BICC are world famous for their electrical and radio products. The Anti-Interference Aerial maintains this reputation.

What it does It has been specially designed to alleviate interference caused by radiation from electrically-operated transport, vehicle ignition systems, electrical appliances using commutator motors, lighting systems, etc. A high signal level is obtained and this ensures better listening on all broadcast wave-lengths, giving maximum choice of programmes against a quiet background.

What it is A 60-ft. polythene-protected dipole complete with insulators and matching transformer, 80-ft. coaxial screened downlead with polythene plug moulded to each end, and a receiver transformer. All the necessary components for the Aerial are included in the complete kit.

Write for Publication No.221-S giving further information. Obtainable only from recognised dealers. £6.18.0

BRITISH INSULATED CALLENDER'S CABLES LIMITED
NORFOLK HOUSE, NORFOLK STREET, LONDON, W.C.2
Fine Limits of Accuracy

AVO VALVE CHARACTERISTIC METER

A comprehensive instrument built into one compact and convenient case, which will test any standard receiving or small power transmitting valve on any of its normal characteristics under conditions corresponding to any desired set of D.C. electrode voltages. A patented method enables A.C. voltages of suitable magnitude to be used throughout the Tester, thus eliminating the costly regulation problems associated with D.C. testing methods.

A specially developed polarised relay protects the instrument against misuse or incorrect adjustment. This relay also affords a high measure of protection to the valve under test. Successive settings of the Main Selector Switch enable the following to be determined:

- Complete Valve Characteristics including I_a/V_g, I_s/V_a, I_s/V_g, I_a/V_a, Amplification Factor, Anode A.C. Resistance, 4 ranges of Mutual Conductance covering mA/V figures up to 25 mA/V at bias values up to +100V, together with "Good/Bad" comparison test on coloured scale against rated figures.

"Gas" test for indicating presence and magnitude of grid current, inter-electrode insulation hot and cold directly indicated in megohms, separate cathode-to-heater insulation with valve hot. Tests Rectifying and Signal Diode Valves under reservoir load conditions, and covers all the heater voltages up to 125 volts.

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.
WINDER HOUSE, DOUGLAS STREET, LONDON, S.W.1.
Phone: VICToria 3404-9
"It is on detail and care in design of small points that the modern set stands or falls"

"Radio Times," Sept. 24, 1948

Attention to details of manufacture and assembly; revolutionary design and the provision of highly accurate specially designed jigs, ensure that in each R. & A. Reproducer the cone, voice coil centre and outer pole are inevitably and automatically aligned upon the axis of the speaker. This is why R. & A. Reproducers are free from mechanical defects. Continuous inspection at all stages is a further insurance that no defect can be present in the complete speaker.

Reproducers and Amplifiers Limited
Frederick St. Wolverhampton England
Telephone Wolverhampton 22241
Telegram "Audio Wolverhampton"

Spring loaded terminals

A positive connection without solder - simply press & release
CRYSTAL DEVICES by Cosmocord

CRYSTAL PICK-UPS AND CARTRIDGES

G.P. 10 with "unbreakable" crystal. Output 1.5 mV at 1,000 c/s; range 50—8,000 c/s.

G.P. 12 high fidelity model with permanent sapphire stylus. Output 1 volt at 1,000 c/s; range 30—14,000 c/s.

G.P. 15 Microcell cartridge for microgroove or standard 78 rpm recordings.

GENERAL-PURPOSE MICROPHONES

For acoustic measurements, industrial noise measurement, disc recording technique, and P.A. systems.

Type MIC 16 (illustrated)
High-fidelity model with flat response from 30 to 10,000 c/s.

Type MIC 22
General purpose model with substantially flat response from 40 to 8,000 c/s.

DISC CUTTER HEADS

TYPE R.H. 1

Good performance and modest price make it ideal for amateur recordist.

TYPE R.H. 2

High-quality cutting head for professional use.

HEARING-AID MICROPHONES

ACOS technique ensures maximum performance within minimum practical dimension. Seven types and sizes available. Supplied only to hearing-aid manufacturers.

PILOTONE "Individual" LOUDSPEAKER

For hospital or personal use, giving quality equivalent to normal loudspeaker without disturbing others.

Solo distributors of the "Pilotone" in the British Isles, Mears, Philips Electrical Limited.

MEET US AT RADIOLYMPIA
SEPT 28—OCT 8

STAND No. 7 & DEMONSTRATION
ROOM No. D10, where you can hear sound reproduction at its best—the ACOS way!

COSMOCORD LTD ENFIELD MIDDLESEX ENGLAND
H.T. AND E.H.T. RELIABILITY

Many WESTINGHOUSE RECTIFIERS HAVE OVER 21 YEARS' SERVICE TO THEIR CREDIT

Typical rectifier for use in A.C. or A.C./D.C. receivers.

Type 36EHT rectifier. Two such units only 2¼" long by ½" dia. will give an output of 5.3kV.

"Westeht" E.H.T. supply unit. 5kV output from a 350-0-350 A.C. input.

WESTALITE RECTIFIERS
Write for details to Dept. W.W.7.
WESTINGHOUSE BRAKE & SIGNAL CO. LTD.
82, York Way, King's Cross, London, N. 1

Wireless World July, 1949

Plans for a neighbourly world

Marconi’s first wireless messages did more than enable nation to speak to nation. They drew closer the world’s boundaries, quickened the tempo of existence and turned distant acquaintances into next-door neighbours. Broadcasting has helped still further to increase our knowledge of our neighbours; wireless navigational aids and radar have brought greater safety and faster travel between Continents. And so Marconi’s will continue to pioneer. Their engineers are busy today on developments which will make the world a closer community tomorrow.

Marconi the greatest name in wireless
MARCONI'S WIRELESS TELEGRAPH COMPANY LTD., MARCONI HOUSE, CHELMSFORD, ESSEX.
DAILY DEMONSTRATIONS
of the “BARKER 148A” mounted in the
“RD” BASS REFLEX CABINET in con-
junction with the “RD” JUNIOR or
“WILLIAMSON” AMPLIFIERS.

Full details forwarded on request.

ROGERS DEVELOPMENTS CO.,
106 Heath Street, Hampstead, N.W.3

AN ATTEMPT TO REALISE AN IDEAL

In the High Quality World, let us commend
Patience, Perseverence, and Good Temper above all;
but also Skill and Intelligence.

The ultimate performance of a speaker unit—
especially if it is a very good one—depends as much on
the intelligence of the user as on the skill of the designer.

If you are a true quality enthusiast, perseveringly
pursuing an Ideal, then we know we can help you.

To readers in the North West, we demonstrate
the 148A and discuss its best possible use.

J. H. BRIERLEY (Gramophones and Recordings) LTD.,
46 Tithebarn Street, Liverpool, 2

M.R. C. BARKER’S 148A

In December 1947 we were complimented by the Wireless World on
some features of the Barker 148. These were: the excellent balance at
comparatively low levels; the homogeneity of high frequency response;
low frequency response sensibly uniform down to 40 c/s with no major
bass resonance.

Of the new 148A, with its better magnet and new cone treatment, owners
and critics have remarked: the attack and transient response give the
impression of contrast expansion; so wide a range of frequencies with
apparent evenness of output produces an aural naturalness which has to be
heard to be appreciated; it is the best baffle loaded speaker we have
ever heard.

We ourselves believe it to be the most NATURAL, satisfyingly truthful
and pleasant to live with sound reproducer made anywhere.

The unique constructional features,
patented in many countries and
exclusive to BARKER, contribute
to this performance. First is the
DUAL DRIVE shown on the left,
and second the cone LOGA-
RITHMIC CORRUGATIONS.

These produce a very smooth
highly damped acoustic generator
of exceptionally wide frequency
range and remarkable clarity. They
are described fully in a new leaflet
obtainable at the specialists who
join us in this announcement, or

from your usual dealer, or from our
monomark address

BCM/AADU, LONDON, W.C.1

The 148A is being sent to many
countries overseas.

EXPORT ENQUIRIES INVITED

MOST NATURAL SOUND REPRODUCER

ALWAYS THINK OF GOODSELL LTD.
FOR STANDARD AND SPECIAL
HIGH FIDELITY AMPLIFIERS

WEBB’S RADIO invite you to hear the
“Barker 148A” in our demonstration room,
from radio or the Brierley pick-up. You
will doubtless endorse our opinion that this
is an outstanding loud-speaker.

(Webb’s hire-purchase facilities
available on all equipment.)

Stockists for: BARKER,
MORDAUNT, VOIGT, LEAK,
CHARLES, BRIERLEY, AND
ALL “HI-FI” EQUIPMENT.

WEBB’S RADIO
14 Soho Street
London, W.1
SMALL OSCILLOSCOPE AND WOBBULATOR
Specially designed for Service Engineers

Oscilloscope Type 1/B
Time-base: 10—350,000 c.s.
X.Plates: Direct or Amplified.
Y.Plates: Direct or Amplified.
Miniature Valves and 1½" diameter C.R.T.
Dimensions: Height 7½" Width 5½" Depth 11"

Wobbulator Type 1/B
Separate Power Supply: 200-250V.
Output Voltage: 4V. R.M.S.
Nominal Frequency: 1.2 Mc/s.
Frequency Deviation: 0 to ±40 Kc/s.
Dimensions: Height 2½" Width 5½" Depth 11"

The two units clip together and are priced at

ONLY £20

ERSKINE LABORATORIES LTD—SCALBY, SCARBOROUGH, YORKS.

"SPIRE'S" WAY WITH YOUR ASSEMBLY COSTS

The mounting of this loudspeaker grille is achieved by the use of "Push-On" Type Spire Fixes on integral unthreaded moulded studs. Inserts eliminated; moulding costs reduced; assembly is REALLY FAST.

that's fixed that

Keeping assembly cost DOWN (and at the same time keeping assemblies safely together) can be a major production headache. Spire Speed Nuts answer that requirement. And many others as well. Acting on its own double-spring locking device, each Spire nut is speedier to put on, holds tighter when it's home. Awkward fixings and blind assemblies are tackled with equal ease by Spire. Sometimes threaded members can be eliminated altogether. Will you write for more information on Spire Speed Nuts—the fastest thing in fastenings?

Enquiries to: Simmonds Aerocessories Ltd., Byron House 7-8-9 St. James's St., London, S.W.1. Head Office and Works: Treforest, Glamorgan
The RC49 . . . a new, reliable Automatic Record Changer featuring PERFORMANCE, LIGHTNESS and LOW COST

Collaro's new Model RC49 more than fills a long felt need it brings you a reasonable priced record changer incorporating all the refinements hitherto associated only with expensive instruments plus many new features not to be found in any other record changer.

The RC49 loads, unloads, selects, plays repeats or rejects 10" or 12" records mixed in any order, by the operation of one single control knob.

The powerful induction-type MOTOR is suitable for 100/130 and 200/250 volts A.C., and incorporates the new "Rim Drive." Beautifully simple and completely reliable, the RC49 will give years of trouble-free service.

The

COLLARO

RC49

Automatic Record Changer

COLLARO LTD.,

RIPPLE WORKS, BY-PASS ROAD, BARKING, ESSEX

Telephones: Rippleway 3333 Telegrams: "KORLLARO, BARKING"
AN EXAMPLE from the Furzehill range of fine instruments is this high-grade oscilloscope for industrial, radio and television applications. Both axes have identical d.c. coupled high sensitivity amplifiers with symmetrical inputs and a level frequency characteristic from zero to 3 M/ce. Particularly valuable features are the instantaneous action of the shift controls, expansion of the time base scan from $\frac{1}{4}$ to 5 screen diameters, negligible phase shift in the amplifiers and automatic amplitude-limited synchronisation.

For full details of this, and other instruments in the Furzehill range, write for our new illustrated catalogue.
6F17

MINIATURE PULSE
AND R.F. BEAM TETRODE

The Mazda 6F17 is an indirectly heated miniature pulse and R.F. Beam Tetrode having an anode dissipation of 3.5 watts.

RATING

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage (volts)</td>
<td>Vh 6.3</td>
</tr>
<tr>
<td>Heater Current (amps)</td>
<td>Ih 0.3</td>
</tr>
<tr>
<td>Maximum Anode Voltage (volts)</td>
<td>Va(max) 600</td>
</tr>
<tr>
<td>Maximum Screen Voltage (volts)</td>
<td>Vs(max) 600</td>
</tr>
<tr>
<td>Mutual Conductance (mA/V)</td>
<td>Rm 8.3</td>
</tr>
<tr>
<td>Maximum Anode Dissipation (watts)</td>
<td>Pa 13.5</td>
</tr>
<tr>
<td>Maximum Screen Dissipation (watts)</td>
<td>Pg2 0.7</td>
</tr>
</tbody>
</table>

* Tested under pulse conditions and taken at Va - Vg2 = 250v; Vgl = -6.25v; Ia = 64mA (approx.)
† If used in a can at maximum rating the can must be matt black both internally and externally.

Further details given on application to the Radio Division.

EDISWAN

MAZDA

RADIO VALVES AND TELEVISION TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
GOODSELL

15 WATT HI-FIDELITY AMPLIFIERS
are unsurpassed in performance

AS DESCRIBED BY T. D. N. WILLIAMSON IN "Wireless World," MAY, 1947

Manufactured by
GOODSELL LTD. 40 GARDNER ST. BRIGHTON Tel. 6735
Easy Terms from LONDON RADIO SUPPLY CO. Balcombe, Sussex

MODEL ILLUSTRATED
IS OUR P.X. 25
Price £30.10.0

WILL GO INTO A MATCH-BOX
and every single one is DEAD ACCURATE in size

That's how Thompson's work. Whether you require large or small turnings in wood, Thompson's will make them exactly to your specification.

W. & J. R. THOMPSON
(Woodturners) Limited EST. 1862
CROSSHILLS, KEIGHLEY, YORKSHIRE
Phone: Crosshills 2312-3 (2 lines) Grams: Turnwood, Crosshills

400 OF THOMPSON'S TINIEST TURNINGS

AUTOmatic COIL WINDING MACHINES
AND HAND WINDING MACHINES
Machines supplied complete with stand motor and Two-speed Friction Clutch

SOLE AGENTS ABROAD:
K. G. Khosla & Co., 22 School Lane, New Delhi, India.
J. P. Fielding Co. (Canada), 131 Ontario Street, St. Catherines, Ontario.
Hefte & Frøgg, Oslo, Norway, Storgaten, 15.

ETA TOOL CO
(LEICESTER) LTD.
29a, WELFORD ROAD, LEICESTER
Phone: 5386
They speak for themselves...

fidelity of response
speaks for itself to the
discriminating ear.

Precision manufacture is
no less eloquent to the
trained engineer. These
qualities make
TRUVOX speakers famous

The SS10A 12-inch
Heavy Duty Speaker,
illustrated, offering a
frequency response from
55 to 11,000 c.p.s. and
handling 10 watts is
a typical example of
TRUVOX workmanship.

TRUVOX ENGINEERING CO. LTD • EXHIBITION GDS • WEMBLEY • ENGLAND
Precision with a Pedigree

FREQUENCY MEASURING EQUIPMENT

Type TME 1

Years ago, the frequency measuring equipments made by Marconi's were for their own use—because nowhere else could sufficiently accurate instruments be obtained. The present equipment therefore, Type TME 1, boasts a long and distinguished pedigree and, like its predecessors, is precision-built to an exacting specification. Anywhere in the world it can be rapidly installed and its rated stability of 1 part in 10⁶ maintained indefinitely. In price too, it commends itself as the ideal laboratory standard. Please ask for further details. Type TME 1 Frequency Measuring Equipment is available for early delivery.

CLEARANCE SALE—JULY 1-31

Ex-demonstration and experimental equipment, shop soiled and redundant stock to be sold at “give away” prices. A few examples are as follows:

- **RDI High Fidelity Amplifier**. Ex. dem. model. (List £32 10s. 0d.) ………………………. £12 10 0
- **15-watt P.A. Amplifier**. Input for MIC or P.U. In grey linoleum cabinet. ……………… £10 10 0
- **Wide range Audio Oscillator**. Working but needs slight attention. ………………… £4 10 0
- **Baker 12in. Energised Loudspeaker** ……………………… £2 10 0

(The above to callers only)

A list giving other single items, and details of the many components available will be forwarded on request.

NEW HIGHER LOUDSPEAKERS AND CABINETS

- **Goodmans “Axiom 22,” high flux version of the “Axiom 12”** ………………………. £12 13 0
- **Goodmans R22/1206, high flux bass loudspeaker. Resonance 55 cps.** ……………… £11 0 0
- **Bass Reflex Cabinet for the “R22” and “Axiom 22.”** Very solidly constructed and finished in figured Walnut. Carriage 10s. ………………………. £16 16 0
- **“RD Junior” corner reflex cabinet for the Wharfedale W10,CS.** Compact and attractive design giving good bass response down to 35 cps. Carriage 10s. ………………………. £12 10 0
- **Wharfedale W10,CS Loudspeaker** ……………………… £7 0 0

A full description and photograph of the “RD Junior” cabinet will be forwarded on request.

WOLSEY TELEVISION AERIALS

From Single Dipole to the Triple Reflector model illustrated, every WOLSEY Tele Aerial is the most efficient of its type. Many years’ experience of aerials has had to be put to good use!

THE FIRST AND MOST SUCCESSFUL TRIPLE REFLECTOR ARRAY

Giving increased gain for fringe areas and greatly reduced interference in town areas.

SEND FOR BROCHURES

WOLSEY TELEVISION LTD,
75, GRESHAM RD., BRIXTON, LONDON, S.W.9

Established 1934
"... Productivity bears an important relationship to the amount of energy available per employee. In the United States this figure is approximately twice that in the United Kingdom..."

Asked to comment, our Managing Director (the sly old thing) said (in what he fondly imagined to be the courtly accents of old Virginnny): Ah sho will suh! What that grand ole Council says right now, those same verry words is what ah've bin a-tellin' and a-tellin' you-all ev'eh since old Methoosalem. That po' ole British Workin' Man he jes' sweats and strains body all achin' and racked with pains; lifts dat screwdriver, totes dat brace... Uh! Uh! Uh! Lawdy, lawdy, you-all sho must give that po' fella mo' hoss-power. Yassuh! Hoss-power. Nothin' else but.

Call up dem little horses

DESOULTTER

Specialists in Lightweight Pneumatic and Electric Portable Tools.

Your designs
LET US BRING THEM TO
LIFE!

Made in Three Principal Materials

FREQUELEX
An insulating material of Low Di-electric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

the most difficult problems solved by...

Bullers
BULLERS LOW LOSS CERAMICS

BULLERS LTD., 6, LAURENCE POUNTNEY HILL, LONDON, E.C.4
Telephone: Mansion House 9971 (3 lines) Telegrams: "Bullers, Cannon, London"

AN ADVANCE IN MEASUREMENT!

CALIBRATED WIDE RANGE cathode ray oscillograph with simple controls and large screen, combined with the measuring facilities of a valve voltmeter.

THE NAGARD

UNIT CONSTRUCTION in one case provides alternative time bases or amplifiers and improvements at minimum cost. Adequate power supply for all requirements in separate easily portable case.

TYPE 103

STANDARD UNITS include:— D.C. AMPLIFIER of high sensitivity — less than 1 mV. per. cm. with linear response 0-2.5 M.c/s. TIME BASE with calibrated velocity from 10 c/s to 1 M.c/s automatic synchronisation and free from effects of mains variations.

OSCILLOGRAPH & OSCILLOMETER

INPUT SIGNAL VOLTAGES measurable by directly calibrated Y shift control, independently of amplifier gain.

THE ONLY PORTABLE instrument combining all the above for the purposes of enabling you to SEE WHAT YOU MEASURE—MEASURE WHAT YOU SEE AT HIGH OR LOW FREQUENCIES AND D.C.

NAGARD LTD.
245 BRIXTON ROAD, LONDON, S.W.9.
Phone: Brixton 3550.
Grams: Interetl, Claproad, London.

the finest in electronic valves

Supplied to ADA by R.C.A., ADA electron valves are designed to satisfy completely the requirements of radio receivers, service, amateur and laboratory equipment. Sturdily constructed and thoroughly tested, every ADA valve is guaranteed to give long, trouble-free use.
The ADA trademark is your assurance of dependable performance and durability.

Other ADA products:
Household and Commercial Refrigerators
Radios and Components
Home Appliances

AD. AURIEMA, INC. 89 Broad St., New York 4, N.Y., U.S.A.
Cable Address: AURIEMA, NEW YORK
ACHIEVEMENT!

Standard condenser technique now reduced to midget dimensions

HIGH INSULATION RESISTANCE

LOW POWER FACTOR.

Solid aluminium foil

Two layers of paper dielectric

Neoprene sealed

In aluminium tube

New miniature 'METALMITES'

WHEN size is the limiting factor, T.C.C. can supply the answer. Here, in the new Metalmite, is a real paper and foil condenser magically reduced to Lilliputian dimensions. Specially built to withstand wide temperature variations between -40°C to +100°C, and conditions of high humidity. Its sturdy, rugged construction makes it ideal for use in portable transmitters and receivers — also for deaf aid equipment. In capacities from 0.0002 mfd. 500 volts D.C. to 0.01 mfd. 200 volts D.C. — full details on request.

THE TELEGRAPH CONDENSER CO. LTD

RADIO DIVISION: NORTH ACTON, LONDON, W.3 TELEPHONE: ACORN 0061
H.P. RADIO SERVICES LTD.

OFFER

The following items represent unique value in Government Surplus Radio Equipment.

40 Valve Radar Receivers. Type R-31 APS-2E. A magnificent instrument. Absolutely brand new and unused in original manufacturer's packaging cases. Fitted two Cathode Ray Tubes. One type 5FP7 5in. diameter. Magnetic deflection and one 2AP1 2in. electrostatic. Yoke fitted compr. 8 B6LG, 13 6SN7, 1 2X2, 2 6H6, 2 6X5, 8 6A6G7, 3 VR106, etc. Has Blow-xr motor cooling fan, 3 panel meters and a fabulous quantity of components. Input 115v, 400 c. Size 26 in. x 19 in. x 12 in. housed in a fine black cradle case. Original case approx. £150 each. A few only available and offered subject to being unsold at 16 gns. each. Carriage 10/- extra. Available in British Isles only.

AR88. 13 Valve Communication Receivers. 230v. Immaculate condition. 5 only £40 each. Carr. paid.

1155 Receivers. Really beautiful condition. 10 valve Communication Receiver of outstanding efficiency. £6 each. Carr 5/-. Available.

H.P. RADIO SERVICES LTD.

Britain's Leading Radio Mail Order House
55 COUNTY RD., WALTON, LIVERPOOL 4
Established 1935
STAFF CALL SIGNS G3DLV, G3DG

Wireless World

July, 1949

MAINS TRANSFORMERS SCREENED, FULLY INTERLEAVED AND IMPREGNATED.

H.S.63. Input 200/250 v. Output 250/250 v., 60 ma, 6.3 v, 3 amps, 5 v, 2 amps. ... 15/6

H.S.40. Windings as above. 4 v, 4 amps. 4 v, 2 amps. ... 15/6

Input Output

H.S.2. 200/250 v, 250/0/250 v. 80 ma. ... 17/6

H.S.30. 200/250 v, 300/0/300 v. 80 ma. ... 17/6

H.S.1. 250/0/250 v, 250/0/250 v. 100 ma. ... 17/6

H.S.2. 250/0/250 v, 250/0/250 v. 100 ma. ... 19/6

H.S.30. 200/250 v, 300/0/300 v. 100 ma. ... 19/6

H.S.1. 250/0/250 v, 250/0/250 v. 100 ma. ... 19/6

F.5.2. 750/0/250 v, 250/0/250 v. 80 ma. ... 19/6

F.S.30. 200/250 v, 300/0/300 v, 100 ma. ... 19/6

F.5.3. 750/0/250 v, 250/0/250 v. 80 ma. ... 19/6

F.2. 250/0/250 v, 250/0/250 v. 100 ma. ... 19/6

F.5.30. 200/250 v, 300/0/300 v, 100 ma. ... 19/6

F.3. 750/0/250 v, 250/0/250 v. 100 ma. ... 21/6

All above have 6.3-4.0 v, at 4 amps. 5-40 at 2 amps.

200 ma, 6.3 v, 4amps C.T., 6.3 v, 4 amps C.T. ... 42/6

5 v, 3 amps. ... 42/6

250 ma, 6.3 v, 4amps C.T. ... 42/6

2 amps, 4 v, 3 amps. ... 49/6

250 ma, 6.3 v, 2 amps. C.T., 6.3 v, 4 amps C.T.,

6 v, 3 amps. ... 77/6

5 v, 3 amps. ... 77/6

F.36X. Input 200/250 v. Output 300/300 v.

200 ma, 6.3 v, 7 amps. 5 v, 2 amps. ... 26/6

E.H.T.2. 2,000 v, 5 ma., 2-0-2,7 v, 2, 4 v, 1.1 amps. ... 35/-

F.4. Filament Transformer. Input 200/250 v. ... 7/6

4 v. 2 amps. ... 7/6

F.4. Filament Transformer. Input 200/250 v. ... 7/6

6 v, 3 amps. ... 7/6

F.24. Filament Transformer. Input 200/250 v. ... 15/6

24 v. ... 21/6

C.W.O. (add 1/- in £ for carriage), all orders over £2 carriage paid.

H. ASHWORTH (Dept. W.W.)
676, GREAT HORTON RD., BRADFORD, YORKS.

THE KI AMPLIFIER KIT

The KI Kit is undoubtedly the best high fidelity amplifier kit available at the price. Absolutely complete, very simple to construct, the performance matches up to the high standard reached by moving coil pickups. We recommend either moving coil pickups or miniature moving iron types, such as the Connoisseur, which may be used without the transformer. 7 valves are used to ensure a very low distortion level, the output stage being tetodes with negative feedback. Price 13 gns.

Blueprint separately 2/6d.

DEFERRED TERMS NOW AVAILABLE

"LIVING MUSIC" our fully illustrated shop catalogue showing complete range of amplifiers and tuning units. Write for your copy today, enclosing 5d. in stamps.

H. P. RADIO SERVICES LTD.

Im PALACE GATE, KENSINGTON, LONDON, W.8
Telephone: WESTERN 3320
Our equipment can now be seen and heard at UNIVERSITY RECORDING CO., 16, BURLINGTON PLACE, CAMBRIDGE
Telephone: CAMBRIDGE 4947
The talk of the B.I.F. 1949

The first public appearance of the "Soundmirror"—at the B.I.F.—was an overwhelming success. Hundreds of serious enquirers, from home and overseas, crowded the Stand each day. During the whole Fair the "Soundmirror" was viewed and demonstrated to thousands who were unanimous in their opinion that it was the outstanding feature of the show.

To enumerate the host of compliments paid to this remarkable machine would take a catalogue of considerable dimensions, but here are its salient features:

- 30 minutes' continuous recording.
- Highest fidelity reproduction without scratch or extraneous noises.
- One single finger tip control provides for play—record—rewind—or fast forward requirements.
- Automatic erasure as each new recording is made.
- Recordings are permanent—can be played an indefinite number of times.
- Uses reels of "Magic Ribbon Paper Tape"—easily handled, easily stored, inexpensive.

Made by the makers of the famous
Recordon Dictating Machine

THERMIonic PRODUCTS LTD., LEADERS IN THE FIELD OF MAGNETIC RECORDING
Head Office: Morris House, Jermyn Street, Haymarket, London, S.W.1
Telephone: Whitehall 6422/3
TELEVISOR, SHORT WAVE & GENERAL COMPONENTS
CATALOGUE NOW AVAILABLE Price 6d. each POST FREE.
Includes itemised list for Wireless World and Electronic Engineering Televisions

GREATEST BARGAIN
ever offered in Government Surplus

TR9 TRANSMITTER/RECEIVER
LESS VALVES
complete in transit case as illustrated.

12/6d. CARRIAGE FREE

These equipments were in working order before being stored in the open, but their general condition has now deteriorated.

BRIERLEY PICKUPS

Ribbon, type JB'P'R/2
Microarmature, type JB'P'A/1

Recent comparative tests have shown that with the best modern recordings some improvement in performance is obtained by the use of a "special" point shape.
In practice, we naturally endeavour to obtain a shape as near as possible to the cutting stylus whilst retaining the essential characteristics of a reproducing point.
We can supply to order Ribbon and Microarmature pickups with points having a lateral radius of 0.025" approx; a longitudinal radius of 0.005" approx; and a near vertical leading "edge".

CONSISTENTLY Accurate

PULLIN

INDUSTRIAL MEASUREMENT

A Linear Scale Bridge-type Ohmmeter, with press key, designed for routine production testing of all resistive components. For battery or A.C. mains operation. (A.C. mains operated instruments are compensated for voltage variations up to 15%.) Designed and constructed to withstand severe industrial use. Available as single or multi-range.

Address all enquiries to
MEASURING INSTRUMENTS (PULLIN) LTD
Electrin Works, Winchester St, London, W.3
Telephone: ACorn 4651/3 & 4995

For the time being these capacitors are only available to manufacturers of radio and electronic equipment.

By the application of special manufacturing techniques we are producing "Drilitic" Capacitors to a high level of engineering efficiency. The equivalent series resistance and leakage current have been reduced, breakdown voltage and life expectancy have been increased and both the audio and radio frequency impedances, together with the temperature characteristics have been improved. In addition to these finer electrical characteristics "Drilitic" Capacitors are extremely small in physical size. To obtain the maximum advantage from the small size, Ear Mounting "Drilitic" Capacitors are now available to provide a more rapid and efficient means of fixing. They are obtainable in single and multiple capacitor forms and in a wide range of capacitances and voltages. High ripple current "Drilitic" Capacitors for television and electronic apparatus, and high temperature "Drilitic" Capacitors for equipment with high ambient temperature or for tropical operation are also available.

We shall be pleased to forward full details of these latest engineering developments together with the eleven points of special interest, upon application.
For visual alignment of tuned circuits such as I.F. and R.F. stages in radio and communication receivers the Model 1400B Visual Alignment Signal Generator and Model 1200B Oscilloscope are available.

D.C. AMPLIFICATION

The Model 1200B Cathode Ray Oscilloscope is outstanding by virtue of its design and price. It is the most economic D.C. amplifier Oscilloscope offered on the British market.

Model 1400B Unit

- Has a frequency range of 400-500kc/s and 800-1,000 kc/s; the range can cover 100 kc/s to 60 Mc/s when used with an external signal generator.
- Frequency deviation is variable from 1 kc/s to 50 kc/s.

Model 1200B

- Oscilloscope has high gain D.C. amplifiers on X & Y axes, linear time base with perfect synchronisation arrangements. A special feature is the complete functional independence of controls.
- Dimensions: The overall size of the two instruments is only 7" wide, 11" high, 9" deep.

Early Deliveries

<table>
<thead>
<tr>
<th>PRICE:</th>
<th>Model 1400B Unit £8. 10. 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1200B Oscilloscope £32. 0. 0.</td>
</tr>
</tbody>
</table>

Write for full details to:

INDUSTRIAL ELECTRONICS

99, GRAY'S INN ROAD, LONDON, W.C.I.

Wireless World

July, 1949

Wharfedale

BANTAM LOUDSPEAKER

5½" x 5¼" x 2½"

PRICE

45/- less Transformer

A very attractive new model in wood-filled plastic. Available in Pearl, Cream or Pastel Green. Maximum acoustic output is attained by fitting a specially made speaker with 4½" die-cast chassis. Maximum input 1½ watts. The Bantam carries the usual Wharfedale guarantee and gives ample volume for any room of average size. Ideal for small shelf or bedside table.

WHARFEDALE WIRELESS WORKS

BRADFORD ROAD, IDLE, BRADFORD.

Telephone: Idle 461
Telegram: Wharfel, Idle, Bradford

"WEYRAD" B-A-N-D-S-P-R-E-A-D UNITS.

WITH OR WITHOUT R.F. STAGE—NINE WAVEBANDS

<table>
<thead>
<tr>
<th>EXPORT</th>
<th>SIZE WITH R.F. STAGE 8¼" x 43¼" x 2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 mrs.</td>
<td>19 "</td>
</tr>
<tr>
<td>16</td>
<td>23 "</td>
</tr>
<tr>
<td>19</td>
<td>31 "</td>
</tr>
<tr>
<td>22</td>
<td>41 "</td>
</tr>
<tr>
<td>13-43</td>
<td>Moulded formers with Iron Cores—air 43-140</td>
</tr>
<tr>
<td>14-40</td>
<td>dielectric trimmers employed throughout 175-570</td>
</tr>
<tr>
<td>175-570</td>
<td>Gram L.W., Gram</td>
</tr>
</tbody>
</table>

BANDSPREAD FREQUENCY RATIO 1.1:1

RETAIL With R.F. Stage £6/15/- plus P.T. £1/12/2.

PRICE Without R.F. Stage £4/14/6 plus P.T. £1/2/6.

These units are designed for use with a chassis plate assembly complete with special tuning condenser and valve holder(s).

1st I.F. position (Weyrad P3) and all fixing holes punched—for use with EF80 and ECH35 valves.

RETAIL With R.F. Stage £1/11/2.

PRICE Without R.F. Stage £1/10.

Special Discounts for Quantities.

WEYMOUTH RADIO MFG. CO., LTD., CRESCENT WORKS, WEYMOUTH, DORSET.

Manufacturers enquiries invited.
CERAMICS FOR VALVE HOLDERS
and all radio components
FREQUENTITE — FARADEX — TEMPRADEX

STEATITE & PORCELAIN PRODUCTS LTD.

Stourport on Severn, Worcester
Telephone: Stourport 111
Telegrams: Steatain, Stourport
High Voltage Testing of insulated components has hitherto meant, in many instances, complete destruction of units below standard. Furthermore, such tests have involved appreciably long periods of time.

This Airmec non-destructive high voltage insulation tester will give immediate indication of weakness in insulation before breakdown voltage is reached. It will indicate the maximum safe voltage at which insulation can be worked and will show whether or not ionisation is present within the insulation. The instrument is self-contained, portable, low in cost, and safe to operate. It may be used by unskilled personnel and is many times faster in use than other test equipment. Voltages up to 5kV are available.

For testing radio and electrical components, motor and transformer windings, insulated wire and cables, and determining deterioration of insulation after storage.

AIRMEC LABORATORIES LIMITED
HIGH WYCOMBE - BUCKINGHAMSHIRE - ENGLAND
Telephone: High Wycombe 2060 Cables: Comnalaib
Manufacturers of all types of Industrial Electronic Equipment and Test Gear

High Fidelity Reproduction.

The S. G. Brown Type "K" Moving Coil head-phones, with the following outstanding characteristics, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

CHARACTERISTICS.
D. O. RESISTANCE, 47 Ohms.
IMPEDEANCE 52 Ohms at 1,000 C.P.S.
SENSITIVITY, 1.2 x 10^-8 Watts
at 1ke. = 0.0002 Dyne/cm²

Descriptive Literature on request

PRICE £5.5.0 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 30/- to 77/6) write for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE

S.G.Brown. Ltd.
SHAKESPEARE STREET, WATFORD, HERTS.

BROWN—E.R.D. 13 inch Portable Disc Recorder
An important S. G. Brown product

BROWN—E.R.D.
DISC RECORDER
Incorporating the latest advances in Sound-on-Disc Recording

Write for interesting brochures presenting full technical details of this latest development in Sound-on-Disc recording. Also 17 inch models for the Professional user.

S. G. BROWN LTD., Shakespeare St., WATFORD
Established in Electro-Acoustics and High precision Engineering for over 40 years. Manufacturers of the world-famous 'BROWN' Gyro Compass.

Telephone: Watford 7241
This Receiver consists of 4 units:
The Sound Receiver, Vision Receiver, Time Base and Power Pack. As is usual in all Premier Kits, every single item down to the last bolt and nut is supplied. All chassis are punched and layout diagrams and theoretical circuits are included.

The cost of the Kits of Parts is as follows:
- Vision Receiver with valves £3 13 6
- Sound Receiver with valves £2 14 6
- Time Base with valves £2 7 6
- Power Supply Unit with valves £6 3 0

In addition you will need:
- VCR97 Cathode Ray Tube £1 15 0
- Set of Tube Fittings and Socket £7 0
- 6in. PM Moving Coil Speaker £16 6

The Instruction Book costs £2 6, but is credited if a Kit for the complete Televisor is Purchased.

Any of these Kits may be purchased separately; in fact any single part can be supplied. A complete priced list of all parts will be found in the Instruction Book.

A GLANCE AT THE PRICES WILL SHOW THAT THIS IS THE GREATEST VALUE OFFER PREMIER HAVE EVER MADE

WORKING MODELS CAN BE SEEN DURING TRANSMITTING HOURS AT OUR FLEET STREET AND EDGWARE ROAD BRANCHES.
LONDON CENTRAL RADIO STORES

Government Surplus—From Stock

SIGNAL GENERATOR, Type 1-130-A

FOR CALLERS ONLY.

This battery operated U.S. Army Test Equipment was made by Bendix. Essential to all aircraft operators using V.H.F. R.T. equipment. Designed for tuning and testing the American SCR522 Equipment and for the British 1146, 1144, etc. Supplied with Field Strength Meter in strong transit case .. £27.10.0

INDICATOR UNITS:
Contains: 1, VCR187; 2, VCR190 Tubes suitable for Television, etc. Four EA50 Diode Valves, four SP61, one each 6J5, 6DA, Chystroval valve, 24 v. Blower Meter, 22v. 0-1 milliammeter, Transformers, Condensers, Resistances, Potentiometers, etc. Curr. paid .. £4.17.6

PHOTO-ELECTRIC CELLS
Type G516
These are the gas-filled type with caesium Cathode Made by Cintel. Minimum sensitivity 100μA/lumen, working volts 100 D.C. or peak A.C. Projected cathode area 16 sq. cm. Suitable for 16 mm. Home Cinema Talkie equipment, Safety Devices, Colour and Photo Matching, Burglar Alarms, Automatic Counting, Door Opening, etc. Brand new in original cartons 42.6

NEW SIGNAL LAMPS, Ex-U.S. Navy
With four colour code slip-on covers, complete with cable and switch. In carrying case, 9 x 9 x 9cm .. 22.6

PHOTO ELECTRIC CELLS
Small infra-red image, glass converter tube. Type C.V. 143 50-100 v. Suitable for all purposes. Special price for 2 months only ... 14.0

MINE DETECTOR PANEL
3 valves, one pair headphones L.R. (Battery Model). In metal case 25.0

CHARGING BOARDS. Control Panels Only 24 v. 1,200 watts. Includes five 1½ in. moving coil ammeters (1, 0-40 a; 4, 0-15 a.). One moving coil voltmeter 0-40 v. Five heavy duty sliding resistances, etc. complete in metal case as shown with fold-back doors. Size 18 x 17 2½ ins. Offered at least 15% below the component value. Price Carriage extra ... £4.19.6

PLEASE NOTE
• All carriage paid unless otherwise stated.
• Carriage charges relate to British Isles only.
• We do not issue lists or catalogues.
• We have hundreds of items in stock too numerous to list, including Special Admittance Transmitters, Receivers, etc., so when in Town pay its a visit.

23, LILE ST. (GRerard 2969) LONDON, W.C.2
Closed Thurs. 1 p.m. Open all day Sat. and weekdays 9 a.m.—6 p.m.

Wireless World
July, 1949

HIVAC
THE SCIENTIFIC
BRITISH
MADE

Pioneers in Small Valves

Stereoscopic Fridges, Baskets, Furniture

THE ADDRESS FOR:
211 NEW HOLLAND HOUSE,
SWAN HILL, PRESCOTT,
Harrow-on-the-Hill, Middlesex.

7 Small sizes!

108 15B 20B
228 30B 40B
508

Our Silvered Mica Capacitors are made in all values between 3 pF and 7000 pF. Our aim is to supply these Capacitors with the smallest possible dimensions, and we have a range of 7 sizes which allows us to offer for almost any capacitance a "made-to-measure" type.

STABILITY RADIO COMPONENTS LTD
14, NORMAN'S BUILDINGS,
CENTRAL STREET, LONDON, E.C.1
Telephone : CLErkenwell 5977
NEW LEAK "POINT ONE" AMPLIFIERS

REMOTE CONTROL PRE-AMPLIFIER RC/PA
£6 - 15 - 0 list.

An original feedback tone-control circuit which will become a standard.
No resonant circuits employed.

