ELECTRONIC NNDUSTRIES

[THE STATE-OF-THE-ART MAGAZINE

SPECIFYING POTENTIOMETERS

Survey of Available Integrated Circuits

New sine-cosine pot design adds reliability to performance of non-linear functions

COUNT ON DALE for extra reliability in performing precise non-linear functions. Thesedesign features tell the story:

1. 3-DIMENSIONAL SHAPED CARD is used as winding element instead of standard circular copper mandrel or flat card.
2. DUAL WIPEF COLLECTOR SYSTEM allows wipers to be phased 90° apart to create necessary phase shifting.
3. DUAL CONTACT WIPERS assure continuous contact and noise-free operation.
4. LINER-HOUSING CONSTRUCTION combines the excellent dielectric strength and high temperature characteristics of a molded diallyl phthalate liner with the structural strength. stability and shielding properties of a precision machined anodized aluminum housing.

SINE-COSINE SPECIFICATIONS

	MODELS:	$\begin{gathered} \text { SC-11 } \\ \left(11 / 8^{\prime \prime}\right. \text { dia.) } \end{gathered}$	$\begin{gathered} \text { SC-111 } \\ \left(1 \cdot 1 / 16^{\prime \prime} \text { dia. }\right) \end{gathered}$	$\underset{\left(1^{3 / 4}\right.}{\mathbf{S}}$
TOTAL RESISTANCE: SC-11 and SC-111 - up to 16 K s: per quadrant: SC-18 - up to 30K s. per quadrant				
RESISTANCE TOLERANCE: Standard $+3 \%$, Specials to $+1 \%$				
FUNCTION CONFORMITY: $\pm 1 \%$				
POWER RATING:SC- 11 and SC-111 SC-18 Std. 2.0 W at $40^{\circ} \mathrm{C}$ Std. 5.0 W at $40^{\circ} \mathrm{C}$ Std. 1.0 W at $85^{\circ} \mathrm{C}$ Std. 2.5 W at $85^{\circ} \mathrm{C}$				
OPERATING TEMP. RANGE: -65 to +125 C . (Derated to 0 at $-125^{\circ} \mathrm{C}$)				
STANDARD T.C.: Resistance Wire: $0.002 \% / \mathrm{C} \mathrm{Max}$. Potentiometer: $\quad 0.010 \% /^{\circ} \mathrm{C}$ Nominal				
ENVIRONMENTAL: Dale Sine-Cosine models meet standards of MIL-R-12934 for Rotational Life, Acceleration and Shock, and Temperature Cycling; and MIL-STD-202B for Moisture Resistance, Humidity, Vibration and Salt Spray.				

Write today for Sine-Cosine Data Sheet Catalog B containing complete details on Linear Precision Pots and Trimmers.

Also Sald by Dale Electronics Canada, Ltd., Toronto. Ontaric, Canada

Fuel Cells-Our New Power

The recent successful fligit of Gemini-5 has provided a partial answer to our February editorial, "Why So Slow With Direct Energy Conversion?"

Contrary to the misimpression held by the pulbic, the fuel cells aloard this craft are reported to have performed to specifications. This outstanding mission demonstrated the first operational use of fuel cells in aerospace and has enabled the United States to "break through the storage battery barrier." We now may also have somewhat of a lead over our Russian space competitors since they must still use batteries as power sources in their spacecraft.

The fuel cells aboard Gemini-5 were produced ly General Electric. Dr. Arthur M. Bueche, GE's new vice president of research and development calls them the "first practical major power source to be developed since atomic energy." The company is now operating a fuel cell production line and officials have decided to produce and market these devices for earthbound applications as well. This program is expected to be underway by late 1966. Further research will continue and aims at developing new units that will run four times longer than the Gemini-5 cells. Also, these early 12 watt models may gradually be increased in both size and power.

Gemini's cell was designed to operate at 27 volts. During the flight it was the uncertain performance of the total fuel cell system that led to the conservation use of power by our astronauts. Flight Control minimized requirements at 8 to 10 amps . Later, as pressure built up, the cell produced 22 to 40 amps . Ground tests McDonnell Aircraft, prime contractor for the National Aeronautics and Space Administration's (NASA) Gemini program, had indicated that up to 50 amps could have been obtained. After the mission was over, however, Flight Control realized that the unit could have run at 2 kw .

In future fuel cells will provide a new source of portable power for electronic communications and control equipment. They can be used as a primary source in isolated or remote areas on land, on the sea, or under the sea. They also can be used as a secondary or
emergency power source for installations now operating off regular power lines.
E. M. Cohn, head of electrochemical systems in NASA's Office of Advanced Research and Technology cloes not foresee completely definitive markets for fuel cells developing for another 10 to 15 years. Aside from the electronic applications, he looks forward to portable power packs that will operate industrial vehicles and hand tools. Delivery and fork-lift trucks could be made to run several shifts, lessening down-time needed for recharging batteries. New convenience could come with quick on-off fumeless power for lawn mowers and pleasure boats.

We can expect some further developments soon from the other two dozen or so competitors now engaged in this activity. Recently a fuel cell assembly was shown to the Army by Esso Research and Engineering Co. It directly converted methanol into 100 watts of electricity, without combustion. Several hydrogen cells are being evaluated by customers of United Aircraft's, Pratt \& Whitney division. Other leading competitors include Allis-Chalmers, Union Carbide, Texas Instruments, Ionics, and Westinghouse.

Certain scientists and engineers hasten to remind us fuel cells are still only on the threshold of development. They mention some $\$ 100$ million spent by the Federal Government (including some $\$ 28$ million in contracts with GE), but point out that it still remains for fuel cells to deliver power more efficiently, reliably, and economically. (NASA plans a program to obtain reliability and longevity data on fuel cell systems.)

We must learn how to squeeze more power out of fuel, how long cells will last, and how best to interconnect individual cells. These are difficult technical problems, to be sure, but we feel there is also much promise awaiting both producers and customers in this new power field.

New from Sprague!

For extreme size reduction and unusual capacitance stability . . .

FILMITE' 'K' POLYCARBONATE FILM CAPACITORS

- New Filmite 'K' Polycarbonate Film Capacitors are more than 13 times smaller than paper capacitors of equivalent capacitance value and voltage rating!
- Polycarbonate film dielectric provides exceptionally high capacitance stability over the entire temperature range, due to inherently low coefficient of expansion of polycarbonate film and a dielectric constant which is nearly independent of temperature.
- Filmite ' K ' Capacitors exhibit almost no capacitance change with temperature-dramatically better than poly-ester-film types, they even surpass polystyrene capacitors.
- Low dissipation factor (high Q) makes these capacitors extremely desirable where high current capabilities are required, as in SCR commutating capacitor applications.
- Low dielectric absorption (considerably lower than that of many other commonly-used film dielectrics) over a broad frequency/temperature spectrum makes Filmite ' K ' Capacitors ideal for timing and integrating.

Extremely high insulation resistance, especially at higher temperatures. Superior to many other commonly-used film dielectrics.

- Close capacitance tolerances-available to $\pm 0.25 \%$!
- Filmite 'K' Capacitors are excellent for critical applications including tuned circuits, analog and digital computers, precision timing and integrating circuits because of the unusual properties of the polycarbonate film dielectric.

Type 260P Filmite ' K ' Capacitors are metallized, utilizing non-inductive construction. They feature special selfhealing characteristics, in the rare event of capacitor dielectric breakdown. Designed for operation at full rated voltage over the temperature range of $-55 C$ to $+105 C$, these metal-clad capacitors are hermetically-sealed and are available with both standard and weldable wire leads or solder tabs in a variety of mounting styles.

Types 237P and 238P Filmite ' K ' Capacitors are of high-purity foil construction, and are hermetically sealed in metal cases. Operating temp. range, -55 C to +125 C .

For complete technical data on Type 260P and on Type 237P and 238P Capacitors, write for Engineering Bulletins 2705 and 2700, respectively, to Technical Literature Service, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.

CAPACITORS

transistors
RESISTORS
integrated circuits
THIN.FILM MICROCIRCUITS

PULSE TRANSFORMERS interference filters pulse-forming networks tOROIDAL Inductors electric wave filters

Ceramic.base printed networks packaged component assemblies bobbin and tape wound magnetic cores silicon rectifier gate controls functional digital circuits

SPRAGUE

the mark of reliabllity
'Sprague' and '(2)' are registered trademarks of the Sprague Electric Co.
Editorial: Fuel Cells - Our New Power 1
STATE-OF-THE-ART FEATURES
1965 Survey of Potentiometer Specifications
Part 1: Precision Potentiometers 64
The Broad Aspects of Testing Integrated Circuits E. Hanlon 82
Integrated Circuits Commercially Available 97
DESIGN/DEVELOPMENT
Using SCR's in Power Control Systems W. H. Pollard 86
Potentiometer Linearity Considerations R. W. Kordatzky 95
MEASUREMENT/TEST
Applying Directional RF Wattmeters H. Heller 114
PROFESSIONAL GUIDELINES
How to Avoid Engineering Obsolescence E. T. Ebersol 132
WHAT'S NEW

Monolithic Memory	34	Computer Apprehends Scofflaw	
Data Systems in a Box	34	Offenders	118
High-Resolution Pickup Tube	116	IBM Doubles 360 Recording Speed	20
Flip-Top IC Socket 12			

DEPARTMENTS

Highlights	4	New Products	38
Radarscope	8	New Tech Data	107
Coming Events	14	Measurement News	113
Washington Trends	18	Editor's Notebook	122
Electronic Snapshots	22	Books	123
Marketing: Facts \& Figure Roundup	26	International News	124
Letters	31	Professional Guidelines	131

COVER: To introduce the 3 -part series on Potentiometers which begins in this issue, we have gathered together a representative selection of pots. Our thanks go to Allen-Bradley, Amphenol, Beckman Helipot, Dale, Fairchild Controls Division, International Resistance Co., Ohmite and Spectrol for their cooperation. pability in each area of electronic technology

New Products . 38
New Tech Data . 107
Measurement News 113
Editor's Notebook . 122
Books 123
International News 124
Professional Guidelines 131

Survey of Potentiometers

Testing Integrated Circuits

SCR's in Power Systems
Survey of Integrated Circuits

1965 SURVEY OF POTENTIOMETER SPECIFICATIONS
This month we begin a 3-part series covering technical specifications of potentiometers. Part 1 deals with Precision Potentiometers. In following issues we will cover General Purpose Potentiometers and Trimmer Potentiometers.

THE BROAD ASPECTS OF TESTING INTEGRATED CIRCUITS 82
Where transistors required 8 to 12 tests, integrated circuits require 25 to 50 , and the trend is toward even more. At the same time, it is becoming increasingly important to determine operation of IC's under dynamic conditions.

USING SCR's IN POWER CONTROL SYSTEMS

The use of silicon semiconductors in industrial power control has been expanding rapidly. They offer reliability, reduced installation costs, low maintenance, and competitive initial costs. Here we describe methods of using SCR's and some pitfalls to avoid.

INTEGRATED CIRCUITS COMMERCIALLY AVAILABLE

This tabulation will aid engineers in choosing or eliminating integrated circuits in the early stages of circuit design. Also included is a glossary of commonly used (but not so clear) IC and computer terms.

APPLYING DIRECTIONAL R-F WATTMETERS 114
A discussion of directional R-F wattmeters, why they work and how to use them.

HOW TO AVOID ENGINEERING OBSOLESCENCE 133
No magic formula, but a discussion of ways to approach the problem and what Education, Industry and Professional Societies are doing to help.

Capacitance Standards to Certified Accuracy of $\pm 0.1 \%$ Developed by Sprague

A broad range of capacitance values from $.001 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$, furnished to an accuracy of $\pm 0.1 \%$ of the nominal values, are available in Styracon Precision Capacitors, components for highly precise electronic equipment as well as for laboratory standards of capacitance.
These high-accuracy capacitors, designed and developed by the Sprague Electric Company, offer the maximum capacitance stability possible in the state of the art. The measurements of Styracon Precision Capacitors are correlated with similar capacitors certified in the laboratories of the National Bureau of Standards.

Specially Processed Film Dielectric

Hermetically-sealed Styracon Capacitors employ a specially processed polystyrene film as their dielectric, resulting in capacitors with extremely high insulation resistance, negligible dielectric absorption. and low dissipation factor (high Q).
Styracon Precision Capacitors are useful in a very broad range of applications from d-c timing and integrating circuits to filters and tuned circuit design.

Styracon Decade Capacitors

The Sprague Styracon family also includes a line of Triple Decade Capacitors with direct in-line readout, offering a convenient means of quickly adjusting capacitance in both the laboratory and in precision electronic equipment in the field.
Accurate to $\pm 0.5 \%$ of the nominal capacitance for any dial setting, Sprague Decade Capacitors are available in two basic ranges of capacitance- 0.0001 to $0.1099 \mu \mathrm{~F}$ and 0.001 to $1.099 \mu \mathrm{~F}$-in either bench or panel mounting styles.
For complete technical data, write for Engineering Bulletins 90,600 and 90,605 to Technical Literature Service, Sprague Electric Co., 233 Marshall St., North Adams, Mass.

The NAND/NOR Gate shown here is one of a series of CERACIRCUIT DTL Logic Modules.

a compatible line of DTL Logic CERACIRCUIT THIN-FILM MICROCIRCUITS

5 Mc DTL LOGIC CIRCUITS

The basic member of the Sprague series of DTL Logic Modules is the UC-1001B NAND/NOR Gate (see schematic), with typical propagation time delay of 10 nanoseconds per stage over the broad temperature range of -55 C to +125 C . Other DTL Logic Ceracircuits include UC-1002B SCT Flip-Flop, UC-1003B Buffer-Driver, UC-1004B Exclusive OR/Half-Adder, UC-1005B 8-Diode Gate, and UC1006B 5-Diode Gate.

To facilitate contact packaging and assembly on printed wiring boards, all 5 Mc DTL Ceracircuit Modules are

Circuit schematic, UC. 10018 NAND/NOR Gate.
encapsulated in one standard case, 1.0^{n} wide $\times 0.4^{\prime \prime}$ high $\times 0.2^{\prime \prime}$ thick.

CUSTOM-TAILORED CIRCUITS

Ceracircuit Ceramic-base Microcircuits provide the circuit designer with highly desirable features-component familiarity, design versatility, increased reliability, circuit economy. Thin-film hybrid ceramic technology permits wide ranges of resistance and capacitance values, holding close tolerances without the usual high-cost penalties. Each passive component is deposited on a single ceramic substrate, keeping its identity and allowing conventional design procedures.

WRITE FOR COMPLETE DATA

For data on Ceracircuit DTL Logic Modules, or custom Ceracircuits to your requirements, write for Brochure ASP-363 to Technical Literature Service, Sprague Electric Co., 233 Marshall St., North Adams, Mass. 01248

SPRAGUECOMPONENTS

THIN-FILM MICROCIRCUITS INTEGRATED CIRCUITS CAPACITORS TRANSISTORS RESISTORS INTERFERENCE FILTERS (9M-100 R2
packaged component assemblies FUNCTIONAL DIGITAL CIRCUITS magnetic components PULSE TRANSFORMERS CERAMIC-BASE PRINTED NETWORKS PULSE-FORMING NETWORKS

SPRAGUE
 the mark of reliability

Circle 3 on Inquiry Card

Corotron actual size; Astronetics power supply, showing Corotron location, $2 / 3$ size. Courtesy Astronetic Research, Inc., Nashua, N. H.

You could string together several hundred zeners. Or you could specify one Victoreen Corotron. It is the gaseous equiv. alent of the zener with all the advantages of an ideal HV zener diode.
For space research and other rugged applications requiring absolute power supply stability, GV3S Series, shown, provide the ideal reference voltage anywhere in the range of 400 to 3000 volts. They enable circuitry to maintain constant high voltage regardless of battery source voltage or load current variations. Cubage and weight (GV3S Corotron weighs only 4 gm .) are important considerations. So is temperature variation (Corotrons operate from $200^{\circ} \mathrm{C}$ down to $-65^{\circ} \mathrm{C}$). Ruggedized versions withstand shock to 2000 G , vibration 10 to 2000 cps .
If you're trying to simplify circuits . . . to cut cost, size and weight . . . to upgrade performance-you need Corotron high voltage regulators. Models are available now from 400 to 30,000 volts. A consultation with our Applications Engineering Dept. will speed up the countdown.

THE VICTOREEN INSTRUMENT COMPANY
10101 WDODLAND AVENUE - CLEVELAND, DHID 44104 european sales office: grove house, lonoon ho., isleworth, middlesex. englano

ELEMTRONIE ITIUSTRIES

SHELBY A. McMILLION, Publisher

BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT
Executive Editor
JOHN E. HICKEY, Jr.
Managing Editor
SMEDLEY B. RUTH
SIDNEY FELDMAN
Associate Editors
JOHN J. HUNTER
ROBERT J. BRAMLETT
Assistant Editors
dr. albert f. Murray
Consulting Editor
ELMER KETTERER, Art Director
ANNE AXE, Editorial Assistant
ANN LAVENDER, Rosearch Assistant
MAE MOYER, Reader Service
IDA GOOD, Editorial Secy.
\section*{EDITORS-AT-LARGE}
Eastern Region
ELMER T. EBERSOL,
100 East 42nd St.
(Area Code 212) OXford $7-3400$
Western Region
I. PHILIP GEDDES.
1543 W . Olympic Bivd.
Los Angeles, Calif
(Area Code 213) DUnkirk 7-1271
Defense/Space
CHARLES R. WILHIDE,
4400 Brookside Drive
Alexandria, Va.
WASHINGTON NEWS BUREAU
1093 National Pross Bldg.
(Area Code 202) 393-3474
TWX-202 965-0675
gedrge baker, Mgr.
NEIL R. REGEIMBAL
BUSINESS DEPARTMENT
ELMER DALTON
Advertising Promotion
\& Circulation Manager
EDWARD G. SHAUD, JJ.
Marketing Manager
ARA H. ELOIAN
Production Manager

See Advertisers Index on page 161 for Regional Sales Managers.

Chilton Company-G. C. BUZBY, Chalrman of the Board; R. E. McKENNA, President Executive Vice President: G. T. Hook. Vice Presidents: P. M. Fahrendorf, L V. Row lands, M. E. Cox, E. B. Terhune, Jr.,
R. W. Case, Jr. J. H. Kofron. Treasurer Stanley Appleby. Secretary: J. A. Mont gomery. Other Directors: C. A. S. Hainle T. C. Camptell, H. W. Barclay, W. A Phair; Assistant Treasurer: J. Miades; As. sistant Secretary: I. C. Holloway.

JOHN H. KOFRON

Chilton Research Director

ELECTRONIC INDUSTRIES, October 1965. Yol. 24, No. 10. A monthly publich tion of Chilton Company. Executive, Edito. rial \& Advertising offices at Chestnut 8 56th Sts., Phila. Pa. 19139. (Area Code 215) Sherwood 8-2000. Controlled circula. tion postage paid at Philadelphis, Pa. \$1 copy. Subscription rates (June), $\$ 5.00$ a copy. Subscription ratos U. S. and U. S. Canada 1 year $\$ 12.00$ - 2 yrs, $\$ 20.00 .00$ other countries 1 ; 2 18.00: 20.00 . Ait $\$ 30.00$. Copvright 1965 by Chilton ${ }^{2}$ yrs. pany. Title Reg. U. S. Pat. Off. Reproduc tion or reprinting prohibited except by written authorization.

Sierra Wide-Range RF Wattmeters

and Low-VSWR Loads

Model 401A Termination Wattmeters, in four models ($120,250,500$, and 1,000 watts) offer unusually wide dynamic range. Single-knob switching of four power ranges (two ranges on 120 .watt model) provides excellent versatility of application. For example, meter indications as low as two watts can be read on the 1,000 -watt models. Terminations are sealed to prevent possibility of leakage. Eight different Twist-Off connector types (N, C, UHF, HN, LC, BNC, TNC, $158^{\prime \prime}$ rigid line) can be fitted on in the field without factory calibration. Wattmeters require no external power or water connections.

Model 160B Coaxial Loads deliver average power dissipation ratings of $150,300,600$, and 1,000 watts. The four models provide low-reflection termination of a 50 ohm flexiDie or rigid coaxial line. They are ideally suited as dummy loads for transmitters operating up to 5,000 Mc, or as terminations for use with bi-directional power monitors. Terminations are sealed to prevent possibility of leakage. Can be used with eight different Twist-Off connector types (N, C, UHF, HN, LC, BNC, TNC, and $15 / \mathrm{m}^{\prime \prime}$ rigid line).
160B-150 (watts) . . \$ 70 160B-600 (watts) . . \$140 $160 \mathrm{~B}-300$ (watts) . . $\$ 95$ 160B-1000 (watts) . $\$ 265$

Sierra offers a complete line of power measuring instruments and devices, featuring high performance standards and economical prices. Complete catalog is available by writing to Sierra or to your Sierra sales representative.

SIERRA ELECTRONIC DIV.

ELECTRONIC INDUSTRIES

Developments and trends affecting the State-of-the-Art of technologies throughout the electronic industries

EXTERNAL CAVITY

Engineers at Sperry Rand have demonstrated CW operation of a neodymium-doped calcium tungstate laser whose cptical cavity is external to the crystal. Here, Henry Aldag adjusts one of the mirrors placed outside the crystal. The company plans to use the laser as an oscillator in a study of coherent optical array methods.

A SOLAR SIMULATOR has been developed by RCA to accurately reproduce the sun's spectrum over lung periods of time. Aside from space program use, it can perform accelerated tests on all kinds of material to learn how materials "weather." The simulator uses a positive carbon rod and a negative tungster rod with de applied. A gatling gun arrangement is used to continuously ieed carbon rods for steady light over a long period.

ELECTRO-OPTICAL DEVICE that allows transmission of laser energy in only one direction has been developed by Westinghouse's Aerospace Division. Company researchers believe it to be the first such device that does not use the Faraday magneto-optical effect. Instead, it uses an electric field generated by a microwave traveling-wave structure.

21-INCH rectangular color TV picture tubes have been announced by both Admiral Corp. and Motorola, Inc. The new tube for Aclmiral will be made by National Video Corp. Color glass bulbs for the Motorola tube will be supplieci by Owens Illinois Inc.

AN AMDAS SYSTEM (Automated Magnetic Data Açuisition System) will be built, installed and checked out by Electro-Nechanical Research, Inc., under terms of a contract with the U. S. Army Materiel Command. The system will be used to take magnetic "signatures" of various types of military vehicles. These would be recorded for computer analysis and later application to battlefield survaillance equipment design. The "signatures" or characteristics of various military vehicles will be measured and recorded by having the vehicles pass over magnetometer probes buried in the ground.

AUTOMATED LASER WELDING UNIT for use in industrial welding operations at speeds up to one firing. per second has been announced by Lear Siegler, Inc. It is applicable to a variety of commercial welling operations, including assembly of electronic components. It is useful in restricted areas where space limitations prohilit the use of other welding methods. Automatic operation is achieved by combining a standard metalworking laser with a tape-controlled work handling stage.

A MATHEMATICAL MODEL which enables a computer to simulate a human lung has been reported by researchers from Columbia University and IBM. The experimental lung model is expected to be useful both in improving understanding of pulmonary diseases and as a teaching aid for medical students. A dynamic picture of gas exchange and blood flow in the lungs can be constructed using the model.

SENSITIVE RADIO RECEIVER developed by Sylvania improves reception of weak signals from communication satellites. It discerns and amplifies weak signals and screens out background "noise" or static. Circuitry in the receiver compresses or sfucezes incoming signals by reducing frequency deviation, thus eliminating much background noise. A filter then screens out additional noise while allowing information to pass,

AUTOMATIC CONTROL of traffic and mass transit as well as interior environment of office and apartment buildings has been forecast by Dr. Raymond W. Ferguson of Westinghouse Corp. Dr, Ferguson told a technical session of a recent Electronic Convention that "One of the most significant areas of future putential for the technology of process control computer systems lies in the spread of this technology from the basic industries toward more consumer-oriented uses."

ANTENNA AND PROPAGATION NOTES from
the recent International Antenna and Propagation Symposium held in Washington, D. C. California Institute of Technology will be using computers to control their group of radio astronomy antennas. When more than two antennas must be aimed and properly set up, the task becomes too great where only one man is using the system and still permit him time to make observations. The antenna drive will be a Ward-Leonard system. Massachusetts Institute of Technology's new Haystack System will be used to map the Moon with radar. They expect to learn about the Moon's surface, such as whether it is hard or soft, the depressions and hills, and their size. Tropospheric scatter interest is presently low. This has been attributed to the satellite programs which seem to be replacing the need for these systems. The most attenuation for coherent optical waves is caused by precipitation-fog, snow and rain. Heavy rain has a small effect on transmission. With large rain drops the radiation is scattered in a forward direction toward the receiver, with little side scattering. H. E. Bartlett of Radiation Incorporated described a new type feed system for antennas that are dielectric guiding structures. These structures use the phenomenon of Total Internal Reflection which reduces spillover and provides more uniform reflector illumination. They are placed between primary feed and reflector or sub reflector.

MEMORY STACK

Shown here is the memory stack for Honeywell ALERT computer which NASA will use to study guidance and navigation methods and to conduct hardware experiments on the X-15A-3 aircraft. Memory, made of microbiax elements, is electrically alterable nondestructive readout. I/C diodes are mounted in the center of the PC boards.

The performance of PRINTED MOTORS begins where ordinary motors leave off!
 New Low Cost " U " Series -
 The Incredyne - cylindrical

 Minertia Motors-low inertia, slotless armature de motors in sizes up to 200 h.p.

Precision Printed Motors-high performance printed armature

Are you designing tomorrow's electromechanical systems with horse and buggy motors?

Maybe you're not aware of the recent revolution in the design of high performance actuators that has made the problems and limitations of tradi. tional motors obsolete and unnecessary. Unique advantages offered by PMI's complete line of precision and industrial servo motors include:

- Low inertia/high torque capability armatures give exceptionally fast speed of response.
- Wide speed ranges, typically 0 to 3000 rpm.
- Smooth, cogging-free torque, even at very low speeds; allows direct coupling of the motor to the load.
 4 models of printed armature motors at greatly reduced prices.
armature motor with the fast. est possible speed of response.
- Linear speed/torque characteristics, from no load to stall.
- Low mechanical and electrical time constants; armature inductance less than 100 micro. henries.
- Low voltage/high current operation; allows simple, solid state control.

For information on any or all of PMI's high performance actuators, call or write: Printed Motors, Inc., Glen Cove, New York, (516) OR 6-8000.

PMI PRINTED MOTORS, INC. GIEN LOVE, MEW Yoak

ONLY FROM CLAROSTAT

FULL LINE OF POWER RESISTORS FULL TIME HANDLING PERFORMANCE

Only Clarostat gives you that "across-the-board" completeness of line with consistent "top drawer" quality that customers have learned to depend on. For those tough industrial and commercial applications, as well as for those beyond-the-usual critical applications Clarostat's years of skilled knowhow, advanced technology and superior quality can provide the immediate answer to your power wire-wound resistor requirements. Call or write today for a quotation on your specific needs.

This miniature coaxial cable of ours was vibrated at resonance 7 hours before the sheath cracked. The best competitive cable lasted $\mathbf{5 x}$ minutes.

While flexibility is not the only consideration when you are specifying miniature coaxial cable, freedom to form to the needs of the application is a compelling factor in your choice. Think, for a moment, in terms of low noise amplifiers, microwave transmission, high speed computers and the wide range of black box requirements.
Here, then, is your answer. Miniature coaxial
cable with a silver plated Copperweld inner conductor, a TFE Teflon dielectric and solid, practically indestructible copper sheath, in standard, 50 ohm impedances, diameters of $.070^{\prime \prime}$ and $.141^{\prime \prime}$, lengths from 12^{\prime} to 200^{\prime}. Or, special diameters for your special needs.
Let us know if we can help you. Bulletin MC-1 with full details is yours for the asking.

There's a lot of "low-cost" transistors around these days that got that way by virtue of sacrifices in performance and packaging quality. That's why it's refreshing to find devices like Motorola's new 2N3903-6 series silicon annular Unibloc* plastic transistors - "no compromise" units that offer Actual high performance with topnotch reliability ... Size and at low cost, too!

Take, for instance, the rugged, high-pressure-molded plastic construction used to form the single-unit encapsulation of "Unibloc" devices. It provides a uniform, dense, solid plastic package free of voids (and leaks) in which moisture can accumulate. It also provides unusual physical strength for internal leads and connections and improved heal transfer characteristics. Because they use the solid transfer molded single-unit package approach, there can be no incompatibility between header and poured epoxy capping. (You may be familiar with the separation that sometimes occurs at the interface of a two-part plastic package under thermal cycling.)

Type	$\mathrm{BV}_{\mathrm{cto}}$	$\begin{gathered} \mathrm{h}_{\mathrm{EE}} \\ @ \\ \mathrm{~mA} / 1 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{ob}} \\ & \varrho \end{aligned}$	$10 \stackrel{\mathrm{f}_{1}}{\mathrm{~m} \overline{\mathrm{~A}}} / 20 \mathrm{~V}$	$\begin{aligned} & 100- \\ & \text { Up } \\ & \text { Price } \end{aligned}$
2N3903	40 V	50.150	4 pf	250 mc	\$.50
2N3904	40 V	100-300	4 pf	300 mc	. 55
2N3905	40 V	50-150	4.5 pf	200 mc	. 50
2N3906	40V	100-300	4.5 pf	250 mc	. 55

But, reliability is only part of the "no compromise" story!

