed 28½in.

Send
for our
Monthly Bulletin
Send also for our detailed wholesale list for cabinets,
wire chassis FM/AM Complete TVs, Radio Antennas,
converters & sundry Electrical components. E.G. stoves, etc.

INSULATING SLEEVINGS
P.V.C. and POLYTHENE
SLEEVINGS
INSULATED WIRES
and FLEXIBLES
A.I.D. AND A.R.B. APPROVED.
PLASTICABLE LIMITED
HAWLEY LANE - FARNBOROUGH - HANTS
PHONE: FARNBOROUGH, HANTS 85

METAL SPINNING OUR SPECIALITY
PARABOLIC REFLECTORS up to 9ft. dia. LOUDSPEAKER HORNS, Etc., Etc.
POWER PRESSWORK to 250 ton capacity, including Hydraulic
GENERAL SHEET METAL WORK . ARGON . ARC & OXY-ACETYLENE WELDING
SHAWE METAL SPINNING WORKS
SWINTON STREET, KING'S CROSS, LONDON, W.C.1.

Phone: TERminus 7422/3 Grams: Alipryde Phone London
UNIVERSAL ELECTRONICS

Whether new or used, all equipment is guaranteed to be in perfect condition

COSSOR Double Beam Oscilloscope

Type 339. IMPROVED VERSION of the OBSOLETE Type 339.

Time Base Frequency. 6 to 250,000 c.p.s.
Amplifiers. 40 mV RMS/mm. 10 to 100,000 c.p.s.
300. 1.3 mV RMS/mm, 10 to 100,000 c.p.s.
300. 1.3 mV RMS/mm. 10 to 200,000 c.p.s.
300. 1.3 mV RMS/mm, 10 to 200,000 c.p.s.
300. 1.3 mV RMS/mm, 10 to 200,000 c.p.s.

Deflector Coils. 2 mm/mA RMS.
Power Supply. 110-250V A.C. 120 watts.

Sensitivity. Y1, Y2. 1 JV D.C. 1.41 RMS
Voltage divider. X and S-bands.

Screen Diameter. 114 mm.
Price £30.

In good working condition. PRICE £30.

Also supplied Rebuilt to laboratory standard and guaranteed for 3 months. Prices on request.

TEST EQUIPMENT

AVO model 7 meter. £15; Model 40 meter, £1210/-. G.E.C. type BW232 Signal Generator 500-1,000 Me/s, £85. MARCONI type TF144G range 0.05-0.35 Mc/s. £85. TFROG range 16-150 Mc/s. £25; TP157 range 150-300 Me/s, £35; "Q" meter type 829C. £35; Output meter, type TS340, £35. GENERAL RADIO type 740 Capacity Bridge; type 726A Valve Voltmeter, type 916A R.F. Bridge, type 804 Signal Generator, 30-300 Me/s, £65. EVERSHED MEGGERS, Bridge and Weigh types. £85; Output meter, type TS127U, £25; TF517 range 150-300 Mc/s., £35; "Q" Meter type 329C, £25; TF144G range 85 k/c/s-25 Mc/s., £85; TF390G range 16-150 Mc/s., £30; TS-34/AP, Portable oscilloscope, Fast sweep. £15; TS-175/U, Frequency echo box, X-band. £25. "Standing Wave" Measurements Instrument.

Price £30 each.

British and U.S.A. VHF/UHF

10cm 3cm 1.5cm Test Equipment

Realignment, Servicing and Reconditioning of all types of British and U.S.A Communication Receivers. Every receiver stripped, reconditioned and realigned at a moderate figure by our skilled staff. Work guaranteed and figures supplied.

M.I.T. Radiation Laboratories

Spectrum Analyser

Type TSX-4SE

(1 centimetre)

The TSX-4SE Spectrum Analyser is an ultra-high frequency receiver with an oscilloscope indicator, in which the local oscillator is frequency-modulated by a sawtooth voltage proportional to the sawtooth sweep on the oscilloscope tube. It is used for observing the spectra of the pulsed oscillators, tuning receiver local oscillators, adjusting defective r.f. components, measuring large standing-wave ratios, and measuring the Q of resonant cavities.

ENQUIRIES AND INSPECTION INVITED

SPECIFICATION: Tuning range 8,630 Mc/s-8,550 Mc/s (723/AB klystron). Frequency calibration by means of a pip provided by a reaction type cavity wavemeter. L.F. frequency 1 Mc/s. Receiver gain 130 db, 4 L.F. stages, 3 video stages. Sweep frequency variable from 10 to 20 cps. Attenuation graduated from 0-100 with calibration slider of 1.0 db/div. above 10.

FREQUENCY METERS

BC221 Range 125 kc/s - 20 Mc/s
In Perfect condition

Also in stock: U.S.A. BENDIX LM SERIES

Aircraft version of BC221.

RECEIVERS

G.E.C. BRT400, £95. RCA. AR88D and LF from £55.

EDDYSSTONE £40, 740, £60, £600, £60X. HALLCRAFTERS £250, £350, £450, £550, £650.

HALLCRAFTERS £250, £350, £450, £550, £650.

A.C./D.C. NATIONAL HR07, Senior and Junior models from £18.

MARCONI CR100 from £20. CR150, Range 2-60 Mc/s., 5 bands, dual superhet, PRICE £60. Power supply £10. Completely checked. Carriage £2. HAMMARLUND HQ120 and HQ120X.

MANUALS

for Communication Receivers £1.75 each. AR88D-LF, AR77E, R107, S20, S24, S28, B2, TX/RX, HRO's, etc.

TELEVISION AERIAL COMPONENTS

DESIGNED FOR CONSTRUCTING BAND I & BAND III T.V. AERIALS

ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS

Selecting at random from our new multi-page catalogue:

★ Band III Folded Dipoles (As illustrated)
★ Reflector and director rod holders
★ Masthead Fittings for $ and 1'' 1 1/2'' and 2'' Masts.
★ Mast Coupling units for 2'' Masts
★ Insulators, both Rubber and Plastic (As illustrated)
★ Alloy Tubing for Elements, Cross boom and Masting

Send 1/- P.O. for the revised, fully illustrated catalogue to:
FRINEVISON LTD., Marlborough, Wilts. Phone 657/8

22/27 Lisle Street, Leicester Square, London, W.C.2

Write, Call or Telephone GERrend 8410 Shop hours, 9.30 a.m. to 6 p.m. Thursday 9.30 a.m. to 1 a.m. OPEN ALL DAY SATURDAY
AUTOMATIC COIL WINDING MACHINE

COMPLETE WITH

★ Cast-iron stand and polished wood table-top.
★ Dual reel carrier and tensioner.
★ ½ h.p. integral clutch motor with foot control.

THE MOST OUTSTANDING MACHINE ON THE MARKET!

Dustproof construction up to four coils can be wound simultaneously — micrometer traverse setting — easily adjusted wire gauge setting — cadmium- and chromium-plated steel parts — instantaneous re-set counter reads up to 100,000 turns — Wire Tensioning Stand holds two reels.

We will be pleased to send you an illustrated leaflet giving a full technical specification on request.

KOLECTRIC LTD
73 Uxbridge Road, Ealing, London, W.S. EALing 8322.

FREQUENCY METERS
2½-8" up to 10,000 cycles
DIFFERENTIAL A.C. CURRENT METERS
COMPARING THE MAGNITUDE OF TWO CURRENTS.

PHASE SEQUENCE INDICATORS AND SYNCHROSCOPES UP TO 5 kc
A Full Range of Switchboard and Portable Instruments

THE ELECTRICAL INSTRUMENT CO. (HILLINGTON), LTD.
Boswell Square Industrial Estate, Hillington, Glasgow, S.W.2. Halfway 1166 and 2194

TRANSFORMERS
COILS LARGE OR SMALL QUANTITIES
CHOKES TRADE ENQUIRIES WELCOMED
SPECIALISTS IN

FINE WIRE WINDINGS
MINIATURE TRANSFORMERS, PICK-UP, CLOCK AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., M.O.S., L.E.B., ETC.
123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY
LIVINGSTONE 2261
EST. 1933

A.C. SOLENOID TYPE SAM/T
Increased Performance
Continuous 14 ozs. at 1”
Instantaneous to 5½ lbs.
Same dimensions as type SA
Larger and Smaller Sizes Available. Greatly Increased Discounts for Quantities
Also Transformers to 7 KVA 3 Phase

R. A. WEBBER LTD.
18 FOREST ROAD, KINGSWOOD, BRISTOL. PHONE 74605
LEEVERS RICH

MAGNETIC RECORDERS
for
PROFESSIONAL, INDUSTRIAL & SCIENTIFIC APPLICATIONS

OUTSTANDING PERFORMANCE
ROBUST DESIGN
FINE WORKMANSHIP

Performance is notable for very low distortion and negligible flutter, and does not deteriorate over long period of service.

The range of models includes portable, console and rack mounted units for single and dual track operation. A wide range of magnetic recording accessories is also available.

LEEVERS - RICH EQUIPMENT LTD.
78B Hampstead Road, London, N.W. 1

HIGH RESISTANCE HEADPHONES
2,000 ohms. Brand new, ex-W.D. boxed, type D.H.R. 15/- per pair, postage 1/-.

LOW RESISTANCE HEADPHONES
Brand new, ex-W.D. boxed, type C.L.R., 5/6 per pair, postage 1/-.

JOHNSON'S VARIABLE CONDENSERS
Single 500 pF 3,000 v. 14/- each.
Single 1,000 pF 2,500 v. 16/- each.

MICROPHONES & RECEIVER HEADGEAR
Assy. No. 2 (ZA2905) consisting of 100 ohms impedance MC headphones, Tannoy high-power microphone. 18/- each.

1155 L RECEIVERS COVERING TRAWLER BAND
Frequency range 200 Kc/s–500 Kc/s and 600 Kc/s–18.5 Mc/s. Working and guaranteed £12–19–6. Packing and Carriage within U.K. £1–0–0. Also available transmitters, 12 & 24 volt power supply units, indicators, loop aerials, etc., required for complete direction finding installations.

FIELD TELEPHONE TYPE "F".
In excellent working condition, £3/10/- each. Carriage 5/-.

ROTARY CONVERTOR UNITS
Input 11.5-12.5 v. D.C. Output 300 v. 200 mAmPs D.C. Price 30/-.
Packing and Carriage 5/-.

AMERICAN VALVE TESTER Model 314, individual leather switches for each tube element. Roll Chart for American type valves. 220/30 V. A.C. Brand new in nice wooden case with leather handles. Full instruction booklet.
£10. Carriage 10/-.

J. P. ELECTRIC MAIL ORDER DEPT.
156 ST. JOHN'S HILL LONDON S.W.11
You’ll do better

SAFETY FIRST! BUILD THESE PREMIER TELEVISORS WHICH GIVE COMPLETE SAFETY TO THE CONSTRUCTOR.

These Televisors use a double wound mains transformer which gives you complete safety from contact with the mains supply when handling the chassis or controls.

CONSOLE CABINETS with full length doors for 14in., 16in. and 17in. tubes PRICE £11/14/-.

B.B.C. & I.T.A. DESIGN No. 1 with NEW TURRET TUNER MAY BE BUILT FOR £33-7-11 PLUS COST OF C.R.T.

B.B.C. (ALL CHANNELS) DESIGN No. 2 MAY BE BUILT FOR £27-9-4 PLUS COST OF C.R.T

BUILD IN 5 EASY STAGES. FULL CONSTRUCTION DETAILS AVAILABLE. INSTRUCTION BOOK 3/- POST FREE INCLUDES BOTH DESIGNS.

The NEW “PREMIER” TAPE RECORDER

£5 DEPOSIT & 8 MONTHLY PAYMENTS OF £4.18.6 or CASH PRICE £40 plus 21/- pkg. & carr.

PREMIER RADIO COMPANY,
THE NEW "WHARFEDALE" SFB/3
3-SPEAKER SYSTEM
Consists of 5 e x k r s W12CS, Bronze 10CSB, Super 3HF and a special
Crossover Unit fitted into a very attractive Cabinet, size 34in. x 31in.
X 12in. Weight 60 lb. Cash £39/10/- Credit deposit £5/0/0 and 8 monthly payments of
£4/17/- or £19/5/- and 12 monthly payments of £1/6/8. Packing and carriage £21/1/1.
New GOODMAN TREBLE UNIT
THE TREXEB
At £6/4/- is a high efficiency pressure driven reproduce covering 2,500 c.p.s. to 16 kc/s.
It makes an excellent 2-speaker system when used with the Axium
150 Mark II at £10/15/9. A special
crossover Unit type X05000 is available at £1/19/1/2. The complete
system £18/8/9. Cash credit terms £2/7/9 and 8 monthly payments of £1/8/9. H.P.
Terms deposit £9/9/4 and 11 monthly payments of £1/1/2. Packing and carriage £7/6.
ALL DRY BATTERY PORTABLE
RADIO RECEIVER
MAY BE £7.8.0
Pkg. & Postage
Details of equipment in a Case, £19/15/- plus
paid and carriage £7/6. Credit terms: £2/2/6 deposit £2/7/9 and 8 monthly payments of £1/1/2.

WILLIAMSON AMPLIFIER
MAY BE £15.15.0
Pkg & Postage
Supplied completely wired and tested for £20, or available on H.P. or Credit terms, postage and packing £10/1/9.
PRE-AMPLIFIER & TONE CONTROL UNIT
Available completely constructed, £5/5/- plus 2/6 and postage.
SPECIAL OFFER—Limited Quantity.
The Imperial AM/FM Radiogram Chassis
CASH
£16.19.6
or H.P. Terms £8/9/9 deposit and 8 monthly payments of £2/2/6. Packing and carriage charge in each case £7/6.
This latest type Chassis is made by a leading Continental Manufacturer, It has 5 valves plus a Metal Rectifier, piano type push buttons for long, medium, F.M. and Gram, separate tuning on F.M. and A.M. Output 4 watts. Dial size 12in. x 21in., overall size 13in. long, 7in. deep and 7in. high.

SPECIAL OFFER! GOODMANS AUDIOM 56 £4/17/6 plus pkg. and post 5/-
AM/FM RADIOGRAM CHASSIS
The latest "Dulci" Model H.4
7 Valves, including Magic Eye. Fixed Rod Antennas on medium and long "Gorier" parallel Different
Unit on F.M. A.C. supply 500, 280 volts. Cash price £20/10/- or on H.P. or Credit Terms. Plus packing and carriage £7/6 extra.

MULLARD AMPLIFIER KIT
NOW SUPPLIED WITH ULTRALINEAR
OUTPUT TRANSFORMER.
All the components for model 510, PLUS pre-amplifier on one chassis (total six valves) chassis gold hamper finished. May be purchased for £12/12/- plus pkg. & post 7/6, or pre-amplifier and tone control in a separate unit £14/14/- plus pkg. and post 7/6.

WITH PREMIER
4 WATT AMPLIFIER
MAY BE BUILT FOR £4.10.0
Pkg. & Postage
Instruction Book 1/- post free.
A steel case is now available, complete with engraved panel, for 15/6 extra. The amplifier may be supplied complete for £5/5/- plus pkg. and post 3/6, or fitted in case at £6 plus pkg. and post 3/6. Engraved panel 3/6. Post Free.

2-BAND TRF RECEIVER MAY BE BUILT FOR £5.15.0
plus pkg. & post 3/-
3 BAND SUPERHET RECEIVER
MAY BE BUILT FOR £7.19.6
Pkg. & Postage
These two receivers use the latest type circuitry and are fitted into attractive cabinets 12in. x 6in. x 5in, in either walnut or ivory bakelite or wood. Individual instruction books 1/- each, post free.

T.S.L., LORENZ SOUND SYSTEM
Type LP 312/2
Consists of a 12in. Unit and two LPH65 Treble Units. Co-axially placed to give the widest listening angle. Bass and treble Units have magnetic systems of the highest efficiency. This speaker system gives a frequency response that is not excelled by any speaker that is at present available. Leaflet available giving full details. Price £15/10/0. H.P. Terms available. Post
age and packing 7/6 extra.

Cross-over Unit designed for the LP 312/2 £2/20/- plus p. & p. 1/6.
SINGLE TREBLE UNITS available separately at 3/6 each plus packing and postage 1/2 extra.

Why not make the best !
MULLARD AMPLIFIER KIT

Cross-over Unit designed for the LP 312/2 £2/20/- plus p. & p. 1/6.
SINGLE TREBLE UNITS available separately at 3/6 each plus packing and postage 1/2 extra.

Why not make the best !
MULLARD AMPLIFIER KIT
NOW SUPPLIED WITH ULTRALINEAR OUTPUT TRANSFORMER.
All the components for model 510, PLUS pre-amplifier on one chassis (total six valves) chassis gold hamper finished. May be purchased for £12/12/- plus pkg. & post 7/6, or pre-amplifier and tone control in a separate unit £14/14/- plus pkg. and post 7/6.
PORTABLE TAPE RECORDER CABINETS

Lane Mk. VI

All Restoré General

True Deck

Amplifier Type

Price

Lacie Mk. VI Premier

Mk VI

£6 16 0

Lacie Mk. VI

in Luxe

£6 14 6

Travos Mk. III

Travos C T.D.S

£4 4 6

Plus Postage and Packing 5/-

ILLUSTRATED LIST AVAILABLE GIVING FULL DETAILS OF BUREAU TYPE CABINETS

BARGAIN OFFER

LATEST TYPE SURBER EXUCTION SUITABLE FOR 17in. RECTANGULAR TUBES AT A SPECIAL PRICE OF 10/- PLUS PACKING AND POST 1/-

THE NEW COLLARO TAPE TRANSCRIPTOR

SPPEEDS 31, 71 x 33 inches per second £20 plus pkg./post 7/-

We carry a comprehensive stock of components by all leading manufacturers:

CABINETS - PORTABLE

MODEL PCG

Grey Lizard Resin covered

45/-

Overall dimensions 16 x 14 x 9in. Clearance under lid when closed 5in.

Dimensions as above.

MODELE DE LUXE

Two colours, wine and grey, with cutout for speaker and lid when closed 3in.

Grey Lizard Resin covered

55/-

Dimensions as above.

THE ABOVE CABINETS ARE COMPLETE WITH CARRYING HANDLE, PADDERS AND PANEL.

Packaging and Postage 3/- each.

A RANGE OF BAND 3 AND F.M. AERIALS IS NOW AVAILABLE

Air spaced co-axial wire, 1/9 per yard.

PREMIER VARIABLE IMPEDANCE " MATCHMAKER " M.O.15 OUTPUT TRANSFORMERS

Designed to give the utmost in efficiency, variable radio output Transformer, 11 ratios from 11:1 to 90:1, all secondaries being used in match output valves either single or push-pull. Class " A", "AB", "ABF" or "B" to suit importance speech coil or combination threethread. Primary Inductance 80 henries 16 watts up to 100 mA. Price 45/-.

PREMIER MAINS TRANSFORMERS

All primaries are tapped for 200-250-250 x mains 40-10 cycles. All secondaries are screened.

SP173A, 110-0-110, 50 m.A., 4 v. @ 1 a., 4 v. @ 2 a.

£3 5 4

SP290, 300-0-300, 100 m.A., 3 v. @ 5 a., 3 v. @ 5 a.

£3 15 4

SP304A, 300-0-300, 100 m.A., 4 v. @ 2.5 a., 4 v. @ 2 a., 4 v. @ 1 a.

£3 15 4

SP390, 500-0-500, 150 m.A., 3 v. @ 5 a., 3 v. @ 1 a., 3 v. @ 2 a., 3 v. @ 3 a.

£3 30 0

SP434, 420-0-420, 200 m.A. 6 v. @ 2 a., 6 v. @ 3 a., 6 v. @ 4 a.

£3 30 0

SP508, 500-0-500, 100 m.A. 6 v. @ 2.5 a., 6 v. @ 3 a., 6 v. @ 4 a.

£3 15 4

200-250-250 output 3-3 v. @ 2 a.

£2 17 6

PUSH-FULL OUTPUT TRANSFORMERS, 2 x 30W into 76 ohms, £5 16 0.

JUNCTION TRANSISTORS 10/- each

Equivalent of the OC70 Type

It will pay you to visit our new Hi-Fi demonstration room.

207 EDGWARE RD., LONDON, W.2.

Tel: Ambassador 4033 and Paddington 3271

PREMIER RADIO COMPANY

February, 1957

PREMIER PERSONAL PAYMENTS PLAN

CASH PRICE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premier Bureau Cabinet</td>
<td>12 12 0</td>
</tr>
<tr>
<td>Premier Bureau de Luxe Cabinet</td>
<td>17 6 6</td>
</tr>
<tr>
<td>Rogers Amplifier and Pre-amplifier</td>
<td>3 4 0</td>
</tr>
<tr>
<td>Mallard EAR/35</td>
<td>18 18 0</td>
</tr>
<tr>
<td>Mallard EAR/35/00</td>
<td>24 3 0</td>
</tr>
<tr>
<td>Leak TL/26</td>
<td>28 7 0</td>
</tr>
<tr>
<td>Garrard Transcription Type 301 less P.F.</td>
<td>28 8 3</td>
</tr>
<tr>
<td>Garrard Changeover Type ROSE/IE/ACEC</td>
<td>33 4 0</td>
</tr>
<tr>
<td>Lenco-Transcription Unit Model 910-90 complete with P.F.</td>
<td>21 16 2</td>
</tr>
</tbody>
</table>

T.S.L. ELECTROSTATIC SPEAKERS

Type LSH75 | Price 12/-

Type LSH100 | Price 21/-

Type LSH518 | Price 17/-

LATEST B.S.R. MONARCH 4-SPEED AUTOCHANGER

Designed to play 12/-, 25/-, and 78 r.p.m. records interchangeably in any order at 10, 20, 30, or 40 r.p.m. Capacity 10 records. New reversible single stylus Crystal Pick-up, for use on 100/250-50 cycle A.C. mains, £20/15/- plus packing and postage 5/-.

S.R.R. THE Speeded Record Player £4/12/- plus 7/- post and packing.

LATEST TYPE 3-SPEED SINGLE PLAYER B.S.R.

H.F.100

White crystal transistor head, for use on 100-250-50 cycle A.C. mains. £20/10/-.

PLUS PACKING AND POST 1/-.

LOUD SPEAKERS

ELAC ELIPIDIAL 7in. x 6in. 21/10

PLESSEY 6in. dia. Mains Energised, 3 ohms imp. (100 ohms field) with Plessey Transformer. 10/-

PLESSEY 6in. dia. Mains Energised, 3 ohms imp. (100 ohms field) 7/-

PLESSEY-17” TONED TUBES 1/-2/-

GOODMAN-Audion £20/20

GOODMAN-Audion £10/1/-

PLUS 5/- packing and carriage.

METER RECTIFIERS

Miniature type with leads 1-5 m. £5, post paid.

WEYMOUTH MINIATURE COIL PACK

Covering Med.-Long/Short Wave Bands, Iron Concentric. 5ln. 11", length 3", with 2" turnover head, for use on 100-250-50 cycle A.C. mains. £4/12/6. Plus pkg. and carriage.

DEPOSIT 25/- and 3/- terms.

TERMS OF BUSINESS:

CASH with order or C.O.D. over £1. Please add 1/- for Post (orders under £1). 1/4 under 60/- unless otherwise stated.

WHY BUY SURPLUS OR RE-CONDITIONED TUBES WHEN THESE FULLY GUARANTEED WIDE ANGLE TUBES ARE AVAILABLE? THE LATEST 5350A, RECTANGULAR TUBE MW43/4 BY TELEFUNKEN AT £7 (INC. TAX) POST AND PACKING 21/- EXTRA

SEND 2'4D. STAMP FOR OUR NEW 1957 CATALOGUE

COMPACT GRAM AMPLIFIER

Complete, ready to connect to any Type of Pack-Up and Speaker &t (type) A.C. Mains 200/250 volts. Clean and tight control. Billed with knobs. Overall size 7in. x 9in. x 4in. Mfr. £19.6

Plus postage and postage 2/-

A LARGE RANGE OF TEST METERS IN STOCK

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PREMIER PERSONAL PAYMENTS PLAN</th>
<th>CASH PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premier Bureau Cabinet</td>
<td>£12 12 0</td>
<td>£12 12 0</td>
</tr>
<tr>
<td>Premier Bureau de Luxe Cabinet</td>
<td>£17 6 6</td>
<td>£17 6 6</td>
</tr>
<tr>
<td>Rogers Amplifier and Pre-amplifier</td>
<td>£3 4 0</td>
<td>£3 4 0</td>
</tr>
<tr>
<td>Mallard EAR/35</td>
<td>£18 18 0</td>
<td>£18 18 0</td>
</tr>
<tr>
<td>Mallard EAR/35/00</td>
<td>£24 3 0</td>
<td>£24 3 0</td>
</tr>
<tr>
<td>Leak TL/26</td>
<td>£28 7 0</td>
<td>£28 7 0</td>
</tr>
<tr>
<td>Garrard Transcription Type 301 less P.F.</td>
<td>£28 8 3</td>
<td>£28 8 3</td>
</tr>
<tr>
<td>Garrard Changeover Type ROSE/IE/ACEC</td>
<td>£33 4 0</td>
<td>£33 4 0</td>
</tr>
<tr>
<td>Lenco-Transcription Unit Model 910-90 complete with P.F.</td>
<td>£21 16 2</td>
<td>£21 16 2</td>
</tr>
</tbody>
</table>

CREDIT TERMS

<table>
<thead>
<tr>
<th>DEPOSIT</th>
<th>MONTHLY PAYMENTS</th>
<th>DEPOSIT</th>
<th>MONTHLY PAYMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>£6 1 6</td>
<td>£4 2 6</td>
<td>£6 1 6</td>
<td>£4 2 6</td>
</tr>
</tbody>
</table>

H.F. TERMS

<table>
<thead>
<tr>
<th>DEPOSIT</th>
<th>MONTHLY PAYMENTS</th>
<th>DEPOSIT</th>
<th>MONTHLY PAYMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>£12 12 0</td>
<td>£12 12 0</td>
<td>£12 12 0</td>
<td>£12 12 0</td>
</tr>
<tr>
<td>£17 6 6</td>
<td>£17 6 6</td>
<td>£17 6 6</td>
<td>£17 6 6</td>
</tr>
<tr>
<td>£3 4 0</td>
<td>£3 4 0</td>
<td>£3 4 0</td>
<td>£3 4 0</td>
</tr>
<tr>
<td>£18 18 0</td>
<td>£18 18 0</td>
<td>£18 18 0</td>
<td>£18 18 0</td>
</tr>
<tr>
<td>£24 3 0</td>
<td>£24 3 0</td>
<td>£24 3 0</td>
<td>£24 3 0</td>
</tr>
<tr>
<td>£28 7 0</td>
<td>£28 7 0</td>
<td>£28 7 0</td>
<td>£28 7 0</td>
</tr>
<tr>
<td>£28 8 3</td>
<td>£28 8 3</td>
<td>£28 8 3</td>
<td>£28 8 3</td>
</tr>
<tr>
<td>£33 4 0</td>
<td>£33 4 0</td>
<td>£33 4 0</td>
<td>£33 4 0</td>
</tr>
<tr>
<td>£21 16 2</td>
<td>£21 16 2</td>
<td>£21 16 2</td>
<td>£21 16 2</td>
</tr>
</tbody>
</table>
PREMIER BUREAU DE LUXE

A superb cabinet in finely figured walnut veneer. Interior light sycamore, with res. inine matching lining. Overall dimensions: 33 in. high, 34 in. long, 17 in. deep. Uncut control panel on right hand side approximately 16 in. x 10 in. Uncut baseboard on left hand side 16 in. long, 13 in. deep. Two full size felt-lined storage cupboards in the lower part of the cabinet.

Cash price £16 19s. HP. Terms, deposit £8 19s. 6d. and 9 monthly payments of £2 2s. 6d.

Credit Terms, deposit £1 15s. 6d. and 9 monthly payments of £2 15s. 6d. Packing and Carriage 20/- extra.

THE WOLSEY BAND III CONVERTER

This converter has been designed to receive alternative programmes on Band 3. Channels 6 to 13, selection of Channel being made by rotation of Switch Knob. Mains supply 200/250 v. A.C. only. The high gain of this Converter (minimum 20dB) together with low noise factor ensures good picture quality. A variable gain control makes it possible to balance a Band 1 and Band 3 signal inputs to the receiver. Any single channel Receiver of either T.R.F. or Superhet design may be fed from the Converter. Separate input sockets are provided for Band 1 and Band 3 inputs. Cash price £19 19s. 6d. Credit Terms deposit £8 19s. 9d. and 9 monthly payments of £2 19s.

IMPORTANT, please state your Band 1 station. Packing and postage 1/- extra.

IS THERE A BABY IN THE HOUSE?

The famous Premier Baby Alarm which is a device to enable Baby’s cries, or even breathing, to be heard in any selected room in the house. May be left permanently connected. Extra Microphones In different rooms may be used. The microphone may be positioned up to 100 ft. from the main unit. Suitable flexible lead can be supplied at 5d. per yard extra. Completely wired and tested at £3 9s. and post at 216 post and pkg.