- Distortion: Less than 0.05%.
- Switching for Pick-up, Microphone and Radio, with automatic alteration of tone-control characteristics.
- High sensitivities. Will operate from any moving-coil, moving iron or crystal P-U.; from any moving-coil microphone; from any radio unit.
- Controls: Input Selector; Bass Gain and Loss; Treble Gain and Loss; Volume.
- Output Impedance: 0.30,000Ω at 20 kc.p.s.

The unit will mount on motor-board through a cut-out of 10¾in. x 3½in., or it can be bolted to the power amplifier, when, with a top cover, the whole assembly becomes portable.

For use only with LEAK amplifiers.

Used with the RC/PA pre-amplifier and the best complementary equipment the TL/12 power amplifier gives to the music-lover a quality of reproduction unsurpassed by any equipment at any price. It is designed in a form so that the power amplifier can be housed in the base of a cabinet and the small pre-amplifier mounted in a position best suited to the user.

DO YOU KNOW what these performance figures mean?—

PHASE MARGIN 20° ± 10°

GAIN MARGIN 10db ± 6db

They are of vital importance, for the "goodness" of a multi-stage feedback amplifier cannot be taken for granted in the absence of this information, however impressive the rest of the specification may seem. We believe ourselves to be the only organization advertising these figures. Our booklet explains them, and "Cathode Ray" also deals with them ("Wireless World", May 1949).

If you would like to know more about amplifiers in general, and the TL/12 and RC/PA in particular,

WRITE FOR BOOKLET W/TL/12

H. J. LEAK & CO. LTD. (Est. 1934)

BRUNEL ROAD, WESTWAY FACTORY ESTATE, ACTON, W.3.

TL/12 12W. TRIPLE LOOP POWER AMPLIFIER
£25 - 15 - 0 list.
Inductance Meter

Designed to provide simple and direct reading measurement of inductance values between 0.05 microhenry and 100 millihenrys. A stable variable-frequency oscillator is used to resonate the unknown inductance with a fixed standard capacitor. Provision is made for the measurement of Q at resonance frequency. Calibration and scale reading accuracy are sufficient to provide direct readings of inductance values within 2% cent. above one microhenry. Relative measurement can be made with greater accuracy. The instrument is very compact, measuring only 7 1/2" high, 7 1/2" wide and 7 1/2" deep at base. **Price £38.5.0**

Type 26 V.H.F. Converter

We are pleased to be able to offer Type 26 R.F. U.H.F. Converter Unit as illustrated.

This unit covers 50-60 M/cs without modification. Can be used with any super-het covering 7.5 M/cs (40 metres). Requires 6.3 v. l amp. for heaters, 250-300 v. 30 m.A. H.T. Three tuned stages R.F., mixer and oscillator. Fitted with Muirhead Slow Motion Drive. All internal parts and chassis silver-plated. Ideal for 5-metre and Birmingham television bands.

BRAND NEW. IN ORIGINAL CARTONS. Order at once to avoid disappointment. 35/-

In addition to the above, many other bargains are available. Send 3d. in stamps for our No. 8 special offers list and Raymart new illustrated catalogue and price list.

Please tell us of OTHER applications

Drayton "Hydrolax" Metal Bellows are an essential component part in Automatic coolant regulation...
Movement for pressure change...
Packs gland to seal spindle in high vacua...
Reservoir to accept liquid expansion...
Dashpot or delay device...
Barometric measurement or control...
Pressured couplings where vibration or movement is present...
Dust seal to prevent ingress of dirt...
Pressure reducing valves...
Hydraulic transmission...
Distance thermostat control...
Low torque flexible coupling...
Pressure sealed rocking movement...
Pressured rotating shaft seals...
Aircraft pressurised cabin control...
Refrigeration expansion valves...
Thermostatic Steam Traps...
Pressure amplifiers...
Differential pressure measurements...
Thermostatic operation of louvre or damper.

for HYDRAULICALLY FORMED

Seamless, one-piece, metal bellows combining the properties of a compression spring able to withstand repeated flexing, a packless gland and a container which can be hermetically sealed. Made by a process unique in this country, they are tough, resilient, with a uniformity of life, performance and reliability in operation unobtainable by any other method.

Drayton Metal Bellows

Write for List No. N800-1 DRAYTON REGULATOR & INSTRUMENT CO. LTD., WEST DRAYTON, MIDDLESEX. West Drayton 2611 B.8
The "INSIDE STORY"
of OSRAM VALVE B65

This is a double triode designed for use in push-pull, parallel or cascade circuits. The valve is octal based, compact in design, and apart from the common 6-3 volt, 0-6 amp. heater, the two sections are entirely independent.

1 MICA SPACER—anchors the various electrodes in accurately locked positions. It is sprayed with magnesia to provide high surface insulation.

2 CONTROL GRIDS—Molybdenum wire wound onto copper rod supports.

3 GETTER CUP & PATCH. The metal barium, contained in the cup is deposited in a silvery film on the inside wall of the bulb. It maintains a high vacuum condition during the life of the valve.

4 TWO PART BASE ensures reliable fixture of base to bulb.

5 ANODES are carbonised externally to enhance heat radiation.

6 ANODE RIBBING. Designed to impart additional mechanical strength to anode assembly.

7 EYELETS for easy assembly of anode plates. Reducing spot welding to a minimum.

Osram
S.E.C.
Osram

PHOTO CELLS
CATHODE RAY TUBES
VALVES

THE GENERAL ELECTRIC CO., LTD., MAGNET HOUSE, KINGSWAY, W.C.2.
M.R. SUPPLIES Ltd.

will always be to the forefront with the most dependable offers in Electro-Tenchnical Material. Full and fair descriptions. Immediate delivery. Latest list sent with each dispatch. All prices net.

HIGH-DEF. BATTERY CHARGERS. Operation 200/250 v. up to 20,000 v. Output 2,500 A. (nominal—capable of higher loadings.) Enclosed 10 steel housing approx. 38 in. by 15 in. by 15 in. 65—. Also a few double-chamber, 250 A. output 125 A. (no taps), input 115 A. (no taps), input 115 A., output 220 A., output 115 A. by 115 A. by 65—. Cartridges either 1/4.5.

FULL-WAVE SELENIDE RECTIFIERS (A.T.C.) D.C. delivery 24 v. 2.5 amperes. (A.C. input 24 v.) Special opportunity, 15/6 each.

MICROAMMETERS, 30m. Full brass, centre-zero, 100-0-100 micro-amps, first-class make, brand new. Perfectly sensitive galvanometer. 95—. Also Microammeter centre-zero model, 0-300 micro-amps, only 11 in. diameter, with fixing plate, 15—. 32 in./each.

AMMETERS, 0-10 amp. Full-grade micro-amps, calibrated at 50 c. 17—.

RELAY RANKS. Each rank consists four P.O. type Relays, 2,000 ohms, coil only 6 amp. change in series and one 4000, with 6 amp. switchers. Wires to terminal points and relays enclosed in brass housing 0 in. by 2 in. by 2 in. with terminal panels projecting. All brass, new, 15—.

MINIATURE RELAYS. Note the very small dimensions. 11 in. by 3 in., type D.43084. Coil 0.15 ohm, switching 5 single-pole O.C. (painted contacts—polystyrene, 7½ each. Special prices for quantities.

COIL SPEAKERS—MICROPHONES. On P.O. Stockmanship, 5 in., with moveable arm and magnet, coil 10 ohms, perfect as extension speaker, or microphone and right for intercom. Very limited quantity at 5 each. Also 3 in. Phono. P.M. coil 2½. Sensations, at 15.6 each.

PUBLIC ADDRESS SPEAKERS. micro-pressure type P.M. Units, 1½ ohms, coil with 196 ohms, and full-range microphone transformer, in weatherproof case complete with 5 ft. all-metal dispersive horn, (conditioned perfect), 15—. 7/2., 7/2. no. 2. 1 oz. with 5 ft. all-metal horn, with detachable base (Horns brand new). 7/15—. (depot, 7/3). These are unmatchable P.A. opportunities.

SIGNAL HORNS, operation 500/250 v. A.C. Good vibrato note, adjustable. In completely enclosed horn housing, 5½ in. by 3½ in., with cast-metal horn projecting from the cabinet and U.G. in the top, or calling signals in factory operations.

ELECTRIC WATER PUMPS. Broad new, immersion, self-priming. Approx. 1000 l. per min. 1½ in., with mounting flanges. Inclined driven by a 1½ hp motor within the tube. Delivery over 600 g.p.m., operation 125 v. A.C/D.C. 50—. Or with centrifugal pump, especially made to drive the pump to be used in 200/400 v. A.C mains, 27/6 complete (deg. 85—). We are the largest London stockists of the well-known Export Electric Water Pumps, operation 200/500 v. A.C/D.C. Recently constructed of non-corrosive metal and patented features for exposure and long life. No. 16. 1200 g.p.m. 85—. No. 21. 2000 g.p.m. 85—. No. 12. (600 g.p.m.). 85—. (depot, 85—). Supplied with instruction book and makers' guarantee.

Please telephone sufficient for packing and despatch.

M. R. SUPPLIES LTD., 68, New Oxford Street, London, W.C.1

Modern Servicing Method

The "L.S.L." Servicing Method is a combined fault analyzer and circuit tester : simultaneously capable of indicating all voltage, current and resistance on each valve electrode without removing the chassis from the cabinet. Readings can be taken whilst the set is under actual operating conditions. The "L.S.L." Analyzer is a combination of multi-range instrument and valve tester.

Price: £18. 18. 0. Subject.

The "L.S.L." PORTABLE ANALYSER

* Saves time and trouble. * Greatly increases Profit in the Service Department. * Is portable, can be used on the bench or in the home * Is simple to operate.

Send for further particulars from the sole distributors:

Kerry's
GREAT BRITAIN LIMITED

WARTON ROAD, STRATFORD, LONDON E.15

Telephone: Liverpool 6111

Export Address: 23-25 St. Dunstan's Hill, E.C.3
'CINTEL'
Photo-Electric Cells

The most comprehensive range of Cells in the World...

Available with three types of cathode surfaces:
- **TYPE B**—Bismuth etc.—Caesium. Sensitivity similar to human eye.

Cells for use in the ultra violet region of the spectrum • Cells of high insulation, linearity and stability for accurate photometric work • American type equivalents • Push-Pull types for double sound tracks • Special cells for dye image sound tracks, multipliers, etc. Please write for catalogue.

Sixty different types of Photo-Electric Cells

Registered Trade Mark

FOREMOST IN THE MANUFACTURE OF
- COUNTERS & CHRONOMETERS
- METAL DETECTORS
- OSCILLOSCOPES
- PHOTO-ELECTRIC CELLS
- CATHODE RAY TUBES
- GEIGER-MULLER TUBES
- ELECTRONIC INSTRUMENTS

CINEMA-TELEVISION LIMITED
WORSLEY BRIDGE ROAD, LONDON, S.E.26
Telephone: HITHER GREEN 4600
Television Components by well known manufacturer, complete tube mounting assembly, focus and deflection coils, line output trans., 4 heavy duty chokes, 5 kVA, E.H.T. trans., one each of the following. 350-0-350 v., 80 mills., 4 v. 10 amp., 4 v. 2 amp., 400-0-400 v., 80 mill., 4 v. 6 amp., 4 v. 2 amp., 2 v. 2 amp. Most of the valves used in this circuit are SP41. Kindly note: we do not supply valves. Complete with full circuits..........................£7/10/-.
½ meg. volume con., long spindle with switch... 3/10
½ MEG. POT WITH SWITCH LONG SPINDLE... 3/3
20K pot long spindle 1/9
50K pot with switch long spindle 3/-
1 meg. pot medium length spindle 1/9
8 position press button unit, not surplus 2/4
4 position press button unit, one pos. mains on/off ... 1/9
8 in. Mains Energised 2000 ohm field, output trans., 5000 ohm imp. 15/9
Plus post, 1/-
Set of four 1½ dia. brown knobs, marked "Tuning, Volume, Wavechange and Tone," in gold lettering per set 2/-

Extension Speaker, in Walnut cabinet, Walnut louvres, volume control, R. & A. high fidelity 8in. speaker. Size of cabinet, 11in. high, 17in. long, 8in. deep, sloping to 6in. at top. Switch for cutting out speaker on back: 39/6, plus 2/6 post and pack.

Write for lists.

D. COHEN
67 Raleigh Ave., Hayes, Middx.
Sensitivity

The bat is said to derive its amazing sensitivity in flight from the echo of a high pitched sound which it emits. The Weston Model E772 Analyser, however, relies upon the more tangible asset of a sensitivity rating of 20,000 ohms per volt on all D.C. ranges and 1,000 ohms per volt on all A.C. ranges. This instrument is designed to assist you in the tracing of difficult electrical faults and its quality is in accord with the highest Weston standards.

WESTON

Analyser

SANGAMO WESTON LTD. • ENFIELD • MIDDX.

Telephone: Enfield 3434 (6 lines) & 1242 (4 lines)

Supreme Communications Receiver

R.50

COMMUNICATIONS RECEIVER

This high-grade communications receiver incorporates the most highly developed techniques in modern receiver design. Five degrees of selectivity, including a crystal gate and crystal filter are provided, and the sensitivity is such that an input of between 1.5 microvolts gives a signal/noise ratio of at least 10 dB over the entire frequency range of 13.5 to 26 kc/s and 95 kc/s to 32 Mc/s. Separate power units for A.C. or D.C. operation are available.

REDIFFUSION LIMITED, BROOKMILL ROAD, WANDSWORTH, S.W.18

DESIGNERS & MANUFACTURERS OF RADIO COMMUNICATION & INDUSTRIAL ELECTRONIC EQUIPMENT Phone: Putney 5691 RC 203
Taking the Mountain to Mahomet!

The oscilloscope is no longer the ‘great immovable’ to which all faulty 5-Valve Mahomes have to be brought!
For the “Miniscope” (Height 6½”) is no mountain at all. It weighs only 7½lbs., is truly portable and need never be out of reach in the workshop or on any service call, in fact anywhere where there is an A.C. mains supply.
The oscilloscope is the most versatile single item of equipment yet designed for the radio service man.
The “Miniscope” is the most compact of all oscilloscopes.

SIGNAL TRACING · FAULT DETECTION · HUM LOCATION · PHASE INVESTIGATION · I.F. ALIGNMENT · FREQUENCY RESPONSE · FREQUENCY DETERMINATION · WAVEFORM OBSERVATION · A.F. DISTORTION CORRECTION · MODULATION ANALYSIS · OSCILLATOR CALIBRATION

Miniscope
MINIATURE CATHODE RAY OSCILLOSCOPE

FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrolls for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

INTERNATIONAL CORRESPONDENCE SCHOOL Ltd., DEPT. 33, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON W.C.2

INSTRUMENT CASES
AMPLIFIER RACKS
RADIO AND TELEVISION CHASSIS
FUSE BOXES
BUSBAR CHAMBERS
GENERAL SHEET METAL WORK, Etc.

RITHERDON & CO. LTD., LORNE STREET, HARWEN, LAKES
Phone Enquiry: 122
ESTABLISHED 1893
DIRECT RECORDING DISCS

These cellulose lacquer aluminium discs are unequalled for their high performance — a frequency range extending to well above 15 Kc/s is easily recorded and reproduced. They consistently permit efficient cutting over a range of ambient temperatures of from 0°C to 60°C. Used by leading broadcasting stations, film studios, private and commercial recording studios. Can be stored indefinitely either blank or recorded.

CURRENT LIST PRICES

5 in. Double Sided 1/6d.
6 in. Double Sided 2/6d.
7 in. Double Sided 3/6d.
8 in. Double Sided 4/6d.
10 in. Double Sided 6/6d.
12 in. Double Sided 6/6d.
13 in. Double Sided 8/6d.
16 in. Double Sided 14/6d.
17½ in. Double Sided 17/6d.

* Single Sided 3/8d.
* Single Sided 5/9d.
* Single Sided 7/9d.
* Single Sided 11/6d.

M.S.S. Discs are ideally suited for recording “Masters” for processing. “Over-size” discs are necessary — for pressings 16”, 12”, 10” diam. use discs 17½”, 13”, and 12” diam. respectively.

M.S.S. RECORDING COMPANY LTD.
POYLE CLOSE, COLN BROOK, BUCKS., ENGLAND

Aerialite Television Aerials are being installed as fast as they can be produced. Good technical design, ease of fitting and robust construction, are all strong points of the entire Aerialite range. For clear, sharp, steady pictures with never a “ghost”, Aerialite, the television aerial for all circumstances, is the name to remember. Send for illustrated booklet giving full details.

AERIALITE TELEVISION AERIALS AND EQUIPMENT

Made by AERIALITE LTD., STALYBRIDGE, Cheshire
You simply MUST make a
WIRE RECORDER
CAPSTAN (PULLING WIRE AT CONSTANT SPEED)

SLIPPING SPOOL

GRAM MOTOR TURNTABLE

RECORD-PLAYBACK HEAD

CAM

STUD

WIRE LAYING MECHANISM

PIVOT SCREW METAL PLATE OR PLYWOOD SHEET

"CROWN" SPOOL ACTING AS FEED SPOOL

ROCKING BAR

GUIDE PULLEY

RUBBER TYRED PULLEY (DRIVING)

RUBBER TYRED PULLEY (FREE)

More thrilling than Radio—More gripping than Television. Complete constructional "Gen," 5/- All Components in stock. DEMONSTRATIONS BY APPOINTMENT.

PARK RADIO 676-8, Romford Road, London, E.12 Phone: ILFORD 2006

READ THIS!
The flick of a switch gives you instant contact with any department. All departments can contact each other. THE HADLEY MULTICOM is the only system of its kind to give you complete loud-speaking intercommunication. No 'phones, no dialling, no switchboard operator. All units identical and no larger than a telephone.

All Hadley Equipments are available on Cash Purchase or Rental Maintenance Terms.

Hadley Sound Equipments
Phone: BEARwood 257/6 BEARWOOD ROAD, SMETHWICK. STAFFS.

I.F.T.s
USA make H.R.
PHONES $2000-
Miniature units with silver plate. 10/6 Per PAIR 4 per case

PAR 5/- 2 3/4" square. Adjustable dust-tight core.

455 Hz. 2/4" 25/8" square. Adjustable dust-tight core.

TELEPHONE Handsets

Brand New 0-100 µm.
Latest type. Carbon hats, direct insertion in telephone or adapter. 25/4 at 10/6 each.

BRASS TERMINALS
Length 1 1/2" x 48" Take-out lead. kidnapped for easy wire connections.

I.T.S.
IT'S EASY! BUILD YOUR OWN H.R. METER to read 1,000, or more...

Many more bargains in latest lists / Price on request.

Radiocraft Ltd.
GOOD CHURCH GATE, LONDON, N.11.

Denko - Woden - Edystone
Raymart - BI - Lewcos - Wharfedale etc.
Another GOODMANS Axiom

HIGH (FIDELITY + POWER)

With an exceptionally high electro-acoustic efficiency, this new version of the well-known “Axiom Twelve” has been developed to satisfy the great demand for High Fidelity power reproduction.

Send for illustrated leaflet D79

GOODMANS INDUSTRIES LTD.,
Lancsld Rd., Wembley, Middx. Phone: Wembley 1200. Grams: Goodaxiom, Wembley

Covering both London and Birmingham television frequencies

- Negligible stray Radiation.
- Output accuracy 1db
- Monitored by Crystal Voltmeter
- Directly Calibrated
- Negligible R.F. Leakage

FEATURES
CALIBRATION ACCURACY: ± 1% Directly Calibrated.
OUTPUT VOLTAGE: 1μV—150 mV up to 30 kc/s, 1μV—100 mV above 30 kc/s. Monitored by crystal voltmeter.
OUTPUT IMPEDANCE: 75 ohms, terminated by 75 ohms terminating pad, type TP.1A providing impedance of 37 ohms, 10 ohms, and 10 ohms standard dummy serial.
MODULATION: Monitored by crystal voltmeter internal: 400 c/s, 1-20%. External: 100-10,000 c/s ± 1db, 0-100%.
AUDIO-OUTPUT: 0-15 volts at approximately 400 c/s into a load not less than 5,000 ohms.
R.F. LEAKAGE: Negligible—less than 1μV.
POWER SUPPLY: 110-210-230-250 volts, 40-100 c/s, 22 watts.
DIMENSIONS: 13 ins. × 12 ins. × 6 ins. deep.
WEIGHT: 25 lb.

Send for illustrated brochure giving full Specification.

Advance SUB-STANDARD SIGNAL GENERATOR

Type 94

Model A
100 Kc/s to 70 M/c/s in 6 Bands.

Model B
30 Kc/s to 30 M/c/s in 6 Bands.

ADVANCE COMPONENTS LTD., BACK RD., SHERNHALL ST., WALTHAMSTOW, E.17. Phone: L.A.Rkswood 4366-7-8
EDISWAN
RADIO PRODUCTS
B.E.C. Electrolytic Condensers

For full details of the range of B.E.C. Electrolytic Condensers please write for leaflet No. R.1395
SOLE DISTRIBUTORS TO THE WHOLESALE & RETAIL TRADES
THE EDISON SWAN ELECTRIC CO. LTD., 155 Charing Cross Road, London, W.C.2
BRANCHES IN ALL THE PRINCIPAL TOWNS

THE SOUND MAGNET £35
TAPE RECORDER & PLAYBACK EQUIPMENT

Recordings on plastic tape from 8 inch reels. Variable speeds, 30 mins. high fidelity full frequency range. Speech up to 2 hrs. Complete with 6 valve amplifier, bias oscillator, self-contained speaker.

GENERAL LAMINATION PRODUCTS LTD.
S.M. Dept., 294 BROADWAY, BEXLEYHEATH, KENT

JOSEPH Enoch LTD.
Manufacturers and suppliers of the Enock Diamond Pick-up, the Enock Amplifier and the Mordaunt Loud Speaker, all built to the exacting specification which has made the Enock Instrument the finest music reproducer in the world.

JOSEPH ENOCK LTD., 273a HIGH ST. BRENTFORD, ENGLAND.
EALing 8103

“TECHNICAL EXCELLENCE”
—combines with beauty and soundness of DESIGN in the

OXLEY (AIR DIELECTRIC TRIMMER)

OXLEY DEVELOPMENTS CO. LTD.
ULVERSTON, NORTH LANCs. TEL.: ULVERSTON 3306

<table>
<thead>
<tr>
<th>Capacity (Mfd.)</th>
<th>D.C. Working Voltage</th>
<th>External Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>450v</td>
<td>1/4" x 2 1/2"</td>
<td>3/3</td>
</tr>
<tr>
<td>8</td>
<td>450v</td>
<td>1/4" x 3 1/2"</td>
<td>4/9</td>
</tr>
<tr>
<td>16</td>
<td>450v</td>
<td>1/2" x 3 3/4"</td>
<td>4/9</td>
</tr>
<tr>
<td>4</td>
<td>450v</td>
<td>1/8" x 2 1/2"</td>
<td>2/6</td>
</tr>
<tr>
<td>8</td>
<td>450v</td>
<td>1/4" x 2 1/2"</td>
<td>3/0</td>
</tr>
<tr>
<td>16</td>
<td>450v</td>
<td>1/8" x 2 1/2"</td>
<td>4/0</td>
</tr>
<tr>
<td>32</td>
<td>450v</td>
<td>1/4" x 2"</td>
<td>5/9</td>
</tr>
<tr>
<td>8—8</td>
<td>450v</td>
<td>1/8" x 2"</td>
<td>5/9</td>
</tr>
<tr>
<td>8—16</td>
<td>450v</td>
<td>1/8" x 2"</td>
<td>7/6</td>
</tr>
<tr>
<td>16—16</td>
<td>450v</td>
<td>1/8" x 3"</td>
<td>7/9</td>
</tr>
<tr>
<td>20—20</td>
<td>275v</td>
<td>1/2" x 2 1/2"</td>
<td>6/0</td>
</tr>
<tr>
<td>50</td>
<td>12v</td>
<td>1/8" x 1 1/2"</td>
<td>2/0</td>
</tr>
<tr>
<td>25</td>
<td>25v</td>
<td>1/8" x 1 1/2"</td>
<td>2/0</td>
</tr>
<tr>
<td>25</td>
<td>50v</td>
<td>1/8" x 1 1/2"</td>
<td>2/3</td>
</tr>
<tr>
<td>50</td>
<td>50v</td>
<td>1/8" x 1 1/2"</td>
<td>2/6</td>
</tr>
<tr>
<td>8</td>
<td>150v</td>
<td>1/8" x 1 1/2"</td>
<td>2/6</td>
</tr>
</tbody>
</table>

* Fitted with 1/2" tags each end.
Photographic highlight

Electronically, the Mullard LSD3 is an extremely efficient light source device. Photographically, it is the ideal tube for lightweight portable equipments because of its compact dimensions, stable triggering and low trigger voltage, and very long life.

Some data is given here, and if you would like full details, including recently published articles on flash circuits, please write to the address below.

PRINCIPAL CHARACTERISTICS OF LSD3

- Max. Energy of Discharge: 100 joules
- Operating Voltage: 2,000-2,700V
- Trigger Voltage: 3,000-3,500V
- Approx. Flash Duration: 150 microseconds
- Peak Light Output: 40 mega-lumens
- Integrated Light Output: 4,000 lumens
- Base: 4-pin UX
- Light Quality: Closely resembling daylight

Mullard

Thermionic Valves & Electron Tubes

Mullard Electronic Products Ltd., Transmitting & Industrial Valve Dept., Century House, Shaftesbury Avenue, W.C.2

METRO PEX LTD

38, Gt. Portland St., London, W.1

(Phone: Museum 9024-5)
"STEWART"
HIGH GRADE TRANSFORMERS
Types Available for Delivery ex Stock
ANY OTHER SPECIFICATION TO ORDER

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Primaries tapped 210-330-250v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
<td>350-0-330v 75 m/a 6.3v 3a 5v 2a</td>
<td>28/d.</td>
</tr>
<tr>
<td>A4</td>
<td>or 4v 4a 4v 2a</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>350-0-330v 100 m/a 6.3v 3a 5v 2a</td>
<td>34/d.</td>
</tr>
<tr>
<td>B4</td>
<td>or 4v 5a 4v 2a</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>350-0-330v 150 m/a 6.3v 4a 5v 3a</td>
<td>46/d.</td>
</tr>
<tr>
<td>C4</td>
<td>or 4v 6a 4v 2.5a</td>
<td></td>
</tr>
<tr>
<td>S/28/1</td>
<td>425-0-425v 200 m/a 6.3v 4a</td>
<td>57/d.</td>
</tr>
<tr>
<td></td>
<td>or 6.3v 2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5v 3a</td>
<td></td>
</tr>
<tr>
<td>S/28/2*</td>
<td>350-0-330v 250 m/a 6.3v 6a</td>
<td>90/d.</td>
</tr>
<tr>
<td></td>
<td>or 4v 8a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2-6.3v 2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-4.5- 3a</td>
<td></td>
</tr>
<tr>
<td>S/24/1</td>
<td>1000v 10 m/a</td>
<td>49/d.</td>
</tr>
<tr>
<td>S/24/2</td>
<td>1500v 10 m/a</td>
<td>55/d.</td>
</tr>
<tr>
<td>S/24/3</td>
<td>2500v 10 m/a</td>
<td>55/d.</td>
</tr>
<tr>
<td>S/24/4*</td>
<td>4000v 5 m/a</td>
<td>65/d.</td>
</tr>
<tr>
<td>S/24/5*</td>
<td>5000v 5 m/a</td>
<td>75/d.</td>
</tr>
</tbody>
</table>

* For "Electronic Eng." Televisor.

STEWART TRANSFORMERS Ltd.
1021 FINCHLEY RD., LONDON, N.W.11
Tel: SP/3900 and 3533

ITEMS STILL TO BE CLEARED REGARDLESS OF COST

Test probes with leads Red and Black............ each 2 6
7-Pin plug and socket............................ 2 0
Chromium plated handles, 4½ in. centres............. per pair 5 0
Chromium plated handles, 3½ in. centres.......... per pair 6 6
Potentiometers, standard size 500 ohms, 4K, 2.5K, 25K,.. 3 for 4 6
Potentiometers, 10,000 ohms wire wound............. each 1 0
Potentiometers, 25,000 ohms wire wound............. each 1 0
Potentiometers, 50,000 ohms wire wound............. each 1 0
Standard size tuning condensers, 2-gang 160 pfd........ each 3 9
Standard size tuning condensers, 3-gang 160 pfd........ each 4 6
Standard size tuning condensers, 4-gang 500 mfd........ each 7 6
Condensers, assorted, .001 mica, .001 ceramic, .01 mica, .01 tubular, 10 pfd, mica, 10 pfd, ceramic, .005 tubular, .002 micas, .0005 mica.......................... per assorted dozen 5 0
Medium sized plated brass terminals.............. per doz. 3 6
Large brass terminals............................ per doz. 2 6
Claroctap plug in main dropping resistances 445 ohms each 5 0
Instrument knob, black, 2½ in. fluted, 3½ in. spindle............. 6 for 5 0
Resistances, carbon, 1, ½, and ¼ watt from 27 ohms-3.9 meg., our choice.......................... 50 assorted resist. 7 6

Send stamp for Bargain Price List.
Please quote ST when ordering and include sufficient for postage and packing, also 1949 catalogue available 9d. post free.

Shop Hours, Monday-Saturday, 9-5.30 p.m. Thursday 9-1 p.m.

TELE-RADIO (1943) LTD.
177, EDGWARE RD., PADDINGTON, LONDON, W.2
Phone: AMB 5393. PAD 6116, 5606

WIRELESS WORLD
July, 1949

A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE—A combined valve-voimeter and oscilloscope. VALVE-VOLTOMETER—Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. 3½ inch scale meter. OSCILLOSCOPE—9 inch screen tube provided with balanced amplifiers for Y and X plates giving a 8 times trace expansion. Maximum sensitivity 150mV/cm. Response from D.C. to 100 kcs.

Limited quantity available for early delivery.

BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS, RADLETT, HERTS.

Tel: Radlett 5674-5-6

HUBERT STREET, ASTON, BIRMINGHAM, 6
Telephone: Aston Cross 2440

D.C.-A.C. CONVERSION

Frequency stability, R.F. and A.F. suppression, with long working life, are but some of the features of Valrad Voltage Converters. We quote two examples here.

12V. INPUT
Model 230 75/12 gives a useful A.C. output at 50 or 75 c.p.s., and is ideal for outdoor F.A. work. 230v. 75 watts A.C.

£10 15.0

110V. INPUT
Model 230 300/110 particularly suitable for television and auto-radiograms. A.C. output at 50 or 75 c.p.s. 200-250v. 300 watts.

£16 0.0

VALRADIO LTD.
57, FORTRESS ROAD, N.W.5 GULiver 5165
A MILLION USES?!?

A slight exaggeration maybe, but this is a “completely different”, high efficiency, 12 watt horn loaded loudspeaker.

Its versatility will profoundly influence the effective treatment of sound distribution problems in all spheres.

— for surface mounting, with a protuberance of only 2½” the diameter is 9½”

STANDARD ELECTRICAL ENGINEERING CO., HENEAGE LANE, LONDON, E.C.3.
Telephone: AVENUE 1633.
Cables: “STANECO” LONDON.

Simon
SOUND SERVICE

THE COMPLETE SERVICE
FOR SOUND RECORDING AND
REPRODUCTION

★ Mobile, static and specialised recording units
★ Recording amplifiers, speakers, microphones, etc
★ Sapphire cutting and reproducing styli
★ Blank recording discs from 5in. to 17in. Single and Double-sided
★ Groove locating and cueing devices
★ A comprehensive range of accessories to meet every requirement of the sound recording engineer
★★ A development of special interest to users of sapphire and, delicate pick-ups—THE SINTROL. This is a controlled micro-movement easily fitted for use with any type of pick-up
★★★ OUR CDR49A RECORDER UNIT complete and self-contained, measuring only 22in. x 14in. x 15½in., incorporating 8-valve amplifier, recorder unit, light-weight pick-up, speaker and microphone and with many exclusive features, is now ready for early delivery.

OUR WELL-EQUIPPED WORKSHOPS ARE AVAILABLE FOR THE DEVELOPMENT OF EQUIPMENT TO MEET SPECIAL NEEDS.

CABLES: Simson, London.
TELEPHONE: Welbeck 2371 (4 lines)
New look... Super efficiency...

- Smooth modern lines; crystal clear reproduction; simple, positive operation; the entire staff within your easy reach; mains or battery operation; Telemaster's unique advantages increase efficiency and speed modern business.

- Telemaster is the proved interdepartmental loud-speaking telephone, the indispensable assistant to all executives. Selection of extensions is instant and positive and the master unit can call any one, several or all extensions at once. Adjustable volume is provided for loud calling or paging at a distance.

- Models are available for operation by A.C. Mains and batteries. The small, inexpensive dry batteries employed are estimated to last for over six months under normal operating conditions. Both models are identical in appearance and are finished in a new silver grey that will harmonize with any surroundings.

- B.S.R. have specialized in the application of sound in industry for over 17 years. Fuller details of the Telemaster and B.S.R. Industrial Sound units may be obtained from our Industrial Service Division on request.

TELEMASTER

BIRMINGHAM SOUND REPRODUCERS LIMITED
Claremont Works, Old Hill, Staffs. 'Phone Cradley Heath 6212/3
WEARITE

VIBRATORS

set the standard for efficiency

A data book, complete with replacement guide and transformer design information is now ready and will be gladly sent to you at 6d. post free. Please use the coupon.

POST THE COUPON NOW

Wright & Weaire, Ltd., 138 Sloane Street,
London, S.W.1, England

Please send me VIBRATOR DATA BOOK for which I enclose 6d.
Name and Address

Wright and Weaire Limited
138, SLOANE ST. LONDON. S.W.1 TEL. SLOANE 2214/5 FACTORY: SOUTH SHIELDS, CO. DURHAM
Valves and their applications

The DL93 as a Power Amplifier at V.H.F.

In the rapidly expanding field of low power V.H.F. communications for Business Radio and similar purposes, the designer often has difficulty in obtaining satisfactory transmitting valves for his equipment, since the choice of valves suitable for many such applications is severely limited in this country. In particular there still exist few directly-heated miniature types capable of an efficient performance when used as power amplifiers in battery-operated V.H.F. "walkie-talkie" transceivers.

At the lower V.H.F. frequencies, the designer’s requirements for an efficient directly-heated power amplifier are met by the DL93. This valve is a miniature pentode on a B7G pressed glass base and has a low filament consumption. A table of maximum ratings is shown in Table I.

In the 60-80 Mc/s Business Radio band, the valve has a very satisfactory performance. When operated as a conventional Class C amplifier at 80 Mc/s, and driven by another DL93, the valve has a power output of approximately 1.5 watts and an anode efficiency approaching 55%. Figure 1 shows a suitable circuit for use at this frequency.

The circuit contains no unconventional features, and is simple to adjust. Moreover the layout of the components is not critical, although all leads should be kept short. An efficient screen between the grid and anode circuits should be provided. The grid anode capacitance of the DL93 is low and consequently neutralisation is not essential; a neutralised circuit is somewhat easier to adjust, however, and in this case the neutralynie (Hazeltine) circuit is recommended.

In semi-portable equipment the existing Business Radio regulations allow the DL93 to be operated at its maximum ratings. In "walkie-talkie" transceivers a maximum of 1 watt input to the final stage is permissible, and an anode potential of 90 volts is therefore adequate. Two 45-volt hearing aid dry batteries may be used to provide the H.T. supply.

Since quartz crystals with a natural resonant frequency as high as 80 Mc/s are not yet generally available, frequency stabilisation entails the use of a master oscillator of comparatively low frequency (15 Mc/s for example) followed by a multiplier chain. Since it is of major importance to minimise the power consumption of the multiplier stages, hearing aid subminiatures such as the DL72 may be used with advantage. The final power amplifier may then be operated from another DL93 as driver. Alternatively, if a reduced power output can be tolerated, the amplifier stage may profitably be driven directly by the final multiplier.

The variation in performance of the DL93 with frequency may be summarised as follows. At frequencies below 100 Mc/s the efficiency and output remain virtually constant, the required drive decreasing with the frequency. It is noteworthy that at frequencies of the order of 5 Mc/s the drive required for full output is unusually low (1.2mA approximately). Thus at these lower frequencies the valve is capable of its optimum performance when driven by a DL72 buffer stage. Above 100 Mc/s the performance deteriorates; the valve will nevertheless give a satisfactory performance in the 144-146 Mc/s amateur band.

The efficiency of the DL93 when used in the 156-184 Mc/s Business Radio band is of the order of 15%, to 25%. Details of Mullard miniatures and subminiatures suitable for operation in this and in the 460-470 Mc/s bands will be published in later articles.

![Diagram](image)

TABLE I

<table>
<thead>
<tr>
<th>SERIES</th>
<th>PARALLEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf</td>
<td>1.4 V (D.C.)</td>
</tr>
<tr>
<td>I f</td>
<td>0.2 A</td>
</tr>
<tr>
<td>Vg1</td>
<td>150 V</td>
</tr>
<tr>
<td>Vg2</td>
<td>135 V</td>
</tr>
<tr>
<td>Vg3</td>
<td>30 V</td>
</tr>
<tr>
<td>I g</td>
<td>20 mA</td>
</tr>
<tr>
<td>I k</td>
<td>0.25 mA</td>
</tr>
<tr>
<td>I k</td>
<td>25 mA</td>
</tr>
<tr>
<td>P a</td>
<td>2.0 W</td>
</tr>
<tr>
<td>P g2</td>
<td>0.9 W</td>
</tr>
</tbody>
</table>

The above limiting values are for intermittent operation as an R.F. power amplifier.

Reprints of this report from the Mullard Laboratories, together with additional circuit notes, can be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

M696
MONTHLY COMMENTARY:

International Television Argument

Writing on the possibilities of rivalry between American, British and Dutch firms in international markets for television equipment, our U.S. contemporary, Electronics (May, 1949, issue), says, editorially:

"The crux of the matter is the standards to be adopted. Should they follow American or British practice? Evidently, the adoption of one or the other might give a preferred position in the market. So far as studio and transmitting equipment is concerned, it is not difficult to meet the customers' desires regarding standards without major increase in cost. But receivers are different; if foreign standards depart too widely from those used by the manufacturer in his domestic product, the cost of exported sets may rise substantially, possibly enough to price them out of the market."

That is a fair statement of the position. Any competent designer and manufacturer, whether American or European, can provide foreign customers with transmitting equipment for working to any reasonable standards that they may fancy. With receivers, on the other hand, standards are commercially much more important and we enter the realms of Big Business. The country whose standards are adopted by others will have a ready-made export market for its domestic production.

It is less easy to agree with the substance, and still less with the implications, of the paragraph that follows. It reads:

"We feel strongly that whatever standards are adopted in foreign lands, they should not restrict the utility of the service. Further, at the risk of starting an international argument, we venture to remark that two important aspects of the British standards are restrictive. One is the use of a 2.5-Mc/s video band, as compared with the 4.0-Mc/s standard in the U.S.A. The choice of a narrow bandwidth must inevitably restrict the detail of the images provided to foreign customers. The second is the 25-per-second picture transmission rate, adopted in Britain to conform with the 50-c/s power supply frequency. This limits the brightness of flicker-free images to a value substantially lower than that possible with the 30-per-second American rate."

It is implied here that the ratio of bandwidths is a measure of relative picture quality between the British and American systems. Of course, it is fundamental—even platitudinous—that the information content of any form of radio communication is determined by bandwidth. May we say, then, if the American 4-Mc/s bandwidth is good, the French 10-Mc/s system must be potentially better and a hypothetical 20-Mc/s better still? And where are we to stop? It is hardly practical engineering to argue along these lines, so long as the availability of communication channels is limited and economy must be considered.

In any case, the comparison made by Electronics is factually incorrect. First, the British system employs 2.75-Mc/s—not 2.5 as stated. Secondly, the ratio of bandwidths can only be taken as an indication of relative picture quality if the frame frequency is the same. If the Americans used a 25-frame rate, they would need only a 3.3-Mc/s bandwidth for their present picture quality. The relative quality of British and American pictures is in the ratio 3.3 : 2.75 and not 4 : 2.5 as implied by Electronics.

