The Wireless World

Covering every wireless interest

November, 1939

Learning Morse

In these days of emergency

Don’t forget that your radio receiver is more important than ever. Rejuvenate it with new Osram Valves—keep a spare set handy

Osram Valves
MADE IN ENGLAND.

A TONIC TO ANY SET

NOTE: If you have difficulty in obtaining any particular valves, write to the Osram Valve Dept. of:

THE GENERAL ELECTRIC CO., LTD.,

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
ELECTRICAL MEASURING INSTRUMENTS
BRITISH MADE

WRK of National importance is necessarily making huge demands on the specialised experience of the "AVO" organisation.

We are endeavouring, however, to make every possible provision to assure that, despite this influx of additional and vital work, orders for "AVO" Instruments will be executed with the minimum of delay.

The full range of "AVO" Instruments is being maintained, and customers are urged to anticipate their requirements by placing orders as far in advance as possible of required delivery dates. This will assist us, not only to satisfy the requirements of our trade customers, but will also facilitate the smooth working of our efforts in the National interest.

ACWECO Ltd.
(The Automatic Coil Winder & Electrical Equipment Co., Ltd.)
Winder House, Douglas St.
London, S.W.1.
Telephone .. VIctoria 3694/7

PRECISION METERS
that Master every Testing Problem

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
The HAMRAD
140

This is a first-class set incorporating every desirable feature. The "R" meter works well on both CW and Phone, noise level is exceptionally low while the BFO does not bring up background noise, sensitivity better than one microvolt on all bands.

BRIEF SPECIFICATION.
13 valves. 9 to 600 Metres. 3 bands, no gaps. Electrical Band-spread. HF on all bands. HF gain control. Two 465 Kc from cored IFs. Continuously Variable Selectivity. BFO with variable pitch and zero beat adjustment. Variable delayed AVC, separate valve amplifies DC. Undelayed amplified "R" meter. Differentiated crystal gate. Two phone jacks. Separate RF Oscillator.

Standard rack size. Two AF stages. 6L6 OP. 4000, 2000 and 1500 ohms OP. Dipole and single aerial input. Illuminated dial. Steel cabinet:

PRICE £27 10 0

Manufacturers' Service
Whatever you want we can make.
Metal Chassis, Turned and Pressed parts Test-gear, Amplifiers, Radio Receivers, Transformers, Chokes, etc. Also Oxy-and Spot Welding, Stove RF Coil Winding in matched sets. All kinds of light general engineering.

Quantity Enquiries Invited

PUBLIC ADDRESS EQUIPMENT

for

A.R.P.
in Workshops, Factories and all Industrial or Municipal Undertakings

Send your enquiries to

SOUND REPRODUCER SALES—

BTH RUGBY

THE BRITISH THOMSON-HOUSTON COMPANY LIMITED, RUGBY, ENGLAND

It's more than a diary!

The Wireless World
DIARY for 1940

NOW ON SALE

ILIFFE & SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.1

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
A REVOLUTIONARY SYSTEM THAT WILL CUT YOUR ASSEMBLY TIME & COSTS

"REVOLUTIONARY" is not too strong a word to describe this ingenious yet inexpensive fastening method. Simplicity itself, yet extremely flexible in adaptation, it reduces the number of operations, enables several parts to be replaced by ONE SPEED NUT, and is invaluable for "blind" locations. It reduces assembly time and costs, and gives a perfect fastening.

A wide range of standard speed nuts is available from stock for all sizes of machine screws, sheet metal screws, rivets, and plastic studs.

Special types are constantly being designed to suit individual applications and there is practically no assembly problem which cannot be solved by the use of Speed Nuts.

Manufactured by the makers of the famous Simmonds Elastic Stop Nut.

The illustration shows a typical application of the Simmonds Speed Nut for Radio Sets and Cabinet Assemblies.

No. NR374. Round SPEED NUT with sides turned up to accommodate a spanner for tightening the nut side of the assembly.

No. NS1002. Wire clamp SPEED NUT designed with loop for holding wires inside radiosets. This SPEED NUT replaced a three-piece assembly.

No. FR332. Contact holder SPEED FIX. Designed to hold station selector contacts in automatic tuning mechanism. This SPEED FIX eliminated a coil spring, a brass washer, a drilled hole and a cotter pin.

Wireless Manufacturers and Designers are invited to investigate this efficient fastening method. Our development department will be pleased to collaborate and work out the most effective designs to suit your needs.
SOUND SALES IN ACTION!

COMMUNIQUE No. 1.

Item No. 1.

Four weeks after the outbreak of War sees SOUND SALES installed in a modern factory at WEST STREET, FARNHAM, SURREY.

It has already been found necessary to double the area thereof, in order to cope with the ever increasing number of orders from all sources; for the simple reason that S.S. Products are recognised as "second to none," S.S. Quality Radio Equipments do not suffer from "Wartime Night Distortion," a peculiar effect which many of you must have found most objectionable.

SOUND SALES are concentrating on the design and production of:

(a) A.R.P. Sound Equipment.

(b) A.R.P. Reserve Lighting Equipments which are entirely automatic, irrespective of mains supply - - from £3/10/-.

(c) Special Transformers and Chokes of all types, from 6 watts to 12 K.V.A.

IT WILL DEFINITELY PAY YOU TO CONSULT SOUND SALES!

Advertisements of Sound Sales Ltd., West St., Farnham, Surrey. "Phone: Farnham 6401"
CATHODE RAY TUBE
TYPE 4096 A

The 4096 A Cathode Ray Tube is a hard vacuum tube suitable for use with anode voltages from 800 to 2,000 volts and has a screen diameter of 3 inches. The screen provides a blue spot of high actinic value necessary for photographic purposes and, in addition, owing to its intense brilliance, is suitable for visual work.

Efficient electrostatic screening is ensured by the internal coating of the tube with aquadag while the connections to the "Y" plates are brought out to separate pins, thereby facilitating the use of balanced circuits and providing for improved focussing.

The cathode is indirectly heated and thus the heater may be supplied with raw A.C. This tube is fitted with an American type octal base.

The popularity of this tube has now enabled us to offer it at the attractive price of £2.10.0 NETT

Delivery in Great Britain or Northern Ireland.

Standard Telephones and Cables Limited
North Woolwich, London, E.16

Telephone: Albert Dock 1401.
Branches and Representatives Throughout the World

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
present the following opportunities in first-class, up-to-date
MIL. SUPPLIES
SWITCHES, banks of 6 D.P. switches, with mounting brackets, 2/11. PIEZO-CRYSTAL
others, A.C. and D.C.-please enquire.
ELECTRIC MOTORS. "Century"-finest make and type.
instruments for 29/10/-.
socket valve panels for all British and American Valves.
slightly soiled, 23/18/6 each.
EDISWAN " TUNGAR " BATTERY CHARGERS 200/250 v. A.C.
CROSLEY MOBILE 6-VOLT.SUPERHET CHASSIS.
pairs 'phones.
These fine laboratory-built receivers are listed at £24 and are ideal for all domestic and
G.E.C. 1545 SCHOOL or HOSPITAL RECEIVERS. AC/DC Superhet in fine oak cabinet.
speaker arrangements. U.D.O. 6/S-watts-ideal for domestic or communal use. Complete
G.E.C. 1582 High-quality " all-purpose " POWER AMPLIFIERS 200/250 volts A.C.
and tone control. Complete with eight valves-four output pentodes in parallel push-pull.
GRAMPIAN Universal AC/DC 141-watt AMPLIFIERS (3 only).
number at only 212/18/6 each.
Microphone and chromium Floor Stand.
Equipment in strong blue-leather covered cabinet, 141" by 161" by 9r, with loose weather-
GRAMPIAN " New Stylist " 10-watt AC/DC AMPLIFIERS (10 only). Complete Portable

G.R. SUPPLIES

The New

AMBASSADOR

RADIOGRAM

For the man who likes Radio and Gramophone combined this new AMBASSADOR
model is undoubtedly something for earnest
consideration. An entirely new style of

GARRARD Popular RECORD CHANGERS

One of the many dependable and robust Record
Changers all reflecting " GARRARD " crafts-
manship and precision engineering.
Model R.C. 10

LEARNING

MORSE

AN EASY METHOD OF MASTERING
THE INTERNATIONAL SIGNAL CODE

Published from the Offices of " THE WIRELESS WORLD "
RIMPE & SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, 5.E.1

Mtnor of " The Wireless World," when writing to advertisers, will ensure prompt attention.
Are we downhearted?

NO. We’re having our troubles the same as you are, but we’re overcoming them as fast as they arise — and before they arise whenever possible. So this announcement is just to say that we’re still here; still very active indeed and still (in our humble opinion) giving the finest value in condensers and resistances to-day.

DUBILIER

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, LONDON, W.3

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
PREMIER RADIO
—AS USUAL!

FOR RUSH DELIVERY, MARK YOUR ORDER "ATTENTION A.M."

PREMIER BATTERY CHARGERS for A.C. Mains. Westhinghouse Rectification complete and ready for use. To charge 2 volts at 1 amp., 119; 6 volts at 3 amp., 119; 12 volts at 1 amp., 224; 6 volts at 2 amps, 374.

HUGE PURCHASE OF U.S.A. MAINS TRANSFORMERS, at less than pre-war prices.

Input 110 v. 3 x 220 v. A.C. Output 325-325 x 130 mA. 5 v. 2.2 amps. C.T. 6 v. 2.2 amps. C.T. 6.3 v. 2.2 amps.

Input 230 v. A.C. Output 325-325 x 130 mA. 4.5 v. 2.2 amps. C.T. 6 v. 2.2 amps. C.T. 6.3 v. 2.2 amps. C.T.

Input 200-250 v. A.C. Output 325-325 x 60 mA. 4 v. 2.2 amps. 13 v. 1 amp. 110-120 v. A.C.

Input 100-250 v. A.C. Output 300-300 x 90 mA. 4 v. 2.2 amps. C.T. 12 v. 2.2 amps. C.T.

PREMIER 1940 HIGH FIDELITY AMPLIFIERS

A new Complete Range of 7 High Fidelity P.A. Amplifiers for A.C. or A.C./D.C. Mains operation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-watt A.C. Amplifier</td>
<td>67 x 6</td>
<td>Price 6/6</td>
</tr>
<tr>
<td>3-watt A.C./D.C.</td>
<td>67 x 6</td>
<td>Price 6/6</td>
</tr>
<tr>
<td>6-watt A.C.</td>
<td>67 x 6</td>
<td>Price 6/6</td>
</tr>
<tr>
<td>8-10-watt A.C./D.C.</td>
<td>67 x 6</td>
<td>Price 6/6</td>
</tr>
<tr>
<td>15-watt A.C.</td>
<td>67 x 6</td>
<td>Price 6/6</td>
</tr>
</tbody>
</table>

Black Crackle Steel Cabinet 15/- extra.

REPLACEMENT VALVES FOR ALL SETS.

TRIAD U.S.A. VALVES.

We hold the largest stocks of U.S.A. tubes in this country and are sole British Distributors for TRIAD High-grade American valves. All stock in stock. Standard types, 5/6 each. All the new Metal-Class Octal Base tubes at 169 each, 210 and 250, 816 each.

CLEARANCE LINE U.S.A. VALVES.

U.S.A. Types, 24, 30, 41, 39144, 35151, 55, 56, 57, 58, 71, 77, 78, 85, 2A5, 2A6, 267, 237, 6A7, 1223, 210, 250, all 2 for 3/6.

PREMIER S.W. H.F. Chokes, 10-100 metres, 9d. each. Plated-wound, 16/8 each. Screened, 16/8 each. SHORT-WAVE COILS, 4- and 6-pin types, 13-26, 12-26, 43-94, 1954, 18-70, 72-170, 21/1, each, with circuits. Premium 3-band S.W. coil, 11-23, 19-50, 38-106 metres. Suitable any type circuit, 21/1.

UTILITY Micro Cursor Dials, Direct and 100 : 1, Ratios. 4/3.

SHORT-WAVE CONDENSERS

Toilet insulation. Certified superior to ceramic. All-brass construction. Easily ganged. 15 m.m. 160 m.m. 2111. 160 m.m. 2111. 15 m.m. £1. 250 m.m. £1. 2111.

PREMIER 1940

"5 v. 5" COMMUNICATIONS RECEIVER

A 5-volt Superhet, covering 12,200 metres in 5 wave bands.

- Beat Frequency Oscillator
- 2-Spread Band-Spread Control
- A.V.C. Switch
- Illuminated Band-Spread Dial
- Over 4-Watts Output

Temperature for single wire or Di-pole Aerial. International Octal Valves for 200-250 v. mains (A.C.). Built into Black Crackle Steel case providing complete screening, 10/ in. Moving Coil Speaker in separate steel cabinet to match.

Receiver, Complete with all tubes and Speaker £9 9 0

NOW READY! OUR GIANT AND VALVE MANUAL — OVER 100 PAGES PRICE 6d.

PREMIER RADIO CO.

ALL POST ORDERS TO: JUBILEE WORKS, 167, LOWER CLAPTON ROAD, LONDON, E.5 (Amhurst 1723). CALLERS TO: Jubilee Works, or 169, First Street, E.4 (Central 2832) or SO, High Street, Clapham S.W.4 (Monday 2811).

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
This extract from THE WIRELESS WORLD "Editorial Comment," September 14th issue, indicates what you are missing if your Receiver has not got really efficient Short-wave bands.

Short Waves have certainly come into their own and are very much "in the news."

AMERICA — AUSTRALIA — FRANCE — GERMANY — ITALY — RUSSIA all give news in English. It is informative, interesting and sometimes (from Germany) unconsciously humorous. But you must have a first-class set, one which is carefully designed, so that you can get the best from all wavelengths—short, medium and long.

"Complaints have been voiced in Parliament that there is too much delay in giving us news of Important happenings... we submit that the authorities should keep a close watch on foreign broadcasting with a view to considering whether there is any point in withholding from our own people an item of news that has already been transmitted from abroad."—Vide Wireless World, Sept. 14th.

VIDOR 1940 RADIO
at the prices mentioned, represent values never before approached. The reason? Concentration on a limited number of models! Every one is outstanding in its own class both as regards Quality of Reproduction and workmanship.

VIDOR ALL-WAVE SUPERHET

MODEL 323.

Brief Specification.

6 Valves, including "Magic-eye" tuning—4 wavebands ranging from 13.5-2,000 metres, 6 Tuned Circuits, Tone Control, Remote Speaker Switch, 4.5 watts Audio Output.

In every respect this set is equivalent to one costing 12 guineas or more and incorporates every worthwhile development in modern radio technique...

PRICE 10 GNS.

Get your news early from abroad and your music perfectly.

VIDOR ALL-DRY BATTERY PORTABLE

Model 320. Here is the Ideal Portable. Always ready at any time or place. For A.R.P. shelters or Posts (gloomy but necessary thought) at home (upstairs or down) in the car (petrol permitting). Capable of bringing in all Home and Continental programmes on medium and long wavelengths wherever it is used.

Specification: 4 Valves—All-Dry Batteries—2 Wavebands, 200-550 and 1,000-2,000 metres, Circuit T.R.F. receiver with four 1.4 volt dry battery valves, Pentode H.F. stage, detector with reaction, triode L.F. and Pentode output feeding into a sensitive moving coil speaker. Automatic bias—Three controls: on-and-off and wave-change switch, tuning control and reaction control. A Turntable is fitted.

Price (complete with Batteries)...

7 GNS.

COMPARE VIDOR RECEIVERS WITH ANY OTHER ON THE MARKET.
ASK YOUR DEALER FOR A DEMONSTRATION, YOU WILL THEN APPRECIATE THE ECONOMY AND SUPERIORITY OF VIDOR.

If your dealer is temporarily out of stock write direct to us giving his name and address.

VIDOR LIMITED, WEST STREET, ERITH, KENT.

Phone: Erith 3080.

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making use of them, to satisfy themselves that they would not be infringing patents.

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
For 28 years now "The Wireless World" has been serving the whole wireless industry—and in particular that group of knowledgeable and enthusiastic amateurs of radio to whom so much of the present success of the industry is due. Radio, to-day, makes its appeal to millions, but I have often thought and said that too little attention is paid to that numerically small group who are still technically interested in radio engineering and who keep abreast of its development. Every wireless engineer, professional or amateur, will be glad that "The Wireless World" has decided to continue publication in spite of great difficulties. It deserves support from all of us and I hope it gets it.

E. J. Power,
Managing Director.

MURPHY RADIO
MURPHY RADIO LTD., WELWYN GARDEN CITY.

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
Editorial Comment

Listening in Wartime

In recent issues we have surveyed editorially the effects of the war on wireless in its various aspects—communications, broadcasting and with regard to the manning of the various services. Finally, we discussed our own position, explaining why it had become necessary for us to revert to monthly publication "for the duration." The friendly spirit of co-operation in which our readers have accepted this change, and promised their continued support, will be referred to later.

The time seems appropriate for considering the repercussions of the war on the broadcast listener, and for offering some suggestions as to how he can make the best of prevailing conditions. Of all listeners, those music-lovers whose interest lies primarily in high-quality reproduction are probably the most enthusiastic, and it is particularly hard luck that they should have suffered most. "Quality" was the first wireless casualty of the war; the present method of transmitting the single-programme Home Service of the B.B.C., devised to avoid the danger of giving navigational aid to enemy aircraft, certainly fails to give reproduction of pre-war standards to the majority of listeners. There is some possibility that this will be only a temporary phase, but in the meanwhile the type of listener whom we are considering is turning to gramophone music. He will read with particular interest an article in this issue which deals with the reduction of record scratch—the principal remaining obstacle in the way of aesthetic enjoyment of reproduced music.

Though high-quality reproduction may have suffered a temporary eclipse, long-distance short-wave listening has come into its own, both among the general public and in more technically informed circles. "What America said last night" has become a normal topic of conversation with the man in the train, while technical wireless people, to whom a broadcast was merely "a signal" in normal times, have turned eagerly to the short waves for up-to-the-minute news and diversity of comment and world opinion on current events.

To meet this sudden change in the centre of interest in broadcasting, The Wireless World has been reviewing a number of receivers in which special pains have been taken to ensure good performance on short waves. In choosing a set for long-distance news-gathering one must look beyond such obviously desirable features as selectivity, sensitivity and low noise level. For regular short-wave work, easy tuning, definite recording of station settings and freedom from frequency drift are essentials; without these features, searching for the wanted transmission becomes anything but a pleasure; worse still, one is likely to miss the opening sentences of a bulletin.

Improving Reception

As broadcasting is now so much more important than ever before, the listener is better repaid for any pains he may take to ensure reception at its best. The design of the set itself is, of course, a vital matter, but its installation should have more consideration than it ordinarily receives. A contributor, writing elsewhere in the present issue on this latter subject, is not guilty of exaggeration when he says that an apparently trifling improvement to the aerial system may sometimes turn a distant transmission from a mere noise into an enjoyable programme.

Apart from the aerial, something may often be done to improve signal-noise ratio by fitting anti-
Editorial Comment—
interference devices at the listener's end. A simple condenser filter at the point where the electric mains enter the building is often effective, though a more favoured remedy nowadays is the fitting of a "set lead filter," generally comprising both inductance and capacity, at the mains outlet from which the receiver is fed. In difficult circumstances a proper anti-interference aerial is a refinement to be recommended.

Finally, there is the question of comfort and convenience in listening, which under wartime conditions assumes greater importance than in normal times. One or two suitably-disposed extension speakers can make a world of difference in this respect.

Hitler's Rise to Power
Black Mark Against Wireless

In 1936 The Wireless World completed its 25th year of publication, and to celebrate the event we issued a special number, including what we described as a "Cavalcade of Wireless" in which the developments of the past quarter-century, as unfolded in our pages, were reviewed.

It would have been pleasing to close that survey on a cheerful note, but it happened that the time it appeared coincided with the consolidation of Hitler's power in Germany, and it seemed to most thinking people that the particular aggressive brand of Nationalism run riot that has since been branded as Hitlerism was likely to lead to war.

Commenting on the events of the preceding year (1935) with the restraint that was then considered proper, we said "Almost up to this time we wireless people had always been encouraged in our work by the comforting thought that the new means of communication was entirely beneficial to humanity, although some recent events had given rise to disturbing thoughts." On the same page we reproduced a photograph of factory workers listening to a swastika-decorated loud speaker.

Continuing on the same theme, we referred to the use of broadcasting as an instrument of propaganda, and said "Without enquiring into the rights and wrongs of the aims propagated, it is certain that the historian of our generation will have much to say on the successful exploitation of mob psychology by wireless and the speech amplifier."

We had then formed the opinion that Hitler's rise to power was largely due to his successfully applied technique of stimulating a kind of mass hysteria among enormous audiences with the help of PA gear, and this view was largely supported—but with bated breath—by German wireless men.

Thus it would seem that wireless—or at any rate wireless technique—has gained a black mark. But, if wireless put Hitler in, it will assuredly play an important part in getting him out. As we said in concluding our quarter-century review, "We can take courage for the future in the thought that the technical developments in which we have played our humble part can certainly be used as readily for propagating good as for evil."

Thanks to Our Readers
—And a Request

We should like to offer a sincere word of thanks to those of our readers—and they are many—who have written to us during the past week or two in connection with our decision to become a monthly publication during the war. Both the number and the tone of the letters are extremely gratifying to us.

And now, at the risk of our being regarded as justifying the old saying that gratitude is merely a lively anticipation of favours to come, we are going to ask our readers to do something for us. Before doing so, however, we should like to offer a word of explanation concerning the manner in which The Wireless World, in common with other periodicals, is distributed to the various newsagents.