A NEW SPEAKER ENCLOSURE

A really elegant cabinet in well figured walnut veneer. Suitable for housing Goodmans Audiom and Axiom speakers. The baffle is cut to accommodate a THERAX High Frequency Unit if required. Cabinet dimensions, overall, 27 in. high, 23 in. wide, 20 in. deep. Cash price £13 19s. 8d. H.P. Terms deposit £8 19s. 9d. and 9 monthly payments of £1 15s.

Credit Terms, deposit £1 15s. 6d. and 9 monthly payments of £1 15s. 6d. Packing and Carriage 20/- extra.

GOODMANS ACOUSTICAL UNIT. Type 172/46. Postage and packing 1/- extra.

PREMIER RADIO COMPANY

20 EDGWARE RD., LONDON, W.2

TELEPHONE: AMBASSADOR 4033 & PADDINGTON 3271

for students and technicians

A non-mathematical introduction to the mechanism and application of computers employing valves and transistors. A valuable book for technicians, engineers, students and business executives. 25s. net. By post 25s. 10d.

Abacs or Nomograms. By A. Gist.

Not only demonstrates the many and varied applications of the abac or nomogram, but shows how even those without highly specialised mathematical knowledge may construct their own charts. 35s. net. By post 35s. 10d.

Laplace Transforms for Electrical Engineers.

By B. J. Starkey, DIPL. ING., A.M.I.E.E.

A presentation of the theory of the Laplace transformation using a physical vocabulary and thus possible. Provides a thorough treatment of the subject in a language which is familiar to electrical engineers. 30s. net. By post 31s.

from your bookseller

Published by
ILIFFE AND SONS LIMITED, DORSET HOUSE, STAMFORD STREET, LONDON, S.E.1
This amplifier needs no "sales talk" — the specification speaks for itself

Announcing the Avantic DL7-35

The DL7-35 with wide range speaker system can be supplied in two superb cabinets finished in natural mahogany at £144.5.0. net. Provision is made for any of the following items which can be fitted as optional extras: 4-speed single or automatic record player; Avantic vhf-fm or mw-am/vhf-fm radio feeder unit; Avantic tape player.

The Avantic loudspeaker system comprises a 12" diameter low frequency unit and two 21" high frequency units. The frequency range of the system is 20—22,500 cps. and the peak power ratings are 40 watts (l.f.) and 20 watts (h.f.).

Please send me illustrated leaflets on the DL7-35 and 'Glyndebourne'; also the name of my nearest Avantic dealer.

NAME
ADDRESS

POWER AMPLIFIER

Push-pull distributed load output stage producing an output of 27 watts at ± 0.1% total distortion.

Frequency response: ± 1 db 1 c/s. to 100 Kc/s.

Hum & noise: — 69 db relative to 20 watts output.

Output impedances: 40, 80 & 1652 switch selected; automatic feedback adjustment. Built-in volume control and two audio input sockets.

PRE-AMPLIFIER CONTROL UNIT

Output: 200 mV. at 0.1% and 2.0V. at 0.2% total distortion.

Intermodulation distortion: power & pre-amplifier combined: 1% for 20 watts output.

Noise: — 64 db on radio or tape inputs; — 53 to — 56 db on pick-up inputs.

Radio power outlet: 6.3V. 2.5A., 440V 30 mA. Tape recorder outlet.

S-Inputs: Tuner (2 levels) Pick-up (3 levels) Tape & Auxiliaries (2 levels).

Controls: 8 position selector switch incorporating 5 record play-back characteristics.

Loudness control providing compensation for low level reproduction of high level inputs in accordance with Fletcher-Munson loudness curves.

Bass Control: — 15 db at 30 c/s. to +16 db at 50 c/s.

Treble control: — 15 db to +15 db at 10 Kc/s.

Low-pass filter: 3-positions: 20, 10 & 5 Kc/s. Slope: 12 db/octave.

Rumble filter: 40 c/s. turnover frequency. Slope: 12 db/octave.

Monitor/Record switch: 3 positions.

Price: Power amplifier and pre-amplifier control unit complete £55.

Avantic HIGH FIDELITY REPRODUCERS MANUFACTURED BY Beam-Echo Limited Witham, Essex.

Telephone: Witham 3184. Telegrams: Parion, Witham
FEBRUARY 1957

In This Issue

51 Editorial Comment
52 High-Power Transistor Audio Amplifiers
54 World of Wireless
58 Output Transformerless Amplifiers
62 Short-Wave Conditions

63 Automatic Component Assembly. By K. M. McKee
69 B.B.C. F.M. Transmitter Performance
70 Limiters and Discriminators for F.M. Receivers—2. By G. G. Johnstone

75 N.T.S.C. Colour Information. By E. L. C. White
79 Technical Notebook
81 Letters to the Editor
83 Improved Sync Separator. By M. P. Beddoes

87 Books Received
88 Wideband V.H.F. Converter. By G. P. Anderson

92 Negative Resistance. By "Cathode Ray"
97 February Meetings

98 Random Radiations. By "Diallist"
100 Unbiased. By "Free Grid"
The circuit diagram of the regulated power unit, shown below, demonstrates a novel application of transistors as control devices. They are especially suited for this type of circuit because of the high voltage gains which can be obtained with them when they are operated with large collector loads from high voltages. In the power unit described, a Mullard OC73 is used to control the current flowing through an EL38 series valve. One advantage of using a transistor in this type of regulated power unit is that a separate negative h.t. supply is eliminated.

The power unit has an output impedance of less than three ohms, and will deliver 100mA at any voltage between 40 and 84 volts regardless of quite large changes in the mains input voltage. For instance; if the mains input voltage rises from 198V to 242V, the output voltage will increase by only 0.4V at full load. Reducing the load from 100mA to zero produces a rise in output voltage of only 0.3V at 220V mains input.

CIRCUIT OPERATION

By connecting the transistor as shown in the circuit diagram it compares the output voltage with the reference voltage, and any difference produces a large change in collector current due to its high effective mutual conductance.

Since a transistor can be operated at very low currents, very high voltage gain is obtained by connecting the collector to negative h.t. through a load of 300kΩ. The collector is connected also to the control grid of the EL38 through a 100kΩ grid stopper. Therefore the collector-to-base voltage of the transistor is equal to the grid-to-cathode bias of the valve and is practically independent of the output voltage setting.

The output voltage is approximately equal to the reference voltage and can only differ from it by the base-to-emitter voltage of the transistor, which will be less than 0.1V. So the maximum output which can be obtained is determined only by the reference voltage. Although an 85V reference level is used in the circuit described, the design is almost identical for any reference level. The minimum output voltage of this supply unit cannot be set below the bias voltage of the series valve and therefore it is limited to 40V.

When the power unit is working, a drop in output voltage will cause the base of the OC73 to become negative with respect to the emitter. As a result, the collector current increases and the collector voltage becomes more positive, thus reducing the bias on the EL38 and compensating for the original change. Equilibrium will be reached when the output voltage reaches the same value as the emitter voltage.

Variations in the mains voltage have only a slight effect on the reference voltage, which is stabilised by the 85A2, and therefore the output voltage remains substantially constant.

CIRCUIT DESIGN

The full-wave rectifier circuit is of conventional design, with choke smoothing to give a ripple-free output to the series valve, an EL38, and to the voltage reference tube, an 85A2. The 85A2 is operated at a low burning current to minimise the change in the reference voltage when the circuit is loaded and the poor regulation of the rectifying circuit causes the unstabilised voltage to fall.

An EL38 was chosen for the series valve because it has a comparatively short grid base. This is important since it governs the maximum collector-to-base voltage when no current is being taken from the supply. To prevent the collector voltage exceeding the -30V collector-to-base rating of the OC73, the output must be permanently loaded to about 10mA; 5kΩ forms the permanent bleeder resistor.

The stability of the output is limited by the stability of the reference source, and by using an independent reference voltage or running the 85A2 from a 150B2, the stability could be increased, and the output impedance reduced to at least half the value given.

Changes in temperature have negligible effect on the output voltage and impedance but an appreciable increase in ambient temperature raises the minimum transistor leakage current and slightly increases the minimum output voltage to which the supply can be set. This effect limits the maximum value of collector resistance which can be used. For operation at higher temperatures a smaller collector load resistance should be chosen.

Instability may occur when the power supply is first switched on if it is connected directly to a high current load, so a switch has been included in the circuit and should not be closed until the reference tube has ignited. The 0.033µF capacitor between the base and collector prevents high frequency oscillation which can occur under certain conditions.
Use

BRIMAR

Teletubes
Radio Valves
and
Special
Components

- METAL RECTIFIERS
- BRIMISTOR
- CURRENT SURGE RESISTORS
- GERMANIUM DIODES
- TRANSISTORS

for best results specify BRIMAR

Standard Telephones and Cables Limited FOOTSCRAY, SIDCUP, KENT. Footscray 3333
A batch of ACOS GP61 Ceramic Cartridges was recently tested by an independent user under the BSI Test No. BF 2011, Class 112, "Basic Climatic and Durability Test for radio and allied equipment." The result shown on the right speaks for itself. Further, the GP 61 has great mechanical robustness, smooth response, low harmonic and intermodulation distortion, high needle tip compliance, replaceable "X 500" styli and very good output.
In these uncertain times it is always dangerous to look into the future, but many Scottish readers will be glad to know that an alternative television programme is definitely on the way. The “Belling-Lee” “Skytower,” recently purchased by the Independent Television Authority is seen being erected. It was completed before the photograph was printed. This aerial will be used for the pilot transmitter, scheduled to be on the air in March. The Scottish public will be given the opportunity of “seeing what they are buying,” what kind of programmes they can expect. Scottish Television, Ltd., the programme company, is planning a series of exhibitions throughout the service area commencing in February.

Radio dealers will be able to tell their friends all about them, and when one will be in any particular district. The dealer will also be able to give guidance on the type of aerial that will probably be required or what modifications will be needed to an existing B.B.C. aerial. Most Wireless World readers know that the reception of band III presents greater difficulties than the reception of band I. For example on band III the loss in any cable is about twice as much as it is on band I. It is important only to use solid cable on short runs. Cellular type is recommended for general use, and semi-air-spaced for long runs or anywhere outside the transmitter service area. On a 50 foot run, the gain obtained by using air spaced feeder instead of solid is 1.7 dB which is approximately the difference between a 3 and a 6-element array. The difference in price between the aerials is 18/6, the difference in price between 50 foot of solid and semi-air-spaced feeder is £1/3/4. The superior aerial can help you to get rid of ghosts and interference, the better feeder can only help with gain. In difficult locations the better aerial should be specified and the better feeder.

Radio Wave Propagation and the problems of Television Bands IV and V.

In a recent issue of the Journal of the Television Society a paper was published under the above heading. It includes a wealth of information of great value to all technical readers interested in television signal propagation. We are indebted to the author and the Society for permission to reprint this paper, a copy of which will gladly be sent on request.

Advertisement of BELLING & LEE LTD. Great Cambridge Rd., Enfield, Middx. Written 20th December, 1956
NEW! THE PRACTICAL WAY
of learning RADIO - TELEVISION - ELECTRONICS
AMATEUR S.W. RADIO - MECHANICS - PHOTOGRAPHY - CARPENTRY etc. etc.

COMPLETE EXPERIMENTAL COURSES
IN SCIENCE AND TECHNOLOGY

SUBJECTS INCLUDE:-
RADIO - SHORT WAVE RADIO
TELEVISION - MECHANICS - CHEMISTRY
PHOTOGRAPHY - ELECTRICITY - WOODWORK
ELECTRICAL WIRING - DRAUGHTSMANSHIP
ART, etc.

E.M.I. INSTITUTES
-Part of "His Master's Voice," Marconiphone, etc. etc.

FEBRUARY, 1957

WIRELESS WORLD
A CONFIDENTIAL STAFF LOCATION SYSTEM!

Verbal Orders Quickly and Quietly

It's new and it's unique—the Multitone Staff Location System. There've been loudspeakers, bells, lights and even buzzers, but not a system in which confidential messages can be delivered to individual members of a staff—whether numbered in tens or hundreds. However compact or scattered an organisation may be, this is going to be the biggest business time-saver yet. Originally developed in conjunction with St. Thomas' Hospital, this system is now far in advance of anything yet made and is sold at a highly competitive price!

HOW IT WORKS. A magnetic induction loop is laid round the building from the Coder/Oscillator unit. Anyone needed to be on call carries a receiver (only 5" long, 1" diameter and it only weighs 5 oz. with battery!). On being alerted by his call signal, which is received by him alone, he can hear a direct speech message without anyone else being disturbed.

WHAT IT COSTS. The average cost of an installation with 50 receivers would be under £1,500 including the cost of the loop. The receiver incorporates four transistors and is powered by a single cell. Since the quiescent current is less than 0.5 m.a. it will only cost a few shillings a year to run each receiver—considerably less than any other electronic system.

The London Ambulance Service uses V.H.F. radio-telephones to provide the immediate response essential in emergencies.

For this vital life and death service the London County Council selected equipment manufactured by British Communications Corporation—a wise choice where fine performance and utmost reliability are vital factors.

OSCILLOSCOPE TYPE WM5A (25Mc/s)

- Precision time, voltage a.c./d.c. measurements without arbitrary graticules or calibrating waveforms.
- Sweep delay or return sweep displayed as extra trace gives continuous time display.
- Display expansion greater than 2500:1 on a given range.
- Photo sweep and voltage reference trace with auto-blackout.
- High brilliance fine focus EMITRON C.R.T. with full 10 cms. deflection.
- Variable E.H.T. (1 to 10 kV) gives 10 to 1 display expansion with unmodified bandwidth.
- Add-on sub-units give performance extension.
- Additional stabilised supplies and waveforms for external use.
- Voltage measurements — 100 mV to 500 V (2½ %), unaffected by variations in supply, C.R.T. or amplifier linearity, or degree of expansion.
- Time measurements — 20 μs to 100 ms (2½ %) direct from meter.

Fully descriptive literature available from

E.M.I. ELECTRONICS LTD.
Instrument Division
HAYES · MIDDLESEX

Telephone SOUthall 2468 (Ext. 1013 & 655)
Build these 2 useful instruments from

COSSOR KITS

Valve Voltmeter and Oscilloscope

Each Kit, in addition to Printed Circuits and all parts, includes an illustrated comprehensive instruction book describing the step-by-step assembly.

Write for leaflets to:

COSSOR INSTRUMENTS LIMITED

THE INSTRUMENT COMPANY OF THE COSSOR GROUP

(Dept. 1), Cossor House, Highbury Grove, N.5

Telephone: CANonbury 1234 (33 lines)
Telegrams: Cossor, Norphone London
Cables: Cossor, London
The G55/1K is a miniature cold-cathode, gas-filled, voltage stabiliser for use in industrial and radio equipment where a stable source of voltage is required. The outstanding feature of this valve is the low maintaining voltage of 55 volts.

MECHANICAL DATA
- Maximum overall length: 66.7 mm
- Maximum seated height: 60.3 mm
- Maximum diameter: 19.1 mm
- Base: B7G
- Net weight: 8.5 g

CHARACTERISTICS
- Maximum striking voltage: 90 V
- Stabilising voltage: 55 V
- D.C. operating current: 2 to 30 mA
- Maximum peak current (10 seconds max.): 75 mA
- Nominal regulation 2 to 30 mA: 3 V
- Maximum regulation 2 to 30 mA: 5 V
- Ambient temperature range: -55 to +90 °C

data sheet available from: Standard Telephones and Cables Limited
Industry & Commerce offer their best posts to those with the necessary qualifications—such posts that will bring personal satisfaction, happiness, good money and security. As part of a modern industrial organisation, we have skilled knowledge of what is required in industry to-day and the best means of training personnel for its present day and future requirements. We specialise also in teaching for hobbies, new interests or part-time occupations in any of the subjects listed below. Make your own choice and write to us to-day for further information. There is no obligation of any kind.

PERSONAL & INDIVIDUAL TRAINING IN—

Accountancy
Advertising
Aeronautical Eng.
A.R.B. Licences
Art (Fashion, Illustrating, Humorous)
Automobile Eng.
Banking
Book-keeping
Building
Business Management
Carpentry
Chemistry
City & Guilds Exam
Civil Service
Commercial Subjects
Commercial Art & Drawing

Customs Officer
Draughtsmanship
Economics
Electrical Eng.
Electrical Installations
Electronics
Electronic Draughtsmanship
Eng. Drawing
Export
Heating & Ventilation Eng.
High Speed Oil Engines
Industrial Admin.
Jig & Tool Design
Journalism

Languages
Management
Maintenance Eng.
Mathematics
M.C.A. Licences
Mechanical Eng.
Metallurgy
Motor Eng.
Painting & Decorating
Photography
P.M.G. Certs.
Police
Production Eng.
Production Planning
Radar
Radio Amateurs (C&G) Licence
Radio & Television Servicing

Refrigeration
Sales Management
Sanitary Engineering
Salesmanship
Secretaryship
Shorthand & Typing
Short Story Writing
Short Wave Radio
Sound Recording
& Reproduction Telecommunications
Television
Time & Motion Study
Tracing
Welding
Workshop Practice
Works Management

Subjects

Chemical Subjects
City & Guilds (C&G) Licence
City & Guilds Examinations, R.T.E.B. Serv. Cert., R.S.A. Certificates, etc.

COURSES FROM 15/- PER MONTH

POST THIS TODAY

NAME

ADDRESS

I am interested in the following subject(s) with/without equipment

(We shall not worry you with personal visits)
The amplifier, speaker and case, with detachable lid, measures 8.0in. x 22.2in. x 15.2in. and weighs 30Ib.

PRICE, complete with WEARITE TAPE DECK £84 0 0

- The total hum and noise at 7½ inches per second 50-12,000 c.p.s. unweighted is better than 50 dbs.
- The meter fitted for reading signal level will also read bias voltage to enable a level response to be obtained under all circumstances. A control is provided for bias adjustment to compensate low mains or ageing valves.
- A lower bias lifts the treble response and increases distortion. A high bias attenuates the treble and reduces distortion. The normal setting is inscribed for each instrument.
- The distortion of the recording amplifier under recording conditions is too low to be accurately measured and is negligible.
- A heavy mu-metal shielded microphone transformer is built in for 15-30 ohms balanced and screened line, and requires only 7 micro-volts approximately to fully load. This is equivalent to 20ft. from a ribbon microphone and the cable may be extended 440 yds. without appreciable loss.
- The .5 megohm input is fully loaded by 18 millivolts and is suitable for crystal P.U.s, microphone or radio inputs.

FOUR CHANNEL ELECTRONIC MIXER

is almost essential for the professional or semi-professional where a number of different items have to be mixed on one tape recording. It is recommended by a number of tape recorder manufacturers for this purpose. Any normal input impedance can be supplied to order, balanced or unbalanced, the standard being 15-30 ohms balanced. The normal output is 0.5 volt on 20,000 ohms or more, but 600 ohms is available as an alternative. The steel stove enamelled case is polished and fitted with an engraved white panel suitable for making temporary pencil notes. An internal screened power pack and selenium rectifier feed the five low noise non-microphonic valves. Used in many hundreds of large public address installations and recording studios throughout the world.

PRICE £36 15 0

Manufactured by

VORTEXION LIMITED, 257-263, The Broadway, Wimbledon, London, S.W.19

Telephones: LIBerty 2814 and 6242-3

Telegrams: "Vortexion, Wimble, London."
Something to be proud of...

There is much more in a tape recorder than just circuitry. Try a TK8 out, and you'll agree that anybody could be proud of it!

Just take a look at the specification...

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption:</td>
<td>Approximately 60 watts (rising to 118 watts when Fast Winding).</td>
</tr>
<tr>
<td>Fuses:</td>
<td>2 amps. (for 105-115 V)</td>
</tr>
<tr>
<td>Valves:</td>
<td>EF86, ECC81, EL-42, EL84, EM8I, 2 metal rectifiers.</td>
</tr>
<tr>
<td>Recording Level Indicator:</td>
<td>Magic Eye.</td>
</tr>
<tr>
<td>Loudspeakers:</td>
<td>Elliptical 6 ins. High Flux permanent ceramic magnet type plus two 2½ in. treble units.</td>
</tr>
<tr>
<td>Amplifier Output:</td>
<td>4 watts approximately.</td>
</tr>
<tr>
<td>Tape Speed:</td>
<td>3½ ins. per second, and 7½ ins. per second.</td>
</tr>
<tr>
<td>Frequency Response:</td>
<td>50-9,000 c.p.s., ±3 db at 3½ ins/sec.</td>
</tr>
<tr>
<td>Recording Sense:</td>
<td>Twin Track, recording on the top track (British and International standard).</td>
</tr>
<tr>
<td>Maximum Tape Length:</td>
<td>1,200 feet.</td>
</tr>
<tr>
<td>Running Time per Tape:</td>
<td>30 minutes each track at 7½ ins/sec. (1 hr. total),</td>
</tr>
<tr>
<td>Fast Forward/Fast Rewind</td>
<td>60 minutes each track at 3½ ins/sec. (2 hrs. total).</td>
</tr>
<tr>
<td>Times:</td>
<td>Approximately 1½ minutes.</td>
</tr>
<tr>
<td>Automatic Stop Switch:</td>
<td>Electro-magnetic.</td>
</tr>
</tbody>
</table>

GRUNDIG TK8-3D — for Price & Performance

GRUNDIG (GREAT BRITAIN) LIMITED

Advertising Dept. & Showrooms: 39/41 NEW OXFORD ST., LONDON, W.C.1
Trade enquiries to:— KIDBROOKE PARK ROAD, LONDON, S.E.3.
(Electronics Division, Gas Purification & Chemical Co. Ltd.) G12

Train for a wonderful future in ELECTRONICS...

...with E.M.I.

Every day the demand for the expert in electronics grows. Radio, television, radar and the whole field of industrial automation are rapidly expanding and the trained specialist assures for himself a well-paid career in this quickly developing profession. Here is your opportunity to enter for:—

3 YEAR COURSE

TELECOMMUNICATIONS—Entrance standard G.C.E. Ordinary level or equivalent. This course trains Assistant Development Engineers to City and Guilds’ Full Technological Certificate level. Next course commences in September, 1957.

THE E.M.I. COLLEGE OF ELECTRONICS

Telephone: BAYswater 5131/2

The College is part of the E.M.I. Group ("His Masters Voice", Marconiphone, E.M.I., Electronics Ltd., etc.)

Train for a wonderful future in ELECTRONICS...

...with E.M.I.

With the ever increasing extension of the applications of television and the many technical advances being made in radio techniques, there is a pressing demand for trained radio and television technicians. These are careers with an assured and remunerative future. Here is your opportunity to enter for:—

1 YEAR COURSE

Full-time day course in the Principles and Practice of Radio and Television. Mainly designed for the training of Radio and Television Servicing Engineers. Next courses commence in May and September, 1957.

THE E.M.I. COLLEGE OF ELECTRONICS

Telephone: BAYswater 5131/2

The College is part of the E.M.I. Group which includes "His Master's Voice", Marconiphone, E.M.I. Electronics Ltd., etc.
Britain's finest Hi-Fi Equipment...

It was in 1945 that H. J. Leak revolutionised the performance standards for audio amplifiers by designing the original "Point One" series, and we became the first firm in the world to market amplifiers having a total distortion content as low as 0.1 per cent. This claim was received with incredulity, but it was subsequently confirmed by the National Physical Laboratory and since then hundreds of TL/12 amplifiers have been used by the B.B.C. and Commonwealth and foreign broadcasting authorities, and thousands have been used by recording studios, leading musicians and music-lovers throughout the world.

Further development work resulted in our producing, at a much lower price but with the same high performance standards, the TL/10 amplifier. The output of the TL/10 is ample for high fidelity home music systems, and the quality of reproduction obtained is equal in every respect to that of the TL/12. We always use the TL/10 amplifier and "Point One" pre-amplifier for our public demonstrations of high fidelity reproduction of gramophone records and radio. The TL/10 amplifier, when used with the best available complementary equipment, gives to the music-lover a quality of reproduction unsurpassed by any equipment at any price. Even when the complementary equipment falls below that of the best obtainable the use of these amplifiers will enable one to obtain very marked improvements in reproduction.

We shall be pleased to send you full details of

LEAK TL/10 10-watt Amplifier, 17gns.
and "Point One" Pre-amplifier, 10gns.

Harmonic Distortion 0.1%, 0.2%, 2 watts output.

The B.B.C. MONITOR LOUDSPEAKER UNIT uses a LEAK TL/12 AMPLIFIER

Price £28.7.0

The B.B.C. MONITOR LOUDSPEAKER UNIT uses a LEAK TL/12 AMPLIFIER

Price £28.7.0

FREL is the trade name of the Leak Full-range Electrostatic Loudspeaker which will be available to the public in 1957. The design is original and has great theoretical and practical advantages over previously described electrostatic loudspeaker systems. It is the result of intensive research and development work carried out by H. J. Leak, M.Brit.I.R.E., and A. B. Sarkar, M.Sc., who are the authors of a paper, describing the basic design principles of this loudspeaker, which was published in the "Wireless World," October 1956. A reprint of this paper will be supplied on request.

H. J. LEAK & CO. LTD., BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3, ENGLAND

T.V. Commercialising Outfit

DO IT YOURSELF IT'S REALLY PAYING

You will manage it in an evening, and we guarantee SUCCESSFUL RESULTS OR MONEY BACK.

A special holiday price for all the above items is £10 10s. Or £15 10s. down and 6 monthly payments of £1.2s. post and ins. 4/6. Full illustrated 1/6.

ELECTRIC BLANKET WIRE

Waterproof F.F.A. covered, an blanket washable, 184 ohms per foot—1/0 per yard. 14-pairs, Ideal for average blanket, £1 post free.

PHILIPS TRIMMERS

0-30 pf. 1/3 each. 1/2 per doz. 1s. per gross.

THIS MONTH'S SNIP

Chargeable, insulating sheet wire ended, 2,000 ft. 5c per doz. 500 ft. each, 1s. per 1,000 ft. head through ceramics, 9½p per doz. All post free. Special quote for 1,000 lots.

TRANSISTORS

Red spot replacements Mullard O71, etc., 10s. Blue spot suitable H.P. up to 1.6 Mw, 1s. 6d. each.

POCKET TRANSISTOR RECEIVER

All the parts up to the cigarette box receiver, 2/9/6. Includes Ferrite aerial but not the earpiece, battery or case.

INDUSTRIAL OVERHEAD HEATER

This overhead heater warms only the area within its radiant rays, and so effects a considerable saving of fuel. Its benefits are felt locally only, there is no warming up period. It is essentially a personal type of heater, having controls within easy reach of the operator. The controls give four variations of heat and "Off." At maximum heat the unit consumes 1.6 kw. The Infra Red Major is of particular use—

(a) In large rooms, workshops, offices, machine shops, etc., where the cost of heating the whole room is a considerable item would be too great.

(b) In rooms which in the main have to be kept cool, e.g., a cool storage chambers, beer cellars, etc.

(c) In any situation where local heating is required quickly.

Price is £7/10s. carriage paid.

BLACK HEAT ELEMENTS

Ideal to use as a heating unit for drying cupboards, clothes dryers, bathroom towel cabinets, etc. Complete in outer metal case which is designed to keep at a "non-burning" temperature. 5 year guarantee. 500 watt, also available, 24 x 4½ ins. 1,000 watt, also available, 48 x 4½ ins. Carriage and insurance 500 watt 3/6, 1,000 watt 5/-.

THE "CRISPIAN" BATTERY PORTABLE

A 4-valve truly portable battery set with many very good features as follows:

- Ferrite Rod Aerial.
- Low consumption valves (DK76 range).
- Superhet circuit with A.V.C.
- Ready built and aligned chassis if required.
- Beautiful two-tone cabinets.
- Guaranteed results on long and medium waves anywhere.

All parts, including speaker and cabinet, are available separately or if all ordered together the price is £7/15/- complete. Post and insurance 3/6. Ready built chassis 30/- extra. Instruction booklet free with parts or available separately 1/6.

METER MOTORS

These are very small A.C. mains operated motors which have many applications for driving toys or other light loads. All are in good condition, but not new, having been stripped from electric light meters. Final speed of approx. 1 rev. per hour. Price 2/- each. Post and insurance 2/-.

OFFERED FOR LESS THAN THE VALUE OF ITS COIL PACK

This set, a product of one of our famous manufacturers, has H.F. stages, covers 5 wavebands including short waves to 11 metres. Offered less valves, power-pack, scale and drive, otherwise complete and unused.

Price £3/15/-, plus 7/- carriage.

NEW CIRCUIT

OCCASIONAL SNIP—we have evolved a new T.R.F. circuit and have bad really good results, equal if not better, than many superhets. You really should try this circuit. All parts (including valves 6K7, 6.17, 6F6 and 6T5) and full circuit, with 100,000 free with parts or available separately £1/6/- post free and insurance.

FIRE TUNERS

Ceramic tubes, all with 1½, nipple of fair length. H. 30, 15, 20, P.P. at 2/3 each or 5/- per dozen.

INSTANTUS HEATER

Convector heater, 1 kw. rating, 4ft. long, made from heavy gauge sheet steel (galvanised). Can be used for greenhouse, workshop, aviary, etc. Latest models from £7/15/-, plus 7/- carriage and insurance.

