Over twenty years of experience and research are behind the advanced technique of today...

MULLARD
THE MASTER VALVE
A Valve for Every Purpose

DOMESTIC • COMMERCIAL • INDUSTRIAL • SCIENTIFIC • MEDICAL • EXPERIMENTAL

THE MULLARD WIRELESS SERVICE CO. LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2.
Monthly Commentary

Plea to Set Designers

It can reasonably be assumed that manufacturers of broadcast receivers are at present considering, more actively than at any time during the past five years, the designs of their post-war products. Apart from the more obvious and fundamental aspects of design, of which the problems are self-evident, there are many secondary matters to which thought should be given. One of these is raised by *The Wireless Trader*, which has recently stressed the desirability of planning sets for easier maintenance and repair. That journal, and those of its readers who have contributed to the subsequent discussion, seem to be agreed that many sets are sadly deficient in this respect, and that nearly all of them are susceptible to improvement.

Lack of accessibility, especially of components likely to need replacement, is the main complaint. It is pointed out that the removal of the chassis from the cabinet usually entails much unnecessary work, partly because components are often mounted inside the cabinet in such a way that they must be disconnected before removal can be effected. It is suggested that the chassis should be easily removable as a complete receiver unit, except perhaps for the loud speaker, in which case there should be sufficient length of speaker lead to avoid the need for disconnection. Unnecessary complications, such as fanciful tuning scales of extremely doubtful "sales appeal" that necessitate complicated cord drives, are condemned, as is the practice of fitting multiple high-tension leads in battery sets. Correspondents of *The Wireless Trader* also deplore the fitting of multiple "wafer" switches in such a position that the set must be more or less stripped before a faulty contact can be put right. They also plead that trimmers should be mounted accessibly, and that design should be made uniform so that all trimmers may be actuated by a standardised tool. A particularly strong case is made for fitting "consumable" components (such as electrolytic condensers) in a way that allows easy access and replacement.

All these pleas seem to be eminently reasonable, and we think it will be to the ultimate benefit of all—not forgetting the consumer, who ultimately bears any unnecessarily high service costs—that the question of easy maintenance should be borne in mind by designers. Of course, arguing on the principle that prevention is better than cure, it may be urged that designers would be better occupied in devising broadcast receivers that do not break down, and that the prospective buyer of a set will be anything but favourably impressed on being told that a particular type of set is designed for easy repair. That is true enough, particularly of the cheaper kind of set, but it must not be forgotten that after the war the industry will be catering for a much more critical market. At least half a million persons have been introduced to more or less technical aspects of wireless during the war. They will know that all wireless apparatus stands in need of occasional overhaul, and will be favourably impressed to find that reasonable precautions have been taken to ensure easy—and consequently cheap—maintenance. The influence of this large section of the public is likely to be widespread.

Railway Radio.—Although the idea of using wireless communication for increasing the safety and efficiency of railway operation is by no means new, comparatively little progress has been made in applying it in practice. To the layman in railroad matters this is rather surprising; here, it would seem, is one of those cases where the special attributes of radio communication could be used to great advantage. The subject has lately been discussed at great length in the U.S.A., where a sub-committee of the Senate has heard a mass of evidence on the possibilities. The Federal Communications Commission has declared itself to be sympathetic towards the general principle, and no fewer than nine railroads have been granted authority to instal experimental operational radio systems. Conditions are vastly different in this country, but the matter is one that should, we think, be considered seriously here.
WAVE GUIDES

How to Visualise Their Action and Characteristics

By
Sqn. Ldr. M. G. SCROGGIE

Enclosed space devices it is necessary to reverse this order and think in terms of the fields, with currents and voltages as secondary effects. So the first step is to brush up one's knowledge of fields with the aid of a favourite text-book, remembering that fields are not in the form of lines (even imaginary ones) but that the lines in diagrams are just to show the directions in which the magnetic and electric forces act, and to some extent to indicate the relative intensity of those forces in different parts of the fields.

Fig. 1. Magnetic field represented by broken lines circling the direction of flow of an electric current.

Fig. 3. In an electromagnetic wave the directions of the electric field, the magnetic field and the motion of the wave are all three at right angles to one another.

Here are the leading points briefly:
1. Every current (that is to say, electric charge in motion) either along a wire, or in space as in an electron stream, is associated with a magnetic field, which acts as indicated by loops drawn around the current path (Fig. 1).
2. Every voltage is associated with an electric field, which acts between points which are at different potentials (Fig. 2).
3. Every moving (or growing, or collapsing) magnetic field causes a voltage to be generated, and therefore an electric field; while a moving electric field similarly generates a magnetic field; so it is possible for the two to be mutually supporting in the form of an electromagnetic wave moving at right angles to the forces of the two fields, which are at right angles to one another (Fig. 3).

A sort of intermediate stage between ordinary circuits, where we are concerned chiefly with currents and voltages, and wave guides, where the fields demand primary attention, is the transmission line, where both are important. As it is just possible to push circuit theory far enough to provide a useful picture of the action of transmission lines, they may serve as a bridge, for those who have got so far, to proceed to form some workable ideas about wave guides. The following does not claim to be a rigorous treatment of wave guides, but an approach to them from a modest knowledge of transmission lines and elementary geometry.

We start off with a short length of parallel transmission line closed at both ends, and consisting therefore of a rectangular piece of metal (Fig. 4); a is the length and b the width of the two parallel conductors, and c is their spacing. Suppose electrical waves are set moving along this line, by coupling it to some high-frequency generator. The waves are totally reflected at a short-circuited end. They then travel to the other short-circuited end, are reflected there, and presently they reach the starting point, which may be assumed to be anywhere along the line.

Whether the twice-reflected wave will tend to cancel or to reinforce the wave now starting from that point will depend on their relative phases. If the double journey is exactly half a wavelength, they will differ in

Fig. 2. Electric field represented by continuous lines between places at different electric potentials.

Fig. 4. A short length, a, of parallel transmission line, short-circuited at each end, forms the starting point for considering the action of wave guides.
phase by that amount, which is 180 degrees, and therefore exactly opposite in phase. If it is one complete wavelength the wave just starting at any point is exactly in phase with a wave that has done one lap of the course, and with another that has done two, another that has done three, and so on. If there were no loss in the line or radiation from it, the amplitude built up in this way by a generator of sustained oscillations would increase without limit. If the line is of copper or other highly conducting metal, spaced by air or other low-loss dielectric, the build-up is very considerable, and the line is sharply resonant. As the frequency, and therefore the length of the wave, is varied the reflected waves fall out of step and the build-up is less.

For the double journey to be one wavelength the length a

![Fig. 5. When the “line” shown in Fig. 4 is half a wavelength long it resonates, and the maximum current (and magnetic field) is at the ends, with maximum voltage (and electric field) at the centre. At (a) the distribution of fields is shown diagrammatically; (b) shows the current (I) and voltage (E) distribution.](image)

must be half a wavelength, \(\lambda/2 \). Obviously resonance occurs when \(a \) is any whole multiple of \(\lambda/2 \); but \(\lambda/2 \) is the shortest possible resonant length, and for the present we shall assume it.

While waves travelling in the same direction will always be in phase, the relative phases of waves travelling in opposite directions at any point depend on the distance of that point from the reflecting end. At the end itself the short-circuit ensures zero voltage, which involves a voltage phase reversal on reflection. At the centre of our short line, which is \(\lambda/4 \) from both ends, a further phase reversal, due to the time taken by a wave to make the double journey over this distance, brings the voltages into phase again, so at this point there is permanently an alternating voltage maximum, and therefore maximum intensity of alternating electric field between the conductors. Current—and consequently magnetic field—is distributed in an opposite manner as shown in Fig. 5 (where, however, it must be remembered that the magnetic field occurs 90° out of phase with the electric field, so they do not both reach their peak values simultaneously). We have, in fact, the standing wave system

![Fig. 6. Perspective view of the “line” (Fig. 4) greatly extended in the dimension \(b \), and marked off into zig-zag strips of width \(d \).](image)

wavelength \(\lambda = 2a \), along the direction \(a \).

Next, suppose such a rectangular tube to be marked off into strips of width \(d \) forming a zig-zag transmission line, as shown in perspective in Fig. 6. Any wave moving along such a “line” strikes the wall \(c \) of the tube at an angle \(\theta \), and in accordance with the usual law of reflection is reflected at the same angle. Fig. 7 is a side view of a tube in which the dimension \(d \) is equal to \(2a \tan \theta \) and therefore the zig-zag “line” employs the whole of the tube.

The dotted line \(CGON \) etc., marks its centre, and the portion of tube wall the edge of which is seen as \(AB \) forms the first short-circuited end or reflector; \(DE \) is the second, \(BF \) the third, and so on. From \(D \) draw \(DH \) perpendicular to \(CG \). Let us, acting for the moment in blind faith, assume that the wavelength is twice \(HG \), i.e., \(\lambda = 2a \cos \theta \).

Suppose that at a given moment a wave moving along the strip \(CG \) has reached a positive voltage maximum at \(H \). This positive crest is indicated by a row of plus signs ++++. Then as \(HG \) is \(\lambda/2 \), the preceding negative

![Fig. 7. The Fig. 6 system is further developed by enlarging the width \(d \) of the strips until they occupy the entire material. The instantaneous positive and negative crests of a wave travelling along the zig-zag path \(CGOH \) are shown as ++++ and +--- respectively.](image)
Wireless World

crest must be at G, shown by a row of minus signs — — — (GK). Along one half of the strip this crest has already been reflected; and, as voltage reflection at a short circuit is accompanied by reversal of sign, the reflected half is shown as positive (GJ). From the geometry of the system it is obvious that JD is equal to KD, which is \(\lambda/2 \), and therefore a negative crest coming from G has reached the line DM. At the end D it has reached the reflecting wall and so a positive crest is just starting from here towards B, and as DK is \(\lambda/2 \) there is a negative crest at K, extending across the strip to L. This obviously lines up with the crest near D and G. These join up to form continuous loops, as shown in Fig. 8. Another set of loops, of opposite polarity, exists in the next low-potential region, where current is flowing in the opposite direction.

Phase Velocity

Now imagine the whole system in motion. Assuming the tube to be air-filled, waves travel along the "line" at nearly their speed in free space, \(3 \times 10^6 \) cm/sec. usually devoted by C. As they do so, it can be seen that the entire field pattern suggested by Fig. 8 must move axially along the tube. During half a cycle, the positive crest at GJ in Fig. 7 has moved along GQ to DMP, from which it

![Diagram](image)

Fig. 8. Instantaneous distribution of fields in the Fig. 7 system shown in end and side elevation. Electric charge is indicated by + and — signs in varying concentration, with electric field lines between them. The magnetic field forms loops, the ends of which appear as lines in the section view.

GK. It can similarly be shown that the next negative crest lines up with DM, and so on. So the dividing up into strips of any particular width is just an artificial aid to consideration of the problem: whether the strips are broad or narrow, the positive and negative crests (and all intermediate phases) line up with one another to form a continuous broad front at right angles to the direction in which the wave is moving.

At the instant selected for consideration, then, and on the assumption that \(\lambda = 2a \cos \theta \), the positive and negative crests are distributed along diagonal lines inclined at an angle \(\theta \) to the axis of the tube.

It is clear that before we can derive the whole potential pattern on this visible wall of the tube we must do some cancelling out. Take D, or G, or in fact any point along the edges, where the reflecting metal forms a short-circuit to the opposite wall: the potentials

are equal and opposite and so reduce to zero. A little thought leads to the conclusion that the same is true all along a straight line DG.

At the intersection of DM and GL two negative maxima coincide to give a doubly negative potential at this point, which obviously lies along the axis of the tube. DH and GJ similarly intersect to give a positive peak. The point along the axis, half way between these opposite peaks, lies on DG, which we have already seen to be a zero. By taking intermediate values, the potential can be mapped out over the whole area, and will be found to have a sinusoidal or wavemlike distribution along the axis, and also across the arrows near D and G. These join up to form continuous loops, as shown in Fig. 8. Another set of loops, of opposite polarity, exists in the next low-potential region, where current is flowing in the opposite direction.

Associated Magnetic Field

So much for the electric field pattern, frozen at this particular moment in time. What about the magnetic field? The region between G and D in Fig. 7 is at this moment at zero potential, but is about to become positive as the fronts HD and GJ advance on it. For this to happen, there must be a redistribution of electric charges which necessitates current flowing (in the conventional direction) from the back wall to the front, especially in the regions around D and G. From Fig. 1 it can be seen that a magnetic field must exist inside the tube along the directions indicated by the tube. This is suggested by the + and — signs in Fig. 8. The opposite wall of the tube, behind that shown, presents the same pattern in reverse sign; and the lines of electric force join positive and negative points on opposite walls, at right angles to the paper in the diagram.

The conclusion that \(V_x \) is never less than the speed of light and may be infinitely great may seem rather startling, and contrary to the doctrine that nothing can travel faster than light. But if the meaning of phase velocity is considered, it will be seen that it does not involve any physical movement at that speed. When the crest DM in Fig. 7 travels at velocity \(C \) from Q to O, the intersection between it and the reflect-
Wireless World

in one of these centres has to move to the position of the other along the zig-zag path at the velocity \(C \), and therefore the axial velocity of the energy, which is what counts for signalling purposes, is less than \(C \). It is called the group velocity, \(V_G \), because it is the velocity, along the tube, of a group of waves forming, say, a dot in a morse signal. In the time taken for a wave to move along the "transmission line" from \(G \) to \(O \) in Fig. 7 its axial movement is equal to \(DO \). So \(V_G \) is equal to \(C \times \frac{DO}{DG} = C \sin \theta \). We have already seen that \(V_p = \frac{C}{\sin \theta} \).

It follows that \(V_p V_G = C \), and as \(\lambda = 2a \cos \theta \) it is a simple matter to plot \(V_p \) and \(V_G \) in terms of \(\lambda \) for a wave guide—as our tube has become—of width \(a \), as has been done in Fig. 9. When \(\lambda = 2a \), as we assumed for Figs. 4 and 5, the wave is reflected back and forth across the tube, and its velocity in a direction along the tube is zero.