In normal times newsagents are supplied with far more copies of a journal than are necessary to fulfill the orders of their regular customers. This is done in order to cover casual sales, which, in the case of a railway station bookstall, for instance, form the bulk of the total number of copies sold. Under this system, any copies remaining unsold are returned to the publishers, and the newsagent is duly credited with their value.

After to-day, however, it will no longer be possible for newsagents to return unsold copies. The reason is that all publishers desire to comply loyally with the Government's request for economy in the use of paper. In order to achieve this very necessary national economy, the publishers of The Wireless World have decided, in common with the publishers of other journals, to print only as many copies as are sufficient to fulfil definite orders.

It will be clear from the foregoing explanation that we must very earnestly request readers to place a definite order for The Wireless World with their newsagent by filling in the order form enclosed in this issue. This form should be handed in as soon as possible. It should be pointed out that an order so given does not commit the reader to any long-term obligation, as it can be cancelled at any time. Those readers who prefer to do so may of course subscribe direct to this office.
Gramophone Record Scratch

MINIMISING SURFACE NOISE IN REPRODUCTION

By M. G. SCROGGIE, B.Sc., A.M.I.E.E.

Compared with broadcast programmes, gramophone records have the great advantage of giving you what you want when you want it. On the other hand, they cost much more, they require a certain amount of manipulation in order to play them, and they interrupt long items at least once every four and a half minutes. As regards background noise, records score over radio in unfavourable situations, but are inferior to radio in good situations. Certain background noises—motor rumble, amplifier hum, and pick-up buzz—can be practically eliminated by proper design of those items in the equipment. Not only is it all been done that can be done at the listening end, there is still record surface noise, or so-called "scratch." The quality enthusiast finds to his sorrow that if he extends the frequency range of his apparatus by using a high-quality pick-up, amplifier, and loud speaker, the scratch becomes so pronounced as to rob him of the reward of his efforts. Although the record-makers have improved their products in many ways, they seem to make comparatively little progress in background reduction, especially compared with recent sound-on-film developments.

Part of the noise is in the original sound; that is to say, it would be heard on a loud speaker connected in place of the recording head. And part is due to the various processes of manufacture. For example, the original wax master is dusted with metal or graphite powder to form a conducting surface for electro-plating, and a certain amount of surface irregularity may be due to this. Faulty treatment in the pressing is another cause. In good records all the foregoing sources of noise ought to be relatively small. What is heard is then due mainly to the material of which the record is composed. At one time abrasive material was actually intentionally included in the mixture with the object of quickly grinding the playing needle point to the contour of the groove. The choice of materials now is determined chiefly by a balance between economy and physical properties such as hardness, durability, uniformity, and so forth. A typical formula for a solid-stock compound is:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slate dust</td>
<td>36</td>
</tr>
<tr>
<td>Orange lac</td>
<td>22</td>
</tr>
<tr>
<td>T.N. shellac</td>
<td>16</td>
</tr>
<tr>
<td>Rosin</td>
<td>4</td>
</tr>
<tr>
<td>Lamp black</td>
<td>1.5</td>
</tr>
<tr>
<td>Cotton flock</td>
<td>0.5</td>
</tr>
</tbody>
</table>

From this it can be seen that the loading material, slate dust, is more than half the total mixture; and, however finely it is ground, it is, nevertheless, in the form of separate hard particles embedded in the binding materials. Although the record surface looks beautifully smooth, from a microscopic point of view it is granular. The needle is therefore affected not only by the "waggles" of the recorded programme, but also is continually hitting the irregularities of the surface, which is therefore heard as "scratch." One sometimes comes across references to "fitting out the scratch." Indirectly, that has a certain meaning (which will be dealt with later), but if the idea in mind is that scratch is confined to a certain band of frequencies or occurs only above a certain frequency it is quite erroneous. The granular structure of the record surface is not regular, like the blocks in a paved road; but is completely random, more like the irregular bumps of a rough gravelly road.

So the sound produced has no definite frequency, being, in fact, very much like the "shot" or thermal fluctuation noises that are heard from a receiver with excessive amplification.

A number of years ago Buchmann and Meyer analysed scratch into its spectrum, obtaining the curves (from E.N.T., May, 1931) reproduced here to a decibel scale as Fig. 1.

Fig. 1.—Buchmann and Meyer's frequency-analysis of record surface noise. Tests made on outer, middle, and inner grooves are distinguished by o, m, and i respectively. The decibel zero is arbitrary.

As regards background noise, records score over radio in

War time broadcasting does not always permit reproduction of a standard that satisfies the critical listener. Gramophone music therefore takes on a new interest; this article deals with means of reducing surface noise, which remains the principal obstacle to the enjoyment of recorded music.

WARTIME broadcasting does not always permit reproduction of a standard that satisfies the critical listener. Gramophone music therefore takes on a new interest; this article deals with means of reducing surface noise, which remains the principal obstacle to the enjoyment of recorded music.

The most important feature of the curves, however, is that they extend fairly uniformly (apart from a hollow around 400-500 c/s) over the whole audible frequency band, and that the noise is at least as strong at very low frequencies as very high.

Before coming across these curves, the writer had carried out on more recent records some tests of his own, made possible by the courtesy of Messrs. Claude Lyons, Ltd., who kindly lent one of the new Model 736-A General Radio Co.'s Wave Analyser. This instrument is in effect a calibrated audio-frequency superheterodyne receiver, with an IF response only 4 cycles
Wireless World

Gramophone Record Scratch—per second wide. By varying the oscillator tuning the whole audio-frequency band can be explored, and the response on the meter indicates the intensity at any selected frequency. One of the most useful applications of the instrument is in measuring the percentages of each harmonic in a distorted waveform. But it can also be used for showing the frequency distribution of such an irregular phenomenon as "scratch." The instrument is so sensitive that it was possible to get adequate readings straight from even an insensitive type of gramophone pick-up. The Telefunken pick-up was used, because its response is very nearly uniform over the whole range of frequency, so there is no need to make special corrections for its characteristic. No unmodulated discs were available, so use was made of a few records that happened to have more grooves than usual between the end of the music and the run-off. The eccentric motor-stopping groove itself, though it would have been convenient for the test owing to its endlessness, has rather different characteristics from the plain-cut (recordable) groove.

Structure of Record Blanks

On this irregular sort of "signal" the meter fluctuates rather considerably, so it is not a case for extremely precise results, and the curves (a) and (b) in Fig. 2 must be judged accordingly. They refer to two different records. The Telefunken pick-up was used, because its response is very nearly uniform over the whole range of frequency, so there is no need to make special corrections for its characteristic. No unmodulated discs were available, so use was made of a few records that happened to have more grooves than usual between the end of the music and the run-off. The eccentric motor-stopping groove itself, though it would have been convenient for the test owing to its endlessness, has rather different characteristics from the plain-cut (recordable) groove.

Figs. 2 and 3 show the frequency distribution of "scratch," as measured with a G.R. Wave Analyzer. For curve (a), scratch was measured by a Telefunken pick-up, in conjunction with a wide-range amplifier and sensitive type of gramophone pick-up. Curve (b) refers to the same record as (a), but with a typical needle-holder pick-up. Although the scratch level is higher, the programme/scratch ratio is not necessarily so, because the pick-up gives a greater voltage output.

If "noise" is distributed uniformly over a frequency band, its total power is proportional to the width of that band. So it is obvious that the first thing to do is to lop off anything beyond the useful range of frequency; that is to say, anything above 8,000 c/s. The Telefunken pick-up, in conjunction with a wide-range amplifier and loud speaker, gives an intolerably large amount of scratch, which can be substantially reduced by cutting off above the limit of recording.

But when that has been done, scratch is still too prominent. Now, although it is difficult to get authentic information about the characteristics of records, some precautionary measures can be taken to reduce it. One of the most effective ways is to use a record blank of acoustical quality rather than the ordinary solid-stock, which may be composed of equal parts of raw linseed oil, turpentine and white vinegar. But it should be used sparingly and the records kept under cover, as the dust attracted may make matters worse. Something can be done, too, by careful adjustment of the pick-up needle and carrying-arm angles and attention to the tracking alignment.

Coming now to consider the frequency characteristic of the whole reproducing apparatus, the top limit of recorded frequency is generally accepted as being somewhere between 6,000 and 8,000 c/s. But Fig. 2 shows that scratch extends much higher, assuming the ability of the pick-up to follow such rapid movements and of the apparatus in general to reproduce them. If "noise" is distributed uniformly over a frequency band, its total power is proportional to the width of that band. So it is obvious that the first thing to do is to lop off anything beyond the useful range of frequency; that is to say, anything above 8,000 c/s. The Telefunken pick-up, in conjunction with a wide-range amplifier and loud speaker, gives an intolerably large amount of scratch,

which can be substantially reduced by cutting off above the limit of recording.

But when that has been done, scratch is still too prominent. Now, although it is difficult to get authentic information about the characteristics of records, some
Gramophone Record Scratch—
makes at least appear to give a slight lift—about 4 db—
towards the upper end of the band, say, between 4,000 and
6,000 c/s. It is therefore allowable to reduce the response
at the reproducing end by about this amount, giving a
corresponding reduction in scratch without any departure
from strictly level response to the programme.
If the recordists were to extend this practice, boosting
the top frequencies by a really substantial amount, scratch
in this part of the scale could be reduced to negligible pro-
portions without sacrificing quality. Apparently it is not
technically practicable to record on a constant-amplitude
basis throughout (as is done at present up to about 250-
400 c/s) corresponding to steadily increasing needle velocity
most effectively by reducing the high-note response. The
explanation is that the ear is more sensitive to the upper
frequencies. It is another example of the important differ-
ence between intensity and loudness. Figs. 1 and 2 show
intensity; the effect produced on human beings—loudness
—is quite different. To emphasise this, Fig. 3 (a) shows
the loudness (expressed in phons) of a sound equally in-
tense over the whole frequency scale at a level of 20 db.
above the usual arbitrary zero. As noise energy is pro-
portional to frequency band width, this curve has been
plotted on a linear frequency scale instead of the usual
logarithmic scale, so that the loudness of the whole may
be seen in terms of the area beneath the curve. Nothing
below 230 c/s is audible at all, while the greatest audi-

The Wave Analyzer used for obtaining the curves of Fig. 2. The pick-up was connected straight to the input of the analyzer,
the gramophone amplifier not being used.

with frequency, because record wear would be excessive.
It is not commercially practicable to go even part of the
way in this direction, because the tone given by uncorrected
gramophones would be too shrill.
So far, we have reduced frequencies around 5,000 c/s
by a few db., and cut off altogether above 8,000. But
scratch is still quite noticeable. What can be done? It
may be necessary to make some compromise with quality,
bearing in mind that fairly considerable departures can be
made from level frequency response without seriously
spoiling the reproduction. The question is, how can we
effect the greatest reduction in scratch with the least sacri-
fice of programme when both are mixed up together?
Although the distribution of scratch appears to extend
over the whole frequency scale, and to show a rise in the
bass, this is not inconsistent with the general impression
that it is a high-frequency sound, and can be got rid of

bility is up in the thousands of c/s. It can be understood,
therefore, how the low-frequency components of scratch,
though actually stronger than any others, may be quite
inaudible, whereas the highest frequencies are plainly
heard. This state of affairs does not exist so far as very
loud sounds are concerned; but, fortunately, scratch is, at
worst, much weaker than a normal programme. The
phenomenon of acoustic masking also helps in preventing
low-frequency scratch from being of any practical impor-
tance, and we can forthwith neglect it.
Assuming as a first approximation that scratch is a noise
uniformly distributed over the frequency scale, and of low
intensity (20 db.), Fig. 3 (a) gives its loudness spectrum.
What about the recorded matter? Its spectrum depends,
of course, very largely on the programme recorded; but
data exist on the probable maximum intensities at different
frequencies, taken over a large selection of typical material,
Wireless World

Gramophone Record Scratch—
of broadcast programmes. Fig. 3(c) is based on a curve given by P. P. Ekersley. Presumably an analysis of a large number of typical gramophone records would give similar results, except perhaps a modification approximating to that shown by the dotted line (c). In order to represent recording at a low-enough level for scratch to be disturbing, the maximum intensity has been taken as low as 50 db., and the phon curve is worked out on that basis. It can be seen that the centre of gravity, so to speak, of the programme (e) is considerably lower in frequency than that of the scratch (a), and, therefore, should be considerably less affected by entirely eliminating the top frequencies from the reproduction.

Assuming curves (a) and (e') in Fig. 3 represent respectively scratch and programme in very quiet parts of a record, and neglecting minor complications such as masking, the ratio of the two can be derived for any top cut-off frequency. This is shown as curve A in Fig. 6. Thus, if all frequencies above 9,000 c/s are removed, the programme is only 50 per cent. louder than the scratch; if the cut-off is brought down to 4,500 c/s it is 100 per cent. louder; and so on. As the cut-off frequency is brought very low, the improvement is rapid; so, as an antidote, curve B is also shown. It is based on data by W. B. Snow showing the deterioration in quality of reproduction of orchestral music as frequencies above those specified are removed. It is not possible to follow the original data above 7,500 c/s, because such frequencies are not present in the record, and, therefore, no improvement in quality results from a wider range. The best balance between A and B depends on personal preference. It also shifts to a higher frequency as the programme is more loudly recorded, because then A rises much higher.

Practical experience, as well as the foregoing theory, shows that it is most profitable to reduce highnote response in seeking relief from scratch. In describing the electric gramophone in the issue of May 11th, the writer mentioned that, after comparing the general balance of quality and freedom from scratch given by the two types of characteristics contrasted in Fig. 4, he decided in favour of the gradual slope, although to the eye there is little to choose. Plotting on Fig. 3 the effects of these characteristics on the loudness of a uniform input of 20 phon it can be seen that both cut off the useless frequencies above 8,000 c/s and reduce the area of scratch by an approximately equal amount. The gradual reduction of the upper musical frequencies, on the other hand, seems for some reason to be more acceptable than the more sudden characteristic. Although a reduced response is suffered over a greater band of frequency, the band over which some response is given is greater. It seems to be an example of half a loaf being better than no bread. Moreover, a muffling of the higher frequencies is quite a common natural effect in certain acoustical situations; but there does not ordinarily occur in nature a sudden cut-off at a particular frequency, and perhaps the ear finds the artificial introduction of such an effect rather disconcerting. It is fortunate that the gradual characteristic is preferred, for it is much more easily obtained than the cut-off.

The shape of a curve, such as Fig. 3(a), of sound assumed to be originally of uniform intensity, is controlled by the characteristics of the listening ear. That accounts for the drop to zero at the low-frequency end, and the rise around 3,000 c/s. But we have seen how it is affected by non-uniform characteristics in the apparatus (e.g., tone control). The Telefunken pick-up is not typical in this respect; for, as Fig. 2 shows, its response continues up to 16,000 c/s, and there are no signs of marked resonances (except at the low-frequency end, where the rise is probably due to carrying-arm resonance). The usual type of pick-up with needle holder is quite different, for it is very difficult to keep its armature resonance from coming well into the useful range of frequency. In Fig. 2 curves (c) and (b) are from the same record, but using an average commercial pick-up—neither very good nor very bad. To the extent that the scratch input is uniform, this curve represents the characteristic of the pick-up. Elimination of the scratch above 8,000 c/s is seen to be accomplished by the pick-up itself; so when used with otherwise "level" apparatus it would give a lower proportion of scratch than the Telefunken. Remembering that if anything the programme frequencies around 5,000 c/s are above normal, it is clear that a reduction at this point of about 10 db. in the amplifier can be used to advantage to counteract the plainly visible pick-up resonance, with a very noticeable reduction in audible scratch.

The Use of Filters

Some pick-ups have a far more pronounced resonance; so much so that if the audibility curve were plotted on Fig. 3 it would not be far wrong to say that the scratch has a definite frequency. Listening to it, the sound is not purely irregular, like the noise of escaping steam, but is more like a whistle of recognisable pitch. This is, of course, not really the mythical "scratch frequency," but the resonant frequency of the pick-up. When the designers of the pick-up are clever enough to get this resonance as high as 7,000 or 8,000 c/s, scratch can be very effectively dealt with by employing a filter tuned to that frequency (Fig. 5). The product LC is calculated from that frequency, but the

Wireless World

Gramophone Record Scratch—values of L and C depend on the impedance of the pick-up. But if the resonance is in the essential frequency range it boosts the scratch into a penetrating whistle (incidentally much less likely to be covered by acoustic masking) and nothing can be done about it short of hopelessly degrading the quality. Fig. 3(d) is an example of this; it is the audible result of uniform 20-db scratch reproduced by a pick-up made by a firm famous for high-quality reproduction and sold at an exorbitant price in 1930. A very nasty piece of work.

So far we have tried to weed the scratch out from the recorded matter by frequency discrimination. Unless the quality of reproduction is seriously impaired, however, the scratch frequencies in the band 500-4,000 c/s are enough to render it audible, at least during the quieter parts of the programme. Another way of tackling the problem is amplitude discrimination. By using contrast expansion, the passages that are loud enough to mask the scratch completely are made louder, and the soft music where the programme amplitudes.

...The main object is to increase the lifelikeness of the reproduction by restoring the large range of contrast in certain musical performances. To do this successfully demands a very large reserve of undistorted sound output, which is costly; but it is just a thought that, if noise reduction only is aimed at, a much simpler arrangement might be devised that would suppress scratch during the moments when no other sound is being heard. A very moderate and judicious use of muting, in fact. Looking at Fig. 6 suggests another, but rather more complicated, idea—a device for reducing the top frequencies at low-programme amplitudes.

Recapitulating: "Scratch" is due mainly to the material of which commercial discs are at present manufactured, but may be aggravated by inferior recording and processing, and embraces all frequencies. It can be minimised, first, by care of the record itself and proper adjustment of the pick-up and arm. As recorded frequencies do not exceed 8,000 c/s, any response above this should be eliminated, and the pick-up should be such that any pronounced resonance comes within the excluded frequencies. It is allowable to reduce the response by a few db. in the 4,000-7,000 c/s region, and with many records considerably more top-note reduction may be expedient. To obtain the best compromise between quiet background and good quality an adjustable tone control is very desirable, giving various degrees of gradual reduction, and in any case cutting off above 8,000 c/s if the pick-up does not do so. If the pick-up does show a pronounced resonance at a lower frequency, a suitable filter tuned to it improves both quality and quietness. Although the lowest scratch frequencies are inaudible and the highest can be eliminated, the intermediate band coincides with the desired programme sounds. It is drowned by them when they are loud, and can be reduced during quiet passages or intervals by automatic reduction of amplification, as in contrast expansion systems.

The writer is indebted to Mr. D. W. Aldous for information on record-manufacturing technique.

Henry Farrad's Problem Corner

No. 40.—Capricious Geese

An extract from Henry Farrad's correspondence, published to give readers an opportunity of testing their own powers of deduction:

Glenechty Lodge, Skye.

My Dear Henry,

I forget whether I told you that we got a wireless a few months ago—in June, I think it was. We felt so shut off in the Isles, with all these wars and rumours of wars going on. They wanted to sell us an expensive one—a "super hot" or something—but we got this little one, and it serves very well for our purpose, which is to hear the news after your Uncle gets in at night.

But the last few weeks it hasn't been nearly so clear; it seems as if the noise of the war was getting in! I had a man over to see it one forenoon, and a rare fool I looked, because it was just the same as it used to be, nothing wrong with it. But sure enough, when Will came in, it was just like a flock of spitting geese.

It's not very serious because we can 'follow the news fairly well, so don't let it bother you, but if you can tell what sort of a thing it would be it would be interesting to know.

Your Affectionate,

Aunt Grace.

Have you any theory? Think it over, and then turn to page 9 for Henry Farrad's explanation.

Cellulose Spraying

The amateur who builds his own chassis and the serviceman who may be called upon to renovate an old receiver will be interested in the "Kwik-Spray" equipment marketed by the Cooper Perry Manufacturing Co., Ltd., 26, Charlotte Street, London, W. 1, and costing £5. 6d. To achieve a professional finish with cellulose paint a steady air pressure is essential, and in this case the spare tyre of a motor car is used as the source of supply. The spray gun consists of a glass reservoir for the paint, and is fitted with the usual jets for the liquid and air streams. A finger-operated valve regulates the air supply, and if used dry the gun provides a convenient means of blowing dust from awkward corners of a receiver chassis.

The "Kwik-Spray" equipment.

The dealer will find other useful applications for this apparatus including sign writing with the aid of stencils.
Installing a New Receiver

IMPORTANCE OF THE AERIAL-EARTH SYSTEM

By W. H. CAZALY, Grad.I.W.T.

To obtain the full benefit of a good modern broadcast receiver, the makers' instructions are sufficient only up to a point. They cannot take into account individual conditions, and the conscientious set owner should take matters up where the makers leave off. This is applicable not merely to the problem of receiving very distant transmissions, but to the reception of local and powerful foreign broadcasts unmarred by mush. In short-wave reception, indeed, it is hardly too much to say that the aerial-earth system is quite as important a factor as the design of the set.

In the first place, the position of the receiver in respect to the aerial deserves more consideration than (largely, it must be confessed, owing to the aesthetic postulations of the feminine elements in households!) it usually gets. If the lead from the aerial to the receiver must pass through the whole house from front to back or vice versa, it will nullify all the care expended in the erection of a good external aerial, because this part of the system picks up more interference than the rest together. After all, there are extension-speaker fittings, and they are preferable to expensive screening or anti-interference devices.