DON'T STUMBLE IN THE DARK

Install 3-way switches. Our outfit contains 50 yards. Multi-core cable, 100 cable clips, two 3-way switches, two wood blocks. Full instructions. 10/- each post and insurance 2/6.
Wrap our heater cable around the pipes in your loft to prevent a freeze up. Minor
yards £1.10.0.

THE SKYSEARCHER
An all mains set for 1/4

This is a 2-valve plus-metal rectifier set useful as an educational set for beginners, also makes a fine second set for the bedroom, workshop, etc. All parts to build cabinet, chassis and speaker, 1/6/0. Post 4 1/2. Data free with parts or available separately 1/6.

ECONOMY THREE
A 3-valve battery version of above. All components less chassis, cabinet and speaker, 10/6, plus 5/- post and insurance. Data free with parts or available separately 1/6.

FLUORESCENT LIGHTS

These are complete fluorescent lighting fittings. Built-in ballast and starters—shelf finished white and ready to work. Ideal for the kitchen, over the work-
bench and in similar locations.

Also five additional fluorescent lamps.

All parts guaranteed twelve months. Full information and data free with parts or available separately, price 3/6.

DON'T BE CAUGHT LIKE THIS

Don't be caught like this in a couple of evenings for the total cost of 19/6. Including instructions, parts, etc., price available separately price 9/-.

THE UNI—T.V.

Undoubtedly the most up-to-date television for the home constructor. You can build all or only part and the set when finished will be equal to a factory made equivalent. What other constructor T.V. has all these features?

- Made up units if required.
- All miniature valves.
- Metal rectifier.
- No expensive transformers.
- 11-channel circuitry.
- Multi-radiator line inputs.
- Perma cube, E.H.T. and scan coils.
- 54/08 mains 1/6.
- Suitable for any modern 12, 14 or 17 in. tube.
- Modern contemporary cabinet if required.

The building cost (less tubes) is only £20/10/- plus 10/- carriage and insurance. All parts guaranteed twelve months. Full information and data free with parts or available separately, price 2/6.

HALF-PRICE OFFER

BEETHOVEN CHASSIS

Extremely well built on chassis size approx. 9 1/2 x 7 x 8 1/2, using only first-class components, fully aligned and tested, 110-240 volt A.C. mains operation. Three wave bands covering medium and two short. Complete with five valves, frequency changer, double diode triode, pentode output and full wave rectifier.

Special cash-with-order price this month, £5/19/-, carriage and insurance 7/6. Finished cabinet, 49/6.

MINI-RADIO

Use high-quality short-wave, long- and medium wavebands and fit into the neat white or brown Bakelite cabinet—limited quantity only. All the parts, including cabinet, valves, in fact, everything, 6/15/-, plus 3/6 post. Constructional data free with parts, or available separately 1/6.

CIRCUIT DETAILS

Diagram and other information extracted from official manuals. All 1/6 per copy. 12 for 1/-.

American Service

R.109
R.16
A.234
R.194
A.241
R.322
R.1119
R.193
R.342
R.325
A.1134
R.326
A.1139

1. Connect the + and - battery leads to the battery terminals of the Crabro Receiver.
2. Connect the A.C. mains plug lead to the Crabro Receiver.
3. Connect the aerial plug lead to the Crabro Receiver.
4. Switch on the Crabro Receiver.
5. Tune in the desired station.

THE MULLARD 510 AMPLIFIER

A High Quality Amplifier designed by Mullard engineers. Robust high fidelity with a power output exceeding 10 watts and a harmonic distortion less than 1/2% at 10 watts. Frequency response is extremely wide from 15 to 20,000 C.P.S.—three controls are provided and the whole unit is very adaptable for use with the Crabro Studio and most other good pick-ups. The price of the unit, complete and ready to work is £1010/0/- plus 10/- carriage and insurance. Alternatively, if you wish to make up the unit yourself we shall be glad to supply the components separately. Send for the Mullard amplifier shopping list.

ELECTRONIC PRECISION EQUIPMENT LTD.

266 London Road, Croydon.

42-46 Windmill Hill, Ruislip, Middlesex.

152-153 Fleet St., E.C.4.

29 Stroud Green Road, Finsbury Park, N.4.

Phone ARCHWAY 1049

Half-day Thursday.

All enquiries to Eastbourne address and please enclose S.A.E., terms are cash with order.

FEBRUARY, 1957

WIRELESS WORLD

113
ANNOUNCING THE SECOND AND LARGER

AUDIO FAIR

The latest and best sound reproduction equipment will be demonstrated to thousands of members of the public in the spacious Waldorf Hotel. All the leading manufacturers will be exhibiting. Each will have a private room where he will give practical demonstrations... and in the main hall, will have a stand displaying products.

THE FAIR WILL HELP THE DEALER BY

1. Stimulating and expanding public interest in High Fidelity.
2. Providing a unique opportunity of seeing and hearing all the latest equipment in this profitable field.

So, help yourself by telling your customers about the Fair and applying for COMPLIMENTARY TICKETS for them... Just send an addressed label NOW—naming total requirements—and for which days to:

Exhibition Office, 42 Manchester Street, London, W.I.

The LONDON AUDIO FAIR 1957 will be held at the WALDORF HOTEL Aldwych, W.C.2. on Friday 12th, Saturday 13th, Sunday 14th, Monday 15th April, 1957 11 a.m. until 9 p.m.

Percy Wilson, MA.
Technical Editor of The Gramophone

has written the most up-to-date and comprehensive handbook on modern developments in sound reproduction that is available in any part of the world.

The Gramophone Handbook

examines, for the technician as well as the layman, the fundamental principles of reproduction, types of equipment, record wear, care and storage, installation and maintenance of equipment, and such topics as stereophonic reproduction.

Fully illustrated, 15s.

Methuen
The NEW LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE

as you build your own receiver and testing instruments

This new addition to the unrivalled I.C.S. range of technical training courses offers you a double opportunity. Here is your chance to gain a sound knowledge of basic Radio and Electronics theory—under expert tuition—whilst building your own 4-valve radio receiver, signal generator and high-quality multi-tester.

WHAT YOU GAIN At the end of the course you will have gained not only three pieces of equipment of permanent practical usefulness: you will have accumulated a personal "library" of reference material—I.C.S. Instruction Manuals, expertly edited and presented—which you can keep by you always for guidance. Furthermore, you will have gained immeasurably in knowledge, through a balanced combination of study and practical work—with the specialised help of the world's largest correspondence school.

TRAINING TO SUIT YOUR NEEDS Whether you plan to have a business of your own, to become a service engineer, to pursue a career in the radio industry, or to take up radio as a serious hobby—this course provides the ideal way of obtaining a firm foundation of essential knowledge. If you are an intending examination candidate, I.C.S. training offers you the most thorough preparation you could have.

There are I.C.S. courses to meet your needs at every stage of your career.

Other courses include: RADIO ENGINEERING, RADIO SERVICING AND SALES, BASIC RADIO, RADAR ENGINEERING, BASIC RADAR, F.M. ENGINEERING, TELEVISION ENGINEERING, TELEVISION SERVICING, BASIC TELEVISION, ELECTRONIC ENGINEERING, INDUSTRIAL ELECTRONICS, BASIC ELECTRONICS, and guaranteed coaching for professional examinations.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Name: __________________________ Age: _______
Address: __________________________
Occupation: ________________________ 2.57
The new HOMELAB Frequency Modulation Tuner conforms exactly to the famous Mullard design.

A volume control is incorporated and also switching for gramophone, AM tuner and tape deck in addition to FM.

The tuner is fitted with a pleasing bronze-finished escutcheon and a lead fly-wheel is coupled to the tuning knob to ensure smooth and accurate tuning in conjunction with a magic-eye tuning indicator.

The unit can be supplied with or without power supply. Please send for full details.

Less power supply £21.7.0
With power supply £22.8.0

Please send for full details.

Homelab Instruments Ltd
615-617, High Road, Leyton, E.10.

MANUFACTURERS OF INSTRUMENTS FOR THE RADIO AND ALLIED INDUSTRIES

FOYLES

** FOR BOOKS **

FOR ALL YOUR Technical Books

Foyles have departments for Gramophone Records, Stationery, Handicraft Tools and Materials, Music, Magazine Subscriptions, Lending Library.

119-125 CHARING CROSS ROAD, LONDON, W.C.2

Gerrard 3660 (20 lines) Open 9-6 (Thurs. 9-7)

Nearest Station: Tottenham Court Road

THE WORLD'S GREATEST BOOKSHOP

H. ASHWORTH (Dept. W.W).
676, Gt. Horton Road, Bradford 7, Yorks.

THE WORLD’S GREATEST BOOKSHOP

PROTECTIVE CAPS & PLUGS
FOR
STANDARD INTERNAL & EXTERNAL THREADS
OR
SPECIAL MOULDINGS

AMPLEX APPLIANCES (KENT) LTD.
19 DARTMOUTH ROAD, HAYES, BROMLEY, KENT

All export enquiries to
ANGLO NETHERLAND TECHNICAL EXCHANGE LTD.
3, TOWER HILL, LONDON, E.C.3.
Capacitance Bridge specifically designed to measure

ELECTROLYTIC AND TANTALUM CONDENSERS

Capacitance Range: 0.1 to 11,000 µF, Power Factor Range: 0.1 to 30%. Polarising Voltage: 0.5 to 600 volts.

This is one instrument from our range which includes:

- VALVE VOLTMETERS
- OSCILLATORS
- PULSE GENERATOR
- ATTENUATORS
- MEGOHMMETER
- BREAKDOWN TESTER
- BRIDGES FOR MEASUREMENT OF R.C.L.

Your enquiries for our comprehensive range of sensitive METERS are invited.

BRITISH PHYSICAL LABORATORIES • RADLETT • HERTS

Telephone: RADLETT 5674.
REMOTE CONTROL

We cannot do the Indian Rope Trick but with

FLEXIBLE SHAFTING

We can operate any element requiring rotation or push-pull movement, or both, no matter if the controlled element is close to or at a distance from the control point. We can operate from an accessible point, switches, valves and other electrical and mechanical devices located in inaccessible places. We can, in fact, solve your problems.

Flexible Shaft Handbook available to technicians on request.

All your TV Components from one source

including Pinnacle Valves

Pinnacle valves are guaranteed for one year

The most COMPLETE T.V. COMPONENT REPLACEMENT SERVICE in Great Britain

DAY and NIGHT service

phone TIDeway 2330

Our Robot Telephone Answering Machine "FLIBAK" will record your order with accuracy.

This service allows long distance calls to be made at cheap rates. No time is wasted waiting for a line to Departments. "FLIBAK" has been installed to give more efficient service by relieving the pressure on our phone lines during the day. Please make your orders definite, do not ask us to phone back. We will notify you in the unlikely case of our being out of stock.

Please add postage and packing (1/- up to 10/-; 2/- up to £1, 2/6 up to £2). Ordering a number of items at one time will show a considerable saving. The minimum rate for postage and C.O.D. mode by the G.P.O. is 2/6. All orders over £5 Packing and Postage Free.

REPLACEMENTS

134/136 LEWISHAM WAY, NEW CROSS S.E.14

Telegraphic: FLIBAK, London, S.E.14

LYONS RADIO LTD.

RECEPTION SETS TYPE R.109. Ex-Army 8-valve superhet receivers employing 5 ARF12s and 3 ARs. Fitted with miniature speaker and vibrator type power pack for operation from 6 v. accumulator. Frequency range, to two switched bands, 1.5 to 8.5 Mc (50-167 metres). Front panel is fitted with all controls including B.T.C.W. switch and two jacks for alternative headphone listening. Size approx. 12 x 10 x 4ins. In good condition, supplied serial tested with circuit diagram. PRICE ONLY 35/- or less valves 45/-.

DOUBLE HEADPHONES, with headband and connecting cord which terminates in the correct type of jack plug to fit above Rx., 12v. Price 6/6. SUPPLIED SEPARATELY.

POWER UNITS TYPE 15. Rotary converter units fitted with starter relay, carbon tetrachloride voltage reg., input and output filter and housed in metal cases approx. 13 x 8 x 6ins. Input 24 v. D.C. Output 115 v. A.C., 100 v. at 10 mA, and 3 v. at 3 A. In good condition. PRICE 25/-, carriage 7/-.

AMERICAN I.F.F. UNITS. Contain a wealth of useful components including relays and Sprague condensers and 10 valves (6 69117s, 2 7193s, 2 6116s) etc., and a rotary converter unit which can be used as a blower motor or slow-speed motor and works from 8 v. or 12 v. accumulator. Rating of converter is 18 v. D.C. input and 360 v. D.C. output. One end is fitted with gearbox from which protrudes two driving shafts which revolve at 4 and 16 r.p.m. for 12 v. input, and at half this speed for 6 v. input. Gearbox and box can easily be removed if required. In good condition. PRICE ONLY 30/-, carriage 5/-.

3 GOLDHAWK ROAD, (Depl. M.W.) SHEPHERD'S BUSH, LONDON, W.12

Telephone: Shepherd's Bush 1729

SURREY STEEL COMPONENTS LIMITED

PRESS METAL COMPONENTS

FINISHED TO SPECIFICATION

• MANY STANDARD TOOLS AVAILABLE IN STOCK

74-76 CHURCH ROAD, BARNES, S.W.11

Riverside 6673/4
a low cost F.S.K. link

Plessey

Type PVR.102A Fixed Station Diversity Radio Teleprinter Receiving Terminal

Designed in collaboration with International Aeradio Limited, the type PVR 102A Terminal has been introduced to provide an inexpensive radio teleprinter receiving equipment wherever some degree of manual control is acceptable. It is particularly suitable for regional point-to-point communications and meteorological broadcasts at Airports and for Press Agency and similar work.

Due to its low initial cost and its relatively simple installation, the terminal now offers radio teleprinter communications for use in circumstances where financial considerations have previously made them difficult to justify.

FEATURES

- Built-in metering arrangements provide for checking, setting-up and monitoring of all important circuit functions.
- Direct operation of up to three teleprinters; no keying relays are used, thus ensuring maximum reliability and freedom from radio interference.
- Five separate channels, each pre-set and crystal controlled. Provision of crystal trimmers ensures that frequency is exact. Change of channel is effected by the operation of one knob.
- Channel selector switch can be motor-driven from the rear, thus permitting remote control. A remote channel selection unit is available.
- Rapid diversity switch action on small signal differential over wide range of inputs. Complete suppression of weaker diversity signal.

A brochure setting out extensive technical data concerning the PVR 102A Terminal is available on request. Please ask for Plessey Publication No. 78911.

ELECTRONIC AND EQUIPMENT GROUP

THE PLESSEY COMPANY LIMITED · ILFORD · ESSEX
NOW AVAILABLE

8 way 16 way
24 way 32 way 24 way connector

Send for full technical information to

THE McMURDO INSTRUMENT CO. LTD., ASHTEAD, SURREY

NOW AVAILABLE

8 way 16 way
24 way 32 way 24 way connector

Send for full technical information to

THE McMURDO INSTRUMENT CO. LTD., ASHTEAD, SURREY

ADAPTATAPE

Is the name of the new SONOMAG Pre-Amplifier recommended on page 238 of the November "Hi-Fi News" to those already owning Hi-Fi equipment and wishing to add tape reproduction of the same quality.

This is the ONLY pre-amp. at present available designed specially for the new Collaro Transcriptor, and rigidly fixed as a unit to it.

Demonstrations to all hi-fi enthusiasts of our pre-amp. used in conjunction with the Collaro Transcriptor Tape Unit, Collaro Transcription Motor, Leak Dynamic Pick-up and Diamond stylus, Leak Trough-line F.M. Tuner, Wharfedale Baffle 3-speaker system and Leak main amplifiers, will convince you of the fine standard of recording possible. Day, or evening (by appointment).

Price 32 gns.

(Power pack, if required, 4 gns. extra.)

Fitted into Fireside Console cabinet, oak, walnut or mahogany finish, 40 gns.

Your own Collaro Unic fitted, aligned, tested and guaranteed (at our factory only) for 16 gns.

Complete Tape Recorders, including Collaro Microphone and 1,200 ft. tape. Portable 48 gns. Console (with extra large speaker) 58 gns.

Leaflet on request.

Credit facilities from:

H. C. Harridge, 8, Moor Street, Cambridge Circus, W.1
Hollies Radio, 315, Camberwell Road, Camberwell Green, S.E.5
Jackson Radio, 163, Edgware Road, W.2
London Radio Supply Co. Ltd., Balcombe, Sussex
Readings Music Stores, 11, Station Approach, Clapham Junction, S.W.11
Sound-Tape-Vision, 71, Praed Street, Paddington, W.2

SONOMAG Ltd.,
2 St. Michael's Road, Stockwell, S.W.9
(Minute from Stockwell Tube)

Telephones: BRU 5441

CABINETS for EQUIPMENT, SPEAKERS & RECORDS

Write for fully illustrated Catalogue.

The "DUNSTER"

A. L. STAMFORD (Dept. 1.4), 20 College Parade, Salisbury Road, London, N.W.8

INDICATOR UNITS ID-16/TPS-1A

PART OF RADAR Type AN/TPS-1A. BRAND NEW

Supplied complete with

Tray of spares including a high sensitivity (20,000 ohms per volt and 60 megohms) NINE RANGE Universal Test Meter type TS-98/TPS-1 or Voltage Divider type TS-98/TPS-1 in specially made chests and in original packing.

Also available any American or U.K. Govt. Surplus Equipment for Navy, Army and Air Force.

Full details and prices from:

ELECTRICAL & WIRELESS SUPPLY CO.
69 Church Road, Moseley, Birmingham 13
LASKY'S BATTERY PORTABLE FOR HOME

CONSTRUCTION ON PRINTED CIRCUIT

You can build it complete with valves and case for only £7.70
Post 3/6 extra.

10 STAR FEATURES make this the finest portable radio ever offered to the home constructor. Peak value for money has been achieved without any sacrifice of quality or design.

SIMPlicity of CONSTRUCTION. The use of all the latest innovations gives maximum simplicity of construction combined with fine quality performance. In particular, the PRINTED CIRCUIT greatly simplifies construction and completely eliminates the possibility of wiring errors. The veriest novice can build this portable radio easily and quickly and the complete, less batteries, is only £7/7/-.

Demonstration models at both our addresses.

SEND FOR CIRCUIT DIAGRAM with assembly data, all instructions, illustrations and full shopping list. Price 1/6 post free.

YOU CAN BUILD A POWER SUPPLY UNIT FOR THIS PORTABLE.
For 200-250 v. A.C. mains. Made for the new low consumption valves. COMPLETE KIT containing printed circuits, brand new TOC condensers, latest HG type rectifiers, all components, and full instructions, 45/- Post 2/6. Also suitable for most other portables. Full details on request.

SEND 3d. STAMP FOR OUR LATEST BARGAIN LIST.

MONEY-SAVING LASKY BARGAINS ON NEXT PAGE.
A REALLY FIRST CLASS F.M. TUNER
FOR HOME CONSTRUCTION ON A PRINTED CIRCUIT
Not these star features—
* HIGH SENSITIVITY
ALL BRAND NEW T.C.C.
CONDENSERS,
AERIAL COIL AND R.F.
COUPLING COIL PRINTED ON
CIRCUIT,
5 VALVES AND 2 GERMANIUM
DIODES.

By the use of a printed circuit the I.F. and R.F. amplifiers are extremely stable at maximum gain, and results are consistent on all tuners.

Valve line-up—
R.F. Amplifier, ZT19 or EF80.
Mixers and Osc., E719 or ECC85.
1st I.F. amp., W719 or EF85.
2nd I.F. amp., W719 or EF85.
2 Germanium Diodes GEX.34.
Driver Limiter, ZT19 or EF80.

CAN BE BUILT FOR 8 GNS.
(Including Valves)

Write for full instructions data and illustrations, 2/6 post free.
All parts available separately

SAVE POUNDS! ORDER BY POST IF YOU CANNOT CALL

LASKY'S PORTABLE TAPE RECORDER
AT MANY POUNDS SAVING

LASKY'S PRICE
COMPLETE KIT
36 GNS.
Carr. & Pkg. 25/-

BUILD THIS FIRST-CLASS TAPE RECORDER
COMPLETE KIT
Comprises—
* Fully fitted portable case 59/6
* Latest type Truvox Deck 23 gns.
* Tape Recorder Amplifier 12 gns.
* 7 x 4 Elliptical Speaker, 19/6
* 1,200ft. E.M.I. Tape, 35/-
* 7in. Plastic Spool, 4/6

LASKY'S PRICE
COMPLETE KIT
79/6
Post and Pkg. 5/-

BAND III CONVERTERS
BELOW HALF-PRICE!
COMPLETE WITH POWER SUPPLIES
Brand new, manufactured by one of the well-known Pye group.
In attractive plastic case complete with three brand new Mullard valves Cascode R.F. Amp. ECC84, Osc. ECC81, Rectifier EZ90.
Not a kit but complete with valves, ready for use.

Original list price £19/9/-
LASKY'S PRICE 79/6
Post and Pkg. 5/-

JASON F.M. TUNER
A super-sensitive Tuner for F.M. and medium waves. The complete parcel with power supplies. Post 3/6
Data Book, 2/- post free. All components available separately.
Send for itemised price list.
Chassis, 15/6, post 2/6.
I.F. and Coil Set, 7/-, post 1/6.

5-VOLUME RADIO CHASSIS
Ideal as radio receiver for inclusion in a TV set. Brand new and unused.
A.V.C. 4 watts output, 3 separate pre-set, frame aerial, fully aligned, chassis 10 x 5 1/2in., max. height 5 1/2in.
Completely wired and ready for use with the addition of a speaker and output transformer.
Two controls, volume and station switch.
Valves used: 10CL, 10P9, or UP14, 10LD11, 10P14, U404 or UY41.
LASKY'S PRICE, less valves.

MORE MONEY-SAVING LASKY BARGAINS ON NEXT PAGE
LASKY'S RADIO

LASKY'S PRICING

- **REDUCED PRICES**
 - 3-wave Superhet.
 - Famous Manufacturer's Surplus
 - 6-VALVE RADIOGRAM CHASSIS
 - Complete with valves, output trans., etc.
 - Quality components.
 - Maximum length 17 in. Gives large 11 x 14 in. black and white picture.
 - GUARANTEED BY US FOR 3 MONTHS.

FAMOUS AMPLIFIERS BUILT ON T.C.C. PRINTED CIRCUITS

- All specified components are used and you have your choice of transformers and chokes by Partridge, Haddon, W/B, Ellison or Gilson. Demonstrations given at any time.

MULLARD 310
- Fully assembled complete with valves ready for use.
- Price, according to make of transformers, from 15 Gns.
- COMPLETE KIT of parts and Printed Circuit for building the Mullard 510, from 12 Gns.
- Details on request. Book, 3/6 post free.
- Printed Circuit separately, 22/6.

OSRAM 912
- Fully assembled complete with valves ready for use.
- Price, according to make of transformers, from 18 Gns.
- Complete Kit of parts and Printed Circuit for building the Osram 912, from 15 Gns.
- Details on request. Book, 4/- post free.
- Printed Circuit separately, 50/-.

LASKY'S FOR VALVES

- 20,000 IN STOCK

H.P. TERMS AVAILABLE

Write stating requirements.

BAND III AERIALS

- All types, outdoor or indoor, also Diplexers, Crossover Boxes, Co-axial Plugs, Socket and Cable.

MAKERS' SURPLUS TV COMPONENT BARGAINS

- WIDE ANGLE 38 mm.
- Also full stocks of B.V.A. Valves and C.R.
- All 200-250 v. 50 c.p.s. primary, finest quality, fully guaranteed.

MILLER TRANSFORMERS

- All 200-250 v. 50 c.p.s. primary, finest quality, fully guaranteed.

EVERYTHING FOR HOME CONSTRUCTOR & SERVICE MAN

- MAINS TRANSFORMERS
 - All 200-250 v. 50 c.p.s. primary, finest quality, fully guaranteed.
 - Xt/s. 200-250 v. 50 c.p.s.
 - 6.3 to 4 v. a.
 - 5 v. 2 a. Both filaments tapped at 4 volts.
 - 120/240 v. 2 a.

LASKY'S ANNOUNCE A NEW PORTABLE GRAM AMPLIFIER KIT

- Of very small dimensions and suitable for any type of mains operated portable Record Player. All brand new components, latest circuit technique.
- The price of the Kit, complete with valves, rectifier and 6 x 4 in. elliptical speaker, will be under £4.

DATA BOOK and shopping list, 1/6 post free.

ALL MAIL ORDERS TO HARRY ROAD PLEASE

H.P. TERMS AVAILABLE

Write stating requirements.

BAND III AERIALS

- All types, outdoor or indoor, also Diplexers, Crossover Boxes, Co-axial Plugs, Socket and Cable.

TWO ADDRESSES FOR PERSONAL CALLERS

- OPEN ALL DAY SATURDAY
- EARLY CLOSING: THURSDAY

42 TOTTENHAM COURT ROAD, W.1.

- Nearest Station: Goodge Street, MUSEUM 2685

370 HARROW ROAD,

- PADDINGTON, W.9.
- (Opposite Paddington Hospital)
- LAP 407 and CUN 1793

WIRELESS WORLD

- 123
There is always a fine selection of equipment at

3 cm. TEST SET
TYPE 263
Containing transmission type w/meter complete with detector unit 9280-9480 Mc/s, attenuator unit, 2 coaxial to waveguide feeders, impedance matching unit, medium power dummy load, standing wave indicator with lock using CV.263 indicator valve, metered indicator unit, various connectors. Suitable for testing medium and low power radar installations. Price £20 carriage paid.

WAVEMETER TYPE W.1310

BLOCK CONDENSERS
8 mfd. 600 v. W., 5/6 each, post paid. 4 mfd. 400 v. W., 4/- each, post paid.

AN/APN.1 TRANSDUCER
This Unit consists of Magnet, and Coil which is attached to an aluminium diaphragm sus- pended freely and perforated to prevent air damping. Mounted on a Ceramic cover which sits over the diaphragm is a form of 2-Gang capacitor which has a swing from 10-50 pF.

APQ.2. RADAR/JAMMING UNIT
Freq. 450-710 Mc/s. Containing 931a Photo Multiplier Cell complete with resistance network and light proof box. Wide band amplifier 2 6AC7, 1 6AG7 2 388a. This unit is similar to the A.P.Q9 Jamming Unit. Brand new £5 plus 10/- carriage.

MORSE SIGNALLING LAMPS
(Aldis type) 5in. dia. with sighting arrangement, 2 handles, keying switch, and 2 yards cable. In wood carrying case, 10/- plus 3/- p.p.

MINIATURE I.F. STRIPS
Size 10 x 2 x 3in. Frequency 9.7t Mco/s. 2 EF.92s and 1 EF.91 F.P. amps. EB.91. DET/AGC. EF.91 AGC. Amp. and EF.91 Limiter. Circuit supplied.

PRICE £7/6 p.p.

TRANSMITTER Type T1131-L

SEND FOR FULL DETAILS.

EDDYSTONE 358X

COMMUNICATION RECEIVERS (B34)
Range 40 kc/s to 31 Mc/s, covered with 10 plug-in coils; only 4 coils available covering 600-1,250 kc/s, 1,250-2,100 kc/s, 2,100-4,500 kc/s, 4,500-9,000. Selectivity: 2 kc/s at 2.5 db down; 5 kc/s at 35 db down; 150 c/s at 50 db down. Supply required: 6 v. 1.4a; 175/200 v. 65 ma. CIRCUIT: variable mu pentode I.F. amplifier, triode-hexode frequency changer, two I.F. amplifiers (450 kc/s), crystal filter, A.V.C./detector/A.F. amplifier, output stage, B.F.O. valve check meter. £10.0.0 With power supply, plus £1 packing and carriage.

POWER UNIT Type 173

BENDIX TRANSMITTERS

TYPE T.A. 12B Master oscillator type transmitter. 4 channel 40 W. operation provide telephone, CW or M/CW in frequency ranges of 300-600 kc/s, 3-4.8 Mc/s., 4-6.4 Mc/s., 4.37-7 Mc/s. Each of the 4 channels has its own oscillator and uses a 12SK.7. The IPA stage consists of an 807, while the PA is two 607s in parallel. Size 10in. x 6in. x 15in. Price £3/15/-, plus 10/- carr.

INVERTERS
Miniature 3-phase (ex-compass unit) 24 v. input with 17 v. 3-phase, 400 c/s. output. These have been used by model makers as motors and are known as the "5/- Motor." Will run quite successfully on 12 volts. 5/- plus 2/- p.p.

I.F. AMPLIFIER UNIT
460 kc/s. with IT4. Brand new and boxed. Fully screened in plug-in box. Size 2in. x 1in. x 4in. Price, with circuit, 10/- each, plus 1/- p.p.

POST OFFICE COUNTERS
500 ohm, 4 figure no reset; size 5 x 11 x 1in. 5/- each, p.p.

BUZZERS
6 volt A.C., with tone adjuster, size 2 x 1 x 2in., 4/- p.p.

BOOST GAUGES
2in. dia.; suitable after minor adjustment as car induction manifold meter. 2/6 p.p.