As to the alleged reduction of flicker resulting from the 30-per-second American picture rate, are we seriously asked to believe that it was chosen for that reason? Surely, with the American 60-c/s supply frequency there was no other practicable choice. The use of a frame frequency differing from the mains frequency calls for much more extensive smoothing of receiver h.t. supplies and so increases receiver cost.

With the notable exception of the American continent the world's electrical supply systems are predominantly 50-c/s; for this reason the lower picture rate will generally be preferred. Any advantage in freedom from flicker offered by the higher rate is largely academic.
TELEVISION STATION SELECTION

A Look to the Future

By W. T. COCKING, M.I.E.E.

Up to the present British television receivers have been designed for the reception of one station only—the vision and sound channels of Alexandra Palace. When the Birmingham station opens there will be two stations in operation and, according to the present plan, there will eventually be five.

Since all stations are intended to transmit the same programme each receiver will need to receive only one of the stations except perhaps, in certain fringe areas mid-way between two of them. Even here one station will, in general, afford a better signal than the other and so it is necessary only for the receiver to be able to receive this better one.

Even under the new plan, therefore, it will not be necessary for any individual receiver to be suitable for more than a single station. However, there are certain obvious difficulties in manufacturing only single-station receivers; if this course is continued, each manufacturer will eventually have to produce five different models.

This alone will increase production costs and, in addition, he will have to regulate the relative quantities made very nicely.

Then viewers do occasionally move their homes and those changing from the service area of one station to that of another will not expect their receivers to become obsolete.

It is, therefore, likely that the receiver of the future will have to be suitable for any of the five stations. There are many possible ways of doing this and it is interesting to consider their relative merits.

In the first place it is clearly unnecessary for the means of station selection to be operable by the user. If such a control were provided he would use it only on those rare occasions when he moves to a different service area. There is no objection to such a control if it proves the most economical way of arranging the selection, of course, but it is not a necessary control. All the user requirements can be met by providing a form of station selector which can be adjusted by any competent technician.

One method, which is already being applied, is to build the set so that the signal-frequency circuits, and the oscillator if the receiver is a superheterodyne, form an accessible and replaceable sub-unit. One such sub-unit can be made for each channel and the selection effect by changing these sub-units.

The method is obviously better suited to the superheterodyne than the straight set, for it requires only two or three tuning circuits, whereas the latter needs ten to fifteen. The disadvantage of the method is that it is still necessary to manufacture different units for different areas and to arrange for their production in the proper quantities to meet the demand. Also the manufacturer must be able still to supply the alternative sub-units for many years so that the viewer who moves to another area can be provided for.

Trimming Range

From the manufacturing point of view it is much better if all sets can be alike in their components and if the differences can be merely ones of adjustment. At first sight, this seems easy, for it would appear to be necessary only to increase the range of the trimmers so that the set could be tuned to any station in the band. It should not be impossible to make inductances adjustable over a sufficient range for this. Allowing for stagger tuning, a frequency ratio of 1:6:1 is needed and this means an inductance ratio of 2.56:1. By using a very thin-walled former a simple metal or dust-iron slug should provide adequate coverage and there is always the possibility of increasing it by using a composite slug. A slug partly of metal and partly of dust-iron will reduce inductance when the one end is inserted and increase it when the other comes inside the coil, thus increasing the total variation obtainable.

A receiver designed on these lines could be tuned to any station in the band by a competent technician equipped with the proper apparatus. However, there is rather more in changing frequency than just re-trimming circuits. In the sound channel, changes in the Q of the coils with frequency may seriously affect the performance and, in particular, the amount of sound-channel rejection obtained. Towards the high-frequency end of the band an increase of Q is desirable to maintain the sound-channel rejection. With slug tuning, however, the Q is likely to decrease very considerably at this end of the band.

Then the input resistance of a valve decreases with frequency. It is approximately inversely proportional to the square of frequency. This may or may not be serious, for there is a possibility of devising a correcting network to mitigate this natural tendency. If this proves to be impracticable, however, there is no doubt at all that the changing input resistance will very seriously affect the performance and call for circuit changes for different frequencies. Couplings are another factor which may need alteration. There is the aerial feeder to first-grid coupling circuit for one, there are the sound-channel resector-circuit couplings for a second and there are the band-pass type couplings, if they are used, for a third.

It is clear, therefore, that the design of a straight set embodying ten to fifteen tuned circuits is by no means a simple matter. The superheterodyne scores heavily in this respect, for the bandwidth, sound-channel rejection and gain are obtained chiefly at the fixed intermediate frequency. Only the signal- and oscillator-frequency circuits need alteration for a different station,
and a considerable variation in their performance over the band is tolerable.

The superheterodyne, however, has its own troubles. It is well-known that even when only the reception of one station is being considered it is necessary to choose the intermediate frequency very carefully if the picture is to be free from a pattern produced by harmonics of the intermediate frequency being fed back from the output to the input. With an intermediate frequency of the usual order of magnitude—5–13 Mc/s—it is impossible to avoid this effect on all stations simply by selecting the frequency and it is necessary to employ very thorough screening and filtering to prevent the feedback. This is quite expensive.

There are, in addition, the possibilities of interference by signals operating in the i.f. band and on the second channel and it is necessary to take precautions against local-oscillator radiation. The attainment of adequate frequency stability in the oscillator is another difficulty which confronts the designer.

All these superheterodyne disadvantages are found in the ordinary broadcast receiver and in spite of them it has become almost universal. There are two reasons for this, one of which does not apply at all in the present-day television case and the other of special forms of interference if its intermediate frequency were made considerably higher than is now customary. If the intermediate frequency were lower than the lowest frequency of the signal band and higher than one-half of the highest frequency of the band, then i.f. harmonic interference would be impossible. The lowest signal frequency is 41.5 Mc/s, the highest 66.75 Mc/s. Therefore, from this point of view the intermediate frequency should be less than 41.5 Mc/s and greater than 33.375 Mc/s.

By choosing a frequency in the band 33.375–41.5 Mc/s, therefore, one drawback of the superheterodyne can be eliminated. It is quite a satisfactory frequency from the point of view of obtaining bandwidth, sound-channel rejection and gain, for all these can be secured adequately at the higher frequency of 45 Mc/s, as is evidenced by all the satisfactory straight sets now produced.

Since such an intermediate frequency is nearer the signal frequency than is at present usual the liability to the direct pick-up of signals on that frequency is increased. As a partial offset to this, signals on the higher frequency are usually rather weaker. Nevertheless, more care in the avoidance of this type of interference must be taken.

The liability to second-channel interference is reduced because of the higher frequency and its elimination should not prove very difficult.

The problem of the oscillator may be serious. If the oscillator frequency is higher than the signal frequency, the main trouble will be that of obtaining adequate frequency stability. Thus, suppose an intermediate frequency of 35 Mc/s is chosen, then the oscillator must cover from 45 + 35 = 80 Mc/s to 66.75 + 35 = 101.75 Mc/s. These frequencies are rather high for obtaining stability cheaply.

If the oscillator frequency is made lower than the signal frequency there is considerable danger of harmonics of the oscillator causing interference. This is shown by the diagram of Fig. 1 which indicates signal frequencies on one scale and intermediate frequencies on the other. The television channels are marked and the shaded areas represent interference bands, the order of the oscillator harmonic involved being marked in them.

If 35 Mc/s were chosen interference would be experienced from the third oscillator harmonic when receiving Channel 2. For instance, the vision carrier for Channel 2 is to be 51.75 Mc/s. The oscillator would be 51.75 – 45 = 6.75 Mc/s and its third harmonic 50.25 Mc/s. This would beat with 51.75 Mc/s to give a difference frequency of 1.5 Mc/s which would produce a most noticeable pattern on the picture.
Television Station Selection—

Examination of Fig. 1 shows that there is only one possible intermediate frequency for the avoidance of this effect on all channels. This frequency is 37 Mc/s. A vertical line at 37 Mc/s on the diagram does not cross any shaded area.

With this frequency the oscillator must cover 45—37 = 8 Mc/s to 66.75—37 = 29.75 Mc/s which is a wide range to cover in a single sweep. The relatively low frequency of the oscillator, however, greatly eases the problem of securing adequate frequency stability.

We cannot, however, say that this frequency will be satisfactory, for all the possible forms of interference have not been examined.

Since the oscillator frequency is lower than the intermediate frequency it is necessary to make sure that none of its harmonics falls in the intermediate frequency band. This can be taken as 37—2.75 = 34.25 Mc/s to 37 + 0.75 = 37.75 Mc/s with a sound channel at 37—3.5 = 33.5 Mc/s.

For Channel 1, the oscillator will be at 45—37 = 8 Mc/s and its harmonics will be 24, 32, 48 Mc/s. The third harmonic just misses the i.f. band.

For Channel 2, the oscillator will be at 51.75—37 = 14.75 Mc/s and its harmonics will be 29.5, 44.25 Mc/s. Again, they miss the i.f. band.

For Channel 3, the oscillator will be at 56.75—37 = 19.75 Mc/s and its harmonics will be 39.5, 59.25 Mc/s.

For Channel 4, the oscillator will be at 61.75—37 = 24.75 Mc/s and the second harmonic will be 49.5 Mc/s.

For Channel 5, the oscillator will be at 66.75—37 = 29.75 Mc/s and the second harmonic will be 59.5 Mc/s.

The frequency is then satisfactory in this respect.

There is next the possibility of interference from a station which is spaced from an oscillator harmonic by the intermediate frequency. It is similar in nature to ordinary second-channel interference but involves an harmonic instead of the fundamental of the oscillator. The possible interference frequencies, including the genuine second-channel frequencies, are listed in the Table. If these frequencies are compared with the signal bands it will be seen that with one exception none falls within the band of the station being received. The responses are, therefore, in principle capable of being eliminated by signal-frequency selectivity.

The exception is in Channel 4. The fourth harmonic conditions in the reception of a single-sideband transmission will not be very different, but they may not be quite the same.

Placing the oscillator higher than the signal in frequency is advantageous from nearly every point of view save that of the oscillator drift. In what follows it will be assumed that it is so placed.

The intermediate frequency is no longer critical and a frequency of about 35 Mc/s is suitable, so far as vision is concerned. The sound intermediate frequency now comes above the vision at 38.5 Mc/s, however, and there is here one possible cause of trouble for it is also 3 Mc/s away from the sound channel of Channel 1. The 3-Mc/s beat between the two may thus find its way into the vision channel by modulating the vision carrier in the frequency changer. It would be wiser to choose a frequency not less than 4 Mc/s below Channel 1. This would make the sound intermediate frequency 37.5 Mc/s and the vision 34 Mc/s.

True second-channel interference on vision could then arise only from stations in the band 113—134.75 Mc/s plus a small extension to cover the i.f. amplifier bandwidth. On sound it could come from the band 116.5—138.25 Mc/s.

If the bandwidth of the signal-frequency circuits is about 3.5 Mc/s, the second-channel frequency is about ten times the bandwidth away, or twenty times the half-bandwidth. A single resonant circuit which is down 1 db only at the edges of its band is therefore down 14 db at the second-channel frequency.

It is difficult to estimate how much attenuation is needed at signal frequency. The second-channel band is an aircraft communication band and so considerable field strengths from nearby

<table>
<thead>
<tr>
<th>Channel</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequencies (Mc/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37—12</td>
<td>29</td>
<td>22.25</td>
<td>17.25</td>
<td>12.25</td>
<td>7.25</td>
</tr>
<tr>
<td>25 ± 27</td>
<td>33 & 21</td>
<td>68.5 & 7.5</td>
<td>76.5 & 2.5</td>
<td>86.5 & 12.5</td>
<td>96.5 & 22.5</td>
</tr>
<tr>
<td>35 ± 27</td>
<td>61 & 13</td>
<td>81.25 & 7.25</td>
<td>96.5 & 22.5</td>
<td>101.25 & 37.25</td>
<td>126.25 & 52.25</td>
</tr>
<tr>
<td>45 ± 27</td>
<td>69 & 5</td>
<td>96 & 22</td>
<td>116 & 42</td>
<td>136 & 62</td>
<td>156 & 82</td>
</tr>
<tr>
<td>55 ± 27</td>
<td>77 & 3</td>
<td>110.75 & 36.75</td>
<td>135.75 & 61.75</td>
<td>160.75 & 86.75</td>
<td>185.75 & 117.75</td>
</tr>
</tbody>
</table>

Oscillator Frequency

From the interference point of view it seems much safer to have the oscillator higher in frequency than the signal. Frequency stability is then the difficulty and it is rather hard to estimate the requirement until the Birmingham station has been in operation and some experience of the single-sideband transmission has been gained. The requirements for the sound channel can easily be estimated and those for the single-sideband reception of a double-sideband transmission are known. It is to be expected that the co
aircraft and ground stations may be experienced. As a minimum an interfering signal should be 30 db below the television signal at the frequency changer input.

In a television receiver designed for limit range the interfering field strength might well be 40 db greater than that of the television signal and then the receiver should give 70 db discrimination. On the other hand, in areas of strong signals the interfering signal might never be more than 20 db below the television signal and only 10 db discrimination in the receiver would suffice.

Sensitivity

As very large numbers of receivers are used in areas of high field strength, where neither a maximum of gain nor the highest second-channel rejection are needed, it is clearly uneconomic to provide all receivers with them. The right course is surely to design the receiver to suit conditions in the major part of the service area, and to have a pre-amplifier which increases both gain and second-channel rejection for long-range reception.

Suppose, as a basis for discussion, that the basic receiver takes the form of a superheterodyne without a signal-frequency amplifier. The minimum useful signal at the input of the mixer will be of the order of 1 mV. This is a very approximate figure which might well be halved by careful design; it also depends upon how much noise is considered tolerable on the picture. Such a receiver with 30 db second-channel discrimination would be satisfactory over a very large part of the service area.

The simplest form of signal-frequency circuit would be a single resonant and damped circuit which would provide something like 14 db attenuation against second-channel interference. The remaining 16 db or so might be obtainable from the aerial, which is normally a resonant structure. However, it is very doubtful if it could be relied upon for this, especially in the case of the higher-frequency channels. For Channel 5, for instance, the aerial would be resonant at about 65 Mc/s in its half-wave mode. The second-channel band is 134-137.5 Mc/s and is quite close to 130 Mc/s at which frequency the aerial is again resonant on a full-wave mode.

It is therefore unwise to reckon on much selectivity from the aerial. Even if the aerial itself were usefully selective, it would probably be impracticable to make full use of it, for it would hardly be possible to keep the feeder properly terminated over the full band of frequencies involved. In the second-channel region, therefore, it is probable that the feeder itself would pick-up interference.

It is, therefore, good practice to include adequate second-channel rejection in the receiver itself and, in general, this will require the provision of two tuned circuits. There is, however, another possibility. Since the whole second-channel band lies outside the television band it is theoretically possible to secure the second-channel discrimination by means of a band-stop filter, which might be inserted between the feeder and the input circuit of the receiver.

If this proved economically possible a further step could be taken. The bandwidth of the input circuit itself could be made very wide to cover the whole television band—26 Mc/s—and the station selection accomplished by varying only the oscillator. This would be a form of single-span tuning.

Increasing the first-circuit bandwidth nearly 7.5 times would result in a considerable loss of sensitivity. The signal/noise ratio would also deteriorate at least as much. It would probably become considerably poorer because of inter-modulation effects in the frequency changer.

In practice, therefore, it would probably be better to retain signal-frequency tuning supplemented as necessary by fixed-tuned band-rejection filters.

Oscillator Radiation

One other factor must be considered: oscillator radiation. This can be very serious on these high frequencies, especially if a signal-frequency amplifier is not used. In the case considered with the vision intermediate frequency at 34 Mc/s, the oscillator operates at one of five frequencies in the band 79 Mc/s to 100.75 Mc/s.

At high-frequencies control-grid injection usually works best in the frequency-changer and the oscillator may provide about 2 V on the grid of the valve. Since the first circuit impedance may be 2 kΩ, this is very roughly a power of the order of 2 mW. A single tuned circuit may reduce this by 8-9 db and the feeder will introduce a further 1-2 db loss.

The oscillator power fed to the aerial may thus be as much as 200 μW. The signal power collected by the aerial may be only 0.05 μW. The radiated field strength in the immediate vicinity of the aerial may thus be 20 times as great as the field of the television signal.

In the example taken it will not interfere with other television receivers, but it may do with other services, including f.m. broadcasting. It must be very seriously considered, therefore, and the use of a band-stop filter in the aerial circuit is one way of preventing it.

This matter of using fixed filters to reduce interference and radiation is simpler than it may at first appear. Separate band-stop filters for the second-channel and oscillator bands are not necessary; a single low-pass filter can be used instead. If such a filter is given a cut-off frequency of, say, 70 Mc/s it will have little effect, in the television band, but give some 12-16 db attenuation per section in the second-channel band. In the oscillator band such a simple filter is less good and may introduce no more than 5 db attenuation per section. It could, however, be greatly increased by using one or two more-derivated sections (this is nothing but filter terminology for one or two tuned rejector circuits!).
Television Station Selection

The basic filter equations are \(LC = \frac{1}{\pi f^2} \) and \(L/C = R^2 \) where \(R \) is the terminating resistance, in this case the feeder impedance of 70 \(\Omega \). From the two \(C = \frac{1}{\pi f} \)

\(= 65 \text{pF} \) and \(L = \frac{1}{\pi f} C = 0.317 \mu \text{F} \).

The basic form of a filter which should be suitable for the job is shown in Fig. 2. It comprises two prototype low-pass sections and one \(m \)-derived; the last is split into two half-sections, one at each end of the filter, since this improves the termination. Four coils and five capacitors are needed.

A filter of this sort looks as if it would be very cheap and easy to manufacture, but it is not safe to conclude that this is so without further investigation. It is not improbable that very close component tolerances would be needed, but it may be that normal tolerances could be used for some or all of the capacitors if the others, and in particular the coils, were adjustable in manufacture. The coils will need only four or five turns and might well be self-supporting and adjusted in production in the filter unit by squeezing the turns closer together or further apart.

In view of all this it looks as though the television set of the future might well take the following general form:

1. Superheterodyne with 34-Mc/s intermediate frequency and local-oscillator frequency above the signal-frequency.
2. No signal-frequency amplification.
3. One signal-frequency circuit trimmable to any television channel.
4. From 1 and 2, only two trimmers for channel selection, both of which are easily adjustable with very little apparatus.
5. Low-pass filter unit for 70-\(\Omega \) impedance with coaxial input and output connectors, for second-channel interference and oscillator-radiation elimination.
6. Separate one- or two-stage pre-amplifier, also with coaxial input and output sockets, for insertion between the low-pass filter and the receiver in order to increase the sensitivity, second-channel rejection, and signal-noise ratio in areas of low field strength. Such a unit could be trimmable to any station in the band with perhaps three or four trimmers; it might also need changes in the values of damping resistors.

The writer feels that a scheme of this nature if carefully worked out might well prove to be the most satisfactory way of dealing with the problem of station selection. As he has pointed out there are other ways of solving it. It is probably impossible to decide the best way from theoretical considerations only and a good deal of experimental work will be needed. In particular, with the superheterodyne it is never safe to dogmatize for there are so many possibilities of interference with it that it is very easy to overlook one which becomes painfully evident when the set is tried.

In any case, television receiver design of the next few years will be especially interesting and there will doubtless be many different methods tried.

One final suggestion; the solution of the problem of oscillation stability might well be the use of an a.f.c. system operated by the sound signal.

DIVERSITY F.M. TRANSMISSION

New System With Synchronized Carriers

These were arranged as a master station and two unattended satellites situated 10 and 17 miles respectively from the main station. The venue was London, the main transmitter being in Kingsway with one satellite at Mill Hill to the north and the other at Knockholt on the southern fringe of Greater London.

Unlike the majority of multistation a.m. systems, the G.E.C. f.m. version operates on a single radio frequency for all operational messages to and from the mobile vehicles. Separate frequencies are, however, employed for the radio links between the main and satellite stations. The schematic diagram reproduced here gives the various frequencies employed for this particular system.

The use of a common frequency at the main and satellite stations necessitates very accurate synchronization of these transmitters and this is achieved by employing a single master oscillator at the main station, using an appropriate multiple of it for the "broadcast"
transmitter there and another multiple, giving a somewhat higher frequency, which is radiated over link paths to the satellites. Here the frequency is converted to the actual multiple radiated from the main station's broadcast transmitter, and after suitable amplification, is radiated from the satellites' broadcast transmitters.

At no point in the chain is the actual multiple of the master oscillator lost, neither is the link signal, which carries the audio, demodulated.

From the schematic diagram it will be seen that this system is particularly economical in regard to the number of radio frequencies required. The common broadcast frequency employed on this occasion was 97.8 Mc/s, the outgoing control link was on 146.7 Mc/s and the incoming links on 154 and 155.4 Mc/s respectively. More will be said of these two later.

Thus this three-station F.M. scheme is operated with a total of four frequencies only. Some time ago we described a three-station a.m. system, which might be said to be comparable in many respects, since it was operated in the same area, and for this no fewer than nine frequencies were employed.

It may be argued, of course, that the different method of modulation does not wholly account for this saving of channels and that an a.m. system could be operated also with synchronized transmitters. But that as it may, the fact remains that the number of frequencies mentioned was employed at the time and a more recent two-station scheme, also using a.m., absorbed six radio frequencies.

The main radio frequency is produced by a temperature-controlled crystal oscillator on approximately 1,527 kc/s, and this is multiplied 64 times to produce the broadcast frequency of 97.8 Mc/s at the main station.

A separate train of multipliers is used for the link transmitter and these raise the master frequency 96 times to 146.7 Mc/s. The ratio between broadcast and link frequencies is thus 2 to 3. Similar results can be obtained with other master oscillator frequencies, thus starting at 1,358 kc/s multiplies of 72 and 108 will yield virtually the same broadcast and link frequencies.

Modulation is applied separately to the broadcast and link channels at a very early stage, but in order to compensate for the distance between the main and satellite stations, a pre-determined delay is introduced into the channel going to the main station's broadcast transmitter.

The amount of delay needed to both by aural tests and by examination of the waveforms of an 800-c/s tone on an oscilloscope, taken in a locality where the field strengths from the main station and one of the satellites was approximately equal.

The r.f. output from the link transmitter is fed to a vertical dipole aerial giving omni-directional radiation. Variations of this are possible and the link transmitter could, if required feed two separate aerals beamed on their respective satellite stations.

At the satellite the master station's broadcast frequency, in this case 97.8 Mc/s, is extracted from the 146.7-Mc/s signal by first mixing with the 12th harmonic of a local oscillator, dividing the output by three, then mixing in the 4th harmonic of the local oscillator; what emerges is a signal carrying the modulation but at half the required broadcast frequency. A doubler and power amplifier are all that are needed before the signal is radiated.

It should be noted that the link

Diversity F.M. Transmission—signal on the outgoing path has not been demodulated. This may appear to be a rather complicated process, but it ensures that the actual frequency radiated by the satellite is independent of the stability of the local oscillator.

As already explained the mobile vehicle talks back on the common broadcast frequency and its signals may be received at any or all of the fixed stations. When the signals are received at a satellite station they are demodulated and used to modulate a separate link transmitter for relaying to the main station.

The main station might conceivably be receiving the same message from a vehicle simultaneously on three different frequencies, (a) direct on the broadcast frequency, (b) via one of the satellites on its link frequency and (c) from the other satellite on still another frequency. The output from these three receivers are passed to a mixing unit where the one which has the best signal-to-noise ratio is selected and fed into the loudspeaker. This is, of course, quite automatic.

Several miles of London’s busiest streets were covered in a radio-equipped vehicle during the course of a demonstration and at no period was the car ever out of touch. Signals were adequately loud and quite free from distortion during the whole time. From the immediate replies that were forthcoming it was evident that all outgoing messages were being received satisfactorily.

Some distortion was apparent when the delay network was removed from the main station’s audio circuit, but this was much less than might have been expected and caused very little deterioration in intelligibility.

Finally, a brief description of the mobile equipment may not be out of place, although the transmitter-receivers used for the demonstration are not newly developed models.

The complete set measures 18 x 8 x 8 in. and weighs 35 lb. A double frequency changing superhet circuit is used for the receiver with the second i.f. on 455 kc/s. The first i.f. is dependent on the operating frequency, as this is adjusted to give the required input to the second mixer using the most suitable harmonic of the crystal-controlled oscillator. The i.f. bandwidth is approximately ±15 kc/s for 6 db attenuation. Any single channel within the band 30 to 170 Mc/s can be employed, but the circuit would of course have to be pre-set as the equipment is remotely controlled. The audio output is about 1.25 watts.

The r.f. output from the transmitter varies somewhat according to the operating frequency, but at the worst it is not less than 10 watts and at the best 20, the larger amount being obtained at 100 Mc/s and below. The output valve is a new double tetrode, the T51. The deviation is ±12.5 kc/s for the equivalent of 700 per cent. modulation, which also is the deviation used for the fixed stations.

Power to operate the set is supplied by a 12-volt battery—with optional 6-volt if required—and the consumption is 55 watts for the receiver alone, 95 watts on stand-by position with receiver on and transmitting valves alight and 175 watts on transmit.

The h.t. is supplied by two small motor generators, one for the receiver and another for the transmitter and filtered air for cooling is circulated through the set by fans on the motor generator.

Transmitter, receiver and power supplies are separate sub-assemblies easily removed for servicing. Miniature parts are used extensively and the whole of the equipment is fully troposphorized.

MANUFACTURERS’ LITERATURE

Leaflet describing "Aralite" synthetic resin for surface and wire coating, etc., from Aero Research, Duxford, Cambridge.

Lists of components and kit sets for crystal receiver construction from the British Distributing Co., 66, High Street, London, N.8.

Illustrated leaflets describing the TV1Z table television receiver and BAXII battery broadcast receiver from Bush Radio, Power Road, W.4.

Descriptive leaflet relating to the AC24Q automatic record changing unit from Electrical and Musical Industries, Blyth Road, Hayes, Middlesex.

Supplementary list of "Instanta" relays from Magnetic Controls, 48, Old Church Street, London, S.W.3.

"Flux Facts" (Leaflet Ref. FF449) giving details of the properties of fluxes now available in cored wire solders made by Multicore Solders, Mellor House, Albermarle Street, London, W.1.

Technical specification of wide-range signal generators (Model 64B, 100 kc/s-45 Mc/s, and Model 65C, 100 kc/s-150 Mc/s) from Taylor Electrical Instruments, 479-480 Montrose Avenue, Slough, Bucks.

Illustrated leaflets of sound-amplifying equipment and commemorative brochure of testimonials relating to the 1948 Olympic Games from Philips Electrical, Century House, Shafesbury Avenue, London, W.C.2.

Price list of amateur transmitting and receiving equipment from Radiocraft Ltd., 25, Bead Street, London, S.E.19.

DOMESTIC RECEIVERS

The new "49" series of receivers made by Pye, Cambridge, comprises a console (Model 49C), table radio (Model 49TG) and console radiogram (Model 49RG). The prices are £17 17s, £26 5s and £26 15s respectively, excluding tax.

The basic circuit comprises a triode hexode frequency changer, pentode-diode i.f. amplifier and detector, and a pentode output valve. New versions of the Baby "Q" all-dry battery portable and Model 15D receiver are also announced. The latter now incorporates the trawler waveland in place of the 13-metre band. Prices are £14 14s and £22 2s respectively, excluding tax.

Pye Model 49TG table-model radiogram.
TRANSITRON SYNC SEPARATOR

FOR good interlacing there are two major requirements which a sync-separator circuit must satisfy:
(1) the generation of a steep-fronted frame synchronizing pulse from one—preferably the first—of the sequence of broad pulses that form the frame synchronizing signal;
(2) the complete elimination of line synchronizing pulses from the frame synchronizing circuits.

It is not easy to separate two pulses of similar amplitude and shape but of different durations such as the line- and frame-synchronizing pulses, whose durations are respectively 10 microseconds and 40 microseconds. Hitherto, very elaborate circuits with several valves, or incorporating costly delay lines, have been necessary for this purpose and consequently good interlacing has been achieved only at considerable cost. It was with economy in mind that the idea of using a transitron circuit, operating under specific bias conditions, first occurred to the author.*

In the following description of the circuit and its behaviour it is assumed that the reader is conversant with the "flip-flop" action of the transitron. The "flip" occurs when the screen grid draws excessive current and drives the suppressor grid sufficiently negative to cut-off anode current. This is followed by the "flop," which occurs when the suppressor-grid potential has again risen to the point at which anode current starts to flow and the screen current is suddenly reduced.

The signal waveform, inverted

Fig. 1. Circuit of the transitron separator. 5MΩ

so that the synchronizing pulses are positive, is d.c. restored at the control grid (see Fig. 1). The valve is cut off by black-level and picture signals, and conducts only during the synchronizing pulses, as is customary in most receivers. When a ten-microsecond positive-going line-synchronizing pulse appears on the control grid, the screen grid draws current and instantaneously drives the suppressor grid sufficiently negative to prevent the anode from drawing current. This action corresponds to the "flip" of the transitron cycle. The "flop" occurs when capacitor C1, connected between the screen and suppressor grids, has charged sufficiently to allow anode current, as well as screen current, to flow. The time constant C1R1 is, however, so chosen that the line-synchronizing pulse finishes before the "flop" action can take place, and the valve consequently returns at the end of the line-synchronizing pulse to its original state with anode and screen currents cut off by the control-grid potential. Thus the anode remains at full h.t. potential throughout the whole period of the line-synchronizing pulse, and no pulse is produced there. A steep-fronted pulse of considerable amplitude is, however, produced at the screen grid, and this pulse is used to switch the line timebase.

When the first frame-synchronizing pulse appears at the control grid, the "flip" action takes place as before, but this time the "flop" occurs before the 40-microsecond frame pulse has ended. This is contrived by making the time constant C1R1 less than 40 microseconds. The result is that the circuit produces not only a negative-going pulse at the screen grid but also a steep-fronted negative-going pulse at the anode. This pulse at the anode is used to trigger the frame timebase. The waveforms at the various electrodes are shown in Fig. 2.

* Patent Application 4260/49.

Fig. 2. The waveforms on the electrodes of the valve during line and frame pulse periods are shown here.
ZOOM LENSES
Their Use in the Television Camera

By H. H. HOPKINS, Ph.D., F.Inst.T.

A RECENT innovation in television outside broadcasts has been the introduction of a zoom lens, which is an attachment for converting any ordinary fixed-focus camera lens into a lens of continuously variable focal length. The new lens has been made by W. Watson and Sons, of Barnet, and was used for the first time at the televising of the Cup Final at Wembley this year.

The zoom lens is mounted on the front of the television camera and is operated by rotating an outer cylinder which imparts axial movements to the two inner component lenses, 2 and 3, by means of cam slots, the outer components, 1 and 4, remaining stationary. If suitable movements are given to 2 and 3, the final image remains in focus on the photo-cathode of the television camera, and the focal length of the combined optical system varies. The result is that the size of details in the picture is altered, creating the illusion that the camera is moving towards or away from the scene. The zoom lens at present being used for television enables the image of any detail in the scene to be varied over a range of 4:1 in area, and it will work in conjunction with any camera lens having a front diameter not greater than 2 in and covering an angle of field that is not more than 30 degrees. During zooming, the relative aperture of the combined optical system remains constant, and consequently the brightness of the image also remains constant.

The aberrations of the system are corrected by balancing the positive and negative aberrations contributed by the different surfaces. Any change in the relative positions of the component lenses will, in general, upset this balance, and so it is necessary to restrict to a minimum the movements of the inner components 2 and 3. The conditions that result in minimum movement have been worked out and are satisfied by the lens. In addition, the optical conditions resulting from the refractions by the moving components have been studied and a relatively simple mathematical treatment for calculating them has been worked out. This treatment reveals the conditions that must be fulfilled if a satisfactory lens is to be produced, taking into account the inaccuracies, small but optically significant, that are unavoidable in the best available non-geometric cams.

Zoom lenses have previously been very complicated. Simplicity is one of the principal factors contributing to the success of the new lens, which has only four components and yet gives excellent definition. Furthermore, this economy of components results in a greater efficiency of light transmission and also in the elimination of stray light, compared with certain other zoom lenses.

Semi-Automatic Morse Key

RADIO amateurs and many professional operators on this side of the Atlantic are beginning to acquire a liking for the semi-automatic type of morse key so popular in the U.S.A. Once the technique of handling it has been mastered it does unquestionably permit of sustained high speed sending with far less wrist fatigue than with most other types of key.

It gets its description from the fact that the dot constituents of the morse characters are formed automatically by a vibrating spring, the speed of sending being governed by the position of "bob" weights.

The Eddystone model of the key is very well engineered and lends itself for adjustment to almost any speed of sending likely to be required by amateurs and most professionals. It is not a key that would normally be used for slow sending as its special properties show up best at high speeds. None the less it is quite capable of operation at 8 w.p.m. if required. This key has two "bob" weights for coarse and fine adjustment.

A heavy die-cast base is used with rubber feet and there are also two holes for screwing it down. Actually the rubber feet counter any tendency to wander, but a more secure fixing is really desirable. It has a short-circuiting switch and the whole is enclosed by an attractive cover finished in black crinkle enamel and chromium.

The makers are Stratton & Co., Ltd., Eddystone Works, Alvechurch Road, West Heath, Birmingham, 31, and the price is £4 17s 6d.
When these special types arise you'll find it best to BRIMARIZE!

Types 6SA7 and 12SA7 are pentagrid frequency changers of specialised design, widely used in American radio receivers. They have now been superseded by the miniature types 6BE6 and 12BE6, but this substitution requires a change of socket.

Good results may often be obtained by the use of types 6K8GT and 12K8GT respectively, a slight connection change and a lead to the top cap being required. In all cases it will be necessary to re-align the receiver, preferably throughout.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>TYPES</th>
<th>6SA7</th>
<th>12SA7</th>
<th>6K8GT</th>
<th>12K8GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>6-3</td>
<td>12-6</td>
<td>6-3</td>
<td>12-6</td>
<td>Volts</td>
</tr>
<tr>
<td>Heater Current</td>
<td>0-3</td>
<td>0-15</td>
<td>0-3</td>
<td>0-15</td>
<td>Amp.</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>250</td>
<td></td>
<td>250</td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>Anode Current</td>
<td>3-4</td>
<td></td>
<td>3-5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>Screen Current</td>
<td>8-0</td>
<td></td>
<td>6-0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Control Grid Voltage</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>Anode Impedance</td>
<td>0-8</td>
<td></td>
<td>0-6</td>
<td></td>
<td>Meg.</td>
</tr>
<tr>
<td>Conversion Conductance</td>
<td>0-45</td>
<td></td>
<td>0-35</td>
<td></td>
<td>mA/V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHANGE VALVE</th>
<th>CHANGE SOCKET</th>
<th>CHANGE CONNECTIONS</th>
<th>OTHER WORK NECESSARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM 6SA7</td>
<td>TO 6K8GT</td>
<td>FROM Pin No. 8</td>
<td>Top Cap Pin No. 8</td>
</tr>
<tr>
<td>FROM 12SA7</td>
<td>TO 12K8GT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO CHANGE</td>
<td></td>
<td>Connect Pin 6 to Pin 8 Re-align R.F. Oscillator and 1st I.F. circuits</td>
</tr>
<tr>
<td>FROM 6SA7</td>
<td>TO 6BE6</td>
<td>FROM Pin No. 1</td>
<td>Remove Pin No. 3</td>
</tr>
<tr>
<td></td>
<td>Miniature Octal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM 12SA7</td>
<td>TO 12BE6</td>
<td>7 pin (B7G)</td>
<td></td>
</tr>
</tbody>
</table>

BRIMAR says... Make sure of ordering your BRIMISTER Cards.

BRIMAR RADIO VALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTS CARY, SIDCUP, KENT.
"SOUND NEWS"

A LABORATORY BUILT

BEAT-FREQUENCY OSCILLATOR

AT THE REASONABLE PRICE OF £30

★ Range 12-27,000 c/s ± 1.5 db. ★ True Sine Waveform
★ Output 4.5 watts constant ★ Moving Coil Type Output Meter
★ Level within ★ 50 c/s Calibration Check
★ ±0.25 db. from 40-12,000 c/s. ★ Precision Tuning Condenser
★ Fully Push-Pull including Det.

A SOUND PRODUCT BY NAME AND NATURE

ALMOST INDISPENSABLE TO SERVICE ENGINEERS AND EXPERIMENTERS

SOUND SALES Ltd.

SHOWROOMS & OFFICES:
57, ST. MARTIN'S LANE, W.C.2.
Telephone: TEMple Bar 4284.

WORKS: WEST STREET, FARNHAM, SURREY.
Telephone: Farnham 6461/2/3.
TEST REPORT

REDIFON MODEL R50
Wide-Range Tropicalized Communications Receiver

As one of the many functions of the general-purpose communications receiver with which we are here concerned is for merchant ship work, it has been designed to comply with certain requirements laid down by the Postmaster-General as to specification and performance.

One of the requirements for a set of this kind is that it must provide a continuous frequency coverage over the band 100 kc/s to 25 Mc/s. For certain ships a curtailed range may be permissible but in order to cater for all requirements the full coverage has been provided. In addition, an extra-low range of from 13·5 to 26 kc/s is included.

With this wide coverage the problem arises of where to place the intermediate frequency. Below 100 kc/s is not very satisfactory, especially for reception over about 1 Mc/s. In this receiver the problem is neatly circumvented by providing two i.f.s and selecting the most suitable for the band of signal frequencies in use.

The actual coverage of the receiver is somewhat greater than the minimum requirements for ship-borne apparatus. There are eight ranges marked, for convenience, A to H inclusive. A is the highest frequency range and H the lowest. H covers 13·5 to 26 kc/s; G, 95 to 250 kc/s; F, 240 to 600 kc/s; E, 585 to 1,550 kc/s; D, 1·5 to 4 Mc/s; C, 3·8 to 8 Mc/s; B, 7·7 to 16 Mc/s and A, 15·5 to 32 Mc/s. It will be seen that for ranges G to A inclusive there is a useful overlap in all cases.

As regards the use of the intermediate frequencies, on ranges H and F an i.f. of 110 kc/s is used since it is well outside the coverage of either. On ranges G, E, D, C, B and A, one of which includes the 95- to 250-kc/s band, an i.f. of 405 kc/s is employed. This i.f. could not, for very good reasons, be used on range F which covers 240 to 600 kc/s. Nothing is to be gained by employing 110 kc/s on the higher frequency ranges as the image signal discrimination would be somewhat unsatisfactory.

The changeover from one i.f. to the other is automatic, being performed by the waveband switching so that the operator has no need to concern himself with it and, of course, mistakes cannot arise. Two complete sets of i.f. transformers and two crystal filters are embodied in the i.f. unit. The arrangement of the circuit between the mixer valve and the first i.f. stage is given in Fig. 1 which shows also the circuit switching for the two narrowest bandwidths.

Fig. 1. Arrangement of the circuit between the mixer and first i.f. stages in the Redifon R50 receiver. This includes part of the bandwidth switching and i.f. switching.
Redifon Model R50—
In all there are five bandwidth positions; two include the crystal filter and give either 150 kc/s or 1.5 kc/s. The three other positions without the filter give 4, 11 and 17 kc/s respectively.

The narrowest bandwidth is obtained with the crystal filter working into a high-impedance load which in Fig. 1 is the 1 MΩ resistor in the subsidiary circuits A or B. The next widest, 1.5 kc/s, is obtained by modifying the load into which the crystal works, in the case of either of the subsidiary circuits A or B, the former on 110 kc/s and the latter on 465 kc/s, they are adjusted to provide an impedance of the order needed to open the bandwidth to 1.5 kc/s.

With the waveband switch set to any of the other three positions the crystals are short-circuited and the bandwidth is determined by the coupling between the primary and secondary circuits of the transformers in the latter part of the i.f. amplifier. The couplings can be varied by switching in the appropriate parts of tertiary coils which augment the inductive coupling between the primary and secondary windings.

Looking down on to the top of the chassis with the screens removed can be seen, on the right, the i.f. sub-assembly; in the centre the ganged tuning unit and on the left the subsidiary units. The switch assembly in the right-hand front corner is the metering network.

In order to achieve adequate selectivity with the crystal filters, twelve high Q tuned circuits are employed in the i.f. amplifier on either 110 kc/s or 465 kc/s. Each of the 24 circuits—12 only are, of course, in use at any time—are temperature compensated, the dust iron cored coils having two padding capacitors across them, one of a negative and the other of a positive temperature coefficient. Trimming of the i.f. circuits is effected by adjustable dust cores.

