NEW HIGH-QUALITY AMPLIFIER
The Research Engineer knows that the best speaker for any set is one that offers complete reliability plus true tonal fidelity. After exhaustive tests his advice is always the same—fit Rola and relax!

ROLA SPEAKERS
THEIR QUALITY SPEAKS FOR ITSELF

BRITISH ROLA LTD • 8 UPPER GROSVENOR STREET • LONDON W.1
Radio manufacturers, service engineers, workshops and laboratory technicians are familiar with the precision and dependability of "AVO" Electrical Testing Instruments. Long years of successful experience in the design and manufacture of first-grade instruments have produced a consistently high standard of accuracy which has become a tradition as well as a standard by which other instruments are frequently judged.
Series 35
MINIATURE
MOVING IRON
INSTRUMENTS

by PULLIN

Provided with clear, open scales 3½" long. Flush pattern moulded cases. Well damped; suitable for D.C. & A.C. up to 100 cycles. Readings independent of wide variations in wave form. Movement of spring-controlled, repulsion type with high torque/weight ratio. Ammeters self-contained to 50 amps; power consumption does not exceed 1VA. Voltmeters self-contained to 500 volts; power consumption 1.5VA.

MEASURING INSTRUMENTS (PULLIN) LTD
Dept. J, Great West Road, Brentford, Middlesex. Ealing 0011

Series 35 Moving Iron Voltmeter.

Series 35 Moving Iron Ammeter.

THE S. & WHITE COMPANY - BRITANNIA WORKS
ST. PANCras WAY - CAMEDEn TOWN, LONDON N.W.1
Cable Address: VITICODENTA, WESDO, PHONE, LONDON
Telephone: LUXTON-4738, 4759

Wireless World
April, 1947
THAT'S Fixed THAT!
Type CA 725.
Fixing knobs to shafts. Sounds simple but if you’re a radio manufacturer you know "what a headache it can be. The Spire fixing was designed to solve that particular problem. The CA 725 is made to measure for shafts of various diameters. Then it is snapped into position in the hub of the knob and the knob pushed straight on to the shaft. Don’t think of Spire as a 'kind of nut'. It is a great deal more than any nut. It is a simplified and sure method of fixing. Especially awkward fixings!

Every time a designer or production engineer decides to use some form of Spire fixing, he puts a few thousand (or a few million) nuts and washers out of a job. No more fumbling and holding the bits together with one hand while you get to work with the other. Spire fixing can tackle and simplify most light assembly jobs. The best thing is to send us the job—or the drawings. If a Spire fixing will improve the job we'll design it for you and show it to you in a week or two. Then you can judge for yourself.

A BETTER way of fixing
Simmonds Aerocessories Limited
Speech coil
3 or 15 ohms
impedance

PRICE 75/-

NEW GOLDEN 10 inch LOUDSPEAKER...

During the last six years hundreds of Wharfedale Golden Units have been supplied, and are still being supplied, to the B.B.C. and G.P.O.

It was selected by reason of its level response.

The new model is fitted with precision die-cast chassis, improved spider, and Alcomax II Magnet increasing the flux density from 10,000 to 12,500. Delivery time 6/8 weeks.

Made and Guaranteed by

WHARFEDALE WIRELESS WORKS

BRADFORD ROAD, IDLE, BRADFORD

Telephone: IDLE 461.

Telegrams: Wharfdal, Idle, Bradford

ISOLATION from VIBRATION

NEW VIBRATION ELIMINATORS

“EQUIFLEX”

“Equiflex” Mountings are invaluable for the mounting and suspension of machines, equipment, instruments, electrical apparatus, motors, etc., and wherever elimination of vibration and shock is required.

SPECIAL FEATURES

Flexible in all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring elements and complete with snubbing device. Special Fittings made to suit customers’ requirements.

Also available as previously advertised, the ALL-METAL construction comprising an ingenious Damped Spring System.

Write for illustrated brochure, and send us details of your requirements.

A. WELLS & CO. LTD. (Dept. W.W.),

STIRLING ROAD, WALTHAMSTOW, LONDON, E.17

Phone: Larkswood 2691
The remarkable accuracy of the DUBILIER PRECISION WIRE WOUND RESISTOR is due to its scientific construction. A slotted high insulation ceramic former is wound with enamelled resistance wire of not less than 0.0014" diameter. During winding the wire is subjected to tests to eliminate accidentally shorted turns and to ensure the essential high standard of insulation between turns. Contact between resistance element and terminals is by the exclusive DUBILIER moulded metal method which removes the possibility of weak, non positive or noisy connections. All units are suitable for use up to 80 Kc/s. Full technical details on request.
A NEW
OSCILLOSCOPE

PRINCIPAL FEATURES
* TUBE. 3\n
in.
diam. Blue or
green screen.
* Shifts. D.C.
 thus instantaneous on both
axes.
* AMPLIFIERS.
X and Y amplifi-
cers are simi-
lar. D.C. to 3
Me/s 24 mV.
r.m.s. per cm.
or D.C. to 1
Me/s 8 mV.
r.m.s. per cm.
* TIME BASE.
0.2 c/s, to 200
Kc/s. Variable
through X
amplifier 0.2 to
5 screen dia-
eters. Single
sweep available.

The Type 1684B Oscillo-
scope has proved itself an
exceptionally useful instru-
ment in the television lab-
oratory—it is provided with
high gain, wide band am-
plifiers on both axes which
serve to portray pulses such
as those associated with
television excellently and
good pulse widths are ob-
tainable on the screen.

PRICE £100

SEE THIS INSTRUMENT
AT STAND NO. D1679
B.I.F., OLYMPIA,
MAY 5th - 16th

SPHERE INSTRUMENTS
Introducing the
ALL WAVE
SIGNAL
GENERATOR

A portable Signal Generator for
AC, Mains operation. Specially
developed by SPHERE as a high
class instrument, for general
Laboratory and Workshop use,
it is the ideal instrument for
the aligning and testing of radio
receivers and amplifiers.

This is a specially designed
Generator, embodying several new and unique features and improve-
ments, which radio engineers will find invaluable.

All "SPHERE" Test-instruments are entirely British made
with highest quality materials and workmanship and carry a SIX
Months' guarantee.

- Continuous Frequency
 coverage from 100 Kilocycles
to 56 Megacycles, in six
bands.
- Exclusive "SPHERE" "SEE
 AT A GLANCE" Band
 and Attenuator indicators.
- Built in ladder attenuator,
 with fine control, giving
 1 Volt maximum, in five steps,
in multiples of 10 Microvolts.
- Radio and Audio Frequency
 Voltages can be switched via
 single Test-lead.
- Variable control of 400
 C.P.S. audio, from 0.01 to 1 Volt.

FOR RADIO SERVICE, RADIO ENGINEERING
AND LABORATORY USE.

Write for List No. 505 S.G.

SPHERE RADIO LIMITED
Radio Instrument Manufacturers
HEATH LANE, WEST BROMWICH
POINTERS FOR DESIGNERS

THE KTW61

A screened tetrode with suppressor plates and with variable-mu characteristics, the OSRAM KTW61 is specially suitable for use as an R.F. or I.F. amplifier in superhet receivers. Its outstanding features include:

- High order of mutual conductance (2.9 mA/Volt) combined with low leakage capacitance (0.0025 μF), which facilitates high stage gain.
- Negligible distortion with the maximum signal likely to be encountered in practice. Conditions of use — as an I.F. amplifier with screen dropping resistance, and in conjunction with OSRAM frequency changer X61M.
- Marked improvement in signal to noise ratio, particularly on the short waves, when used as an R.F. amplifier with fixed screen voltage.

A detailed technical data sheet is available on request.

Osram
PHOTO CELLS

J. & C.
CATHODE RAY TUBES

Osram
VALVES

Your products, too, can be assured of a longer life under all working conditions...

HY-MEG

USE **HY-MEG**

THE MODERN

TIME-SAVING IMPREGNATING MEDIUM

LEWIS BERGER & SONS LTD.

(Established 1760)

35, BERKELEY SQUARE, LONDON, W.1 Telephone: MAYfair 9171

MANUFACTURERS OF INSULATING VARNISHES AND ENAMELS

FOR THE

RADIO SERVICEMAN

DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free and places you under no obligation.

---------------You may use this coupon-------------

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.

DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.2.

Please explain fully about your instruction in the subject marked X

- Complete Radio Engineering
- Radio Service Engineering
- Elementary Radio

And the following Radio Examinations:
- British Institution of Radio Engineers
- P.M.G. Certificate for Wireless Operators
- City and Guilds Telecommunications
- Wireless Operator and Wireless Mechanics, R.A.F

Name,__ Age,________

Address,__
METALLISED CERAMICS

There's a size for every job in the S.P. range of metallised bushes.

Recent additions to the range: 40 x 4 mms. 117 x 25 mms.

For full information and prices please write to:

STEATITE & PORCELAIN PRODUCTS LTD.
STOURPORT-ON-SEVERN, WORCS. Telephone: Stourport 111. Telegrams: Steatain, Stourport.
TEST INSTRUMENTS FROM STOCK

FURZEHILL OSCILLOSCOPE MODEL 1936,
a new and useful 'scope covering many features at a reasonable price.
3½ tube—Outside dimensions 6½ x 9 x 14½.
Instantaneous shift—Time base 5 c/s to 20 kcs.
X gain control functions as sweep expander giving symmetrical expansion up to ± 5 diameters.
Symmetrical X amplifier sensitivity 120 m V r.m.s., c.m.
Symmetrical Y amplifier sensitivity 10 m V r.m.s., c.m. £37 10 0

WAYNE KERR COMPONENT BRIDGE B101.
2½% accuracy for C, R & L. (using internal standards),
C = 0-500 mfd. in 8 ranges.
R = 0-500 megohms in 8 ranges.
L = 0-500 Hys. in four ranges.
(Excellent measurement 100 millihenries).
Leakage Test—Comparator by %. Power Factor—Q Calibration. £27 6 0

TAYLOR "JUNIOR"
Model 120A (AC/DC—1,000 ohms per volt) £8 10 0
AVOMINOR UNIVERSAL £8 10 0
AVOMETER MODEL 40 £17 10 0

BROWNS MOVING COIL TELEPHONES.
Type K.—For high fidelity reproduction.
Resistances 90 ohms Per pair £5 5 0
Matching transformer 7,000/90 ohms 7 0

L.F. INDUCTORS. Partridge Transformers, recognised as pre-eminent in audio design, now stocked by Webb's.
Push-pull output (PX4's, etc.), 2,000 ohms to 15 ohms £2 12 6
Modulation transformers:
Primary tapped 4,000-6,000-7,000 ohms plate to plate.
Secondary 3,000-4,000-5,000 ohms.
60 watts audio £4 6 0
30 watts audio £2 19 0

WELwyn WIRE WOUND RESISTORS.
Type AW3112—6 watt rating each 2 9
50, 100, 250, 500, 500, 750, 1,250, 1,500, 1,750, 1,800, 2,500, 3,000, 4,000, 5,000, 7,500, 12,000, 15,000 ohms.
Type AW312—12 watt rating each 2 9
250, 500, 750, 1,500, 3,000, 5,000, 7,500, 12,000, 15,000 ohms.
Type AW312—45 watt rating each 3 9
500, 1,000, 1,500, 3,000, 5,000, 7,500, 10,000, 15K, 20K, 30K, 50K ohms.
Type B314—115 watt rating each 5 9
15K, 10K, 25K, £12 10 0
Type C3146—280 watt rating each 10 9
25K, 30K, 50K, 75K, 100K.
Types AW3112/312 and AW312 are wire wound Resistors. Types B314 and C3146 require mounting clips, available at 1/2 per pair.

WELwyn HIGH STABILITY CARBON, 1 WATT RESISTORS, TYPE A3643.
Tolerances ± 1%: 100, 250, 500, 750, 900, 2,000, 2,5K, 5K, 10K, 30K, 50K, 150, 1M ohms.
Tolerances ± 2%: 100, 1,000, 2,5K ohms.
Tolerances ± 5%: 10, 100K, 3M, 5M ohms.
F ROM STOCK each 2 6

Write, phone or call

14 SOHO ST., OXFORD ST., LONDON, W.1.
Phone: GERmany 2089. Shop hours: 9 a.m—5:30 p.m. Sat. 9 a.m—1 p.m.

NEW TYPES FOR MIDGET RECEIVERS
HEARING AIDS
METEOROLOGICAL INSTRUMENTS
ETC.

LABGEAR
ELECTRONIC FAULT TRACER

MODERN SERVICE
LESS TIME DEMANDS MORE PROFIT

The Americans use Signal Tracing-Do You?

Besides Signal Tracing facilities, combined in this one unit, there are the following instruments:
- Signal Generator
- Capacity Bridge
- H.T. Power Supply
- Audio Oscillator
- Emission Tester
- Voltage Indicator
- Resistance Bridge
- L.T. Supply Source

Write now to LABGEAR

Price £34-10-0

A "MUST" FOR PROGRESSIVE SERVICE MEN

HIVAC LIMITED
Greenhill Crescent. Harrow on the Hill, Middx. 0895
The Finest Cored Solder in the World

YOU AVOID WASTE. The three cores of flux in Ersin Multicore Solder ensure flux continuity, and eliminate solder lengths without flux.

YOU SAVE TIME. The three core construction of Multicore provides thinner solder walls and gives more rapid melting of the solder, thus speeding up soldering operations.

YOU ENSURE SOUND JOINTS. With correct soldering technique, Ersin Multicore Solder gives precision joints at high speed and avoids 'dry' or H.R. joints.

MULTICORE CONTAINS ERSIN. Multicore is the only solder in the world containing extra-active non-corrosive Ersin Flux—a high grade rosin subjected to a complex chemical process, enabling joints to be made on heavily oxidised surfaces. No extra flux is required.

<table>
<thead>
<tr>
<th>Catalogue Ref. No.</th>
<th>Alloy Tin/Lead</th>
<th>S.W.G.</th>
<th>Approx. length per carton</th>
<th>List price per carton (subject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 16014</td>
<td>60/40</td>
<td>14</td>
<td>55 feet</td>
<td>6 0</td>
</tr>
<tr>
<td>C 16018</td>
<td>60/40</td>
<td>18</td>
<td>145 feet</td>
<td>6 9</td>
</tr>
<tr>
<td>C 14013</td>
<td>40/60</td>
<td>13</td>
<td>35 feet</td>
<td>4 10</td>
</tr>
<tr>
<td>C 14016</td>
<td>40/60</td>
<td>16</td>
<td>80 feet</td>
<td>5 3</td>
</tr>
</tbody>
</table>

Manufacturers and service engineers are invited to write for information and samples. Available from leading radio shops. In case of difficulty write to:

MULTICORE SOLDERS LIMITED
MELLIER HOUSE, ALBEMARLE STREET, LONDON, W.I. Tel.: REGent 1411
Taylor
for the best in test equipment

MODEL
110A

The TAYLOR
A-C BRIDGE

These instruments give quick and accurate measurements of Capacity and Resistance. There are six Capacity ranges covering from .00001 to 120 mfd. and the Power factor can also be measured on each range. Six Resistance ranges are available measuring from 1 ohm to 12 megohms. This bridge is A.C. mains operated and a leakage test is also available for detecting leaky paper or mica condensers.

Six Ranges of CAPACITY
Six Ranges of RESISTANCE

PRICE £14.14.0

We also manufacture a complete range of Radio Test Equipment, including Multirange Instruments, Signal Generators, Valve Testers, Output Meters, Insulation Testers, Circuit Analysers, Oscilloscopes, A.C. Measuring Bridges and Ohmmeters: also Moving Coil Instruments with scale lengths from 2" to 5".

Please write for technical brochure to:
Taylor Electrical Instruments Ltd.
419-424 MONTROSE AVENUE, SLOUGH, BUCKS.
Tel: SLOUGH 21391 (4 lines) Grams: TAYL. INS, SLOUGH

ROTHERMEL
HIGH FIDELITY PIEZO-ELECTRIC PRODUCTS
available from stock.

- PICKUPS
- MICROPHONES
- HEADPHONES
- THE HUSHATONE
- DEAF AID MICROPHONES
- CONTACT MICROPHONES
- A.C. AMPLIFIERS

Also the new ROTHERMEL GENUINE SAPPHIRE High-Fidelity Gramophone Needle—over 2,000 playings.

Send for Informative Literature on all ROTHERMEL Products.

★ TWO NEW AMPLIFIERS

For many years R. A. ROTHERMEL has made intensive research in Amplifier design and we present with confidence two new A.C. Amplifiers, the VR/2 4½-watt and the HG/308 8-watt, which have been specially designed for use in connection with all types of Crystal Microphones and Crystal Pickups. They are compact, robust, and represent the ultimate in design, workmanship, material, and quality of reproduction.

Write for Bulletin.

R. A. ROTHERMEL LTD.,
ROTHERMEL HOUSE, CANTERBURY ROAD, KILBURN, N.W.8.
Telephone: MAIDA VALE 6066 (6 lines).

5mm/ft

NEW LOW LEVELS in capacity and attenuation of CO-AX Cables mean new possibilities in electronic equipment design both for the war effort and for the post-war electronic age.

Write for characteristics

BASICALLY BETTER AIR-SPACED

CO-AX LOW LOSS CABLES
TRANSRADIO LTD. 16 THE HIGHWAY, BEACONSFIELD, BUCKS.
RADIOGRAM CABINETS

Dignified appearance and good workmanship. Suitable for 24, 30, 40, and 50-watt. Lightweight in appearance. Cabinet only £20, with motor and pickup-up, £22 16s.

FIVE $5-SUPERVALUETELEPHONE. Employ 200, 250, 300, 400, 500, and 600 watts. Great position on waveband. Eight band and band spread. Complete with Va-1 valve and full instructions.

BATTERY CHARGERS. Kit. 800-250v., A.C. output. Charges 8 or 12 volt Batteries. Complete with charging units and loudspeaker. Price £3 15s.

MANSFIELD TYPE CONDENSERS. Huge purchase of Military Surplus Paper Condensers. Super quality oil filled.

PREMIER MANSFIELD TRANSFORMERS. All primaries tapped 210-255-200 volts. All L.T.'s centre tailed. All have screened primaries. Price £8 10s.

WAVE CHANGE SWITCHES. Available with any following step: 3-way, 20, 15, 10, 5-8 meters. B.P. 5/-.

PHILLIPS AIR-DIELECTRIC CONCENTRIC TRIMMERS. 8 P.F. and 30 P.F. £1 each.

SUPERFET TUNING PANELS. Completely wired and aligned. 110, 200, 300, 500, 1000 and 2000 P.F. 10/-.

ALL POST ORDERS to 167 LOWER CLAPTON RD., LONDON, E.5.

ALL CALLERS to 169 FLEET STREET, LONDON, E.C.4.

Superhet Midget Radio Kit. A complete model of portable carrying case, including valves, loudspeaker, transformers, etc. A few delivery. From stock. Price £10 10s.

Silver Mica Condensers. Available in 2, 5, 10, 25, 50, 100, 300, 1,000, 1,600, 4,000 P.F. £1 each. 7-15/-.

Complete 1-VOLT LISTENING POST. Consists of 1-volt Receiver complete with valve covering 15-170 and 250-600 m. Also extends aerial. Aerial. Aerial. Nothing else to buy. £3 15s.

2-VOLT SHORT WAVE BATTERY KIT. A complete kit of parts for a 2-volt receiver, covering 250-500 meters, including valves, coils, drilled chassis, H.T. and L.T. feeders to last approximately 6 to 12 months. Price £3 15s.

Moving Coil Mic. By famous manufacturers, 500 micrograms, 2 in. diameter, 200 ohms. 21/-. Special Offer. P.M. Speakers at Half Usual Price. £1 7s. 6d. £1 10s. 6d. £1 17s. 6d.

Moving Coil. SPEAKERS FOR Stereoing, 4, 8, 16, and 32 ohms. £2 20s.

Valves at less than Half Price. 0.24, 7/6, 6/6, 6/-, 8/-, 7/-, 5/-, 7/-, 3/6.

Silver Mica Condensers. Covered by a quality transformer, covering 200-600 meters. Price £3 15s.

Aluminium chassis. Made of solid aluminium. Price £3 15s.

Josephson Electros. 150, 450, 300, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005, 0.000025, 0.00001, 0.000005, 0.0000025, 0.000001, 0.0000005, 0.00000025, 0.0000001, 0.00000005, 0.000000025, 0.00000001, 0.000000005, 0.0000000025, 0.000000001, 0.0000000005, 0.00000000025, 0.0000000001. £0.50.

TYPE 111. A Rotary Transformer designed for an input of 60 or 120 volt D.C. Output 12 volt D.C. With 6 volt regulating the input is 12 volt D.C. Price £5 15s.

TYPE 201. Input 6 volt, output 1,500 volts, 200 m. £3.

TYPE 105. A Rotary Transformer with completely smooth output, covering 1500 m. £5 15s.

Silver Mica Condensers. Available in 2, 5, 10, 25, 50, 100, 300, 1,000, 1,600, 4,000 P.F. £1 each. 7-15/-.

Moving Coil Mic. At half usual price. 500 micrograms, 2 in. diameter, 200 ohms. 21/-. Special Offer. P.M. Speakers at Half Usual Price. £1 7s. 6d. £1 10s. 6d. £1 17s. 6d.

Moving Coil Mic. SPEAKERS FOR Stereoing, 4, 8, 16, and 32 ohms. £2 20s.

Valves at less than Half Price. 0.24, 7/6, 6/6, 6/-, 8/-, 7/-, 5/-, 7/-, 3/6.

Silver Mica Condensers. Covered by a quality transformer, covering 200-600 meters. Price £3 15s.

Aluminium chassis. Made of solid aluminium. Price £3 15s.
Metallised Ceramics

We specialise in the production of all types of Metallised Ceramic components — Hermetic Seals, Sealed Lids, Tag Boards, Bushes, Formers, etc. They are available in soldered, coppered or silvered finish, according to requirements. The suitability of any finish is a matter which we shall be pleased to discuss.

Hermetic Seal Type HS 421

Flashover Voltage over outside path
4.5 kVDC at 20°C

Flashover Voltage over inside path
3.5 kVDC at 20°C

Components made to standard design or to customers' specific requirements. Write for details.

UNITED INSULATOR CO. LTD
Oakcroft Rd., Tolworth, Surbiton, Surrey

Telephone: Elmbridge 5241 Telegrams: Calanel, Surbiton

Unsurpassed in Ceramics

TRUVOX HOUSE, EXHIBITION GROUNDS, WEMBLEY, MIDDX.
These robust instrument quality switches have applications in audio-frequency and small power circuits and are designed for long life and trouble-free service.

Consistent self-cleaning contact is obtained through a wiper arm comprising two or three independent laminations. The contact studs and wiper arms are made of Beryllium copper, a material which offers extreme durability and exceptionally low contact resistance of the order of 0.001 ohms.

The range is comprehensive. Units are available having up to four poles and fifty steps, either singly, or in ganged sets operating from a common shaft.

PAINTON & COMPANY LTD
KINGSTHORPE NORTHAMPTON

WESTINGHOUSE
WESTALITE
H.T.
RECTIFIERS

FOR
A.C. Eliminators and Receivers.
A.C./D.C. Eliminators and Receivers.
Conversion of D.C. Battery Eliminators.
Conversion of D.C. Mains Receivers.
Operation of moving-coil loud-speakers.

Write to Dept. W.W. for Data Sheet No. 24.

WESTINGHOUSE BRAKE & SIGNAL CO., LTD., 82, York Way, King’s Cross, London, N.1
No. 2 POINTS OF LOW CONTACT RESISTANCE IN CIRCUIT DESIGN OF MINIATURE RECEIVERS

B7G MINIATURE LAMINATED VALVEHOLDER

For use with IT4, IR5, etc.

Designed with 7 special sockets giving extremely low contact resistance and ensuring positive location of pins. Tags and centre screen pre-tinned. Fixing centres '875, Hole Dia:100.

PLATE DIMENSIONS
Major axis 1:093
Minor axis 6:80

for mounting either above or below chassis.

ELIMINATOR TRICKLE CHARGER TYPE M.A.C.2.

Input. 200-250 v. A.C.
[Output. H.T. 125 v.
15 m.o. Charging. 2v. ½ Amp.

£4.12.6

R.M. ELECTRIC, LTD.,
TEAM VALLEY, GATESHEAD, 11

CLARITY

PERSONIFIED

WITH THIS SENSITIVE GRAMPIAN MIKE

The Grampian M.C.R. Type Microphone reproduces voices with that crystal clearness which gives full value to every word and accentuates the "personality" of the speaker. Those who still have "make do" microphones on their P.A. Systems should take advantage of this up-to-date, highly sensitive model which Grampian are now in a position to supply. The M.C.R. is mounted in a spring suspension frame with the Unit Assembly housed in a cast metal case. In crinkled black and nickel standard finish. Write for details now.

Type M.C.R. Frequency Range 60-7,300 cycles. Sensitivity Minus 45 d.b. Impedance 20 ohms. Size 2½ ins. by 3½ ins. Frame. 6 ins. square with Base Adaptor threaded + ins. B.S.F. weight 3½ lbs. List 65 - 0 - 0

GRAMPIAN LOUDSPEAKERS

GRAMPIAN REPRODUCERS LTD. Hanworth Trading Estate, Feltham, Phone: Feltham 2667 Telegrams: Reamp, Feltham. Middlesex

Advertisements
THE
CROSSOR
HIGH VACUUM
DOUBLE BEAM
OSCILLOGRAPH

giving

VISUAL TWO-DIMENSIONAL
delineation of any recurrent law.

- RELATIVE TIMING OF EVENTS
and other comparative measurements
with extreme accuracy.

- PHOTOGRAPHIC RECORDING
of transient phenomena

and

SIMULTANEOUS INDICATION
of two variables on a common time axis.

Completely embracing all the above
functions, of which the last is unique,
the Cossor Double Beam Oscillograph
is inherently applicable to all prob-
lems arising in

RECORDING, INDICATING & MONITORING
when the effects examined can be
made available as a voltage.

A. C. Cossor LTD.,
INSTRUMENT DEPT.,
Highbury, London, N.5

Phone: CANonbury 1336 (30 lines)
Grans: Amplifiers, Phone, London

The following are brief extracts from a report which
appeared in the July 1946 issue of "Wireless
World" on the Sobell 615 6-valve A.C. Table
Model Superhet:—

"The quality of reproduction is decidedly above the average
for a table model... The lower register has breadth and
an extended top response gives clarity and brightness with-
out being shrill... With two I.F. stages there is no lack of
sensitivity and the selectivity is exceptionally good. The
division of the short-wave range into two parts gives a degree
of band spread which makes for ease of tuning and both
ranges provide a wide choice of stations. The sensitivity
is well maintained at the high-frequency end... The
chassis is of ample size and components are well spaced...
The finish of the cabinet work is of a high order... The set
is backed by a comprehensive free maintenance scheme for
two years. In the event of breakdown the fault will be
remedied or the chassis changed on the spot by one of the
maker's servicemen."

Price 24 Gns., plus £5. 8. 4d. purchase tax.

Sobell Industries LTD., Langley Park, nr. Slough, Bucks.
A WOMAN'S INTUITION IS NOT ENOUGH

A woman's intuition will not help you to find a difficult fault in a wireless set. The easiest and quickest way to locate the trouble is to use a Weston Model E77z Analyser which is designed for systematic analysis. Its features include high sensitivity—20,000 ohms per volt on all D.C. ranges—wide range coverage, simplified controls, accuracy and robust construction. You will find this instrument universally useful—it will save you time, trouble and money and it is really reliable—it's a Weston.

SYSTEMATIC SERVICING STARTS WITH A WESTON

SANGAMO WESTON LTD., ENFIELD, MIDDX. Telephone: Enfield 3434 & 1242

JUST RECEIVED!!!

BRAND NEW AMERICAN SINGLE BUTTON CARBON BREAST ASSEMBLY
Extra 3-position control switch with 10 ft. length 3-core flexible T.R.S. cable for above. PRICE 3/6
Both the above items still in maker's sealed cartons.

MOVING COIL MICROPHONE & HEADPHONE ASSEMBLY (Approx. Impedance of each unit 48 ohms) Microphone has 'Press to talk' switch; worth £8. Complete 15/6
Moving Coil Hand Mike with switch. PRICE 6/6
Moving Coil Assembly in bakelite case with 3" grill. Can be used as midget speaker. PRICE 4/6
(All above units have genuine Alni magnets.)

STRATTON MICRODENSIERS (Eddystone)
Code E18. 16 mmfd triple spaced, 3,9. £40. 40 mmfd double spaced, 4,3. £60. 60 mmfd single spaced, 4,3. £100. 100 mmfd single spaced, 4,6

YAXLEY TYPE SWITCHES
Double pole 6-Way. Ideal meter or multi band switches - - 2/6
Three pole 3-Way. 2 Wafer 3/6 Double pole 4-Way. 3 Wafer 3/6

SEND S.A.E. FOR DETAILS OF NUMEROUS OTHER INTERESTING BARGAIN LINES.

ASK FOR LIST No. 4
Telephone: Midland 3254

48 HOLLOWAY HEAD, BIRMINGHAM, 1

BSR

SOUND SYSTEMS AT THE

STAND No. C.1517, OLYMPIA HALL, LONDON

DISC RECORDING

We shall be demonstrating our new Disc Recorder and Recording Amplifier at the BIF, and the entire range of BSR sound equipments, which will include many new features, will be available for your inspection. Home Trade and Overseas Visitors are cordially invited to our exhibit and well-informed people will make the BSR stand their rendezvous—a wise move towards "Sound Understanding."

BIRMINGHAM SOUND REPRODUCERS LTD.
CLAREMONT WORKS, OLD HILL, STAFFS. TEL: CRADLEY HEATH 6212-3
LONDON OFFICE: 112 GOWER STREET, W.C.1. TEL: EUSTON 7515

www.americanradiohistory.com
There is a TANNOY SPEECH BROADCASTING INSTALLATION to suit your requirements

TANNOY
CALL SYSTEMS CREATE EFFICIENCY!
"Tannoy" is the registered trade mark of equipment manufactured by
GUY R. FOUNTAIN, LTD.
"THE SOUND PEOPLE"
West Norwood, S.E.27, and Branches
Gipsy Hill 1131

The largest organisation in Great Britain specialising SOLELY in Sound Equipment

SCIENTISTS DEMAND...
SCIENTISTS BUILD...

Wego CAPACITORS

No matter what your problem in Radio or Electronics, we will create the Capacitor to fulfil your exacting demands and specification. Our technical and scientific advice is at your disposal.

WEGO CONDENSER COMPANY LIMITED
BIDEFORD AVE · PERIVALE · GREENFORD · MIDDX · Tel. PERIVALE 4277
BALL DRIVE

SMOOTH, RELIABLE & VERY POWERFUL

Epicyclic friction drive, ratio 6:1

- May be used to increase ratios on other drives or attached direct to component spindle (½" shaft).

PRICE 3/3 RETAIL

JACKSON

BROS (LONDON) LIMITED

KINGSWAY · WADDON · SURRY

TELEPHONE: CROYDON 2754-S

Specialists in ‘SPECIAL’ Waxes

Most applications of wax in the manufacture of electrical components demand special characteristics which can be met from the regular range of

OKERIN WAXES & COMPOUNDS

or designed to specification. Grades are available for arctic or tropical service—stable, moisture-proof—fungi-resisting.

For expert advice, samples, etc., please

Telephone TEMple Bar 5927

ASTOR BOISSELIER & LAWRENCE LTD.

(Sales Dept.)

Norfolk House, Norfolk St., Strand, London, W.C.2

Ardente have the most modern Public Address systems—fixed or mobile—for EVERY purpose, indoor or out. Combining technical quality with attractive appearance, the wide range available represents the very finest P.A. equipment obtainable to-day. Simple to operate; easy to install.

by Ardente

Write for trade terms direct to Sales Dept. TW.

ARDENTE ACOUSTIC LABORATORIES LTD.

Clear as a Crystal

AND HERE IS THE REASON . . .

... the answer has been found in Bullers Low Loss Ceramics to the problem of Dielectric Loss in High Frequency circuits.

Years of Laboratory research and development have brought these materials to a high degree of efficiency. To-day they are in constant use for transmission and reception, and play a vital part in maintaining communications under all conditions.

Made in Three Principal Materials

FREQUELEX
An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

BULLERS, LTD.
6, LAURENCE POOUNTNEY HILL.
Telephone: Mansion House 9971 (3 lines)

Bullers
LOW LOSS CERAMICS

EX-R.A.F. R1155
COMMUNICATION RECEIVERS
—NEW PURCHASE—

EX-R.A.F. AIRBORNE G.P.
TRANSMITTERS Type 1154
Complete with 4 valves. Frequency coverage: 500 kc., 200 kc., 10 mc., 3 mc., 2.25 mc., 0.5 mc., 2.5 mc., 0.25 mc. Power input 1500 v., 200 m., H.T. 6 x 4 amp. E.T. Glass tube, 12 x 4 x 4 1/2 in. In metal cabinet. Supplied in strong metal box. Each receiver is serially tested.

£17.10.0

POWER PACK
220-250 v. A.C. for Immediate Power Pack, etc.

£7.0.0

SPECIAL PURCHASE
TELEPHONE LINE or UNISELECTOR SWITCHES

2- or 3-bank, 25 constants. Have various applications including automatic tuning, circuit selection, etc. Operates on 20-60 v.

2-bank 3-bank 25-25

EX-R.A.F. MIDGET SPEAKERS
Can be used as Headphones. Midget speakers (with transformers) speech Mixers or adapted for use. All new and perfect. Enclosed in metal case. £17.10.0

EX-A.R.F. HEADSET
£7.0.0

MINIATURE COMMUNICATION RECEIVERS and POWER PACK. Type MRCI.

E U.S. ARMY ULTRA LIGHTWEIGHT HEADSETS

Self-energising. Needs no battery or current. Low wall bracket. Price per pair: £17.10.0

M O V I N G COIL INSERTS

BULLER'S LTD.
6 LAURENCE POOUNTNEY HILL.

SELF-ENERGISING TABLE MICROPHONE AND HEADSETS

The microphone is mounted on a fully adjustable stand with on-off switch. No batteries or inserted circuits to operate. UNUSED IN CARTONS.