If the wavelength is very slightly decreased, the signal moves along the tube, but over such a zig-zag path that it does so comparatively slowly, and the multiple reflections involved in quite a short axial journey cause a fairly large attenuation. The speed and attenuation at first both rapidly improve as the wavelength is reduced; then as the wavelength becomes very short in relation to the width of tube, the attenuation begins to increase slowly, while the velocity tends towards \(C \).

The wavelength \(\lambda_C = 2a \) is called the critical wavelength, and the corresponding frequency the critical frequency; the guide cannot effectively transmit any wavelength not shorter than this. For wavelengths greater than about 10 centimetres, therefore, wave guides are inconveniently bulky in comparison with coaxial feeders; but for shorter waves they are easier to construct and more efficient, because there is no inner conductor requiring solid insulating material to support it.

(To be continued.)

Group Velocity

Consider now two adjacent but oppositely polarised centres of electric field intensity, such as those shown in Fig. 8. They are half a wavelength apart in phase distribution; but the actual energy does not mean that energy has moved from \(D \) to \(E \). The cutting intersection between the blades of a pair of scissors travels from pivot to points at a far greater speed than any part of the scissors.

R.E.M.E.

MOBILE

RADIO

REPAIRS

The repair and maintenance of the Army’s telecommunications equipment—the collective term used for radar, wireless and line gear—is the responsibility of R.E.M.E., and the illustrations show a repair workshop of a mobile wireless detachment which provides repair facilities behind the front line. These mobile workshops, which have proved their value in fast moving warfare, handle all but the simple repairs and adjustments to the wireless and line equipment in the hands of units in the front line, which is undertaken by men of Royal Signals. Equipment beyond repair in the combat zone is returned to the large static telecommunications workshops set up in the various theatres of operation.
Resistance and Capacitance Measurement with the

PENTODE-DIODE VALVE VOLTOMETER

Constructional Details of a Suitable Adaptor Unit

By T. A. LEDWARD, A.M.I.E.E.

In the course of experimental work, one often wishes to know the approximate electrical properties of a component, so that its suitability for some purpose may be determined. The time taken for precision tests in cases where a large tolerances is permissible is not usually justified. In any case, an approximate test is a very useful preliminary to more exact work.

Apparatus may be designed to carry out approximate tests very quickly. In the case of resistance tests, for instance, the direct-reading ohmmeter can save a lot of time as compared with the Wheatstone bridge; but there is, of course, no comparison as regards precision of measurement.

In the case of condensers it is usually desirable, before using them at all, to check approximately not only the capacitance but also the insulation resistance.

This is not meant as a reflection on new apparatus by reputable manufacturers, but an experimenter usually collects an assortment of components of uncertain origin and history. The careful man will, of course, check even the new components, "just to be sure." The insulation test of a condenser is often quite as important as the capacitance test. In some cases 100 megohms or less is sufficient, whereas in others, 1,000 megohms may not be good enough.

Ranges Covered

The adaptor to be described was designed principally for checking capacitance and insulation resistance of condensers, and is intended for use with the Pentode-Diode Valve Voltmeter recently described in Wireless World (June 1944), but it may, of course, be adapted for use with any valve voltmeter of suitable range and capable of reading either AC or DC.

Additional resistance ranges have been added for convenience, so that the resistance tests are not confined to insulation values. Three ranges of capacitance cover 0.0001 \(\mu F \) to 80 \(\mu F \), while three ranges of resistance cover 1,000 ohms to 5,000 megohms. A fourth capacitance range is provided for very low values. The minimum value that can be indicated on this range is 10 \(\mu F \), and the scale is marked as shown in Fig. 1 at 100, 1,000 and 2,000 \(\mu F \). This range is not intended to be so accurate as the other ranges, but it does serve the very useful purpose of showing whether an internal open circuit exists between the tag and the foil of a very small condenser. Such open circuits, though perhaps not very common, are by no means unknown. It is an advantage for such a test that the test pressure should be low, and the pressure of two volts used in this adaptor complies with this requirement.

The testing of electrolytic condensers is not covered by this apparatus.

The indicating instrument on the valve voltmeter is a 2½" dial 0–1 milliammeter, and it is obviously undesirable to attempt to mark the scale for the above ranges of capacitance and resistance. One alternative is to plot curves of instrument readings against C and R respectively; but if this is done the shape of the curves is such that they are very little use for even approximate accuracy. The best way is to draw straight scales showing instrument reading on one side and C or R on the other. A pointer knob on the range switch can then be made to indicate the particular scale required for each range. This will be clear on referring to the panel layout shown in Fig. 1.

The test voltages for the adaptor are taken from the valve voltmeter supplies. The resistance test requires 250V DC at 2½mA maximum, while the capacitance test requires 2V 50 c/s at less than 1mA maximum. For the DC supply a connection is taken from the HT+ terminal on the valve voltmeter, while for the AC supply a connection is taken from one terminal of the valve heater 4V.

Fig. 2.—Connections between voltmeter and adaptor.

![Fig. 1.—Panel layout of adaptor for resistance and capacitance measurement.](image-url)
Wireless World

R2 be inserted in the circuit, the voltmeter reading will fall to, say, v1.

Now $\frac{v_1}{v} = \frac{r}{R_1 + R_2} \times \frac{V}{rV}$

and $\frac{v_1}{v} = \frac{R_1}{R_1 + R_2}$

but $v = 1$

therefore $v_1 = \frac{R_1}{R_1 + R_2}$

This expression, then, gives the instrument reading for any value of R2 if R1 is constant. The applied voltage need not be constant so long as it does not alter during the time interval between setting the potentiometer and taking a reading. Clearly, the setting can be quickly checked by pressing the key K2.

The capacitance test is just as simple to perform and not much more trouble to understand. The outline of the circuit is shown in Fig. 3(b). The condenser C might, of course, be omitted, and the scale suitably calibrated for different values of C with R constant. But there are two disadvantages in doing this. First, the scale range for a single value of R would be much more limited; secondly, the reading would be very dependent upon correct frequency. This method has, however, been used for the

\[
\frac{v_1}{v} = \frac{C_1}{C_1 + C}
\]

Therefore $v_1 = \frac{C_1}{C_1 + C}$

This expression gives the reading for any value of C if C is constant.

As already stated, this simple calculation assumes the reactance of C, i.e. $\frac{1}{2\pi f}$, to be low compared with R, as otherwise the effect of R would considerably modify the conditions, and render a much more tedious calculation necessary. As R must not exceed 2 megohms, the lowest practical value of C is about 0.01 µF, so that this value determines the lowest capacitance range. If the lowest reading is assumed to be 0.01 volt, then

\[
0.01 = \frac{C_1}{C_1 + C} = \frac{C_1}{C_1 + 0.01}
\]

therefore $C_1 = 0.000101 \mu F$

and this is the lowest value of capacitance that can be tested in this way. For the three ranges operating on this principle, the values of C are 0.01, 0.1, and 1.0 µF respectively, and the ranges are:

0.0001 to 0.1 µF
0.001 to 1.0 µF
and 0.01 to 80 µF

In the fourth range there is no internal capacitor C, and no fixed shunt across the potentiometer, so that when this range is in use the potentiometer resistance is simply in series with the capacitance under test. By similar reasoning to that previously applied, it can be shown that the reading will now be equal to

\[
\frac{R^2}{R^2 + \left(\frac{10^{12}}{2\pi f}\right)^2}
\]
Wireless World

The best procedure is to determine in this way the most suitable values of shunt and series resistance for the ranges required and then to insert the nearest obtainable values. The exact values of the resistors used may then be measured and the scale indications calculated therefrom.

The complete circuit diagram of Fig. 4 shows the actual values used in the writer’s instrument. It will be seen from this diagram that the potentiometer resistance which enters into the foregoing calculations is made up of two fixed resistors of 1 megohm each and one 0.25 megohm resistor having an adjustable contact—an ordinary “volume control.”

The total “potentiometer” resistance is thus 2.25 megohms. This is shunted as shown, according to the range in use.

In the case of the condensers it is better to make up the three values required, of 0.01, 0.1, and 1.0 µF respectively, by obtaining the nearest one of each size, but slightly low in value, and then adding small values until the correct capacitance is obtained, the test being made by means of a capacitance bridge. This sug-

gestion is intended for those who do not wish to go to the expense of condensers guaranteed within close limits. If there is no access to a capacitance bridge, comparison may be made with known resistances in the following manner, using a 50 c/s supply:

Connect the capacitance to be measured in series with a resistance of approximately the same ohmic value as the capacitive reactance, i.e. make \(R = \frac{10^8}{2\pi fC} \) (approx.) where \(C \) is in microfarads and \(f = 50 \). A 3000 ohm resistance, for instance, will serve in the case of a 1 µF condenser.

Connect the valve voltmeter across the resistance and apply about 1.5 volts at 50 c/s to the series circuit (see Fig. 5). Note the voltmeter reading. Now replace \(C \) with a variable resistance \(R_1 \) and adjust \(R_1 \) until the same reading is obtained as before. The total impedance must then be the same as before, i.e.

\[
R + R_1 = \sqrt{\frac{1}{(2\pi fC)^2} + R^2}
\]

where \(C \) is in farads and \(f \) in cycles per second.

From which

\[
C(\mu F) = \sqrt{\frac{1}{(2\pi f)^2(R_1^2 + 2RR_1)}} \times 10^6
\]
or where \(f = 50 \) c/s

\[
C = \frac{3183}{\sqrt{R_1 (R_1 + 2R)}} \text{ microfarads.}
\]

The accuracy of the foregoing method depends upon correct frequency and accurate resistance measurement. It is more reliable than one depending upon voltage and current measurement in addition to accurate frequency. The

maximum value of the insulation that can be indicated. This is limited by the maximum value of \(R \), but in this case \(R \) is made up of the potentiometer resistance of say 2.25 megohms maximum, and a series resistance. In practice, it is found necessary to shunt the potentiometer in order that the series resistance may have a reasonable value. Suppose we consider it impracticable to make this series resistance more than 50 megohms—and this value can be quite readily made from a few smaller values in series—then, as the voltage across the potentiometer for full-scale must be about 2 volts and the test voltage is 250 volts, the total resistance across the potentiometer terminals will be

\[
\frac{2}{250-2} = 0.403 \text{ megohms.
}

Taking the potentiometer resistance to be 2.25 megohms, the shunt required will be

\[
\frac{2.25 \times 0.403}{2.25 - 0.403} = 0.49 \text{ megohms (approx.)}
\]
in this way, then the 0.1 μF may be checked by means of a simple 10/1 bridge and buzzer, set up specially for the purpose, and using the 1 μF as standard. Similarly, with the same 10/1 bridge, cut into sections, as shown by the dotted lines in Fig. 1. The metal foil and switch bodies are earthed. Any surface leakage is thus taken to earth without affecting the reading.

by calculation as described and not by direct use of variable standards, depends upon the voltage characteristic of the valve voltmeter closely following the scale of the 0.1 milliammeter. The pentode-diode voltmeter was designed to achieve this end so that a special voltage scale would not be required.

Further experience with this instrument has shown that in some cases the values of screen resistor given in the original description (W.W., June, 1944, p. 164, Fig. 4) do not quite give a true linear calibration and, although the error would in any case be small, it is usually preferable to increase the value of these resistors, R7 and R8 to about 50,000 ohms. Although the value is not critical it is advisable, after adjusting R15 and R16 to give full-scale reading for 1 volt, to apply 0.5 volt and see that the milliammeter then reads 0.5. If it reads low, increase R7 and R8, readjust R15 and R16, and test again at half-scale. Any readjustment of R7 and R8 will require readjustment of R15 and R16. With the higher values of screen resistor it is advisable to omit the 4000-ohm resistor shown in series with HT +.

Another point is that if the input source under test has a low impedance value, parasitic oscillation may occur. This may be entirely obviated by inserting at X 100-ohm resistors in series with the grid of each of the valves V1 and V2.

OUR COVER

THE air-cooled valves illustrated on the front cover of this issue form part of the equipment of the latest RCA 5-kW transmitter, the 5E. Only one valve is employed in the power amplifier stage, the other being for replacement.

THE WIRELESS INDUSTRY

TECHNICAL details of multi-circuit rotary switches are contained in a new brochure (No. 76) issued by "Diamond II" Switches, Ltd., Gunnersbury Avenue, London, W.4.

A portable gas-fired heater for the accelerated drying of paint finishes has been developed by Plastic Spray, Ltd., 3, Vere Street, London, W.1.

An illustrated booklet received from Manchester Metal Works, Ltd., 370-374 Bury New Road, Salford, 7, describes the wide range of presswork undertaken.
Improved
CATHODE-RAY CURVE TRACER
Plotting X and Y Axes Simultaneously with Required Curve

By A. H. B. WALKER,
B.Sc. (Hons.), D.I.C., A.C.G.I., A.M.I.E.E.
(Research Department, Westinghouse Brake and Signal Co., Ltd.)

and this is merely another way of saying that the voltage-current characteristic of S is plotted on the screen. Here it is important to note that this is true for any waveform of voltage applied to the circuit. If S is suspected of having a characteristic which is dependent up to a frequency, it is therefore an easy matter to vary the frequency of the applied voltage and observe whether the plotted characteristic changes.

Phase Shift

Normally this simple circuit is very limited in its application, as the voltages which are developed must be suitable for direct connection to the plates, and R must be commensurate with S to obtain a reasonable diagram. It is usual, therefore, to interpose amplifiers as might be expected, as it is clear that any phase-shift introduced in the amplifiers would appear as distortion in the display.

Unless such phase-shift is completely eliminated at the working frequency, the result will be very nearly meaningless, as parts of the diagram which should appear as lines will open out into loops, and the test sample may be suspected of a hysteresis effect which is not actually present. It is normally convenient to work at a cyclic frequency of 50 c/s when tracing valve or rectifier characteristics, etc., as the test voltage is then easily obtainable from the supply mains, and the repetition frequency is high enough to avoid flicker. A suitable circuit is shown in Fig. 2, and with the values indicated, the time constants are suitable for working at a frequency of 50 c/s. With this arrangement R is chosen according to the characteristics of S, and the applied AC voltage is varied by means of the supply potentiometer, R7 and R8 are then adjusted to give the required size and proportions to the plotted characteristic.