INDICATOR LAMPS
American panel type complete with 6 v. bulbs in set of 4, 3 green jewels and 1 red jewel, 10/6 post paid.

R.F. UNITS

All these fine offers are on display at
PROOPS BROS. LTD.

VALVE TESTERS
MODEL 314

This model is of American manufacture and versatile, free-point return valve tester. Its design is such that it enables the user to test any type valves, regardless of its filament voltage or base wiring. Flexibility is attained by using individual lever switches for each valve element. Complete coverage of American Series including Acorns. Instruction manual supplied.

Complete in Carrying case £10 Plus 10/- carriage.

RII15 RECEIVERS

Air Tested, in good secondhand condition. Price £6/5/-, plus 10/- packing and carriage.

A room-to-room telephone . . .

Ideal for two-way conversation, house-to-garage or internal communication.

- No batteries required
- No soldering required
- Just connect it up and it works

The sets consist of 2 high-quality microphone/receivers (new and boxed) and 15 yards of twin wire.

COMPLETE FOR 8/6
plus 1/6 postage

MAINS POWER UNIT Type 234
(For use with Receiver T1392)

Double Smoothed 200-250 v. 50c. input. 240 V. 100 mA. 6.3 at 6 amps. with Volt-Meter reading input and output voltages. Size: 19in. x 10in. x 6in. Standard Rack Mounting. Price £4/10/- each, plus 7/6 carriage.

RECTIFIERS

BATTERY CHARGING LEADS

2 yds. of cab tyre twin cable, and 2 large crocodile clips; new and boxed. 3/4- p.p.

HEATER TRANSFORMERS

6.3 volt, 1 Amp. Brand new, 6/6 each plus 1/- p.p.

NOTE: Carriage prices quoted apply only to England and Wales.

NOTE: Orders and Enquiries to Dept. "W". Shop hours 9 a.m. to 6 p.m.—Thurs.: 9 a.m. to 1 p.m.

OPEN ALL DAY SATURDAY.

Telephone: LANgham 0141

52 TOTTENHAM COURT ROAD, LONDON, W.I
FERN'S NEW "FIDELITY"

A TAPE RECORDER WITH EVERYTHING EXCEPT A HIGH PRICE

BEFORE CHOOSING YOUR RECORDER YOU MUST HEAR THIS NEW "FIDELITY" MODEL . . . IT HAS . . .

* A "COMBINED" TAPE DECK and a "FIDELITY" Tape Amplifier, based on a new design by the Mullard Technicians and which we consider to be one of the best now available . . .

Truly HIGH FIDELITY RECORDINGS are obtainable.

PRICE OF COMPLETE RECORDER

INCLUDED MOVING COIL MIKE and 1,200ft.

REEL OF TAPE.

Plus £1 carriage and insurance of which £1 refunded on return of packing case.

CREDIT SALE TERMS.

Deposit £9 and 9 monthly payments of £3/13/5.

HIRE PURCHASE TERMS.

Deposit £21/5/- and 12 monthly payments of £1/13/5.

THE BRENELL TAPE DECK and the "FIDELITY" TAPE AMPLIFIER are supplied tested and ready for use and the actual assembly of the recorder is extremely simple involving only a few connections for which a step-by-step chart is supplied.

IF YOU HAVE YOUR OWN CABINET WE WILL SUPPLY . . .

THE BRENELL TAPE DECK, the "FIDELITY" TAPE AMPLIFIER, MATCHED P.M. SPEAKER and 1,200ft. REEL PLASTIC TAPE.

CREDIT SALE TERMS.

Deposit £9 and 9 monthly payments of £3/13/5.

HIRE PURCHASE TERMS.

Deposit £25 and 12 monthly payments of £1/11/5.

Following is a list of Home Constructors.

If you cannot call and hear this Recorder send a stamped addressed envelope for fully descriptive leaflet.

* High Quality Output Transformer by Gilson

* 3 Speeds, 33 1/2, 78 and 15ips, TWIN TRACK

* Position provided for use as straight amplifier

* Efficient Tone Control arrangement

* High-grade Components throughout

* Two position equaliser for 33 1/2 and 78ips.

* Monitor and Extension Speaker Sockets are provided

* Beautiful styling and cabinet

STERN'S "COMPACT 5" AMPLIFIERS

EXPRESSLY DEVELOPED FOR VERY HIGH QUALITY REPRODUCTION OF GEAR RECORDS AND PARTICULARLY SUITABLE FOR HIGH QUALITY REPRODUCTION OF THE F.M. TRANSMISSIONS:

PRICE £28/7/0.

The "Compact 5-3" - A 2-stage version of the "9-9" model but in this case having an additional stage and incorporating negative feedback. PRICE £25/10/-.

The Amplifiers are compact and very attractively designed having a "Hammond/Gold" finish with a fully engraved front panel by which the entire Amplifier is conveniently mounted into a Cabinet, occupying no more space than a conventional Tone Control Unit. Send S.A.E. for illustrated Leaflet.

POWER SUPPLY. Is obtainable from a small separate Unit which apart from supplying power to either Amplifier, also has additional supply available for a Radio Tuning Unit. PRICE (additional to above) £10/10/-.
FEBRUARY,

AMPLIFIERS

PRE-AMPLIFIERS

FOR THE HOME CONSTRUCTOR

COMPLETE KITS OF PARTS FOR THE “Hi-Fi” ENTHUSIAST

QUALITY OF THIS NATURE HAS NEVER BEFORE BEEN OFFERED AT SUCH LOW COST.

WE WILL SUPPLY (a) COMPLETE KIT OF PARTS to build THE MULLARD "5-10" MAIN AMPLIFIER and the STERN'S "Fidelity" PRE-AMPLIFIER - TONE.CAMER (Plus 5/- care, and in). TO UNITS at this exceptional price.

We also sell the two separately:

- **10in. and 12in. records of same speed.**
- **10in. and 12in. speeds,** on all three will autochange.
- **£7 19s. 6d. (Plus 5/- care, and in).**

STERN'S NEW "MODERNISE YOUR OLD RADIOGRAM" SPECIAL PRICE REDUCTIONS.

BRIEFLY IT HAS: - An 8 valve line up incorporating the latest MULLARD type valves. Provides complete coverage of the VHF/FM waveband plus the SHORT, MEDIUM and LONG waves.

STERN'S "Fidelity" PRE-AMPLIFIER TONE CONTROL UNIT

"A design for the music lover".

Briefly, it has inputs for all types of MICROPHONE, HIGH and LOW GAIN PICK UPS and a RADIO TUNING UNIT. Includes (a) GRAM, EQUALISING CONTROL TROL, (b) STEREOPHIL FILTER, (c) Continuously variable BASS and TREBLE CONTROLS and a variable OUTPUT CONTROL which enables it use with any type of Amplifier.

PRICE OF COMPLETE KIT OF PARTS

WE ALSO OFFER IT ASSEMBLED READY FOR USE, ESN- (Plus 5/- care, and in). TO UNITS at this exceptional price.

SPECIAL PRICE REDUCTIONS . . . FOR PURCHASERS OF A COMPLETE "Hi-Fi" AMPLIFIER

WE WILL SUPPLY (a) COMPLETE KIT OF PARTS to build THE MULLARD "5-10" MAIN AMPLIFIER and the STERN'S "Fidelity" PRE-AMPLIFIER TONE CONTROL UNIT for £19 12s. 6d. and READY FOR USE for £2 12s. 6d. TO UNITS at this exceptional price.

“MODERNISE YOUR OLD RADIOGRAM”

THE LATEST DESIGN OF COMBINED AM/FM REPLACEMENT RADIOGRAM CHASSIS STERN'S NEW "Fidelity" COMBINED AM/FM RADIOGRAM CHASSIS

A completely hand-made chassis providing really high quality on both Radio and Gram.

PRICE

£26 15s. 0d. (Plus 7½ care, and in). TO TERMS: Credit Deposit £17 15s. and 9 monthly payments of £2 6s. 3d. TO Deposit £21 17s. 6d. and 12 monthly payments of £1 5s. 6d.

PRICE OF COMPLETE KIT OF PARTS

WE ALSO OFFER IT ASSEMBLED READY FOR USE, ESN- (Plus 5/- care, and in). TO UNITS at this exceptional price.

RECORD PLAYERS

THE VERY LATEST MODELS ARE OFFERED AT GREATLY REDUCED PRICES

- **TRANSCRIPTION UNIT.**
- **5- and 6-SPEED AUTOCHANGER.**
- **AUTOCHANGER with MANUAL CONTROL POSITION.**

Send B.A.R. FOR ILLUSTRATED DESCRIPTIVE LEAFLET.

SPECIAL CASH OFFER !!

109-115 FLEET ST., LONDON, E.C.4.

Phone: FLEET Street 5012-3-4
THE JASON FM TUNER

Based on the booklet by Data Publications Ltd., 92/- post paid. A complete kit, including individually priced Parts List. Highly sensitive free from drift. Incorporates 4 valves 6MM and 2 specially graded D.C. Cystals. The kit supplied includes drilled chassis with tuning condenser, scale calibrated in metres, and attractive bronzed silver enamelled front plate already mounted. Illustration: P: 32 x 61 x 111 cm. Complete with all necessary parts fully assembled, ready for fitting, 22/10/-, plus 6/- P & P. Fringes area kit 27/15/-, plus 2/- P & P.

THE T.S.L. FM TUNER

We can now supply this FM/VPB adapter either in kit form, fully assembled and wired and tested. Our price for the rebuild only, is £15/- 10/-, paid. plus 5/- P. & P. It will take approximately 5 hrs. to build. Additionally priced parts List available at 22/6 post free.

THE T.S.L. AM/FM CHASSIS

Handsome walnut cabinet. Complete with all instructions, diagrams technical data and point-to-point wiring diagrams. £44/- plus 8/- P. & P. Illustrated leaflet at 2/- 6d. post free. Our advantageous H.P. terms are available at 2/- 6d. plus P. & P. or H.P. Lerma. Magic eye tuning indicator, just plug in, 5/- P. & P. or H.P. around.

DULCI F3 RADIOGRAM CHASSIS

We have been very fortunate in being able to obtain a limited quantity of these handsome chassis. AC/DC 200/250 v. for building and Long Line-up. Complete with all necessary parts fully assembled, ready for fitting, 22/14/-, plus 2/- P. & P. Fringes area kit 27/15/-, plus 2/- P & P. E.

DIAMOND FM TRANSISTOR/CRYSTAL RECEIVER KIT

This receiver, completely described in the booklet by Data Publications Ltd., can be obtained at 22/- 6d. post free. The kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. This pack is extremely small, incorporating valve EF89, EABC80, 6X4 and EM80. Overall size: 10 1/8 in. W. x 5 1/16 in. D. Dial else 11 3/8 x 11 1/16 x 1 3/16 in. Complete with all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

THE JASON FM TUNER

Owing to favourable purchase we can offer strictly limited quantity of these handsome chassis. AC/DC 200/250 v. for building and Long Line-up. Complete with all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.

DULCI H4T AM/FM TUNER

This unit has been designed for Quality reproduction and built to the highest technical standards. Contains own power supply. £24/- 6/- cash or M.P. terms. Based on the booklet by Data Publications Ltd., this kit contains all necessary parts fully assembled, ready for fitting, 22/- 10/-, plus 6/- P. & P. E.
THE "ECONOMY FOUR" T.R.F. SET. Requires only plus metal rectifier receiver, A.M. 200/250 volts. Medium and long waves. Can be supplied all wave signal transformers ready for the last in. and bolt. Valve line-up 6X6, 6X7 and 614. Chassis ready for 12 in. x 8 in. x 5 in. rugged, stylish cabinet. Complete Instruction booklets with practical and theoretical diagrams, explaining component read and new tested to packading. Our price £4.3.0 complete. This set is being demonstrated at our shop presently. We proudly claim that for this type of set complete kits are available at 1½ post free. This is allowed if kit is purchased later. Plus 1/6 packing and carriage for complete kit.

THE "SUPERIOR" FOUR KIT. Our new four-valve receiver. A.M. 200/250 volts. Medium and long waves. Can be supplied all wave signal transformers ready for the last in. and bolt. Valve line-up 2 x 6X8, 6X7 and 614. Chassis ready for 12 in. x 8 in. x 5 in. rugged, stylish cabinet. Complete Instruction booklets with practical and theoretical diagrams are provided. Booklets available at 1½ post free. Our price for complete kit, £21.6.0. Please add 2/6 packing and carriage for complete kit. Instruction booklets with practical and theoretical diagrams are provided. Booklets available at 1½ post free. Our price for complete kit, £21.6.0. Please add 2/6 packing and carriage for complete kit.

HEADPHONES. Low resistance.

30 Ib. Completely smoothed, incorporates 24 VOLT ROTARY CONVERTOR. Input 1.5 a., Output 200 volt at 80 mA. D.C. 200 volt at 80 mA. Incorporates 8 pin Vibrator, heavy-duty transformer, etc. Variable. Output dimensions 10 to 100 volts. Brand new, typical components, exactly as specified, including transformer, 8 pin Vibrator, heavy-duty transformer, etc. Price 4½ post free. A.M. 240 volt at 25 mA. D.C. 200 volt at 100 mA. Incorporates 8 pin Vibrator, heavy-duty transformer, etc. Price 4½ post free. A.M. 240 volt at 25 mA. D.C. 200 volt at 100 mA. Incorporates 8 pin Vibrator, heavy-duty transformer, etc. Price 4½ post free.

FOUR SPEED CHARGERS! The new H.R. Taped-speed changer in attractive case and gold finish new and improved, made from steel at 22/- only, plus 3/6 P. & P. and 10/- P. & P. for complete kit, 30/- only, plus 1½ F. & P. and 15/- F. & P. for complete kit.

TRIMMERS: MOLLARD TYPE O.C.T. Available ex stock at new list price of 1½ post free and each at 2/- only, plus 1/6 C. & P. and 3/6 C. & P. at 30/- post free.

R.S.C. BATTERY CHARGING

ASSEMBLED CHARGERS
6 v., or 12 v. 2 amps.
Fitted Ammeter and selector plug for 6 v. or 12 v. Louved metal case, finished attractive hammer blue. R. & D. Type, with mains output leads. Double fused.

Only 47/9 carr. 3/6.

SELENIUM RECTIFIERS

L.T. Types to 6/12 v. 6 a. 19/9
2/6 v. and 1/9 1/25/9
6/12 v. and 1/9 25/9
6 mfd. 1,500 v.
4 mfd. 1,000 v.
16µF 450 v.
8-8 mfd. 500 v.
8-16 mfd. 500 v.
25µF 630 v.
16µF 450 v.
32µF 350 v.
6/12 v. 90 mfd. 250 v.
6/12 v. 250 mfd. 100 v.
Co-AXIAL CABLE. 75 ohms, jined, 8d. yard.
Two screened feeder, 11d. yard.

5 CORE FLEX. Hensley circular rubber 14, 18, 24, and colour coded. 1/6.

DIAL BULBS. M.E.S., 8 v. 0.6 a., regular, 69/12.
5 v. 0.3 a., 69/12.

VOLTAGE REGULATORS (current production).

NOT Ex Govt.

Tubular Types
Can Types
8 mfd. 350 v.
16 mfd. 350 v.
6 mfd. 350 v.
16 mfd. 350 v.
6 mfd. 350 v.
16 mfd. 350 v.
8-16 mfd. 350 v.
25µF 630 v.
16µF 450 v.
32µF 350 v.
6/12 v. 90 mfd. 250 v.
6/12 v. 250 mfd. 100 v.

EX GOVT. METAL BLOCK PAPER CAPACITORS

4 mfd. 350 v.
16 mfd. 350 v.
6 mfd. 350 v.
16 mfd. 350 v.
6 mfd. 350 v.
16 mfd. 350 v.
8-16 mfd. 350 v.
25µF 630 v.
16µF 450 v.
32µF 350 v.
6/12 v. 90 mfd. 250 v.
6/12 v. 250 mfd. 100 v.

EX GOVT. VALVES, VR17, EASO, E8M, Hill, Spalding, 45SA 1/4, EL32. 25µF 18 v. 22/9.
1/11; KT4 4/9; 65 J5 3/6; 66VG, SUG 5/9; 6KGT1 1/11; 352A, 6X4 9/9; E280, EB90 7/9.

EX GOVT. UNITS, type RPDI in original sealed cartons with 14 valves including 5/40, etc., trans., L.P. choke, Rectifier, etc., etc. We cannot enter into correspondence regarding these units which represent a really exceptional bargain at 29/9.

VIBRATORS. Oak 2 v. 7 pin, synchronous, 7/9.

R.S.C. TRANSFORMERS

FULLY GUARANTEED. INTERLEAVED AND IMPREGNATED

MAIN TRANSFORMERS

Primaries 200-250 v. 0.5-10 amperes.

FULLY SCHRÖDING UPRIGHT MOUNTING

250-250 v. 500 mA., 6.3 v. 3 x, 6.3 v. 3 x.
250-250 v. 1000 mA., 6.3 v. 3 x, 6.3 v. 3 x.
200-1000 mA., 6.3 v. 3 x, 6.3 v. 3 x.

TOP SCHRÖDING MOUNTED TYPE

250-250 v. 500 mA., 6.3 v. 3 x, 6.3 v. 3 x.
250-250 v. 1000 mA., 6.3 v. 3 x, 6.3 v. 3 x.
200-1000 mA., 6.3 v. 3 x, 6.3 v. 3 x.

E.H.T. TRANSFORMERS

250 v. 5 mA., 3 operation 1.1, 2, 2-2v. 11 a., for
VCR97, VCR57.

For Mains Supply 200-250 v., 50 c/s.
Guaranteed 12 months.

All for A.C. MAINS 200-250 v., 50 c/s.
Guaranteed 12 months.

Assembled 6 v.
or 12 v. 4 amps.
Fitted Ammeter and selector plug.
Also selector plug for 6 v. or 12 v. double fused. Charging, Double.

R.F. RECEIVERS

The sky four t.f. r.f. receiver

The design of a 3-valve 200-250 v. midget receiver, with mains L. & M. wave. T.R.F. receiver and mains L. & M. wave rectifier. For its size, it is a remarkably powerful receiver. For its size, it is a remarkably powerful receiver. It employs valves E97, SP61, R6BG, and is fully described for this reason. It has an input static sensitivity of 5 mV, for a maximum of 94/196 including cabinet. Available in brown or cream bakelite or veneered walnut.
R.S.C. A6 ULTRA LINEAR 30 WATT AMPLIFIER

NEW 1956 DESIGN. HIGH FIDELITY PUSH-PULL AMPLIFIER WITH "BUILT-IN" TONE CONTROL, PRE-AMP, STAGES

High sensitivity. Includes 5 valves (0678 outputs), High Quality electronically tuned output transformer, specially designed for Ultra linear operation, and reliable small condensers of current manufacture. IMPEDANCE CONTROL FOR BASS AND TREBLE - Lift and Cut. Frequency response +3 D.B. at 20-20,000 c/s., 12 D.B. "lift" at 12,000 c/s. Hum and noise 0 D.B.

R.S.C. TAI HIGH QUALITY TAPE DECK AMPLIFIER FOR ALL DECKS WITH HIGH IMPEDANCE RECORD/PLAYBACK AND 3-EBRAE HEADS. Same as above, but special balanced socket for all types of pick-ups and practically all makes and types of pick-ups. Where a high level output is required for mixing purposes this can be provided for 131. -

GARRARD 3-5 SPEED AUTOMATIC RECORD CHANGER

Latest Model Mixer Type 110110, fitted with high fidelity turnover crystal pick-up head with dual point wiring diagrams supplied. A highly sensitive 4-valve quality amplifier for the home, small club, etc. Only 39/- millivolts input is required for full output as that is suitable for use with the latest high-fidelity pick-up heads in addition to all other types of pick-ups and practically all makes. Separate Bass and Treble controls are provided. These give full long playing record equalisation. Hum level is negligible, being 71 D.B. down at 0.1 D.B. of negative feedback is used. R.F. of 300 x 30 mill. and L.T. of 0.8 mill. is available for the supply of a Radio Feeder Unit or Tape Deck Amplifier. For A.C. mains output of 200-250 v. 50 c/s. Output for 2 ohm speaker. A.C. mains is isolated from chassis finish. Blue hammer finish, and point-to-point wiring diagrams and instructions included at extra cost only 2/6. For easy-to-follow wiring diagrams. SEND S.A.E. for illustrated leaflet.

P.L.E.S.S.Y. DUAL CONCENTRIC 12 IN. SPEAKERS

(15 ohms), consisting of a high quality 12in. speaker, of orthodox design supporting a small elliptical speaker ready wired with chrome and condensers. 50 c/s. Output for 2/3 ohm speaker.

Radio Supply Co. (Leeds) Ltd.

Terms C.W.O. or C.O.D. No C.O.D. under £1. Postage 1/9 extra on all orders under £2 2/9 extra under £5 carriage charge stated. Full Price List 6d. Trade List 5d. Open to Callers: 9 a.m. to 5.30 p.m. Saturday until 1 p.m.
1957 RADIOGRAM CHASSIS

THREE WAVEBANDS
FULL MILLARD
E120, E280, E790
W. 100 - 250 m. - 250
W. 300 - 550 m. - 550
W. 700 - 1100 m. - 1100

E210, E281, E791

12 month Guarantee. A.O. 250000 v. x 4-way switch.

Crate, Bilo, Bilo-E, E50, E400, E500, E790, E791.

Metallic finish. 4.5 watts. Chassis 23x6 x 5cm. x 6cm.

2 Pilot Lamps. Foam Knob, Walnut or Ivory, silenced and calibrated for use in Hi-Fi volume.

T.S.L. Twister supplied free.

BRAND NEW £10.10
Carr. 6/-

TERMS: Deposit £2.50 and 6 monthly payments of £1.

AM/FM RADIOGRAM CHASSIS

Measurements 13cm. x 21cm. x 7cm. Depth 7cm.

Middle band only required only 1x21. 5 x 3 valve plus metal rectifier, switch, socket, push any waveband, tone control, tuned, and H.V.P. wavebands. Valve line-up E281, E282, R400, R421, E401.

For A.C.

Priced at 100/-
£16.19.6

Cartilage Autoswitcher R531 for 78 R.P.M. 10in., 12in. and 12in.

Call for full price.

Less than half price.

Terms: deposit £2.50 and 6 Post free (Export extra).

FAMOUS MANUFACTURER'S 4-SPEED AUTOMATIC RECORD CHANGERS 1957 MODELS

Brand new and fully guaranteed 12 months.

DO NOT LINE RIGHT STOCK

Designed to play 18, 33, 45, 78 r.p.m. Records 7in., 10in., 12in. Lightweight 31x11x13½ movements. two separate stage styli, for Standard and L.P. each £4.25 250 A.

OUR PRICE £8.15.0
Carr. 7/6

Terms: Deposit £4.25 and 5 monthly payments of £1.50. Space required 14cm. x 14cm. x 5cm. Below.

New & Guaranteed

Our price £7.15.0
Carr. 6/6

Ideal for the above units, 21½ in. £12.50, 10.5 in. £8.50. Larger type with space for small amplifier and speaker, £8.25, post free.

B.R. MONARCH

3-speed Motor and Turntable with selecting switch for 33, 45 and 78 r.p.m. records 100-200-250 A.C. 50/60 cycles. Also B.R. MONARCH Lightweight Pick-up with Acetate Turntable, heavy. Use this when you are short of space for L.P. and standards records. SPECIAL OFFER, THE TWO £412/6. Post free.

Telenet Band III Converter

London, Midland and Northern for all T.V. makes, T.R.F. or Superhet. Ready wound coils, two EP tubes, all components, punched chassis, circuit diagram, wiring plans. COMPLETE KIT for mains operation 250-250-200 A.C. £17.10.0

AS ABOVE less POWER REQUIRE. 200. For 30, M. 7, 13 0.2 L. T. Z.

All Rents New & Guaranteed

T.V. PRE-AMP (M-Michael)

Will amplify output of your Band 3 Converter, Tuner Band I and 3. Midget size. High gain brings out weak signals.

B.A. Valve. B.large knobs.

REady FOR USE. (B. 30/6, £16.6/- . 2 amp. post free. SPECIAL POWER PACK for above, 5/- extra.

Volume Controls

Standard 100-200-200 A.C. £3.15.0

80-CABLE COXIAL

Midget size.

Lowrent. Guaranteed.

12 months. £1.00 2 nos. in M. Shop.

No. 2, B.P.W. D.P.P.

Loscoul 50/- 96, etc.

No. 3, C.P.W.

C. P. W.

No. 4, D.P.P.

C. P. W.

No. 5, E.P.P.

C. P. W.

No. 6, F.P.P.

C. P. W.

No. 7, G.P.P.

C. P. W.

No. 8, H.P.P.

C. P. W.

C. P. W.
6 AMPS. TOGGLE SWITCHES
6 Amps./250 Volts A.C. or D.C. Double-pole-changeover operation. Bush and Lever chromium plated, or black finish.

10 AMPS. TOGGLE SWITCHES
10 Amps./250 Volts A.C. or D.C. Double-pole on/off operation. Bush and Lever chromium plated, or black finish.

PAINTON
Northampton England
12 MONTHS GUARANTEE
on used

17" £7.10. 14" £5.10. T.V. TUBES
We are now able to offer this wonderful guarantee. 6 months' full replacement and 6 months' progressive. Made possible only by improved high quality of our tubes. Carr. and Ins. 15/6. Remember all our tubes are guaranteed 90 days. Convert your 9in.-10in.-12in. sets to 14min.-15in.-17in. Our pamphlet is FREE, and on many sets it costs only the tube, to give you this giant picture. SPECIA-L OFFER: 14min.-15in.-17in. T.V. Tubes £5. Perfect. See them working in our shops. 12in. T.V. TUBES £5. Shortage may cause delay, enquire first and save petrol. We may have alternative and can tell you delay if any. 15/6 Carr. & Ins. on all tubes.

T.V. CHASSIS 97/6
Complete chassis by famous manufacturer, R.F. E.H.T. unit included. Drawing FREE with order. Being in three separate units (Power, Sound-Viewing and Time Base) interconnected these chassis can easily be fitted into existing table or console cabinets. THIS CHASSIS IS LESS VALVES AND TUBE. Channels 1-2, 3-5, 7-9, 11-13. 19.5 Mc/s. vision. Easily converted to T.V. channel. Insured carr. 10/6.

T.V. CHASSIS £19.19.6
Complete with Valves and 14" Tube
BARGAIN CHASSIS by famous manufacturer, modified ready, working. 3 months' guarantee on tube, valves and chassis. These are recommended to personal callers and a free speaker given with each order. Ins. carr. complete chassis and tube 25/-.

T.V. CHASSIS UNITS

MIDLAND INSTRUMENT CO.
61/3 ROMFORD ROAD, MANOR PARK
OPEN ALL DAY LONDON, E.12
Tel: GRA 6677-8

Hunting Geophysics Limited offers permanent and pensionable contracts to U.K.-based Engineers working on airborne geophysical equipment.

For full details apply to:
HUNTING GEOPHYSICS LIMITED
Elstree Way, Boreham Wood, Herts.

EL. Stree 2214
TRANSMITTER/RECEIVER

ARMY TYPE 17 MK. II

This well-known R/T Transceiver is offered complete with Valves, High Resistance Headphones, No. 3 Handmike and Instruction Book giving complete details and circuit, contained in strong cabinet. Variable tuning.
Frequency Range: 440 to 61 MHz.
Range approximately: 3 to 8 miles.

Ideal for Civil Defence and communications.

BRAND NEW 59/6 CARR. 3½.

Calibrated Wave-meter for same 10/- extra.

PRE-SELECTED TRANSISTOR SIX PUSH-PULL PORTABLE SUPERHET

Just switch to your favourite Station. No tuning, no aerial or earth. Pre-select 3 stations. Complete with all components and six Transistors. 7 x 4 Elliptical Speaker. Teletron Superhet Coils and I.F.T.s. Powered by 7½ v. dry battery which lasts for months. 150 Milliwatts output.

All the above with Circuits, etc. £9 0-0 CARR. paid.

Or with Matched Mullard OC72's (200 Milliwatts Output) and 7 x 4 Elliptical High Resistance Speaker 30/- extra.

Suitable Plastic Cabinet easy to assemble 10/- extra.

Call and hear demonstration model working. Ideal as a car radio.

“EAVESDROPPER” THREE TRANSISTOR POCKET RADIO

(No Aerial or Earth required.)

Pre-selected to receive the Light and Home Stations. Total cost, as specified, including Transistors,rells, Condensers and Battery, etc., with circuit (less insert).

£7 19-6

SPECIAL OFFER

Set of five Transistors including one R.F. Transistor... £12 6-0.
Set of six Transistors including one R.F. Transistor... £15 0-0.

TRANSISTOR SIGNAL TRACER

Complete Kit with 2 Transistors, Components. "Phooie with Circuit.
£6 0-0

Manufactured by well-known manufacturers.

LIMITED SUPPLIES ABSOLUTE BARGAIN
MULLARD "3-3" QUALITY AMPLIFIER

An ideal companion unit to the JASON Tuner. A really Castle-4 valve, 5-watt Amplifier giving Hi-Fi quality at a reasonable cost. Mullard's home town. Valve line up: EP96, EL4, EZH. Extra HT and BT available for Tuner Unit addition.