For general purposes, only the inverted L and the doublet types of aerial need be considered. There are innumerable other systems, but these are largely monopolised by advanced workers; they will make no appreciable difference to ordinary broadcast reception. The L type is perfectly satisfactory on all wave-lengths save those of television, unless the zone of local interference is troublesome, when recourse must be had to one of the several commercial anti-interference systems available, about which the makers will give all details and much help in particular cases. The doublet type is specially suited for short-wave reception, but is perfectly satisfactory also for the medium and long-wave bands if the ends of its transposed feeders are joined and it is used as a plain T type. The transposed feeder

A good "L" aerial. (1) horizontal wire, at least 30 ft. long; (2) down-lead 20-30 ft., kept well away from house; (3) short pole on chimney is recommended; (4, 5) pulleys; (6) cowl insulator; (7) lead-in wire, of workshop cable or screened low-loss cable; (8) thick earth cable.

avoids interference pick-up on the short waves if the horizontal part is out of the interference zone. But the receiver must be fitted for this type of aerial input.

Advice upon the inverted L type of aerial resolves itself in these days to a miscellany of "Don'ts"! Though this may seem purely negative counsel, it appears still to be painfully necessary, as a glance round suburban back gardens always reveals to the initiated. If it is followed, however, the inverted L aerial can be made a very efficient installation indeed. So here are some Don'ts for aerial builders:-

Don't bother too much about enamelled, stranded aerial wire. Plain hard-drawn copper wire from the ironmonger is cheaper and just as good.

Don't economise on insulators: they are more important than the wire. Proper moulded

NOVEMBER, 1939
Installing A New Receiver—

cowl insulators with fixing brackets and low-loss lead-in devices, protecting live points from wet and dirt, save many precious microvolts from leaking to earth.

Don't dispense with a pulley at both ends of the aerial. You will certainly want to lower it or tighten it or fit another system at some time or just clean the insulators.

Don't take the house end to the eaves. A pole on the chimney turns many foreign transmissions from mere noises into enjoyable programmes.

Don't run the aerial, especially the vertical portion, within 10 feet of any conducting materials such as pipes and wiring (inside as well as outside the house), iron roofs, fencing wire, etc. And don't forget that in wet weather all outdoor surfaces become conductors.

Don't make the aerial plus lead-in (for the L type only: for the doublet, the transposed feeder must be longer than ① wavelength) too long. An L aerial tunes to a wave twice as long as itself. Hence about 25 yards gives good all-round reception on the interesting short-wave bands and is perfectly satisfactory on the usual broadcast bands. Each half of the horizontal portion of a doublet should be about 10 yards for similar results—and each half equally clear of earthed conductors, in order to balance the halves electrically.

Don't make the earth lead a foot longer than is necessary. It all picks up interference and neutralises signals.

Don't earth to a hot-water pipe. It gets to earth after a wander to the top of the house and down again. Use a cold-water rising main.

Don't put up a first-class aerial and then put up with man-made local interference. You will be doing all radio users a good turn by making a firm but polite fuss about it. The Post Office will help you trace its source.

New American CR Tubes

USE OF AN INTENSIFIER ELECTRODE

The principal improvement to be found in the American CR tube shown in the accompanying photo consists of an intensifier electrode in the form of one or two metallic rings near the screen end of the tube; this serves to accelerate the electrons after deflection. It is claimed that the tube gives greatly increased brilliance without corresponding loss in deflection sensitivity. Earlier attempts at increasing deflection sensitivity for a given anode voltage have been along lines of increasing the deflection plate size and decreasing the space between, but there is a definite practical limit in this direction without seriously affecting the focus characteristics of the tube.

The new tube also has several refinements in its gun structure to obtain better focus and modulating characteristics. The electron gun is operated at the same potentials and in the same manner as in other tubes of corresponding screen diameter and the intensifier electrode may be connected to the final anode and the tube operated in the conventional manner. If, however, an additional voltage equal approximately to the accelerating electrode potential be applied between the intensifier and the second anode, the effect is to brighten the pattern to an extent equivalent to doubling the accelerating voltage, yet not causing so great a sensitivity decrease as would normally result. In terms of screen pattern size, this means that, instead of the 50 per cent. reduction which doubled accelerating voltage would normally produce, the voltage with the use of the accelerating element reduces pattern size by only 18 per cent.

The positive potential required between second anode and the intensifier electrode may be taken from existing cathode-ray tube power supply systems by addition of a single half-wave rectifier operating from the same transformer winding and connected in reverse polarity. Filter requirements may be satisfied by the use of a small condenser and a high-resistance bleeder of approximately 10 megohms because of the low current to this electrode.

Henry Farrad's Solution

(See page 7)

At midsummer, when the set was first used, there is virtually no darkness in the north of Scotland, so reception would have been in daylight, however late the news bulletin. But recently darkness would have been setting in. It is significant that although evening reception has been unsatisfactory throughout recent weeks, the one occasion when it was used in the morning it was all right. From the information given it seems that the receiver is of a cheap "straight" variety, and therefore likely to be deficient in selectivity, especially if closely coupled enough to give good daylight reception from a B.B.C. station on the mainland. This would not matter in daylight, but at night the field strength of more distant adjacent-channel stations would rise enough to give sideband interference with its "spitting" sounds.

If the above is the correct explanation, it is possible that careful adjustment of reaction and volume control will give some relief.

NOVEMBER, 1939
Characteristic Impedance

By "CATHODE RAY"

— AND ALL THAT

Concluded from page 300 of our September 28th issue

L ast month we saw why, when and how the impedances of a generator and its load ought to be matched. An aerial, because it has a radio-frequency voltage set up in it, is a sort of generator, and the receiver to which it is connected is the load. The object is to connect the two so as to deliver as much power as possible to the receiver terminals.

Without bothering just yet about exactly what it means, suppose that the resistance of the aerial is 250 ohms. The dynamic resistance of the first tuned circuit in the receiver—that is to say the comparatively large resistance to which a tuned circuit is equivalent at the resonant frequency—may be perhaps 4,000 ohms at very high frequencies. The ratio is \(\frac{250}{4,000} \), or 1:16; and so a 1:4 transformer is needed, as we saw last month.

This is easy to arrange, either as a double-wound transformer made by coupling a few turns to the tuned circuit, or as an auto-transformer made by "tapping down" (Fig. 4). At least, it would be easy were it not that for picking up the greatest voltage the aerial should be as high up in the air as possible, especially if it is for television or other short-wave purposes. On the other hand, this is an exceptionally inconvenient spot to install the receiver. Therefore it is desirable to have them in separate places and connect them by a feeder.

Earthed and Unearthed Aerials

If the aerial is of the self-sufficient type (such as the dipole), needing no earth to complete it, there are two connections to be made between it and the two terminals of the receiver tuned circuit. The ordinary elevated wire aerial is just the same, except that the lower half of it is the earth. The latter arrangement, therefore, has its mid-point at ground level, which is generally convenient for a reasonably direct connection to the set, and so the feeder question seldom arises.

Assuming, however, that our aerial is entirely up in the air; and therefore needs a twin connection, how far apart should these leads be? If they are widely spaced, they are, in effect, a single-turn coil of large dimensions and therefore of high inductance. This seems unsuitable for ultra-short wave purposes; and, moreover, is capable of picking up voltages on its own, mostly of an interfering nature. If the wires are very closely spaced, the capacity between them is large—again a disadvantage, apparently—but at least there is no interference, because the voltages picked up by two wires very close together practically cancel out (one being a "go" wire and the other a "return"). If one wire is entirely surrounded by the other, which is in the form of a tube, it is completely screened. Obviously, owing to the large capacity of the feeder, which acts as a shunt across the input to the receiver, it is of low impedance, and a considerable step-up is needed at that end. The closer they are together the lower the impedance.

Another thing is that at the wavelengths we are considering the feeder is probably at least several times as long as the wave. When, therefore, a signal voltage is picked up by the aerial, it cannot be supposed that it reaches the receiver instantly. By the time it gets there several more waves have been picked up and are en route (Fig. 5 (a)). Suppose that the feeder is disconnected at that end. What are the arriving waves to do? They represent a certain amount of power, which cannot pile up ad lib. at the end of the feeder. They do exactly what a sound wave does when it strikes an impenetrable wall—they are reflected or echoed back. If on arriving

Characteristic Impedance

By "CATHODE RAY"

— AND ALL THAT

Concluded from page 300 of our September 28th issue

L ast month we saw why, when and how the impedances of a generator and its load ought to be matched. An aerial, because it has a radio-frequency voltage set up in it, is a sort of generator, and the receiver to which it is connected is the load. The object is to connect the two so as to deliver as much power as possible to the receiver terminals.

Without bothering just yet about exactly what it means, suppose that the resistance of the aerial is 250 ohms. The dynamic resistance of the first tuned circuit in the receiver—that is to say the comparatively large resistance to which a tuned circuit is equivalent at the resonant frequency—may be perhaps 4,000 ohms at very high frequencies. The ratio is \(\frac{250}{4,000} \), or 1:16; and so a 1:4 transformer is needed, as we saw last month.

This is easy to arrange, either as a double-wound transformer made by coupling a few turns to the tuned circuit, or as an auto-transformer made by "tapping down" (Fig. 4). At least, it would be easy were it not that for picking up the greatest voltage the aerial should be as high up in the air as possible, especially if it is for television or other short-wave purposes. On the other hand, this is an exceptionally inconvenient spot to install the receiver. Therefore it is desirable to have them in separate places and connect them by a feeder.

Earthed and Unearthed Aerials

If the aerial is of the self-sufficient type (such as the dipole), needing no earth to complete it, there are two connections to be made between it and the two terminals of the receiver tuned circuit. The ordinary elevated wire aerial is just the same, except that the lower half of it is the earth. The latter arrangement, therefore, has its mid-point at ground level, which is generally convenient for a reasonably direct connection to the set, and so the feeder question seldom arises.

Assuming, however, that our aerial is entirely up in the air; and therefore needs a twin connection, how far apart should these leads be? If they are widely spaced, they are, in effect, a single-turn coil of large dimensions and therefore of high inductance. This seems unsuitable for ultra-short wave purposes; and, moreover, is capable of picking up voltages on its own, mostly of an interfering nature. If the wires are very closely spaced, the capacity between them is large—again a disadvantage, apparently—but at least there is no interference, because the voltages picked up by two wires very close together practically cancel out (one being a "go" wire and the other a "return"). If one wire is entirely surrounded by the other, which is in the form of a tube, it is completely screened. Obviously, owing to the large capacity of the feeder, which acts as a shunt across the input to the receiver, it is of low impedance, and a considerable step-up is needed at that end. The closer they are together the lower the impedance.

Another thing is that at the wavelengths we are considering the feeder is probably at least several times as long as the wave. When, therefore, a signal voltage is picked up by the aerial, it cannot be supposed that it reaches the receiver instantly. By the time it gets there several more waves have been picked up and are en route (Fig. 5 (a)). Suppose that the feeder is disconnected at that end. What are the arriving waves to do? They represent a certain amount of power, which cannot pile up ad lib. at the end of the feeder. They do exactly what a sound wave does when it strikes an impenetrable wall—they are reflected or echoed back. If on arriving
Characteristic Impedance—

Suppose that, instead of being disconnected at one end, the feeder is connected to a resistance. If it is high, the current passed by it when the wave arrives is small, and the power delivered to it is therefore small—less than the waves are bringing. The surplus is therefore reflected. There is one particular resistance that uses up power just as fast as it is delivered, and then there is no reflection, no surplus power surging to and fro, and maximum efficiency is reached. The only loss is that due to a single journey through the resistance of the feeder wires, which is comparatively small. This particular resistance is called the characteristic resistance; or often the characteristic impedance, but normally it can be regarded as a resistance. Its value depends chiefly on the diameter and spacing of the feeder wires; the smaller the spacing, the lower the impedance.

When the feeder is correctly terminated—that is to say, with a resistance equal to the characteristic resistance connected, as in Fig. 5(b)—then except for the slight loss in the feeder it is the same as if the feeder were abolished and the resistance joined to the aerial.

The two things to know about any grade of feeder are, then, the characteristic resistance and the loss per unit of length (generally given in decibels per 100 feet). You may be wondering where the capacity of the feeder has gone. In a cable of the type used for television it may amount to 1,500 µF in a 100-foot feeder. Knowing that at these high frequencies every µF counts, it seems that it would never do just coolly to ignore such a large amount. But do not let us forget the inductance, even if it is small. The principle of the ordinary tuned circuit is that at any given frequency there is a value of inductance that just neutralises a given capacity. The greater the capacity the smaller the inductance, and vice versa. We have already noticed that when a pair of feeder wires are closely spaced their capacity is large and inductance small, and vice versa; so it may not come as a great surprise to know that when the spacing is varied these two effects exactly balance one another.

Distributed Capacity and Inductance

When an inductance and a capacity are concentrated or localised, as in the ordinary form of tuned circuit, such a balance holds good at only one frequency. That is the principle on which tuning and selectivity depend.

But when capacity and inductance are distributed along parallel wires, so that different sections of it are at quite different phases (see Fig. 5(a)), the capacity and inductance of the whole feeder is of less significance than those of a section equal, say, to one wavelength. It is as if one had a tuned circuit in which both inductance and capacity are proportional to the wavelength. Now we know that the wavelength at which a circuit is in tune is proportional to \(\sqrt{LC} \). So the interesting result emerges that the inductance and capacity of a feeder cancel out at all wavelengths. That is why everything can be ignored except the resistance (it is assumed all the time that the feeder is infinitely long, so that waves starting at one end never return; or that it is terminated somewhere by the characteristic resistance, which amounts to the same thing).

Although the foregoing statements are often, for the reasons given, to be not beyond the belief of anybody familiar with the behaviour of ordinary tuned circuits, their exact truth cannot be proved without some of the riper grades of mathematics, such as I have promised to spare you. It is a matter of interest, however, that if unimportant details are neglected the characteristic resistance is equal to \(\sqrt{L/C} \) where these quantities are the inductance and capacity per unit length. As formulae for them are given in any radio or telephony reference book, the characteristic resistance is easily calculated.

What is "Aerial Resistance"?

One point has still to be cleared up. You were asked to take it on trust that the resistance of a certain aerial was 250 ohms. What does this mean? The sort of aerials we are considering—dipoles, "tilted wires," etc.—differ from the ordinary garden aerial in that they are made of such dimensions as to comprise a complete self-contained tuned circuit resonating at the wavelength to be received. Although their inductance and capacity are distributed, they are nevertheless true tuned circuits. Now it is well known that a tuned circuit, at the resonant frequency, is equivalent to a resistance. The amount of that resistance depends on the points between...
Characteristic Impedance—
which it is measured. If across the whole coil (and con-
denser), the resistance is large. If tapped across part
of the coil, or across part of a split condenser, it is less,
until it becomes nil when the two points coincide (Fig. 7).
The same is true of the resistance of an aerial or other
distributed tuned circuit. If points can be found be-
tween which the resistance is equal to the characteristic
resistance of a suitable feeder, one is in luck, because
they can be directly connected. This is so with the ordi-
nary dipole. But when it is not (as in the case that
started the whole argument) a matching transformer
must be used if losses due to mismatching are to be
avoided. Please note now, by comparison with the
beginning of the first instalment, that “this is where we
came in.” I hope that by now the plot is clearer.

One more point. The article quoted goes on to de-
scribe the matching transformer used. It is neither the
ordinary double-wound nor auto-transformer. It is a
carefully measured length of special feeder. By now
that ought to cause no surprise, because we have become
quite used to the resemblance between localised tuned
circuits and distributed ones. If points A, B, X, and Y
are selected on a distributed system, such that it has
a resistance between points AB of 250 ohms (when
a resistance of 70 ohms is connected between points XY)
and a resistance of 70 ohms between points XY (when a
resistance of 250 ohms is connected between points AB)
it can be used as a transformer for matching systems
having these diverse resistances; and it may well be
more convenient and durable in the open air than the
conventional coil-wound transformer.

Short-wave Reception

CONDITIONS IN PROSPECT AND RETROSPECT

Conditions on the short-wave bands, except for a
short period early in October, have remained remark-
ably good during the first five weeks of the war.

In fact, they have been so good that the C.B.S.
engineering division felt moved to transfer the day-
time WCBX transmissions from 17,830 to 21,570 kc/s
(from the 16- to the 13-metre band). Although
the new wavelength gives a good signal if one
uses the best of equipment, the general opinion seems
to be that the change is for the worse. Those British
listeners who regarded the 16-metre WCBX, with its re-
markable news service, as almost their local station during
our medical colleagues.

However, one result of the change has been that these
daytime C.B.S. transmissions are now free of sideband
interference—and since WCBX has no nearby neighbours
on 21.57 Mc/s, except for GST on 21.55 Mc/s (a very weak
signal in this country), a highly selective set is no longer
de rigueur. Unfortunately for C.B.S., the engineering
announcements given when WCBX comes on the air are
a bit mixed up, since for a week or more the opening
announcement has been "WCBX on 21,570 kc/s—16.83
metres!" The inability to think in terms of both fre-
quencies and wavelengths obviously exists amongst C.B.S.

With the advent of autumn and of decreasing sunlight,
the paradox of increased ionisation of the F2 layer, which
occurs regularly at the equinoxes, is again evident from
the increasing number of reports of 28 Mc/s reception.
Some of the U.S. police transmissions on 33.1 Mc/s have
also been heard.

I do not think that 10-metre reception will reach the
peak of previous years this autumn and winter, but never-
theless many stations will be well heard, if, unfortunately,
not worked. In particular, South African stations will
be prominent around 28 Mc/s—ZS1T, for example, and probably
the Congo Belge will contribute a phone trans-
mitter or two in this band. In fact, South America and
South Africa will remain the stronghold of 28 Mc/s during
the coming sunspot minimum years.

Since the curtailment of amateur activities no signals of
any importance have been heard on the ultra-high fre-
cuencies except diathermy—which is very plentiful and
may, I am half afraid, yet constitute a menace which will
have to be tackled.

Why not insist on crystal-controlled oscillators for dia-
thermy and allot one frequency, rather like that allocated
to the U.S. police transmitter?

Although various claims have been advanced by some
medical people that certain wavelengths have certain
virtues, I believe those most competent to judge would
accept a single frequency, since it is the heating effect of
the short-wave energy that is important, and the manner
in which this heat may be applied and controlled. This
latter condition does not change rapidly with frequency.

Radio engineers who have occasion to look into the
windows of shops which supply electro-medical equipment
are often amazed at the crudity of the designs and equip-
ment used. The terms used, too, savour of those used by
early Italian experimenters rather than conforming to
modern radio engineering practice. Where pulses of high-
frequency energy are required, for rejuvenating muscles or
restoring muscular action by impulsing the nerves, crude
interrupters consisting of bent wire prongs dipping into
mercury cups and operated mechanically from a metronome
appear to be favoured.

Gas-filled triodes (which some manufacturers call thyras-
trons) have apparently not yet received the attention of
our medical colleagues.

Readers of this column will recall that I have constantly
advocated that a large amateur body in this country would
be of immense value in providing an immediate reserve
of skilled technicians, since time is the all-important factor
in the training of even radio operators pure and simple.

Perhaps when the war finishes one may look forward to
the adoption of the American system of amateur licensing
in this country, since the advantage of a large body of
active radio amateurs seems already to have been proved
up to the hilt. America has over 50,000 amateur trans-
mitters; on the same basis, we ought to have some 20,000.

"ETHIACOMBER."

NOVEMBER, 1939
Morse and How to Learn It

RHYTHMIC SOUNDS—NOT DOTS AND DASHES

A CAREFUL study of many of the so-called systems and methods of learning morse which make their appearance from time to time is apt to lead one to the conclusion that a large percentage of them has been evolved by people who have had little or no practical experience in actually using the code as a means of communication. This must not be taken to mean that the people who devise these systems are unprincipled persons who are merely seeking to enrich themselves at the expense of the purchasers of the book expounding their particular method. They probably believe in their own ideas as profoundly as the authors of certain methods of learning foreign languages believe in theirs. In both cases the originators of these ingenious schemes would probably be speedily enlightened if they were marooned in some place in which the foreign language or the morse code, as the case might be, were the only method by which they could converse with their fellow men.

The truth is that there is no royal road whatever to the learning of morse. It is a matter of hard and constant practice, but it will be made ever so much harder if the methods of learning which are sometimes recommended are adopted. Morse, as heard over the air, is a matter of rhythmic sounds denoting letters of the alphabet, and has nothing to do with dots and dashes. It seems almost a pity that convention has had to be followed here to a certain extent, and the letters of the alphabet written down as dots and dashes. It would be ever so much better to use musical notation, and set the dots and dashes down as quavers and dotted crochets, with the appropriate "rests" between them, but unfortunately everybody does not read music.

The best way to explain how to set about learning morse is to consider very briefly where most systems fail. In the morse code the letters of the alphabet, so far as wireless reception is concerned, are denoted by various combinations of a short sound, usually referred to as a dot (•) and a sound exactly three times as long usually referred to as a dash (−). Between each dot and dash there is a space equal to a dot; between each dot-and-dash combination, representing a letter of the alphabet, there is a space equal to three dots, and between each word there is a space equal to five dots. The letter A, for instance, is represented by a short sound followed by an interval of the same length as the sound, and then by a sound three times as long. This combination can easily be whistled or hummed, and will then represent the letter A as heard by wireless. Unfortunately, it is usually called dot-dash and is written down as •−.