In all, three stages of amplification are employed in this unit, the valves being EF39s. Two only are included in the a.g.c. system and they receive a portion only of the total a.g.c. voltage available.

The rear end of the set is reasonably orthodox, a double diode (EB34) acting as detector and a.g.c. stage with another EB34 functioning as an optional noise suppressor. It can be switched in or out as required and there is also a control for setting the threshold point at which the suppressor begins to operate.

D.C. voltage for automatic gain control is derived from the primary circuit of the last i.f. transformer and applied, after some delay, to the two r.f. stages, and as already mentioned, in part to two of the i.f. valves but leaving the mixer and last i.f. uncontrolled.

In some communications receivers the a.g.c. system becomes inoperative when the b.f.o. switch is set for c.w. reception, but in the Redifon R50 a.g.c. continues to operate, but with a much longer time constant than for telephony.

A.G.C. can, however, be suppressed if desired and this facility is embodied in a four-position switch marked "AVC-NS." In one position a.g.c. functions as usual, in another it is inoperative and all control of volume is by the r.f. and a.f. gain controls, in a third position a noise silencer with a.g.c. is brought into circuit while in a fourth position the
noise silencer is used without a.c.

Audio amplification is provided by an EF37 voltage amplifier and a 6V6 power valve with some negative feedback from the anode circuit of the 6V6 to the anode of the EF37.

Because alternative i.f.s are provided, the b.f.o. stage must generate heterodyne oscillations for either the 110- or 465-kec/s channels as required. An EF37 valve and a parallel-fed Hartley circuit, with entirely separate circuits for each frequency, is employed for this purpose. Both circuits are temperature compensated and the change from one to the other is synchronized with the i.f. selector. Details of the b.f.o. oscillator and of the noise silencer are given in Fig. 2.

In order to obtain a good signal-to-noise ratio and, perhaps what is of greater importance, an adequate image signal discrimination on the higher signal frequencies, two r.f. stages with EF39 valves are provided. These are followed by a mixer consisting of the hexode part of an ECH35 and a separate oscillator, which function is performed by a L63 triode with its grid joined to the normal oscillator grid of the ECH35 for voltage injection. The triode anode of the ECH35 is earthed.

There is little out of the ordinary in this part of the circuit except that each tuning capacitor has dual sections of 224-pF maximum. One section only is used on the three highest ranges but both are used in parallel on all other bands. These circuits, and those in the local oscillator, are frequency stabilized by a combination of negative and positive temperature co-efficient capacitors. The sectional circuit in Fig. 3, which shows the local oscillator, indicates these compensating capacitors, the negative temperature type having a short horizontal bar below the capacitance value. Also included is the dual tuning capacitor and the oscillator waveband switching.

This receiver has provision for remote control and also for diversity reception if required. The screen grid supply lead for the i.f. and r.f. valves is accessible at the output socket and by simple switching, or by a relay, periods up to this speed of sending.

Power supply for this receiver is provided by a separate unit and normally this will be a.c. operated. In addition to the usual rectifying and smoothing circuits the power

The voltage can be reduced so that the receiver is desensitized to such a degree that it can be employed to monitor a telegraphy or telephony transmission. It can also be arranged for "break-in" operation when required up to a speed of about 40 words per minute. The time constants of the receiver permit recovery to full sensitivity in the "break" unit contains a voltage regulator tube giving a stabilized h.t. supply to the mixer g, grid and the oscillator anode. The a.c. consumption is 80 watts. For battery operation there is another power unit and this has a rotary converter for h.t. supply. There are also available supply units with rotary converters for various d.c. voltages up to 220.
Redifon Model R50—
A receiver of such high selectivity as the R50 must of necessity possess extremely good frequency stability. From the brief foregoing description it will have been seen that quite a lot has been done to ensure that this condition prevails by the judicious use of temperature compensated circuits and stabilized voltages. But these precautions alone would be of little value unless they were supplemented by good mechanical rigidity. It is unusual to find quite such a massive construction as in the R50.

The individual sub-assemblies, as well as the main framework, are well braced to withstand the hazards of transit and to stand up to the stresses that must be imposed during rough weather on board ships at sea. Rubber suspension is used for the r.f. unit, which is incorporated in the ganged tuning capacitors, largely to combat any likelihood of microphony.

Although light alloy is used extensively in the construction of the set, it is not a light-weight receiver. The chassis alone weighs 50 pounds and, enclosed in a sturdy metal cabinet it weighs 92 pounds. The dimensions are 14½ x 21 x 22¾ in.

The set is fully tropicalized and while miniature components are included no attempt is made at miniaturization. When out of its cabinet every part of the set is readily accessible which makes for easy maintenance and testing.

In order that a quick check can be made on the set under working conditions a comprehensive metering system is embodied. A single meter is employed and this can be switched to measure the anode currents of r.f., oscillator and i.f. valves and the cathode currents of the a.f. amplifiers.

The performance of the R50 is fully in keeping with what might be expected of a set of this kind. With a little care in tuning and judicious selection of the bandwidth, a weak signal can be separated from between two quite powerful ones and held almost indefinitely provided the transmitter frequency is fully stabilized. After the initial warming up the oscillators settle down to their work and remain remarkably steady.

The h.t. smoothing is quite adequate and on the highest frequency range in the 30-Mc/s region, c.w. signals are receivable with pure beat notes and without a trace of ripple due to mains frequency modulation.

An epicyclic drive giving an 80 to 1 reduction is employed for the main tuning control. It incorporates a spring-loaded chain of gears driving a subsidiary logging dial, which, in conjunction with an additional scale on the main dial, enables any station to be accurately logged. The logging dial is visible through an aperture just above the main scales and a single division represents about a 10-kc/s coverage at 30 Mc/s. At lower frequencies it is considerably less. Frequency calibrated scales are provided for each of the eight ranges.

The R50 is made by Rediffusion Ltd., Broomhill Road, Wandsworth, London, S.W.18, and the price of the cabinet model is £180. The set is also available with a panel for mounting in the standard 19-in rack.

REMOTE CONTROL EXTENSION LOUDSPEAKERS

TWO of the three new models in the "Stentorian" range of extension loudspeakers, made by Whiteley Electrical Radio, Mainsfield, Notts, are fitted with push-button switches for remote control of the receiving set.

The system is the Whitely "Long Arm" remote control in which a relay controlling the mains supply to the set is operated through three-wire extension leads from any loudspeaker position. When the set is switched on from another room, only the loudspeaker in that room is operative, all the others remaining silent. Alternatively, when the set itself is switched on manually, none of the extension loudspeakers will work unless specifically required.

Six-inch permanent-magnet units with die-cast chassis are used in the "Bristol" loudspeakers which have plywood fronts with rounded corners and are enclosed at the back with perforations in the covers to relieve back pressure. Constant-impedance volume controls are fitted and a choice of output impedances is provided.

The frontal dimensions of the "Beaufort" are 12¾ in x 10½ in and of the "Bristol" 10½ in x 6½ in; both are 3½ in deep. Prices, with and without transformer, are: "Beaufort" £3 15s, £3 7s 6d; "Bristol" £2 15s 6d, £2 13s 6d. A cheaper model, the "Bedford," with 5½ in unit, but without the "Long Arm" control, features costs £2 5s 6d or £1 19s 6d without transformer.

MORE COPIES OF "WIRELESS WORLD"

As announced last month, the Government's decision to increase the allowance of paper for technical periodicals makes it possible to print more copies of Wireless World. Starting with the August issue (published 26th July) there should be enough for all anticipated requirements. But the number of copies will still be limited, and so it will be necessary for an order to be placed with a newsagent.

NEWS FROM THE CLUBS

Brighton.—Meetings of the Brighton and District Radio Club are now held on Tuesdays at 7.30 in the club's new headquarters at the Eagle Inn, Gloucester Road. Sec.: L. Hobden, 17, Harlington Road, Brighton, Sussex.

Exeter and District Radio Society is organizing a 7-Mc/s d.c. contest on Woodbury Common on July 3rd, which is open to other clubs. Sec.: E. G. Wheatcroft, 27, Lower Uplands Road, Exeter, Devon.

Slough.—Readers in the Slough, Bucks, area who are interested in the formation of a radio society in the district are invited to a meeting to be held at 7.30 on July 3rd at the Slough Public Library. Acting Sec.: F. J. T. Tuckfield, 13, Quaves Road, Slough.

Southend.—The transmitter, G2XK, of the Southend and District Radio Society will be demonstrated at the Leigh-on-Sea Horticultural Society's Show at Chalkwell Park, on July 9th and also at the Scout's International Jamboree at Rochford from August 14th to 20th. Sec.: J. H. Barrance, M.B.E., Swanage Road, Southend-on-Sea, Essex.
INDOOR TELEVISION AERIAL

Compressed Dipole for Strong-Signal Areas

By N. M. BEST and P. J. DUFFELL (Antiferaence Ltd.)

WITHIN a radius of approximately five to ten miles from the television transmitter at Alexandra Palace, the standard dipole-and-reflector aerial system, mounted at chimney level, provides a greater signal than is absolutely necessary for the operation of a receiver. For installations nearer to the Alexandra Palace, even a single dipole without reflector may be sufficient to overload the set at its lowest sensitivity level. The insertion of an attenuator between aerial and receiver then becomes necessary.

In practice, it is found that an aerial mounted indoors gives satisfactory results over a fairly wide area. The physical dimensions of the standard H-type aerial may be unsuitable for indoor installation, and the indoor aerial is usually made physically smaller than the standard dipole, with some attendant loss in electrical efficiency.

The most important factors to be considered are:

(a) Sensitivity.
(b) Bandwidth (the aerial must cover sound and vision channels).
(c) Feeder matching (normal receiver input is approximately 70 ohms and the feeder must have the same impedance).

The first two factors (a) and (b) may be affected by altering the shape of an aerial, and (c) is affected by any change of aerial input impedance.

There are several possible ways of constructing small television aerials.

The grounded quarter-wave aerial is one in which the earth is replaced by a half-wave horizontal rod, the centre of which is at earth potential. It is shown diagrammatically in Fig. 1 and in practice, using co-axial cable, the inner conductor is connected to the bottom of the vertical quarter-wave rod, and the outer conductor to the centre of the earth rod.

The input impedance of this type of aerial is approximately 40 ohms, and the effective height is half that of a standard dipole. Although it is suitable for installation in a loft, it is physically cumbersome because of the earthing system.

A second form of aerial is known as the bent-rod type, and is probably patterned on an American type of aircraft antenna. The effect of bending the rod is an increase of bandwidth and a loss of sensitivity. Commercial types of this aerial are made to be installed in the V of the roof. The sensitivity is usually low because the pick-up portion is the projection of the inclined rod on the vertical plane.

A dipole of normal shape may be physically shortened by capacitance end loading or inductance loading. Capacitance loading involves mechanical difficulties and may be ignored, but an inductively loaded aerial is comparatively simple to construct.

The first two kinds of aerial referred to are only really suitable for installation in a loft. Many set owners, however, live in blocks of flats and similar buildings, and are often not permitted to install outside aerials. One disadvantage of an aerial installed in a living-room is that it is particularly susceptible to alterations of the electrical field due to movement of persons in the room; but with a careful choice of aerial position this effect can be greatly reduced.

In any case, during a television broadcast it is hard fairly likely that there will be sufficient movement of persons to cause annoyance. A useful type of indoor aerial, there-
Indoor Television Aerial—

Fig. 2. The variation is substantially linear over the frequency band under consideration.

Below the frequency of resonance, the aerial is capacitive (physically too short) and above this frequency it is inductive (physically too long). In order to improve the bandwidth of a given aerial it is necessary to provide, in some manner, reactance which will cancel out the aerial reactance over the band. It is hardly practical or possible to do this over the frequency band required for television work, but investigations show that some considerable compensation is possible using a short-circuited stub transmission line, resonated in the middle of the frequency band.

Fig. 2 also shows the reactance variation of a short-circuited length of transmission line, which is a quarter-wavelength long at the resonant frequency of the aerial; and it can be seen that the two components have reactances of opposite sign at frequencies on either side of resonance.

If the aerial covers the television band of 41 to 47 Mc/s, and is resonant at 44 Mc/s in the middle of the band, it is possible with a suitable stub-line to cancel the capacitive reactance of the aerial at 41 Mc/s, and also the inductive reactance of the aerial at 47 Mc/s. At these frequencies the aerial impedance is a pure resistance.

The stub must be a quarter-wavelength at 44 Mc/s. The cancellation occurs because the aerial and stub reactances vary with frequency in opposing ways.

![Resistance and reacance of combination of dipole and stub.](image)

The two curves in Fig. 2 cannot, of course, be simply added together, for the aerial reactance is in series with the radiation resistance and the transmission line is in parallel with this complex impedance. At the centre frequency the transmission line has an infinitely high reactance and will not affect the radiation resistance.

The resultant curves of reactance and resistance vary in the manner shown by the curves in Fig. 3 (not to scale). At the middle frequency, the input reactance is zero and the input resistance has a minimum value equal to the dipole radiation resistance. The maximum values of input resistance occur at each end of the band (i.e., at the frequencies where reactance cancellation takes place). In Fig. 3 the dipole radiation resistance is assumed to be constant over the band; in practice this is not the case and the curves are slightly asymmetrical.

The foregoing is an outline of the theory on which the aerial investigations were based, and the actual design and construction of a loaded aerial incorporating a stub compensating line will now be treated.

The Compensated Loaded Dipole

It was decided that elements of 2 feet 6 inches in length and 1 inch in diameter should be used, giving, with the loading coil, an aerial of approximately five feet six inches long.

The aerial was coil loaded at the centre to resonate at 44 Mc/s and at this frequency was found to have a radiation resistance of approximately 13 ohms. The reactance varied from -757 ohms to $+757$ ohms. Therefore the equivalent parallel capacitive reactance to be cancelled out at 41 Mc/s was approximately -766 ohms. The compensating stub was to be a quarter-wavelength at 44 Mc/s and with polythene dielectric ($\varepsilon = 2.3$) this would be 112.5 cm.

From the well-known formula for a short-circuited length of transmission line:

$$ Z_N = j \frac{Z_K}{\tan \frac{\pi x}{\lambda}} $$

where $Z_N =$ input impedance of line $Z_K =$ surge impedance of line $x =$ length of line $\lambda =$ wavelength

it can be seen that the reactance of this length of line at 41 Mc/s depends purely on its characteristic impedance.

The variation in reactance over the band for a length of line with a characteristic impedance of 70 ohms, is shown in Table 1, column (a). Column (b) shows the behaviour of a line with an impedance of 7 ohms, and the re-

<table>
<thead>
<tr>
<th>Frequency (Mc/s)</th>
<th>70-ohm line</th>
<th>7-ohm line</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>660</td>
<td>66</td>
</tr>
<tr>
<td>42</td>
<td>1001</td>
<td>100</td>
</tr>
<tr>
<td>43</td>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>43.5</td>
<td>3339</td>
<td>333</td>
</tr>
<tr>
<td>44</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>45</td>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>46</td>
<td>1001</td>
<td>100</td>
</tr>
<tr>
<td>47</td>
<td>660</td>
<td>66</td>
</tr>
</tbody>
</table>
acitance curves are shown in Fig. 4.

It can be seen that the reactance of the 70-ohm line is too high even at the edge of the band, but that a 7-ohm line would provide a suitable cancelling reactance at 41 Mc/s.

The problem, therefore, became one of constructing a low-impedance transmission line and was solved by utilizing flat brass strips or tapes insulated by polythene.

The next difficulty was that of finding a convenient mechanical arrangement and this was overcome by winding the aerial-loading coil itself with brass tape and using one-half of the loading coil as one conductor of the transmission line. Fig. 5 illustrates the mechanical construction of the aerial. The ordinary aerial element was constructed of hollow aluminium tube. The former for the aerial-loading coil was made of paxolin tubing in which was cut a spiral groove for the brass tape coil. One half of the winding has two layers of brass tape insulated by polythene and with the electrical connections shown in Fig. 6(a) is equivalent to the coil-loaded dipole with a short-circuited stub line connected across it shown in Fig. 6(b). In practice, the length of the double winding, if short-circuited at the point of connection to the aerial rod, is not sufficient to provide a quarter-wavelength line at the required frequency, and the extra length is obtained by constructing the aerial rod from two hollow D-shaped aluminium tubes insulated down the centre by polythene (to give the correct characteristic impedance), one rod being connected to each of the two tapes and a short circuit being made at a suitable distance from the end of the coil. This method of lengthening the stub line is also shown in Fig. 5.

Investigations showed that it is an advantage to make the quarter-wave stub resonant at approximately 49 Mc/s, instead of 44 Mc/s. This has the effect of shifting the maximum resistance point to the centre of the pass-band [(Fig. 7, curve (c)]. Figs 7 and 8 show the results of measurements made on a standard dipole [curves marked (a)] and the compressed or inductively-loaded dipole with and without stub line compensation [curves marked (c) and (b) respectively].

The comparison between the aerials is shown in these diagrams in terms of the aerial input resistance and reactance over the frequency band 41 Mc/s–47 Mc/s.

The slotted transmission-line method of r.f. measurement was used for all impedance measure-

![Fig. 4. Reactance curves of 70Ω and 7Ω lines at 44 Mc/s.](image)

![Fig. 5. Mechanical construction of loading coil and stub line.](image)

![Fig. 6. Connections of loaded dipole with stub.](image)
Indoor Television Aerial—
in Fig. 8. The uncompensated compressed dipole, curve (b),
shows a reactance varying from
$-57\$ ohms to $+57\$ ohms and
considered in conjunction with
curve (b) of Fig. 7, shows a very
poor ratio of reactance to resis-
tance at the edges of the band.
The compensated compressed dipole,
curve (c) is inductive throughout the band varying from
$+72\$ ohms to $+14\$ ohms. It
can be seen that the ratio of re-
actance to resistance compares
favourably with that of the
standard dipole, and provided
that the measured input resistance
is mainly useful radiation resis-
tance and not loss resistance, the
aerial bandwidth should be com-
parable with that of the standard
dipole. Actual field strength
measurements showed the com-
pressed dipole to be $-6\$ db ± $1\$
db down in sensitivity on the
standard dipole throughout the
band, thus substantiating the
results expected from impedance
measurements.

In order to match the com-
pressed dipole to a $70-$ohm feeder
a series resistor of approximately
30 ohms was added, but as the
aerial was only intended for use
in high signal-strength areas the
additional loss is tolerable. The
dotted curve (d) in Fig. 7 shows
the input resis-
tance presented
by the combination,
and the aerial-
to-line matching
($70-$ohm feeder)
is shown for the

Fig. 7. Curves of aerial input re-
actance.

![Fig. 8. Curves of aerial input reactance.](image)

TABLE 2
Comparison of aerial to line matching of normal dipole and compressed dipole
(Z of line = 70 ohms).

<table>
<thead>
<tr>
<th>Frequency (Mc/s)</th>
<th>Reflection Coefficient (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal dipole</td>
</tr>
<tr>
<td>41</td>
<td>44%</td>
</tr>
<tr>
<td>42</td>
<td>29%</td>
</tr>
<tr>
<td>43</td>
<td>19.7%</td>
</tr>
<tr>
<td>44</td>
<td>6.3%</td>
</tr>
<tr>
<td>45</td>
<td>11.6%</td>
</tr>
<tr>
<td>46</td>
<td>21.8%</td>
</tr>
<tr>
<td>47</td>
<td>22.6%</td>
</tr>
</tbody>
</table>

As the aerial is mainly intended
for use in areas of good signal
strength the loss of sensitivity is
tolerable and is far outweighed by
the advantage of the reduced size,
approximately to one-half of that
of the ordinary dipole.

"DIALLIST'S" PROBLEM

This should not be read until the
simple problem set in "Random
Radiations" (page 279) has been tackled.
The correct answer is (b). When capaci-
tors are connected across a source of h.t.
voltage the p.d.s across them depend on
their leakage resistance and not on
their capacitance. Suppose 2,000 V
is applied to two series capacitors, one
of which has an insulation resistance
of 300 MΩ and the second an insulation
resistance of 100 MΩ. Then there will
be a p.d. of 1,500 V across the first
and of 500 V across the second. If both
are rated at 1,000 V d.c. working the
first will soon break down. The full
voltage will then be applied to the
second, which will also break down.
In practice it is not possible to manu-
facture capacitors of identical insula-
tion resistance. In France, at any rate,
the provision of individual shunt resis-
tors is compulsory. The resistance of
these is less than the insulation resistance
of the capacitors, but high
enough to ensure negligible losses.

Owing to the presence of these resis-
tors it does happen that the
 capacitors are discharged rapidly
when the source of h.t. voltage is switched
off. Hence, if you plumped for (c) you
may award yourself a gentle pat on the
back.

Civil Aviation Communications.—A
second edition of the Civil Aviation
Communications Handbook (MCAp5)
has been published. It contains the
international regulations and commu-
nications procedures with which aircraft
registered in the United Kingdom have
to comply. It is obtainable, price
7s 6d, from H.M. Stationery Office.
The pamphlet "Radiotelephony Pro-
cedure" (MCAp40) continues in use as
the standard reference document for
Part I of the qualifying examination
for the Flight Radiotelephony Opera-
tor's Certificate of Competency.
The Siting of Aerials

We claim that "Belling-Lee" television aerials are mechanically and electrically superior, but if erected without due regard to local interference, and/or the proximity of a corrugated iron shed or gas holder, then the "Belling-Lee" best is no better than the cheapest worst.

No aerial is a "cure all," some are made better than others, and up to the weather, without leaning away from the prevailing winds, etc. Some have had superior electrical knowledge built into them, which tells when used in fringe areas.

We consider it bad practice to recommend the most expensive aerial of a range when a cheaper model will suffice.

Both the "H" type *1 and the "Veerod"*2 (inverted "V") are, in their own way, ideal for the elimination of interference, the "H" is the most expensive in our range and the "Veerod" one of the cheapest.

We have seen an announcement in a Midland paper to the effect that it is not possible to know what will be the best television aerial to erect until the Midland Transmitter is on. "Belling-Lee" have put up many hundreds of aerials for the Midland Transmitter and many hundreds more have been erected by worthy competitors. If the installations are entrusted to recognised firms with plenty of experience of this work in the London and home counties, then there is no need to worry.

If however, someone without the necessary experience puts up a television aerial, then there may be trouble from double images or "ghosts.*3

or the obvious local source of interference may be ignored and consequently the wrong type of aerial installed. To take a case in point, the "Belling-Lee" "Veerod" has sharp minima at right angles to the direction in which it is pointing, whereas the "H" type has a minimum behind the dipole: one experienced in these matters makes full use of such characteristics for the removal of "ghosts" or interference. Again, sometimes it is advantageous to use the building on which the erection is being carried out to screen the dipole from obvious interference such as a busy cross road, and in other cases height is the most important thing. Experience of hundreds of such cases is most useful.

The average wireless Dealer will not make mistakes that he cannot rectify when the time comes.

A "Veerod" television aerial mounted on a chimney.

Hum in the Receiver.

We have heard a lot about humming aerials, and we have cured this trouble, but we have recently had a number of requests to cure hum in the receiver. Now, this is a form of interference that we do not claim to cure. The hum is a low frequency phenomenon which may be mains borne on D.C. mains or an inherent property of the receiver itself.

Our interests are in radio frequency interference, which, as readers of this page know, shows up on the picture of a television receiver as "ghosts," spots, feathering, or bars, and on the sound channel, or on broadcast receivers as crackles, plops, bangs and sizzling noises which may be eliminated from the receiver by the use of one or more of the following methods:

1. Correct choice and siting of an outdoor aerial.
2. For broadcast reception, an anti-interference aerial*3.
3. Fitting a mains filter*4.

Wires that carry and re-radiate interference.

We have recently been asked to confirm whether or not wires used for wired wireless radiator interference. The answer is that they can and do. So do telephone wires, and overhead fire alarm wires, but of course the worst offenders are overhead mains, in villages where the houses are wired with V.I.R. taken in at roof level.

*1. "Veerod" television aerials for Midland frequencies. L65/2LM "H" type with Sft. light alloy mast and chimney lashings, £6/5/-.

L65/2C "H" type with mast head cap for customer's own wooden mast, £2/17/6.

L65/2L "H" type with mast head cap and chimney lashings (less mast), £5/7/6.

The London equivalents for items 2 and 3 are L502/C, £4/8/-, L502/L, £6/6/-.

*3. "Skyrod" vertical collector with "Eliminoise" anti-interference transformers and cable. 1638/K chimney mounting, £10/-.

L608/CK Mast mounting (less mast), £8/15/-.

L308/K "Eliminoise" kit with 60ft. wire span and cable etc. Complete £6/6/-.

*4. Set lead suppressors. L300/3 amp, £2/19/6. L305 (2 amp), sometimes suitable for television, £3/3/-.

"Veerod," "Skyrod" and "Eliminoise" are registered trade marks. "Veerod" registration applied for.
S.R.E. for all purposes

Philips have supplied through traders and others throughout the world S.R.E. for almost every conceivable application. While specialized equipment is produced whenever necessary, a very wide range of standard apparatus units minimizes the need for this, and simplifies installation and maintenance.

As it can be shown to be much better engineering practice to use one large amplifier instead of a lot of little ones to feed one load, the standard range includes three large rack amplifiers.

Features include triode valves throughout, four push-pull stages, no electrolytics, and three separate anode supplies.

250 watt ... List Price £255
500 " ... List Price £325
1,000 " ... List Price £425

S.R.E. available through the trade on hire purchase or rental terms.

PHILIPS ELECTRICAL LIMITED

You MUST get this List...

This is the new list giving descriptions of the 162 Standard types of "Somerford" Transformers and Chokes together with details of 28 types of Replacement components suitable for commercial receivers

This COMPLETE range will meet ALL your normal needs

The requirements of the Electronic Industries are many and varied. It is to meet such demands that the "Somerford" range of Transformers and Chokes exist. No matter whether you are engaged in radio, the manufacture of industrial or domestic appliances, or laboratory work, if you are looking for components that will give you accuracy and dependability at an economical cost, you will do well to choose GARDNER products. Research, skill and modern manufacturing methods have been combined to produce components that will withstand the most arduous working conditions and meet the exacting demands of present day standards. The "Somerford" range comprises 162 different types—a type for every normal need.

Ready for IMMEDIATE DELIVERY

Full details and specifications will be sent on request

GARDNERS RADIO LTD
SOMERFORD : CHRISTCHURCH : HANTS
ELECTRONIC CIRCUITRY

Selections from a Designer’s Notebook

By J. McG. SOWERBY (Cinema Television Ltd.)

L

A

ST

TH

TH

AT

M

TH

TH

OST

M

TH

M

TH

TH

AT

M

TH

M

TH

M

TH

TH
Electronic Circuitry—
pulse can be derived from any one
of the anodes for three input
pulses, and the circuit divides
pulses by three. The buffer stage
discussed last month is quite
suitable for driving this ring, and
also for extracting an output
pulse.

A ring of greater number than
three can be derived directly from
Fig. 1 provided it is remembered
that there must be a symmetrical
d.c. connection from every grid
to every other anode, and at first
sight there seems to be no reason
why a ring of any number should
not be made. There is a practical
limit here, however, because con-
duction in one valve must provide
a potential change at all other grids
sufficiently large to hold all other
valves at or beyond cut-off. If we
make the simplifying assumption
that the resistances R_4 of Fig. 1
are infinite, it is found that the
potential available to cut off each
valve other than the conducting
one is only $a \frac{R_4}{R_3}$

and a is the number of valves in
the ring. Hence the larger a is
made, the more difficult does it
become to design for entirely
reliable operation. In practice,
however, the resistances R_4
are not infinite, so that the position
is rather worse than is indicated
above.

The maximum number a which
is attained in practice depends
on factors additional to those
mentioned. For example, by
making the R_4 resistances of Fig. 1
very large the anode potential
change of the conducting valve
can be increased, but as this
resistor is shunted by stray capaci-
tance a reduction in maximum
counting rate must be expected.

With sufficient care in design and
using modern high-slope valves
with a very short grid base, a ring
of ten, capable of operating at
50-100 kc/s, could probably be
constructed successfully.

In practice, of course, there is
little point in attempting a ring of
ten directly, as it is both easier and
more economical to use a scale of
two and a ring of five in cascade.
A scale of 12 might be constructed
from two scales of 2 and a ring of
three. A scale of 100 could con-
veniently be made up thus:—
$2 \times 5 \times 2 \times 5 = 100$; and a
scale of a gross:—$2 \times 2 \times 3 \times 2
\times 2 \times 3 = 144$.

Since any
number other than a prime can be
reduced to a product of primes,
next month we shall consider how
the missing numbers may be
filled in.

Thyratrons are frequently
used in d.c. circuits as sensi-
tive relays, firing on the applica-
tion of a small voltage pulse. It
is a property of a thyratron that
once the valve has broken down
the grid has no further control.

Extinguishing

To extinguish the

arc it is usual to

break the h.t.
supply tempo-

rarily, as shown in Fig. 2(a),

with the resetting switch S.

An alternative method of re-

setting a thyratron, which is
occasionally useful, is shown at
(b). A resistance R_i is placed in
series with the load, and a condenser C is momentarily short-
circuited to the negative h.t. line
with the switch S. The time
constants CR_i is long enough to
maintain the potential across C
less than the running voltage of the
thyratron for the time required
to ensure de-ionization—generally
200 microseconds is sufficient. The
resistance R is used to ensure that
C is discharged immediately prior
to the closure of S. This arrange-
ment is sometimes useful, for
example when only a single-pole
change-over contact is available
for resetting, and some secondary
circuit must be reset with the
other contact as shown at (b).

There is nothing very novel about
this arrangement; the same method
of arc extinction is often used
in d.c./a.c. converters.
CATHODE-RAY TUBES FOR TELEVISION
Diameter of Tube Neck

By HILARY MOSS, Ph.D., M.Brit. I.R.E. (Chief Engineer, Electronic Tubes, Ltd.)

(Concluded from p. 205 June issue)

In all the foregoing work, when comparing tubes of different sizes, it has been assumed that all linear dimensions except those of the actual triode have been multiplied by \(k \). This assumption does not wholly agree with normal commercial practice, since it is customary to maintain constancy of neck diameter.

It was stressed in the introduction that the solution of these cathode-ray tube problems depends entirely on the postulates made. However the complexity of the solutions varies greatly with the postulates. We saw for example that to postulate constancy of cathode loading involves appreciably more working than the assumption of constant beam current. And if we inject the still additional requirement that the neck diameter is to be constant then the treatment is still further complicated.

This arises because we cannot longer use postulate (1); that is, the principle of geometrical scaling. This principle requires that all the linear dimensions of the system must be scaled and we are now deliberately departing from this by multiplying the screen diameter by \(k \), while maintaining constancy of size in the deflector-coil region.

A solution therefore demands special knowledge of the effects of deflection. The following additional fact is necessary and sufficient to solve the problem of change of screen size at constant resolution.

"If the beam width, coil shape and size, and the scanning angle, are all kept constant, then the deflection defocusing is proportional to the distance between the centre of deflection and the screen." [24]

In this statement the term 'deflection defocusing' means the difference in the linear size of the spot at the centre and the edge of the screen. The application of postulate (2) enables us to deduce that the deflection defocusing is independent of the anode potential. [25]

We now illustrate this by repeating the solution of the first problem, with the additional requirement that the neck diameter and scanning coils are to be unchanged. The general theory is a little too cumbersome to be given here, but the method can be seen by reference to Fig. 3. In the original tube the crossover at \(T \) is imaged by the thin lens at \(XY \) on to the screen at \(S \). \(CD \) represents the centre of deflection. The derived tube has its screen at \(S' \), where it is assumed that the axial position of \(S' \) is such that for constant scanning angle the diameter of \(S' \) is \(k \) times the diameter of \(S \). Now the resolution of the derived tube is to be the same as that of the prototype. Therefore the deflection defocusing is to be \(k \) times as great as on the prototype just as the beam angle from the triode, the new position for the focusing coils is found by projecting back lines from \(S' \) through \(C \) and \(D \). These cut the rays from the triode at \(X' \) and \(Y' \) which is the new position for the focusing coil.

On the prototype tube the linear magnification between the triode and spot is \(M_1 = \frac{ES}{TE} \) and on the new tube it is \(M_2 = \frac{AS'}{TA} \). Let the crossover diameter on the prototype tube be \(\lambda \). Then with the previous notation, the requirement of constant resolution gives

\[
\frac{M_1d}{\sqrt{V_1}} = \frac{M_2d}{\sqrt{V_2}} \quad \ldots (8)
\]

Equation (8) compares with (2) and differs only on account of the change in geometrical magnification brought about by the alteration of the position of the focusing coil.

As in the first problem equation (1) defines the condition of equality of screen brightness, so that (1) and (8) permit us to calculate \(V_2 \) and \(\lambda \). \(M_1 \) and \(M_2 \) are most easily found graphically.

Fig. 3. Geometrical derivation of tube of larger screen diameter keeping neck diameter and scanning angle constant. Note that only the conical portion of the glasswork is changed.

Approximation based on the value of \(M_2/M_1 \)

Provided that the process of extrapolation is not carried too far, examination of the geometry of typical television cathode-ray tubes will convince the reader that the ratio \(M_2/M_1 \) is very nearly equal to \(k \). If we now insert this value in equation (8) we immediately get, after cancellation of common terms,

\[
1/\sqrt{V_1} = \lambda/\sqrt{V_2} \quad \ldots (8a)
\]
Cathode-Ray Tubes for Television
which oddly enough is exactly the same equation as that relating to
the earlier case where the neck
diameter was varied in proportion
to the screen diameter and the
spot size was to be held constant.
The solution of this equation
together with (1) has already been
given (2nd column, Table 1) this
being the case of constant beam
current. The solution of (8a)
with (3), (4), (5) and (7) has also
been given (column 4, Table 1) this
being the case of constant cathode
loading.
However to avoid any possible
confusion this working is repeated in
Table 2, since the postulates are
entirely different, and the
identity of
the
previous
equation is merely coincidental.
One important fact emerges from a
comparison of Table 1 and 2.
Column 2 in Table 2, which
 CORRESPONDING
Column 2 in Table 1 with
Column 1 in Table 2. Both
operations result in a picture
linearly in k times
as
large as on
the prototype
and of the same
surface brightness.
Both
operations require the same
increase in
anode voltage
and the same increase in
cathode loading. But
the operation on Table 1
where the neck
diameter is increased in propor-
tion to the screen diameter gives
no increase in spot size, whereas
the operation on Table 2 maintain-
ing constant neck diameter results
in the spot diameter being multi-
plied by k. We are entitled to
conclude that the operation on
Table 1 yields a tube of higher
intrinsic performance than that
given by Table 2, since we
normally seek to obtain the
smallest spot size, all other factors
being constant. This fact is a
result of the use of a larger neck diameter (and greater neck length)
on the tube derived by Table 1. It
is a valid general deduction that
the absolute electrical performance of a tube of given screen size can be improved by an increase in neck length and neck diameter.

APPENDIX
Grid voltages are always referred to cathode potential. The triode is said to be modulated when the grid potential is such that cathode current flows. For any fixed geometry and fixed anode voltage, denoted by V, there is a definite negative grid voltage, denoted by V, at which cathode current just ceases to flow. V is termed the cut-off voltage. The grid voltage V is always assumed to lie between the cut-off voltage and zero, but positive grid voltages are excluded. The grid drive, V, is defined as the magnitude of the difference between the cut-off voltage V and the actual grid voltage V. It is the grid voltage measured with respect to the cut-off voltage. It is clear from the above definitions that negative grid drive has no useful meaning and that we are only concerned with positive values of V.

TABLE 2

<table>
<thead>
<tr>
<th>Basic Operation</th>
<th>Screen Diameter multiplied by k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Operations</td>
<td></td>
</tr>
<tr>
<td>Neck diameter, scanning</td>
<td></td>
</tr>
<tr>
<td>coils constant.</td>
<td></td>
</tr>
<tr>
<td>Position of triode in</td>
<td></td>
</tr>
<tr>
<td>neck constant. Focus</td>
<td></td>
</tr>
<tr>
<td>coil moved towards triode</td>
<td></td>
</tr>
<tr>
<td>(if k>1) Scanning angle</td>
<td></td>
</tr>
<tr>
<td>constant, see Fig. 3.</td>
<td></td>
</tr>
<tr>
<td>Geometrical Changes Made</td>
<td></td>
</tr>
<tr>
<td>Triode Dimensions</td>
<td>$k^{1/n}$</td>
</tr>
<tr>
<td>$k^{1/(1+n)}$</td>
<td></td>
</tr>
<tr>
<td>Cathode-grid Spacing*</td>
<td>$k^{2/n}$</td>
</tr>
<tr>
<td>$k^{2/(1+n)}$</td>
<td></td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>$k^{3/n}$</td>
</tr>
<tr>
<td>$k^{3/(1+n)}$</td>
<td></td>
</tr>
<tr>
<td>Cut-off Voltage</td>
<td>$k^{4/3(1+n)}$</td>
</tr>
<tr>
<td>Grid Drive</td>
<td>$k^{1/(1+n)}$</td>
</tr>
<tr>
<td>Scanning-Coil Current</td>
<td>$k^{1/n}$</td>
</tr>
<tr>
<td>$k^{1/(1+n)}$</td>
<td></td>
</tr>
<tr>
<td>Effects Produced</td>
<td></td>
</tr>
<tr>
<td>Beam Current</td>
<td>k</td>
</tr>
<tr>
<td>$k^{2/(1+n)}$</td>
<td></td>
</tr>
<tr>
<td>Spot Diameter</td>
<td></td>
</tr>
<tr>
<td>Beam Angle α</td>
<td>k</td>
</tr>
<tr>
<td>Screen Brightness</td>
<td></td>
</tr>
<tr>
<td>Cathode Loading</td>
<td>$k^{1/n}$</td>
</tr>
<tr>
<td>$k^{1/(1+n)}$</td>
<td></td>
</tr>
</tbody>
</table>

* This adjustment to be made additionally to that effected by the scaling of the whole triode.

TABLE 3

<table>
<thead>
<tr>
<th>Anode potential (kV)</th>
<th>Grid potential (V)</th>
<th>Width of raster lines just merge (S) (mm)</th>
<th>$S\sqrt{V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-30</td>
<td>73</td>
<td>127</td>
</tr>
<tr>
<td>4</td>
<td>-40</td>
<td>69</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>-50</td>
<td>62</td>
<td>139</td>
</tr>
<tr>
<td>8</td>
<td>-80</td>
<td>48</td>
<td>136</td>
</tr>
<tr>
<td>9</td>
<td>-90</td>
<td>45</td>
<td>135</td>
</tr>
</tbody>
</table>
For all practical purposes the cut-off voltage \(V_c \) is proportional to the anode voltage \(V_a \), geometry being held constant. Furthermore the author has shown elsewhere that to useful engineering accuracy, the cathode current \(I_k \) in most normally proportioned triodes is given by Equation (6). Thus the cathode current increases as the \(\frac{7}{2} \) power of the grid drive for constant cut-off voltage.

This equation, it will be noted, does not explicitly involve the triode geometry except in so far as this affects \(V_c \) for a defined anode voltage \(V_a \). In point of fact it would be astounding if so simple a law could accurately represent the cathode current for an arbitrarily wide range of triode shapes. Although it does not do this it is a useful guide. Reference 1 gives further information on the limitations of this formula.

When the grid of the tube is made more positive (i.e., the grid drive is increased) then the beam angle in Fig. 1(b) is also increased. Very roughly, the beam angle increases linearly with drive as shown in Fig. 4. Here the idealized shape of the beam angle/grid voltage curve for varying cut-off voltages is displayed, where the cut-off voltage variations are due to change in anode potential only and are not due to changes in triode geometry. It will be seen that the maximum beam angle occurs at \(V_a = 0 \) and is independent of the anode potential. This last fact is a consequence of postulate (2). It can further be shown\(^1\) that

\[
\sin \alpha = \frac{0.27}{1.34} \frac{D}{f} \frac{V_a}{V_c} \ldots \ldots \ldots (a)
\]

where \(D \) is the grid hole diameter and \(f \) the anode-to-grid spacing.

Another very important consequence of Fig. 4 and Equation (a) is that the beam angle \(\alpha \) remains constant if both the modulus of the grid voltage and the anode potential are multiplied by the same constant.