Variable treble cut and bass boost controls. Sensitivity 100 BV, for 5-watt output. Frequency response + or - 1 dB, 40 to 25,000 Hz.

Complete amplifier wired and tested with a factory selected output transformer to Mullard specification (less speaker) 28/10/-, Carr. and ins. 4/6.

SUGGESTED USE GENERATOR covers 100 kilo to 80 Mels and six continuous ranges on fundaments (not harmonics) either modulated 400 cps or CW. Frequency accuracy 1%. Bases E91D, 94C and 93H with double wound mains transformer. The scale is directly calibrated on all bands with total scale length over 60 inches. Housed in a large solid green metal case with carrying handle with scale engraved Perspex. Size 9 in. x 13½ in. by 4 in. deep. Only 28/10/-, plus 6/- cartons and packing.

JASON Tuner, 7 Valves, V.F.M. Tuner, Size 9 in. x 13½ in. by 4 in. deep. Only 28/10/-, plus 6/- cartons and packing.

RUSH your order now to:

TRADE supplied direct.

SUGGESTED USE Generator measures up to 200 volts A.C., B.C. and A.F. with input impedances of 3 Megohms. Complete with probe unit ready for immediate operation at 28/10/-, plus 6/- cartons and packing.

JASON F.M. TUNER UNIT 87-105 m/cs

Kit of parts to build this modern and highly successful unit complete with drilled chassis and J.H. dial, wound coils and screening cases, 4 BVA miniature valves and all necessary quality components, etc., for only 50/- plus post free. Superior dial calibrated in miles with 2 pitch bands, 120 extra, as illustrated. Power Pack components kit inc. packing and screen main transformers, $2/5 extra. Tested and approved by "Radio Constructor," etc. Illustrated handbook with full details, 25/-, inc.

BRAND NEW & GUARANTEED 6/9.19.6 Carr. and ins. 4/6. 8" and 10" speakers suitable for this chassis available.

MULLARD "3-3" QUALITY AMPLIFIER

An Ideal companion unit to the JASON Tuner. A really Castle-4 valve, 5-watt Amplifier giving Hi-Fi quality at a reasonable cost. Mullard's home town. Valve line up: EP96, EL4, EZH. Extra HT and BT available for Tuner Unit addition.

Variable treble cut and bass boost controls. Sensitivity 100 BV, for 5-watt output. Frequency response + or - 1 dB, 40 to 25,000 Hz.

Complete amplifier wired and tested with a factory selected output transformer to Mullard specification (less speaker) 28/10/-, Carr. and ins. 4/6.

SUGGESTED USE GENERATOR covers 100 kilo to 80 Mels and six continuous ranges on fundaments (not harmonics) either modulated 400 cps or CW. Frequency accuracy 1%. Bases E91D, 94C and 93H with double wound mains transformer. The scale is directly calibrated on all bands with total scale长度 over 60 inches. Housed in a large solid green metal case with carrying handle with scale engraved Perspex. Size 9 in. x 13½ in. by 4 in. deep. Only 28/10/-, plus 6/- cartons and packing.

JASON Tuner, 7 Valves, V.F.M. Tuner, Size 9 in. x 13½ in. by 4 in. deep. Only 28/10/-, plus 6/- cartons and packing.

RUSH your order now to:

TRADE supplied direct.

SUGGESTED USE Generator measures up to 200 volts A.C., B.C. and A.F. with input impedances of 3 Megohms. Complete with probe unit ready for immediate operation at 28/10/-, plus 6/- cartons and packing.

JASON F.M. TUNER UNIT 87-105 m/cs

Kit of parts to build this modern and highly successful unit complete with drilled chassis and J.H. dial, wound coils and screening cases, 4 BVA miniature valves and all necessary quality components, etc., for only 50/- plus post free. Superior dial calibrated in miles with 2 pitch bands, 120 extra, as illustrated. Power Pack components kit inc. packing and screen main transformers, $2/5 extra. Tested and approved by "Radio Constructor," etc. Illustrated handbook with full details, 25/-, inc.

BRAND NEW & GUARANTEED 6/9.19.6 Carr. and ins. 4/6. 8" and 10" speakers suitable for this chassis available.
HEADPHONES—MICROPHONES
EX-GOVERNMENT HEADPHONES BY
S. G. BROWN, ETC.
CLR. Low resistance headphones.
They may be sold.
Complete with strap, lead and plug TR-15.
2,000 pr., 10/- each.
High Resistance Phones, 4,000 ohms, complete, with plug.
3/- each.

TELEPHONE TRANSFORMERS
SMALL TRANSFORMERS
Suitable for TELEPHONE CONVERTERS, ETC.
SPECIFICATION OVERALL SIZE:
Primary: 250 ohm, 200 ohms.
Secondary 2: 6.3, fixing centres 1 1/2 in. 15/- each.

LOUDSPEAKER CABINETS
Attainable without finished cabinets.
Complete with back and front panels.
Metal speaker grid, complete, with back and front.
E.M. type: Measures 8.5 x 8.5 x 6 in. 0.95 cu. ft.
Primary: 60 ohms.
Secondary: 100 ohms.
Price: 9/- each.

T.S.L ELECTROSTATIC LOUD- SPEAKERS
TYPE: L635.
Size: 8 in. x 8 in. x 6 in. 1.106 cu. ft.
D.C. voltage 60 volts. Audio voltage 60 volts.
Efficiency: Test voltage 450 v. 50 c/s.
Price 1/- each.

RESISTORS

VIBRATORS

Mains DRIVING RESISTORS

I.F. TRANSFORMERS

CHASSIS

LOUDSPEAKER CABINETS

TELEPHONE CONVERTERS, ETC.

TELESCOPE BAND III CONVERTER COIL SET

HEADPHONES—MICROPHONES

EX-GOVERNMENT HEADPHONES BY
S. G. BROWN, ETC.
CLR. Low resistance headphones.
They may be sold.
Complete with strap, lead and plug TR-15.
2,000 pr., 10/- each.
High Resistance Phones, 4,000 ohms, complete, with plug.
3/- each.

TELEPHONE TRANSFORMERS
SMALL TRANSFORMERS
Suitable for TELEPHONE CONVERTERS, ETC.
SPECIFICATION OVERALL SIZE:
Primary: 250 ohm, 200 ohms.
Secondary 2: 6.3, fixing centres 1 1/2 in. 15/- each.

LOUDSPEAKER CABINETS
Attainable without finished cabinets.
Complete with back and front panels.
Metal speaker grid, complete, with back and front.
E.M. type: Measures 8.5 x 8.5 x 6 in. 0.95 cu. ft.
Primary: 60 ohms.
Secondary: 100 ohms.
Price: 9/- each.

T.S.L ELECTROSTATIC LOUD- SPEAKERS
TYPE: L635.
Size: 8 in. x 8 in. x 6 in. 1.106 cu. ft.
D.C. voltage 60 volts. Audio voltage 60 volts.
Efficiency: Test voltage 450 v. 50 c/s.
Price 1/- each.

RESISTORS

VIBRATORS

Mains DRIVING RESISTORS

I.F. TRANSFORMERS

CHASSIS

LOUDSPEAKER CABINETS

TELEPHONE CONVERTERS, ETC.

TELESCOPE BAND III CONVERTER COIL SET

HEADPHONES—MICROPHONES

EX-GOVERNMENT HEADPHONES BY
S. G. BROWN, ETC.
CLR. Low resistance headphones.
They may be sold.
Complete with strap, lead and plug TR-15.
2,000 pr., 10/- each.
High Resistance Phones, 4,000 ohms, complete, with plug.
3/- each.

TELEPHONE TRANSFORMERS
SMALL TRANSFORMERS
Suitable for TELEPHONE CONVERTERS, ETC.
SPECIFICATION OVERALL SIZE:
Primary: 250 ohm, 200 ohms.
Secondary 2: 6.3, fixing centres 1 1/2 in. 15/- each.

LOUDSPEAKER CABINETS
Attainable without finished cabinets.
Complete with back and front panels.
Metal speaker grid, complete, with back and front.
E.M. type: Measures 8.5 x 8.5 x 6 in. 0.95 cu. ft.
Primary: 60 ohms.
Secondary: 100 ohms.
Price: 9/- each.

T.S.L ELECTROSTATIC LOUD- SPEAKERS
TYPE: L635.
Size: 8 in. x 8 in. x 6 in. 1.106 cu. ft.
D.C. voltage 60 volts. Audio voltage 60 volts.
Efficiency: Test voltage 450 v. 50 c/s.
Price 1/- each.

RESISTORS

VIBRATORS

Mains DRIVING RESISTORS

I.F. TRANSFORMERS

CHASSIS

LOUDSPEAKER CABINETS
AIRCRAFT RADIO RECEIVER (BY RCA Model No. CRV 46151). Free. 195 kcs. to 9050 kcs. (33-1500 meters) continuous. For 20 v. D.C. input with built-in dynamotor. This 6-volt receiver with 2 R.F. stages and 2 L.F. stages with B.F.O. and C.W. is in our opinion one of the finest sets so far released by the Air Ministry. With instruction diagram to convert for masts. For the very modest price of £1/10/-, carried, in good working order.

VITAVOX PRESSURE UNITS. Heavy duty. P.M. 20 watt. Brand new, £4/9/6. Also d.t.o. second-hand, in good working order, 4/-, carr. 7/6.

BC.23/9/B 33CM INDICATOR UNIT. Containing 1-J-2PH1 3in. C.R.T. 6-6SN7S, 2-6H6s, 1-A.451, 1-A.462; 7 valves in all. Ideal for ‘scope conversion. New, in original sealed cartons. 5/-, carr. 5/-

5WATT 12 v. D.C. AMPLIFIER (BY PARMEKO, ex-ADMIRALTY). Fitted for mike and gram with ‘Fader’ control. With 2-EL35s in push-pull output. Speaker output 15 ohms. Used in central office, size 14in. x 9in. x 9in. Ready to use, guaranteed in perfect order. £1/10/-, carr. 10/-.

RE-ENTRANT LOUD HAILERS. Heavy duty 20 watt all-metal. 15 ohms. By Parmeko. £5/10/-, carr. paid.

PARMEKO TWIN BAKELITE LOUD HAILERS (ex-Admiralty), 15 ohms. By Parmeko. £5/10-/-, carr. paid.

AP9 TRANSMITTER. 6-12 volts. Complete with connecting cables and mounting rack, £15, carr. extra.

P.E. 103 H.D. POWER SUPPLY UNIT. New and boxed. £3/10/-, carr. 10/-.

TRANSFORMERS. 240/230 v. AC. 5-10 amps. In perfect working order. £0/3/-, carr. extra.

ROTARY CONVERTERS. 24 v. D.C. input 230 v. A.C. 50 cycles. Fully tested, £20/5/-, carr. 10/-.

SOUND POWERED HEADPHONES. Can be used for speaking or receiving. £3/5/- per pair, p.p. 1/6.

RCA BRAND NEW. 15in. 15ohms 30 watt P.M. speakers. £9/19/6, carr. 12/-.

ACIDILE POWER SUPPLY UNITS. 230 v. A.C. 50 cycles input. 100 v. D.C. at 1 amp. out. housed In metal strong case, ex-G.P.O. New and unused £4/10/-, carr. 7/6.

TRANSMITTERS. 2-1200 2-6m. Primary. Sec. 26 v. tapped to 41 v. at 14 amps. New and boxed. £31/10/-, carr. 5/-.

P.E. 103 H.D. POWER SUPPLY UNIT. New and boxed. Complete with connecting cables and mounting rack, £15, carr. extra.

SELENIUM METAL RECTIFIERS. FULL BRIDGE

6 or 12 volt. 1 amp. 10/-
12 volt. 2 amp. 15/-
12 volt. 3 amp. 20/-
12 volt. 4 amp. 30/-
12 volt. 6 amp. 40/-
12 volt 10 amp. 60/-

SPEEDY DELIVERY OF L.T. RECTIFIERS TO ORDER.

ELECTRIC LIGHT SLOT METERS. 200/200 v. A.C., 5-10 amps. In slot, 6d. or 7d. per unit. By Measurement Ltd. All Bakelite case, in very good condition, 50/-, p.p. 3/-.

SOUND POWERED HEADPHONES. Can be used for speaking or receiving. 15/- per pair, p.p. 1/6.

JAS VALVES. Brand new (D.C.C.90), £2/6/-, p.p. 9d.

CONDENSERS. 2 mfd. 7.5 kv. £2/6/-, p.p. 9d.

VARIABLE VOLTAGE REGULATOR TRANSFORMERS. Input 230 v. A.C. at 21 amps. Output 57.5 volts in 16 equal steps to 230 v. at 21 amps. Ex-Govt., in perfect condition. £12/10/-, carr. extra.

DON "S" TWIN TELEPHONE CABLE, on 230 v. at 21 amps. Ex-Govt., in perfect condition. £12/10/-, carr. extra.

INPUT IMPEDANCE : 0 - 100 v, RMS F.S.D

RANGE: 0 - 100 v, RMS F.S.D

FREQUENCY RESPONSE: 20 c/s to 10,000 c/s

ACCURACY: ± 2% INPUT IMPEDANCE: 1 MΩ and 50Ω

A NEW VALVE VOLTMETER

£55 0 0
FOR ALL RADIO BARGAINS

TRANSMITTER/RECEIVER No. 19 Mk. II
Equipment comprises 3 separate units built into one chassis and separate power pack.
Specification: A set, Transmitter/receiver, Frequency coverage 0.5-200 mc/s, 1000 microamps. For R.T., C.W. or F.M. Range on B.T. 25 miles. C.W. 50 miles. Receiver, 4000 kc/s. A.R., B.F.O., etc. E. Valve Type-6K7 (6L6 or G12F), 6K6, 12LA, 6K7, 6G6, 6L6, 450 volt, 30 amp. receiver output. E. Valve Type-5L4 (5L8). P.M. phone output. E. Valve Type-150R. Inter. Com. up to 2 miles. Power line-up 6V, 9 or 17 volts. 4 a., 150 watts. Inter. Com. up to 2 miles. Power line-up 6V, 9 or 17 volts. 4 a., 150 watts.

AMERICAN GEARED MACHINES
American 24 volt D.C. motors with built-in precision gearbox giving twin outputs 20 r.p.m. and 6 r.p.m. Will also operate on 12 v. for reduced output. Size 7 xw. Shaft dia. 1 in. Supplied brand new and tested 110/- each.

MORONCI U.H.F. SIGNAL GENERATOR TF.517, MODULATOR GENERATOR TF.617. Complete station comprising TF.517 signal generator, frequency coverage 16-58 mc/s and 170-300 mc/s and TF.673 pulse modulator, repetition speed 5-1000 cycles, pulse width 2-12.4 mc/s. Supplied brand new in original transit case incorporating the trawler band. Frequency coverage 3/7,5 mc/s, 7.5/18 mc/s. Power pack, spare vibrator, headset, connector leads and 100 volt, 100 microamp. S.F. 61/- each.

MODULATOR TYPE 67
These bargain instruments contain a COMPLETE A.C. D.C. 6.3 V. 5 POWER PACK, Input 230 volts 50 cycles. Outut 350 volts 120 ma. and 6.3 volts 5 ams. Stock and condenser smoothed and uses 524 rectifier. (Transformer actually 200 ma). Also included in the unit are 11 other valves, 5 S961. 1 VR116, 2 6B34 and 3 E1250, and many other useful components, parts, resistors, etc. Size of case is 18 x 9 x 7 in., which is finished in grey. Supplied brand new, 49/- each.

RCA A.R.88 L.F. RECEIVERS. Offered in first class condition, re-aligned and thoroughly tested. Continuous coverage from 75 to 550 kc/s and 1.5 to 30 mc/s. Built in A.C. mains power pack, speaker output, variable selectivity, B.F.O. etc., Price £4.50 each.

AMERICAN ROTARY GENERATORS
Input 12 volt D.C. Output 250 volts 80 ma. Fitted with blowout attachment which can be easily removed if desired. Brand new 22/6 each. Ditto with 6 volt input 22/6 each.

50 MICROAMP METERS
23/2 in. Steel flush mounting meter housed in grey instrument case with chrome handle. Brand new and tested, 59/- each.

FIELD TELEPHONES
Type Don Mk. 5. Buzzer calling. Ideal for inter-office or house communication. Supplied complete with two 1.5 volt cells. tested and ready to operate. Price only 39/- each.

WE PURCHASE ALL TYPES OF RECEIVERS AND TEST GEAR

MODEL-MAKERS' MOTORS
Permanent magnet type, reversible. Size only 2 in., long, 1 in., short, 1 in. Operation from 4.5 to 24 volt D.C. Thoroughly recommended for baschines, etc. Supplied brand new only 22/6 each.

EXPLORERS, DYNAMO-CONDENSER SET MK. I. Operation by a hand generator supplying an A.C. voltage which is stepped up through a transformer, rectified by 2,500, and a final 1,800 volts is developed across a 6 mfd. paper condenser. A neon indicates when charged. Ideal also as a Photo Flash unit. Supplied brand new with circuit, 3/-19/6 each.

GEARED MOTORS
Special offer. Garrard 200-250 volt A.C. gram. motors complete with 5 mfd. crystal and spare turning gear. In original transit case, brand new with instructions, 4/-11/6 each.

MORONCI CRISTAL CALIBRATORS.
Frequency coverage 170 to 240 mc/s. Directly calibrated accuracy 0.001%. Operation 200-250 volt A.C. Supplied complete with 5 mfd. crystal and spare turning gear. In original transit case, brand new, 5/- each.

AMERICAN BEACON TRANSMIT-TER/RECEIVER RT 37/FPN-2. Brand new and boxed, complete with instruction book. Equipment comprises transmitter/receiver with 9 valves (5 3A5, 3I55 and 1 185), with built-in 2 volt vibrator power pack, spare vibrator, headset, connector leads and 100 volt, 100 microamp. S.F. 72/- each.

RADIO CONVERTORS.
Input 24 volt D.C. Output 230 volt A.C. 50 cycles, 100 watts Power 92/- each.

6 VOLT VIBRATOR PACKS.
6 volt output. Operation 300 mc/s and 200 mc/s and 500 volts 50 m/amps. 2in. F.M.M.C. 25/- each. Supplied brand new and boxed, 15/- each.

SUB-STANDARD Voltmeters
Six ranges: 7.5, 15, 30, 60 and 300 volts D.C. 6 in. mirror, finish, mains operated with chrome handle. Brand new 110/- each.

460 KC/S B.F.O. UNIT
Supplied brand new and complete with 155 valve, fully screened in aluminium case, size 2x 1 x 4 in. Price 8/6 each.

SMOOTHING CHOKES
G.B. 20 henries 175 ma. 10/-
Parmeko 6 henries 25 ma. 5/-
Parmeko 9 henries 100 volts 60 ma. 9/-
Parmeko C core 4H. 22.5 ma. 4/-
Parmeko Cramer A 4H. 22.5 ma. 4/-
Parmeko 250 volts, 22.5 ma. 10/-
Collins 8 henries 100 ma. 8/-

MORSE BUZZERS.
Brand new and boxed. Operation from 3 volt D.C. Price 2/6 each.

METER BARGAINS
50 m/amps. 2 in. F.M.C. 7/-
150 m/amps. 2 in. F.M.C. 9/-
200 m/amps. 2 in. F.M.C. 11/-
1 amp. R.F. 2 in. F.M.C. 7/-
4 amp. R.F. 2 in. F.M.C. 12/-
30 volt D.C. 2 in. F.M.C. 10/-
300 volt A.C. 2 in. F.M.C. 13/-
500/1000/microamp. 2 in. F.M.C. 25/-
5000/10000 m/amps. 2 in. F.M.C. 5/-
ALL BRAND NEW AND BOXED.

HOURS OF BUSINESS: 9 a.m.-6 p.m. Thursday 1 p.m. Open all day Saturday. Please print name and address clearly. Also include postage on all items.
SAMSON'S SURPLUS STORES

NEVILIN 3,000 WATT AUTO TRANSFORMERS. Input 200-250, Output 110 v. Completely enclosed in grey metal case. With input voltage selector switch and fuses. Supplied brand new at a fraction of makers price. £915, plus carriage.

LT SUPPLY UNIUT. Type 115. A.C. input 200-250 v. Output 24 v. 26 amp. rating continuous for charging 24 v. batteries at a high current. Approximate size 11 ft. 6 in. 6 in. £179/10, plus carriage.

WILLARD AIRCRAFT BATTERIES. 24 v. 11 A.H. Size 8 x 7 x 3 in. G.M.A. MARINE, C.A.M., carr. 7/6. EXIDE 10 volt, 5 A.H. GLASS ACCUMULATORS. Size 7 x 2 x 5 in. Suitable for H.T. unit construction and models, etc. New in maker's cartons. 8/6, P.P. 1/6, MINIATURE. 36 v. 0.2 amp. ACCUMULATORS made by Willard Co. Size 3 x 1 x 3 in., weight 5½ oz.

New and uncharged. 2/6, P.P. 6d.

ALKALINE BATTERIES. Crates of five cells 2.4 v. 18/20 A.H.

Size of wood crate 15 x 5 x 11 in. £5/19/6, plus carriage.

WILLARD AIRCRAFT BATTERIES. 24 v. 11 A.H. Size 8 x 7 x 3 in. G.M.A. MARINE, C.A.M., carr. 7/6. EXIDE 10 volt, 5 A.H. GLASS ACCUMULATORS. Size 7 x 2 x 5 in. Suitable for H.T. unit construction and models, etc. New in maker's cartons. 8/6, P.P. 1/6, MINIATURE. 36 v. 0.2 amp. ACCUMULATORS made by Willard Co. Size 3 x 1 x 3 in., weight 5½ oz.

New and uncharged. 2/6, P.P. 6d.

SPECIAL OFFER OF EQUIPMENT WIRE. S.T.C. 7/10 stranded copper plastic covered. Brown, grey, orange, or white. Brand new. 200-yard drums. 12/4, post 3/-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.

VALVES. 1616, 7/6.

23 S.W.G., various colours, 220-yard coils, 25/-, postage 2/-.

STERLING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. STRANDING WIRE, CO. 7/36 stranded copper, P.V.C., yellow, blue, green, brown, or red, 500-yard drums, 3/6, post 2/.-. TWIN P.V.C. BELL WIRE, CO. 2½, 12-volt, 25 ft. driven, brown, grey, or white. TELEPHONE CABLE, Commando Assault, P.V.C., 1,000-yard drums. Ideal for telephonic cable and very useful for the home and garden. 10/-, postage 3/-.
WIRELESS SET
No. 19 MK II
The famous Army Tank Transmitter-Receiver. Just released by the Ministry of Supply. Incorporates "A" set (TX/RX covering 200-340 Mc/s., i.e. 37.5-150 metres); "B" set (VHF TX/RX covering 230-240 Mc/s., i.e. 1.2-1.3 metres), and Intercom. Amplifier. Complete with 15 valves as follows: 6 of 6CZ7, 2 of 6DK8, 2 of 6V6G, 1 nos. 6BQ8, 6H6, E114B, EF50, 807, and booklet giving circuits, notes, etc.
Size 17/1 in. x 8/1 in. x 12/1 in. Magnificently made by famous American firms.

IN BRAND NEW CONDITION. ONLY £6/19/6 (carriage, etc. 10/6). OR with 12 volt Rotary Power Unit: £6/19/6.— (carriage, etc. 15/6.)

TRAWLER BAND R 1155s.
The latest version of this famous Communications Receiver to be released by the Air Ministry. Covers 5 wave ranges: 18.5-75 Mc/s, 75-3.0 Mc/s, 3.0-1.5 Mc/s, 1.5 Mcs- 600 kc/s, 500-200 kc/s. Ks. As used by Coastal Command, Air-Sea Rescue Launches, etc. All sets should be tested and in perfect working order before despatch, and on demonstration to customers. Have had slight usage but are in excellent condition. ONLY £12/19/6.

A "A" Models, as above, but with 200-75 kc/s range instead of 3-0.15 Mc/s. BRAND NEW IN MAKER'S TRANSIT CASES. ONLY £11/19/6.

A.C. MAINS POWER PACK OUTAGE STAGE, in black metal case, enabling the receiver to be operated immediately, by just plugging in, without any modification. Can be supplied as follows: With built-in 6/Vin. P.M. speaker, £6/9/6; LESS speaker, £6/10/6. With Bln. P.M. speaker, £6/11/6.
DEDUCT 10/- IF PURCHASING RECEIVER AND POWER PACK TOGETHER.
Send S.A.E. for illustrated leaflet, or 1/3 for 14-page booklet which gives technical information, circuits, etc., and is supplied free with each receiver.
Add carriage: 10/6 for Receiver, 5/- for Power Unit.

FREQUENCY METERS TYPE L.M.
The United States Navy version of the BC221. Frequency range 125-20,000 kc/s with better than 0.01% accuracy. Contains a Crystal Controlled Oscillator, a Heterodyne Oscillator, and an Audio Frequency Amplifier. Can be used as Signal Generator, having CW/AM control. BRAND NEW and UNUSED. Quotation on request.

METERS
SIZE AND TYPE PRICE

1 mA. D.C. 2/20. Flush circular (blank scale) 2/24.

30-30 amp. D.C. Car type moving iron 5/-.

120 amp. D.C. Gas type moving iron 5/-.

300 volts D.C. 2/27. Flush square 10/-.

Enquiries invited for types not listed, 7-14 days delivery on "specials".

L.T., HEAVY DUTY TRANSFORMERS. Ex-Admiralty, from 230 to 50 cycles primary. 1. Standardaries 5, 10, 15, 20, 25 volts at 5 amps. ONLY 2/5/6. 2. Secondary 7, 14, 21, 28 volts at 12 amps. ONLY 4/12/6. (Postage on either side.)

Cash with order please, and print name and address clearly PLEASE ADD POSTAGE OR CARRIAGE COSTS ON ALL ITEMS

U.E.I. CORPORATION
Phone: TERMINUS 7937

(Open until 1 p.m. Saturdays. We are 2 mins. from High Holborn (Chancery Lane Station) and 5 mins. by bus from King's Cross)
TELEPHONE SETS
IN ATTRACTIVE BAKELITE CASE
BRAND NEW EX-GOV'T. "F" TYPE
Ideal between 2 or more positions up to 5 miles
STORES, FACTORY AND OFFICE; FARM BUILDINGS;
GARDEN SHED and HOUSE.
2 sets in individual carrying cases, complete with long life batteries, bells, ringer and 100ft. telephone cable.

£7.10.0
per pair
Garr. (G.B.) 7/6

TELE "H" SOUND POWERED
Complete as above in metal case but requiring no batteries.
Price per pair £9 10s., carriage (G.B.) 7/6.

SOUND POWERED HANDSETS
direct communication between two points without batteries.

45/- per pair, plus 2/6 carriage.

SPECIAL OFFER
AERIAL KITS

U.S.A. 45ft. AERIAL MAST (10 sections 4ft. 6in. x 2in., guys, etc.) This entirely new and complete set in canvas carrying bag £12/10/-. each. Carr. 12/6 or 2 sets with additional low and high frequency antennae £25 each. Carr. extra.

ARMY TYPE 32FT. MASTS similar to above but 10 ft. screw-sections, lightweight, suitable for temporary installation. Kit in canvas bag, £5/10/-, carriage 7/6.

ROTOR CONVERTORS.
IN METAL CASES. Input 24 volt D.C. Output 230 volt A.C. 50 cycle 100 watt. At only 92/6.
Carr. 7/6.

APG9 CENTIMETRIC RADAR TRANSMITTER, brand new, and containing 931A Photo-multiplier with resistor network; push-pull pair of matched 8012; 3-077; 6-AAC7; 6-AAG7. £6/19/6, plus 7/6 carriage.

U.S.A. BEACON TRANSMITTER RECEIVER AN/PPN-214/231 m/s.
Components include 5-3A5; 3-155; 1-1R5 (all 1.4 v. B7G miniature valves); 2-2 v. synch. vibrators; 7 pin; H.S. 30A Super lightweight headset; 10ft. collapsible aerial. All weather haversack, etc. New, complete and unused, 99/6, plus 7/6 carriage.

- the grand TELEPRINTER EQUIPMENT-
CREED AUTOMATIC TRANSMITTER No. 454/N for telegraph working, in original cases.

RECTIFIER UNITS 26B. Input 110/230 v A.C. Output 80 + 80 volts. In original cases.

TERMINAL UNITS 80+80. Can be used with above 26B units.

TELEGRAPH RELAYS 299 AN.
Also other equipment.

TELEPHONE SWITCHBOARDS
- Rectifier Supply Unit
- 10 years' spares
- Fusion Protector
- Head and Breast Set
- SWITCHBOARD A D. 1240

The complete installation as manufactured for the Air Ministry has 2 exchange lines + 14 exchs. + operator. Easily modified. Data sheets and photos will be sent for 20/- (returnable).

G.P.O. SWITCHBOARD TL.1006 10 lines, thru' connexion switchboard with lever keys (key switches) and drop-indicators for up to 10 lines; on two simultaneous circuits, £12/10/-. carriage 15/-.