One serious disadvantage, however, remains, and this is that the graph plotted on the screen is not in fact plotted on graph paper, but on plain paper, and a curve of this nature is of very limited...
Wireless World

It might be thought from this that nothing but a muddled pattern would appear on the screen, but in practice, using a 50 cycle "curve tracing" supply, and a vibrator operating at a frequency of 120 cycles, the spot flies across from one duty to the other so rapidly, relatively to the supply frequency, that the fly-over traces are invisible, while the two axes and the curve appear quite continuous. The fly-over is made as rapid as possible by keeping leads short and reducing stray capacitances to a minimum. The relative brilliance of the axes and the curve can easily be varied by changing the drive conditions of the vibrator. For instance, if the vibrator is overdriven, the time of dwell on each side becomes long compared with the fly-over time, so that both axes become brilliant and the curve faint, or even dotted. The opposite result is easily achieved by underdriving and bending out the side contacts slightly so that the time of dwell on either side is short compared to the fly-over time. The curve then appears brilliant, and the two axes faint or dotted. The best adjustment in general is that which gives equal brilliance on both axes and curve, particularly if photography is contemplated.

One very pleasing feature of the system is that the axes are always drawn just long enough for the

earthed in turn, and thus the Y and X amplifiers will be alternately paralysed.

Tracing Sequence

The result is shown in Fig. 4, in which the curve represents the path which would be traced out by the spot with the vibrator inoperative. Assuming the spot to start moving from the origin, let point A be earthed by the reed, the Y (or current) amplifier will give zero output, but the amplifier will continue to move the spot to the right, so that the spot will move along the X or voltage axis. The reed now commences its return swing, and as soon as point A is released, the spot resumes its tracing of the required characteristic, and this continues while the reed is swinging over to B. As soon as B is earthed, the X deflection voltage vanishes, and the spot therefore travels along the Y axis until B opens again, when the cycle is resumed.

Fig. 4.—Path of spot when tracing out characteristic and axis simultaneously. The missing sections of the axes and the curve are filled in in successive traces. The fly-overs are invisible.
Wireless World

Fig. 5. Photographs of typical curves plotted simultaneously with the X and Y axes on the screen. Note that whenever the proportions of the curve, the two axes are automatically drawn just long enough to accommodate it.

easily checked by connecting known values of resistance in place of S. The "characteristic curve" of these resistances is of course a straight line through the clean and satisfactory, as may be seen from Fig. 5, which shows characteristic curves of some typical crystal detectors plotted with the axes by this method.

In conclusion it is hoped that this simple addition to known curve-tracing technique (since it can be so readily extended to similar circuits which are used for tracing B-H curves, valve characteristics, etc.), will prove helpful to others, who when confronted with a curve on the screen have difficulty in locating the origin.

Letters to the Editor

Cathode Follower Output

My letter in your July issue on the modification of the Wireless World Quality Amplifier to take advantage of the low impedance presented to the load by a cathode follower type of output stage has resulted in several queries, most of which are concerned with the penultimate stage.

It was first intended to use impedance coupling in the anodes of the original MHL48s, but it is impossible to obtain full drive for the PX48 without over-rating the previous stage. This scheme was then dismissed and the following possibilities were considered:

(i) A cathode-coupled high-ratio transformer stage used as suggested by D. Baker in the May issue of Wireless World.

(ii) A normal push-pull transformer stage with separated primary and secondary windings.

(iii) An auto transformer stage such as was finally adopted.

The first of these projects was abandoned because it seems to have little that is superior to an anode coupled stage except when damping of the load is important.

Here it is not. Moreover, the stage will be less sensitive than the normal type because of the loss of valve gain.

The third scheme was developed in favour of the second for two main reasons. First, the leakage reactance in an auto-wound transformer should be less important than for the equivalent double-wound type, and, secondly, the permissible space factor in the winding space could be less. The second fact is well known and would allow better interleaving of the sections. The observation on leakage reactance can be explained as follows. If the leakage reactance is such that there is, in effect, no coupling between the anode-to-
as shown in the accompanying diagram would probably be satis
tfactory.

Transformer drive, incorporating phase splitting, could be used
in place of the tapped choke and a transformer of the Ferranti AF5C
type could be driven from a medium-impedance triode, prefera-
ble by parallel feeding. This involves alteration of the stage
prior to the MHL4 and the transformer would have to handle
a 70-volt input without distortion.

With ML4s and the auto-trans-
former nothing need be altered
earlier in the circuit than the
anode connections to the ML4s,
provided the loss of gain is not
excessive.

The PX4s still operate into the
original load of 8,000 ohms, but
this is primarily because it is in-
convenient to change it. Power
output is ample and there is no
perceptible distortion at normal
output levels on the loudest peaks.
The load might be reduced to
about 4,000 ohms, but a high load
gives better damping and smaller
anode current swing; otherwise
the matching is not critical.

The figure of 20 given for the
damping factor of the cathode
coupled stage is based on a recom-
mandation* that the ratio of the
load impedance to the output
plate resistance might be termed
the "damping factor" of the
stage for want of a better defini-
tion. It is a very useful quantity
for comparing output stages but
completely ignores the behaviour
of the load. For example, a loud-
speaker matched to the cathode-
coupled PX4s to give a load of
8,000 ohms would normally pre-
sent 60 per cent. of that load in
the form of DC voice coil re-
sistance; that is, about 5,300 ohms.
The additional 200 ohms internal
resistance of the output stage is
almost negligible. Even with
anode-coupled PX4s the plate re-
sistance of 1,600 ohms is a minor
part of the whole resistance that
decides the degree of damping
possible. Two comments seem
necessary. First, this so-called
"damping factor" is only accu-
rate when the load is entirely
dynamic in character, but serves
as a comparative term for output
stages provided its limits are
understood. Secondly, any further

* "Radio Designers' Handbook"; Langford
Smith; Chap. 2 Sec. (3).

Wireless World

reduction in output impedance in
an amplifier for driving a loud-
speaker is useless until a very
marked increase in loudspeaker
efficiency becomes possible.

As a last note, the two filament
windings of the transformer that
supplies the PX4s must be well
insulated and should have low
capacitances between themselves
and with respect to earth to avoid
loss of high audio frequencies.
Marked attenuation in the present
amplifier at about 9,000 c/s is
attributed either to this or to an
inadequate interleaving of the driv-
ing choke. A. C. ROBB.

Liverpool.

Magnetic Recording

THE lucid article by G. L.
Ashman on magnetic record-
ing, in the August issue, is a useful
contribution to the scanty litera-
ture published in this country on
the subject. While recognising
it was intended to be only a
limited exposition, certain other
information could have been in-
cluded with advantage.

For example, no mention of
typical wire or tape velocities is
made. These speeds vary from
say, 80 ft. per min. with certain
perpendicular methods of tape
magnetisation, to 360 ft. to 600 ft.
per min. in wire recording.
Although the 0.004 in. wire in the
General Electric Model 50 recorder
travels at only 174 ft. per min.,
giving 66 min. speech, and ap-
proximately 295 ft. per min. in the
Marconi-Stilley tape recorder, as
used by the B.B.C.

Secondly, although mention is
made of perpendicular and lon-
gitudinal magnetisation, cross or
transverse magnetisation (in which
the magnetisation is in a direction
perpendicular to an edge and
parallel to the surface of the tape)
is not noted. Thirdly, as well as
feeding the "erasing" or "wash-
out" head with steady DC to
magnetise the tape to saturation
point, thus removing any pre-
vious recording, this eliminating
effect is often performed by
applying a relatively high-
frequency current of, say, 7,000
c/s in some recorders (using a
high-stop filter in playback) to
30,000 c/s in the G.E. Model 50,
from a valve oscillator.

Fourthly, a few facts on the life
of magnetic recordings would
have been of interest. It is re-
ported that recordings on "iron
wire" made in the early 1900s
are still playable, and, with
special tungsten steel alloys to-
day, a 2 db. loss in reproduced
level occurs after about 5,000
playbacks, and even after 160,000
playbacks the volume level drops
only 4 to 6 db.

Lastly, to supplement the ex-
cellent list of references appended
to Mr. Ashman's article, may I
offer the following references,
chiefly concerned with interesting
designs?

1. D. W. Pugsley, "Fundamentals
2. T. J. Malloy, "A Magnetic
3. "Wire Recorder," English Mech-
anics, April 5th, 1940.
4. R. L. Mansi, "Construction of
Apparatus for Recording Sound
on Steel Wire," Electronics and
Television and S.W. World,
January, February, March, 1940.
5. D. W. Aldous, "Recording on
Steel Tape," Wireless World,
June 29th, 1939.

DONALD W. ALDOUS.

Torquay, Devon.

Resistor Colour Code

MAY I support W. Bowen's
suggestion in the August
Wireless World on Standardisation
of Resistors? But I fear no
argument, however convincing,
will have any effect on any
standardising body once they
have publicly proposed a definite
arrangement as a "standard."

If there is even a faint hope of
its adoption, I suggest that it is
time to alter the existing "body
tip-dot" convention. Whether
one is a service-man trying to
trace a circuit for which the
manufacturer has omitted to
paste a diagram of connections
inside the cabinet, or an experi-
menter looking in a box of
assorted resistors for something
that will do for, say, a grid-leak,
what one first wants to know is
the range of the resistor; i.e., if
it is between 1,000 and 10,000
ohms, or between 100,000
ohms and a megohm—informa-
tion only to be obtained from the
colour of the "dot," often in-
visible in the receiver or appara-
trus, even with the aid of a
dentist's mirror. Only of second-
ary importance is the first figure,
now the "body" colour; and with
the existing wide tolerance
a knowledge of the reputed
Wireless World

neutralising the speaker resonance with a dip in the frequencyresponse curve. We are not synthesising a new kind of music, but bringing the system, as a whole, nearer to true high-fidelity.

Similarly, the full bandwidth of the amplifier will not necessarily give the best reproduction if there are imperfections in other parts of the apparatus. Suppose the pick-up produces a scratch, then above some frequency the scratch will be greater than the programme level and we find it more tolerable to cut out these high frequencies altogether rather than put up with the addition of an objectionable noise. But here again we are not synthesising a better kind of music so much as ensuring that what went into the microphone comes out of the speaker with a minimum of interference and without the addition of intolerable noises. If we had a perfect reproduction system throughout, then there would be no question of cutting the top or using any other dodges, but since some of the major components of our reproduction system are so bad, the best we can do is to try to neutralise those faults in the easiest way, which nearly always happens to be in the amplifier itself.

Some degree of correction will probably always be necessary, if only for the listening-room acoustics, but I do emphasise that we must not try to build anything new from a programme; we must ensure that studio sounds are reproduced as accurately as possible in the listener's ear. Should any other balance of sound be more pleasing to the ear than the original orchestra, I feel that the instruments would have been designed by the musicians through the ages to give this improved balance. There does not seem to be much dissent amongst the musicians about which sounds are musical and can be combined in musical works when listening to the original instruments, and I believe that there will be the same sort of agreement amongst them when listening to high-fidelity reproduction sounds.

Mr. Hartley writes on the aesthetics of sound reproduction as a competent authority, but I do deplore any arguments which seek to justify distortion of any kind. V. W. GREENOUGH. Derby.

H. L. KIRKE, the new chairman of the I.E.E. Radio Section, joined the B.B.C. in 1924 and in the following year was appointed to his present position as head of the Research Department. For a few years prior to his B.B.C. appointment he was in Marconi's Wireless Telegraph Co.

Books issued in conjunction with "Wireless World"

<table>
<thead>
<tr>
<th>Title</th>
<th>By</th>
<th>Net Price</th>
<th>Post Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATIONS OF WIRELESS</td>
<td>Scroggie</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>TELEVISION RECEIVING EQUIPMENT</td>
<td>Cocking</td>
<td>10/6</td>
<td>10/10</td>
</tr>
<tr>
<td>RADIO LABORATORY HANDBOOK</td>
<td>Scroggie</td>
<td>12/6</td>
<td>12/11</td>
</tr>
<tr>
<td>WIRELESS SERVICING MANUAL</td>
<td>Cocking</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS TELEGRAPHISTS</td>
<td>Dowsett & Walker</td>
<td>30/-</td>
<td>30/7</td>
</tr>
<tr>
<td>RADIO DESIGNERS HANDBOOK</td>
<td>Langford Smith, B.Sc., B.E.</td>
<td>10/6</td>
<td>11/1</td>
</tr>
<tr>
<td>RADIO DATA CHARTS</td>
<td>Martin & Sowerby</td>
<td>7/6</td>
<td>7/10</td>
</tr>
<tr>
<td>RADIO INTERFERENCE SUPPRESSION</td>
<td>Ingram</td>
<td>5/-</td>
<td>4/4</td>
</tr>
<tr>
<td>LEARNING MORSE</td>
<td>335th thousand</td>
<td>6d.</td>
<td>7d.</td>
</tr>
<tr>
<td>INTRODUCTION TO VALVES</td>
<td>Henderson</td>
<td>5/-</td>
<td>4/4</td>
</tr>
<tr>
<td>RADIO WORK AND THE IONOSPHERE</td>
<td>Bennington</td>
<td>6/-</td>
<td>6/3</td>
</tr>
</tbody>
</table>

Obtainable from leading booksellers or by post from

ILIFFE & SONS LTD, Dorset House, Stamford Street, London, S.E.1
It's not unusual to find that fitting Brimar Valves gives an added "punch" to radio reception. This is because they work to very close limits given with unfailing reliability.

"Jolly glad I got that Brimar valve. It's made all the difference to my radio set!"

BRIMAR
BVA
VALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.
There's a lot in this transformer business.

* * * at least there must be
Judging from the large number of enquiries
we have received from our previous
advertisements.

As a matter of fact it is very specialised
work and as we have now produced something
over a million transformers we ought to
know something about it or don't you agree?

For example, on practically every occasion
we are asked to design a transformer it
seems that there's only the tiniest space
been left for it somewhere down on the
backside underneath - coincidence isn't it?

At one time we used to raise our eyebrows
and mildly protest but now we are quite
resigned to the fact that one of the
essential parts of our work is to wangle
a quart into a pint pot... and we think
we are rather good at it. By the way if you
have got an enquiry knocking about our full
name and address is PARMeko LTD., LEICESTER.

And if you are in a hurry
the telephone number is 31287.