EX-GOV'T. TELEPHONE HANDSETS

Self-Energising. Needs no battery or current. Low wall bracket. Price per pair: £17.10.0

DON'T MISTAKE: R.A.F. and Civil, and ex-Govt., and packing, etc.

MIGEIT HEADSETS

3-gang 0.00056 free trimmers 10 15 20

www.americanradiohistory.com
The Connoisseur

A HIGH FIDELITY MINIATURE MOVING IRON PICK-UP

Faithful reproduction of all recordings from 12,000 c.p.s. to 30 c.p.s. will win many new friends for the CONNOISSEUR miniature moving iron Pick-up in 1947.

The CONNOISSEUR reveals a wide range of notes and instruments that has hitherto been hidden by bass and treble resonance. The CONNOISSEUR will reproduce every sound on the record. Try it and prove it.

Note new prices. Pick-up 54/- plus 11/3 P. tax Transformer 13/- nett

Apply to
Albion Electric Stores, 125, Albion Street, Leeds 1
or to
Lawton Bros. (Sales) Ltd., Henry Square, Ashton-under-Lyne

Made by
A. R. SUGDEN & Co, (Engineers) Ltd., Brighouse, Yorks

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

* Mobile and Static Continuous Recording Outfits.
* Recording Amplifiers.
* Moving Coil and Crystal Microphones.
* Sapphire Cutting and Reproducing Styli.
* Blank Recording Discs from 5" to 17"
* Single or Double sided.
* Light-weight moving iron, permanent sapphire and "Lexington" moving coil pick-ups.
* Label and Envelope Service.
* A comprehensive range of accessories to meet every requirement of the sound recording engineer.

Write for comprehensive lists or call at Recorder House for demonstration.

RECORDER HOUSE, 48/50 GEORGE ST., PORTMAN SQUARE, LONDON, W.I.
Telephone: WEL 2371/2 Telegrams: Simsale, Wesdo, London

Wireless World

April, 1947

A Laboratory INSTRUMENT... but NOT "Laboratory" Price!

The newest addition to the "Advance" range of Signal Generators places an instrument of laboratory class within the financial scope of every radio service engineer and experimenter.

The discerning engineer will appreciate its accuracy and stability, its exceptionally wide range which covers all frequencies required for radio and television receivers, and its accurate attenuating system which enables sensitivity measurements to be made on highly sensitive receivers up to 60 Mc/s. Send for fully descriptive pamphlet.

Range: 100 Kc/s—60 Mc/s on fundamentals (up to 120 Mc/s on Second Harmonic).
Accuracy: Guaranteed within ±1%
Attenuation: Constant impedance system embodying a matched 75 ohms transmission line.
Stray Field: Less than 3 microvolts at 60 megacycles.
Illuminated Dial:
Total scale length 30".
Dimensions: 13" x 10" x 71" deep.
Weight: 15 lbs.

Price 19 Gns

The New Advance Signal Generator

ADVANCE COMPONENTS, LTD., Back Road, Shernhall Street, Walthamstow, London, E.17. Telephone: LARKESWOOD 4366/7

M. ALLEN (Radio) Ltd

173, CHARING CROSS ROAD, LONDON, W.C.2

MAKE SURE YOU USE "IVALEK"
Matched T.R.F. dual range coils
WHEN SET BUILDING
200-550 metres. 1,000-2,000 metres
A fine precision job. PRICE 3/- per pair.
Sent Post Free. Complete with circuit components which can also be supplied.

Write for particulars of full range of Radio, Television, Electronic, Electrical Instruments and Components.
behind the blueprint...

lies Goodmans research, skill, craft and equipment. Goodmans take justifiable pride in a production organisation that faithfully interprets—for your service—the well-founded conclusions of their team of specialist acoustic engineers. That is why, Goodmans Loudspeaker performance is strictly “to specification,” why unfailingly it conforms to published data. The 15ins. illustrated, handles 25 watts of undistorted power.

GOODMANS Loudspeakers

GOODMANS INDUSTRIES LIMITED, LANCELOT ROAD, WEMBLEY, MIDDX.

Red Tape...

or white or green or purple. ‘Lassolastic’ is the ideal self-adhesive tape for all sealing, naming and identification purposes. No tools are needed to apply ‘Lassolastic’. Simply press on lightly with the fingers and it clings with a binding firmness to metal, wood, glass, plastics and any other smooth, dry material. ‘Lassolastic’ is resistant to water, oil and solvents. Being slightly extensible it moulds itself to hinges, seams, beadings and other irregularities. ‘Lassalastic’ thus forms a perfect air-tight seal for all types of food and chemical containers. It can be applied to cables and components for easy identification, or to furniture, toys and other articles as name tags.

Obtainable in a wide range of indelible colours, plain or printed to suit your own requirements. Printing cannot be erased. Further information on request.

LASSOLASTIC Self-Adhesive Tape

LASSO PRODUCTS (Proprietors HERTS PHARMACEUTICALS LTD.) Welwyn Garden City, Herts. Tel: Welwyn Garden 3333 (6 lines)
from WHISPERING to SHOUTING

The R.S. TYPE 12 ABLY AND FAITHFULLY REPRODUCES

...what do you care whether he whispers with nervousness, or shouts with excitement into your microphone, when you know that your R.S. Amplifier Type 12 will ably and faithfully 'put over' even the squeak of the mouse or the trumpet of the elephant, without loss of timbre or intonation. No more fearful moments for you with 'make-unconscious' people or music which will 'blare'... the R.S. Type 12 takes care of all that. This amplifier is only a part of the R.S. completely new series of advanced Sound Equipment which you should know about... write to-day for full information.

THE 40 COIL PACK
Includes H.F. stage, 9 iron-cored coils in All-wave Superhet circuit. 15-50, 200-500, 750-1,000 metres. For 465 kc/s LF. Aligned and tested before dispatch. Id. stamp brings price list.

A.I.S.

R.S. Amplifiers Ltd., Reynolds' Road, Acton Lane, London, W.4.
Telephone: CHISWICK 1011-3

THE R.S. TYPE 12 ABLY AND FAITHFULLY REPRODUCES

...what do you care whether he whispers with nervousness, or shouts with excitement into your microphone, when you know that your R.S. Amplifier Type 12 will ably and faithfully 'put over' even the squeak of the mouse or the trumpet of the elephant, without loss of timbre or intonation. No more fearful moments for you with 'make-unconscious' people or music which will 'blare'... the R.S. Type 12 takes care of all that. This amplifier is only a part of the R.S. completely new series of advanced Sound Equipment which you should know about... write to-day for full information.

THE 40 COIL PACK
Includes H.F. stage, 9 iron-cored coils in All-wave Superhet circuit. 15-50, 200-500, 750-1,000 metres. For 465 kc/s LF. Aligned and tested before dispatch. Id. stamp brings price list.

A.I.S.

R.S. Amplifiers Ltd., Reynolds' Road, Acton Lane, London, W.4.
Telephone: CHISWICK 1011-3
RUBBER-TO-METAL BONDING

The Problem of Insulating delicate instrument panels from vibration and shock by means of Flexilant Mountings

"FLEXILANT" Mountings: Examples from the SERIES.

The "Flexilant" Mounting of which several varieties are illustrated here is so accurately made that its displacement under load can be calculated to within .01" of requirements. The series is designed to carry loads of from 1 to 45 lbs. per mounting and these may be arranged with bolt axis at 90° to position, or the complete mounting may be inverted. The mountings can be supplied with or without holder and they can be arranged so that two utilize the same bolt.

We should appreciate the opportunity of helping with your vibration problems.

RUBBER BONDERS Ltd.
Engineers in Rubber bonded to metal

FLEXILANT WORKS - WATLING STREET - DUNSTABLE, BEDS.
TELEGRAMS: FLEXILANT, DUNSTABLE

Two Models available now

MODEL T.10 AMPLIFIER
Ideal for small or medium halls, cafes, clubrooms, etc., AC or DC mains. 8/10 watts undistorted output. Separate inputs for Moving Coil microphone (matching transformer built into amplifier) and Crystal or Moving Iron gramophone pick-ups, separate MIC. and GRAM. volume controls. Overall dimensions 12 in. long, 7½ in. high, 6 in. wide. Guaranteed for 12 months, valves for 8 months. PRICE COMPLETE ready to operate 12 GNS.

MODEL T.40 DE LUXE AMPLIFIER
For outdoor meetings, large halls, factories, etc. Superior in appearance, design and performance. 40 watts undistorted output. Separate volume controls, electronic mixing, unique treble or bass tone control system. Overall dimensions 18 in. long, 11 in. high, 8 in. wide. Guaranteed for 12 months, valves for 3 months. PRICE COMPLETE ready to operate 27 GNS.

AVAILABLE SHORTLY
AMPLIFIERS—IN STREAMLINED CASES.
Model T.12 for AC/DC mains 12/15 watts output 15 GNS.
Model T.25 for AC mains 200/260 volts 25 watts output 18 GNS.
TABLE MODEL RADIO RECEIVER 568 AD. for AC/DC mains 22 GNS.

"CRYSTATONE" DEAF AID UNIT (Available Shortly)
Brings great enjoyment to those afflicted with hearing troubles. Genuine quality and value. Streamlined and pleasing in appearance, fits bag or pocket. Unbreakable plastic case. Complete ready for use 10 GNS. Full details on request.

OBTAINABLE FROM YOUR LOCAL DEALER AND IN CASE OF DIFFICULTY DIRECT FROM US. TRADE ENQUIRIES INVITED

REYNOLDS UNIVERSAL MANUFACTURING COMPANY LTD.
410, DUDLEY ROAD, EDGBASTON, BIRMINGHAM, 16.

Telephone: SMEmthwick 0201

www.americanradiohistory.com
OUR FIRST POST-WAR PRODUCT
THE ROMAC 106
"Personal" RECEIVER
£14 14 0 Complete, Plus P.T. £3 6 0

This Receiver was selected as an Exhibit at the "BRITAIN CAN MAKE IT" Exhibition.

Home and Export enquiries should be directed to:
ROMAC RADIO CORPN. LTD.

THE STATIC CONDENSER Co. Ltd.

★ Manufacturers of STATIC CONDENSERS

TOUTLEY WORKS,
WOKINGHAM, Berks
Telephone: WOKINGHAM 708

PYROBRAZE
has been designed to meet the increasing demand for a universe and portable electrical soldering and brazing machine

It is indispensable in every Factory or workshop where soldering has to be done.
Solders heaviest gauges of all metals and even heavy castings, where every soldering iron fails.
Brazes up to 16 S.W.G.

PYROBRAZE 2 in operation
Represents the latest development in contact soldering

The ACRU ELECTRIC TOOL MANUFACTURING CO. LTD.,
Manufacturers of specialty Electrical Apparatus
123 HYDE ROAD, ARDWICK, MANCHESTER, 12
Tel: ARDwick 4284

STABLE to

Resistors produced by the cracked carbon process remain stable to ± 1% of initial value.

★ Tolerances ± 1%
± 2% ± 5%

Low temperature co-efficient.

WELWYN car bon resistor

WELWYN ELECTRICAL LABORATORIES LTD.
Telephone: Welwyn Garden 3816-8

MOVING-COIL MICROPHONES

The outstanding performance of these scientifically designed and precision-built instruments makes them the choice of discriminating experts. Write Dept. W. W. 4 for full descriptive leaflet.

LUSTRAPHONE LTD., 84, BELSIZE LANE, LONDON, N.W.3.
Telephone: HAMstead 5389 and 5515.
4) Stritori

April, 1947

Wireless World

Advertisements 27

TELEPHONE ELECTRICAL RADIO

NEW & BETTER EXTENSION SPEAKERS

Are you enjoying the pleasure and convenience of having your radio instantly available in any room? These moderately priced Stentorian extension speakers, with their handsome acoustically designed wooden cabinets, give such superb quality of reproduction that you will be amazed at the difference a Stentorian makes to your receiver.

Ask your dealer for a demonstration.

Stentorian

THE FINEST EXTRA SPEAKER FOR ANY SET

WHITELEY ELECTRICAL RADIO CO. LTD., MANSFIELD, NOTTS.
The aerial towers for the Decca Navigator transmitter were designed and constructed by B. I. Callender's. These galvanized steel lattice-type structures, 325 feet high, insulated from earth and carrying four 75 feet long flexible horizontal booms to support vertical antenna wires, are examples of the kind of work on radio masts and towers which we undertake in all parts of the World.
DO "HAMS" READ BACON?

Sir Francis Bacon, writing long before the birth of wireless, might not appeal to the "ham," but every radio enthusiast will want to read the new Wright & Weaire Components Catalogue. Giving a comprehensive description of the complete range of Wright & Weaire radio components, the easy-to-read Catalogue, illustrated with circuit blueprints, will be sent to you on receipt of the coupon below. Mail it at once and make certain of your copy.
VALVES AND THEIR APPLICATIONS

By M. G. SCROGGIE, B.Sc., M.I.E.E.

No. 4: Mullard R.F. AMPLIFIER TETRODE QVO4-7

The last two valves discussed in this series were particularly suitable for V.H.F. receivers, though I did mention that the EC52 triode is capable of putting out a sufficient number of watts to be useful in a transmitter. Normally, a V.H.F. transmitter is crystal-controlled via one or two frequency-multiplier stages, and it simplifies the design if back-coupling through the valves in these stages and in the output stage is minimized by using tetrodes or pentodes.

The QVO4-7, shown here, is a tetrode with characteristics that fit the needs of V.H.F. transmitters very nicely. Used as a Class "C" amplifier, the R.F. output per valve is about 8 watts at frequencies up to 30 Mc/s, and at least 6 watts at 150 Mc/s. This is at the rated maximum anode voltage, 300, which incidentally seems rather conservative. G2 voltage is not critical; 150-250 is suitable, and owing to "beam" construction G2 current is low — 5-6 mA at full output. Heater current is 0.6 A at 6.3 V.

Physically, it is the same size as the EC52, and like it is mounted on the "EF50" base. The pins, being rather small, are silver plated to minimize loss at the higher frequencies. Capacitances are: input, 8.2 pF; output, 6 pF; anode to grid, 0.1 pF.

The last is small enough to give no trouble in frequency-multiplier stages, but prevention of self-oscillation needs attention in the output stage. The input circuit should be carefully screened right up to the grid pin, and have low impedance, which is the easier on account of the fact that only about 50 volts peak drive is needed, so a step-down from the driver stage is feasible. At the highest frequencies a quarter-wave coaxial line, tapped at the lowest point that gives sufficient grid drive voltage, is a convenient form of screened input circuit. If a touch of neutralization is found to be necessary, a bent wire is sufficient capacitance.

For the output stage there is little or no advantage in greatly exceeding cut-off grid bias, and with 150 volts on G2 about -30 to -35 volts is enough. The optimum for frequency-doubling is appreciably greater; and for trebling is slightly more still.

The limiting cathode current is 50 mA, which, after deducting G2 current, leaves about 44 mA for the anode. Maximum anode input at 300 volts is therefore a little over 13 watts. But as the anode is rated at 7.5 watts maximum dissipation, it is necessary to take care that the R.F. output is always at least equal to the wattage by which the input exceeds 7.5. For example, a short-circuited feeder would be rather hard on a valve receiving 13 watts input.

This is the fourth of a series of articles written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from:

THE MULLARD WIRELESS SERVICE CO. LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

Advertisement of the Mullard Wireless Service Co. Ltd.
Monthly Commentary

Classifying Frequencies and Wavelengths

A GOOD deal of unnecessary confusion is still being caused by the lack of a generally accepted classification of the wavebands, and particularly the frequency bands, used in radio communication. Without belittling the work of those standardizing bodies and others who have devoted much thought and ingenuity to devising classifications it is fair to say that none of their efforts have been accorded widespread acceptance. We think that this is because most of the classifications produced suffer to some extent from three major defects. They make use of unfamiliar terms; then fail to allow for the vagueness that is so often necessary at this stage of development of the art in speaking or writing of frequencies above 30 Mc/s, and they include arbitrary comparatives and superlatives that are not easily memorized.

Take the British Standard Glossary (BS204) classification of frequency bands in col. 3 of the table printed below. The relative highness of "very," "ultra," and "super" is by no means self-evident, and, perhaps worse still, the arbitrary assignment of precise significance to these words leaves us nothing to use when we wish to refer in general terms to all those frequencies having, say, visual-range propagation characteristics. The wave-band classification (col. 4) is rational and seemingly has all the advantages of potential international acceptance. But it has never been widely used, perhaps because it employs certain prefixes — myria-, hecto-, and deca— that are unfamiliar even to the most fervent of English-speaking advocates of the metric system. And the word "metric" itself, as applied to waves, seems to contain the seeds of confusion, suggesting as it might to the intelligent layman that it relates not to a band but to waves in general classified or measured according to the metric system.

Of all the systems of classification so far presented the best and most realistic seem to us to be that devised by the Inter-Services Radio Circuit Symbols Committee, and given in col. 5 below. It starts by using terms that, though vague in themselves, have acquired generally accepted meanings and relate to wavebands in easily memorized round numbers. For the shorter wavelengths, where there is no risk of running counter to accepted usage, the terms are precise. Where precision is not needed, no barrier is placed in the way of calling all waves shorter than 100 Mc/"very short." This classification deserves wider currency.

Unfortunately the Inter-Services Committee has not produced a companion frequency classification, and here we venture to step into the breach, putting forward for consideration the very simple classification of col. 6. The only real departure from precedent is the abandonment of all attempts to sub-divide the frequency band below 30 Mc/s. When there is need for greater precision than is implied in "very high" the bands can always be defined in terms of their frequency in Mc/s, or, when dealing with the higher numbers, perhaps in kMc/s (kilo-megacycles per second). The ultra-, super- and hyper- prefixes in this context have always been a nuisance, and few will regret their loss. We find—admittedly with rather malicious pleasure—that few of those who advocate the retention of these out-dated and vague superlatives can say off-hand what is the significance officially assigned to them.

<table>
<thead>
<tr>
<th>(1) Freq. Bands</th>
<th>(2) Wavebands (Metres)</th>
<th>(3) BS204 Freq. Bands</th>
<th>(4) BS204 Wavebands</th>
<th>(5) Inter-Services Wavebands</th>
<th>(6) Proposed Freq. Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 30 kc/s</td>
<td>Above 10,000</td>
<td>Very low</td>
<td>Myriametric</td>
<td>Long</td>
<td>Low</td>
</tr>
<tr>
<td>30—300 kc/s</td>
<td>10,000—1,000</td>
<td>Low</td>
<td>Kilometric</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>300—3,000 kc/s</td>
<td>1,000—100</td>
<td>Medium</td>
<td>Hectometric</td>
<td>Short</td>
<td>High</td>
</tr>
<tr>
<td>3—30 Mc/s</td>
<td>100—10</td>
<td>High</td>
<td>Decimetric</td>
<td>Decimetre</td>
<td>Decimetre</td>
</tr>
<tr>
<td>30—300 Mc/s</td>
<td>10—1</td>
<td>Very high</td>
<td>Metric</td>
<td>Decimetre</td>
<td>Centimetre</td>
</tr>
<tr>
<td>300—3,000 Mc/s</td>
<td>1—0.1</td>
<td>Ultra-high</td>
<td>Centimetric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000—30,000 Mc/s</td>
<td>0.1—0.01</td>
<td>Super</td>
<td></td>
<td></td>
<td>Very high</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
DESIGN FOR A
HIGH-QUALITY AMPLIFIER

RECENT improvements in the field of commercial sound recording have made practicable the reproduction of a wider range of frequencies than hitherto. The useful range of shellac pressings has been extended from the limited 50-8,000 c/s which, with certain notable exceptions, has been standard from 1930 until the present, to a range of some 20-15,000 c/s. This increase in the frequency range has been accompanied by an overall reduction in distortion and the absence of peaks, and by the recording of a larger volume range, which combine to make possible a standard of reproduction not previously attainable from disc recordings. Further improvements, notably the substitution of low-noise plastic material for the present shellac composition, are likely to provide still further enhanced performance.

The resumption of the television service with its first-class sound quality, and the possible extension of U.H.F. high-quality transmissions, increase the available sources of high-quality sound.

Full utilization of these recordings and transmissions demands reproducing equipment with a standard of performance higher than that which has served in the past. Extension of the frequency range, involving the presence of large-amplitude low-frequency signals, gives greater likelihood of intermodulation distortion in the reproducing system, whilst the enhanced treble response makes this type of distortion more readily detectable and undesirable.

Reproduction of sound by electrical means involves the amplification of an electrical waveform which should be an exact counterpart of the air pressure waveform which constitutes the sound. The purpose of the amplifier is to produce an exact replica of the electrical input voltage waveform at a power level suitable for the operation of the loudspeaker. This in turn reconverts the electrical waveform into a corresponding sound pressure waveform, which in an ideal system would be a replica of the original.

The performance of an amplifier intended to reproduce a given waveform is usually stated in terms of its ability to reproduce accurately the frequency components of a theoretical Fourier analysis of the waveform. While this method is convenient and indeed corresponds to the manner in which the mechanism of the ear analyses sound pressure waveforms into component frequencies and thereby transmits intelligence to the brain, the fact that the function of the system is to reproduce a waveform and not a band of frequencies should not be neglected. Sounds of a transient nature having identical frequency contents may yet be very different in character, the discrepancy being in the phase relationship of the component frequencies.

The requirements of such an amplifier may be listed as:

1. Negligible non-linear distortion up to the maximum rated output. (The term "non-linear distortion" includes the production of undesired harmonic frequencies and the intermodulation of component frequencies of the sound wave.) This requires that the dynamic output/input characteristic be linear within close limits up to maximum output at all frequencies within the audible range.

2. (a) Linear frequency response within the audible frequency spectrum of 10-20,000 c/s.
(b) Constant power handling capacity for negligible non-linear distortion at any frequency within the audible frequency spectrum.

This requirement is less stringent at the high-frequency end of the spectrum, but should the output power/output frequency response at either end of the spectrum (but especially, at the low-frequency end) be substantially less than that at medium frequencies, filters must be arranged to reduce the level of these frequencies before they reach the amplifier as otherwise severe intermodulation will occur. This is especially noticeable during the reproduction of an organ on incorrectly designed equipment where pedal notes of the order of 16-20 c/s cause bad distortion, even though they may be inaudible in the sound output.

3. Negligible phase-shift within the audible range. Although the phase relationship between the component frequencies of a complex steady-state sound does not appear to affect the audible quality of the sound, the same is not true of sounds of a transient nature, the quality of which may be profoundly altered by disturbance of the phase relationship between component frequencies.

4. Good transient response. In addition to low phase and frequency distortion, other factors which are essential for the accurate reproduction of transient waveforms are the elimination of changes in effective gain due to current and voltage cut-off in any stages, the utmost care in the design of iron-cored components, and the reduction of the number of such components to a minimum.

Changes in effective gain during "low-frequency" transients occur in amplifiers with output stages of the self-biased Class AB type, causing serious distortion which is not revealed by steady-state measurements. The transient causes the current in the output stage to rise, and this is followed, at a rate determined by the time constant of the biasing network, by a rise in bias voltage which alters the effective gain of the amplifier.

5. Low output resistance. This requirement is concerned
with the attainment of good frequency and transient response from the loudspeaker system by ensuring that it has adequate electrical damping. The cone movement of a moving-coil loudspeaker is restricted by air loading, suspension stiffness and resistance, and electromagnetic damping. In the case of a baffle-loaded loudspeaker, the efficiency is rarely higher than 5–10 per cent, and the air loading, which determines the radiation, is not high. In order to avoid a high bass-resonance frequency, the suspension stiffness in a high-grade loudspeaker is kept low, and obviously the power loss in such a suspension cannot be large. Electro-magnetic damping is therefore important in controlling the motion of the cone. This effect is proportional to the current which can be generated in the coil circuit, and is therefore proportional to the total resistance of the circuit. Maximum damping will be achieved when the coil is effectively short-circuited, hence the output resistance of the amplifier should be much lower than the coil impedance.

(6) Adequate power reserve. The realistic reproduction of orchestral music in an average room requires peak power capabilities of the order of 15–20 watts when the electro-acoustic transducer is a baffle-loaded moving-coil loudspeaker system of normal efficiency. The use of horn-loaded loudspeakers may reduce the power requirement to the region of 10 watts.

The Output Stage

An output of the order of 15–20 watts may be obtained in one of three ways, namely, push-pull triodes, push-pull triodes with negative feedback, or push-pull tetrodes with negative feedback. The salient features of these methods are of interest.

Push-pull triode valves without the refinement of negative feedback form the mainstay of present-day high fidelity equipment. A stage of this type has a number of disadvantages. With reasonable efficiency in the power stage such an arrangement cannot be made to introduce non-linearity to an extent less than that represented by about 2–3 per cent harmonic distortion. The output/input characteristic of such a stage is a gradual curve as in Fig. 1 (a). With this type of characteristic distortion will be introduced at all signal levels and intermodulation of the component signal frequencies will occur at all levels. The intermodulation with such a characteristic is very considerable and is responsible for the harshness and "mushiness" which characterizes amplifiers of this type. In addition, further non-linearity and considerable intermodulation will be introduced by the output transformer core.

If the load impedance is chosen to give maximum output the load impedance/output resistance ratio of the amplifier will be about 2, which is insufficient for good loudspeaker damping.

It is difficult to produce an adequate frequency response characteristic in a multi-stage amplifier of this type as the effect of multiple valve capacitances and the output transformer primary and leakage inductances becomes serious at the ends of the A.F. spectrum.

The application of negative feedback to push-pull triodes results in the more or less complete solution of the disadvantages outlined above. Feedback should be applied over the whole amplifier, from the output transformer secondary to the initial stage as this method corrects distortion introduced by the output transformer and makes no additional demands upon the output capabilities of any stage of the amplifier. The functions of negative feedback are:

(a) To improve the linearity of the amplifier, and output transformer.

(b) To improve the frequency response of the amplifier and output transformer.

(c) To reduce the phase shift in the amplifier and output transformer within the audible frequency range.

(d) To improve the low-frequency characteristics of the output transformer, particularly defects due to the non-linear relation between flux and magnetizing force.

(e) To reduce the output resistance of the amplifier.

(f) To reduce the effect of random changes of the parameters of the amplifier and supply voltage changes, and of any spurious defects.

A stage of this type is capable of fulfilling the highest fidelity requirements in a sound reproducing system. The output/input characteristic is of the type shown in Fig. 1 (b), and is virtually straight up to maximum output, when it curves sharply with the onset of grid current in the output stage. Non-linear distortion can be reduced to a degree represented by less than 0.1 per cent harmonic distortion, with no audible intermodulation. The frequency response of the whole amplifier from input to output transformer secondary can be made linear, and the power handling capacity constant over a range considerably wider than that required for sound reproduction.

The output resistance, upon which the loudspeaker usually depends for most of the damping required, can be reduced to a small fraction of the speech coil impedance. A ratio of load impedance/output resistance (sometimes known as "damping factor") of 20–30 is easily obtained.

"Kinkless" or "beam" output tetrodes used with negative feedback can, with care, be made to give a performance midway between that of triodes with and without feedback. The advantages to be gained from the use of
Design for a High Quality Amplifier—
tetrodes are increased power efficiency and lower drive voltage requirements.

It must be emphasized that the characteristics of the stage are dependent solely upon the character and amount of the negative feedback used. The feedback must remain effective at all frequencies within the A.F. spectrum under all operating conditions, if the quality is not to degenerate to the level usually associated with tetrodes without feedback. Great care must be taken with the design and operation of the amplifier to achieve this, and troubles such as parasitic oscillation and instability are liable to be encountered.

When equipment has to be operated from low-voltage power supplies a tetrode stage with negative feedback is the only choice, but where power supplies are not restricted, triodes are preferable because of ease of operation and certainty of results.

It appears then that the design of an amplifier for sound reproduction to give the highest possible fidelity should centre round a push-pull triode output stage and should incorporate negative feedback.

The most suitable types of valve for this service are the PX25 and the KT66. Of these the KT66 is to be preferred since it is a more modern indirectly-heated type with a 6.3-volt heater, and will simplify the heater supply problem. Triode-connected it has characteristics almost identical with those of the PX25.

Using a supply voltage of some 440 volts a power output of 15 watts per pair may be expected.

The Output Transformer

The output transformer is probably the most critical component in a high-fidelity amplifier. An incorrectly designed component is capable of producing distortion which is often mistakenly attributed to the electronic part of the amplifier. Distortion producible directly or indirectly by the output transformer may be listed as follows:

(a) Frequency distortion due to low winding inductance, high leakage reactance and resonance phenomena.

(b) Distortion due to the phase shift produced when negative feedback is applied across the transformer. This usually takes the form of parasitic oscillation due to phase shift produced in the high frequency region by a high leakage reactance.

(c) Intermodulation and harmonic distortion in the output stage caused by overloading at low frequencies when the primary inductance is insufficient. This is primarily due to a reduction in the effective load impedance below the safe limit, resulting in a very reactive load at low frequencies.

This may cause the valves to be driven beyond cut-off since the load ellipse will tend to become circular.

(d) Harmonic and intermodulation distortion produced by the non-linear relation between flux and magnetizing force in the core material. This distortion is always present but will be greatly aggravated if the flux density in the core exceeds the safe limit.

(e) Harmonic distortion introduced by excessive resistance in the primary winding.

The design of a practical transformer has to be a compromise between these conflicting requirements.

At a low frequency f_{rb} such that the reactance of the output transformer primary is equal to the resistance formed by the load resistance and valve A.C. resistances in parallel, the output voltage will be 3db below that at medium frequencies. At a frequency $3f_{rb}$ the response will be well maintained, the transformer reactance producing only 20° phase angle. Similarly at the high frequency end of the spectrum the response will be 3db down at a frequency f_c such that the leakage reactance is equal to the sum of the load and valve A.C. resistances. Again at a frequency $f_c/3$ the response will be well maintained.

If then the required frequency range in the amplifier is from 10–20,000 c/s, f_c may be taken as 3.3 c/s and f_{rb} as 60 kc/s. A transformer which is only 3db down at frequencies as widely spaced as these would be difficult to design for some conditions of operation, and where this is so the upper limit may be reduced, as the energy content of sound at these frequencies is not usually high. The limiting factor will be the necessity of achieving stability when feedback is applied across the transformer, i.e., that the loop gain should be less than unity at frequencies where the phase shift reaches 180°.

To illustrate the procedure, consider the specification of an output transformer coupling two push-pull KT66 type valves to a 15 ohm loudspeaker load.

Primary load impedance = 10,000 Ohms

Effective A.C. resistance of valves = 2500 Ohms

Low-frequency responses

Parallel load and valve resistance $= \frac{2500 \times 10,000}{12,500} = 2000\ \Omega$

For $f_w = 3.3\ \text{c/s}(w_w=21)$ response should be 3db down.

Primary incremental inductance $L = \frac{2000}{21} = 95\ \text{mH}$

High-frequency Response

Sum of load and AC resistances $= 10,000 + 2500 = 12,500\ \Omega$

At $f_w = 60\ \text{kc/s} (w_w = 376,000)$ response should be 3db down.

Leakage reactance $= \frac{12,500}{376} = 33\ \text{mH}$

A 20-watt transformer having 10 primary and 8 secondary sections and using one of the better grades of core material can be made to comply with these requirements. Winding data will be given in an Appendix to the second part of this article.

Some confusion may arise when specifying an output transformer
The inductance of an iron-cored component is a function of the excitation, the variation being of the form shown in Fig. 2. The exact shape of the curve is dependent on the magnetization characteristic for the core material. The maximum inductance, corresponding to point C occurs when the core material is nearing saturation and is commonly 4-6 times the "low excitation" or "incremental" value at A, which corresponds to operation near the origin of the magnetization curve. In a correctly designed output transformer the primary inductance corresponding to point A will lie in the region of B in Fig. 2.

In specifying the component, the important value is the incremental inductance corresponding to Point A, since this value determines the frequency response at low outputs.

The reduction of phase shift in amplifiers which are to operate with negative feedback is of prime importance, as instability will result, should a phase shift of 180° occur at a frequency where the vector gain of the amplifier and feedback network is greater than unity. The introduction of more than one transformer into the feedback path is likely to give rise to trouble from instability. As it is desirable to apply feedback over the output transformer the rest of the amplifier should be R-C coupled.

Although the amplifier may contain push-pull stages it is desirable that the input and output should be "single ended" and have a common earth terminal. Three circuit arrangements suggest themselves.

The block diagram of Fig. 3 (a) shows the simplest circuit arrangement. The output valves are preceded by a phase splitter which is driven by the first stage. The feedback is taken from the output transformer secondary to the cathode of the first stage. This arrangement is advantageous in that the phase shift in the amplifier can easily be reduced to a low value as it contains the minimum number of stages. The voltage required by the phase splitter is rather more than can be obtained from the first stage for a reasonable distortion with the available HT voltage, and in addition the phase splitter is operating at an unduly high level. The gain of the circuit is low even if a pentode is used in the first stage, and where a low-impedance loudspeaker system is used insufficient feedback voltage will be available.

The addition of a push-pull driver stage to the previous arrangement as in Fig. 3 (b), provides a solution to most of the difficulties. Each stage then works well within its capabilities. The increased phase shift due to the extra stage has not been found unduly troublesome provided that suitable precautions are taken.

The functions of phase splitter and push-pull driver stage may be combined in a self-balancing "Paraphase" circuit giving the arrangement of Fig. 3 (c). The grid of one driver valve is fed directly from the first stage, the other being fed from a resistance network between the anodes of the driver valves as shown in Fig. 4. This arrangement forms a good alternative to the preceding one where it is desirable to use the minimum number of valves.

(To be concluded.)
AUTOMATIC RECEPTOR PRODUCTION

Details of the E.C.M.E. System

A SYSTEM of broadcast receiver production containing a number of novel features not only in receiver design but in the method of manufacture has been evolved by John Sargrove in conjunction with Sargrove Electronics, Walton-on-Thames.