Quantity and Export enquiries are invited for above items, also other Electronic Component parts

HATTER & DAVIS (RELAYS) LTD.
126, KENSAL ROAD, LONDON, W.10.
LADbrooke 0666.

THE DE HAVILLAND ENGINE COMPANY LIMITED

has vacancies in its Electro-Dynamics Department, at Stag Lane and Hatfield, and invites applications from Engineers and Physicists who are interested in problems connected with Gas Turbines and Rocket Motors, to fill the following posts:

1 PHYSICISTS OR ENGINEERS to be responsible for specialised instrumentation on development engines and aircraft.

2 ELECTRONIC ENGINEERS to work under the direction of senior men.

3 SENIOR MECHANICAL ENGINEERS with a knowledge of stress analysis and mechanical vibration problems.

4 JUNIOR MECHANICAL ENGINEERS interested in experimental stress analysis and vibration problems.

5 DESIGN DRAUGHTSMAN for specialised instrument design.

6 INSTRUMENT MAKER to be engaged in the manufacture of a variety of transducers, instruments, etc.

7 LABORATORY ASSISTANT, male or female, preferably with G.C.E., to assist in general laboratory experiments and film analysis.

Applicants for the senior posts should be of Degree or H.N.C. standard, but lack of these qualifications need not deter people with experience in these fields.

Salaries will be in accordance with qualifications and experience.

Applications should be made to:-

The Personnel Officer,
The de Havilland Engine Company Limited,
Stag Lane, EDGWARE, Middx.
COMMERCIAL TELEVISION-CONVERTER

SUITABLE ANY T.V. using lower side band
NO ALTERATIONS TO SET

Complete with built-in power supply, 230-250 v. A.C.
metal, 34/-, long, 40/-, wide, 41/- high.

Illustrated with cover removed.

£3 - 19 - 6
Post & Packing 2/6.

AC/DC MULTI-METER KIT

Complete 2m, moving coil meter, scale calibrated in A.C./D.C. volts, ohms and milliamperes. Voltage range A.C./D.C. 0-10, 0-100 and 0-600. Milliamperes 0-1, 0-100, 1, 10,000.
Front panel, range switch, wire wound pot (for ohm zero setting), two toggle switches, resistors and meter rectifier.
Point-to-Point wiring diagram 1/4.
Free with complete kit.
Complete in case, grey finish.
19/6 P.A. 1/3.

COLLARO RC54

3-speed automatic changer, current model. Brand new. 12 records. £7 19/- 6d.
A.C. mains 250-200-200 v.

T.R.F. KIT IN PLASTIC CABINET

£3 - 19 - 6 P.A. 4/6

All parts supplied separately.

FAMOUS MAKE TURRET "TELETUNER"

99/6 Post 2/6.

GARRARD RC/110

3-SPEED AUTOMATIC MIXER CHANGER

Will take 20 records, 78, 10in. or 12in. Mixto. turnover crystal head, broad or narrow model, A.C. mains 200-250 v. (List price £41/5/-)

CABINETS AND HI-FI EQUIPMENT

We can supply any Cabinet to your own specification.

"The Continental" £24-15-0

This elegant Cabinet is the latest in our range designed in the continental style. Solidly constructed and finished in selected mahogany veneers. Available dark, medium, light, high gloss or contemporary finish. Polished £29-15-0.

We can also supply and fit this or any cabinet with the latest Hi-Fi amplifiers, tuners, transcription units, record changers, speakers, etc. Send for comprehensive illustrated catalogue of cabinets, chassis, autochangers, speakers, etc., all available on easy H.P. terms.

LEWIS RADIO COMPANY

Bridge Meggers

(E & V Series 2)

In perfect condition, 250v.

METERS

4” sq. 0-50 microampere, £5.10.0 p.p.

REPAIRS

All types and makes of single and multi-range meters repaired and converted to your requirements.

METERS SUPPLIED TO YOUR SPECIFICATIONS.

Microampere meters our speciality.

THE V.Z. Electrical Service

4 LISLE STREET, LONDON, W.C.2

TELEPHONE : GERRARD 4861.

Davey

CORNER REFLECTOR LOUDSPEAKERS

At once the most civilised and the most natural way of listening. No ugly speaker apertures or grilles to be seen from any part of the room. Source of music widely diffused and well up in the air, with a strong sense of perspective, just as it comes from the concert platform.

Six types of cabinet made to order to house every good multiple or single speaker system.

EMG HANDMADE GRAMOPHONES LTD

6 Newman Street, London W1. MUSEum 9971.

Alpha Radio Supply Co., 5/6 Vinces Chambers, Victoria Square, Leeds, 1. wish to apologise to their clients whom they have disappointed with recent deliveries, owing to the terrific pressure of work due to I.T.A. Conversion, etc.

BELCLERE TRANSFORMERS

offered—

★ High Quality Driver and Output transformers for use with Transistor Amplifiers.

★ Output transformers for F.M. receivers — types suitable for Push-pull or single-ended output stages.

★ Transformers to customer’s own specification.

Illustrated leaflet and fullest details upon request. Excellent Delivery — Competitive prices.

BELCLERE TRANSFORMERS

P.O. Box No. 22

117 High Street, Oxford

Tel. 48362. Cables: Belclere, Oxford

METERS

4” sq. 0-50 microampere, £5.10.0 p.p.

REPAIRS

All types and makes of single and multi-range meters repaired and converted to your requirements.

METERS SUPPLIED TO YOUR SPECIFICATIONS.

Microampere meters our speciality.

THE V.Z. Electrical Service

4 LISLE STREET, LONDON, W.C.2

TELEPHONE : GERRARD 4861.

Davey

CORNER REFLECTOR LOUDSPEAKERS

At once the most civilised and the most natural way of listening. No ugly speaker apertures or grilles to be seen from any part of the room. Source of music widely diffused and well up in the air, with a strong sense of perspective, just as it comes from the concert platform.

Six types of cabinet made to order to house every good multiple or single speaker system.

EMG HANDMADE GRAMOPHONES LTD

6 Newman Street, London W1. MUSEum 9971.

Alpha Radio Supply Co., 5/6 Vinces Chambers, Victoria Square, Leeds, 1. wish to apologise to their clients whom they have disappointed with recent deliveries, owing to the terrific pressure of work due to I.T.A. Conversion, etc.

BELCLERE TRANSFORMERS

offered—

★ High Quality Driver and Output transformers for use with Transistor Amplifiers.

★ Output transformers for F.M. receivers — types suitable for Push-pull or single-ended output stages.

★ Transformers to customer’s own specification.

Illustrated leaflet and fullest details upon request. Excellent Delivery — Competitive prices.

BELCLERE TRANSFORMERS

P.O. Box No. 22

117 High Street, Oxford

Tel. 48362. Cables: Belclere, Oxford

ARIEL SOUND LTD.

for

* Industrial Electronic Equipment
* Prototype Design & Development
* Electronic Assembly Sub-contracting

Tel. PADdington 5092

Build a Quality Tape Recorder with

* ASPDEN* TAPE DECK

& AMPLIFIER KITS

Tape deck kit model 521...... £7 10 0

Tape deck kit model 724...... £8 10 0

Two speed, twin track

Complete with high-class motor, high fidelity heads and all instructions.

Record-replay AMPLIFIER kit £5 18 0

Power pack for above, kit...... £2 18 6

(but with valves)

Carriage extra

This tape deck and amplifier is being used in the antarctic by a member of the expedition.

You can build these kits, as did M. E. of Wellingborough, who says—

"I am getting very good results from it, as good as a professionally made tape recorder."

Send stamp for full particulars to—

W. S. ASPDEN,

10, MARKET STREET, WESHAM, KIRKHAM, LANCS.

HANNEY OFFERS

All components for Osram and Mullard Amplifiers and F.M. Tuners.

Send stamp for list.

L. F. HANNEY

77 LOWER BRISTOL ROAD, BATH

Tel.: 3811
WIRELESS SETS No. 17, Mk. 2. A portable 2-valve transceiver for medium power, using 2x EF92's. Easily converted to the new 70 Mc/s band! Complete with valves, HR box, hinged wooden case and battery box. Requires 120 v. H.T. and 2 v. accumulator. Brand new Ex-GoVt. surplus. Tested. With circuit diagram and technical data. Wooden case, with handle. £15.17.4 x 5.5 x 4.3 Mcts. 22/6. NEW, boxed, 29/6.

MEDIUM WAVE COMMAND RECEIVERS. Has the tuning for the wireless. The NEW MKE-86 receiver formerly £27.50 is now only £39.60. Complete with 30 Mc/s. Long wave band. 100 tubes. 2.5 watts. A.C. mains. A.T.C. approved.

FIELD TELEPHONES. Army type D, 1917, with 20 foot electric cable. Ideal for use on farms, etc. Also suitable for moorland use. £1.30 each. Complete with handset and battery. Tested. 39/6 each.

CRYSTAL Radios. Home American C10, 1928. 100 Mc/s R.C.A. bars. £1.00 each. 19/- each.

SFT. P.O. TYPE 91. RACKS. “U” channel, heavy gauge steel, 19/-.

RCA SPEAKERS. Bin, P.M. unit in handsome black Bakelite cabinet. For ARBB's, CR100's, etc. BRAND NEW, 4/6.

TOP BAND R1155 L's! Superior version of the R1155 with super slow-motion drive. 200 kc/s to 185 Mc/s in 5 ranges, covering the 100-200 metre transmitter and shipping bands. Although not packed in original transit cases now, are in every way equal to BRAND NEW, and are fully guaranteed. Never before available at the low price of ONLY 1/2/1.9. Carriage 10/6. R1155 A's. Condition equal to new and fully guaranteed. £10/10. All R1155's are supplied with free booklet, re-aligned, and tested before despatch, and gladly demonstrated. Sold S.A.E. for details of receivers and power packs, or 1/3 for 14-page booklet.

BAND AMPLIFIERS. Brand new. £4/10. METER BARGAINS. 30 Mc/s. Flash circle, scaled 0-100, £10. 10 Mc/s. Flash circle, scaled 10-100, £5. 10 Mc/s. Flash square, scaled 0-100, £2. 10 Mc/s. Flash square, scaled 0-100, £2. 10 Mc/s. Flash square, scaled 0-100. 10 Mc/s. Flash square, scaled 0-100.

CALLERS

CHARLES BRITAIN (Radio) Ltd. 11 UPPER SAINT MARTIN'S LANE, LONDON, W.C.2. TEMple Bar 0545 One minute from Leicester Square Station (up Cranbourn Street) Shop Hours: 9-6 p.m. (9-7 p.m. Thurs.) Open all day Saturday.
CONDENSERS

We have a very comprehensive stock to offer manufacturers and engineers

Large Quantities Available

BLOCK PAPER TYPES

0.5 mfd. 35v., wkg, size 0.1 x 0.1 x 0.1 in. 0.5 mfd. 35v., wkg, size 0.1 x 0.1 x 0.1 in.

1 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 1 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

2 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 2 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

Foil Type

0.001 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 0.001 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

0.002 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 0.002 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

0.003 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 0.003 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

BULK

500 mfd. 110 v., size 4 x 3 x 0.25 in. 2 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

500 mfd. 250 v., size 0.1 x 0.1 x 0.1 in. 500 mfd. 250 v., size 0.1 x 0.1 x 0.1 in.

500 mfd. 400 v., size 0.1 x 0.1 x 0.1 in. 500 mfd. 400 v., size 0.1 x 0.1 x 0.1 in.

0.1 mfd. 1,000 v., size 0.1 x 0.1 x 0.1 in. 0.1 mfd. 1,000 v., size 0.1 x 0.1 x 0.1 in.

0.1 mfd. 2 kv. wkg., size 4 x 2 x 0.25 in. 0.1 mfd. 2 kv. wkg., size 4 x 2 x 0.25 in.

0.25 mfd. 1,000 v., size 4 x 2 x 0.25 in. 0.25 mfd. 1,000 v., size 4 x 2 x 0.25 in.

CONVEYOR BANDS

1 mfd. 2 kv. wkg., size 4 x 2 x 0.25 in. 1 mfd. 2 kv. wkg., size 4 x 2 x 0.25 in.

5 mfd. 2 kv. wkg., size 9 x 2 x 0.25 in. 5 mfd. 2 kv. wkg., size 9 x 2 x 0.25 in.

QUALITY CONDENSER

8 mfd. 250 v., size 4 x 2 x 0.25 in. 8 mfd. 250 v., size 4 x 2 x 0.25 in.

10 mfd. 250 v., size 4 x 2 x 0.25 in. 10 mfd. 250 v., size 4 x 2 x 0.25 in.

20 mfd. 250 v., size 4 x 2 x 0.25 in. 20 mfd. 250 v., size 4 x 2 x 0.25 in.

1 mfd. 350 v., size 0.1 x 0.1 x 0.1 in. 1 mfd. 350 v., size 0.1 x 0.1 x 0.1 in.

5 mfd. 350 v., size 0.1 x 0.1 x 0.1 in. 5 mfd. 350 v., size 0.1 x 0.1 x 0.1 in.

SILICON Rectifiers

CURRENT PRICES (1st Dec.)

BRIDGE CONNECTED RECTIFIERS. 17v. 0.6a., 232/0.5; 15v. 0.6a., 232/0.5.

17v. 0.6a., 232/0.5; 15v. 0.6a., 232/0.5.
FOR IMMEDIATE DISPOSAL!

£5
(CASH WITH ORDER)

£5
(SENT BY RAIL TO ANY ADDRESS IN U.K.)

IMPERIAL "3-D" LIFT-UP LID
TABLE RADIOGRAM CABINET
New Continental design with dial, knobs, (bare chassis, no components) piano VHF/FM push-button keyboard. Cut out design for B.S.R. unit.

RADIO VALVES FOR IMMEDIATE DISPOSAL
ALL NEW. BOXED. 2/6 each
(EX-GOVERNMENT TYPES)
KT44, KTZ41, EF50, EF55, KT8C, ATP7, HL41, EMI, IS4, VUI11, SP61, 807, HL23, HL2, PEN46, 6H6, 6J5, SG2, AC2HL, P2, 6AC7, 6SK7, 6SH7, 12SL7, 12SK7, VR150/30.

Please allow for postage.

MAZEL RADIO
132/4 LONDON ROAD,
MANCHESTER, 1
LANCS, ENGLAND.
NEW BOOKS
ON RADIO & TELEVISION

Wireless World Diary for 1957. Postage 3d. 4/3
Transistor Techniques. Gernsback Library, Postage 9d. 12/-
V.T.V.M. How it works and how to use it. Gernsback Library, Postage 1/3... 20/-
Improve your T.V. Reception, by J. Cura. Postage 4d. 5/-
Closed Circuit and Industrial T.V., by E. M. Noll. Postage 1 34/6
F.M. Radio, by K. R. Sturley. Postage 9d. 15/-
Magnetic Recording by Quartermaine. Postage 6d. 4/6
T.V. Receiver Servicing, by Spreadbury. Vol. 1 or Vol. 2, 21/-
Brimar Valve and Tube Manual. No. 6, Postage 6d. 5/-

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT STREET, LONDON, W.2 (adjoining Little Street)

PORTABLE TEST PANEL

For workshop or students use
Two separate moving coil meters, one for voltage and the other for current measurement. Supplied in wooden case with metal front and with test prods.
Price £6.10.0 (incl. postage.)
Order now (immediate delivery) from:
E.M.I. Institutes, Dept 127x London, W.4

SMITH'S
of EDGWARE ROAD

for Close Tolerance Wax-protected Silver Mica CAPACITORS

Price list (pence): 0.25 60 130 290 590 1100 0
0.4 65 155 345 690 1100 1
0.6 68 149 320 540 880 1120 1
0.8 70 135 250 470 700 1220 1
1.0 75 120 220 410 650 1400 2
1.5 85 175 315 515 735 1220 3
2.0 90 190 330 530 830 1400 4
3.0 90 190 330 530 830 1400 4
4.0 90 190 330 530 830 1400 4
5.0 90 190 330 530 830 1400 4
6.0 90 190 330 530 830 1400 4
7.0 90 190 330 530 830 1400 4
8.0 90 190 330 530 830 1400 4

For Prompt Delivery

WAFER SWITCH ASSEMBLIES, CUSTOM BUILT

When A.B. 11 and 12 way Wafers are required, please add 1/- per bank to above prices, SPECIALS AT TIME & MATERIAL PLUS 50%.

- N.S.F. TYPE "G" SWITCHES.

<table>
<thead>
<tr>
<th>Bank</th>
<th>PAXOLIN</th>
<th>CERAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>£1 4 0</td>
<td>Control Plate</td>
</tr>
<tr>
<td>2</td>
<td>£1 3 0</td>
<td>etc., each</td>
</tr>
<tr>
<td>3</td>
<td>£1 2 0</td>
<td>15/-</td>
</tr>
<tr>
<td>4</td>
<td>£1 1 0</td>
<td>Wafers, each</td>
</tr>
<tr>
<td>5</td>
<td>£1 0 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>£1 9 0</td>
<td>9/-</td>
</tr>
</tbody>
</table>

Quotations gladly given for small as well as large quantities, also for special assemblies.

TELE-RADIO (1943) LTD., 189, EDGWARE ROAD, LONDON, W.2
Paddington 41616.
towards perfection-

LOWTHER LINEAR AMPLIFIERS

Exclusive Lowther Design and Build

The new range “Lowther Linear” amplifiers surpass all previous multi-loop feedback or basic ultra linear technique by the utilisation of the suppressor grid of the Mullard power pentode EL34 into the distributed load circuit which enhances the performance in all detail.

Generous in design, the amplifier’s performance will remain at its high laboratory test specification throughout many years of use.

THE LOWTHER MANUFACTURING COMPANY,
LOWTHER HOUSE, ST. MARK’S ROAD, BROMLEY, KENT, ENGLAND.
Tel.: RAVensbourne 5225

BAND III CHANNELS 8-9-10

A new CONVERTOR KIT is now available for LONDON—MIDLANDS—NORTH

Fit this new convertor not to your set but inside your set, even 9in. table models, and retain that professional look.

This convertor has been evolved since the I.T.A. transmission began, and is based upon experience gained in the conversion of very many Band I sets in the London area.

IT will convert any set, any age, TRF or Superhet
IT includes station switching
IT provides pre-set contrast balancing
IT uses only one aerial input for both bands
IT provides manual tuning on Band III
IT is totally screened
IT completely rejects unwanted signals
IT requires no additional power supply where either 6.3V or .3 amp line is available.

CONVERTOR wired and aligned with fitting instructions £4.2.6
KIT complete in every detail, less knobs £2.12.6
KNOWS each 1.0
CIRCUIT and instructions in detail (free with kit) 3.6
BAND III AERIALS (send for list), from 12.6
CROSS-OVER UNITS—Outdoor (printed circuit) 15.0
AERIAL feeder cable per yard 10.0

When ordering please state present B.B.C. Station and I.T.A.

Orders over £2 post free.

C. & G. KITS
285, LOWER ADDISCOMBE ROAD,
ADDISCOMBE, CROYDON, SURREY
Phone: ADDiscombe 5262

THE LORD MAYOR’S
HUNGARIAN RELIEF FUND

Send stamps, postal order or cheque to your local Lord Mayor’s Fund, or to the Lord Mayor of London’s Hungarian Relief Fund, The Mansion House, London, E.C.4.
Soldering with "Permatip" and "Permatibt" Instruments for greater soldering efficiency.

The soldering bit, which maintains its face indefinitely without attention. 25 models available for mains or low voltage supply. Bit sizes 3.3 to 3/8 inch. Full details in booklet S.P.5 from sole manufacturers.

LIGHT SOLDERING DEVELOPMENTS LTD. 106, GEORGE ST. CROYDON, SURREY

Tel. CRoydon 0599

NEW CABLE CHEAPER IN SMALL COILS

All coils 20-49 yds. In length, made to provide shorter. All prices per 500 yds. list. Lesse supplied add 7%. Full 100 yds. coils are available add 4% to any order.

TWIN PLAY 1005 1006 1007M 1008M 1009M

Plastic 47/- 61/- 85/- 125/- 197/-

Rubber 48/- 105/- 207/- 457/- 1290/6

FLUORESCENTS - with choke and starter less tube.

Bulfins 4 5 1 47/- 80/- 209/- 87/- 1290/6

Send for full fluorescent and control gear also cable, accessories and radio lists. Add 1/4 cent on small orders please.

TELETRON SUPER INDUCTOR COILS

Type HAX. Selective crystal diode coil for tape and quality amplifiers, MW 35, LW 3/6. Dual wave TRF Coils, matched pairs (as illustrated). 7-pair. Type S.S.O. Superonic Tape Occ. coil, provides 6.3 v. 3 a. RF for pre-amp heater. Eliminates induced noise. 50 c/s hum, 40/100 kc. 15% ex. Transistor coils, etc. Available from leading stockists. Stamp for complete data and circuits.

A SENO-N ENGINEER is required for development work on the application of Transistors to the Fields of Communications and Electronics. Applicants should possess an Honours Degree or equivalent qualification, and should have had several years' experience in communications work. The selected candidate will be required to be capable of design work and the supervision of junior engineers. An initial knowledge of transistors is desirable but not essential. A good salary in accordance with qualifications and experience. London area. Please reply, in utmost confidence, giving full details to Box No. 5791.

SOLDERING DEVELOPMENTS LTD. has vacancies for ENGINENERS! Whatever your age or experience, you must read "ENGINEERING OPPORTUNITIES." Full details of the exciting way to pass A.R.M. Eng., E.A.R. H. E. Cert., etc., or AMED. Cert., etc., on your way to £5000-£8000 per year. End descriptions and details of courses in all branches of the Industry: Mechanical, Electrical, Radio, Army, Radio, Electric, etc., together with full details of "ENGINEERING OPPORTUNITIES" today. FREE.

B.I.E.T., 387 College House, 29-30, Wright's Lane, London, W.1

LOCKWOOD & COMPANY (WINDWORKS LTD.) Lowlands Rd., Harrow, Middlesex. Byron 3704

Tape Recorders ONLY

We specialise solely in Tape recorders, stocking every good make. Grundig—Simon—M.S.S.—Ferrograph—Wynsdor—Elizabethan—Philips—EDITOR Sound — etc., etc. Call and hear them all in comfort, or write.

Dixon's Electronics 227 OXFORD ROAD, MANCHESTER

Telephone: Ardwick 4269

OSCILLOSCOPE (MINIATURE TYPE)

Supplied in kit form for workshop or experimental use. Complete with full instructions noting details of applications to radio work. Can be operated from power supply of most AC domestic radio receiver equipment.

Price £10 (inc. postpk.)

(Power units, if required, 43 extra)

Order now or send stamp for further details to—

E.M.I. INSTITUTES, Dept. 127x, LONDON, W.4

(Associated with "His Master's Voice", etc.)

YOUR METER DAMAGED?

CONTRIBUTE TO THE FUND FOR ELECTRICAL INSTRUMENT REPAIRS AND RESEARCH

Lockwood’s makers of Fine Cabinets and woodwork of every description for the Radio and allied trades.

ULTRA-VIOLET LAMPS.

“PERMATIP” AND “PERMATIBT” INSTRUMENTS FOR GREATER SOLDERING EFFICIENCY.

The soldering bit which maintains its face indefinitely without attention. 35 models available for mains or low voltage supply. Bit sizes 3.3 to 3/8 inch. Full details in booklet S.P.5 from sole manufacturers. —

LIGHT SOLDERING DEVELOPMENTS LTD. 106, GEORGE ST. CROYDON, SURREY

Tel. CRoydon 0599

NEW CABLE CHEAPER IN SMALL COILS

All coils 20-49 yds. In length, made to provide shorter. All prices per 500 yds. list, less supplied add 7%. Full 100 yds. coils are available add 4% to any order.

TWIN PLAY 1005 1006 1007M 1008M 1009M

Plastic 47/- 61/- 85/- 125/- 197/-

Rubber 48/- 105/- 207/- 457/- 1290/6

FLUORESCENTS - with choke and starter less tube.

Bulfins 4 5 1 47/- 80/- 209/- 87/- 1290/6

Send for full fluorescent and control gear also cable, accessories and radio lists. Add 1/4 cent on small orders please.

TELETRON SUPER INDUCTOR COILS

Type HAX. Selective crystal diode coil for tape and quality amplifiers, MW 35, LW 3/6. Dual wave TRF Coils, matched pairs (as illustrated). 7-pair. Type S.S.O. Superonic Tape Occ. coil, provides 6.3 v. 3 a. RF for pre-amp heater. Eliminates induced noise. 50 c/s hum, 40/100 kc. 15% ex. Transistor coils, etc. Available from leading stockists. Stamp for complete data and circuits.

A SENO-N ENGINEER is required for development work on the application of Transistors to the Fields of Communications and Electronics. Applicants should possess an Honours Degree or equivalent qualification, and should have had several years' experience in communications work. The selected candidate will be required to be capable of design work and the supervision of junior engineers. An initial knowledge of transistors is desirable but not essential. A good salary in accordance with qualifications and experience. London area. Please reply, in utmost confidence, giving full details to Box No. 5791.

SOLDERING DEVELOPMENTS LTD. has vacancies for ENGINENERS! Whatever your age or experience, you must read "ENGINEERING OPPORTUNITIES." Full details of the exciting way to pass A.R.M. Eng., E.A.R. H. E. Cert., etc., or AMED. Cert., etc., on your way to £5000-£8000 per year. End descriptions and details of courses in all branches of the Industry: Mechanical, Electrical, Radio, Army, Radio, Electric, etc., together with full details of "ENGINEERING OPPORTUNITIES" today. FREE.

B.I.E.T., 387 College House, 29-30, Wright's Lane, London, W.1

LOCKWOOD & COMPANY (WINDWORKS LTD.) Lowlands Rd., Harrow, Middlesex. Byron 3704

Tape Recorders ONLY

We specialise solely in Tape recorders, stocking every good make. Grundig—Simon—M.S.S.—Ferrograph—Wynsdor—Elizabethan—Philips—EDITOR Sound — etc., etc. Call and hear them all in comfort, or write.

Dixon's Electronics 227 OXFORD ROAD, MANCHESTER

Telephone: Ardwick 4269

OSCILLOSCOPE (MINIATURE TYPE)

Supplied in kit form for workshop or experimental use. Complete with full instructions noting details of applications to radio work. Can be operated from power supply of most AC domestic radio receiver equipment.

Price £10 (inc. postpk.)

(Power units, if required, 43 extra)

Order now or send stamp for further details to—

E.M.I. INSTITUTES, Dept. 127x, LONDON, W.4

(Associated with "His Master's Voice", etc.)

YOUR METER DAMAGED?

CONTRIBUTE TO THE FUND FOR ELECTRICAL INSTRUMENT REPAIRS AND RESEARCH

Lockwood’s makers of Fine Cabinets and woodwork of every description for the Radio and allied trades.

ULTRA-VIOLET LAMPS.
BUILT TO YOUR SPECIFICATION
QUICK DELIVERY
KEEN PRICES
CONTACTS UP TO 8 CHANGE OVER

SPECIAL OFFER OF CURRENT MANUFACTURE ELECTRO-LIGHTING

6 mfd. 450 v. 2/6 each; 16 mfd. 450 v.; 32 mfd. 450 v.; 41/2 x 8 x 8 mfd. 450 v.; 39/16 x 16 x 16 mfd. 450 v.; 41/2 x 16 x 16 mfd. 450 v.; 41/2 x 32 x 32 mfd. 450 v.; 35 v.; Bias Condensers; 25 mfd. 25 v.; 1/6; 50 mfd. 50 v. 1/9.

Please note we can offer special discounts for quantities.

ELECTROLYTIC CONDENSERS. Manufacturers’ Surplus, in perfect condition.

16 mfd. 375 v.; 1/3; 24 mfd. 350 v.; 1/6; 24 mfd. 350 v.; 2/6.

We carry a large stock of block paper type condensers. We invite your enquiries.

MIDGET MICA CONDENSERS. .0001, .0002, .0003, .0005, 5/16 per dozen.

200 Assorted Moulded Mica Condensers, popular values £1 10 0
200 Assorted Silver Mica Condensers, popular values £2 10 0
200 Assorted Carbon Resistors, 3/4 and 1 watt. Good selection £1 10 0

PHOTOMULTIPLIER No. 931A.

SPECIAL OFFER OF BATTERIES

4 v. Heavy Duty Bell Battery. Size 6 x 4 x 2 1/2 in. 2/6
75 v. H.T. 1 x 5 x 1/2 in. Size 6 x 2 x 1/2 in. 1/6
72 v. H.T. 2 x 3 x 1/2 in. 2/6
60 v. H.T. 1 x 4 x 3 in. 3/6
50 v. H.T. 2 x 3 x 1/2 in. 4/6
150 v. H.T. Size 2 x 3 x 3 in. 6/6

We invite your enquiries for batteries not listed.

WEIGHTED CAPACITORS.

5/6. 10/6. 15/6. 20/6. 10/6. 20/6. 30/6. 40/6. 10/6. 20/6. 30/6.

We invite your enquiries for capacitors not listed.

BIAS CONDENSERS: 1,000 mfd. 12 v. 1/6; 2,000 mfd. 12 v. 1/6; 3,000 mfd. 12 v. 1/6; 4,000 mfd. 12 v. 1/6; 5,000 mfd. 12 v. 1/6.

