This is a "GLOBAL" war... A man-made globe -

the electronic tube - is today one of the key weapons of battle. Eimac tubes have assumed a rank of "high command" in this "global" war.

Again they are "first choice in the important new developments in radio"

THE JOINT ARMY-NAVY "E" awarded September 4, 1942...

first award of this kind to a manufacturer of electronic tubes.

Eitel-McCullough, Inc.
San Bruno, California

Export Agents: Fraser & Company, Ltd., 301 Clay St., San Francisco, Calif.
MEMO

From: MASTERADIO LTD., WATFORD, HERTS
To: DEPARTMENTAL HEADS, RESEARCH ENGINEERS, LIAISON OFFICERS
Subject: DEVELOPMENTS CONCERNING VIBRATOR-OPERATED EQUIPMENT

Analysis of past design methods reveals two essential requirements. These are:

- Elimination of the "D.C. minded" planning, with which many have struggled.
- Careful consideration of sensitivity characteristics outside the normal range of the basic design.

Synthesis from a nucleus thus prepared is always successful.

We invite you to accept our co-operation.
STABILITY

Fixed Ceramic Condensers

- 1 & 2 Pearl Type
- 3 & 4 Hat Type
- 5 & 6 Disc Type

Highest Mechanical and Electrical Stability whatever the climatic conditions. Type approved.

UNITED INSULATOR CO. LTD
12-20 LAYSTALL ST., LONDON, E.C.1
Telephone: TERminus 7383
Telegrams: Calanel, Smith, London

The Pioneers of low-loss Ceramics
WIRELESS WORLD

TUNGSRAM VALVES

Our production of Radio Valves is both large and continuous. So, too, is the demand for them for urgent purposes. Some are available for domestic use, but the range is necessarily limited. You may be assured of our willing help whenever possible.

Announcement of
BRITISH TUNGSRAM RADIO WORKS LTD., WEST RD., TOTTENHAM, N.17

CELESTION VALVEHOLDERS

Preferred by radio engineers because of their Strength, Efficiency and Uniform Contact
Send for List of English and American types.

CELESTION LTD.
(Engineers),
KINGSTON-UPON-THAMES, SURREY.
Telephone: KINGSTON 5656-7-8.
SYMBOLS OF PRECISION

THE EDISON SWAN ELECTRIC CO. LTD. 155, CHARING CROSS RD., LONDON, W.C.2

For full particulars write to Technical Service Department
Improve your Keying!

Correct spacing and high sending speeds are more quickly obtained by those operators who exercise sound judgment when purchasing their KEYS.

Scientific weight distribution, rigidity of construction, extreme lightness in action, heavy silver contacts and a high grade spring for accurate gap adjustment; these are the most important features, and, they are all to be found in the Raymart ‘Speed’ Key. It combines all that is best in British and American key design.

This British-made Key is definitely the finest value ever offered to the public. Choose the Raymart ‘Speed’ Key. It will give you full satisfaction and years of useful service.

Price 8/6 Post Paid.

SPECIAL NOTE:
WIRE-WOUND POTS. Refer to our advertisement on page 18 of the January Issue, and then note that we only have a small number of 30,000 ohm (4/- each) and 5,000 ohm (1/- each) types still available. These are 5-watt American C.T.S. wire-wound Volume Controls.

Please add postage on all orders valued 5/- or less.

Send stamped, addressed envelope with all enquiries.

48 HOLLOWAY HEAD, BIRMINGHAM, I
FOR RADIO

LONDON CENTRAL RADIO STORES

CLARKE'S ATLAS

A.C. to D.C. CONVERTERS

Type R.M. 80/150

- Input: 230v. A.C. 50~
- Output: 80, 100, 120, 150, m.a. at 230v. D.C. Incorporating Westinghouse Metal Rectifier. In strong steel case, well ventilated.

- Price 5 Gns.
- Post and packing 3/6 extra.

SUPREMUS

H.T. BATTERY ELIMINATORS

Model E25A for 200-250v. A.C. 40-100~

Tappings, 40, 60, 80, SGH, 100, SGL, 125v. These well-known H.T. Mains Supply Units are fitted in handsome bakelite cases. Here is an opportunity for battery set owners, who have A.C. mains current available, to be independent of the battery situation. Owing to post and rail conditions these are available TO CALLERS ONLY.

- Price 70/-

PHILIPS & CANNING & DEFLECTOR COILS

Assembled complete in metal frame, as illustrated

- Post. & pkg. 7/6
- 1/6 extra.

ELCTRIC SOLDERING IRONS

- 200/250v. 75 watts. Post., etc., 8d. extra.
- Post. & pkg. 12/6

OAK VIBRATOR UNITS

- Synchonous
- These well-known Units are fitted with 8-pin American bases. Input 6 volts. 15/6
- Post. & pkg. 8d. extra.

PHILIPS Microphones

See December issue for details. Post., etc., 3d. extra. Each

- Price 82/6

PIEZO-CRYSTAL Hand — Table MICROPHONES

See December issue for details. Post., etc., 3d. extra.

- Price 82/6

EX-GOV'T. JACKS

These Jacks have powerful phosphor-bronze springs ensuring a perfect contact. Overall length, including tin, threaded shank, 5½in. Supplied with nut for panel mounting.

- Post., etc., 3d. extra ... Each 3/6

ON-OFF TOGGLE SWITCHES

Finest quality. Tuna movement.

- 1 1/2in. spindle.
- Post., etc., 2/6
- 3d. extra.

CONDENSERS with Bakelite Insulated Terminals

- 2.5 + 2.5 + 1 mfd. 250v., D.C. wkg. ... 6/6
- 2 mfd. 400v., D.C. wkg. ... 7/6
- 4 mfd. 250v., D.C. wkg. ... 9/6
- Post. & pkg. 6d. extra.

- Side Contact Valve Holders
- 8 contacts. Post., etc., 3d. extra. Each 1/6
- T.C.C. Condensers 0.1 mfd. 5,000 v., D.C. wkg. Post., etc., 8d. extra. Each 9/6

TWIN ON-OFF SWITCHES

As illustrated. Carries 1.5 amp. at 250v. Well and "strongly" made, with excellent snap action ... Price 4/6

- Post., etc., 3d. extra.

6 PUSH-BUTTON MECHANISM only

- UNIT Complete with buttons. Post., etc., 9d. extra ... Each 4/6

SPEAKERS

ROLA 5in. P.M. transformer ... 22/6
- Post. and pkg. 1/6 extra.

- CELESTION 8in. P.M.
- Post and Output. New 25/6
- Post., etc. on above 2/6 extra.

PHILCO 12in. Double Cone 4,000 ohms field

- 5 Gns. Jacks have powerful phosphor-bronze springs ensuring a perfect contact.

PHILCO BLEEDER RESISTANCES

In metal cans. 100, 150, 250 ohms. All 10 watts.

- Post., etc., 3d. extra ... Each 2/6

YAXLEY Type WAVE-CHANGE SWITCHES

- 4-way, 3-bank, with shielded oscillator section. Length from stop plate approx. 5in., spindle 2in. ... 5/6
- Post., etc., 2/6

CHASSIS

Drilled for 9 valves, also rectangu-
lar hole 8½ x 3½in. Size 16 3/4 x 12 x 5in.

- Price 4/6
- Post. & pkg. 9d. extra.

SCREENED CABLE

Fine quality, heavy duty, 15 strand, 50 gauge, spnn, rubber covering, with two layers of Empire tape.

- Price 4/9 per yard

RUBBER COVERED FLEXIBLE WIRE

Tinned copper, approx. 17 strands, 9ft. lengths

- 36d. per yard

NO C.O.D.

NO PRICE LIST

NO-PRO-FORMA INVOICES

PHILIPS POTENTIOMETERS

Carbon: .700,000 ohms. less than 3/6
100,000 ohms, with 2-pole M. & B. switch 4/6
Wire-wound: 450 ohms and 10,000 ohms 6/6
- Post. & pkg. 6d. extra.

PHILIPS CONCENTRIC SPIRAL VANE VARIABLE CONDENSERS

- 3-gang 0.0005 mfd. without trimmers. As used in Philips well-known Push-Button receivers.

- Price 4/6
- Post. & pkg. 9d. extra.

MULLAND EA50 DIODES

- 60 mm. x 12 mm. overall. 0.3v. heater at 15 amp.
- Each 10/6
- Post. & pkg. 3d. extra.

PHILIPS TRIMMER CONDENSERS

Non - drift air dielectric, 00 mfd., 3mfd. Suitable for current S.W. work.

- Price 1/3
- Post. & pkg. 9d. extra.

YAXLEY PATTERN SWITCHES

- 5-way, single-bank, with on-off mains switch, carrying 1 amp. at 250v., 2in. spindle with knob ... 5/6
- 3-way single-bank, 1in. spindle with knob ... 2/9
- Oak switch, 2½ in. spindle, comp. with knob.
- 4-way, 2-bank ... 4/6

RUBBER COVERED FLEXIBLE WIRE

- Price 3/6
- Post. & pkg. 6d. extra.

TUBULAR CONDENSERS

- 8 mfd. 500v. w/kg. Post., etc., 4d. 2/6

LONDON CENTRAL RADIO STORES, 23, LISLE ST. GERRARD 2969 LONDON, W.C.2
If you want PRECISION work in Wood or Plastics consult Lockwood

MANUFACTURERS OF FITTED INSTRUMENT CASES IN WOOD AND PLASTICS
PRECISION WORK IN BAKELITE SHEET, DELARON, PAXOLIN and POLYSTYRENE etc.

LOCKWOOD & CO.
HARROW • MIDDLESEX

Bargains in radio COMPONENTS...

Battery Eliminators, in strong welded all-steel cases, 60v. and 120v. at 20 m.f.s. for A.C. mains, 200/250v...

Battery Chargers, in strong all-metal case, 2, 6 and 12v. at 1 amp. For A.C. mains, 200/250v...

Loud Speakers, Bin. P.M. (less transformer)...

In Beautiful de-luxe polished walnut cabinet...

... Industrial type in cabinet, Bin. P.M. in grey enamelled case with 2,500 ohm transformer...

... 24in. Projection type, square horn, 6-watt unit...

Moving-coll Microphones, high quality, with 'chrome case...

Table stand, black crystal-line base and chrome stem...

... Heavy chromium plated telescopic floor stand...

Condensers, 8 mfd. Electrolytic 600v. Surge-proof...

Sistoflex Slewing, assorted colours, per 12 yd. length...

Morse Keys, streamlined American type, light action...

Resin Cored Solder, per lb.

Transformers, Replacement type, Primary 200/250, Sec...

350-0-350 at 80 m.a. 2v. 6,3v. 3v.

C.T. or with 4v. 2a. and 4v. 4a Filament windings...

Mains Pentode—Output transformers...

... Class " B " Intervale...

... Q.P.P. Intervale...

POSTAL RADIO.
16, KING ST., WOLVERHAMPTON.
★ Mail Orders only. Cash with order or C.O.D. All enquiries must be accompanied by stamped addressed envelope.

MAINS TRANSFORMERS.
210/330/250 volts, 50 cycles. 350-0-350 v., 70 m.s. 63.5 v. 1.3 amp. 4v., 2.4 amp. 39/- each.
200/250 v., 350-0-350 75 m.s. 5 v. 2 amp.
63 v. 3 amp. 28/- 200/250 v. 350-0-350 120 m.s. 5 v. 2 amp. 63 v. 3 amp. 37/6.
210/330 v., 63.5 v. 5 amp. 2v. 3 amp. 350-0-350 75 m.s. 4-amp. Chassis mounting. Shrouded, 39/6 ea.
200/250 v., 4 v. 3 amp. 4 v. 6 amp. 350-0-350, 120 m.s. 39/6 each.

LOUDSPEAKER TRANSFORMERS.
SPECIAL OFFER.
Philo Periodo, 4/6; Heavy Duty Periodo, 7/-; Multi Ratio, 8/-; Heavy Duty Multi Ratio, 10/6.

ELECTRIC SOLDERING IRONS.
60-watt, with Flex, 200/250 volts, A.C./D.C., Chrome-Plated, best quality, 12/6, tax free.

H. H. LINTON & CO. LTD.
2, HIGHGATE HIGH STREET, N.6
London N.6

CHROME-PLATED ELECTRIC BELLS with Transformer, A.C. 200/250 volts, supplied with instructions for fitting, 15/-, tax free. WORTH, DOUBLE. Do away with that old " Leclanche " cell or dry battery and fit a reliable door bell.

ELECTRIC APPLIANCE LEADS.
6 ft. long, with connector one end for kettle, iron, radio, toaster, etc. Light adaptor or 2-pin plug other end, 59/- each. Two-Way Line Cord replacement for Midget Receivers, 1/6.

POST ORDERS ONLY. All orders must be accompanied by stamped addressed envelope.

POSTAL RADIO.
16, KING ST., WOLVERHAMPTON.
★ Mail Orders only. Cash with order or C.O.D. All enquiries must be accompanied by stamped addressed envelope.

MAINS TRANSFORMERS.
210/320/250 volts, 50 cycles. 350-0-350 v., 70 m.s. 63.5 v. 1.3 amp. 4v., 2.4 amp. 39/- each.
200/250 v., 350-0-350 75 m.s. 5 v. 2 amp.
63 v. 3 amp. 28/- 200/250 v. 350-0-350 120 m.s. 5 v. 2 amp. 63 v. 3 amp. 37/6.
210/330 v., 63.5 v. 5 amp. 2v. 3 amp. 350-0-350 75 m.s. 4-amp. Chassis mounting. Shrouded, 39/6 ea.
200/250 v., 4 v. 3 amp. 4 v. 6 amp. 350-0-350, 120 m.s. 39/6 each.

LOUDSPEAKER TRANSFORMERS.
SPECIAL OFFER.
Philo Periodo, 4/6; Heavy Duty Periodo, 7/-; Multi Ratio, 8/-; Heavy Duty Multi Ratio, 10/6.

ELECTRIC SOLDERING IRONS.
60-watt, with Flex, 200/250 volts, A.C./D.C., Chrome-Plated, best quality, 12/6, tax free.

H. H. LINTON & CO. LTD.
2, HIGHGATE HIGH STREET, N.6
London N.6

CHROME-PLATED ELECTRIC BELLS with Transformer, A.C. 200/250 volts, supplied with instructions for fitting, 15/-, tax free. WORTH, DOUBLE. Do away with that old " Leclanche " cell or dry battery and fit a reliable door bell.

ELECTRIC APPLIANCE LEADS.
6 ft. long, with connector one end for kettle, iron, radio, toaster, etc. Light adaptor or 2-pin plug other end, 59/- each. Two-Way Line Cord replacement for Midget Receivers, 1/6.

POST ORDERS ONLY. All orders must be accompanied by stamped addressed envelope.

ROLA P.M. LOUDSPEAKERS.
With Transformer, Sin. 22/6; 61/2, 24/- Sin. 35/-.
Without Transformer, Sin. 17/9; 61/2, 19/-; Bin. 24/-.
CELESTION, Bin, P.M., with Transformer, 25/-.
ROLA, Bin, ENERGISED, 2,000 ohm, without Transformer, 27/6.

FIRE BARS WITH ELEMENT.
Flat Type, 200/250 volts, 750 w., 31/2 each. ROUND TYPE BAR.
With Spiral, 200/250 volts, 750 w., 31/2 each.

BOWL FIRE ELEMENTS.
Edison screw, 600 watts, 51/2 each.