Each of these four new Motorola annular plastic transistors is a full-spec, full-performance device . . . with no compromises to cost.

For example, the $2 \mathrm{~N} 3903-6$ series offers such features as:

- Gain (Beta) - Specified from $100 \mu \mathrm{~A}$ to
$100 \mathrm{~mA} .$. and points in between!
- High Voltage - 40 Volts ($\mathrm{BV}_{\text {CEO }}$)
- Complete h-parameter specifications
- Completely specified switching limits including t_{r}, t_{d}, t_{s}, and t_{f} !
You'll find the Motorola 2N3903-6 series literally sets the "performance standard" for low-cost transistors for industrial and consumer product applications.

You can also take advantage of the fact that this key series features device-to-device complements - the NPN 2N3903 and PNP 2N3905 and the NPN 2N3904 and PNP 2N3906.

One more point. They're made by the annular process. That means you get the low-leakage, long-term stability that will set your equipment performance apart from the crowd.

Try these devices in your most demanding circuits. Your local Motorola representative would be happy to supply samples for evaluation and complete specifications on each type.

From Data / Cartridge

EVERY INCH A DATA RECORDER!

You'd never suspect its capacity for practical, down-toearth data recording - from seismic to biophysical investigations - simply by admiring the siim lines of this new Data/Cartridge Portable Instrumentation Tape Recorder (Madel D/C-1). You'd have to see it in action to appreciate the fact that it's a complete four-channel record/reproduce instrument fully equipped with instru-mentation-quality FM or Direct Electronics.
Instrumentation Quality The 25 -pound D/C-1 is every inch a laboratory-quality tape recorder. It provides up to four standard tape speeds, instantly switchable by front panel controls, and p'ug-in, solid-state electronics. Metal-faced, precision microgap heads permit up to four data channels. Virtually no holdback tension and gentle tape handling greatly extend the norma! life of your tapes.
Uncomplicated The D/C-1 uses standard size Fidelipac ${ }^{(1)}$ tape cartridges with $1 / 4^{\prime \prime}$ wide Mylar tape in endless loops up to 1700 feet. You can load the recorder in a second, even with gloves on. No fussing with reels or special operator skills required.
No Mechanical Adjustments Gone are the brakes, holdback tension gadgetry and servo controls, tape-supply reel motor and other mechanical parts that could keep you tied up for hours with adjustment problems. You can concentrate on your application, instead of the recorder. To record more data on this remarkable new cartridge recorder, address your inquiry to

> DATA/CARTRIDG゚E

161 Constitution Drive, Menlo Park, California 94025

October

Oct. 11-13: 1965 IEEE NATCOM (Communications Symp.), IEEE; Utica, N. Y.

Oct. 12-13: 3rd Annual Product Maintainability Seminar, ASQC; Sheraton Motor Inn, Phila., Pa.
Oct. 12-14: 1965 Protective Relaying Conf., IEEE, Univ. of Minn.; Univ. of Minn., Minneapolis, Minn.
Oct. 18-19: Systems Science Conf., IEEE; Case Institute, Cleveland, Ohio.
Oct. 18-20: 12th Nuclear Science Symp., IEEE; San Francisco Hilton Hotel, San Francisco, Calif.
Oct. 18.20: Joint Materials Handling Tech. Conf., IEEE, ASME; Pittsburgh Hilton Hotel, Pittsburgh, Pa.
Oct. 21-23: Symp. on Photography in Information Storage and Retrieval, SPSE; Marriott Twin Bridges Motor Hotel, Washington, D. C.
Oct. 25-26: 2nd Symp. on Consumer Electronics, IEEE; McCormick Place, Chicago, III.
Oct. 25-27: 4th Symp. on Discrete Adaptive Processes, IEEE; McCormick Place, Chicago, III.
'65-'66 Highlights
Nat'I Electronics Conf., Oct. 25-27; McCormick Place, Chicago, Ill.
NEREM, Northeast Research \& Eng. Mtg., Nov. 3-5, IEEE; Boston, Mass. IEEE Int'I Conv., Mar. 21-24, 1966; Coliseum, New York Hilton, New York, N. Y.
WESCON, Western Electronics Show \& Conv., Aug. 23-26, WEMA, IEEE; Sports Arena, Los Angeles, Calif.

Oct. 25-27: Thermionic Conver. Special ists Conf., IEEE; Del Webb Ocean House, San Diego, Calif.
Oct. 27-29: East Coast Conf. on Aerospace \& Navig. Elect., AES, IEEE; Holiday Inn, Baltimore, Md.

November

Nov. 1-3: Industrial Static Power Conversion Tech. Conf., IGA, IEEE; Benj. Franklin Hotel, Phila., Pa.
Nov. 2: Western Appliance Tech. Conf., IGA, IEEE; Rodger Young Auditorium, Los Angeles, Calif.
Nov. 2-4: 1965 Int'I Space Electronics Symp., AES, IEEE; Fontainebleau Hotel, Miami Beach, Fla.
Nov. 3-5: Northeast Elect. Research \& Eng. Mtg. (NEREM), IEEE; SheratonBoston Hotel \& War Mem. Audit., Boston, Mass.
Nov. 3-5: Int'I Fall Data Processing Conf. and Business Expos., DPMA; Dallas and Adolphus Hotels, Dallas, Tex.
Nov. 16-19: Annual Conf. on Magnetism \& Mag. Materials, AIP, IEEE; Hilton Hotel, San Francisco, Calif.
Nov. 18-19: Mid-America Elect. Conf. (MAECON), IEEE; Continental Hotel, Kansas City, Mo.

For the engineer who refuses to stagnate

Half the world is half asleep! Men ing twice their ing for promotions but doing nothing to bring themselves forcefully to the attention of management.

They're wasting the most fruitful years of their business lives . . . throwing away thousands of dollars they may never be able to make up. And, oddly enough, they don't realize - even remotely - the tragic consequences of their failure to forge ahead while time is still on their side.
Engineers, and other technicallytrained men are particularly prone to "drift with the tide" because their starting salaries are reasonably high and promotions come at regular intervals
early in their careers. It isn't until later - too much later in many cases - that they discover there are definite ceilings on their incomes.

Send for your free copy

of "Forging Ahead in Business"
If you tvant to discover how to succeed while you are still young - if you want to avoid the heartbreak of failure in later years - send today for "Forging A head in Business" . . . one of the most practical and realistic booklets ever written on the problems of personal advancement.
"Forging Ahead in Business" was written for ambitious men who seriously want to get to bedrock in their thinking about their business future.

If you feel it is meant for you, simply fill in and return this coupon. Your complimentary copy will be mailed to you promptly.

Construction features of TI's new 16-pin plug-in flat pack.

Modular family of plug-in flat packs. First available is 16-pin version.

Four new families of industrial integrated circuits - Series 70, 73, 74, and 1580 are now available from Texas Instruments in an advance-design plug-in flat package for reduced equipment-assembly costs. The 28 new circuit types offered in this package provide low cost per logic function, and are designed for operation in a wide range of industrial environments.
The first in a series of modular plug-in packages is a 16 -pin version, useful for multifunction logic networks of up to six circuits. Here are features: (numbers refer to cutaway illustration at left)

1. Sixteen pins enable you to obtain maximum economies inherent in today's multifunction integrated circuits. Pins are in two rows of eight, with rows a convenient 200 mils apart. Positive alignment of pins is assured for high-speed automatic or manual insertion techniques. Alignment tolerance is ± 10 mils at end of pins.
2. Pin spacing on $\mathbf{1 0 0}$-mil centers is appropriate for fast, economical flow- and wave-soldering techniques and for wirewrap connections.
3. Round-pin cross-section is full $20-\mathrm{mil}$ diameter (± 2 mils) for strength and rigidity. Pin diameter is compatible with standard PC-board drill fixtures. Pin length is 150 mils, leaving ample soldering space under $1 / 8^{\prime \prime}$ PC board. Despite their rigidity, pins are not brittle, will withstand at least four 90 -degree bends using a one-lb. weight - exceeding TO-5 requirements.
4. Pins beneath package provide maximum rigidity, prevent electrical contact between pins of adjacent packages. With pins projecting from the bottom, additional rows of pins can be added while maintaining same modular length and same form-factor.
5. Package size - $\mathbf{3 9 0}$ by $\mathbf{8 9 0}$ mils - is convenient for handling during test and assembly. Packages can be mounted at maximum density on 400-mil centers, side-byside, and 900 -mil centers, end-to-end.
6. Aluminum-oxide ceramic substrate provides strength and good thermal-dissipation properties. Also provides electrical isolation, pin-to-pin and pin-to-package.
7. Rugged, flanged sides provide easygrip handling without touching pins.
8. Brazed ceramic-to-metal seal assures that package will withstand external helium pressure of 100 psi with hermeticity of 50 x $10^{-8} \mathrm{cc} / \mathrm{sec}$. Also withstands thermal shock - cycling between -55° and $+300^{\circ} \mathrm{C}$, and cycling between boiling water and ice water. More than $3,000,000$ similar ceramic-to-

For TI Integrated Circuits Low-Gost Assembly

metal seals have been applied to TI's TO-50 packages produced for Minuteman and other programs over the past four years.
9. Metallization pattern on face of ceramic makes possible short, reliable bonds to the integrated-circuit bar.
10. Integrated-circuit bar is recessed in a well, resulting in straight-line bonds to raised bonding pads, with no sags or loops. 11. Metal lid is securely sealed with tran-sistor-type "one -shot" resistance weld. Fast, reliable weld means an economical package.
12. Flange tab at corner of package provides indexing at a glance.
13. Stand-off, 45 mils high, allows easy clean-out of flux beneath package, assures good solder contact through PC-board holes.

A major feature of TI's plug-in package is its modular approach, including versions with $10,16,24$, and 40 pins. See dimensions at lower left. The larger packages are designed to accommodate the more complex logic arrays to be seen in coming months.

28 New Industrial Integrated Circuits Offer Low Cost per Logic Function

TI's new industrial logic families include eight Series 74 TTL networks, 13 Series 73 modified-DTL units, two Series 70 ECL gates, and eight Series 1580 DTL circuits.

Typical gate characteristics for each of the four logic families are listed in the table at right, All these circuits, except Series 70, are reduced-temperature (0° to $+70^{\circ} \mathrm{C}$) versions of established military integrated-circuit lines. They feature the same high performance, same high reliability, and same multifunction economies.

By fabricating two, three, and four circuits simultaneously in a single silicon bar, the cost-per-circuit-function is drastically reduced. Reductions are also obtained in the number of circuit packages, interconnections, and circuit boards - and in inventories, testing, and handling.

The new 16-pin plug-in flat pack is an option available at no additional cost, and is available for Series $70,74,1580$, and most units in Series 73. The standard package for all four series is the 5 -year-proved $1 / 4^{\prime \prime}$ by $1 / 8^{\prime \prime}$ flat pack.

For additional information on TI's industrial logic circuits and the new plug-in packages, contact your local TI Sales Engineer or circle No. 25 on the Reader Service Card.

Plug-in flat packs shown mounted at maximum density. Units are easily handled and inserted through PC board.

Production test socket (left) and breadboarding sockets (right) are being developed for plug-in flat packs.

TYPICAL GATE CHARACTERISTICS OF TI's INDUSTRIAL LOGIC FAMILIES

Paramoter	Series 73	Series 74	Series 70	Sories 1580
Propagation dolay, nsec	30	13	5	25
Power dissipation, mw	10	10	$40+$	5
Fan-out	10	10	$\mathrm{~N} / \mathrm{A}$	8
Noise immunity, mv	300	1000	250	750
Supply voltage, v	3 to 4	4.75 to 5.25	$+1.25,-3.5$	4.5 to 5.5
Tomperature range, ${ }^{\circ} \mathrm{C}$	0° to $+70^{\circ}$	0° to $+70^{\circ}$	0° to $+70^{\circ}$	0° to $+70^{\circ}$

TYPES AVAILABLE IN TI'S INDUSTRIAL LOGIC FAMILIES				
	Series 73 Modified-DTL NAND/NOR	Sories 74 TTL NAND	Series 70 ECL OR/NOR	Series 1580 DTL NAND
J.K Flip-flop	$\begin{aligned} & \text { SN7300 } \\ & \text { SN7301 } \end{aligned}$	SN7470		SN1590 SN1591 SN1593
Dual J-K Flip-flop	$\begin{aligned} & \text { SN7302 } \\ & \text { SN7304 } \end{aligned}$			
Quad gate	SN7360	SN7400		SN1583
Triple gato	SN7331	SN7410		
Dual gate	$\begin{aligned} & \text { SN7311 } \\ & \text { SN7330 } \end{aligned}$	$\begin{aligned} & \text { SN7420 } \\ & \text { SN7440 } \end{aligned}$	$\begin{aligned} & \text { SN7000 } \\ & \text { SN7001 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SN1581 } \\ & \text { SN1584 } \end{aligned}$
Single gate	SN7310	SN7430		
Dual EXCLUSIVE-OR	SN7370	SN7450		
Expander	SN7320	SN7460		SN1580
Inverter. Buffer	SN7350			SN1582
"One Shot"	SN7380			

semiconouctor plants in beoford, england - nice, france - oallas, texas

DEFENSE BUDGET NEAR PEAK-Additional defense dollars roted by Congress to pursue the Vietnam war nudged the defense buclget to $\$ 53.4$ billionsecond only to the record-breaking $\$ 74.6$ billion military budget voted in fiscal 1944 . The $\$ 1.7$ billion supplemental request will be spent for many types of eqpuipment. as well as for construction in Vietnam,

PATENT COMPROMISE LIKELY- A compro-

 mise is likely in the bitter battle over industry's "right to inventions" developed under federal contracts. A bill sponsored by Sen. John L. McClellan (D.-Ark.) chairman, patents subcommittee, would allow companies to keep patent rights but give the government free use of inventions. DOD is supporting the measure as a "proper balance" between private or public ownership.
WE'RE SWAMPED IN PATENTS-All ad-

 vanced nations are swamped in applications for patents on new inventions, and about half of all applications are (luplicates of papers filed in other countries. Assistant Secretary (for Science \& Technology) of Commerce I. Herbert Ifollomon proposes an international plan of exchange and cooperation aimed at weeding out dupli-eation.

METRIC STUDY MOVES SLOWLY-The U. S.

 will mot switch to the metric system without many compromises between industry and the backers of conversion. The first compromise came early when legislation calling for a three-year government study of the "arlvantages" of a switch was amended to include a probe of the "disadvantages." Industry also insists that it participate in the study. Industry, facing huge conversion costs and confusion in the switch, wants to make certain that problems are spelled out in the study results. The pressure for the U.S, to convert to the metric system gained strong impetus following Britain's recent decision to "go metric."
WEST COAST FAVORED--West Coast manu-

 facturers and researchers will continue to get their lion's share of NASA contracts. There has been debate in Senate and Honse over the geographic dispersal of NASA contracts (Western states get most; Fast Coast areas next: Midwestern states get few if any). Congressmen from interior states fought hard for a clanse requiring the spreading of $N A S A$ contracts across the nation. They were overridden by NASA bill managers. who hail from coastal areas and who naturally have no reason to disturb the existing pattern of contract distribution. The Midwest is an economic wasteland as far as N.ASA contracts are concerned, it was charged by Rep. J. İ. Roush (I).-Ind.).MORE COMSATS PLANNED - Success of its
"Early Bird" communications sateliite is leading COMSAT into plans for more advanced satellites. COMSAT (Communications Satellite Corp.) is asking industry to propose (beginning Oct. 25) an advanced spacecraft for a worldwide commercial communications system. (Early Bird links only North America and Europe.) The new satellite may be used either in a synchronous system at 22,300 miles altitude, or in a phased system at 6,000-12,000 miles altitude.

NEW ARMS-CUT STUDY-Government disarm-

 ament officials have ordered a study of the economic effects of shut-downs at 80 U. S. military bases. U. S. Arms Control \& Disarmament Agency has signed a contract for the study with the University of Kansas. Results of the study are expected to serve as guidelines in future base closings. Chief concern is with economic impact of base closings on nearby towns and populations.
PERSONNEL RULES TIGHTENED—Defense

 lept. plans to tighten rules on use of contract personnel retained by manufacturers holding defense contracts. The Pentagon believes it has been too lax in the discretion it has allowed contractors in hiring technical help for military contracts. The Pentagon's decision results in part from prodding by the U. S. Civil Service Commission. Some government employees complained they were performing the same work as non-government employees for less pay.
INTERFERENCE BILL STUDIED - The FCC

 and segments of the electronic industry failed to see eye to eye on legislation to solve the problem of interference from various devices early this summer. The issue stems from a measure sponsored by FCC to give it power to set regulations for the manufacture, sale, shipment, and import of such devices as garage door closers that often cause radio interference. Not all electronic makers oppose it, but many do because of the fear of increased government control of the industry.
MORE CONTRACTS TO SMALL FIRMS--An

 increasingly larger share of missile and space business is going to smaller firms. U. S. Dept, of Labor reports that larger firms (5,000 or more workers) are losing their relative share of missile and space contracts. In 1961, companies with 5,000 or more workers performed 58% of all space contracts. By degrees, this share has slipped to 52%. Conversely, manufacturers having between 1,000 and 5,000 workers on their payrolls increased their share from 33% to 35%. Firms in the $250-1,000$ bracket increased from 8% to 11%.

ONE THING ABOUT CLASSICS . . . THEY NEVER CHANGE

PAKTRON ${ }^{\oplus}$ molded Classict.m. capacitors stand the test of time. Hot or cold, it doesn't make much difference to a PAKTRON Classict.4. capacitor. With the inherent stability of polycarbonate, PAKTRON Classicr.m. polycarbonate film/foil capacitors satisfy applications where minimum capacitance change with respect to temperature excursions is a design criterion. They are highly resistant to moisture, shock, vibration and contamination, and have passed many of the toughest electricalenvironmental requirements. Dimensions are precise. All parts are certified and fully tested by PAKTRON. All this leads to the most important PAKTRON Classict.m. capacitor feature . . . over the entire temperature range, PAKTRON Classict.m. capacitors never change. Ask for samples.

PAKTRON ${ }^{\text {® }}$ Classic ${ }^{\text {T.m. }}$ molded polycarbonate film capacitors

- Working Voltage: 50 WVDC
- Tolerances: $\pm 1 \%, \pm 2 \%, \pm 5 \%$, $\pm 10 \%$
- Operating Temperature Range: $-65^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
PCR-700
70 C inches long. Capacitance values to 0.1 mfd .
330 inches long. values to 0.010 mfd .

$$
\begin{aligned}
& \text { values to } \\
& \text { PCA. } 375
\end{aligned}
$$

.375 inches long, . 200 inches dia. Capacitance values to .015 mfd .

Tektronix oscilloscope displays both time-bases separately or alternately

NEW TYPE 547 and 1A1 UNIT

SINGLE TRACE

2 Hz -to- 15 MHz $500 \mu \mathrm{~V} / \mathbf{C M}$
 (CHANNELS 1 AND 2 CASCADED)

With automatic display switching, the Type 547 provides two independent oscilloscope systems in one cabinet, time-sharing a single-beam crt.

Type 547 also uses 17 "letter-series" plug-in units

Some Type 547/1A1 Unit Features

New CRT (with internal graticule and controllable illumination) provioes bright "noparallax" displays of small spot size and uniform focus over the full $6 . \mathrm{cm}$ by $10-\mathrm{cm}$ viewing area.

Calibrated Sweep Delay extends continuously from 0.1 microsecond to 50 seconds.

2 Independent Sweep Systems provide 24 calibrated time-base rates from $5 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Three magnified positions of $2 \mathrm{X}, 5 \mathrm{X}$, and 10 X , are common to both sweeps-with the 10 X magnifier increasing the maximum calibrated sweep rates to $10 \mathrm{nsec} / \mathrm{cm}$.

Single Sweep Operation enables oneshot displays for photography of either normal or delayed sweeps, including alternate presentations.

2 Independent Triggering Systems simplify set-up procedures, provide stable displays over the full passband and to beyond 50 MHz , and include brightline automatic modes for convenience.

Type 547 Oscilloscope
(without plug-in unit)
Type 1A9 Dual-Trace Unit
Rack-Mount Model Type RM547
.
$\$ 1875$
\$ 600 \$1975

For a demonstration, call your Tektronix Field Engineer

2 signals - different sweeps

Upper trace is Channel 1/A sweep, $1 \mu \mathrm{sec} / \mathrm{cm}$. Lower trace is Channel 2/B sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$. Using same or different sweep rates (and sensitivities) to alternately display different signals provides equivaient dual-scope operation, in many instanees.
Triggering internally (normal) permits viewing stable displays of waveforms unrelated in frequency. Trigge-ing internally (plug-in, Channel 1) permits viewints frequency or phase differences with respect to Channel 1.

same signal - different sweeps Upper trace is Channel 1/A sweep, $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Lower trace is Channel $1 / \mathrm{B}$ sweep, $1 \mu \mathrm{sec} / \mathrm{cm}$. Using d:fferent sweep rates to alterr ately display the same signal permits close analysis of waveform aberrations in different time domains.

2 signals - portions of each magnified
Trace 1 is Channel $2 / B$ sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$. Trace 2 (brightened portion of Trace 1) is Channel $2 / \mathrm{A}$ sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$.
Trace 3 is Channel $1 / \mathrm{B}$ sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$.
Trace 4 (brightened portion of Trace 3) is Channel 1/A sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$.
Using sweep delay technique-plus automatic alternate switching of the time bases-permits displaying both signals with a selected brightened portion and the brightened portions expanded to a full 10 centimeters.
B sweep tuiggering internally from Channel 1 (plug. in) assures a stable time-related dispury without using external trigger probe.

Tektronix, Inc. P.O. BOX 500 - BEAVERTON. OREGON 97005 - Phone: (Area Code 503) 644-0161 - Telex: 036.691 TWX: 503-291-6805 • Cable: TEKTRONIX - OVERSEAS DISTRIBUTORS IN OVER 30 COUNTRIES
Tektronix Australia Pty., Ltd., Melbourne; Sydney. Tektronix Canada Lid. Montreal. Toronto
Tektronix Australia Pty., Ltd., Melbourne; Sydney • Tektronix Canada Ltd., Montreal; Toronto
Tektronix International A.G., Zug. Switzerland. Tektronix Ltd., Guernsey, C. I. - Tektronix U. K. Ltd., Harpenden, Herts

WAVE OPEMED MEW DESIEN, APPGICATCOW PRRAMETERS888

 SEMO FOR TECM DATA TODAY FOR COMPLETE OWFORMATROW

4 PROGRAMMED WIRE WRAPPER

Machine automatically lays out wires on board or panel to be wired and makes wrapped joints at terminals according to a punched-tape program, both developed by Standard Telephones and Cable Ltd., London.

- TO PENETRATE THE 'BAMBOO CURTAIN'

Coil and sheath assemblies are vital parts of 250,000 -watt trans mitter, 10 of which are being built by Hughes Aircraft Co. for U. S. Information Agency. They will simplify automatic frequency changes.

4 ARM MODEL
Working model of artificial arm, by Philco researchers, that bends at elbow and turns hand, all by remote signals from living human muscles. Serge Minassian, scientist, simulates handshake.

Inside story of the new look in series regulators

Westinghouse power integrated amplifiers eliminate a complete driver stage. Save space, improve reliability, cut costs with Westinghouse power integrated amplifiers. Types 2N2233 and 2N3477 provide exceptionally high gain at high power levels-h $\mathrm{he}_{\mathrm{FE}}=400$ at 10 amps $\mathrm{Ic}, \mathrm{V}_{\mathrm{CE}}=200$ volts and $\mathrm{P}_{\mathrm{D}}=150$ watts. Single and double ended pack. ages provide complete design flexibility. Check these exclusive features:

- Hard soldered junctions eliminate thermal fatigue.
- Large emitter-base area puts an end to secondary breakdown.
- True monolithic construction stops runaway leakage.

SINGLE ENDED	DOUBLE ENDED	$\mathbf{V}_{\text {CE }}$	$\mathbf{b}_{\text {FE }}$
2N2226	2N3470	50	
2N2227	2N3471	100	100
2N2228	2N3472	150	$@$
2N2229	2N3473	200	$10 A$
2N2230	2N3474	50	
2N2231	2N3475	100	400
2N2232	2N3476	150	$@$
2N2233	2N3477	200	$10 A$

You can be sure if it's Westinghouse

And, of course, reliability is assured by the exclusive Westinghouse Lifetime Semiconductor Guarantee.* For full information call your Westinghouse salesman or distributor, or write to the Westinghouse Semiconductor Division, Youngwood, Pennsylvania.
*Westinghouse warrants to the original purchaser that it will correct any defect or defects in workmanship, by repair or replacement f.o.b.
factory, for ary JEDEC-type silicon power semi factory, for ary JEDEC-type silicon power semiconductor during the life of the equipment in
which it is originally installed, provided said which it is originally installed, provided said
device is used within manufacturer's published ratings and applied in accordance with good engineering practice. This warranty is applicable to devices of the stated types shipped after March 9, 1964, until further notice. This warranty shall constitute a fulfillment of all Westinghouse liabilities in respect to said products. This warranty is in lieu of all other warranties expressed or implied. Westinghouse shall not be liable for any consequential damages. sc-2050

"ACTIVE"... ERIE Definition of Advanced Component Capability

High capacitance to volume ratio Hermetically sealed in glass; precision molded; and phenolic dipped types.

MINIATURE
HERMETICALLY SEALED
HERMELCALCY SEALED
BUITON MICA CAPACITORS
For $-55^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$. applications.

SUBMINIATURE
broad band
R. F.I. FILTERS

Eliminate RF noise in 10 KC to 10 KMC frequency range.

HIGH RELIABILITY
TUBULAR and DISC
CERAMIC CAPACITORS
General Purpose; Temperature
Compensating; and High Stability types.

MINIATURE
CERAMIC and GLASS TRIMMERS
Precision trimmers with capacitance and terminal arrangements to suit need

MINIATURE

FILM CAPACITORS

Designed for filter, bypass,
coupling and blocking applications

SUBMINIATURE

DIFFUSED SILICON RECTIFIERS
High forward conductance, low-leakage currents and reliable performance.

MINIATURE
BYPASS CAPACITOR SYSTEMS FOR TRANSMITTING TUBES
Effective capacitive bypassing and coupling or filtering of all signals in 10 to 3000 megacycle range and beyond

SUBMINIATURE

INTEGRATED NETWDRKS

Compact modules of resistor-capacitor
networks with 2, 4, 6 or 8 leads. with or without semiconductor elements.

Erie's Project "ACTIVE "
Advanced Components through Increased Volumetric Efficiency

U. S. FIRMS EXHIBIT WARES AT SWISS ELECTRONIC SHOW

Fifty-one U. S. manufacturers from 13 states-including 30 firms new to the market-displayed their advanced electronic wares in September at the U. S. exhibit in the International Exhibition of Industrial Electronics (INEL) in Basel, Switzerland.
The U.S. exhibit was sponsored by the Department of Commerce Bureau of International Commerce.

Prospective buyers, agents, and distributors visiting U. S. company booths saw a wide variety of electronic products, including advanced monolithic hybrid and thin film microcircuits; conventional semiconductor devices and electronic components, and digital and analog computers. They also had an opportunity to discuss new electronic manufacturing processes used in the U. S.

OVERSEAS RADIOS INCREASE 18 MILLION, REPORTS USIA

There were some $286,000,000$ radio sets in use in the world outside the United States and Canada at the end of 1964, reports the U. S. Information Agency. This total denoted an increase of $18,000,000$ sets over 1963.

Of the sets overseas, 36% were in Western Europe; 21% in the Far East; 20\% in Eastern Europe; 12\% in Latin America and; 7% in the Near East and South Asia, and 4\% in Africa, USIA said in its report.

The ratio of radios to population, exclusive of the United States and Canada, ranged from one set for every three persons in Western Europe to one set for every 40 persons in the Near East and South Asia area.

With an estimated 228,000,000 radio sets in the United States and $10,500,000$ in Canada at the end of the year, the world total substantially passed the half billion mark in 1964, USIA said.

POLAND'S EXPORTS SINCE '60 MAY HIT $\$ 2.5$ BILLION

Exports of electronic products from Poland have expanded steadily since 1960. Polish electronic exports are expected to reach a total value of 9 million pounds this year for the five years, or about $\$ 2,520,000,000$.

According to recent reliable reports there are nearly 40 major electronic firms in Poland; they employ about 61,000 persons. Their production during 1965 may well reach 600,000 radios, 10,000 TV sets, 50,000 record players, and 12 million electron tubes.

Interior view of Texas Instruments "Innovations in Technology" exhibit van now on 16,000-mile tour which will bring data on TI's new products to design engineers across the U. S. and Canada. Featured are some 55 running feet of exhibits and demonstrations.

COMPONENT SHIPMENTS SET NEW YEARLY HIGH IN 1964

Total factory shipments of electronic components in U. S. exceeded $\$ 4.1$ billion in 1964, a gain of 4.5% over the 1963 level, and a new record, the U. S. Dept. of Commerce reports.

An increase of 15% in value of non-defense shipments partly offset a 16% decline in value of components for defense and other government end uses. Substantial unit increases in non-defense shipments were offset by continuing price declines which limited the overall growth in dollar value.

Contributing to the 1964 growth was a 51% increase in shipments of complex components. This reflected the continued trend toward packaged circuitry in both defense and non-defense applications. A gain of 21% in the value of total picture tube shipments resulted primarily from sales growth of color receivers, which amounted to 1.4 million units for the year compared with 800,000 in 1963. The increased TV receiver production also stimulated a 7% gain in the semiconductor industry despite a 20% decline of semiconductor shipments for defense use.