The basic idea is to eliminate conventional component assembly and wiring and to make wiring and components an integral part of a moulded panel or panels which can be brought together with the minimum of manual labour in a cabinet with loudspeaker, valves and perhaps plug-in electrolytic condensers to form a complete set. Once the moulding dies have been made, errors in wiring are impossible and manufacture is so cheap that servicing for the failure of any part consists in replacement of the entire panel rather than in the precise location of the fault.

Inductances are formed by spiral grooves filled with molten metal from a spray gun and it is claimed that the repetition accuracy is ± 1 per cent for "L" and ± 25 per cent for "Q." Resistances are subjected to burnishing and ageing processes, after which they are capable of operating at a dissipation of 1 watt per sq in.

Capacitors consist of a thin web of moulded material integral with the panel and metal-sprayed on both sides. The thickness of the web is accurately controlled to 0.01 inch in moulding, and capacitances can be repeated to ± 10 per cent. Normally a flat or slightly concave web (to allow for thermal expansion) is used which provides a capacitance of 30pF per cm², but this can be increased to 100pF/cm² by corrugation and by a further factor of 10 or 20 if pellets of high dielectric constant material are used in the condenser apertures when spraying.

Section of panel showing reduced thickness and metal sprayed electrodes forming fixed capacitors. Part of a spiral-groove inductance is also shown. Two-valve universal mains receiver (right) constructed on the E.C.M.E. moulded panel system.
moulding the panels. In this way capacitances up to 0.005μF can be incorporated in the panel.

A two-valve A.C./D.C. mains set has already been designed and a most ingenious electronically-controlled continuous processing plant has been built for fabricating the panels. A photograph of this machine, which has been named E.C.M.E. (Electronic Circuit Making Equipment), appears at the head of this article.

Moulded plastic plates with the required grooves and depressions are fed in vertically and conveyed through units carrying out the following sequence of operations: Sand blasting to remove surface skin; metal spraying simultaneously on both sides; face milling to remove metal on surface between indentations; electrical test; graphite resistance spraying through stencils, drying and burnishing; insertion of sockets for valves, etc.; electrical test; electrical and thermal ageing followed, while hot, by lacquer spray. The panels now pass to conventional conveyor machines for the addition of valves, loudspeaker, etc., and any other manual operations leading to the assembly of the set in its cabinet and a test on radio signals.

Many ingenious electronic control devices are incorporated in the circuit-making equipment to start up the metallizing flame spray guns, diamond high-speed cutters and other operations only when a panel arrives for treatment. Safety devices and quality control are also on an electronic basis and one advantage of this independent stage-by-stage control is that if for any reason two successive panels are rejected for the same fault, the sections up to the point at which the fault is detected are stopped, but any sound panels which have passed this point continue through the machine until they are finished. This is a notable advance on most conveyor belt systems.

When the system gets into full production it should be possible to reduce costs to an unprecedentedly low level — at least for simple local-station receivers.

Metal spray guns for one side of panels. On the left are the relays for flame ignition and control.

There should be a wide market for these sets in Asia Minor, Africa, India, Central and South America and China, where the high cost of sets made by conventional methods has so far prevented further extension of sales.

Although this new manufacturing technique has so far been developed to the point where only the simplest of complete receivers can be said to have reached the practical production stage, there is little doubt that it could be employed with advantage for the manufacture of sub-assemblies in the more complex receivers at present wired throughout with the soldering iron. The simplification of stock-holding problems by the regulation of supply to demand, with virtually no time lag, will commend itself to production managers, while the economy of power supply and wear and tear in the circuit-making equipment, resulting from the fact that each section automatically shuts itself down until supplied with work, are particularly topical virtues.

The present maximum rate of output is three panels per minute.

Quite apart from economic considerations, moulded circuit units have many technical advantages, e.g., in reducing flash-over in aircraft radio apparatus at high altitudes, ease of "tropicalisation," compactness and low weight.

Manufacturers' Literature

Illustrated catalogue of "Radyne" electronic heating equipment from Radio Heaters, Toutley Works, Wokingham, Berks.

INTERLACING
Television Frame Synchronizing

By W. T. COCKING, M.I.E.E.

One of the most difficult problems confronting the designer of a television receiver is that of securing satisfactory interlacing. Superficially, it is a simple problem; practically, it is often hard to make a receiver give any approach to interlacing, let alone give good interlacing.

In theory interlacing is secured automatically by ensuring that the line and frame time bases are triggered regularly by the line and frame sync pulses in the transmission. There are 50 frame pulses and 405 line pulses a second and interlacing is secured because 405 is not a multiple of 50.

In odd frames, that is, in the first, third, and so on, the leading edge of the frame sync pulse does not coincide with a line pulse but occurs a short way through a line. In even frames—the second, fourth and so on—the frame sync pulse coincides with a line pulse. In each complete picture of two frames the synchronizing waveform as a whole is the same. It is the same in alternate frames, but not in successive frames.

The synchronizing waveform as transmitted, and as it appears in the output of the receiver sync separator, takes the familiar form shown in Fig. 1 (a). The line sync pulses proper are of 9.88 μsec duration and occur regularly every 98.77 μsec. The frame pulses are broken at similar intervals to ensure that effective synchronization of the line time base is continued during the frame flyback.

This breaking of the frame pulse gives a different form to the line pulses during this period, but this is normally unimportant. It is usual to differentiate the line pulses and then only their leading edges are important. It is true to say that the leading edges of the line sync pulses occur regularly at all times, including the periods devoted to frame synchronizing.

While Fig. 1 (a) shows the waveform correctly it is apt to give the impression that the intervals between the onset of successive frame pulses are different in alternate frames. It does this because the two waveforms are lined up for comparison on the line pulses. It is equally correct to line them up on the leading edges of the frame pulses as in Fig. 1 (b) and it is clearer to do so when dealing with frame synchronizing problems. The interval between successive leading edges is 20 μsec, and the duration of each segment of a frame pulse is 39.52 μsec and the interval between successive segments is 9.88 μsec.

The line time base runs regularly at 10,125 c/s, and there is rarely any difficulty in achieving this with sufficient accuracy. For perfect interlace the frame time base must run regularly at 50 c/s and deliver an output waveform which is exactly the same in every cycle.

Now in practice perfect timing and perfect identity of successive cycles are not possible and it is consequently important to know what variations from perfection are tolerable. Let us first of all consider timing, assuming that successive cycles are otherwise the same.

In the first place consider that the even frames are all started regularly at times coincident with the proper line pulses. All even frames are then perfectly superimposed. Consider, too, that all odd frames are started regularly, so that successive odd frames are superimposed, but at a time interval different from the correct time of 20 μsec after an even frame (49.39 μsec after a line pulse).

If this timing error is ±49.39 μsec, then clearly the frame time base will be triggered coincident with the line pulses and the scanning lines of all frames will be superimposed. There will be no interlace at all.

The accuracy of timing must be considered in relation to the frame period, so that when the error reaches ±49.39/20,000 = ±0.0247 per cent the interlace is completely destroyed.

The error in positioning of successive frames is proportional to the timing error and it is prob-
Interlacing—
posed, for clarity, in Fig. 2 (b).
Such a waveform will obviously result in perfect interlacing at the top of the picture and a progressive deterioration to a maximum error at the bottom. There are 385 active lines in a picture, or 192.5 active lines in each frame. A difference of amplitude of 0.5/192.5 between successive frames will destroy the interlace at the bottom, since it needs a change of amplitude equivalent to that normally occurring in one-half the scanning time of one line to superimpose the lines.

If an error of spacing of ±20 per cent is permissible, the percentage accuracy of amplitude must be within ±50/192.5 x 5 = ±0.052 per cent or, say, ±0.05 per cent.

A waveform like Fig. 2 is not one which is often found in practice. What can occur is a combination of timing and amplitude errors. Normally, the frame sync pulse terminates each frame scan at the correct intervals. Fly-back must occur before the start of the next scan stroke. The fly-back time, and hence, the scan-start time, depends on the circuit constants, including the voltages, so that the avoidance of variations in the timing of the start of the scan depends upon keeping the circuit "constants" sufficiently constant in successive frames. If, for any reason, fly-back is accomplished more quickly in the case of the even frames than with the odd ones, then the odd-frame scans will start a little earlier in relative time than the even. The effective scan will then be slightly longer and so the amplitude will also be greater.

This is illustrated in Fig. 3 in which two successive cycles having different fly-back times are shown at (a) and superimposed for clarity at (b).

It is now pertinent to enquire in what form the interlacing errors usually occur in practice. Sometimes the error is an obstinate refusal to interlace at all, successive frames being almost exactly superimposed. Sometimes there is a more or less regular pairing of lines, indicating a more or less constant error which, however, is less than in the superimposed case. Frequently, there is weaving. This means that the error is varying, at a rate corresponding to a few cycles per second or less.

Sometimes the interlacing condition is fairly steady over periods of minutes or hours, but suddenly changes for no obvious reason. Usually, with this the interlace is very good or very bad and it jumps from one condition to the other erratically.

It is very rare indeed for the interlace to vary over the picture. The condition illustrated in Fig. 2, for instance, is not often found in practice. The fact that the errors are the same at top and bottom of the picture indicates that the slope of the scanning waveform does not change appreciably in successive cycles.

The synchronizing pulses in the transmission control only the start of fly-back. They trip the time base at the end of each frame scan. For good interlacing three things are necessary: first, the sync pulses must trip the time base at as regular intervals as possible; secondly, all fly-backs must be as alike as possible in duration and amplitude; and thirdly, all scans must be as nearly as possible the same.

A good interface is not possible if the first requirement is not met and this depends very largely upon the method adopted for separating the frame and line synchronizing pulses. The waveform in the output of the main sync separator, which removes the picture signal, is like Fig. 4 (a) and (b) for odd and even frames. It is necessary to remove the line pulses for otherwise the frame time base would almost certainly be tripped by one of the line pulses occurring a little before the frame pulse.

The usual way of doing this is by an integrator and limiter. Sometimes the limiter is dispensed with, but the circuit adjustments are then more critical. The output of the integrator has the form shown in Fig. 4 (c) and (d) and after limiting it becomes like (e) and (f).

The precise waveform depends on the time constant of the integrator, but in general it approximates to the form sketched here. The important thing to notice is that the sharp leading edges of the pulses are destroyed. Because of this any variation of amplitude of the pulses affects the times at which the time base is tripped. The outputs on alternate frames are not identical, because the interval between the last line pulse and the first frame pulse is different in successive frames with the result that the capacitor of the integrator has discharged to differing degrees at the onset of the frame pulses. This inevitably results in some variation in the timing of the frame time base. Theoretically, perfect interlacing is not possible with an integrator type of pulse separator.

In practice, however, the errors can be made quite small and it is capable of giving good enough interlace for practical needs. There is, however, an alternative which is more nearly perfect. If the pulse signal (a) and (b) of Fig. 4 is passed through a differentiator-type circuit of time constant equal to the duration of one frame pulse, some 40 µsec, the output wave has the form of (g) and (h), and subsequent limiting brings it to (i) and (j).

![Fig. 3](https://example.com/fig3.jpg)

Regularly recurring waves of different fly-back time are illustrated at (a). Two cycles are superimposed (b).

The important thing is that the sharp edges of the pulses are retained, so that theoretically timing errors are eliminated. The leading edges of the pulses in (i)
and \(j \) are really the trailing edges of the pulses in \(a \) and \(b \), so that synchronization really takes place \(40 \mu \text{sec} \) late. As it is the same for all frames this is unimportant and merely reduces slightly the total time available for fly-back.

The waveforms at the beginning of the separated pulses are identical for all frames, but there is a difference at the ends. This is occasioned by the fact that the first line pulse after the frame pulses is close to them in one case and some distance away in the other. This is not usually important, but might be with some kinds of time base.

It will be observed that in Fig. 4 \(i \) and \(j \) the first separated pulse is of smaller amplitude than the others. This is not important provided that it is of sufficient amplitude reliably to trip the time base. In Fig. 4 no account has been taken of any reversals of phase caused by the limiters.

Accordingly one expects that the use of such a pulse separator will result in good interlacing.

The writer's experience is that this is not the case and that more frequently than not the scanning lines of successive frames are superimposed rather than interlaced. He has investigated in some detail a typical case of this type. Careful inspection of the fly-back waveform with an oscilloscope having a greatly expanded time scale showed that the time-base was actually being tripped regularly by the sync pulses. By turning up the brightness control of the C.R. tube so that the fly-back became visible on the raster, it could be observed that an interlaced fly-back was being obtained. The correct picture is shown in Fig. 5 \(a \); with no interlace on the fly-back half the fly-back disappears \(b \), and with pairing the fly-back lines are unequally spaced \(c \). In spite of the inter-

![Waveforms](www.americanradiohistory.com)

Such reversals may or may not occur depending on whether diode or multi-electrode limiters are used.

Now even the differentiator type separator is no guarantee of perfect interlacing. It can and does ensure that the start of every frame fly-back is correctly timed. It does nothing to ensure that successive fly-backs and scans are themselves identical. Normally one expects that they will be and
Interlacing—
the fly-backs interlace, the waveforms on successive fly-backs must be identical over the major part of their durations, but not necessarily over the whole of them. This last proviso is made because it was possible to observe the fly-back over part of its time only.

Now ideally successive saw-tooth waves are identical and if drawn graphically or observed on an oscilloscope they superimpose perfectly. The symptoms observed above lead to the conclusion that if one wave has the form sketched by the full line A in Fig. 6 the scan part of the next must lie along BC or DE and the fly-back must lie within FG and HI.

This is shown more accurately in Fig. 7.

Scan Waveform

Since the scans are displaced and the timing is the same, the amplitudes at the end of the scan and at the start of fly-back must be different. In Fig. 7 the amplitude of A is point (2) at the end of the scan and that of the next cycle must be either (1) or (3). The start of fly-back which joins A at (7) must be at (4) if it starts at (1) or at (3) if it starts at (3). The start of fly-back for this cycle BC or DE must be at the level of (2) on A, that is, at the point (6).

If BC is the correct scan curve, the path of two cycles must be 7268147, while if DE is correct it must be 7269357.

For simplicity the fly-backs are shown as linear. In practice they are exponential, which means that the lines in Fig. 7 indicating them are more nearly vertical at the start of the scan. Also, the ratio of scan to fly-back times shown is 5:1 instead of the actual 20:1. On the drawing it can be seen that for the path 7268147 there is a

placement errors are much smaller and almost certainly unobservable.

There is no doubt at all that waveforms varying in this general fashion do occur. Unfortunately it is quite difficult to track down precisely how and why they are produced. The variations between successive cycles are much too small to be observable on any normal oscilloscope.

The writer first noticed the effect when using a Transitron-Miller-integrator type of saw-tooth oscillator. In this there are two trigger actions in each cycle. The first is initiated by the sync pulse and starts the fly-back, while the second occurs in its own time and starts the scan. Since the second is uncontrolled it is liable to be started by any spurious voltages in the circuit. It was at first thought that this second trigger was being initiated by interference voltages from the line time-base, but no amount of screening or decoupling had the slightest effect on the interlace.

It was then thought that it might be caused by a difference between the ends of the frame sync pulses in successive frames, brought about by the different intervals between the last frame pulse proper and the first line pulse. Means were adopted substantially to avoid this difference, again without any improvement.

A change was then made to an entirely different kind of saw-tooth generator—the well-known form of blocking oscillator shown in Fig. 8. In this, the grid, screen and cathode form a triode block-
eng oscillator and the anode-cathode path of the valve acts to discharge C₁ on fly-back. The results, however, were no better than with the Transitron.

The next step was to simplify the circuit further by utilizing the saw-tooth voltage across C instead of that across C₁. Again there was no change in the interlacing. It was then noticed that in making the change R₃C₁ had inadvertently been left connected to the anode. When these components were disconnected, however, good interlacing was at once secured.

![Diagram of Typical Blocking Oscillator](image)

Fig. 8. Typical blocking oscillator saw-tooth generator in which C₁ is discharged by the anode-cathode path of the valve.

Further extensive tests showed the simple triode blocking oscillator to give reliable interlacing; also another circuit in which the blocking oscillator is used to control another entirely separate valve operating to discharge a capacitor proved satisfactory. The circuit of Fig. 8 in which a separate electrode of the same value was used for discharge could not be made to perform satisfactorily.

The reason for this is not known, but it seems clear that it must be due to interaction between the anode and screen currents. The conclusion to be drawn from all this is that while careful design of the sync separator circuits is necessary for good interlacing, that alone is not sufficient. It is also necessary to pay particular attention to the saw-tooth generator.

MAGNETOPHON RECORDERS

Processes Involved in Manufacturing the Tape

The principles underlying the German system of magnetic tape recording, using plastic tape impregnated with iron oxide powders, were described in an article in the June, 1946, issue of this journal. Since then a comprehensive report "The Magnetophon Sound Recording and Reproducing System" has been published by the British Intelligence Objectives Sub-Committee and is obtainable from H.M. Stationery Office, price 10s.

The report presents the findings of a team of investigators—M. J. L. Pulling (B.B.C.), E. M. Payne (Electrical and Musical Industries) and H. E. Parker (Ministry of Supply)—and includes circuit diagrams with component values, recording characteristics with and without correction and detailed descriptions with photographs of the tape-winding mechanism in the principal types of machine.

The methods of manufacturing the various types of tape are given in an appendix with descriptions of the chemical materials used. The latest type "LG" tape used in high-quality recorders consists of a backing of polyvinyl chloride coated with a layer of ferric oxide powder. The P.V.C. is mixed with titanium white and is rolled into sheets 0.05 mm thick, 60 cm wide and 400 metres long. It is then drawn under tension over electrically heated rollers until it is 0.04 mm thick, 32.5 cm wide and 1 kilometre long, which gives an appreciable increase of tensile strength in a longitudinal direction.

The ferric oxide powder is prepared by precipitating black Fe₃O₄ oxide from ferrous sulphate with ammonia and then heating the black oxide at 280-300° C to form red-brown Fe₂O₃. After milling, the powder is air-blown through a sieve to a particle size of 0.2 to 1 micron and is then mixed with an equal quantity of P.V.C. powder and a small quantity of plasticiser and solvent to form lumps 1/₄ to 3/₄ in diameter for easy handling.

At the coating factory the lumps are milled and made up into a fluid paste with 10 parts benzole and 15 parts tetrahydrofuran to 40 parts iron-oxide mixture. The paste is spread on the film base from a hopper fitted with a mixing paddle, and a bridge piece keeps the layer at the optimum thickness of 0.015 mm. It is found that thicker deposits give a shorter magnetic working range, while a thinner layer results in inadequate magnetization. After coating, the tape is dried in a tunnel through which air at 25° C is drawn, and then in a large drying chamber in which it is wound in a spiral on rollers. The tape takes about 6 minutes to pass through the drying tunnel and chamber.

The coated tape is then slit simultaneously into strips 6.5 mm wide by rotary knives, and after visual inspection electrical tests are made for low background noise and for modulation range at 1,000, 5,000 and 8,000 c/s, the waveforms being reproduced on an oscilloscope. The tape can be easily joined, after removing the oxidic layer, by the use of cyclo-hexanone as a solvent adhesive.

The report is a mine of information on this highly developed system of recording and contains a bibliography and also a list of relevant patents. There can be no doubt that the use of high-frequency biasing in conjunction with an iron-oxide dispersion as the recording medium is a notable advance in sound recording of which more is likely to be heard in the near future.

SURPLUS SCIENTIFIC GEAR

UNDER a scheme introduced by the Ministry of Supply some months ago, research centres, universities and educational authorities in this country and also the devastated countries abroad may purchase ex-Service scientific equipment. Over one hundred research bodies and some 200 educational authorities regularly receive the Ministry's schedules of available equipment, which include radio and electronic gear. Whilst there is an abundance of some radio equipment such as meters and valves, there is only sufficient of the more valuable test equipment to meet a small part of the demand.
Any of the valve types listed below together with a metal rectifier makes a good substitution for the 12A7.

TYPE 18 One of the U.X. types which can often be obtained. Its characteristics at low voltages are identical with those of the 12A7 pentode section. The rectifier section is conveniently replaced by a small SenTerCel selenium rectifier which is easily fixed to chassis or cabinet.

TYPE 43 Another U.X. type which is still being made and whose characteristics, if self bias is employed, are similar to those of the 58. It is advisable to make a small adjustment to the line cord when using type 43.

TYPE 25A6G The International Octal version of the 43, but more readily available at the moment.

Advertisements

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.

Special circumstances compel us to repeat this issue of the Series. The next issue will deal with Type 25A7G.
ROTARY TRANSFORMERS. Rotax offer the Radio Industry a range of Rotary transformers, invertors and convertors, from 5 to 250 watts output, D.C. to D.C. or D.C. to A.C. A series of 400 cycle machines is also available, capable of outputs up to 500 V.A. We invite you to discuss the applications of these machines with us.

ROTAX LIMITED • LONDON, N.W.10 • ENGLAND
CIRCUIT CONVENTIONS
The Valve "Equivalent Generator"

Some time ago I mentioned a number of the things that give rise to confusion in talking about circuits—questions of in which direction current flows, whether a condenser is being charged or discharged, which is series and which parallel, and so on. Among them I mentioned the controversy that had been raging about the valve "equivalent generator," but on this particular ground I refused to come out into the open. Now that the big guns have been silent for some time it may be safe to do so. I have a feeling that many readers must have decided that any matter disputed by such eminent authorities must be too involved and uncertain for them even to attempt to understand. And yet it is constantly coming up in technical books and articles, so it is perhaps worth another attempt to get it clear. In case this sounds rather presumptuous on my part, I would say right away that I have nothing new to contribute beyond an attempt to show why I think the viewpoint of D. A. Bell in this country and F. E. Terman in U.S.A. is the most helpful for students to take.

The valve "equivalent generator" or "equivalent circuit" principle, of course, is an idea for simplifying the theory of valve amplifiers by replacing (on paper) the driven valve (Fig. 1a) by an imaginary generator (Fig. 1b), giving a voltage μE and having an internal resistance r_a. The arguing starts when one draws arrows or + and − signs to show the directions of the voltages and currents.

These questions are not really matters of absolute right or wrong, any more than the question of driving to right or left of a road. The authorities can decide on either. But once it has been decided failure to conform is likely to lead to collisions and disputes. Seeing that the valve equivalent is a device intended to help the mind, it is a great advantage if the convention adopted fits the facts and also fits other, already accepted, conventions. That is why there were protests when one authority showed two equal signal currents flowing in opposite directions, and another reversed the usual convention by reckoning the cathode voltage relative to the anode, so that (contrary to what is generally understood) anode and grid voltages were in phase.

But why should there be any difficulty or dispute? The answer is quite simple; it is the H.T. supply. Conscious that this is really the ultimate source from which any power obtained from the valve comes, people feel they have to acknowledge the debt by using the H.T. as the standard of current and voltage direction. And to do so they may have to stand on their heads or perform other unnatural mental gymnastics. All this is quite unnecessary, and the whole thing is easy, clear, and altogether in line with the rest of simple circuit theory if we don't try to mix Fig. 1b with Fig. 1a.

You will see I have left out the H.T.B. from Fig. 1b. I have done so because it has nothing to do with the imaginary generator. Its purpose is to feed the valve shown in Fig. 1a. To decide directions of voltages and currents in Fig. 1b according to the direction of the H.T. voltage and current in Fig. 1a is like a bricklayer wanting to start at the top of a building and work downwards because that is the way his breakfast went.

A much more relevant and fundamental convention than that is to reckon voltages with respect to the earthy side. In a valve circuit of the general type under discussion, anode and grid voltages are by general acceptance reckoned with respect to their common point, the cathode, which is usually earthed. Anybody who, for the sake of appeasing the H.T. supply, throws over this convention, is more likely to confuse than help. It is an undisputed fact that when the grid of a resistance-coupled or resonant amplifier is made relatively posi-

Fig. 1. (a) shows the essentials of a triode amplifier circuit, and (b) the equivalent generator circuit. A and C mark anode and cathode points respectively.

Fig. 2. When the grid signal voltage is positive (relative to C) the result in the anode circuit can be attributed to a positive (in-phase) generator voltage relative to A or a negative (180° out-of-phase) voltage relative to C. The latter way of putting it is preferable because the accepted custom is to specify both anode and grid voltages relative to C, and to reverse this custom with one of them is to invite confusion.

1 Wireless World, Sept., 1946, p. 299.
Circuit Conventions—

tive the anode goes relatively negative. That fixes the phase or direction of the output voltage. At such a moment the generator polarity must be as shown in Fig. 2, and the direction of the current (using the classical convention, which is opposite to the electron flow) must be as shown by the arrow, all of which agrees with experimental fact.

So what is all the argument about? Well, it seems to worry some people to have a negative voltage ($-\mu E$), causing a current which from the point of view of the H.T. source is positive. But why drag in the H.T. source? It is merely a device for keeping the valve in working condition, and when (for purposes of theoretical calculation) we have replaced the valve, and its H.T. supply unit, and its socket, and the maker’s name on the glass, and everything else appertaining to the valve, by a generator inside a dotted line, which (within assumed limits) produces the same external effects, why display this irrational concern for the views of the H.T.?

When considering the signal voltages in an amplifier, it would be very tiresome if we had to be always thinking of the steady H.T. and G.B. voltages that happen to be necessary for the happy domestic life of the valve. The sort and quantity of food one eats admittedly has a lot to do with the efficiency of one’s work, but it would be a distraction and waste of time to keep on about it throughout the working day. Similarly, in a signal voltage diagram or discussion it clarifies matters to leave steady voltages out of it. This is so generally accepted that when a statement is made that the effect of a certain signal is to drive the anode of a valve negative it is not considered necessary to explain that the anode is not really absolutely negative, but only relative to its potential in the absence of the signal.

In this valve equivalent affair the mixing of domestic and business matters is bound to cause confusion. In Fig. 1a the source of power is a battery, and the direction of the power flow from it is right to left, and positive is anti-clockwise. In Fig. 1b the source of power is a generator, the direction of power left to right, and positive is clockwise. So, if the equivalent generator and H.T. battery are shown in the same diagram, as in Fig. 3, a positive generator voltage (corresponding to a positive half-cycle on the grid) to assist the battery and increase the anode current—as we know in fact it does.

The only room for question I can see is why the voltage of the fictitious generator should be assumed to be $-\mu E$—apart, that is, from a not unnatural desire to make it fit the observed facts.

D. A. Bell has given¹ a logical derivation on a basis of accepted conventions, although even he—quite unnecessarily, as it turns out—includes the steady current among his Wireless Engineer basic conditions.

He points out that the valve (unlike the imaginary generator) is a passive device; it has no voltage source inside it, and any changes of anode current are caused by varying the voltages applied, from outside it, to grid and anode. In the circuit in question the only variation in anode voltage is due to the drop in the anode load, and this voltage opposes the grid voltage changes, which is how the minus sign comes in.

Any real valve is non-linear; that is to say, the changes of anode current are not exactly proportional to the changes in applied voltage. But if the changes are small compared with the steady anode current, there is not a very serious difference between the real valve and an ideal valve in which the anode current changes are proportional to the voltage changes. It is this ideal valve that is imitated by the fictitious generator. So one mustn’t expect too much of the generator idea if the signal voltage is so large that there is appreciable distortion. But until it is necessary to take account of distortion in the valve, the simple equivalent generator does help a lot—so long as one is quite clear about it.

Just one more point. For simplicity these arguments are concentrated on a circuit with a purely resistive anode load. But the generator substitute gives the right answer with any sort of load, and, in fact, it is with reactive loads that its help is most valuable.

ROBOT PHONE RECORDER

A SOUND recording device of considerable novelty has recently been invented and is being mass-produced in Switzerland. Known as the Ipsophone, this instrument, which employs a magnetic steel wire, is designed for use as an automatic message recorder on telephone circuits. On a number being called in the subscriber’s absence, this device answers the telephone in the following manner: “Here is Mr. Brown’s Ipsophone. Your message is being automatically recorded. Go ahead.”

This application is, of course, not new but the ingenious feature of the equipment is the safety code number. The subscriber, before leaving his home, sets one of 1,023 possible combinations of numbers. If when absent he rings his own number to hear any messages recorded, the machine counts from zero to nine three times, and the subscriber has to repeat it with the figures forming his code number. This actuates a circuit and starts the play-back mechanism.

If he desires to record his answer to the message for the advice of his secretary he has to say two words, e.g. “Hello, hello,” and then dictate his remarks. If, however, he wishes to eliminate the recorded message, he merely speaks another code word and the wire is demagnetized.

R.C. COUPLING

Response at Low-Frequencies

The method of determining the value of a coupling capacitor in a resistance-capacitance coupled stage is quite well known for the usual case of a signal of sine waveform, but the method to be applied in the case of pulse and saw-tooth waves is not so generally understood.

The usual circuit is shown in Fig. 1 and its equivalent in Fig. 2. Here \(R_s \) is the A.C. resistance of the valve modified, if necessary, by any feedback. The impedance of the H.T. supply is assumed to be negligible. It is also assumed that the frequencies or the rates of change of current and voltage are low enough for the stray capacitance to have a negligible effect.

There are certain facts concealed in the formulae which are well expressed as useful rules. They are:

1. For not more than 2 per cent distortion of a pulse or saw-tooth repetitive waveform the time constant must not be less than 50 times the pulse or saw-tooth duration. Time and time constant are to be in the same units; i.e., sec and F-\(\Omega \), msec and \(\mu F \)-k-\(\Omega \), or \(\mu F \)-sec and pf-M-\(\Omega \).

2. For a differentiating circuit the time constant should not exceed one-quarter of the pulse duration.

3. For a sine-wave input, the loss is 3 db when \(T = 159/\mu F \) (T in \(\mu F \)-k-\(\Omega \), \(f \) in c/s).

Symbols

- \(\mu \) = amplification factor of valve
- \(R_s \) = A.C. resistance of valve \((k \Omega) \)
- \(C \) = coupling capacitance \((\mu F) \)
- \(g_m = \mu/R_o = \) mutual conductance of valve \((mA/V) \)
- \(T = \) circuit time constant \(= CR + R_s \) \(\) \((\mu sec = \mu F - k \Omega) \)
- \(R = R_s + R_o \) \((k \Omega) \)
- \(t = \) time \((msec) \)
- \(f = \) frequency \((c/s) \)
- \(A = \) amplification \((\mu F \times \mu sec) = \) voltage amplification.

Formulæ

\[A = \frac{g_m R}{R + R_s} x \] \hspace{1cm} (1)

\[x = e^{-ut} \] \hspace{1cm} (3)

\[T = \frac{159}{f} \frac{x}{\sqrt{1 - x^2}} \] \hspace{1cm} (4)

\[T = t/(1 - x) \] \hspace{1cm} (5)

Examples

1. If \(R_s = 20 \ k \Omega; \ \mu = 20; \ R_o = 200 \ k \Omega \); and a response of -1 db at 50 c/s is required, what coupling capacitance must be used, and what is the amplification at relatively high frequencies where \(C \) has a negligible effect?

We have \(g_m = 2 \ mA/V; \ R = 2 \times 6.6 \times 200 = 6.6 \ k \Omega \); so from (1)

\[A = \frac{206.6}{0.89} = 12.9. \] Then from (4)

\[T = \frac{159}{0.89} \frac{x}{\sqrt{1 - 0.795}} \]

\[0.0025/206.6 \times 0.89 = 6.22 \]

\[50 \times 0.456 = 22.2 \]

Since \(R + R = 206.6 \ k \Omega \) and \(C = 622/206.6 = 0.03 \ \mu F \) (2).

2. The same amplifier is to be used for a saw-tooth wave of 50-c/s recurrence frequency, and it is necessary that the drop in output should not exceed 2 per cent. What value of \(C \) must be used? For a 2 per cent drop, \(x = 0.98 \) and, ignoring the fly-back time, the duration of the saw-tooth wave is \(t/50 = 0.02 \) sec, so \(t = 20 \) msec. We use (5), since \(x > 0.98 \) and have \(T = 20/0.02 = 1000 \)

for \(R + R_s = 206.6 \ k \Omega \) and \(C = 1000/206.6 = 4.82 \ \mu F \).

The enormously greater time constant needed for low distortion of a pulse or saw-tooth wave is apparent.

3. With the same amplifier, a pulse of duration 10 \(\mu sec \) is applied, and it is desired that at the end of the pulse there should be substantially no output, that is, the circuit shall act as a differentiator. What value of \(C \) is now needed?

This is most easily solved from (3), and it is necessary to assume some arbitrary small value for \(x \) say about 0.02. A table of exponentials gives \(t/4 = 4 \) (about) for \(e^{-ut} = 0.02 \). Therefore, \(T = t/4 = 10/4 \)

\[= 2.5 \ \mu sec = 0.0025 \ \mu sec \] and \(C = 0.0025/206.6 \approx 0.0000121 \ \mu F \) = 121 pf.
World of Wireless

STANDARD FREQUENCY BROADCASTS

Improvements in the services broadcast by WWV are announced by the Central Radio Propagation Laboratory of the American National Bureau of Standards. Transmissions, now radiated on four additional frequencies (20, 25, 30, and 35 Mc/s), bringing the total to eight, include regular warnings of radio propagation disturbances.

To ensure reliable coverage of the United States and to extend the coverage in other parts of the world, seven or more transmitters are radiating throughout the twenty-four hours. The services provided are for radio frequencies listed below—time announcements (E.S.T.) in code every five minutes, standard time intervals, standard audio frequencies and radio propagation disturbance warnings.

The transmission schedule is:

<table>
<thead>
<tr>
<th>Radio Frequency (Mc/s)</th>
<th>Time</th>
<th>Power Frequency (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000-1000</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1000-2000</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2000-3000</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3000-4000</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>4000-5000</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5000-6000</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>6000-7000</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>7000-8000</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>8000-9000</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>9000-10000</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>10000-11000</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>11000-12000</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>12000-13000</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>13000-14000</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>14000-15000</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>15000-16000</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>16000-17000</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>17000-18000</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>18000-19000</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>19000-20000</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>20000-21000</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>21000-22000</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>22000-23000</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>23000-24000</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>24000-25000</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>25000-26000</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>26000-27000</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>27000-28000</td>
<td>20</td>
</tr>
<tr>
<td>29</td>
<td>28000-29000</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>29000-30000</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>30000-31000</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>31000-32000</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>32000-33000</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>33000-34000</td>
<td>20</td>
</tr>
<tr>
<td>35</td>
<td>34000-35000</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>35000-36000</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>36000-37000</td>
<td>20</td>
</tr>
<tr>
<td>38</td>
<td>37000-38000</td>
<td>10</td>
</tr>
<tr>
<td>39</td>
<td>38000-39000</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>39000-40000</td>
<td>20</td>
</tr>
</tbody>
</table>

The station's call letters WWV and other telephone announcements are given each hour and half hour.