SUNDRIES.
4-way Battery Leads, with wander plugs, best quality, 11/3 each.
Immerton Kettle Elements, 230/250 v., 1,000 watt, 23/6 each.
Iron Connectors, 1/6 each; 2-pin 5 amp. plugs, 11/2 doz.; Insulating Tape (best quality American), 3/- per lb.

LITTLE THINGS
...and it's the "little things" that count!

In the final reckoning it's the little things that count. Not only the tangible "little things"—they can readily be seen and appreciated—but the intangible as well. That extra care in the selection of raw materials and components... that wider experience in design... that little more time spent in assembly... that added vigilance in inspection and test... these are the intangible "little things" that, plus the tangible, have made many dealers glad they bought and recommended R.S Sound Equipment.

ROS
Amplifiers Limited

3-4, Highfield Rd., Shepperton, Middlesex. Tel.: Walton-on-Thames 1019

W.W. 3/43

MARCH, 1943
One too many

In these days of high endeavour the manufacturer must sometimes feel rather like an anxious juggler, half wondering whether the next ticklish problem will be one too many for him. With all his ingenuity in organization he may find it impossible to increase output still further without some impairment of quality. It is here that Simmonds can help.

The Simmonds products were designed to solve precisely this problem, and solving it they are, all over the country. They are calculated to save time, to save material and to simplify assembly: in a word, to speed up production all round without fuss or delay.

SIMMONDS
The Creative Impulse in
AERONAUTICAL, INDUSTRIAL & MARINE
Construction

THE SIMMONDS NUT PINNACLE NUT SPIRE NUT
SIMMONDS GAUGES, INSTRUMENTS AND CONTROLS
FRAM OIL & ENGINE CLEANER

SIMMONDS AEROCESSORIES LTD.,
GREAT WEST ROAD, LONDON
A COMPANY OF THE SIMMONDS GROUP
LONDON, MELBOURNE, PARIS, NEW YORK.
March 1943

Editorial

63 AMPLITUDE MODULATION UP TO DATE. By O. J. Russell, B.Sc. (Hons.)

68 STANDARDISATION OF FIXED RESISTORS

75 WORLD OF WIRELESS

79 NEWS IN ENGLISH FROM ABROAD

80 FREQUENCY MODULATION.—III: Interference Suppression, the Limiter, and the Capture Effect. By Christopher Tibbs, Grad.I.E.E.

82 TRANSITRON OSCILLATORS. By A. G. Chambers (G5NO)

86 UNBIASED. By Free Grid

88 “WIRELESS WORLD” BRAINS TRUST

89 RANDOM RADIATIONS. By “Diallist”

92 LETTERS TO THE EDITOR

94 RECENT INVENTIONS

The NEW “HYPERLOY” TRANSFORMERS AND CHOKES

A range of high-performance, space-saving Components designed to meet the most exacting requirements of modern Electronic and Communications equipments.

- Small in size
- Weighing only 2 ozs.
- Meeting the most rigid Tropical Specification
- Easily mounted in any position
- Manufactured in a variety of windings to meet many diverse applications

WRIGHT & WEAIRE LTD.

HIGH ROAD, TOTTENHAM, N.17

Telephone: TOTTENHAM 3847-8-9

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised before making use of them, to satisfy themselves that they would not be infringing patents.
VISION

"Ability to perceive the latent possibilities of electricity; foresight to create the means of translating them into new processes and products... on such principles Philips have shaped a great industrial enterprise with an ever-widening outlook on electrical development."

PHILIPS

LAMPS · DISCHARGE LIGHTING · RADIO RECEIVERS · TRANSMITTERS · VALVES & THERMIONIC DEVICES · MEDICAL & INDUSTRIAL X-RAY & ELECTRO-MEDICAL EQUIPMENT
ARC WELDING EQUIPMENT & ELECTRODES · LIGHT ALLOY RESISTANCE WELDING PLANT · MAGNETIC OIL FILTERS · MAGNETS · SOUND AMPLIFYING INSTALLATIONS

PHILIPS LAMPS LIMITED, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2 (96E)
Battery Shortages

Important Aspect of Broadcast Receiver Maintenance

Much publicity has recently been given to the shortage of dry-cell batteries of various kinds, and it has been disclosed that much of the scarcity from which we have suffered during the mid-winter period of "peak" demand has been due to the exceptional requirements of our Forces in North Africa. It would seem that wireless HT batteries have not been quite so scarce as other types; that is understandable, as there is little valid reason why the demand for them should have increased since the outbreak of war. It is easy to understand how the black-out and other wartime causes are responsible for a greatly increased consumption of, for example, torch and cycle-lamp batteries. But there is no doubt that HT batteries are scarce, particularly in some parts of the country, and many listeners without a mains electrical supply cannot keep their sets working.

We regard this matter as of even greater importance than the maintenance of mains-fed broadcast receivers, and consider that those dependent on batteries for news and general wartime information deserve special consideration. Speaking broadly, they are country dwellers, and represent the most isolated section of the community. They are often cut off from other sources of information, and the present restrictions on transport tend to accentuate their isolation.

Standardisation and the reduction of types as an aid to economical production is very much in the news in wireless circles at present; and, as reported elsewhere in this issue, it is proposed in the U.S.A. to use this principle to ensure the continuance of civilian broadcast reception in that country. We understand that some measure of standardisation of HT battery types is already in force here, and, without suggesting that it is likely to prove a panacea for all our troubles, would recommend that all the various possibilities be fully examined. By reducing the present multiplicity of types and sizes, it might be possible to increase production to a worth-while extent.

Of course, the elimination of many of the present types and sizes of batteries would introduce difficulties. For example, a standardised type of battery might not fit into the space available for it in certain types of receiver. But, after 3½ years of war, it hardly seems unreasonable to subject a few set users to the inconvenience of installing a replacement HT battery externally when there is not room for it inside the cabinet. To simplify matters for those with no knowledge of these things, suitably insulated adaptor connections might be supplied for use in such cases. In addition to questions of physical dimensions, there are many others, including those of voltage, intermediate tappings and other matters which complicate the position and make the question of standardisation all the more difficult. The difficulties are enhanced by the lack of skilled service-men to make any minor adjustments that are needed when a replacement battery is fitted.

Foolish Extravagance

When the President of the Board of Trade spoke recently on the battery position, he complained of extravagance in the use of torch and cycle batteries; he might have added wireless HT batteries as well. It is doubtful if we can now afford the luxury of an all-day stream of broadcast entertainment from mains-fed receivers; it is certain that we cannot expect it from battery-fed sets. The general public fails to realise that a battery has a strictly determinate life, and that it is a foolish extravagance, under present conditions, to allow a battery-fed receiver to go on working unless the owner really wants to hear the programme. That, of course, is obvious to readers of this journal, but not, to judge by our own observation, to the ordinary listener. Useful work could be done in emphasising this point, and it is hoped that no opportunity for doing so will be lost. The B.B.C. might broadcast reminders on the subject, and at the same time might stress the evils of hoarding, explaining that to buy a battery not required at the moment is more than unfair; it is apt to be useless from the buyer's selfish point of view.
AMPLITUDE MODULATION

UP TO DATE

Improving the Efficiency of Low-powered RT Transmitters

By O. J. RUSSELL, B.Sc. (Hons.)

BECAUSE frequency modulation is very much in the limelight these days it must not be thought that technical interest in amplitude modulation is exhausted. In fact, many interesting developments in amplitude modulation systems of high efficiency for small-power transmitters have taken place recently in America and some account of these will no doubt be of interest to readers of this journal.

The first system is termed the cathode modulation system, which shortly before the war was introduced into amateur circles in America, and appears to have been extremely popular. This popularity is no doubt due to the fact that it combines the advantages of both plate and grid modulation.

In the normal grid and suppressor grid types of modulation, which are often termed "efficiency modulation" systems, the effect is roughly that the modulated stage runs at a lower efficiency when unmodulated than a normal Class C stage, and operates at a greater efficiency on the modulation peaks, this being obtained in practice by reducing the radio-frequency excitation and increasing the grid bias. Compared with anode modulation, where the radio-frequency excitation may be adjusted for slight overdrive and the plate efficiency may be as high as 75 per cent. or so, the grid modulated stage is not likely to exceed an efficiency of 40 per cent. in converting DC power from the high tension supply into high-frequency power. In other words we may expect to obtain about half the carrier output for the same power input applied to a Class C anode-modulated stage. However, what is far more serious, is that owing to the lowered plate efficiency, the actual power dissipated by the valve as heat is increased. When running at the limits of rated heat dissipation, the grid modulated stage is capable of much less actual carrier output than an anode modulated stage. Thus, taking the case of a valve rated to dissipate 10 watts as heat, under normal Class C conditions at 75 per cent. efficiency, the actual power input can be 40 watts, with a carrier output of 30 watts of RF energy. A grid-modulated stage dissipating 10 watts with an efficiency of about 40 per cent. would produce at the most about 7 watts of actual carrier output. It should be remembered that a grid-modulated stage dissipates most heat when unmodulated, for then the efficiency is lowest. An anode-modulated stage, on the other hand, only dissipates the maximum power upon the relatively transient modulation peaks. The result is that, although a Class C stage when anode modulated is usually run with slightly lower input than is permissible for telegraphy working, the reduction is not great, for overload only occurs for relatively transient periods. The net result is that the actual carrier power available from an anode modulated stage is of the order of four times the output to be obtained with a grid modulated stage for the same anode heat wastage.

Cathode modulation enables the difficulties inherent in orthodox grid modulation systems to be overcome. As the name implies, low-frequency modulating impulses are injected into the cathode circuit of the Class C stage as shown diagrammatically in Fig. 1. The cathode circuit may be regarded as common to both the anode and grid circuits. Thus, if the cathode is made more positive with respect to the chassis potential, and hence with respect to the grid potential, the effect is an increase in the negative grid bias with the result that the anode current falls. However, as the cathode swings more positive with respect to the chassis, the effective anode-to-cathode potential is reduced, as the anode is held at a fixed positive potential above the chassis. This has the effect of lowering the effective value of the anode-to-cathode voltage, which is equivalent to a reduction in the total high-tension potential applied. This results also in a fall in anode current.

When the cathode is swung more negative by the modulating wave the conditions are reversed, and both the resulting grid and anode voltage swings tend to increase the anode current. Thus the modulating signal when applied to the cathode circuit results in voltages appearing on both the anode and grid which are in phase. As there is a certain amount of anode modulation produced some power is actually supplied by the modulator to the anode circuit; although this is much smaller than the amount supplied by a normal anode modulator. In the cathode modulation system this is equiva-
depth is supplied by the grid modulation that is also produced by the cathode-applied modulation. Consequently if we swing up to full plate efficiency at a point that corresponds to 70 per cent. to 80 per cent. modulation, our plate efficiency when not modulating is higher than with straight grid modulation, and may approach 60 per cent. or so.

Fig. 2. An old friend—100 per cent. sine wave amplitude modulation

This means that employing our hypothetical valve with a rated dissipation of 10 watts we can for now obtain a carrier output of about 15 watts as compared with the permissible 7 watts when operating with grid modulation, and the 30 watts obtained with anode modulation. Owing to the greater efficiency we are not far short of anode modulation conditions in this respect. In other words, assuming we are limited to a 10-watt actual power input to our final amplifier stage, an anode modulated stage might give about 8 watts of actual RF power, a cathode-modulated stage 6 watts, while the grid-modulated stage would give about 3 to 4 watts.

Circuit Economies

The radio-frequency drive power required for the cathode system is about the same as that for a normal Class C telegraphy stage, or rather less than the requirements for a plate-modulated stage. Also, the cathode-modulated amplifier has a lower peak plate current than with anode modulation, which results in longer valve life. The peak plate voltages are also reduced, so that the tank tuning condenser need have only two-thirds of the spacing required for a comparable plate-modulated stage. The actual audio power requirements are about a quarter of the requirements for anode modulation. Thus, we may use a small output pentode giving 5 watts of audio to modulate an RF amplifier stage having an input of up to 50 watts, with a carrier output only a little less than the modulation into the cathode circuit an elegant solution of the problem is obtained. It is also claimed that by its use modulation depths of 200 per cent. to 300 per cent. may be obtained without overloading the transmitter.

To see how this is achieved let us briefly consider the process of modulation. Fig. 2 represents the high-frequency carrier, a sine wave modulation signal and a resulting carrier just modulated to a depth of 100 per cent. As has been explained in countless writings on the subject, for 100 per cent. modulation the carrier wave is reduced to zero on the negative peaks of the modulating wave, and swings up to twice its unmodulated value on the positive peaks. If we assume we are anode-modulating a perfect Class C amplifier stage, where the amplitude of the RF voltage output varies directly and linearly with the value of applied anode potential, then our modulating signal must swing the anode voltage to zero on the negative peaks, and to double the actual DC high-tension potential on the positive peaks.

In practice a Class C stage is not exactly linear, especially when the anode approaches zero volts, and to avoid distortion the modulation depth is usually not carried quite to the 100 per cent. limit. The actual modulation depth which can be attained without serious distortion is termed the modulation capability of the particular transmitter in question. To return to the perfect case of Fig. 2, it is easy to show that for a modulation depth of 100 per cent., the low-frequency power required is equal to half the actual DC power input to the modulated stage. The modulator stage, therefore, is designed to be capable of delivering an undistorted output of at least this amount to the high-frequency amplifier stage. Thus, a 50-watt Class C stage requires a modulator amplifier capable of supplying 25 watts of sine-wave modulating waveform.

The actual waveforms of speech are considerably peakier than pure sine waves. This means that for the same voltage swing a speech waveform represents rather less actual power than a sine wave. In other words, although a complex speech waveform and a sine wave may have the same voltage swing, their RMS value will be different. The sine wave in general has a higher RMS value than the narrow, peaky waveform. However, from our discussion on modulation it would appear that to fulfil the requirements of 100 per cent. modulation we shall require exactly the same voltage swing as when using a pure sine wave. Our speech amplifier must still be capable of handling this voltage swing; we are thus not able to use a smaller speech amplifier, although the actual energy in a speech waveform is less. Actually, the power in a speech waveform is only about half that in a sine waveform of the same peak power.

The above reasoning about speech waveforms assumes that even if they are peaky they are symmetrical. It appears that this is not really so, providing the extreme low frequencies are attenuated. The appearance of speech waveforms under these conditions is sketched in Fig. 3. The peaks are all in one direction, and those marked A may have an amplitude

Fig. 3. Idealised asymmetrical speech waveform which is from two to three times the amplitude of the peaks marked B.

If we apply such a waveform to

Wireless World
Amplitude modulation—modulate a transmitter, we can obviously apply it in two ways. If we arrange the polarity so that it is the sharp peaks which just swing the carrier to zero, we obviously do not swing the carrier upwards on the positive peaks to anything like the full height of twice the unmodulated carrier. However, we cannot increase the amplitude of the modulating signal any further, as otherwise we shall be cutting the carrier off completely for considerable periods on the negative peaks as we swing the anode voltage negative. This, of course, represents considerable overmodulation and distortion. Now if we reverse the polarity of the wave, the sharp peaks will swing the carrier just up to double its unmodulated value on the positive peaks, but the negative peaks will not swing the carrier down to just zero. If we increase the amplitude of the modulating signals so that the blunt peaks swing the carrier level down to zero, then in the positive direction we must be able to swing up on the sharp peaks to an amplitude which may be two or three times as great as the normal value of double the carrier level necessary for modulation with symmetrical waveforms. This would correspond to modulation depths of the order of 200 per cent., and corresponding apparent increase in the loudness of the signal on a receiver. The reverse case would correspond to a signal weaker than we should expect for the depth of modulation. Both of these conditions correspond to 100 per cent. modulation, however, assuming our Class C amplifier is capable of handling the excessive peaks linearly.