Nominal gains were made in 1964 over 1963 in the value of shipments of transformers, capacitors, quartz crystals and relays. Declines were noted in power and transmitting tubes, down 14%; connectors, down 7%; receiving tubes, down 5\%; and resistors, down 2\%.

Shipments of complex components, semiconductors and TV picture tubes, in continuing to climb, offset the downward trends in capacitors, resistors, and transmitting and special purpose tubes which peaked in 1962. These declines have been influenced by in-
creasing competition in both defense and non-defense markets.

New procurement methods and new inventory controls in DOD combined with reduced military requirement heightened the competitive pressure, particularly for products such as power and special purpose tubes.

Tie increase in shipments of complex components, such as discrete component packages, thin film, hybrid and monolithic networks since 1959, is an indicator of the extent to which these devices are replacing conventional components in end-equipment design.

EDP SERVICE WILL SPEED TRADE DATA TO COMPANIES

Secretary of Commerce John T. Connor disclosed a program using computers to speed up and broaden distribution of commercial information to U. S. firms. Such data would include international sales and other business opportunities, tailored specifically to the needs of the companies.

Of some 350,000 U. S. firms, Secretary Connor has asked those interested in international trade and investment to participate by registering in a new automated American International Traders' Index, basis of the expanded service.

The Index will provide the Department with a comprehensive data file of international traders. This will permit computerized matching of commodity and/or geographic interests of companies with specific items of trading information.

Now, you can eliminate one stage and reduce the number of components in your video-amplifier circuit with the new RCA-12HG7 COLOR-TV RECEIVING TUBE. This FRAME-GRID, Sharp-Cutoff Pentode offers these benefits to the circuit designer:

- high transconductance - 32,000 μ mhos - provided by the FRAME-GRID construction, permits you to drive the color-TV picture tube with only two stages of video amplification
- high dissipation capability - 10 watts (maximum) plate-dissipation rating eliminates the need for a series plate-circuit dropping resistor and its associated by-pass capacitor. Greater margin between maximum rating and usual operating values will contribute to greater reliability and longer life expectancy.
- high plate current "knee" characteristic-permits high output and good linearity over a "B" supply voltage range of 270 volts to 400 volts or more.
- RCA Dark Heater - reduces temperature and contributes to long life and dependable performance.

RCA's knowledge and experience in color television have led to the design and selection of tubes, such as the RCA-12HG7, which offer the color-TV set manufacturer the best combination of price, performance and reliability on the market today. For more information on the RCA-12HG7 and other RCA COLOR-TV RECEIVING TUBES, call your nearest RCA District Office or write RCA Commercial Engineering, Harrison, New Jersey 07029.
RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, NEW JERSEY RCA DISTRICT OFFICES-OEM SALES: EAST, 32 Green St., Newark, N. J. 07102, (201) 485-3900 • MID.ATLANTIC, 605 Marlton Pike, Haddonfield, N. J. 08034. (609) 428-4802 . MID-CENTRAL, 2511 East 46th St., Bldg. Q2, Atkinson Square, Indianapolis. Ind. 46205, (317) 546-4001 • CENTRAL, 446 East Howard Ave, Des Plaines, III. 60018, (312) 827-0033 . WEST, 6363 Sunset Blvd.. Hollywood, Calif. 90028, (213) 461-9171. INTERNATIONAL OPERATIONS, RCA International Division: Central and Terminal Aves., Clark, N. J. 07066, (201) 382-1000 - 118 Rue du Rhone, Geneva, Switzerland, 357500.

WHAT IS A TAPE RECORDER DOING IN FC-77 COOLANT?

Playing!

This traffic-stopping demonstration of the completely inert dependability of FC. 77 coolant has been featured at several national electronic trade shows. An ordinary "right-out-of-stock' tape recorder is lowered into a tankful of FC-77, plugged into an electrical outlet and a hand reaches in and pushes the button to start a practically continuous concert that plays during the show.

All this time, recorder parts of steel, copper, chrome, plastic, rubber, elastomers, glass, nylon, adhesives, as well as recording tapes are directly immersed in FC-77 coolant. Nevertheless the recorder plays on. When at the end of a show, the player is removed from the tank none
of its components are affected. How's that for "inertness"! All members of 3M's fluorochemical coolant family have this exceptional compatibility with most materials (even at temperatures above the maximum permissible with other dielectric coolants). This "easy-to-get-along-with" coolant, incorporated into your system can bring about better reliability. Want more? These coolants have wide liquid ranges, excellent electrical properties, thermal and chemical stability, are non-flammable, non-corrosive, non-toxic. Write and ask about them, particularly our new, economical FC.77. 3M Company, Chemical Division, Dept. KCQ-105, St. Paul, Minn. 55119.

Chemical Division
 3M

GRC

tiny die castings and plastic moldings add value to products you use every day

IIERES IV OPPORTU VITY

Both professionally and personally. Every project at Collins is the most demanding in its area of industry, and we need professionals to continue the growth this level of qual-
ity has created. Living and working conditions - and compensation - are commensurate with these standards. These listings are current.

SEND RESUME FOR PROMPT INFORMATION

rf systems engineers - - B.S.E.E. with experience in RF Systems including receivers, transmitters, and antennas in the VHF-UHF frequency range. Of specific interest is experience in phase locked loop receivers, high power transmitters, tracking (monopulse) antenna systems, and tracking system analysis. (Dallas) reliability engineers (m.e. and e.e.) M.E.'s to perform stress and dimensional analysis on antenna structures, hydraulic drive systems and electronic packaging. E.E.'s with experience in design and component application to handle qualification and acceptance test analysis and component engineering on high reliability space programs. B.S.E.E. or B.S.M.E. required. (Cedar Rapids)
industrial engineers-B.S.I.E. or B.S.M.E. with industrial option. Should have experience in manufacturing methods and procedures, work station analysis, facilities planning or material handling. MTM application and training highly desirable. (Cedar Rapids and Dallas) transmitter design engineers -- Position involving design of high power transmitters and high voltage DC power supplies. Must be capable of applying filter theory to optimize design of high power transmitters. MF and HF frequency range. B.S.E.E. required; post graduate work desirable. Understanding of computer control of transmitter systems helpful. (Dallas)
antenna design engineers - B.S.E.E. with experience with tracking antennas, aircraft, and space antennas, including antenna pattern and impedance measurements. Some openings for individuals with experience in HF and VHF measurement techniques. Background in network and electromagnetic theory is desirable. (Dallas)
field support engineers - Openings for field engineers with installation and check-out experience in one or more of the following: high density microwave systems, toll terminal equipment, cable and open wire multiplex, monopulse tracking techniques, phase locked loop receivers, parametric amplifiers, Cassegrain feeds, tropospheric scatter systems. Considerable travel involved; some outside continental U.S. and some without family. (Dallas)
communications systems engineers (E.E.) - Electrical Engineers should be experienced in digital data transmission, airborne transportable or fixed station HF/SSB, or microwave communication systems. (Dallas and Cedar Rapids)
circuit design engineers - For design of general communications equipment. Prefer solid state and/or digital experience. Project assignments will involve HF through M/W frequency ranges in military, commercial or space programs. B.S.E.E. or M.S.E.E. required. Also solid
state circuit design for airborne applications. Knowledge of operational amplifiers in consulting techniques desirable. (Cedar Rapids and Dallas)
microwave design engineers - Microwave Design Engineers with active development background in solid state RF sources; knowledge of wave guide techniques desirable. B.S.E.E. required. (Dallas)
mechanical engineers - B.S.M.E. for equipment and systems design. Duties will include machine design, hydraulic circuit design, stress and dynamic analysis, hydraulic and pneumatic design, electronic packaging and production processes. (Dallas)
crystal filter engineers - To work in the challenging field of crystal filter development and/or crystal development. Minimum requirement B.S. degree but prefer M.S. or Ph.I). Two to four years minimum experience. (Newport Beach)

COMMUNICATION/COMPUTATION/CONTROL

[^0]

to the Editor

The Manager's Responsibility

Editor. Fieftronic Industrifs:
I write with regard to the article by Mr. Roger M. D'Aprix, ("Needel: Better Technical Papers") in the April, 1965 issue.
Mr. D'Aprix accurately points out the basic problems with the quantity and quality of technical papers. However, I believe he has misplaced both the blame for the problem, and the responsibility for its solution; both lie with the engineering manager.
The working engineer-properly-depends on his manager for detailed guidance on what tasks should occupy his time, the priorities which various tasks assume, and the manner in which each task should be approached and accomplished. Technical articles and papers are tasks in the same sense that other engineering efforts are and they should receive the same wellqualified management. The manager is in a position to judge the likelihood of publishing descriptive material on a task in his group, the worth of publication to the company, the group, the individual, and the desirability of allocating manpower to the writing task The existence of a technical writing group as staff support to both the manager and the engineer is all important aid. However, the basic responsibility is a line function of the manager. Both company management above, and the working engineer below, have the right to expect him to discharge this responsibility in the same professional manner as his design supervision responsibilities.

Dan M. Bowers
Digital Systems Section Mgr. Potter Instrument Co., Inc.
East Bethpage Rd.
Plainview, N. Y.

Can You Help?

Editor, Electronic Industrips:
I just recently returned from a trip to the Far East, and in the comse of my travels, I visited Okinawa. As you know, all of the Ryukyu Islands are a bit off the beaten path, particularly
since the fet took over long-hatul travel by air.

1 was very much impressed by the people I saw in Okinawa, and by their industrionsness. I was also impressed by the fact they are probably as skilful as the Japanese are, and possibly more so. In addition, I was impressed by the fact that they are Within the dollar bloc, since they use American currency exclusively.

I believe that you can do Earetronic Industries a big favor, and also help both the United States and Okinawa, which is an American protectorate, if you could take sone interest in helping the Okinawans build up their technical competence in electronics, and become both an educational and a mannfacturing center in this field.

I believe they prohably need a firstrate technical library, and associated with it educational facilities for training engineers and technicians as a first step to such a goal. Admittedly, you couldn't do this for them, but many of your readers I am sure could contribute books and possibly other kinds of help, and many of our manufacturers might be able to help in the establishment of such an erlucational center in return for help in the establishment of Far-East branches there. These branches probably would not be subject to difficulties of the kinds presently being encountered in lapan.
I am sending a copy of this letter to the Director of Educational System. Naha, Okinawa, hoping it will reach the right individual.

Dr. Keats A. I'ullei, Jr.
Ballistic Research Laboratories
Aberdeen Proving Ground, Mal.

Our Thanks . .

Editor, Electronic Industries:
We want to thank you very much for the excellent color reproluction of the Pallantine Moxlel 355 in your Wescon issure.
A. W. Jarkes, Ir President
Ballantine Laboratories, Ince. Boonton, N. . . 07005

"Get Aequainted" Otler

If you'll tell us more about yourself through the confidential resume below, we'll know where to send you this booklet telling more about ourselves.

Send resume to Manager,
Professional Employment,
Collins Radio Company
Cedar Rapids, lowa
Dallas, Texas
Newport Beach, California

CHECK LISTINGS

You can design and fabricate to your exact needs with Armco Nonoriented Electrical Steels

Armco Nonoriented Electrical Steels offer you a broad range of physical and magnetic properties. They enable you to design, with greater precision, everything from large rotating machines to the smallest servos.

For example, Armco Tran-Cor ${ }^{(8)}$ A-6 is ideal for audio transformers, servos, and 400 to 1200 cps generators. It provides a core material with high permeability at low and moderate inductions, almost uniform properties in all directions, and good punchability.

Armco Di-Max ${ }^{\text {® }}$ M-15, ideal for high efficiency equipment, offers an effective combination of superior permeability at high inductions, excellent space factor, and punching quality that prolongs die-life. To meet specific requirements of equipment calling for the basic properties of M-19 to M-43, you have the selectivity of Di-Max grades hotrolled or cold-reduced, fully processed or semi-processed, as listed in the table above.

The entire family of Armco Non-
oriented Electrical Steels is available in a wide range of thicknesses and widths, with a variety of surface insulations, in coils and cut lengths. To help you make full use of this cost cutting selectivity, Armco has just published a new 97-page design manual containing basic information and design curves on Armco's Nonoriented Electrical Steels. Write today for your copy. Armco Steel Corporation, Dept. E-3405, P. O. Box 600, Middletown, Ohio 45042.

THE TRICK IS TO PRODUCE HIGH－QUALITY COLOR TV at The price that will crack the mass market wide open

Like the well－known frame grid tubes developed by Amperex that forged the was： for high－performance，low－rost back and white TV，Amperex now anomes the right tubes for a similar＂hreakthrough＂ for color： 6 Kig6 horizontal output pern－ tode： 6 EC 4 dimper diode； 3 BH ：high volt－ age rectifier diorle．（＇ompotitively priced， they offer designers the opportunity of en－ ginecring low cost color cireuits without sacrificing reliability，since they need onl！ 2\＆0－2701 B suppl！y rollages．With lower voltages and eooler operating temperat fures，fewer components are required while
huilt－in sateot factors are retained for the desired quality

The 6だ use in horizontal deflection cireuits，has a Cavitrap anode for anti－snivet performance for all elammel recoivers．It offers 34 watt maximum phate dissipation and 1.4 amps peak anode current．

The 6 EC t damper diode，a matching companion to the 6 保淮 for horizontal de－ flection eirenits，provides 5600 V PIV and 450 ma areage cathode current．

The 3 IBH：high voltage rectifier diode， offering $35 K \mathrm{~V}$ I＇IV and 1.75 ma average
（athode eurrent，features a mikite anti－ corona shield for longer life and greater reliability．

For cletailed data，prices and applica－ tions alssistance on these and other tubes elesigmed expressly for color TV，write to the company still doing new things with receiving tubes：Amperes Electronie Corporation，Smmiconductor and Receiving Tube I）ivision，Dept．371，Slatersville， Rhode Island 02876 ．
Amperex

MONOLITHIC MEMORY MAY REPLACE FERRITE CORES

A higif-speed monolithic ferrite memory, which stores 4096 datal bits, may replace conventional ferritecore memories by eliminating much of the costly hand labor associated with the conventional cores. The monolithic unit. designated MF 2100. is batel processed. This climinates the task of core-stringing and handwiring. which are the prime cost factors in the memory

DATA SYSTEM IN A BOX

Tife Multiverter(10 Combines in a single cilassis an integrated circuit multiplexer. and advanced sample and hold amplifier, and an analog-to-digital converter.

The device replaces three or more chassis normally required for the so-called analog front end in clata acquisition and processing systems at considerable lower costs than conventional equipment. The system provides 12 -hit data throughput at 50 KC or 15 -bit throughput at 30 Kc ; system accuracy of 0.02% : data samplinge aperture time of less than 100 nsec : input data voltare range of ± 10 to ± 128; and input impeclance of 1000 megohms.

The integrated circuit multiplexer can operate to 1 me and displays zero offset characteristics. Each multiplexer card accommodates 16 input channels. Six cards for a total of 96 channels can be packatyed in a single mit. The sample and hold amplifier has a 100 nsec . aperture time and settles in + nsec. to 0.01% accuracy. The Multiverter, a product of Raytheon Computer, Santa Ana. Calif.. system can be used with a single sample and hold unit or with a sample and hold amplifier/channel for simultameots parallel sampling.

The Multiverter, with integrated circuits, provides 50ke data throughput with 12 - or 15 -bit resolution. Accuracy is 0.02%.

system. To simplify connector wiring. the device uses an integrated diode selection matrix (indexing circuits). Which reduces the mumber of peripheral components.

A new production process uses tissue-thin layers of comentional ferrite material fired into a solid monolithic ferrite wafer 1 in . sq. and 5 mils thick. Each wafer contains 4096 theoretical cores, each with a 5 mil. diameter. The high-speed advantages of smaller cores provides a full-cycle time (read. delay. write) as low as 0.2 usec. for a σ-word by ot bit unit. Drive current requirements are less than those of present small-core coincident-current memories. Output voltages are equal to those of conventional core arrays-a distinct ad-

vantage over other bullk-fabricated devices which have very low output voltages.

In this device, two wafers are interconnected with an integrated silicon dionle selection matrix of 128 diodes. This +.5 in . $x 3.75 \mathrm{in}$. module has a memory capacity of 4096 liits in two core/hit linear-select

Nonolithic construction makes possible the future design of fully integrated memory systems, and offers a packing density much higher than conventional memory assembly technicues. The MF-2100 is a product of Commercial Engincering. RCA Electronic Components and Devices. Harrison. N. J.
(More What's New on Page 116)

for use in the 2.2 to 2.3 GHz
 frequency range

* Allem-Bradles high frequenct labomories are pionecring the development of amenna multiplesers for use at ultrahigh frequencies The wo diplexers for the 9.2 10 2.3 (BH hand hown abose are represcntative of . Nlem-Bradley's high Prequency capability. These diplexers are rugged-designed 10 wibhstathel acteleration of 15 (i's: shocks of 100 G's (1 msec.) and vibation of ± 10) (;s ($30-2000$ (Ha). They're hermetically sealed for use at umbimited altitude and are stable oser the temperature lange $110 \mathrm{~m}-50^{\circ} 10+170^{\circ} 1$. The power handling capacity per channel is 20 wats.

Allen-Bradley cogineers will be pleased to work with you. Please write: Allom-Bradley Co.. 229 W: Greenfield Aveme, Milwankere Wis, 53ot) In Camada: Mllen-Bradley Canada Lad.. Galf. Ont. Fiport Ofhee: 630 Third Incone. New York, N. ソ., US. 1.1001%.

TYPICAL RESPONSE CURVES

WITH ONE REJECTION CAVITY PER CHANNEL

WITH TWO REJECTION CAVITIES PER CHANNEL

this trademark found in your scientific apparatus automatically rates you as a "quality" manufacturer

- The Λ - B trademark on variable resistors is proof of design integrity - you have resisted the temptation of saving pennies by substituting marginal performing "entertainment type" controls. By thus assuring your customers of the "quality" of your apparatus, the extra price you pay becomes a good investment.

Allen-Bradley Type J variable resistors have a solid molded resistance element made by A-B's exclusive hot molding process. Operation is always smooth - there are never any sudden jumps in resistance during adjustment. Furthermore, the Type J exhibits an exceptionally low noisc level when new-it becomes even lower with use. On life tests, the Type J will provide well over 100,000 complete rotational cycles with less than a 10% resistance change at the completion of the test.

For more details on the complete line of A-B quality electronic components, please write for Publication 6024: Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee, Wisconsin 53204. In Canada: Allen-Bradley Canada Ltd., Galt, Ont. Export Office: 630 Third Ave., New York, N. Y., U.S.A. 10017.

Look who stepped out of the Great Seal to wear a CMC Crusading Engineers' medal. Think he looks proud? You should see us! He's on the first and only solid-state counter fully militarized to meet Mil Specs.
If you want the safety of a counter providing full Mil Specs reliability at a price surprisingly close to a commercial counter, then check these specs: 0 to 100 Mc frequency range; oscillator stability of 1 part in 10°; meets or exceeds MIL-E-16400, including appropriate temperature, humidity, vibration, shock, and RFI
specs; built-in time interval measurement. Three militarized plug-ins available: 500 Mc heterodyne converter, 3 Gc heterodyne, and a 15 Gc transfer oscillator.
It may take some time, but you can probably expect copies of this counter from our creative competition at high-powered H.P and big, bad B. But they'll be copying the instrument

originated and designed by CMC. State-of-the-art development of a fully militarized solid-state counter isn't the first or last technological coup for CMC. Add to it the first all solid-state counter, first all-silicon solid-state counter, first 10 -line-persecond low-cost printer, first dual plug-in counter, and numerous others. Write today for a complete spec sheet on our new Model 880 so you can compare when and if the others arrive on the market. And remember, we won't give you the bird, we'll give you a medal.

12976 Bradley • San Fernando, California - Phone (213) 367-2161 • TWX 213-764-5993

ELECTRONIC INDUSTRIES

TRIMMING POTENTIOMETER

In a scaled metal housing, $1 / 4 \mathrm{in}$. in dia. and $1 / 4 \mathrm{in}$. high. Model 62P Helitrim(${ }^{(8)}$ trimming potentiometer is designed for industrial/commercial uses. The cermet resistance element has total resistances from 10Ω to 1 megohm. The round, single-turn unit has $5 / 16 \mathrm{in}$. long botton pins on a 0.10 in . grid. The entire unit is sealed to permit encapsulation. Model 62P has a power rating of 0.5 w .@ $70^{\circ} \mathrm{C}$ and an amb. temp. range of -25° to $125^{\circ} \mathrm{C}$. Helipot Technical Information Services, Helipot Div. of Beckman Instruments, Inc., 2500 Harbor BIvd., Fullerton, Calif. 92634.

Circle 210 on Inquiry Card

LOG-LINEAR CONTROLLER

The RGLL- 6 provides 8 features of control besides a continuous logarithmic pressure scale, 10^{-10} to 10^{-3} Torr, and a linear pressure scale covering 7 decades, 2×10^{-12} to 10^{-3} Torr. Control features include remote filament on-off operation, pressure control of 4 circuits at 2 different pressure points, and others. Pressure decades are indicated on an illuminated screen. Vacuum-Electronics Corp., Terminal Dr., Plainview, L. I., N. Y.

Circle 211 on Inquiry Card

VARIABLE RESISTOR

Combines stability, high pouecr and compactness at a loa price.
Series 550 Cermet resistor exceeds Mil-R-23285 (Navy) metal-film specs, and also exceeds Mil-R-94B. Advantages include extreme stability under severe environmental con ditions, infinite resolution, low noise and long life, excellent h.f characteristics, exceptional overload capacity and no catastrophic failures. Complete protection against dust and dirt is provided by closed construction. Resistance range is 50 :2 through 1 megohm. CTS of Berne, Inc., Berne, Ind.

Circle 212 on Inquiry Card

AUTOMATIC DRAFTING

Translates mathematical data into cnginecring drainings.
With this system an operator with a typewriter keyboard can directly control the alphanumeric operation of the drafting machine. The same keyboard permits the operator to change programs, revise operating subroutines and insert additional commands into the control memory. Punched paper tape, punched cards, or high-speed magnetic tape can be used to supply input data to the system. Flexibility of operation is further enhanced by the ability of the Expandable Stored Program (ESP) control to accommodate almost any input format. Airborne Instruments Laboratory, div. of Cutler-Hammer, Inc., Deer Park, L. I., N. Y.

Circle 213 on Inquiry Card

PRESCALER PLUG-IN

Provides unambiguous direct reading of freqs. to 350 mc . The Model 5252A plug-in Prescaler uses digital divider circuits which can be switch-selected for input ranges of dc to 100 MC , dc to 200 MC , and dc to 350MC. The same operation automatically adjusts the gate time appropriately. Result is direct freq. readout, both in the visual display, and the binary-coded-decimal recorder readout. The pre scaler, which is intended for use with the Hewlett-Packard Model 5245L Electronic Counter, uses digital dividers to reduce the applied freq. to the nominal counter range. This eliminates manual tuning as required by analog type freq. converters. Adjustments required at the front panel of this new plug-in are only for range selection and control of trigger level. The trigger level control selects either positive or negative going random pulses. Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif. 94304.

Circle 214 on Inquiry Card

HIGH TORQUE MOTOR

Delizers 35 os./in. peak torque at stall. No-load is 2400 RPm.
Model 2375-050 dc torque motor has an outside dia. of 2.375 in.; inside dia. is 1.250 in .; and width is 0.500 in . Weight is 4.3 oz . Power at peak torque is 75 w . Permanent magnet design eliminates fixed phase of field winding requirements. If a high level of magnetic saturation is provided, motor inductance and electrical time constant are greatly reduced. Magnetic Technology, Inc., 13735 Saticoy St., Van Nuys, Calif.
Circle 215 on Inquiry Card

MASS MEMORY DRUM

Independent, simultancous multiple access to cntire data store.
The PhD-170 Positioning Head Drum system is not limited to writing in or reading out only a small portion of its total data-storage capability at any given time. Nor does its accessing capability depend upon an excessive number of heads and/or elaborate multiplexing selection and write/ head circuits. Instead, the PhD-170 requires 43 heads which are discretely positioned and multiplexed to provide multiple simultaneous access to the entire memory. All the heads move together to any one of the 64 tracks under the control of a precision digital actuator-a linear positioning device with 64 discrete positions. Over 170 million bits can be magnetically recorded on the drum surface in 2752 separate tracks with a track-to-track access time of 30 msec . This includes positioning and verification time. Bryant Computer Products, Div. of Ex-Cell-O Corp., 850 Ladd Rd., Walled Lake, Mich.

Circle 216 on Inquiry Card

HIGH-DENSITY CONNECTORS

Allowes mating of high-density models with finger-tip pressure.
The Marc 53 series use a dual-positive locking device called Posilock. This eliminates accidental disconnect. These connectors also use the Posiseal sealing system which provides high environmental integrity. The connector series comply with the applicable requirements of Mil-C-38300, Rev. A. Microdot Inc., 220 Pasadena Ave., So. Pasadena, Calif.
Circle 217 on Inquiry Card

MINIATURE ELECTRONICS REPORT CEC

REPORT NUMBER 2

New miniature signal conditioners bring laboratory specifications to flight instrumentation

TYPE 1-361
TYPE 1-362
welded modules which are hard potted in epoxy, interconnections that are further protected with humidity sealant, and external adjustments protected with "O"-ring type cap screws. This assures that the amplifier, converter, excitation supply and all peripheral adjustments are impervious to external environments.

The d-c to d-c converter and excitation voltage regulator modules of the 1-361 and 1-362 are the most advanced currently in use. A unique converter feedback feature, plus both copper and mu metal shielding, completely eliminates any interference "spikes" and ground loop problems due to stray electrostatic or electromagnetic signals.

So rugged and durable are these instruments, that the temperature range is a broad $0^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$.

In addition, the 1-361 and 1-362 may be plugged together with any standard CEC transducer.

These units easily meet and surpass the rough environmental specifications of MIL-E-5272C. Reason: they employ

We believe that the extra expense that has gone into the manufacture of these new units is well justified by their outstanding reliability, durability and performance. Certainly, they are important additions to CEC's aerospace family of miniature d-c differential amplifiers.

Basic specifications:

[Input Impedance - greater than 1×10^{6} ohms at d-c.
\square Linearity and Hysteresis-combined effects do not exceed $\pm 0.05 \%$ FS.
\square Long-Term Zero Drift-less than ± 10 microvolts, referred to the input in 8 hours at a constant $77^{\circ} \mathrm{F}$.
\square Thermal Zero Shift - within 0.005% FS $/{ }^{\circ} \mathrm{F}$ over the compensated temperature range.
\square Thermal Gain Shift - within 0.005% $\mathrm{FS} /{ }^{\circ} \mathrm{F}$ over the compensated temperature range.
\square Thermal Excitation Voltage Shift within $0.002 \% \mathrm{FS} /{ }^{\circ} \mathrm{F}$ over the compensated temperature range.
\square Excitation Voltage Regulation - regulated within $\pm 0.1 \%$ for a primary power input of 28 ± 4 volts d-c.
\square Vibration - 50 g from 5 to 2000 cps .
Q Shock - 1000 g half sine wave with a duration of one millisecond.

For complete information about these advanced new signal conditioning units, call or write for the CEC Bulletins 1361-X3 and 1362-X3.

Transducer Division

CONSOLIDATED ELECTRODYNAMICS

A SUBSIDIARY OF BELL \& HOWELL/PASADENA, CALIF, 91109 international subsidiaries: Woking, surrey, England ANO FRIEOBERG (HESSEN), W. GERMANY

Red 110-2

Columbian Carbon focuses on the reduction of fluctuating characteristics in magnetic tape and ferrite components

It's a safe bet that product uniformity is a critical problem in your plant. Starting with extremely uniform raw materials goes a long way toward making your quality control problems considerably less difficult.

State of the art in ferrites advances at an extremely rapid rate. So do the requirements for iron oxides with pre-selected and controllable characteristics.

Columbian Carbon's Mapico pure synthetic iron oxides are produced by a variety of carefuily controlled methods,
each designed to give a different shape, size and set of electronic characteristics. Uniformity from shipment to shipment is strictly held within pre-set narrow limits. Sixteen basic iron oxides are available in quantity.

Write for detailed specs. Or tell us about your particular application and special requirements. Columbian Carbon Company, Mapico Iron Oxides Unit, 380 Madison Avenue, New York, New York 10017. Branch offices and agents in principal cities.

BAND-PASS FILTERS

Corers froq. range of 50 me to 1 fic in octore steps
Series TTA miniature, tunable band-pass filters offer a choice of 3 -section or 5 -section response. It uses 0.03 db ripple Chebichev design with capacitively-loaded, iris-coupled helical and coaxial cavities. This design permits a broad freq. coverage from 50MC to 4GC, full octave tuning and a choice of 3 db bandwidths from 0.5% to 5%. The filters offer high Q cavities for minimum insertion loss. A unique loading network and tracking technique assures uniform electrical characteristics throughout the tuning range. Telonic Engineering Co., P. O. Box 277, Laguna Beach, Calif.