Transformer problems which may bother
you are just 'meat and drink' to our Research
Department—may we ease your burdens?

PARMEKO LTD., LEICESTER, Makers of Transformers

WHAT IS MEASUREMENT?

An eighth of an inch or so extra can
win you the first prize in a vegetable
show. But you can't run a tape
measure round a microampere. You
need an instrument.

FOR ACCURATE MEASUREMENT
USE ACCURATE INSTRUMENTS

MIP LTD.

When installing Electrical Measuring
Instruments, sound workmanship is
essential to satisfactory performance.
That is why it is always policy to
specify M.I.P., the standard by which
dependability is judged.

MEASURING INSTRUMENTS
(PULLIN) LTD.,
Electrin Works, Winchester Street, Acton, W.3

The illustration shows 2½" Galvanometer
in desk type stand.
PENTODES AS DYNATRONS

Summary of the Negative Resistance Characteristics of Various Commercial Pentodes

By G. A. HAY,
B.Sc., Assoc.Brit.I.R.E.

RECENT work on the transistron oscillator has diverted attention somewhat from the use of the dynatron, both as a source of signals and as a measuring instrument at audio and low radio frequencies. The working of both oscillators depends on the connection of a negative resistance, produced by the valve, in parallel with the positive dynamic resistance of a tuned circuit. The latter is thereby neutralised, and in the absence of effective circuit resistance oscillations are produced.

The simple theory of the dynatron has been adequately dealt with elsewhere; it is sufficient to say here that its operation depends on secondary emission from the anode of a tetrode, and is therefore considered to be not so stable as the transistron, which does not depend on secondary emission. The production of secondary electrons is so liable to be affected by the surface conditions of the emitting electrode that the stability of the arrangement suffers.

Fig. 1. Oscillographic apparatus used for examining valve characteristics.

Fig. 2. Circuit used for measurement of valve characteristics.

On the other hand, the negative resistance produced by the dynatron is wholly independent of coupling circuits between two electrodes (c.f. the transistron), and is also easily controllable by varying the control grid bias. It is therefore invaluable for measurement purposes, particularly where comparisons are wanted between two quantities, and when adjusted correctly its waveform is practically sinusoidal. Moreover, it is the writer's experience that the unreliability of the dynatron as a signal source is very much overrated; it is also thought good enough for incorporation in a well known precision beat-frequency oscillator and heterodyne wavemeter. Like other valves of orthodox construction, its working is materially affected by transit time and other related effects; it can, however, be relied on up to about 10 or 15 Mc/s, depending on the valve chosen and its associated voltages and circuits.

It is generally recognised that the best all-round dynatron oscillator is the Mazda AC/S2 screened tetrode, while for special purposes where low anode-earth capacitance is wanted the Mullard SqVA is useful. Both valves are now relatively inaccessible, and in this article will be shown how modern RF pentodes may be used in their stead; the optimum working conditions for various applications will also be discussed.

In the RF pentode, which is, of course, a development of the screened tetrode, the harmful effects of secondary emission are eliminated by interposing a screen and anode a suppressor grid, which is earthed and has the effect of producing a region of low potential which the slow moving secondary electrons cannot penetrate. These, therefore, return to the anode; the primary electrons are not appreciably affected as they have considerable kinetic energy due to the high screen voltage. If now the suppressor grid is disconnected from earth and given the same order of potential as the screen, the two grids can be treated as one for all cases where transit time is negligible, and the characteristics obtained will be those of a tetrode.

Generally speaking, the best valve for dynatron purposes will be that which gives the numerically lowest negative resistance, as this will then neutralise a low value of positive dynamic resistance, corresponding to a poor tuned circuit. Given a satisfactory valve in this respect, preference must then be given to the valve which shows a long, straight negative resistance curve, as this will give an output of high amplitude and good waveform. Accordingly, several pentodes used as described above were examined and compared with the Mazda AC/S2. The V_a-I_a curve was traced on a cathode-ray tube using the apparatus outlined in Fig. 1. This method was used as it enabled a quick and convenient selection to be made. Of all the valves examined, the following
Pentodes as Dynatrons—were found useless as dynatrons: Brimar 6K7G, 7B5E, Mullard EF36, EF38, EF39, VP4A, VP4B, Osram MSP4; while promising results were obtained from Brimar.

Table 1: Values of R_a calculated from Fig. 3 at $V_a = 35$ V.

<table>
<thead>
<tr>
<th>Valve</th>
<th>R_a (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF50</td>
<td>28,000</td>
</tr>
<tr>
<td>6J7G</td>
<td>29,000</td>
</tr>
<tr>
<td>SP41</td>
<td>26,000</td>
</tr>
<tr>
<td>VMP4G</td>
<td>21,000</td>
</tr>
<tr>
<td>AC/S2</td>
<td>29,000</td>
</tr>
</tbody>
</table>

Table 2: Values of R_a for the VMP4G calculated from Fig. 4 at $V_a = 35$ V.

<table>
<thead>
<tr>
<th>I_a (mA)</th>
<th>R_a (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125,000</td>
</tr>
<tr>
<td>2</td>
<td>55,000</td>
</tr>
<tr>
<td>5</td>
<td>21,000</td>
</tr>
<tr>
<td>8</td>
<td>18,300</td>
</tr>
<tr>
<td>10</td>
<td>10,600</td>
</tr>
</tbody>
</table>

![Fig. 3. Characteristics of pentodes: $V_a = 115$V; $I_a = 5$mA.](image)

Wireless World

in Table 1, together with the value for an average AC/S2. It will be seen that the first three are similar in that they show numerous bends and have a relatively short negative resistance region; whereas the VMP4G suffers from neither of these defects. The choice of a valve will depend on the particular purpose for which it is required. If the valve is wanted for negative resistance measurements where the grid bias is to be measured accurately, the VMP4G is ideal, as it has a long grid base, and adjustment of bias will be easy. On the other hand, if an oscillator is required as a signal source with automatic amplitude control, a short grid base is wanted so that the control exercised will be more critical.

The VMP4G has one rather important disadvantage. It has been stated above that the negative conductance is approximately proportional to cathode current, and so for bad-tuned circuits the high-cathode current is wanted. This current divides into two, part returning via the screen, and part via the anode, so that $I_a = I_e + I_r$. Now if I_e is sometimes zero or negative, as in the VMP4G, then I_a will be equal to or greater than I_e. The limit to the negative resistance attainable is thus set by the power dissipated by the screen. This, of course, is also an argument against an excessively high screen voltage (see later). On the other hand, if I_a is always positive, then I_a will be less than I_e, and the latter can be increased to a greater value than that without fear of overheating the screen wires. (It is assumed that the maximum dissipation permissible at the anode is far in excess of that at the screen.) For this reason the EF50 or SP41 might be considered as alternatives to the VMP4G where straightness and length of characteristic are not important.

In Fig. 4 are shown characteristics of the VMP4G at cathode currents of 1, 2, 5, 8 and 10 mA. From this the corresponding values of R_a were calculated for $V_a = 35$ V: these are shown in Table 2. In Fig. 5, $10^9/R_a$ is shown plotted against I_a, and the proportionality is quite apparent. So we may conclude that $R_a = h \cdot \frac{1}{I_e}$ where h is a constant, approximately equal to 1.05×10^5 for this particular valve, at $V_a = 115$ V and $V_a = 35$ V. The makers quote a maximum safe screen and suppressor grid current of 7 mA, but the author has had specimens running continuously with no apparent deterioration on currents of the order of 20 mA. Much depends on the particular specimen selected. Incidentally the variation in “goodness” of different valve specimens is much less than might be expected. Out of ten valves selected at random from a stock, four showed charac...
Wireless World

characteristics similar to those shown, one was slightly worse, three very much better, and only two definitely were useless for this particular application.

The variation of negative resistance with screen voltage \(V_s \) was then investigated. It is generally believed that the negative resistance decreases with increasing screen voltage. This is true only when \(V_s \) is comparable with \(V_a \), i.e. when the secondary electrons are equally attracted by the anode and screen. Under conditions where the secondary electrons are nearly all attracted back to the screen (\(V_s > 2 V_a \)), the negative resistance is practically independent of screen voltage, provided the cathode current is kept constant by alteration of grid bias.

Fig. 6 shows the static characteristics of the VMP4G for various screen voltages, \(I_a \) being kept constant at 5 mA. It will be seen that for \(V_s > 60 \) V, \(R_a \) is substantially constant. The only advantage at normal frequencies conferred by a high screen voltage is in the length and straightness of the curve obtained. Although this enables greater amplitudes and power to be generated, the condition is to be avoided if possible, as with constant screen current the power dissipated is proportional to the screen voltage, and may therefore become dangerous. It is best to work with a screen voltage of about 120 V, as this is roughly the makers’ maximum figure, and it is sufficiently high to ensure that the majority of the secondary electrons are collected by the screen.

The choice of anode voltage to be used in any given case depends mainly on the amplitude required. If \(V_a \) is the voltage at which the upper bend occurs (normally about 10 V.), then the amplitude of oscillation is given approximately by \(V_{peak} = V_a - V_s \), as the oscillation is first limited by the upper bend. For example, if \(V_s = 10 \) V. and an amplitude of 20 V. peak is wanted, \(V_a \) will be \(V_{peak} + V_s = 30 \) V. If oscillation is also limited by the lower bend in the characteristic this relation does not hold. It must also be remembered that a low anode voltage means a high anode current, and hence a smaller screen dissipation for a given cathode current.

Although this investigation is by no means exhaustive, it is hoped that it may serve again to draw attention to the dynatron, particularly for laboratory work, and to point out that excellent results may be obtained with valves which are easily accessible at the present time.

BOOK REVIEW

The announcement of a book on ceramic insulating materials in two fairly high-priced volumes by Dr. Ernst Rosenthal gave rise to hopes that we should have an authoritative standard work on the subject, comprehensive, and up to date: and it is a little disappointing to find that Dr. Rosenthal has apparently not aimed so high. He has set out to provide a readable and well-illustrated introduction to the subject for the benefit of engineers, electrical and chemical manufacturers, and users of ceramic materials generally; an excellent aim in its way, but one for which a single modest volume would have been more suitable. However, we must not be ungrateful for what we have. The first volume now before us does give a good general idea of modern methods for the manufacture of ceramics for electrical purposes, including the differences between British, American and Continental practice, the nature of the raw materials as well as the finished products, and the methods for the testing of both.

"Wedgeing and slapping consists of cutting the body into pieces with a copper wire, throwing these pieces with great force against each other, and finally beating them with a wooden appliance similar to a long-handled hammer having a large flat face at the end. This instrument is called a maul."

This quotation is given because it is curiously representative of both the merits and defects of the book. It is interesting, but not too well constructed, and leaves you not entirely satisfied that you have really got to the bottom of the matter.

As to construction, a strictly logical order is no doubt unnecessary in a work of this kind, but it is disturbing to the general reader to find an introductory chapter followed immediately by one of two pages only on sparking plugs, with one of twenty-odd pages on raw materials, and another of over a hundred pages on manufacturing methods much later in the volume. The third chapter discusses the influence of glazes on the characteristics of the material.

The reader has become resigned to this looseness of construction he is able to appreciate the good points of the work. It bears the stamp of a man who knows the ceramic industry from the inside, and is fully alive to the factors which determine the electrical behaviour of his materials and the means by which these factors are controlled in manufacture. The materials are throughout presented as consisting of minute crystals of one kind or another embedded in a glassy matrix, and the discussions of the formation of this glassy phase and the changes in crystal size and uniformity which may occur on firing are most interesting to any experimenter who has met the differences in electrical and mechanical characteristics ascribed to these changes. The detailed tests of both raw materials and finished products, and the elaborate means of controlling the drying and firing processes show how important is the scientific side of the industry. Nevertheless, there are still so many stages at which it is said that no definite rule can be given, experience is the only guide, that it becomes clear that the manufacture of ceramics is an art not to be acquired by reading books, instructive though they undoubtedly are.

It is at first sight surprising that only 35 pages of a two-volume work should be devoted to high-frequency ceramics, but there is a good and well-illustrated account of those materials and products that have become standard practice, and a brief reference to the newest developments which include a material with a permittivity as high as 1,200.

L. H.
RADIO HEATING EQUIPMENT

V.—Designing a Small Experimental Dielectric Heater

By L. L. LANGTON, A.M.I.E.E.

An outline for Class "C" oscillator design was discussed in Part I of this series (April, 1944, issue), and it is here proposed to consider its application to the design of a small experimental radio heater, capable of heating limited quantities of thermosetting moulding material. This is not a constructional article specifying components to be used and giving detailed layouts, but it seeks to summarise the "raison d'être" for the selection of component values and circuit arrangement.

The paper design of a power oscillator forms a sound basis upon which to commence construction, but it must be remembered that the final adjustments are governed by measurements taken under working conditions. It is well to limit the endeavour to a small equipment using relatively cheap components, so that the results of "experimental error" are not likely to be financially catastrophic.

The choice of an oscillator valve is of first importance and the Osram DA41 has been selected, owing to its robust nature and the fact that it is no larger than valves with which most readers will have had experience. This valve may be operated with zero bias at full anode voltage without damage occurring due to excessive currents. No precautions need be observed to ensure the safety of the valve should the automatic grid leak bias be removed due to cessation of oscillation.

Cathode Emission

A knowledge of the total emission of which the filament is capable is helpful in commencing paper design. This is not usually given by manufacturers for smaller valves, as tungsten is the only filament material having reasonably stable emission, and its use is restricted to the larger types of transmitting valve. When thoriated tungsten wire is used for the filament, as in the case of the DA41, the conditions existing at the surface of the filament are somewhat variable and the emission consequently erratic. If an oxide coated filament is used, emission stability is even worse, as comparatively turbulent conditions exist on the emitting surface.

A value of total emission for thoriated or oxide coated filaments may usually be computed from such data as is published concerning the valve. The value obtained is much less than the emission of which the filament is capable, for, owing to unstable operation, a considerable safety factor is involved.