Fig. 5. The relation between tube anode voltage and screen brightness is shown here. The crosses represent measurement values for a raster 10 cm by 10 cm and a beam current of 30 \(\mu A \).

Postulate No. 3 depends on experimental evidence which is given in Fig. 5. This shows a typical screen-brightness/anode-voltage curve for a 10-in diameter television cathode-ray tube. The beam current and raster size were all maintained constant throughout. The fluorescent material was zinc sulphide (mixed components—blue and yellow—giving an approximate white response). The curve can be approximated by a straight line on log/log paper thus revealing an approximate "power" law. It will be seen that the curve bends over somewhat towards the higher voltages presumably due to partial onset of "screen piling." The value of \(\eta \), which averages \(1.47 \), is considerably higher at the lower voltages. This emphasizes the necessity of not extrapolating the results of Tables 1 and 2 too far.

Postulate No. 4 depends on the assumption that the definition of current density at the 'edge' to maximum density at the centre. If screen saturation is negligible this is equivalent to a brightness ratio.

The measurement must therefore be based on a technique which is consistent with this definition. One such method is as follows.

A fixed number of lines is applied to form a raster, and the latter is contracted in a direction at right angles to the direction of each line until the lines just merge into each other. The width of the raster is then proportional to the spot diameter.

Table 3 summarizes such measurements for a 10-in television cathode-ray tube. 400 lines each 150-mm long were used. The last column indicates that \(S/V \) is nearly constant so justifying the principle. The latter however also has an appreciable basis in theory.

PORTABLE TELEVISION

The Baird Portable Television set which measures 18½ in x 17 in x 13½ in and weighs 37 lb, is of the transformerless type and is suitable for a.c. or d.c. mains. It is a super-heterodyne with one signal-frequency amplifier. There are two i.f. stages in the vision channel and one in the sound. Noise limiters are fitted to both channels. The e.h.t. supply is from the line flyback.

The unusual feature of the set, by which its title of portable is justified, is the use of the mains lead as an aerial. The mains lead is fitted with a filter unit at about one half-wavelength from the set. This effectively isolates the half-wave section from the mains and so enables it to function as an indoor aerial.

The set is listed at £47 15s 6d plus £10 17s 4d purchase tax and at a recent demonstration performed excellently under conditions of severe interference. It is manufactured by Scophony-Baird, Ltd., Lancelot Road, Wembley, Middlesex.

Another new product of this firm is a magnetic-tape recorder which is designed for use with 8, 9.5 and 16 mm cine-film projectors and permits a synchronized running commentary to be added to any silent film. The Cine-Soundmaster costs 75 gns, and can be used with 600, 1,200 or 4,800 ft reels of tape suitable for 200, 400 or 1,600 ft of film.

WORLD OF WIRELESS

B.B.C. Charter * Teleciné Equipment at A.P. * Olympia Plans * Birthday Honours

Committee of Inquiry

SINCE announcing the constitution and terms of reference of the B.B.C. Committee of Inquiry the Lord President of the Council has stated that Sir Cyril Radcliffe, who was appointed chairman, had to resign owing to his appointment as Lord of Appeal. He is now Lord Radcliffe. His successor has not yet been announced.

The terms of reference of the Committee, which consists of eleven members including the chairman, are: "To consider the constitution, control, finance and other general aspects of the sound and television broadcasting services of the United Kingdom (excluding those aspects of the overseas services for which the B.B.C. is not responsible) and to advise on the conditions under which these services and wire broadcasting should be conducted after December 31st, 1945 [when the present Charter ends]."

N.P.L. Annual Visit

MUCH interest was shown by visitors this year in the Electronics Section, where component parts of the A.C.E. (automatic computing engine) are being developed and made to the requirements of the Mathematical Division. Generators of pulses of ½-μsec duration and 1-μsec spacing were demonstrated, and also a "dynamicizing" circuit for translating decimal numerals into binary form, in which the presence or absence of any power of 2 in sequence is indicated either by a pulse or space. With this system a number with 10 significant figures on the decimal scale is registered in 30 μsec, and can be kept in storage until required by circulating in a closed circuit, part of which involves the transmission of sound waves in a column of mercury.

Also in the Electronics Section was a display comprising the N.P.L. moisture meter and some simple devices involving photo-cells and capacitive effects to advertise the fact that the N.P.L. is willing to collaborate with manufacturers in the application of electronics to industry.

New Equipment at A.P.

TWO new sets of teleciné equipment, one made by Cinema-Television, and the other by E.M.I., have been installed at Alexandra Palace, where they are now being used for televising films.

The method employed is broadly the same in both sets. The principal components are a projection cathode-ray tube, an optical system, a film projector, and a photo-multiplier tube. A scanning pattern, with an aspect ratio of 5:2, is traced on the fluorescent screen of the cathode-ray tube by the electron beam, and two images of this pattern are projected by the optical system onto the gate of the projector.

The film runs continuously through the projector at a speed equivalent to 25 frames per second, and each film frame is exposed for 1/50th second first to one scanning image, and then to the other, by the action of a rotating shutter. The light that passes through the film is focused on to a photo-multiplier tube, which generates the picture signal, and the signals corresponding to the exposure of each frame to the two scanning images combine to give an interleaved signal. Though the aspect ratio of the scanning pattern on the face of the cathode-ray tube is 5:2, this is increased to an effective ratio of 5:4 by the motion of the film.

Radiolympia

PLANS for Radiolympia (Sept. 28th to Oct. 8th) are going ahead steadily and space has now been allocated to over 150 exhibitors—a reduction of some twenty on the 1947 figure. Although details of manufacturers' exhibitions are not yet known some of those to be shown by Government Departments have been announced.

A supersonic experimental tank demonstrating the principles of radar will be among the exhibits of the Radar Research and Development Establishment of the Ministry of Supply. T.R.E. will be showing a radiosonde balloon, which automatically transmits variations in the humidity, temperature and pressure during its ascent to 35,000 feet. The need for tropicalization of components and packages will be exemplified by samples having undergone tests at the Ministry's Tropical Testing Establishment in Nigeria.

The Dept. of Scientific and Industrial Research will be showing for the first time at this year's exhibition. The plotting of storm areas by radio—transmission of information received from four forecasting centres—will be shown by D.S.I.R. which will also be demonstrating the means employed for forecasting the maximum usable frequencies for radio communication.

The radio and radar control of aircraft at London Airport will be shown on a working model of the main runway.

TELEVISING FILMS. General view of the new teleciné apparatus recently installed at Alexandra Palace. On the left is part of the E.M.I. equipment and on the right that supplied by Cinema-Television.
B.B.C. Appointments

Consequent upon L. W. Hayes' resignation as head of the B.B.C. overseas and engineering information department to take up the post of vice-director of the Comité Consultatif International des Radiocommunications in Geneva, changes in the organization of the

O.B.E. He was deputy inspector from 1940-1944 and was in the G.P.O. overseas telecommunications department until 1948 when he was appointed inspector.

W. H. Oliver, controller of telecommunications in Malayasia, becomes an O.B.E.

S. A. Williams, A.M.I.E.E., engineer-in-charge of the B.B.C.'s high-power short-wave transmitter at Sidcot, Cumberla, is appointed an M.B.E.

J. Leiper, chief operator of the Cable and Wireless receiving station at Somerton, Som., has been awarded the British Empire Medal.

OBITUARY

We record with regret the death of N. R. Campbell, B.Sc., D., who was in the G.E.C. research laboratories from 1919 to 1944 when he retired. He was aged 69. Prior to joining the G.E.C. he was appointed to the Cavendish Research Fellowship at Leeds University and was for a short time at the National Physical Laboratory. His research work was very varied ranging from investigations into the mechanism of the discharge of spark plugs to the theory of "noise" in thermionic valves and circuits. It was on the latter subject that he contributed, with others, a number of articles to our sister journal, Wireless Engineer. He was a Fellow of the Institute of Physics.

We also record with regret the death of J. G. Wright, a founder member of Wright and Waire, Ltd. He retired in 1945 from active participation in the company which he formed in 1919. The death is also announced of R. E. Gale, who was manager of the high-frequency and instrument sections of Philips works at Tooting. He was aged 47 and had been with the company twenty years.

PERSONALITIES

Sir William Coates has been appointed chairman of the Government Television Advisory Committee in succession to Lord Trefgarne who has held the position for nearly four years. Sir William is also a member of the recently appointed B.B.C. Committee of Inquiry.

Kathleen A. Gough, B.Sc., A.M.I.E.E., chief physicist in the research and development laboratories of the Dubelier Condenser Company, has been elected a Fellow of the Institute of Physics.

Brigadier E. J. H. Moppet has been seconded from Army duties to become chief inspector of electrical and mechanical equipment in the Ministry of Supply. Most of his 26 years Army service has been in Royal Signals. He was in charge of signal communications during the evacuation of Palestine and has just vacated a Deputy Director of Signals' appointment at the War Office.

E. C. Cherry, M.Sc. (Eng.), A.M.I.E.E., has been appointed to the City and Guilds Readership in Telecommunications endowed by Standard Telephones and Cables to provide facilities for post-graduate teaching and research in this field. He was attached to T.R.E. during the war and has been on the staff of the City and Guilds College since 1945.

IN BRIEF

Increases of 63,700 "sound" licences and 6,750 television licences during April brought the total in Great Britain and Northern Ireland at the end of the month to 11,823,000.

St. Paul's Sound System.—A sound reinforcement system has been installed in St. Paul's by Panton Reproducers, a subsidiary of Pye, to combat the famous echo of the cathedral. This has been done by fitting the loud-speakers under the chairs. To obviate the need for connecting wires, an induction system has been adopted. The output from the amplifiers is fed via a control desk in the nave to large wire loops on the ceiling of the crypt. Copper bands round each of the rows of chairs equipped with speakers provide the necessary pickup.

"Radio Valve Data".—This publication is now available in a second impression (with amendments to date of issue). It gives characteristics of 1,000 British and American receiving valves and replaces the former Valve Data Supplement which, in pre-war days, was much appreciated annual feature of Wireless World. The price is 3/6, or, by post from our Publisher, 3/9.

F. C. McLEAN, M.B.E., B.Sc.

B.B.C. engineering division have been announced.

The overseas engineering information department, the engineering secretariat, and the engineering training department have now been formed into what is to be known as the engineering services group with F. C. McLean, M.B.E., B.Sc., as head of the group and E. L. E. Pawley, M.Sc., as his assistant. H. Wilkinson, B.Sc., becomes head of O.E.I.D., and F. Williams, B.Sc., head of the training secretariat. Dr. K. R. Sturley continues as head of the engineering training department.

BIRTHDAY HONOURS

H. Faulkner, B.Sc., M.I.E.E., deputy engineer-in-chief, G.P.O., has been appointed a C.M.G. He joined the designs section of the G.P.O. engineer-in-chief's office in 1913 and after serving in the Royal Engineer's Signal Corps (1914-1918) he was transferred to the G.P.O. radio section. He was a member of the team responsible for the design of the Rugby station and was its first officer-in-charge (1923). He has held a number of executive offices and is now responsible for the radio development and radio maintenance branches. He was joint leader of the British delegation to the recent high-frequency broadcasting conference in Mexico.

C. S. Franklin, M.I.E.E., the "creator of beam wireless" who was recently awarded the Faraday Medal by the I.E.E., has been appointed a C.B.E. He retired from Marconi's W.T. Co. after 40 years' service, in 1939.

T. A. Davies, inspector of wireless telegraphy, G.P.O., is appointed an E. L. E. PAWLEY, M.Sc. (See "B.B.C. Appointments").
World of Wireless—guarantee period on the original tube. It has now been decided that for a trial period of twelve months from June 1st, any tubes, including those for replacements, shall carry the full six months’ guarantee.

S.T.C. Endowment.—Standard Telephones and Cables has endowed a Readership at the University of Birmingham, known as the Henry Mark Pease Readership in Telecommunications, in the City and Guilds College of the Imperial College of Science and Technology, South Kensington. Mr. M. W. Marconi was managing director of S.T.C. until 1928 and took an active part in the formation of the British Broadcasting Company, being one of its original directors. E. C. Cherry, M.Sc., has been appointed to the Readership. (See Personalities.)

Moulded Insulating Materials for use at frequencies greater than 10 kc/s are covered by a new British Standard (B.S. 1540:1940). It deals with six classes of materials—fused silica, vitreous carbon, asbestos, mica, gaseous textiles, and rubber-base materials and synthetic resins. It specifies tests for the mechanical strength, and electrical properties of each class. The Standard is obtainable from the British Standards Institution, 24 Victoria Street, London, S.W.1, price 6s.

Receiver Cabinet Design will be among the subjects illustrated at the exhibition provided by the Chicago Institute of Design which will be held in Manchester House, P etty France, London, S.W.1, from June 28th to July 29th.

Electronics Exhibition.—The fourth annual electronics exhibition organized by the North-Western Branch of the Institution of Electronics will be held at the College of Technology, Manchester, on July 19th from 2.30 to 9 p.m. and on July 20th and 21st from 10 a.m. to 5 p.m. An exhibition of scientific films arranged by the Manchester Scientific Film Society, will be included. Admission will be ticket obtainable from Dr. J. A. Darbishire, 1 Kendal Road, Fallowfield, Manchester.

“The Ionosphere and the Propagation of Radio Waves” is the main subject for consideration at the summer meeting of the Physical Society to be held in Cambridge from July 14th to 16th. The speakers will include Professor S. Chapman (Queen’s College, Oxford), J. A. Rate (Radio Laboratory, Cambridge), Dr. A. C. B. Lovell (Manchester University), G. Millington and S. B. Smith (Marconi’s W.T. Co.) and representatives from the Radio Research Board and the B.I.C. The fee for non-members is 10/- per day. Further particulars are obtainable from the Physical Society, 1 Lower Gardens, Lisboa, S.W.7.

Television Construction.—A constructors’ group of the Midlands Centre of the Television Society has been formed and particulars of the monthly meetings, which are informal, are obtainable from the Secretary, R. Baxendale, 50, Alcester Road, Birming-

Cavity Magnetron Award.—The Royal Commission on Awards to Inventors has granted £3,000 to be shared among the scientists responsible for the development of the cavity magnetron. They are Professor J. T. Randall, Professor of Physics, London University, S. A. B. Bashall, and Professor J. Sayers, both of Birmingham University.

Radio Navigation.—The Thomas Gray Memorial Prize (1948) of £50 was awarded by the Royal Society of Arts to J. K. L. Ward as consultant of the D.H. A. H. R. Board, for his essay on “The Applications of Radar to Navigation.”

Eddystone “600”—A typographical error appeared in Straton’s advertisement on page 3 of the June issue. The length of the scale was given as “equal to nineteen inches per range.” This should be ninety.

Scottish Branch of the Engineers’ Guild was inaugurated at a meeting held in Glasgow recently. This is the fifth branch of the Guild to be formed during the past few months.

FROM ABROAD

Italy has ordered 46 high-constant crystal-drive equipments from Marconi’s for synchronizing its many broadcasting stations which will have to share wavelengths as, under the Copenhagen Plan, Italy has only three exclusive frequencies. The monthly frequency drift of these equipments is given as not more than 2 in 10^6.

Finland is to install a new 100-kW medium-wave Marconi broadcasting transmitter. The special aerial coupling and tuning units for the directional aerial to be used in conformity with the provisions of the Copenhagen Plan are also to be provided by Marconi’s.

Pakistan’s Director of Radio is proposing to install receivers in schools and for community listening and is desirous of securing information from British manufacturers on sets that they are in a position to supply for the purpose. Most of the sets will need to be battery fed. Particulars should be forwarded to Z. A. Bokhari, Radio Pakistan (H.Q.), Karachi, Pakistan.

Exporting Television.—Scophony-Baird have appointed D. E. Wiseman, who was, until recently, the company’s production and sales director, as overseas representative and he is now visiting North America to investigate potential markets for the Baird transformerless a.c./d.c. television set which employs the Baird principle.

South Africa.—Four more 5-kW medium-wave transmitters, making ten in all, are to be supplied by Marconi’s to the South African Broadcasting Corporation.

India.—The Indian Minister of Industry and Supply has stated that the output of the four firms manufacturing broadcast receivers is 25,000 a year. He also stated that it is proposed to establish a factory for the manufacture of a variety of equipment ranging from transmitters to components and valves.

South Africa.—Provisions are made in the amended Broadcast Bill now before the South African Government for the South African Broadcasting Corporation to be permitted to erect transmitters outside the Union. Under the existing Act the activities of the S.A.B., are restricted to within the Union. Tenders have been invited by the Corporation for the supply of transmitters for the new commercial programmes which it is intended to radiate by the end of the year.

Denmark.—Transmissions from Denmark’s experimental television station began on May 1st. Some details of the Philips transmitter were given in our May issue.

Nairobi’s bilingual broadcasting service, which is provided by Cable and Wireless, Ltd., is to be augmented by the addition of a new 2-kW medium-wave transmitter ordered from Marconi’s.

INDUSTRIAL NEWS

Marconi’s marine communication receivers “Mercury” and “Electra” have been granted the P.M.G.’s certificate of type approval as conforming to the recently issued specification for ships’ general purpose receivers.

Welwyn Electrical Laboratories.—All departments of this company, except the London sales office, are now at the new factory at Bedlington Station, Northumberland. (Tel.: Bedlington 2121.)

Ekco.—The Public Hall, Hadleigh, Essex, which was purchased by E. K. Cole in 1946 for use as a store, is to be used by the company for the production of broadcast receivers thereby releasing space at the main factory for the additional production of television sets.

Advance Components, Ltd., advise us that the damage caused by the recent fire at their factory at Back Road, Sherrnhall Street, Walsall, W.2, is not as extensive as was at first estimated. Production has been resumed but deliveries of some types of ceramic signal generator and constant voltage transformers may be delayed a little.

Lee Products (Great Britain), Ltd., have transferred their head office and main distributing centre to 90 Great Eastern Street, London, E.C.2. (Tel.: Bishopsgate 3093.)

Kaysales, Ltd., manufacturers of “Precision” receivers, have taken over the Electronics Section of the business of S. A. Muffett, Ltd., of Mount Ephraim Works, Tunbridge Wells, Kent, and M. R. Barber has joined the company as chief engineer.

G.E.C. Research Laboratories have taken a 21-year lease of a building in the Ashley Exhibition Grounds as an additional laboratory.

Industrial Finishes Exhibition.—The exhibition of industrial finishes planned to be held in September has been postponed to September, 1949. Details are obtainable from the Organizing Secretary, 26 Old Brompton Road, London, S.W.7.
"SUPER FIFTY WATT" AMPLIFIER

This AMPLIFIER has a response of 30 c/s. to 25,000 c/s. within 1 db, under 2 per cent. distortion at 40 watts and 1 per cent. at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15/250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life. Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish. As illustrated, Price £36 1/2 Gns.

FOUR-WAY ELECTRONIC MIXER

This unit with 4 built-in, balanced and screened microphone transformers, normally of 15-30 ohms impedance. Has 5 valves and selenium rectifier supplied by its own built-in screened power pack: consumption 20 watts. Suitable for recording and dubbing, or large P.A. Installations since it will drive up to six of our 50 watt amplifiers, whose base dimensions it matches. The standard model has an output impedance of 20,000 ohms or less, and any impedance can be supplied to order. Price in case with valves, etc., £24

OUR FRIENDS OVERSEAS are invited to write for Export Terms

257-261, THE BROADWAY, WIMBLEDON, LONDON, S.W.19, ENGLAND
TELEPHONES: LIBerty 2814 and 6242-3
TELEGRAMS: "VORTEXION, WIMBLE, LONDON"
GREENWELL’S GLORY
or
SKY BLUE ZULU?

We refuse to tangle
with fishermen on
the niceties of their
piscatorial pastime... we’re too fly for that!

But fishing is also
a great Industry in
which the use of
electronics to pinpoint
the exact positions
of shoals of fish
saves time and money,
and sweetens salty tempers.

The tempers of the
Electronic and Elec-
trical Industries will
also be soothed by
the performance of
Parmeko Trans-
formers—cast
them a line.

PARMEKO of LEICESTER
Makers of Transformers for the Electronic and Electrical Industries.

Only with CO-AX
R.F. CABLES

Wireless World
July, 1949

TELEVISION
MINDED?

Improved Postal Course at
Greatly Reduced Price

In view of the rapidly increasing interest in Television
and our large number of enrolments, we have reduced the
price of our BASIC TELEVISION POSTAL COURSE
by 25%. At the same time the scope of the course has been
increased by including comprehensive material dealing
with the latest television receiver techniques.
The course covers the examination for the Television
Service Engineer’s Diploma set jointly by the Radio Trades
Examination Board and the City & Guilds Institute.
Where desired, selected lessons are available at an appro-
priately reduced price. Many other courses in RADIO,
MATHEMATICS, INDUSTRIAL ELECTRONICS, etc.
are available.

Write for FREE BOOKLET to Dept. 16,
E.M.I. INSTITUTES
43, GROVE PARK ROAD, LONDON, W.4. C.4117/8

TELEVISION
MINDED?

Improved Postal Course at
Greatly Reduced Price

In view of the rapidly increasing interest in Television
and our large number of enrolments, we have reduced the
price of our BASIC TELEVISION POSTAL COURSE
by 25%. At the same time the scope of the course has been
increased by including comprehensive material dealing
with the latest television receiver techniques.
The course covers the examination for the Television
Service Engineer’s Diploma set jointly by the Radio Trades
Examination Board and the City & Guilds Institute.
Where desired, selected lessons are available at an appro-
priately reduced price. Many other courses in RADIO,
MATHEMATICS, INDUSTRIAL ELECTRONICS, etc.
are available.

Write for FREE BOOKLET to Dept. 16,
E.M.I. INSTITUTES
43, GROVE PARK ROAD, LONDON, W.4. C.4117/8
How Many Kinds Are There?

By "CATHODE RAY"

This symbol (presumably short for "quality factor") has become generally accepted as the prime virtue where r.f. components are concerned. It has been incorporated in trade names. So recent statements that Q-meters don’t read Q may have sounded to some like a tampering with the eternal verities.

What exactly is Q? Although it has been in common use for so long it has been slow to be officially recognised. Perhaps that is because a thing that has gone about with several different meanings seems hardly respectable in official circles.

Its roots lie in the early days of broadcasting, when transmitters were low-powered and none too easily heard with the single-valve or crystal receivers of that period. So the demand was for tuning coils that would make the most of the feeble r.f. voltages picked up. Next, when stations multiplied in number and power, the problem was not so much to tune in the wanted station as to tune out the unwanted ones. All this time the wireless amateurs’ papers were full of advice on coils—practical advice on how to wind better coils, and theoretical advice on the underlying principles. It was shown that the coil which could give the strongest signals was also the most selective (though the optimum tapping or coupling depended on which quality was needed most).

The first prescription for achieving this double benefit was to reduce the r.f. resistance as much as possible. While quite true so far as it went, this was not the whole truth—it was soon realised that coil A might have a lower r.f. resistance than coil B and yet be less efficient in the two essential respects of sensitivity and selectivity. A resistance of 20 ohms would be bad in a medium-wave coil, but good in a long-wave coil. To make a fair comparison one had to take into account their inductances, and the frequencies at which they were used. So the need was felt for a single figure that would include all the factors concerned.

As a matter of general principle a standard of goodness, or a "figure of merit," is preferable to a standard of badness such as r.f. resistance.

That was where the term "circuit magnification" or "magnification factor" (abbreviated to \(m\)) came in.* It was based quite simply on the elementary principle of resonance, as shown in Fig. 1. If the frequency of the "input" or series voltage, \(v\), is adjusted to make the reactances of \(L\) and \(C\) equal, they cancel one another out, leaving \(R\) as the sole impedance of the circuit so far as \(v\) is concerned. The current is therefore equal to \(v/R\). But this current flows through \(C\) and \(L\), and sets up voltages across them, equal to the current multiplied by their reactance. As the reactances are equal and the current is the same, the voltages are equal, and can both be denoted by \(V\).

Reckoning from the inductive reactance, \(2\pi f L\) (abbreviated to \(\omega L\), we have:

\[
V = \frac{v \omega L}{R}
\]

The interesting thing, of course, is the ratio of \(V\) to \(v\), because \(V\) is the "output" voltage, which can be used or passed on to the next stage; \(v\) being the input, derived perhaps from an aerial or a valve coupled by a primary winding. In any reasonable tuning circuit \(V\) is considerably greater than \(v\), so it was natural to call \(V/v\) the magnification. We have, then:

\[
m = \frac{V}{v} = \frac{\omega L}{R}
\]

If we reckon from the capacitive reactance, \(1/\omega C\), we get:

\[
m = \frac{1}{\omega CR}
\]

which comes to the same thing—in Fig. 1, at least.

Instead of approaching the matter in this theoretical way, one may prefer to inject an actual voltage into a real tuned circuit and measure the output voltage across it; \(m\) is then directly:

\[
m = \frac{V}{v}
\]

In the course of time the Americans, thinking on similar lines, began to use the expression "Q". As it was usually defined as \(\frac{\omega L}{R}\), it was generally assumed to be another name for "\(m\)" which it has tended to out. But some slightly different definitions of \(Q\) appeared from time to time; and in the absence of prompt and firm action by acceptable authority, a state of uncertainty set in, and the term "Q" was generally avoided by the most precise people. Everybody else, however, found it too convenient for such scruples to prevail, and a Q-meter became one of the most used tools in almost every radio laboratory, while lots of people who hadn’t the least idea what it really meant discovered in Q a

*As far as I have been able to trace, the earliest use of voltage magnification as a standard of coil efficiency was made by S. Buttenworth (Experimental Wireless and Wireless Engineer, May, 1926, p. 267).
Q—valuable addition to their sales talk.

Many people in the radio business can get along quite well with the single easily-absorbed fact that a high Q means good selectivity and signal amplification. That is the great merit of the expression; it means something in terms of practical results. One does not need a university education to grasp its general significance. I take it, however, that if you were content with rough ideas you wouldn’t be reading this; so we will now proceed to consider the meaning of Q in greater detail.

Most of the controversy on the subject arises from the fact that no actual circuit is so simple as Fig. 1. L, C and R are shown there as separate components, but of course that is a theoretical simplification. R represents the total of the various forms of resistance and loss throughout the circuit. Normally most of it is the resistance of the coil, so L and R together are often assumed to represent the coil; but the capacitor is bound to have some resistance, so for more exact analysis one would divide R into two portions, attached to L and C respectively. We shall see later that if R is not substantially smaller than ωL and 1/ωC it is necessary to be particularly careful how m and Q are defined or measured.

Other complications occur because in practical circuits the

input voltage v is brought into the circuit.

At very high frequencies there is not even an appearance of L and C being separate—the tuning circuits are composed of parallel rods or cylinders, or of hollow spaces, in which L and C are inextricably mixed up and distributed. What about Q then?

We shall leave that question until later, and assume first that the frequency is moderate enough to let us represent the actual tuned circuit reasonably accurately by a diagram made up of separate lumps of L, C and R. That being so, it is usually satisfactory to consider the coil as if it were composed as shown in Fig. 2, in which C₀ is the self-capacitance. Comparing this with Fig. 1 we see that the coil is itself a complete resonant circuit. It is not possible to open the circuit to insert a signal source directly in series as in Fig. 1—the dotted line is a reminder that the items within it are only theoretically separable—but its equivalent can be performed by inductive coupling. The frequency at which a coil resonates on its own is called the self-resonant frequency. Although coils (especially if permeability-tuned) can be employed in this fashion, it is unusual to do so, because it allows the resonant frequency to be affected so much by stray capacitance. Nearly always the coil is used with a separate tuning capacitance.

Although the r.f. resistance of a capacitor can be kept very much smaller than that of a coil, it may not always be negligible. So it is necessary to make quite clear whether one is considering the Q of the coil alone, of the capacitor alone, or of the whole circuit. Just now we shall assume that the capacitor is perfect (zero resistance; infinite Q), so the Q of the coil is the same as the Q of the circuit.

Assuming also that the voltage v is introduced in series with L (in practice, by inductive coupling) connecting a perfect tuning capacitor across the terminals in Fig. 2 makes no difference in principle. It comes directly in parallel with C₀, and for purposes of calculation two capacitances in parallel can always be replaced by one equal to their combined values; so the actual circuit is unchanged. But if the signal source is connected in series with the coil (which is not just L, but the whole combination inside the dotted line), we have a different circuit arrangement, Fig. 3. The question then arises; are we concerned with the true inductance of the coil (L), or the inductance as it appears to be at that particular frequency, supposing that the

dotted line contained only inductance and resistance is in Fig. 4? The apparent inductance (L') is not quite the same as L—it must be greater, to make up for ignoring C₀—and R' is not the same as R. If they both differed in the same ratio, then the value of Q (taking it to be ωL/R) would be unaffected, but as it happens they are not. The textbooks show that

\[R' = R \left(\frac{C + C₀}{C} \right) \]

and

\[L' = L \left(\frac{C + C₀}{C} \right) \]

so what we may call the apparent Q, denoted by Q', and equal to ωL'/R', is

\[Q' = \frac{\omega L'}{R' \left(C + C₀ \right)} = \frac{C}{C + C₀} \]

When the external tuning capacitance C is very much larger
than the self-capacitance \(C_0 \) the difference between \(Q \) and \(Q' \) is not worth bothering about. A typical self-capacitance is 6pF, and if the added capacitance were, say, 300pF, \(Q' = \frac{300}{300-90} = 0.98Q \); the difference would be only 2%, which is less than the probable error of most Q-meters. But if no C is used the apparent Q is zero, no matter how high the true Q may be! So the distinction ought not to be completely ignored.

Opinions have differed as to which Q is the right one, or in fact whether either as defined above is right. To settle the question some people appeal to basic principles and others to practical sense. To serve its purpose of expressing the goodness of a tuning circuit or component it would obviously be a great advantage if the definition corresponded to the method of use. So we had better consider how tuning circuits are used.

In a typical broadcast receiver there are three main kinds of tuned circuits, shown in rough outline in Fig. 5. There is first the r.f. circuit, \(L_1C_1 \), into which the input voltage is inductively injected from the aerial, and the output taken from across \(C_1 \). Next there is the i.f. primary, in which the mode of operation is reversed; the input is received directly across the terminals of \(C_2 \) and the output is imparted inductively, proportionately to the current flowing in \(L_2 \). Lastly the secondary, \(L_2C_2 \), which works similarly to \(L_1C_1 \).

None of these tuned circuits corresponds to Fig. 3; in all of them the self-capacitance of the coil is effectively in parallel with the external tuning capacitance, making a total of \(C + C_0 \) tuned by the true inductance \(L \) and damped by the true r.f. resistance \(R \). There is no need to bother about \(L' \) or \(R' \) or \(Q' \). The typical examples just shown cover the vast majority of tuned circuits in actual use. It is clear then that \(Q \) corresponds to practical affairs more closely and more often than \(Q' \).

But what about the methods used for measurement? The bare bones of the usual type of Q-meter are shown in Fig. 6. A variable-frequency oscillator is provided to pass a measurable current (I) through a known low resistance \(r \). The r.f. voltage developed across \(r \) is therefore \(Ir \), and it corresponds to the signal source in Fig. 3. The output voltage \(V \) is measured by a valve voltmeter across \(C \), when \(C \) or the frequency of the oscillator has been adjusted to cause resonance, indicated by maximum \(V \).

We must conclude, then, that the quantity which applies to the commonest methods of use is \(Q \), but that the quantity actually measured by the commonest method is \(Q' \). And therefore that when these methods giving \(Q' \) are used, the readings should be multiplied by \(\frac{C + C_0}{C} \) to bring them to \(Q \). The instruments are, or should be, calibrated in \(C_0 \) and can be used to measure \(C_0 \). As we have already seen, the correction is hardly worth applying when \(C \) is many times greater than \(C_0 \); but omitting to apply it when \(C \) is not much greater than \(C_0 \) gives results which differ largely from the true \(Q \).

A Q-meter is very handy to use, but is subject to another error—serious at the higher radio frequencies—due to \(r \), which makes the instrument read lower than it should by increasing the resistance of the circuit being tested. Even if \(r \) were directly in series with \(R \), so that it could just be deducted from it, one would have to calculate \(R \), which is a nuisance with an expensive instrument that is supposed to read \(Q \) directly without any need for calculation. But actually \(r \) is in series with \(R' \), so to be strictly correct one would have to apply the factor relating \(R \) to \(R' \). In fairness to Q-meters I must admit that \(r \) is usually small enough to be neglected except in high-Q, very-high-frequency circuits, and also that some Q-meters work on different principles. When measuring very good coils one might also have to allow for the losses due to the valve voltmeter and the tuning capacitor. So it is as well not to be too impressed by the apparent direct-readiness of an instrument having a pointer moving over a scale marked "Q." Its great advantage is that it does give quite quickly and easily a figure that can be used for comparing one coil with another, even though that figure may often differ appreciably from the true \(Q \). The instrument can also be used for a variety of other measurements if one is prepared to do a few simple calculations.

But if one is prepared for that there is a lot to be said for an alternative method—the method in which the frequency of the oscillator is read at resonance and also at the two settings, one on each side of resonance, at which the voltage across the tuned circuit is 70.7% (i.e., 1/\sqrt{2}) of its maximum reading (Fig. 7). Then if \(f_1 \) is the resonant frequency and \(f_1 \) and \(f_2 \) respectively the higher and lower of the other two:

\[
Q = \frac{f_r}{f_1 - f_2}
\]

In this method, the oscillator...
is loosely coupled to the coil under test; there is no need for the r.f. ammeter or the resistance \(r \); the result is given directly in true \(Q \); and the method can be used in circumstances where the Q-meter fails. And of course it is very much cheaper.

The reason why it gives true \(Q \) is that the input voltage is inductively coupled to the coil under test, so is in series with the tuned circuit as a whole. In Fig. 6, by contrast, the input voltage is in series with only one of the two capacitance branches; \(C_q \) forming a sort of bypass.

There is another feature about Fig. 6, which is of practical importance only when \(Q \) is exceptionally low, but is interesting theoretically. We have not defined "magnification factor," and I have yet to come across a really water-tight definition, but it seems to be generally agreed that it is \(V/V_i \) in Fig. 4 when the circuit is at resonance, as indicated by a maximum reading of \(V \). If you ask whether this is not identical with what we have been calling \(Q' \), the answer is—not exactly. If you look up any good textbook that deals with resonance you will see that the frequency at which the voltage across the resonant circuit is maximum is not quite the same as the frequency giving series resonance. As a matter of fact, it depends on whether the maximum is arrived at by adjusting the frequency or by adjusting the tuning capacitance. Now \(Q \) (and \(Q' \)), as we saw in connection with Fig. 1, are based on the theory of series resonance. But Q-meters, which are the practical embodiments of Fig. 4, are so arranged that resonance is judged by the maximum reading of \(V \). So really they are magnification-factor meters.

The relationship between \(m \) and \(Q' \) can be worked out. The calculation is rather involved, but as a matter of interest the result, assuming resonance is obtained by varying the frequency of the oscillator, is:

\[
Q' = \sqrt{m^2 - 1} + m \sqrt{(m^2 - 1)}
\]

For example, if \(m = 2 \), \(Q' = 1.8 \)—a 10% discrepancy; but if \(m = 10 \), \(Q' = 9.66 \)—only 0.4% different.

If resonance is obtained by varying \(C \):

\[
Q' = \sqrt{(m^2 - 1)}
\]

The discrepancy is slightly larger in this case, but is still utterly negligible for normal tuning circuits. It should not be forgotten when dealing with very "flat" circuits, however.

In the alternative (Fig. 7) method, too, resonance is judged by maximum \(V \); but the resulting error is even smaller than in the previous cases. The calculation still have to be 12 kc/s, but the \(Q \) to give that selectivity would be 1200/12 = 100.

For constant selectivity, then, \(Q \) has to be proportional to frequency; so the quantity that indicates narrowness of bandwidth is not \(Q = \frac{CL}{R} \), but \(\frac{L}{R} \) the "time constant." At any given frequency, however, it is true to say that selectivity is directly proportional to \(Q \).

This may be a good moment at which to point out another advantage of \(Q \) as a standard, compared with \(R \). We have already seen that it is a fairer guide to the effectiveness of a coil because it takes into account its inductance, and also it is a measure of goodness rather than badness, and directly tells one the output voltage produced at resonance by a given input voltage. The other thing is that \(R \), unlike ordinary d.c. resistance, is by no means constant. Most of the losses included in it tend to increase with frequency. Over a limited range of frequency, such as that covered by a tuning coil, the resistance \(R \) is usually roughly proportional to frequency. So, since \(Q = \frac{2\pi fL}{R} \), over the same range of frequency \(Q \) is roughly constant. Only roughly; but at least it is more nearly constant than \(R \).

So far we have been considering \(Q \) as a property of a coil, which is the same thing as the property of the whole tuned circuit, if losses outside the coil are negligible. But one often sees references to the \(Q \) of a capacitor or other component. The same principle holds: it is the ratio of reactance to series resistance; with capacitive reactance, \(Q = \frac{1}{\sqrt{\omega C R}} \).

When considering a resonant circuit it is often useful to know its equivalent parallel resistance, or dynamic resistance. Denoting it by \(R_d \), and the reactance (inductive or capacitive) by \(X \), the ratio \(R_d/X \) is the same as \(X/R \), which is what we know as \(Q \). So if we know that the reactance of a tuning coil in the anode circuit of a valve is, say 1000 \(\Omega \), and its \(Q \) is 100, then it acts as a coupling resistance of 100,000 \(\Omega \). (Because \(R_d = QX \).) And of
course its series r.f. resistance is 10\(\Omega \) (= X/Q).

Nowadays most of the interest is focused on those frequencies which the Editor conveniently gathers together under the single abbreviation “e.h.f.” (i.e., everything over 30 Mc/s). At such frequencies the concept of a circuit composed of lumped L and C more or less breaks down. That being so, the concept of Q, if it can be made to apply, is more useful than ever, because of the difficulty of measuring L and C and of knowing what they signify when one has measured them. So Q has recently been redefined in more general terms as:

\[
2\pi \text{ times the energy stored} \frac{\text{energy dissipated}}{\text{in the circuit per half-cycle}}.
\]

Simple lumped circuits such as Fig. 1 are particular cases, in which Q as defined in this general way simplifies to \(\omega L/R \) or whatever is appropriate. So accepting the newer definition doesn’t make it necessary to unlearn the old. There are, however, a few bogus definitions, such as the reciprocal of the power factor, that ought to be scrapped, however nearly right they may be in most cases.

You may ask how the energy stored per cycle in an e.h.f. circuit can be measured. Well, the most convenient form for definition is not necessarily the most convenient form for measurement; and in this case measurement is best tackled indirectly. It is sometimes possible to measure the decrement, or rate of dying-away of oscillations. But the most generally convenient is the Fig. 7 method, which holds good even with resonant cavities for centimetre waves. Frequency is the most accurately measurable quantity there is; so the only other thing to provide is an indicator to show when the voltage or current amplitude is 70% of maximum—roughly 3 db down.

Summing up the main points:

1. The modern definition of Q, completely general in its application, is based on the ratio of energy stored to energy dissipated in the circuit.

2. Applied to lumped circuits, this is equal to the ratio of the reactance (purely inductive or capacitive) to the series resistance (in its widest sense, covering all losses).

3. This X/R ratio is also equal to the ratio of V, the voltage across the whole reactance of one kind in a circuit at series resonance, to \(\nu \), the voltage injected in series—the ratio known as circuit magnification factor (m). But when, as is usual, resonance is judged by the maximum parallel voltage, there is a discrepancy between m and Q, which is negligible unless Q is in the lower single-figure range.

4. If Q or m is measured by the type of circuit shown in Fig. 3, (such as the usual type of Q-meter, Fig. 6), the result is the apparent Q, or Q', equal to \(Q' \left(\frac{C}{C+2c} \right) \). Since this is almost the only practical way of directly measuring m, in practice m is the same as Q' (neglecting the discrepancy mentioned above).

5. Q, however, can be measured by other methods (such as the frequency-variation method, Fig. 7) which give true values directly, and these correspond with the conditions under which tuned circuits are most commonly used (Fig. 5).

NEW RADIO-GRAMOPHONE

A two-position tone control gives normal and extended frequency range on gramophone records in the latest Marconiophone Model ARG19A. The auto-changer handles up to ten 10in or 12in records. On the radio side, a four-valve plus rectifier superhet. covers short, medium and long waves. Three extra positions on the waverange switch give two preset stations on medium and one on long waves. The price is £84 11s. 4d. including purchase tax.