The unfortunate effect of this use of the word dot-dash and of the inscription •− may perhaps be realised when it is said that an expert morse operator can easily read at speed a morse message which is whistled or hummed to him. If, however, he sees a message written down as a serious of dots and dashes he will usually only be able to read it slowly, and in a halting manner. Similarly, if the sender, instead of humming the sound, actually speaks the words dot and dash when sending the various letters, the receiving operator will be all at sea. This applies also to transmissions. A skilled operator who would have no difficulty in glancing at a page of a book and humming it out rapidly in morse will flounder badly if asked to speak it out by using the words dot and dash, or to write it down, using • and −. As a final word in this matter it may be said that the
Morse and How to Learn It—skilled operator trained to read by sound is usually not much of a hand at deciphering a morse message sent by a signalling lamp or flag.

Having discovered at some length the incorrect way to learn morse, and seen why it is incorrect, we are now in a proper position to consider the correct way, and, what is more important, to understand why it is

The Morse Code

THE ALPHABET

<table>
<thead>
<tr>
<th>Letter</th>
<th>Morse Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>- - - -</td>
</tr>
<tr>
<td>C</td>
<td>- -</td>
</tr>
<tr>
<td>D</td>
<td>- - -</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>- - - -</td>
</tr>
<tr>
<td>G</td>
<td>- -</td>
</tr>
<tr>
<td>H</td>
<td>- - - -</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>- - - -</td>
</tr>
<tr>
<td>K</td>
<td>- -</td>
</tr>
<tr>
<td>L</td>
<td>- - - -</td>
</tr>
<tr>
<td>M</td>
<td>- - -</td>
</tr>
<tr>
<td>N</td>
<td>- - - -</td>
</tr>
<tr>
<td>O</td>
<td>- - - - -</td>
</tr>
<tr>
<td>P</td>
<td>- - - -</td>
</tr>
<tr>
<td>Q</td>
<td>- - - -</td>
</tr>
<tr>
<td>R</td>
<td>- - -</td>
</tr>
<tr>
<td>S</td>
<td>- - - -</td>
</tr>
<tr>
<td>T</td>
<td>- - - -</td>
</tr>
<tr>
<td>U</td>
<td>- - - -</td>
</tr>
<tr>
<td>V</td>
<td>- - - -</td>
</tr>
<tr>
<td>W</td>
<td>- - - -</td>
</tr>
<tr>
<td>X</td>
<td>- - - -</td>
</tr>
<tr>
<td>Y</td>
<td>- - - -</td>
</tr>
<tr>
<td>Z</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

ACCENTED LETTERS

<table>
<thead>
<tr>
<th>Letter</th>
<th>Morse Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ä</td>
<td>-</td>
</tr>
<tr>
<td>À or Á</td>
<td>- - - -</td>
</tr>
<tr>
<td>CH</td>
<td>- - - -</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Æ</td>
<td>- - - -</td>
</tr>
<tr>
<td>Ó</td>
<td>- - - -</td>
</tr>
<tr>
<td>Ú</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

NUMERALS

<table>
<thead>
<tr>
<th>Number</th>
<th>Morse Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- - - - -</td>
</tr>
<tr>
<td>2</td>
<td>- - - - -</td>
</tr>
<tr>
<td>3</td>
<td>- - - - -</td>
</tr>
<tr>
<td>4</td>
<td>- - - - -</td>
</tr>
<tr>
<td>5</td>
<td>- - - - -</td>
</tr>
<tr>
<td>6</td>
<td>- - - - -</td>
</tr>
<tr>
<td>7</td>
<td>- - - - -</td>
</tr>
<tr>
<td>8</td>
<td>- - - - -</td>
</tr>
<tr>
<td>9</td>
<td>- - - - -</td>
</tr>
<tr>
<td>0</td>
<td>- - - - -</td>
</tr>
</tbody>
</table>

USEFUL PUNCTUATION and OTHER SIGNS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Morse Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Stop ()</td>
<td>-</td>
</tr>
<tr>
<td>Comma (,)</td>
<td>-</td>
</tr>
<tr>
<td>Hyphen or Dash (-)</td>
<td>- - - -</td>
</tr>
<tr>
<td>Fraction Bar ()</td>
<td>- - - -</td>
</tr>
<tr>
<td>Brackets []</td>
<td>-</td>
</tr>
<tr>
<td>Break or Double Dash (==)</td>
<td>- - - -</td>
</tr>
<tr>
<td>Interrogation Mark (?)</td>
<td>- - - -</td>
</tr>
<tr>
<td>Erase (or Error)</td>
<td>- - - -</td>
</tr>
<tr>
<td>End of Message (AR)</td>
<td>- - - -</td>
</tr>
<tr>
<td>Closing Down (SK)</td>
<td>- - - -</td>
</tr>
<tr>
<td>Wait</td>
<td>-</td>
</tr>
</tbody>
</table>

the correct way. To come straight to the point, do not learn that A = - - - - dot-dash. Memorise the fact that A is a short sound followed by a long sound, and so on, as already explained. You can either hum or whistle the various letters of the alphabet yourself, or if you prefer it, can use the word "dit" as representing the short sound, and the word "dah" to represent the long one; actually, of course, this dit-dah business is nothing but a form of humming. Learn all the letters of the alphabet like this.

Incidentally, it will be better if you deliberately jumble the alphabet up, otherwise when, for instance, you want to turn the letter J into morse you will find yourself mentally running through half the alphabet in order to arrive at it. Above all, do not try and "pair" the letters by thinking of N (dah-dit) as being the opposite of A (dit-dah); if you do you will only be laying up trouble for yourself by forming the habit of having to think of A before you can think of its opposite, and so on with certain of the other letters which it is possible to pair in this fashion.

All this time you will not have touched a morse key, nor should you do so until you have fully memorised the code in the manner just detailed. Having memorised the various letters of the alphabet—and also of course the numerals—as rhythmic sounds, try: humming or dit-dahing to yourself very slowly, in morse, sentences from the newspaper or from a book, not forgetting that there should be a pause of five "dits" between each word. Do not attempt to do it quickly. Learn to do it slowly, rhythmically and with absolute accuracy. It will be found that speed will come automatically.

Making a Start

Now—and not before—you can equip yourself with a key, together with a buzzer or oscillator, and practice sending, but on no account be tempted to touch a key until you can hum or dit-dah messages slowly and accurately, otherwise you will, more likely than not, merely succeed in acquiring an erratic style of sending which will baffle even the secret service department to interpret. If, on the contrary, you have done your dit-dahing practice properly, the handling of the key will come quite easily and apparently in an instinctive manner to you. Spacing is perhaps more important than anything, and when first handling a key, particular attention should be paid to it as good spacing leads to clean-cut sending, which is the hallmark of a good operator.

If you can get hold of a fellow-beginner to learn with you, first practice humming or dit-dahing letters of the alphabet and then words to each other. Soon you will be able to exchange complete messages by this method. When you have thoroughly mastered this phase your friend and yourself can pass on to the use of a key, and you will both find that you will be able almost immediately to send—and what is more important, read quite well—signals which are interchanged between you. It will not be a case of the blind leading the blind as it is usually when two beginners get together with a morse key. Once again, at the risk of being accused of wearisome reiteration, it should be em-
Morse and How to Learn It—phased that the temptation to send quickly in the initial stages should be resisted. The golden rule is “Look after accuracy, and speed will look after itself.”

If you steadfastly think of morse as a matter of rhythmic sounds, and not of dots and dashes, and set to work to learn it as such, in the manner detailed in this article, you will be amazed at the relatively quick progress you will make. If you can get another beginner to co-operate with you as suggested, you will get on better still; in fact, it may almost be said that a beginner who is really willing to co-operate in the manner suggested might be the means of your learning more quickly and accurately than if you collaborated with a skilled operator, who might perhaps be inclined to attempt to teach you to run before you could walk.

Those who want further information on this method of learning morse should consult the sixpenny booklet of new matter has been introduced, and some of the familiar details of all British and many of the American and Continental valves. Other data in the diary include familar formule of the type which are frequently required but not often remembered when wanted. A considerable amount of new matter has been introduced, and some of the familiar features appear in a more handy form. Probably one of the most valuable sections is that giving circuit diagrams and data; this has been brought completely up to date.

The diary can be obtained from Iliffe and Sons Ltd., Dorset House, Stamford Street, London, S.E.1, at a cost of 1s. 6d., or 1s. 7d. post free.

Wireless World

Lighting for A.R.P. Shelters

The correct handling of the key, which is illustrated here, is very important. The knob is held lightly between the first two fingers and the thumb, as shown, while the fore-arm is in line with the bar of the key. Signalling is effected by dropping the wrist.

The mains supply must not be used, under any circumstances, in damp places; the risk of a shock proving fatal is far too great. Hence the most elementary arrangement will consist of a transformer stepping down to either 12V, or 6V, followed by a low-voltage line to the trench or dugout, in which motor car head-lamp bulbs are fitted. One side of the line should be effectively earthed.

When fixing preliminary details, two points should be borne in mind. First, low-voltage lamps take a correspondingly higher current. Hence the resistance of the line must be sufficiently low to avoid any considerable voltage drop. This loss may be calculated by using Ohms Law: voltage dropped equals the line resistance in ohms multiplied by the current in amperes. Secondly, dirty boards, earth, etc., absorb light rather efficiently. Free use of whitewash or weatherproof distemper will do more to improve the general illumination than adding to the candle-power of the lamps used.

The foregoing scheme is entirely satisfactory providing the electric supply is functioning. If it fails, the lights will go out. An easy way of preventing this possibility is to install a car battery complete with charger. Incidentally, if the car is out of use, the battery can be taken out and kept in perfect condition in this way.

A good selection of metal rectifiers with different current ratings is available for either 12v, or 6v, batteries, and the circuit connections and transformer requirements can be obtained from the manufacturers. Two alternative schemes for charging are feasible. The charging current can be quite small, say, 0.5 amp., and left on for some hours each week, depending upon the amount of use. Or, the charging current can be, say, 0.5 amp. in excess of the total current taken by the lighting system. In this case the accumulator will be charging slowly while the lights are on, and there will be no need to bother about charging at other times. Linked switches or a double-pole switch can be wired so as to ensure that the charger is automatically switched on at the same time as the lights. Clearly, discharge will occur only when the mains fail, and this should be very infrequently. The latter scheme is more trouble-free and foolproof, but a little more expensive to install.

Again the warning guard against shock. Keep the mains voltage away from damp places and soundly earth one side of the low-voltage system. Also use a transformer having unimpeachable insulation. N.P.

Harbinger of the New Year

The appearance of The Wireless World Diary for 1940 in its customary and normal form, is unusually welcome in these troubled times as a reminder that war has not engulfed all the ordinary interests of life. The very complete list of short wave wireless stations, which is to be found in it, will be especially valuable now that there is so much of interest to be heard at all hours of the day and night on this part of the spectrum. A complete list is also given of new medium and long wavelengths which, war or no war, should come into force on March 4th when the Montreux Plan is due to be put into operation.

Another feature of great interest which again makes its appearance is the valve data section, which gives technical details of all British and many of the American and Continental valves. Other data in the diary include familiar formule of the type which are frequently required but not often remembered when wanted. A considerable amount of new matter has been introduced, and some of the familiar features appear in a more handy form. Probably one of the most valuable sections is that giving circuit diagrams and data; this has been brought completely up to date.

The diary can be obtained from Iliffe and Sons Ltd., Dorset House, Stamford Street, London, S.E.1, at a cost of 1s. 6d., or 1s. 7d. post free.

November, 1939
Test Report

Pye "International" Model 906

AC TABLE MODEL SUPERHET (FOUR VALVE + RECTIFIER). BAND SPREAD TUNING ON SIX SHORT-WAVE RANGES. Price 16½ Guineas

Station-Calibrated dials for medium and long waves have long been a commonplace in broadcast receivers, but on the short-wave ranges manufacturers have hitherto done little more than indicate the sequence of stations to be found on any given waveband, leaving the user to locate their exact settings as best he may. Sometimes an arbitrary "degree" scale has been included from which numbers corresponding to each station can be logged, but this savours somewhat of the scientific instrument and is contrary to the trend towards simplification of tuning for the layman.

Sets for Wartime

As the centre of interest in broadcasting has shifted from normal wavelengths to the short-wave bands we have arranged to review a number of sets in which special attention has been given to short-wave performance.

In the Pye "International" the short waves have been accorded the same treatment as medium and long waves in the matter of station calibration. Each individual short-wave transmitter has its place on the dial and one can bring the pointer straight to it without "feeling about in the ether" or hunting for notes of station settings.

Circuit.—The basic circuit is no more complicated than that of the average table model superhet. Its chief interest lies in the design of the tuned RF circuits associated with the
Pye "International" Model 906—
frequency changer. On medium and
long waves a normal two-gang con-
denser tunes the aerial and oscillator
circuits. On short waves the tuning
of the aerial circuit is fixed on each
waveband and a separate tuning
condenser of lower capacity is used
"band-spread" the oscillator
circuit.

Each oscillator circuit is adjusted
by the inductance of the anode coil
which has a screwed iron-dust core.
The minimum capacity is fixed, and
to ensure that the scale calibration
shall hold, great care has been taken
to obtain exact similarity in the wir-
ing between one set and the next.
A composite padding condenser with
a proportion of ceramic dielectric
compensates for the effects of tem-
perature in other parts of the circuit.

Since only one tuned RF circuit
precedes the frequency-changer,
waveband switching is by means
of press buttons, and in addition
there are four buttons for pre-tuned
stations, two on medium and two on
long waves. The circuit is changed
from radio to gramophone by a push
button, but the on-off switch is in-
corporated with the volume control.

The first valve in the circuit, a
triode-hexode frequency-changer, is
used in a neutralised circuit and is
controlled by a fraction of the de-
layed AVC voltage applied to the IF
stage. Stable fixed capacities are
used in the IF transformers, which
are tuned by adjusting their cores.

Interest in the detector and output
stages centres around the arrange-
ments which have been made for
tone control. A four-position switch
gives two degrees of top cut in the
first two positions by connecting a
resistance-capacity shunt across the
anode circuit of the output valve.

The third position introduces a
bass cut by altering the constants
of the coupling between the signal
rectifier and the first AF stage.
In the fourth position the bass
is restored and negative feed-back
is introduced from the secondary
of the output transformer.

Performance.—The accuracy
of calibration of station settings
on the short wave ranges was the
first point to be investigated. Each
station is marked by a small
rectangle, the size of which varies
according to space occupied by a

Wireless
World

Waveband switching is by means
of press buttons, and in addition
there are four buttons for pre-tuned
stations, two on medium and two on
long waves. The circuit is changed
from radio to gramophone by a push
button, but the on-off switch is in-
corporated with the volume control.

The first valve in the circuit, a
triode-hexode frequency-changer, is
used in a neutralised circuit and is
controlled by a fraction of the de-
layed AVC voltage applied to the IF
stage. Stable fixed capacities are
used in the IF transformers, which
are tuned by adjusting their cores.

Interest in the detector and output
stages centres around the arrange-
ments which have been made for
tone control. A four-position switch
gives two degrees of top cut in the
first two positions by connecting a
resistance-capacity shunt across the
anode circuit of the output valve.

The third position introduces a
bass cut by altering the constants
of the coupling between the signal
rectifier and the first AF stage.
In the fourth position the bass
is restored and negative feed-back
is introduced from the secondary
of the output transformer.

Performance.—The accuracy
of calibration of station settings
on the short wave ranges was the
first point to be investigated. Each
station is marked by a small
rectangle, the size of which varies
according to space occupied by a

Circuit diagram of the Pye Model 906.
The aerial input transformers are separ-
ately adjusted for image suppression
on each waveband.

some additional form of image sup-
pression was called for. The method
adopted takes the form of top-end
capacity coupling in the aerial input
transformer adjusted in opposition to
the magnetic coupling on each wave-
band. Strictly speaking, the balance
is for one frequency only, but in
practice the cancellation is effective
over a considerable part of the band.
Pye "International" Model 906—

As far as sensitivity and signal-to-noise ratio are concerned, the performance is equal to that of many sets with an RF stage before the frequency changer. Certainly it is vastly superior to the "all-wave" sets of a year ago with an equivalent number of valves. The set speaks with a directness of utterance which leaves no doubt as to whether any particular station is working or not. With the clearly arranged dial and push-button wavrange selection it is but the work of a moment to switch to another channel if one's favourite station is not coming over as it should. The necessary overall amplification is there on every range, including the 13-metre, and given a normal aerial system any signal above the prevailing background will be received with certainty.

Much of the high performance is due to the careful design of the tuned circuits and the image suppression is very satisfactory. One or two whistles of variable pitch indicated the break through of powerful CW transmissions on the higher wavebands, but repeat tuning points on broadcast transmissions were absent on all wavranges.

The absence of a tuning indicator was at first deplored, but subsequent experience showed it to be unnecessary. The tuning is so open and the scale so clearly marked that one instinctively tunes accurately by coordination of eye and ear. The open tuning does not reveal any serious temperature drift during the warming-up period.

There is a considerable drop in amplification when the "High-Fidelity" setting of the tone control is used, but after compensating for this with the volume control one can go to a much higher level without provoking distortion.

By alternating between these two positions of the tone control the properties of negative feed-back can be very conveniently demonstrated.

Constructional Details.—The push buttons for wavrange selection are moulded in a translucent material which is illuminated from a general

WAVERANGES

<table>
<thead>
<tr>
<th>Waverange</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 M</td>
<td>13.7-14.2 metres</td>
</tr>
<tr>
<td>16 M</td>
<td>16.5-17.1 metres</td>
</tr>
<tr>
<td>19 M</td>
<td>19.3-20.1 metres</td>
</tr>
<tr>
<td>25 M</td>
<td>24.8-25.8 metres</td>
</tr>
<tr>
<td>31 M</td>
<td>30.6-31.9 metres</td>
</tr>
<tr>
<td>49 M</td>
<td>45-50 metres</td>
</tr>
<tr>
<td>Medium</td>
<td>180-560 metres</td>
</tr>
<tr>
<td>Long</td>
<td>550-2000 metres</td>
</tr>
</tbody>
</table>

Wireless World

NOVEMBER, 1939
Pye "International" Model 906—

internal source when any given but-
tton is depressed. Normally the light
is excluded by a felt ring between the
base of the push button and the
escutcheon plate.

With electrical band-spread tuning in
the short-wave ranges the reduction
ratio of the tuning control has been
kept the same as that nor-
ally required for medium and
long waves. Rapid movement from
one part of the scale to another is
facilitated by a flywheel incorpo-
rated in the control mechanism. This has
just the right inertia and gives a very
pleasant "feel" to the control with-
out any tendency to overshoot.

Summary.—The ability to see the
whole wavelength spectrum and
one's position in it at a glance is an
advantage which, once experienced,
one is not likely to forget. Backed
by high circuit efficiency down to
the lowest wavelengths this feature
will ensure for the Pye " Inter-
national" a high place in any selec-
tion list of S.W. " specials."

Makers: Pye, Ltd., Radio W rks
Cambridge.

Self-contained Petrol Electric
Generators

A WIDE selection of "Pioneer"
portable lighting plants, ranging
in price from £11 to £100, is available from the British Motor Boat Manu-
facturing Co., Ltd., Britannia House,
Ampthor Street, London, W.C.1. These units, which in general have a
very low weight-to-power ratio, are
suitable for battery charging and for
230-volt AC supply for PA installa-
tions where mains are not available.

The " Blue Diamond" model gives
300 watts AC at 230 volts and 250
watts DC at 12 volts, and weighs less
than 100lb. Its overall dimensions
are 19½in. x 14in. x 14½in., and the price
is £27 10s.

Battery SW Converter

ADAPTING AN AC DESIGN

A READER who uses a small bat-
tery superheterodyne for broad-
cast reception requires a converter for
short-wave listening and asks if it
would be possible to modify the
Three-Range Short-Wave Converter
described in our issues of April 9th
and 16th, 1937, so that it could be
used with his set.

The converter in question was de-
signed for AC sets, but there is no
reason why the same general idea
should not be employed with a battery
frequency changer in place of the AC
valve used in the original model.

A Marconi or Osram X23 should
function quite satisfactorily if a few
modifications were made, and these
are indicated in the circuit shown
here.

The coils, switching and the same
form of construction can be adopted,
but where resistances and condensers
of different value are needed they are
given RX or CX numbers. Elsewhere
the component markings as appeared
in the original circuit are retained.

Though the sequence is not con-
tinuous, this will facilitate following
the original circuit.

It will be noticed on comparing the
circuit here and the original one that
the grid resistance R1 is shown dotted
as it might be possible to dispense
with it. Alternatively, a resistance of
about 3 to 10 ohms made up from a
few inches of resistance wire wound on
a match stick could be inserted in the
screen-grid lead of the valve between
the point marked Y and the valve-
holder socket. R1 was included to
suppress what appeared to be parasitic
oscillation in the valve, but a screen-
grid resistance inserted between the
valve pin and the by-pass condenser
has subsequently proved a more satsis-
factory remedy. It is,

of course, not always
necessary.

The damping resis-
tances across the oscil-
lator coils L8 and L9
are omitted, but they
may have to be rein-
stated if the oscillator
RF volts are found to
exceed the optimum
value for the X23.

The unit could be
simplified by omitting
the convenience of
waveband switching
and using plug-in coils,
and provided coils with
inductance the same as
the originals are fitted the by-passing con-
densers C12, C13 and
C14 will not require to
be changed. These
condensers would, of

course, be embodied in
the plug-in coil.
CHANGES IN B.B.C. CONTROL
Transfer of Charter Powers: Two Governors Instead of Seven

Sweeping changes in the control of the B.B.C. have been introduced in the past few weeks.