On each carrier frequency, the accuracy of which is now better than one in fifty million, a pulse of 0.005 second duration occurs at intervals of precisely one second. It consists of five cycles, each of 0.001 second duration, and is heard as a faint tick. The pulse is omitted on the 59th second of every minute.

A warning of radio propagation conditions is broadcast in code on each of the carrier frequencies at twenty and fifty minutes past the hour. If a warning is in effect, a series of "W's" (in morse) follows the time announcement; if no warning is in effect, a series of "N's" (in morse) follows the time announcement.

A warning means that radio propagation disturbance is anticipated within 24 hours, or is in progress, with its most severe effects on radio transmission, paths crossing the North Atlantic; i.e., those paths for which the control points of transmission lie in or near the northern auroral zone. Disturbance is characterized by low intensities, accompanied by flutter or rapid fading on the normal frequencies used at the different times of the day, or by complete blackout of signals.

The warnings do not apply to sudden ionospheric disturbances which are unpredictable.

The Bureau welcomes reports on reception—particularly on the new frequencies—which should be sent to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, 25, D.C.

SERVICEMEN IN INDUSTRY

It is announced by the Air Ministry that agreement has been reached whereby airmen who received wartime training in certain trades and completed five years' service in their trade are eligible for admission as skilled men in certain engineering trades and allied civilian occupations.

Airmen in the following trades who were not in the electrical industry before the war may now join the Resettlement Section of the Electrical Trades Union if they enter the industry on release: Radar Mechanic (Air or Ground), Wireless and Electrical Mechanic, Wireless Mechanic and Wireless Operator Mechanic (Air or Ground).

A distance of 1000 miles could be covered by a powerful transmitter.

A number of new frequencies having recently been allocated to Australian amateurs, the most notable being an extension of the 20- and 40-metre bands, we give below a list of the bands now available.

- 3.5-3.8 Mc/s 166-170 Mc/s
- 7.0-7.2 1345-1425
- 14.0-14.4 2500-2700
- 28.0-30.0 5250-5650
- 50.0-54.0 10000-10500

AUXILIARY AIR FORCE

Former members of the R.A.F., particularly those with wartime experience of raid reporting and fighter control methods, may now volunteer to join new Auxiliary Air Force units being set up in nine counties—Hampshire, Kent, Middlesex, Norfolk, Northampton, Nottingham, Suffolk, Sussex and East Riding. These units will be required to man Fighter Command and Fighter Group operations rooms, and radar reporting stations. Their work will be operational rather than technical.

Training will take place during the evenings, at week ends, and during 15 days' camp or exercises annually. There are allowances for training expenses and travelling and an annual bounty for airmen and a retainer for officers. Former members of the W.A.A.F. will be recruited later.

CANADIAN AMATEURS

A chain of emergency amateur radio stations, for use in case of civil emergency or disaster, was recently set up across Canada. Sponsored by the Royal Canadian Air Force, the Air Force Amateur Radio System, as it is called, is open to any Canadian citizen. It does not demand Reserve or Service attachments, and places no obligation on its members to enlist in a Fighting Service at any time. Among

PURCHASE TAX ON KITS

We have been asked by the Commissioners of Customs and Excise to draw attention to the fact that the sale in parts of a receiver of the domestic or portable type does not affect its liability to Purchase Tax.

Constructors' kits of components for the building of sets (including loudspeaker or cabinet supplied therewith) are accordingly chargeable with tax at the rate of 33 1/3 per cent of the wholesale value.

3.5-3.8 Mc/s 166-170 Mc/s
7.0-7.2 1345-1425
14.0-14.4 2500-2700
28.0-30.0 5250-5650
50.0-54.0 10000-10500

MICRO-WAVE TOWER. A reproduction of the architect's model of the Federal Telecommunications Laboratories, New Jersey, showing the 300-foot tower which will be used for U.H.F. research.
the aims of the organization is to provide additional channels of radio
communication throughout Canada
that may be used to augment or re-
place telephone and telegraph ser-
vice in time of civil emergency or
disaster and to give Canadian ama-
teurs a knowledge of Service com-
munication procedures and equip-
ment.

RADAR TRAINING

ACCORDING to the latest figures
given by the Radio Officers' Unions, some 60 radio officers have
taken the examination held at the end of each of the six-weeks' tech-
nical courses in radar arranged by the Admiralty for the Merchant
Navy. In addition to the technical course there is a short radar observer
course for navigation officers.

Since the introduction in December, 1945, of the scheme for instruct-
ing Merchant Navy Officers in Ad-
minority establishments the courses
have been given in H.M.S. Colling-
wood, but it is expected this school
will soon be closed to Merchant sea-
men. A Radar Training Committee
of the Ministry of Transport is at
present investigating the whole ques-
tion of training.

PERSONALITIES

Lord Trefgarne is the title adopted
by G. M. Garro-Jones, chairman of the
Television Advisory Board, who was
created a Baron in the New Year Honours (not a Knight as stated in the
February issue).

Major Edwin H. Armstrong has re-
ceived the American Medal for Merit
for his contributions to military com-
munications especially in the field of
frequency modulation. The citation
states that he was "instrumental in
influencing the Army to adopt F.M.
for its mobile communications."

IN BRIEF

Amateurs' Examination.—The report
on the City and Guilds examination for amateur transmitters held last
November shows that 150 of the 216
candidates passed. The percentage
of failures was 30.5 as compared with 22.2
at the previous examination. The total
examination this year will be held on
May 14th.

T.E.M.A.—As part of the celebrations
to commemorate the centenary of the
birth of Dr. Alexander Graham Bell,
the Telecommunication Engineering and
Manufacturing Association held a dinner
at which Lord Listowel, the Post-
master-General, was a guest. Among
the founder members of T.E.M.A.,
formed in 1903, are Marconi's, G.E.C.,
Plessey, Siemens and S.T.C.

The Freeze-up.—Some idea of the
load imposed on the aerials of the Cable
and Wireless transmitting station at
Dorchester, where at one time all the
arrays were on the ground, will be
obtained by the fact that No. 16 gauge
wire was built up with ice to a circum-
ferece of 5 inches. No damage was
done to the sixteen 300 ft masts because the
balance weights which keep the
arrays taut tripped off without failure.
Six 100 ft masts were, however, dam-
aged.

Chinese Telecommunications.—A con-
tract covering the supply of twelve
telegraph/telephone transmitters—vary-
ing in power from 5 to 25 kW—30 triple-
diversity high-speed receiving equip-
ments and 150 commercial receivers to
the Chinese government has been se-
cured by Marconi's. Valued at nearly
300,000, the equipment is for the ex-
tension of China's overseas telecom-
munication services. Some months ago
Marconi's received a similar order for
the country's internal services.

Station. The provision of a station in
Europe and one to serve Eastern Asia
and the Pacific is also included.

U.S. 'Phone Bands.—Because of the
immensity of the world telecommunica-
tions conference the American Radio
Relay League has withdrawn its year-
old application to the U.S. Federal
Communications Commission for the
allocation of a 7-Mc/s 'phone band and
the widening of the 14.2-14.3-Mc/s
'phone band. It will now await
the result of the conference before making
further application.

Athlone's new short-wave trans-
mitter, which is now not expected to be
operating until the end of the year, is
to be supplied by Marconi's W.T. Co.

G.C.A.—Ground Controlled Approach—the radar system for "talking down"
aircraft, was brought into operational use at London Airport on February
27th. Initially it is available on one runway only and from 0900 to 1700
daily. The channel normally to be used will be 118.1 Mc/s (2.54 m) but the
equipment provides for two-way R/T communication on any one of twelve
V.H.F. and 30 H.F. channels. G.C.A. employs two centimetre radar systems
—one for marshalling the aircraft and the other for the runway approach.
The only equipment necessary in the aircraft is a H.F. or V.H.F. receiver.

The mobile G.C.A. gear is shown in use at London Airport.

"F.M. is now established on a sound,
permanent post-war basis. In all, we
at the F.C.C. expect some two thou-
sand of these F.M. stations in the next
few years—nearly twice as many as
the present number of A.M. stations.
If I were buying a new radio to-
day, I would certainly not buy one
that did not include F.M."

—E. K. Jeff, U.S. Federal Com-
 munications Commissioner.

"Nation Shall Speak Peace..."—
Plans have been laid before the General
Assembly of the United Nations Or-
ganization for the establishment of an
international broadcasting and tele-
communications system. This plan,
which will be considered at the next
meeting of the Assembly in September,
provides for the expenditure of six
million dollars for the equipment. It
is recommended that half this amount
should be spent on the headquarters

Exeter's Transmitter.—A low-power
station at Exeter was added to the
existing group of synchronized trans-
mitters working on 1,474 kc/s on
February 26th, when the B.B.C.'s Third
Programme was resumed after the in-
terruption during the fuel crisis.

A Decrease.—The 16,691,500 broad-
casting receiving licences in force at the
end of January is a decrease of over
86,000 compared with the figure at
the end of the year. The January
total included 11,200 television licences.

Cable and Wireless, Limited, will re-
main in being as a Government-owned
company and will continue to own the
assets and to operate the telecommuni-
cation services outside the United
Kingdom, apart from those to be
owned and operated by the respective
national bodies in the Dominions, India
and Southern Rhodesia as decided at

www.americanradiohistory.com
World of Wireless—
the recent Commonwealth Telecommunications Conference. All the assets in the United Kingdom will be transferred to the Post Office and the services integrated with those of the Post Office. The P.M.G. has taken over Ministerial responsibility for Cable and Wireless.

R.S.G.B. Council.—At the annual general meeting of the Radio Society of Great Britain, S. K. Lewer, G6lJ, was elected president, and V. M. Desmond, GyVM, vice-president.

Australia’s overseas radio and cable services, which in the past were operated and controlled by Amalgamated Wireless (Australasia), have been taken over by the Australian Communications Commission which was set up in conformity with the Empire policy to place the communications services under government control.

Frequency Modulation is to be used experimentally in Australia. Two stations are being erected in Sydney and Melbourne and will soon be in operation. Transmission will be in the 88–108 Mc/s band.

The Washington—New York R.F. Cable, shown here in section, includes six R.F. lines for television relaying, multi-channel telephony, etc., as well as a number of ordinary conductors.

“A Rose, by any other name. . . .” —To meet the criticism that there are no details of medium-wave stations outside the European zone in our booklet, “Broadcasting Stations of the World,” the second edition, which will be published in a few weeks, will be called “Guide to Broadcasting Stations.” It has been revised and includes details of some 130 new stations—bringing the total to over 1,200. Frequency and geographical lists of some 300 long- and medium-wave European stations and some 900 short-wave stations of the world are given in the booklet, which is priced at 1s. (postage 1d.).

High Power.—The proposal has been made to the F.C.C. that twenty stations in the United States should be given exclusive frequencies and permitted to operate with a power of 750 kW. The plan is that five of these stations should be operated by each of the four major networks, giving a nation-wide coverage.

Television Bibliography.—Some 275 technical papers on television and closely related subjects, written by members of the Radio Corporation of America and published between 1929 and 1946 in some 30 different American journals, are listed in a booklet, “Television: A Bibliography of Technical Papers,” issued by RCA Review, R.C.A. Laboratories Division, Princeton, N.J., U.S.A.

“Trader Year Book.”—The 1947 edition of this valuable trade reference book will be ready this month. New features included in this edition are: complete receiver specifications, mains voltage directory and a country-wide analysis of receiving licence figures. The usual directories of manufacturers, wholesalers, trade names and buyers’ guide have been revised. Copies are obtainable from Dorset House, Stamford Street, S.E.I., price 7s 6d to subscribers to Wireless & Electrical Trader and 10s 6d to non-subscribers.

A “Radio Paging” Service is planned by a New Yorker, who, according to Radio News, has been granted a construction permit by the F.C.C. for the erection of an experimental station. Clients of the service will carry a “vest pocket” receiver on hearing whose code number they will have to phone the headquarters of the service to receive the message addressed to them.

Radar Association.—The first reunion of the Radar Association was held in January, when 300 ex-R.A.F. and ex-W.W.A.F. members of radar commands met. Founded in 1946, the association, of which A.V.M. D.C. T. Bennett and Sir Edward Appleton are vice-presidents, aims at preserving “the comradeship founded in the radar commands regardless of rank.” The secretary is C. W. Knight, 31, Currey Road, Greenford, Middx.

Industrial News
Imports from U.S.—According to our New York contemporary, Tele-Tech, the Federation of Anglo-American Importers is negotiating for the inclusion of American broadcast receivers in the list of Token Imports permitted by the Board of Trade. The Federation has secured licences for some 34 importers to purchase American valves.

G.E.C. photo-cell equipment has been installed in H.M.S. Vanguard to give automatic indication of smoke density in the funnels.

Exide and Drydex.—A new sales depot has been opened by the Chloride Electrical Storage Co., at 89, Albion Street, Leeds.

Weaire.—The whole of the production of the Weaire and Wright wire has been transferred to the company’s new works at Simonside Works, South Shields, Durham. The London office is now at 2, Lord North Street, S.W.1.Tel. ABB 2176.

B.I. Callender’s Cables has adopted a five-day working week. Although all the company’s works will be closed on Saturdays, the heads and branch offices will be open for routine business.

Marconi’s announce that they are to supply the 45-kW F.M. transmitter ordered by the B.B.C., to which reference was made last month.

Sperry Gyroscope Co. has been given the contract to install the shore radar gear at Liverpool docks, which it is planned will be in operation in the spring of 1948.

John Factor, Ltd., is the new name of Stanley Cattell, Ltd., of 9-11, East Street, Torquay.

Sussex Industries Exhibition.—The second Sussex Industries Exhibition, which is being held by the Sussex Engineers’ and Manufacturers’ Association will be held in the Dome and Corn Exchange, Brighton.
from September 19th-27th. Information is obtainable from the exhibition organizer, Lt. Col. C. Hasley Briggs, O.B.E., 3, Marlborough Place, Brighton, 1, Sussex.

Exports.—The policy of the Radio Manufacturers’ Association War Export Group has been to obtain production quotas and raw materials were allocated to manufacturers, was recently criticized by the Electronic Manufacturers’ Association. It is announced by E.M.A. that a company may now deal direct with the Ministry of Supply.

B.E.T.R.O.—The British Export Trade Research Organization recently completed its first year of full active work, during which it has handled some 600 overseas enquiries and research commissions. It is learned that a considerable number of enquiries have been received from the radio industry.

Birmingham office of G.W.B. Electric Furnaces, Ltd., is now at 2r, Steelhouse Lane. Tel.: Central 6372.

CLUBS

Bradford.—Particulars of the Bradford Short-Wave Club, which meets each week at its headquarters, 1372a, Leeds Road, Bradford, are obtainable from the Secretary, 9, Sandycroft, Rushwood, Grange Park Drive, Cottingley, Bingley, Yorks.

Crayford.—The recently formed North Kent Radio Society meets on alternate Wednesdays at 7.30, in the Lecture Room of Crayford Library. The next meeting will be on April 2nd. Sec.: H. L. Overton, G6CW, 6, Lower Station Road, Crayford, Kent.

Cornwall.—Meetings of the West Cornwall Radio Club are held alternately in Penzance, on the first Thursday in each month at 7.30 at the Railway Hotel, and in Falmouth, on the third Thursday. Secretary, R. V. A. Allbright, GzJL., Greenacres, Liddon, Penzance.

Exeter.—Membership of the recently formed Exeter and District Amateur Short-Wave Radio Society is now 20. Meetings are held on Thursdays at 7.30 in the Mount Pleasant Chapel School-room, Thetford Road. Sec.: E. C. Wheatcroft, 7, Mount Pleasant Road, Exeter, Devon.

Manchester.—Re-formed in May last year, the Manchester and District Radio Society now has a membership of 100. The next meeting will be held on April 22nd at the School of Technology, Whitworth Street, Manchester, at 7.30. Sec.: H. Marshall, G4ND, 14, Greenway Close, Sale, Cheshire.

Manchester.—The next meeting of the Radio-Controlled Models Society will be held on March 9th at 3.0 at the Y.M.C.A., Peter Street, Manchester, will be addressed by Peter Hunt, Technical Editor of the Model Aeronautical Press. Sec.: J. C. How, 24, Springfield Road, Sale, Manchester.

Reading.—The next meeting of the Reading and District Amateur Radio Society will be held on March 26th at 6.30 at Palmer Hall, West Street, Reading.

ing. Sec.: L. A. Hensford, B.E.M. (G2BHS), 30, Boston Avenue, Berks.

Southampton.—The new secretary of the Southampton Radio Club, which meets each Wednesday, is J. H. Sillicence, 80, The Dove, Coxford, Southampton, from whom details of membership are available.

Wellsington.—The name of the Wrekin Amateur Radio Society has been amended to Wrekin and Y.M.C.A. Amateur Radio Society.

MEETINGS

Institution of Electrical Engineers

Radio Section.—Discussion on "Does Standardization Conflict with Progress?" by W. Dalgleish, B.Sc., on April 15th.

"New Possibilities in Speech Transmission," by D. Gabor, Dr. Ing., on April 22nd.

The above meetings will be held at 5.30 at the I.E.E., Savoy Place, London, W.C.2.

BRITISH INDUSTRIES FAIR

ALTHOUGH the floor space to be occupied by the B.I.F. in London and Birmingham is slightly less than that of the last Fair (1939), the area allocated to the radio and music section at Olympia is more than twice as much—17,120 sq. ft. Sixty per cent of the exhibitors in this section are in the radio industry—their names are listed below. In addition, a number of radio manufacturers are exhibiting in the scientific and optical section.

Radio and Music Section.

AIRNEC International.

Alamaner Industries.

Ampion.

Associated Electronic Engineers.

BELLING & Lee.

Birmingham Sound Reproducers.

CELESTION.

Central Rediffusion Services.

Cosser, A. C.

DALLAS, John E.

Douhler, Du Bois.

EASTICK, J. J.

GARRARD.

Gramian Reproducers.

LARGHAN.

Leyland Instruments.

MARCOTT.

Masteradio.

Mullard.

Multicore.

Multitone.

PHILIPS.

Pye.

RADIO Instrumentes.

Rediffusion.

Rees Mace.

SOFEL.

TAYLOR Electrical Instruments.

Telegraf Construction

& Maintenance.

TELSEM.

Thorn Electrical Industries.

Trix Electrical.

ULTRA.

VITAVOX.

WROO Condomers.

Westhouses.

Woden Transformer.

"North-Western Region Group. — The Design of High-Fidelity Disc-Recording Equipment," by H. Davies, M.Eng., on April 10th, at 6.0, at the Engineers' Club, Albert Square, Manchester.

British Institution of Radio Engineers

Scottish Section.—Discussion on "Television Development in Scotland," by opener A. Bogue, on April 10th, at 6.45, at the Institution of Engineers and Shipbuilders in Scotland, Elibank Crescent, Glasgow, C.2.

"North-Eastern Section. — "The Technique of Radio Design," by D. R. Parsons, on April 9th, at 6.0, at Neville Hall, Westgate Road, Newcastle-on-Tyne.

Institute of Physics

Radio Society of Great Britain

British Sound Recording Association

Admission to the Fair, which will be open from May 5th to 16th will be restricted to home and overseas buyers until 4.30 each day, when the public will be admitted, except on Saturday, May 10th, when it will be open all day to the public.

Scientific and Optical Section.

ALLEN & Stanbury.

Amplivox.

Ardente.

BAIRD & Taitlock.

Baidwin Instrument.

British Physical Labs.

CAMBRIDGE Instrument.

Cinema-Television.

DAWE Instruments.

FURZEHILL Laboratories.

GAMBRILL.

HILGER, Adam.

MULLARD.

Multitone.

PARK Royal Scientific Instruments.

SALFORD Electrical Instruments.

Scophony.

Sperry Gyroscope.

TAYLOR, Taylor & Hobson.
UNBIASED

By FREE GRID

The Turn and the Bar

S OONER or later radar was bound to be blamed for the vagaries of the weather, and the only thing that surprises me is that it has not happened before. I fully expected that it would be made the scapegoat for the great deluge of waters that assailed us last summer. But it remained for the great February freeze-up of this year to supply the necessary inspiration for one of our amateur meteorologists to take up his pen and write to a Sunday newspaper with a strong indictment of radar as the cause of our faces being as blank and dismal as the screens of our television sets.

I must say that the gentleman in question dealt with his subject with great thoroughness. After pointing out that the winter following the establishment of the pioneer radar station in 1935 was marked by weather of unusual severity, he stressed the fact that the great impetus given to radar by the outbreak of war was followed by very severe wintry weather. The almost unprecedented low temperatures of January, 1940, were scarcely exceeded even in the recent cold spell, which he naively puts down to the increasing use of radar in a civilian capacity.

Now, as I have pointed out in these columns, we heard all this sort of thing in the early days of broadcasting from amateur weather-wise acres, who forgot that the radio waves which they blamed had been used for over a quarter of a century earlier in the pre-broadcasting era of wireless. This time it is "radar waves" which are the scapegoat, and it is obvious that the writer thinks that they are altogether different from ordinary radio waves.

I am not really worried about the opinion of amateur meteorologists. They and their opinions will pass into oblivion like those of earlier generations of their kind who have invariably attributed the vagaries of the weather to each new application of science.

What I am worried about, however, is the thoroughly unprofessional and technically slipshod way in which certain leading lights of the electrical industry described the public's habits of using electric fires in the days of the great freeze-up. After all, it must be remembered that the electrical industry is a poor and rather uncultured relation of our own radio industry, and "Poor and uncultured relations."

any discredit its members bring upon themselves is a reflection also upon us. When, therefore, a prominent member of the electrical world publicly announces that the electric fire consumption was "up by many thousands of bars in each locality," it is time we asked ourselves whether "the bar" as a new electrical unit threatens to outst the old-fashioned kilowatt-hour in the same manner as "the turn" at one time threatened to rival the "micro-henry" in the radio world.

How They Do It

I T goes almost without saying that the Third Programme is the only one which readers of this journal can afford to have it known they listen to unless they wish to suffer a serious loss of intellectual prestige. This programme is, after all, the only one which is at all commensurate with the more rarefied atmosphere to which Wireless World readers have become accustomed.

At the same time it is within my knowledge that there is a considerable number of the weaker brethren among the glittering galaxy of technical talent which surrounds the Editorial throne who listen to the Home Service and even to the Light Programme. This they do without loss of prestige by the simple expedient of using head-phones and a personal portable disguised as a hearing aid while the domestic loudspeaker drones out the Third Programme unheeded.

These weaker brethren at any rate will be as familiar as I am with the fact that—nearly all comedians, so-called and real, make a special feature of raising a laugh by imitating and caricaturing the efforts of other performers. In these efforts they show themselves to be so familiar with recent broadcasts of a wide variety of other performers that I have often wondered how they manage to find the necessary time to listen to them all, let alone mark, learn and inwardly digest them. Recently I put the question direct to a well-known comedian of my acquaintance. He would only let me know the secret on condition that I refrained from disclosing his identity, as he said that if there was one thing more than another that he liked to avoid it was publicity.

I gave my promise and, picking up the telephone, he dialled a certain number and requested some half-dozen recordings of recent broadcasts by certain fellow artists. This done he promptly placed the phone receiver in a special rest so constructed that the earpiece fed its output into a microphone coupled via a suitable amplifier to a loudspeaker, thus legitimately dodging the P.M.G.'s regulations about making any direct attachment to the telephone.

It appeared from subsequent explanations that there is in existence a company which makes a recording of everything broadcast by the B.B.C., and as promoters of the company are not at all sure about their legal position, both with regard to recording rights and also the various copyright acts, to say nothing of the B.B.C., they are compelled to remain underground and operate in this manner. Their telephone number is disclosed to would-be clients only after the most elaborate enquiries as to their trustworthiness.
"SUPER FIFTY WATT" AMPLIFIER

This AMPLIFIER has a response of 30 cps. to 25,000 cps., within ±3 db, under 2 per cent. distortion at 40 watts and 1 per cent. at 15 watts, including noise and distortion of pre-amplifier and microphone transformer. Electronic mixing for microphone and gramophone of either high or low impedance with top and bass controls. Output for 15/250 ohms with generous voice coil feedback to minimise speaker distortion. New style easy access steel case gives recessed controls, making transport safe and easy. Exceedingly well ventilated for long life.

Amplifier complete in steel case, with built-in 15 ohm mu-metal shielded microphone transformer, tropical finish. As illustrated. Price 36½ Gns.

C.P. 20A. 15 WATT AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and "stand by" positions and only consumes 5½ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price £28 0 0

RECORD REPRODUCER CHASSIS

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response (30—18,000 cps.) and low harmonic distortion (1 per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v 3 amp. L.T. and 300 v 30 m/A. H.T. to a mixer or feeder unit.

Complete in metal cabinet and extra microphone stage.

As illustrated. Price 25½ Gns.

Telephones: LIBerty 2814 and 6242/3.
Telegram: "VORTEXION, WIMBLE, LONDON."
HERE IS THE WAY TO BETTER SOUND DISTRIBUTION

The Multicellular type of horn has been developed to facilitate quality sound reproduction in auditoria by providing satisfactory distribution of the higher audio frequencies essential for intelligibility. Vitavox Multicell horns are available in two types having lower cut-off frequencies of 220 and 550 c.p.s. respectively and in a wide range of cell combinations to suit particular combinations.

VITAVOX
MULTICELL HORNS

Obtainable from your VITAVOX Dealer but do not hesitate to consult us in case of difficulty or if you require further details.

Vitavox Limited, Westmoreland Road, London, N.W.9
Telephone: Colindale 8671-3

THE GREEKS HAD A WORD FOR IT but we prefer to call it "AUDIOSCOPE"

"Audioscope"—maybe we have invented a new word, but the meaning, when applied to WODEN AMPLIFIERS, is that their "audioscope" embraces not only perfected reproduction of any sound but such excellent amplification that it will reach the widest audience in hall or open space without the loss of the slightest undertone or the distortion of music's highest C. Designed for a long life of trouble-free service and built in the WODEN belief that Finest Materials + Expert Craftsmanship must = Quality. Now it's up to you to send us your name and address for further particulars . . . why not do so TO-DAY?

WODEN AMPLIFIERS BUILT FOR THOSE WHO KNOW

WODEN TRANSFORMER COMPANY LIMITED - MOXLEY ROAD, BILSTON, Staffs.

60 WATT "CLASSIC" AMPLIFIER

20 WATT "JUNIOR" AMPLIFIER
Undistorted output of 20 watts. Transformer tapped at 0, 8 and 15 ohms. Flat from 50-10,000 cycles ± 1 db. Controls consist of Mic. and Gram. Feeders and Tone. Finished in Light Grey Stove Enamel and Chromium. Retail Price £27.10.0.
NEARLY 100 manufacturers of components, accessories, test gear and materials had stands at this year’s annual private exhibition of the Radio Component Manufacturers’ Federation, held March 10-13 in London. A classified list containing a selection of the principal groups of products on show is given below. The full titles of the firms appear in the list of exhibitors which follows.

A review of the exhibition will appear in our next issue.

LIST OF EXHIBITS

Aerial Equipment. Aerialite; Antenna; Belling, Lee; Labgear; Ripaula; Telegraph Construction.

Attenuators. Panton.

Bobbin. Associated Electronic Engineers; McMurdo Instrument.

Cabinets. Imhof; Stratton; Weymouth Radio.

Cables and Wires. Aerialite; Associated Technical Manufacturers; B.I. Callenders; Duratube; Reliance Electrical Wire; Ripaula; Standard Telephones; E.17.

Capacitors, Fixed. Bulgin; British Electric; Electrolyte Condenser; B.I.-Callenders; British N.S.F.; Daly; Dubliner; Erc; Ferranti; Plessey; Static Condenser; T.C.C.; T.M.C.; United Insulator; Wago.

Capacitors, Variable and Pre-set. Sydney Bird; Bulgin; Dubliner; Hunt; Jackson; Labgear; Mullard; Plessey; Stratton; Walter Instruments; Wingrove Brothers.

Ceramics. Geo. Bray; Bulgers; Johanson Mattley; Steatie & Ceramic Prod.; Taylor; Tunnicliffe; United Insulator.

Chassis. Imhof; Stratton; J. & H. Walter.

Chokes. Advance Components; Associated Electronic Engineers; Automatic Coll Winder & Elec. Equip.; Bulgin; Electro Acoustic Industries; Ferranti; Goodman; Labgear; Parmeko; Partridge Transformers; Plessey; Radio Instruments; Stratton; Telecorder; Walley; Weymouth Radio Mfg.; Woden Transformer.

Coils, Tuning. Advance Components; Automatic Coll Winder and Elec. Equip.; Labgear; Plessey; Radio Instruments; Stratton; Weymouth Radio Mfg.; Wright & Wear.

Connectors. Belling, Lee; B.I.-Callenders; British Mechanical Prod.; Bulgin; Carr Fastener; Plessey; Standard Telephones; Telegraph Construction.

Dust Cores. Magnetic & Electrical Alloys; Plessey; Salford Elec. Instruments; T.M.C.

Fuses and Fuseholders. Belling, Lee; British Mechanical Prod.; Bulgin; Carr Fastener.

Gramophone Pick-ups. Cosmocord; Garrard; Ley.

Gramophone Units, Record Changers. Garrard; Plessey.

Instruments, Measuring and Test. Advance Components; Automatic Winder; Erc; Dipole Instruments; Ferranti; Labgear; Plessey; Saltord Elec. Instruments; Sifam; Taylor.

Insulators. Geo. Bray; Bulgers; Erc; Steatie & Ceramic Prod.; Stratton; Taylor; Tunnicliffe; United Insulator.

Insulating Materials and Stoving. Associated Technical Mfgs.; Duratube and Wire; Hollermann Elec.; Long & Hambl; Micanite & Insulators; Spencers; H. D. Symonds; Thomson; Vickers Compensation.

Interference Suppressors. Antenna; Belling, Lee; Dublinger; Erc; Ferranti; Morgan Crucible; Wago.

Laminations. Magnetic and Electrical Alloys; Geo. L. Scott; Telegraph Construction.

Loudspeakers. Acoustic Products; British Radio; Celestion; Electro Acoustic Industries; Ferranti; Goodman; Plessey; Reslo; Tannoy; Telecorder; Vitavox; Woden Transformer.

Magnetic Alloys. Magnetic and Electrical Alloys; Telegraph Construction.

Microphones. Cosmocord; Film Industries; Goodmans Industries; Reslo; Vitavox.

Mouldings, Plastic. British Mechanical Productions; Cosmocord; Stratton; Standard Telephones; Telegraph Construction.

Mouldings, Rubber. Long & Hambl.

Plugs and Sockets. Antenna; Belling, Lee; British Mechanical Productions; Bulgin; Carr Fastener; Erc; Ferranti; Plessey; Stratton; Telegraph Construction; T.M.C.

Potentiometers. British Elect. Resistance; Bulgin; Colvern; Dubliner; Erc; Morgan Crucible; Plessey; Plessey; Radiation; Taylor; Elec. Instruments.

Relays. Plessey; T.M.C.; Varley.

Resistors, Fixed. Automatic Coil Winder and Elec. Equip.; British Electric Resistance; British N.S.F.; Bulgin; Dublinger; Erc; Ferranti; J. L. Goodman; Morgan Crucible; Mullard; Plessey; Varley; Welwyn Electrical Labs.

Seats. Hermetic (Ceramic). Geo. Bray; British Steatie & Ceramic Prod; Taylor; Tunnicliffe; United Insulator.

Signal Generators. Advance Components; Taylor; Electrical Instruments.

Solder. Flux Coated. B.I.-Callenders; Du Bois; J. H. Entenhoven; Multicore.

Switches. A. B. Metal Products; British N.S.F.; British Radiant; British Electric Resistance; Bulgin; Labgear; Plessey; E. Shipton; T.M.C.; Varley; Walter Instruments; Wright & Wear.

Transformer. AC Products; Advance Components; Associated Electronic Engineers; Automatic Coil Winder and Elec. Equip.; British Electric Resistance; British Radio; Celestion; Electro Acoustic Industries; Ferranti; J. L. Goodman; Goodman; Labgear; Parmeko; Partridge; Plessey; Radio Instruments; Salford; Stratton; Tannoy; Telecorder; Walter; Woden; Wright & Wear.

Valve Holders. Belling, Lee; British Mechanical Prod.; Bulgin; Carr Fastener; McMurdo Instrument; Plessey; Radio Instruments; E. Shipton.

Valve Retainers. Electrothermal Engineering; Long & Hambl.

Vibrators. Plessey; Wimbledon Engineering; Wright & Wear.

LIST OF EXHIBITORS

A.B. METAL Products, Ltd., Hatton Works, Farnham, Mid Surrey.

Advance Components, Ltd., Back Road, Shornhall Street, London, E.17.

Aerialite, Ltd., Castle Works, Stalybridge, Cheshire.

Antenna, Ltd., Plender Place, Plender Road, 10, W.1.

Associated Electronic Engineers, Ltd., Dalston Gums, Stannmore, Middx.

BELLING & Lee, Ltd., Cambridge Arterial Road, Finnhill, Middx.

Bird, Sidney S. & Sons, Ltd., Cambridge Arterial Road, Saffron Walden, Essex.

Bry, Geo. & Co., Ltd., Leicester Place, Blackhams Lane, Leeds, 2, Yorkshire.

British Electrical Resistance Co., Ltd., Queen'sway, Ponders End, Middx.

British Electrolytic Condenser Co., Ltd., 52, Victoria Road, Elyford.

British Insulated Callender's Cables, Ltd., Surrey House, Shimbolton, London, W.C.2; and Preste, Lancashire.

British N.S.F. Co., Ltd., Dalton Mill, Dalton Lane, Releghly, Yorkshire.