Circle 218 on Inquiry Card

MINIATURE CHAMBERS

Trest chambers aith -100° to $+400^{\circ} \mathrm{F}$ rangcs. $1 / 2^{\circ} \%$ accuracy
Models TC2 and TC4 have 200 and 400 cu . in. capacities respectively. They are ideal for small component testing. The 15 lbs . units feature proportional electronic temp. con trols, resistance bulb sensors, built-in liquid CO_{2} valves with filters, dual-range heaters, polished stainless steel interiors, low density foam insulation, and rugged aluminum housings. CO_{2} consumption@ $-100^{\circ} \mathrm{F}$ is less than $1 / 2 \mathrm{lb} . / \mathrm{hr}$. Units operate from $115 \mathrm{vac}, 1$ phase. The Gyrex Corp., 3003 Pennsylvania Ave., Santa Monica, Calif. 90406.
Circle 219 on Inquiry Card

EASY-READING METERS

Neze besel improzes lighting and gizes soft midistorted readout. All Digitec instruments are now being furnished with a new, improved bezel that provides a 300% greater viewing angle and new, improved lighting that gives a soft, undistorted readout. This new look is available on all digital dc voltmeters with ranges from 10 mv to 1 kv ; on all thermistor, platinum buib and thermocouple digital thermometers with measurements from -390° to $+2000^{\circ} \mathrm{F}$; and on the digital printer, clocks and scanners. United Systems Corp., 918 Woodley Rd., Dayton, Ohio.

Circle 220 on Inquiry Card

CIRCUIT PACKAGES

The availability of a complete line of integrated circuit logic packages, including peripheral equipment, has been announced by Microsystems Components, 5353 Topanga Canyon Blvd., Woodland Hills, Calif. Eighty-four products, including integrated circuit logic cards, power supplies and analog elements, including A / D and D / A converters, are available. All are packaged on $2 \times 31 / 4 \mathrm{in}$. cards. Compatible mounting hardware, power supplies, and other accessory equipment are available. Newest elements to be added to this line include functional logic cards-a dual 4-bit shift register, presetable up-down reversing counters and others. Also included are special analog elements and subsystems. Circle 221 on Inquiry Card

CAPACITANCE BRIDGE

This automatic capacitance bridge measures capacitance and loss in $1 / 2 \mathrm{sec}$. without a single control being manipulated. Here the automatic bridge and data printer are shown recording dielectric changes at cryogenic temps. Dissipation factor is automatically tracked and printed out as the test probe is placed in and out of contact with liquid nitrogen. As the temp. comes to equilibrium, the readout values become constant. General Radio Co., West Concord, Mass. 01781

Circle 222 on Inquiry Card

LOW-COST FAN

Delievers loncrav and sells for less than \$t.0n in dumfity.
The Skipper fan requires no holes for mounting hardware because it requires no mounting screws. The fan inserts into the same hole required for the air flow and it is secured by a keeper ring. It mounts easily anywhere on any panel thick. ness or panel material, including glass. Its 38-db (SIL) noise level makes it suitable for computer rooms, test areas or other areas where quietness is required. The fan operates up to $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$. When lubricated regularly, it will run for more than 5 yrs. Rotron Mfg. Co., Woodstock, N. Y.
Circle 223 on Inquiry Card

R-F CHOKES

This expanded series r-f chokes, with inductance values from $0.15 \mu \mathrm{~h}$ to 10 mh , is manufactured and color coded in accordance with Mil-C-15305C. All MS series chokes are 100% tested to further assure conformance to specs. Epoxy molding gives excellent protection against all environmental conditions to provide a high level of reliable performance. J. W. Miller Co., 5917 S. Main St., Los Angeles, Calif. 90003.

Circle 224 on Inquiry Card

WELDING STATION

Automatically zeclds flat packs to printed-circuit boards.
This numerically-controlled unit combines a parallel gap micro welder and micro positioner in an integrated system. The air actuated welding head is mounted over the workholding fixture on the positioning table. The system prepares programming tapes by visually positioning the work to be welded using the manual controls. At each set of coordinates a button is pushed which punches out the complete block of data onto the tape. Vertical motion of the welding head is also stored on the tape. In addition, changes in the welding schedule may also be programmed on the tape to suit different materials or different size component leads. This simple procedure makes the device suitable for short runs as well as volume production. Welding speeds of up to 3 connections $/ \mathrm{sec}$. are possible with this system. The accuracy of any commanded coordinate location is within $\pm 0.001 \mathrm{in}$. The repeatability is $\pm 0.0005 \mathrm{in}$. Arvin Systems, Inc.. Dept. DMP, 506 S. High St., Yellow Springs, Ohio 45387.

Circle 225 on Inquiry Card
 contacts than octal-type plugs will accommodate.
Two sizes of sockets are available. The 16-pin smaller one ($1.39^{\prime \prime} \times 1.71^{\prime \prime}$) accepts relays with contact arrangements from 1 Form C to 4 Form C. The larger 28 -pin one ($1.39^{\prime \prime} \times 2.11^{\prime \prime}$) will take relays with contact arrangements up to 8 Form C. Each size socket has four coil terminals for single or dual coil relays.
*Approximate. Based on single lot price. Savings depend on contact arrangements.

GENERAL

Description: Medium coil telephone type relay with bifurcated contacts.

Time Values:

AC: Operate: 3 to 15 milliseconds. Release: 3 to 15 milliseconds.
DC: Operate: 5 to 50 milliseconds. Release: 5 to 140 milliseconds. Precise time values depend upon coil power and contact arrangement.
Operate and release time delay slugs and fixed or adjustable residuals are available for DC relays.

Plug the LS into the socket . . . just as you would a vacuum tube. The relay's tab terminals mate snuggly with the socket, will hold the relay in place under normal conditions. When the relay is mounted horizontally, or when vibration is a problem, two banana plugs or two machine screws may be used.
A choice of cadmium or gold plated socket terminals is available . . . and the pierced solder terminals are designed also for AMP-78 taper tab connectors.

LS SERIES ENGINEERING DATA

Expected Life: $100,000,000$ mechanical operations minimum.
Contacts: 100,000 operations minimum at rated load.
Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ standard ($+105^{\circ} \mathrm{C}$ available on special order).
Weight: Approximately $31 / 4$ ozs. (open).

CONTACTS:

Arrangements: AC: Up to 12 springs (6 per stack-4 movables). DC: Up to 24 springs (12 per stack).
Material: $1 / s^{\prime \prime}$ dia. twin palladium is standard for bifurcated contact arms.

\square tempansparent, high impact, high temperature resistant dust cover fits over the socket nearly flush with the chassis. Covers as well as sockets of either size may be purchased separately. With socket and cover, the LS relay is designated the LSP . . . a sparkling addition to this series of reliable telephone type relays.
Here is a neat, modern, cost-reducing approach to using the reliable, versatile LS relay. Better send for complete information today.

Gold-alloy, other contact materials, and single contacts are available for specific applications.
specific applications.
Rating: $A C: 4$ amps (4) 115 volts $A C$,
60 cycle resistive (open relay ${ }^{(9)+25^{\circ} \mathrm{C} \text {). }}$
DC: 4 amps 28 volts DC resistive. colls:
Voltage: AC: To 230 volts 60 cps . DC: To 220 volts.
Resistance: DC: 55,000 ohms maximum.
Power: AC: 4.37 voltamps.
DC: 65 milliwatts per movable arm minimum, 5 watts maximum @ $+25^{\circ} \mathrm{C}$. Duty: Continuous.

Division of American Machine \& Foundry Company, Princeton, Indiana In Canada: Potter \& Brumfield, Division of AMF Canada Ltd., Guelph, Ont.

NOW 2 IIIIII DANDYS WITH 3BIC DIFFERENCES

Newest Little Dandy Soldering Iron from American Keauty has higher wattage and larger tip than famous original, and has a green handle for easy identification by operators.

SAME FEATURES FOR BOTH
Combination of low price and American Beauty quality.

Ruggedness to stand productionline conditions. Working heat in 2 minutes. Longest-life heating element with non-ceramic insulators.

Molded handles, impervious to oil, perspiration. Unbreakable crystal, aerated fingertips, guaranteed cool. Unprecedented handling ease, balance. Non-roll design.

Plug-type tips. 30 -second replacement of every major part, including heating element.

Three wattage options for each (No. 3110: 25, 30, 35-No. 3112:
$40,50,60) .18$ tip options each. 2- or 3 -wire super-flex, melt-proof cords.

$$
\text { "p } \underset{\text { QUALITY }}{\text { aRdG }}
$$

TIPS RECOMMENDED

American Beauty's "Paragon" quality, clad tips bring same kind of advance to precision soldering that carbide bits brought to high-speed drilling work.

They have many times the life of old-style tips, re-tin themselves, are flake-proof, and remove easily for replacement. "Paragon" quality tips are optional at extra cost on most irons, including Little Dandys.

NEW, BIGGER LITTLE
DANDY SOLDERING
IRON INTRODUCED BY AMERICAN BEAUTY

In late 1964 American Beauty brought out a new kind of miniature soldering iron, combining unprecedented features and quality at an economy price. Called the Little Dandy No. 3110 it soon became the fastest selling miniature iron in the history of the industry.

Now a larger Little Dandy, the No. 3112, is available. The No. 3112 has wattage options up to 60 W , a high-capacity $1 / 4^{\prime \prime}$ tip. It has a green handle so operators can easily tell it from the No. 3110 (which has a gray handle).

The new Little Dandy is now stocked by all American Beauty Distributors.

American Beauty Division, American Electrical Heater Company, Detroit, Michigan.

American Beauty

PRE-INSULATED SPLICES

Easy zrisual inspection and color coding. Conforms to NAS 1388.
A new line of pre-insulated splices, called Insulink, has insulation that features a high degree of transparency. This permits easy inspection of wire, solid insulation shrouds for trouble-free wire insertion, and color-coding to provide size identification. The splices accommodate a wire range from \#22 through \#10, and is designed for splicing flexible cable in aircraft and electrical manufacturing. The line is particularly adaptable to telemetry and ground-support systems. Splices have 1 -piece construction of tin-plated electrolytic copper covered by nylon insulation, insuring high reliability. Burndy Corp., Norwalk, Conn.

Circle 226 on Inquiry Card

CORONA TEST SET

For measuring corona in terminals, connectors, harnesses, etc.
Model 4074 is a 10 kv corona test set consisting of an ac corona-free Hypot with a pick-up network and a corona detector-calibrator (Model 8563). The Hypot features: 10 kv @ $0.25 \mathrm{kva}(25 \mathrm{ma}$) with an output voltage crest factor better than 5%. Output is continuously variable from 0 to 10 kv . The corona detector oscilloscope has a vertical amplifier sensitivity of $3 \mathrm{MC} / \mathrm{in}$. at max. gain. Amplifier sensitivity ranges are $3 / 10 / 30 / 100 \mathrm{mv} / \mathrm{in}$. The corona calibrator superimposes controlled spike on the corona display. The indicating meter is calibrated in picocoulombs with ranges of $0-1 / 10 / 100 / 1000$. Associated Research Inc., 3758 W. BeImont Ave., Chicago, III. 60618. Circle 227 on Inquiry Card

AEROSPACE STEPPING RELAY

Allow's contact transfer on application or relcasc coil power.
Subminiature stepping switch meets or exceeds the requirements of Relay Spec. Mil-R-6106 Class B8, including 3ϕ loads with case grounded. The driving mechanism is a true rotary solenoid coupled to a spring-loaded latch and pawl mechanism, and is capable of transferring contacts either on application or release of coil power. Actual contact switching is done by programmed dumb-bell rolling contacts across stationary contacts, which are imbedded in diallyl phthalate or silicon glass contact deck. This rolling contact exerts high point gram pressures, yet as it rolls it presents a cooler contact material at each new switch point. This cooler contact surface coupled with fast transfer time extinquishes the arc more rapidly than normal sliding contacts. Hurletron Inc., Hurletron Control Products Div., 750 W . Rivera Rd., Whittier, Calif.

Circle 228 on Inquiry Card

MINIATURE OVENS

Controls temp. of transistors and diodes for high performance.
Components packaged in DO. 7 and TO-5 envelopes can now be temp. stabilized at low cost with a small, self-regulating oven. The oven provides temp. control without using conventional heater, thermostat or controller. The electronic component fits into a cavity in the oven where it is held in close thermal contact with the oven wall. To maintain constant temp., current to the oven is inverse to temp. variations. Line voltage variations have little effect on the stabilized temp. A 10% voltage change will produce less than $1^{\circ} \mathrm{C}$ control temp. change. The solid-state oven operates on $24 \mathrm{vac} / \mathrm{dc}$. It has fast warm-up, max. of 3 min . from -55° to $120^{\circ} \mathrm{C}$ with no temp. overshoot, and is noise.free. Power requirements are $1 / 4 \mathrm{w} @ 100^{\circ} \mathrm{C}$ amb. to $21 / 2 \mathrm{w}$. @ $-55^{\circ} \mathrm{C}$ in still air. Metals \& Controls Inc., div. of Texas Instruments Incorporated, 34 Forrest St., Attleboro. Mass.
Circle 229 on Inquiry Card

INTEGRATED CIRCUIT TESTER

Masures fan-in, fan-out, leakage curronts. thersholds, cti
Model 1000 is a flexible, high-speed instrument for fully automatic testing of integrated circuits and similar multiterminal devices. Testing parameters are stored in the disc memories, and allow Go-No Go tests at a rate of 180 tests/ sec . Testing may be done automatically or manually, and the operator may monitor the measured quantity of any selected test or verify all parameters of a selected test. A diagnostic program allows verification of tester operation in less than $1 / 2 \mathrm{sec}$. Aircraft Armaments Inc., 9000 Winnetka Ave., Northridge, Calif. $91326 . \quad$ Circle 230 on Inquiry Card

AIR MOVERS

Axial bowers with 10 CFM output to 500 CFM centrifugal blowers.
The tiny $11 / 8$ dia. $\times 113 / 16 \mathrm{in}$. max. length VAX- 1 blower is available in ac and dc versions. The dc unit has an output of 11 CFM free air at 26 vcc and 0.3 a . Output of the ac axial blower is 12 CFM free air when operated from a 26vac, 400 CPS, 1 -phase source. A.C unit operates from $115 \mathrm{vac}, 400$ CPS' by adding a 1.0 mfd series capacitor. The centrifugal blower shown is also available in ac or dc versions. D.C motor drives from 6 to 115 vdc are feasible. The ac versions operate from 115 vac to 230 vac at 50 . 60 , or 400 CPS . Nominal airflow is 27 CFM free air with a $115 \mathrm{vac}, 400 \mathrm{CPS}$, 1 phase drive motor. Globe Industries, Inc., 2275 Stanley Ave., Dayton, Ohio 45404.
Circle 231 on Inquiry Card

TRANSISTOR TESTER

In-circuit testing of analog, ac, de coupled transistor circuits.
The Model 970 Transistor Analyst uses an analysis technique of dc signal injection into the transistor stage to be checked. The unit meters the total power supply current in a sensitive, easily balanced bridge circuit. Go, No-Go indication of the transistor stage operation is shown on the meter. The low-ripple, 5a, power supply requires from 1.5 to 15 vdc . It has an adjustable bias output which can be used either for bias voltage or to simulate the de level from a photo-resistive bridge, potentiometer or other typical industrial transducer. Power transistors may be accurately tested out of circuit with currents up to la. The analyst also generates an AM or FM modulated, or unmodulated carrier freq. from 240 KC to $2 \mathrm{MC}, 10$ to 11.4 MC and 88 to 108 MC . B\&K Mfg. Co., 1801 W. Belle Plaine Ave,, Chicago, III. 60613.

Circle 232 on Inquiry Card

ALL PURPOSE RECORDER

Offers 6 modes of recording flcxilility based on 2 newe concepts.
The 6 modes of recording flexibility of the Model 6520 Omnigraphic ${ }^{\text {TM }}$ recorder is based on using 2 new concepts: (1) Chart paper is of the new Z fold-type, allowing all recording to be read like pages of a book. Each sheet is pre-numbered for easy reference; (2) Chart drive uses a bi-directional stepper motor rather than a synchronous motor or a servo amplifier/motor combination. A finite step advance is taken each time the motor is pulsed. These steps are so small that the resulting record appears smoothly continuous. For strip chart recording, a clock delivers pulses through the speed selector which is a selectable dividing circuit. The net result is a paper drive that runs forward or backward with a wide range of $144.000: 1$ with 18 selections. The servoaxis speed is $1 / 3 \mathrm{sec}$. full scale. It has 20 ranges from 1 mvdc to 500 vdc full scale. Infinite input resistance on all mv ranges is coupled with 0.15% overall accuracy. Slewing impedance is 3 megohms on mv ranges and 10 megs on volt ranges. Any signal can float to 200 vdc above ground. Houston Omnigraphic Corp., 4950 Terminal Ave., Bellaire. Tex. 77401.
Circle 233 on Inquiry Card

One dozen good reasons for you to specify AE

Buy from AE, and you never have to settle for a relay that's only "marginally" right.
You can choose exactly, from a line that's broad enough to give you what you're after - in weights, types, dimensions, configurations, mountings.
And you always get the benefit of AE's experience. Decades of experience in product design, manufacturing techniques, and methods of quality control.
Want some helpful, detailed design information? Ask for Catalog 4071: Sclection Guide to AE Relays and Switches. Just drop a line to the Director, Relay Control Equipment Sales, Automatic Electric, Northlake, Illinois 60164.

AUTOMATIC ELECTRIC

Maximum life and reliability

CLASS B RELAY, Finest quality telephone-type. Provides hundreds of millions of operations under all mounting and service conditions with unfailing contact reliability. Combines sensitivity, contact stability, and circuit adaptability. Bifurcated twin-contacts. Long or short armatures for wide range of practical timing. Also for quiet $A C$ operation.

Minimum size and weight

CLASS S RELAY. Miniaturized telephone type for aircraft and similar applications. Small mass, low self-inductance. Provides high contact pressures and absolute contact reliability under extreme vibration, shock and humidity.

TYPES 40, 44, 80 and 88 ROTARY STEPPING SWITCHES. Small switches with large, flexible capacities. Fit almost any DC application. Provide swift, sure, impulse-controlled response plus self.interrupted operation that's smooth and trouble.free. Up to twelve 10 . or 11-point levels. Prewired, hermetically sealed units available.

High performance,
small size

CLASS E RELAY. A lightweight sjace-saver with most of the features of the Class B. Life exceeds 200 million operations. Industry's widest terminal options: taper pin, integral socket, conventional solder, taper-tab, solderless wrap and printed circuit terminals.

Economy and

 small size

CLASS Z RELAY. Small and lightweight, but designed for service where flexibility is most important. Provides adequate coil volume to permit slugging for long operate and release timing. Four types for DC, one for AC, and two with snap-action contacts.

Maximum capacityunusual versatility

TYPE 45 ROTARY STEPPING SWITCH. Larger capacity: up to twelve 25 -point levels, eight 50 -point levels. For any DC voltage up to 110 . or 115 volts $A C$ with rectifier. Can be impulsecontrolled or self-interrupted. Available with normally open or normally closed circuits (Type 45NC). Also available as prewired, hermetically sealed units.

CLASS A RELAY. Sturdy and dependable. Can be mounted in any position. The original "workhorse" telephone relay - recommended when the extremely high performance of the Class B is not mandatory.

CLASS W RELAY. 17, 34 or 51 form C con-tact-spring combinations. Features low loss insulation, high insulation resistance. Extremely low inter-spring capacitance. Life in excess of one billion operations. Gold contacts available

CLASS V MERCURY-WETTED RELAY. For computers, data processing and control equip. ment. Up to 200 operations per second. No contact erosion, no bounce. Over 1 billion operations without change, maintenance or adjustment. Can be operated within 30° of vertical. Polarized and nonpolarized versions. 1 pole to 4 pole double throw contact forms.
for low-level switching.

Premium quality

CLASS C RELAY. Incorporates many of the features of the Class B relay-but is only half as wide. Use where quality is a must, but space is at a premium. Quick- and slow-acting types, for operation at up to 150 volts DC. Two to twelve contact springs.

SERIES OCS RELAY. Compact and low in cost. For "packaged" programming: will follow or initiate a prescribed series of events at 30 steps per second impulse-controlled - or 65 per second self-interrupted. Much better than an interlock relay - when you're designing for shock, vibration or easy field maintenance.

Dry reed switches for printed wiring boards

PRINTED CIRCUIT CORREEDS.* Strong, mois. ture-resistant, compact. Unstressed contact leads provide firm, positive connections. Glass. filled plastic bobbins prevent moisture absorp. tion. Low profiles and magnetic shielding permit high density within standard PC terminal spacing (multiples of 0.200 inches). Avail. able with 1, 2, 3 and 5 capsules and magnetic latching. Contact forms $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$.
-US Patent opplied lor

As a major designer and manufacturer of RF instruments and components, Telonic once again leads the field with the introduction of the SM-2000 Sweep and CW Signal Generator, New from every standpoint, the SM-2000 provides unmatched versatility for laboratory

Celonic Industries, Inc.
or production operations. Now, with one instrument and several, interchangeable plug-in oscillators, an engineer can cover a frequency range from audio to 3000 mc . Telonic has designed 19 different oscillator heads for specific and general purposes that enable the user to change range of the SM-2000 in a matter of seconds. For general applications, only two plug-in units are necessary to cover frequencies from .5 to 2000 me. And, in addition, the operator may select four different functional modes with the SM-2000-swept RF, modulated swept RF, CW, and modulated CW: He can set attenuation from 0 to 60 db in 1 db steps with the two built-in attenuators. He also has provisions in the instrument for nise of an external marker, or for addling up to eight fixed, plug-in markers if desired.
All these features are combined with the fine basic performance that has made the name Telonic synonymous with the best in RF instrumentation-low VSWR, high display linearity and excellent workmanship. If you would like nore complete details on this new sweep generator please write for Teclinical Bulletin T-23.3.

\#OTJ』INS, IొC. trimpot division, riverside, calif. 92507

BOURNS BUSHING-MOUNT POTE

RESISTANCE (OHMS)	TOL (\%)	$\begin{aligned} & \text { LIN } \\ & (\%) \end{aligned}$	ELECTRICAL AND MECHANICAL ROTATION
$100 \cdot 250 \mathrm{~K}$ 500K 1 meg	± 3	± 0.15	$3600^{\circ}\left(+4^{\circ} /-0^{\circ}\right)$
50-100K	± 3	± 0.3	$350^{\circ}\left(\pm 2^{\circ}\right)(3)$
$\begin{gathered} 50 \cdot 10 \mathrm{~K} \\ 20 \mathrm{~K} .50 \mathrm{~K} \\ 100 \mathrm{~K} \end{gathered}$	± 3	± 0.5	$350^{\circ}\left(\pm 2^{\circ}\right)(3)$
$\begin{gathered} 100.100 \mathrm{~K} \\ 200 \mathrm{~K} \\ 500 \mathrm{~K} \end{gathered}$	± 3	± 0.25	$350^{\circ}\left(\pm 2^{\circ}\right)(3)$
$\begin{gathered} 50.125 \mathrm{~K} \\ 150 \mathrm{~K}, 250 \mathrm{~K} \\ 500 \mathrm{~K} \end{gathered}$	± 3	± 0.2	$3600^{\circ}\left(+10^{\circ} /-0^{\circ}\right)$
1K.500k	± 5	± 0.5	$3600^{\circ}\left(+10^{\circ} /-0^{\circ}\right)$
$\begin{gathered} 25-50 \mathrm{~K} \\ 100 \mathrm{~K} \end{gathered}$	± 3	± 0.30	$1080^{\circ}\left(+10^{\circ} /-0^{\circ}\right)$
$\begin{gathered} 25-75 \mathrm{~K} \\ 100 \mathrm{~K} \\ 250 \mathrm{~K} \end{gathered}$	± 3	± 0.30	$1800^{\circ}\left(+10^{\circ} /-0^{\circ}\right)$
$\begin{gathered} 25-20 \mathrm{~K} \\ 50 \mathrm{~K} \end{gathered}$	± 3	± 0.50	$350^{\circ}\left(\pm 2^{\circ}\right)^{(3)}$
$\begin{aligned} & 100 \text { to } 100 \mathrm{~K} \\ & 250 \mathrm{~K} \end{aligned}$	± 5	± 0.50	$3600^{\circ}\left(+10^{\circ} /-2^{\circ}{ }^{\circ}\right.$)
$\begin{gathered} 50-100 \mathrm{~K} \\ 250 \mathrm{~K} \end{gathered}$	± 5	± 0.25	$3600^{\circ}\left(+10^{\circ} /-0^{\circ}\right)$
100.50K	± 5	± 1.0	$3600^{\circ}\left(+10^{\circ} /-5^{\circ}\right)$

MECHANICAL LIFE (CYCLES)	POWER (WATTS)	
100.000	5.0 at $40^{\circ} \mathrm{C}$	-65 to +105
500,000	4.0 at $70^{\circ} \mathrm{C}$	-65 to +125
500.000	1.5 at $70^{\circ} \mathrm{C}$	-65 to +125
500,000	6.0 at $70^{\circ} \mathrm{C}$	-65 to +125
100,000	2.0 at $70^{\circ} \mathrm{C}$	-65 to +125
500.000	2.0 at $70^{\circ} \mathrm{C}$	-65 to +125
100,000	1.0 at $70^{\circ} \mathrm{C}$	-65 to +125
100,000	1.5 at $70^{\circ} \mathrm{C}$	-65 to +125
500.000	1.0 at $70^{\circ} \mathrm{C}$	-65 to +125
10,000	2.0 at $25^{\circ} \mathrm{C}$	-55 to +105
50,000	1.0 at $70^{\circ} \mathrm{C}$	-65 to +125
10,000	1.0 at $40^{\circ} \mathrm{C}$	-55 to +105

13OURNS KNOBPOT \({ }^{*}(\substack{\begin{subarray}{c}{cock
 fict} }

{\hline}\end{subarray}\)}
(1) Special resistances are available above and below the standard range shown. Consult factory for price and technical information.
(3) Std Models exceed steady state requirements of MIL-STD-203. METHOD 103. Optional models are available meeting humidity cycling requirements of MIL-STD-202. METHOD 106. (3) Mechanical rotation continuous.
(4) Electrical rotation only

- 1965 BOURNS, Inc. LITHO IN U.S.A.

BOURNS SERVO-MOUNT POTENTIOMETERS

Q
QUALITY IDESIGN
The construction details shown in the cut-a-way drawings of the Model 3500 and 3600 are not necessarily descriptive of all models, but are typical of the desigg features found in Bourns precision potentiometeris.
These high reliability features have evolved through Bourns long experience in the potentiometer fieldspecifically theliability features have evolved the Companysh's capability in pourns long experience in the potentiometer quality miniature parts, precision plastic
the moldings, and dependable seals.
QUALITY CONTROI
All units are individually inspected to guarantee full conformance to all key physical and electrical and reliable performance for a minimum of 100,000 cycles or 2 million shaft rotations. RELIABIIITY ASSURANCE
A final measure of quality is Bourns Reliability Assurance Testing Program - the most stringent in the potentiometer industry. Random samples are selected from stock and checked for stability and per Cormance under extreme conditions of cold, humidity, shock and vibration - each condition at the limit
of published specifications. Load life and rotational tests are also performed. This unique reliability of published specifications. Load life and rotational tests are also performed. This unique reliability
program is your final guarantee that Bourns components meet or exceed published standards of performance and reliability.

קOTJRINS, Inc. trimpot division 1200 COLUMBIA AVE., RIVERSIDE. CALIFORNIA 92507 (714) 684-1700
\qquad

OTHER PRODUCTS BY B()URNs

TRIMPOT* ADUUSTMENT POTENTIOMETERS

VOLTAGE SENSORS

MODEL 3910 and MODEL 3917
 Supply Voltage: $20.30 \mathrm{VDC} \quad 20.30 \mathrm{VDC}$ Life: $\quad 10^{10 \%}$ operations $\quad 10^{\circ \prime}$ operations Ourput: DPDT Relay $\begin{gathered}\text { SPST No } \\ \text { Solid State }\end{gathered}$ Contact Rating: \(\begin{gathered}1 ampere

at 26.5 \mathrm{VDC}\end{gathered}\)| $\begin{array}{c}0.05 \text { ampere } \\ \mathrm{at} \\ 30 \mathrm{VDC}\end{array}$ |
| :---: |

QUADRATRON ${ }^{*}$

EXPONENTIAL RESISTORS

Gold-plated components
conduct better,
solder easier,
reflect heat,
and resist wear,
corrosion,
oxidation,
galling.
Now let us give you the details.
The details are in our comprehensive reference guide-a voluminous encyclopedia of precious metal electroplating processes. Here you'll find charts, graphs, technical papers, magazine articles. A compendium of today's most advanced knowledge of gold-plating-the facts that have put gold into computers, communications equipment, jet aircraft, missiles, space probes. Write for your copy of "Gold Electroplating Processes."

Sperry Semiconductor Is Truly THE Second Source for the MICROLOCIC* Family of Integrated Circuits

> *Sperry Rand Corporation, through a cross-licensing agreement with Fairchild Camera and Instrument Corporation, is licensed under processing techniques patented by Fairchild to produce MICROLOGIC INTEGRATED CIRCUITS which are completely interchangeable with Fairchild unts. Fairchild trademarks „L, „Logic, and MICROLOGIC are licensed to Sperry.

RTL MICROLOGIC FROM SPERRY - NOW

Sperry Micrologic 900, 914, 915, 925 and 926 are completely interchangeable with Fairchild units. Check these distributors for them. \square Keep in touch with SPERRY SEMICONDUCTOR, Norwalk, Connecticut 06852.