A cathode ray tube connected to show the trapezium modulation figure would give a triangle in both cases when we are just swinging the carrier to zero. In the case where we have peaks extending into the 200 per cent. to 300 per cent. positive region, however, our triangle would be much wider than if we were modulating 100 per cent. with a sine wave. In the case where the high peaks are arranged to swing the carrier down to zero, we should again get a triangular figure, only it would not open out in the positive direction to the same extent as with sine wave modulation.

These cases are illustrated in Fig. 4, together with the trapezium figures to be expected on a cathode ray tube. The advantage of using the condition where we expect to swing the carrier into the 200 per cent. positive modulation region is obvious, for we should be radiating a signal of something like four to nine times the power obtained by using the reverse polarity. Even if we do not expect to get as much improvement as this, there should evidently be considerable increase without introducing some distortion.

As the modulating voltage swings in a positive direction must be two or three times that required for normal modulation, the speech amplifier must be capable of handling this swing, which is equivalent to from four to nine times the power capability required for normal anode modulation. However, a Class B type modulator could probably handle these peaks without having to be quite so large as might be expected. As the valves in a Class B stage normally each handle only one-half of a modulation cycle, one valve would supply the very high peaks, and the other valve the lower rounded peaks. In the interests of valve life, it might be advantageous to change the two
Wireless World

Short Term

In these cases Class B modulators were used, and I have long had a suspicion that it might be possible for the surges in the modulator circuit, which correspond to the modulation envelope, to be transferred via the modulation transformer to the Class C RF anode circuit giving the effect of a surge upward of the high-tension potential at low frequency, thus enabling slight overmodulation to occur without cutting the carrier. There appears to be grounds for this, as some reports seem to indicate that with a Class B modulator some signal appears to be radiated even when no high tension is applied to the RF amplifier.

However, the points raised in the foregoing should provide material for considerable experimenting some time in the future, and open up possibilities of increased efficiency with limited inputs. The restricted frequency response would appear by itself to offer some help, as by removing the power that would otherwise be radiated in the frequencies that are not required, the total power is concentrated in the limited band of frequencies for intelligibility, and these may be radiated at a higher intensity than with a full bandwidth.

"PAPER GOES TO WAR"

Some very interesting developments in the use of paper in the construction of wireless accessories for the Forces were to be seen at the recent exhibition "Paper Goes to War" at the Royal Exchange, London. Sixty sheets of paper, impregnated with synthetic resin, are used for the laminated panels of aircraft receivers. Visitors to the exhibition saw that waste paper is indeed a "weapon of war."

Technical Information

Suspension of Individual Service

Shortly after the outbreak of war, it was decided to suspend the service formerly conducted by our Technical Information Bureau. This decision, arrived at with regret, was brought about by shortage of technical staff due to the demands of the Services. It was felt that the energies of those who remained could most usefully be employed in the production of the journal, and not in dealing with individual queries, either by letter or telephone.

Readers are reminded that this suspension is still in force, and must remain so as long as the present conditions exist.
AUTOMATIC CIRCUIT CHECKING

Design of Apparatus for Increasing Speed and Reliability

By

H. T. G. BISSMIRE, A.M.I.E.E., and
S. N. DAVIES, M.A., B.Sc.
(Murphy Radio, Ltd.)

AFTER wiring, the first electrical test applied to a radio chassis is generally a circuit check. This enables component values to be checked and wiring faults to be discovered, and so avoids the possibility of damage when power is applied to the receiver. This test is usually made with an ohmmeter, the operator making connection between appropriate points with a pair of prods, and comparing the reading obtained with a list of standard values. By paying careful attention to the sequence in which the circuit is checked, it can be ensured that a minimum of range changing is required on the ohmmeter, and the test is relatively simple. It is, however, a tedious operation in which the chance of error or omission due to the human element is fairly high; even with an operator who is familiar with a particular receiver the test takes a long time.

Fig. 1. Basic circuit of differential amplifier.

If a receiver is examined, it will be found that a large part of the circuit can be checked by measuring from each valve pin to earth. Hence a certain amount of simplification can be achieved by plugging a connector into each valve socket in turn and using an ordinary "wafer switch" to select the pins. This method reduces the chance of points being left out, but there is still the list of ohmmeter readings to be compared. The necessity of taking a long list of ohmmeter readings is undoubtedly one of the most tedious parts of the operation, and if it could be eliminated a considerable simplification would result.

It seems, therefore, that the ohmmeter check could be (a) made more reliable, (b) simplified (from the operator's point of view), and (c) speeded up. The apparatus to be described is the result of an attempt to achieve some improvement on these three points.

The circuit diagram of a particular receiver was studied; it was found by plugging into valve-holders and other convenient sockets, to be possible to cover the whole circuit. The number of impedances to be measured was 46; this enabled a single uniselector switch of the type used in automatic telephone exchanges to be used for selecting the impedances. If the circuit had contained over 50 impedances, more than one uniselector would have been required, and the test arranged so that they followed on one after the other.

There are now the two alternatives. (a) To connect up to an ohmmeter and step the uniselector round by hand, this being a refined version of the wafer switch and connector test. (b) To arrange matters so that if the impedance under test was within tolerance the uniselector would step on, while if it was outside tolerance the uniselector would stop.

Since the tolerance on a component can be either negative or positive, a method of test was required to give a result that depended only on the magnitude and not on the sign of the error. In addition, the effect of a given percentage error must be constant over a wide range of impedance values. The circuit arrangement which seemed to meet both these requirements was the differential valve amplifier.

Circuit Principle

Consider the circuit of Fig. 1. If R_1 and R_2 are equal, the AC voltages applied to the grids of V_1 and V_2 will be equal in magnitude but opposite in phase; therefore, if V_1 and V_2 are matched, the voltage appearing across R_3 will be zero. If R_1 and R_2 are not equal, a voltage whose magnitude depends on the difference between $R_1/(R_1 + R_2)$ and $R_2/(R_1 + R_2)$ will appear across R_3. The magnitude of this voltage will be constant for a given percentage difference between R_1 and R_2, for all values of R_1 and R_2 that lie between the limits at which (a) $R_1 + R_2$ is no longer large compared with the impedance of the source, (b) R_1 and R_2 are no longer small compared with the input impedance of V_1 and V_2.

It is possible to ensure that no errors arise from (a) by making
the impedance of the source low compared with the smallest value of \(R_1 + R_2 \), and, since the test will be operating at audio-frequency (b) can be neglected for all ordinary values of \(R_1 \) and \(R_2 \). Therefore, if it is arranged that the uniselector connects in place of \(R_2 \) each impedance to be measured, and that if at the same time it connects in place of \(R_1 \) a series of chosen standard impedances there will appear across \(R_3 \) a series of voltages proportional to the errors in the impedances under test.

These voltages must now be made to control the driving coil of the uniselector. Consider the circuit of Fig. 2 and assume that the voltage \(V \) between grid and cathode of the gas-filled triode is zero.

![Fig. 2. Control circuit of uniselector switch.](image)

The condenser \(C \) will be charged through the resistance \(R_4 \) until the P.D. across its terminals becomes equal to the striking voltage of the gas-filled triode at zero grid volts. When this point is reached the condenser \(C \) will discharge through the gas-filled triode; this discharge will cause the relay \(A \) to operate, opening the switch \(S \) and interrupting the current through the driving coil of the uniselector. As a result the uniselector will be advanced one position. When the condenser voltage falls to the value at which the gas-filled triode stops conducting, the discharge ceases and the condenser once more charges up to the striking voltage, the above process then being repeated. Hence the uniselector will be stepped on at a rate depending on the time constant of the \(R_4 \) \(C \) circuit.

If \(V \) is made sufficiently negative the striking voltage of the gas-filled triode will be raised until it exceeds the HT line voltage; the condenser \(C \) will be unable to discharge; the relay \(A \) will not operate and the uniselector will stop. Therefore, by amplifying the voltage appearing across \(R_3 \) (Fig. 1), rectifying it and applying it between grid and cathode of the gas-filled triode, it can be arranged that when the uniselector is connected to a pair of circuits that are out of balance by more than a predetermined amount, it will not be stepped on.

From the foregoing discussion it can be seen that an automatic apparatus for circuit checking can be made; a possible schematic diagram is shown in Fig. 3.

![Fig. 3. Schematic arrangement of automatic circuit tester.](image)

It now remains to discuss one or two practical points before passing on to the complete circuit diagram. Referring back to the circuit of the receiver the largest resistance to be measured is 2 megohms, while the smallest condenser is 150 \(\mu \)F. In order that the reactance of 150 \(\mu \)F shall be of the same order as 2 megohms the oscillator frequency must be 1000 c/s.

Passing on from the oscillator, consider \(Z_t \) and \(Z_n \) (Fig. 3). \(Z_t \) represents the impedance under test, while \(Z_n \), which is built into the apparatus, represents the standard impedance with which \(Z_t \) is compared.

Let \(Z_n \) be the nominal value of \(Z_t \) and \(T \) be the tolerance expressed as a fraction. The extreme values of \(Z_t \) are then \(Z_n (1 + T) \) and \(Z_n (1 - T) \).

Now the output voltage of a differential amplifier is proportional to the difference between the grid voltages.

(a) When the test impedance is \(Z_n (1 + T) \) the output voltage is proportional to

\[
\frac{Z_n (1 + T)V}{Z_s + Z_n (1 + T)} - \frac{Z_s V}{Z_s + Z_n (1 + T)}
\]

Where \(V \) is the constant voltage applied across the test and standard impedances.

(b) When the test impedance is \(Z_n (1 - T) \), the output voltage is proportional to

\[
\frac{Z_s V}{Z_s + Z_n (1 - T)} - \frac{Z_s V}{Z_s + Z_n (1 - T)}
\]

Top view of chassis showing connections from uniselector switch to impedance standards.
Automatic Circuit Checking—

Since these voltages are to be equal
\[
\frac{Z_n(t + T) - Z_s}{Z_s + Z_n(t + T)} = \frac{Z_n(t - T)}{Z_s + Z_n(t - T)}
\]

Which reduces to
\[
Z_n = Z_s(t - T)\]

Thus, in order that the voltages due to equal positive and negative errors shall be the same it is necessary to use as standards impedances whose values differ slightly from the nominal values of the impedances under test.

Turning now to the complete circuit diagram (Fig. 4), V8 is the audio-frequency oscillator, which is of the negative transconductance type. The output of this valve is fed into a beam tetrode (V9), which enables the required output voltage to be developed across a load of 1 ohm; this load is connected across the secondary of a screened transformer. V1 and V2 form the differential amplifier, which is balanced by means of a preset control in the cathode lead of V1. The output from this stage is taken to an amplifier (V3 and V4) via a preset input control which is used to set the tolerance. The output of V4 is rectified by V5 and fed via the cathode follower V6 to the grid of the gas-filled triode V7.

It will be remembered that the receiver which it is desired to test has only 46 impedances while a 50-way uniselector is used. The four “spare” positions are therefore used as follows:—On position 1, Z₁ and Z₄ are resistors that differ by slightly less than the permitted tolerance, while on position 2 they differ by slightly more. Therefore, if the apparatus is working correctly the uniselector should pass 1 and stop on 2. On position 3, Z₁ and Z₄ are equal, this position being used for balancing V₁ and V₂. On position 50, Z₁ and Z₄ differ by a very large amount, so that the uniselector will always stop at this point.

Receivers are tested with the apparatus as follows:—The various plugs are connected. (The apparatus is so arranged that it is not possible to plug into the wrong

Fig. 4. Complete circuit diagram of automatic circuit testing apparatus.
s) The starting switch is pressed; the apparatus should pass position 1 and reject position 2. (Fitted to the uniselecter is a numbered plate indicating the switch positions.) The starting switch is released and pressed again, causing the uniselecter to advance one position. The uniselecter will now continue to step on until a fault in the receiver is reached, when it will stop. If this happens a note of the position is made, and, as before, the uniselecter stepped on to the next place by means of the starting switch.

At the conclusion of the test, if the set is a reject, the operator will have a list of numbers from which the faults may readily be located.

The apparatus which has been built operates at 15 tests per second so that a complete set can be made, and, as before, the uniselecter continued to step advance one position. The starting switch is now reset to the beginning of the cycle and the uniselecter stepped on to the next place by means of the starting switch.

In conclusion, thanks are due to Mr. D. J. Bridges for the photography of the apparatus, and to Murphy Radio Ltd., for permission to publish this article.

BOOKS RECEIVED

Basic Electricity and Magnetism. By W. C. Frid, B.Sc. This booklet, one of Pitman's Pocket Handbooks, is prepared for the Services and the Air Training Corps. No previous knowledge is assumed. Worked examples are given and a few simple experiments are described. Pp. 40; 36 diagrams. Published by Sir Isaac Pitman and Sons Ltd., Parker Street, Kingsway, London, W.C.2. Price 1s. 6d.

Elementary Electricity for Radio Students. By W. E. Flood, M.A. This booklet contains an introduction to electrical theory, written primarily for those who intend to become wireless operators. DC and AC theory are treated, and there are chapters on inductance, capacity and magnetism. Pp. 64; 33 diagrams. Published by Longmans, Green and Company, Ltd., 43, Albert Drive, London, S.W.19. Price 1s.

<table>
<thead>
<tr>
<th>±20%</th>
<th>±10%</th>
<th>±5%</th>
<th>±20%</th>
<th>±10%</th>
<th>±5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>2200</td>
<td>2200</td>
<td>2200</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>27</td>
<td>2700</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>33</td>
<td>3300</td>
<td>3300</td>
<td>3300</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>39</td>
<td>3900</td>
<td>3900</td>
<td>3900</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>47</td>
<td>4700</td>
<td>4700</td>
<td>4700</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>56</td>
<td>5600</td>
<td>5600</td>
<td>5600</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>68</td>
<td>6800</td>
<td>6800</td>
<td>6800</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>82</td>
<td>8200</td>
<td>8200</td>
<td>8200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>120</td>
<td>12000</td>
<td>12000</td>
<td>12000</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>180</td>
<td>18000</td>
<td>18000</td>
<td>18000</td>
</tr>
<tr>
<td>220</td>
<td>220</td>
<td>220</td>
<td>22000</td>
<td>22000</td>
<td>22000</td>
</tr>
<tr>
<td>270</td>
<td>270</td>
<td>270</td>
<td>27000</td>
<td>27000</td>
<td>27000</td>
</tr>
<tr>
<td>330</td>
<td>330</td>
<td>330</td>
<td>33000</td>
<td>33000</td>
<td>33000</td>
</tr>
<tr>
<td>390</td>
<td>390</td>
<td>390</td>
<td>39000</td>
<td>39000</td>
<td>39000</td>
</tr>
<tr>
<td>470</td>
<td>470</td>
<td>470</td>
<td>47000</td>
<td>47000</td>
<td>47000</td>
</tr>
<tr>
<td>560</td>
<td>560</td>
<td>560</td>
<td>56000</td>
<td>56000</td>
<td>56000</td>
</tr>
<tr>
<td>680</td>
<td>680</td>
<td>680</td>
<td>68000</td>
<td>68000</td>
<td>68000</td>
</tr>
<tr>
<td>820</td>
<td>820</td>
<td>820</td>
<td>82000</td>
<td>82000</td>
<td>82000</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
</tbody>
</table>

STANDARDISATION OF FIXED RESISTORS

The demand for composition-type resistances by the Services and Government Supply Departments is a heavy one, and to ensure prompt delivery it has been decided to limit the number of available values to those listed in the table. It will be seen that the range from 10 ohms to 10 megohms can be covered by 255 values if three tolerance groups of ±20, ±10 and ±5 per cent. are accepted. For most positions in a circuit, resistances can be selected from the first two categories and will be near enough to function satisfactorily. Before resistances in the 5 per cent. group can be specified the sanction of the appropriate Government Department must be obtained. The agreement is the result of consultation between the Inter-Service (Communications) Components Committee and representatives of the manufacturers and departments concerned. It does not affect existing designs and contracts, but will be brought into effect for all new developments. Wire-wound resistances are not affected by the present ruling.