WEIGHTED CAPACITORS.

All plus 1/6 post and pkg. Special reduction for quantities.

4-way Push Button Units, 2/6 each. Knobs for same, 3/6 per dozen.
5-way Push Button Unit, 1/6 each, complete with knobs.

WEARITE COILS.

PA4, PO4, PAS, POS, P04, 1/6 each.

VALVE HOLDERS. Moulded B9A, 7/6; B7G, 6/-; Int. Oct., 5/- per pair.

VALVE HOLDERS FITTED WITH LOWER CAN, 1/6 per dozen.

Screening cans for B7G and B9A are also available.

POST OFFICE LAMP JACKS No. 10, 1/6 each; No. 15, 1/6 each.

PYE PLUGS AND SOCKETS, 1/6 each.

CALLERS WELcomed.

BELLS-LEE PLUGS AND SOCKETS, 5-pin, 1/9; 7-pin; 2/9; 10-pin; 3/9.

WATERPROOF PLUGS AND JACKS.

6 in. x 2 in. x 1 in. 6/6
8 x 1 in. x 1 in. 7/6
10 x 1 in. x 1 in. 8/6
12 x 1 in. x 1 in. 9/6
14 x 1 in. x 1 in. 10/6
16 x 1 in. x 1 in. 12/6
20 x 1 in. x 1 in. 18/6
24 x 1 in. x 1 in. 24/6
32 x 1 in. x 1 in. 36/6

WE INVITE YOUR ENQUIRIES FOR ITEMS NOT LISTED.
Transformer Development

A Junior Development Engineer is required to assist in the design and development of coils and small transformers for use on domestic radio and television receivers and other electronic equipment. A sound technical background is essential together with an interest in the economical aspects of design and development. Some experience is desirable but not essential. Applicants should write, quoting (Ref. TD) and giving details of experience and qualifications to the

Personnel Manager,
The General Electric Co., Ltd.,
Radio and Television Works,
Spon Street, Coventry.

British Insulated Callender's Cables Ltd.

An Engineer with a telecommunications background is required for an interesting post in the Systems Engineering Department of the Company’s Telephone Cables Division at Prescot. The successful applicant will be engaged primarily in the design of telephone cables, including plastic types, and in the preparation of associated manufacturing specifications, but will also be required to become familiar with the broad engineering aspects of telephone cable systems. Suitable specialised training will be given, if required.

Applications quoting reference P/69/56 should be forwarded to the

Staff Officer, B.I.C.C. Ltd., Prescot, Lancs.

Vacancies in Government Service

A number of vacancies, offering good career prospects, exist for:-

- **Radio Operators—Male**
- **Cypher Operators—Male and Female**

Apply, giving details of education, qualifications, and experience to:-

Personnel Officer,
G.C.H.Q. (FOREIGN OFFICE),
53 Clarence Street,
Cheltenham, Glos.

Bush Radio Limited

Development Laboratories—KEW

Vacancies exist in all grades of work on colour television and associated test gear.

Write for application form to Personnel Dept. (Ref. CTY), Bush Radio Ltd., Power Road, Chiswick, W.4.

Junior Test Equipment Engineer

required to take charge of small workshop servicing electrical and electronic test equipment. To work initially at Croydon and subsequently at new Research Laboratories at Caterham, Surrey.

Qualifications O.N.C. or equivalent and experience of repair and calibration of multirange meters, oscilloscopes, pulse generators, etc. Write stating age, qualifications and experience to

PERSONNEL MANAGER,
POWERS-SAMAS ACCOUNTING MACHINES, LTD.,
RESEARCH DIVISION,
AURELIA RD., CROYDON.

Electronic Development Engineer

Applications are invited from young men interested in a post as Development Engineer to work on the development of transistor and printed circuit techniques with a view to the application, principally to domestic radio and television receivers. Applicants should have a degree in Electrical Engineering or its equivalent and some experience of development work. Those interested should write, quoting (Reference TPC) and giving details of their qualifications and experience to the

Personnel Manager,
The General Electric Co., Ltd.,
Radio and Television Works,
Spon Street, Coventry.

English Electric Company Limited

Stevenage Herts

have immediate vacancies for

TELEMETRY ENGINEERS

in the newly formed Test Department of the Company’s Guided Weapons Division.

Applications are invited from engineers who are experienced in Instrumentation Planning and in the preparation and testing of Missile Telemetry Systems.

Housing assistance available.

Apply to Dept. C.P.S. 336/7 Strand, W.C.2, quoting Ref. WW1312A.

Guided Weapon Trials

Trials Engineers and Assistants are required for Flight Trials of Guided Weapons, including preparation of equipment for firing and reporting on defects. These posts, based at Feltham, Coventry and Aberporth (Wales), entail some travelling in the United Kingdom and “away-from-base” expenses are re-imbursed. Excellent salaries and pension scheme. The work is practical, but an understanding of theoretical factors involved is vital. Engineers should be professionally qualified with a knowledge of Electronics, and Assistants are preferred with National Certificates and practical experience of an electro-mechanical or electronic kind.

Enquiries invited by the Personnel Manager,

(guided weapon trials), (Ref. WW 152).

SPERRY GYROSCOPE COMPANY LIMITED,
Great West Road, Brentford, Middlesex.

Siemens Brothers & Co. Ltd.

Transmission Equipment Engineers required for work on Radar, Television Film Projectors, Camera Channels, Microwave Links and similar electronic equipment.

Applicants must have sound theoretical knowledge of electronics backed by practical experience in H.M. Forces or Industry. Staff positions and Superannuation Scheme. Single accommodation available.

Apply giving full details to the:-

Personnel Dept. (C.E./21).

E.M.I. LTD., Hayes, Middx.
APPLIED ELECTRONICS LABORATORIES of THE GENERAL ELECTRIC CO. LTD.,
Brown's Lane, Allesley, Coventry have the following vacancies in a Group concerned with the Design of Test Equipment for Airborne Radar.

(1) DEVELOPMENT ENGINEER to work on the integration of Automatic Test Equipment with a complex radar. An applicant having a minimum of two years' experience of Radar circuits including data transmission and servo systems would be suitable.

(2) DEVELOPMENT ENGINEER for work on automatic switching circuits and precision signal parameter converters. Experience with electronic and electro-mechanical switching circuits is required. A thorough knowledge of fundamental measurement techniques is essential. Applicant must have had two years' minimum experience of a similar type of work.

(3) JUNIOR DEVELOPMENT ENGINEERS required who must have a sound knowledge of electronics and mechanical principles, with some previous practical experience. Good opportunities exist for advancement.

HOUSE AVAILABLE FOR A SELECTED APPLICANT FOR (1) OR (2).

Reply stating age, qualifications and experience to Personnel Manager (ref. R.G.).

APPLIED ELECTRONICS LABORATORIES,
THE GENERAL ELECTRIC CO. LTD.

The services of experienced electronics engineers are required for advanced engineering development work on guided weapons.

Senior positions are vacant in the following fields.

1. GENERAL PULSE CIRCUITRY with application to sub-miniature techniques and the design and development of units by statistical method. Experience of semi-conductor work desirable for one position.

2. ELECTRONIC AND INSTRUMENT SERVOS involving design and development of servos with special relationship to overall system considerations.

3. MAGNETIC AMPLIFIERS. Design and development of magnetic amplifier stabilisers and drive stages for small electric motors.

4. INSTALLATION. Design of layouts for simplicity of inter connection in subminiature work. Wide electronic experience is essential.

Engineers of graduate standard with suitable experience are needed. A number of vacancies exist for engineers wishing to gain valuable experience in these and other fields. Good opportunities exist for advancement.

Reply stating age, qualifications and experience to Personnel Manager (Ref. R.G.)
Applied Electronics Laboratories, Brown's Lane, Allesley, Coventry.

RADIO TECHNICIANS
IN
CIVIL AVIATION

A number of appointments are available for interesting work providing and maintaining aeronautical telecommunications and electronic navigational aids at aerodromes and radio stations in various parts of the United Kingdom.

Applications are invited from men aged 19 or over who have a fundamental knowledge of radio or radar with some practical experience. Training courses are provided to give familiarity with the types of equipment used.

Salary £361 10s. at age 25 rising (subject to a practical test) to £671. The rates are somewhat lower in the provinces and for those below age 25. Prospects for permanent pensionable posts for those who qualify.

Opportunities for promotion to Telecommunications Technical Officer are good for those who obtain the Ordinary National Certificate in Electrical Engineering or certain City and Guilds Certificates. The maximum salaries of Telecommunications Technical Officers are Grade III £790, Grade II £925, Grade I £1,160.

TESTERS REQUIRED
for
RADAR & ELECTRONIC WORK

Holding of Ordinary or Higher National Certificate an advantage, but men with suitable Service or Civilian experience will be considered. Opportunities for advancement available for progressive candidates.

Good rates of pay, conditions, canteen facilities, etc.

Apply in person or in writing to:

Employment Department.
Metropolitan-Vickers Electrical Co., Ltd.,
Trafford Park, Manchester 17

Murphy Radio
ELECTRONICS DIVISION

Vacancies exist in an expanding laboratory for senior and junior engineers and draughtsmen in the following fields: V.H.F. and U.H.F. transmitters and receivers for use in NAVIGATIONAL AIDS, MOBILE COMMUNICATION SYSTEMS and PULSE CIRCUITS.

AERIALS.
TELEMETRY EQUIPMENT.

In addition opportunity will arise for applications of TRANSISTORS in these equipments.

Posts are pensionable, Sports Club and other recreational facilities are available. Applications should be addressed to:

Personnel Department (E.29),
Murphy Radio Limited, Welwyn Garden City, Herts.
WIRELESS WORLD

Z & I AERO SERVICES LTD.,
Fully Serviced and Guaranteed Test Equipment

SIGNAL GENERATORS:
- MARCONI TF-144F, older version of model TF-144G; range 85 kcs to 25 mcs, 8 bands. Output 1 mV to 1 V. Direct calibration. Output impedance 10 and 52.5 ohms. Mains operated.
 PRICE, fully overhauled: £45 0 0
 Packing and carriage: £2 10 0

- MARCONI TF-390G, range 16 to 150 mcs.
 PRICE, fully overhauled: £25 0 0
 Packing and carriage: £1 10 0

- MARCONI TF-517E, range 150 to 300 mcs.
 PRICE, fully overhauled: £30 0 0
 Packing and carriage: £1 10 0

- MARCONI TF-517F, range 18 to 58 mcs and 150 to 300 mcs.
 PRICE, fully overhauled: £35 0 0
 Packing and carriage: £1 10 0

- TYPE 804 (General Radio/Federal Radio), Range 2 to 330 mcs in five bands. Direct calibration. Output 1 mV to 20 mV. 115/230 V operation.
 PRICE, fully overhauled: £45 0 0
 Packing and carriage: £1 10 0

- CASSER OR MODEL 339 DOUBLE BEAM OSCILLOSCOPES, fully overhauled and guaranteed.
 PRICE: £30 0 0
 Packing and carriage: £1 0 0

- MARCONI UM absorption wave-meter TF-443. Frequency range 20 to 300 mcs.
 PRICE, fully overhauled, with four coils and calibration charts: £10 0 0
 Packing and carriage: £1 0 0

- AIRCRAFT BONDBING TESTERS, A.M.
 Ref. 5G/2/26, complete with two matched leads, appro. 6ft. and 60ft. long, and shoulder carrying straps.
 PRICE: £8 15 0
 Alkaline Cell for the above: £3 3 0

- MARCONI VALVE VOLTMETERS, model TF-428A or Service Equivalent. Range 10 to 150 volts in five ranges. Resonant frequency approx. 400 mcs.
 PRICE, fully overhauled and guaranteed, complete with diode probe: £17 0 0
 Packing and carriage: £1 15 0

- TYPE 105M LAVOIE (TS-127U) PORTABLE HETERODYNE FREQUENCY METER, range 375 to 725 mcs, individually calibrated. Accuracy: ±1 mcs.
 PRICE: Second-hand, in perfect operating condition: £25 0 0
 Brand new, complete with access: £32 10 0
 Packing and carriage: £1 0 0

- RECORD MEGGERS 500 volts, in leather cases, fully overhauled and guaranteed, post free: £10 0 0

- E.H.T. POWER SUPPLY UNIT. Output voltage 500, 1,000, 2,000 and 3,000 volts at approx. 3 mA, fully regulated. Mains operation.
 PRICE, fully overhauled: £35 0 0
 Packing and carriage: £1 10 0

- MARCONI THUNDERBOLT, model TF-428A or Service Equivalent. Range 10 to 150 volts in five ranges. Resonant frequency approx. 400 mcs.
 PRICE: £30 0 0
 Packing and carriage: £1 10 0

- OSCILLOSCOPES, fully overhauled and guaranteed.
 CASSER OR MODEL 339 DOUBLE BEAM OSCILLOSCOPES, fully overhauled and guaranteed.
 PRICE: £30 0 0
 Packing and carriage: £1 0 0

- TS-99/91 VOLTAGE DIVIDER, to extend the voltage range of an oscilloscope. Ratios available 100 to 1 and 10 to 1. Maximum voltage 20,000 volts.
 PRICE, brand new, post free: £5 0 0

- MARCONI THUNDERBOLT, model TF-428A or Service Equivalent. Range 10 to 150 volts in five ranges. Resonant frequency approx. 400 mcs.
 PRICE: £30 0 0
 Packing and carriage: £1 10 0

We Pay High Prices for Ex Service and Good Second-hand British and American Test Equipment and Communication Equipment. We are particularly interested in Frequency Meters BC-221, TS-174, TS-175; American Communication SIGNAL GENERATORS:
- MARCONI TF-144F, older version of model TF-144G; range 85 kcs to 25 mcs, 8 bands. Output 1 mV to 1 V. Direct calibration. Output impedance 10 and 52.5 ohms. Mains operated.
 PRICE, fully overhauled: £45 0 0
 Packing and carriage: £2 10 0

- MARCONI TF-390G, range 16 to 150 mcs.
 PRICE, fully overhauled: £25 0 0
 Packing and carriage: £1 10 0

- MARCONI TF-517E, range 150 to 300 mcs.
 PRICE, fully overhauled: £30 0 0
 Packing and carriage: £1 10 0

- MARCONI TF-517F, range 18 to 58 mcs and 150 to 300 mcs.
 PRICE, fully overhauled: £35 0 0
 Packing and carriage: £1 10 0

- TYPE 804 (General Radio/Federal Radio), Range 2 to 330 mcs in five bands. Direct calibration. Output 1 mV to 20 mV. 115/230 V operation.
 PRICE, fully overhauled: £45 0 0
 Packing and carriage: £1 10 0

- CASSER OR MODEL 339 DOUBLE BEAM OSCILLOSCOPES, fully overhauled and guaranteed.
 PRICE: £30 0 0
 Packing and carriage: £1 0 0

- MARCONI UM absorption wave-meter TF-443. Frequency range 20 to 300 mcs.
 PRICE, fully overhauled, with four coils and calibration charts: £10 0 0
 Packing and carriage: £1 0 0

- AIRCRAFT BONDBING TESTERS, A.M.
 Ref. 5G/2/26, complete with two matched leads, appro. 6ft. and 60ft. long, and shoulder carrying straps.
 PRICE: £8 15 0
 Alkaline Cell for the above: £3 3 0

- MARCONI VALVE VOLTMETERS, model TF-428A or Service Equivalent. Range 10 to 150 volts in five ranges. Resonant frequency approx. 400 mcs.
 PRICE: £30 0 0
 Packing and carriage: £1 10 0

- OSCILLOSCOPES, fully overhauled and guaranteed.
 CASSER OR MODEL 339 DOUBLE BEAM OSCILLOSCOPES, fully overhauled and guaranteed.
 PRICE: £30 0 0
 Packing and carriage: £1 0 0

- TS-99/91 VOLTAGE DIVIDER, to extend the voltage range of an oscilloscope. Ratios available 100 to 1 and 10 to 1. Maximum voltage 20,000 volts.
 PRICE, brand new, post free: £5 0 0

- MARCONI THUNDERBOLT, model TF-428A or Service Equivalent. Range 10 to 150 volts in five ranges. Resonant frequency approx. 400 mcs.
 PRICE: £30 0 0
 Packing and carriage: £1 10 0

We Pay High Prices for Ex Service and Good Second-hand British and American Test Equipment and Communication Equipment. We are particularly interested in Frequency Meters BC-221, TS-174, TS-175; American Communication Receivers BC-312, 342, 346; Radio Compass Equipment ARN6, ARN7; Aircraft Transmitter-Receivers ARCI and ARCS; Transmitters ART13; "Q" Meters; Impedance Bridges; Wheatstone Bridges, etc.

Z & I AERO SERVICES LTD.,

ENGINEERS
(Electrical and Mechanical)

PHYSICISTS
and

TECHNICAL ASSISTANTS

Required for work on development, manufacture and circuit application of special radio valves, including microwave devices.

Minimum Qualifications, Inter.-B.Sc., or O.N.C.

Experience is desirable but not essential.

Initial training at the research laboratories of The General Electric Company will be available for selected candidates.

These are progressive positions with good opportunities for advancement.

Apply quoting TC/1 to:
- M.O. Valve Co.,
- Osram Works,
- Brook Green,

MANUFACTURERS OF VALVES FOR G.E.C.

MARINE RADAR

Never before have the opportunities been so great for experienced engineers to achieve satisfaction with their design work.

Join a world famous Company and see your ideas take shape in prototype and production form.

Decca Radar offer unique facilities for capable men to put new ideas into quick production.

There are Senior and Junior vacancies for:

CIRCUIT DESIGNERS
MICROWAVE ENGINEERS
MECHANICAL DESIGNERS
EXPERIENCED MARINE RADAR ENGINEERS

Write or telephone the Chief Development Engineer, Decca Radar Limited, 9, Davis Road, Chessington, Surrey.

Telephone No. EL.Mbridge 5281

PROGRESS IN ELECTRONICS

THE MULLARD RADIO VALVE Co. Ltd.

has a number of vacancies for Assistants in the Cathode Ray Tube Division (Technical Dept.).

The work involves the design and construction of prototype test circuits and equipment for Cathode Ray Tubes. It is thought that these vacancies might have a particular appeal for men who possess a good basic qualification in Electrical Engineering and who may have had suitable circuiting experience in H.M. Forces or elsewhere.

A feature of employment with the Company is generous facilities for further study and the opportunity to participate in the further development of this field of work.

Commencing salaries will be based upon experience, qualifications and age in each individual case, and good salary prospects prevail. Long-service Benefits and Pension Schemes have long been established in the Company.

Applications should be addressed to the Personnel Officer, The Mullard Radio Valve Co. Ltd., New Road, Mitcham Junction, Surrey.

Quoting ref.: JFG/CRT/TD.
Wireless World Classified Advertisements

NEW RECEIVERS AND AMPLIFIERS
SHIPLEY LABORATORIES, Ltd., 3. Prospect Plate, Worthing, Sussex. Tel. 50555.

The TWA/1515 electronic tape recorder and replay amplifier, separate meter monitoring on record and playback on both channels. 15kHz O/T each channel, 36mca TWA/15 tape recording and reproducing amplifier. 11watts O/T for Wearite and Collaro decks, 4wmc; TW/P4 recording and replay pre-amps, 4 amplifiers, both with voltage monitor monitoring; type S/T-15X high fidelity amplifier, exceptionally keen control system, 1msec sensitivity, 20mca, with two inputs and 5-position gains filters, specialists supplied for the musical and scientific industries including the National Astronomy.

HIGH FIDELITY Input Transformer Type P3667. Price 9/6d and 8/6d respectively.

Potted mounted style available for standard item.

Standard open style of mounting.

Standard hermetically sealed "C" core construction.

Mains Transformer for Mullard 5-L0 Amplifier, sub-chassis wiring.

Type P3667 Output Transformer for Mullard 5-L0 Amplifier.

PARTRIDGE TRANSFORMERS were employed by the Mullard Valve Measurement and Application Laboratories for the prototypes of the 10 & 20 Watts High Quality Amplifiers.

Above is illustrated the Mullard 5-10 Amplifier, Distributed Load Version, fitted with a Partridge "C" core Output Transformer Type P4013 and Mains Transformer Type P4015. Price 9/6d and 8/6d respectively.

and now a new component

Hifi-Fidelity Input Transformer Type 1MC/5, fully screened in mu-metal case. Price 38/6d immediate delivery on all the above components.

PARTRIDGE TRANSFORMERS LTD. TOLSWORTH, SURREY Phone: ELMbridge 67378

NEW GRAMOPHONE AND SOUND EQUIPMENT

ALL Hi-Fi enthusiasts please note! We are now in a position to offer the Collaro tape recorder complete with pre-amplifier and power pack ready to plug into any amplifier for only 50/- - making it one of the lowest-priced quality tape recorders on the market! Call all other makers of recorders in stock: easy terms available.

GRAMOPHONE AND SOUND EQUIPMENT—SURPLUS AND SECONDHAND

LENO urz.56 transcription unit with Goldring 500, as new, in makers' carton. Offers to Box 5785 (Chesham).

HIGH quality portable tape recorder, in excellent condition, cost £150, bargain £25 for quick sale—Details Box 5784.

NEW COMPONENTS

CRYSTAL microphone inserts (Cosmocord Mic 6/4), in steady demand by Hi-Fi and Sound Engineers; guaranteed newly made and boxed. -Radio-Als, Ltd. Market St., Watford.

COMPONENTS—SURPLUS AND SECONDHAND

ELECTRICALS: Capacity, voltage, size, type of mounting prices paid, 25/-, 30/-, 40/-, 50/-, 75/-, 100/-.

340v, 500v, 1/6X13, clip, 3/-; 1,000v, 1X13, clip, 1/-; 2,250v, cap, 3/6; 3,000v, 2X2, cap, 1/6.

12/6, 20/6, post paid.

11/6, 15/6, 20/6, 25/6, 30/6, 35/6, post paid.

WANTED, EXCHANGE. ETC.

MAGSLIPS at low prices, fully guaranteed. Available Number No. 2 (AP 10064), 5/6d, 50/-, 6/-, unused, each in tin, 15/-, post 2/1, large stocks of these and other types—P. E. C. G. A. G. A. 315, 316; 12/6, post paid.

12/6, 18/6, 25/6, post paid.

T.V. TEC T2 rect. 220v, 250A, H.W. size 2X4, 4/-, 12/6, post paid.

C7 5/16'M, 2nd, 3rd, 4th, vision cans, 13/16X1/16 X/2, clear tuned, set of three 5/6d, 6/6, 7/6, post paid.

600/750v, paper cond., 4/6X1/4, 6/6, 8/6, post paid.

WANTED, A.P.R.A, also T.N.16, 17, and any radio test gear.

WANTED, receivers A.P.R.A, also T.N.16, 17, and any radio test gear.

WANTED, Volpe P4 speaker, good com
dition—L. R. Barker, R. Rick

SOUTHERN RADIO SUPPLY, Ltd., 11, Little Newport St., London, W.2. See our displayed advertisement, page 162.

WANTED, receivers A.P.R.A, also T.N.16, 17, and any radio test gear.

FOR SALE AND WANTED ADVERTISEMENT FORM TURN TO PAGE No. 165
POTENTIOMETERS

The word 'Reliance' is synonymous with the best potentiometer design and practice, it also signifies a most comprehensive range embracing wire-wound and composition types, Single, Ganged and Tandem Units. Characteristics include linear, log, semi-log and non-inductive. Etc. Fullest details on request.

WANTED, EXCHANGE, ETC.

Dynamotors, 19/24 volt D.C., 500/1,000/2,500 MA or near; price and details.—Radiodex, Ltd., Oxford Place, W.1. [3647]

WANTED, valves, TV tubes, televisions, radio, radiograms, tape recorders.—Stam Wiltjes, 8, Wolseley Lane, West Bromwich, Staffs. Tel.: 2382. [3648]

WANTED, B.G.I. rectifiers, E.T. fibre transmitters, and many parts for same: best prices.—T.C.A. Radio, Beavon Lane, Wolverhampton, W. [3650]

UNISELECTOR switches, modern types 2 to 18 bank, any quantity; send sample with details of quantity and price.—David, Tudor Place, London, W.1. [3651]

LARGE funds available for bulk purchase of television, radio, tape recorders, and domestic electrical appliances of every description.—Spears, 14, Watling St., Shudhill, Manchester, Tel.: Blackburns 1916. Bankers: Midland Bank, Ltd. [3652]

WANTED, cash ready for purchase of surplus and bankrupt stocks of new valves and components; we sell plain valve cartons; list on request.—H. B. Ltd., 55, Swain Arcade, Bradford. [3653]

Fullest details and non-inductive. Characteristics include comprehensive range embracing wire-wound and composition types, Single, Ganged and Tandem Units. Characteristics include linear, log, semi-log and non-inductive. Etc. Fullest details on request.

RELIANCE MFG., CO. (SOUTHWARK), LTD., KUTHFIELD ROAD, HICKIN HILL, WALSINGHAM, E.11.

SURPLUS

AERIAL EQUIPMENT. Poles, Masts, Dipoles, Yagi, Microwave arrays, Whips, 12in. Whips to 80ft. Masts. [3654]

CABINETS AND RACKS. 36in. to 96in. high, standard 19in. wide. [3655]

CONDENSERS up to 10,000 mfd. and 50 kV. [3656]

FUSES. Cartridge and E.S. 1 amp. to 600 amps. [3657]

INSULATORS 90 different patterns. [3658]

LOUDSPEAKERS 3in. dia. to 50 watts Theatre Systems. [3659]

METERS. 2in. to 12in. dia. 120 different types. [3660]

POWER SUPPLIES. Generators, Recifiers, Vibrators, Inverters, Dynamotors from 2 volts 100 amps, to 36,000 volts 3,000 amp. [3661]

RECEIVERS. 80 types available from 15 Kc. to 600 m/c's, including portable, D.F., Table, Rack and Pedestal. [3662]

TEST GEAR, American over 100 different types, Meters, Calibrators, Signal Generators, etc. [3663]

TELEPHONE AND TELEGRAPH EQUIPMENT. Single and multi channel apparatus, filters, switchboards, power supplies. [3664]

TRANSFORMERS Audio and Power; 200 types from 2 volts to 18,000 volts and up to 15 KVA. [3665]

TRANSMITTERS, 60 different types from U.F.-I Handle Table to G 50, 2,500 watts. [3666]

PUBLIC LIMITED AVAILABILITY

Send your requirements. All packing and shipping facilities.

P. HARRIS, ORGANFORD, DORSET

Telephone: LYTCHETT MINSTER 212
GILSON TRANSFORMERS
are popular with
★ Lighting ★ High Voltage ★ Fatigue test ★ Nuclear ★ Radar ★ Sound equipment
and other ENGINEERS and have been
FOR MANY YEARS
It is therefore not surprising, though very gratifying to us, that they have now proved equally popular with AUDIO ENGINEERS and AMATEUR enthusiasts.
We are now producing
a range of
TRANSISTOR AUDIO TRANSFORMERS including those specified for the
MULLARD 200 milliamp AMPLIFIER

GILSON TRANSFORMERS
FOR U-L Amplifiers

IS WATT TYPE Ref. W0892
Please write for informative leaflets on the above.