ALABAMA
Huntsville
Radio Electric Service Co
205-539-5156

ARIZONA

Ahroet Electronics Corporation 602-272-6821
CALIFORNIA
Culver City
Avnet Electronics Corporation 213 UP 0-6141
Los Angeles
Radio product Sales, Inc.
213 RI 8-1271

At. View

Avnet Electronics Corporation 415-961-7700

Oakland

Elmar Electronics
415-834-3311
San Diego
Avnet Electronics Corporation 714-279-1550

COLORADO

Littleton
Industrial Electronic Sales 303-798-8575

Florida
Winter Park
Perrott Associates, Inc.
305-423-7316

ILLINOIS

Franklin Park
Avnet Electronics Corporation 312-678-8160

owa

Cedar Rapids
Deeco, Inc.

MARYLAND
Baltimore
Radio Electric Service Co.
301 LE 9-3835
Hyattsville
Milgray Washington, Inc
301-UN 4-6330
MASSACHUSETTS
Burlington
Avnet Electronics Corporation
617 BR 2-3060

Newton
 Green Shaw Co
 Green Shaw Ca 617 wo 9-8900

MISSOURI
St. Louis
Target Sales Corp
314 JA $1-3800$
NEW YORK
Buffalo
Summit Distributors
716-TT 4-3450
New York, New York
Milgray Electronics, Inc.
212 YU 9-1600
Westbury, L. I., New York Avnet Electronics Corporation 516 ED 3-5800

Yonkers

Delburn Electronics
212 BA 7.9280

OHIO
Cincinnati
Mytronics Co.
513-961-4600
PENNSYLVANIA
Philadelphia
Milgray Delaware Valley, Inc.
215 BA 8-2000

Sperry Europe Continental, 7 Avenue de l'Opera, Paris 1, France

TEXAS
Arlington
Beta Electronics Co.
Dallas TA 1-1120
Fort Worth CR 7-2231

Houston

Busacker Electronic
Equipment Co.
713 JA 6-4661
UTAH
Salt Lake City
Avnet Electronics Corporation
of Utah
801-486-7566
WASHINGTON
Believue
Avnet Electronics Corporation
206-454-4911
Seattle
Hyak Supply, Inc.
206 PA 5-1550
WISCONSIN
Milwauke
Electronic Expeditors, Inc.
414 UP 1-3000

CANADA

Toronto 19, Ontario
Avnet Electronics Corporation
of Canada
789-2621

ADVANCED SOLID STATE AMPLIFIERS FOR YOUR CONTROL AND INSTRUMENTATION APPLICATIONS

ASTRODATA advanced design instrumentation amplifiers raise state-of-the-art standards to higher levels for measurement . . . conditioning . . . monitoring . . . indicating . . . control.
For custom designs, Astrodata's extensive experience provides a well-qualified capability for satisfying your specific performance needs.
Model 884 Wideband (dc to 100 kc) Floating, Guarded Amplifier...
Model 885 Wideband (dc to 10 kc) Differential, Isolated Amplifier...
high-gain/performance amplifiers for low-level, wideband systems at lowest cost. Completely transistorized, these state-of-the-art amplifiers use field-effect transistors in place of mechanical choppers to achieve lowest drift rate, freedom from microphonics and maximum reliability. Gain range to 3000 and a continuously adjustable 10 -turn vernier control are provided as standard features. Two differential models with $\pm 10 \mathrm{ma}$ or ± 100 ma output current from a low impedance can drive long lines, A to D converters, multiplexers, galvanometers or tape recorders. Transfer characteristic is optimized to provide wide frequency response with minimum overshoot, fastest settling and overload recovery times, and minimum phase shift. Common mode rejection is greater than 120 db with up to ± 300 volts dc or peak ac common mode voltage.

All models have built-in power supplies, feature drift less than $1 \mu \mathrm{~V}$ per week, wideband noise less than $4 \mu \vee \mathrm{rms}$, linearity better than 0.02%. Can be used either separately or in the same rack module with Model 1155 Universal Signal Conditioning Unit or Model 890 Electronic Filter to form complete, isolated signal conditioning channels.

Model 885-135 Differential Amplifier to drive multiplexers, tape recorders to drive A to D converters.

GAIN RANGE: 1 to 3000 INPUT RESISTANCE: 100 megohms BANDWIDTH: dc to 10 kc
OUTPUT: ± 5 volts at $\pm 10 \mathrm{ma}$
DRIFT: $\pm 1 \mu \mathrm{~V}$ for 40 hours
TEMP. COEFF:
TEMP. COEFF:
$\pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{F}$
NOISE: $2 \mu \mathrm{~V} \mathrm{rms}$

Model 141-102 Wideband DC Utility Amplifier to drive galvanometers and
fulfill wideband dc amplifier requirements.
GAIN RANGE: 1 to 25 INPUT RESISTANCE: >10 megahms OUTPUT: $\pm 10 \mathrm{ma}$ at ± 10 volts COMMON MODE REJECTION: $>60 \mathrm{db}$ at all gain settings FREQUENCY RESPONSE:

FREQUENCY RESPONSE:

RESPONSE:	$\pm 1 / 2 \%$	$\pm 3.0 \%$	3 db point
FIXED GAIN	dc	t	dc to
POS:	20 kc	100 kc	500 kc

Model 885-235 Differential Amplifier to drive data systems, long lines and galvanometers.

GAIN RANGE: 3 to 3000
INPUT RESISTANCE: 100 megohms BANDWIDTH: dc to 10 kc OUTPUT: ± 10 volts at $\pm 100 \mathrm{ma}$ DRIFT: $\pm 1 \mu \vee$ for 40 hours TEMP. COEFF: NOISE: $2 \mu \mathrm{~V} \mathrm{rms}$

Model 1155 Universal Signal Conditioning Unit
Uses plug-in circuit 890 Filter to provide cards to supply excita- complete conditioning, cards to supply excita- complete cond tioning,
tion or bias, attenua- calibration and normaltion or bias, attenua- calibration and normas-
tion, circuit completion, izing of transducer balancing, filtering and signals. calibration. Used with low-level or high level signals from thermocouples, strain gages, resistance temperature sensors, thermistors, sensors, thermistors,
potentiometers and potentiometers and voltage sources. Can
function separately or in same rack module with Models 884 or 885 Amplifiers or Model

Model 1212 Nanovoltmeter provides

Model 120 Nanovolt Amplifier gives you high-gain/low-noise amplification for seismic transducer signals, cryogenic studies, thermocouple or strain gage signals.

GAIN RANGE: 200 to 1,000,000 BANDWIDTH: dc to 100 cps NOISE: $0.05 \mu \mathrm{~V} \mathrm{rms}$ INPUT RESISTANCE: 1 megohm OUTPUT LEVEL: 0 to $\underset{ \pm 5}{ }$ volts at $\pm 5 \mathrm{ma}$

$0.1 \mu \mathrm{~V}$ full scale bridge balance detector or thermocouple indicator for standards and calibration work, in the field and in laboratories.

FULL SCALE RANGES: $\pm 0.1 \mu \mathrm{~V}$ to $\pm 100 \mathrm{mv}$
INPUT RESISTANCE: 1 megohm ZERO SUPPRESSION: $\pm 0.5 \mu V$ to $\pm 5 \mathrm{mv}$ AMPLIFIER OUTPUT: Gain 30 to 3 million, delivers ± 5 volts at $\pm 5 \mathrm{ma}$
Overload Indicator

Contact your Astrodata engineering representative for a demonstration. or write today for technical literature giving complete specifications.

P.O. Box $3003 \cdot 240$ E. Paluis Road, Anaheim, California • 92803

TEL. (714) 772-1000 • TWX 714-776-3760. FAX • TELEX 06-78828 • CABLE ADORESS - ASTRODATA, ARaheim

A NEW HICKOK CATALOG TO HELP YOU FIND THE METER YOU NEED

Having trouble finding the meter you really need? Ask Hickok. Hickok meters are custom-built, to fill your specific needs. They're available in hundreds of styles
and models, as you'll see in this new, illustrated Quick-Reference Catalog. Get your FREE copy today. Tell us-or use the reader inquiry card!

THE TRIPLE-DIFFUSED PLANAR TRANSISTORS

That's Silicon Transistor Corporation. Always the right move. Now that the dust has settled, now that everyone has said, "we can supply the Honeywell triple-diffused planars," Silicon says simply, "we have always supplied them as part of the broadest line of silicon power transistors-with the additional plus of our unique, rugged clip and post construction for high reliability."
2N2657-58, 2N2632-34, 2N2877-80, MHT4451-56, MHT4483, MHT6308-16, MHT6001, MHT6011-16, MHT6031. All available in T0.5 and T0-62 and TO-59. NO EXCEPTIONS.

And Silicon Transistor Corporation takes one step further and offers the 2N1722 and 2N1724 in planar, too. These meet military requirements like the rest.

For complete specifications and information so you can work out a winning strategy, contact:

EAST GATE BLVD., GARDEN CITY, NEW YORK 11532, 516. Ploneer 2-4100. TWX 510-222.8258

CHICAGO, ILL. 60625, 5555 NORTH LINCOLN AVE., 312-271-0366.7, TWX 910.221-1304
LOS ALTOS, CALIF. 94022, 1 FIRST ST., 415-941-2842. HUNTSVILLE, ALA. 35807, P.0. BOX 1467

1965 Survey Of Potentiometer Specifications

Part 1: Precision Potentiometers

Tine precision potentiometer is a mechanical electrical translucer dependent upon the relative position of a moving contact (wiper) and a resistance element for its operatica. It delivers to a high degree of accuracy a voltage output that is some specified function of applied voltage and shaft position.

Precision potentiometers covered in this survey are rotary wirewound, non-wirewound, linear and nonlinear types employing extended shafts that in operation are referenced by angular motion. Although the term "precision" as used, applies also to some rectilinear potentionseters and decade attentators, these types will be included under Special Purpose potentiometers in a later issue. Rectilinear types give an electrical indication of linear displacement.

Parameters in Charts

The accuracy of the precision potentioneter is described to a good extent by its resistance tolerance, linearity and resolution, and in some cases noise, and how closely it maintains these characteristics under changes in enviromment. But there are many other characteristics and considerations. A document pub-

POTENTIOMETER SURVEY

Parts 2 and 3 will appear in future El issues. Watch for them.

Part 2. General Purpose Potentiometers (Semi-precision, Industrial and Commercial Types)
Part 3. Special Purpose Potentiometers and Trimmers (Including Attenuators, Transducers, Measuring Pots, Power Rheostats, Power Dissipators)
lished by the Precision Potentiometer Manufacturers' Association provides a series of preferred inspection test procedures for measurement of precision potentiometer characteristics in accordance with the Industry Standard for Precision l'otentiometer Terms and Definitions as revised and approved by the PPMA.
Resistance tolerance is expressed as the percentage deviation of the actual total resistance of the potentioneter from the total resistance as specified by the manufacturer. Values in some case ranging as low as a fraction of a percent.

Lincarity, the most important factor for many applications, describes the straight line relationship between the potentiometer output voltage or resistance and the wiper travel or slaft rotation. The deviation is the linearity error. Independent linearity is used to descrile most linear precision potentiometers. Independent Linearity (Best Straight Line) is the maximum deviation, expressed as a percent of the total applied voltage, of the actual function characteristic from a straight reference line with its slope and position chosen to minimize the maximum deviations over the actual electrical travel, or any specified portion thereof.
Conformity is a term used with non-linear potentiometers such as sine and cosine types, and sometimes with linear potentiometers. Terminal Conformity, which is the specification most often used, is the maximum deviation of the actual function output curve from a desired function curve extending leetween zero rotation and the theoretical test angle. This deviation is expressed as a percent of the applied voltage.
Independent linearity and conformity are used interchangeably in the charts, depending upon whether the pot is linear or non-linear, as indicated.

First in a series of special potentiometer reports identifying suppliers and listing available Mil Spec precision potentiometers and their characteristics, as compiled by El editors.

Dale Model PS-09 is rated at $20 \mathrm{~K} \Omega, 200 \mathrm{v}$.

Bomar's $20-09$ has a 0.0003% resolution.
Resolution is a measure of the sensitivity of a precision potentiometer. It represents the smallest parts into which the slider mechanism can divide the resistance or voltage. In the case of wirewound pots, the theoretical resolution equals the reciprocal of the number of wire turns, expressed as a percentage, i.e., \% Resolution $=$ Voltage per turn of Wire \div Input Voltage $\times 100$. For linear pots, this would be \% Resolution $=1 \div$ Total Number of Turns x 100. In non-wirewound pots, the smallest increment of resistance change is so small that the resolution is generally considered as infinite.

Equivalent Noise Resistance (ENR) is an olmmic measure of the contact resistance in a potentiometer. Noise as defined by MIL-R-12934D is any spurious variation in the electrical output not present in the input, defined quantitively in terms of an equivalent parasitic, transient resistance in ohms, appearing between the contact and resistance element when the shaft is rotated or translated. The ENR is defined independently of the resolution, the functional characteristics, and the total travel. The magnitude of the ENR is the maximum departure from a specified ref(Continuted on page 68)

Model 7300, by IRC, uses rear terminals.

Type F78, by Fairchild, has up to 6 taps and a $1 / 2 \%$ linearity. Diameter is $7 / 8 \mathrm{in}$.

Daystrom 341 is a 10 -turn pot. in $1 \times 1 / 2$ in.

17 ways to design circuits
better with this tiny

\$1.46 commercial trimmer

Check the list at right. This Amphenol 2600 trimmer rates 17 ways better than the next best commercial trimmer. All for less cost.
SIMPLIFIED DESIGN. Just $3 / 4^{\prime \prime}$ long
and .04 ounce, the 2600 has only seven parts. By eliminating interconnecting parts, assembly is
easy, We mass-
produce the 2600 -over 1 million this
year-with big savings for you. (Even Amphenol's \$2 humidity-proof 2610 costs only one-fifth as much as similar trimmers.)
53\% BETTER RESOLUTION. Simplified design has eliminated mounting holes, so the mandrel runs the full length of the trimmer. Result: you get resolution from $.22 \%$ to 1.78% up to 53% better than competitive trimmers.

And you get Amphenol quality.

Like silver-brazed terminations. Goldplated external metal parts. A lowmass wiper that can't shift under shock or vibration. Self-lock leadscrew. And the exclusive ratcheting clutch that prevents end-turn damage.
OFF-THE-SHELF DELIVERY. You can get 2600's or 2610's right away from your local Amphenol Industrial Distributor's shelf stocks. Or call your Amphenol Sales Engineer. Or write us in Janesville, Wis.

Feature	Amphenol 2600	* Brand B 1 inch
Power rating Temp range ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \text { watt at } 40^{\circ} \mathrm{C} \\ & -65^{\circ} \text { to }+125^{\circ} \end{aligned}$	$\begin{aligned} & .5 \text { watt at } 25^{\circ} \mathrm{C} \\ & -55^{\circ} \text { to }+85^{\circ} \end{aligned}$
Temp. range ${ }^{\circ}$ No. of turns	20 Full turns	Only 15 turns
Humidity	MIL-STD-202A	
Weight	. 04 02.	1002. (approx.)
End settings	to 1.0%	to 2.0\%
Dielectric strength	1000 vac	500 vac
Noise	100 ENR Max.	A
Insulation resistance	100 Meg . Min.	
Shock	50 g 's	
Vibration	20 g 's	
Acceleration	50 g 's	No spec.
Sand \& dust	MIL-E.5272C	listed
Fungus	Non-nutrient	
Load Life	2000 hours	
Mechanical life	200 cycles	
Price (25-49)	\$1.46 each	\$1.54 e ach

*Sources dated 3/65, 5/63

HERE'S WHY*

fairchild conductive plastic POTENTIOMETERS are BETTER!

* Over 20 years experience making precision linear and non-linear potentiometers.
* Exclusive co-molding process using proprietary materials and methods assures superior life, Iow noise, HIGH HUMIDITY PERFORMANCE, extreme temperature operation, radiation proof-

Life $-1 / 4$ billion revolutions at 600 rpm
Low Noise-Exceeds MIL-R-39023 requirements over life
Humidity $-95 \cdot 100 \% \mathrm{RH}$ at $+71^{\circ} \mathrm{C}$ for 240 hours
Temperature - Can sustain $-320^{\circ} \mathrm{F}$ and $+300^{\circ} \mathrm{F}$ for 50 hours and cycling, without failure or degradation
Radiation-Integrated fast thermal neutron flux ($\mathrm{E}>.3 \mathrm{MEV}$) for 100 hours - no substantial degradation of performance

* Exceptional physical environmental characteristics -

Vibration- 15 G 's, $10 \cdot 2000 \mathrm{cps}$; Acceleration- 50 G 's;
Shock 50 G's, 11 ms

* Complete line availability - linears, non-linears, sine-cosines, standard and ultra-short cup lengths. Sizes from $7 / 8^{\prime \prime}$ through $3^{\prime \prime}$.

Whether you're designing a new sys.
tem or seeking a replacement potentiometer, you can be assured of a BETTER potentiometer-Wirewound or Conductive Plastic, from FAIRCHILD.
Send for complete data today and for test reports, please write on company letterhead.

POTENTIOMETERS (Continued)

source to excite the wiper of the potentiometer which is rotated while the output is measured on an oscilloscope. The equivalent resistance is then calculated as: Noise $=\frac{\mathrm{E}_{\mathrm{p}:}}{0.001}$, where $\mathrm{E}_{\mathrm{PN}}=$ "peak noise voltage." The test measures factors such as uniform contact resistance, resist-

Independent linearity limits are shown with the output ratio vs. total elec. travel.
ance element cleanliness, chatter in contact design, surface oxidation on winding and compatibility of contact and winding.

Output Smoothness

Some potentiometer manufacturers say there are other, more significant sources of noise than ENR

Schematic of Camewell flat-card sine-cosine potentiometers.
which must he considered and whose effect must he measured, in order to determine a potentiometer's noise characteristics, particularly in servo systems. Here, hecause of feedback
(Continued on page 90)

 -1 0			ONNNNONNNNNNN	11	Type No．or Sories
			$\times \times	$\times \times$	Potentiometer
$\times \times	$\frac{\times \times {} \frac{}{\times \times $	$\times \times $\times \times	$\frac{\times \times {}$	$\times \times$	Wirowound
	$\underline{x} \times x$	$x \times	$\underline{x} \times \times \times \times \times \times \times \times \times x \times$		Carbon（C）；Carmof（CT）；Comp．（CO）
				ก	Mes．Film（F）；Cond．Plastic（CP）
					Square（S）；Rect．（R）；Circ．（C）；Cube（CU）
	－ーーーーーールいずす。				No．of Tums；Multiturn（M）
¢rerrertrertrertrerertrer					Linear（L）；Nor－Linear（NL）
				$\vec{\circ} \mathbf{0}$	Resistance Min．（Ohms）
				뭊 N	Resistance Mox．（Kilahms）
	$\omega \omega \stackrel{\rightharpoonup}{0}$		unuous	\square°	Resistonce Toleronce（ \pm \％）
				20	Resolution（ \pm \％）；Infinite（ N ）
	$\omega \omega \dot{\omega} \omega$ in in in in ω in \sim_{n} in	－8		$\because-$	Linsority（ $\pm \%$ ）
					Noise（Ohms ENR）
	N			ज	Oper．Temp．Max．$\left({ }^{\circ} \mathrm{C}\right)$
				\cdots	Power Roting（W）
$\times \times \times \infty$	$\times \times	$\times \times	$\times \times	$\times \times$	$\frac{\text { Enclosed }}{\text { Smalod }}$
$\times \times den		$x \times			Smaled
	के 心े के				Servo Mrg．（S）；Bush．Mtg．（B）；Scrow（SC）
					P．C Mrg．
	－1－1－1－1－1－1－1－	－1－1－1－－－－－1－1－1－1－1－1－1	न－- －	$\begin{array}{ll} -1 & -1 \\ r & \square \end{array}$	Wire Le ods（L）；Pins（P）；Terms．（T）
？			3		Minioture（M）：Subminiature（S）
	$\times \times				Mil Type
$-\equiv$	$\times \times	\times			Helaht（ ln ．）
吕					Width（ 1 m.$)$
			NNN－		Length（lm．）
			$\cdots \underset{\sim}{\sim}$		Dia．（Im．）
					Warigh（0x．）

			엉ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응 un 			Type No．or Suries
$\frac{\times \times x}{}$	$\underline{x} \times \times \times \times \times \times \times x$	$x \times x \times x \times x$	$\underline{x} \times	$\times \times \times \times \times \times \times \times$	$x \times \times \times \times \times \times \times \times \times$	Potentiomater
$\times \times	$\times \times \times \times \times \times \times \times \times x$	$\times \times \times \times \times \times \times$	$\times \times	$\times \times \times \times \times \times \times \times$	$\times \times \times \times \times \times \times \times \times \times$	Wirabound
					べのつのつへへのつの	Carbon（C）；Carmer（CT）；Comp．（CO）
						Mot．Film（F）；Cand．Plostic（CP）
		กロロロロロก		กดのกกロのก		Square（5）；Rect．（R）；Circ．（C）；Cube（CU）
	－ーーーーーーーーロ			－ーーーーーーー	333－－－－－－－	No．of Turne；Mulitioun（M）
		$\begin{aligned} & \text { 「「「「「「 } \\ & z \geq z z z z \end{aligned}$		$\begin{array}{ccr} \hline r r r r r r r \\ z & z \underset{r}{z} \\ r & r r \end{array}$	$\begin{aligned} & r r \\ & z \underset{\sim}{r} \\ & r \end{aligned}$	Linear（L）；Non－Linear（NL）
					可可可スヘスススススス	Resistance Min．（Ohms）
		जNONONO				Resistance Max．（Kilohms）
	$\dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega}^{\omega}$		$\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega \omega<0$	$\omega \omega \omega \omega \omega \omega \omega \omega$	ずすごすこすごすご	Resistance Toleronce（ \pm \％）
	$\begin{array}{llllllll} \overrightarrow{0} & \overrightarrow{0} \\ \overrightarrow{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$				zzzzzzzzzzz	Resolution（ \pm \％）；Infinite（ \mathbf{N} ）
		in $\omega \dot{\omega} \dot{\omega} \dot{s}$ in ${ }^{\text {a }}$	iv－in in in in ivin in in in in in	iviviviviviư in	O	Linearity（ \pm \％）
		훙훙훙훙ㅁㅇㅇ	항ㅎㅇㅇㅎㅇㅇㅎㅇㅎㅇㅇㅎㅇㅎㅇㅇ	항ㅎㅇㅇㅎㅇㅎㅇㅇㅇㅇㅇㅇㅇ		Noise（Ohms ENR）
			N			Oper．Temp．Max．$\left({ }^{\circ} \mathrm{C}\right)$
	VGWNNNNNNW $\therefore \dot{v}$ in	in is in is		めOGAANNN	$\triangle N N Q \triangle W A N N N-~$	Power Rating（W）
$\times \times	\times	$\times \times \times \times \times \times \times$	$\times \times	$\times \times \times \times \times \times \times \times$	$\times \times \times \times \times \times \times \times \times \times \times$	Enclosed
	a nonana an on ob 	$\infty_{\infty}^{\infty} \cos \cos$		いいいいいいいい	$\infty \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty}$ 	Sooled
－1－						P－C Mrg．
						Wire Leads（L）；Pins（P）；Terms．（T）
$\times \times \times \times \times \times \times \times \times$			$\times \times	$\times \times \times \times \times \times \times \times$		Miniature（M）；Subminioture（S）．
				$\times \times \times \times \times \times \times \times$		Mil Type Heighe（ In_{n} ）
	$\infty \infty^{\circ} \infty$	－－io io				Width（ $\mathrm{lm}.)=$
	可	－${ }^{\infty}$	is－－－¢ ¢ ¢ \％aの	$\infty \infty \infty \infty$		Length（lin．）
－${ }^{\text {c }}$						Dia．（In．）
	－	$\vec{i} \dot{a}$			∞－${ }_{\text {－}}$	Woight（0z．）

PRECISION POTENTIOMETERS (cont.)	$\begin{aligned} & \text { \% } \\ & \dot{6} \\ & i \\ & \dot{6} \\ & \dot{0} \\ & \dot{2} \\ & \dot{2} \end{aligned}$				Linear (L); Non-Linear (NL)										Servo Mrg. (S); Buah. Mig.(B); Serew(SC)	$\begin{gathered} \dot{e} \\ \frac{2}{3} \\ \frac{1}{2} \\ \dot{a} \end{gathered}$						
Fairchild Contrals (Cantinued)	749 757 754 977 751 752 906 909 934 931	x x x x x x	$\begin{aligned} & C \\ & C \end{aligned}$	1 L 3 10 3 10	L/NL L/NL L/NL L/NL $L / N L$ L/NL	$\begin{array}{\|l\|} 600 \\ 1 \\ 800 \\ 1 K \\ 200 \\ 300 \\ 100 \\ 300 \\ 200 \\ 600 \\ \hline \end{array}$	250 300 350 50 100 150 70 240 140 500	5 5 5 5 5 5 10.01 10.006 10.01 10.004	$\begin{aligned} & .28 \\ & .15 \\ & .28 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & \text { to } .1 \\ & \text { to } .05 \\ & \text { to } .1 \\ & \text { to } .03 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$		4 x 6 x 8 x 1.5 x 2 x 2 x 1.5 x 2.5 x 1.5 x 5 x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & S \\ & S / B \\ & S / B \\ & S \\ & S / B \end{aligned}$		T				$\begin{aligned} & 1.4 \\ & 1.7 \\ & 2 \\ & .75 \\ & .87 \\ & 1 \\ & .87 \\ & .87 \\ & 1.7 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3 \\ & 3 \end{aligned}$
John Fluke Mig. Co., Ine. P. O. Bax 7428 Seottle, Wash. 98133	$\begin{aligned} & 20 A \\ & 21 A \\ & 22 A \\ & 30 A \end{aligned}$	$\begin{array}{l\|l} x & \left(\begin{array}{c} \text { (Slide- } \\ \text { wire) } \\ \text { (Slide- } \\ \text { wire } \end{array}\right. \\ \text { (Slide- } \\ \text { wire } \end{array}$				100 $1 K$ $1 K$	$\begin{aligned} & 25 \\ & 50 \\ & 100 \\ & 100 \end{aligned}$	5 5 5 5	$\begin{aligned} & .02 \\ & .008 \\ & .02 \\ & .002 \end{aligned}$.5 .5 .5 .5	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$			$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$			T T T T	x x x x		$\begin{array}{l\|l} .76 & 1 \\ 1 & 1 . \\ 1.2 & 1 . \\ 1.1 & 2 \end{array}$	1.2 1.3 1.5 2	
General Rodia Co. 22 Baker Ave. W. Coneard, Mass.	$\begin{aligned} & 971 \\ & 972 \\ & 973 \\ & 974 \\ & 975 \\ & 976 \end{aligned}$	$\begin{array}{l\|l\|l} x & x \\ x & x \end{array}$	$\begin{aligned} & C \\ & C \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		2 50 5 10 500 $1 K$	$\begin{aligned} & 20 \\ & 50 \\ & 50 \\ & 100 \\ & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	to .2 to . 2 to .1 to. 1 to 0.05 to 05	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & .5 \\ & .5 \end{aligned}$			$\begin{array}{\|l} 3.5 \\ 5.8 \\ 5.9 \\ 9.4 \\ 10 \\ 16 \\ \hline \end{array}$		SC SC SC SC SC SC		$\begin{aligned} & \hline T \\ & T \end{aligned}$			$\begin{array}{\|l\|l} .62 & 1 \\ 1 & 1 . \\ .8 & 1 . \\ 1.4 & 1 . \\ 1.1 & 2 . \\ 2 & 2 . \\ \hline \end{array}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.7 \\ & 1.7 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & .5 \\ & .75 \\ & 1 \\ & 1.7 \\ & 3 \\ & 4 \end{aligned}$
General Scientific Corp. 1535 First St. San Fernando, Calif.	$\begin{aligned} & S 1-750 \\ & S 1-100 \\ & S 1-1312 \\ & S 1-2000 \\ & S 1-3000 \\ & M 3-750 \\ & M 5-750 \\ & M 10.750 \\ & M 3.875 \\ & M 5-875 \\ & M 10-875 \\ & M 3-1000 \\ & M 5-1000 \\ & M 10-1000 \\ & M 3.1812 \\ & M 5.1812 \\ & M 10.1812 \\ & F S 1-1000 \\ & F S 1.2000 \end{aligned}$	$\begin{array}{l\|l\|l} \hline x & x \\ \hline \end{array}$			$\begin{aligned} & \text { L } \\ & L \end{aligned}$	10 10 50 10 50 25 50 100 200 300	50 50 50 100 150 25 50 75 30 50 100 50 75 150 125 200 400 10 25	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		.5 .5 .5 .5 .5 .5 .5 .5 .5 1.5 1.5 .5 .5 .5 .5 .5 .5 2 1.5				x 	B B B B / S					.5 .7 .6 1 .7 1.3 .8 2 .8 3 .87 .7 1 .7 1.3 .7 .96 .8 1.1 .8 1.4 .8 .96 1 1.1 1 1.4 1 1.2 1.8 1.4 1. 1.9 1.8 .8 1 1 2	.7 1 1.3 2 3 .7 .7 .7 .87 .87 .87 1 1 1 1.8 1.8 1.8 1 2	
Giannini Cantrals Corp. 1600 S. Mountain Ave. Duarte, Calif.	85111 85151 85153 85172 85175 85173 85176 85177					$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 50 \\ & 50 \\ & 1 K \\ & 1 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & 110 \\ & 10 \\ & 10 \\ & 40 \\ & .1 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	N N N N N	$\begin{aligned} & .25 \\ & .25 \\ & .25 \\ & 70.05 \\ & \text { to } .05 \\ & 10.005 \\ & .1 \end{aligned}$			1.5	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~S} / \mathrm{B} \end{aligned}$				x		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1.8 \\ & 1.5 \\ & 3.3 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & .6 \\ & .6 \\ & .6 \end{aligned}$
Guidance Cantrals Carp. Cammercial St. Engineers Hill Plainview, N. Y.	GC9 GC11 GC15 GC18 GC20 GC30	$\begin{array}{l\|l\|l} \hline x & x \\ x & x \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	C 1 C 1 C 1 C 1 C 1	$\begin{aligned} & L \\ & L \end{aligned}$		$\begin{aligned} & 45 \\ & 60 \\ & 75 \\ & 93 \\ & 100 \\ & 200 \end{aligned}$		$\begin{array}{r} .06 \\ .04 \\ .03 \\ .03 \\ .02 \\ .01 \end{array}$	$\begin{aligned} & .2 \\ & .15 \\ & .15 \\ & .12 \\ & .1 \\ & .08 \end{aligned}$				x x x x x x x	$\begin{aligned} & 5 \\ & 5 \\ & s \\ & s \\ & 5 \\ & s \end{aligned}$		$\begin{aligned} & T \\ & T \end{aligned}$.9 1.1 1.5 1.8 2 3	
International Resistance $C a$. 401 N. Brood St. Philadelphia, Pa.	7300 151 5000 5005 7500 7505 1000 1005 1020 1025 1215 1220 8000 HD 150 HD 155 HD153 H100MS H750MS	$x \mid x$ $X X$ $X X$ $\mathrm{x} \times$ $x \times$ $x \mid x$ $x \times$ $x \times$ $\mathrm{x} \times$ $X X$ $x \mid x$ $x \times$ $\mathrm{x} \times$ $\mathrm{x} \times$ $\mathrm{x} \times$ $\mathrm{X} \times$ $x \times$ $\mathrm{X} \mid \mathrm{X}$	$\begin{aligned} & C \\ & C \end{aligned}$	C 10 C 1 C 10 C 5 C 10 C 10 C 10 C 5 C 10 C 5 C 15 C 20 C 10 C 10 C 5 C 3 C 10 C 10		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 50 \\ & 100 \\ & 100 \\ & 500 \\ & 250 \\ & 500 \\ & 250 \\ & 500 \\ & 1 \mathrm{~K} \\ & 25 \\ & 500 \\ & 500 \\ & 100 \\ & 500 \\ & 250 \end{aligned}$	100 100 100 50 250 125 500 250 250 125 450 600 250 600 300 180 500 250	5 5 10 10 5 5 5 5 5 5 5 5 3 3 5 5 5 5	$\begin{array}{ll} \text { to } & .01 \\ \text { to } & .03 \\ \text { to } & .007 \\ \text { to } & .01 \\ \text { to } & .004 \\ \text { to } & .008 \\ \text { to } & .005 \\ \text { to } & .01 \\ \text { to } & .003 \\ \text { to } & .002 \\ \text { to } & .006 \\ \text { to } & .003 \\ \text { to } & .006 \\ \text { to } & .01 \\ \text { to } 0.004 \\ \text { to } & .008 \end{array}$	10 10.25 1 1 1 .5 .2 .25 .5 .5 .5 .5		$\begin{aligned} & 125 \\ & 125 \\ & 125 \\ & 125 \\ & 125 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 125 \\ & 125 \\ & 125 \\ & 100 \\ & 100 \\ & 100 \\ & 125 \\ & 125 \\ & \hline \end{aligned}$	2 3.5 5 1.5 5 1 5 3 0 2 0 3 0 3 0 2 5 1.5 5 4 5 3 0 5 0 4 0 3 5 4 5 3	x x			$\begin{array}{\|l} \hline T \\ T \end{array}$		x	1.5 .5 1.4 1.4 1 1.6 1.5 1.2 1.9 1.3 1.3 1.3 .9 1.9 2.2 1.2 2 1.6 1.2 1.87 1.6	.75 1.5 .5 .5 .75 .75 1 .87 1.5 1.5 1.5 1 1	2