<table>
<thead>
<tr>
<th>±20%</th>
<th>±10%</th>
<th>±5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>12000</td>
<td>12000</td>
<td>12000</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>18000</td>
<td>18000</td>
<td>18000</td>
</tr>
<tr>
<td>22000</td>
<td>22000</td>
<td>22000</td>
</tr>
<tr>
<td>27000</td>
<td>27000</td>
<td>27000</td>
</tr>
<tr>
<td>33000</td>
<td>33000</td>
<td>33000</td>
</tr>
<tr>
<td>39000</td>
<td>39000</td>
<td>39000</td>
</tr>
<tr>
<td>47000</td>
<td>47000</td>
<td>47000</td>
</tr>
<tr>
<td>56000</td>
<td>56000</td>
<td>56000</td>
</tr>
<tr>
<td>68000</td>
<td>68000</td>
<td>68000</td>
</tr>
<tr>
<td>82000</td>
<td>82000</td>
<td>82000</td>
</tr>
<tr>
<td>1.0 Meg.</td>
<td>1.0 Meg.</td>
<td>1.0 Meg.</td>
</tr>
<tr>
<td>1.2 Meg.</td>
<td>1.2 Meg.</td>
<td>1.2 Meg.</td>
</tr>
<tr>
<td>1.5 Meg.</td>
<td>1.5 Meg.</td>
<td>1.5 Meg.</td>
</tr>
<tr>
<td>1.8 Meg.</td>
<td>1.8 Meg.</td>
<td>1.8 Meg.</td>
</tr>
<tr>
<td>2.2 Meg.</td>
<td>2.2 Meg.</td>
<td>2.2 Meg.</td>
</tr>
<tr>
<td>2.7 Meg.</td>
<td>2.7 Meg.</td>
<td>2.7 Meg.</td>
</tr>
<tr>
<td>3.3 Meg.</td>
<td>3.3 Meg.</td>
<td>3.3 Meg.</td>
</tr>
<tr>
<td>3.9 Meg.</td>
<td>3.9 Meg.</td>
<td>3.9 Meg.</td>
</tr>
<tr>
<td>4.7 Meg.</td>
<td>4.7 Meg.</td>
<td>4.7 Meg.</td>
</tr>
<tr>
<td>6.8 Meg.</td>
<td>6.8 Meg.</td>
<td>6.8 Meg.</td>
</tr>
<tr>
<td>8.2 Meg.</td>
<td>8.2 Meg.</td>
<td>8.2 Meg.</td>
</tr>
<tr>
<td>10.0 Meg.</td>
<td>10.0 Meg.</td>
<td>10.0 Meg.</td>
</tr>
</tbody>
</table>
NOW that very high frequencies are coming into general use, the breakdown of ordinary circuit technique is becoming more and more apparent. Perhaps this breakdown is most apparent in the design of the ordinary tuned circuit, since at these very short wavelengths the required capacities and inductances become so small that their physical realisation becomes very difficult.

For these reasons, the use of transmission line sections as tuned circuits is coming into wider use.

For those unfamiliar with this technique, it may be helpful to recapitulate the line of reasoning which led to its adoption. If, as is nearly true at high frequencies, \(\omega L \) is large compared with \(R \), and \(\omega C \) is large compared with \(G \) (where \(L \), \(R \), \(C \), and \(G \) are respectively inductance, resistance, capacitance, and conductance per unit length of line), then it can be shown that the sending end impedance \((Z) \) of a loaded line is

\[
Z = Z_o \cos \beta l + j \beta Z_o \sin \beta l
\]

\(Z_o \) is characteristic impedance, \(\beta \) is the imaginary part of the propagation constant \(\gamma \) used in abac No. 4. If the line is one-quarter of a wavelength long, and the transmission velocity is that of light (or radio waves in free space), then \(\beta = \pi / 2 \), and the sending-end impedance becomes

\[
Z = Z_o \cos \beta l + j \beta Z_o \sin \beta l
\]

In Fig. 1, correction curves for "end effect" giving correction factor \(F \) for different wavelengths and values of \(D \) for a 76.8 ohm co-axial line.

Similarly the open-circuited section of a quarter wavelength resonant line will have a finite "\(Q \)" which—in the case of the co-axial line—is given by:

\[
Q = KD \sqrt{\frac{J}{\rho}} \left(1 + D/d + 2D/l \right) \log_e D/l
\]

Where \(f \) = frequency, \(\rho \) = resistivity of line material (here assumed to be copper throughout), \(l \) = length, \(D \) = diameter of outer, \(d \) = diameter of inner, \(K \) = constant.

The D/l term at the right of the formula represents end effects (loss by radiation) tending to reduce the \(Q \), and for normal lines and wavelengths of upwards of one metre is not of much importance. Since its incorporation would make the abac unwieldy this term has been neglected. However, if great accuracy is required the appropriate correction factor, \(F \), may be calculated from the formula

\[
F = \frac{1 + D/l}{1 + D/l + T}, \quad T = 0.338 \frac{DZ_o}{\lambda}
\]

where \(\lambda \) is the wavelength and \(D/l \) can be found from the characteristic impedance abac (Wireless World, Jan., 1943). Calculation shows that the maximum "\(Q \)" for a quarter-wavelength co-axial line of given dimensions will be attained when \(Z_o = 76.8 \) ohms, and this is the line which is most commonly used. In Fig. 1 a family of curves has been drawn showing the correction factor \(F \) for different values of \(D \) as a function of wavelength for this optimum 76.8 ohm line. The reader should have no difficulty in interpolating where necessary. Thus the actual "\(Q \)" will be the value (Concluded on page 74)

\[\text{"Wave Guides," by R. L. Lamont, p. 81.} \]
ABAC No. 5
[Third Series]

"Q" of a Quarter-Wavelength ($\lambda/4$) Copper Resonant Line
Radio Data Charts—5—
given by the abac multiplied by the factor \(F \) (less than 1) determined either from the curves or from the formula. However, since the line is inevitably damped when put to any useful purpose, the abac value of \(Q \) will be sufficiently accurate for the vast majority of cases if the wavelength is one metre or more. There is little point in performing similar calculations to correct for the radiation loss of the two-wire quarter-wavelength line, since adjacent metal would probably have an equal effect.

What has been found by the abac (with or without the correction factor) is the \(Q \) of the line alone, and coupling this, say, to the grid of a triode might well be connected as shown in Fig. 2.

By suitable choice of dimensions, the \(Q \) of a line section can be made comparable to that of a crystal at frequencies above 10 Mc/s or so. In order to achieve the same stability as a crystal it is necessary to load the line very lightly (e.g. by tapping down) and to ensure the constancy of the line length. To this end it should be rigidly constructed and, in the best apparatus, thermostatically controlled.

The mode of operation of the abac should be quite clear from the key, but an example may be helpful by way of illustration.

Example: It is desired to tune a receiver to 50 Mc/s using a coaxial quarter-wavelength shorted line of characteristic impedance 75 ohms and sheath diameter \(\frac{1}{2} \) in.; what is the \(Q \) of the line? Set the ruler on the gauge point \(Z_0 \), and join this to 75 ohms on the coaxial \(Z_0 \) scale; a point of intersection is found on the frequency scale. Join this point to 0.75 in. on the \(D \) scale and a point is found on the reference line at the right; join this point to 50 Mc/s on the frequency scale, and the \(Q \) of the line is read off on the appropriate scale at the centre. It is 566. In this case \(F = 0.994 \) so the corrected value of \(Q \) is 562.

The quarter-wavelength line used in this way can obviously only be tuned to one frequency. If it is desired to cover a band of frequencies it is necessary to load the line with a variable condenser; this point will be discussed later.

ROYAL SIGNALS IN PALESTINE

GREEK soldiers are among the men being trained at the Royal Corps of Signals School recently established in Palestine. The trainee signalmen acquire a first-hand knowledge of the equipment they will be using by locating faults and executing minor repairs in typical apparatus.

In the above picture an instructor is seen tracing the circuit of a dismantled No. 18 transmitter-receiver, which is one of the standard infantry pack sets.

The power supply unit of a No. 11 transmitter-receiver, which although obsolescent, is still widely used in army trucks, is seen being tested in the lower picture.

The universal test set employed is of American manufacture and combines output meter, multi-range meter, valve test panel, etc.
Electromagnetic Fields in Radio—II.

PHYSICAL MEANING OF SOME MATHEMATICAL NOTATIONS

In the previous article we derived properties of electromagnetic fields from the observed deflection of the beam in a cathode-ray tube as used in radio. The stream of electrons experiences a force perpendicular to its velocity and to any magnetic field through which it passes, the force being proportional to velocity, field, and charge. When we recognised the equivalence of moving either charge while magnet was stationary or magnet while charge was stationary, in turn, it was seen that an electric charge can "feel" a moving magnetic field as an electric field, and a magnetic pole can "feel" a moving electric field as a magnetic field. By rewriting our laws of force and velocity in electrostatic and magnetic units, it was found that under certain conditions the electric and magnetic fields can be considered as mutually generating one another. This special case occurs if both fields move forward together with a speed which is equal to the ratio between those two systems of units.

This forward motion of alternating electric and magnetic fields through space is, of course, what we mean by the transmission of a radio wave. But the reason for there being a wave motion could not be seen in the first equations when the electromagnetic laws emerged from the simple facts of the electron stream upon which our view has been based. We reached Faraday's law connecting line-integral of electric field with rate of change of magnetic flux, but to extract a radio wave these integral forms must be replaced by the equivalent differential forms known as Maxwell's equations.

Accordingly, the present article is given up to providing physical meaning for the several expressions in vector notation which lead to the Maxwell equations. The latter can then be seen as the translation of the electromagnetic laws into the new form required in discussing radio waves. In particular, the intimidating abbreviations "div," "grad," and "curl" which close the text-books against the uninitiated, must be shorn of their strangeness and made to act as useful shorthand for physical operations of practical importance.

Line and Area Vectors. Throughout any science capable of exact treatment, it is useful to distinguish vector from scalar quantities. Scalars are specified completely by their size, while vectors require for their specification not only their magnitude but also their direction and their "sense" or sign of plus or minus. In radio an electric charge is a scalar quantity, and so is a potential, but electric field-strength is a vector since it denotes a certain magnitude in a certain direction. In diagrams a vector may be represented by an arrow whose length measures the magnitude and whose orientation with respect to any fixed direction represents the vectorial property of being directional. Reversing the arrow-head denotes reversing the sense or sign from plus to minus.

A thorough grasp of the physical basis of electromagnetism, without which the practical problems of wave generation and propagation cannot be tackled with assurance, calls for a certain amount of hard mental effort on the part of the reader. If he can assimilate the contents of this instalment, in which the essential mathematics are reduced to their simplest form, he will have made the most difficult stride towards the mastery of the subject and will be equipped to understand the practical aspects which will form the basis of later articles in the series.

By MARTIN JOHNSON D.Sc.
Electromagnetic Fields—
calculable since \(AB = AC \sin \theta \) and
\(BC = AC \cos \theta \).

Products of Vectors and Scalars.
The expressions for electromotive
force used in the previous article,
as field and path and work done,
raise the question of what happens
if vectors are multiplied, either by
other vectors or by scalars. Such
manipulation of the kinds of
quantity described in the discussion
of radio introduces the following
distinctions.

(a) Scalar product of two vectors:
this is the product of one vector’s
length by the other vector’s length,
multiplied by the cosine of the
angle between their two directions.
The net result becomes zero if the
two vectors are mutually
perpendicular, but becomes an ordinary
multiplication if they are both in the same direc-
tion. For the cosine is a minimum
and a maximum for these two condi-
tions respectively. This scalar
product is often called the “ dot
product” and written with a dot
between the components
\[
A \cdot B = ab \cos \theta
\]
if a and b are the magnitudes of
the vectors A and B. The opera-
tion is equivalent to multiplying
either vector by the projection
upon it of the other. It may be
noticed that a scalar product of
two vectors is a scalar.

(b) Vector product of two vectors:
this is the product of the two
magnitudes but multiplied in this
case by the sine of the angle be-
tween them. This kind of product
is itself a vector, and may be
regarded as the area of the parallelo-
gram contained by the two com-
ponents; according to our con-
vention of area vectors it may
therefore be seen as a line per-
pendicular to the plane of the
original two. In contrast to the
dot product, it is zero when the
constituent vectors are parallel,
and a maximum when they are
perpendicular to each other. This
is called, and written, the “ cross
product,” \(A \times B = ab \sin \theta \).

(c) In distinction to these pro-
ducts, to multiply a vector by a
scalar gives another vector of n
times the size but with direction
unchanged.

It will be noticed that the line-
integrals employed in our previous
article are scalar products; this
fits the fact that field (vector)
multiplied by path (vector) gives
work (scalar). Our definitions of
flux in that article may also be
regarded in the light of vector
theory.

The distinction between dot and
cross multiplication must next be
extended to a wider range of “ operations ” to be performed on
electrical quantities.

Derivatives and Operators. In
the earlier article we had occasion
to obtain the “ derivative,” or to
differentiate” some quantity of
importance to radio, meaning that
we needed to know the rate of
change of that quantity as it
varied in dependence upon some
other quantity. In electricity,
field is thus a derivative of potential
with respect to distance, for instance
in volts per centimetre. “ Scalar
differentiation” studies the rate of
change of any vector, say \(V \), as it
varies in dependence upon a scalar,
say \(t \); if, for example, \(V \) is a dis-
placement \(D \) and \(t \) is a time, \(dD/dt \)
is a velocity or rate of change of
displacement, and the “ second
derivative” \(d^2D/dt^2 \) is an accelera-
tion or rate of change of velocity.

This illustrates how it is possible
to account for the dependence of
some electrical quantity upon
more than one controlling factor.
The conventional distinction in
shape of symbol, \(\partial \) instead of \(d \),
usually denotes partial differenta-
tion when keeping in mind the
constancy of the remaining con-
trols.

It is often useful to employ
“ unit vectors ”; if \(i, j, k \) are line
vectors of unit length in the \(x, y, z \)
directions, \(OP \) in Fig. 3 is the
vector sum of its projections \(OX, XQ, QP \), which are themselves
scalar multiples of \(i, j, k \), so that
the total vector
\[
V = V_x i + V_y j + V_z k
\]
where \(V_x, V_y, V_z \) are scalar com-
ponents of the vector \(V \). The
notion can be further extended
until \(i, j, k \), represent areas instead
of lines only.

We must now extend the methods
of multiplication of a vector to
other “ operations,” and we define
an operator \(\nabla \) often called “ del ”
as meaning in terms of our recent
notations,
\[
\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}
\]
Next consider how this operation
can be performed upon scalars
and vectors somewhat as multipli-
cation can; for potentials and
fields treated thus are a common
shorthand in radio literature.