In the case of the DA41, the published figure for anode dissipation is 40 watts and the maximum HT voltage 1,000. When the valve is used under Class "C" conditions, with an operating arc of 140 degrees, the ratios of DC and AC valve currents to total emission current are 0.22 and 0.39 respectively. Assuming a grid current of 10 per cent. of the anode current, the ratios for DC and AC anode currents become 0.176 and 0.302. Selecting a reasonable value of \(E_a \) min. of 200 volts, the working total emission may be found, as explained in Part I of this series, by equating power output and anode dissipation to power input at the anode.

\[
0.176 I \times 1000 = 40 + \frac{800 \times 0.302 I}{2}
\]

\[I = 725 \text{ mA} \]

For this value of total emission the alternating anode current will be 725 \(\times 0.302 = 220 \) mA. The DC anode current will be 725 \(\times 0.176 = 128 \) mA, and the AC grid current 725 \(\times 0.049 = 32 \) mA. The output power is seen to be

\[
\frac{800 \times 0.22}{2} = 88 \text{ watts and the input } 1000 \times 128 = 128 \text{ watts, giving a power efficiency of 69 per cent.}
\]

The use of two valves may be expected to give an output of about 170 watts and, while push-pull operation is usually to be preferred, there are factors which militate against its use in the present case. The valves employed are normally used for low-frequency power amplification, and the interelectrode capacities are higher than would be found in more expensive valves of equivalent power, specially designed for high-frequency operation.

The comparatively high anode-cathode and grid-cathode interelectrode capacities form a potential divider of relatively high reactance at high frequencies, with the common point at cathode potential. This arrangement forms a Colpitts oscillator, and the position of the grid tap will not be the only factor controlling the amount of feedback in a conventional push-pull circuit. It is also improbable that an indiscriminate pair of valves of the type specified would have sufficiently similar characteristics for satisfactory push-pull operation at high radio frequencies.

Circuit Details

A circuit diagram of the equipment is shown in Fig. 1. Two valves are operated in parallel, and the interelectrode capacities (shown dotted) form the feedback circuit. The RF current flowing in the feedback circuit will not be the total circulating current, as most of this will flow in the "work" circuit, which will have lower reactance.

Under these conditions, the feedback energy is less than could be obtained with the cathode taken to the common electrode of a split tank condenser and the "Q" of the loaded tank circuit should not be too low, as there would then be insufficient feedback to maintain oscillations. A loaded "Q" figure of 40 will prove satisfactory in the present case.

The optimum anode load is given by

\[
\left(E_b - E_{\text{min}} \right)^2 \div \frac{P}{2} \text{ and for two DA41's in parallel } = 1,870 \text{ ohms. This load value, divided by the working "Q" figure, will indicate the optimum}
\]

www.americanradiohistory.com
Wireless World

value of inductive reactance in the tank circuit. This will be 46.8 ohms and, at an operating frequency of 30 Mc/s, the required tank inductance is

\[
\frac{46.8}{18.9 \times 10^7} = 0.25 \mu H. \text{ (approx.)}
\]

"Work" is contained between electrodes which are connected across an extension of the tank coil. The extended coil will, with the "work" capacity, largely determine the frequency of operation and its inductance to cover a reasonable range of "work" should be 1 \(\mu \)H. When centre-tapped as in Fig. 1 the inductance included in the anode circuit will be 0.25 \(\mu \)H, since the inductance varies as the square of the turns.

Coil Design

The optimum shape for a coil to give the highest "Q" is obtained when the ratio of length to diameter is about 0.8. This would, for our present case, give a coil of large diameter and about two turns, and such an arrangement would be awkward in making the adjustments which will be later described.

Taking a length to diameter ratio of 3, the inductance of a coil is given closely by the expression

\[
L = 0.007 \cdot N^2 \cdot D,
\]

where \(N \) is the number of turns and \(D \) the mean diameter of the coil in inches. With copper tube of \(3/16 \)in. outside diameter (having a wall gauge of 18 SWG) wound on a \(1 \frac{1}{2} \)in. former, the mean diameter of the coil would be \(3 \frac{1}{8} \)in. and,

\[
\sqrt{\frac{1}{0.007 \times 1.437}} = 10 \text{ turns are}
\]

required. Tubing of this thickness wound on to a \(1 \frac{1}{2} \)in. former, should be annealed immediately prior to winding, to obviate the risk of the tube collapsing.

For a frequency of 30 Mc/s, the LC multiple is approximately 28 \(\mu \)H, \(\mu \)F, so that stray and "work" capacities together should amount to 28 \(\mu \)F. The frequency of operation will be modified should such capacities be different from this figure, and the possession of an absorption wavemeter, covering the range 25–50 Mc/s, is advantageous in carrying out adjustments.

An expression for the value of grid bias voltage for Class "C" operation was given in Part I of this series. When applied to the case of the DA41, having values of \(E_q \) min. and \(E_q \) max. of 200 and 150 respectively and an operating arc of 140 degrees, the required bias is 90 volts and, for a grid current of 64mA, the bias resistor is 1,400 ohms. A fixed resistor of this value should be used in series with a variable resistor of equal or greater value as a protective measure, mentioned later. No grid condenser is wired directly in parallel with the grid resistor, as the coupling condenser between the tank coil and grid serves the purpose of maintaining the DC potential of the grid, and its reactance is of a suitable value.

"Work" electrodes can be copper discs of about 3in. dia-

![fig. 1. Basic circuit of small-power RF generator for experimental dielectric heating. Component values are discussed in the text.](www.americanradiohistory.com)
Radio Heating Equipment—whole 10 turns of the coil, but when the depth of "work" is reduced to about 3/16 in., it should be across only 5 turns. The quality of all components in the oscillator must be of high grade, and particularly does this apply to the grid condensers, in which position several should be tried and those which overheat rejected. The grid and anode current meters are shunted by condensers, for should a large RF current flow through the meter it would be destroyed due to the temper of the hair-spring being impaired by heating.

![Diagram of an electronic circuit with labels: Thermal Ammeter, Work Electrodes, DA 41's, Grid Condenser, Anode RFC, Grid Current, G.B. Control, Anode Current.]

Fig. 2. Suggested chassis layout. The grid RFC must be mounted below the chassis to avoid coupling with the "tank" circuit tuning coil.

The inclusion of a thermal ammeter of 0-10 amps. range in the "work" circuit is essential in making adjustments for maximum efficiency and, when read in conjunction with the grid and anode current meters, it enables a complete assessment of operating conditions to be formed. It is very necessary, when making adjustments, not to exceed a grid current of 64 mA, or the valves are likely to suffer damage. Points to be watched in connection with this are that there is plenty of inductance in the "work" circuit relative to the depth of work and that the grid resistor should be length of 2 3/4 in. Their resistance will be approximately 0.06 ohms and the filament voltage dropped across them will be 0.6 volt.

Earth connections should be taken to a common conductor of copper tube or copper braid, and this may be joined to the chassis at one point. Connections to the "work" electrode should be of copper braid, so that the large RF currents will be carried with low loss.

A suggested chassis layout is shown in Fig. 2. Every effort should be made to introduce no avoidable stray capacities between the anode, grid and cathode circuits. It is wise to keep the "work" leads short to minimize P.R. losses and to rely on adjustment of the tap position to achieve matching. Grid chokes should be mounted in a position where they are screened from the tank coil, as any RF voltage induced into them will influence feedback and modify the grid drive voltage. With the grid connection to the tank coil removed, there should be no trace of grid current.

The "work" electrodes may be supported upon a platform made of polystyrene or some similar material of extremely low loss. Neither electrode is at earth potential, so that care should be observed in their arrangement. The RF ammeter may also be mounted on the platform adjacent to the "work."

Screening

Screening must be thorough for equipment of this type which will operate over a fairly wide frequency band, owing to the varying tank capacity formed by different shapes of "work." The most convenient method is to contain the entire equipment within a screened cubicle which conforms to the recommendations of Post Office Engineering Instructions, Radio Interference, C1101, which is obtainable from the Engineer-in-Chief's Office (Radio Branch), G.P.O., Harrogate. With this arrangement, one is able to concentrate upon the adjustments being made without continually having to rescreen the "work" and equipment.

In cases where it is inconvenient to install a screened cubicle, a rectangular metal frame supporting well bonded wire gauze or mesh of 25 SWG or larger diameter, and having apertures not exceeding 3/16 in. x 3/16 in. may be placed over the oscillator and "work." The clearance between the screen and the "work" circuit should preferably not be less than 6 in., and the bottom of the frame should be flanged and screwed to a copper sheet under the oscillator. It is well to screen the power supply unit in a similar fashion and to use screened supply leads to the oscillator. A filter of the type indicated in the P.O. leaflet C1101 should be mounted in the screen at a point where the mains leads enter.

The power unit should be
capable of delivering 300 mA at 1,000 volts for HT, and 5 amps at 8 volts for the oscillator filaments.

The rectifier shown to the right in Fig. 2 employs hot-cathode mercury-arc rectifiers, connected in a single-phase full-wave circuit. The RMS voltage of a transformer secondary between centre point and one end is $1.11 \times$ the DC output voltage and the peak reverse voltage across the rectifiers $3.14 \times$ the DC voltage. Average and peak rectifier currents are respectively 0.5 and $1.0 \times$ the DC current.

Smoothing is of the choke input type, and this component should have a minimum inductance of 7 henries and a DC resistance not exceeding 50 ohms. The condenser may have a value of 3 to 4 µF and can consist of electrolytic condensers connected in series with a resistance of about 100,000 ohms in parallel with each, to equalise the voltage distribution across them.

A thermal delay switch controls the main supply to the HT transformer primary to obviate the risk of flashback when switching on. The user must also ensure that the valve is operated at a temperature within the limits prescribed by the manufacturer. UHF chokes are connected in the anode circuit of each rectifier to prevent parasitic oscillation.

A refinement of great value is the inclusion of a "Variac" autotransformer to control the voltage applied to the primary of the HT transformer. Where this can be done, the power supply unit may be somewhat larger and capable of delivering 1,500 volts at 350 mA. With the added control which this refinement gives, the oscillator may be operated with more than 1,000 volts, provided that adjustments are such that the grid and anode currents are not greatly exceeded.

Before undertaking the construction of any RF heating equipment the permission of the G.P.O. must be obtained, and they must be satisfied with the screening measures proposed.

TAYLOR SIGNAL GENERATOR

An AC-operated Modulated Test Oscillator for Receiver Alignment

The basic circuit of this instrument consists of a 6J5 triode RF oscillator, anode-modulated at 400 c/s by a similar valve with common choke coupling. There are five ranges giving fundamental frequencies from 100 kc/s to 23 Mc/s and a sixth scale on the dial enables the first harmonic to be used for television frequencies up to 46 Mc/s.

A stepped attenuator in conjunction with a continuously variable potentiometer gives a range of RF output from 0 to 0.1 volt. Both controls are calibrated and the output in microvolts is given approximately by multiplying the settings of the two dials.

The depth of internal modulation is fixed at approximately 30 per cent., but there is provision for external modulation when the modulating valve is used as an AF amplifier. Alternatively the modulator may be used as a 400 c/s source with an output range of 0 to 1 volt.

The instrument is well screened and a test with the output leads removed at a distance of about a foot from an average 4-valve superheterodyne receiver working at full sensitivity showed no detectable radiation. The low radiation is in part due to the provision of an efficient RF filter in the mains leads.

A 6X5 valve is used as a power rectifier and the total consumption of the instrument is about 15 watts. The mains voltage adjustment covers 200–250 volts.

The instrument weighs 10½ lb. and the dimensions of the steel case are 12½in. × 8½in. × 6in., so that although intended primarily for the test bench it is not unduly bulky if required for a service call to a house where AC mains are known to be available.

The price is £14 14s. and the makers are Taylor Electrical Instruments, Ltd., 419/422, Montrose Avenue, Slough, Bucks.

Exterior and interior views of the Taylor Model 65A signal generator, showing principal circuit components.
TOWARDS SYNTHETIC MUSIC
Avoiding Intermediate Processes

By PATRIC STEVENSON

In this article, arising out of H. A. Hartley's contribution on "Aesthetics of Sound Reproduction" in our July and August issues, the author urges the claims of truly synthetic music as opposed to "doctored" receiver response.

It would almost appear that H. A. Hartley and others have discovered, albeit late in the day, that something "other than high-fidelity reproduction" can be aesthetically satisfying. But this "something" is nothing less than an artistic imitation (as opposed to something aiming at being an exact copy, or facsimile, of the original) and its successful creation depends upon the observance of principles which were discerned and formulated by the best critical and philosophical minds many generations ago. Materials and mediums may change—the subtle movement of an artist's brush may give way to the magnetically induced excitations of a coil of wire through a magnetic field—but the basic laws governing the means by which man's spirit is moved and his deepest emotions stirred remain immutable from one age to another.

In this arrogantly mechanistic era it is regrettably necessary to stress that the ultimate source of all aesthetic experience is the divinely creative urge in the individual human being, whether he be the creator of the work of art, the interpreter, or the recipient. The quantitative, linear perfection of the straightest-of-straight high-fidelity apparatus is of no avail if the effect of its performance lacks the one spark capable of firing the aesthetic emotions. Science most certainly becomes abortive without a qualitative aim. A world devoid of value is meaningless.

Second-rate Art

It is important also to emphasize that electrical imitation can never become a great art. In his address to the Brit. I.R.E. on March 20th, Dr. Malcolm Sargent pointed out that his art—the art of musical interpretation and performance—was itself a reproduction, a process of transforming printed notes into sound. What we hear from our loudspeakers is, therefore, a reproduction of a reproduction. As such it cannot claim equal status with the fine arts. Ruskin put this clearly by saying: "No great art ever was, or can be, employed in the careful imitation of the work of man as its principal subject. . . . Art which reduplicates art is necessarily second-rate art."1

For electronic technique to become a direct medium for great art we must wait for the arrival of the truly synthetic score. Only then will the composer be brought into line with other artists, and, working directly upon the ultimate sound material itself, build up his synthetic track for reproduction by apparatus of predetermined characteristics, secure in the knowledge that no middlemen in the shape of performers will come between him and the distortionless impact of his vision on the world.

That such an idea is more than a dream was evidenced by the description of Rudolf Pfenniger's synthetic sound system.2 In addition, the latest possibilities in the way of stereophony (possibly accomplished by artificially produced phase differences), synthetic reverberation, "sound dubbing," "subsonics," etc., are unbounded.3 Indeed, the merging of composition and performance in one technique would be but the logical culmination of present tendencies. Critical appreciation of the gramophone is gradually reducing the number of executants whose skill is deemed worthy of perpetuation on the wax.