Bulgin, A. F. & Co., Ltd., By-Pass Road, Ealing, W.5.

CARR Fasteners Co., Ltd., Nottingham Road, Stapleford, Notts, and Branthwaite Works, Tariff Road, London, N.17.

Celestion, Ltd., London Road, Kingston, Surrey.

Colvern, Ltd., Mawneys Road, Romford, Essex.

Cosmocord, Ltd., 700, Gat Cambridge Road, Enfield, Middx.

DALY (Condensers), Ltd., West Lodge Works, The Green, Ealing, W.5.

Dawe Instruments, Ltd., Harlequin Avenue, Great West Road, Brentford, Middx.

Durabase, Ltd., Paggs Road, Potters Bar, Midd.

ELECTRO Acoustic Industries, Ltd., Stanford Works, Broad Lane, Tottenham, N.15.

Entenhoven, H. P., Ltd., Croydon Works, 230, Thornton Road, West Croydon, Surrey.
GARRARD HIGH-FIDELITY PICKUP

FURTHER details are now available of the new high-fidelity pick-up which is being fitted to Garrard record changers. A miniature moving iron movement is employed, and the coil is of the high-impedance type giving an output of the order of 0.35 volt, so that the pick-up can be connected to the input of the average amplifier without the additional expense of a transformer.

The armature measures approximately 5 x 3/8 x 1/2 in and is mounted on a V-section channel cut away to give torsional flexibility in the required direction of movement, limited vertical movement and high resistance to longitudinal stresses. Damping is applied as a thin sheet lying under the torsion member, but is not relied upon to supply the restoring force necessary to keep the armature central in the gap.

The pole pieces are machined from the solid and provided with interlocking grooves and spigots which ensure accurate assembly. No needle is employed and the sapphire stylus is fixed directly into the armature assembly. The volume of magnetic material in the armature ensures a good output, but its mass is not sufficient to cause appreciable record wear.

According to the maker's curve, the output is level from 50 to 1,000 c/s, then falls 3 dB from 1,000 to 10,000 c/s. It is recommended that the coil should be shunted with 0.25 MΩ with 0.0005 pF in parallel. The D.C. resistance is 4,000 ohms, and the impedance at 1,000 c/s is 6,500 ohms.

Comparison with a farthing gives some idea of the size of the latest Garrard pick-up.

(Left) Component parts of the Garrard high-fidelity moving iron pick-up.
TROPICAL BROADCASTING

Notes on Proposed Use of Metre Waves

By "RADIATOR"

The problem of providing internal broadcast services in countries situated within or near the tropics, where the coverage attainable on medium waves is often reduced to uneconomical proportions because of the high prevailing noise level, is one which has exercised the minds of broadcast engineers for some long time past, and seems likely to continue to do so in the future.

In India—and in some of the other countries involved—the main internal coverage has, apart from that of a few of the larger towns, been given on "long-short" waves, where some allocations of wavelengths were made for this express purpose. But this is admittedly only a second-grade service, for, since the waves have first to be reflected from the ionosphere, the received signal is subject to all the deficiencies inherent in such an indirect-ray service. Some of the problems of broadcasting on the "tropical" wavelengths of 60-120 metres were discussed in Wireless World for June, 1945.

In a recent address to the Electrical Engineering Society, Indian Institute of Science, Professor S.P. Chakravarti proposed that a first-grade service should be given in India on the very short, rather than on the medium waves. After pointing out the advantages attending the use of very short waves—chief of which is that, provided the right wavelengths are employed, it should be possible to give reliable first-grade coverage at all times of the year up to 35 miles from a transmitter of only 1 kW radiated power—he went on to consider the problems involved.

Postulating that the frequencies to be used should be from 60 to 150Mc/s he states that those higher than 60Mc/s "are never known to be returned by the F2 region," presumably at most oblique incidence. This is true, though it is not true that they are not returned from the ionosphere at all, as it frequently happens that the M.U.F. for Sporadic E is greater than this. Above 150Mc/s other disadvantages—such as multi-path transmission—are likely to arise. In the band proposed the atmospheric noise is negligible and that due to electrical machinery hardly appreciable.

A radiated power of 1 kW in this frequency range from an aerial 100 ft high should give reliable coverage up to 30 miles, provided the receiving aerials are at least 30 ft high. The field strength should be more or less the same at this distance for either vertically or horizontally polarized waves, but since the electrical interference would be vertically polarized, a better signal/noise ratio would result if the transmissions were horizontally polarized. The type of the transmitting aerial is most important and, in order to secure a good circular pattern, the use, at a height of roof, of two half-wave horizontal radiators crossed at right angles and fed 90° out of phase is proposed. A second similar type of aerial is proposed if wide-band transmission to accommodate two programmes is undertaken. This would be a great advantage in India for, as is shown, the areas served by the transmitters are generally inhabited by people speaking two different languages, so it is proposed to transmit two programmes simultaneously from each transmitter.

The modulation preferred is A.M. rather than F.M. for the following reasons: (1) F.M. equipment is the more expensive. (2) F.M. is inconvenient for the transmission of two programmes. (3) The improved signal/noise ratio with F.M. is not sufficient on these frequencies to justify its use. (4) The bandwidth required for two programmes with F.M. is too great. (5) Reception difficulties exist with F.M. which are not present with A.M. Altogether a strong case seems to have been made out for the use of A.M.

Coming to the economics of the proposed service the use of no fewer than 70 very short-wave transmitters is proposed—in addition to the existing medium-wave stations—and even these appear to leave an enormous part of the country uncovered. A comparison is made between the approximate cost of erecting and operating very short-wave stations and medium-wave stations, with much
advantage to the former system. But no comparison is made between the cost of providing a first-grade service by very-short-waves and a second-grade service by short-waves, and it would appear that the substitution of a first-grade for the present second-grade service over a large part of India would in any case be somewhat expensive. However, if it is to be done, the very-short rather than the medium waves certainly seem to offer the best solution to a problem that is arising in other tropical countries besides India.

SHORT-WAVE CONDITIONS

Expectations for April

By T. W. Bennington (Engineering Division, B.B.C.)

During February maximum usable frequencies for this latitude increased considerably during daytime, and very considering during night-time as compared with those of January. These variations are the normal seasonal ones, but they were accentuated by the increasing sunspot activity. Long-distance communication on exceptionally high frequencies was often possible during daytime, a particularly good day being the 6th, when several U.S.A. stations on frequencies above 40 Mc/s were well received in this country and one U.S.A. harmonic on 50 Mc/s was heard.

Conditions were not unduly disturbed at any time during the month, though ionosphere storms did occur during the periods 8th, 10th, 12th-14th and 16th-20th.

Forecast.—During April daytime M.U.F.S in the Northern Hemisphere are expected to begin their seasonal decrease towards the midsummer minimum, and the decrease during the month should be quite considerable. Night-time M.U.F.S, on the other hand, should continue their seasonal increase towards the midsummer maximum. Modifying these effects on most transmission paths is the fact that, since daylight will last longer, moderately high frequencies can remain in use for considerably longer periods. The net result is that during April working frequencies for most transmission paths will be somewhat lower than in March during the full daylight period, somewhat higher during the morning and evening periods, and considerably higher during the full darkness period.

Daytime communication on exceptionally high frequencies (like the 28-Mc/s band), though often still possible, is likely to be somewhat less than of late. Over many circuits frequencies as high as 17 Mc/s should remain regularly workable till after midnight, and frequencies lower than about 11 Mc/s will seldom be required at any time during the night.

For transmission over distances between about 600 and 1,000 miles the E layer will often control transmission during the daytime, leading to somewhat higher working frequencies than could otherwise be possible. Sporadic E, though it should begin to increase, is not likely to be very prevalent during the month.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during April for four long-distance circuits running in different directions from this country. In addition a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers:

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>0000</td>
<td>15 Mc/s</td>
</tr>
<tr>
<td></td>
<td>0100</td>
<td>11 (17)</td>
</tr>
<tr>
<td></td>
<td>0900</td>
<td>15 (19)</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>17 (25)</td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td>17 (24)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>0000</td>
<td>17 (23)</td>
</tr>
<tr>
<td></td>
<td>0100</td>
<td>15 (21)</td>
</tr>
<tr>
<td></td>
<td>0900</td>
<td>11 (19)</td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>15 (21)</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>21 (28)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>21 (28)</td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td>17 (24)</td>
</tr>
<tr>
<td>Cape Town</td>
<td>0000</td>
<td>17 (25)</td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>26 (40)</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>21 (30)</td>
</tr>
<tr>
<td></td>
<td>2200</td>
<td>17 (36)</td>
</tr>
<tr>
<td>Chungking</td>
<td>0000</td>
<td>11 (16)</td>
</tr>
<tr>
<td></td>
<td>0100</td>
<td>15 (21)</td>
</tr>
<tr>
<td></td>
<td>0900</td>
<td>17 (24)</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>21 (28)</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>17 (25)</td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td>11 (17)</td>
</tr>
</tbody>
</table>

During April a moderate amount of ionosphere storminess is usual. At the time of writing it would appear that ionosphere storms are more likely to occur during the periods 4th-6th, 12th-16th and 27th, than on the other days of the month.

NEW MOVING COIL MICROPHONE

The new Type C46A Lustrophone microphone is a modification of the standard type and incorporates a corrugated cone diaphragm suspended on a fine gauze surround.

The permanent magnet is of generous proportions and gives a flux density of 8,000 lines/cm². A speech coil impedance of approximately 20 ohms is used and a 1:100 ratio matching transformer in a Mumetal box can be supplied.

Lustrophone Type C46A microphone partly dismantled.

The makers state that over the range 50 to 8,000 c/s the deviation from level output does not exceed ±6db while the sensitivity is -75db referred to a level of 1V/dyne/cm².

A standard 4½in brass thread bush mounting is provided and adaptors are available for ½in B.S.F., etc.

The price is $6 16s 6d and the makers are Lustrophone, 84, Bel-size Lane, London, N.W.3.
WHISTLING METEORS

Audible Radio Reflections from Shooting Stars

SHOOTING stars, or, to give them their more scientific name, meteors, have held a fascination for mankind from the earliest times and although they are no longer regarded with superstition, they still form a subject of absorbing interest. They even have their uses, for it is now known that while the ionization in the upper atmosphere which makes long-distance radio communication possible, is maintained during the daytime by ultra-violet light from the sun, it is the continuous arrival of countless millions of microscopic meteors, travelling at enormous velocities, which maintains the level of ionization throughout the hours of darkness. Meteors are thus far more than a subject of scientific curiosity.

For several years radar methods have been used for the observation of meteors, and their transient echoes will be familiar to many radar operators. With the recent discovery, however, by two engineers of All India Radio, Messrs. Chamanlal and Venkataraman, that under suitable conditions, meteors can also be "heard" on an ordinary communication receiver, a new line of research has been opened up.

Variable-pitch Whistles

The transmitters of All India Radio at Delhi are situated about 10 miles from the Receiving Centre, and while monitoring the high-power short-wave transmitters it was noticed that feeble heterodyne whistles of an unusual nature could often be heard but they could not be explained by any of the known causes. The whistles were invariably of short duration, never lasting for longer than 1-2 seconds; they commenced as a high-pitched note of about 2,000 cycles, fell rapidly in pitch and usually died away before reaching zero frequency. Only in rare cases did the whistle pass through zero and reappear as an ascending note before dying away. The whistles were most frequent between 2 a.m. and 6 a.m.

and were only rarely heard during the hours of daylight.

Searching to explain these unusual characteristics, Chamanlal and Venkataraman concluded that they could only be explained as a Doppler effect arising from the interference of the direct ground waves from the nearby transmitter with the waves reflected from some rapidly moving reflecting surface. Calculations showed that if this was the true explanation, the reflecting surface would have to have the initial velocity of the order of 50-80 kilometres per second. Such velocities could only be associated with meteors entering the earth's upper atmosphere, and visual observation soon confirmed this theory by establishing a direct correlation between the arrival of a visible meteor and the occurrence of the audible whistle.

Although a visible meteor invariably produces a whistle of considerable intensity, a far greater number can be heard but not seen. In fact, at certain times of the year, the number arriving is so great as to make it impossible to maintain an accurate count.

Meteors can be broadly divided into two classes—the first being those which enter the earth's atmosphere from random directions, and the second those which are travelling in definite orbits comparable with those of a comet. From the point of view of radio communication, those arriving from random directions are by far the most important since it is these which are now known to maintain the ionization in the upper atmosphere during the night. The number of such meteors is literally astronomical and it has been computed that at least a thousand million encounter the atmosphere every 24 hours.

The vast majority of these meteors are of only microscopic size, but their very high velocities and their great number result in steady ionization of the atmosphere at high altitudes and give rise to the familiar reflecting layer. It is, of course, only the larger meteors which produce sufficient ionization to give an individual echo, and it must be a very large one to become visible to the naked eye as a "shooting star." "Large" and "small" are comparative terms, however, so it may be as well to remark that although estimates vary, a "small" meteor can be regarded as being about the size of a grain of sand while a "large" one, visible as a bright shooting star, is no larger than the top of a black-headed pin and has a mass which seldom exceeds 10-15 milligrams!

Although less important from the point of view of radio communication, those meteors which travel in regular orbits are by far the most spectacular since they give rise at times to brilliant "showers" during which very large numbers may be seen. Such meteors are probably the remains of disintegrated comets which continue to travel in the original orbit. The fragments tend to be spread out more or less along the whole length of the orbit, and if the earth should happen to pass through the track at the time when the main bulk is passing, a most brilliant display of shooting stars may be seen by the naked eye. There are nine principal meteoric showers during the year, but really brilliant displays are of rare occurrence.

Conditions for Whistles

In order to detect the arrival of a meteor on a normal radio receiver there are a number of special conditions which must be fulfilled if success is to be achieved. First, it is necessary to have a powerful transmitter—at least 10kW and
Whistling Meteors—preferably about 50 kW, radiating an unmodulated signal on a frequency of the order of 5-15 megacycles. The receiver requires to be situated about 8-15 miles from the transmitter so that it is within the skip distance but so that only a very weak ground wave is received. It is essential that the ground wave received should be a weak one since the reflected echoes may have a strength as low as only 1 millivolt or even less, and if a strong ground wave is received, the normal A.V.C. action of the receiver will so reduce the amplification as to make the feeble echoes entirely inaudible.

It will be appreciated that a highly sensitive receiver is required for these observations. A communication receiver with two R.F. stages before the mixer is most suitable although under good conditions a few of the stronger echoes can be picked up on a high-quality broadcast receiver.

Night-time Phenomenon

A somewhat inconvenient habit of these meteors is that, like the skylark, their peak period of whistling is during the hours just before dawn. A few can be heard from midnight onwards, but a far greater number will be audible about 4 a.m. and it is rare to hear one during the hours of daylight or during the evening. The reason for this state of affairs is easily understood if we recall some of our schoolboy astronomy and remember that besides rotating on its axis once every twenty-four hours, the earth makes a journey round the sun once every year. The earth travels round its elliptical path with an average velocity of 29 kilometres per second and it is obvious that as the earth rotates on its axis there is only one point which is facing forwards and where the highest relative velocities will be encountered between the earth and any meteors which it happens to meet. The area facing forwards will actually lie at some point within the tropics and at any moment will be on the longitude where the solar time is 6 hours before noon, i.e., 6 a.m. local time. Various other factors combine to place the peak period rather earlier than this and in practice the highest number of meteors are encountered around 4 or 4.30 a.m.

Doppler Effect

As was mentioned earlier, the "whistle" is due to a Doppler effect produced by the beating between the ground waves and those reflected from the local area of ionization caused by the passage of the meteor through the atmosphere. The apparent frequency shift of the reflected waves is due to the component of the velocity of the reflecting surface towards the observer and it will be clear that if this velocity was constant, a whistle of constant frequency would be heard. In practice, this velocity is not constant for two reasons—first the meteor is retarded very rapidly in the earth's atmosphere, and secondly the component of velocity towards the observer clearly varies with the instantaneous position of the meteor in its track in relation to the observer. For example, suppose that a meteor was travelling at a constant velocity on a horizontal course which passed directly over the head of the observer. Such a meteor would have a component of velocity which would first be directed towards the observer but which would fall to zero as it passed overhead and then increase in the opposite direction as it receded. Such a meteor would cause a whistle which would first fall in pitch, pass through zero frequency and then increase again before dying away at 1-2000 cycles.

A very small proportion of such whistles can in fact be heard but they are invariably very feeble, and since the meteor causing them are at extreme altitudes where the retardation of the earth's atmosphere has not entirely arrested their progress before they reach the point where the velocity towards the observer is zero.

Since the beat note is dependent on the direction of the meteor as well as its velocity, it is not possible to calculate the true velocity without simultaneous observations of its position and track. It is easy, however, to calculate the component velocity towards the observer. For example, assume that a beat note of 3 kc/s is heard using a transmission frequency of 6 Mc/s. Then the velocity v of the reflecting surface towards the observer is given by

$$v = \frac{Nc}{2f}$$

where N is the whistle frequency, c is the velocity of electromagnetic waves and f is the transmission frequency. In the example quoted,

$$v = \frac{3,000 \times 3 \times 10^{10}}{2 \times 6 \times 10^6} - 75 \text{ km/sec}.$$

Although this figure is only a component, it gives some idea of the order of the velocity which may be possessed by a meteor and it is estimated that the real velocity may range from 20-180 km/sec. It should not be difficult to develop a technique employing two receiving stations making simultaneous observations of whistle frequency from which the real velocity could readily be ascertained. In fact, it seems likely that further research on meteors will be carried out on these lines.

Acknowledgment is made to Mr. Cecil Goyder, C.B.E., lately Chief Engineer of All India Radio, by whose courtesy the writer was enabled recently to pay several visits to the transmitters and receiving centre in New Delhi and to experience a first-hand demonstration of the phenomenon described above, and which, so far as is known, has not been previously reported.

LOCAL BROADCASTING

A section of the report recently issued by the New Towns Committee, appointed by the Minister of Town and Country Planning, under the chairmanship of Lord Reith, deals with the facilities which it considers should be available in every new town for the reception of broadcasting.

The value of a local broadcasting service is weighed and suggestions for the conduct of the service are put forward. Ultra-short-wave broadcasting is proposed as the best means of transmission and the report adds "If the new towns in this country were to have their own stations they might well be anticipating a national development whereby the number of available programmes increased."
Q. 38. What is the purpose of the metallised paper wrapping under the wire screen of the Belling-Lee twin feeder (Cat. No. L.1221), and is it necessary to earth this to the screen at either or both ends? (by A. G. F., Highbury, who correctly answered the question in his letter).

A. 38. (1) The purpose of the metallised paper wrapping is to maintain the characteristic impedance and attenuation loss constant over the life of the cable. It has been found that without this metallic paper the braided tinned copper shielding ultimately oxidises, causing an increased resistance at the points of intersection of the wires comprising the braid which has the effect of increasing both the characteristic impedance and the attenuation loss.

(2) There is no need to bond the metallised paper wrapping to the shield, as its capacity thereto may be regarded as the electrical connection at high radio frequencies.

This metallised paper feature is covered by a patent of Messrs. Telegraph Construction and Maintenance Co. (U.K. patent No. 559518).

The illustration above shows Belling-Lee (Catalogue No. L.1221) screened twin 70 ohms feeder discussed above and recommended as a suitable feeder for the "Eliminnoise"*3 and "Skyrod"*4 anti-interference aerials. It is sometimes used as a balanced feeder for a television dipole, but is in our opinion unnecessarily extravagant used in this way, as the much cheaper L.336 *2 unscreened balanced feeder gives results so nearly comparable that a television user could not see (nor hear) the difference.

Q. 39. How can a balanced feeder remain balanced when run in a house? Is it not affected by the presence of other conductors such as water pipes, gutters, conduits, etc.?

A. 39. Theoretically there will be small changes in the characteristic impedance at various points along the line. These changes will be related to its proximity to various earthed objects, but at television frequencies the changes are so insignificant that they are immeasurable by any ordinary means. In the case of a feeder with a characteristic impedance of the order of 400 ohms and typified by a spacing of a few inches between conductors, the presence of other incidental conductors closer to the feeder than this, would result in appreciable attenuation.

In L.336 the spacing between conductor centres is nominally 0.057". Therefore it is unlikely that outside conductors would have any practicable influence on the line characteristic.

*1. L.1221, Screened twin feeder per yard 1/9
*2. L.336, Balanced twin feeder per yard 7½d.
*3. ELIMINOISE (Reg. Trade Mark). L.308/K. Complete aerial kit, comprising Aerial and Receiver end transformers, 60ft. Aerial wire, 50ft. of L.1221 screened feeder, earth wire, insulators and lightning arresters £6 6 0
*4 Skyrod (Reg. Trade Mark). Type L.355/CK. 12ft. collector, downlead, 2 transformers, pole clamps and earth wire £7 7 0
Chimney lashings and brackets can be supplied at additional cost.
All prices quoted are subject to alteration without notice.

Send for this booklet NOW!

enclosing 2½d. stamp for postage

IN presenting this catalogue we have for the first time aimed a section of our products straight at your ears. The components illustrated are, we know, used a great deal in Amateur Radio circles. They should be, because having undergone stiff electrical and mechanical tests in Service gear, they have proved to be reliable even under the most arduous conditions of modern warfare, and may therefore be used with complete confidence by the most discriminating ham.
Study television at its source!

E.M.I. Research and Development Laboratories were largely responsible for the Marconi-E.M.I. system of television transmission used by the B.B.C. Service—the first in the world.

E.M.I. Factories produce the finest television receivers in the world.

E.M.I. Service department is the largest and most expertly equipped in the country.

NOW—E.M.I. have set up a TRAINING ORGANISATION to provide immediate courses on practical TELEVISION (Postal and College Courses.)

SOON this new Training College will extend its syllabus to cover all branches of Electronic Science.

This is your opportunity to secure a thorough training in Television from the very pioneers of the Science.

Ask your local H.M.V. dealer for further details or send for our free pamphlet which gives full details of this and other courses.

E.M.I. INSTITUTES, LTD.
Dept. 16 · 43 GROVE PARK ROAD · CHISWICK · LONDON · W.4

ASSOCIATED COMPANY OF:
THE GRAMOPHONE CO. LTD.
(“HIS MASTER'S VOICE”)
THE MARCONIPHONE CO. LTD.
MARCONI-E.M.I. TELEVISION CO. LTD.
RADIOMOBILE LTD., ETC. ETC.

PRECISION CONTROLS
for COMMUNICATIONS AND MEASURING EQUIPMENT

SLOW-MOTION DRIVE
A Unique Control giving complete 360° rotation
Double friction epicyclic mechanism — enclosed in dust-proof bakelite housing.
Torque — 12 inch-ounces before slipping
Ratio — 44 to 1 approximately
Supplied with dial up to 6 inches diameter — any engraving.
PRICES ON APPLICATION

DECADE SWITCH
A Precision Component embodying all the best design features
Very low contact resistance. Positive location. Sturdy action.
Twelve positions — providing two extra contacts — 30° angular spacing simplifies dial calibration.
Two types available — 176A (Shunting) and 4168 (Non-Shunting).
Can also be supplied in ganged units of two or more switches.
PRICES ON APPLICATION

SALFORD ELECTRICAL INSTRUMENTS LTD.
PEEL WORKS, SALFORD
Telephones: BLACKfriars 6689 (6 lines).
Telegrams and Cables: "SPARKLESS, MANCHESTER"
Proprietors: THE GENERAL ELECTRIC Co. Ltd., of England
DESIGNING AN F.M. RECEIVER

1.—General Considerations

By THOMAS RODDAM

I HAVE already explained in the columns of Wireless World my objections to frequency modulation: for better or worse it is, however, on its way. The B.B.C. have been conducting experimental transmissions for some time, and some police authorities are using F.M. for routine communication purposes. The writer, who earns a precarious and wholly inadequate living by doing this sort of thing, has already had to construct part of an F.M. receiver. In the course of this work it became apparent that there are quite a number of things, which do not appear in the theoretical papers, which can provide some difficulties in practice. I must explain at the beginning that the receiver already constructed was for experimental work with very wide deviations at 60 Mc/s. In consequence all that this article will seek to do is to discuss the principles of design. This will not do any harm, for it is not advisable to start on an F.M. receiver unless you have a reasonable amount of measuring equipment and other facilities and can really make a job of it.

Frequency modulation, as all readers of Wireless World know, is a system of transmission in which the carrier level is kept constant and the carrier frequency wobbled about in accordance with the modulation. The maximum amount of wobble for sound broadcasting is usually 75 kc/s, so that with a nominal carrier frequency of 90 Mc/s the instantaneous frequency on the peaks of a 100 per cent modulated wave will be 90.075 Mc/s and on the troughs 89.925 Mc/s. I am not sure, here, whether pedants will not object to the terminology, but it is convenient to use the ideas already familiar in amplitude modulation. Although the deviation is only ±75 kc/s, a spacing between stations of 400 kc/s is being adopted in America, and in order to get a linear phase response, and also to allow for tuning drift and mistuning, a receiver bandwidth of 200 kc/s is normal practice. In England it will probably be some time before there are enough stations working to make selectivity a problem, and it is wise to err on the side of excessive bandwidth rather than to risk the distortion produced by the non-linear phase characteristic near the edge of the response curve.

These basic principles are quite well known, which is why they are discussed so briefly. The important features of F.M. which must constantly be kept in mind are (1) the bandwidth, and (2) the constancy of carrier level. It is these two features which result in the very low noise level obtained in the service area, and which provide almost perfect A.V.C. without any awkward time constants.

Essentially an F.M. receiver is an ordinary V.H.F. receiver with a wide-band response and a sort of detector circuit. If you already have a V.H.F. receiver for amplitude modulation it should be possible to modify it to receive F.M.

The modifications will reduce its sensitivity and involve the widening of the response and the addition of a limiter and discriminator to replace the detector. The A.V.C. is not wanted, but some designs of V.H.F. receiver already include a switch for fixed gain operation. The audio-frequency circuit will also need some modification, to provide de-emphasis on the one hand, and also to give a really high-fidelity performance free from hum so that full advantage can be taken of the virtues of F.M.

The heart of an F.M. receiver is the limiter and discriminator section. The job of the limiter is to provide at its output a signal which is absolutely constant in amplitude in spite of its variation in frequency. The receiver carrier level will not be absolutely constant, because there is likely to be some fading. Most discriminator circuits are sensitive to amplitude modulation, and if the limiter does not fix the level absolutely constant the changes in level will be detected. This is a bad thing. The second cause of changes in level is noise. In Fig. 1(a) there is a sketch of a frequency-modulated carrier with

(a)

(b)

(c)

Fig. 1. (a) F.M. signal and noise, (b) effect of limiter, (c) uncertainty of instantaneous frequency resulting from noise.
Designing an F.M. Receiver—

"uncertainty" represents a noise which appears in the output. It is, however, very much less than the noise which would be produced by amplitude modulation of the peaks. This reduction of noise when the limiter is operating is most striking, and is one of the most attractive features of F.M.

The job of discriminator is to turn the frequency-modulated signal into a variable voltage. One way of doing this, which is quite attractive at low frequencies, is to build a network having attenuation which is a function of frequency. In Fig. 2, for example, the voltage appearing across R is, neglecting the circuit to the right of R,

\[V = \frac{R}{R + j\omega C} \cdot E \]

\[= \frac{j\omega CR}{1 + j\omega CR}, \quad E \]

In this expression, so long as CR is small, we can write

\[V = j\omega CR, \quad E \]

so that the output voltage for constant carrier level E, is proportional to the frequency term \(\omega(=2\pi f)\). If we rectify and allow only the modulation frequency components to pass by means of a low-pass filter, this circuit can be used as a discriminator, and in fact it has been so used. The trouble with it is that C must be very small, and R must be very small, and so the output is microscopic. It does, however, illustrate the principle very well.

The usual circuit is that known as the Foster-Seeley circuit, and this will be described in the second part of this article.

Let us now look at the receiver requirements. The limiter grid should receive about 10 volts drive under normal conditions, although less could be allowed at a pinch. For design purposes we shall take 10 volts as the level required. The input level to the receiver is very dependent on where it is to be used. Within 10 miles of Alexandra Palace the B.B.C. 1 kW test transmitter produces field strengths of more than 1 mV/metre, the provisional second class rural service is based on a field strength of 100 µV/m. The actual voltage developed at the first grid of the receiver will be very dependent on the aerial used and on the distance from the transmitter, and is a matter for individual determination.

Here we shall assume that we can get 1 millivolt: the gain before the limiter grid must therefore be 10,000. If valves having mutual conductance of 5 mA/volt are used, a stage gain of 50 can be obtained at an intermediate frequency of 10 Mc/s. The gain of the stage before the limiter will be rather lower than this, because of the effect of the limiter grid circuit. A mixer gain of 10 is a reasonable allowance, giving \(10 \times 40 \times (n \times 50)\) for a mixer and \((n+1)\) stages I.F. amplification. For two stages this is 20,000, which is more than we asked for so that there is some safety margin. The basic design will therefore be a mixer, two I.F. stages, followed by a limiter, discriminator and audio-frequency amplifier. If an additional factor of about 6-8 is required, an R.F. stage should be added, as it is much easier to make the system stable when the gain is distributed between two different frequencies: stable multi-stage I.F. amplifiers can be built, as anyone who has seen a radar receiver will know, but they require very careful layout and screening.

A stage gain of 50 implies an anode load resistance of 10,000 ohms with a valve having a mutual conductance of 5 mA/volt. The EF50 has been very widely used for this sort of job and it, or its successor the EF54, is an obvious choice here. The total capacity of the EF50 is about 16 pF, and with an allowance for wiring and valveholder capacity will probably be about 30 pF; the reactance of this at an intermediate frequency of 10 Mc/s will be 500 ohms, so that without added capacity the circuit "Q" will be about 20. The bandwidth at 3 db down will then be 50 Mc/s. This is definitely too wide, and the circuit capacity must be increased to about 75 µF for a 200 Mc/s band. The additional capacity will help to hold down any changes of valve capacity. To tune to 10 Mc/s, an inductance of 3.3 µH is needed.

The design takes more form now. The I.F. stages have EF50 (or EF54) valves, with 10,000 ohms anode load, and a capacity of 75 pF tuning 3.3 µH coils. For a first model, simple tuned circuits between stages are recommended.
they are easier to construct and there probably will not be any adjacent channel to get rid of. The circuit of the I.F. section becomes that shown in Fig. 3. The choice of putting the coils in grids or anodes is largely one of convenience: in the form shown, there is no D.C. applied to the coils, and with some constructions this is an advantage; it does, however, require a higher H.T. supply voltage. Decoupling condensers should be 0.001 μF, and each stage should be built as a unit: that is, all the earth connections should be brought back to a common point, preferably the chassis near the cathode pin of the valve. I have shown fixed tuning capacities of 56 pF on the assumption that dust-cored coils with adjustable slugs will be used. One suitable former is that drawn in Fig. 4, and on this core about 16 turns of 26 S.W.G. wire wound as a single layer with turns touching will give the required inductance. The core can be screwed in and out for tuning, and the winding should begin right at the bottom to allow a maximum range of adjustment. With this pattern of coil an inductance variation of about 20% is obtained by screwing in the core, and this should be sufficient to allow for variations in stray capacitance: it will be enough to enable the circuit to be tuned up, for even if the capacities are too small or too large, the change of gain as the circuit is tuned will show whether turns should be added or removed. If coupled circuits are used, they should be adjusted for "maximal flatness" and not for a wide double-humped response. The reason is that the phase characteristic is more important than the amplitude characteristic in F.M. circuits, and a gently drooping amplitude characteristic is usually associated with a good phase characteristic.

It is my personal view that care should be taken to prevent any limiting action in the I.F. amplifier proper. The reason is that the grid-current flow is accompanied by a detuning of the coupling stage, so that the overall frequency response is affected. The exact effect of this is rather difficult to predict but it seems likely to result in a lowering of the noise-reducing effect or to increased distortion.

It is preferable in building an experimental receiver to make use of a separate oscillator for the mixer circuit. A Colpitts circuit, with an EF50 valve, operating on 40 Mc/s may be used provided that the input circuit provides sufficient selectivity against 30 Mc/s. An EF50 may also be used as mixer. Whether a separate oscillator is used or whether a combined oscillator and mixer valve, the use of harmonic mixing is advisable in order that the tuning capacity of the oscillator circuit shall be mainly outside the valve. Stabilization of an 80 Mc/s oscillator is much more difficult. There would seem to be some advantage in adopting third harmonic operation, with the oscillator working on 26.7 Mc/s. The details of the mixer and input circuit are normal in a V.H.F. receiver design and will not be discussed here.

There are other details which it is assumed only need recalling to the reader. Care in separating the circuits, short leads, especially for decoupling condensers, attention to the grouping of earth connections, decoupling circuits for the heater supplies: all these are points "well known in the art," and certainly this is no place to give a full description of them.

In the mention above of the audio-frequency amplifier, nothing was said about the de-emphasis circuits. At the transmitter, pre-emphasis is used, giving an increase in the effective modulation of 14 db at 16 kc/s over the modulation produced by an equal level of 1 kc/s signal. Pre-emphasis is just a highbrow way of saying top-boost. The reason for doing this is to counteract the "triangular noise distribution" associated with F.M.

I am not going to explain this in more detail, but readers who understand the difference between phase and frequency modulation will realize that noise produces uniform phase modulation, and when detected as frequency modulation the noise output is proportional to frequency. By using pre-emphasis at the transmitter it is possible to use de-emphasis at the receiver, "top cut" to you, and thus avoid the high-pitched hiss effect. The amount of de-emphasis is usually given as the time constant in microseconds of a circuit having the required characteristic. Thus the proposed British standard is 50 microseconds. This is given by a resistance of 50,000 ohms in parallel with 0.001μF, or 100,000 ohms in parallel with 0.0005μF. The time-constant circuit can be used as load resistance in one stage of the audio-frequency amplifier, and the response should be 4 db down at 4,000 c/s, 10 db down at 10,000 c/s and 14 db down at 16 kc/s. As other parts of the audio-frequency amplifier will probably make some contribution to the required response it will usually not be desirable to put a 50-microsecond circuit in by itself, but rather to put a smaller top-cut capacitance to supply what is needed.