First, the powers held by the Postmaster-General under the Charter and Licence of the B.B.C., other than those relating to technical matters affecting wireless traffic, have been transferred to the Ministry of Information. This transfer, however, does not alter in any way the relations between the Government and the Corporation and, moreover, the Minister of Information has no power to interfere with the discretion of the Corporation in its choice of entertainment programmes.

The second change was the reduction of the number of Governors from seven to two, provision for which is contained in the Charter.

In announcing these changes in the House of Commons on September 28th, Mr. Chamberlain said: "The new arrangements do not alter the structure or constitution of the Corporation, and the interests of listeners and accepted principles of broadcasting policy will be fully safeguarded. In respect of censorship and the news, the Corporation is in the same position as the Press."

The powers transferred to Lord Macmillan, Minister of Information, though not extensive, include the power to prescribe broadcasting hours and to veto any broadcasting matter which is not in the public interest. The transfer also relates to the possible control of the service in emergency.

The two Governors now constituting the Board are Sir Allan Powell, who was appointed chairman in March this year, and Mr. C. H. G. Mills, vice-chairman since 1937.

The appointment of the remaining five governors was terminated by Order in Council as from September 5th, although it was not announced until September 27th. The retiring Governors and the dates of their appointments are: Mr. H. A. L. Fisher, 1935; Caroline, Viscountess Bridgeman, 1935; Captain Sir Ian Fraser, 1936; Mr. J. J. Mallon, 1936; and Miss Sara Margery Fry, 1938.

Sir Samuel Hoare, Home Secretary, in reply to criticisms of the changes, said, in the House of Commons on October 11th, "There was a question at one time whether the Government in wartime should take over the B.B.C. altogether. It was felt, however, that the relations between the Government and the B.B.C. should be substantially the same as in peace-time."

"Of their own volition the Board agreed that the powers during wartime should be delegated to the chairman and vice-chairman. It was simply a matter of efficiency, and to avoid delay."

RELAY EXCHANGES
Land Lines to B.B.C. Studios

The possibility of linking radio relay exchanges by land lines to B.B.C. studios has for some time been under consideration by the Post Office.

Under present conditions the Post Office sees no prospect of being able to provide lines to provincial relay exchanges generally or on any considerable scale, although it may be able to meet individual applications from exchanges which are situated in close proximity to a B.B.C. studio.

The rent for the lines would have to be calculated separately in each case, and would approximate to the ordinary private wire tariff, with special consideration to any case where a line served more than one exchange.

The Post Office has already provided emergency lines for certain of the London relay companies, and has authorised Western Wireless Relay to negotiate with the B.B.C. regarding the provision of a connection with the nearest studio.

It is emphasised by the Post Office that any action taken at this stage must not be regarded as prejudicing in any way the general question of providing land lines between relay exchanges and B.B.C. stations, under special provisions in regard to rental, which has been the subject of discussion between representatives of the relay industry and the Post Office.

COLUMBIA'S FREQUENCY-MODULATED TRANSMISSIONS
Major Armstrong's Station to be Used

Interference-free, distortionless, realistic reception of the Columbia Broadcasting System's evening programmes are now made available to New Yorkers who have frequency-modulation receivers. The transmissions are on 42.8 Mc/s from W2XMN, Alpine, N.J., the 40-kW station of Major Armstrong, who is Professor of Electrical Engineering at Columbia University and inventor of the F-M system of transmission.

Announcing this arrangement, the C.B.S. gives for its less technical listeners a description of the system.

"Boiled down to essentials, the difference between present-day amplitude-modulated broadcasting and Major Armstrong's frequency-modulation could be likened to the difference between a searchlight operated with and without a shutter. Columbia's WABC operates like a searchlight beamed on a listener's home, the beam staying continually on 860 kc/s while the intensity of the light changes constantly as if actuated by a shutter.

"In Major Armstrong's method (if likened to a searchlight's beam) the intensity of light remains constant while the beam swings continually to the right and left of the frequency on which it operates."

It is pointed out by C.B.S. that frequency-modulated transmission cannot be used in the medium-wave band because it requires a channel width 20 times greater than ordinary amplitude modulation.

SWISS BROADCASTING
Radio-Nations

Although it is understood that the convention between the Swiss Government and the League of Nations regarding the short-wave station, Radio-Nations, at Prangins, provides for the League taking over the station at a time of crisis, this has not been done. At present, the station which is normally operated by the Swiss Broadcasting Company with special times for League transmissions has, like all the Swiss stations, been taken over by the Ministry of Posts and Railways.

The Swiss broadcasting service is now conducted from three main studios—one for each of the three language-region transmissions.
The B.B.C.'s Home Service

Sir Noel Ashbridge Replies to Critics

Whilst some of the criticisms of the B.B.C. and its wartime activities (or inactivity) have been justified, others have been purely for want of thought.

Speaking from the technical aspect of the B.B.C.'s home service, Sir Noel Ashbridge recently said that it was known before the single-programme scheme was put into operation that certain districts would suffer. Actually, from ten to twenty per cent. of listeners were getting poor reception due to fading and distortion.

The single programme service was not the B.B.C.'s idea, but was introduced at the instigation of a Government department "in the interests of national security."

Sir Noel said: "I would certainly not go so far as to say that it will not be possible to devise some means of giving a better service to listeners—we are working on possibilities. An alternative programme, however, is not at present contemplated."

The only answer he was able to give to many of the questions put to him was that the steps had been taken "for reasons of national security."

American International Short-Wave Stations

Listeners to American international short-wave stations are experiencing some difficulty in identifying them owing to the changes recently made in the call signs. In some cases they have been changed twice in the past six or eight weeks.

To clarify the position we are publishing below a list giving the old and new call sign, together with the frequencies allocated and the authorized power of each station.

Air Ministry Technical Staff

It may not be generally known that civilians with high technical qualifications may still apply for commissions to serve as Signals Officers in the Royal Air Force. Applications, marked "For the attention of Signals (A)." should be sent to the Under Secretary of State, Air Ministry, Kingsway, London, W.C.2.

Demountable Triode Valves

The electrode assembly of the new demountable triode valves of the continuously-evacuated type which have been developed by the General Electric engineers at Schenectady for the Company's 100-kW short-wave station WGEO. Whilst the B.B.C. uses large demountable screen-grid valves for some transmitters, the new American triodes are the largest of their kind in the world.

B.B.C. European News Bulletins

The B.B.C. is now maintaining two overseas services—the world service operating for 22 hours a day and the European service, which operates for 19 hours.

The service intended for Europe is broadcast between 5.57 a.m. and 5 p.m. G.M.T. on GSW 7.23 Mc/s (41.49 m.) and GSE 11.86 Mc/s (25.29 m.) and between 5.17 p.m. and 2 a.m. on GSA 6.05 Mc/s (49.59 m.) and GHX 9.69 Mc/s (30.96 m.). Between the hours of 6 p.m. and 2 a.m. all transmissions, except the news bulletins in English, are also radiated on 261.1 metres.

The following list gives the times (G.M.T.) of the bulletins which are broadcast, according to the time of day, on the frequencies given above:—

English.—12.30, 6.15, 8, 9, 10.45, 11.30 a.m., 1.15, 4, 5.30, 7, 10, 11.30 p.m.

French.—12.15-12.30; 7.15-7.30; 9-9.15; 11.45 p.m.—(midnight).

Italian.—12.45-1.15; 2-2.15; 4.45-5 p.m.

Spanish.—7.15-7.45 p.m.

Portuguese.—12 (midnight)-12.15; 1.15-7 a.m.; 11.15-10.45 p.m.

German.—7-9.30; 10-11.30; 1-2.15; 3-4.45 p.m.

Rumanian.—8-9.45 p.m.

Serbo-Croat.—8.45-9.45 p.m.

Magyar.—8.45-9.45 p.m.

AMATEURS

Experimental Work to Continue

In a message from the Council of the Radio Society of Great Britain to its members it is recommended that they should, as far as circumstances permit, carry on with experimental work within the terms of their normal receiving licences. In particular, it is hoped that members will endeavour to correlate information concerning general conditions so that a monthly summary may be recorded.

With the suspension of the autumn and winter R.S.G.B. meetings, which are normally held at the I.E.E. in London, it has been decided to discontinue for the duration of the war the special London fee of £1 and to institute a flat rate annual subscription of 15s. for the whole country; the overseas subscription remains unchanged at 12s. 6d.

R.S.G.B. members serving with the armed forces are "for the duration" to pay a reduced annual subscription of 10s. Mr. A. E. Watts, President of the Council, in a message to members with the forces says: "To you in particular offer you individually good luck and..."
Current Topics—

God speed. May the ‘ham spirit’ which you have helped to create see you through your darkest moments.'

BROADCAST TELEVISION LECTURES

Weekly lectures on television have been given by Dr. C. Davis Belcher from the World Wide Broadcasting Foundation’s short-wave station, WRUL (ex WtXAL) since September 18th.

The lectures have covered the latest developments in the fields of transmission and reception. The last two of the series, which will be given on Mondays, October 23rd and 30th, will cover ultra-high frequency characteristics and television receiving aerials. Initially radiated on 6.04 Mc/s at 10.30 p.m. G.M.T., the lectures are repeated on Tuesdays at 2 a.m. on 11.73 Mc/s and again on Fridays at 8 p.m. on 11.79 Mc/s.

U.S.A. TELEVISION REPORT

Some delay in the correlation of data regarding propagation and transmission characteristics of the frequencies allocated to American television transmitters has created complications in the drafting of the television report. A committee of the Federal Communications Commission which should have been presented by September 1st.

It is learned from our American contemporary, Broadcasting, that the findings of the engineering committee of the American Radio Manufacturers’ Association is awaited, for it is felt that it will indicate more or less conclusively the dependable service areas of present stations. This will then determine the distances which must separate television stations using the same frequencies.

FROM ALL QUARTERS

Emergency Addresses

To avoid any delay by inaccurate addressing of correspondence, we would point out that whilst the Marconi Company has, as stated in our issue of September 28th, moved to Great Baddow, the British Licensing Pool is still operating from the Marconi offices, Electra House, Victoria Embankment, London, W.C.2.

Two additions to the lists published in our issues of September 14th, 21st and 28th are given below:

NEWS IN ENGLISH FROM ABROAD: Regular Short-Wave Transmissions

<table>
<thead>
<tr>
<th>Country</th>
<th>Station</th>
<th>Mc/s</th>
<th>Metres</th>
<th>Daily Bulletins (G.M.T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNBH (Bound Brook)</td>
<td>17.78</td>
<td>10.87</td>
<td>3.0 a.m., 5.0, 6.0.*</td>
<td></td>
</tr>
<tr>
<td>WRCA (Bound Brook)</td>
<td>17.78</td>
<td>10.87</td>
<td>5.0 a.m., 6.0.*</td>
<td></td>
</tr>
<tr>
<td>WCBX (Wayne)</td>
<td>11.83</td>
<td>25.25</td>
<td>4.0 a.m.</td>
<td></td>
</tr>
<tr>
<td>WGEK (Champaign)</td>
<td>9.33</td>
<td>25.25</td>
<td>2.00, 9.30, 10.30.</td>
<td></td>
</tr>
<tr>
<td>WGEA (Champaign)</td>
<td>15.27</td>
<td>19.65</td>
<td>9.00, 6.0.</td>
<td></td>
</tr>
<tr>
<td>WPTT (Pittsburgh)</td>
<td>11.87</td>
<td>25.25</td>
<td>4.0 a.m., 11.45.</td>
<td></td>
</tr>
<tr>
<td>WCAB (Philadelphia)</td>
<td>6.06</td>
<td>49.05</td>
<td>3.30 a.m.*</td>
<td></td>
</tr>
<tr>
<td>WRUL (Boston)</td>
<td>6.94</td>
<td>49.07</td>
<td>4.0.</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2R9D (Rome)</td>
<td>9.61</td>
<td>31.05</td>
<td>12.30 a.m., 6.18.</td>
<td></td>
</tr>
<tr>
<td>I2R40</td>
<td>11.81</td>
<td>25.40</td>
<td>12.30 a.m., 11.0 a.m., 4.0.</td>
<td></td>
</tr>
<tr>
<td>I2R68</td>
<td>15.30</td>
<td>19.61</td>
<td>12.30 a.m., 9.45 a.m., 4.0.</td>
<td></td>
</tr>
<tr>
<td>I2R89</td>
<td>17.82</td>
<td>16.83</td>
<td>11.0 a.m.</td>
<td></td>
</tr>
<tr>
<td>I2R99</td>
<td>9.61</td>
<td>2.00</td>
<td>9.30, 11.0 a.m.</td>
<td></td>
</tr>
<tr>
<td>I2R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBN (Paris-Mondial)</td>
<td>15.13</td>
<td>19.83</td>
<td>8.15 a.m.</td>
<td></td>
</tr>
<tr>
<td>TPB1</td>
<td>7.26</td>
<td>41.21</td>
<td>7.0.</td>
<td></td>
</tr>
<tr>
<td>TPB2</td>
<td>19.88</td>
<td>22.43</td>
<td>11.0 a.m.</td>
<td></td>
</tr>
<tr>
<td>TPB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPB4</td>
<td>11.78</td>
<td>25.25</td>
<td>3.0 a.m., 8.15 a.m., 7.0.</td>
<td></td>
</tr>
</tbody>
</table>

*All times are p.m. unless otherwise stated. * Saturdays only. † Sundays only.

Wireless World

Slovens’ Pre-Tuned Sets

It is reported that Slovakian listeners have been ordered to have their sets pre-tuned for listening to Slovakian and German transmitters only. The cost is to be borne by the listener.

Mr. F. R. W. Strafford

Formerly chief research engineer of Belling and Lee, Ltd., Mr. F. R. W. Strafford has been appointed technical manager of the Company.

Radio in Malaya

The first Malayan all-radio exhibition was held in a Chinese amusement park in Singapore a short time ago, and it is interesting to recall that the General Electric Company were encouraged by the preference for all-British receivers. The public were initiated into the secrets of broadcasting through an exhibition by the British Malaya Broadcasting Corporation, which consisted of an open studio from which actual transmissions were broadcast.

Wireless Engineers’ Register

The British Institution of Radio Engineers is compiling a register of those having qualifications fitting them for national service in the wireless branches.

In Lighter Vein

Under the heading “Preservation of National Monuments,” a cartoon in a French paper depicts two little gutter urchins staring up at the Eiffel Tower with one of them asking the question, “Wonder how many sandbags will be required for that?”
Unbiased

By FREE GRID

Great Oaks . . .

It seems somewhat strange at present to see *The Wireless World* as a monthly again as it started life way back in 1911, nearly thirty years ago. It has reminded me rather forcibly of the time when I first became acquainted with the journal, which was rather more years ago than I care to remember. I recollect that I came into contact with it very suddenly, and very violently, as I was rounding the corner of a passage at school, and collided with the librarian, who was staggering along with a pile of books, on the top of which was a volume of this venerable journal. The outcome of the collision was the upsetting of the pile of books, with the result that the weighty words of the Editor descended heavily on to the top of my skull, making an impression on it which has lasted to this very day.

By such small and apparently trivial happenings are our destinies guided, for it is by no means impossible that, had not wireless and *The Wireless World* occurred—incidentally, as momentous as the apple which fell on the head of Sir Isaac Newton—I might never have interested myself in wireless at all; I might, in fact, have become a High Court Judge, or a fish and chip merchant, serving our National Press by providing it with precious bon mots with which to fill its columns, or serving it by using the aforesaid columns to wrap up my piscatorial wares.

Officialdom Run Riot

However, I digress. What I set out to talk to you about was wireless and carrier pigeons, and I propose, by special favour of the Ministry of Information, to give you a few details concerning some work I have been contemplating doing for the Government. I am, unfortunately, forbidden by the censor to tell you what carrier pigeons do for a living, but probably some of the more intelligent among you may guess. There have, I regret to say, been severe casualties among them, owing to the lack of co-operation among certain Government Departments.

Although you will, I know, scarcely credit it, in the development of its (CENSORED), not one Government official thought of the idea of putting corks on the anchor wires so that the pigeons could see them. The result I must leave to your imagination. Even now, when so much havoc has been wrought in the pigeon world, nothing has been done, simply because some purblind official at the Ministry of Supply refuses to release the necessary quantity of corks without the proper requisition form being filled up, and as no such forms exist there is a complete deadlock.

I would take it upon myself to ask you to send me all the corks you can lay your hands on, but, unfortunately, as I know to my cost, most of the readers of *The Wireless World* are teetotallers, and so there is no hope in that quarter. Probably, however, some of you may remember in the far-off days of peace a lot of correspondence in *The Wireless World* on the influence of wireless waves in diverting carrier pigeons. I have, therefore, set myself to the task of experimenting with wireless and carrier pigeons, my basic idea being to connect the anchor wires of the (CENSORED) to a powerful wireless transmitter in order to deflect the course of the birds and prevent their crashing into them. There is at present one great snarl, and that is, although it seems scarcely credible in view of the dire urgency of this problem, I find myself unable to get the necessary permission to experiment with the anchor wires of the (CENSORED). Can any of you who have any influence with the Government use it now to help in checkmating this amazing piece of official stupidity?

Daisybell Up to Date

I HAVE just completed the installation of *The Wireless World* battery stand-by receiver for use in case of a possible temporary mains failure. I am, however, very far from happy in my mind concerning the question of electric shaving. As I recently told you, I have felt it my duty to support the electrical industry by adopting this method of shaving, but the electrical industry don't seem to have thought it their duty to support me by providing me with some means of getting a power supply for my razor should the mains fail. I can, in fact, stew in my own juice so far as they are concerned, for they are...
not moving a finger to supply any emergency juice for me. I had thought at first of using an HT battery, but I find that this is quite impossible. Most of these devices take 10 watts, and are 100-volt instruments operated, in the case of 200 volts mains, in series with a suitable resistance. Now there is, unfortunately, no getting away from Ohms law, and 10 watts at 100 volts means 100 milliamperes, and no HT battery will stand up to the strain.

Fortunately, I recollected details being published in *The Wireless World* some time ago of a novel method by which power is obtained in certain parts of Africa for a transportable wireless transmitter. Two coloured gentlemen sit astride of what is virtually a bicycle made for two, without any wheels. A generator is mounted in its framework, and the pedalling efforts of the coloured gentlemen are transmitted to it.

No sooner had I thought of this idea than I salied forth to get a bicycle made for two, but, believe me, it was a far more difficult job than you might imagine. In these days of spy-mania the very nature of my enquiry, namely a bicycle for two, without any wheels, aroused suspicion. In the end I had to buy a pulka tandem bicycle with wheels. Having got the thing rigged up with great expenditure of time and labour, it suddenly occurred to me that I lacked the necessary two coloured gentlemen. I thought that after my previous experience it would sound altogether too suspicious if I made the round of the shops and labour exchanges in search of these, and I have, therefore, had to adopt press-gang methods with regard to Mrs. Free Grid and her sister, who is staying with us.

Naturally, I have been practising with the apparatus but I cannot say that at present things are going altogether smoothy. Mrs. Free Grid seems to have absolutely no idea of smooth and even pedalling, with the result that at one moment the razor nearly stalls and at the next moment the voltage rises to a dangerously high value, causing the razor to make a noise like an aero-engine and exciting the suspicion of passers-by.

Antiphase A.R.P.

It seems to me an extraordinary thing that in this super-scientific age in which we live, such crude and unscientific methods are being used to bring about a general black-out.

Our present methods were undoubtedly employed by our cave-men ancestors as a means of protecting their dwellings from the nightly raids of the pterodactyl and similar monsters which infested the air in prehistoric times. Evidence of this was long ago discovered by an old friend of mine who occupies the chair of Palaeoethnology at one of our most ancient seats of learning. He even discovered evidence of a primitive kite-barrage designed to entangle the wings of the marauding pterodactyl.

I am at present engaged in perfecting a method of tackling the black-out problem which is worthy of our present-day scientific age. Now you are probably aware of what I mean when I talk of the floodlighting of buildings. It may seem rather foolish of me to make this remark, but if this war goes on for the length of time which Mrs. Free Grid evidently anticipates, judging by her preparations, we shall eventually find ourselves faced by a distinct difficulty when our great grandchildren usurp the prerogative of a High Court Judge and ask us "What is floodlighting?"

However, at present, at any rate, we all know what floodlighting means, and let us hope that by this time next year we shall be enjoying it again. I will warrant, however, that few of you know what "flood-darkening" means, and yet it is very simple. Light consists of ether waves, differing only in length from wireless waves. Although both light and wireless waves are pressure waves, it will be convenient for the purpose of my explanations if we consider them as surface waves such as we see at the seaside, and as are illustrated in our wireless text-books. Now if you imagine one of these text-book diagrams of a simple sine wave it will be obvious to you that if we could only start off a wave of light which was lagging or leading the original wave by 90 deg.—or to put it more simply, was 90 deg. out of phase—we should exactly cancel the original wave, and darkness would result.

It is my problem, therefore, to discover a means of generating light waves which are exactly 90 deg. out of phase with the light of the sun or any of our artificial sources of light, and we shall then be able to cover the land with a mantle of perpetual darkness by day and by night and have done with our present primitive and trumpery black-out methods.