The Operator “ Grad ” or Grad-
ient of a Scalar. We have already
spoken in general of derivatives
as representing the rate of change
of a quantity when varying under
some control; but there is one
particular rate of change which is
important in electromagnetism,
known as the “ gradient.” Actually
it is the maximum of all possible
rates of change for a scalar. For
instance, temperature and potential
are scalars; the potential due to a
distribution of static charges will
show rates of change in different
directions, but the electric force at
any point is in the direction of
the steepest rate of decrease of poten-
tial, perpendicular to the equi-
potential surfaces, and has a magni-
tude which is called the “ gradient ”
of potential. Of a scalar \(S \), “ grad
\(S \)” is therefore a vector field
quantity. This gradient can be
shown to be equivalent to the
operator “ del ” applied to such a
scalar expressing the properties
of space at a given point. So in
terms of the unit vectors which

![Fig. 3. Projection of a vector on three perpendicular axes.](image)
The Operator "Div" or Divergence of a Vector. This in turn is the application of "del" to a vector instead of to a scalar, but it is of a kind analogous to the "dot product" discussed above.

\[\nabla \cdot \mathbf{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} \]

The dot notation is in accord with the "dot product" discussed above.

The Operator "Curl" or Rotation of a Vector. There remains the possibility of a "cross product" or \(\nabla \times \mathbf{V} = \text{curl} \mathbf{V} \). It is equal, in our previous notations, to

\[\nabla \times \mathbf{V} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right) \mathbf{k} \]

The term "rotation" or "curl" is due to the fact that it expresses "vortex" or whirlpool properties in a fluid, and if all spin in the fluid vanishes the curl becomes zero. For example, in the left-hand side of Fig. 4 a small element of fluid changes its orientation in such a way as to have an axis of rotation, while in the right-hand side the orientation stays constant and whatever motion the fluid is undergoing is irrotational. In a case of interest to radio, it will be found that the curl of a magnetic field is an essential way of denoting a current density. Another useful pictorial distinction (Fig. 5) between two of these operators occurs in Hague's book on vectors, to which the reader seeking a full treatment may be referred.*

Theorem of Gauss on Flux. The remaining items required from the mathematician's tool-box are the theorems of Gauss, Green, and Stokes. With these the laws of electromagnetism reach a form showing radio propagation. Draw any closed surface \(S \) in a field represented by a vector \(V \). We discussed the flux through such a surface in our previous article, and in our recent dot notation it may be rewritten

\[\iint_S \mathbf{V} \cdot d\mathbf{S} = \iiint_V \nabla \cdot \mathbf{V} \, dv \]

Poisson and Laplace Conditions in Space and in Material. We can now put together several results already reached to obtain the static portion of the radio field. The Gauss theorem is applied to a vector, here the electric intensity \(E \) perpendicular to a conducting surface of aerial, resonator, etc. If \(e \) is the total charge inside it is equivalent to \(\iint_S \mathbf{E} \cdot d\mathbf{S} \) which is the volume integral of charge per unit volume or charge density \(\rho \). But the flux emerging from the element of volume was found to be \(\iint_S \mathbf{E} \cdot d\mathbf{S} \)

\[\iint_S \mathbf{E} \cdot d\mathbf{S} = 4 \pi \int \rho \, dv \]

Since \(E \) was a "grad" of potential we have the effect of a double operation, "div grad" of potential, equal to \(4 \pi \rho \). Recalling what these operators meant, \(\text{div} \mathbf{E} = \nabla \cdot \mathbf{E} \)

\[\text{div} \mathbf{E} = \left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \right) \]

"Vector Analysis for Physicists and Engineers" by B. Hague. Methuen, 1939.

* "Vector Analysis for Physicists and Engineers" by B. Hague. Methuen, 1939.
The operator \(\text{div} \) can thus act upon any vector denoting the sum of the results of the action of the operator \(\text{grad} \) on each of the components.

This is the famous Poisson’s equation. For empty space \(\rho = 0 \) and the equation becomes zero and is then called Laplace’s equation. The design of many types of apparatus depends ultimately upon deciding where certain conditions are fulfilled near electrodes, aerials, etc., and those expressed by the Poisson and Laplace equations are the first.

The Maxwell Equations of Electromagnetic Field in Free Space. We have already utilised relationships between volume and surface and line integrals. The mathematics has been much associated with the names of Green and of Stokes. Green’s theorem is a purely geometrical way of expressing a volume integral throughout an enclosed space in terms of surface integrals over the boundaries of the space. It can therefore be used to derive the electrostatic work connected with Poisson’s equation which we evolved from first principles. But the more important of the relations for the radio field is that of Stokes, connecting line and surface integrals. It may be expressed: “Line integral of vector taken round circuit is equivalent to surface integral of its curl taken over any surface bounded by this circuit.”

\[
\int \mathbf{V}ds = \int \text{curl} \mathbf{V}ds
\]

We recall that \(\mathbf{F} \times \mathbf{V} = \text{curl} \mathbf{V} = \left(\nabla \times \mathbf{V} \right) \) with accompanying terms for each of the other pairs of variables.

By this relation we now rewrite the fundamental laws of electromagnetism. In the earlier article they were derived from experiments with an electron beam, and in association with the names of Faraday, Maxwell and Ampere we wrote them:

\[
\begin{align*}
\int \mathbf{E}ds &= \frac{1}{c} \times \text{rate of change of magnetic flux} \\
\int \mathbf{H}ds &= \frac{1}{c} \times \text{rate of change of electric flux} \\
\mathbf{H}ds &= 4\pi i/c = 4\pi j
\end{align*}
\]

Replace the left-hand side by each

\[
\text{div} \mathbf{P} = \rho \mathbf{P} = \left(\frac{\partial^2 + \nabla^2}{\partial t^2 + \nabla^2} \right) \text{potential} = 4\pi \rho
\]

These are Maxwell’s equations: with that of Poisson they sum up the whole of electrical theory. As we have seen in the two treatments of this and our previous article, Maxwell’s equations do not express the way in which we arrive at field properties from experiment; from experiment we only reach the integral forms of the earlier article. But those forms provide no reason why the field should manifest itself as radio waves in space, and we propose next to see, as Maxwell first did, that combining the “curl” equations at once proves that radio waves are an inescapable character of the electromagnetic field, and also proves many of their properties.
THE stem of a valve carries the lead wires which support the electrodes inside the bulb and also serve to carry the various currents.

Our illustration shows these wires immediately after being fused into the stem to make the necessary vacuum tight joints.
Rotary Cutting, Filing, Grinding and Polishing - Economy and Accuracy

Use MORRISFLEX Flexible Shaft Equipment, and REX Rotary Files and Cutters for cutting, filing, grinding and polishing components of aluminium, Elektron, non-ferrous alloys and ferrous metals. For metal buffing and cleaning we supply MORREX Rotary Wire Brushes, and MORRISFLEX Rotary Polishing Mops and Felts, also Felt Cones. MORRISFLEX Rotary Rasps are ideal for woodworking, and attachments for MORRISFLEX machines include Sanders and Grinders. MORRISFLEX machines are available in overhead suspension, bench and floor types. Their use ensures speed with accuracy, and a high degree of finish. Write for Lists.

B. O. MORRIS LTD.
SHIRLEY, BIRMINGHAM.
Shirley 1237.
Grams: Morrisflex, Birmingham.

WHEN THE FLOOD OF WAR HAS SUBSIDED....

the bird of Peace will bring with it the demand for products to assist in the enjoyment of freedom and security. Goodmans Industries then, as in pre-war days, will be able to concentrate on "The Attainment of an Ideal" - the perfect reproduction of sound.

In the meantime the whole of our organisation is devoted to the design and production of the best possible acoustic apparatus.

The best of today will in turn lead to something better still in the future, in which Goodmans Industries will maintain their reputation for establishing standards of design for high fidelity sound reproducers.

Goodmans Industries LTD.

GOODMANS INDUSTRIES LIMITED * LANCELOT ROAD * WEMBLEY * MIDDX.
STANDARDISED COMPONENTS

THE recent announcement by the U.S. War Production Board that replacement parts for receivers are to be standardised—to such a degree as to ensure the maintenance of more than 90 per cent. of the civilian receivers in use, falsifies the rumour that due to a shortage of components sets in America would go out of commission at the rate of thousands a day.

It is stated that the plan will be sufficiently comprehensive to ensure the supply of replacements for all receivers manufactured during the past twelve years.

Production of valves has been suspended by the Board to exhaust the existing stocks before introducing the scheme, which reduces the number of types from 350 to 110. It will be recalled that an earlier Order reduced the 700 pre-war types to 350.

Valves are the first components to be dealt with under this plan. There is also to be a reduction in the number of transformers and chokes from 155 to fourteen—including six power transformers.

It is also learned from Broadcasting that there are to be nine varieties of dry electrolytic condensers and eleven types of paper tubular condensers. The threatened shortage of transmitting apparatus has resulted in an issue of a questionnaire by the Federal Communications Commission to all transmitting stations—including broadcasting—asking for details of surplus apparatus; it is proposed to form a pool.

RECORD SALVAGE

THE major gramophone record manufacturers in this country have recently issued a statement that the further maintenance of adequate supplies of records is dependent upon the willingness of the public to return old and unwanted records for re-use. The Government has found it necessary to conserve for more urgent war needs the shellac and other raw materials essential for manufacture.

Provided they were not issued prior to the introduction of the solid stock system of manufacture in about 1932, and discs issued by the E.M.I. and Decca groups, irrespective of condition—if not actually broken—will be gladly received by record dealers, who will make an allowance for them. It has been noticed that in some cases dealers are paying as much as 4d. for 12in. and 2d. for 10in. records.

"THERMAL" RADIO

IN his usual end-of-the-year review of radio in America, David Sarnoff, president of the Radio Corporation of America, laid considerable stress on the application of radio-frequency heating. This application of radio technique is pre-war, but in its war rôle it has assumed greater importance and made remarkable advances.

Among the applications of "thermal" radio enumerated by Mr. Sarnoff are: glueing, annealing, welding, riveting, and even deactivating enzymes. It is also claimed that rubber may now be "radio-cemented" to wood or plastics.

Referring to television, Mr. Sarnoff stated that its laboratory status is a war secret, but those confident of the success that marks wartime developments expect television to emerge from this war to make a great post-war industry.

AMERICAN FM STATIONS

A RECENT survey of FM stations in the United States revealed that there are at present 37 commercial stations and eight experimental transmitters in use. Some of them are radiating a 24-hour service. In addition to these transmitters there are a further seventeen "under construction," the building of many of them, however, is delayed because of the shortage of equipment.

HIRE PURCHASE

UNDER a new Order, which comes into force on March 1st, the hire purchase of many price-controlled goods, including wireless receivers, is prohibited.

The Order will not affect hire-purchase agreements entered into before the above date, nor will it prevent the making of a new agreement in order to readjust the terms of an existing contract made at the lender's request, provided that no additional goods are included therein. The Order also provides that a new hire-purchase agreement may be made, if the hirer so requests, in respect of goods which have sustained war damage, subject to certain conditions specified in the Order.

Copies of the Order, the title of which is the Hire Purchase (Control) Order 1943 (S.R. & O., 1943, No. 2357), will be obtainable, of course, price rd., through any book-seller or newsagent or direct from H.M. Stationery Office, Kingsway, London, W.C.2.

LATE LORD HIRST

IT is with regret we record the death of Lord Hirst, chairman and managing director of the General Electric Co., on January 22nd, after a short illness. He was seventy-nine years of age, and until early this year had been in regular attendance at his office.

Lord Hirst, who was one of the founders of the G.E.C. over fifty years ago, became managing director in 1920 and chairman in 1910. He was quick to realise the potentialities of broadcasting, and played a prominent part in the formation of the British Broadcasting Co. It was in Magnet House, Kingsway, the head office of the G.E.C., that the B.B.C. had its original offices.

Lord Hirst, who was created a baronet in 1925, and raised to the peerage in 1934, has been president of the Radio Manufacturers' Association since 1938. He was one of the few honorary members of the Institution of Electrical Engineers.

PLANNING OF SCIENCE

WITH a view to contributing towards the full mobilisation of science and scientists for the speediest winning of the war and for the engendering of a rational approach to the problems of the peace, the Association of Scientific Workers recently organised an open conference at the Caxton Hall, London, S.W.1.

Sir Stafford Cripps, Minister of Aircraft Production; Sir Robert Watson-Watt, pioneer of radiolocation, who is chairman of the Association; Sir Lawrence Bragg, head of the Caven-
ELECTRO-ENCEPHALOGRAPHY

At the next meeting of the Wireless Section of the Institution of Electrical Engineers at 5.30 on March 3rd, G. Parr, Editor of Electronic Engineering, and W. Grey Walter, M.A. (Camb.), a physiologist, will deliver a paper on "Amplifying and Recording Technique in Electro-Biology." The paper will make special reference to the electro-encephalograph which has been developed by Mr. Grey Walter for the detection of cerebral abnormalities and was briefly described in Wireless World in 1938. The lecture will include a demonstration on a human subject.

ELECTROLYTIC CONDENSERS

A sked in the House of Commons whether he was aware of the shortage of electrolytic condensers, the President of the Board of Trade stated that the shortage was due to the ever-increasing demands of the Fighting Services for radio equipment. Recognising the importance of keeping civilian receivers in use, however, steps had already been taken to increase production of electrolytics. He hoped that the increased output of electrolytic condensers would mean that by the end of March "the gaps in the 1942 maintenance programme will have been filled up."

It was stated by Mr. Dugdale, the questioner, that he understood that 25 per cent. of all repairs to receivers are due to breakdowns in electrolytic condensers.

NEWS IN ENGLISH FROM ABROAD

WORLD OF WIRELESS—

Dis Laboratory, Cambridge, and Sir Philip Joubert, were among the many speakers. Sir Philip referred to the importance of the creation in 1939 of a team of scientists at an Operational Research Section to look after and analyse the new radio aids to air warfare. The activities of the O.R.S. have gradually increased, and they now cover a wide field in all three Services. He pointed out that the creation of these sections has resulted in scientist and soldier working side by side.

ELECTRO-ENCEPHALOGRAPHY

At the next meeting of the Wireless Section of the Institution of Electrical Engineers at 5.30 on March 3rd, G. Parr, Editor of Electronic Engineering, and W. Grey Walter, M.A. (Camb.), a physiologist, will deliver a paper on "Amplifying and Recording Technique in Electro-Biology." The paper will make special reference to the electro-encephalograph which has been developed by Mr. Grey Walter for the detection of cerebral abnormalities and was briefly described in Wireless World in 1938. The lecture will include a demonstration on a human subject.

ELECTROLYTIC CONDENSERS

A sked in the House of Commons whether he was aware of the shortage of electrolytic condensers, the President of the Board of Trade stated that the shortage was due to the ever-increasing demands of the Fighting Services for radio equipment. Recognising the importance of keeping civilian receivers in use, however, steps had already been taken to increase production of electrolytics. He hoped that the increased output of electrolytic condensers would mean that by the end of March "the gaps in the 1942 maintenance programme will have been filled up."

It was stated by Mr. Dugdale, the questioner, that he understood that 25 per cent. of all repairs to receivers are due to breakdowns in electrolytic condensers.

Britain: IRE

A RECORD attendance of nearly 250 members and visitors was registered at the meeting of the Brit.I.R.E. on January 23rd, when J. H. Cozens, B.Sc., A.M.I.E.E., delivered a paper on "Modern Condenser Technique." Mr. Cozens dealt at length with methods adopted by manufacturers to reduce the inductive component in paper condensers. He stated that there was no such thing as a "non-inductive" condenser, and suggested that these should be styled "low-inductance."