CASES TO YOUR SPECIFICATION

As the leading manufacturer of precision built instrument cases we are particularly well equipped to quote you, competitively, for bulk production of any type of metal case to your drawings or sample, regardless of size or quantity. Our wide range of stock tools not only enables us to offer you the keenest possible prices but also helps to ensure quick and punctual deliveries. Owing to our specialized knowledge of metal case work and infinitely varied experience you can place absolute confidence in our ability to meet your exact requirements. All estimates will be submitted promptly and without cost or obligation. Only materials of the highest quality will be used throughout.
TRIODE-DIODE VOLTOMETER

Made from War Surplus Parts

By T. A. LEDWARD, A.M.I.E.E.

A general view of the voltmeter

INTENDED for audio-frequency work, the voltmeter to be described has a linear scale from 0.1 to 1 volt. It is not suitable for d.c., but this limitation enables a stable zero to be obtained without special balancing arrangements.

The instrument was constructed from ex-Government components, including the metal case, at low cost.

A Type No. 194 receiver provided the case and valves. This receiver contained many additional parts, including two further valves, a VR91 and an EF50. The 0-100 microammeter, ex-Admiralty pattern W6022, had a special marked scale which required repainting and scaling.

The circuit arrangement was considered with some care and it will be useful to explain the reason for certain features. The first requirement was an approximately linear scale of 0-1 volt. The second was a reasonably high input impedance.

The linear scale requirement was met by the use of a diode, but a range of 0-1 volt with diode only and a 0-100 microammeter would have meant an input impedance of only about 5,000 ohms.

A pre-amplifier valve was therefore used. The input impedance now depends upon two things: the grid shunt resistance and the effective input capacitance of the valve. The latter factor, of course, lowers the input impedance as the frequency is raised.

A value of 1 megohm was chosen for the grid shunt resistance. The effective value of the input capacitance, using a VR65 valve is approximately 75 pF.

An important feature is the arrangement of circuit whereby the stray capacitance to earth from the anode circuit of the amplifying valve is maintained as low as possible.

Consider Fig. 1: in order to deal satisfactorily with the lower frequencies, the condensers C_1 and C_2 must be large, say 4μF. They must also have a very high insulation resistance, which rules out electrolytics. The bulk will, therefore, be appreciable, and the capacitance to earth will be fairly high. Fig. 1 is, therefore, unsatisfactory for a wide range of frequency. Now consider Fig. 2: by placing C_1 and C_2 on the earth side of the circuit, the stray capacitance from anode to earth is unaffected by the size of these condensers. The indicating instrument is now raised to about 180 volts d.c. above earth potential, but the a.c. potential above earth is negligible and there will be no hand capacitance effects.

The final circuit of the voltmeter, together with values of components, is shown in Fig. 3. Separate 6-3 volt heater supplies will be required and the h.t. supply should be approximately 7 mA at 250 volts.

Higher voltage ranges may be included, if desired, by adding a voltage divider similar to that described in Wireless World dated June, 1944.

BOOK RECEIVED

This book is of American origin and treats electromagnetic waves mathematically. There is an introductory chapter explaining vector algebra which is freely used in the subsequent text. The book finishes with a chapter on radiation in which simple forms of aerial are considered.
DURING May, maximum usable frequencies for this latitude decreased very considerably by day, in accordance with the normal seasonal trend. The night values, however, instead of showing the usual increase, decreased very slightly, perhaps owing to the disturbed conditions during the first half of the month.

The month was slightly less disturbed than April, ionosphere storms being observed on 2nd-9th, 11th-14th and 31st, 12th and 13th being exceptionally disturbed, and a very great magnetic storm also being recorded during that period.

Working frequencies for the month were, on the whole, very low, relatively few contacts being established over 30 Mc/s. Thus long-distance communication on the 28-Mc/s band was seldom reliable, particularly in eastward and westward directions. During the night no frequencies below 7 Mc/s were really necessary.

There was a marked increase in the rate of incidence of Sporadic E, in accordance with the usual trend, and many amateur openings via this layer have been recorded for the first time this year, mostly from Eastern and Southern Europe. Frequencies as high as 50 Mc/s were occasionally propagated by this medium.

Four “Dellinger” fades were recorded in May, on 5th, 7th, 8th and 9th, the fades on 5th and 7th being particularly violent.

Sunspot activity in May was considerably less than in April. Three large sunspot groups crossed the central meridian of the sun (on 8th, 11th and 31st), and all of them were associated with reception disturbances which occurred around those periods, the disturbances following the second group being particularly intense.

Long-range tropospheric propagation was observed on a number of occasions, particularly in the second half of the month.

Forecast.—It is probable that there will be very little difference between the m.u.s for July and June, as in the Northern Hemisphere daytime and night-time m.u.s usually reach their respective annual minimum and maximum values during this period.

As in June, although daytime communication on very high frequencies, like the 28-Mc/s band, is not likely to be frequent, over many circuits frequencies like 15 and 17 Mc/s will remain regularly usable until midnight. During the night frequencies lower than 11 Mc/s will seldom be required. For medium distances, up to about 1,800 miles, the E and F1 layers will control transmission for considerable periods during the day.

Sporadic E is usually very prevalent in July, and communication over distances up to 1,400 miles may be possible by way of this medium on frequencies greatly in excess of the m.u.s for the regular E and F layers. Frequencies as high as 60 Mc/s may be occasionally reached for a short time. However, it is impossible to predict when such communication may occur, owing to the irregular behaviour of Sporadic E.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during July for four long-distance circuits running in different directions from this country. (All times GMT). In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month, for communication by way of the regular layers:

<table>
<thead>
<tr>
<th>Montreal</th>
<th>0000 15 Mc/s</th>
<th>(15 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 11</td>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td>0200 10</td>
<td></td>
<td>(19)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>0000 17 Mc/s</td>
<td>(22 Mc/s)</td>
</tr>
<tr>
<td>0100 11</td>
<td></td>
<td>(19)</td>
</tr>
<tr>
<td>0500 11</td>
<td></td>
<td>(19)</td>
</tr>
<tr>
<td>1000 17</td>
<td></td>
<td>(22)</td>
</tr>
<tr>
<td>1500 21</td>
<td></td>
<td>(26)</td>
</tr>
<tr>
<td>1600 17</td>
<td></td>
<td>(22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cape Town</th>
<th>0000 15 Mc/s</th>
<th>(20 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 11</td>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td>0500 17</td>
<td></td>
<td>(24)</td>
</tr>
<tr>
<td>0800 21</td>
<td></td>
<td>(28)</td>
</tr>
<tr>
<td>1000 17</td>
<td></td>
<td>(22)</td>
</tr>
<tr>
<td>2000 13</td>
<td></td>
<td>(19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chungking</th>
<th>0000 11 Mc/s</th>
<th>(14 Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0500 10</td>
<td></td>
<td>(19)</td>
</tr>
<tr>
<td>0800 17</td>
<td></td>
<td>(14)</td>
</tr>
</tbody>
</table>

Ionospheric storms are not very common in July, and relatively undisturbed conditions may be expected. At the time of writing it would appear that storms are more likely to occur during the periods 1st-2nd, 6th-9th and 27th-29th, than on the other days of the month.
Unbiased

Nauseating Nomenclature

A GREAT many laymen, led astray by glib-tongued and facile-fisted lay journalists, seem to have got into their heads that there is some subtle difference between radio waves and what they call radar waves. It is difficult to explain to them that there ain’t no such animal as a radar wave, any more than in the realm of sound there are such things as echo waves, or aurad waves, as I have little doubt that some of these cliché conmen would term them.

Loathsomely learned.

I was trying to explode the radar wave superstition the other day by means of a mechanical analogy—always a dangerous thing, as invariably it breaks down and brings the creator down with it, as it did in this particular case in more senses than one.

To lend force to my argument I used a punch-ball to demonstrate my analogy. In an unguarded moment, carried away by my enthusiasm, I was floored physically by what I termed the ball’s radar wave, and metaphorically by a bespectacled and loathsomely learned-looking schoolboy who pointed out, quite rightly, that the ball’s return was not due to any reflection effect but to the release of the energy which my original blow had caused to be stored within its spring support. This regrettable contretemps and consequent collapse of both myself and my analogy had the unfortunate result of destroying faith in my main thesis and establishing “radar waves” still more firmly in the minds of my youthful audience.

This incident made me give up further attempts to educate the technically illiterate masses, but a recent report from the U.S.A., which states that cooking is now being carried out by what it calls “radar waves,” has brought my missionary zeal to the fore once again. I can stomach this sort of thing with as little success as I can stomach the results of this offensive inside-out sort of cooking. According to the newspaper report the innerds of a chicken, instead of being first removed, were cremated, and the flesh done to a turn, whatever a turn may be.

Apart from my aesthetic objections to this sort of cookery, which causes my physical gorge to rise as much as the misuse of the term radar causes my technical gorge to perform the same evolution, I object strongly to it being termed new. I, myself, was privileged to be present, over three years ago, at a private demonstration of this sort of inverted cookery by one of its pioneers, which I duly reported in these columns (March, 1946). For the benefit of those of you who have perverted gastronomic tastes, I would mention that the American demonstration was on a frequency of 23 MHz; but to me giblets are giblets, whether cremated or not, and I will have none of it.

Wrist Radio

The vogue of the personal portable or miniature receiver threatens to develop into an epidemic or even become a permanency as more and more manufacturers give us their versions of it. Quite frankly, I don’t like any that have so far appeared. My complaint is that none of them is small enough to shove into one’s pocket without making an unsightly bulge. The ignorant and ill-informed may well ask “why do you want to shove one into your pocket anyway?”

This is, of course, precisely the question which was asked of an ancestor of mine when he made a similar complaint about the bulkiness and unpocketability of turnip watches. My point is that the whole idea of the personal portable is that it is intended to be carried on one’s person. It should, therefore, be no larger than a watch or a cigarette lighter.

Seven years ago (March, 1942) I published in these columns a photograph illustrative of the American trend in portable design, which was towards something like a Leica camera. Both British and American “Leica” models of an improved type are now available, but they would be still more improved if they were made less conspicuous to carry and protected from damage by means of an ever-ready leather case like their photographic counterparts.

But now that ultra-midget valves, components and batteries are available for pocket hearing aids surely we can get down to something smaller than the Leica camera. In my opinion, it can be done by once more borrowing an idea from the photographic world; there is no shame in it, or at any rate the photographic fraternity do not think so as they don’t hesitate to borrow the micro-ammeter and the photocell from us and call the combination an exposure meter.

Apparently the Germans regard the Leica as a bit old fashioned as they now go in for a “wristwatch” camera weighing less than a couple of ounces and giving a negative of 4 x 3 millimetres. I need hardly say that this puts users of conventional miniature cameras into the same class as they have so often contemptuously consigned me and my old wet-plate outfit.

What I would like to see is British radio manufacturers following this thoroughly praiseworthy example and turning to the production of wrist radio. The volume from such a set would enable me to hear, without disturbing others, all that I wanted to when away from my home receiver. This surely is the sole aim and purpose of a “personal” receiver.

Radio manufacturers please copy.

Whilst on the subject of miniaturization there is another piece of equipment which could more readily be carried on one’s person if suitably adapted. I have often wondered why the practice of the Melanesian native, who carries his graphic counterparts, pierced and extended lobe of his ear, has not been copied by users of hearing aids.
LETTERS TO THE EDITOR

Export Opportunities • Why Record Supersonic Frequencies? • Circuit Diagram Conventions • Measuring Circuit Magnification • Simple Wobbulator • B.B.C. South Coast Service

Canadian Trade Possibilities

There would appear to be little effort on the part of many British manufacturers of electronic apparatus and components to realize the market potential for their products here in Canada.

I came to Canada eighteen months ago from the U.K., and, in my present work as Senior Communication Engineer, the Canadian prospects for many British lines have been brought forcibly to my notice.

Contrary to expectations, some American products retail at higher prices than their British counterparts and are frequently of inferior quality.

In view of Britain's present economic plight and the favourable import position applying to British products in the general class of electrical, wireless and radio apparatus (with the important exception of domestic radio receivers) the apparent sales lethargy on the part of many manufacturers in my opinion warrants the strongest censure.

Some British manufacturers have done nothing, possibly overawed at entering the arena with the American juggernaut; others have blindly accepted the first Canadian agency enquiry without regard for status or coverage. Where basic designs have been given to Canadian firms of standing there appears to be little control over the Canadian selling price, which rises steeply.

In view of this adverse selling factor, direct British group representation would appear to have many points in its favour. In short, is there any valid reason why bodies such as the Radio Component Manufacturers’ Federation, S.I.M.A., etc. should not set up their own Canadian distributor units?

Such a step should ensure more effective representation to the retailer and customer with more reasonable distribution overheads. It would also permit more adequate range or spare stocking and customer service than can be expected from an agent handling a product for the most profit with least effort.

In conclusion, may I stress the part that Wireless World itself could play in fostering increased electronic exports to Canada. Every effort should be made to increase the Canadian circulation with paper restrictions eased on this account. I can assure you that your coloured issue for March last agreeably surprised Canadian colleagues and, in particular, many of the advertisers and prices. In a country where American periodicals serve as a buyer's guide, the vital role of Wireless World cannot be over-estimated and, indeed, wider Canadian circulation is a vital prerequisite to increased British exports in this field.

T. S. DUTTON
Valois, Quebec, Canada.

Thévenin’s Theorem

In my recent article on Thévenin’s Theorem (March issue), I showed, perhaps, some disrespect towards M. Thévenin in suggesting that he was something of an interloper and that credit for the theorem really belonged to Helmholtz.

M. Simon, of “SOTELC,” Paris, gently implied as much in sending me a copy of his biographical appreciation of Thévenin, something of an American reproduction of Thévenin’s original paper setting out the theorem in question.

As a result of correspondence with M. Simon and with Prof. G. W. O. Howe (on whose Wireless Engineer Editorial of July, 1943, my remarks were based), the following concise summation in the words of Prof. Howe seems to be a fair statement of the facts:

“(a) Thévenin deserves the credit for setting out the theorem very clearly and making it generally known, and

(b) Helmholtz had described and used it thirty years before.”

To which may be added that Thévenin, like nearly everybody else, was unaware of Helmholtz’s statement.

I am indebted to M. Simon and Prof. Howe for kindly contributing from their knowledge to an agreed conclusion on what seemed at first rather controversial.

“CATIODE RAY.”

Recorded Supersonic Frequencies

In the report of the discussion on commercial disc recording, following the lecture by Mr. Mittell (Wireless World, February, 1948, p.)
Letters to the Editor

67), it was stated that "even when the response of the reproducer, or of the ear of the listener, was restricted, the subtle improvement resulting from the records of high, even ultrasonic, frequencies could be detected. It was thought that this might be explained on the basis of improved transient response."

If the ear responds to a transient sound by virtue of its waveform, as seems to be substantiated by certain evidence, then it is conceivable that a person who is deaf to high frequencies could hear a steep-fronted transient almost, if not quite, as well as a person with normal hearing.

The conventional explanation in terms of Fourier Analysis would lead to the conclusion that a person whose hearing is deficient in high frequencies would be unable to hear a steep-fronted transient.

The quoted improvement which occurs with the recording of inaudible frequency can be explained by either of two mechanisms. First, it might be through hearing the intermodulation products of two or more frequencies, of which at least one is above audibility. Alternatively it might be through the greater fidelity with which the transients are recorded.

It should not be difficult to devise tests, if this has not been done already, to determine (1) whether the ear responds to transients by virtue of their waveform and (2) whether intermodulation products or transients or both are responsible for the improvement from supersonic recording.

Can any of your readers give a lead in this direction?

F. LANGFORD SMITH.
Amalgamated Wireless Valve Co.,
Sydney, New South Wales.

"Drawing Circuit Diagrams"

BAINBRIDGE-BELL, in the May Wireless World, appears to be boggling a horse that has already passed the post. Precise recommendations on all the subjects raised have been made in British Standard 530:1948, which he himself quotes; surely it is better to accept these recommendations as they stand.

It is because of individual preferences, both in circuit-drawing practice and in symbols generally, that so much confusion has arisen in the past. This confusion can only be reduced by general acceptance of recommendations made by a fully representative body. If, for some particular reason, a given organization finds it necessary to depart from a specific British Standard, by all means let it do so; it is a different matter if such an organization or individual tries to foist its preferences on others.

Bainbridge-Bell over-stresses the risk of draughtsmen's errors. The danger of a blob at a junction being obscured can be avoided by making the blob big enough to be seen. Ordinary letter stencils provide the means; thus, the "O" of a standard No. 1 stencil, fully inky, is admirable for most purposes, though when the drawings are used for line blocks the size must be related to reduction wanted.

Such innovations as that suggested in Bainbridge-Bell's penultimate sketch are commendable provided the reader knows what they mean; generally an explanation is necessary. In the instance quoted "the path BC" is sufficiently explanatory without resorting to a symbol which is meaningless to those not in the know.

London, N.W.
J. W. GODFREY.

"Q-Meter Controversy"

I WAS interested in the correspondence printed in the June Wireless World concerning "Q" meters. As my firm are the manufacturers referred to by "P. H." as making the first British instrument of this kind, may I add two further comments?

Our instrument was called a Circuit Magnification Meter as, like "P. H.", we felt that the use of the term "Q Meter" was, to say the least, inappropriate and rather smacking of technical jargon. We continue to use the longer title.

Dr. Sheridan notes with surprise the use of an injection resistor and points out its shortcomings at higher frequencies. This type of circuit is used in our Circuit Magnification Meter, but its defects are well realized. By careful design it will give reasonable performance up to about 30 Mc/s, but begins to fall off above that. In a high-frequency circuit magnification meter covering 15 to 170 Mc/s, the system has been abandoned and an inductive injection method is used. This is shown in the attached functional diagram. Series injection is still used, but the virtual injection resistance is made so small that the reactance of its residual inductance L3 is very much greater than its resistance, even at the lowest working frequencies. To facilitate measurement of the voltage applied to the test circuit, the injection inductance L3 is tapped down to a much greater inductance L4 so that a known fraction of the voltage is taken. The voltage across L4 is measured by one diode voltmeter and that across the tuned circuit by another.

A further interesting arrangement is that by feeding suitable fractions of the d.c. outputs of the two voltmeters in opposition to a d.c. amplifier with a meter in its anode circuit used as a null detector, the values of Q factor may be read off from the dial of a calibrated potentiometer (range Q 75 to 1,200). The advantages of this system are that the calibratable element in the circuit carries only d.c.; there is no necessity to know the absolute value of the e.m.f. injected into the test circuit; only one meter is required and the null reading system inherently has good stability and independence from supply voltage fluctuations. This circuit is covered by British Patent Application No. 25208/48.

E. D. HART.
Marconi Instruments, Ltd.
St. Albans, Herts.

Calibrating a Wobbulator

WITH reference to the article by K. C. Johnson on his new wobbulator circuit, I feel he has over-emphasized the difficulty of calibrating it on the television band.
I have the circuit in use, and have devised a simple but very accurate method of continuous calibration, or "strob ing," as it might be termed.

The normal circuit is set going, with the unit feeding the receiver and the receiver feeding the 'scope; then the signal generator is loose coupled to the input tuned circuit of the receiver. As the wobbulator sweeps through the signal generator frequency a "blip" is produced on the curve of the 'scope; this marker pip moves along the curve as the generator is tuned through the band, and enables the exact frequency of any hams, etc., to be read instantly, and also enables the scope to be used without any paper scale.

The accompanying sketch was drawn from a 'scope trace, using a normal t.r.f. vision receiver.

As will be seen from the sketch, the heterodyne pip is fairly sharp and narrow. This is due to the narrow frequency response of the 'scope amplifier, which, for this purpose, is clearly desirable.

DOUGLAS M. GIBSON.
Ashford, Kent.

"Copenhagen Comments"

I SHOULD like to reply to the comments of Mr. R. Cleghorn (Wireless World, May, 1949).

Germany not having been represented in the Broadcasting Convention at Copenhagen did not get three channels, but two for each zone of occupation; i.e., in total eight channels. Indeed, none of them is a clear one, and, moreover, the limit of power to 10 Kw each is very unfavourable.

Whether the consequence Mr. Cleghorn is afraid of will appear and whether Germany will annex some further channels must be doubted. Germany will remain occupied for many years to come and the broadcast branches of military governments surely will supervise the German Broadcasting System in future.

The allocated channels are insufficient and the German broadcasting companies like Nordwestdeutscher Rundfunk and Bayerischer Rundfunk are preparing schemes to procure proper possibilities of reception to their listeners by erecting e.h.f. (f.m.) stations. About 20 of such stations, each with 10 Kw power, are provided for the British Zone alone. In the meantime, in Hanover, Hamburg and Munich f.m. transmitters with 0.1 Kw each have been erected for testing purposes; further ones will follow.

KARL TETZNER.
Emden, Germany.

B.B.C. Coverage

MAY I appeal for improved facilities for high fidelity reception in this area?

Including as it does fairly large centres of population, the coastal strip of Sussex is very badly served on the Light and Home Services, although the recent opening of the Third Programme transmitter at Kingston-by-Sea has provided signals of good quality, but of appeal to only a limited taste. It will hardly be contested that the large proportion of recorded items on the Third Programme limits quality. The signal strength from the longwave Light Programme is fairly good, but reception is marred by atmospheric interference during the summer months in particular. On the medium waves, the West Regional transmitter at Start Point provides the strongest signal, but fades, whilst the quality appears generally slightly inferior to that from Brookmans Park, on the same programme, presumably due to landline defects. The latter transmitter is free from fading since the installation of the new mast aerial, although the signal strength does not appear appreciably greater, and is certainly inadequate to stand out from the many sources of interference, whether man-made or natural.

Would it not be possible, even if the need for economy prevents the installation of any further transmitters, for the Kingston transmitter to radiate the Home or Light Programme during those hours when it is not needed for its own service?

D. C. SMITH.
North Lancing, Sussex.

CORRECTIONS

The last paragraph of the article "When Negative Feedback Isn’t Negative" (May issue) should read “... try using a high anode coupling resistance for the middle stage and lower values for the two outer ones.” Incidentally, the reference to the article by C. F. Brockelsby in Wireless Engineer should have been to the February, 1948, issue.

In “Contrast Expansion” (June issue) in the 5th line of Col. 3, “40Y/4” should read “40-50Y/4”.

The price of the Labgear electronic relay (advertisement on p. 22, June issue) should be £5 5s.

In the Varadio advertisement on p. 60, June issue, the model number should be 290/116 for “H.F. and R.F.” read “R.F. and A.F.”
RANDOM RADIATIONS

By “DIALLIST”

DX Television

Spending a few days recently at a little place on the Suffolk coast which is just about 100 miles as the crow flies (or the wave waggles) from Alexandra Palace, I was surprised to notice quite a sprinkling of the H-type television aerials, which are now such familiar objects of the sky line of Greater London and the Home Counties. In this small East Anglian town I counted five during casual strolls and probably the number would have been doubled or trebled had I set out on a determined search for them. The owner of one television set told me that reception, though chancy, was quite excellent at times. He was kind enough to invite me to “look in.” Unfortunately, it was just one of those days. A hazy image might appear for a second, but it could not be held; most of the time there was nothing on the screen but “noise.” He and the other owners of television receivers in the locality have, I imagine, something of the thrill that old hands used to get out of long-distance radio in the early days of medium-wave and short-wave broadcasting. All of us were very certain that DX work was worth while, no matter how many profitless vigils into the small hours it entailed; for there were wonderful periods of loud and clear reception, which made up for everything.

They Want It

The fact that people living in places far beyond the normal service area of the London television station think it worth while to install televisions is clear proof of the urgency of the demand for television services all over this country. People definitely want television; they are prepared to pay for receiving sets and they will put up with poor or chancy reception rather than have nothing at all. To me, at any rate, it seems that the B.B.C.'s progress in providing a network of transmitters should be speeded up. All sites should have been selected by now, or should anyhow be chosen within the next few months. Since the Powers That Be have guaranteed the continuance of the 405-line, 50-frames-per-second transmissions, the B.B.C. would do well to decide upon a standard design for its transmitters and to place orders right away for ten or a dozen of them. If these and the necessary radio links were ordered in bulk, both time and money would be saved. There's a point, too, about those radio links. The main centres will presumably have their own studios, O.B. equipments and so on; interconnections will enable any of them to originate programmes to be radiated by all or any of the others. But has it occurred to anyone to combine some or all of the radio links (or coaxial cable repeater stations) with small, unattended and automatically operated transmitters? Were this done, to take one example, in the country traversed by the London-Birmingham links, the whole service area might have the form of a dumb-bell —circles of 30 or more miles radius round London and Birmingham and between them an area of approximately rectangular shape some 15 to 20 miles in width. There are, of course, difficulties; but are they too formidable to be overcome?

Aerials and Amplifiers

It would, I feel sure, pay those concerned with the manufacture of television aerials and of signal-frequency amplifying units not only to study reception conditions in outlying districts, but also to conduct instructional campaigns in “fringe” areas and those still farther from transmitting centres. In talking to people living in such parts of the country I've found, first of all, that the ordinary man who buys a televisor and hopes for the best does not realize that there are means whereby his chances of good reception could be improved; secondly, that not a few of the radio dealers who supply the sets are not much better informed. One of them assured me that the multiple aerial array was just a stunt of no real value, and another was equally sceptical about signal-frequency amplifying units. I'm not going to say that any kind of complex aerial, even with a perfectly matched feeder, will make good re-

ception a certainty in places where it is now the exception rather than the rule. Nor would any sensible person claim that additional s.f. amplification will always do the trick. Either or both, however, may so much increase the chances of good reception in such places as to make all the difference between its being worth while or not to invest in a television receiving set.

A Tricky Business

The New York Magazine Radio-Electronics has just inaugurated a scheme which may have interesting results. Publishing a letter from a resident in Borneo, who wants to buy American components and so on but can't owing to currency export restrictions, the Editor suggests that the only way out of the difficulty at the moment is a return to primitive bartering methods by making swaps. He fully appreciates the difficulties and the exasperation of those radio addicts who yearn to possess this American gadget or that, but can't get leave to send so much as a lone dollar abroad. To help them he proposes to run free of charge a section of classified advertisements by radio folk living in such countries. In these adver-

CONSOLE RECORD PLAYER

Designed primarily for use with the “500” series of radio receivers, this record player cabinet by Ace Radio, Tower Road, London, N.W.10, contains an automatic record changer and provides storage for records. The price is £35 13s. 6d., including tax.
tisements (which must not exceed 40 words) the dweller in a currency-restricted country can state what he wants and what he has to offer in exchange. It's a grand idea and a generous one in these hard times. The big snag, though, may prove to be the fact that most of the currency-restricted countries have also a mass of complicated import regulations. Were you to succeed in swapping this or that for, say, an f.m. receiver kit, you might find it impossible to steer your prize through the offshore minefield of import licences, etc.!

Effects

A cousin of mine who writes plays for the B.B.C. invited me recently to go to a rehearsal of one of hers. I had a good many surprises, not the least of which was that, for a half-hour item due to be broadcast at 5 p.m., morning rehearsals took place from 10.30 to 1 o'clock and that these were followed by another lot from 2 to 4. The effects in particular have to be rehearsed most carefully for timing. Most of them were produced from records on the four turntables of a play-back instrument and I was able to see the working of the apparatus which enables any part of a record to be selected with absolute certainty. The pick-up is held by a rigid arm mounted tangentially to the grooves of the disc and travelling along a finely graduated scale. Shortly before a particular effect is required the needle is lowered into the groove; the controller then fades it in and out at the proper moments.

Another One to Try

In its June issue Toute la Radio had a quiz which contained one poser that may be of interest to readers of Wireless World. Here it is. If the output terminals of a high-voltage d.c. supply have two or more capacitors connected across them in series, these capacitors are always shunted individually by resistors of high values. This precaution is necessary:

(a) To reduce ripple;
(b) To prevent the capacitors from "blowing up";
(c) To discharge the capacitors when the h.t. voltage is switched off and so to guard against accidents.

What's your view? The answer is given on page 258.

OVER 200 TYPES DESIGNED

The Famous BULGIN Range offers over 200 Basic types of switches, and every one in a variety of operating-levers (dollies) and finishes. Apart from Nickel-plate, Chromium-plate, Camera-black, Florentine-bronze, Polished or Matt, there are five or more plastics-coloured finishes, giving insulation of external metal parts. Combinations of every type are available, and every one guaranteed as type-tested for 25,000 operations. Better than all others, every switch embodies the EXPERIENCE OF 25 YEARS OF SWITCH DESIGN AND MANUFACTURE.

Retailers, have you obtained our new TRADE Catalogue?

All products are now available from retail and wholesale stockists.

"The Choice of Critics"

Telephone: RIPpleway 3474 (5 lines)
RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

Automatic Muting

Valve noise produced by inherent thermal effects is utilized to short-circuit the loudspeaker automatically when no signals are present. It is known that the noise voltage is considerably increased during such times, and this is stated to be due to the action of the automatic volume control in the case of amplitude-modulated signals, and to the fact that the presence of the carrier shortens the actual duration of the thermal effect in the case of frequency-modulated signals.

In the "no-signal" condition shown, a circuit LC in parallel with the anode of the a.f. amplifier V1 collects the noise voltage, which lies well above the normal signal frequencies fed to the loudspeaker LS, and passes it through rectifier circuits D and Dr Ri to the grid of a valve V, to operate a relay S controlling short-circuiting contacts Si on the speaker. When a signal is received, the charge built up on the condenser C quickly leaks away through the rectifier D and low resistance Ri. The charging of the condenser takes place more slowly through the rectifier D and high resistance Ri, so preventing the relay circuit of the super-regenerator to negligible proportions, and for this purpose the circuit is usually damped by a low-resistance shunt. This involves a serious loss of power in the response signal, since the same tuned circuit is used both for transmission and reception.

According to the invention, the difficulty is solved by using as the damping device a diode which is connected across the tuned circuit, and also to a source of positive potential. During standby conditions, the positively biased diode has a comparatively low resistance; but when the super-regenerator is triggered into transconductance oscillation, the diode rises to a high level and then serves automatically to "open-circuit" the diode by charging a condenser connected between its anode and the tuned circuit.

Television Cabinets

The cabinet is made in two parts, the upper of which contains the viewing screen and is arranged to telescope inside the lower or main casing, with a vertical movement, so as not to disturb anything that may normally be placed on top of the cabinet.

The main casing contains the cathode-ray tube, which is mounted to project the picture downwards on to a spherical mirror, from which it is reflected back through a correcting lens or to an inclined plane mirror, fixed in the upper part of the casing, and finally on to a vertical ground-glass or opalescent viewing screen. The lifting and lowering movement of the upper part is conveniently controlled by means of a small electric motor, through worm gearing and vertical guide rods, an automatic stop and slip clutch unit being provided to prevent damage to the equipment.

Marconi's Wireless Telegraph Co., Ltd. (Assignee of R. V. Beshgetoor). Convention date (U.S.A.), October 18th, 1944. No. 607231.

Super-regenerative Circuits

Relates to the type of circuit that is designed to respond to the receipt of a pulsed signal, as used in radar, by the instant transmission of an identification signal. To ensure satisfactory threshold conditions, it is necessary to reduce the free oscillations that normally occur in the tuned circuit of the super-regenerator to negligible proportions, and for this purpose the circuit is usually damped by a low-resistance shunt. This involves a serious loss of power in the response signal, since the same tuned circuit is used both for transmission and reception.

According to the invention, the difficulty is solved by using as the damping device a diode which is connected across the tuned circuit, and also to a source of positive potential. During standby conditions, the positively biased diode has a comparatively low resistance; but when the super-regenerator is triggered into transconductance oscillation, the diode rises to a high level and then serves automatically to "open-circuit" the diode by charging a condenser connected between its anode and the tuned circuit.

Intervalve Coupling

The grid of the amplifier V1 is coupled to the anode of the previous stage V through a step-down tapping on a coil L, which is chosen so that the impedance of the whole coil bears the same ratio to the impedance of the part of the coil between the tapping T and the ground, as the capacity between the grid and all the other elements of the amplifier V1 bears to the capacity between the anode and all the other elements of the amplifier V. More particularly, the grid-cathode capacity of V1 is reflected by the coil as a smaller capacity between the anode and cathode of V. The sum of the capacities concerned is represented in dotted lines at Cg, and is calculated to resonate with the coil L at the working frequency. The normal coupling condenser C is being too large to have any appreciable effect.

A useful increase in effective amplification is secured by the arrangement shown. In an eight-stage receiver for pulsed signals the overall gain is stated to be more than three times that normally given.

The British Thomson-Houston Co., Ltd. Convention date (U.S.A.), May 20th, 1945. No. 612472.

Remote Control System

Signals transmitted in the form of televised symbols, grouped into characteristic patterns, are used for the selective control of distant apparatus. A chequered arrangement of black-and-white squares will, for instance, provide a very large number of distinctive patterns by suitably re-grouping the unitary squares. Further variety can be introduced by the stepped rotation of any given pattern. At the distant end, a photograph relay is operated only when the pattern reproduced on the viewing screen of a television receiver conforms to a predetermined code. In order to ensure secrecy, provision is made to vary the line and frame frequencies, and to switch over from progressive to interlaced scanning, from time to time, in accordance with master control signals radiated from the transmitter.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 5s. each.
Standard Magnetic Materials, which have been steadily improved and extended in range over many years, are produced by a Company which has the unique advantage of being also a large scale user of these materials.

Standard Telephones and Cables Limited
(Registered Office: Connaught House, Aldwych, London, W.C.2)
(Telephone Line Division)

INDUSTRY is catching up with SCIENCE

INEVITABLY, Science is always a step ahead of industry, but it is Mullard’s endeavour to close this gap. Mullard are in the unique position of being both electronic experts and industrial consultants—they are, in fact, industrial scientists. Thus, they are able to utilise scientific discoveries in the design of better equipment for practically every sphere of industrial activity.

MULLARD EQUIPMENT FOR RESEARCH AND INDUSTRY INCLUDES THE FOLLOWING:

Instruments for the Electrical Laboratory
- Cathode Ray Oscillographs
- Beat Frequency Oscillators
- Measuring Bridges
- Valve Volt Ohmmeters
- V.H.F. Valve Voltmeters
- High Voltage Power Supply
- P.M. Signal Generators

Electrochemical Equipment
- Potentiometric Titration Apparatus
- Karl Fischer Equipment
- Electronic Polarimeters
- Conductivity Bridges
- Conductivity Controllers
- Ultrasonic Generators
- Ultrasonic Consistency Meters

Industrial Equipment
- Valve Relay Units
- Frequency Meters
- Viscometers
- Vibration Equipment

MULLARD OSCILLOGRAPH
Type E.601/1
Information and advice on this and any other equipment may be obtained from Mullard ELECTRONIC PRODUCTS LTD.,
Electronic Equipment Division
ABOYNE WORKS, ABOYNE ROAD, LONDON, S.W.17

A “FLUON” INSULATED VALVE HOLDER
Fluon can be moulded to extremely close tolerance. Fluon resists temperature as high as 250°C. Fluon is non-hygroscopic. Fluon has high dielectric qualities. Fluon is chemically inert. Fluon has high impact resistance. Beryllium copper, silver-plated contacts.

The Clux V.H. 337 B.T.G. (Button Base) Valve Holder. With Fluon (P.T.F.E.), Insulation, with or without Short and Screening Cap. Made to meet the most exacting conditions required in all types of Radio, Radar, Television, Inter-Communication, and Electronic Equipment.

FROM THE WIDE RANGE OF CLIX COMPONENTS
We manufacture a wide range of components for the Radio, Electronics and Television Industries. In addition to stock lines, a few of which are illustrated below, we can also manufacture special components designed for individual specifications.

- Clux Heavy Duty Spade terminals. Other types available to cover terminal diameters of from 1/8” to 5/8”. Black and red only.
- 4-way Voltage Selector Panel with Solid or Fused Shunting Plug. 3-way also available with Rectangular or Circular Plate.
- Tag Strips. Types are available with from 1 to 9 Tags. Tropical or Commercial Grades in various combinations, also miniature types.
- Chassis-Mounting Socket Strips with from 2-6 Sockets in various standard markings or to Customers’ needs.
- 5-pin English Valve holder. Other types are available for most British and American valves.

BRITISH MECHANICAL PRODUCTIONS LTD.
(in association with General Accessories Ltd.)
21 BRUTON STREET, LONDON, W.1
Eliminate Positive Feedback

(Mechanical) "EQUIFLEX" PATENT MOUNTINGS will eliminate Mechanical and acoustic Vibration from being amplified and a Black Spot on Quality Reproduction. Call at your Dealers to see a complete set of special "EQUIFLEX." Damped units with all fittings and assembly chart suitable for the GARRARD R C 60 Turntable.

GARRARD RC 60 UNIT

Price 21/6 Per Complete Boxed set of 4 Mountings and all fittings.

"EQUIFLEX" special Damped Mountings as illustrated for Chassis Suspension can be obtained from your Radio Dealer. Loadings of these units are from 2 lbs. to 12 lbs. Giving a choice of distributed loading of from 8 lbs. to 50 lbs. where a four Point-Suspension is used.

Ask to see these special Units at your Dealers.

TYPICAL RADIO CHASSIS

Wholesale Distributors and Dealers write for Terms and Particulars. Export Enquiries Welcomed. Illustrated Brochure upon request.

Sale Manufacturers:

A. WELLS & CO. LTD.,
PROGRESS WORKS, STIRLING RD., LONDON, E.17
PHONE: LARKSWOOD 2691-4

EDISWAN

Radio Products

Senior R.K. 12 in. Loudspeaker

The large curvature cone employed in this speaker produces a much wider and more level frequency response curve with a considerable reduction in sub-harmonics.

Acoustically dead material is used for the cone surround to give flexible suspension which results in exceptionally good reproduction where large amplitudes are encountered at low frequencies.

LIST PRICE
£6 15 0

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2
PORTABLE TEST SETS
Robust moving iron instruments. Suitable for the Electrical
Contractor or Automobile Electrical Engineer.

Size: 3½ x 2½ x 2½ overall complete with carrying strap.