There is only one snag, and that is this. If light waves can be cancelled by the generation of waves 90 deg. out of phase with them, so also can wireless or even sound waves. If the enemy got hold of the idea, therefore, he could at once put the B.B.C. out of action—not a bad thing in the case of some of their efforts—but what is far more serious he could effectively silence our sirens. You will understand, therefore, that I cannot possibly publish the technical details of any discovery that I make in this matter.

![Forced labour.](image-url)
Directional Reception
A "STEERABLE" SHORT-WAVE AERIAL

By CHARLES R. LEUTZ

Radio receiver design has advanced so far during the past few years that maximum receiving range is no longer a matter of receiver sensitivity. The received signal must exceed the local noise level in strength, otherwise added receiver sensitivity cannot be used effectively.

An increase of received signal strength can invariably be obtained by using more efficient aerial arrays. An array highly effective in one direction not only gives increased strength to the desired signal, but also simultaneously eliminates interference in all the other directions.

Many of the directional doublets in use to-day are only effective in two directions. A more flexible arrangement of directional antenna control is shown in the attached drawing, Fig. 1, in which it is possible to obtain efficient reception in practically any direction desired and to exclude interference from all other directions. The system consists of four separate "V" aerials, viz., NN'E'E, EE'S'S, SS'W'W, and WW'N'N. Each elevated wire is tapped off 5' from the common centre, making each pair of wires about 10' apart at the lead-in point.

In addition to the four "V" aerials described, the system provides two "V" doublets, NN'S'S and WW'E'E, which may be used separately or jointly. Ordinary doublets when used with matching stubs are also limited in frequency response. To spread the frequency response, the "V" type lead-in is used, and provides "V" doublets usable in the combinations shown in Fig. 2.

The characteristic impedance of the "V" lead-in is high at the aerial connections, corresponding to the doublet impedance. At the low end of the "V" lead-in the characteristic impedance is low, and approximates to that of the transmission line. Accordingly, an efficient match is obtained between the doublet and transmission line, resulting in smooth transfer of signal energy from the doublet to the transmission line over a wide range of frequencies. An antenna designed for 20 metres will be efficient at all harmonics of that frequency; and with the special lead-in arrangement very satisfactory reception is obtainable over a wide range of intermediate frequencies.

The range and reliability of short-wave broadcasting have been greatly extended by directional transmission; the application of similar principles to reception gives in many circumstances an appreciable improvement in signal/noise ratio.

The range and reliability of short-wave broadcasting have been greatly extended by directional transmission; the application of similar principles to reception gives in many circumstances an appreciable improvement in signal/noise ratio.
Directional Reception—
At the receiver end the transmission lines are connected to four single-pole, four-way switches as shown in Fig. 1. This switch control panel permits the selection of any one of the 16 "V" doublet or aerial arrangements, as shown in Fig. 2. In addition, the unused elevated aerial elements may be either grounded or left "floating" free for possible parasitic reflector effects, for either increasing signal strength or eliminating interference. A single-pole single-throw switch allows the earthing of one side of the doublet input coil to allow using any or all aerial wires as an ordinarily non-directional collector.

Employing Directional Properties
This flexible aerial arrangement is a valuable addition to any DX receiving station. For example, when a desired signal is first detected, adjustment of the aerial control switches will invariably give an immediate increase of signal strength which in turn allows the receiver to be more easily tuned. In a similar manner, manipulation of the switches alone will often eliminate interference that otherwise could not be accomplished with the receiver alone.

Some receiving stations may be so geographically located that reception from a few certain directions is the most important consideration. Fig. 3 shows a system consisting of three adjacent "V" aerials, which with the switching arrangement will provide reception from five principal directions. In this example the elements are separated 50 degrees and accordingly the elevated wires should each be four times the principal wavelength. Where space is limited, the separation can be made 65 degrees, in which case each wire should be three times the principal wavelength in length. In all cases the same converging "V" lead-in arrangement is used, the lead-in dimensions being as shown in Fig. 1.

The transmission line itself should be good quality rubber-covered copper wire. A twisted pair of No. 14 SWG rubber-covered wires varies in impedance between about 65 to 170 ohms. The receiver input inductance should, of course, match the transmission line.

"The Trader Year Book"
It is announced by The Wireless and Electrical Trader that the state of war, which is producing all kinds of changes in factory production, addresses of suppliers, and so on, makes it impossible to produce an up-to-date directory for radio and electrical trades in time for the autumn and winter season, and for that reason publication of the 1940 edition of "The Trader Year Book" (which would have taken place in October) has been cancelled.

A number of the Year Book reference features will be incorporated in the weekly issues of The Wireless and Electrical Trader as opportunities present themselves.

INDEX AND BINDING CASE
This, our first monthly issue, starts a new volume of The Wireless World. The index for Volume XLV, July 6th to September 28th, 1939, will shortly be available from the Publishers, Dorset House, Stamford Street, London, S.E.1, price 4d., post free, or with binding case, price 3s. 1d., post free.

NOVEMBER, 1939
Letters to the Editor

THE EDITOR DOES NOT NECESSARILY ENDORSE THE OPINIONS OF HIS CORRESPONDENTS

An Appreciation

It is reassuring news that we are not to be deprived of our mental pabulum, although we are to have our rations monthly instead of weekly in future. For many readers the perusal of The Wireless World is one of the few remaining links with normality, and so the cessation of its publication is unthinkable. I, for one, shall continue to purchase it regularly until taxation and other imposts rise to 20s. in the pound!

Torquay, Devon.

DONALD W. ALDOUS.

Lessons from the Last War

I READ with great interest your Leader on "Wireless Personnel and the War" in your September 21st issue, as I was without doubt one of the insufficiently trained men of the last war to whom you refer. The cap fits me exactly.

After a few weeks' study at a wireless school, in which I had no practice whatsoever in the actual reception of wireless signals, I went before the G.P.O. examiner and duly obtained a First-class P.M.G. certificate. Four days later I was appointed sole operator on a large cargo steamer which had just been fitted with wireless for the first time, and which sailed almost immediately for the Mediterranean.

I was still in the position of never having heard an actual wireless signal in my life, and I well recollect my dismay when the captain intimated to me that he would expect to have on his breakfast table a complete copy of the Press bulletin which was sent out nightly by Poldhu. At that time Poldhu was merely a name to me, and, in addition to my ignorance concerning his call-sign, I was unaware of either his wavelength or the hour at which he sent out his Press bulletin.

Unfortunately, as the ship was newly fitted with wireless, I could gain no help by referring to the wireless log book of the preceding voyage, but, happily, by a diligent search among the "literature" supplied to me, I discovered these very necessary facts.

I was now confronted with a further difficulty. Whereabouts on the giant "red of cotton" receiving inductance was 2,750 metres, and what would Poldhu's signals sound like if I were fortunate enough to hear them? Would they be overwhelmingly loud, like the artificial practice signals I had been accustomed to at the wireless school, or should I have to strain my ears to catch them? And how was I to adjust the crystal, as I had never handled one before, having been trained on a magnetic detector? Would Poldhu send far too rapidly for me to cope with in my present nervous condition, thus leaving me to face the wrath to come at the captain's breakfast table in the morning?

I shall never forget the sense of relief—to say nothing of the thrill—I experienced that night when I managed to pick up the clear and long-drawn-out CQ call sent out by MPD. I very soon had my receiver adjusted to maximum efficiency, with the result that in the morning the captain looked upon me as a hardened and experienced operator; at least, he probably would have done had I not had the misfortune to be violently sea-sick at the breakfast table.

"SPARKS."

Wireless Thrills

YOUR contributor "Diallist," writing in a recent issue, implies that the biggest thrill he has had out of wireless was the hearing of transatlantic broadcasting. The early short-wave telephony transmissions from KDKA did, I suppose, mark a definite stage in wireless development for many of us, but I personally found the greatest "kick" from my first triode valve receiver.

That set, built in 1919, was a crude single-valve affair consisting of a regenerative detector with plug-in coils. But its range, as compared with the magnetic and crystal detectors and Fleming diodes to which I had been accustomed, was truly phenomenal. The whole world of wireless seemed to be at one's finger-tips, and it was hard to believe then that anything very much better could ever be devised.

"RADIOPHARE."

Musician's Lament

THE abrupt cessation of the Promenade concerts and the immediate prospects of facing the winter evenings with nothing but cinema organ and "restaurant" music is somewhat chilling to those of us who turn instinctively to the great works for spiritual sustenance in times like these.

If we cannot get enough of the real thing from the B.B.C., we must overhaul and replenish our stock of gramophone records and try to reconstruct for ourselves something of the atmosphere of "pre-war" concert-hall broadcasts. We have the requisite high-quality amplifiers and loud speakers, but where are we to look for a really first-class pick-up of straight-line characteristic and low amplitude distortion?

If we cannot trade with the enemy, and the nearest British equivalent is obtainable only by buying a complete radio gramophone, there should be a just reward awaiting the manufacturers who will produce a needle armature, moving coil, or ribbon pick-up of such design at a reasonable price.

"EUTERPE."

[Our correspondent appears to have overlooked the possibilities of piezo pick-ups of the better class.—Ed.]

Deaf Aid Adaptor

IN your issue dated September 28th, page 288, a very extensive article is published describing a Deaf Aid Adaptor.

This article might give the impression that the idea is a new one, and we feel, therefore, that you may be interested to know that we have regularly marketed practically identical equipment for the last three or four years under the trade name "Radiodente."

H. P. J. HART.

NOVEMBER, 1939
Valve-operated Smoothing Circuit

BALANCING OUT HUM

Describing an arrangement in which changes of potential that would normally produce hum are balanced out by the action of a triode valve. The method is largely independent of frequency.

It is now almost universal to employ a combination of chokes and condensers for smoothing—to use, in fact, a form of low-pass filter. Chokes in series with the HT supply and condensers shunted across it form a very satisfactory filter, for they provide adequate smoothing for most purposes and are reasonably cheap. Even for high-quality apparatus two chokes and three condensers arranged as in

![Fig. 1. Conventional two-stage smoothing circuit as used with high-quality amplifiers of moderate gain.](image)

Fig. 1 prove adequate with a normal AF amplifier of only moderate gain.

It has often been suggested in the past that the smoothing could be greatly increased by tuning one of the chokes by means of a shunt condenser C (Fig. 2). The greater smoothing would then enable the filter to be used with a higher gain amplifier, or else it would permit a reduction in the size of the chokes and condensers.

Hum Frequency

In practice, however, this scheme is not very useful. While it can occasionally be adopted, it fails for general use because mains hum does not consist of a single frequency. With the usual full-wave rectification the ripple has a principle frequency of twice the mains frequency, or 100 c/s in most cases. There are appreciable components of higher frequency, however, which can be important since the ear is more sensitive to them.

By adjusting C in Fig. 2 so that LC resonates at 100 c/s, a very large reduction of hum of this frequency can be secured, but the presence of C causes an increase in hum of other higher frequencies. If the hum in the output of an amplifier is measured by a meter which does not discriminate between different frequencies, it is quite easy to adjust C so that a big reduction of hum is indicated. When a listening test is adopted, however, it is not uncommon to find that the audible hum is greater than before, but of higher frequency. A low-pitched hum has been turned into a high-pitched one of apparently greater intensity.

The total hum has been decreased, as indicated by the meter, but the high-pitched hum has been increased, and as the ear and loudspeaker are more sensitive to it the net result is a deterioration of performance. Because of this the circuit is but little used, and it is usual to adopt the arrangement of Fig. 1.

In the case of very high gain amplifiers, such as microphone amplifiers, it is not always easy to get sufficient smoothing. In such cases considerable interest attaches to a special balancing circuit which is largely independent of frequency and which will theoretically reduce hum to zero.

The arrangement is shown in Fig. 3 and it will be seen that a valve, a condenser, and three resistances are used to replace the output condenser of the filter. Assuming linear valve characteristics and that the reactance of C is very small compared with the resistance of R3 at the lowest important frequency, the hum output is zero when the circuit is correctly balanced.

Valve Action

What happens is this. When the ripple causes a momentary rise of anode voltage this change of voltage is also communicated to the grid of the valve through C, causing the grid to become less negative. This increases the anode current and the anode voltage falls owing to the increase of current through the resistance.

![Fig. 3. The balancing circuit of which the operation is described in this article.](image)
Wireless World

Valve Operated Smoothing Circuit

The circuit is balanced the fall of anode voltage due to the change of grid potential is just equal to the rise due to the ripple on the supply and no change of anode voltage results. In other words, the change has been completely smoothed out.

The condition for balance is that the sum of \(R_1 \) and \(R_2 \) ohms should equal the reciprocal of the mutual conductance of the valve in amperes per volt \((R_1 \times R_2 = \frac{1}{g})\). \(R_2 \) is to provide bias for the valve and its value depends on the bias needed and the total current taken from the supply.

Suppose the total current, including that taken by the smoothing valve, is 50 mA and 3 volts bias is needed, while the valve has a mutual conductance of 3 mA/V. Then \(R_2 = \frac{3}{0.05} = 60 \) ohms, \(R_1 + R_2 = 1,000 \div 3 = 333 \) ohms, and \(R_1 = 333 - 60 = 273 \) ohms. The total resistance of the HT supply is increased by \(R_1 + R_2 \) and in this case there will be a loss of voltage of \(333 \times 0.05 = 16.65 \) volts.

In practice \(R_1 \) should be made variable so that an exact balance can be secured, and to suit the above example a component with a maximum value of some 500-600 ohms would be suitable. It is also necessary to take care that the valve is not overloaded by the ripple, otherwise it will introduce harmonics of the predominant ripple frequency and be open to the same drawbacks as the circuit of Fig. 2. There is probably little risk of this if a stage of normal smoothing is used preceding it, as shown in Fig. 3.

The values of \(C \) and \(R_3 \) are not critical. \(R_3 \) should be as high as possible and 0.5 megohm is a suitable value; \(C \) must be large enough in relation to \(R_3 \) to cause negligible phase shift at the lowest hum frequency. A value of 1 \(\mu F \) is quite good.

The choice of valve is not difficult. It should have a high mutual conductance in order to keep \(R_1 + R_2 \) low, a low anode current for economy, and a long grid base so that it can handle a large ripple voltage without distortion. Some of these requirements are conflicting, but if care is taken not to apply too much ripple to the valve a small AF triode is suitable. A valve of the MH4 class will usually be satisfactory.

Another advantage of the system is that the output impedance is resistive and nearly equal to \(\frac{1}{g} \), where \(g = 3 \) mA/V, the impedance is about 333 ohms. This holds at all frequencies for which the reactance of \(C \) is very small compared with \(R_3 \) and provided that the shunting effect of the preceding components, such as \(L \) and \(C_1 \), is negligible. In practice, this usually means that the output impedance is substantially constant for frequencies higher than a certain low frequency which is normally well below the mains frequency.

The output impedance is not maintained constant down to zero frequency, so that for television purposes the circuit offers little advantage in this respect over the conventional one. It can give better smoothing, however. Its greatest application probably lies in micro- phone amplifiers and laboratory equipment where the attainment of a minimum of hum is an essential requirement.

Emergency Power Plants

FROM enquiries which we have received it would appear that there is still a steady demand for petrol-electric generating sets for battery charging and stand-by lighting. Readers who are interested may be glad to know that Leslie Dixon and Co., 218, Upper Thames Street, London, E.C.4., have a stock of reconditioned generators suitable for this purpose.

We have recently inspected some of these plants, and they appear to be in excellent condition and are of unusually robust design. The engines are Stuart two-strokes, and in the Type No. 16 (150 watt) sets are fitted with a trip ignition cut-out to prevent racing on open circuit. In the Type 52 (300 watt) sets a totally enclosed governor, which can be adjusted while running, controls the engine speed. The engines are comparatively slow running, the nominal speed being in the region of 1,000 r.p.m.

The output of the 150 watt generator is 25-37 volts at 6-4 amps, and of the 300 watt type, 50-70 volts at 10-7 amp. The prices are £12 and £16 respectively.

"Nowadays," said that knowing chap Hughes,
"One can't risk ever missing the news.
So to keep my new set
On the job, you can bet—
For the wiring it's FLUXITE I choose!"

See that FLUXITE is always by you—in the house—garage—workshop—wherever speedy soldering is needed. Used for 30 years in government works and by leading engineers and manufacturers. Of Ironmongers—in tins, 4d., 8d., 1/4 and 2/6.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial—complete with full instructions, 7/6.

Write for Free Book on the art of "soft" soldering and ask for Leaflet on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE.

TO CYCLISTS! Your wheels will NOT keep round and true, unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple—with FLUXITE—but IMPORTANT.

THE FLUXITE GUN is always ready to put Fluxite on the soldering job instantly. A little pressure places the right quantity on the right spot and one charging lasts for ages. Price 1/6, or filled 2/6.

ALL MECHANICS WILL HAVE

FLUXITE

IT SIMPLIFIES ALL SOLDERING

FLUXITE LTD. (Dept. W.W.), DRAGON WORKS, BERMONDSEY, STREET, S.E.1.
Pilot "Twin Miracle" Portable

PORTABLE SUPERHET FOR BATTERY, AC OR DC MAINS OPERATION (FOUR VALVES AND RECTIFIER). Price 10 Gns.

THE best points of the two main categories of portables—battery operated sets for outdoors and AC/DC transportables for room-to-room use indoors—have been amalgamated in this ingenious receiver.

Basically it is a four-valve superheterodyne with 1.4 volt valves working off a combined HT and LT dry battery. Alternatively, it may be run off either AC or DC mains through a separate rectifier and smoothing circuits. There need be no fear of accidental misapplication of one or both sources of power, for a relay is fitted which automatically switches off the batteries and adapts the circuit for mains operation when the set is plugged into a domestic supply socket. Should the mains fail or the plug be inadvertently pulled out, the relay will automatically restore the battery circuit and the programme will continue without interruption.

<table>
<thead>
<tr>
<th>WAVERANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Long</td>
</tr>
</tbody>
</table>

Circuit—The frequency-changer, which is of the pentagrid type, is followed by a single IF stage with iron-cored coupling transformers. A single-diode-triode valve rectifies and amplifies the signal and provides AVC for the frequency-changer and IF stages. It is followed by a pentode output valve which feeds the moving-coil loud speaker.

From a technical point of view the chief interest lies in the power supply circuits. With the relay in the "battery" position everything is straightforward: the valve filaments are connected in parallel and bias for the output stage is derived from a resistance between -LT and -HT.

The relay is energised by rectified and smoothed filament current which in the first instance passes via the bottom pair of contacts to the pilot lamp. When the current reaches a predetermined value the relay armature is pulled up and the HT and LT circuits are simultaneously transferred from batteries to the mains. The valve filaments are at the same time connected in series-parallel. Starting from the relay winding the current of 0.1 amp., which has been standardised for the filament circuit, passes first through the output valve filament and then divides through the IF and second detector valve, both of which are 0.05 amp. valves. The frequency-changer, which has a similar filament rating, is shunted by a resistance of equal value to by-pass half the standard current, which then returns via the pilot lamp to the rectifier anodes.

The main HT resistance consists of the external line cord to the mains plug, and a separate vitreous en-
amelled resistance inside the set breaks down the filament voltage to the required value. Grid bias is derived from a network between the common HT negative and chassis, and due allowance is made for the fact that the output valve filament is above chassis potential. Condensers totalling 80 mfd. are used for smoothing, and all bias circuits are as liberally by-passed.

Performance.
The first tests were directed to proving the reliability of the relay and every sort of carelessness of mains failure which seems capable of interrupting the programme is a break of between two and three seconds in the supply. Under these conditions the relay still works perfectly, and there is no question of any damage to the smoothing circuits or batteries, but the rectifier is caught in a half-warmed condition, and until it regains its working temperature the balance of current in filament, HT and bias circuits is disturbed and the set momentarily ceases to function.

We mention this only as a matter of interest, for mains interruptions of such short duration are rare. In all other circumstances the change-over works perfectly with a faint click as the relay contacts go over. Switching on from cold, the set starts to work immediately from the batteries, and the change-over to mains (if the set is connected to a power point) occurs after about 30 seconds on AC and 50 seconds on DC.

With new batteries there is little difference to be noted in signal strength or quality when the set changes itself over from mains to batteries or vice versa. Deterioration of the batteries will be notified in good time by the comparison of performance which is automatically given every time the set is used on the mains.

The maximum rating of the output valve (200 mW.) is reached by most of the long-wave stations and about five Continental stations under daylight conditions. This level can, of course, be exceeded on the more powerful stations, but if it is kept within the specified limits by the volume control, quality is very good when judged by portable set standards.

The intrinsic selectivity of the cir-
Wireless World

Pilot "Twin Miracle" Portable—

The battery, which is housed low down in the cabinet, is of the combined HT and LT type, and a single 4-pin plug makes the necessary connections. It is rated to give a useful life of 200-240 hours, and the capacities are proportioned, so that the two sections run down together.

Two indicators are provided in the tuning dial. The lower one is of the shutter type and shows a red disc through which the tuning dial is viewed. This lamp does not glow until rectified current is actually flowing in the filament circuit, and its primary function is to show whether the set has been connected with the right polarity when working off DC mains. Otherwise the set might go on working for months off the battery circuit while the mains connections are not in use.

Summary.—The "Twin Miracle" receiver fully deserves the title of "universal" which has hitherto been appropriated with less justification by AC/DC sets. Economically as a battery set, it is even less expensive to run from mains, and will work for 12 hours on a unit of electricity. On the score of performance it is well up to the standard set by portables employing the latest 1.4 volt valves.

Operators for the Merchant Navy

The Glasgow Wireless College, which specialises in training students as Radio Officers for the marine service, has just issued a new prospectus. Copies are obtainable from the Principal at 3, Park Gardens, Charing Cross, Glasgow. The associated Dundee Pilot "Twin Miracle" Portable has produced a similar brochure.