The next meeting of the Institution...
will be held on March 26th at the Institution of Structural Engineers, 11, Upper Belgrave Street, London, S.W.1, when E. L. Gardner, B.Sc., will deliver a paper on “Selective Methods in Radio Reception.”

500 KW ON SHORT WAVES

SOME “night owls” will have heard the transmissions from the 500-kw medium-wave American station W6XO, the experimental adjunct of the Crossley Corporation’s stations WLO and WLOO at Cincinnati, Ohio, which had an experimental licence for transmissions between midnight and 6 a.m. Eastern Standard Time. This licence has now been cancelled by the U.S. Federal Communications Commission, and it is rumoured that the station may be adapted for short-wave transmissions and employed by the Office of War Information for overseas broadcasts.

It is stated by our American contemporary Broadcasting, that in addition to the leasing of the fourteen international short-wave stations mentioned last month, a plan is under way for the construction of twenty-two more transmitters.

CHINESE AMATEURS’ DAY

A WORLD-WIDE amateur convention is to be held in Chungking, the bomb-scarred war capital of China, on May 5th, which is now known as Chinese Amateurs’ Day.

The China Amateur Radio League has asked for the co-operation of allied countries in providing items of interest in connection with amateur activities. It is understood the Radio Society of Great Britain is sending a collection of books.

In pre-war days many British amateurs have contacted XUOA, the headquarters’ station of the League, news in English in the B.B.C.’s various oversea services. Some transmissions are radiated on two or three frequencies in the waveband shown.

IN BRIEF

More Sets.—It was recently stated by the President of the Board of Trade, in reply to a question in the House of Commons, that arrangements had been made to supply components for the completion of over 100,000 civilian wireless sets now in the shops.

Propaganda.—Recent statements from America referring to the co-ordinated use of wireless during the landing of the U.S. Forces in North Africa revealed that powerful portable transmitters were erected by the Army Signal Corps for the purpose of disseminating information to the inhabitants.

Oversea News Bulletins.—The following is the latest schedule of the times (BST) of short-wave transmissions of the B.B.C. for the British Overseas Territories.

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>49.31</td>
<td>English</td>
</tr>
<tr>
<td>0345</td>
<td>49</td>
<td>English</td>
</tr>
<tr>
<td>0530</td>
<td>49.47</td>
<td>English</td>
</tr>
<tr>
<td>0715</td>
<td>49.31</td>
<td>English</td>
</tr>
<tr>
<td>0900</td>
<td>49.31</td>
<td>English</td>
</tr>
<tr>
<td>1000</td>
<td>49.47</td>
<td>English</td>
</tr>
<tr>
<td>1200</td>
<td>59.19</td>
<td>English</td>
</tr>
<tr>
<td>1345</td>
<td>59.19</td>
<td>English</td>
</tr>
<tr>
<td>1500</td>
<td>39.25</td>
<td>English</td>
</tr>
<tr>
<td>1700</td>
<td>39.25</td>
<td>French</td>
</tr>
<tr>
<td>1900</td>
<td>39.19</td>
<td>French</td>
</tr>
<tr>
<td>2145</td>
<td>39.41, 31, 25</td>
<td>English</td>
</tr>
<tr>
<td>2330</td>
<td>39.41, 31, 25</td>
<td>English</td>
</tr>
</tbody>
</table>

*Sunday sets excepted.

There are also the Morse transmissions of news in English, French and German at 0230, 0300 and 0330 (BST) respectively. These are radiated in the 49-metre band and on 261 metres.

Let the Blind Hear.—The Christmas Day broadcast appeal for the British "Wireless for the Blind" Fund has so far resulted in the receipt of over £15,000 from nearly 25,000 donors.

"Jairiminy Calling."—According to details recently published in the German journal Radiotechnik, a total of 60 European broadcasting stations are now being used by the Nazis. Of this number 41 operate in the long-wave, 15 on medium waves and twenty on short waves. It is also stated that one hundred foreign-language news bulletins are broadcast each day by these stations.

Radio Relay Statistics.—An increase of 15,858 subscribers to radio relay exchanges in this country during the third quarter of last year, viz., 12,461, was made available. There were 44,543 subscribers to 278 exchanges at the end of September, 1942. The increase during the previous three months was 11,751.

South African Television.—A recent report of the South African Broadcasting Corporation, mentions the possibility of introducing television with an expansion programme costing £250,000. It is pointed out that owing to war conditions it is inadvisable to give details of the proposed expansion.

Women Radio Operators are to be employed by the Trans-Canada Air Lines for point-to-point communications. Twenty girls from several parts of the Dominion, some of whom already possess Government Radio Certificates, began training in Winnipeg early in the year.

Spanish Stations.—Two new broadcasting stations are being constructed at Arganda, about twelve miles south-east of Madrid. One will operate in the medium-wave band with a power of 60 kW, the other, which will have a power of about 40 kW, on short waves. It is also learned that a new station is to be erected at Palma, Majorca.

"Handle with Care."—This notice appears on equipment in use in Canadian broadcasting stations as a reminder to the users that much of the apparatus cannot be replaced. One notice adds, "the cord on this mike is mostly copper and rubber. Can you think of any other two materials as precious as these are to-day? Please be careful to avoid kinking, twisting or crushing any microphone cord."

A. F. Bulgin, governing director of Bulgin and Co., who has been associated with the Air Training Corps since its inception, has been promoted to the rank of Squadron Leader, R.A.F.V.R.

Obituary.—Only two months ago we reported the death of Walter L. Fillmore, director of Jackson Brothers, the condenser manufacturers. It is with great regret that we now have to announce the death of his son, Louis E. Fillmore, managing director of the company.

Institution of Electronics.—At the Annual General Meeting of the Institution on January 16th it was decided to set up a North-Western Committee to deal with the increasing activities of the Institution in that area. Enquiries regarding membership of the North-Western Section, which will hold its meetings in the Manchester district at regular intervals, should be addressed to L. R. Terry, Honorary Secretary, the Institution of Electronics, 14, Heywood Avenue, Austerlands, Oldham. Followed the annual function of the Institution, a paper was delivered by Dr. Bosch on "Secondary Emission Tubes: Their Manufacture and Applications."
Frequency Modulation—III

INTERFERENCE SUPPRESSION, THE LIMITER, AND THE CAPTURE EFFECT

The fidelity of the pre-war Alexandra Palace television sound channel would not have been improved by the mere substitution of frequency modulation in place of amplitude modulation. As perfect reproduction is theoretically an inherent property of all methods of modulation, FM does not in itself result in any improvement in quality. Frequency modulation should not be credited with improvements which have been made possible by transmission on the ultra short waves.

On the broadcast band, where stations are 9 kc/s apart, the average radio manufacturer regards second station break-through and interstation heterodynes as faults which must be eradicated at all costs. In the majority of cases this has resulted in an overall response curve which drops sharply somewhere between 2,000 and 5,000 cycles. On the ultra-high frequencies, where it is possible to separate stations by 100 kc/s or more, there is no great difficulty in producing a response which is level up to 15,000 cycles, the generally accepted upper limit of audibility of the human ear.

It should therefore be kept in mind when enumerating the system's advantages that its improved quality results, among other things, from the use of far greater channel widths than are possible on the broadcast band, and not simply from the use of frequency modulation.

The Limiter

It was pointed out in a previous installment that the FM receiver is similar to the receiver for amplitude modulation up to the limiter stage. Under normal working conditions the valve in this stage is supplied with a signal large enough to ensure that it is overdriven, therefore effectively limiting the signal amplitude. This results in the suppression of all amplitude modulation, and, regardless of variations in the carrier voltage, voltage to anode current characteristic is shown in Fig. 2. The mechanism by which a burst of impulsive interference is limited is also illustrated by this diagram. It will be noted that, due to grid rectification, the upper carrier peaks are unable to exceed the earth potential, and the larger the applied signal the further negative its mean is depressed.

If the time constant formed by C1 and R1 is too long, it is possible for the slow recovery, after grid rectification of a burst of interference, to momentarily allow the peaks of the signal to fall below earth potential. To take a practical example, the last IF valve may supply the limiter with a 16-volt peak-to-peak signal. The mean would normally lie at -8 volts, all but, say, 3 volts of the positive peaks being below the limiter's cut-off level. A burst of impulsive interference, after rectification, might depress the mean from -8 volts to, say, -10 volts. If the grid time constant is too long, then during the instant immediately following these conditions there will only be 1 volt of the carrier above the limiter valve's cut-off level, with the result that the output would be down to one-third. From cathode-ray oscillograph studies it is apparent that this time constant should be 2.5 microseconds or less if this fault is to be avoided. Fig. 3 shows the overall characteristic of the limiter stage; it will be noted...

This article shows that FM results in a greatly improved signal-to-noise ratio, and deals with the mechanism by which this is effected.

By
CHRISTOPHER TIBBS,
Grad.I.E.E.
that there is a slight drop in the output with increasing input, due to the larger harmonic content.

As shown in the circuit of Fig. 1

Interference Suppression

At first sight it would appear that the limiter, in suppressing all amplitude and impulsive interference, had completely eliminated them. On closer investigation this is found to be far from the truth.

Fig. 4 (a) shows how the carrier and interference combine to form a single complex wave. In this manner they are amplified and applied to the limiter.

In passing through this stage all variations in amplitude are suppressed. The elimination of amplitude changes does not, however, remove the spurious carrier phase shifts which result from the combination of the interference with the carrier wave, and the subsequent amplitude limiting.

Although a phase shift of the carrier may not cause audio noise, the "by-product" frequency modulation accompanying it will. The deviation amplitude of the spurious frequency modulation will depend first on the interference amplitude, and secondly on the frequency at which it occurs in relation to the carrier. The actual deviation frequency resulting from any form of interference therefore depends on the following two factors:

(1) The original interference amplitude.

(2) The frequency spacing between the carrier and the interference. The interference will heterodyne the carrier, with the result that the larger the frequency difference between carrier and interference the higher the heterodyne frequency. After passing through the limiter this heterodyne appears as a phase modulation superimposed on the carrier. The deviation of the FM "by-product" of this phase modulation is determined by the following equation:

\[F_d = P_m \times M_i \]

Where \(F_d \) = deviation of the by-product frequency modulation.

\(P_m \) = the phase modulation expressed in cycles. (Determined by the interference amplitude.)

\(M_i \) = modulating frequency. (In this case the difference frequency between the interference and the carrier.)

From the above it will be seen that if the interference is close to the carrier, the resulting frequency modulation will be small, while if the difference frequency is large the spurious frequency modulation will also be large.

![Fig. 4. Showing how the carrier and interference merge into a single waveform. The amplitude changes are absent in the limiter output, but the interference remains as a spurious frequency modulation of the carrier.](image)

The position is illustrated graphically in Fig. 5, and in addition a comparison is made with an equiva.
Frequency Modulation—comparable amplitude modulation

This diagram is commonly referred to as the FM “noise triangle,” and assumes that the carrier and the interference are held at the same

relative amplitudes, only their frequencies being varied. As an example assume that a burst of impulsive interference occurs 15 kc/s away from the carrier, then deviation of the resultant carrier frequency modulation will be ten times as great as that which would occur if the interference had been only 1,500 cycles from the carrier.

The FM noise spectrum shown in Fig. 5 indicates that an FM system (b) only reproduces half the noise which would be reproduced by a comparable amplitude modulation system (a). In other words, FM shows a 2 to 1 improvement in signal-to-noise with a deviation ratio of unity (i.e., when the maximum frequency deviation is the same as the highest audio frequency). In actual practice this improvement is only realised with certain types of interference, such as that due to motor car ignition, etc. Armstrong has given a figure of 1.7 to 1 as an improvement ratio covering all types of noise, including that produced in the early stages of a receiver.

Before considering the position with a deviation ratio other than unity, it is necessary to consider the effect of interference occurring at a frequency separation farther from the carrier than the highest audio frequency. It was shown in the previous article that interference, after passing through the limiter, appears in the form of superimposed frequency modulation of the carrier, and that this modulation has a frequency equal to the difference between the carrier and the interference. If, however, this separation is greater than the highest audio frequency, then the resulting frequency modulation will be above the highest audio frequency. In an FM receiver, immediately following the discriminator, there is a filter which eliminates all frequencies above the required audio band. This has the effect of wiping out the demodulated resultant of all noise occurring at a frequency separated from the carrier by more than the highest audio frequency. The case of a system with a 75 kc/s deviation is shown in Fig. 5. The only interference which will be reproduced is that indicated by the small triangle.

The improvement over an amplitude modulation system can be summed up as follows. Taking a nearby frequency and for simplicity is assumed to be unmodu-
lated. The combined waveform, after the limiter has suppressed all amplitude variations, is shown in the third diagram. When this signal is demodulated the weaker station appears as a superimposed heterodyne on the stronger station's demodulated intelligence. This heterodyne has a frequency equal to the instantaneous frequency difference between the two stations. If station B is also frequency modulated, the superimposed heterodyne frequency will still be the difference between the two stations, although naturally its form will be complex.

As both stations are assumed to be wide-band frequency modulated, their instantaneous difference frequency will vary between zero and 150 kc/s or more, depending on the maximum deviation employed. If the two stations are, say, 25 kc/s apart the best note will, on the law of averages, be almost entirely supersonic, and therefore inaudible and for all practical purposes suppressed. Even with both stations on the same frequency the heterodyne will, for some 40 to 60 per cent, or more of the time, be above the audio band. For the remainder it will take the form of a background rustle conveying no intelligence whatsoever.

This suppression of a weaker station by a stronger one is an important characteristic of wide-band FM transmission, and is sometimes referred to as the "capture effect." Within the zone in which two FM stations, operating on the same channel, are received at the same strength, neither station will have any programme value. This situation is normally overcome by the erection of a directive aerial system which favours either one or other station. A movement of only a few miles towards either station is normally sufficient to ensure that the weaker one is suppressed.

The capture effect is of very great importance when planning any network of FM stations. It would be possible to erect an FM network covering a whole continent, providing two alternative programmes and employing only three different carrier frequencies. The capture effect also makes any attempt at jamming extremely difficult. Unless the signal from the jamming station approaches the strength of the desired station it will be suppressed.

BIBLIOGRAPHY

"FM Receivers," by Marvin Hobbs, Electronics, August, 1940.
"Impulse Noise in FM Reception," by V. D. Landbo, Electronics, February, 1941.

Wireless World

OF OUR ABILITIES AND FACILITIES WE GIVE GLADLY

PARAMOUNT above all else is the necessity of meeting urgent and immediate demands for the protection of cherished liberty.

Astatic's engineering and manufacturing facilities are first, therefore at the disposal of Allied Governments.

Astatic will be ready to serve you again with high quality piezoelectric devices when the 'All-Clear' of Victory sounds.

Register your name with our Representative for your future benefit.

Astatic

THE ASTATIC CORPORATION
YOUNGSTOWN, OHIO, U.S.A.
TORONTO, CANADA.

Exclusively Represented by
Frank Heaver Ltd., Kingsley Road, Bideford, N. Devon

G.I.

VARIABLE CONDENSERS - DRIVES - AUTOMATIC TUNERS

WE are designing and building even better equipment with our enlarged and extended facilities and these improvements will be available for your use when the present struggle is over.

For the time being domestic receiver design and production has ceased but your radio receiver manufacturers will be ready to equip their sets with General Instrument variable condensers, automatic tuners and other G.I. devices as soon as conditions permit.

Always remember General Instruments VARIABLE CONDENSERS - DRIVES - AUTOMATIC TUNERS Register your name with our Representative now, He will forward you information on our products as soon as they become available.

THE GENERAL INSTRUMENT CORPORATION
ELIZABETH, N.J., U.S.A.