R. F. GILSON LTD.
11aST. GEORGE'S RD., WIMBLEDON, S.W.19
Phone: WIMbledon 5955

MAKERS OF NEON SIGN TRANSFORMERS
Contractors to Admiralty, etc., A.I.D. Approved

Our stockists include:

WORK WANTED

TECHNICAL, query services in electronic design and construction advised and by qualified engineers, nominal fee for quotation for involved problems.—Box 5980. [0699]

CAPACITY AVAILABLE
FACTORY Capacity available for the following categories:
PULSATION Galvanic Moulding (3 oz);
ALUMINIUM Die-Casting;
LIGHT Engineering;
ELECTRONIC & Electrical Assembly. Located Willesbury—Box 2077. [0114]

VACUUM Varnish impregnation to RCS 214 H2, quick service: enquiries welcomed. Laidlaw Ltd., 20 Chestnut Rd., Caversham. Reading. 71765. [0695]

MISCELLANEOUS
TAPE to disc; 12½—Mobile Recording Services, 5, New Brown St., Manchester. [0656]
FOR sale, coil winding machines, 3 Douglas No. 1, in good condition; £20 each.—Apply: Willesden Transformer Co., Ltd., Manor Park Rd., London, N.W.10. [0694]
HAVE your tape recordings transferred to discs, 78s or L.P.s; high fidelity reproduction.—Write Partners, 18, Zulia Rd., Mapperton Park, Nottingham. [0648]

TAPE to disc recording, 40-hr. service, L.P. (50 min.) 26½; 78s 11½; s.a. labels.—Comprehensive Recording Services, A. D. Martin, Little Place, Monks Dive Lane, Aughton, Ormskirk, Lancs. Aug. 3102. [0647]
HAVE your own tape recordings transferred to disc, 78s or L.P.s.—Write, call or 'phone Queensway Private Recording Studios, 12 Queensway, W.2. Tel. Bay 4992. Studios open 9-10 p.m. [0643]

METALWORK, all types cabinets, chasiss, racks, etc., to your own specification: capacity available for small, medium and larger work up to 1½ tons.—HILTON'S METAL WORKS, Ltd., Chapman St., Loughborough. [0106]

TAPE/DISC for connoisseurs, use Britain's oldest full-time transfer service. 30 min. 40s—special prof. qual. tapes 25/- and 2½/- Sound News Productions, 59, Bryanston St., W.1. Amb. 0091. [0106]

TRAIN at home for a better position or a new hobby.—We offer comprehensive home tuition courses covering over 100 careers and hobbies, practical equipment supplied with many courses.—Write for free brochure, stating subject of interest, to: F.M.T. DEPARTMENT, Ditton DE, London, N.19. (Associated with H.M.V.) [0180]

NOTICES
BRITISH SOUND RECORDING ASSOCIATION. Details of membership, open to the professional sound recording engineer and all others interested in recording high quality reproduction and other branches of audio engineering, together with details of the London lecture programme and the Manchester, Portsmouth and Cardiff Centres, may be obtained from the Hon. Membership Secretary, E. B. Bouquet, A.M.F.E.E. 12, Strongbow Rd., Eitham, S.E.5. [0051]

PATENT

AGENTS WANTED
PROGRESSIVE electronic manufacturer and D.O. requires free-lance agencies with connections in industry to obtain business; exclusive territory arranged.—Box 5946. [0676]
PLASTIC moulding company, requires the services of a free-lance agent, who has suitable connections with users of mouldings; exclusive territory granted.—Write Box 4636. [0662]

SITUATIONS VACANT
TELEVISION and radio
DEVELOPMENT engineers. ENGINEERS are required for senior and junior positions in the television and radio development departments of a well known manufacturer in the West London area.
APPLICANTS for senior positions should have academic qualifications and several years development experience. Junior engineers are required to have either academic qualifications or development experience.
All the posts are permanent and carry the benefit of the firm's pension scheme. Generous salaries will be paid to engineers showing initiative and responsibility.
PLEASE write giving full details, including age, experience, etc., to Box 5117. [0648]

RADIO TELECOMMUNICATIONS, Ltd., Ditton Works, Cambridges. [0648]

WE have a number of vacancies for sales engineers, interesting work including systems planning and work on audio VHF multiple-channel, Microwave TV Links and Aeradio, some valuable overseas survey and installation work in the field at home and abroad; excellent salary and prospects.
Apply in writing giving details and quoting reference to the Sales Manager. [0661]

SENIOR development engineer required for work on audio transistor equipment; previous experience essential; South-East London area; please write giving full details.—Box 3787. [0674]

AM and FM Tuners and High Fidelity Amplifier on one compact chassis
- 10 valves. 10 watts push-pull amplifier with negative feed back.
- FM, Long, Medium and two Short wavebands.
- Frequency Range: 15-35,000 c.p.s.
- Independent and Continuously variable Bass and Treble Controls with visual setting indicators.
- Magic Eye Tuning.

MODEL PB 409
PRICE 28 GNS.
SITUATIONS VACANT

ELECTRONICS TRAINING.

The Ministry of Supply is offering five-year scholarships to boys who wish to become radio technicians. The scholarship is open to boys between the ages of 16 and 17½ years on 1 September, 1957, and who wish to become qualified electronic technicians.

APPLICANTS must possess an education of, or be about to obtain, a standard 11½E qualification, or be about to obtain an agricultural certificate. Possession of a driving licence is desirable.

QUALIFICATIONS: Be about to obtain a standard 11½E qualification, or have reached a corresponding standard in English Literature, Mathematics and Science and Physical Education.

APPLICATION forms and further particulars may be obtained from the Experimental Training Officer, Ministry of Supply, 66-72, Grosvenor St. S.W.1. This closing date for receipt of completed application forms is 15th May, 1957.

FEDERAL Government of Nigeria

SENIOR Telecommunications Engineers.

POST A.—To be responsible to a Principal Telecommunications Engineer for the direction of all engineering activities of the Posts and Telegraphs Department in a district comprising two or more areas, including administration and control of engineering staff (African and European), telephone exchange systems (automatic and manual), and signalling systems on V.H.F. links, telephone equipment and telegraph equipment, or for a large part of the Principal Telecommunications Engineer at Terri- torial Headquarters.

POST B.—To be responsible to a Principal Telecommunications Engineer for the direction of all wireless communications including M.F. and V.H.F. stations, radio link systems, and a major district territory and to plan and carry out major overhaul and installation of V.H.F. transmitters and installation and minor development work.

PENSIONABLE. Salaries with salary of £1,520 p.a. gross or on contract with salary of £1,420 p.a. gross. For the first three months' satisfaction allowance of £77.50 p.a. for each of two children under 16, and of £75 p.a. for each additional child in Nigeria. Refund of up to the cost of two adult fares for each child's passage on completion of their first tour of duty, when the allowance would cease. Quarter, if available, at departure from home. CANDIDATES should be A.M.I.E.E. and have had at least three years' experience in telecommunications (radio engineering experience is necessary for Post A) or alternatively have held the rank of executive engineer for at least 2 years (post held on employ in engineering wireless) in the British Post Office.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications, and experience, quoting POST A or B, B.C.D. 175/4702.

HER MAJESTY'S Overseas Civil Service.

Radio Engineer—posts and Telegraphs Department, Fiji.

To be responsible for the preparation required by the International Frequency Registration Board and for radio control over all control of either. CANDIDATES must be of good character, and have at least 5 to 10 years of practical experience in radio communication, and have knowledge of standard purchasing regulations and the International Regulations for operation of radio stations. CANDIDATES must have a A.M.I.E.E. and be thoroughly conversant with the installation, operation and maintenance of all low power radio (H.F. and V.H.F.) radio stations and have a sound knowledge of the International Regulations and procedure regarding frequency registration.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications and experience, quoting B.C.D. 176/4702.

RADIO Maintenance Technician required by POLICE Department, Government of Northern Rhodesia, for one tour of 5 months in each station: salary; allowance, baggage and experience, in scale £670 to £1,200 a year; free passages to and from all stations, on full pay, candidates preferably aged 25 to 30, must possess academic qualifications in mathematics and physics of measurement standard, together with sound knowledge of mathematics and techniques of modern and medium powered W.H.F. and V.H.F. equipment, and have experience of radio maintenance.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications and experience and quote B.C.D. 177/4702.

C HIEF Engineer required, London area, to take charge of design and manufacture of equipment for use with industrial electronic equipment, electronic components and commercial circuits. The appointment demands an engineer with wide knowledge of industrial and commercial circuits manufacturing methods, both mass production and custom building, and with exceptional training and organizational ability, preferably to 6 and 12 months. Also our well-known 12 a. m. charger with protective heating, 69d., ditto, 6 v. 2 amp., 50/-.

SENIOR Telecommunications Engineers.

POST A.—To be responsible to a Principal Telecommunications Engineer for the direction of all engineering activities of the Posts and Telegraphs Department in a district comprising two or more areas, including administration and control of engineering staff (African and European), telephone exchange systems (automatic and manual), and signalling systems on V.H.F. links, telephone equipment and telegraph equipment, or for a large part of the Principal Telecommunications Engineer at Territorial Headquarters.

POST B.—To be responsible to a Principal Telecommunications Engineer for the direction of all wireless communications including M.F. and V.H.F. stations, radio link systems, radio link systems, and a major district territory and to plan and carry out major overhaul and installation of V.H.F. transmitters and installation and minor development work.

PENSIONABLE. Salaries with salary of £1,520 p.a. gross or on contract with salary of £1,420 p.a. gross. For the first three months' satisfaction allowance of £77.50 p.a. for each of two children under 16, and of £75 p.a. for each additional child in Nigeria. Refund of up to the cost of two adult fares for each child's passage on completion of their first tour of duty, when the allowance would cease. Quarter, if available, at departure from home. CANDIDATES should be A.M.I.E.E. and have had at least three years' experience in telecommunications (radio engineering experience is necessary for Post A) or alternatively have held the rank of executive engineer for at least 2 years (post held on employ in engineering wireless) in the British Post Office.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications, and experience, quoting POST A or B, B.C.D. 175/4702.

HER MAJESTY'S Overseas Civil Service.

Radio Engineer—posts and Telegraphs Department, Fiji.

To be responsible for the preparation required by the International Frequency Registration Board and for radio control over all control of the electrical equipment. CANDIDATES must be of good character, and have at least 5 to 10 years of practical experience in radio communication, and have knowledge of standard purchasing regulations and the International Regulations for operation of radio stations. CANDIDATES must have a A.M.I.E.E. and be thoroughly conversant with the installation, operation and maintenance of all low power radio (H.F. and V.H.F.) radio stations and have a sound knowledge of the International Regulations and procedure regarding frequency registration.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications and experience, quoting B.C.D. 176/4702.

RADIO Maintenance Technician required by POLICE Department, Government of Northern Rhodesia, for one tour of 5 months in each station: salary; allowance, baggage and experience, in scale £670 to £1,200 a year; free passages to and from all stations, on full pay, candidates preferably aged 25 to 30, must possess academic qualifications in mathematics and physics of measurement standard, together with sound knowledge of mathematics and techniques of modern and medium powered W.H.F. and V.H.F. equipment, and have experience of radio maintenance.

WRITE Director of Recruitment, Colonial Office, London, S.W.1, giving age, qualifications and experience and quote B.C.D. 177/4702.
All Goods sent on 7 days' approval against cash

MAINS TRANSFORMERS. Input 200/350 volts. OUTPUT 50 volts, 20% each, 50 watts. OTHER OUTPUTS complete with Step Up Transformer from 50 volts to 230 volts, £12/6/6 each or CO/CONVERTER only £10/10/6 each.

EX-NAVAL TRANSFORMERS 110 volts D.C. Input. Output 250 volts 50 cycles 1 ph 250 watts capable of 50 per cent overload, in good condition, guaranteed weight approx. 110 lb.: £15/10-6 each.

TOTE Switches with operating gear, 25½ each.

1 H.P. D.C. MOTORS 150 volts, 3,000 r.p.m., new 35½-£1.25.

MAGNET MOTORS, 20 volts, A.C., large size, as new, £8, pp. 1½ each. Trans. Type, 1½, pp. 1½.

IRON CORE Transformers, 110/200 volt input 200/0/300 volt 50 cycles, 130 M/Amps. 120 volts, 15 M/Amps. and 14.5 volts, 5 amps. All outputs are guaranteed.

LARGE METER Movements, lately low P.R.D., average 6 inch deflection, very high quality, 7½, pp. 1½ each.

MOVING COIL Meters, all 2 to 3 inches dia., damaged cases or sound meters for £5 6 for 1½, 2 sound meters, no junk, all new or suitable for Meter Repair, 6/- each.

6 FOR 18/-, two sound meters, no junk, all are or suitable for Meter Repair, £3 10/6.

EX-GOV. ROTARY CONVERTORS 110/200 volt input 200/0/300 volt 50 cycles, 140 M/Amps. 110 volts, 10 M/Amps. and 14.5 volts, 5amps.

Another combination 225/300/40/30/25/30amps. Ditto large amps. 53½ each. Ditto 25½/40 amps. output. 55½-£ each.

GALPIN'S ELECTRICAL STORES

408, HIGH STREET, LEWISHAM, S.E.13
Tel: Lee Green 4039

TELEGRAMS: ELDAC, 8G.D.

SPLENDID ODD BARGAINS FOR VISITORS

OPEN ALL DAY SATURDAY

PLEASE PRINT YOUR NAME AND ADDRESS

TERMS: CASH WITH ORDER (No. C.O.D.)

GALPIN'S ELECTRICAL STORES

408, HIGH STREET, LEWISHAM, S.E.13
Tel: Lee Green 4039

TELEGRAMS: ELDAC, 8G.D.

SPLENDID ODD BARGAINS FOR VISITORS

OPEN ALL DAY SATURDAY

PLEASE PRINT YOUR NAME AND ADDRESS

TERMS: CASH WITH ORDER (No. C.O.D.)
SOLDERING IRON

WENLEY

For 25 years the best

25 watt Instrument Model

A model for every purpose

Leaflinet on request from:

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.
Tel: CHancery 6322

WHY WASTE TIME?

Give that set its best chance

FIT QUALITY COMPONENTS

Catalogue 1-

ALL POPULAR CIRCUITS

THE Stoves of

SITUATIONS VACANT

MALE Laboratory Assistant required for

interesting work on acoustics research.

Ordinary national certificate or equivalent

is essential. House accommodation available.

Apply Chief Chemist, Reverley, Ltd.,

Marlow, Buckinghamshire.

JUNIOR engineer required by electronic instru-

ment manufacturer for development work on

specialised transistors and electronic control

device, Higher Nat. Cert. preferred, excellent

opportunities to progress in company.

Box 9780.

FIREALGRANT engineer required by electronic

instrument manufacturer to assist engineers in

the development of new components and elec-

tronic control devices, National Certificate or

equivalent, excellent opportunities in laboratory

and production work.

Company.

Box 9780.

AUDIO engineer required to join technical

staff of leading manufacturer to carry

through knowledge of audio techniques

required. Qualifications not essential—full,

fully, state age, experience, etc., to Chief

Engineer, I.B.C., S.C., Portland Place W.1.

MEMICHAEL, R&D, Slough, Bucks.

There are vacancies for young qualified engineer

with ideas able to design and develop

products. Good working conditions and

a progressive salary policy and that its general

conditions of employment are attractive.

Please assert to the Personnel Manager,

Mullard Heathampton Works, 35, Portland Place

W.1. [6667.

THE Mullard Heathampton Works have a

number of openings for University Gradu-

ates in Physics,Chemistry, Electrical Engineer-

ing and Mechanical Engineering; these posts

are well paid, offer good opportunities and

come within the scope of teaching and non-

teaching appointments.

Apply for appointment to the Chief Engineer,

Mullard Publishers Limited, Betcha

[6657.

LIVINGSTON Laboratories, Limited, have

vacancies in their laboratories for engi-

neers of H.N.G. standard and 18-22 years

experience, who offer unique experience in the

highest grade laboratories of British and American

instruments; Conveniences working conditions and non-

contributory pension scheme.

APPLY for appointment to the Chief Engineer.

Livingston Laboratories Limited, Betcha

[6657.

B. W. CANDLER SYSTEM CO.

Mold and Technical Director for development

of teaching electronics, at the National College

Applications must state age and give full

personal details, to the Personnel Manager,

CANDLER SYSTEM CO., 85 Portland Place

W.1. [6667.

PULLIN

Series 100

TEST METER

AC/DC 1000/1000

RANGES

100pa to 1000V

COUNTRY"s BY POST

CHRISTMAS GIFT with TEST LEADS

FULLY GUARANTEED

FRIITH RADIOCAST LTD

69-71 CHURCH GATE

FEBRUARY, 1957

COMMUNICATIONS EQUIPMENT

WIRELESS SETS 15 MK. 3, Frequency 3-2 Mc/s.

and 520 Mc/s. Antenna output 6 watts. System:

A.L, A.M, A.S, Power ranges 11 to battery with opera-

tion.

AMPLIFIER R.F. NO. 1, For use with Wireless Set

15. MK. 3, Mc/s. Bandwidth 100 Mc/s, complete

with loudspeaker, hand microphone, etc.

BOX SOLDERING IRON. Frequency 2.5 Mc/s.

in two switched bands. System: A.L. A.M.

and A.S. Complete with small laboratory

equipment including Receiver with loudspeaker

and choice of Draught Supply (15v.), 34v., or 115v.

AIRCRAFT RADIO COMPASS. Installation Type

 SCHUMMER. Frequency coverage 200-750 Mc/s.

in three switched bands. Supplied communications

receiver with compact circuit elements. Receiver

Central facilities and motor driven aerial loop complete

with all operating accessories.

ARMSTRONG CHASSIS AND AMPLIFIERS

LOUDSPEAKERS

For

GOODMANS

W.B. G.E.C.

KELLY and JENSEN

STANDARD BASS REFLEX CABINETS

Demonstrations without Appointment

You can see your cabinet being made in

our cabinet-making workshop

Cabinets made to order.

Morse Code operating as a PROFESSION

The essential qualification of a Radio

Officer at sea, in the air or ashore is

EXPERT MORSE OPERATING.

45 years of teaching Morse Code is

is known the world over.

48 years of teaching Morse Code is

and is known the world over.

21 Parkhill Place, off Parkhill Road, London,

N.W.3.

GULLIVER S17.

Open till 5:30 Saturdays.

D. AYRES & CO. (Cabinet Makers)

3 Parkhill Place, off Parkhill Road, London,

N.W.3.

GULLIVER S17.

THE CANDLER SYSTEM Co.

FEBRUARY, 1957

COMMUNICATIONS EQUIPMENT

WIRELESS SETS 15 MK. III. Frequency 3-2 Mc/s.

and 520 Mc/s. Antenna output 6 watts. System:

A.L, A.M, A.S, Power ranges 11 to battery with opera-

tion.

AMPLIFIER R.F. NO. 1, For use with Wireless Set

15. MK. III, Mc/s. Bandwidth 100 Mc/s, complete

with loudspeaker, hand microphone, etc.

BOX SOLDERING IRON. Frequency 2.5 Mc/s.

in two switched bands. System: A.L. A.M.

and A.S. Complete with small laboratory

equipment including Receiver with loudspeaker

and choice of Draught Supply (15v.), 34v., or 115v.

AIRCRAFT RADIO COMPASS. Installation Type

 SCHUMMER. Frequency coverage 200-750 Mc/s.

in three switched bands. Supplied communications

receiver with compact circuit elements. Receiver

Central facilities and motor driven aerial loop complete

with all operating accessories.

ARMIBLES PHONE EQUIPMENT. ABC-1 multi-channel

transmitter/receiver, complete. 100-156 Mc/s. ABC-1

multi-channel transmitter/receiver complete. 100-156 Mc/s.

MURDOCH INSERT, 0.P.O. Carbon. 607.

TELEGRAPH AND TELEPHONE EQUIPMENT

Pipes, line and directional. High Speed Morse Telegraph Transmitters.

Telegraph Tape Printers.

Terminal Units Apparatus VP Speech + Duplex.

Apparatus two-tone Telegraph.

Apparatus two-tone Telegraph.

Carrier Terminal 1 + 4. Apparatus VP Speech + Duplex.

Field Telephone Sets types B.P.H. and B.P.H.

and instrument makers required in depart-

ment. Applications should be made to the

Manager, Grundy Skyways, Ltd., Somerset

Works, Elmtree Road, Teddington, Middlesex.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.

Salary scale £444 to £556. and to £669 with specified qualifications.
Bakers 'Selhurst' RADIO

Demonstrating!
The full range "ULTRA TWELVE" 20-25,000 c/s

A radically new idea in speaker enclosures. All the BASS. No boom, resonances or distortion. COMPACT. 17' x 17' x 13½" £16 10.0. 24' x 17' x 13½" £20 10.0

Demonstrating!
The BRADFORD PERFECT BALFFE (Patent Pending)

RILEY WORKS, RILEY STREET, CHELSEA, S.W.10

Export Enquiries Invited

C. T. CHAPMAN (Reproducers) LTD

S.B.S.

AM: 9-band all-wave tuner. 13 m.-570 m. Band spread, variable selectivity. Tuning indicator. Logging scale, delayed amplified A.V.C. Tropicalised. Sensitivity better than 2 µV for 350 mV output. £46 4/2 tax paid.

FM/AM:

FM: World Wide A.M. in 2 ranges. 550/1000 m. 125 m.-37 m.; 35 m.-100 m.; 90 m.-250 m.; 350 m.-190 m.-250. 550/1000: 16 m.-50 m.; 195 m.-550 m.; 880-2000 m. Sensitivity better than 10 µV on all ranges. PLUS completely stable drift free VHF-FM. Sensitivity better than 8 µV for 20 db quieting. Tuning indicator on all bands. AM and FM. £142 2.3 tax paid.

All tuners suitable for modern high quality amplifiers. Most tuners available with Escutcheons in Gold, Silver or Bronze.
20,000
2,000
THE MOMENT - ALL EX. GOVERN-
ALWAYS IN STOCK - 2, 4 & 6 change-
BRAND NEW RELAYS IN STOCK AT
requirements.
I 2A TOTTENHAM ST., LONDON, W.1
DEPENDABLE
INSETS. Brand new.
I B,
2M, H.V.
I M.
I M.
I M.
I M.
I lin. T.S.
Ilin. H.S.
Ilin. T.S.
NEW 4TH EDN.

REFERENCE DATA FOR RADIO ENGINEERS, by I. T. & T. Corp. 50s. Postage 1/3.

- Fixed Capacitors by G. W. A. Dummer & J. R. C.
- Vacuum-Tube Circuits and Transistors by L. B. Argimbau & B. S.
- [POSTAGE 1/2-]
- High Fidelity Circuit Design by N. Crowhurst & G. F. Cooper.
- [POSTAGE 1/2-]
- Improve Your Reception by J. C. V. & L. Stanley.
- High Fidelity by G. A. Bridges.
- Electronic Computers by T. E. Ivall.
- Radio Valve Data Compiled by Wireless World.

SIFAM ELECTRICAL INSTRUMENT CO. LTD.

Leigh Court - Torquay - Telephone 4441/2

WANTED

- B. C. 312 B. C. 610E UNMODIFIED RECEIVERS
- TRANSMITTERS

FREQUENCY METERS 221

We will pay Top Cash Prices for sets in good condition.

P. C. A. Radio

Beavor Lane, Hammersmith, W.6

Riverside 9006

TECHNICAL ASSISTANT

with O.N.C. or H.N.C. required for work on the development of electronic amplifiers, stabilisers and oscillators in connection with research with new techniques in spectroscopy.

Apply, quoting reference 'L.7', to:

The Personnel Manager, Metropolitan-Vickers Electrical Co., Ltd., Trafford Park, Manchester 17

**INCORPORATED Professional Radio Engineers' Home study courses of radio and TV engineering are recognized by the trade as outstanding and authoritative. Moderate fees to a limited number of students only. Original Text is free. The Practical Radio Engineer' Journal, sample copy, 2/-; 000 Assignment Peaks for Superhet, Telecamm, and Simple Tuning, free. Application in writing. 1/ - 2/1 post free from the Secretary. I.F.R.E. Ltd., 50, Fairfield Rd., London, N.8.

SALES every Thursday at 11 a.m.

EASTERN Auction Mart, Ltd.

TELEVISIONS, radios, fridges, wash/machines, etc. ETC.

ENTRIES accepted working or not.

15% commission on lots sold (min. 15/-). No sale no charge.

We collect in Greater London area.

WHITEHOUSE Lane, Mile End Rd., Stepney, E1.

STEPNEY Green 3993, 3996, 1033.

BOOKS, INSTRUCTIONS, ETC.

TELECOMMUNICATIONS Principles 1 and 2 in M.E.S. units, equivalent to two complete correspondence courses for these C and I. P. E. courses, 30/-.

SALES every Thursday at 11 a.m.

AUCTIONS

WIRELESS Worlds recently wanted to complete years: March 1949, March, April, June to October and December 1953; December 1954; and February 1955. Also Indexes 1949, 1950, 1952 and 1953. Please write G. R. Feler, 142, Phillip Rd., Sydney, Australia.
CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.1

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- RATE : 7/- for TWO LINES. 3/6 every Additional Line. Average six words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words, plus 1/-.
- Cheques, etc., payable to Iliffe & Sons Ltd., and crossed "& Co.".
- Press Day, Thursday January 31st or March 1957 issue.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>INSERTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMITTANCE VALUE</td>
<td>ENCLOSED</td>
</tr>
</tbody>
</table>

Please write in block letters with ball pen or pencil.

NAME

ADDRESS
INDEX TO ADVERTISERS

Page 166

Abic (Metal Industries), Ltd. 52
Acoustic Mfg. Co. 44
Adoca Products, Ltd. 44
Advent Mfg. Co. 44
Airline, Ltd. 44
Aircraft-Marine Products (Great Britain), Ltd. 44
Airline, Ltd. 44
Alfaire, Ltd. 44
Ambassador Supply Co., The 137
Amsden Radio Co. 84
Ampli-X, Ltd. 114
Antiference, Ltd. 11
Appointments Vacant 135, 152, 152, 154, 155
Arotol Switches, Ltd. 58
Ariel Sound, Ltd. 184
Armstrong Wireless & Television Co., Ltd. 46
Ashdowns, Ltd. 11
Austro-Hungarian Electrical Equipment Co., Ltd. 1
Autoneum Productions, Ltd. 1
A.W.F. Radio Products, Ltd. 146
Bemaz, V. 58
Belton Mfg. Co. 144
Bell & Lee, Ltd. 101
Bel-Sound Products, Ltd. 148
Bentzen, W. A. 126
Berry's (Phonograph) Wire, Ltd. 112
B. K. Partners, Ltd. 164
Bilbao Engineering, Ltd. 65
Bird, Ltd. 55
Braunit, Ltd. 64
British, Chas. (Radios), Ltd. 145
British Electrical, Ltd. 66
British Distributing Co. 150
British Institute of Engineering Technology 130
British Insulated Calhoun's Cables, Ltd. 1
British National Radio School 117
British-Royal Aeronautical Society 120
Brooks Crystal, Ltd. 90
Brown, S. 11
Brookes Crystals, Ltd. 90
Buck, Ltd. 60
Bulmer Engineering, Ltd. 19
C. & G. Kits 131
Candler System Co. 160
Cathodeon Crystals, Ltd. 160
Ceylon, Ltd. 77
Clement, J. 111
Clement, W. 111
Cooper, W. J. 111
Cooper, A. C. Ltd. 116
Corona (Radio) Ltd. 110
Co. Ltd. 110
Cowell, J. 117
Cylindrical, Ltd. 117
Dakota Condensers, Ltd. 92
Davies, A., & Co. 92
Deauville, Ltd. 160
Defe, A., & Co. 92
Dependable Radio Supplies 115
Department of Education, Ltd. 119
Department of Education, Lt
Catering for the unusual

The saving of space resulting from the use of these Upright Mounting Electrolytic Condensers is one of the chief reasons for their popularity.

Types CE170 to CE173 include a number of single and dual section capacities in current use in the European markets: a threaded moulded boss of $\frac{3}{8}$" diameter ensures interchangeability with Continental types.

Types 928 and 526 are of particular interest to designers of rectifier units as small and efficient substitutes for large high voltage paper condensers. Type 526 (1" and $\frac{3}{8}$" diam. boss) will be suitable for the majority of circuits, but in the exceptional cases of higher outputs or where something 'in hand' is required, Type 928 (3" diam. boss) with 800v. peak working is recommended.

All these condensers have high gain etched foil electrodes and are of "All-Aluminium" internal construction. The maximum working temperature of all types is 60°C.
PYE FACTORIES REPORT HOW

Ersin Multicore

SAVBIT
TYPE 1 ALLOY

REDUCES BIT WEAR AND IMPROVES SOLDERING

Under controlled conditions the bit on left, used with Savbit Alloy, made 10,000 joints. Centre bit, used for 1,000 joints and bit on right for 7,500 joints, were used with standard tin/lead alloy.

After extensive tests, L. W. Jones, Pye Works Director, reports the results from many Pye Factories. Here are a few examples:

"T.V. MANUFACTURING LTD., LOWESTOFT, have carried out tests which show a very considerable reduction in the soldering iron bit wear with a strong improvement in the quality. Also the price advantage is attractive to them."

"ROSEBERY WORKS, TOTTENHAM, state that soldering irons only require 25% maintenance as against the normal maintenance when using ordinary solder."

"LABGEAR (CAMBRIDGE) LTD., find that the soldering iron bit saving is as claimed by you. They are entirely satisfied with it, and all their orders have been amended to take this solder in future."

"HOLLOWAY ENGINEERING WORKS LTD., state that they do find a considerable saving in soldering iron maintenance. As an example at this company, I.F. transformer assembly need the irons dressing twice a day using standard solder, but using Savbit solder they obtain a service of 30,000 joints without attending to the iron other than an occasional wiping with a cloth."

"PYE IRELAND LIMITED, have found improvements in every direction with this Savbit solder, and they report that they like the solder better than the standard solder quite apart from the saving of the soldering bits."

SAVBIT

Approximately 170 ft. of 18 s.w.g. Ersin Multicore Savbit Type 1 Alloy is supplied on this 1 lb. reel. It is invaluable to all who are interested in cutting down on bit replacement and maintenance costs.

15/- each (subject).

HOME CONSTRUCTOR'S 2/6 PACK

Alternative specifications: 19 ft. of 18 s.w.g. 60/40 alloy wound on a reel or, for soldering printed circuits, 40 ft. of 22 s.w.g. 60/40 alloy wound on a reel. 2/6 each (subject).

Bib WIRE STRIPPER AND CUTTER

This 3 in 1 tool strips insulation without nicking the wire, cuts wire cleanly and splits plastic extruded twin flex. Adjustable to most wire thicknesses. 3/6 each (subject).

BIB RECORDING TAPE SPlicer

Joints can be quickly, easily and accurately made on this splicer. It has many refinements which are usually only found on splicers far more expensive. Soon pays for itself in tape economies. 18/6 each (subject).

MULTICORE SOLDERS LIMITED, MULTICORE WORKS, HEMEL HEMPSTEAD, HERTS. (BOXMOOR 3656)