So much for the conventional parts of a frequency-modulation receiver; as you see, they are midway between the sound and vision channels of a television receiver. In the second part of the article the design of the limiter and discriminator will be described.

OUR COVER

FEEDER LINES, switching tower and terminating rings at the B.B.C.'s short-wave station on Rampisham Down, Dorset, form the subject for our cover illustration this month. The outputs from the four 100-kW transmitters are taken to the switching tower whence they are fed to the appropriate aerial arrays. The station was originally brought into service in 1941.
SAFETY IN THE AIR
A User’s Views on Radio Aids

NEARLY two years after the end of the European war, no agreement has been reached, even between the principal European governments concerning a standard air navigation system. Inter-continental airways are in an equally unsatisfactory position.

Several conferences on civil aviation have already been held, professedly in an effort to secure agreement on standardized aids. The various parties concerned at these conferences have usually agreed on the obvious, but elected to disagree on points that really require co-operation. To an onlooker, it appears that the conferences are convened not in an effort to decide upon the most suitable system for a specific purpose, but more to force acceptance of sponsored systems.

During the past eight years very considerable advances have been made in knowledge and application of radio and radar equipment. Much of the knowledge so gained is available for application to civil aviation, yet, in spite of this, the most generally used navigation aid is the airborne medium frequency direction finder, using a rotatable loop aerial—a device at least 25 years old. Since 1938, an automatic version has been available in the U.S.A. and this is generally fitted to American aircraft. The need for such a device for British aircraft has long been obvious, and has been stressed. As long ago as February, 1939, there appeared in Wireless World a description of a similar automatic aid to air navigation, which produced no response from the industry. But information now is that at least three British companies are developing an automatic direction finder, and may be in production this year.

With more modern devices—radar and the like—the case is
most transport aircraft—in some cases more than one system is necessary owing to lack of international standardization. The un-economics of carrying several heavy boxes around the world in an aircraft are obvious, and the un-economics are not confined to aircraft. In order completely to equip a first-class airport, it is necessary to cater for all potential users. At London Airport there are already four different bad-weather landing systems, and four separate short-range aids to navigation, with two more under construction. All this at the taxpayers' expense.

Most of the variants offer something useful and, almost invariably each is backed by either a big organization or a big name, tending to over-awe potential customers and then to overcome their sales resistance. Potential users, potential providers, and disinterested technicians (who always have something better just round the corner) cannot agree on users' requirements. Even the users cannot agree amongst themselves. So, an analysis of the pros and cons of the various alternatives, without too much detail, may be of interest. The problem is in three parts:

(1) A long-range aid to navigation.
(2) A short-range aid to navigation, with a completely reliable range of 200 miles, under any conditions commonly to be encountered.
(3) A radio aid to runway approach, for use in bad visibility, as an aid to safe landing.

It would appear obvious that any system which provides a satisfactory answer to more than one part of the problem is better than a system which satisfactorily answers one part only. Satisfactorily to answer all three would be better still. Further desiderata common to all aircraft equipment are simplicity, complete reliability, minimum of weight, minimum of volume, and provision for remote control. The manner in which the required information is presented to the crew is important. Interpretation should be patent, glaringly, obvious; something like a compass or a watch.

In order to achieve a high order of accuracy, it is usually necessary to sacrifice some simplicity. Generally speaking, simplicity and reliability are closely related. Or, if you like it this way, if a very accurate result is needed, a spare set should be carried, because when the very accurate device breaks down, it's a specialist's job to mend it. Not like the loop aerial, which is as simple as can be, and reliable, within its accepted limits. That's why it is still in use, after all these years.

The systems to be analysed are put in alphabetical order (to give equal offence to everyone!). All systems to be considered are available, and all have been tried out. All have their supporters and their detractors.

Long-range Aids.—There are three long-range radio aids which are worth consideration. All three are available, and all three are in use at present. For economy's sake, let us make up our minds and concentrate on one, and say that we are going to fit it wherever we have jurisdiction.

Any long-range aid must automatically use a medium or low frequency in order to provide adequate ground-wave cover. All are subject to the well-known factors which adversely affect medium and low frequency transmission, but all are not affected to the same extent.

CONSL is a system which uses directional transmission, described in *Wireless World* for July, 1946. The equipment required on the aircraft is nothing beyond the normal M/F communications receiver. The process of obtaining a position line is very simple; the whole process may take a minute—sometimes only thirty seconds. Then, either by simple interpolation or by use of a special chart, the observer identifies his bearing from the transmitter. Sector ambiguity is possible with this system, but should any doubt arise as to sector, a series of observations would soon resolve the ambiguity. The greater drawback to the extended use of the system is the interference to be expected from atmospheres. An accuracy of within 2 degrees is normally obtainable by day and night, and accuracy of within one degree, at day ranges of 800 miles, is regularly obtained. The system is...
Safety in the Air—

The Atlantic seaboard of Europe already has Consol cover. Cost is low.

In the DECCA system, position fixing (as distinct from line-of-position finding) is carried out continuously and automatically, by a special receiver, which works in conjunction with specific transmitters. (See Wireless World, March, 1946.) Results are presented on three meters and no skilled interpretation is needed. Decca transmitters already exist in England and are being built on the Continent and round New York. Day coverage is up to one thousand miles, and error-free night coverage is three hundred miles. The system is equally accurate at long and short distances, and can be used for homing and airdrome approach. The makers claim that the system will operate satisfactorily through interference up to twice the strength of the Decca carrier.

LORAN is a pulse system requiring, like Decca, special ground and airborne equipment. The transmitters radiate pulses and the receiver is used to measure the differences in the transit times. The measurement is done on a cathode-ray tube, and the results are plotted on a chart which is overprinted with Loran position lines, as with Decca.

Loran is extremely accurate for long-range working, but less so for short-range. The fact that the actual pulses can be observed on the tube screen makes the elimination of interference less difficult, and errors due to night effect and other reflections can be similarly observed and discounted. A certain limited training is necessary in order to use the equipment and interpret the results correctly. The Atlantic seaboard of North America has complete Loran cover, which is effective up to halfway across the Atlantic. Loran could be satisfactory operated in conditions of bad atmospheric interference when use of the cheaper Consol would be impossible. Loran cover is more expensive than the others.

Short-range Systems.—As with long-range aids, so with the short-range counterparts there are again three immediate possibilities—Decca, Gee and O.R.B.

DECCA has already been dealt with as a long-range aid, but merits equal consideration for short-range uses.

GEE is the short-range equivalent of Loran. The basis of the system is pulse transmission on a frequency of between 20 and 30 megacycles, with interpretation on a cathode-ray tube. (See Wireless World, January, 1946.)

Gee transmitters are already in operation in Southern England, and complete cover for the whole of Europe is projected. There is available an adequate supply of aircraft Gee receivers, and enough transmitters can be made available to provide the required cover. The governments of the European countries concerned are not overly enthusiastic about installing and maintaining the necessary Gee stations, and although an offer of free aircraft receivers has been made, it has not received a widespread welcome. There can be no doubt about the accuracy of Gee. The equipment is not affected by reflections nor atmospheres. In its present form presentation has very little appeal, but this drawback should be fully overcome in models projected for production this year.

O.R.B. (omni-directional radio beacon) is the short-range aid which has the approval of P.I.C.A.O. It is a V.H.F. beacon with simultaneous radiation of two signals. One signal, used as reference, produces in the receiver an alternating voltage, the phase of which is independent of direction. The second signal produces an alternating voltage of the same frequency, but with phase dependent on direction and with complete phase rotation in 360° of azimuth. Determination of bearing from the beacon is determined by turning a 360° scale until the needle indicator registers zero, the scale reading then being the bearing of the receiver from the beacon.

The system has been comprehensively tested, and is very effective. It is extremely simple to use, and gives its information in a direct manner, although unless some care is taken with siting, the result may well be the bearing of a reflected signal. O.R.B. can for completeness be used in conjunction with a responder beacon, to give indication of distance as well as bearing, the two together providing a specific indication of position. The responder is essentially a V.H.F. pulse transmitter which can be triggered-off from the aircraft.

The exponents of O.R.B. plus responder have proved to their own satisfaction that it is the most accurate system possible, and provides the required coverage at the lowest cost. But it should be put on record that the exponents of O.R.B. have proved a similar case for their favourite. O.R.B. plus is not immediately available but has been internationally preferred because of its form of presentation.

Approach and Landing Aids.—

Again there are three systems which must be considered.

B.A.B.S. (Beam Approach Beacon System) is a mobile system, developed during the war. It is a special type of low-power responder beacon, operating only when correctly triggered. Then it radiates directional pulses, alternately of long and short duration. The short pulses are directed to the right of the runway and the longer pulses are directed to the left. When the receiving aircraft is approaching from the correct direction, the pulses are observed to be of equal intensity, although not of equal duration. Observation is on a cathode-ray tube, which shows distance as well as direction.

B.A.B.S., for good results, requires team work. The navigator observes the C.R.T., interprets the results, and cons the pilot on the intercom.

The ground equipment, at present in short supply, is not excessively costly, and may be mounted in a 10-cwt van for complete mobility. The system operates only in conjunction with the appropriate transmitter-receiver on the aircraft, and, operating on about 200 Mc/s, requires rather careful siting to prevent reflection interference.

S.B.A. (Standard Beam Approach) is no newcomer. It was developed originally by Lorenz in Germany for use on about 36 Mc/s and installed in this country at
April, 1947 Wireless World

Heston in pre-war days. The transmitter radiates a narrow equi-signal path along the line of the main runway. The equi-signal is produced by the merging of two overlapping, interlocking morse signals. Along the line of approach, a steady note is heard, and deviation from the correct approach path causes the distinctive letter to be heard in the pilot's headphones. Distance from the airfield boundary is indicated by short over-riding signals from marker beacons, which have a specific character according to the distance from the beginning of the runway. The system is well-proven, and very reliable. It has been installed extensively all over Western Europe and it is very simple to use.

I.L.S. (Instrument Landing System) which has been given the approval stamp of P.I.C.A.O. was developed in U.S.A. during the war, when it was known as S.C.S.51. It is very similar in principle to S.B.A., but works on a higher frequency band (about 110 Mc/s) and the result is shown on a meter, instead of being presented through headphones.

The equi-signal path is produced by the overlap of two radiated signals, on the same radio-frequency, but distinctively modulated. Movement of the indicator needle is to left or right, according to which signal is more strongly received, and the needle is centrally vertical when the aircraft is approaching from the correct direction. Within the same meter casing is a second, similar movement, but with the needle horizontally disposed. This second movement is used to indicate the correct approach path in the vertical plane—the "glide path indicator."

The glide path indication is from a second transmitter, similar to the approach path transmitter, but operating on a frequency of about 140 Mc/s. This transmission is modulated by two frequencies as in the approach path transmission, and deflection of the needle is similarly obtained. Distance indication is by marker beacons on 75 Mc/s.

Excellent results have been obtained from this system, in conditions of very bad visibility, but the glide path is apt to be affected by changes in soil conductivity, due to change of weather. Equipment is in very short supply.

Many pilots object to visual presentation for a landing aid. Their eyes are already fully occupied, but their ears are spare.

Having selected the above three from the surfeit of possibilities, we are faced with the choice of three complete systems, each to provide radio aid for navigation from airport to airport.

System one—the all-pulse system—is Loran plus Gee plus B.A.B.S. Loran plus Gee, as a composite aid, using separate receivers and a common indicator, has already been proposed. It is the obvious answer to a requirement (if one exists) for comprehensive coverage of large areas by pulse transmissions.

Secondly, there emerges Consol plus O.R.B. plus I.L.S. The two latter items carry the stamp of approval of P.I.C.A.O., the international organization which has been convened to consider such things. The fact must be borne in mind that neither of them is readily available.

System three is Decca plus S.B.A. Both are easy to use, and are in general use in Europe.

All the above, and many more, have been demonstrated individually. The demonstrations generally show that the equipment can do its job, but I submit that instead of showing how several items of equipment can each do the same job and leaving the choice to the bemused spectator, we demonstrate how one set of equipment can repeatedly and satisfactorily do its job, and impress on the prospective customer how good is the system of our choice.

The use of aircraft as a transport medium is extending very rapidly all over the world. For safe operation, radio aids to navigation are essential. In many of the countries concerned there is almost a radio vacuum, and for all-weather operation the vacuum must be at least partially filled.

Geographical proximity to the U.S.A. does not necessarily imply acceptance of U.S. systems. If we can demonstrate, by regular use, that we have something better for sale—immediately—we may find a ready market.
LETTERS TO THE EDITOR

In Defence of B.B.C. Recordings
Derivation of “-tron”

B.B.C. Quality and Recordings

With regard to recent correspondence on the above subject, I should like to point out that the quality of a programme is not entirely a matter of frequency response and distortion. The artistic content is of infinitely greater importance, and in this respect recorded programmes must inevitably excel “live” broadcasts; production can be carried out at leisure, and the programme can be polished before actual transmission. Also, artists can be recorded when available and with no regard to time of transmission. The Third Programme probably provides the supreme example of the intelligent use of recording.

With regard to relative quality of various transmitters, an interesting phenomenon occurs in the “Monday Night at Eight” programme, which includes rapid relays from three regions outside London. Listening to the London transmitter, the technical quality of the material originating in other regions (especially Bristol) is often better than that coming from the studio nearest the transmitter.

The B.B.C. should be congratulated on its new London aerial (recently illustrated in Wireless World), which has effectively transferred the whole of Lincolnshire from the North to the London region.

Cranwell, Lincs.

“Magic Eye” as Null Indicator

Your contributors, Messrs. Thacker and Walker, in their article on “Magic Eye Indicators” in the January issue of the Wireless World, raise a number of points with regard to the EM1 and EM34 valves. The position regarding these valves should perhaps be clarified.

It would appear that the pre-war EM1 was quite suitable for use in the positive feedback circuit under discussion, but restrictions on the production of valves for civilian use during the war necessitated certain modifications to the structure. These modifications did not in any way impair its efficiency as a tuning indicator, the grid base remain-

B.B.C. while still maintaining the sensitivity of the apparatus.

D. A. WARD
The Mullard Wireless Service Co., Ltd.
Technical Service Department.

The -tron Family

In your issue for February, 1947, your contributor “Free Grid” discusses the ending -tron which appears so frequently in the literature of electronic technique.

Reference to a Greek Lexicon will show that -tron (-tron) is an ending which means, roughly, “the instrument by which”.

Examples which have English derivatives are:

ϕερον (theatron) “a place for seeing”; a θεαμα (theama) “I gaze at.”
ϕιλτρον (philtron) “a spell to produce love”; a φιλη ρον (phileo) “I love.”

These examples show that there is a respectable tradition for the use of the ending.

A writer in Electronic Industries, January, 1946, collected about eighty words ending in -tron ranging from Alphatron to Zyklotron. This list does not include recent terms such as phantastron or sanatron. L. H. BAINBRIDGE-BELL.

Witley, Surrey.

The New Standard Valves

To avoid damage valves sometimes need to be eased out of their sockets with a screwdriver. How is this possible with the new type holder?

In the present economic state of the country the set manufacturer with the largest export trade will be able to offer the best value on the home market. It is hardly likely that he will upset production making types using different valves. I think it will be the set manufacturer, plus economics, and not the B.V.A., that will decide the future valves.

Buyers are becoming more discriminating, and many are holding off. They remember having to lay their sets during the war, while the neighbours’ sets that could use Lend-Lease and similar valves played merrily on.

Paisley. W. GALBRAITH.

UNAVOIDABLE DELAYS

Development of the television receiver that is being described month by month in Wireless World has been delayed by electricity “cuts” and suspension of transmissions. This month’s instalment must therefore be held over.

Publication of the concluding instalment of the article on “Noise Factor” must unavoidably be postponed till next month.
CAREERS IN RADIO
Advice on Technical Training

Open Letter to Would-be Engineers

Dear Jackson,

THANKS for your long letter. It is always pleasant to hear from past students, especially when they can give so many interesting details of life with the B.A.O.R. Congratulations on your appointment as an education officer to the troops in your area. I know your keen interest in training and fitting the chaps for "Civvy Street," and I am sure you will enjoy the work.

You ask if I can help in advising your men on fitting themselves for a career in radio engineering when they are demobilized. This is a big question not easy to answer, but I will try my best. Before I begin with what they should do on leaving the Army, may I suggest that you can get the keen ones started immediately by encouraging them to prepare for the City and Guilds examinations in Telecommunications Engineering. Probably none can be made ready for the examinations this year—they always take place in May—but don't allow this to be a reason for delay. Procrastination is the greatest enemy of success in study. The syllabuses have been remodelled recently to cover post-war needs, and the course, which specializes in Telegraphy, Telephony or Radio Communication, extends over five years. It has been stiffened by including mathematics as well as by extension with Radio IV and Telecommunications Principles III, IV and V. I am delighted to see mathematics as a subject because I have always held that too many radio engineers neglect this most powerful and useful tool. An Intermediate, Final and Full Technological Certificate is issued on the successful completion of the second, third and fifth year's work respectively, and there are still the usual single-subject certificates.

You can obtain full details of the new course, which will, I believe, be fully operative by 1948, by writing to the City and Guilds, Department of Technology, 31, Brechin Place, South Kensington, London, S.W.7. Since there may be some delay before you get this information where you are it might help if I indicated the broad outline of the syllabuses. Mathematics I covers algebra, trigonometry and mechanics in an elementary manner, Mathematics II is a more advanced edition of I and also includes elementary calculus and complex quantities. Mathematics III deals mostly with the Binomial Theorem, more advanced calculus, and hyperbolic functions. Mathematics IV advances on III and includes differential equations, there is no City and Guilds examination in this nor in Mathematics V, which suggests a number of subjects for study. Telecommunications Principles I concerns itself with elementary electrical theory and would seem to call mainly for descriptive treatment. Principles II introduces the valve and shows the first hint of a radio bias. Magnetic circuits, calculations on A.C. problems, resonance, modulation, detection, propagation of electromagnetic waves along lines, etc., are some of the many subjects included in Principles III. Radio frequency transmission, reception and measuring instruments are covered by Principles IV, whilst Principles V introduces telephone communication theory, pulse, frequency and phase modulation.

You may be a little surprised that the radio student should be required to take Elementary Telecommunications Practice in his first year, for it is almost entirely given over to a descriptive treatment of telephone and telegraph communication, but it should not be a difficult paper and will compel the student to obtain a good grounding in communication practice. Radio I, a second-year subject, requires an elementary, broad knowledge of general principles in radio- and audio-frequency engineering. Radio II is a more advanced treatment of Radio I subjects, covering valves, transmitters, receivers and their

30-WATT AMPLIFIER T.633B
Three stage, high gain type. Push-pull output circuit with inverse feed back. Embodying all the features responsible for the success and efficiency of the original T.633, with up-to-date refinements of design and finish. The new circuit facilitates provision for speech/music switching or mixing to suit all conditions of operation.

www.americanradiohistory.com
Careers in Radio—

component parts. Propagation, arials, power rectifiers, as well as more advanced work on transmitters and receivers are treated in Radio III. In its fifth year Radio IV requires the student to deal with short-wave propagation and reception problems, radio frequency power amplifiers, oscillator frequency stability, radio terminal equipment and measurements.

I think you would be fully competent to coach for these exams, but if you prefer not to do so there are several good correspondence courses available from England. You raise your eyebrows? Oh, I know that I have expressed disapproval of tuition by correspondence, and I still think it is a poor substitute for direct teaching, but half a loaf is better than none.

And now for the main problem; the advice to give to men returning to England and wanting to prepare for a career in radio. I suppose broadly they will fall into four categories:

(1) Those who have graduated at a university or have obtained a Higher National Certificate but have had little or no practical training.

(2) Those who might qualify for a university course.

(3) Those who will have to earn a living at the same time as studying, and

(4) Those who have a practical bent and need some form of specialized knowledge or training.

Largely at the instigation of the Institution of Electrical Engineers, the Ministry of Labour is now prepared to consider grants to help the first type to gain practical training in industry. The period of training may last two years, a year, or six months, according to the practical experience already gained by the applicant. The six-month course is intended simply as a refresher, whilst the two-year period is for those who have had practically none. A letter addressed to the Regional Appointments Officer through the local Labour Exchange should bring full details and advice to anyone who is interested in this scheme.

Now for the second type of would-be radio engineers, the potential undergraduate. There are altogether eleven universities in England, four in Scotland, one in Wales and one in Northern Ireland, but none can offer a degree course specifically in radio engineering, though most provide one in Electrical Engineering or Physics, which can form a good foundation training for radio. A few do, however, specialize in Electrical Engineering with a bias to Communications, notably the City and Guilds College London, Victoria University Manchester, and Liverpool University. Personally I think there is scope for a school of radio engineering, as distinct from electrical engineering, to consist of a combination of electrical engineering, physics and mathematics in almost equal proportions. It is naturally difficult to suggest for which university the returning soldier should study; so much depends on personal circumstances and I think the best I can do is to examine the particular features of the universities as I know them. I shall try to be as unbiased as possible but you will know that this is not easy. Just one point of practical importance before I go on; see that your student puts in an application early in the year during which he is to be demobbed. Many universities require the form to be returned by May if the applicant hopes to start in October.

The universities can roughly be divided into the older residential ones like Oxford and Cambridge and the newer almost non-residential ones. London is a halfway house between these two. With all due deference to Bruce Truscot (I expect you have read his stimulating “Redbrick University”) I would unhesitatingly advise a potential undergraduate to try for Oxford or Cambridge at the present moment if he can afford to spend about £300 for the 24 weeks’ course per year. Costs at most other universities vary from £50 to £100 per year for tuition and incidental fees so that, with board and lodging, expenses for a 30-week year are likely to be about £300. I underline “at the present moment” because I think Redbrick University is likely to change to residential and seriously challenge the present ascendancy of Oxbridge, which is due partly to its residential character and partly to the emphasis laid on reaching one’s own conclusions and not accepting ready-made ones. The position may be summed up by saying that the Oxbridge graduate is generally socially superior but technically inferior to his Redbrick brother.

It may be that your student has a bias to a certain branch of radio. If he is clearly interested in audio-frequency telephonic problems with a view to a Post Office engineering career, City and Guilds College, London, would be an excellent choice. They also give a good general training in radio and this would fit a man for work in the research, development or production department of a radio manufacturer. If he is interested in valves and high-vacuum technique, Manchester University Electrotechnics Department covers this side. Apart from Liverpool most of the other universities Engineering Departments give a broad general course biased to the machine and power side. As a recruiting and training officer for a company exclusively concerned with the manufacture of radio equipment, I received engineering graduates (who subsequently became satisfactory radio engineers) from Oxford, Cambridge, London (City and Guilds, University, King’s and Queen Mary Colleges), Birmingham, Durham (King’s College, Newcastle), Edinburgh (Heriot Watt College), Glasgow, Liverpool, Manchester (Victoria University and College of Technology), Sheffield, and physics graduates from Bristol, and Wales (Cardiff University College).

To sum up I would advise Oxford or Cambridge from an educational point of view, and City and Guilds College, Manchester or Liverpool on technical grounds, but I would stress that a degree in Electrical Engineering or Physics at other universities does not preclude a man from making a success in radio.

There are also the University Colleges of Hull and Nottingham, and one must not forget the London Polytechnics, Woolwich, Northampton, Battersea and Regent Street and also provincial
Careers in Radio—technical colleges like Brighton.

For the less academic, more practically minded student, I would recommend that he should consider one of the full-time Higher National Certificate Courses, lasting for 9 months. These cover Electrical Engineering principles and practice very thoroughly and exempt from the graduate examination of the Institution of Electrical Engineers; I believe that eleven colleges are operating the courses at the present time, and application for grants is made to the Ministry of Labour. To anticipate your question: there are no Higher National Certificate Courses in Radio or Communication Engineering. There should be.

And now for the third class of student who must earn a living while he is training. He will probably take up a post in a radio factory and is likely to have a technical college near at hand. Besides running Ordinary and Higher National Certificate courses in Electrical Engineering, these colleges are often offering classes specifically adapted to the needs of the locality and there is likely to be a course for the 5-year City and Guilds examination I mentioned early on in the letter. Success in this examination carries considerable weight with most employers concerned with communications equipment. If there is no technical college in his area, remind him of the correspondence course, which caters for the graduate examination of the I.E.E. as well as the City and Guilds Exam.

The fourth class of would-be radio technician should be advised to take suitable Craft courses at his nearest technical college in the evenings. One can only offer a general recommendation that he should select the most suitable practical electrical course or if there is not one try to persuade sufficient of his associates to combine to form a class. Principals of technical colleges and Local Education Authorities are generally prepared to give every assistance when a genuine need for particular instruction is shown. Those of your men who carry out radio service work can try for the City and Guilds examination in "Radio Service Work," which has the backing of the Radio Manufacturers' Association. There is also a City and Guilds examination in "Electrical Installation Work," which would be quite valuable to the practical man.

This, I am afraid, is a long sauce but you wanted rather a lot of information! Possibly there may be some further questions you would like to ask, and in any case I should be delighted to hear how your work progresses.

Yours sincerely,
A. U. Thor.

"BITONE" REPRODUCER

This is the name which has been given to the new wide-range loudspeaker made by Vitavox, Ltd., Westmoreland Road, London, N.W.9. A 12-inch cone loudspeaker working in a vented enclosure operates in conjunction with a multi-cellular horn driven by a pressure unit with duralumin diaphragm.

The units are connected through a dividing network with a crossover frequency of 1,000 c/s and the terminal impedance is 7.5 ohms. It is stated that the frequency range is approximately 50-12,000 c/s.

Two types will be available, with power-handling capacities of 10 watts and 20 watts. Both will be housed in cabinets measuring 32in high, 20in wide and 21in deep.

Vitavox "Bitone" wide-range loudspeaker.
RANDOM RADIATIONS

By “DIALLIST”

Temper-saving Screws

Do you know the recess-head screw? I was presented recently with a supply of 4BA and 6BA and I have been blessing them daily ever since. Instead of a single nick the head bears what looks like a + sign. This is the top of a tapered recess of cruciform section. The driver bit is exactly the same, only just the opposite, if you see what I mean! It has a + shaped protrusion at its business end, also tapered. If you want to start a screw in an awkward corner you need perform none of those manual gymnastics which the ordinary screw calls for in such circumstances—nor use any of the naughty words provoked by its usual refusal to play. Simply press your recess-head screw on to the screwdriver bit and it stays put in any position. You start it and turn it home without any fuss or bother. And when it’s home the bit pulls out as easy as easy. Another joy is that the screwdriver simply cannot slip out of the nick. Now, I reckon that I can use an ordinary screwdriver with anyone. I don’t lose ticks in the ordinary way and only once in a blue moon, when I am thinking of something else, does the screwdriver slip out of the nick. But that blue moon and that fatal skid when they do occur usually happen as a screw is being driven into a piece of work whose surface has been finished with painstaking care. It is not funny to have a job of which you were going to be rather proud made into an eyesore by a cut from the blade of a slipping screwdriver. With recess-head screws that just can’t happen: the bit stays in its proper place until you remove it by a gentle pull.

Over-Standardized?

Radio manufacturers kicked heartily (and quite understandably) when the idea of the “utility” (or was it “austerity”?) I always forget) receiver was first mooted. As each of them had been turning out up to the outbreak of war, the only set which fulfilled the ambitions (with four valves plus rectifier!) “complete fidelity in reproduction,” “world-wide sensitivity” (with four valves plus rectifier!) and “the highest attainable selectivity” (with four valves plus rectifier!!) it was in no way surprising that every manufacturer should be reluctant to submerge his individual genius in the mass-production of a receiver for which no particular claims were made, though examination disclosed that it consisted of four valves plus rectifier! Some while ago the day of emancipation dawned: every maker was free to strike out his own unfettered line. And strike it almost and almost every one did by giving to the world his own proudly acclaimed version of its finest fifteen-guinea set—with four valves plus rectifier! What, even more noteworthy is that you can draw with fair exactness the circuits of far too many of those sets without bothering over much to investigate what is within the cabinets. Rough in your guess, triode—hexode—frequency—changer, var—mu I.F., D.D.T. and pentode output. Two—gang tuning for usual wave—change and A.V.C. arrangements. Pick—up and extension L.S. terminals and there you are, except that slight variations are to be found in the frequency—distorter, generally termed euphemistically the tone—control. I am all for standardization in the right places, but I am all against the over—standardized and uninspired medium—priced receiver of to—day.

Meteors and the E—Layer

Sir Edward Appleton threw a new light on an old radio problem in the course of a recent lecture to the Physical Society. Why the E—layer should continue to act as a reflector for wireless waves all through the hours of darkness and should not cease to exist soon after sunset, owing to recombination of its ionized atoms, has long been something of a puzzle. The calculated recombination rate shows that the process would normally be completed quickly when ultraviolet rays from the sun had ceased to arrive. Something must happen to keep ionization going; but what? From the evidence collected by four different teams of investigators there is good reason to believe that the E—layer is kept in ionized order by the meteoric showers and meteoric dust. It has been known for some time that a meteor leaves behind it as it passes through the upper atmosphere a trail of ionized gases from which radar echoes can be obtained. Visible trails usually occur some miles below the average after—dark height of the E—layer; but it is believed that the reflecting efficiency of this layer is maintained throughout the night by the arrival of countless small specks of meteoric dust. These do not penetrate so far as meteorites into the atmosphere and they are too minute to produce visible trails or individual radar echoes.

Further Evidence

If meteors and meteoric dust are the shattered fragments of much larger bodies which have been broken up in celestial cataclysms, it is to be expected that the mass of the dust specks will vastly exceed that of the bigger chunks of matter which give rise to the visible shooting—star trails. It appears that mathematical analysis shows that meteor dust should produce exactly the observed effects on entering the atmosphere. One particularly interesting point is the “settling down” of the E—layer after midnight, which every medium—wave D.X. fan must have observed: time and time again, the fading of the E—layer, was free from atmospheric pressure, no doubt, attributed the much better reception of North and South American stations obtainable in the small hours to the closing down of European stations. But that is not the whole story. After midnight, whatever you may be, you are on the forward side of the Earth as it rolls along in its orbit. If you walk rapidly through heavy rain, the front of your macintosh (always supposing that you had the coupons to buy one and the forethought to take it with you) becomes much better than the back. Similarly the forward side of the Earth, advancing into the clouds of meteors and meteor dust, receives by far the greater number of meteors and meteor dust specks. Hence between midnight and dawn the E—layer over this part of the Earth is kept in a specially efficient condition as a reflector of wireless waves.

Who was Kipp?

Readers who have to do with radar must have come across the Kipp relay, which forms part of the timebase generator circuit of some equipments. It’s a lopsided multi—vibrator, whose mission in life is to generate a long negative pulse when triggered off by the arrival of a short negative sync pulse. The two valves which it contains are interconnected by criss—cross resistor and capacitor arrangements. Normally, V1 conducts and V2 is biased back beyond cut—off. The sync pulse closes down V2 with a bang and this causes the sudden opening
of V. The latter valve is held open for a period depending on time constants in the resistor-capacitor criss-cross. Then it slams shut. The result is the generation of a long negative pulse at the anode of V. Ingenious, though nothing to make a song about. What has always puzzled me—or rather had puzzled me till recently—about this relay is its name. Kipp was always spelt with a capital K, so presumably this was the name of the circuit's inventor. Who was he? A back-room boy? A research worker whose achievements were commemorated by the name of this one circuit? Searches high and low failed to disclose any book, paper or article from the pen of Kipp. No one seemed ever to have heard of him.

The Mystery Solved
The truth about Kipp is that "there never was no sich person," at any rate not in the ranks of radar researchers. The mystery was cleared up the other day by O. S. Pickle, the Timebase King, when I consulted him in my quest for information. The term Kipp relay was imported from Germany, probably by a translator who, not knowing what it meant and deceived by the capital K, took Kipp for a personal name. The word in German is Kipprelais, a mongrel combination, for the relais part is French, meaning (as you may have devined) relay. Being a noun "Kipprelais" is spelt with an initial capital, as all nouns are in German. The Kipp part is from the verb kippen, meaning to topple over. Hence the proper English translation of the term is the familiar "flip-flop." Kipp, I fear, must take his place in the galaxy of radio and radar talent beside Professor Eddy, discoverer of eddy currents and Herr Doktor Litz, inventor of litzendraht wire.

Tailpiece

DESCRIPTION of electricity heard during the Great Switch-off: "Nice stuff, if you can get it!"

BOOKS RECEIVED
Service Valve Equivalents. Lists of British Service and U.S. Signal Corps valves and their commercial equivalents, including names of manufacturers where available. Valves with ratings over 150 watts, and obsolete types have been omitted. A section is devoted to the coding of Continental valves and base connections are given for representative types. Published by the Incorporated Radio Society of Gt. Britain, New Ruskin House, Little Russell Street, London, W.C.1. Pp. 25. Price, 5d. postage paid.

CAPTAIN of Britain's newest air liner or pilot of an air taxi, the man at the controls relies on his instruments. On their performance rests the safety of his ship. They are good instruments, precision-built by British technicians—men who have developed the latest radio, radar and electronic devices. Such men in the Bulgin Research Laboratory produce reliable components for every branch of radio and television. You will know a Bulgin component by its sterling performance.

BULGIN

A. F. BULGIN & CO., LTD.
BYE PASS ROAD - BARKING - ESSEX

www.americanradiohistory.com
VELOCITY MODULATION

When a discharge tube embodying a hollow resonator is used for amplifying or mixing ultra-short waves, the signal-to-noise ratio is largely determined by the fact that the noise power is proportional to the impedance of the input circuit, whilst the signal modulation applied to the electron beam varies as the square root of the input impedance.

According to the invention, the tube is operated so that the impedance of the input, as presented to the electron beam, is substantially equal to the reciprocal of the mutual conductance of the tube. A mathematical analysis of the working conditions is given in the specification to establish the underlying theory.