Exclusively Represented by
Frank Heaver Ltd., Kingsley Road, Bideford, N. Devon

United States Army Signal Corps personnel setting up a transportable station in North Africa. The Corps maintains communications for the Army and Air Force.
 TRANSITRON OSCILLATORS

Wide Range and High Frequency Stability with Untapped Coils

By
A. G. CHAMBERS (GSNO)

MOST readers of this journal are familiar with Hull's famous Dynatron oscillator. A similar circuit, not so well known, is the negative transconductance oscillator discovered by Herold\(^\text{1}\) in 1935, and later developed and renamed the "Transitron," by Brunetti\(^\text{2}\) in 1939.

This oscillator possesses essentially the same type of negative-resistance characteristic as the Dynatron, having all its advantages without its disadvantages. Its characteristic is independent of secondary emission, and remains practically constant for the life of the valve. Like the Dynatron, it is a low-powered oscillator, and will oscillate from 600 c/s to 60 Mc/s by changing the value of the associated LC circuit.

Brunetti reports that when properly designed, changes in frequency resulting from a 33 per cent. change in screen volts may be kept within 10 parts in 10\(^5\), and that its stability may be compared with that of a crystal oscillator. Another great advantage is that no centre tap is required as in other types of oscillators. All that is necessary to switch from 160 to 5 metres is to change the coil!

The writer first built up a battery model on a bread board. The circuit, which is extremely simple, is shown in Fig. 1, the action being as follows: Negative voltage applied to the suppressor causes electrons that have passed through the screen to be returned. Over a certain range, a positive increment of suppressor voltage allows more electrons to go to the anode, and thus decreases the screen current, which means that the suppressor-screen transconductance becomes negative. When this negative resistance becomes equal to the equivalent resistance of the tuned circuit \((R, \text{in Fig. 1})\), oscillation results. Fig. 2 shows the screen current/screen voltage characteristic, \(O\) being the operating point.

The relative values of \(C_2\) and \(R\) are important; if they are so small that the reactance of \(C_2\) is appreciable in comparison with \(R\), at the desired frequency of oscillation, then the voltage-dividing action of \(C_2\) and \(R\) causes the change of suppressor volts to be less than that of the screen, and the system stops oscillating.

As with the Dynatron, it is desirable to keep the amplitude of oscillation small so as to keep the waveform and frequency stability good. If a small negative bias is applied to the control grid, the total current flowing to the screen may be controlled and the negative slope of the current/voltage characteristic may be varied. Hence a flexible means is available for varying the magnitude of the negative resistance, and thus the amplitude of oscillation. By arranging for the oscillation voltage to regulate the bias on the control grid, additional amplitude control may be obtained.

Having obtained good oscillation down to 30 Mc/s, the layout was altered, a small metal chassis was obtained, a one-point earthing system adopted, and a Mullard EF50 valve placed in the circuit. After these alterations had been made, an inductance consisting of five 3 in. diameter turns of silver-plated 16 SWG copper was placed in the circuit; the system was still found to oscillate. A half-wave Lecher wire system was coupled up, and the wavelength measured was 34 metres.

The 3 Mc/s coil was then put back to make certain that it was still correct at this frequency, also the output was connected to an oscilloscope to observe the wave form. It was seen to be a pure-sine wave.

Fig. 3 shows the circuit used. It will be noted that suppressor bias has been omitted, as it was found unnecessary with this type of valve. For those who are interested in this particular circuit, the following operating conditions are included. In an oscillating condition, at approximately 3 Mc/s, with the values shown, anode current is 4.5 mA and screen current...
Wireless World

7.6 mA; in a non-oscillating condition anode current is 10 mA, and that of the screen 3 mA.

Although it did not occur to the writer at the time, it is felt that if the metal screen covering the valve had been removed, it might have been possible to go higher still.

Other suitable pentodes Brunetti suggests are the American 57, 58, 59, 6C6, 6J7 and 6K7. The Osram 2A2 acorn pentode was tried, but could not be made to oscillate.

As a General Purpose RF and AF Oscillator.—An oscillator that will be seen from the following list of advantages:

(a) Stability.
(b) Simplicity.
(c) Ease with which output can be controlled.
(d) Purity of waveform.
(e) Ease in band changing (i.e., only one inductance required).

It is felt that only low outputs can be expected if (a) and (d) are to be satisfied.

Putting the above advantages to practice, the writer has found the following applications in mind:

As a Crystal Oscillator.—The output from a Transitron must be kept low if used in place of a crystal oscillator, in which case it would have to be followed by a stage of RF amplification, but, incidentally, this also applies to the electron-coupled oscillator, so widely used by amateurs in the past. The variable output control could be utilised with an advantage as a control for varying the amount of drive required for the following stage. Again there is the advantage of two-pin coils for easy band changing. It is suggested that link coupling be used to avoid any undue loading which might spoil the stability of the oscillator.

(It is hoped later to describe a practical test oscillator using the Transitron principle.)

Books issued in conjunction with "Wireless World"

<table>
<thead>
<tr>
<th>Title</th>
<th>Net Price</th>
<th>By Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATIONS OF WIRELESS, by A. L. M. Sowerby. Third Edition revised by M. G. Scroggle.</td>
<td>6/-</td>
<td>6/-</td>
</tr>
<tr>
<td>RADIO LABORATORY HANDBOOK, by M. G. Scroggle. Second Edition</td>
<td>12/-</td>
<td>12/-</td>
</tr>
<tr>
<td>WIRELESS SERVICING MANUAL, by W. T. Cocking. Sixth Edition</td>
<td>6/-</td>
<td>6/-</td>
</tr>
<tr>
<td>WIRELESS DIRECTION FINDING, by R. Keen. Third Edition</td>
<td>27/6</td>
<td>28/1</td>
</tr>
<tr>
<td>RADIO DATA CHARTS, by R. T. Beatty. Second Edition Revised</td>
<td>5/-</td>
<td>5/-</td>
</tr>
<tr>
<td>RADIO INTERFERENCE SUPPRESSION, by G. W. Ingram</td>
<td>6d</td>
<td>7d</td>
</tr>
<tr>
<td>LEARNING MORSE. 355th thousand</td>
<td>4/6</td>
<td>4/10</td>
</tr>
<tr>
<td>INTRODUCTION TO VALVES, by F. E. Henderson</td>
<td>6/-</td>
<td>6/-</td>
</tr>
<tr>
<td>VALVE REPLACEMENT MANUAL, by A. C. Farnell and A. Woffenden</td>
<td>6/-</td>
<td>6/-</td>
</tr>
</tbody>
</table>

Obtainable from leading book-sellers or by post from ILIFFE & SONS LTD., Dorset House, Stamford Street, London, S.E.1

CROWE

RADIO COMPONENTS

ESCUTCHEONS
TUNING CONTROLS
DIALS—REMOTE CONTROLS
POINTERS, ETC.

FOR BOTH HOME AND COMMUNICATION EQUIPMENT

The Crowe organisation is known to radio manufacturers throughout the world for dependable service and excellent quality of its many products.

Now devoted exclusively to production for Victory, with some items assisting directly in your Country's great efforts, we look forward to the time when our expanded facilities will be available for continuing our pleasant relationship with the British Radio manufacturing Industry. Register your name now with our British Representative for details as soon as available of Crowe Products.

CROWE NAME PLATE & MANUFACTURING CO.
3701 RAVENSWOOD AVENUE
CHICAGO, ILL., U.S.A.

Exclusively Represented by
Kingsley Road.
Frank Heaver Ltd.
Bideford, N. Devon

RAYTHEON

RADIO MANUFACTURERS

FOR BOTH HOME AND COMMUNICATION EQUIPMENT

Since the curtailment of Civilian radio production, RAYTHEON engineers and scientists are devoting all their energies to designing and building special tubes for to-day's important electronic developments. This new challenge for special tube designs to meet rapidly expanding use of electronic devices is being met by our engineers in the same manner with which we, in the past, supplied tubes for Civilian use. Raytheon is supplying replacement tubes under Lease-Lend arrangements, and you will benefit by the priceless electronic experience now being gained when final victory is won.

WORLD'S LARGEST EXCLUSIVE TUBE MANUFACTURERS

Register your name with our Representative soon for your future benefit.

RAYTHEON

PRODUCTION CORPORATION
NEWTON, MASS., U.S.A.

Exclusively Represented by
Frank Heaver Ltd.
Kingsley Road.
Bideford, N. Devon
Radio to the Rescue

JUST lately I have been studying an American work dealing with the speed of reactions between certain brain centres and the different groups of muscles they control. At first sight this doesn’t seem to bear much relationship to radio technique, but this is far from being the case, as in a series of experiments carried out by three eminent research workers, and recorded in the book, there lies a whole heap of post-war troubles for the radio service man.

It appears that a big insurance combine across the herring pond had invited the three learned authors to investigate scientifically the cause of certain types of automobile accidents. I will just endeavour to summarise their work for you without the prolix jargon with which the book is filled. In brief, then, when a pedestrian steps off the kerb in front of an oncoming car, a large percentage of accidents could be avoided if the brakes were applied a split second sooner than is usually the case. The investigators have found that this all-important split second is thrown away by the relative slowness with which the vital message to jam on the brakes travels from the driver’s brain to the muscles of his limbs.

For some reason which it is needless for me to discuss, this delay is very considerably less in the case of messages travelling from the brain centres to the muscles controlling the vocal chords, a fact which the investigators elicited by complicated measuring and recording apparatus involving many valves and much cathode-ray gear, thus confirming the evidence of most eye-witnesses of accidents who report that a car driver would give an almost yelling just before hitting his victim.

Wooltonised Radio

JUST lately I have been glancing through several of the astrological almanacs which reach me round about the New Year and I am rather alarmed to notice that while the re-doubtable “Old Moore” confidently prophesies victory and peace in 1943, another of his ilk who is entitled to equal credit seems to think that Japan will have no difficulty in keeping the ball rolling until 1949.

The reason for my alarm is the present state of the civilian valve cupboard to which the Editor so justly drew attention in January. A hasty calculation by means of the Wireless World Abac book tells me that by 1949, unless something is done about it, the size of the B.B.C.’s audience will have fallen to 1922 proportions, consisting only of those who would argue that if you lay down your dog licence fee were Bonzo to be unlucky enough to be commandeered by the sausage controller on the day after you had bought his licence.

In the meantime I am being inundated with correspondence from owners of silent sets asking me if they have any right of action against the P.M.G. to recover that proportion of their licence fee corresponding to the period that their set has been forcibly out of action. Much as it goes against the grain for me to say it, the answer is “No.” The licence fee is a tax and not payment for entertainment and is no more recoverable than would be the falling off in the revenue from its periodicals, for, after all, nobody is going to pay a professedly “programme paper” unless he can listen to the programmes therein dealt with, and no national advertiser is going to pay for valuable “goodwill” space in a journal which nobody would have any reason to buy.

The result of all this will be a sufficiently loud bowl of indignation to penetrate the closed doors of Whitehall and compel the authorities to “wooltonise” the supply of valves and other necessities, not forgetting the good service-men, and to supply both the service and civilian needs without approaching the danger line of semi-starvation in either case, just as has been done in the matter of food.

Eminent research workers.

It is just at this point that I find, to my amazement, that the learned investigators bring their book to what they imagine is a triumphant ending and seem unable to appreciate either the necessity or the opportunity of crowning their work by giving their mathematical and experimental data a practical and commercial application; evidently they expect me to play Marconian to their Clerk Maxwell and Hertz. Needless to say, I intend to do so by taking the necessary action in the applications department of the Patent Office.

It must surely be as obvious to you as it is to me that as a result of these investigations all that is needed is a sort of “vogad” apparatus, such as is used in the transatlantic telephone for causing the human voice to actuate a relay. In this case, of course, by means of suitable banks of valves relays and other radio-associated apparatus, the controls of the car will be operated by the human voice instead of by the limbs, and the result will be the saving of the vital split second which will make all the difference in the world to the dividends of the insurance companies which so philanthropically and disinterestedly financed these investigations.

Anybody desiring to confirm the authors’ neuro-muscular-reaction findings need only substitute his hand-operated motor horn by a simple PA system, and note how much more quickly he is able to make a pedestrian skip for safety, in addition to removing one job entirely from the all-too-many duties imposed on a driver’s limbs.

UNBIASED

By FREE GRID

affairs is reached, something will have been done about it, as not only will many of the B.B.C.’s blatantly self-advertising artists have woken up to the dwindling numbers of their audience, but the B.B.C. itself will be sharply reminded of the fact by the falling off in the revenue from its periodicals, for, after all, nobody is going to buy a professedly “programme paper” unless he can listen to the programmes therein dealt with, and no national advertiser is going to pay for valuable “goodwill” space in a journal which nobody would have any reason to buy.

The result of all this will be a sufficiently loud bowl of indignation to penetrate the closed doors of Whitehall and compel the authorities to “wooltonise” the supply of valves and other necessities, not forgetting the good service-men, and to supply both the service and civilian needs without approaching the danger line of semi-starvation in either case, just as has been done in the matter of food.
Wireless World Brains Trust

Rationalised Broadcast Receivers

Question No. 10.—In the October Editorial you stressed the advantages of competition in the conduct of a broadcast service from the point of view of programmes. Arguing on parallel lines, surely free pre-war competition among broadcast receiver manufacturers should have produced a wide diversity of sets for all tastes, pockets and requirements. Actually the opposite was the case: what we had was, with few exceptions, a standardised superheterodyne circuit, with a few "frills" and expensive cabinet work for those who liked to pay for such things. Where, then, are the advantages of competition? Would not the public have been better served by the "rationalised" production of a standard set?

And, after the war...

"RADIOPHARE."

"RADIATOR" draws a comparison between the broadcast receiver industries of this country and of the U.S.A. He writes:

I THINK "Radiophare" would agree that his requirements as to a wide diversity of set types (including car sets, "communications" sets, ultra-simple, ultracheap, and other "ultra" sets) were, in pre-war days, more completely met in the U.S.A. than in any other country in the world. Yet in the U.S.A. strong competition among the radio manufacturers did exist, probably to a greater degree than in any other country.

Judging, then, from conditions prevailing in the U.S.A., the only conclusion one can come to is that competition does tend to produce a wide diversity of types, such as will meet all possible requirements.

If the same conditions did not produce the same result in this country—and it is true that they did not—then there must have been some other cause operating which was strong enough to override the tendency towards diversity of types provided by the competitive condition.

That cause was, I contend, the conservative outlook and complete lack of imagination of the British manufacturer, who was unwilling to venture into fields where he could not see an immediate and safe return. The situation as to "communication" receivers and amateur equipments generally should prove this point.

Can it be that the technical staffs of the manufacturers were also, in some degree, responsible for the paucity of types in this country? Personally, I do not think so. It was simply a case of technical brains and initiative being wasted by commercial conservatism and lack of foresight. The result was that the British manufacturer turned out, year by year, a few more or less standardised types, generally based on American designs of the previous year.

If anyone doubts that the British manufacturer was, in fact, so lacking in initiative and foresight, he should consider for a moment the way in which the industry catered for the vast market that was opening up in the British Colonies and Dominions. That market was his for the taking, yet he completely failed to deliver the goods, with the result that the American and Dutch manufacturers stepped in, studied the requirements, and very soon had the market in their own hands.

As to the situation after the war, one is inclined—like "Radiophare"—to trail off into an interrogative. At this stage too many "unknowns" exist to warrant a reasonable forecast. One can only hope that, whatever economic and commercial system then exists, it will be imbued, in some measure at least, with an ideal of service to the community, which should result in the consumer getting what he wants, or at least, what is really the best for him.