Osram Peak Voltmeter Diode

A SMALL directly-heated diode has recently been introduced by the General Electric Co., Ltd., for use in direct-reading peak voltmeters. It is known as the Osram Type A 373 and is suitable for frequencies up to 300 Mc/s. For inputs above 100 volts and frequencies below 100 Mc/s readings are accurate to within a few per cent. Outside these limits calibration is necessary. The filament may be heated from a 2-volt accumulator and takes 1.6 amp at 1.8 volts. The total emission is 3 mA, and the anode-filament capacity is 0.5 micro-mfd. The valve is 16 mm. in diameter and 70 mm. overall in length. It is fitted with a standard S.E.S. screw base and top anode cap. The price is £3.

"Rotaceptors"

EFFICIENT CONVERSION OF DC TO AC

The machines marketed under the above name were developed originally for operating neon signs from batteries. The principle of operation is a synchronous rotary interrupter in conjunction with a transformer, special attention having been given in the design to the attainment of constant speed and hence of frequency. Recently the principle has been modified to give improved waveform and an output which is a close approximation to normal 230-240-volt AC supplies.

The "Rotacceptor" machines, while possessing the reliability of armature-wound commutator machines, are far less bulky. The rotor is either a laminated or cast-iron flywheel running on oil bearings. A commutator on the same spindle operates in conjunction with brushes housed in the aluminium outer casing. The brushes can be removed for inspection or replacement from the outside. There are no windings on the rotor and the field is generated by a single coil wound on a two-pole laminated core.

The motor speed is controlled by the position of the commutator relative to the rotor poles, and is fixed to give 50 cycles in the machines mentioned below. For other purposes frequencies from 25 to 500 cycles may be provided.

Waveform is also under control and is determined by the use of small high-capacity reversible electrolytic condensers connected in parallel with the primary winding of the step-up transformer and the motor field winding. At each current interruption of the direct current the discharge of the condenser, together with the collapse of the magnetic field in the rotor, completes a full-wave cycle in the primary AC circuit.

This feature of the design also ensures correct commutation and the elimination of sparking at the brushes. Furthermore, any appreciable DC component is prevented from flowing in the transformer primary winding. It is claimed that efficiencies as high as 83 per cent. have been obtained.

The G-type "Rotaceptors" for use with 6- or 12-volt accumulators are as follows:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>DC Input</th>
<th>AC Output</th>
<th>Max. Wattages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. 6/50</td>
<td>8</td>
<td>220/240</td>
<td>60</td>
<td>6 0 0</td>
</tr>
<tr>
<td>G.12/50</td>
<td>12</td>
<td>220/240</td>
<td>60</td>
<td>6 0 0</td>
</tr>
<tr>
<td>G. 6/100</td>
<td>6</td>
<td>220/240</td>
<td>100</td>
<td>7 10 0</td>
</tr>
<tr>
<td>G.12/100</td>
<td>12</td>
<td>220/240</td>
<td>100</td>
<td>7 10 0</td>
</tr>
</tbody>
</table>

The weight of these machines is only 64 lb., and the dimensions 53 in. by 51 in. Enquiries should be addressed to Technical Inventions, Ltd., Terminal House, Grosvenor Gardens, London, S.W.1.
Irony of Fate

In the glad times of peace there was one thing in particular that was not my long suit. Often did I hear and read thrilling tales of marvellous DX on both medium and short waves by those who, by leaping from them or otherwise, left their beds at hours such as 04.00 or 05.00 and sat them down to their receivers. But early rising was a thing that left me both metaphorically and literally cold. Though I longed to join the other early birds in their successful hunt for the radio equivalent of worms; though I resolved that one of those mornings I would arise and fill my log to bursting point, it was not to be. Sometimes I got so far as setting an alarm clock for some horrible hour; but when it aroused me the only result was that I lost all things about it that would probably have shocked the pious Swiss who made it, and turned over to the other side. So much for peace-time. Now my faithful batman calls me several times a week at 03.15. He has strict orders not to depart until he has seen me not merely conscious but afoot. Seeing the dawn break has become a familiar experience, and, despite what poets and others have written on the subject, dawn-seeming is, I feel, a singularly over-rated pastime.

To No DX Purpose

The worst of it is that now that I have to be up so often at these grisly hours I can turn them to no good radio purpose. I do not hear the medium-wave Americans at their best; not for me is it to turn on mighty voices from Australia. Had I a wireless set in action that would do me the job I might steal a few minutes now and then for some profitable work with the knobs—if the knobs were of the kind that could profitably be twiddled. But they aren’t. They belong only to a small and none too efficient battery set with no short-wave range. Meantime, to mock me, there reposes in a box beneath my bed a really good receiver, whose performance on the medium and the short waves would be fine if only it had had a chance to perform. It hasn’t, because, as I’ve mentioned before, it requires AC at 200 volts or more and all that is available at my present address, somewhere in England, are 50 miser-able volts DC. There is, however, hope of better things. My batman (batman usually know these things even before Colonels) tells me that we shall shortly move to another station. I hope he is right—though if some previous news of his had been correct we should be some thousands of miles from here by now—for that other station I have ascertained has a glorious mains supply of 230 whole volts AC.

The Mega-micro Age

This is indeed the age of mighty things, and of astronomical figures. And the very big and the very small have this much in common, that both with vast arrays of figures occur as the most of us in one way or another; and both 10⁻¹⁸ and 10⁻¹⁴ are both huge things. And the wireless valve, in partnership sometimes with the photo-electric cell, sometimes with the cathode-ray tube, has been responsible for not a few of the Meggs and the Micros of modern knowledge. One of their most amazing achievements is the electron microscope, which has enabled magnifications believed only a few years ago to be utterly impossible of accomplishment. In books written not so many years ago you will find such statements as “No one has ever seen an atom” and it is most unlikely that anyone ever will.” Would you say that now? Already the electron microscope has made visible objects little bigger than some molecules. It doesn’t seem at all outside the bounds of possibility now that one day it will enable us to see not only molecules, but also the atoms that compose them. Will electron-optics be applied in some way to the telescope also one day, enabling us to amplify the light that comes to us from bodies far away in the very depths of space? One thing is sure: the valve and the vacuum tube have even more wonders in store for us than they have provided already.

Tempora Mutantur

So the Wireless World, after years as the most welcome of weeklies, becomes a monthly magazine. Those of you who have looked for it towards the end of each week—Thursdays for some time now, though it used to be Fridays—will feel that there’s some-
Random Radiations—

The thing missing till we get used to the new order of things. Still there are consolations. The Wireless World in its new form provides a fine fat wad of reading matter; and the great thing is that the grand old paper—by far the oldest of the wireless periodicals—still keeps going. The Wireless World has a wealth of fine tradition behind it and there's something rather fine about its carrying on in the present more than difficult circumstances. I hope you'll realise that it's one of the radio institutions of this country. It has done more than any other paper to keep its readers informed of the progress of wireless and to keep the radio industry up to the mark. There's little doubt that but for the work and the influence of The Wireless World, which has taken very strong lines at times, many of the needs of radio enthusiasts would not have been met so fully as they have been. It's of real importance to all of us that it should be able to continue so long as the war lasts as a monthly. Therefore, support the paper that has so long and so well supported your interests by placing an order for it to be delivered or kept for you each month.

Still Growing

Despite all the upsets, alarms and disturbances of past weeks, the number of radio licence holders continues to grow. The wireless set, in fact, has become a necessity in these days, and I suppose that it won't be long before every household that can manage to afford it will have one. Judging by the latest total we can't now be far from that state of affairs. The war has helped those who were still cogitating about installing receivers by more or less making up their minds for them. Probably there'll be other increases month by month for a short time as the last there'll be other increases month by month for a short time as the last months of the war pass. There's something rather fine about its carrying on in the present more than difficult circumstances. I hope you'll realise that it's one of the radio institutions of this country. It has done more than any other paper to keep its readers informed of the progress of wireless and to keep the radio industry up to the mark. There's little doubt that but for the work and the influence of The Wireless World, which has taken very strong lines at times, many of the needs of radio enthusiasts would not have been met so fully as they have been. It's of real importance to all of us that it should be able to continue so long as the war lasts as a monthly. Therefore, support the paper that has so long and so well supported your interests by placing an order for it to be delivered or kept for you each month.

Wireless World

enabling great numbers of folk to buy by instalments sets for which they couldn't possibly have paid cash down. The greatest miscalculation of all was concerned with the rôle that the wireless set would play in national life. Early forecasters always assumed that it would remain something of a luxury. None of them had the imagination to foresee the receiver as the virtual necessity that it has become to-day.

Fewer Thrills

It's interesting to notice that since the last war the Army people have largely learnt the lesson that in wireless and other electrical gear beauty is often but skin deep, and that what really matters is that it should be thoroughly reliable under the roughest conditions and easily repaired by the replacement of defective parts with spares when anything goes amiss. During the Great War a certain gun sight that my battery was using had to be adapted for night firing. To do so it was necessary to illuminate faintly the cross-lines of its telescope. There was an aperture in the sight designed to take a small lamp and what you and I would have done would have been to use an ordinary flash-lamp bulb in a simple holder, with a flash-lamp battery to supply the current; total cost, a shilling or two. I made up such a gadget, but it was frowned upon by the big-wigs, though it worked well enough and both bulbs and batteries could be replaced by a visit to a small shop anywhere. We were bidden to await the authorised outfit. After long delays it arrived. A beautiful polished mahogany box housed a quartet of large dry cells. At one end was a little door, beneath which was an expensive switch, capable of dealing with many amperes, and a pair of huge brass terminals turned from solid chunks of metal. Another box, equally beautiful, contained a gigantic rheostat of laboratory quality that must have cost several pounds. The bulbs were of the small bayonet-cap variety, and when their filaments broke (as they did very quickly under the shock of discharge when we were in action) they could be replaced only by indenting on Ordnance for further supplies. I'm glad that the apparatus supplied to-day is of a much more utilitarian and less aesthetic character. The wireless amateur is to no small extent responsible, for he created a demand that produced apparatus and small parts designed strictly for the functions they were to perform.

The Wireless Industry

Taylor Electrical Instruments, Ltd., 45, Fouberts Place, Regent Street, London, W.1, announce that they will continue to produce their full range of meters and instruments. While present stocks last there will be no increase in price, but when production for replacement begins the increase in the cost of materials may call for a revision of the existing price list.

The Condenser Department of the Telephone Manufacturing Co., Ltd., has moved to Sevenoaks Way, St. Mary Cray, Orpington, Kent.

The Copper Development Association, Thames House, Millbank, London, S.W.1, are continuing their service to users of copper and copper alloys, and enquiries for information should until further notice be sent to the above address.

The Telegraph Condenser Co., Ltd., notify an increase of 15 per cent. in the price of mica condensers, and 10 per cent. on all other types in their lists.

Vortexion, Ltd., 182, The Broadway, Welwyn Garden City, is to carry on for the duration of the war under the title of The Wartime Murphy News. An interesting article is published in the current issue entitled "The News Value of Short Waves."

The General Electric Co., Ltd., announce that the list prices of their radio receivers have been advanced by amounts averaging approximately 10 per cent. The new 10-valve superhet receivers will remain unchanged in price, the table model 401 being listed at 50 guineas, and the model 4018 auto-adiogram at 50 guineas.

W. Andrew Bryce and Co., Ltd., manufacturers of mains transformers, chokes, battery chargers, etc., have now moved to Shenley Road, Boreham Wood, Herts, in association with Furzehill Laboratories, Ltd. The latter firm will, however, retain its own identity and continue to supply signal generators, beat oscillators, and other special test instruments.

Voigt Diaphragm Replacements

The latest light-coil twin diaphragm for the Voigt loud speaker is now available separately for fitting to existing units sold since 1929. The price of the new diaphragm is £3 17s. 6d.
and this includes a liner for the magnet gap and a corrector to modify the response for best results from normal B.H.C. transmissions. An allowance is made for the old diaphragm frame and for the original speech coil choke.

Full instructions for fitting are sent out with each diaphragm, a description of which appeared in the March 9th, 1939, issue of this journal.

Club News

Edgware Short Wave Society

Headquarters: Constitutional Club, Edgware, Middlesex.

Meetings: Wednesdays, at 8 p.m.

Hon. Sec.: Mr. F. Bell, 118, Collin Crescent, Hendon, London, N.W.9.

Meetings are in future being held at the home office of Flight, at Dorset House, Stamford, S.W.19.

A pair of matched 6L6's with 10 per cent. negative feedback is fitted in the output stage, and the separate 12V rectifier to the anode and screen have better than 4 per cent. regulation, while a separate rectifier provides bias.

The 6L6's are driven by an 6F6 triode connected through a driver transformer incorporating feedback. This is preceded by a 6N7, electronic mixer for pick-up and microphone. The additional 6N7 operating on 50 volt on microphone only is suitable for any electronic mixer, and the last push-pull 60 volt output transformer is available in three types—50-12-50 ohms; 4-15-30-60 ohms; and 15-60-125-250 ohms.

A tone control to regulate the gain of each microphone is fitted, and the large eight-section black leatherette cabinet with grille and bolts to each other up to full output. The secondary rectifier supplies 12 volt battery, was tested by.....
Short-wave Stations of the World

Arranged in Order of Frequency and Wavelength

<table>
<thead>
<tr>
<th>Station</th>
<th>Call Sign</th>
<th>Mc/s.</th>
<th>Metres</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RIA</td>
<td>5.85</td>
<td>51.24</td>
<td>15</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RNE</td>
<td>6.00</td>
<td>50.00</td>
<td>20</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>DJC</td>
<td>0.02</td>
<td>49.83</td>
<td>5-40</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RW60</td>
<td>0.03</td>
<td>47.75</td>
<td>100</td>
</tr>
<tr>
<td>Vatican City</td>
<td>HVJ</td>
<td>0.03</td>
<td>47.75</td>
<td>25</td>
</tr>
<tr>
<td>Boston (U.S.A.)</td>
<td>WRUL</td>
<td>0.04</td>
<td>46.07</td>
<td>25</td>
</tr>
<tr>
<td>Warsaw (Poland)</td>
<td>TQ9015</td>
<td>0.07</td>
<td>45.90</td>
<td>10</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>DXF</td>
<td>0.08</td>
<td>45.50</td>
<td>15</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>ZOB</td>
<td>0.08</td>
<td>45.00</td>
<td>25</td>
</tr>
<tr>
<td>Budapest (Hungary)</td>
<td>WNXI</td>
<td>0.10</td>
<td>44.18</td>
<td>50</td>
</tr>
<tr>
<td>Belgrade (Yugoslavia)</td>
<td>YUA</td>
<td>0.10</td>
<td>44.18</td>
<td>10</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GSB</td>
<td>0.11</td>
<td>43.10</td>
<td>150</td>
</tr>
<tr>
<td>Wayne (U.S.A.)</td>
<td>WBCX</td>
<td>0.12</td>
<td>42.02</td>
<td>10</td>
</tr>
<tr>
<td>Miami (U.S.A.)</td>
<td>MMYI</td>
<td>0.12</td>
<td>42.02</td>
<td>20</td>
</tr>
<tr>
<td>Warsaw (Poland)</td>
<td>WR6X</td>
<td>0.14</td>
<td>40.50</td>
<td>50</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>HVJ</td>
<td>0.14</td>
<td>39.47</td>
<td>10</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>IAC</td>
<td>0.14</td>
<td>37.41</td>
<td>25</td>
</tr>
<tr>
<td>Radio -Mondial (Switzerland)</td>
<td>HBC</td>
<td>0.14</td>
<td>35.10</td>
<td>25</td>
</tr>
<tr>
<td>Barcelona (Spain)</td>
<td>EAQ</td>
<td>0.13</td>
<td>32.77</td>
<td>10</td>
</tr>
<tr>
<td>Valldalass (Spain)</td>
<td>FETI</td>
<td>0.13</td>
<td>32.77</td>
<td>25</td>
</tr>
<tr>
<td>Burgos (Spain)</td>
<td>EA1BO</td>
<td>0.13</td>
<td>42.47</td>
<td>10</td>
</tr>
<tr>
<td>Lisbon (Portugal)</td>
<td>CGSW</td>
<td>0.13</td>
<td>31.02</td>
<td>10</td>
</tr>
<tr>
<td>Radio-Mondial (France)</td>
<td>TCB/11</td>
<td>0.13</td>
<td>21.21</td>
<td>15</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RWC</td>
<td>0.13</td>
<td>30.61</td>
<td>50</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RKF</td>
<td>0.13</td>
<td>29.89</td>
<td>25</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>RAP</td>
<td>0.12</td>
<td>28.88</td>
<td>15</td>
</tr>
<tr>
<td>Radio-Nations (Switzerland)</td>
<td>HBB</td>
<td>0.12</td>
<td>27.51</td>
<td>10</td>
</tr>
<tr>
<td>Ankara (Turkey)</td>
<td>HBC</td>
<td>0.12</td>
<td>26.01</td>
<td>10</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>HGO</td>
<td>0.12</td>
<td>25.01</td>
<td>25</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>VGX</td>
<td>0.12</td>
<td>24.51</td>
<td>10</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RB6</td>
<td>0.12</td>
<td>23.10</td>
<td>100</td>
</tr>
<tr>
<td>Warsaw (Poland)</td>
<td>SP6</td>
<td>0.12</td>
<td>21.49</td>
<td>10</td>
</tr>
<tr>
<td>Caucasian (U.S.S.R.)</td>
<td>UVEO</td>
<td>0.12</td>
<td>20.41</td>
<td>10</td>
</tr>
<tr>
<td>Motala (Sweden)</td>
<td>VUG</td>
<td>0.13</td>
<td>18.48</td>
<td>50</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>SBU</td>
<td>0.13</td>
<td>16.48</td>
<td>50</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>VAV</td>
<td>0.13</td>
<td>15.10</td>
<td>50</td>
</tr>
<tr>
<td>Schenectady (U.S.A.)</td>
<td>WGEA</td>
<td>0.13</td>
<td>13.41</td>
<td>40</td>
</tr>
<tr>
<td>Bombay (India)</td>
<td>DUBS</td>
<td>0.13</td>
<td>10.41</td>
<td>15</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>RB6</td>
<td>0.13</td>
<td>12.38</td>
<td>15</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>WBO5</td>
<td>0.13</td>
<td>13.35</td>
<td>15</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>CRC</td>
<td>0.13</td>
<td>15.04</td>
<td>10</td>
</tr>
<tr>
<td>Melbourne (Australia)</td>
<td>VKE3</td>
<td>0.13</td>
<td>15.38</td>
<td>10</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>HBB</td>
<td>0.13</td>
<td>12.38</td>
<td>15</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>WCAB</td>
<td>0.13</td>
<td>12.38</td>
<td>10</td>
</tr>
<tr>
<td>Delhi (India)</td>
<td>VUG</td>
<td>0.13</td>
<td>12.38</td>
<td>10</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GYR</td>
<td>0.13</td>
<td>12.38</td>
<td>10</td>
</tr>
<tr>
<td>Cape Town (S. Africa)</td>
<td>ZBL</td>
<td>0.13</td>
<td>21.23</td>
<td>6</td>
</tr>
<tr>
<td>Cape Town (S. Africa)</td>
<td>LLG</td>
<td>0.13</td>
<td>21.23</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>HAD</td>
<td>0.13</td>
<td>21.17</td>
<td>5</td>
</tr>
<tr>
<td>Madrid (Spain)</td>
<td>WRC</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>LNX</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>SRL</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>DBX</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>ROA</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>LIN</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>IRB</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Madrid (Spain)</td>
<td>EAN</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>LRA1</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Lisbon (Portugal)</td>
<td>CSW7</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>HSC</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>LNG</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Lisbon (Portugal)</td>
<td>CSWA</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Vatican City</td>
<td>HVJ</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>WRC</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GRC</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>IRF</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Buenos Aires (Argentina)</td>
<td>LRA1</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Lisbon (Portugal)</td>
<td>CSW7</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>HSC</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Motala (Sweden)</td>
<td>SBP</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>IRA</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
<tr>
<td>Radio-Mondial (France)</td>
<td>PTA</td>
<td>0.13</td>
<td>14.01</td>
<td>5</td>
</tr>
</tbody>
</table>

Station | Call Sign | Mc/s. | Metres | kW |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>RIA</td>
<td>5.85</td>
<td>51.24</td>
<td>15</td>
</tr>
<tr>
<td>Helsinki (Holland)</td>
<td>HUX</td>
<td>5.85</td>
<td>51.24</td>
<td>20</td>
</tr>
<tr>
<td>Oslo (Norway)</td>
<td>LKQ</td>
<td>5.85</td>
<td>51.24</td>
<td>5</td>
</tr>
<tr>
<td>Boston (U.S.A.)</td>
<td>WRUL</td>
<td>5.85</td>
<td>51.24</td>
<td>10</td>
</tr>
<tr>
<td>Vatican City</td>
<td>HVJ</td>
<td>5.85</td>
<td>51.24</td>
<td>25</td>
</tr>
<tr>
<td>Warsaw (Poland)</td>
<td>SP26</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GSD</td>
<td>5.85</td>
<td>51.24</td>
<td>100</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>DJD</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
<tr>
<td>Zeesen (Germany)</td>
<td>ZOB</td>
<td>5.85</td>
<td>51.24</td>
<td>25</td>
</tr>
<tr>
<td>Tokyo (Japan)</td>
<td>ROK4</td>
<td>5.85</td>
<td>51.24</td>
<td>10</td>
</tr>
<tr>
<td>Rome (Italy)</td>
<td>WRUL</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GSD</td>
<td>5.85</td>
<td>51.24</td>
<td>100</td>
</tr>
<tr>
<td>Munich (Germany)</td>
<td>DJD</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
<tr>
<td>Toronto (Canada)</td>
<td>CJBX</td>
<td>5.85</td>
<td>51.24</td>
<td>10</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GSD</td>
<td>5.85</td>
<td>51.24</td>
<td>100</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>WRUL</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
<tr>
<td>British Overseas Service</td>
<td>GSD</td>
<td>5.85</td>
<td>51.24</td>
<td>100</td>
</tr>
<tr>
<td>Moscow (U.S.S.R.)</td>
<td>WRUL</td>
<td>5.85</td>
<td>51.24</td>
<td>50</td>
</tr>
</tbody>
</table>

November, 1939
RECEIVING CIRCUITS

The Figure shows a circuit which is designed to allow the apparent modulation of an incoming signal to be increased at the receiving end. For instance, in a superheterodyne receiving weakly modulated signals, the carrier-wave can be reduced, relatively to the sidebands, so as to prevent any risk of overloading the subsequent RF valves.