The next step is to abolish the ambiguous score and fallible performer. We can visualise the future composer abandoning all study of conventional notation and instrumentation for the meticulous and microscopic analysis of sound-wave patterns. He will buy his "tone stencils" from composers' "tonemen"—much as artists now buy pigments from artists' colourmen, and spend his creative hours in an electro-acoustic laboratory surrounded by cathoderay tubes, harmonic analysers, frequency meters, reels of sensitive film, photo-electric cells, standardised reproducers, and innumerable other devices. Once he has "written" his "score" he can rest content (presupposing unlimited facsimiles) that everyone who runs his film through the standard type of reproducer will hear exactly what he intended them to hear; exactly what he has put on the record.

Instant "Playback"

In addition to knowing that no unsympathetic interpretation of his music can mar its presentation to the public, the composer will have the great advantage of being able to hear his work, in its full colours, bar by bar, as it is written. There will be no loner waiting for a first performance after which he may have to re-score his composition.

Initially, no doubt, the synthetic composer will create in traditional symphonic tone-colours—much as early motor car designers were hypnotised by the form of existing horse-drawn vehicles and took time before they evolved a shape really suited to mechanical propulsion. But after a while he will arrive at new combinations of stencilled wave-forms giving rise to novel tone colours and effects of unexampled beauty without precedent in the history of music. By painstaking comparative analysis of wave forms and the delicate manipulation of

1 "The Harbours of England."
2 "Wireless World," Feb. 3rd, 1933. See also an article by the present writer in The Musical Times for Sept. 1936, entitled "Exit the Performer?"
stencils he will be able to produce a more perfect tone than that of a Stradivarius in the hands of a Kreisler, or, if he so desires, conjure up the sound of sixty strings all played by instrumentalists of this calibre. The oboe of a Goossens, the horn of a Brain, the trumpet of a Hall, will be there at his command whenever required. No passages he may conceive will fail through overstepping the powers of human lungs and vocal chords, and the choral finales of yet unwritten Ninth Symphonies will soar effortlessly through the upper limits of hearing without any feeling of discomfort or strain.

Disney Technique — in Sound

Should the composer's genius lean towards caricature and the expression of caustic wit, what unlimited opportunities await exploitation in the distortion of typical waveforms! The range of expression open to him, from the bizarre and macabre to ethereal evocations of ineffable beauty, will far exceed anything we can at present imagine.

Before the evolution of this composer's El Dorado, however, there will certainly be a period providing ample scope for electronically synthesised music of the kind advocated by Mr. Hartley. And until the emergence of synthetic sound as a first-hand medium for artistic creation it may well happen, as Dr. Sargent believes, that music will be written for existing instruments, but expressly designed for calculated electronic eduction by means of predetermined reproducing channels, thus forming a halfway house between old and new. Ernest Newman has seen other potentialities in broadcasting and studio technique, namely, the opportunity to produce masterpieces like the Berlin Requiem in such a manner as to bring off triumphantly all the effects which misfire under normal concert conditions. The success of any innovation like this calls for close co-operation between musician and engineer. Eloquent pleas for such co-operation were made at the Brit. I.R.E. meeting, and it is to be hoped that much liaison work will be done in the future.

Wireless World

STANDARD FREQUENCY TRANSMISSIONS

ADDITIONS and alterations having recently been made in the standard frequency transmissions broadcast by the U.S. National Bureau of Standards, we give below details of the revised schedule. This service is broadcast continuously by the Bureau's station on WWV at Beltsville, Maryland, near Washington, D.C.

At least three carrier frequencies are now transmitted at all times to ensure reliable coverage. They are: 2.5 Mc/s broadcast from 2300 to 1300 GMT.
5 Mc/s broadcast continuously throughout the 24 hours.
10 Mc/s broadcast continuously throughout the 24 hours.
15 Mc/s broadcast from 1100 to 2300 GMT.

Two standard audio-frequencies, 450 c/s, the standard musical pitch corresponding to A above middle C, and 4,000 c/s are broadcast continuously on 10 and 15 Mc/s. Both are also transmitted on the 5 Mc/s carrier frequency in the daytime but only the 440 c/s from 2300 to 1100 GMT. The lowest radio frequency (2.5 Mc/s) carries the 440 c/s only.

The audio frequencies are interrupted precisely at the hour and each five minutes thereafter for one minute during which the station's call letters are given in morse except at the hour and half-hour when a detailed announcement is given by phone.

The accuracy of all the frequencies is one part in 10⁶. The time interval, marked by the pulse every second, is accurate to 0.00001 second.

Information on how to receive and utilise this service is given in the Bureau's pamphlet "Methods of Using Standard Frequencies Broadcast by Radio," obtainable on request from the National Bureau of Standards, Washington, D.C. The Bureau welcomes reports of difficulties, methods of use, or special applications of the service.

Baird "Telechrome"

A DEMONSTRATION of the latest system of stereoscopic colour television was given recently by J. L. Baird. It employs a special double-beam cathode-ray tube with a twin internal mica screen coated on one side with blue-green and on the other with red-orange fluorescent material. Colour pictures are seen directly without the aid of revolving filters or lens systems, and for stereoscopic effects the picture is viewed through coloured glasses.

We hope to give a more detailed account of this new development in our next issue.

GALPINS

ELECTRICAL STORES

"FAIRVIEW,

LONDON ROAD, WROTHAM, KENT."

TERMS: Cash with order. No C.O.D.
All prices include carriage or postage.

MASSIVE GUNMETAL WINCH, complete with long handle, for use with fin. dia. wire cable, weight 50 lbs., condition as new. $3.

ELECTRIC LIGHT CHECK METERS, first-class condition, electrically guaranteed, for A.C. mains 300/250 volts 50 cy. 1 phase 5 amp. load. 14, each. 4.50.

SOLID BRASS LAMPS (wing type), one-hole mounting, fitted double contact, S.D. holder, and 12 volt 10 watt bulb. 4.50.

TUNGSTEN CONTACTS, 3 in. dia., a pair mounted on spring blades, also two high quality pure silver contacts, 3 in. dia., also on spring blades, fit for heavy duty, new and unused. There is enough base to remove for other work. Set of four contacts. 4.50.

RESISTANCE UNITS, fireproof, size 10 x 1 in. wound chrome nickel wire, resistance 2 ohms to carry 10 amperes. 2. 6d. each.

3-PHASE TRANSFORMERS, 410v., to 240v. at 3kW, size of core 14in. by 11in. by 5 square inch section. $10.

TAPE MACHINE, fitted klaxon 220v. D.C. motor geared drive, rheostat control, 18 ohm relay complete with tape reel and case. $7.

AIR PRESSURE GAUGE by famous maker. 10in. dia., reading 0-4,000 lb. per square inch, as new, in case. $7. 10.

SWITCH FUSE in wrought iron case, 3-way, for 400 volts at 40 amp. 45.50.

MOVING COIL amplifier reading 0-350 amperes, 6in. dia., switch board type. Price $3 10.

ROTARY CONVERTER, input 40 volts D.C. output 75v., 75 mA, A.C. also would make good 50v. motor or would generate. $2.

DYNAMO, output, 30v.-10 amp. Ball bearing, shunt wound, speed 1,750 r.p.m. $5.

AUTO TRANSFORMERS. Step up or down, tapped 0-110-200-220-240; 1,500 watts, $7; 1,000 watts, $5.

H.T. TRANSFORMER, in case, size 10 x 7 x 6in. (no coil), 300 volts to 10,000 volts, C.F.T. output; 5kVA at 500 cycles, intermittent rating. 20.

METAL RECTIFIERS, size 6 x 4 x 4in., not Westinghouse, output 100 volts at 500 mA, price $2.10; ditto, 5 x 5 x 5in., not Westinghouse, output 100 volt at 250 mA, price $1.75; ditto, output approx. 100 volt at 50 M.A, price 10.

POWER TRANSFORMER, 4kW, double wound, 400 volts and 220 volts to 110 volts, 60 cycles, single phase. Price $25.

AMPLIFIER COMPONENTS, from dismantled American 10-watt amplifiers, all metal cased and compound filled. Input transformers, 15; Interstages, 7; Push-Pull output, 10; Push-Pull input, 10; Power Transformers, 12 and 25; Capacitor Packs, 10 and 20; Reactors, 12; Audio Filters, 7/8.

MOVING COIL AND M.I. METERS.

FOR FULL DETAILS OF ABOVE AND OTHER GOODS, SEND FOR LIST, 9d.
WORLD OF WIRELESS

IN DEFENCE OF FM

In a letter to the Editor of Broadcasting, Dr. Edwin Armstrong corrects a statement which recently appeared in that journal. The statement was "the facts are that it costs every bit as much to install and operate an average FM station as it does an AM."

Dr. Armstrong states in his letter: "From the very start of FM the initial cost of equipment and the cost of operation have been substantially less than AM. These costs will steadily decrease with the coming of large-scale manufacture, and with the introduction of unattended remote controlled transmitters advantageously placed to dominate the surrounding terrain."

"It has long been practical to operate stations of moderate power in this way. In fact the more exacting requirements of the State police systems have been met for years in precisely this manner. I believe that the time is not too far distant when transmitters covering local areas will be switched on and operated with as little concern and attention as is given to the public address systems which are now standard equipment for every large hall."

SPONSORED PROGRAMMES

It was recently reported in the London Evening Standard that the B.B.C. Listener Research Department was "testing public opinion on the question of the introduction of commercial broadcasting after the war."

The Listening Panel, a cross-section of about 500 listeners, were invited to state whether they would or would not favour the introduction of commercial broadcasting in either or both of two forms. One was that time should be sold to advertisers in exchange for allowing them to mention their products in the programmes and the second that Parliament should permit one more commercial stations, financed by advertisers, to operate in competition with the B.B.C.

It was later reported that the project had been cancelled!

SCIENTIFIC RESEARCH

In the belief that "academic and industrial research are interdependent and complementary and that substantial advances in industry cannot be looked for without corresponding advances in academic science," the directors of Imperial Chemical Industries have offered to provide eighty Fellowships, to be held by senior workers in certain sciences at nine universities in Great Britain. The Fellowships will be of the average value of £600 per annum.

The subjects prescribed in the scheme, which is to operate for an initial period of seven years, are physics, chemistry and the sciences dependent thereon, including chemotherapy; that is to say, any branch of physics or chemistry may be included as well as applied sciences such as metallurgy and engineering.

COMMERCIAL TELEVISION

An indication of the growing interest in, and potentialities of, television in the United States is given by the issue of a brochure on the planning of commercial television programmes by the RKO Television Corporation. This corporation has been formed to "make available to the producers of television a complete programme-building service." Behind it are the vast resources of equipment, studios, and research facilities of RKO, Radio Pictures and Pathé News.

Of the fourteen licensed television stations in the United States, nine are now operating regularly in five cities—some for seven days a week. There are also fifteen licensed experimental relay stations. In addition there are 31 applications pending for commercial stations covering another 13 cities.

OBITUARY

We regret to announce the death, by enemy action, of F. J. Mortimer, Editor of Amateur Photographer, which is issued by our own Publishers. He was a Past President and Honorary Fellow of the Royal Photographic Society, and had a long and distinguished career in photographic art and specialist journalism, having edited Amateur Photographer for nearly 40 years.

One of the early phases of wireless development is recalled by the recent death in France of J. Bethenod. From 1907 onwards he worked on RF alternators, and a 350 kW machine of his design was installed at the La Doua transatlantic long-wave station, near Lyons, in 1920, replacing the Poulsen arc formerly used.

FREQUENCY ALLOCATIONS

Something approaching the interim international conference on frequency allocation for which Wireless World has pleaded is foreshadowed by a recent announcement from Washington. An inter-American radio conference has provisionally been arranged to take place in Rio de Janeiro next spring, to which all countries in the Eastern Hemisphere will be invited. Post-war communications problems, including the allocation of frequencies in the Western Hemisphere and the reorganisation of the International Telecommunications Union, will be considered by the delegates.

In view of the growing demands on the higher frequencies for aviation and marine communications, and for long-distance telegraphy and telephony, a proposal has been made in the States to discontinue international broadcasting as at present undertaken and thereby make available many more channels. It is further suggested that international broadcasting should be limited to point-to-point relay systems.

I.E.E. "RADIO" SECTION

It has been announced by the Council of the Institution of Electrical Engineers that on the recommendation of the Wireless Section Committee it has decided to change the name to Radio Section. The rule dealing with the scope of the Section has been modified to read as follows:

"The Scope shall include within its scope all matters relating to the study, design, manufacture or operation of apparatus for communication by wave radiation, for high-frequency and electronic engineering, or for the electrical reproduction of sound."

WHAT THEY SAY

Words into Ploughshares.—This young industry has men of great ability in the leading positions. If in peacetime they can do for the public what in wartime they

"WHAT HATH GOD WROUGHT?"—the message sent by Samuel Morse when he demonstrated his system of telegraphy on May 24th, 1844, is featured on this U.S. postage stamp issued to mark the centenary of the event.
Wireless World

IN BRIEF

U.S. Signal Equipment.—During the current financial year the U.S. Signal Corps has an appropriation of $21,000,000 for radar and radio equipment. This is 83.7 per cent. of the Corps’ total allocation. Over half the expenditure is for airborne equipment.

Wired Wireless.—A significant amendment in the renewed ten-year agreement between the Norwich City Council and Norwich Relays, Ltd., is that “the Council during the period of the agreement desire to use its electricity mains and services for the purpose of a relay service it may do so at any time after two years” notice to that effect.

Security Ban Lifted.—South African radio stations are again announcing their unmasking. For 24 years they have remained anonymous to prevent hostile aircraft from identifying particular radio stations; now the ban is not put in.

New Address.—The temporary address of the Radio Components Manufacturers’ Federation is 22, Surrey Street, Strand, London, W.C.2. Emergency telephone call only should be made to Temple Bar 1641.

I.E.E. Council.—The following officers were elected at an ordinary meeting of the Institution of Electrical Engineers to fill the vacancies on the Council occurring on September 30th: President, Sir Harry Ralling; Vice-President, W. J. H. Wood; Hon. Treasurer, E. S. Byng; Ordinary Members of Council, H. Bishop (B.E.C.), W. N. C. Clinch, F. C. C. Winfield and Dr. R. W. Sillars.