"T.J.R.," in his reply, questions whether true competition did in fact exist in the pre-war wireless industry:

BOOKS have been written—and banned—that deal with smaller issues than those raised in this question. So some allowance must be made for any inadequacy in my reply.

As an engineer, I sympathise with the querist. The pre-war use of our technicians for duplicating someone else's results and saving farthings in production was often wasteful and insulting to the intel-

"What's this, a new kind of dance, Or has Ol got ants in his pants?"

"A short circuit!" I yelled EE.

"Give the FLUXITE to me, We can't leave this wiring to chance."

See that FLUXITE is always by you—
in the house—garage—workshop—
wherever speedy soldering is needed.

Used for 30 years in Government works
and by leading engineers and manufac-
turers. Of Ironmongers—in tins,
8d., 1/4 and 2/6.

Ask to see the FLUXITE SMALL-SPACE
SOLDERING SET—compact but sub-
stantial—complete with full instructions,
7/6.

Write for Book on the art of "soft"
soldering and for Leaflet on CASE-
HARDENING STEEL and TEMPERING
TOOLS with FLUXITE. Price Id. each.

TO CYCLISTS! Your wheels will
NOT keep round and true unless the
spokes are tied with fine wire at the cross-
ings AND SOLDERED. This makes
a much stronger wheel. It's simple—with
FLUXITE—but IMPORTANT.

THE FLUXITE GUN
puts Fluxite where you want it by a
simple pressure.

Price 1/6, or filled 2/6.

FLUXITE LTD.
(Dep. W.W.),
BERMONDESBY STREET, S.E.I.

ALL MECHANICS WILL HAVE

FLUXITE
IT SIMPLIFIES ALL SOLDERING
Given some measure of planned co-ordination, our technicians could produce, after the war, all the receiver types wanted by the public, including "communications" sets and the like. But, in speaking of rationalisation, let us engineers remember that it has already been applied in a certain country, where it led to the production of a "People's Set," selling at the equivalent of 45s., which allowed the user to hear just as much as he was intended to hear. Rationalisation, if we are to have it here, must be in the hands of those who would use it to satisfy the consumers' real needs.

RANDOM RADIATIONS

By "DIALLIST"

Standard Resistors

It is curious to notice how the range of so many wireless components, however small it may be at first, tends to grow and grow, until at length it contains a preposterous number of types and values. Valves are, of course, the classic example. In 1919 and the very early twenties there was, believe me or not, only one type of valve in general use in receiving sets. This was the old "R". A few other valves existed, but they weren't often seen. Not so many years passed before valve types in this country reached four figures. And now I see in the Wireless Trader that the composition type of fixed resistor—a component you'd never have suspected of such conduct—has got out of hand. It was found recently that over 500 kinds and values were being demanded from manufacturers. Well, that's pretty surprising expansion. One would have thought off-hand that detector grid leaks running from one to ten meg-ohms, ranges of 1/2 watt, 1 watt, 2 watt and 5 watt resistors from 1,000 and 250,000 ohms and of higher wattage from 50 to 1,000 ohms would have met the requirements of most receiver designers. But there are many things besides receivers involved and the position is complicated by the question of tolerances. Resistors of the highest grade have a tolerance of 5 per cent. of the stated value; next came those with a tolerance of 10 per cent., and lastly those (most used of all) whose tolerance is 20 per cent. So you can see how the numbers begin to mount up. Recently, I'm glad to see, an agreement has been reached by which composition fixed resistors are standardised in 255 types. Even that is a largish number, but no further cutting down is possible. And that refers to the composition types only: there are still the wire-wound resistors.

Can't We Go Farther?

There's no doubt that lack of standardisation has been in the past a brake on the wheels of our radio industry. One reason why valves are so costly is that makers have to install the machinery for turning out a vast number of types in comparatively small quantities. And the same wastefulness is to be found in the making of other components. Take fixed condensers, for instance. How many different kinds are employed by receiving set designers? The number must run into many hundreds when you come to think of the big ranges of paper-dielectric, mica-dielectric, electrolytic and ceramic condensers. And there again the tolerance question comes in. HT batteries, too, are startling in the multiplicity of their shapes, sizes and tapping arrangements. A big saving in manufacturing costs could be effected were the types of HTB available reduced to a much smaller figure. And they could, I believe, be brought down to a total of three without in any way affecting the efficiency of battery sets. Only three? Yes; here's how it would work out. Most batteries are already made up from three sizes of cell: the standard-capacity cell (about 3½in. × 2½in.)—I haven't the figures by me. There is an intermediate type measuring about 1½in. × 2½in., and the biggest measures about 1½in. × 3½in. My suggestion is a 40-cell battery for each cell size, the cells being arranged in eight rows of five, and there being only two terminals, or spring clips, marked 0 and 60 volts.

HTBs

The average battery set works on 120 or 180 volts; for those of the suggested units in series. And there's no need for tappings if bleeder resistance networks are used, as they are to some extent in this country and in all battery sets in America. Besides eliminating tappings, the bleeder network has the great advantage of putting an equal load on all parts of the battery; tappings mean that the sections of the battery nearest the end do the most work, since they are common to all HT circuits. Set designers would not find that the lack of HTB's in anything but 60-volt block units cramped their style, once they got used to the idea. As things are, they can call on the unfortunate battery manufacturer to turn out batteries of odd shapes and sizes and with fantastic numbers of tappings to fit their cabinets and fit in with their circuitry. The new order the bleeder network would be made to suit the circuits and layout and cabinet design would have to be suitable for batteries of fixed shapes and sizes. The reduction of HTBs to three standard types couldn't be done in a moment; but after the war we shall have a grand opportunity of cleaning up and of getting rid of obso- jet types of valves, batteries and other components since the majority of the old sets, already on their last legs, will be scrapped at the earliest possible moment.}

Wireless Isn't Standing Still

In peacetime improvements in wireless receiving sets were continuously being announced. All through the year we heard of new valves, new circuits, new methods of tuning, new ways of alleviating man-made interferences, and so on. Then at the Radio Exhibition there were nearly as many surprises as the year before. Manufacturers had kept up their sleeves until their new models were launched. Because in wartime we hear little about such things many people believe that wireless has more or less stood still since September, 1939. It certainly hasn't. I am sure that when peace returns we shall find more surprises waiting for us than any Radio Exhibition ever produced. Developments may have been made with warlike purposes in view, but no one can doubt that heaps of them will have direct applications to peacetime transmission and reception. Don't forget what happened in the last war; when it started, wireless telephony was in its infancy. Huge strides were made while hostilities lasted; the old general-purpose valve, for instance, was developed, and the bleeder tapping, the bleeder types as well. When that war came to an end the stage was very nearly set for the entry of broadcasting into the life of nations. As soon as the restrictions
on the use of wireless equipment which had been in force for some five years could be removed, the number of amateurs increased by leaps and bounds.

Post-war Paradise

Wireless components of many kinds were horribly expensive when the wireless 'twenties began, but the release of Government surplus stocks soon made a vast difference to that, and those of us who were in the game in those days deserted to buy for the proverbial old song apparatus that we couldn't possibly have afforded otherwise. I expect that it will be much the same this time—but probably more so; such vast use of wireless has been made by all the Services that there should be huge amounts of surplus stocks for disposal when the time comes. Experimenters, whether serious or of the dabbler type, can look forward to a glorious time.

Progress All Round

Then, we mustn't lose sight of the fact that it isn't only our side that has been working hard to make improvements in wireless. Germans, Italians and Japs have all produced important developments in the past, and though their present doings were shrouded in mystery, we can feel sure that they're not letting the grass grow under their feet. You can't call to mind any Japs who have made a mark in radio? Well, what about Nagoyaka? And there's Yagi, the aerial man, as well, to mention just a couple. Until the United States came into the war wireless was going ahead untroubled on the other side of the Atlantic, and many new things were announced in Wireless World. No one can doubt that the American General Electric and others have made tremendous progress both in the application of frequency modulation to broadcasting and in television. In this country J. L. Baird has been far from idle in television, and Wireless World has been able to publish accounts of some of his achievements in stereoscopic and colour reproduction.

FM

Personally, I've always been a staunch believer in frequency modulation as the coming thing in broadcasting. Luckily, its forward march in the United States at any rate has not been a wartime secret. Wireless World has kept its readers pretty well informed of what is being done. I have little doubt that the B.B.C. will go ahead with FM broadcasting as soon as they are free to start construction and development again. I don't mean that there is any likelihood that it will immediately begin to replace amplitude modulation. That would never do; amplitude modulation must continue for many years to be the method mainly in use. But I do foresee the erection of rapidly-increasing numbers of FM transmitting stations, relaying the studio programmes and giving those who install FM receivers the chance of obtaining reproduction of high quality with almost entire freedom from interference. I doubt whether AM transmissions will ever be entirely superseded, for so far as our present knowledge goes FM is essentially a system adapted for short ranges and, therefore, small service areas only. There will always be large tracts of thinly populated country where (unless and until something on quite new lines is invented) AM is the only method which can deliver the goods.

Names for Frequency Bands

A DORSETSHIRE reader is kind enough to send me useful suggestions for names for the frequency bands used in wireless. You may remember that those put forward by the C.C.I.R. are:

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 30 kc/s</td>
<td>Very low</td>
</tr>
<tr>
<td>30-300 kc/s</td>
<td>Low</td>
</tr>
<tr>
<td>300-3,000 kc/s</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3,000-30,000 kc/s</td>
<td>High</td>
</tr>
<tr>
<td>30,000-300,000 kc/s</td>
<td>Very High</td>
</tr>
<tr>
<td>300,000-3,000,000 kc/s</td>
<td>Ultra High</td>
</tr>
<tr>
<td>3,000,000-30,000,000 kc/s</td>
<td>Super High</td>
</tr>
</tbody>
</table>

I didn't like Intermediate or the Very, Ultra and Super Highs, suggesting in their stead Medium, Medium High, Very High and Ultra High. But I wasn't satisfied with these and asked for ideas on the subject. Here is one of them:

- Bottom; Low; Medium Low; Intermediate; Medium High; High; Top.
- There are not the same objections to Intermediate here, for it comes right in the middle of the list. I don't like the name though, for we are sure to go on speaking of the IF stages of superhets, and it is undesirable that one and the same name should be used for frequencies of quite different orders. If we start the list with Bottom and work up to Top, why not speak of the 3,000-30,000 kc/s range as Middle. I'm not quite happy though about Top. True, it takes us to wavelengths of only one centimetre, but can we be sure that that is the radio top in frequencies or bottom in wavelengths? Not so very long ago it was held that wavelengths below 100 metres could never be of any use to wireless. Can anyone be sure that we shan't one day measure our wavelengths in millimeters and our frequencies in hundreds of thousands of megacycles?

GOODS FOR EXPORT

The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.

The Improved VORTEXION

50 WATT AMPLIFIER CHASSIS

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westonhage for bias.

The response curve is straight from 200 to 15,000 cycles. In the standard model the low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil. Non-standard models should not be obtained unless used with special speakers loaded to three or four watts each.

A tone control is fitted, and the large eight-section output transformer is available in three types: 2-8-15-30 ohms; 4-15-30-60 ohms or 15-60-125-250 ohms. These output lines can be matched using all sections of windings and will deliver the full response to the loud speakers with extremely low overall harmonic distortion.

PRICE (with 807 etc. type valves) £18.10.0
Plus 25% War Increase
MANY HUNDREDS ALREADY IN USE
Supplied only against Government Contracts

VORTEXION LTD.
287, The Broadway, Wimbledon, S.W.19
Phone: Library 2814
Letters to the Editor

G.P.O. Control of Wireless

I WOULD like to express my almost complete agreement with your "Brains Trustee," "Radiator" (February issue), as to the desirability of an independent body to control the nation's wireless services. The only point on which I am in disagreement with him is the representation of amateur transmitters on the proposed Commission. He states that as there is no representative organisation of listeners in this country, the listeners' representative should be an M.P., etc., but then, apparently, as an afterthought, adds: "He might also represent the amateur transmitters." Now, with all due reverence to the average M.P., can you see him arguing about frequency bands, band occupancy, and the like, with any hope of success? Would the claims of five thousand or so amateur transmitters stand much chance against those of ten million "BCL's" if the same man was chosen to represent them? Would the claims of five thousand or so amateur transmitters stand much chance against those of ten million "BCL's" if the same man was chosen to represent them?

R.S.G.B., to which over 90 per cent. of amateurs with radiating licences belong. It might be as well to remind your "Radiator" of the fact that amateur stations in peacetime exceeded in number stations of all other classes combined; also, that although the percentage of amateurs per thousand of the population in this country was only a small fraction of the percentage in the United States, if the relative areas of the two countries are considered, England and Wales had more than twice the amateurs per hundred square miles.

In the past, the G.P.O.'s attitude towards amateurs has been "don't allow amateurs to use high power, or the 56-Mc/s band, etc., without putting them to a lot of trouble and delay (and charging unjustified 'registration fees' in addition to the yearly fee), just in case they may cause interference to important (Post Office) services." However, whether the proposed National Radio Commission ever comes into being or not, and it is to be hoped sincerely that it does, we may hope for a more liberal treatment of amateur transmitters by the authorities après la guerre finie.

SIGNALMAN.

Battery Socket Markings

THERE has appeared recently a type of HT battery the markings upon which are very misleading to the average user. The battery is tapped at 1½-volt intervals for GB purposes, but the voltages are positive with respect to HT negative. It has been standard practice for years for these tappings to read negative, and as a result of the change I have found several receivers connected up with positive bias applied to the valves.

It should be clearly indicated on these batteries that, in the case of receivers using the combined type of battery, the HT negative lead should be inserted in the socket giving the amount of bias required; the GB lead being then tapped back towards the HT negative socket on the battery.

K. CHANDLER.
Mintlaw Station, Aberdeenshire.

Transmitter Volume Expansion

I WOULD like to add some comments to the recent letters on the use of volume compression and expansion based upon my experience in the design, demonstration and operation of several hundred equipments of these types. There can be no doubt that volume compression and expansion will be a major post-war development, but I feel that the remarks of Mr. J. R. Hughes (your January issue) are based either upon experience with an unsatisfactory volume expander or solely upon theorising about the question. While there cannot be any doubt that volume expansion alone is theoretically incorrect, the advantages gained in practice far outweigh the small theoretical disadvantages. As Mr. Hughes points out, the volume expander used alone must either degrade the transient response and/or increase the non-linear distortion at low frequencies. The advantages of increased realism and decreased background noise, however, vastly outweigh the disadvantages. In confirmation of this, I can say that after demonstrating volume expander circuits to several hundred engineers and musicians, most of whom would be expected to adopt a critical attitude towards the subject, I found that favourable comment was almost unanimous. No further support for his opinion was forthcoming from any of the remaining 200 people present at that particular demonstration. On the other hand, there have been many occasions on which it has been difficult to persuade members of the audience that the same record was being used during the "expanded" performance as was used during the ordinary run.

My experience so far is mainly confined to the reproduction of gramophone records, and I would like to stress that every gramophone record is not suitable for use with a volume expander. In general, dance records in which the volume level remains substantially constant throughout the whole performance are unsuitable, but there is a notable exception in "Exhibition Swing" (Par. 1235) in which the string bass is enormously enhanced by the use of a properly adjusted expander. Other records of a different nature which I have found favourable are "La Boutique Fantasque" (C2846) and "Three Men Suite" (C2723).

Like Mr. Hughes, my ideas on the subject of expansion were very unfavourable before I started the actual development, because of the large number of theoretical objec-