The modulated carrier (or the modulated intermediate frequency) is applied to the control grid of a SG valve V, which is taken off from the input terminals A, B which are arranged to be rotated slowly but continuously, so that the electron stream impacts upon a different part of the screen from time to time, instead of upon the same area, thus reducing the wear and tear on the screen as a whole and prolonging the life of the tube. The arrangement is particularly suitable for the so-called projection type of tube in which a beam of very high intensity scans a comparatively small area.

The periphery of the screen may be formed with wings or ridges, similar to those used on the rotor of a turbine. The stream is then periodically deflected, say by the synchronising impulses, on to these marginal parts, and so automatically rotates the screen in the manner described.

SCANNING SYSTEMS

It is possible to minimise "keystone" distortion, in a mechanical scanning system, by projecting the light at an angle to the plane of the rotating disc. This, however, reduces the effective area of the spot of light that passes through the scanning holes, proportionally to the size of the angle; also more of the light is "scattered" when passing through the aperture at an inclination.

Both drawbacks are avoided by punching larger apertures in the scanning disc and then covering them by a backing plate of thin copper in which holes of the desired size have been made. The edges of the latter are bevelled so that they lie parallel to the passing beam of light.

Radio Aktiengesellschaft D. S. Loewe. Convention date (Germany) March 8th, 1937. No. 506977.

CATHODE-RAY TUBES

Various kinds of sensitised screens are used inside a cathode-ray tube, such as fluorescent screens for reception, photo-electric screens for transmission, and screens coated with substances having a high coefficient of secondary emission for intensifying the strength of the electron stream. In each case the effective life of the tube is determined by that of the screen.

According to the invention such screens are made of larger area than usual, and are arranged to be rotated slowly but continuously, so that the electron stream impacts upon a different part of the screen from time to time, instead of upon the same area, thus reducing the wear and tear on the screen as a whole and prolonging the life of the tube. The arrangement is particularly suitable for the so-called projection type of tube in which a beam of very high intensity scans a comparatively small area.

The periphery of the screen may be formed with wings or ridges, similar to those used on the rotor of a turbine. The stream is then periodically deflected, say by the synchronising impulses, on to these marginal parts, and so automatically rotates the screen in the manner described.

CATHODE-RAY INDICATORS FOR DF

In a direction-finding system using two crossed frame-aerials A, B, the pickup voltage from each frame is fed in rapid alternation through a reversing switch K to two separate amplifiers V, Vs, and then through a second reversing switch K1, operated in synchrony with the first, to the deflecting-plates of a cathode-ray tube T.

The purpose of the reversing switches is to compensate for any lack of balance in the operating characteristics of the two amplifiers V, Vs. For instance, if there were no reversal of the signal pickup, then the direction of the incoming signal would be shown on the fluorescent screen by a single narrow ellipse. The effect of reversing the amplifiers, should any difference exist in their working characteristics, is to produce two narrow ellipses such as 1, 2. The true bearing is then taken as the line bisecting the angle between the two ellipses.

Telefunken Gesellschaft für drahtlose Telegraphie m.b.H. Convention date (Germany) December 11th, 1937. No. 506630.
Recent Inventions—
any interference that may be present is considerably reduced.

"WATCH-DOG" CIRCUITS

A "WATCH-DOG" VALVE, set more or less on the threshold of oscillation, can be used to give warning, say, of the approach of an unauthorised person to a locality or object, or as a burglar or other "watchdog" alarm, by causing the capacity threshold of oscillation, to act upon the approach of the person to throw the valve into self-oscillation and so operate an alarm.

According to the invention, a triode having, for this purpose, the "aerial" or feeler (which responds to the capacity effect of the intruding person) being coupled to the grid of the triode portion of the valve, whilst the hexode portion is tuned to resonance and electronically coupled to the triode. The arrangement is flexible as regards operating frequency, and stable in operation.

VARIABLE SELECTIVITY

In a wireless set where the degree of selectivity is primarily controlled by the tightness of the coupling between two tuned circuits, the range of wavelengths over which the control is effective, and also the width and form of the band-pass input, are further regulated by arranging that, as the direct coupling is tightened, the feedback coupling through the amplifier valve is decreased, and vice versa.

For instance, the two coils L1, L2 are fixed on the same former, whilst two other coils L3, L4 are fixed on a second former, which is mounted to slide over the first. As the coil L3 is moved closer to the coil L1, so as to tighten the direct coupling between the circuit A and the circuit B (containing the coils L2, L3 in series), the coil L4 is simultaneously moved away from the coil L2, so as to reduce the back coupling between the feed in and grid circuits of the amplifier.

Telefunken Gesellschaft für drahtlose Telegraphie m.b.h. Convention date (Germany) June 26th, 1937. No. 508139.

ELECTRON MULTIPLIERS

The object of the invention is to arrange the "target" electrodes of an electron-multiplier so that the stream of secondary electrons, produced after impact, continues through the multiplier tube in the same direction as the primary electrons, and so that all the electrons in the secondary stream travel at substantially the same speed.

This result is secured, according to the invention, by making each target electrode in the form of a series of inclined strips which overlap like the slats of a louver blind so as to prevent the free passage of any of the primary electron stream. The "forward" face of each slit is coated with emissive material, whilst the rear face consists either of material of high work-function or of high insulation. The liberation of secondary electrons then causes the rear face to become charged to a sufficiently high positive potential to prevent any of the secondary stream from being trapped. Instead they take a curved path to pass through the "openings" in the louvered electrode, and then pass straight on towards the highly positive anode.

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.

Large-Screen Television

The use of ordinary lenses for projecting the picture from the fluorescent screen of a cathode-ray tube on to an external viewing screen gives rise to a considerable loss of the available light. Even with a wide-aperture lens, a large percentage of the light is lost, particularly when the radiating surface of the fluorescent screen faces away from the external screen illuminated.

According to the invention, the difficulty is overcome by fitting the back of the fluorescent screen with a mosaic of small optical lenses. For example, a large number of small hemispherical pieces of glass are mounted on the back of the screen carrier by an adhesive material of low refractive index. Each lens should be of approximately the same size as the scanning spot. The mosaic catches the light from each picture point, and converts it into parallel rays, which can then be projected, without appreciable loss, on to the viewing screen, resulting in a picture of considerably enhanced brilliancy.

Fernseh Aktiengesellschaft. Convention date (Germany) November 17th, 1936. No. 505850.
You can't SEE the Difference, BUT...

To the eye, there is little difference between one year's speaker and another. But we are particularly proud of the performance of our latest models. We do not claim to have reached ultimate perfection; but we do know that as a result of thirteen years' specialised research we have come nearer to it than has previously been achieved. Every operation from raw material to finished Speaker is carried out in our own Factories and under W.B. control, thus bringing exceptional advantages in reliability and economy of price. In all confidence we ask you to hear a W.B. Speaker. Your local dealer stocks them and will be glad to demonstrate. Please ask him.
ARMSTRONG ANNOUCE

that in accordance with their well-known Fair Trading Policy, there will be no increase in prices,

whilst present stocks of chassis last. As it becomes necessary for us to purchase new material, we shall raise the prices only by the actual amount of our increased costs.

We can give immediate delivery of all Models described in our 1940 Catalogue except No. 552B.

Send for our illustrated Art Catalogue which fully describes our full range, including the following:

MODEL S510 - 10-V SUPERHET-Straight ALL-WAVE-HIGH-FIDELITY R-G CHASSIS

incorporating Two Independent Circuits, Superheterodyne and Straight, having R.F. Pre-amplifier and R.C. Coupled Push-Pull Triode Output capable of handling 9 watts.

The circuit of the S510 is unique. When used as a STRAIGHT receiver two waves are in operation with A.V.C. Diode Detector is used for distortionless detection together with Triode Push-Pull output. A turn of only one knob is necessary for "Superhet" to "Straight." The Gramophone Amplifier has been specially studied and records can be played with excellent quality.

MODEL AW38 - 8-V ALL-WAVE SUPERHET

This radio chassis has R.C. Coupled Push-Pull Output capable of handling 6 watts. This being our Quality Year we have carefully studied the design of our more economically priced models and it is now possible for those requiring a quality with economy to satisfy their desires at 8 watts.

MODEL AW33PP - 5-V ALL-WAVE SUPERHET

A radiogram chassis with 5 wavebands, R.F. Pre-Amplifier, 3 stages of A.V.C. and 8 watts R.C. Coupled Triode P.P. Output.

MODEL AW125PP - 12-V 5-BAND ALL-WAVE R-G CHASSIS (12-550 continuous, 2000-2000 m)

Readers need no introduction to this most popular model, so favourably reviewed by "The Wireless World" on Jan. 5th last.

7 DAYS' APPROVAL - 12 MONTHS' GUARANTEE

ARMSTRONG MANUFACTURING CO.
WARLERS ROAD, HOLLOWAY, LONDON, N.7

Letters addressed to Box Nos. are simply forwarded to the advertiser. No responsibility is accepted in connection with these advertisements.

DEPOSIT SYSTEM
Readers may deal with advertisers in safety through our Deposit system. Purchase money payable to Raffe & Sons Ltd. should be dealt with by "The Wireless World," when both parties are advised of its receipt.

The time allowed for decision is three days, counting from receipt of goods, after which period if buyer decides not to retain goods, they must be returned to sender. In case of return, buyer is required to remit amount to seller, but if not, seller instructs us to return amount to depositors. Carriage is paid by buyer, but in the event of no sale, and subject to there being no different arrangement between buyer and seller, each pays carriage one way. The seller takes the risk of loss or damage in transit, for which we take no responsibility. For transactions up to £10 a deposit fee of 1/- is charged; over £10 and under £50, 3/6; over £50 and under £100, 7/6; over £100 one-half per cent. All correspondence must be sent to Raffe & Sons Ltd., 31, Leith Walk, Edinburgh, 6.

Cheques sent in payment for deposits or advertisements may be made payable to Raffe & Sons Ltd. and crossed. Notes which are unengaged if lost in transit should not be forwarded except in registered envelopes.
Relax and let yourself go!

THERE’S a world of wisdom at this time in the somewhat slanty words of the popular song. Have you heard first-class modern records through suitable gear terminating in a “VOIGT” Loudspeaker? Try it, it’s a marvellous mental tonic!

2 watts is enough for the home. For the informal dance, or the Works Canteen, a modest 10 watt amplifier is quite adequate, owing to the high efficiency of the “Voigt” Loudspeaker.

New Loud-Speakers

Bakers’ New Surfus Speaker Bargains.

Only—Usual price £16; brand new corner horn speakers in beautifully finished polished walnut corner horn cabinets, frequency range 30-12,000 cycles, accurately reproduced.

£3/10—Usual price £6; brand new Baker super-power electro magnet speakers, as solely specified for the “Wireless World” Quality Four receiver.

£5—Usual price £4/10; brand new Baker super-power magnet speakers, exceptional bargain.—Bakers Selhurst Radio.

Loud-Speaker Conversions

Bakers’ Triple Cone Conversions Will Immensely Improve Reproduction and Increase Frequency Range of Your Present Speaker, whether electro or permanent magnet type. British or American, enables you to bring your speaker right up to date and obtain really realistic reproductions at the cost of a few shillingst from descriptive leaflet from the Pioneer Manufacturers of Moving Coil Speakers since 1925.—Bakers Selhurst Radio, 75, Bassett Rd., South Croydon.

“Foundations of Wireless,” Second Edition. 4s. 6d. net. Post free 4s. 1d.
TRANSMITTING APPARATUS
G5NI for Communication Receivers, American and British valves, short-wave equipment, in all types, trade supplied -1941 Finley Rd., W.11. Telephone: Central 6211.

VALVES
Am. Types of American tubes in Stock of Impex and Archers make a competitive price.

W.E. Can Also Supply Full Range of Guaranteed Replacement Valves for Any British or Non-British, American or Continental type at an appreciably lower price.

For Sides of These, and also electrolytic condensers, line cords, resistances, etc., please telephone or write to Finley Rd., W.11.

TEST EQUIPMENT
ALL-WAVE Battery or Mains Oscillator; loudspeaker, microphone, earphones.

MULTIRANGE A.C.-D.C. Testers, 1,000-3,500,000, 1/9 each; wire each; Auto transformers, 100-230 volts, 6/3 each.

For Sides of These, and also electrolytic condensers, line cords, resistances, etc., please telephone or write to Finley Rd., W.11.

COMPONENTS
SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.

SECOND-HAND, CLEARANCE, SUPPLIES. etc.

R.

RADIO CLEARANCE, Ltd.

63, High Holborn, W.C.1. Phone: Holborn 4821.

BRITISH Belmont 8-valve Magic Eye All-wave A.C. Superhet Chassis, two short, medium and long, fitted latest Mullard metal base American type valves, size of chassis 12 x 12 x 2 1/2 in., supplied with valves, excitation and knobs, but less speaker; chassis only, £5 15/6 each; speaker for above, 17/6 each.

POLAR N.S.F.

WANTED.

WANTED, signal generator; meters; particulars and prices to: Taheny, Market St., Sligo, Eire.
COMPONENTS—SECOND-HAND CLEARANCE, SURPLUS, ETC.

CLIX SAFEWAYS ADAPTOR

You can use your Radio and other electrical apparatus in any room and serve their full electrical benefits throughout your home by fitting a SAFEWAYS Adaptor in your existing loom holders. To nullify the depressing effects of the mains voltage, and to protect your low-voltage equipment, CLIX 100% SAFEWAYS Adaptor with a low-wattage lamp in the branch outlet and the usual lamp in the other. You can then enjoy normal lighting that should be necessary, dimmed lighting can be switched on or off as needed. This particular arrangement can also be used as a night-light for children or invalids, but is merely one of many ways in which SAFEWAYS can increase the convenience of your electrical installation—quickly, cheaply and safely.

ASK YOUR DEALER FOR “SAFEWAYS”

Single Switch, 1/40; Double Switch, 2/3; Contact Control 2/6 each.

COMPONENTS—SECOND-HAND CLEARANCE, SURPLUS, ETC.

VAUXHALL—Collar A.C. gramphoen motors, 3½/4, 6½/8, 8½/10, 10½/14, 15½/18, 20½/23, 30½/37.

VOCAL—T.C.C. aluminium containers, 5 mfd.; 400 v., 2/9; T.C.C. cardboard containers 8 mfd.; 400 v., 3/6; T.C.C. mica condensers, 10 mfd.; 400 v., 5/6.

VAUXHALL—Metal rectifiers H.T.10, 10/12; H.T.12, 12/15.

GUARDIAN—Bells, D.G., 3/10 each.

VAUXHALL—Electrolastic condensers, 50 mfd., 50 v., 3/4 each; 10 mfd., 25 v., 1/4 each; 5 mfd., 12 v., 5/6 each.

VAUXHALL—Solar 4-gang straight, 0.005 mfd., 50 v., 1/8; D.C. burst, 0.01 mfd., 1/4 each; 0.002 mfd., 1/4 each; D.C. burst, 0.001 mfd., 1/4 each.

VAUXHALL—Plessey 30 W. transformers, 255 ohm, 240 v., 2½ w., 1/4 each; 300 v., 3 w., 1/4 each.

VAUXHALL—Conradson condensers, 315 volt, 3/6 each, 300 v., 2/6 each.

You can use your Radio and other electrical apparatus in any room and serve their full electrical benefits throughout your home by fitting a SAFEWAYS Adaptor in your existing loom holders. To nullify the depressing effects of the mains voltage, and to protect your low-voltage equipment, CLIX 100% SAFEWAYS Adaptor with a low-wattage lamp in the branch outlet and the usual lamp in the other. You can then enjoy normal lighting that should be necessary, dimmed lighting can be switched on or off as needed. This particular arrangement can also be used as a night-light for children or invalids, but is merely one of many ways in which SAFEWAYS can increase the convenience of your electrical installation—quickly, cheaply and safely.

ASK YOUR DEALER FOR “SAFEWAYS”

Single Switch, 1/40; Double Switch, 2/3; Contact Control 2/6 each.

CLIX product made by:

BRITISH MECHANICAL PRODUCTIONS LTD.,
1, Church Road, Leatherhead, Surrey

Advertisements

Wireless World
SITUATIONS VACANT
AIR MINISTRY.

CIVILIAN Wireless Instructors Required.

VACANCIES Exist for Civilian Wireless Instructors at the Electrical and Wireless School, Royal Air Force. The commencing rate of pay is £4 a week inclusive, which may be increased to £4 5s. a week provided, allowances at authorised rates. If married and otherwise eligible, family allowances payable in respect of wife and children subject to allotment from pay.

Candidates Should Preferably be Under 35 and Hold One of the Following Qualifications:

- GRADUATE of the Institution of Electrical Engineers
- FINAL (Grade III) Certificate of City and Guilds of London Institute Examination in Radio Communications Engineering
- HIGHER National Certificate in Electrical Engineering
- CERTIFICATE of City and Guilds of London Institute in Radio Service Work
- OR Similar Qualifications.

Candidates must be capable of lecturing and must have a sound knowledge of electrical principles and their application to Radio and low-power electrical engineering: applications should be addressed to the Under Secretary of State, Air Ministry, 1021, Finchley Rd., N.W.1. Speedwell 3000.

APPLICATIONS are invited for appointments as instructors for a term of three years, renewable. -1021, Finchley Rd.; N.W.1. Speedwell 3000.

For A.R.P. APPLICATIONS

Trench Lighting, Low Voltage Lighting for Workshops, Factories and Offices, also for use in P.A. Equipment, etc. Priority must be given to Government requirements but good delivery is still being maintained to the private user.

Kings Bldgs., Dean Stanley St.,

LONDON, S.W.1.

Telephone: Victoria 5935

W. Partridge

ENGINEERS ARE YOU EARNING LESS THAN £10 PER WEEK?

Don't waste time over testing electrical appliances. The Pifco Rotameter will do it for you, swiftly, surely, and with the minimum of trouble. Whether you're an amateur or an expert, it will enable you to trace faults immediately in radio sets, bells, or anything electrical. It is made from the finest of materials; designed for durability and absolute precision.

EIGHT RANGES:
- 0-5 volts
- 0-10mA
- 0-20 volts
- 0-50mA
- 0-100 volts
- 0-250mA
- 0-400 volts

Resist/Valve test
Plug-in test for valves.
Complete in velvet-lined case with testing leads.
Your regular dealer can supply you, or write.

PIFCO LTD.
Watling St., Manchester.

London Address:
58, City Road, E.C.1

PIFCO LTD.

PIFCO ALL-IN-ONE A.C./D.C. RADIOMETER
The only instrument of its kind in the world for making both A.C. and D.C. tests. RANGES: 0-6 volts, 0-240 volts, 0-30 mA. Filament and Resistance Test, and socket for plug-in test for valves. 8,000 ohms resistance. Complete with two 15-inch flex cables. Fitted with PIFCO DRY CELL.

42/-

PIFCO Rotameters and Radiometers
PIFCO on the Spot Will Trace Your Troubles Like a Shot

Memo
Don't forget
Player's Please

PLAYER'S NAVY CUT
CIGARETTES

MEDIUM or MILD
10 for 7½ 20NS / 1½

PLAYER'S NAVY CIGARETTES

British Insulated Cables, Ltd
Cable Makers and Electrical Engineers
Prescot, Lancs. Tel. No. Prescot 6571

Address All Enquiries to
John Summers & Sons Ltd.
Shotton, Chester

Established 1891
Tel.: Connah's Quay 200
Grams: Summers, Chester

Mention of "The Wireless World," when writing to advertisers, will ensure prompt attention.
Unchallengeable Supremacy

IN SHORT-WAVE RECEPTION

Short-wave radio enthusiasts should take an early opportunity of hearing "H.M.V." Model 1200 demonstrated. Its superb tonal realism and outstanding performance proclaim "His Master's Voice" supremacy in high quality reproduction. Push-button control of selected stations and waveband is allied with end control manual tuning, of particular value when making accurate loggings for short-wave listening. Its distinctive appearance and large scale will take your eye.

"HIS MASTER'S VOICE"

MODEL 1200. 3 wavebands, 7-valve superhet with 10.5 watts output; it has push-button control of wavebands and 8 stations, motor operated with accurate AFC. A fluid light and Vernier scale make manual tuning exact and simple. Provision for connecting extra loudspeakers and gramophone pick-up. 21 GNS.