I.E.E. Radio Section.—At a meeting held on May 17th last, the following were elected to the Radio Section Committee: Chairman, H. L. Kirke (B.E.C.); Vice-Chairman, C. E. Strong (Standard Telephones and Cables); Ordinary Members of Committee, Dr. J. Gray (Northampton Polytechnic), Dr. J. E. A. Landale (Admiralty Signal Establishment), E. M. Lee (Belling and Lee), S. A. Smith (Marconi’s W.T. Co.) and R. J. R. Wilkinson (B.T.H.).

British Sound Recording Association.—Election of the Secretary of the B.S.R.A.—D. W. Aldous, of “Strathdee,” Studley Road, Torquay, Devon—informs me that a leaflet is in preparation setting out the object and future plans of the Association. Interested readers should write for a copy to Mr. Aldous.

Institute of Physics.—At a meeting of the Electronics Group of the Institute to be held on September 19th at 5.30 in the Queen’s Hall, Members of the Royal Institution, 21, Albermarle Street, London, W.1., Dr. A. Somer, of Cinema Television, Ltd., will deliver a paper on “Principles of Photo-Electric Emission and Their Application in Photo-Electric Cells.”

Institution of Electronics.—A lecture on the Electron Microscope will be given by Dr. D. G. Drummond at the meeting of the North-West Branch of the Institution to be held at 6.30 p.m. on Friday, September 22nd. Non-members can obtain tickets from L. F. Berry, 14, Heywood Avenue, Austerlitz, Oldham, Lancs.

PERSONALITIES

Dr. Edwin H. Armstrong, the FM pioneer, has received the first certificate of appreciation given by the U.S. Chief Signal Officer “for loyal and patriotic services rendered the Signal Corps and the United States in the accomplishment of its vital mission during a period of national emergency.” It is understood the Signal Corps is now making exhaustive use of frequency modulation.

Samuel Ruben, of New Rochelle, N.Y., has also been awarded the U.S. Chief Signal Officer’s Certificate of Appreciation for his work which has resulted in increased durability and reduced size of dry batteries.

Edward R. Murre, who is in charge of the London office of the C.B.S., has been awarded the Peabody Radio Award for outstanding reporting of the news. The Peabody Awards are made annually in recognition of the most disinterested and meritorious public service rendered each year by the broadcasting industry.

Rene Morin has resigned the chairmanship of the Canadian Broadcasting Corporation and is succeeded by Howard J. Chase. Mr. Morin is remaining on the Board of Governors. Dr. Augustin Frigon, assistant general manager of the Corporation, is continuing to act as general manager.

Dr. A. H. Page, head physicist at the U.S. Naval Research Laboratories, has been awarded the American Medal of Merit. The citation reads “Dr. Taylor laboured tirelessly in a course of research and experiment which eventually resulted in the discovery and development of radar.”

HOME SAFELY—THANKS TO RADIO

The far-reaching achievements of the electronics industry are being made available to the Armed Forces in ever-increasing quantities.

Crown is proud of its proven ability to produce precisely made electronic control mechanisms in large numbers.

Frank Heaver Ltd., Kingsley Road, Bideford, Devon.
A π Tip

You remember that I gave recently a tip for keeping the reciprocal of π in mind if you have reason to do so; all you have to do is to ask yourself: "Can I remember the reciprocal?" The number of letters in those words give you the answer: 0.31831. A reader tells me that whilst turning over an old French mathematical work he came on a rather remarkable way of remembering the value of π to ten decimal places. The aid to memory here is the sentence: "Que j’aime a faire connaissance en nombre utile aux sages," which may be Englished as "How I love making known this number useful to the wise." The numbers of letters in the French sentence (but not in its translation) give you 3.1415926535. I can hardly imagine any ordinary person needing to remember π to ten places. Here is an English jingle that gives it to eight:

See π here I state
Correctly to places eight.

Pinning it Down!

Would you believe that in quite recent times an attempt was made to enforce legally the all-too-round figure value of 3 for π? It was in that queer part of the United States where they stand so foursquare for the literal interpretation of the Bible that a schoolmaster was prosecuted—yes I may recall the case—when he tamed the elements of the Evolution picture, for of π it was argued that the Old Testament told of a "sea of brass" in the Temple furnishings whose circumference was 30 cubits and the diameter ten. As the "sea," or basin was stated to be round it followed naturally that the true value of π must be plain three! Actually those who built the Temple probably had π taped to the equivalent of at least two places of decimals through their contacts with the Assyrians and the Egyptians. Either the "sea," or basin was slightly oval or—more probably—the writer of the description was using the approximation for the circumference/diameter ratio generally employed by the non-mathematical of his time.

A Little Hotter

If you happen to live in a place where the mains voltage is at the lower end of one of the ranges for which electrical appliances are rated, you may find that your soldering iron doesn't get hot enough to do neat sound work with wartime solder. Much of this is a good deal harder, owing to the shortage of tin, than the corresponding grades of pre-war days. In fact, even if your voltage is 220 you may feel that you'd be glad of a little more heat in the bit. For most electrical connections, and particularly for those in radio apparatus, I use Multicore solder, which flows readily with a 200-230-volt iron heated from 200-volt mains; but for the harder types I like my bit to be hot enough to singe a piece of newspaper brown when laid for a moment upon it. Here's a way of getting that extra little bit of heat that makes so much difference. The heater element is generally situated near the business end of the iron; between the housing of the heater and the handle are several inches of metal tube, from which a good deal of heat is radiated and so wasted. Bind this part of the tool with asbestos string (I untwisted a piece of asbestos string about as thick as a cigarette and used two strands) and protect this with a binding of ordinary string. Besides increasing the temperature of the bit by a small but appreciable and useful amount the binding serves another purpose: you don't burn your fingers if in a moment of absent-mindedness they stray from the handle on to the metal part of the iron.

Network Problems

A fellow soldier sends me a resistance network problem which has apparently caused some argument in his unit, though it seems fairly straightforward. Here it is: twelve one-ohm resistors are connected in the form of a cube; what is the resistance between opposite corners such as A B in Fig. 1?

Riveting

Ever tried your hand at riveting? Small jobs, I mean; not the sort that occur in shipbuilding or boilermaking. It is a fascinating art and a very useful one to acquire for both construction and repair work. Actually it's not a bit difficult, and if you try it you and a good deal of pleasure in the neat jobs that you can turn out. I've been a rivet addict for years and riveting has saved me a lot of bother and time again. Here's a typical job. To an existing pressed steel radio chassis I wanted to fix an extension measuring 4in. x 4in. to hold some additional components. You can solder steel, but riveting is simpler and makes a very strong job. The first thing to do was to cut out a piece of metal 4in. x 4in. to allow for the overlap. Close to one edge of this were drilled five holes which were just a push fit for the rivets.

Doing the Job

Actually I had no ready-made rivets of suitable size in stock and they aren't easy to obtain nowadays. But I had some 3in. nails made of softish brass with round heads. One of these was passed through the drill plate and the appropriate drill chosen. The plate was drilled as already described and corresponding holes were drilled in the chassis. One of the nails was put through the middle hole in both plate and chassis and shortened with end cutters so that about 3in. was left protruding. The work was now placed on a block of steel, the head of the nail resting on the
Wireless World

Could it be Done?

The present voltage limits for household purposes date back to a time when wiring systems, switches and safeguards were not nearly as good as they are now. As "Supervisor" pointed out in The Electrician, there is little, if any, more risk of accident with 400-volt three-phase than with 230-volt single-phase supplies. The objection may therefore be ruled out. Probably the chief kick against the compulsory use of three-phase motors in domestic appliances would come from manufacturers, on the grounds that they have to cater for customers who have DC supplies and must therefore use universal motors. It is only a matter of time for all supplies to become standard AC and, so far as we can see, progress in this direction should be rapid when the war is over. The case could be met by making it an offence to use any but a three-phase motor on AC mains after a certain date. I believe, though, that the best results could be achieved not by legislation but by the influence of the manufacturers themselves, whose interest it would be to educate the public up to the enormous advantages of the three-phase motor, which is much more sturdy and reliable than its universal counterpart. The latter would then die a natural and unmourned death, as more and more of the still existing DC supplies are changed to AC.

Resonance?

A CORRESPONDENT, who is at pains to point out that he makes no claim to be psychic or anything of that kind, writes to tell me that he has the curious gift of being able to tell whether 50-cycle AC is flowing by merely touching the insulating covering of a conductor. "If," he writes, "I put my finger on a pear switch or a torpedo switch, I can feel the current when it is in the 'on' position." I can only deduce that my correspondent's natural frequency is 50 c/s and suggest that when opportunity arises he should plot his response curve, carefully examining it for peaks or signs of hump should he be feeling under the weather! A fellow I know used to claim that his natural frequency was that of the local broadcasting station and that he could enjoy the programmes by holding a crystal lightly between his teeth. When he had his appendix removed he feared that the loss of a turn might necessitate recalibration; but all was well, for he found that reduced inductance had been offset by increased capacity and he soon became used to his new L/C ratio.

THE "FLUXITE QUINS" AT WORK

"How many times have I said,
When you’re testing a set that’s gone dead,
And you dash for FLUXITE,
'Don’t go wild, you young sprite,
AND RUSH OUT WITH THE *PHONES ON
YOUR HEAD!*"

See that FLUXITE is always by you — in the house — garage — workshop — wherever speedy soldering is needed. Used for over 30 years in Government works and by leading engineers and manufacturers. Of all Ironmongers — in tins, 6d., 1/4 & 2/8.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET — compact but substantial — complete with full instructions, 7/6.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It’s simple — with FLUXITE — but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 1/6, or filled, 2/6.

ALL MECHANICS WILL HAVE

FLUXITE

IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.

FLUXITE LTD.
(Dept. W.W.), Bermendsay Street, S.E.1.
A SELECTION
OF THE MORE INTERESTING
RADIO DEVELOPMENTS

In order to minimize the risk of collision and to facilitate traffic control in conditions of low visibility an aircraft radiates a carrier wave the frequency of which is controlled through a variable condenser geared to the moving part of an aneroid, so as to indicate automatically the instantaneous altitude of the machine. Simultaneously a modulating note, indicative of the direction in which the craft is travelling in azimuth is superimposed on the carrier through a coil, the effective inductance of which depends upon the instantaneous angle between the fore-and-aft line of the craft and the N-S line of a magnetic compass associated with the coil. This controls a modulator which provides a distinctive frequency for any particular course, a change of direction from N to S through east being distinguished from the direction N to S through west, by sub-modulation.

A receiver is also provided for picking up signals radiated from any other aircraft in the vicinity. Reception is synchronized to occur only during the intervals between transmission on any given machine. The receiver may also be used to give an indication of the relative distance, based on signal strength, of the machine with which it is communicating.

Square D Company. Convention date (U.S.A.) February 5th, 1941. Nos. 559243 and 559259.

CATHODE-RAY TUBES

The fluorescent screen of a cathode-ray tube is liable, in the course of scanning, to be injured by various forms of ionic bombardment. Negative ions come from the cathode and are subject to the same deflecting fields as the electrons, but respond differently, owing to their smaller charge-to-mass ratio. For this reason, they travel in a substantially straight line and so always strike against the screen, thereby causing what is called "smudge." Positive ions may also be attracted towards the screen by local potential gradients created by secondary emission; these cause small blemishes known as "smudge." According to the invention, the screen is covered, on the side facing the "gun," by two separate protecting layers, the combined thickness of which is still permissible by the normal scanning stream. The first layer consists of pure aluminium, five to ten molecules thick, and the second of aluminium oxide which is made at least double the thickness of the first. The oxide layer serves to absorb the energy of the negative electrons, whilst the metal layer prevents the migration of local positive ions to the sensitive surface of the screen.

TELEVISION AERIALS

The aerial for a television receiver is mounted inside the cabinet, so that it can conveniently be re-tuned when necessary, and its directional properties utilized.

As shown in the diagram, either a pair of dipoles P or a frame aerial F can be switched at choice into circuit which is terminated by different input couplings A, B, C, D, to the grid of the first valve of the set. The various combinations are adapted, either by the addition of an extra length of line L1 or by suitable loading reactances such as the condensers K1, K1 and K2, to vary the effective electrical length of the transmission line in order to tune the circuits to a selected waveband.

The frame aerial may be made of thin copper tubing which is bent into a square of 18 m. side. This is mounted for rotation about vertical and horizontal axes, so as to make the best use of its directive properties, and more particularly for reducing the effect of local sources of disturbance. The overall length of the two dipoles is, say, 17 m., and they also are rotatably mounted. The frame aerial is screened at the high-potential parts, whilst the dipoles are capacity-loaded at each end. The smallness of the aerials is offset by their high Q factor, which ensures sufficient clipping to cover a six-megacycle channel on each of the available tuning switches.

BATTERY VOLTAGE INDICATOR

Although the end of the useful life of a high-tension battery is generally indicated well in advance, by the usual symptoms of falling voltage, these are apt to be ignored by the optimistic listener until the set finally gives up the ghost at some inconvenient or critical time. Failing a voltmeter it is hard to know when, for instance, a nominal 120-volt unit has dropped 30 volts and is ripe for replacement.

An ordinary incandescent lamp connected across the cells is not easily adapted to give the indication required, whilst its current consumption would prove a heavy drain. Instead, the inventors use a small gas-filled glow lamp to serve as a permanent watch-dog. A tube of this kind can be designed to quench at a voltage of, say, 25 per cent below the ignition voltage, and to consume less than one-tenth of a watt.

A.H. Electro, Convention date (Sweden) November 15th, 1938. No. 559513.

DIRECTIVE AERIALS

To prevent undesired reflection effects, it is necessary, in the first place, to match the impedance of the aerial to that of the feed line. In the case of the "vee" or "double-vee" (rhombic) type of directive aerial, the problem is further complicated by the fact that the angular arrangement of its limbs causes the aerial impedance to vary exponentially from a minimum at the close-set terminals to a maximum at the point where the aerial conductors are most widely separated. As a result, reflection losses are set up within the actual framework of the aerial.