C. S. Burt. Application date, April 11th, 1941. No. 571768.

RADAR

The duration of each exploring pulse P is sufficient to overlap a part of the returning echo-signal P1. As the receiver is blocked for the period of each transmission, it can only respond to the residual part T of the echo, which, as will be seen from the diagram, represents the go-and-return time, and therefore the distance to be measured. The output from the receiver is passed through a limiter-rectifier to form a series of pulses S, S1, of constant amplitude, which can be integrated in a simple form of indicator such as a milliammeter. Accuracy is not affected by casual variations in the duration of individual pulses, provided an equal number of pulses are transmitted each second.

In systems using waves of continuously variable frequency, the normal beat frequency is utilized to derive a second difference frequency, which can readily be filtered out and integrated in a calibrated ammeter.

SHORT-WAVE AERIALS

For radiating centimetre waves over a restricted service area, a dipole is set at the focus of an upwardly directed parabolic reflector, a second reflector in the shape of an inverted cone being mounted vertically above the dipole. Energy from the aerial is first directed upwards, along the axis of the paraboloid, and is then broadcast outwards, and substantially downwards, from the inclined surface of the cone.

Both reflectors may be fixed near the top of an elevated mast, though by arranging the paraboloid near the base, the use of a long wave guide or feeder is avoided. The absence of any high-angle radiation prevents the type of interference that is caused by reflection from aircraft.

D. I. Lawson; D. Weighton; and Pye, Ltd. Application date April 8th, 1943. No. 576818.

CRYSTAL MIXERS

A SMALL amount of aluminium or beryllium, or of both these metals, is added to pure silicon by melting a mixture of the powdered ingredients in a crucible lined with beryllia, in an atmosphere of hydrogen or helium, or in vacuo. A plane surface of the cooled "melt" is polished, oxidized by exposure to air at a temperature of 1050 deg C, then treated with hydrofluoric acid. The metal contact is a tungsten wire 0.2 mm in diameter, sheared off to a point at 45 deg to the axis of the wire.

The resulting combination is stated to give a constant and optimum ratio of forward to reverse impedance at all points of the crystal surface. It deteriorates little with use, even when handling high voltages, and is particularly adapted for use as a mixer in ultra-short wave reception.

The General Electric Co. Ltd.; D. E. Jones; C. E. Ransley; J. W. Ryde; and S. V. Williams. Application dates August 23rd and October 18th, 1941. No. 571718.

STAND-BY RECEIVERS

MOBILE receivers, such as those used on police cars and aircraft, are maintained under stand-by or no-signal conditions for long periods during which current is being consumed. To cut down this waste, the noise voltages that are constantly present in the set are applied, in the absence of a signal, to a control bias which automatically reduces the anode current of the A.F. amplifier.

The circuit includes a limiting valve which allows the outward peaks of the noise-voltage to pass through to a squeezing valve, where they are built up into a cut-off bias for the A.F. amplifier, thus reducing the drain on the storage battery. A signal comes in, the level of amplification rises so that the noise voltages are swamped in the limiter, whereupon reception is restored to normal. Simultaneously a noise-suppressing circuit of known type automatically comes into action to free the speech channel from interference.

The British Thomson-Houston Co., Ltd. Convention date (U.S.A.), Jan. 22nd, 1943. No. 578201.

WAVE GUIDES

Waves of the transverse electric type are transmitted through a hollow guide, provided the wavelength does not exceed that to which the cross-section of the guide is resonant. In the case of a rectangular guide filled with air, the maximum wave is approximately twice the length of the wider side.

Wide-band wave guide.

As shown in the diagram two internal plates A, B are supported by centre ribs from the wider walls so as to lie, parallel with each other, on opposite sides of the axial plane of the guide; the space between them may be filled with dielectric. This subdivision of the interior increases the effective electrical distance between them, and so allows a longer wave to be transmitted by a guide of given external dimensions. The space between the plates A, B is a closed cavity, and by making it variable the guide can be adapted to accept a wide range of wavelengths, or, alternatively, to serve as a high-pass filter.

The British Thomson-Houston Co., Ltd. Convention date (U.S.A.), Aug. 16th, 1943. No. 578466.

TELEVISION RECEIVERS

To allow the picture to be seen more clearly in daylight or under bright artificial illumination, a glass plate of the same monochromatic colour, say yellow, as the fluorescent image is mounted on the observer's side of the viewing-screen. Extraneous light passing through the coloured glass is deprived of all but the yellow rays, and so is reduced in overall intensity before reaching the viewing screen. Any yellow light that is reflected back will also be reduced in strength, because of its double passage, as compared with the fluorescent rays from the picture, which only pass through the filter once.

The plate is preferably mounted, inside the usual hood, at an angle to the line of vision, the adjacent surface of the hood being blackened to prevent glare.

The British abstracts published here are reprinted with the permission of the Controller of H.M. Stationery Office, from specifications obtained at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1s. each.
The ERIE Double-Cup Ceramicon, the first of a range of new products scheduled for production in 1947, is the result of the need for a high voltage ceramic condenser that will carry appreciable current at high voltage and will retain the advantage of being a compact, single-piece unit.

As the cross sectional drawing shows, the ceramic dielectric has a centre web which is integral with the tubular casing, providing the required long creepage path. The silver plates are fired on to the ceramic on each side of the web and carried without interruption to the rim of each cup, thus greatly increasing the voltage at which corona occurs. Electrical connections are made by means of electro-silver plated metal terminals soldered to the electrodes.

This design has the necessary basic features for high voltage applications at high frequencies. The web section is sufficiently thick to prevent breakdown of the dielectric, and the design described provides adequate protection against flash-over at the rated voltage. Heavy metal terminals serve to dissipate internal heat and provide a 360° contact for the current to fan out to the electrodes. Rating is 5 KVA.

The ceramic dielectric employed is made of the same titanium dioxide series as the well-known temperature compensating tubular Ceramicons. This material plus careful control of processing operations assures stability with respect to temperature, excellent retrace, and high Q factor.

RANGE AND CHARACTERISTICS

<table>
<thead>
<tr>
<th>TYPE 741A</th>
<th>Standard Capacities</th>
<th>Temperature Coefficient</th>
<th>Peak Wkg. Volts DC at Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MMF</td>
<td>P100</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>30 MMF</td>
<td>P100</td>
<td>6,500</td>
<td></td>
</tr>
<tr>
<td>39 MMF</td>
<td>P100</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>61 MMF</td>
<td>N750</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>75 MMF</td>
<td>N750</td>
<td>7,500</td>
<td></td>
</tr>
<tr>
<td>100 MMF</td>
<td>N750</td>
<td>5,500</td>
<td></td>
</tr>
</tbody>
</table>

Test Voltage: 50 cycle RMS equal to peak working voltage.
Temperature Coefficient:
P100 = plus 100±30 parts/million/°C.
N750 = minus 750±120 parts/million/°C.

Watch this page for release date and for advance information on other new products.

FACTORIES IN LONDON, ENGLAND. TORONTO, CANADA. ERIE, PA., U.S.A.
Advertisements

"PETER PAN"
MIDGET ELECTRIC RADIO
YOU CAN BUILD IN THREE HOURS
The "PETER PAN" model 461U is an entirely new
conception of home constructor's kit. When com-
pleted the constructor has a receiver of the highest
performance and appearance of the best factory-
built model. Designed by experts for ease of
assembly and wiring.

TECHNICAL SPECIFICATION:
- AMPHIFIER. A 6J7 valve is used as
variable MU pentode giving maxi-
mum sensitivity.
- DETECTOR. An 6J7 or KT660
valve being used as an anode bend
detector which in combination
with specially designed high Q coils
gives excellent sensitivity.
- OUTPUT STAGE. A
25A00 valve is used which with
careful matching gives
approximately 2 watts
undistorted output.
- RECTIFIER. A
half-wave recti-
fler U11 is em-
ployed.
- MAINS SUPPLY. 200-250 volts AC or DC mains.
- OVERALL SIZE. Height 7", Width 12", Depth 72".
- CABINET. Black and white plastic of modern style,
giving a very attractive
finish to the completed receiver.

Price 9 Guineas
plus Tax (£2 - 0 - 7)

DESCRIPTION CATALOGUE IN COLOUR ON
RECEIPT OF 2d. STAMP.

DELIVERY PER RETURN

H. P. RADIO SERVICES LTD.
Tel.: Aintree 1445 55, County Road, Liverpool, 4 Estab.1935

Advertisements

SIFAM RADIO SERVICING
D.C. TEST SET
Type RT.10.
- 12 D.C. Ranges.
- No switches to go wrong.
- Long clear scales.
- Positive push-button selection.
- Accurate in any position.
- Made to stand heavy
overload.
- 1,000 Ohm per r.

SIFAM ELECTRICAL
INSTRUMENT CO. LTD.
TORQUAY, DEVON.

THE TECHNICAL ADVISORY BUREAU
(Principal—J. W. B. Sc. Tech. (Hons.) A.M.I.E.E.)
Can call upon the services of over fifty
engineers, each a specialist in his own branch
of radio or electronics.
Let us know your technical problems.
We can help you to solve them.
42, BARN LANE, GOLBORNE, NR. WARRINGTON
Write for details of our services to the trade and amateur
MARCONI INSTRUMENTS LTD
Masters of Measurement in Communications
can now supply their

DISTORTION FACTOR METER
TYPE TF 142E

FOR IMMEDIATE DELIVERY

Evolved for investigating distortion in AF amplifiers, the instrument directly measures the total harmonic content of voltage wave forms. Meticulous workmanship ensures accuracy and trouble-free performance. Full specifications available on request.

MARCONI INSTRUMENTS LTD
ST. ALBANS, HERTS. Telephone: St. Albans 43236
Northern Office: 30, ALBION STREET, HULL. Hull 16144
Western Office: 10, PORTVIEW ROAD, AVONMOUTH. Avonmouth 438.
Southern Office: 109, EATON SQUARE, S.W.1. Sloane 8615

The PIFCO ALL-IN-ONE RADIOMETER

tests everything electrical
RADIO, HOUSEHOLD APPLIANCES & MOTOR CAR LIGHTING ETC!

25/-

Ask your local Factor to show you one of these remarkable instruments and to put your name down on his waiting list.

www.americanradiohistory.com
INDIVIDUAL DESIGN
PARTRIDGE Precision Built TRANSFORMERS wound to suit individual requirements now incorporated:—Silver plated turret terminals giving a low potential drop and carrying up to 15 amps. Adequate room on each for easy soldering of all external circuit wires.

Firm clamping of the laminations by means of scientifically designed pressure die-castings.

Interlocked fixing feet providing alternative mounting.

Illustrated above is mounting style "DNN" which can be employed if desired on all components wound to suit special requirements.

AVAILABLE STOCK
A comprehensive range of mains and audio components is now available from stock, and we can despatch small quantities of these per return.

Please write your name and address in block letters and include 3d. for booklet containing technical details, delivery and prices. These booklets explain aspects of pick-up design, including the "pick-up element" design leading to the use of 4 and 8 volt systems; the importance of adequate and constant point pressure and its practical achievement; correct phasing systems; pick-up weight, point pressure and vertical travel; etc. We shall be glad to send you for our list detailing these components. Our stock range now covers almost all normal requirements, and by availing yourself of this service you will save the inevitable delay in the production of a special component.

CATALOGUE
A new catalogue illustrating various mounting styles is now available. This incorporates full data on our components, including fixed dimensions, weight, method of termination, etc. You are invited to send for a copy, issued free of charge.

Partridge

TELERADIO have 50 only, 5 all-wave picture superhet receivers, size 7x6x3/4", these are packed complete with genuine battery pack or battery, together with lightweight headphones and all leads and plugs; sensitivity very high, and Associated Receiver Component Parts can be guaranteed, illustrated leaflet is available as supplies are limited, when ordering order is advisable; in sealed carton at 10gns post paid; deposit will secure.

All 5-25v all-wave Receivers, 12-gns: 4.5-watt a.c./d.c. amplifier, £4/17/6; 4 all dry storage, £5/18/0, 4 battery trf, £4/12/0; all above include valves, but speaker extra.

REPLACEMENT component units (factory assembled), 5v model 50a H/G chassis, 12-gns, plus P.T. 54-56; 6, 65, high sensitivity amplifier for a/c/dc, suitable for electric guitar, etc., £6/6. B.R.I. 10-watt gram. amplifier, with record player, £2/8/9.1.

COMPREHENSIVE blueprint service is available for all available components, blueprint will gladly be forwarded on receipt of stamp.

COMMENTS.—Head sets (for importance), can be used on ext. s.r.a., 12/6 pairs, high sensitivity coil packs for all purposes, from 30/-; iron cored 6 g.t. transformers, 15/-6/6; Asphaln valve holders, 9d each, 7/6 doz; mains trans., semi-str.m, first quality, 150v b.t. 5 and 8 g.6, 25/-.

THE TELE RADIO Co., 179, F.0. St., London, E.18; and 155, High St., Ilfracombe, C. 7338 and Ilfracombe 597.

B. R. I. 10-watt gramophone amplifier; the capacity of the transformer will permit the use of a transformer for the amplifier, 8 watts push-pull trf output, price includes transformer, 12/6. Quality trio, includes ribbon magnet speaker, large output transformer and 3-valve amplifier; also available with 15 watts push-tetrode output, ideal for reconditioned reproduction or public address; 25/- stamp for price list.

COMPACT 120. and 6x6 Superhet transmitter, 15/-; 25/6 for mobile, £15. radio receiver for mobile and field use, on 12 volts D.F., 12/15 G.C.S.B., 60/-, 220-850-1500 mtr., complete in attractive oak grained finish, complete with instructions, size 13x7x5, price £12/6/6 incl. tax.—Doric Radio Co., 56, Church St., Darlington.

MIDGETS, 50 all-wave receivers £26; D.F. parts removed, new front panel, bass and treble boost with, with new 3-valve coupled push-pull output (2-PX4), gain input, other refinements, complete with loudspeaker, £15 10s. available at Channel inputs, attractive cabinet with chromed grill and finish, price includes cable and use latest type V.A. valves throughout; world receiver, 240-3400 mtr., by request.—Adams Radio, G21/HH, 655, Fulham Rd., London, S.W.I.

NEW RECEIVERS AND AMPLIFIERS—SECOND-HAND
1155 R.F. receivers, excellent condition, R. 16 to 4,000 metres, £21.55.

B. R. I. 10-watt gramophone amplifier, £2/7/0.

In nearly new condition, realized and calibrated, guaranteed working order; £17/10. Satisfaction guaranteed.

R. 16 to 4,000 metres, £21.55.

We shall be pleased to quote on any requirement of high quality, and are prepared to undertake to complete a modern receiver. All our components are genuine, and we are prepared to supply cabinet, drawings and diagrams, everything necessary to complete a modern receiver.

We supply to existing manufacturers.—J. L. C., Whitby Rd, Caterham.

6192.5-12 valve Amplifier; new, new Libre. £15.50.

1807. Individually wound coils, new and used. £1.50.

BRIERLEY "Ribbon" and "Armature" pick-ups. Please write your name and address in block letters and include 3d. for booklet containing technical details, delivery and prices.

THE H.F.A. all-wave and b.f. microphone, £1.50. We shall be pleased to quote for any large order of these units.

BRAZILS and TURKS. Please write for list.

CHARLES AMPLIFIERS.—Announcing new version of their famous HF.A. 4-valve amplifier—the HF.A. incorporating a pre-amplifier to enable the use of moving coil pick-ups direct; this amplifier in conjunction with the Lexington moving coil-pick-up set results in a top quality set. B.A.E. twin rotating pickup gives the highest obtainable fidelity of reproduction, the complete set is guaranteed complete and the HF.A. 4-watt cathode follower output for crystal or pick-ups, HF.A 2 stage gate in a standard case; 2 valve push-pull; HF.A.2 stage gate and crystal push-ups; tuner unit TC2 combination superhet, £5.6/6; £6/6; £6/6, D.F. powers 2/6 each; full kits or separate components available immediately; detailed instructions for comprehensive catalogue.—Charles Amplifiers, 10, Palace Gate, Kennington, W.8.
G.E.C. microphone used 68G7, receiver, 12/6; and nut.

April, 1947

RO Senior, latest model, complete set coils, nucleus and others; all parts fresh, extras; best offer over £50. - Box 7020. [7172]

MARCONI 11-valve comm revr, mains operated, 15365, £30, or Ava part exchange. - Box 6710.

HALLICRAFTERS S-20 Sky Champion, complete set spare parts; 100 watts output, large new, set of spare valves; £25. -68. Hamilton Road, Ilford.

FORD set Echophon communication receiver, Model EC-18, with bandspread, new, just received. - U.S.A., £46. - Dalston, Carlisle.

H.M.V., model 907 radio television receiver, complete set parts; 11/15 in x 11/15 in, across-"; offers over £55, Park View Rd., Lytham, Lancashire.

W.R.G. phase splitter, separates inputs radio and gram, in cradle finished cabinet - Offers to Bailey, Bannington, Nott. Tel. 270.

RCA, 15-valve automatic motorised tuning, 5 wavebands, bandspaced magic eye, walnut console, overhauled, £45 - Box 759, Hughes Advertising Agency, S.W.1.

ARCHITECT communications wireless receiver, receiver and 263 parts; 9" x 7/1/2" x 4"; good condition, £10. - Box 7011.

FOR sale, S.X. 26 as new per owner, with 13 parts; also new H.R.O. with 3 coils 6 val. and 20 watts output. - £25. - 69 Cheekleston Rd., Oldal, Bradford. [5494]

S.X.114 Hallicratter model receiver, £35; ex- mediocre condition, £10. - Box 7019.

G.E.C. 12-valve set (20G7, £45; 20G7 410-8, £65; 410-8 in piggy case). For sale, £70 - Box 7021.

FOR sale, R107 communications receiver, 11/15 in x 11/15 in, across-"; various parts, £100. - Box 7026.

6 - 8. 7v. Quality amp. and B.T.H. torroid speaker, £15; amp. £9; audio quality 90 pence. - 77. Chadwick Rd., Chorlton, Manchester.

T.R.E., television, Marconi model 704 in perfect condition, £25; Mullard capacity and resistance bridge, good, £10; and unused Canadian walkie-talkie receiver, complete, with battery, £10. - Box 7016.

H.B. National, senior, with 9 coils, mains power pack, hardly used, £15; few tubes used. £2. -606G7, 610E, 685C7, 6AB5, 5x 5p.; £10...-5. - E. Bartley.
COMPACT sin oscilloscopes, combines all of
the necessary requirements for the
amateur at reasonable price; switching
provides access to X and Y plates direct or
through high gain amplifiers, input poten-
tio meters calibrated in volts, built-in sweep cir-
cuit, tropical construction, 50kHz tube work-
ning at 1,100V, guaranteed 12 months and
fitted with latest BVA valves throughout,
world patents pending; full catalogue on re-
quest; price £25s.—Adams Radio, 6221HIX,
655, Priory Rd. London, W.6. [7183]

SPECIALISTS! Experimenters! Nuplans,
the test specialists, announce besides
the television test pattern generator the
Nuplans signal tracer and fault finder; see the
trouble—hear the trouble! Makes servicing a
pleasure. Also the battery signal generator,
simple to build up, covering all frequencies
up to television, has features found only in
expensive gear; plans, circuits, details in full
2/6 for each of the above. Note: On Signal
Tracking, 1/4 and stamp.—From E. N. Bradley.
"Whinnie Knowe," Escola Cliff, Senem
Crawford. [7110]

VALVES
813 £82, 9s. 9d., 8s. 9d., 5s. 6d., 5s. 5d. for each
new, what offers? Box 1054. [7120]

CIRCUIT COMPONENTS
1 Prew. amp., Osc., Mixer, 5 I.F., Det.,
Video Amp. 1 F., Frequency 12 Mc/s, Band-
Width 4.5 Mc/s, Co-axial input and output
sockets. External source of L. T. H. T supply is
required. Manufactured to string.
C. W. O. — sold by each famous makers as R.G.D., Pye and Murphy.
Brand new and unused in Manufacturers' sealed cartons. Complete with 10 Mazda
Valves.

WIRELESS INSTRUMENTS
(LEEDS) LTD.
54-56 THE HEADROW, LEEDS, 1
—Tel.: 22226—

YOU can become
a first-class
RADIO ENGINEER

We are specialists in Home-
Study Tuition in Radio,
Television and Mathematics.
Post coupon now for free
booklet and learn how you
can qualify for well-paid
employment or profitable
spare-time work.

T. & C. RADIO COLLEGE
North Road, Parkstone, Dorset
(Also attend [7108]—

Please send me free details of your Home-
Study Mathematics and Radio courses.
NAME
ADDRESS

By direction of the Ministry of Supply, at
the Ministry of Supply Depot, 12-14, TOWER BRIDGE ROAD, S.E.1.
(Adjoining Old Kent Road and Close to the
Bricklayers Arms Station, R.E.)

MISCELLANEOUS NEW & SURPLUS STORES & EQUIPMENT.

By Stocker & Roberts
at the Depot, as above on the THREE CON-
SECUTIVE DAYS THIS WEEKEND—WEDNES-
DAY & THURSDAY, 15th, 16th and 17th
April, 1947, at 11 a.m. each day, with a lunch
interval from 12.45 to 1.45 p.m.

The Stores will be ON VIEW on Thursday,
Friday and Saturday from 10.45 a.m. to 4.30 p.m.,
and on Saturday from 10 a.m. to
1.30 p.m.

Admission to viewing and sale will be by Cata-
logue only—price 6d.—obtainable from the Au-
ticantors’ Offices, 30-32, Lewisham High St.
S.E.13.

Telephone for the Auction Stores Department:
LIL/GREEN 2137.
ARMSTRONG

Model EXP 83

ALL-WAVE 8-VALVE SUPERHET CIRCUIT

Price 14 gns. plus tax

Model UNI-83

ALL-WAVE 8-VALVE SUPERHET CIRCUIT

incorporating wave band expansion, e.g. the 16-50 m. band covers just over 20 inches on the large glass scale, treble boost control, grammaire switching, all controls work on both radio and gram. High quality push-pull output gives 5 watts audio. For 200-250 v. D.C. or A.C. mains.

Provisional Price 14 gns. plus tax

* Model EXP 53

ALL-WAVE 7-STAGE RADIOGRAPHER CIRCUIT

This new radio chassis incorporates wave-band expansion, incorporates all types of wave-band controls work on both Radio and Gram. 4 j-watts; R.C. coupled output. Supplied complete with full size speaker. This chassis has a high performance, good quality reproduction, and represents excellent value for 25-35 gns. v. A.C. mains.

Price £13 plus tax

* Owing to the National Emergency and the consequent loss of production we may be compelled to suspend this Model temporarily. We shall, however, do everything possible to avoid this.

Model AMP14

HIGHGRADE AMPLIFIER CHASSIS

Two inputs, bass compensating circuit, treble boost control, 14 watts push-pull output preceded by 4 triodes.

Price 13 gns.

Demonstration Sets are now available for interested callers to hear and are supplied with complete technical specifications are now ready.

ARMSTRONG WIRELESS & ELECTRICAL CO., LTD.
WARTLES ROAD, HOLLOWAY, LONDON, N.7.

Phone : NOrth 3213

www.americanradiohistory.com
R. R. DEVELOPMENT LABORATORIES LTD
CONSULTING ENGINEERS

TRANSFORMERS, CHOKE & COILS to your own specification. Delivery 7 Days.

ALL-WAVE SIGNAL GENERATOR delivery after completion of present orders.

AMPLIFIERS 14-30 watt output, DECKS and CASES to your requirements.

Enquiries Invited.

Telephone: Bfd. 4902.

BARNARD RD • BRADFORD

PORTABLE automatic radio gram, latest American, 8-valve, short and medium wave, crystal pick-up changer, plays eight records, operates on ac/dc 100-250 volts, excellent volume and sensivity. In-built frame aerial, the whole contained in neat leather suitcase, weight only 16lb., 15s.—Box 7052. [1718]

WE have received numerous inquiries for delivery of the Sound Sales polyphonic radio gram fitted with automatic record changer; some customers state that they have been promised seven days for delivery by radio dealers. We wish to make it perfectly clear, without prejudice to all concerned, that although we are preparing a model with automatic record changer, we have not authorised anyone in the trade to give any delivery promise; in fact, the model has not been released. The moment we are in the happy position to announce this addition to our range of all agents, appointed by Sound Sales, Ltd., will be in possession of a demonstration model. [1719]

TRANSMITTING EQUIPMENT

RCA ribbon microphone, brand new in built-in transformer & grip which on desk stand, 49/10; $5.00 high speed coil equipment, comprising motorised Xmitter, type BR1000-5U recorder & Contactoretape TPF00-742 tape pulley and six rolls of tape, £30 the three.—Hill, Larkswood, [1719]

COMPONENTS—SECOND-HAND. SURPLUS VALUE! Matt has it.

SPECIAL offer loudspeakers, w/lead & jack plug, 5/- each.

SPEAKERS: P.M. 4 in 17/6, 5 in 15/6, 6 in 12/6, 7 1/2 in, all 22 6, all less transformers; transformers (output) to mate. CONDENSERS, 0.1, 0.01, 9/ doz. 8 mi (canned), 0.001, 0.0001 mfd. (per yd), 6/6, all 500 working 8 mi electronics (chassis mounting), 7/6.

LINE cord, 0.5 amp 60 ohms per ft. 2-way 1/6 per yd. 3-way 2/6 per yd.

VOLUME controls (Centralab), various values, 1/4 3/6, 1/2, 0.1, 0.01, 0.001 mfd, all 500 working. Hohner metal crystal pick-ups de luxe, £2/15/- (inc. P. Tax) metal 4/6, 3/6, 2/6, 1/6, all £2/15/- with complete set. On Chord Magnetic P/ups, 35/-, inc. P. Tax; television cable (erial lead-in), 1/- per yd; a large assortment of R.V.A. coated and all 6 yd long, in o stock; let us have your enquiries.

MATT RADIO SERVICE, (Kingston 4881), 152, Richmond Rd., Kingston-on-Thames, Surrey. [1768]

SOUTHERN RADIO'S Wireless Bargains:

LATEST Radio Publications: Radio Valve Manual, equivalent and alternative American and British types with all data, 5/6; Radio Circuits, fully illustrated, receivers, power packs, etc. 2/; Amplifiers, fully descriptive circuits, 2/6; Radio Coil and Transformer Manual, 2/-; Short Wave Handbook, 2/; Manual of Direct Drive Recording, 2/; Test Gear Check List, (Centralab), 1/-; Radio Terminal Book, formulas, tables, colour code, etc. 1/; Transmission Networks, 1/-; New and Used Radio Instruments, 1/-; Radio Service Manual, 2/6; Radio Constructors Manual, 3/; Radio Reactor Chart (Centralab), 1/; Reference Handbook, 1/-; Reference Handbook, Radio, cloth bound, comprehensive and up-to-date; Covering all Branches of Radio, 12/6; American Service Manuals, Spartan-Emerson, Crosby-Belmont (Parts 1 and 2), Stewart-Warner-Palit, 12/6 per volume. For sale extra on all publications.

YAXLEY type rotary switches, 2-way, 5/-, resistances, assorted values, 2 watt to 1/2 watt, 20/- per 100; permanent crystal detectors, 2/6 each; aluminium panels, 16 gauge, 16n in. 5/6; Cutler Hammer rheostats, 50 ohms and 10 ohms, each, Government Model brand new, 1/6 each (15/- per dozen); ex-Government buzzers, brand new, 1/6 each (15/- per dozen); Westelectors, type WX6 and Wii2, 1/- (10/- per dozen); Lufbra adjustable hole cutters for use on metal, wood, plastics, etc. 5/ each.

LATEST ex-Government productions: Miniature communication receiver (M.C.R.E.), A.C.D.C. complete with power pack, microphones, etc., for use on all voltages 20 to 5,000 meters, values brand new in original cartons, 10/-10, carriage and packing 5/- extra, all goods advertised are post-age extra.

SOUTHERN RADIO SUPPLY Co., 46, Lime St., London, W.C. [1768]

DEER Pan midget mains receiver kit, in sealed carton, unwanted present; 10/-.

Baring Rd, Southborough, Hants. [1778]

EXPERIMENTER'S surplus; many valve types, 0.1 mfd C.R. tube, mains transformers, P. Wold 1942-45—Box 6096. [1718]

NEW and used R.X. and T.X. components: £15 the lot, or separate; send for list; Ex Hart — Palframan Newbun Nusham, Dartington. [1714]
BERRY'S (SHORT WAVE) LTD.

Round the World with the
"Q-Max"
All Dry Four

A flick of the knob brings you station after station on the Short-Wavebands—full of excitement, interest, pleasure and education. Hairbreadth tuning simplified controls. The inclusion of all dry valves does away with messy accumulators.

FEATURES

VALVE CIRCUIT

INS RF Amplifier; ICS Detector; ICS LF Amplifier; ICS Output. Price: 12 guineas.

(Speaker, Battery and Cols extra.)

Purchase Tax £2.17.5.

JUST OUT!

The "Q-Max" VHF CONVERTOR circuit refinement noted not found in any other make plus advantages of MONO-UNIT COILS

Full Vision Calibrated Scale; One knob tuning and Extra Top Band Coil Range. Price with (20 Mics or 56 Mics Coil Unit) 19 Guineas. (Extra Coil Units 30 each.)

OTHER "Q-MAX" PRODUCTS

Chassis cutters—1/2" (Octal) 10/6, 11/4" and 12/6. (Post 9d. extra). Complete Slow Motion assemblies—10/6, 50-1 C.A.O. "R" meters for AR88's 59/6. Tank Coils Units, for powers up to 50 watts £25/0. Up to 150 watts £45/6/6.

Obtain your local "Q-Max" dealer or direct from—

BERRY'S (SHORT WAVE) LTD.
21, HAYMARKET, LONDON, W.C.1
(Adjacent Chancery Lane)

TELEPHONE: HOL 6231

ILLUSTRATED CATALOGUE

W.W.T. 6d. Post Free

CHALLENGE BRITAIN RADIO—A few selected lines from our latest list. TRP coils, with reactions, medium, long wave, with diagram, 8/6 pr. superhet coils, all-wave, Ac. and Dc. with diagram, 10/6 pr. If transformers, 45c ac 12v. 200 watt condensers, 0.005c, less feet and trims, 9/- ea.

Dismantled transformers—Mo or GOVERNMENT surplus.—R/A.F. offers.—M/A.A. 2X2, 4X2, un-damaged, with metal grille. 5/- ea. damaged 2/- per no. Metal or mica condensers from 0.0001 to 0.5 mfd. all new, 10/6; parcel of 72 new assorted resistors, 1/-; parcel of 200 domes to 1 meg, special parcel of new and used goods. excepted delivered valuation, 1/-; money refunded if not satisfied.

SPECIAL purchase of brand new ex-Government miniature radio receivers, covering 4 wavebands to 3,000 metres, for £/od or more. battery operation, supplied complete with ear phones, power pack, instructions and all accessories. 27/19; these receivers were used in the Resistance and a limited number only available. Please order c.o.d.

NUMEROUS other lines in stock, including amplifiers, pick-ups, etc.; callers always welcome; trade supplied; terms, cash with order or c.o.d. over £1; send for latest list.—W. — Charles Britain (Radio), Ltd., Radio House,23, WOODSIDE street, London, E.6.

SELENIUM metal rectifiers, guaranteed charger kits, h.t. rectifiers, no surplus stocks.

SELENIUM metal rectifiers, damp-proof aluminium cases, made to our insturctions by manufacturers' guaranteed, interesting and informative instruction sheet with each rectifier; 33–82; 200 ma, 20/6; 100 ma, 20/6; 30 ma, 10/6; 15 ma, 10/6; 7 ma, 7/6; 3 ma, 7/6, without hinged lid, £6/6. new, 10/6; §750. new, 7/6; with hinged lid, 8/6, new; 10/6 or over, 15/6, new.

Purchase Tax £3.7/6.

INSTRUMENT rectifiers, M.B.S. 1 milliamp, also 5 ma for Avo or Avoinor, 15/6, post 3d.

M.B.S.—embroiders in stock for converting valve type chargers to metal rectification, all types; charger kits, large 12v rectifier with wristband transistor, and battery charger for 2V to 12v charger, weight 7lb, no resistor bank, numeral meter needle. Ac. 12v charger, with 4amp rectifier and 75watt transformer, 61/6, post 1/-; ditto with 2amp rectifier, 35/6, post 10/-; with 3amp rectifier, 12v 5amp type, with transformer, 35/9, post 10/-; with 5amp rectifier, 12v 10amp, for small radio store, 150watt transformer, metal bullet bulb for 1 to 20 valve sets, 17/-, post 6d., 15 sets, 3/-.

WEIGHT 1/2 lb. per unit.

Tel. 26/1.

CHAMPION, 43, Upstairs Way, London, W.C.2

QUANTITY Belling-Lee 5-pin plugs and sockets, also quantity radio 2-pin; offers Box 6937

U.S.A. Government surplus.—Lightweight headphones (15/-), earmuff, £1/15; £2, £1/15; £2; 19/6 pair, post free; adjustable microphones, £1/15; £2; 19/6 pair, post free; Government surplus—P/O type carbon microphones, £1/15; £2, post free; headphones with built-in microphone, £1/15; £2; R.A.F. throat microphones, 5/11, post free; receiver (10 to 300 ma) £1/15; £2; Transistor 4-way flexible telephone leads, tagged ends, 25s; long 5/11; post free; new 2½ watt leads, £1/15; £2; new 1½ watt leads, 1/-; 10/- dozen.

ADMIRALTY surplus—New nickel-plated tele- scopes and binoculars. Eight different makes, 3 x 50, £4, 7½, only to clear, usual price 5/-, our price 2/6 each, plus 1/6 post.

CHASSIS and panels in aluminium, from 15/- for half a metre, 45/- for a metre, plain or punched for valveholders, etc.—Mead—6, Canal Street, Warrington, 19/6 pair, post free; adjustable microphones, £1/15; £2; 19/6 pair, post free; Government surplus—P/O type carbon microphones, £1/15; £2, post free; headphones with built-in microphone, £1/15; £2; R.A.F. throat microphones, 5/11, post free; receiver (10 to 300 ma) £1/15; £2; Transistor 4-way flexible telephone leads, tagged ends, 25s; long 5/11; post free; new 2½ watt leads, £1/15; £2; new 1½ watt leads, 1/-; 10/- dozen.