These combined instruments are made in many standard ranges. Combination examples:

260V A.C. or D.C. ... £25 0 0
15A A.C. or D.C. ... £22 10 0
25V A.C. or D.C. ... £24 0 0
25A A.C. or D.C. ... £36 0 0

These combined instruments are made in many standard ranges. Combination examples:

260V A.C. or D.C. ... £25 0 0
15A A.C. or D.C. ... £22 10 0
25V A.C. or D.C. ... £24 0 0
25A A.C. or D.C. ... £36 0 0

Other Combinations to order

VICTORIA INSTRUMENTS
Proprietors: V.I.C. (Bournemouth) Ltd.
MIDLAND TERRACE - LONDON - N.W.10
Telephone: ELGar 7871/2

SQUARE FLANGE METERS
4" Large Open Scale. Mirror Scale can be supplied if required.
RANGES:
A.C. from 4V-10kV .. £25 0 0
D.C. From 5mV-10kV £4 0 0
5A-5000 Amps. ... £4 0 0

Victoria Instruments are made uncommonly well

University Radio, Limited
OFFER GUARANTEED USED EQUIPMENT AT ATTRACTIVE PRICES

H.R.O. Senior, 5 coils, 9 KC to 30 Megas., with Power-pack, in perfect condition and working order ... £25 0 0
Eddystone 640, as new, with Eddystone speaker £22 10 0
Another as above, with speaker and S. Meter £24 0 0
Eddystone 540, as new, with valves £36 0 0
Hallicrafter Sky-Champion, as new, with valves £16 10 0
Ex-W.D. Marconi Receiver, 1191. (one only), with valves, less power-pack, 14 KC—30 Megas., 9 bands £12 10 0
Ex-W.D. R107, with valves, A.C., mains or 5 volt, very good condition £10 0 0
R108, as new £10 0 0
C-Max Short-Wave Battery Jour. All dry. 11—135 Megas., with coils. As new £7 10 0
Weston U.S.A. E772, A.C./D.C., 20,000 O.P.V. Test Meter. As new, in portable case £16 0 0
Weston U.S.A. Combined Valve-Tester and A.C./D.C. Test Meter. A.C. 200-250 Volts Mains operated. As new, Complete with valve-charts £19 10 0
Supreme U.S.A., as above, A.C. 200-250 volts. As new £17 0 0

Weston E772, A.C./D.C. 1,000 O.P.V. Test-Meter. As new £11 0 0
Taylor AC/DC Test-Meter, 1,000 O.P.V. Model 70. As new £8 0 0
Pullin Series 100. 10,000 O.P.V., A.C./D.C. Test Meter. Latest Model. As new £8 0 0
Mullard Master, Valve-Tester, A.C. Mains. 4-500 Test cards, Perfect condition £11 0 0
Roberts portable Valve-Analyzer and Test-Meter, latest model. As new £13 10 0
Pye Workshop service and Test Rack, latest model. As new £36 0 0
Avo Capacity and Resistance Bridge. As new £8 0 0
Taylor Capacity and Resistance Bridge. As new £8 0 0
Avo 7's, as new, £12 10 0 and £13 10 0
Hunt's Capacity and Resistance Bridge, latest model. As new £11 0 0
E.P.I. Audio Oscillator, 0-10 KC's, with chart. In perfect condition £12 10 0
Leather Model B.S.R. A.F. Signal Generator, 0-16 KC's. As new £29 0 0
Wharfdale 161. P.M. Latest Model. As new £8 0 0
Goodman's Axiom 121n, P.M.'s. As new £5 17 6
Goodman's 12in. P.M.'s. As new £4 0 0

Rola 12in. P.M.'s. As new £4 0 0
Cossor Double Beam 'Scopes. All perfect and as new. Priced from £22 10 0 to £30 0 0
Collaro Record-changers, bar type, mixed records, A.C. mains. As new £12 0 0
Tannoy 15 Watt. 12 Volt Mobile Amplifiers, latest model, 2 new, entrant speakers, moving-coil mike, cables, gramo-unit, etc. Not Ex-W.D. As new. Listed at £37 10 0. Our price £42 10 0
As above, 12 Volt or A.C. mains, 20 watt Amplifiers, with 2 new, entrant speakers, moving-coil mike, cables, gramo-unit, etc. As new. Not Ex-W.D. Listed £35 0 0. Our Price £32 10 0
Evershed's Bridge Meggers, 500 Volts. As new £20 0 0
Evershed's 'Wee' Meggers, 300 Volts. As new £7 10 0
Record Minor Meggers, 500 Volts. As new £7 10 0
Advance A.F. Signal Generators. Latest model. No. 1. As new £14 0 0
Taylor Valve-Testers. Model 45A, 45AP, with chart. As new £12 10 0
Ferranti AC/DC Test-Meter, 1,000 O.P.V. As new £4 10 0
Avo DC Minor £2 12 6

Hundreds of other items too numerous to list at Bargain Prices. Please state requirements,
No lists and no C.O.D., cash or cheque with order. All items listed are CARRIAGE PAID.
let **“Mighty Midget”**

Boost Your Sales

- 3 valve, plus rectifier, midget radio receiver; 200-250 volts A.C. or D.C.
- **Cabinet**: Fully seasoned wood, finished in polished walnut
- **Valves**: Latest British Octal and Ballast Type
- **Coles**: High “O” iron cored on “low-loss” formers
- **Wave-range**: 200-550 metres
- **Chassis**: Steel, plated for reliability & long life
- **Loudspeaker**: 5” dia. “Monobolt” construction, to which is fed 3 watts of Audio Power
- **Guarantee**: 12 months
- Apart from Mains, the only connection is an aerial supplied with the set

Volume, Tone and Sensitivity are remarkable from a Radio measuring 8½” x 7” x 4½”. The advertising campaign now getting into its stride, will be increased in volume and tempo, as space becomes available

£6. 19. 9

INC. P.T.

GENERAL SONIC INDUSTRIES

(Formerly General Electrical Radio)

21-29 SHENE STREET, BATH STREET, LONDON E.C.1

COULPHONE RADIO PRODUCTS

MAINS TRANSFORMERS

16/6 POST PAID

Coulphone Mains Transformers are made to the highest electrical standards and are fully guaranteed. We supply them to the Ministry of Supply Atomic Research stations, so they will no doubt meet your requirements.

Special quotations for quantities and types to order.

Standard Replacement Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300-0-300 60 mA 0.4/0.6 V 4 A.C.</td>
<td>16.00</td>
</tr>
<tr>
<td>B</td>
<td>200-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>C</td>
<td>200-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>D</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>E</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>F</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>G</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>H</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>I</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>J</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>K</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>L</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>M</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>N</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>O</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>P</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>Q</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>R</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>S</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>T</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>U</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>V</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>W</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>X</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>Y</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>300-0-250 60 mA 0.4/0.6 V 4 A.C.</td>
<td>15.00</td>
</tr>
</tbody>
</table>

FEEDER UNITS

Model No. De Luxe (Illustrated Above)

Model A

Valves required, 6K50, 6K50, 0K70, 6K70, 6U3. Price for set of four valves, £13 11/6.

Model A

Model B.

Valves required, 6K70, 6K90, 6K70, 6K70. Price for set of five valves, £2 11/6.

Model C.

A.F. Amplifier Power Unit, specially designed for use with above units. Employed 6V6 output (4 watts) and 2568 rectifier. Price £4 1/6.

Model D.

Two valves required, £2 13/6.

COULPHONE RADIO

"The Return of Post Mail Order Service"

83 BURSCOUGH ST.
ORMSKIRK, LANCs.
Tel.: Ormskirk 967
The RIMINGTON JEWEL will bring new life to

GRAMOPHONE REPRODUCTION

- Reproduces the maximum recorded frequency range.
- Wear on records is negligible, the jewel is scientifically designed to follow the groove of the record lightly and smoothly.
- Preserves the higher frequencies delicately imprinted in the record, so easily destroyed, and reproduces them!
- Jewel well set and angle correct.
- Contained in plastic box well packed and mounted.
- **LIFE.** It is not possible to state categorically the life of a jewel point, but in the interest of quality it is advisable to replace the jewel after 1000 playing—it is a matter of personal discretion.
- The RImington Jewel has had exhaustive tests by Messrs. W. R. Prior Ltd., microscope manufacturers, of Bishops Stortford, who have stated that the needles are free from blemish and perfect in detail.
- The RImington Jewel needle reveals new beauties in your records which you have heretofore unsuspected.

PRICE—Most reasonable. The RImington Jewel is the finest sapphire on the market and it retails at only 9/9.

Order your RImington Jewel NOW and revolutionise your gramophone reproduction.

TRADE ENQUIRIES INVITED

RIMINGTONS

RIMINGTON, VAN WYCK LTD., 42-43 Cranbourn St., London, W.C.2
Gerrard 1171
RIMINGTON, VAN WYCK (Mail Order) LTD., 28a Deronshire St., Marylebone, London, W.1 W-Deck 4695

POTENTIOMETERS

by **RELIANCE**

Wire-wound and Composition types.

- Single, Ganged, Tandem Units,
- Characteristics: linear, log., semi-log., non-inductive, etc., Full details on request.

RELIANCE MFG. CO. (SOUTHWARK), LTD.,
Sutherland Road, Higham Hill, Walthamstow, E.17.
Telephone: Larkwood 3245

Cyldont

TRIMMER CAPACITORS

Type No. 14

1/4 long wide for high

FROM 49'6

AT GOOD SHOPS EVERYWHERE

Made and Guaranteed by

RICHARD ALLAN

RADIO LIMITED

CALEDONIA RD., BATLEY, YORKS

OLIVER PELL CONTROL LTD

CAMBRIDGE ROW, WOOLWICH, S.E.18
Telephone: WOOLWICH 1422

BAFFLETTE EXTENSION SPEAKERS

- Better Reproduction
- Attractive Appearance
- Sound Value for money

by

Richard Allan

MAINS TRANSFORMERS & CHOKEs

All "Varley" products are manufactured from the highest quality materials. Transformers etc., are individually wound and have interleaved windings with ample insulation, ensuring freedom from breakdown. The comprehensive range of Shielded and Open type Transformers available meets the requirements of every circuit.

MADE BY

OLIVER PELL CONTROL LTD
CAMBRIDGE ROW, WOOLWICH, S.E.18
Telephone: WOOLWICH 1422
Connoisseur

Gramophone motor now ready!

At last a gramophone motor to match the performance of the famous Connoisseur Pick-up.

SPECIFICATION:
Voltage: 240-250 volts, A.C., 50 cycles. Rim drive with speed variation. No governors and no gearing. Heavy non-ferrous turn-table, machined to run dead true, fly-wheel action—no "WOW." Main turn-table spindle hardened, ground and lapped to mirror finish, running in special phosphor-bronze bearings. Motor runs in needle-point, self-adjusting bearing.

Motor Board 4 in. plastic. Pressure on Drive-Wheel released when not in use, to obviate forming flats and noisy action.

Retail Price, complete with Pick-up £15 19s. 0d. plus £6 18s. 2d. P.T.
" without Pick-up £13 5s. 0d. " £5 14s. 10d. P.T.
Coupling Transformer when required 13s. 9d.

Made by
A. R. SUGDEN & CO. (ENGINEERS) LTD., BRIGHOUSE, YORKS.

PRECISION COMPONENTS

CORD DRIVES
Now available in five types as illustrated (left to right) Standard, R/V, Reverse, "D" type and "A" type.

GANG CONDENSERS
A wide range is now available in 1, 2, 3 or 4 gang types of various capacities.

Write for Catalogue No. (W.W.I.)

JACKSON
BROS (LONDON) LIMITED
KINGSWAY - WADDON - SURREY
TELEPHONE: CROYDON 27648
TELEGRAMS: WALECO
WILKINSON’S OF CROYDON

Specifications

- **Frequency Standard**: 1,900, 110, 10 K.C. Band new American equipment.
- **Output**: 50 watts effective.
- **Sensitivity**: High, 22 microvolts.
- **Amplifier**: Tone control.
- **Cabinet**: White or black.
- **Power Supply**: 240/250 volts, 50/60 Hertz.

Location

J. & S. Newman Ltd.,
Temple Bar, 2070 and 7419.

RADIOMENDERS LIMITED

Specialist in

- **Amateurs’ Windings**
- **Transformers**
- **All Types**
- **Chokes**
- **Pick-up Coils**
- **Instrument Coils**

Quality Assurance

- **High Workmanship**
- **Good Delivery**

Service Offered

- **Loud Speaker Service**

Contact Details

- **Address**: 123-5-7 Parcmore Road, Thornton Heath, Surrey.
- **Telephone**: LIV 2261.
- **Established**: 16 years.
Here is a new development of importance to all users of speciality capacitors. HUNT-INGRAM CAPACITORS, previously marketed as "Ingram-Mycalex"—are now available with the pooled marketing and technical resources of the two companies behind them. For heavy duty work and limited space, Hunt-Ingram Capacitors offer great advantages and show savings in costs where they can be applied. Available in standard units or made to order for special requirements, both mechanically and electrically, in a wide variety of shapes.

For Blocking and Bypass in High Frequency Heating and Radio Transmission; High Altitude Airborne Equipment; Delay Networks in Pulse Circuits; Voltage Dividers; Stabilising Units, etc.

<table>
<thead>
<tr>
<th>TYPICAL STANDARD UNITS</th>
<th>Full load: 70 kVA at 500 Kc to 10 MC per sec. Peak W/kg, 10kV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type M1A</td>
<td>Cap.</td>
</tr>
<tr>
<td>10,000 pf</td>
<td>6" x 13" x 1/2"</td>
</tr>
<tr>
<td>5,000 pf</td>
<td>6" x 13" x 1/2"</td>
</tr>
<tr>
<td>Full load: 9 kVA at 500 KC to 10 MC per sec. Peak W/kg, 15 kW.</td>
<td></td>
</tr>
<tr>
<td>Type M4A</td>
<td>150 pf</td>
</tr>
</tbody>
</table>

Full list and details on application.
A. H. HUNT LIMITED
Wandsworth, London, S.W.18. Tel.: BAttersea 3131
ESTABLISHED 1901

synonymous with
PLUGS & SOCKETS

PAINTON & CO LTD KINGSTORPE NORTHAMPTON
Wireless World

LAWRENCE'S

SPECIAL HIGH QUALITY TRANSFORMERS FOR TELEVISION.
E.H.T. Type TV/9. Primary 230v 50c. Secondaries 0-6, 500 v. at 5mA.
5-0, 5 v. at 5A. 55 v. at 4A. Fully impregnated. Vertical mounting, 370-220 line.

LINE BASE, TYPE TV/5. Primary 230v 50c. Secondaries 560-0,
350v at 80mA. 0-6, 500v at 4A. Fully shrouded. Universal mounting,
328/2.

CONVERSION TYPE TV/11/1355. Manufactured especially for Receiver
Unit Type R1355. Primary 230v 50c. Secondaries 230-0, 250v at
80mA. 6.3v at 6A. 5v at 5A. Fully shrouded. Universal mounting,
328/2.

NEW CATHODE RAY TUBES TYPE VORST. Short persistence screen.
19cm. Voltage 140V max. 50 cycle. Heister voltage 2.000V max. Maker voltage 2.000V.
E.H.T. CONDENSERS.

0.54mfd. 2.5xK D C. wip. Cyl. can type. 5mm. x 5mm.

1/8.

NEW QUALITY AMPLIFIERS, TYPE ETA320. Input 190-450 v.
0-600 cycles. Output 25 watts. Valve sequence 6L7-6L7-6L7-6L7-6L7.
ient case, with chrome fittings. Art photo available on request. Offered at a third of original cost, perfecty new in making. P. 35.

NEW AMERICAN HEADSETS, TYPE HS32. A most popular lightweight
set, extremely sensitive, fitted with comfortable rubber cushions and
leather covered headband. 70 cm. Also New Moving Coil Head and
Microphone Sets. Earpieces resemble miniature P.M. Speakers. Quality minus,
fitted with pressle switch. An outstanding value at 10/6 persist.

NEW AMERICAN STAR IDENTIFICATION INSTRUMENTS. A precision
Navigational instrument, complete with charts for altitudes in
North and Southern hemispheres. In leather cases, 3/10.

AMERICAN DYNAMOTORS, Type 31. These are the most reliable type for
conversion. Fitted with A.C. or D.C. motor. 18/6.

AIRCRAFT INSTRUMENTS. We have in stock an enormous variety of
precision instruments, including compasses, gauges for pressure, vacuum,
fluid measure, etc. Send stamp for illustrated list.

NEW METAL STORAGE BINS. Ideal for storage of small parts etc.
Nine sliding drawers. Overall size 11in. x 6in. x 15in., 15/6.

BELL BATTERIES. Dry type. 1 1/2v. terminal contact 1/4 each or
10/6 per dozen.

**NEW P.M. SPEAKERS, by famous makers. 12in. new type cone suspens.
ion. 10in. Voice Coil 8 ohms. 6.3v. 10in. Voice Coil 8 ohms. 21/2.

DYNAMOTORS, Type 31. P.M. Input 6-12 volts D.C. Output 200 volts
D.C. This unit may be widely employed for mobile radio etc. Fitted
with effective suppressors, 11/6.

A 3d. stamp brings you our latest lists describing thousands of
items from 5/-VA, Petrol Generators to dispersive components.

LAWRENCE'S. 61, BYROM ST. LIVERPOOL 3. TELEPHONE 4430.

THE TWENTY MILLION MEGOHMETER

A new instrument for Research and Industry. Covers the entire resistance range from 0.5 to
20,000,000 megohms. Two test voltages, 8v and 500v, are provided.
A six-inch mirror scale enables readings to be taken accurately and quickly. Designed for
testing cables, resistors, capacitors and all insulating materials.

THE KING OF COIL PKACS

The letters of grade we receive in our post bag every day confirm our opinion that the
MODELL 46 COIL PACK is the best that money can buy, from the point of view
of quality, workmanship and performance.

It is to the best of our knowledge, the only unit on the market with an E.P.P. stage
which can be supplied pre-ground and sealed for direct inclusion into a superhet
receiver. It uses 5 separate trans-eriter high efficiency coils, with high stab.
R.M. auditors and variable trimmers. The Waveband coverage is 160-900 half.
500-6000 meters. Notwithstanding its compact size (24cm. x 24cm. x 24cm.) the
internal and external screening is efficient and more than adequate to eliminate any
interference between the Aerial, E.P.P. and Oscillator sections.

The price is only 25s. 6d., or can be supplied fully assembled at 47s. 6d.
For one month only, as a special offer, we are supplying PBST with every Model 46 Coil Pack our
comprehensive and detailed instruction sheets for the construction of a 8 valve superhet
receiver embodying this unit. These sheets are really comprehensive and
even if you have never built a radio receiver before, you can go ahead with the
knowledge that you cannot fail to complete a highly efficient multi-valve receiver,
that will give you years of pleasure listening to I.F. receiveing.

1st - the latest issue of "The Home Constructor's Handbook"; or a 3d.
stamp will bring you our latest lists.

LUSTROPHONE LTD. 84, Belsize Lane, N.W. 3

ELECTRONIC INSTRUMENTS LTD

CERAMICS
by U.I.C

UNITED INSULATOR COMPANY LTD. • TOLWORTH • SURBITON • SURREY • ENGLAND
Cables: Calanel, Surbiton.
Telephone: Elmbridge 5241

* Acclaimed by Home & Overseas Visitors at the B.I.F!

Stentorian
Baffle Speakers

These new Stentorians were a sensation at the B.I.F. — everyone who saw and heard them agreed that they are unequalled for value, reproduction and appearance.

Compare them with any other make of speaker, and remember, that both the Beaufort and Bristol have press-button remote control for use with the "Long Arm," an exclusive Whiteley feature. All three are finished in highly-polished walnut veneer.

NO PURCHASE TAX

"LONG ARM"
REMOTE CONTROL

Operates any number of Beaufort or Bristol speakers (or Senior, Junior or Cadet cabinet models) from any make of set. Enables the radio to be switched on or off from the extension speaker — in any part of the house. Price 35/-. Local dealers will be pleased to demonstrate.

BEAUFORT
Size 12⅓" x 10½" x 3½". Permanent magnet type speaker (die-cast unit). 6" diam. Capacity 3 watts. Constant impedance volume control. Price £3.15.6 (with transformer). £3.7.6 (without transformer).

BRISTOL
Size 10⅓" x 9½" x 3½". P.M. Unit 6". Capacity 3 watts. Constant impedance volume control. Price £2.17.6 (with transformer). £2.12.6 (without transformer).

BEDFORD
Size 9½" x 8½" x 3½". P.M. Unit 5". Capacity 2½ watts. Complete with volume control. Price £2.3.6 (with transformer). £1.19.6 (without transformer).

WHITELEY ELECTRICAL RADIO CO. LTD. MANSFIELD. NOTTS.
LONDON COUNTY COUNCIL
NORWOOD TECHNICAL COLLEGE
Phone: GISpy Hill 2268/9
WEST NORWOOD
LONDON, S.E.27

TELECOMMUNICATIONS & ELECTRONICS
DAY AND EVENING COURSES for the following Examinations:

- CITY AND Guilds of London Institute in Telecommunications Engineering (Final Certificate)
- GRADUATESHIP OF THE BRITISH INSTITUTE OF RADIO ENGINEERS

EVENING COURSES, additional to above:
- RADIO SERVICE WORK (R.T.E.B.)
- TELEVISION (Theory and Servicing)
- SERIES OF SHORT COURSES ON MODERN APPLICATIONS OF ELECTRONICS

ENROL NOW for the 1949/50 Session commencing September next. Vacancies are limited

Full details and application forms from the Principal

BULL'S RUISHLIP DEPOT
WINDMILL HILL - RUISHLIP MANOR - MIDDLESEX

KERSHAW'S KORNER KALLING SPECIAL!!!

M.O.S. LINES
TELESCONIC RECEIVERS, brand new, complete with four 1.5 v. Hijack Midget valves ideal for making your own personal portable 32/6 each. Post paid.
INERT 1.5 v. CELL BATTERIES, long life, fill with plain water and have continuous use. Ideal for every purpose. 3 for 2/6. Post paid.
MAKE YOUR OWN CRYSTAL SET, with polished terminal box complete with volume control, resistance, etc. 1/6 each. Post paid.

S. KERSHAW
93/95 PERSHORE STREET, BIRMINGHAM, S.

PRECISION TEST EQUIPMENT

STANDARD SIGNAL GENERATOR TYPE 59a. By Cremer. Frequency range 200-300 Mc. Modulated either sine or pulse. For ox. Mf. F.P. output variable from 1 Mc. to 300 v. Complete with all accessories. New... £130

CRACKER GENERATOR TYPE 122-4. Made for the U.S. Navy. Two frequency ranges, 2-12 Mc. and 120-295 Mc. Provision is made for internal crystal calibration. P.F. output variable from 1 Mc. to 100 Mc. A new... £80

POST RADIO SUPPLIES
OFFER EX STOCK
COPPER INSTRUMENT WIRE.
ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED.
Most gauges available.

B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelets and rivets.
ERONITE AND BAKELITE PANELS.
TUFLON ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS.

Latest Radio Publications.
Send stamped addressed envelopes for comprehensive lists. Trade supplied.

POST RADIO SUPPLIES
33, Bourne Gardens, London E.4
Phone: Clissold 4683

WIRELESS SUPPLIES UNLIMITED,
264-266, Old Christchurch Road,
BOURNEMOUTH, Hants.
NOW AVAILABLE

Partridge Precision Components (standard or "to specification" types) are now available as hermetically sealed units.

And in oil if oil is required!

Illustrated is a typical Partridge Transformer (Type DN) in its Menumetal Screening Box. It is merely to remind you that all Partridge Precision Components (standard or "to specification" types) are now available as hermetically sealed units.

Then there's the new PARTRIDGE "PPO" RANGE

cheduled to meet fully the particular demands of push-pull output transformers where A.F. range with low distortion are vital.

FULL DATA ON REQUEST.
BRINGING HOME THE
(AMERICAN) BACON

The first practical moving coil speaker came from America somewhere around 1926. It was a great improvement over everything else but we thought it didn’t go as far as it could. As a result the Hartley-Turner speaker was born.

By 1930 we had also produced and sold to the public the first unit dual or tweezer woofer—probably because we were the first to think that more than one unit was necessary to give the frequency response demanded by real high fidelity. The Hartley-Turner Duplex was abandoned within a year because we didn’t like the sound of it— it had a coloring which still seems inseparable from a large cone unit (the “woofer” part of the set up).

Nearly twenty years later we still pin our faith to a highly developed single unit speaker, and as so many thousands of other American manufacturers have done, we at Hartley-Turner we rather feel we are not being unduly blinded by prejudice. So incontinent and persistent is the testimony of users to the excellence of the Hartley-Turner speaker that we thought it would be a good idea to let the citizens of the United States know what we had done. Rice and Kellogg set the ball rolling.

While we have concentrated on the single unit they have turned, until the search for excellence has produced speakers which are almost too dear to buy. Yet some in this country are fast following the American trend. We cannot say if they are right or wrong, it is a free country and they are entitled to do whatever they think best.

But the Hartley-Turner 215 sells in the U.S.A. at $45 and we have written testimony from sound experts stating that on direct switch-over tests it is a closer approach to the real thing than others costing $500. You can believe it or not, but the proof is in our files, and it is proof supplied by men to whom perfection of performance is more important.

The solution of your high fidelity problem is here at the absurdly low price of $9.50; but always remember that what we say doesn’t matter. It is what the user says—and it says “buy Hartley-Turner.” Literature free for the asking, and “New Notes in Radio” at 2/6 will tell you how to overcome all the other snags.

H. A. HARTLEY CO. LTD.
LONDON, W.6. RIVERSIDE 7387
NEW rotary converters with special smoothing equipment - Batt. chargers, etc., all new electric motors, a.c. and d.c., B.T.H. Mat-
vack at flat prices; trade supplied, lists available. "MAX" vertical petrol engine direct coupled to 18-volt,
30.5-Amp. D.C. Dynamo generator, speed 2,800
revs/min, 36 volt, 5 morning and guard rails, £17/10/6,
3-circuit charging switchboard for above plant, in
addition, a second engine fitted variable charging
resistances. Field regulator for dynamic cranking
ammeters and main current ammeter, voltmeter,
3 meter HTC electrically connected to switchboard.
3 three-pole overload plug, £6. All as new. Immediate delivery.

VILLIERS 1½ k.w. plants, 2½ hp. single cylinder 4-stroke engine direct coupled to 35-volt 35-amp.
D.C. dynamo, with petrol tank and guard rails;
as new, £25.

AUTOMATIC Control-Coucou Batter Chlor
ager, new, £15/10/6.
Compound wound coil with latched contacts,
three terminals, on bakelite base 3½ in. x 3½ in.,
and enclosed in bakelite case, 12½.

REELS: Open type with heavy contact to carry
up to 10 amp, 24 volts D.C., 7½,
Relay and Rectifier, with 24 volt, relay and metal
rectifier, 5½; postage 1½ extra.

VARIABLE RESISTANCES, slider type laminated
concentric 10 ohms, £3 7/6; 10-ohm single
amp, 17½; 12 amp, 15 amp, 12½; Rotary
resistances comprising resistance mats and radial
resistors, from 1 ohm to 10 amp, 18 Amps.,
30½. Cartridge 2½ extra.

A.C. CIRCUIT BREAKERS, 7½ amps, enclosed
5½.

ELECTROSTATIC VOLTMETER. Flush
panel type, bakelite case, 3,500 volts, 2½, postage
1½ extra.

input and 2 volt 20 amps., and 75 volts 6 amps.
output, with tap 21, 12½ extra, £17/10/6.
500 watt transformer core wire and laminations,
supplied G.P.O. stock, 25½,
12½. Cartridge 2½ extra.

SEWING MACHINE BATTERY, 220 volts
A.C., 12½/6, with pulley belt and bracket,
£10½. Control switch 5½ extra.

BATTERY CHARGING KIT, for home charging
from 250 volts A.C. double wound transformer,
metal rectifier, ballast resistance terminals and
base plate, 2½; 1½; 1½; 6 volt, 4amp.,
3½, with connection diagram.

D.C. DYNAMO BARGAIN. Crypto shunt
25 volts, 30 amperes, 3,000 r.p.m., £15/10. Crypto
27½ volts, 2,500 r.p.m., £10. G.E.C. Com-
pound, 50/68 volts, 10½, 10 amp, 1,000 r.p.m.,
£15½. Leese Neville shunt, 20 volts, 5 amp.,
1,000 r.p.m., £2/15½. 24 volt 30 amp shunt,
2,000 r.p.m., 40½, 12 volt, 30 amp, 2,000 r.p.m.,
5½, with 15 volt 100 amp. D.C.
Dynamo for Windmill work, 10 amps, 6,000/1,000
r.p.m. shunt wound, totally enclosed, shaft
extension on both ends for prop, new condition,
£10½. Cartridge 5½ extra.

MAGNETS. Swift Leviy, alloy perm.

ELECTRADIX RADIOS

For Best British Bargains

LIGHTING AND CHARGING SETS. Villiers
2½ h.p., 250 watt, single cylinder, 4-stroke engine
direct coupled to 18 volt, 35-amp. D.C. Dynamo
generator, speed 2,000

BERRY'S SHORT WAVE RADIOS

25, HIGH HOLBORN, LONDON, W.C.1
(Copp. Chancery Lane.) Tel. HOLBORN 8231

Q-MAX" Utiliry S.M. Dial

FOR TELEVISION

FOR TV Full range of components including
22in. C.R. tube, Haynes Line Out, Hayes Focus Coil,
Haynes Scanning Co., Gardners, Woden, E.H.T.s, etc.

Q-MAX" CHASSIS CUTTERS

1" 1½" 2" 2½" 3" 3½" 4½" 5½" 6½" 7½" 9½"

Key Rd.

Key 1½-

Q-MAX" SERIES TUNED COLPITS (Clapp) V.F.O.

Direct calibration on all amateur bands from
3½ to 30 Mcts.

High or low imped. output.

For TV, Osc. works on low frequ.,

6½ reduction.

1 hole fixing square on to panel.

 Provision for illumination.

Size 9½ x 6½

29½

ADVANTAGES

“Q-MAX” Utility S.M. Dial

For Self-calibration

Latest AVO Sig. Gen. 100 kc/s-80 Mct, £25.
Large stock British and U.S.A. valves.

Weaite Microphone, £5.

Weaite "P" Coils, 5½.

Ceramic Switch 1 p. 5 w. 3 Bank.

Doseno Chassis mgs. coils, 3½.

REGISTER NOW—Our new catalogue is
neatly ready—3d. post free.

ADVERTISEMENTS 63

ELECTRADIX RADIOS

214, Queen's Road, London, S.W.1
Telephone : MACau 215.
MAGLIS and Selvania, many types in stock, send for list.—Radio News, 120 Union Pl., New York City, N.Y. REN-8.

SALTURUM RECTIFIERS. 720 A.C. 560 D.C., anode, 5/16", valve normally 13/16", price, new, undamaged, 5-1/2 c. each. 100's, 500 c. net. F. & E. Hardware, Logan, Ohio.

TELEVISION scanning coils, 30... frame output transformer and many others. A. H. Thomas, 13 West 39th St., New York, N.Y. TEL-2162.

EX-A.R.A. folded plate transformers type 46, 18 volt, 250 ma. price 65 c. each, 5 for $2.50, 50 for $12.50. F. & E. Hardware, Logan, Ohio.

HEAVY duty mains transformers 250-500 volts, 0.75 ampere, 15, 30, 50, 100, 150, 250, 500, 1000 watts. According to specifications. M. 104, 105 V. A., New York, N.Y.

Mains 100 volt 10K ohm. box style, 13 cent. S. W. Wilkins, 650 W. 5th St., Milwaukee, Wis. My 4-4836.

G. HENSON LITTLEWOOD & Co., 27, Ballard Lane, Limehouse, London, E. 14 (Main Office), W. 3545. 2, 4... transformers, 5000 volt, 10 ampere, 2000 watts. 100 for 1250 c. each. 10,000 for 1200 c. each. L. D. & L. L. & Co., 319 South St., New York, N.Y.

Magnetic metalize with 0.0001 inch metal coating, lowest prices, biggest variety.—Near W. 30 St., 204 Broadway, New York, N.Y.

TELEVISION transformers, 500 volt 2 ampere, prices from $1.00 up. 5000 gallon, guaranteed the best. 552 E. 7th St., New York, N.Y. TEL-2782.

TYPewriter panel, comprising a 0-5 microscope and a 0-30 M.C. meters, 3 pots toggle. Yakel & Co., 1007 5th Ave., New York, N.Y. 2890.

SHRINKED WIRE VIDEO FROM SMITH'S, 8414 E. 102 St., nearby 3920 W. 26th St., Kansas City, Mo. 4317.
PITMAN

Radio Books

Radio Upkeep and Repairs
By Alfred T. Witte, A.M.I.P.E. A practical handbook on the location and correction of faults unavoidable for potential service engineers and keen amateurs. Sixth Edition 7/6 net.

Radio Service Test Gear
By W. H. Cazzy. A useful introduction to this subject, and a helpful manual for those interested in constructing their own gear. Illustrated 6/- net.

Radio Receiver Servicing and Maintenance

AMC

TELEVISION

NEW Improved LINE OUTPUT TRANSFORMERS

NEW Improved SET OF GANTRIES COMPLETE

NEW Improved FOCUS COILS

All Steel CADMIUM PLATED BURSTER AND TIME BASE CHASSIS valve-holders, 3 point and single socket and all necessary cut-outs.

SOUND PANEL CHASSIS ASSEMBLY, fitted with screens, valve-holders, formers and dust cores.

VISION PANEL CHASSIS ASSEMBLY, fitted with screens, valve-holders, formers and dust cores.

9" G.R. TUBE SUPPORT for mounting on top of Gantry Assembly

5. CREAM MASKS

5. SHAKESPEARE RD, FINCHLEY N.3

Phone: FINchley 2188

Wireless World

July, 1949

SOLONS FOR YOUR SOLDERING JOBS!

Types available—65 watt, oval tapered bit, 65 watt round pencil bit, 125 watt oval tapered bit, 125 watt round pencil bit, 240 watt oval tapered bit.

HENLEY SOLDER ELECTRIC SOLDERING IRONS

These five models will satisfy practically every soldering demand whether for the occasional household job or continuous soldering under workshop or factory conditions. With the Solen the heat is in the bit itself... continuously... hour after hour; all connections heated at end of handle away from heat. Each model complete with 6 feet Henley s-cord. Now available from stock. Write for folder Y 10.

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD.

51-53 Hatton Garden, London, E.C.1

ALLEN COMPONENTS LTD.

Type 320 5-wave band coil unit.
A comprehensive pre-assembled alignment consisting of switch, complete set of aerial, H.F. and oscillator coils and all associated trimming and coupling condensers for 5-wave band operation with tuned H.F. stage on all bands. All coils have dust iron cores for inductance adjustment. A six-position switch is used with provision for pick up connections and H.F. mounting on the sixth position. For use with any of the standard frequency changer valves (6KB, ECH-35 etc.) and an I.F. frequency of 465 Kc.

Send for latest catalogue of our full range of components for Radio and Television.

ALLEN COMPONENTS LTD.

Tower Road, Willesden, N.W.10
Telephone Willesden 3675
THE "FLUXITE QUINS" AT WORK

"Come on m'lads! On your toots!"

This aerial's fixed. Up she goes!

Thank FLUXITE, old down, it'll never fall down!"

Bawled Ol "I shall! On my nose!"

See that FLUXITE is always by you—in the house—garage—workshop—wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Ironmongers—in tins, 10d., 1/6 & 3/-

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple—with FLUXITE—but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 2/6, or filled, 3/6

ALL MECHANICS WILL HAVE FLUXITE. IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASE HARDENING STEEL and TEMPERING TOOLS with FLUXITE. PRICE 1d. each.

FLUXITE LTD.
(Dept. W.W.), Bermondsy Street, S.E.1
Have you consulted us with regard to your requirements in this field? We can offer good deliveries and keen prices from our standard range or we can produce to your specifications both efficiently and economically.

Drop us a line and let us prove the advantages of our service—you'll find it well worth while.

ETA

TUNING COILS
COIL ASSEMBLIES
I.F. TRANSFORMERS
PRESELECTOR TUNERS

NEW S.T. & C. SELENIUM RECTIFIERS

H.F. HALF WAVE RECTIFIERS

C.I.T.

SELENIUM rectifiers
1,000v, 1,000ma, 500v, 500ma, 250v, 250ma, 125v, 125ma, 60v, 60ma, 30v, 30ma, 15v, 15ma. Price list on request. Inspection welcome.

ELECTRO TECHNICAL ASSEMBLIES
West Hill, St. Leonards-on-Sea, Sussex

GET THIS FREE BOOK!

ENGINEERING OPPORTUNITIES

This enlightened book is for you. Write for your copy today. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ELECTRICAL ENGINEERING
388b Shakespeare House
17/19 Stratford Place, W.1

LASKY RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.
LASKY'S RADIO
Telephone: CENTral 5184 and 2280.

You're SURE to get it at
STERRY'S
ESTABLISHED 25 YEARS

are extra. e.g., 81 or over, special list for the club.
10 A.M. Tuesday 8:00 a.m. to 6:00 p.m.
Low price. tech. service out.

LASKY'S PRICE 55s.-

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.

LASKY'S RADIO
370 HARRLOW RD., PADDINGTON, LONDON, W.9.
(Opp. Paddington Hospital)
Home: Mon.-Sat. 0.50 a.m. to 6 p.m. Thurs. Half hour.
A.W.F.
FOR YOUR NEXT LOUDSPEAKER REPAIR AND TRANSFORMER REWINDS

Radio Dealers and Service Engineers (R.T.R.A. Definition) are invited to send 1d. stamp for the current "Monthly Bulletin" which gives full details.

A.W.F. RADIO PRODUCTS LTD. (Dept. 17)
Borough Mills, Bradford, Yorks.

VOIGT PATENTS LTD.
15 SILVERDALE
S.E.26
Town and Country PLANNING!

P.S. Mr. Voigt has not yet recovered his health.

QUARTZ CRYSTAL UNITS

For—AIRCRAFT, MARINE AND COMMERCIAL USE are available in the complete range from 35 kilocycles to 15 megacycles.

Alternative mountings in standard two-pin A.M. pattern 10X, International octal, and miniature type FT243, can be supplied for most frequencies.

Prices are fully competitive, and we specialise in prompt deliveries for urgent requirements.

WE WELCOME YOUR ENQUIRIES.
THE QUARTZ CRYSTAL CO., Ltd., 42 Kingston Road, NEW MALDEN, SURREY.
Telephone: MALden 0334

PREMIER RADIO Co. offers the following superdiode material, all guaranteed perfect; diodes, 500Vac., 2000m1, 15 hours, 22.5y; 5v 10amp. accumulators, 7/6; type 1553 units, used 30%/ plus 10%/ packing and carriage, new, 45%/ units type C4 for same, used, 12/5; super-sensitive balanced armature double handwound, low resistance, 3/6; mains transformers 200/250v input, 300v/ 60va (half wave), 5v 12v 16v 16v output, 10%; accumulator charger ki, consists of mains transformer and suitable metal rectifier to charge 2 or 4v grade 12/5, for 12v accumulator, 27/6; vibrators, 16v 4-pin non-servo transformers for same 500v/300, 7/6;
converters, input dc, output 230v 500 vac., 10%; microphone transformers hand and type switch in handle, 2/11; transformers for same, 2v/6; cab type cable twin 14-56, 6v per dip, 4/6 or 46/6 per 100-yard coil; twin flex, 14/56, 6y per dozen range, 95/6 per 100-yard. 8-5, 15-5, 20-15, 25-5, 30-5, 35-5, 40-5, 50-5, 60-5, 70-5. 1/1 each type; d.c. generators for engine drives, 1v 500v., 10%; Germanium crystal diode, type CDY10; a super fixed detector for crystal sets. 7-5; balanced armature single ear pieces, super-sensitive, 750m1, 1/1 meter kis, moving coil meters 5-1/4, 5-1/4, 8-5, 15-5, 20-5, 30-5, 40-5, 50-5, 60-5, 70-5, 80-5, 90-5, 100-5, 120-5, 150-5, 180-5, 200-5, 250-5, 300-5, 350-5, 400-5, 450-5, 500-5, 600-5, 700-5, 800-5, 900-5, 1000-5, 1200-5, 1500-5, 1800-5, 2000-5, 2500-5, 3000-5, 3500-5, 4000-5, 4500-5, 5000-5, 5500-5, 6000-5, 7000-5, 8000-5, 9000-5, 10000-5, 12000-5, 15000-5, 18000-5, 20000-5, 25000-5, 30000-5, 35000-5, 40000-5, 45000-5, 50000-5, 55000-5, 60000-5, 70000-5, 80000-5, 90000-5, 100000-5, 120000-5, 150000-5, 180000-5, 200000-5, 250000-5, 300000-5, 350000-5, 400000-5, 450000-5, 500000-5, 550000-5, 600000-5, 700000-5, 800000-5, 900000-5, 1000000-5, 1200000-5, 1500000-5, 1800000-5, 2000000-5, 2500000-5, 3000000-5, 3500000-5, 4000000-5, 4500000-5, 5000000-5, 5500000-5, 6000000-5, 7000000-5, 8000000-5, 9000000-5, 10000000-5, 12000000-5, 15000000-5, 18000000-5, 20000000-5, 25000000-5, 30000000-5, 35000000-5, 40000000-5, 45000000-5, 50000000-5, 55000000-5, 60000000-5, 70000000-5, 80000000-5, 90000000-5, 100000000-5

HOURTON OSBORNE TELEVISION
A complete new range of television equipment and units is now being produced to enable the home constructor to build a television with absolute confidence.

They have been produced as economically as possible with due regard to both quality and cost.

The range includes:

DEFLECTION COILS
LINE OUTPUT TRANSFORMERS
PRE-AMPLIFIER UNITS
SOUND RECEIVERS
VISION RECEIVERS
TIME BASE UNITS

All units have been designed around the new high efficiency B7G type valves, and consequently are of small dimensions.

Details from:
Houghton & Osborne, Electron Works, High Street, Thame, Oxon.