Aerial system designed for installation inside a television receiver cabinet.
According to the invention, each limb of the aerial consists of a hollow "cage" or "sausage" made up of, say, six identical wires. These are threaded through supporting rings so that each cage is of circular cross-section throughout, though the diameter of the cage increases from one end of each "vee" to an intermediate point, and then decreases to the opposite end of the same limb. This ensures a smooth gradient of impedance along the length of the aerial, and so reduces losses due to internal reflection.

VARIABLE CONденСERS

A outer tube C1 is insulated from two inner coaxial tubes C2. C3. C2 is fixed and is threaded to allow C3 to be screwed in and out by means of a control knob K. This alters the effective area of overlap 2, 3 between the outer surface of C3 and the inner face of C1, thus varying the overall capacity of the unit. It should be noted that the gap between the control knob and the inner tubes is designed to be an appreciable capacity, because of the external screw thread on the tube C2 to a tube C3 which is too wide to be changed from the outer electrode C1. The arrangement gives a comparatively large tuning range to one condenser having small dimensions.

Two or more similar units may be combined or interleaved to form one coaxial assembly, with ganged control from a single tuning knob. The single unit shown can be applied to a nominally "fixed" condenser, in order to compensate for changes in temperature or humidity.

A. Fobbe. Application date August 14th, 1942. No. 259627.

FM TUNING INDICATOR

The tuning of a frequency-modulated receiver is complicated by the fact that three widely separated resonant peaks occur within each signal waveband, the presence of the two outer bands being dialectic to the detector characteristics. At the same time the full benefit of the high signal-to-noise ratio given by this type of modulation is not available when the set is accurately adjusted to the true or centre peak of resonance.

To simplify the problem an auxiliary AF note is deliberately introduced during the process of tuning, by switching in a tapping from the main supply transformer to the screen grid of the first IF amplifier. It is known that the ordinary balanced diode type of frequency discriminator acts automatically to wipe out any amplitude modulation that may be superposed on the signal, provided the circuits are accurately tuned to the centre frequency of the signal carrier, but not otherwise. The set is accordingly adjusted until the sound of the mains "hum" disappears, whereupon the tapping from the mains transformer is switched off, leaving the set ready for reception.

CHASSIS CONSTRUCTION

To facilitate inspection and repair, the component parts of a wireless set are distributed over the four shelves or panels provided by a cross-shaped carrier or supporting member. This is conveniently made by joining two L-shaped metal plates, which give the required cruciform cross-section. The carrier is mounted between two rectangular end pieces, so that the whole forms a rigid assembly.

When withdrawn from its outer casing the carrier can be turned to rest firmly on any one of the four sides of the rectangular end pieces, thus allowing the operator to bring any selected component into the most convenient position for servicing.

The cruciform shape of the internal carrier also serves to divide the outer casing into four separate compartments, which are mutually screened from each other.

BEAM AMPLIFIERS

RELATES to the focusing and deflecting plates or electrodes of a cathode-ray tube, of a type and arrangement particularly when used as a beam amplifier.

It is pointed out that if the electron stream is allowed to fill substantially the whole of the space between the focusing plates, a high degree of aberration will occur, because, in effect, the full aperture of the lens is being used. According to the invention the plates at opposite sides of the stream are set parallel to each other, as usual, for most of their length, but their ends are flared outwards to double the normal separation. The axial length of the flared part is made equal to the transverse distance between the parallel parts of the plates. The result is to double the effective aperture of the flared portion, or lens, relatively to the normal width of the electron stream, and to reduce the aberration ratio substantially to unity. In this way the stream can be concentrated into a narrow ribbon in the vicinity of the twin output anodes or targets.

Input signals are applied across one of the pairs of focusing plates which then serve as deflecting electrodes to sweep the beam from one to the other of the two anodes, the resulting changes of potential across the latter providing the amplifying output.

Western Electric Co., Inc. Convention date (U.S.A.) May 31st, 1941. No. 258523.

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.

The response curve is straight from 200 to 15,000 cycles in the standard model. The low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil.

A tone control is fitted, and the large eight-section output transformer is available to match, 15-60-115-230 ohms. These output lines can be matched using all sections of windings, and will deliver the full response to the loud speaker with extremely low overall harmonic distortion.

PRICE (with 807, etc. type valves) £18.10.0
Plus 25% War Increase

MANY HUNDREDS ALREADY IN USE
Supplied only against Government Contracts

Phone: LIferty 2814
New Thoughts on

VOLUME EXPANSION

Contrast Should be Proportional to Size of Room

By THOMAS RODDAM

Quite a lot of effort among devotees of high-quality reproduction is now going into the construction of circuits for contrast expansion. In the view of the writer, this effort is misguided, and it is the intention of these notes to make a case against contrast expansion for broadcast listening. There is, of course, the normal reasoning that as the compression of the programme is not effected by a simple electrical device, restoration cannot be so effected. This is a well-known argument and the usual reply of expansion enthusiasts is that inaccurate expansion is better than none at all.

A second, and in my view wholly satisfying, argument against expansion is also known. The environment of the average listener is not a silent one. Passing traffic, bird singing, the noise of the fire, and of the movements of other members of the household; all these produce an ambient noise level which serves as a distraction and as a desensitising influence to the ear. For comfortable listening, the lowest levels of programme should be about 10 db. above the level of the click of Aunt Fanny’s knitting needles. The average level, however, should be such that the voice of the announcer is at ordinary speaking level. Orchestral tutti should not completely deafen the listener. In fact, however, even without expansion, the range transmitted is such that a fixed volume control setting means that on a summer evening a concert will be forced on a silent neighbour, or drowned by the lawn mower of an energetic one. This, then, is the practical case against contrast expansion. The answer to it is usually produced by some fortunate individual who lives in the heart of the country, with no traffic, no neighbours, and no Aunt Fanny; he can say quite truthfully that he thinks these factors are over-rated.

Expediency is a bad master, and the two anti-expansion arguments given above will not apply to the happy listener who receives, in a quiet and lonely room, a programme compressed from its original 60, 65, or even 120 db. range to possibly 30 or 40 db. by an electrical device. Such a listener, if the field strength at his receiver is high, will say that by expansion complementary to the original compression he can restore the programme to its full original, limited only by the linearity of the intervening circuits and the absence of binaural effects. The writer believes that this is not so, for reasons which he has never seen given elsewhere.

Audience: Contrast Ratios

Let us consider the raw material with which we are dealing. The material which merits most attention is music written and played for concentrated listening, and we should also consider talks and public speeches. In considering musical programmes we shall exclude broadcasts of piano music; the piano can be played as a chamber music solo instrument or as a partner of an orchestra, and its range is completely under the control of the player. With strings the contrast is produced by variations between small groups of players and the whole orchestra. In general, we find that the contrast of our material is related to the size of the audience for which the music was written. The contrast of which a large orchestra is capable is of the order of 80 to 120 decibels; this corresponds to an audience of several thousands; the music itself, if early 19th century, was written for a smaller orchestra, but concert halls, too, were smaller, and the composer’s expectation of 70 to 90 decibels contrast is in proportion. At the other end of the scale, the family group listening to a sonata will not expect more than about 20 decibels contrast. Between these two extremes we have the quintets, octets and small string orchestras, which, playing at parties (or should one say receptions?) have an effective audience of the order of 100. Turning to individual performances, the range of levels in a “fireside chat” is small—the listening group is the family; for the larger audiences at Nuremburg rallies, vast changes of levels were adopted to produce the desirable effects.

We judge numbers logarithmically; we talk of half-full theatres, of those being twice as many people as usual at a meeting. Let us plot range against audience size using a logarithmic scale for the size of audience. We can see that a linear relationship is probably correct, so far as the word “correct” can be used of such intangibles.

Contrast range plotted against size of audience.

The size of the audience is an index of the size of the room. None likes to live, like Citizen Kane, in a room far too large; no one really likes a room which is too small to move about in. Thus, as the contrast is proportional to the size of audience, we can say that the contrast should be proportional to the size of the room.

This, then, is the conclusion reached. If the receiver is so designed that any desired contrast, compressed or expanded, can be obtained, abandon all academic ideas about the contrast needed in the place where the performance is actually taking place. The defining quantity is the size of the listener’s room and the contrast should be controlled to suit this.
Usually compression rather than expansion will be needed.

There is no reason to fear a loss of emotional values. Twenty decibels in the home is worth sixty in the concert hall. The writer has spent some time listening to programmes with greatly compressed range. His experience showed that quite quickly the ear grows accustomed to weighting changes of level, and to regarding, say, 10 db. change as something really important, and the effects of, say, 30 db. crescendo in the original are appreciated with much smaller level changes in the home. Just as we can graduate from the pentatonic scale of the bagpipes to the subtleties of quarter-tones, so, very quickly if broadcast listening is our main source of music, we can derive full enjoyment from very compressed programmes.

The advantage of compression in the home is not confined to serious listening. Music used as a background gains as well. The function of background music is to provide a level of non-significant sound which will mask significant and disturbing sounds. If the level is too low it fails to provide full masking; if it is too high the music insists upon being itself significant. By compression we can reduce the intervals in which either outside sounds or the protective screen obtrude and thus improve the efficiency of our background.

For those who wish to test the soundness of these proposals, the following course is recommended. Construct a compressor by modification of your present expansion circuits. Listen seriously to this for a few days with a compression ratio of, say, 3:1 (60 db. reduced to 20 db.). Then increase the range slightly, say, by bringing the compression ratio down to 2:1 (60 db. reduced to 30 db.). Regarding this as the final answer, listen to it with the enhanced level sensitivity that the high-compression listening has produced. This second period should enable a decision to be made.

The Future...

ALTHOUGH concealed today in tropical kit or ballet dress, without its familiar trademark, discerning technicians can easily recognise the well-known brand of BULGIN RADIO PRODUCTS in every piece of Service radio apparatus. Today, as in the past, they stand predominant for originality, design and reliability, ready to co-operate in the future, in the shape of “things to come.”

(Please quote priority and Contract Nos.)

“The Choice of Critics”

BULGIN

Registered Trade Mark

A. F. BULGIN & CO. LTD., BYE PASS RD., BARKING, ESSEX
Radio and Electrical Component Manufacturers.
TEL: RIPPLEWAY 3474 (5 lines).
Dream Jet

CAR manufacturers used to spend a lot of money in research work during the last peace in an endeavour to produce a vehicle which was absolutely womanproof, or, in other words, so absurdly simple to drive that even a woman would be hard put to it to muck things up, but needless to say they never succeeded. Even had they produced a truly “one-knob” car either it would have been woefully inefficient or the innards would have become prohibitively complicated. One of these two things nearly always occurs when an attempt is made to produce a piece of mechanism which is excessively simple to operate. The one exception to the rule seems to be the push-button wireless set, of which I have always been so strong a champion, so far as the ordinary listener is concerned.

In the case of push-button tuning of the correct type the set can not only be made absurdly simple to operate but it can be allowed to have far more efficiency-producing complications than would be feasible in an ordinary knob-tuned set. Without push-button tuning such a set would tend to become reminiscent of a government department, bristling all over with controls. If push-button tuning is adopted we can, by the use of a sufficiently number of cams on the push-rod associated with any particular station, cause the set to have optimum circuit coupling and, in fact, optimum everything else for the most efficient reception of the particular station concerned. There is nothing new in this suggestion, since I myself as well as others have advocated it again and again in this journal.

The thing which brings the whole idea to the forefront once again, however, is the article on voice-controlled devices which appeared in the August issue of this journal. By

FREE GRID

... buttons. When this idea gets to the production stage it will only be necessary to bawl at the set and the appropriate station will be tuned in. If a crooner or other offensive noise buff into the programme a curt order to “put a sock in it” will be all that will be needed.

It does seem, however, as if there is still one small point which has been overlooked, and that is that unless the microphones associated with the apparatus are not to be made unduly sensitive they will have to be mounted near our armchairs. A multi-wire cable link to the receiver is unthinkable in a wireless house-hold; it would be no better than the armchair push-button controls with which some set makers used to supply us before the war. The only solution is a miniature wireless transmitter linking microphone and receiver, and until this is produced I for one will have nothing to do with voice control.

Echoes of 1940

SINCE it seems to be the fashion nowadays for people in high places to tell us all about what a close shave we had in 1940, and how near we came to the brink of the abyss, I see no reason why I should not follow suit and reveal to you a certain radio aspect of Adolf’s preparations for the invasion of Britain.

As you well know, quite early in the crisis period of the war the B.B.C. started to prepare against sudden invasion by getting us acquainted with the tonal idiosyncrasies of their announcers by causing them to tack their names on to each news bulletin. The B.B.C. authorities are as a matter of fact still doing this; no doubt they know their own business best.

Unfortunately for the B.B.C., their well-meant precautions would have played right into the hands of the Germans, had they invaded us. Hitler’s technical experts had made elaborate preparations so that well-known voices like those of Alvar Liddell and his fellow-announcers would have been replaced by others, the imitated accent being so perfect that even the announcers’ wives would have been deceived. Believe me, that is saying something, as any of you married fellows know.

One cannot help but admire the ingenuity of the scheme and the painstaking way in which it had been prepared. As in the case of most grandiose schemes, the basic idea was absurdly simple. I suppose that all of you are familiar with the Walt Disney cartoon films and are also acquainted with the fact that each individual “frame” of the

Chinese anticipation of Pfenniger.

original is not drawn personally by Walt Disney. Such a thing would be almost impossible for one man to accomplish and, of course, a team of artists is employed under his direction.

In this case the magic name is not Walt Disney but Rudolf Pfenniger, who, as described many years ago in Wireless World, succeeded in making reproductions of the human voice and of other sounds, not by recording them in the ordinary way, but by studying sound tracks of ordinary records and then copying these manually, eventually learning what kind of indentation was made by each delicate and subtle tonal shade in the world of sound.

Actually Pfenniger was not the first in the field by any means, and in Wireless World of January 12th, 1934, I produced evidence that the system was used for a utilitarian purpose by Chinese farmers, and I reproduce hereewith the sketch I made at the time, which is, I think, self-explanatory, an interesting point being the substance of which the diaphragm of the reproducing sound box was made, namely, a tightly stretched missionary skin.

It was indeed fortunate that Adolf did not actually invade, as when I laid my information before the Ministry of Home Security they failed utterly to appreciate its importance.