	N $\leq \geq \geq \geq \leq \geq \geq \geq \Gamma_{\omega}$ 「「「 z				Type No．or Serios
$x \times x \times$	Z	$x \times \times \times x$	$\times \times \quad \times	$\times \times	Poientiometer
$\times \times \times \times$		$\times \times \times \times x$	－${ }^{0}$	$\times \times	Wirebound
					Carbon（C）；Cormar（CT）；Comp．（CO）
					Mot．Film（F）；Cond．Plastic（CP）
กロロロ		กดกกの			Square（S）；Rect．（R）；Cire．（C）；Cube（CU）
－－－		－－			No．of Turns；Multiturn（M）
					Linear（L）；Non－Linear（NL）
凧台告的		－̄．	咸		Resistance Min．（Ohms）
鸟台台可		NN0			Resistance Max．（Kilahms）
$\omega \omega \omega$		NN			Resistonce Tolorance（ \pm \％）
	${\underset{\sim}{x}}_{\substack{x \\ 0 \\ 0}}$		zz z z z z z io	$\begin{aligned} & \overrightarrow{0} \text { t } \overrightarrow{0} \text { a } \\ & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	Resolution（ \pm \％）：Infinite（ N ）
	－is in in in in in in - in in in in is $^{\prime}$	$\omega \dot{\omega}$		in \tilde{N}^{-}in in in in $\overrightarrow{0}$ in ${ }^{n}$ in in in	Linearity（ \pm \％）
				$\stackrel{\rightharpoonup}{\circ}$	Noise（ hmms ENR）
$\vec{\omega}$	N	べN		式 N	Oper．Temp．Max．$\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} & \text { NNNN } \\ & \text { in in } \end{aligned}$		NN		```N\omega-NW\omegaANNWNW in```	Power Rating（W）
$\times \times \times \times$	$\times \times	$\times \times \times \times \times$		$\times \times	Enclosed
					Sealed
$\begin{array}{ll} \infty \\ \omega \\ \omega \\ \omega \end{array}$		$\cos _{\infty}^{\infty} \cos \infty$			Sorvo Mtg．（S）；Bush．Mtg．（8）；Screw（SC）
					P．C Mrg．
\rightarrow－1才					Wire Leods（L）；Pins（P）；Terms．（T）
				3	Miniafure（M）；Subminioture（ 5 ）
		$x \times x \times x$		\times	mill Type
					Hoight（In．）
					Width（ \ln.
ソンvン		¢ ${ }_{0}$		$\vec{\sim}$	Longth（In．）
－－iois		$\square N \omega$ inin			Dio．（In．）
－${ }_{\text {c }}$		NiNu		$\stackrel{\rightharpoonup}{\omega}$	Waight（0x．）

す⿹丁口欠心馬N	ェ Лへへ 	${\underset{\omega}{\omega}}_{\sum_{\omega}^{n}} \frac{\tilde{s}}{\infty}$	$\begin{aligned} & 0 \pi \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\omega \omega \underset{\sim}{\omega} \omega \omega \omega \omega \omega \omega \underset{\omega}{\omega} \omega \underset{\omega}{\omega} \omega$ 			N二		Type No．or Soties
				$\times \times	$\times \times	$x \times x \times x \times$	$\times \times$	$x \times x \times \times \times$	Potontiometor
$\frac{\times \times \times \times \times \times \times \times \times \times}{} \frac{1}{x \times \times \times \times \times \times \times \times \times}$	$\frac{x \times x \times \times \times \times \times \times \times \times}{}$		$\frac{\times x \times x}{x \times x}$	$\times \times		$\times \times \times \times \times \times$		$\times \times \times \times \times \times$	Wirawound Corbon（C）；Carmer（CT）；Comp．（CO）
							7π		Met．Film（F）；Cond．Plastic（CP）
						nnのnのn	$\bigcirc \cap$	ヘロกのロロ	Square（5）；Rect．（R）；Cire．（C）；Cube（CU）
		$\xrightarrow{\square}+{ }^{\text {a }}$	กロのก				－－	\cdots	No．of Turns；Multiturn（M）
－ーーーーーがーー	－ーーーーーーーーー，	合ず合 ${ }^{\text {a }}$	「「「－	जw ${ }^{\omega}{ }^{\text {a }}$		zrz「z「			
$\begin{array}{ll} \Gamma & \ulcorner г 「 \\ z & z z z \end{array}$	$\underset{z}{\text { ziz }}$ ¢ z		$\begin{aligned} & \text { r｢r } \\ & z \geq \end{aligned}$		$z \underline{z} z$				Lineor（L）；Non－Lineor（NL）
		－N	犃気可可			NতN．	合哭		Resistance Min．（Ohms）
		感 N					台㘯	흥ㅎㅇㅇㅎㅇㅇㅁㅇ	Resistanco Max．（Kilohms）
unouvous		un un	uncoul			ω－－	und	$\omega \omega \omega \omega \omega \omega$	Resistance Tolerance（ $\pm \%$ ）
		z z			zzz zzzz zzzzzzz		$z \mathbf{z}$		Resolution（ $\pm \%$ ）Infinite（ N ）
inviniovirioniol－			in u_{0} in	ind		in－ivoror	$\overrightarrow{0}$ in in	$\begin{aligned} & \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \\ & 0.0 \\ & 0 \end{aligned}$	Lineority（ \pm \％）
항ㅎㅇㅇㅁㅇㅇㅎㅇㅇ 훙훙	항	in in	항흉ㅎㅇㅇ		항항 항항항흥		叁㟔		Noise（Ohms ENR）
	$\stackrel{\rightharpoonup}{\circ}$		$\bar{\circ}^{\infty} \sim \sim_{0}^{\infty}$				N ${ }_{\circ}$	$\vec{\omega}_{\sim}^{\omega}$	Oper．Temp．Max．$\left({ }^{\circ} \mathrm{C}\right)$
UNNONNONNN	$\overrightarrow{N A A N A W A N N G N ~}$		－N－		$\vec{i} \vec{i} \vec{i} \text { in in } \omega \quad \text { ơNN-T-in }$	Nowners	\cdots		Power Rating（W）
$\times \times \times \times \times \times \times \times \times \times$	$x \times \times \times \times \times \times$		$x \times \times \times$	$x \times x$	$\times \times		$\times \times$	$\times \times \times \times \times \times$	Enclosed Sualed
		$\sim \sim$	－0ños	 	 	ひひひひひひ	∞	 	Sorvo Mrg．（S）；Bush．Mrg．（B）；Scriow（SC）
úa úu心									P．C Mrg．
	－1－1－1才－1－1		－ 1 －	－1才	－1－1	－1才	-1	$\rightarrow-1$－1－1	Wire Loade（L）；Pins（P）；Terms．（T）
									Miniature（ M ）：Subminioture（ S ）
							$x \times$		Mil Type
$\times \times \times \times \times \times \times \times \times$	x x x	$\times \times$	$\times \times \times$	$\times \times x$					Height（ln．）
									Width（In．）
－ $\cos _{\infty}^{\text {aje }}$	a à jovinioin	\sim i	－Nư山			から山心uo	－6	¢ 0000000∞	Langth（In．）
	जn UNW \rightarrow N	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$	－\square^{-N}		¢ \sim_{\sim}^{∞}	－${ }_{\sim}^{\infty}$	N－	WN $\vec{v} \vec{\circ} \vec{\square} \overrightarrow{\text { a }}$	Dia．（In．）
in $^{-\omega}$	－A in				in $\Delta 0 \Delta \omega$ in in			VAWWNO	Woight（02．）

		$\begin{aligned} & \text { Vogue Instrument Corp. } \\ & \$ 29.1118 \text { th Ave. } \\ & \text { Callege Point, N. Y. } \end{aligned}$					
		$\underset{\omega}{m} \underset{0}{m} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$		 			Type No．or Series
$x \times$	$x \times x \times x \times x \times x \times x \times \quad x$	｜xx $\times \times \times \times \times$｜	$x \times \times \times \times \times \times \times$	$\times \times			
\times	$\times \times x$	$\mid \times \times \times \times \times \times \times 1$	$\mid \times \times \times \times \times \times \times x$	$\frac{1}{x \times x \times x \times x \times $	$\frac{x \times x \times x \times x \times x \times x \times}{\text { a }}$	$x \times x$ $\times \times x \times x \times x$	Potentiometer Wirebound
	7						Carbon（C）；Cermer（CT）；Comp．（CO）
$\bigcirc \bigcirc$	กnกのกのロกロกのก	のกロのกのロ					Mat．Film（F）；Cond．Plastic（CP）
¢－	－ーーーーーーーーー	ω－－交		－जn－unanoun	のロのロのロ		Square（S）；Reet．（R）；Cire．（C）；Cube（CU）
00	$\stackrel{z}{\text { }}$		$\cdots 0^{\omega N} 0^{\omega N} 0$			$0_{0}^{\omega \omega} \sigma_{0}^{\omega} 0^{\omega} 0-1-1-$	No．of Turns；Multiturn（M）
					zzさえで，		Linear（L）；Non－Lineor（NL）
不			NNNNNNNNOUNO				Resistance Min．（Ohms）
合ス							Resistonce Mox．（Kilohms）
\checkmark		いいいいいいいい。	$\vec{\circ} \quad \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \vec{\circ} \overrightarrow{0} \overrightarrow{0}$ in in in in in in in in		$\omega \omega		Resistance Tolerance（ \pm（\％）
0 0		zzzz				$\vec{\circ} \quad \vec{\circ} \overrightarrow{0} \overrightarrow{0} \overrightarrow{0} \quad \overrightarrow{0} 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ	Resolution（士\％）；Infinite（N）
inin	inin－－－inNNWWW ω		$\begin{array}{lllllll} \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} \\ 0 & \overrightarrow{0} \end{array}$				Linearity（ \pm \％）
응		nusungo				항ㅎㅇㅇㅎㅇㅇㅇㅇㅇ 항ㅎㅇㅇㅎㅇㅇㅇㅇㅇ	Noise（0hms ENR）
会忈			ごこここごすご				Oper．Temp．Max．$\left({ }^{\circ} \mathrm{C}\right)$
	OUAAWNOUAW－N N	wincon	$\text { in }^{N}$	DAWWNNAAWNWNNN iñ in WN in in－	NNNNNNNN in in in		Power Rating（w）
$\times \times$	$\frac{x \times x \times x \times x \times x \times x \times x}{x \times \times x}$	$x \times \times \times x$	$x \times \times \times \times \times \times \times$	$\times \times		$\times \times	Power Rating（W）
～が							Sealed
		のn		－		 	Servo Mrg．（S）；Bush．Mfg．（B）；Screw（SC）
－-1		－-1 －					P－C Mig．
		でいて					Wire Leads（L）；Pins（P）；Terms．（T）
\times	$\sim \sim$	$x \times x \times$		いいいos 3			Minioture（M）；Subminiature（S）
		$x \times x \times$		\times		$x \times	Minioture（M）；Subminiature（S）
							Meight（ln．）
－		$\overrightarrow{i c}^{N} \overrightarrow{i n}^{N} \overrightarrow{i v}$					Width（ m ．$)$
							Langth（In．）
\sim_{0}	－un－जur	$\vec{\infty}_{\infty} \vec{\infty}_{\infty}^{\infty}$					Dio．（In．）
			i in in $\vec{\omega}$ in				Weight（ $\mathrm{O}_{\text {z }}$ ）

(Con Avionics Has Another New Line)

When we cut $\$ 100$ from the going market price for systems power supplies, we kept all the features you need most.

For example, Con Avionics' new line carries an unconditional five year guarantee. It has a Mean Time Between Failure of 35,000 hours, calculated according to Mil Handbook 217. We use silicon transistors exclusively, so the units operate to $75^{\circ} \mathrm{C}$. They are designed and manufactured to meet specifications under the worst possible combination of operating conditions.

The secret to maintaining all this quality at a low price lies in designing a systems power supply right from the start. Most modules used in high power systems applications are just modified lab units.

But when you design a supply just for systems use you worry about things like panel space. So Con Avionics new HS supplies are available in rack and half-rack size. You can pack 12 volts at 20 amps into $51 / 4^{\prime \prime}$ of panel height and $8^{\prime \prime}$ of width.

And in a system supply you design-in optimum air flow, for both vented and forced air cabinets. Our units are selfcooled, too.

Before you buy another power supply for a systems application, remember that the price is now $\$ 100$ lower than it used to be. Call, write, wire or TWX Mr. Gerry Albers at Con Avionics for all the details.

PARTIAL SPECIFICATIONS

Input: 105-125 VAC, 47-63 cps
Regulation: (Line and load combined) $\pm 0.05 \%$
Ripple: 1 mv RMS max.
Response time: 25 microseconds
Temperature Coefficient: $0.015 \% /{ }^{\circ} \mathrm{C}$ or
$18 \mathrm{mv} /{ }^{\circ} \mathrm{C}$., whichever is higher
Temperature: $75^{\circ} \mathrm{C}$ max.
The entire voltage range between 5.5 vdc and 51.0 vdc is covered in twenty-six models. Currents range from 8.0 amps to 46.0 amps. Wattages from 104.5 to 816 .

5 SIMULTANEOUS DISPLAYS

3 TRACES plus 2 REFERENCE LINES or 2 TRACES plus 3 REFERENCE LINES or 1 TRACE pIus 4 REFERENCE LINES SKAN-A-SKOPE

Telonic now provides a whole new concept of swept frequency response measurement with this versatile new display oscilloscope. The SKAN-A-SKOPE is capable of displaying five traces on a single-gun 17 inch CRT in a unit containing its own power supply. Traces may be shown in separate positions along the Y axis or may be superimposed. Birdy or pulse-type markers, which appear as vertical lines (electronic graticules), may also be displayed.
SKAN-A-SKOPE flexibility permits almost unlimited applications. Two standard wave forms can be displayed to provide SPECIFICATIONS
Number of Vertical (Y) inputs Deflection Factor $\left(Y_{1} \& Y_{2}\right)$ Inputs Bandwidth
Deflection Factor Y_{3}
Bandwidth
Reference Line $Y_{4} \& Y_{5}$
X Input
Markertion factor
Marker Input
Input Signal
Display
CRT
Screen Material
Usable Screen Area
upper and lower limits for a wave form generated by the test unit. This unique display unit may be used to monitor three inputs simultaneously from remote locations. The SKAN-ASKOPE unit can cneck gain in an amplifier at three places in the circuit, and can show bandpass, VSWR, ar.d insertion loss wave forms of filters at the same time. This amazing new display unit also has many applications in VHF/UHF tuner testing procedures.
SKAN-A-SKOPE accepts three Y inputs, one X input and one marker input.

Price …..........6.6" $\times 12.58^{\prime \prime}$

60 North First Avenue, BEECH GROVE, INDIANA

DOMESTIC: SALES OFFICES: Baltimore, Boston, Chidago, Cleveland. Daldas, Dayton, Denver, Huntsville. Indiandpolis, Los Angeles. New York City. Oriando. Philadelphia, San Francisco, Scatte, St. Louis, Svracuse - OVERSEAS SALES OFFICES ELROPEAN: Brussel;, Beigium; Humlebaek. Dennıark: London. Enjlard; Paris, France; Helsinki, Finlanel. Gunnep. Holland; Milan, Italy; Oslo, Norway; Madrid, Spain: Barcelond, Spain; Motalo, Sweden; Onex-Geneva, Switzeriand, Muntch. W. Germany: Sydney. Australia: Auckland, New Zealand:Wélington, New Zealand; Tel-Aviv, Israel; Bombay, India; Manila, Philippines;
Tokyo, Japan: Osaka, Japan. TEIONIC INTERN
TELONIC-INTERNATIONAL LEADER IN SWEPT FREQUENCY MEASUREMENT

Now

you can specify

world

 famous*

The most versatile relay in the industry today

*With this ad we commemorate 10 years of close affiliation and cooperation
with Siemens \& Halske of West Germany, the originators of the Cradle relay.

- LOW COST-Unusually modest prices for features offered
- VERSATILE-Up to 6PDT, standard contacts are gold plated for low level up to 2 amps .
- FLEXIBLE-Most of these relays plug into the same style socket

- DUST COVER - At no extra cost

- SMALL SIZE-The smallest 6PDT telephone type relay made in the U.S.
- DURABLE-Life expectancy-100 million or more operations
- ADAPTABLE-Standard plug-in terminals are pierced -can be soldered to directly
- CONTACT OPTIONS-Five amp. or bifurcated (for extreme low level)

SOME OUTSTANDING
FEATURES OF THIS POPULAR SERIES

T-154-One of the most widely used commercial relay styles in the world. Sensitivity-As low as 50 mw. (SPDT)
Made in up to 6PDT
T.163-Similar to the T. 154 but with bifurcated contacts designed for maximal reliability under low-level conditions.
Sensitivity-As low as 180 mw. (DPDT)
Made in up to 6PDT

T-255-The AC version of type T.154. Plugs into the same socket, although a bit greater in height.
Sensitivity-As low as 1.2 va.
Made in up to 4PDT

T-351-A magnetic latch

relay in the same format as the T-154. Made with single and double wound coils for set and reset. Beyond initial pulse, requires no holding power. Sensitivity-As low as 300 mw.
Made in up to 4PDT

TAP-The T-154 mecha. nism with splayed terminals for use in printed circuit boards. This type can also be furnished with bifurcated contacts.
Sensitivity-As low as 50 mw. (SPDT)
Made in up to 4PDT

TFMDO-Similar to the T. 154, but motor is encased in larger dust cover. Base is standard, popular octal plug-in connector.
Sensitivity-As low as 50 mw. (SPDT)
Made in up to DPDT

WRITE FOR NEW ALLIED RELAY CATALOG SAWPLE ORDERS HANDLED PROMPTLY ALLIED GONTROL GOMPANY, ING.

2 EAST END AVENUE, NEW YORK, N. Y. 10021 Area Code 212 EUtterfield $8-7403$

Where transistors required 8 to 12 tests, integrated circuits require 25 to 50 , and the trend is toward even more. At the same time, it is becoming increasingly important to determine operation of IC's under dynamic conditions.

By EYERETT HANLON

 Apparatus Division, Texas Instruments Incorporated, 3609 Buffalo Speedway, Houston, Tex.
The Broad Aspects of Testing

The upsurge of interest in integrated circuits has brought into focus certain testing problems which were bypassed or ignored by suppliers and consumers of discrete components. With discrete components, the main interest is in parameter tests which defined basic characteristics of the device. This is true because the device type may have many end uses, and mathematical relationships must he used to design the component into its end use circuit. This circuit, in turn, is then functionally tested under its own operating conditions.

With integrated circuits (ICs) testing must be done (13 the completed circtuit. Even if parameter information were ohtainable. it would be of little value. since the information needed must now be functional.

All tests performed on semiconductor devices can be broken down into two broad groups. The first, static testing, involves the application of stimuli and measurement of responses which are de in mature. This means, for example, that a 100 kc rated device should be tested with one to 10 msec . duration stimuli to be truly a static test. Dynamic characteristics, again in the most broad sense, are those which are measured with stimuli and responses which periodically or continnonsly vary with a period closely approximating the rated operating characteristics of the device. For example: propagation
delays of ICs specified for 10 MC use should be measured at a 10 mc repetition rate.
Dynamic testing, therefore, may be generally defined as testing methods which closely simulate the operating conditions. Two methods often used in dynamic testing are shown in Fig. 1. Method "A" provides test results which are related to the operation of the unit under test in a typical system. This requires that the device under test be supplied with a dynamic stimuli (or driving source) which may be an actual IC. In this fashion the source impedances, driving levels, etc. will be those found in actual operation in the end system. Similarly, the output of the device under test supplies a response which is used to drive another IC, which supplies the proper load impedances, fanouts, etc.

Method "13" provides measurements under specific conditions of loading and driving source impedances, levels, etc. Measurements taken this way are more akin to the parameter tests made on transistors. To fully characterize a device under test, both methods must be used. While static testing can produce much data regarding the characteristics of the transistor or IC uncler test, attempts to correlate this static or de information with dynamic characteristics (stuch as switching time) are doomed to failure. Consider the 3 input

Fig. 2: In this 3 input Nand/Nor device the solid lines for internal structure may be considered for dc and static conditions. Broken lines must be considered for any type of switching or transitional measurements.

Integrated Circuits

nand/nor in Fig. 2. While the basic circuit shown with solid lines describes the internal component structure of this IC for dc and static logic considerations, the capacitance (shown with dash lines) must be considered for any type of switching or transitional measurement.

One of the most important characteristics of an IC is noise immunity. This must be spelled out by the device maker for each logic type and continuously monitored by quality assurance so that the user may correctly design his equipment, and have confidence in parts interchangeability. In a flip flop, for example, noise immunity can be considered as the maximum signal which can be applied to the input without causing the device to change states. Noise immunity can follow a curve similar to the approximately exponential one shown in Fig. 3. Increased immmity results from decreasing the smaller applied pulse widths, under constant amplitude conditions. Inmunity is at a minimum under applied de conditions. We see this from the fact that the IC requires a certain minimum amount of energy to trigger, and therefore the internal stray capacitances must be charged before triggering can take place. If only the static noise immunity were considered, the impact would be over-design for transient
input noise considerations and reduction of fan-in and fan-out capabilities.

Another example of the dangers of trying to correlate static measurements with dynamic characteristics is in moise feed-through. As shown in Fig. 5, this may he considered the amount of "leakage" through an AND gate when one of its inputs is held at the "off" condition and an "on" signal is applied to the other input. Since the IC contains reactive as well as resistive elements, the output will contain the positive and negative spikes shown in Fig. 4b, rather than the simple de response shown in Fig. 4A. These noise spikes can potentially be large enough and contain enough energy to trigger the following stages. Therefore, the ability to test for these dynamic characteristics is vital to both supplier and consumer.

Dynamic Measurements

The importance of familiar switching time measurements of delay, rise, storage, and fali time are well estal)lished in transistor measurements, and methods and equipment for making these are well known, While much of this techmology can be carried over into IC dynamic measurements, there are many areas which are new. For example, the decision points for measuring rise time are specified in terms of percentage as in Fig. 5A. Occasionally, though much more rarely, the decision points may be specified in terms of absolute voltase rather than percent, as in Fiss. 5B. This last could be considered as a functional test, since the

Fig. 1: Two methods used in dynamic testing ICs. "A" (left) gives results for operation under typical use. "B" (right) is for specific operating conditions.

Fig. 3: Noise immunity can follow an exponential curve.

CAPACITIVE FEEDTHROUGH

Fig. 5: Methods of specifying rise time can be absolute instead of as a percentage.

interest is in how well the transistor will operate at a voltase level in a particular circuit, not in what its relative operation will be for general purposes.

Measurement in terms of absolute voltage rather than percentage is much more difficult to make with any degree of accuracy, because de stabilized measuring equipment must be used. DC stabilization can be achicved if low input impedance measuring equipment is used. However, this requires the use of divider networks as shown in Fig. 6. For ICs a low input imperlance can provide an intolerable loading condition on the integrated circuit, and the use of a divider string to provide the needed high impedance will so seriously attenuate the output signal, that what little signal is available to the measuring equipment is obscured by noise. It is therefore very important in the measurement of switching characteristics of ICs that high input impedance measuring equipment with effective de stabilization be used.

Some ICs pose further complication to the time measuring problem, as in Fig. 7. In this case the measurement t_{f} is referenced to both percentage and voltage. This reguires equipment capable of starting the measurement of time at a percentage point, and ending the measurement at an absolute voltage point.

There are two basic types of dynamic tests which must be done to fully characterize an IC. These are shown in Fig. 1. Where medium to large volumes of circuits are involved, either by a manufacturer or by a user, there are severe restrictions imposed on the test equipment. The dynamic performance components on the input and the ontput of the device under test must be changed automatically from one set of measurements to the next. To achieve this with automatic sequential test systems, switching methods must be used as shown in Fig. 8. Anything which is added to the input and output of the device under test will also add more stray capacitance to the unit under test. Not only will this tend to introduce errors in any dynamic measturements, but also, where $\mathrm{T}^{2} \mathrm{~L}$ or emitter-coupled logic is being tested, the clevice may well fall into self-oscillation when de power is applied. Such oscillations make both static and dymamic measurements umbsable. It is therefore extremely important that great care be taken in the design of the switching station with regard to stray capacitance. At the same time, we must maintain the flexibility to switch in the dynamic performance components at the proper time.

In addition to performing straight forward dynamic measurements it is also vital that compound dynamic and static measurements be made. For example, to design and produce any type of computer equipment the amplitude, duration, and mature of any transients introduced into the de power supply lines by a logic element must be known. As shown in Fig. 9 this means that the testing facility be capable of performing dynanuic measurements under de conditions as in A , and
also be able to measure de or static conditions (i.e., current drain) with pulse stimuli applied to the input (as shown in B).

Economics

More tests are needed to characterize a device than for transistors. Where from 8 to 12 tests did the job for the transistor, ICs appear to average hetween 25 and 50 , and the trend is upward. Due to the capital equipment requirements for the handling of even a modest volume, the single manual test-set approach, adequate for transistor testing, is prohibitive. Assuming a minimum number of tests, 50% of which were dynamic, an investment of $\$ 100,000$ would be a practical minimum. Sequential automatic test systems with a dynamic testing capability are therefore essential.
Another aspect is that for the user who requires special testing and/or requires data on test results, indications are that the IC manufacturer is forced to charge an extra $\$.25$ to $\$ 3.00$ per device. On this basis, alone, even a modest volume will very quickly justify automatic dynamic test equipment.