PHOTO-ELECTRIC CELLS
For Talking Picture Apparatus.
Catalogue now available

RADIO-ELECTRONICS LTD.,

HILL & CHURCHILL LTD.
EBOOKSELLERS
SWANAGE, DORSET
Available from stock

- Terman—Radio Engineers' Handbook
- Terman—Measurements in Radio
- Schemkoff—Electric Magnetic Waves
- M.I.T.—Electronic Time Measurement
- Brindish—Ultra High Frequency Tech.
- Starr—Electric Circuits & Wave
- Weiman—Engineering Surveying (U.S.A.)

- Marcus—Electronics of Radio
- J. 126, Vol. 2

Postage Extra.

CATALOGUE ON APPLICATION
H.T. transformers (new) for 6.3v vibrators, output 250-3-250v at 80mA, 10/6 ea., one doz. lots @ 6 ea. special price. Last few, 2626.

S.W. STEWART TRANSFORMERS, 1021 Finchley Rd., W.11. (3261)

WANTED, EXCHANGE, ETC

AVO No. 6 within 10% wanted; details and price—Box 6769. (3562)

FREE wire for transformers only. Must be new and perfect material.

E. SIMMONDS, 5a, Byron Rd., Harrow.

WANTED, Taylor 70A or Avo No. 7, low cost—Box 5669. (3705)

WANTED, late Haynes 2 HP tuners—Box 6749.

WANTED, surplus relays and push-button units, any condition, price or small quantities—highest prices paid—Box 6199. (3555)

WANTED, new for F.M.V., model 500 L.S-wave radiogram—Box 5649.

VALVES—see S.T. offers for Marconi, 260 B.C. radio, TV, V.S., D.S.B., D.H., two D.P.T., 440s, 800s, Swinton, Price Programme—Box 5770.

W.E pay top prices for used test equipment, all types—University Rd., 22, Lisle St., London, W.1. (3480)

CARRIERS telephone and telegraph equipment of all types in any condition wanted, teleprinter and teleprinter apparatus—Harris & Gillmor, 93, Wardour St., W.1. (3084)

WANTED, all kinds of laboratory test equipment, standard signal generators, bridges, oscillographs, etc.—Send details to, Oak Instruments, 88, Mill Road, London, N.W.1. (3771)

MARINE or aircraft radio and spares, etc.—ANA 11987, 392c, bomb switches, tube socket, etc.—Send details to Oak Instruments, 88, Mill Road, London, N.W.1. (3771)

Credit for all types of test equipment, radio, television, test equipment, meters, charging gear, etc.—If you want to sell at the maximum price, write or phone to University Radio, Ltd., 22, Lisle St., Leicester Sq., London, S.W.1. (3480)

REPAIRS AND SERVICING

MAINS transformers rewound, new transformers to any specification.

MOTOR rewinds and complete overhauls; first-class workmanship, fully guaranteed.

F.M. ELECTRIC CO., Ltd., Posters Bldgs., Woodgate, N.1. (3705)

LOUDSPEAKERS and transformers rewound.

J. Louis, 19, Maresfield Gardens, N.12. (3621)

IN OUT and output transformers rewound to specification; also radio, F.M., L.O.D., etc. 367a, 19, Kentish Town Rd., N.1. (3769)

Speaker, 12, Pembroke St., London, N.1. (3769)

Mains and output transformers rewound to any specification—H. Pugh, Radio Repair Service, Studio, Wealdstone, N.2. (3695)

REPAIRS AND CONVERSIONS TO MAINS and output transformers, from 40c to £80 equip.; first-class workmanship, 20, Beak St., N.1. (3695)

W. Arnold 3695.

Mains transformers rewound or constructed to any specification; prompt delivery.

J. H. Beddows, 18, Beak St., N.1. (3695)

A. C. DEVIN, 1, Bedford St., E.1. (3695)

REPAIRS to mains transformers, 10c.

ELECTRICAL and nonelectrical repairs of all kinds.

To make repaired and standardized. The Electrical instruments Repair Service, 349, Kilburn High Rd., London, W.11. (3607)

SERVICE with a smile.—Repairs of all types of British and American receivers; coil rewinds; American valves, spaces, line cord, etc.—F. R. Ltd., 2d, High Holborn, W.1. (3657)

SHRUBB— mantles and transformers rewound and specified for marine and progressive wave circuits—Rynford, Ltd., 19, Arundel Rd., W.1. (3607)

REPAIRS to moving coil speakers, speakers, etc.; coil fitted, field altered or altered, speaker transformers, sound transformers, automatically guaranteed, satisfaction; prompt service; we do not rewound mainly transformers. W. R. REPAIR SERVICE, 49 Trinity Rd., Upper Holloway, London, S.W.11. (3457)

24-hour service, 6 months guarantee, any transformers; small audio outputs, 1,500, etc., etc.; all types of new transformers, etc., supplied or repaired in specification. Business hearing service card for trade prices. Majestic Windle, 19, Windmill St., W.1. (3457)

T.F.P. REPAIR service, all transformers are windings, vacuum impregnated, pressure tested and guaranteed for three months, 48-hour service.—Insurers London and Provincial, Pioneer Works, Cobbold Estate, N.W.10. Tel. Willows 6800.

REPAIRS to mains transformers, 10c.

O/P transformers, coil fitted, field repaired, new transformers to any specification; guaranteed workmanship; prompt delivery; all types: 6½ days.—W. Groves, Manufacturing Electrical Engineer, 340, Infield Road., Bham., 16. (3457)

FREE, A Free Copy of the enormously successful HOME CONSTRUCTOR'S HANDBOOK will be given to every purchaser. A copy can be obtained for £1 from SUPACOILS (Mail Order Office), 98, Greenway Avenue, London, E.17

COPPER WIRE, ENAMELLED, SILEX, D.C.C., etc., most sizes.

INSULATING MATERIALS, Empire cloth, leatheroid, paper, etc., fully lined.

MOTOR S.A.C. & D.C. Copper to 1 hp, specially prepared. Send S.A.E. for list. S. A. C. & D. C. Copper Ltd., 348, High St., SMETHWICK, Staffs. Telephone: WOODGATE 3789

THE MODERN BOOK CO., (Dept. W.7), 19-23, PRAED STREET, LONDON, W.2

Industrial electronic equipment developed and supplied at reasonable charges. Excellent model shop facilities.

SPENCER-WEST QUAY WORKS, GL. YARMOUTH.

BOROUGH POLYTECHNIC

Borough Road, S.E.1.

Full-Time Courses in Radio Engineering

Applications are now being received for admission to full-time courses beginning in September, 1949, in Radio Engineering. The course is designed so that students will spend equal periods at the Polytechnic and in industry over a total period of four years. At the end of the course they will sit the examination for the Higher National Diploma in Radio Engineering.

Students seeking admission should either have passed the School Certificate Examination with at least 2 marks in Mathematics, Physics, and 2 marks in Physics, or have taken the first and second years of the Ordinary National Certificate Course.

Further particulars and forms on which to apply for admission may be obtained from the Secretary.
possibly the most famous of tuner units for high fidelity reception.
Max. unidirectional output in both cases 1 volt R.M.S.

Supply required. 250 V. 30 m.A. 6.3 v. 2.5 W.

Controls. Tuning, Volume, Tone, Wave-

change and Selectivity (T.R.F. or Superhet).

Dimensions Overall. 12in wide, 11n deep,
10in high.

Price. £26 8s. 9d. plus Purchase Tax £1 16s. 9d.
Call and hear for yourself at "The Laboratory Production Unit"
Lowther Manufacturing Co.
Lowther House, St. Mark's Road,
Bromley, Kent.
Rov. 5225.

MORSE CODE TRAINING

There are Candler Morse Code Courses
for BEGINNINGS AND OPERATORS
Send for this Free
“BOOK OF FACTS”
It gives full details concerning all Courses.

THE CANDLER SYSTEM CO. (Room 55W), 121 Kingsway, London, W.C.2
Candler System Co., Denver, Colorado, U.S.A.

YOUR METER DAMAGED?

Leading Electrical Instrument Repairs

LET GLASER REPAIR IT

Repaired by skilled craftsmen to all makes and types of
Voltmeters, Ammeters, Micrometers, Multimeter Test
meters, Electrical Thermometers, Recorders, Instruments,
Synchronous Circuits, etc. 14 Days Service—for speedy
estimate send defective Instrument for test.

L. GLASER
Scientific & Electrical Instrument Repairs
341 CITY ROAD, E.C.1
Tel. Terminals 2409

B.T.S.
The Radio Firm of the South.
63 London Road, Brighton, 1, Sussex.
Phone: Brighton 1555

SPEAKERS BRAND NEW

Goodman's, Truro, Rola (as available). 5 inch 13s.-6 inch 14s.-8 inch 16s.-including packing and postage.

EDDYSTONE RECEIVERS

Full range of components.
All C.O.D. orders promptly executed. Send for Catalogue, 1/- post free.

SPECIAL OFFER

Owing to the great success of our
SPECIAL PARCEL, many customers have ordered orders for 2 & 3 par-
cels, we are extending this offer for 4 more weeks. The parcel contains
50 resistors, 50 condensers, 24 valve holders, a good selection of tag strips, strips, screws, knobs, sleeving & many other useful components. All new, worth £2. O.F.P. FOR £1 ONLY, CARR. PAID.
DO NOT MISS THIS OPPORTUNITY TO STOCK YOUR WORKSHOP

COVENTRY RADIO DUNSTABLE ROAD, LUTON, BEDS.

★ ‘Radiospares’★
Quality Parts

The Service Engineer’s First Choice
★

MUMETAL and DIAMOND METAL TRANSFORMERS and CHOKES

As Specialists with many years of experience we can design and supply practically any type of transformer or choke with a nickel-plated core or use on a band within the frequency range
1 c/s to 150 kc/s
Available for rapid delivery—Hypersensitive Transformers, Input Transformers, Line Transformers, Flicker Transformers, Output Transformers, Regulator Transformers, Magnetic Chokes, Impedance Transformers, Recorder Transformers, Midget Transformers, High Output Chokes, High Inductance chokes, etc., with or without Mummetal Shields.

MAIN COMPONENTS ARE ALSO STOCKED.

SOUTHERN TRANSFORMERS
E. A. SOUTHER, 1-8 HEAD STREET, COLCHESTER

Phone: GOLCHESTER 845.

★
OUR PRICES ARE LOWER Some Special JULY OFFERS

RECEIVER R132A. The renowned 10-valve set covering 100-124 Mc/s incorporating tuning meter (0-5 m A), AGC, attenuator control. Unit is combined broadcast radio and communications receiver which will delight UHF enthusiasts. Circuit diagram included. Brand new stock of 50 for only £5.25. Sent postfree in wooden crate, carriage paid, for ONLY £4.10/-. POWER UNIT No. 3. Especially suitable for the above, including mains. We dispatch small delivery of these, and those interested should make further inquiries immediately.

RECEIVER R3084. Vacuum tube line - 7 E50, 2 E545, 1 E525, 1 U93A, 1 HVR2 and 2 EAS0 together with 30 Mcl.f. I.F. strip. THE MOST PRACTICAL AND CHEAPEST 12 VALVE RECEIVER. Highly commended for operation aboard trailer and similar craft, and ideal for your 'Dinette'. Batteries are all 6V. In a hard glass case. 4.7 x 12 x G.9, 9c., and L, 2v. Circuit diagram included, and absolutely brand new and complete. ONLY £3.10/6d. post free.

H.R.'PHONES FOR ABOVE. 2000 ohms each phone. 5GB type. Brand new but not boxed. Only £1 per pair, post free.

RF UNIT TYPE 24. Brand new in maker's original packing. Can be rapidly modified for use in conjunction with R1355 video receiver. Complete instructions supplied upon request. 12v. only.

6in. MAGNIFYING LENS. Enhanced clarity and definition of picture. Only 25c.

COMPONENT MART: OUTSTANDING VALUE. 450 k c/s I.F. Transformers, 4/6 pair. 8x16 vfd. 450k Vf, 100k, 3 1/2 each. 50 mfd. 12v. vol., 100 each. 1 gross for 10c. rs, 1 gross for 10c. rs. Good assortment, 12/6, 2-gang .0005 condensers. Standard size, best quality, 4/6 each.

HUNDREDS OF OTHER SIMILAR BARGAINS IN STOCK. SEND ESTIMATE TO "COMPONENT MART LIST * W.W."

OUR TELEVISION

Last month's feature of our 12 inch television has created a demand which can best be fulfilled by ordering immediately so that this price is still available. All valves and components are to the last detail about equal to the original equipment. The use of valves and components supplied from ex-R.A.F. Units ensure a corresponding reduction in price. No less than 70% of the full and comprehensive data, including point-to-point wiring diagrams, are available at only 5/- post free. Clarity and definition of the Television units that many commercial models. Come and see for yourself during viewing hours.

DON'T FAIL TO PAY US A VISIT THIS MONTH. OUR ANNUAL STOCKTAKE SALE IS NOW IN FULL SWAY, AND WE ARE OFFERING MUCH USEFUL EQUIPMENT AT REALLY BARGAIN PRICES.

Best buy at Britain's

CHARLES BRITAIN (RADIO) LTD.
11, UPPER SAINT MARTIN'S LANE, LONDON, W.C.2
(3 minutes from Leicester Square Station)
Telephone: TEM 0545.
Shop hours: 9 to 6 p.m. 9 to 1 p.m. Thursday
OPEN ALL DAY SATURDAY.

SALES engineer for oscillographic equipment, good opening for young man with suitable experience and in interested in the field. BOX 945.

APPLICATIONS are invited for Electronic Engineer and Mechanics for reconditioning of all types of equipment. Wellington, Box 945.

FERRANTI, Ltd., Ashton Works, Manchester, have large orders for the manufacture of electronic measuring instruments for various purposes. Applications invited for good qualified engineers. BOX 945.

I) Development Group Leaders. To take charge of large development groups. Qualifications include 10 years experience in electronic equipment design or have been in charge of a development department. The ability to supervise and control experts in the field required.

ii) Development Section Leaders. To take charge of sections in the above groups. Qualifications include 10 years' experience in electronic design or have been a chief engineer or section head. The ability to supervise and control experts in the field required.

iii) Electronic Designers and Scientists. Qualifications include 5 years' experience in electronic equipment design or have been a chief engineer or section head. The ability to supervise and control experts in the field required.

iv) Electronic Designers and Scientists. Qualifications include 5 years' experience in electronic equipment design or have been a chief engineer or section head. The ability to supervise and control experts in the field required.

v) Salesmen and Engineers. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

vi) Junior Engineers. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

vii) Laboratory Assistants. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

viii) Draftsmen. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

ix) Accounting and Clerical Staff. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

x) Junior Accountants. Good knowledge of electronic equipment. Experience in sales or design of electronic equipment required.

SPECIAL PRICE OFFERS

RECEIVER R1166. As a 9-valve communications receiver for 200-250v. A.C. mains. £5.10/6d.

Receiver Unit with 7 valves VR99 (X65) 3VR100 (KTW61) 2VR101 (DH63) VR103 (Y6M6E) 5 switche band.

18-7.5 mcs. (177.40 metres) 7.5 mcs. (40 metres) 500-520 metres (200-500 metres) 1500-600 kcs. (600-1500 metres) 500-200 kcs. (1500-3000 metres) 1500-750 kcs. (3000-7500 metres)

S.M. Drive, BFO, AVC, MVC, etc., metal case 67 x 9 x 7.5 in.

PIONEER OUTFIT PACK with 2 valves EL35. USO Bin, mains energized speaker, mains trans. output trans. Tone control and ON/OFF switch, metal case 14 x 8 x 7 in. Complete with circuits and linking cables, etc., CLYDESDALE's PRICE ONLY £1/12/6. CARRIAGE PAID.

Brand New. REFLECTOR AERIAL (MX-132/A) E175. A first-class Transmitting and Receiving Omnidirectional Antenna, in original moisture proof carton, with complete accessories. CLYDESDALE'S PRICE ONLY 5/- each. POST PAID.

Brand New. R.C.A. Vibraphack, E952. Input 6 volts. Variable output, 200-240 v. 40-50 ma. Controlled by a 3-speed selector switch, complete with 6p UX synchro oscillator, OZ4 rectifier, in metal case, 4 x 8 x 6 in. CLYDESDALE'S PRICE ONLY 29/6 each. POST PAID.

Brand New. E.169. Moving Coil Headphones. 40 ohms each earpiece, total imp. 80 ohms, sealed and moisture proof fitted with rubber covers, wire headband and canvas wrap-strap, Y cord 7 ft. long. CLYDESDALE'S PRICE ONLY 12/4 per pair. POST PAID.

Co-Axial Cables, any length supplied. 12 mm. 52 ohms, solid core at 8d. per yd. Minimum 20 yd., 10/- per yd.

12, 000 ohms, Airspaced core at 9d. per yd. Minimum 20 yd., 15/- per yd.

10 mm. Airspaced core at 7d. per yd. Minimum 20 yd., 11/- per yd.

10, 100 ohms, Airspaced core at 7d. per yd. Minimum 20 yd., 11/- per yd.

All lengths advertised or in this list can be ordered from any of our branches, in England and Northern Ireland, or direct from

CLYDESDALE SUPPLY 2 BRIDGE STREET, GRAVESEND, C.5
Phone: SOUTH 2706/9
Send now for new illustrated 112-page List No. 5. Please Print name and address.
THE 059° AERIAL of FOLDED DIPOLE and MULTI-ELEMENT design for TELEVISION AT ITS BEST

Three aerials, already popular in the North for privacy and difficult loction, are now available here: the MIDLANDS SERVICE

- Folded dipole for wideband pickup
- Pairwise-coupled dipoles for full match
- Multi-element design for high forward gain
- Great strength, low vintage, minimum weight
- Built of high-duty alloy by experts in short wave arrays, these aerials give you television at its best; high definition, low interference, long range reception.

- FD92. Folded dipole with reflector, 45/5%.
- FD92R. Folded dipole with reflector and director.
- FD40. Folded dipole without reflector.
- FD45. Folded dipole, reflector and director.
- FD49. Tunable to 45 or 50 m waves.
- FD29. Two base unadorned folded dipole.

As supplied to the G.P.O. Engineering Dept. and to Capetown, for the London transmission.

E.M.D.O. LTD., MOOR LANE, STAINES.

HIGH VOLTAGES ARE OUR BUSINESS

If you want the best in Transformers for Television, Pho-o-Flash, Neon Lighting, etc., why not consult us?

MILLET & HOLDEN LTD.
BIRCHAM WORKS, BIRCHAM ROAD, SOUTHAMPTON 8, HAMPSHIRE

Phone: Southampton 48499

The frequency of any type or make of Quartz Crystal Unit will be measured, and a calibration certificate issued. Crystal Units are returned to the customer within 48 hours. For further particulars write for leaflet QC. 4812 to:

SAFORD ELECTRICAL INSTRUMENTS LTD., P.O. Works, Silk Street, Saford, 3,

PILOT RADIO, Ltd., requires immediately experienced technical and factory fitters for radio and television alignment, five-day week with good rates of pay. Apply or write to 31 Stads, Park Royal Rd., N.W.10.

GOOD earth B.W. Retail shop handles television, radio, records, accessories, H.M.V., Ecko, Ecco, Ecco, Rovex, etc., required good keen live sales capacity as manager when necessary; write stating experience, references and salary required, to Box 0535.

AN engineer required for the design and construction of special precision electronic test gear by large company in East London; applicants should have technical qualifications at least Higher National standard and previous experience of this work.—Salary, experience and salary required, to Box 0676.

RADIO engineer required for work in London on domestic radio for exporting purposes; applicants must have had previous experience of work like this for several years and prefer one who has successfully mass-produced, sent particular of education, skill and work and the birth and salary required, to Box 0681.

WANTED immediately electronic draughtsmen with at least 5/6 years experience in electronics, mechanical design and layout of electronic equipment and permanent positions offered in the Midlands area, salary according to qualifications and experience. Apply quoting ref. 06/35 to Box 0697.

APPLICATIONS are invited from engineers and physicists by the Research Laboratories of The General Electric Co., Ltd., East Lane, North Wembley, Middx, for work on the development of electronic and radio navigation aids: details of age, academic record and experience should be sent to the Personnel Officer.

RADIO service engineer required for provincial firm of high standing, must be able to first-class technical standard, and have considerable practical experience, knowledge of television an advantage, wage according to ability and confirmed after one month's probation. Apply to Messrs. Barnes & Atkins Ltd., 150/15 Frat St., Reading, Berks.

RADIO-ELECTRONICS technician required by Radio-Boots Pure Drug Co., Ltd., Nottingham. City work in plant laboratory with ability to operate test equipment, street and service faults in industrial electronic equipment, etc., and d.c. and a.c. amplifiers and R.F. generators.—Applications, stating salary required, to Personnel Manager, Station St., Nottingham.

DESIGNER-DRAWER required for mechanical design of radio components, receivers, television and electrical domestic appliances; applicant must have had three years experience on at least one of these products; good salary paid to men with ability and qualifications. Apply in writing to Ref. S.S. Messrs. Birdsay Ltd., West End, North Kent.

ENGLISH ELECTRIC Co., Ltd., Staffordshire, requires engineers and technicians of all grades for research and development and production. Closing date for application is 31st July, closing terms in essential, good conditions and prospects.—Please quote Ref. D.O.55 when sending full details to Central Recruitment, English Electric Co., Ltd., 24-30, Gillingham St., London, S.W.1.

AN assistant engineer is required for radio laboratory in the Witham area; applicants should have had previous experience in a radio development laboratory and should be between 25 and 30 years of age; salary required in accordance with qualifications and experience.—Applications should be made in writing, with full details, to Personnel Manager, The Telefunken Co., Ltd., Hove.

A. H. HUNT, Ltd., have vacancies for laboratory workers for work on design and manufacture at certain duties will require a basic knowledge of power and radio frequency engineering, some of the work involving application of physics and chemistry; previous work onmagnetrons not essential. Write or call, A. H. Hunt, Ltd., Bandon Valley, Gateway Lane, Wallingford, London, S.W.18.

BRIERLEY INSULATED CABLES, Ltd., require a Physicist for the development of solid media; candidates should be experienced in physical, electro-magnetic and electronic measurements and be capable of carrying out development work on own initiative; permanent position; salary according to age and qualifications. Apply in writing to Staff Officer, B.I.C.C., Ltd., 175, London, W.1.

A firm engaged in the development and manufacture of communication equipment near Maidenhead, engineers having degrees in physics and experience, preferably with experience of electronic switching techniques and a knowledge of administration and personnel work; starting salary according to experience and qualifications. Apply in writing to Box No. 415, Cheapside Ltd., 161-171, Regent St., S.W.1.

Firm required for assembly shop concerned with the manufacture of radio receivers and associated equipment in West London district; applications will only be considered from qualified and experienced persons of mass production of radio receivers, and whose capacities of 400 to 500 female operators when writing please give full information of previous experience and state salary required.—Box 0617 to.

HAYNES RADIO LTD., Queen'sway, Enfield.

TELEVISION RECEIVERS SCANNING and FOCUS COILS TEMPERATURE BASE COMPONENTS 7KV. EHT. RF. UNITS and TRANSFORMERS

WE OFFER

A large range of used and new Test Equipment, Connectors, Recorder, Amplifiers, Transformers, etc. All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.

Tel.: GER 4447 & 8552.

The “ACODLA” Soldering Instrument

The "ACODLA" Soldering Instrument

Designed for Wireless Assembly and Maintenance.

Working temperature 1 min. 260°C, consumption 25 watts, weight 24 oz.

Supplied in voltage ranges from 60v. to 250v./10,000v. for bronze elements and 0.5 to 1.0 milliamperes for 60v. to 250v. and 0.25 to 0.5 milliamperes for 10,000v.

Replacement Unit Elements available.

British and foreign patents.

Sole Manufacturers:
ACODLA PRODUCTS LIMITED

Alliance House, Caxton Street, London S.W.1.

Write or Phone: WH. 0020.
NOW

THE NEW AND IMPROVED MODEL 40 3-WAVEBAND COIL PACK

Send stamp for full details of this unique and compact unit. The price! Still only 42/- inclusive.

Our famous 2/6d. "Home Constructor's Hand-

book" is still available to "W.W." readers for 1d. a genuine goldmine for radio constructors!

RODING LABORATORIES, 70 LORD AVENUE, ILFORD, ESSEX

TELEROADIO

Radiogram Equipment

MODEL A70. 6 valve all-wave modern superhet chassis with tuning indicator, tone control and radiogram switch. The ideal replacement chassis. £14 14 0d. plus £3 3 0d. Purchase Tax.

MODEL 70 T U. As above but as 3 valve tuning unit. Leading model 77 amplifier £8 0 0d. plus 34 10 0d. Purchase Tax.

MODEL 77. 4 valve push pull amplifier with 2766 fed by phase inverter. Approx. 8 watts output 5 6 0d.

AVAILABLE AS KIT OF PARTS (Blueprints 4/-). Send for leaflet to:

THE TELEROADIO CO., 157, Fore St., Edmonton, N.18

GILDING THE LILY!

THE FAIRFAY AVIATION Co. Ltd., Hayes, Middlesex. (R.F. stage) has been further improved by the incorporation of a Ceramic ceramic change switch -wire! Send stamp for full details of this unique and compact unit. The price! Still only 42/- inclusive.

B.B.C. invites applications for the post of Waveset Engineer (radio) or Waveset Engineer (r.f.) in connection with the provision of services and equipment for the management of modern radio and telegraph equipment and must have had experience in the line of radio, telegraph and similar work on such equipment. Radio only. The post is an exciting one, offering a chance to join an engineering department at a time of development. Applications for a small number of of these positions will be considered, but it is expected that a larger number of applications will be received. Applications will be considered as soon as possible.

BROADCASTER'S HEADQUARTERS, 100 WINDSOR ROAD, LONDON, W. (S.O. 1942)

NOW

THE NEW AND IMPROVED MODEL 40 3-WAVEBAND COIL PACK

(With R.F. stage) has been further improved by the incorporation of a Ceramic ceramic change switch -wire! Send stamp for full details of this unique and compact unit. The price! Still only 42/- inclusive.

Our famous 2/6d. "Home Constructor's Hand-

book" is still available to "W.W." readers for 1d. a genuine goldmine for radio constructors!

RODING LABORATORIES, 70 LORD AVENUE, ILFORD, ESSEX

Radar Transmitter 78.AQ. This is a recent U.S.A. transmitting set, consisting of a 15-kilowatt 1500-kilowatt 1500-kilowatt transmitter followed by two 6867 and one 6867 amplifiers. A pair of 8057 valves provides 150 watts output at 9000 v. The detector type 250A. A long line tuned oscillator section is also incorporated. The valve is capable of driving up to 5000 watts of power. It is of the double-

Special Reduction for this month only. While they last. Brand new 410D 1100W. motors, designed for use on 50 volts, 55 cycles, 3 phase A.C. Speed 3600-4000 rpm. Spec. length 110, and diameter 55/6in. Price £25 (carriage paid). A similar model to that above, but without a variable reduction gear, which, by the adjustment of a screw on the motor casing, enables the motor to run at any speed between 1000 and 2500 rpm. A special price to go. Price £20 (carriage paid).

M.O.C. EQUIPMENT

Equipment 3-valve battery operated amplifierifier in steel case, a shoulder sashale, two search coils with poles, junction boxes, pair of connection boxes and a coil box, log book, connecting cables and sensitivity measuring stick, operating instructions. Packed in robust wooden case. Price, complete with batteries, £8 8 0 (carriage and packing 1/6.)

Spare part of sets, 22/6.

Radar Transmitter 78.AQ. This is a recent U.S.A. transmitting set, consisting of a 15-kilowatt 1500-kilowatt 1500-kilowatt transmitter followed by two 6867 and one 6867 amplifiers. A pair of 8057 valves provides 150 watts output at 9000 v. The detector type 250A. A long line tuned oscillator section is also incorporated. The valve is capable of driving up to 5000 watts of power. It is of the double-

Special Reduction for this month only. While they last. Brand new 410D 1100W. motors, designed for use on 50 volts, 55 cycles, 3 phase A.C. Speed 3600-4000 rpm. Spec. length 110, and diameter 55/6in. Price £25 (carriage paid). A similar model to that above, but without a variable reduction gear, which, by the adjustment of a screw on the motor casing, enables the motor to run at any speed between 1000 and 2500 rpm. A special price to go. Price £20 (carriage paid).

M.O.C. EQUIPMENT

Equipment 3-valve battery operated amplifierifier in steel case, a shoulder sashale, two search coils with poles, junction boxes, pair of connection boxes and a coil box, log book, connecting cables and sensitivity measuring stick, operating instructions. Packed in robust wooden case. Price, complete with batteries, £8 8 0 (carriage and packing 1/6.)

Spare part of sets, 22/6.

Radar Transmitter 78.AQ. This is a recent U.S.A. transmitting set, consisting of a 15-kilowatt 1500-kilowatt 1500-kilowatt transmitter followed by two 6867 and one 6867 amplifiers. A pair of 8057 valves provides 150 watts output at 9000 v. The detector type 250A. A long line tuned oscillator section is also incorporated. The valve is capable of driving up to 5000 watts of power. It is of the double-

Special Reduction for this month only. While they last. Brand new 410D 1100W. motors, designed for use on 50 volts, 55 cycles, 3 phase A.C. Speed 3600-4000 rpm. Spec. length 110, and diameter 55/6in. Price £25 (carriage paid). A similar model to that above, but without a variable reduction gear, which, by the adjustment of a screw on the motor casing, enables the motor to run at any speed between 1000 and 2500 rpm. A special price to go. Price £20 (carriage paid).

M.O.C. EQUIPMENT

Equipment 3-valve battery operated amplifierifier in steel case, a shoulder sashale, two search coils with poles, junction boxes, pair of connection boxes and a coil box, log book, connecting cables and sensitivity measuring stick, operating instructions. Packed in robust wooden case. Price, complete with batteries, £8 8 0 (carriage and packing 1/6.)

Spare part of sets, 22/6.

Radar Transmitter 78.AQ. This is a recent U.S.A. transmitting set, consisting of a 15-kilowatt 1500-kilowatt 1500-kilowatt transmitter followed by two 6867 and one 6867 amplifiers. A pair of 8057 valves provides 150 watts output at 9000 v. The detector type 250A. A long line tuned oscillator section is also incorporated. The valve is capable of driving up to 5000 watts of power. It is of the double-

Special Reduction for this month only. While they last. Brand new 410D 1100W. motors, designed for use on 50 volts, 55 cycles, 3 phase A.C. Speed 3600-4000 rpm. Spec. length 110, and diameter 55/6in. Price £25 (carriage paid). A similar model to that above, but without a variable reduction gear, which, by the adjustment of a screw on the motor casing, enables the motor to run at any speed between 1000 and 2500 rpm. A special price to go. Price £20 (carriage paid).

M.O.C. EQUIPMENT

Equipment 3-valve battery operated amplifierifier in steel case, a shoulder sashale, two search coils with poles, junction boxes, pair of connection boxes and a coil box, log book, connecting cables and sensitivity measuring stick, operating instructions. Packed in robust wooden case. Price, complete with batteries, £8 8 0 (carriage and packing 1/6.)

Spare part of sets, 22/6.

BUSINESSES FOR SALE AND WANTED
PUBLIC ADDRESS, small limited company for sale outright.写: W. London.
-Box 8588.

RADAR, electrical, television sales service.
-Box 501.

RECORDING studio in cemtre of the highest musical area of North Staffs, good connections; a first-class asset to any similar established business. Write Box 3690.

OPPORTUNITY to acquire high-class electrical manufacturer’s concern, specialised products: plant includes moulding presses, etc.; acreage seven, with manufacturing plant and buildings of great expansion, price £3,000 a.” (Essex area.)

-Box 4795.

SOUTH Devon.—Old-established radio and electrical生意: t.815,000 per annum. Current accounts available showing good results, present value 14 years. Write today. Inquiries invited, including freehold property over £11,000. —For full particulars, telephone Smart at 6 15 Eastcheap, E.C.3.

STOLEN
PATENTS
-Box 5097.

THE proprietor of British Patent No. 567,492, and A.69, claims same for licence or otherwise to ensure practical working in Great Britain for the new apparatus to Singer, E. X. Jackson Blvd., Chicago 4, Illinois 39. LYPNOR LABORATORIES

52, Comber Road, Woolston, Liverpool 32.

DUPLEX LTD.
CRAMER, AY. EALING, W.13

Electronics and Radiophone Industries, Ltd.

For use on A.C. or D.C. in indoor and outdoor work.

New Portable model 20.6.

For indoor and outdoor work.

Radio Unlimited

“Return of Post” Mail Order Service.

16 CARNOY ROAD, LEYTON, LONDON, E.10.

- “The Sandringham” Portable A.C. mains amplifier, complete in every detail, including Microphone and Radio Timer.

- “Vortice” OP-20A Portable 15-watt amplifier for A.C. or D.C. mains, complete.

- “Radionum” OP-20A Low battery. Complete in every detail, inc. speaker.

- “Febri” 1219 A.C. mains, 3 waveband, 5 valve superhet. Complete in every detail, inc. speaker.

- “Mains Transformer” 3 stars. Plate free.

WEATHERHEAD & CO.,
71, Weymouth Bay Avenue, Weymouth.

MULLARD VALVES FOR ALL PURPOSES
G. N. PILL VALVES AND PARTNERS
49, OOBURGH STREET, PLYMOUTH
Telephone: 2239

MULLARD

makers of Fine Cabinets
and woodwork of every description for the Radio and allied trades

LOCKWOOD & COMPANY
Lowlands Road, Harrow, Middlesex.

THIS—Does these

ACCUtATELY and QUICKLY
Chassis, Tractel, Shrouds, Condenser
Transformer and Transformer Repair
TREPPNING Wood and Aluminium
Flame proof “16” to 30”
Full particulars from
A. A. TOOLS
179, WEST END ROAD, ASHTON UNDER LYNE

We have been accused of being too modest about our products! Some of our customers have told us that the results obtained from our gear is much better than they had expected from our advertisements. As we should like to make it known that we believe the equipment we produce to be of the highest order, we believe that the quality of performance and that we have paid particular attention to design and execution of all necessary fittings of first importance in high-quality equipment (we are able to mark it at a most attractive price.

We believe that results speak for themselves, but should you wish to know more about our products, we would suggest a really comprehensive brochure, the LAAZ BAILEY LUGER No. 1, being prepared and this will give you information, specifications, etc., of all the equipment, together with an exhaustive technical description of them and a discussion on the problems of high fidelity generally.

AMPLIFIERS, TONE CONTROL UNITS, TUNER UNITS, WHISTLE FILTERS AND GRAMOPHONE EQUIPMENT, AND THE LAAZ BAILEY REPRODUCER SERIES II.

Incidentally we hope shortly to introduce more auspicious premises in the Oxford area, but in the meantime all communications should be directed to.

ELMSLIEGH RADIO CO.
1102 London Rd., Leigh-on-Sea, Essex
Leigh-on-Sea 75168

THE COIL PICK-UP is ideal for use with Direct Recording Equipment.

WILKINS & WRIGHT LTD.
Holyhead Road, Birmingham, 21.

“PERIMETER” ELECTRODE Soldering and Brazing Tool
Operator finds it of 9 or 9 Volt Accumulator or Transformer.

Mains Transformer, 10 stars. Plate free.

HOBSON & Co.,
71, Weymouth Bay Avenue, Weymouth.

HIGH-Q AUDIO FREQUENCY INDUCTORS
A typical item used in our Type UQ.1 1 Xc. narrow band pass filters in the Perimter-tuned toroid Ref. 715.

Inductance 6.57 H, Q at 1 Kc.

Case size: 26n, 36 in. 2, Price £1 16s. 6d.

We invite your specification for special inductors within the range 1 mils-6400 kcs. for 5 and 10 kc. due.

LYNCAI LABORATORIES
28, Gombern Road, Morden, Surrey.

RECOMMENDED by “Wireless World”

(See issue for November, 1948)

Symbolic Method of Vector Analysis
The “J” Operator Simply Explained.

W. H. Millar.

3s.

Post 2d.

A.C. Network Analysis by Symbolic Algebra.

W. H. Millar.

4s.

Post 2d.

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

EDITORIAL OFFICE

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.

THEOLOGICAL LIBRARY

Oxford

St. Joseph’s College

PHONE NUMBERS

Oxford

St. Joseph’s College

CLASSIFIED PUBLICATIONS

9 White Moss Avenue, Manchester, 21.
SPECIAL OFFER
10 WATT QUALITY AMPLIFIER KIT

The Kit provides everything necessary for the construction of a valve 10 watt quality Amplifier with a Pull-Pull output stage incorporating negative feedback. The Amplifier will fill and all normal requirements for the house or small hall and is equipped with three separate inputs, selected by a switch. There is also space on the chassis for a second stage. The kit comes complete with all necessary parts and instructions.

Price of Kit complete to the last screw- £6.10.0

Write at once for further details.

STANHOPE ENGINEERING CO. LTD.
387/9, Oshanger Rd., Cricklewood, London, N.W.2
Telephone No.: Willsden 1142/3 and 3600

Other available Denco Products are listed in a most comprehensive and detailed Catalogue. Price 9d.

EXPORT AND TRADE INQUIRIES INVITED.

B. & H. RADIO
Huntley St., Darlington

Loud Speaker Bass & Treble Separator. Complete kit of parts and instructions. Enables speakers of different impedances to be used for both bass and treble and also gives control of amount of treble relative to bass. Model A 6db per Octave. Cross over 1000 c.p.s. £1 9 6
ModeL B 12db per Octave. Cross over 1000 c.p.s. £2 12 6

Scratch Filter Gives a very marked reduction of scratch level without serious effect on treble response. £5 0 0

Variable Selectivity I.F. Transformer 465 k.c/s. Gives three degrees of Selectivity £1 10 0

Per pair £1 0 0

TRADE ENQUIRIES INVITED.
ERIE

High Voltage Double Cup CERAMICON

SPECIFICATION

Capacitance 500 muf ± 20%
15 kV working at 95°C.
22.5 kV DC test
500 VA R.F. loading
Power factor <2%

DOUBLE CUP CONDENSER

TYPE 410

DESIGNED with particular attention to the needs of the modern television receiver incorporating an E.H.T. Supply using an R.F. oscillator or the line time-base fly-back potential.

ERIE Resistor Limited

CARLISLE ROAD, THE HYDE, LONDON, N.W.9, ENGLAND
Telephone: COLindale 8011
Cables: Resistor London
Factories: London & Gt. Yarmouth; Toronto, Canada; Erie, Pa., U.S.A.
This single unit of the famous Pye Portable Television Transmitting equipment, used by the B.B.C., has more than 3,000 Ersin Multicore soldered joints. Ersin Multicore Solder has been used exclusively in the Pye factories and laboratories at Cambridge for more than 10 years. Pye Ltd., like the majority of British and U.S.A. television manufacturers, prefer to enjoy the reliability of Ersin Multicore, for it alone provides a consistently high standard of precision soldered joints.

Whether for manufacture or maintenance of Television, Radio or Telephone equipment, Ersin Multicore Solder has been found by manufacturers in Britain and U.S.A. to be the most economical as well as the most efficient solder.

Only Ersin Multicore contains extra-active, non-corrosive Ersin Flux, enabling joints to be made on heavily oxidised surfaces. Only Ersin Multicore with its 3 core construction gives guaranteed flux continuity, instantaneous melting and guaranteed freedom from ‘dry’ or H.R. joints.

Ersin Multicore Solder as used by the leading Television, Radio and Telephone manufacturers, is available from most retailers in Size I cartons in the specifications shown below:

<table>
<thead>
<tr>
<th>Catalogue Ref. No.</th>
<th>Alloy</th>
<th>S.W.G.</th>
<th>Approx. length per carton</th>
<th>List Price per carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>60:40</td>
<td>14</td>
<td>32 feet</td>
<td>6 0</td>
</tr>
<tr>
<td>C 16018</td>
<td>60:40</td>
<td>18</td>
<td>84 feet</td>
<td>6 9</td>
</tr>
<tr>
<td>C 14013</td>
<td>40:60</td>
<td>13</td>
<td>20 feet</td>
<td>4 10</td>
</tr>
<tr>
<td>C 14016</td>
<td>40:60</td>
<td>16</td>
<td>44 feet</td>
<td>5 3</td>
</tr>
</tbody>
</table>

MULTICORE SOLDERS LTD., MILLIER HOUSE, ALBEMARLE STREET, LONDON, W.I., REGENT 1411

Standard nominal ½ lb. nails are preferred by most manufacturers. Bulk prices cost on request.