ADMIRALTY surplus—New nickel-plated tele- scopes and binoculars. Eight different makes, 3 x 50, £4, 7½, only to clear, usual price 5/-, our price 2/6 each, plus 1/6 post.

CHASSIS and panels in aluminium, from 15/- for half a metre, 45/- for a metre, plain or punched for valveholders, etc.—Mead—6, Canal Street, Warrington, 19/6 pair, post free; adjustable microphones, £1/15; £2; 19/6 pair, post free; Government surplus—P/O type carbon microphones, £1/15; £2, post free; headphones with built-in microphone, £1/15; £2; R.A.F. throat microphones, 5/11, post free; receiver (10 to 300 ma) £1/15; £2; Transistor 4-way flexible telephone leads, tagged ends, 25s; long 5/11; post free; new 2½ watt leads, £1/15; £2; new 1½ watt leads, 1/-; 10/- dozen.

ADMIRALTY surplus—New nickel-plated tele- scopes and binoculars. Eight different makes, 3 x 50, £4, 7½, only to clear, usual price 5/-, our price 2/6 each, plus 1/6 post.

Connections housed at end of handle—away from the heat!

There’s no corrosion of the connections in the Solaon Electric soldering iron. Tucked neatly away at the end of the handle, the hot end can’t get at them. Essential rubber sleeve cord grip prevents sharp bend in the handle. The heater is wired inside thecope holder—giving constant heat; no waste of energy! Features that make Solaon soldering quicker, cleaner, safer! All Solaon irons are sold with 2 ft. of handle, 5-tube 3-tube flexible. Made for the following standard voltages: 200-230-250-300-400 V.A.

Made in England.

Illustrated shows standard 240 volt model. Other types and prices for various specialised jobs.

HENRY’S RADIO

A further selection from our comprehensive stock.

MIDGET TWO GANG 0006, 218 x 231, 3 in. with levers. Various models in present stock.

Midget I.F. Unit. In aluminium case 4 in., 4 x 1 x 6 in., through 4-in. Midget I.F. Unit, 175 volts, for midget radiators and condensers 1/2. New and Universal. Aluminium, 41 x 1 x 26 gauge, ideal for midget chassis, 1/3 each.

T.C. Midget, 2-in. 10 x 10 x 3 in. 2/6 each, midget.

Midget Chokes, 40 mil., 300 mil., 5 x each.

Midget 0.7f Trans, 4½ in. dia., 4½ in. high.

P.M. Speakers. Less trans., 2½ in. at 27s., 3½ in. at 35s., 3½ in. for Trans., 4½ in. and 5½ in. per pair. Complete. Phillips, Raytheon, and others available, 7/6, 1/2, and 3/6 each.

Main Engineered Speakers. 4½ in. trans. in Pioneer, 3½ in. Rams. 1,000 mil., 30 x each.

Line Cord, 30 mils per ft., 1 yd., 3½ yd. long, 100 mils per ft., 2 yds., 2½ yds., 5½ yds., 10 yds.

Core Radio Transformers, 6V., 15V.

Vibrators, 6- and 12V. 4-pin, 6½ each.

Pick Suppressors, 4-pin each.

Cash with Order or C.O.D. over £1.

Send stamp for list.

Whole sale and retail.

5 HARRROW ROAD, W.2

PADDINGTON 1008/9.
G. A. RYALL, 65, Nightingale Lane, Lon-
dale, 6/-11. Special order for 2½/ each.

RESISTANCES, assorted 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-

GLASS is 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-

GLASS is 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-

GLASS is 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-

GLASS is 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-

GLASS is 1½w, 2½w, all useful standard sizes from 820ohms to 1mfd, 30, 60, 120, 220, 470, 680, 1,000 ohms, 1mfd, 2mfd, 3mfd, 5mfd, 10mfd, 20mfd, 47mfd, 470mfd, 1,000mfd, 2,200mfd, 10,000mfd, per parcel by post is eightpence. No cash under 2½/.

KITS of radio receivers from 67½/- 4- and 5-valve receiver, also Kits for semi-midget, our latest kit—Wylwyn Star 1947, built in finished cases, all in kit form on the market for constructing. Full details, with each kit. 30/- per dozen; £2 15/6, per dozen.

FOR SALE:—Jones plugs, knobs, fixed con-
Radio

By ALFRED T. WITTS
A.M.I.E.E.

THERMIONIC VALVES IN MODERN RADIO RECEIVERS

An up-to-date book for service engineers, students and keen amateurs, and for all engaged in commercial wireless work.
10s. 6d. net

THE SUPERHETERODYNE RECEIVER

Gives all the information necessary for a complete understanding of the operation and working principles of this type of receiver. 6s. 6d. net

REPAIRS

Enables the average radio receiver owner to diagnose the ordinary troubles of his radio set and to remedy them himself. 2s. 6d. net

WORKED RADIO CALCULATIONS

Contains worked examples of most of the important formulae met with in radio courses. Suitable for those studying for examinations in radio. 6s. 6d. net

THE SERVICE ENGINEER'S FIRST CHOICE

'A Test Gear'

Mains resistance 1,000 ohm 2a
600 ohm 3a
Nickel-Chrome wire, spaced-wound on robust Ceramic former only 3xl
3 Heavy Brass Clips (one adjustable) One-hole fixing.

THE BEST SERVICE ENGINEER

Compact
Reliable

Order as per index

MORTON & DISMORE
52c Oldchurch Rd., Chingford, E.4
COUPPER wires, cotton-covered 1lb. reels, 18c.; 20c./1; 22, 24c./1; 26, 28c./1; 30, 32, 35c./1; 36c./2; 50c./2; 3/6; 5/-, 10/-, 20/-; 30/-, 50/-, 1, 2, 3, 4, 5, 10, 20, 50, 100/-; 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000. 50/-, 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000.

STERNS OF FLEET STREET

Sterns of Fleet Street

CABLE AND WIRELESS

STERNS OF FLEET STREET

Sterns of Fleet Street

Radio Equipment

American Radio History

For the past 80 years, we have been providing high-quality radio equipment to our customers. From the earliest days of broadcasting to the modern era, we have remained committed to excellence.

COUPPER wires, cotton-covered 1lb. reels

18c.; 20c./1; 22, 24c./1; 26, 28c./1; 30, 32, 35c./1; 36c./2; 50c./2; 3/6; 5/-, 10/-, 20/-; 30/-, 50/-, 1, 2, 3, 4, 5, 10, 20, 50, 100/-; 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000.

Valves, screen Grids, R.F. Chokes, and Cables

We offer a wide range of valves, screen grids, R.F. chokes, and cables to meet the needs of both amateur and professional radio enthusiasts. Whether you're looking for a single valve or a complete set, we have the options for you.

Radio Equipment for Sale

We also offer a variety of radio equipment for sale, including receivers, transmitters, and other accessories. Our inventory is constantly updated to ensure that you have the latest and most advanced equipment.

Contact Us

For more information or to place an order, please contact us at info@sternsoffleetstreet.com or call 123-456-7890. We're here to help you find the right equipment for your radio projects.
111 Pages
PACKED WITH INTEREST

The most comprehensive Radio and Electronic Component Catalogue ever offered is yours for the asking. All lines are by well-known manufacturers including a complete valve range — no job clearance lines whatsoever. A shilling postcard order will bring you this catalogue post-free.

SEND TO-DAY
B: I: T: S
63, London Road, Brighton 1, Sussex.
Tel.: Brighton 1555.

POST-WAR TELEVISION

The advance in Radio Technique offers unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. How can you do this quickly and easily in your spare time is fully explained in our unique handbook.

Full details are given of A.M.I.E.E., A.M.U.I.R.E. City & Guilds Exams., and particulars of up-to-date courses in Wireless Engineering, Radio Servicing, Short Wave, Television, Mathematics, etc., etc.

We Guarantee "NO PASS—NO FEE"
Prepare for to-morrow’s opportunities and put your chance in your own hands by writing for your copy of this very informative 110-page guide NOW—FREE.

BRITISH INSTITUTE OF ENGINEERING
TECHNOLOGY (Dept. 388)
17, Stratford Place, London, W.1.

EXRAF "Identification Friend or Foe" receiving and transmitting units, covering 155-185 Mc/s complete with 10 valves and 20 watts motor generator, 12v input, 480v 40ma output, also just arrived, I.F.F. model 5053 for 24v operation, price of either 79/6, plus 5/- carriage; the famous Canadian type 58 M.R. Walkie Talkie, complete with valves, aerials, headphones and microphones, batteries, etc., ready to switch on, 210/10 ex. carriage 5/-; a comprehensive list is sent to referber of ex-Service wavegong under

MISCELLANEOUS

SOLDERING DIFFICULTIES EXPLAINED

Have you been put off making a set because of soldering difficulties, either through lack of electricity or low voltage? Here is the answer—use the "Dorset" Hot Spot soldering outfit, in conjunction with any car battery (hired as necessary from path), as used in recent tests for construction of our coil packs, etc.; makes cleaner and neater joints and avoids damage to components: complete with instructions for use, £5/6—Weldon Radio Accessories, Ltd., Swnga, W.4.

OLD-STYLE AIR-Spaced COILS—10, Holmes Rd., Manchester, 10. [7153]
WRENN World, 52, 33, 9, 24, 26, 45, 57. [7196]
TRIMMER tool kits (new) given in exchange for old service sheets—Bugs, 246, High St., Harlenden, N.W.10. [7106]
TUBES—We stock a wide variety of—Gledhill Brook Time Recorders, Ltd., 84, Empire Works, Huddersfield. [7419]
IRON disc cores—FOR SALE.
What soldering points in large quantities available: samples—John Rowan & Co., 89, High St., Epping. Tel.: 2163. [7165]
SPARKS' data sheets offer the widest range of tested and guaranteed designs, in full size sheet form, obtainable in this country. [6622]
TINY Two, just released, a 2-valve all-day self-contained portable, 6½ wave length for individual listening to local stations on speaker, size 5¾ x 5½ x 4½ in, 18—volt HT: 2/6.
THREE-valve all-day portable, m/l waves, 9 x 6 x 5 in, a most popular set; 2/6. Send a stamp for full list (W).
SPARKS' Data Sheets (W), 9, Phoebe Rd., Bromley, 8.E.4. Tel.: Lee Green 0220. [6669]
PERSPEX sheet, 1/32 in, reduced from 10d. per sq in to 9d., cut to any size; discount for quantity. Stock free over 15 l. Enquiries, orders to Midland Hamgearn Co. 3, Shrubbery St., Kiderminster. [7067]
GROUP diagrams (individual designs) to order; chassis assembled from parts supplied; will act as consultant on radio, mech., or allied technical points explained. Write R. G. Young, 3a, Bridges Rd., Wimborne. [7113]
MR. R. W. EMERSON of Emerson Radio, late of 100, John's Wood Terrace, London, is opening the doors to his workshops at 14, Circus Rd., St. John's Wood; old friends and new will be especially welcomed, all new announcements for the present to 3, St. Ann's Terrace, Tel.: Primrose 1517. [719C]
COUGPHONE RADIO, 56, Derby St., Omg.—"The return of post mail order service. Please see display advt., page 49. A typical comment on our service. "I am very grateful to you and have no hesitation in saying that it is the fastest delivery of goods I have ever had." (W. S., 29/1/47.)"

A.MERICAN magazines can now be had a.
A pleat on a subscription basis; cost of one year’s supply, including postage, V.F.M. and Mechanical, £1.7.16; "Radio Craft," 1/6.—For complete list send stamp and request. To Wilken, Ltd., W.W. Dept., 120, St. George’s Rd., London, E.10. [7049]
WANTED, EXCHANGE, ETC.
WANTED, wireless sets for export.—J. W. Walker & Co., Limited, 19. [7106]
WANTED, E. S. Scott Philharmonic or Phantom, condition immaterial; price, parties.—Box 6566.
WANTED, Douglas, or similar power driven coil winder, single or multi, complete with 220v A.C. motor.—Box 6575.
WANTED, all-wave feeder unit with R.F. and I.F. stages; also Allied and Challenger multivoltage chassis.—Box 6474. [6669]
WE offer cash for good modern commi
LICENCE and all-wave receivers.—A.C.S. Radio, 44, Wimborne Rd., Bromley, Kent.

THE MERCURY CODE TRAINING
There are Candler Morse Code Courses for BEGINNERS AND OPERATORS. Send for Free "BOOK OF FACTS": It gives full details concerning all Courses.

THE CANDLER SYSTEM CO.
Candler System Co., Denver, Colorado, U.S.A.

WANTED, H.R.O. coils and instruction manual; state cond. and price. F. Mizen, 224, 1st Floor, Hastings.

SILICON steel sheet or strip mild steel sheet, sold in sheets or coils, any quantity, urgently required. H. Frost & Co. Ltd., Walsall, Staffs.

W. W. would like to make a circuit or to buy a circuit, any single vol. or in single vol. be bound properly, ready cash. C. F. Simon & Co., Deerness Street, 74, 75 Tavistock St., London, S.W. 1.

ANTENNA Co., Brussels. 7107a

WOULD exchange 5 valve high quality 12 volt set and King cabinet 31f, X311, 966, and record changes £60. for a first class R.C.A.R.88.

FOR exchange or sale I.F. Amp and single and single tube AMM. for 9/47 or 15/47 LI. tube; urgently required. Weymouth Radio Manufacturing Co. Ltd., Crescent St. Weymouth, Dorset.

URGENTLY wanted, A.C. autochanger. 12 volts and good motors or with without similar records. Taylor Instrument Co., Seaview, I.O.W.

WE need for production work 2 gauge components. Theaters, manufacturers, electrolytics, loud speakers, valves and all kinds of other components: have your offers without delay. —Write Boxe 6856.

G. V. SMITH & Co. (Radio) Ltd, require from the following manufacturers radio receivers and radiograms; all classes of radio and electronic equipment—Potters Mills, Potters Bar, Herts.

WE buy for cash, new, used, radio, electric equipment. We especially want radio, radiograms, test equipment, motors, transformers, recording gear, etc. —If you want a cash settlement, call with your set of phone to University Radio, Ltd., 22 Lisle St., Leicester. W. 1. Tel. 4647.

REPAIRS AND SERVICE

MAINS transformers wound, new transformers to original specification; full motor works and complete overhauls; first class workmanship, fully guaranteed. E. F. ELECTRICAL & RADIOTELEPHONE, 2nd Floor, 162 High Street, Walsall, Staffs.

L. L. W. for prompt deli-

Bury, 5, Hole Bury Rd., Jarrow, 3460.

WE HAVE THE FINEST STOCK OF BRITISH second-hand (Dept. W.2), Radio Service Test Gear.

PRAC TICAL WIRELESS SERVICE Manual.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOCK OF BRITISH second-hand Radio Service Test Gear.

WE HAVE THE FINEST STOC
SITUATIONS VACANT

GOVERNMENT Department. Vacancies for:

(A) RADIO engineers for stations in South of England. Applicants should have had previous experience in radio work, preferably in aircraft, and should be suitably qualified.

(B) RADIO OPERATORS for stations in South of England. Applicants should be prepared to work at all hours of the day.

(C) RADIO TECHNICIANS for stations in South of England. Applicants should have had previous experience in radio work, preferably in aircraft, and should be suitably qualified.

MINISTRY OF AVIATION. Appointment of Radio Mechanics, Grade II.

Applications are invited from suitable candidates for appointment as radio mechanics at Civil Aviation Radio Stations. Candidates must possess a knowledge of the fundamentals of radio and vacuum-tube equipment, and should be capable of assisting in the installation, testing, and maintenance of radio equipment. Applications must be accompanied by a letter of application and a detailed curriculum vitae.

APPLICATIONS must be made on a form obtainable from the Ministry of Aircraft Production, Civil Aviation Division, Ministry of Aviation, 10, Fleet St., London, E.C.

EX-P. ENGINEERS. Any ex-service engineer required—permanent. Kiltellon, Abingdon.

REQUIRED, test engineer with knowledge of high-frequency valves.

WANTED, radio mechanics experienced in assembling and testing amplifiers; good opportunity. W: District—Box 6857.

BUSH RADIO have vacancy for assistant to work on special installation, civilian age, qualifications and experience. To Power Rd., Chiswick. Box 7104.

WANTED, for engineering work on special circuitry. T.7A.

RADIO mechanics and electrics required for wiring and operating proprietary aircraft; write, giving full particulars of past experience and present employment. Box 6700.

TOOLMAKER required by Bound Sales, Limited. Good prospects. Available for permanent job for the right man; please state experience in toolmaking, type of toolmaking required. Box 6859.

SALES manager required by Sound Sales, Limited. Experience desirable. Box 7107.

FEMALE laboratory assistant required for electrical component and machinery work. Must be prepared to travel. Box 7097.

sales manager required by Birmingham area by sound equipment manufacturer raising high quality products. Must be willing to travel, have practical knowledge of sales and salesmanship. Box 7003.
LABORATORY engineers are required for development work on broadcast receivers. The laboratory is South West London, 300 minutes from Waterloo; please write, stating age, salary expected, experience and qualifications—Box 6705. [7080]

DESIGNER draughtsmen required by the Phillips Radio Laboratories, experienced in communications equipment (electrical and mechanical).—Apply in writing, giving full particulars, to Philips Transmission Ltd., Brab- way Rd., London, S.W.18. [7090]

DEVELOPMENT engineers by British Thomson-Houston, in the Manchester area; applicants must have had experience in development of radar equipment and preferably some knowledge of electrical engineering.—Please reply, giving full particulars of experience, to British Thomson-Houston, Box 693. [7091]

NATIONAL company require radio service engineers of proved technical ability for permanent situations in various parts of the country; opportunities for promotion.—Write, giving full particulars and state whether willing to move elsewhere, to Box 6987. [7164]

C HIEF engineers required for company manufacturing radio test equipment, to take full charge of design of new equipment; also responsible for testing departments and quality control.—Apply, giving age, experience, technical qualifications and salary required, to Box 6865. [7102]

REQUIRED by factory in London a senior radio engineer with sound technical training and experience of high power high frequency engineering, and development of industrial electronic equipment.—State qualifications, experience, age and salary required, to Box 6916. [7112]

YOUNG, energetic man with supervisory experience and technical background, to light electrical production, to train to take control of plant, employing approximately 100 females, North-East Coast. Write, stating age, salary and full details of experience and prospects, to Box 6941. [7121]

DRAUGHTSMEN and draftsmen required with experience in, and preferably of draughting (2) elect., preferably with experience on radio comm. equipment; both drawn or prefered. Apply, in writing, giving full details, to Philips Transmission Ltd., Brabway Rd., S.W.18. [7125]

OTTOR draughtsmen required, with experiment in light electrical engineering, for work on prototype equipment in connection with television transmitters; detailed draughtsman also required for similar work.—Apply by letter only to the Research Laboratories of the General Electric Co., Ltd., N. Wembley, Wdldon. [7041]

ELECTRICAL draughtsmen or engineers required with knowledge of public address equipment and the ability to prepare the theoretical and practical wiring diagrams, part lists, etc., necessary for large installations; some knowledge of draughting office practice an advantage; write, stating full particulars of qualifications and experience, also age and salary required.—Box 6706. [7061]

SERVICE department manager wanted for established radio manufacturers in London due to retirement of present manager; thoroughly experienced service engineer required, with knowledge of all makes of radio and television; good organisational ability and flair for correspondence; only men who have had previous similar position need apply; good prospects and working facilities; applications treated in strict confidence; write, stating full particulars and salary required.—Box 6954. [7091]

LABORATORY assistant required for acoustics and electrical work mainly with hearing aid investigations; applicants should be between 20 and 30, of medium build, have National or Higher National certificate in Engineering or Electrical Engineering, or have had equivalent experience, initiative and adaptability are more essential qualifications than previous experience of audio-frequency work; salary according to qualifications, with superannuation benefits.—National Institute for the Deaf, 105, Gordon St., W.C. 1. [7091]

DEVELOPMENT engineers, 24-28, with practical experience in the field of audio-graphics and audio-frequency work wanted for established manufacturer in Guildford-Farnham area; must have had at least one year's industrial experience in similar position, ability to tabulate and analyse results of reliable methods of taking and charting. Applications received will be kept on file, and an opportunity is given to the most suitable candidate of taking the position later if circumstances change.—APPLICATIONS must be sent to Box 6394. [6957]
SITUATIONS WANTED

EXECUTIVE A.M.B. Age 35, Radar, Radio, light electrical, requires change; salary £700 - Box 6998.

REPRESENTATIVE. travelling or similar, 15 years' servicing, desires change, Midlands preferred. - Box 6979.

R.A.F. wireless mech. 35/35, starts service, seeks sale and service, or other opportunity. - Taylor, 4, Edward Rd., E. Belfont, Mid. London. - Box 7171.

G. RAD. (British) I.R.E., ex-R.A.F., Col. G.W.M., with 2 yrs' civilian experience, age 26, fluent French and German, seeks post anywhere. - Box 6699.

RADIO engineer, Grad. I.R.E., A.M.I.E.E., 34, 8 yrs in Far East in civil capacity, desires responsible, progressive post, Far East preferred. - Box 6971.

RADIO technician, 10 yrs' wide experience, including research, development, lab. maintenance, requires progressive post, London area. - Box 6702.

BUYER, age 26, executive with radio and lighting manufacturers, requires similar position; can also take charge of transport and general office management. - Box 6973.

COMPETENT television and radio engineer, 7 yrs' pre-war experience, lst class C. G. and G. Service Certificates, now with manufacturer, desires field service position; 3, W or S.W. London area; own car, salary £7 week and car expenses. - Box 7021.

A. AVAILABLE to form of excellence services of qualified radio technician, with wide knowledge of salesmanship, business expansion and allied interests, unlimited experience with servicing matters; full responsibility taken; controlling interest preferred. - Box 6972.

EX-R.A.F. Flight Sergeant, radar mechanic, age 32, 6 yrs' pre-war experience, high standard of technical knowledge, desires progressive position; South Lancashire preferred, but not essential. - Box 7061. - Box 7072.

RADAR Office (38), amateur transmitter, age 42, 10 yrs' pre-war exp. in sales, service and retail management, seeks situation as retail shop manager or similar post where technical ability, business sense, and initiative can find reasonable remuneration; available April. - Box 6693.

TECHNICAL TRAINING

A. M.I.E.E., City and Guilds, etc., on "No Exam Fee" plan, over 95% success. for full details of modern courses in all branches of electrical technology send for our 112-page handbook, free and post free. - B.I.E.T. (Inpt. 386A), 17, Stratford Place, London, W.1. - Box 6700.

TUITION

THE British National Radio School.

OFFERS you a career.

WRITE today for free booklet describing our wide range of training courses in radio, Telegraphy, Telecommunications, Principles, Mathematics, Physics, and Mechanics; correspondence and day classes lead to A.M.I.E.E. examinations; we specialise in turning "operators into "engineers," and for this purpose our "Four Year Plan" (lead to A.M.I.E.E. status) is based on; A.M.I.E.E., I.R.E., with 5 C. G. and G. Certificates as minimum award. Our guarantee has no strings attached." - Studies Director, B.I.E.T., A.M.I.E.E., A.M. Brit. I.R.E., 88, Addiscombe Rd., Croydon, Surrey. - Box 5711.

ENGINEERING careers and qualifications.

BOTH Government and industry have announced and emphasised that young men with technical knowledge and qualifications must receive every chance to rise to the highest positions within their capacity, in post-war engineering and allied industry; write today for "The Engineer's Guide to Success" - 200 courses free - which shows you how the A.M.I.E.E. can become your passport. - A.M.I.E.E., A.M.I.E.C., A.F.R.A.S.E., etc., and covers all branches in radio, television, electrical, and mechanical engineering, aeronautical, etc. - THE Technical Institute of Great Britain, 89, Hammersmith Rd., London, W.2. - Box 6691.

THE Institute of Practical Radio Engineers - A properly-balanced Home Study course covering practical and theoretical aspects of radio and television engineering; the text is a valuable coaching matter for P.R.E. Service entry and provides an extra opportunity at pre-war rates; - moderate. - The Syllabus of Instructions for the Radio Engineer may be obtained post free from the Secretary, 30, Fairfield Rd., Crouch End N.8. - Box 6712.

HIGH VOLTAGE COMPONENTS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.001 MFD 5.000v.</td>
<td>working Tubular Condensers</td>
</tr>
<tr>
<td>2</td>
<td>.01 MFD 5.000v.</td>
<td>working Tubular Condensers</td>
</tr>
<tr>
<td>3</td>
<td>100 µFD 5.000v.</td>
<td>working Tubular Condensers</td>
</tr>
<tr>
<td>4</td>
<td>1000 MFD 5.000v.</td>
<td>working Tubular Condensers</td>
</tr>
</tbody>
</table>

NON-MAGNETIC TURNSTABLES

STROMBOSCOPIE MARKING

An essential accessory for serious PICK-UP DESIGN RESEARCH

SOUND SALES LIMITED

57 St. Martin's Lane, London, W.C.2

Temple Bar 4284

Works: Farnham, Surrey

Magentic Pick-ups

Mod. GP-6. Cosmocord's new Magnetic Pick-up and

Head, Model G-P7. Designed for good quality reproduction. New arm construction giving vibration-free suspension and adjustable needle-pressure. List prices in Gt.

COSMOCORD LTD • ENFIELD • MIDDX • ENGLAND

From your Radio Dealer when supplies are more plentiful.****
Partners in Creation

"LOWTHER-VOIGT"

Electronic Equipment and Accessories.

Demonstrations daily at

THE LOWTHER MANUFACTURING CO.,

Louter House, St. Mark's Road, BROMLEY, KENT.

Rev. 5225

COVENTRY RADI0

COMPONENT SPECIALISTS SINCE 1925.

HAVE YOU RECEIVED OUR 1947 LIST OF RADIO COMPONENTS?

THE MOST COMPREHENSIVE LIST AVAILABLE TODAY.

PRICE 30. POST PAID.

COVENTRY RADIO,

DUNSTABLE ROAD, LUTON, BEDS.

"ENGINEERING OPPORTUNITIES"

This unique handbook shows the easy way to secure A.M.I.Mecha.A.M.I.Brit.I.E., A.M.I.E., City and Guilds, etc.

WE GUARANTEE--"NO PASS--NO FEE"

Details are given of over 150 Diploma courses in all branches of Civil, Mech., E.E., Mech. Eng., Radi., Telecommunication Engineering, Training, Building, Govt. Employment, R.A.F., Maths., Matriculation, etc.

Safeguard your future; send for your copy at once—FREE.

"ENGINEERING OPPORTUNITIES"—Have you read the first edition of this free guide to A.M.I.Mecha.E.A.M.I.E., and all branches of engineering, building, and plastics? Become technically trained on "no pass--no fee" terms for higher pay and security.—For free copy write B.I.E.T., Dept. 287/81, 17, Stratford Place, London, W.1.

RADIO Engineering, Television and Wire less Telegraphy, comprehensive post courses of instruction.—Apply British School of Telegraphy Ltd., 179, Grafton Rd., London, S.W.9 (Edt. 1906). Also instruction at school in wireless for H.M. Merchant Navy and R.A.F.

AGENCIES

WHOLESALEs

Walters, 247 -9, have desirous contacting manufacturers in view sole selling agency.—Box 6707.

SOL: concessionaires car radio appointing agents in the South. For further information contact Wire. Service, Ltd., 122, Southwark St., S.E.1.

SOUTH Africa: engineer, M.A. (Cantab), having a wide experience of communication equipment and electronic devices, offers manufacturers representation in the sub-continent; in installation and service facilities will be provided if required; write, full particulars, to Box 7059.

BOOKS, INSTRUCTIONS, ETC.

RADIO TUBE Vade Mecum, by P. H. Brans, 12/6, an international reference handbook for gadgets to modern types: free quarterly supplement service.

-RADIUM SCINTILLOSCOPES-

showing proof, and effect, of storms exploding in the upper atmosphere; with the unexplained completely invisible alpha particles causing aecessing the light rays of interest: bright light will not hit on hitting round luminous screen, later viewed through lens system. Continuous action, radium remains active a thousand years: compact, well-made instrument, nickel tube 2" long x 1" dia., can be taken to pieces for viewing parts, reg. post free 3/-, inc. interesting leaflet on radioactive—C.B. Instruments, 35, York St., Twickenham, Middx. P0Pergrove 6597.

3 IMPORTANT AMERICAN BOOKS:

GHIRADI'S "MODERN RADIO SERVICING" 35/- (postage 1/6) R.A.R.

GHIRADI'S "MODERN PHYSICS COURSE" 35/- (postage 1/6)

CAMERON'S "SERVICING SOUND EQUIPMENT" including Public Address, Radio, Television (1946) 30/- (postage 1/-)

Limited supplies of these authentic textbooks are in stock; inquiries invited.

AMERICAN TECHNICAL BOOK CO.
37a, Kensington High Street, London, W.8 Westen 0781/2

RADIO CONVERTERS

-For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and innumerable other applications

We also manufacture—

Polar Electric Generating Plants, H.T. Generators, D.C. Motors, etc., up to 25 K.Y.A.

CHAS. F. WARD
37, WHITE POST LANE, HACKNEY WICK, E.9

Telephone: Ambert 1933

HARTLEY-TURNER

HIGHEST FIDELITY SERVICE

Following on our March announcement the plan of our high-fidelity service is taking shape. We believe that for the most demanding customers, this is the answer to a complex and difficult problem. Our store of technical knowledge is greater than that of any one of you but infinitely less than that of all. To provide the service we want you want we must have the facilities and the service and the plan is the very antithesis of "taste it and leave it". The past six months have seen re-established friendships all over the country and people wanting to make new friends. Soon we shall send our plan to everyone on our list. If your name is not on it you will not be included. Send by sending for the leaflet on our

H. A. HARTLEY CO. LTD.
152 HAMMERSMITH RD., LONDON, W.6

ALUMINIUM CHASSIS

An engineering job, not just a job of sheet metal. Fitted with fitted steel strips, for extra rigidity and tapped B.A. for cabinet fitting. Open ends give greater accessibility for assembly and wiring. Light, strong, easy to work. Being free from rust or corrosion, can be clean sheet iron finish, you get perfect bonding and everlasting finish.

PLEAS E NOTE OUR PRICES

Undrilled, 6lin. x 6lin. x 9in. deep £6 6/6
Undrilled, 7lin. x 7lin. x 9in. deep £6 6/6
Undrilled, 11inn. x 7lin. x 9in. deep £6 6/6
Undrilled, 12lin. x 7lin. x 9in. deep £7 6/6
Undrilled, 15lin. x 7lin. x 9in. deep £7 6/6
Undrilled, 17lin. x 7lin. x 9in. deep £8 6/6

Punched, 10lin. x 6lin. x 9in. deep for Midget, £8 6/6
Punched, with aperture for 4lin. Speaker and seven 1lin. holes £9 6/6

WIRELESS SUPPLIES UNLIMITED
204-206, Old Christchurch Rd., Bournemouth, Males.

EME for your individual requirements in ELECTRONIC EQUIPMENT.

EXAMPLE—A Current Impulse Generator giving a Rectangular Wave Form with Amplitude, Frequency and Duration Control.

THE ELECTRO MEDICAL EQUIPMENT LABORATORY LTD.,
247-9 Burnt Oak Broadway, Edgeware, Middlesex. Telephone: EDwood 0724

UNIT OSCILLOSCOPE

A NEW CONCEPTION OF INDUSTRIAL NEEDS

Interchangeable Amplifiers and Time Bases with a wide range of accessories cover every application. No loose wires, no unwanted controls, no complex switches, but standard snap-on units give rigid assembly with tailor-made performance.

LYDIATE ASH LABORATORIES
RESEARCH AND DEVELOPMENT ENGINEERS

Telephone: Hedebury 146/169

Printed in Great Britain for the Publishers, LINCOLN and BORE LTD., Dorset House, Stamford Street, London, S.E.1, by THE CORNWALL PRESS LTD., Poole Garden, Stamford Street, London, S.E.1. "Wireless World" can be obtained abroad from the following:—AUSTRALIA and NEW ZEALAND : Gordon & Gnock, Ltd., Title : A. H. Wheeler & Co. LTD.; EMPIRE: Imperial News Co.: Gordon & Gnock, Ltd. SOUTH AMERICA: Central News Agency, Ltd.; WILLIAM DAVSON & SONS (A.E.), Ltd. UNITED STATES: The International News Co.
For the ever-increasing applications where the maintenance of a high value of insulation resistance is of paramount importance, the T.C.C. "METALPACK" Tropical and "METALMITE" Miniature Tropical types are indispensable. By virtue of the aluminium tube, hermetically sealed construction, the initial insulation is maintained, even under the most arduous climatic conditions.

Wireless World
Advertisements

PAPER DIELECTRIC
Tropical
TUBULAR CAPACITORS

"METALPACK" TUBULAR PAPER CAPACITORS

"METALMITE" (Miniature) TUBULAR PAPER CAPACITORS

<table>
<thead>
<tr>
<th>Capacitance mFds.</th>
<th>Working Voltage D.C.</th>
<th>Dimensions</th>
<th>Type No.</th>
<th>List Price each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71°C</td>
<td>100°C</td>
<td>Lgth.</td>
<td>Dia.</td>
</tr>
<tr>
<td>.001</td>
<td>500</td>
<td>350</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>.002</td>
<td>500</td>
<td>350</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>.005</td>
<td>500</td>
<td>350</td>
<td>1.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.01</td>
<td>500</td>
<td>350</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>.02</td>
<td>500</td>
<td>350</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>.05</td>
<td>500</td>
<td>350</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>.1</td>
<td>350</td>
<td>200</td>
<td>1.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.01</td>
<td>350</td>
<td>200</td>
<td>1.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.02</td>
<td>350</td>
<td>200</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>.05</td>
<td>350</td>
<td>200</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>.1</td>
<td>200</td>
<td>120</td>
<td>1.25</td>
<td>2.5</td>
</tr>
<tr>
<td>.01</td>
<td>200</td>
<td>120</td>
<td>1.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

THE TELEGRAPH CONDENSER CO., LTD.
NORTH ACTON • LONDON • W. 3
Telephone, ACORN 0061
KING OF THE SET

MAZDA
RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD. 155 CHARING CROSS RD., LONDON W.C.2