Fig. 7 (above): Some ICs pose complications to time measuring.

Fig. 9 (right): It is vital that compound dynamic and static measurements be made. Tester must be able to do both

Fig. 8 (below): For dynamic testing, the tester must be changed automatically from one set of measurements to another.

On the other hand, the manufacturer who wishes to be more competitive can very quickly reduce his own internal testing cost in looth the final test and the quality assurance areas, as well as improving accuracies and yields by the reduction in guard bands. Manufacturing time is reduced, therefore reducing inventory, and drastically reducing handling problems involved with multiple test equipments.

Simply analyzing present trends in the IC field show directions where future dynamic test systems must develop capabilities: testing linear functions, with constantly increasing frequency requirements; environmental testing; increasing numbers of active leads; automatic handling and sorting: and increasing complexity of testing routines. In fact, it is not beyond comprehension that the industry may see dynamic test systems capable of not only component test, but complete system checks. It is interesting to speculate on the possibility of a centralized system capable of coordinating and directing incoming tests, quality assurance tests, and final system checkout, all in one facility, using one centralized data processing system.

USING SCR's IN POWER CONTROL SYSTEMS

Abstract

The use of silicon semiconductors in industrial power control has been expanding rapidly. They offer reliability, reduced installation costs, low maintenance, and competitive initial costs. Here we describe methods of using SCR's and sume pitfalls to avoid.

Fig. 1: Modular drawer style case is used for SCR de drive.

The basic building block of most power control systems is the silicon rectifier, available in single junction devices through 275 a and voltages at $2,000 \mathrm{v}$. Control elements in these systems are generally either thyristor controlled rectifiers (SCR's), available through 400 a and 1.200 v , or silicon power transistors, with ratings approaching 100 amps and 300 volts. For the purposes of this article, we will limit the discussion to SCR's.

Fig. 2: This modular case group can supply 100 hp screwdown motor for forward and reverse operation, double operation, $30 \mathrm{C} \%$ load. It uses the drawers in Fig. 1.

Perhaps the most far-reaching use of thyristors is for motor speed controls. The need for variable speed operation, is a long-established one.

The thyristor power supply for large systems is of the modular concept. The basic building block of this module is a unidirectional bridge type converter in a six-phase double-way circuit. Each bridge contains three sections with two diametrically opposite bridge legs per section. In each bridge leg there are two thyristor cells, with protective components, including current limiting fuse, transient and steady state voltage balancing circuits, and voltage limiting devices, plus a balancing reactor and gate pulse distribution transformer circuits. The basic bridge is built into a drawout case (Fig. 1). Several of these are assembled into a common power unit (Fig. 2). These may be assembled into structures containing the regulating and control cubicle and thyristor circuit breaker cubicle. These are then paralleled to provide the required horsepower rating. For reversing a dual converter approach is used (Fig. 3).

Device Protection

Great care is given to providing protection for the SCR devices. Voltage capablility of each bridge leg is 2.5 to 3 times the rms input voltage. Selenium voltage suppressors are used for fairly slow rising, high energy transients, as well as $\mathrm{R}-\mathrm{C}$ suppression for fast rising spikes. Disclarge of the R-C network presents the thyristor with a high rate of rise of current. Proper gate drive, coupled, with device selection, eliminated the dangers of this problem. Also, the rate of rise of forward blocking voltage ($d v / d t$) has been limited to established ratings. Limiting is done by adding a small series L . This also helps the $d i / d t$ by delaying the rise

By W. H. POLLARD III

Semiconductor Division
Westinghouse Electric Corp.
Youngwood, Pa.

Fig. 3: A basic circuit dual converter for reversing drives.

of anole current. Current limiting is provided in the circuit to protect the thyristors.

Looking for a moment at lower power uses such as the portable tool or miversal motor drive, the circuit in Fig. 4 is widely used. Limitations are that the SCK must carry load current during hoth halves of the cycle, and commutation time is very short. W'ith even a slightly inductive load under phased back conditions, there is a grool chance that the device will not recover its forward blocking characteristic.

We have discussed de motor drives. Hlowever, the most promising area lies in the control of ac motors. Variable speed operation of a squirrel cage motor has the advantages over de motors of almost mainte-natuce-free operation, no brushes or commutator to worry about. Such control can and is being done in several ways.

Inverters

The first of these methods is the variable frequency inverter. The basic circuitry is as shown in Fig. 5. In the parallel inverter, the advantage lies in the small number of devices, but also presents the disadvantage of the off device seeing twice the supply voltage. The parallel inverter applied alteruating square waves to the primary of the center tap output transformer. Essentially, the same output is provided by the bridge inverter (Fig. 6). This circuit uses twice the devices, but the blocking voltage per device is less. Either circuit has the disadvantage of possible short circuits
across the supply should the commutation time provided not be enough.

The bridge inverter is useful where an output transformer is not required.

Both of these basic circuits have been proven in polyphase circuits. For high efficiency, extensive filtering must be used to eliminate harmonics. One possible disadvantage of the variable frequency inverter system is that when ac is the available source, a dc link must be provided, thus entailing the addition of a power converter to change the input ac to de.

In most systems, an ac soturce is available for frequency tramsformation. Here the cycloconverter approach can be taken for speed control.

This approach involves converting an ac power source to some lower frequency. The practical minimum ratio is about $3: 1$ in frequency. A typical circuit for one-phase is shown in Fig. 7. By selective firing of the SCR's, the output develops a lower freguency envelope. The logic for this circuit is rather complex and the output has a high ripple content. While this reduces efficiency. particularly as the supply frequency is approached. it will do the jol. One example of the envelope developed in changing from $1,200 \mathrm{cPs}$ input to a 400 crs output is shown in Fig. 9. Frequency transforms from 60 to 20 ces and below have use in mill aluxiliaries.

Device needs are about the same in inverter and cyclo-converter uses with one major exception. Since the cyclo-converter is, in effect, a natural commutation

Fig. 4: Full wave dc output.

Fig. 8: The theoretical unfiltered output supplied by the circuit shown in Fig. 7.

SCR POWER CONTROL (Continued)

system, turn-off time is not critical. This is not true with inverters. For industrial systems, high voltage, high $d v / d t$ ratings, and high $d i / d t$ ratings are needed for both systems. In making a choice as to which to employ, there is no simple answer. If ac is available, the cyclo-converter may be better. The increased complexity of cyclo-converter logic must be balanced against the addition of a dc link for the inverter. If the source is dc, the inverter approach is the obvious one.

The economy of ac drives vs. dc drives is continually being evaluated. Present feeling is that the complexity of ac control is not justifiable below the several hundred horsepower range. If this is true, dc drives will be with us for some time.

Expanding further on ac motor control, the simple inverse parallel connection can be used for low starting torque loads, such as fan and blower motors, and for compressor motors where an unloading clutch is provided. Simple reduction of rms voltage input to the motor results in a so-called "soft start."

Static Loads

While some of the more dramatic advances being made in power semiconductors are in motor drives, much is also being done with static loads.
For ac loads the most common circuit is that of Fig. 9, the inverse parallel connection. Another useful circuit for ac loads is shown in Fig. 10. This is called the blocked bridge and may in some cases prove cheaper than the inverse parallel circuit. Device limitations are similar to those for the circuit of Fig. 4.
The bulk of the devices applied so far in industry fall into the category of proportional ac control for furnaces and ovens, light dimmers, plating supplies, battery chargers and general purpose dc supplies.

The light dimmer used in studio lighting was one of the first volume applications of thyristors. The first inkling of critical $d v / d t$ needs was found here. For economy, elaborate protection schemes were out. Proper device selection solved the problem.

Furnace or oven control by means of thyristors is attractive. The simple inverse parallel setup is normally used. Feedback signals from the oven can be amplified to provide a firing signal for the SCR. Since response time of the SCR is one-half cycle in this natural commutation type of circuit, very close control of temperature may be kept. This control has been applied to in-line process furnaces where several heating zones are maintained. These are also used in the automotive inclustry for paint curing ovens.

High current plating supplies are now being built with SCR's in the primary, which eliminate the normal saturable reactor. This has been made possible by high voltage, high current SCR's which allow operation from 480 v supplies.

Battery chargers are a good field for thyristors. They are used as power converters on the secondary side of
a transformer, with control feedback for a regulated output. Very high current chargers are used in the telephone industry for central office battery charging. Units have been built with secondary control up to 1600 a. However, the high cost of system construction and a need for conserving space have led to the development of primary controlled battery chargers for the higher current levels.

Recent work in the field of transient operation of thyristors has caused interest in the replacement of ignitron tubes in spot welder controls. Because of the transient thermal traits of the thyristor, short duration pulses of very high amplitude can be tolerated.

With high level transient operation, where thermal excursions are great, the thyristors used must be free from thermal fatigue. This means that the devices should be either hard soldered or compression bond encapsulated.

Device Limitations

Throughout this dicussion, several device characteristics or limitations have been repeatedly mentioned. These include $d i / d t, d v / d t$, voltage transients, and proper gate firing. It would be useful to enlarge on these.

Somewhat more than 50% of all device failures can be traced to a single phenomenon, $d i / d t$. This consists of a downgrading of forward blocking ability or, in extreme cases, a complete short circuit of the device. This characteristic is associated with the turn-on mechanism of the thyristor. When a small gate signal, near the minimum turn-on specification, is used, only a small fraction of the device close to the periphery of the gate is turned on. There is a finite time which must elapse before the balance of the junction turns on. If the load circuit is such that the rate of rise of anode current is very rapid during this turn-on time, all the load current is forced through a small portion of the device area.

If this is high enough an immediate burn-through of the crystal may occur. Another aspect of this problem is that with an applied $d i / d t$ somewhat less than the destructive rating, some damage can occur to the device and cause a gradual downgrading of voltage blocking capability. A system can operate in a satisfactory mode for several hours, days or even months, and then suddenly, for no apparent reason, fail.

Solutions to this problem are available. Ratings have been set which will allow continuous safe operation of the device. Secondly, methods for protecting the device against excessively high $d i / d t$ have been developed.

Of these, the single most important method is to apply a proper gate signal to the device. Minimum gate current and voltage to fire, as listed on the manufacturer's sheet, should not be used in designing firing circuits when it is known that high circuit $d i / d t$'s are present. This occurs, for example, when firing SCR's in the primary of a transformer. Thyristor makers have firing recommendations available.

Along with proper firing, it has been possible in some cases to introduce some inductance which delays
the rise of anode current for a long enough period to allow more of the crystal area to be turned-on. This reduces the current density and peak power dissipation.

The critical rate of rise of forward blocking voltage $\left(d z^{\prime} / d t\right)$ is important in nearly all high power applications. This parameter measures the ability of the device to withstand forward blocking voltage applied at a specific rate, at some point in time, after the device has stopped conducting forward current. This is associated with the turn-off time of the device, which is very important in forced commutated circuits. The $d v / d t$ ratings of $200 \mathrm{v} / \mu \mathrm{sec}$ and higher are available from device manufacturers coupled with turn-off times for low power devices of around $10-12 \mu \mathrm{sec}$ and in the higher power devices, around $20 \mu \mathrm{secs}$.

The $d v / d t$, per se, does not cause failure, nor does two terminal breakdown. In both cases, $d i / d t$ is the culprit. Due to junction capacitance, $d v / d t$ causes a current to flow in the device, which reaching enough magnitude, can cause device turn-on. If the $d v / d t$ is slightly above the critical $d v / d t$ of the device, a low level current will flow. This will just barely trigger the device, and cause a situation similar to that found when minimum gate current is supplied. Thus, on circuits where in-rush current is not limited, a very high peak dissipation can be encountered under $d v / d t$ triggering. Conversely, an applied $d v / d t$ many, many times the critical rating of the device will cause a large amount of current to be generated, which is similar to a very stiff gate signal being supplied to the device. This causes rapid junction turn-on and in all probability the device would not suffer.

Fig. 9: A basic inverse parallel connection-ac output.
Fig. 10: A basic blocked bridge connection, also ac output.

THE LATEST WORD ON PRECISION POT RELIABILITY

Markite precision potentiometers offer the maximum reliability available today. And this completely revised, just-printed catalog tells you why. Here's the definitive data you need on precision pots:

- Design Capability
- Product Specifications
-Linear \& Non-Linear
-Rotary \& Rectilinear
-Standard \& Special
- Testing
- Specifying

For your copy, send your name, title, company and address, on letterhead only, to Markite Corporation, 155 Waverly Place, New York, N.Y. 10014.

POTENTIOMETERS (Continued)

(Continued from page 68)
applications, noise produces system instability, hunting, fluttering and many other problems. System noise can be caused by factors inherent in the potentiometer (micro-non-linearity apparent even at infinitely slow speed, zero wiper current), and by the interaction of the pot with its use circuit and electromechanical environment (tendency to generate triboelectric, thermoelectric and electrochemical EMF's). Although system noise is the parameter being measured, the absence of noise or "output smoothness" describes the smoothness and continuity of a potentiometer's output in system use (Markite*).

New Precision Types

Several manufacturers have recently announced new potentiometer design features and production techniques for improved performance and reliability.

Bonds between terminal and resistance wire are now being made by "Silverweld," a special fusing process designed to prevent bond destruction and thus eliminate one of the major causes of potentiometer failure. Other features include a 20% longer resistance element and double slip-ring contacts (Bourns). A new 50-kilohm, three-turn version of the ten-turn precision "Micropot" results in a housing length of 1-31/64 inches, standard linearity of $.5 \%$ and power rating of three watts at $40^{\circ} \mathrm{C}$ (Amphenol). A series of Mil spec single turn pots incorporating a "Vari-Phase" feature designed to permit adjustment of a single cup relative to the shaft of a ganged assembly without affecting the other cups (Clarostat). A ten-turn, 3/4inch dia. by $11 / 2$-inch long 2 -watt unit with a range of $100-100 \mathrm{~K}$ ohms and standard linearity of $.5 \%$ (IRC).

[^1]

Conductive plastic pot.-Markite Corp.

The 976 (Gen. Radio) has a $\mathbf{2 \%}$ res. tol.

Computer Instruments' 205 S has 260 taps.

Ace switch pots join pot. \& switching acts.

North Hills' 5545 has a 0.001% accuracy.

Cenliralab supplies the capacilors you need tor Iransisior circuiliry

Check the chart for the type and voltage rating you need. Centralab offers the most practical approach to a bypass or coupling application. For 3 to 25 volt ratings the Ultra-Kap ${ }^{\text {® }}$ semiconductor type of ceramic capacitor provides the maximum capacitance per unit volume at low cost. The 25 -volt-rated types have high insulation resistance permitting their use in many new circuits.

Design extra safety factors into your equipment with Centralab 100-volt-rated general purpose ceramic capacitors. They cost no more than 50 -volt-rated competitive units.

Centralab polystyrene capacitors with 125 volt rating offer exceptionally high guaranteed insulation resistance of 100,000 megohms or more. These high Q , less than $.05 \%$ dissipation factor capacitors are ideally suited for applications now using micas and Mylars. Higher voltage rating polystyrene capacitors are also available.

THESE LOW VOLTAGE TYPES AND OTHER CAPACITORS WITH RATINGS OF UP TO 6 KVDC ARE ALL DESCRIBED IN A DETAILED NEW CATALOG.

Each capacitor type is listed with its complete electrical and mechanical specifications, including test procedures which can be used for your incoming inspection or product evaluation. These published procedures demonstrate the highly controlled product quality and reliability that make Centralab capacitors perform to your expectation.

To obtain your free copy of this useful publication, write to Centralab Division of Globe-Union Inc., P.O. Box 591, Milwaukee, Wisconsin 53201.

DIVISION OF GLOBE-UNION INC.

Qualily in Deplih

Through Centralab Research and Development the products illustrated on these pages have been made available to the electronic industry.

For Immediate Delivery
many of these products are stocked in quantity by Centralab's nationwide network of industrial distributors.
For additional information on any of these product groups, write to: P.O. Box 591 , Miluaukee, Wisconsin 53201 or circle the number indicated belou, on the publication inquiry service card.

Switches-No. 201
Potentiometers-No. 203
Integrated Circuits-No. 204
Technical Ceramics-No. 205

Centralab.. your partner in progress

DISTRIBUTORS OF LIFETIME GUARANTEED ZENER DIODES

INDIANA

Indianapolis Graham Electronics Supply Inc.
122 So. Senate
Phone: 317-ME 4.8486

ILLINOIS

Chicago Allied Electronics Corp.
100 North Western Ave.
TWX: CG2898
Chicago Newark Electronics Corp.
Phone: 312 ST 2.2944
TWX: CG1401

KANSAS

Wichita Radio Supply Co., Inc.
115 Laura
Phone: 316 -AM 7-5218/316-AM 7-0881

LOUISIANA

New Orleans Epcor
3622 Toulouse Street
Phone: 504-HU $2-9646$

INTERNATIONAL RECTIFIER

Subminiature Glass Zener Diodes. Diffused Junction Zener Diodes. Axial Lead Silicon Zener Diodes. Stud Mounted Silicon Zener Diodes. Zener Reference Elements. Jis JEDEC and House Numbers... each and every Zener Diode made by International Rectifier Corporation is now guaranteed for life. Your distributor will gladly supply you with an exact copy of the guarantee. Eis When you specify International Rectifier, you specify the very best.

LIFETIME GUARANTEED ZENER DIODES STOCKED COMPLETELY BY THESE DISTRIBUTORS

INTERNATIONAL RECTIFIER
EL SEGUNDO, CALIFORNIA

MICHIGAN

Warren Detronic Sales
3319 E. Ten Mile Road
Phone: 313-756-3500

MINNESOTA

Minneapolis Stark Electronics
112 Third Ave., North

MISSOURI

Kansas City Burstein-Applebee Co.
1017 Charlotte Street
Phone: 816-BA 1-4266

OHIO

Cleveland Winteradio Electronic Supply
1468 West 25 th Street
Phone: 216-621-5080
Dayton Esco Electronics, Inc.
3130 Valleywood Dr.
Phone: 513-298-0191
TWX: 513-944-0620

OKLAHOMA

Tulsa Oil Capitol Electronics Corp.
708 South Sheridan
Phone: 918-TE 6.2541
TWX: TU1818

TEXAS

Arlington Beta Electronics
1610 Industrial Court
Phone: 214-TA 1-1120
Houston Busacker Electronic Equipment
1216 West Clay Street
Phone: 713.JA 6-4661

As hundreds of American businesses move into overseas marketing, Chilton moves more deeply into the traffic of ideas across international boundaries.

Two of Chilton's 20 business magazines are published for manufacturers overseas. Iron Age Metnluorking International provides news of products, processes and ideas to technical executives in 88 count-ies-in German, French, Spanish and English. In 87 countries, Food Engineering/International is read by manufacturers for information tailored to their specific interests in food equipment, ingredients, packaging ard processing.

Many other activities place Chilton squarely in the mainstream of the international knowledge revolution.

Chilton editors and publishers rove the free world in their quest for news and trends. Six overseas offices help them serve the specialized interests of Chilton readers and advertisers in
foreign developments vital to U.S. industry
The Chilton-Didier system of audio-visual language teaching is used by international marketing executives-as well as students in more than 1500 colleges and school systemsto learn French, German, Spanish, Italian and Russian.

Chilton's Printing Division each year produces millions of editorial and advertising lines in English and every other Latin-letter language.

Whether your business is international or domestic, there are skilled Chilton people ready to help you evaluate markets better, communicate more effectively, sell more efficiently. All this makes possible Chilton's unique Marketing Assistance Programs (M-A-P)

Call on Chilton for just about any marketing assistance-in just about any language. Chilton Company, 56th and Chestnut Streets, Philadelphia, Pa. 19139.

This potentiometer offers $\pm 0.15 \%$ zero-based linearity as standard.

In determining whether a precision potentiometer will meet specific electrical needs, the nature of its linearity base must be considered. The type of linearity specified is very significant to the cost.

Potentiometer Linearity Considerations

When selecting and applying precision potentiometers, the type of linearity specified is very significant to the cost. In some instances, equivalent performance can be obtained by more than one method of specification. But, the costs associated with applying the pot can easily make one method the most logical choice.
Linearity is most often defined as a percentage of total applied voltage, e.g., $\pm 0.05 \%$. But, to determine whether a precision pot will meet specific electrical needs, it is also necessary to consider its type of linearity.
The most often specified types of linearity are absolute and independent. Of the two, independent linearity is most often specified. Absolute linearity provides many more technical advantages, thus costs are higher than for independent linearity pots. The absolute linearity definition is very restrictive in that it requires a specific function over a specific length of travel through index points at specific locations. Its main advantage is that all pots made to a given specification will provide identical results in the circuit without further adjustment or trimming of end resistances.

The definition of independent linearity allows tighter tolerances than if the same pot were defined on an absolute linearity basis. It does this by permitting adjustment of the slope of the reference line to minimize actual output errors. But, maximum and minimum output voltages are normally loosely specified, if at all, on independent linearity.

> By ROBERT W. KORDATZKY, Development Engineering Manager, Amphenol Controls Division, Amphenol-Borg Electronics Corp., 120 S. Main St., Janesville, Wisc. 53546

These end voltage values must be trimmed in the circuit to achieve conformity with an absolute linearity definition. But, adding two trimming pots to the circuit can add much to the cost of equipment. Also, extra time must be spent in setting the pot and its associated trimmers. Using compensating fixed resistors can be equally involved if not more costly than the trimmer method.
A comparison of both types of linearity applied to the same pot is shown in Fig. 1. The absolute linearity reference line on the chart is specified as zero percent

Fig. I: Comparison between absolute and independent linearity.

Fig. 2: Comparison between absolute and zero-based linearity.

Fig. 3: This precision pot gives $\pm 0.1 \%$ absolute linearity as standard. A 3 -turn model is available at $\pm 0.25 \%$ absolute linearity.

Fig. 4: This pot offers $\pm 0.1 \%$ zero-based linearity as standard. A 3 -turn version is also available at $\pm 0.5 \%$ zero-based linearity.

and 100% outputs at the end points of the specified theoretical travel. Actual output deviates from the reference line by the maximum amount permitted by the limit lines. Slope of the reference line for independent linearity has been chosen to minimize these errors. This results in much tighter limits than the absolute linearity tolerances. But, for equivalent tolerances a pot with absolute linearity is necessarily more precise and thus more expensive than an independent linearity type.

Zero-Based Linearity Solves Problem

An alternative to some of the tedious and expensive trimming procedures on independent linearity pots is the use of a zero-based linearity pot. The zero based definition of linearity is a restricted version of independent linearity in which the minimum output is specified as zero. Actual output must conform with the specified minimum within the linearity tolerances. The maximum output end of the reference line, for the zerobased pot, can be easily trimmed into conformance. A pot with a mechanical stop which coincides with the origin of the zero-based function can be easily installed in a circuit with a minimum of calibration and adjustment. The pot can be installed with the contact engaged with the stop (zero output) and the associated components phased into this setting.

In Fig. 2 the effects of zero-based and absolute linearity are compared. It can be noted that the zerobased definition permits greatly reduced linearity limits as compared to the absolute linearity limits. A large portion of the increased limits is required by the fact that absolute linearity is measured over the theoretical rather than the actual electrical travel which is used in all other linearity types. This requires that any tolerance in the actual electrical angle of the pot contributes to the linearity error. Some pots are designed to permit internal adjustment of the actual electrical travel to coincide with the theoretical. Thus the need for the increased linearity limits is eliminated.

Which Linearity Requirement?

Requirements of each individual application should determine which linearity is the most effective and most economical.

If proportional output is the only requirement, then the choice must be independent linearity. But, if outputs at maximum and minimum end points must be trimmed, the extra cost of parts and labor involved in the trimming operation may well offset the added cost of an absolute linearity pot. Where variable output should represent the total applied voltage, an absolute linearity pot must be used.

Advancements in manufacturing methods and design have made combined zero-base linearity with coincident mechanical stop a relatively economical feature. Zerobased linearity pots which eliminate the need for trimming the minimum output (often necessary with independent linearity pots) frequently are the most economical pots to select for a wide variety of uses.

INTEGRATED CIRCUITS COMMERCIALLY AVAILABLE

The tabulation of integrated circuits shown on the following pages is intended as a quick reference guide for selecting IC's for circuit uses. It should be invaluable in the initial stages of circuit design because the operating characteristics shown have been limited to the essential data needed for selection or rejection. After selection, the designer can obtain complete operating data and other information from the manufacturers. The names and addresses of the major manufacturers are listed on this page.

The tabulation is divided into two categories: digital and linear

MANUFACTURERS

Amelco, Inc., P.O. Box 1030, Mountain View, Calif.
Fairchild Semiconductor Div., 313 Fairchild Drive, Mountain View, Calif.
General Instrument, Inc., 600 W. John St., Hicksville, N. Y.
Hoffman Electronics, Semiconductor Div., 4501 Arden, El Monte, Calif.
Intellux, Inc., 26 Coromar Dr., Goleta, Calif.
Motorola Semiconductor Products Div., 5005 E. McDowelt Rd., Phoenix, Ariz. 85001
National Semiconductor, Sugar Hollow Rd. \& Thorpe St., Danbury, Conn.
circuits. Within these categories the circuits are listed according to function (AND GATE, OR GATE, etc.), type of logic (DTL, TTL. etc.) and manufacturer. By listing circuits fogether, the reader can easily compare one company's products against another.

In addition to the off-the-shelf circuits listed, most of the manufacturers offer custom facilities. There are, however, some companies who offer anly custom facilities. These companies are also listed for your convenience.

Philco Semiconductor Div., Lansdale, Pa.
Radiation, Inc., Box 37, Melbourne, Fla.
Raytheon Co., 350 Ellis St., Mountain View, Calif.
Signetics Corp., 811 E . Arques Ave., Sunnyvale, Calif.
Siliconix, Inc., 1140 W. Evelyn Ave., Sunnyvale, Calif.
Sprague Electric Co., 233 Marshall St., No. Adams, Mass.
Stewart-Warner Electronic Div., 730 E. Evelyn, Sunnyvale, Calif.
Sylvania Electric Products, Inc., Semiconductor Div., Woburn, Mass.
Texas Instruments Incorporated, Box 5012, Dallas 22, Tex.
Transitron Electronic Corp., Wakefield, Mass.
Varo Mfg. Co., 2201 Walnut St., Garland, Tex. 7504I
Westinghouse Electronic Carp., Churchill Rd., Pittsburgh, Pa.

CUSTOM FACILITIES

Manufacturers		Monolithic	ThinFilms	Multi Chip
Alpha Microelectronics	10501 Rhode Island Ave., Beltsville, Md. 20705		-	
Amphenol Connector	1830 S. 54th Ave., Chicago, Ill. 60650		-	
Bendix Semiconductor	Holmdel, N. J.	-		
Burroughs Corp.	P. O. Box 1226, Plainfield, N. J.		-	
Centralab, Div. of Globe Union	962 E. Keefe Ave., Milwaukee, Wis. 53201		-	
Corning Glass Works	3900 Electronics Dr., Raleigh, N. C.		-	
Electra Mfg. Co.	800 No. 21 st St., Independence, Kans.		-	
Erie Technical Prod.	644 W. 12th Sto, Erie, Pa.		-	-
Fairchild Semiconductor Products	313 Fairchild Dr., Mountain View, Calif.	-	-	-
General Electric Semiconductor Div.	Bidg. 7, Electronics Park, Syracuse, N. Y.	-	-	-
General Instrument, Inc.	600 W. John St ${ }^{\text {, Hicksville, N. Y. }}$	-		-
General Micro-electronics	2930 San Ysidro Way, Santa Clara, Calif.	-		
General Precision Aerospace, Inc.,	1150 McBride Ave., Little Falls, N. J.	-	-	
Halex Inc.	P. O. Box 546, 310 E. Imperial Ave., El Segundo, Calif.		-	
Hamilton Standard Electronic Prod.	Main St., Broad Brook, Conn.		-	
Hoffman Electronics Semiconductor Div.	4501 Arden, El Monte, Calif.	-		
Hughes Semiconductor	Bldg. 114-MS-12 Box 90515, Los Angeles, Calif. 90009	-	-	-
Intellux, Inc.	26 Coromar Dr., Goleta, Calif.		-	
Lear Siegler/Astronics	2820 Washtenaw, Ann Arbor, Mich.		-	
Lockheed Missile \& Space Co.	6201 E. Randolph, Los Angeles, Calif.		-	
Mallory-Zerox Corp.	9 Third Ave., Burlington, Mass.		-	
Melpar, Inc.	3000 Arlington Blvd., Falls Church, Va.		-	
Mepco, Inc.	35 Abbett Ave., Morristown, N. J.		-	
Motorola Semiconductor Prod.	5005 E. McDowell, Phoenix, Ariz. 85001	-	-	-
National Resistronics	56 Walter St., Pearl River, N. Y.		-	-
National Semiconductor	Sugar Hollow Rd. \& Thorpe St., Danbury, Conn.	-	-	
Norden Div., United Aircraft	Helen St., Norwalk, Conn.	-	-	
Philco Semiconductor Div.	Lansdale, Pa.	-	-	
Radiation, Inc.	Box 37, Melbourne, Fla.	-	-	-
Raytheon Co.	350 Ellis St., Mountain View, Calif.	-	-	-
Republic Aviation	223 Jericho Tpk., Mineola, N. Y.		-	
Signetics Corp.	811 E. Arques Ave., Sunnyvale, Calif.	-	-	
Sillconix, Inc.	1140 W. Evelyn Ave., Sunnyvale, Calif.	-	-	
Sprague Electric Prod.	233 Marshall St., North Adams, Mass.	-	-	-
Stewart-Warner Electronic Div.	730 E. Evelyn, Sunnyvale, Calif.	-	-	

DIGITAL CIRCUITS

Manufa cturer	Madel	Function	Propagation Deloy(nsec)	$\begin{aligned} & \text { Fan-ln } \\ & \text { (max) } \end{aligned}$	$\underset{(\text { max })}{\text { Fan Out }}$	Naise Margin (mv)	Temp. Range $\left({ }^{\circ} \mathrm{C}\right.$)	Package Type
AND GATE (DTL)								
Matoralo	MC 111 MC 1112 MC 1113 MC 203 MC 215	3-4 diode 2-2-2 diode 1-1-1 diode 8 diode AND Diade-AND Dual AND	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 4 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & \overline{-} \\ & \hline .3 \end{aligned}$	- - - -	$\begin{array}{r} - \\ - \\ \overline{500} \end{array}$	-	T0.5 TO.5 T0.5 T0.5 TO.5 flot pack TO.5 \& flat pack
Varo	$\begin{aligned} & 8207 \\ & 8208 \\ & 8209 \\ & 8210 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	- - -	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	-	-	-
Signetics	SE 105 SU 305 K SU 306 K LU 305 LU 306 CS 705	6 input Dual 3 input Dual AND Dual AND Dual AND	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 15 \\ & 15 \\ & - \end{aligned}$	$\begin{gathered} 6 \\ 6 \\ 3 \\ 6 \\ 3.3 \\ 3 \end{gathered}$	$\begin{aligned} & 1 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & -20+85 \\ & -20+85 \\ & 10+a+55 \\ & -20 \text { to } 85 \end{aligned}$	$\begin{gathered} - \\ - \\ \text { TO-5 } \\ \text { TO.5 \& flat pack } \end{gathered}$

Texos Instruments	SN 532	5-input	5			200		Flat pack
	SN 534	Dual AND	5	-	8	200	-	Flat pack
Westinghause	$\begin{aligned} & \text { WS } 810 \\ & \text { WS } 812 \\ & \text { WS } 814 \end{aligned}$	$\begin{gathered} \text { AND/OR/NAND } \\ - \end{gathered}$	50 50 50	2 3 2	10 10 10	$\begin{aligned} & 50 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 0-100 \\ & 0-100 \\ & 0-100 \end{aligned}$	Flat pack Flat pack Flat pack

AND/NAND								
Westinghouse	WS 813	-	50	2	10	250	0-125	Flat pack
NAND (DTL)								
General Instrument	$\begin{array}{lll} \text { NC } & 16 \\ \text { PC } & 11 \\ \text { PC } & 15 \end{array}$	Dual -	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 6 \\ 3+3 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	- - -	-	TO. 5 Flat pack Flat pack
Stewart-Warner	SWA 01 SWA 02 SWA 05 SW 101 SW 102 SW 115 SW 201 SW 204 SW 211 SW 221 SW 224 SW 231 SW 708 SW 930 SW 946	Dual Dual 4 -input Quad 2-input	$\begin{aligned} & 18 \\ & 18 \\ & 12 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 15 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$		15 15 10 7 7 7 11 11 11 11 11 11 15 9 5	900 900 900 500 500 500 550 550 550 550 550 550 1000 700	- - - - - - - - - - - - -	TO. 5 TO-5 T0.5 T 0.5 \& llat pock TO-5 \& flat pack TO.5 \& flat pock TO-5 \& llat pack TO. 5 TO-5 \& flat pack TO.5 \& flat pack TO.S Flat pack TO. 5 TO-5 \& flat pack TO. 5 \& flat pack
Westinghouse	WC 201 WC 211 WC 221 WC 231 WC 241 WC 261 WM 206 WM 211 WM 216 WM 226 WM 236 WM 231 WM 246 WM 266 WM 214 WM 224 WM 234 WM 205 WM 286 WM 296 WS 811 WC 246 WC 266 WC 286 WC 296	Dual Dual Dual Dual Dual Dual Triple Dual Triple Triple Triple Dual Quad Quad Shify bit Hex Hex Dual Quad Quod Hex Hex	23 23 23 23 23 23 23 23 23 23 23 23 23 19 23 28 23 23 200 23 23 50 23 23 23 23	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 2 \\ & 2 \\ & 6 \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & 11 \\ & 4 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & - \\ & - \\ & - \\ & - \\ & 10 \\ & - \end{aligned}$	$\begin{gathered} - \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ - \\ - \\ - \\ - \\ 250 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 0-125 \\ 0-75 \\ 0-75 \\ 0-75 \\ 0-75 \end{gathered}$	TO-5 \& flat pack TO-5 \& flat pack TO.5 \& flat pack TO-5 \& flat pack TO. 5 \& flat pack TO-5 \& flat pack Flat pock TO. 5 \& flat pack Flat pock Flat pack Flat pack Flat pock Flat pack Flat: sek Flat pack TO-5 \& flat pack TO-5 \& flat pack Flat pack
Voro	8214	Dual	10	15	4	-	-	,
Philca	$\begin{aligned} & \text { PL } 930 \\ & \text { PL } 946 \\ & \text { PL } 962 \end{aligned}$	Dual 4-input Quad 2-input Triple 3-input	$\begin{aligned} & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 500 \\ 500 \\ - \end{gathered}$	-	Flat pack Flat pack Flat pack
Sprogue	UC 1001B	-	15	15	4	500	-	,
Roythean	RM 223 RM 224 RM 243 RM 201 T,Q,G RM 211 T,G RM 211 T,G RM 231 G RM 206 G RM 216 G RM 204 T, Q,G RM 214 T, Q, G RM 224 T,G	Dual Dual 3-input Dual 4-input Dual 3-input Dual 4 -input Triple 3-input 4-input 6.input 8-input	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 32 \\ & 32 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{gathered} 4 \\ 2,3 \\ 4 \end{gathered}$	$\begin{gathered} 6 \\ 2,6 \\ 6 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \end{gathered}$	500 500 500 550 550 550 550 550 550 550 550 550		- - TO. TO-5 \& flat pack TO-5 \& flat pack
Texas Instruments	SN 472 SN 473 SN $344 A$ SN $341 A$ SN 347A SN 359A	Dual 3-input Triple 7-input Dual Dual	40 80 120 140 140 140	-	$\begin{gathered} 5 / g a t e \\ 5 \\ 12,12 \\ 6 \\ 6,6 \\ 6,6 \\ \hline \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 500 \\ & 500 \\ & 500 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 0-125 \\ & 0-125 \\ & 0-65 \\ & 0-65 \\ & 0-65 \\ & 0-65 \end{aligned}$	Flof pack Flat pack

DIGITAL CIRCUITS - Continued

anufacturer	Model	Function	Propagation Delay(nsec)	$\underset{(\max)}{\text { Fan. In }^{2}}$	$\underset{(\max)}{\text { Fon-Out }}$	Naise Marg in (mv)	Temp. Range $\left({ }^{\circ} \mathrm{C}\right)^{*}$	Package Type

Siliconix (Cont'd)	A 12 A 13AO1,2 A O6,	Dual Dual Dual	$\begin{aligned} & 12 \\ & 12 \\ & 18 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 900 \\ & 900 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { I } \end{aligned}$	TO-5 \& flat pock T0.5 \& flat pack
Signetics	CS 700 CS 701 CS 716 CS 720 CS 721 CS 727 CS 730 SE 170 SE 180 SE 111 SE 112 SE 113 SE 101 SE 115	Dual Dual Dual Quad Triple Triple Dua! Triple 3 -input Quad 2-input Dual 4-inpur Dual 3-input Dual 3-input Dual	$\begin{aligned} & 25 \\ & 25 \\ & 19 \\ & 17 \\ & 17 \\ & 19 \\ & 19 \\ & 17 \\ & 17 \\ & 20 \\ & 20 \\ & 20 \\ & 4 \\ & 25 \end{aligned}$	$\begin{gathered} 3,2 \\ 3,2 \\ 2,2 \\ 2,2,2,2 \\ 3,3,3 \\ 2,2,2 \\ 5,5 \\ 2,2,2 \\ 2,2 \\ 4,4 \\ 3,3 \\ 3,3 \\ 5 \\ 2,2 \\ \hline \end{gathered}$	5 4 15 5 5 5 5 5 5 5 15 15 15 - -	$\begin{array}{r} - \\ - \\ - \\ - \\ - \\ \hline- \\ 800 \\ 800 \\ 800 \\ 800 \\ 800 \\ 800 \\ 800 \\ \hline \end{array}$		T0.5 \& flat pack T.0-5 \& flat pack T0.5 Flat pack Flot pack Flat pack
Texas Instruments	SN 7310 $S N 7311$ $S N 7330$ $S N 7331$ $S N 7360$ $S N 531$ $S N$ $S 33$ $S N$ $S 311$ $S N$ $S 331$ SN 5360	5-input Dual 5-input Dual 3-input Triple 3-input Quad 2-input 5 -input Dual 3 -input Dual 5-input Triple 3-input Quad 2-input	30 25 25 25 25 25 25 25 25 25		10 10 10 10 10 10,4 $10,10,10$ $10 /$ gate $10 /$ gate $10 /$ gare	$\begin{gathered} - \\ - \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \end{gathered}$	$\begin{array}{lll} 0 & \text { to } 70 \\ 0 & 70 \end{array}$	Flat pack Flat pack
Radiation	$\begin{aligned} & \text { RD } 200 \\ & \text { RD } 201 \end{aligned}$	Dual	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 72 \\ & 12 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$	-	T0.5 \& flat pack TO-5 \& flat pack
Matorola	MC 201,2,6 MC 251, 2 MC 256 MC 207 MC 257 MC 208 MC 258 MC 212 MC 262 MC 213 MC 263 MC 281 G MC 284G	Dual 3.2 dual 3,2 dual 3.2 dual 3.2 dual 3, 3 dua 3,3 dual 3,3 dual 3,3 dual Dual 4 -inpur	30 30 30 30 30 30 30 30 30 30 30 18 18	$\begin{aligned} & - \\ & - \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & - \end{aligned}$	$\begin{aligned} & 5 \\ & \hline \\ & \hline 5 \\ & 5 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ = \\ = \\ - \\ Z \\ Z \\ Z \\ Z \\ 500 \\ 550 \end{gathered}$	$\begin{aligned} & 0 \text { ta } 75 \\ & 0 \text { ta } 75 \\ & -7 \\ & 0 \text { to } 75 \\ & -75 \\ & 0 \text { to } 75 \end{aligned}$	T0.5 \& flat pack TO-5 \& flat pack TO-5 \& llat pack TO-5 \& flat pack TO-5 \& flat pock TO-5 \& flat pack T0.5 \& flat pack TO-5 \& flat pack T0-5 \& flat pack TO-5 \& fiot pock TO-5
Foirchild	$\begin{aligned} & \hline \mathrm{DT} \mu \mathrm{~L} 930 \\ & \mu \mathrm{~L} 927 \\ & \mathrm{DT} \mu \mathrm{~L} 946 \\ & \mathrm{DT} \mu \mathrm{~L} 962 \\ & \mathrm{~F} \mu \mathrm{~L} 93029 \\ & \hline \end{aligned}$	Dual 4-input Quad inverter Quad Triple Dual 4 -input	$\begin{aligned} & 25 \\ & 10 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 12 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 750 \\ & 1000 \\ & 750 \\ & 750 \end{aligned}$	$\begin{gathered} - \\ - \\ \overline{-} \\ 0 \text { to } 75 \end{gathered}$	TO-5 \& flat pack TO-5 \& flat pack TO-5 \& flat pock TO-5 \& flat pack TO-5 \& flat pack
Vara	8204	10-15	9	4	-	-	-	-
Sprague	$\begin{aligned} & U C \quad 1001 B \\ & U C 1003 B \end{aligned}$	-	$\begin{array}{r} 12 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r}500 \\ - \\ \hline\end{array}$	-	Flat pack
Hoffman	HMC 1001	-	35	4	5	600	0-80	T0.5
NOR (DTL)								
General Instrument	$\begin{array}{ll} \hline N C 10 \\ P C 10 \\ P C 14 \end{array}$	Dual	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 4 \\ 6 \\ 3+3 \end{gathered}$	$\begin{aligned} & 5 \\ & 15 \\ & 5 \end{aligned}$	-	$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$	TO-5 Flat pack Flat pack
Signetics	SL 314K	Dual 7-input	30	7	17	800	$-20+85$	- -
EXCLUSIVE - OR (DTL)								
Texas instruments	SN 5370	Dual	90	-	10/gate	200	-	Flat pack
Intellux	PG 15	-	8-30	20	20	500	-	Flat pack
Signetics	SE 110	-	35	3	20	800	-	-
Matorola	MC 204	-	40	-	20	500	-	T0.5 \& flat pack
Fairchild	DT $\mu \mathrm{L} 944$	Dual 4-input	40	4	27	750	-	TO-5 \& flat pack
GATE EXPANDERS (DTL)								
Raytheon	$\begin{array}{ll} \mathrm{RC} & 226 \\ \text { RC } 246 \\ \hline \end{array}$	-	2	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	-	-	-	-
Sprague	$\begin{aligned} & \text { UC } 1005 \mathrm{~B} \\ & \text { UC } 1006 \mathrm{~B} \end{aligned}$	-	-	-	-	-	-	-
Westinghouse	WM 217 WM 227	Dual Triple	-	$\begin{aligned} & 7 \\ & 11 \\ & \hline \end{aligned}$	-	-	-	TO. \& \& lat pack Flat pack
Stewart-Warner	$\begin{aligned} & \text { SWA O4 } \\ & \text { SW } 933 \\ & \hline \end{aligned}$	Dual 4-input	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	-	-	-	TO.5 \& flat pack
Signetics	CS 709	Dual	-	3,3	1	-	-	T0.5 \& flar pack
Fairchild	DT $\mu \mathrm{L} 933$	Dual 4 -inpur	-	4	-	-	-	T0-5 \& llar pack
Philco	PL 933	Dual 4-input	-	-	-	500	-	Flat pack
Radiation	RD 202	Dual	-	5	-	-	-	T0.5 \& flat pack
CINARY ELEMENTS (DTL)								
Generol Instrument		One shot	$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \overline{1} \\ & \overline{-} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 22 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \bar{Z} \\ & \bar{Z} \end{aligned}$	TO-5 \& flat pack TO-5 \& flat pack Flat pack Flat pack T0.5 \& flat pack
Foirchild	$\mathrm{DT} \mu \mathrm{L} 950$ $\mathrm{DT} \mu \mathrm{L} 948$ $\mathrm{DT} \mathrm{T}_{\mu} \mathrm{L} 931$ $\mathrm{DT} \mu \mathrm{L} 945$	$\begin{aligned} & R-S, F-F \\ & R-5 ; J-K \\ & \text { Clocked J-K, R-S } \\ & R-S, J-K \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 5 \\ & 600 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TO-5 \& flat pack } \\ & \text { TO-5 \& flot pack } \\ & \text { TO.5 \& flat pack } \\ & \text { TO. \& flat pack } \end{aligned}$
Raythean	$\begin{aligned} & \text { RC } 202 \mathrm{~T}, \mathrm{Q}, \mathrm{G} \\ & \mathrm{RC} 212 \mathrm{~T}, \mathrm{G} \\ & \mathrm{RC} 203 \mathrm{~T}, \mathrm{Q} \\ & \mathrm{RC} 215 \mathrm{~T}, \mathrm{G} \\ & \mathrm{RC} \\ & 213 \mathrm{Q}, \mathrm{G} \end{aligned}$	$\begin{aligned} & R-S 3 \text { set \& reset } \\ & \text { inputs } \\ & R-S \text { 3-set \& reset } \\ & \text { inputs } \quad- \\ & J-K \\ & \text { Pulse } \end{aligned}$	32 32		-	$\begin{aligned} & 550 \\ & 550 \\ & 550 \\ & 550 \end{aligned}$	-	T0.5 \& flat pack TO-5 \& flat pack TO-5 \& flat pack TO-5 \& flat pack TO.5 \& flat pack
Varo	8200	F-F	10	-	-	-	-	-
Sprague	UC 1002B	Caunter	14	-	5	500	-	-

DIGITAL CIRCUITS - Continued

Manufacturer	Model	Function	Propagation Delay(nsec)	$\begin{aligned} & \text { Fan-In } \\ & \text { (max) } \end{aligned}$	$\underset{(\operatorname{mox})}{\text { Fan-Out }^{(1)}}$	Noise Margin (mv)	Temp Ronge (${ }^{\circ} \mathrm{C}$)	Package
BINARY ELEMENTS (DTL) (Continued)								
Motarala	$\begin{aligned} & M C 282 G \\ & M C 209 \end{aligned}$	F-F	$\begin{aligned} & 18 \\ & 50 \end{aligned}$	-	8	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	-	$\begin{aligned} & \text { TO. } 5 \\ & \text { TO. } \& \text { flat pack } \end{aligned}$
Radiation	RD 204	R-S	20	-	10	1000	-	T0.5 \& flat pack
Stewart-Warner	SW 212 SW 201 SW 931 SW $945 / 948$ SD	$\begin{aligned} & R-S \\ & R-S \\ & R-S / J-K \\ & R-S / J-K \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & - \end{aligned}$	$\begin{aligned} & 550 \\ & 550 \\ & 1000 \\ & 700 \end{aligned}$	-	$\begin{aligned} & \text { TO. } 5 \text { \& lat pack } \\ & \text { TO-5 \& flat pack } \\ & \text { TO.5 } \\ & \text { TO-5 } \end{aligned}$
Natianal	ND 1003	-	20	2	4	750	-	
Westinghouse	$\begin{aligned} & \text { WM } 202 \\ & \text { WM } 212 \\ & \text { WM } 203 \\ & \text { WM } 215 \\ & \text { WM } 213 \\ & \text { WM } 503 \end{aligned}$	$\begin{aligned} & \text { Counter } \\ & \rho-k \\ & J-k \end{aligned}$	23 23 - - -	$\begin{aligned} & 3 \\ & 3 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 4 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$	550 550 550 550 550 500	$\begin{gathered} - \\ \overline{-} \\ 0-125 \\ - \\ - \end{gathered}$	T0.5 \& flot pack TO. 5 \& flat pack TO-5 \& flat pack TO-5 \& flat pock TO-5 \& flat pack Flat pack
Siliconix	$\begin{aligned} & A 09 \\ & \text { A } 03 \\ & \hline \end{aligned}$	Shift Reg Shift Reg.	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	-	5	900 900	-	TO-5 \& flat pack TO-5 \& flat pack
Texas Instruments Intollux		Single phase J-K R-S	$\begin{aligned} & 45 \\ & 250 \\ & 300 \\ & \hline \end{aligned}$		$\begin{array}{r} 10 \\ 12 \\ 4 / 20 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 500 \\ & 500 \\ & \hline \end{aligned}$	- 0	Flat pack Flat pack Flat pack
Intellux	HD 914		50	-	-	600	-	-
Signetics	$\begin{aligned} & C S 704 \\ & S E 124 \\ & \text { SU } 320 \\ & \hline \end{aligned}$	J-K	60	-	$\begin{aligned} & 8 \\ & 8 \\ & 17 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	$-20^{-}+85$	-
Philco	PL 931	J-K	50	-	7	500	-20+85	Flat pack
Hoffman	HMC 1003	- -	-	-	8	600	0-80	T0.5
DRIVER BUFFERS (DTL)								
Signetics	SE 155 SE 156 SE 157 SE 150	Dual 4-input Dual 4-input Dual 3-input Clock	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 35 \end{aligned}$	$\begin{gathered} 4-4 \\ 4-4 \\ 3-3 \\ 2 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	-	Flat pack Flat pack TO-5 \& flat pack
Texas Instruments	$\begin{aligned} & \text { SN } 535 \\ & \text { SN } 343 A \\ & \text { SN } 346 A \end{aligned}$	Quad Inverter/Driver Dual input Dual outpuy	$\begin{aligned} & 25 \\ & 500 \\ & 880 \end{aligned}$	-	$\begin{gathered} 10 \text { gate } \\ 13 \\ 11 \end{gathered}$	$\begin{aligned} & 200 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 0-65 \\ & 0-65 \end{aligned}$	Flat pack Flat pack Flat pack
Silicanix	$\begin{aligned} & \text { A } 20 \\ & \text { A } 11 \end{aligned}$	$\begin{aligned} & \text { Dual } \\ & \text { Dual } \end{aligned}$	35	4	$\overline{5}$	900	-	TO. 5 or flat pack TO-5 or flat pack
Westinghouse	WM 510 WM 210 WS 817 WS 816	$\begin{aligned} & \text { Dual } \\ & \text { Qual } \\ & \text { Dual } \\ & \text { Dual } \end{aligned}$	$\begin{aligned} & 15 \\ & 37 \\ & 50 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\overline{2} 2$ $\overline{2}$	$\begin{aligned} & 500 \\ & 550 \\ & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 0-125 \\ & 0-125 \\ & 0-12 \end{aligned}$	Flat pack TO-5 \& flat pack Flat pack Flat pack
$\frac{\text { Raytheon }}{\text { Natianal }}$	RC 210 T, Q, G	Dual	32	-	-	550	-	T0.5 \& flat pack
Fairchild	$\mathrm{D}^{\mathrm{T}} \mu \mathrm{L}$ ¢ ${ }^{\text {a }} 3$	Dual 4-inpur	20	$\frac{2}{4}$	25	750	-	T0.5 \& -
Philco	PL 932	Dual 4-input	20	-	-	500	-	Flat pack pack
Sprague	UC 1003B	3 -inpur	14	15	15	500	-	Flat pack
Varo	8213	- -	15	-	10	-	-	Flor pack
Radiatian	RD 203	-	20	4	20	1000	-	T0.5 \& flat pack
Hoffman	HMC 1002	-	-	$\overline{3}$	20	600	0 to 80	TO. 5 \% pat pack
Sprague	UC 1004B	-	40	-	5	500		-
General Instrument	NC/PC 16	One shot	8)	-	-	-	TO.5 \& flat pack
Fairchild	D $T \mu L$	2 -inpus	25	-	10	950	-	TO-5 \& flat pack
Varo	8203	One shat	30	-	4	-	-	T0.5 \& Mor pock
Silic onix	${ }^{\text {A }} 08$	Oneshot	30°	1	5	900	-	- -
Toxas Instruments	SN 1005	- =	100	-	10	200	-	Flat pack
Signetics	SE 160	One shot	-	-	4	800	-	Flar
NAND/NOR GATES (DCL)								
Fairchild		3 -input 2-inpu: Dual 3 -input 3-input Dual 3-input Dual 2 -input 4 -input Dual 2-input 4-input	10 10 10 12 12 12 25 25 45 20	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	16 16 16 5 5 5 4 4 4 4	300 300 300 250 250 250 300 300 350 350	$\begin{gathered} 15 \text { to } 55 \\ 15 \text { ta } 55 \\ 15 \text { to } 55 \\ = \\ = \\ = \\ 15 \text { to } 55 \\ 15 \text { to } 55 \end{gathered}$	
NOR (DCL)								
Raythe on	$\begin{aligned} & \text { RC } 324 \\ & \text { RC } 342 \\ & \text { RC } 344 \\ & \text { RC } 1031 \\ & \text { RC } 1032 \\ & \text { RC } 1231 \\ & R C 1232 \end{aligned}$	Dual Dual Dual	25 25 25 25 25 25 25	- - -	- - -	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 200 \\ & 300 \\ & 200 \end{aligned}$	$\begin{gathered} - \\ - \\ 0 \text { 1065 } \\ 01065 \\ 0 \text { to } 65 \\ 0 \text { to } 65 \end{gathered}$	- - - $=$
Notional	$\begin{aligned} & \text { NB } 1003 \\ & \text { NB } 1007 \\ & \text { NB } 1014 \\ & \text { NB } 1015 \\ & \hline \end{aligned}$	3 -input 4 -input Dual 2-input Dual 3-input	11 11 11 11	$\begin{gathered} 3 \\ 4 \\ 2, \\ 3,3 \end{gathered}$	=	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	-	- - -
Texos Instruments Fairchild		Dual2-input Dual 2-input 4 -input 4 -input	$\begin{array}{r} 35 \\ 35 \\ 35 / 70 \\ 35 / 70 \\ \hline 12 \end{array}$	-	$\begin{gathered} 4 / \text { gate } \\ 4 / \text { gate } \\ 4 \\ 4 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & \text { TO.5 } \\ & \text { Flot pack } \\ & \text { TOO.5 } \\ & \text { Flat pack } \end{aligned}$
Fairchild Westinghouse	$\frac{\mu L 907}{W S ~} 277$	4 -in put	$\frac{12}{25}$	4	5	250	-	TO-5 \& flat pack
Westinghouse	WS 277	-	25	3	6	275	-	-
GATE EXPANDERS (DCL)								
Amelca	$\begin{aligned} & \text { E } 11001 \\ & \text { E } 11004 \end{aligned}$	Dual 3-input Dual 3-input	12	-	-	-	$7{ }^{125}$	TO. TO. 0
Texos Instruments	$\begin{aligned} & S N 732 \\ & S N 732 A \\ & \hline \end{aligned}$	Dual 2-input Dual 2-input	35 35	-	-	-	-	TO.5
Foirchild	$\begin{aligned} & M W_{\mu} L 921 \\ & F \mu L 92129 \end{aligned}$	Dual 2 -input Dual 2-input	40	$\frac{2}{2}$	-	$\begin{aligned} & - \\ & 350 \\ & 300 \end{aligned}$	15 -10 55	TO. 5 \& lat pock TO. 5 \& flot pack
Philca	PL 921	-	40	-	3	-	-	-
NAND/NOR GATES (DCL)								
Amelco	$\begin{aligned} & \text { G } 11001 \\ & \text { G } 11004 \\ & \text { J } 11001 \end{aligned}$	$\begin{aligned} & 5-\text { input } \\ & 5 \text {-input } \\ & 4 \text {-input } \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	-	-	-	$\stackrel{-}{-}$	Flat pack Flat pock Flot pack

-55° to $+125^{\circ} \mathrm{C}$ unless otherwise noted.

DIGITAL CIRCUITS - Continued

Manufacturer	Model	Function	Propagation Delay (nsec)	$\underset{(\text { max })}{\text { Fan }_{\text {In }}}$	$\begin{aligned} & \text { Fon-Out } \\ & (\text { max }) \end{aligned}$	Noise Margin (mv)	Temp. Range $\left({ }^{\circ} \mathrm{C}\right.$)	Package Type
NAND/NOR GATES (DCL) (Continued)								
Amelco (Cont'd)	$\begin{array}{lll} J & 11004 \\ K & 11001 \\ K & 11004 \\ L & 11001 \\ L & 11004 \\ M & 11001 \\ M & 11004 \end{array}$	4-input 3 -input 3 -input Dual 2 -input Dual 2 -input Dual 3 -inpuy Dual 3 -input	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$					Flat pack Flat pack Flap pack Flat pack Flat pack TO-5 TO. 5
Philco	$\begin{aligned} & \text { PL } 903 \\ & \text { PL } 907 \\ & \text { PL } 915 \\ & \text { PL } 910 \\ & \text { PL } 911 \end{aligned}$	3 -inpup 4 -input Dual 3-input Dual 2-input 4-input	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	- - -	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 4 \\ & \hline \end{aligned}$	- - -	- -	=
NOR (DCL)								
Raytheon	$\begin{array}{ll} \mathrm{RC} & 323 \\ \mathrm{RC} & 103 \\ \mathrm{RC} & 123 \\ \mathrm{RC} & 124 \\ \mathrm{RC} & 144 \\ \mathrm{RC} & 1033 \\ \mathrm{RC} & 1233 \\ \text { RC } & 1443 \\ \text { RC } & 401 \\ \text { RC } & 322 \\ \hline \end{array}$	Dual - Dual - Dual - Dual - Dual -	18 20 20 20 20 20 20 20 23.5 25	- - - - - - - -	- - - - - - -	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$		TO-5 \& flat pack - - - - - - - -
BINARY ELEMENTS (DCL)								
Fairchild	$\begin{aligned} & \mu \mathrm{L} 902 \\ & \mu \mathrm{~L} 916 \\ & \text { F } 9 \mathrm{~L} 92329 \\ & M W_{\mu} \mathrm{L} 913 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 14 \\ & 40 \\ & 40 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 3 \\ & 10 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 300 \\ & 350 \\ & \hline \end{aligned}$	$15 \text { to } 55$	$\begin{aligned} & \text { TO.5 \& flat pock } \\ & \text { TO.5 \& flot pock } \\ & \text { TO.5 \& flot pack } \\ & \text { TO. } 5 \text { \& flat pack } \\ & \hline \end{aligned}$
Philco	$\begin{aligned} & \text { PL } 902 \\ & \text { PL } 916 \end{aligned}$	-	$\begin{aligned} & 14 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4 \\ & 3 \\ & \hline \end{aligned}$	-	-	-
National	NB 1002	- -	22	1	-	-	-	T0.5 -
Amelco	R 12001	J-K	150	-	-	-	125	TO. 5
SHIFT REGISTERS (DCL)								
Amelco	P 11001 R 11001 R 1004 P 11004 S 11001 S 11004	$\begin{aligned} & \text { Full 2-phase } \\ & \text { J-K } \\ & J-K \\ & \text { Full 2-phase } \\ & \text { Half } \\ & \text { Half } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 22 \\ & 22 \\ & \hline \end{aligned}$	z	z	I I	$\begin{aligned} & 125 \\ & 125 \\ & 70 \\ & 70 \\ & 125 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TO.5 } \\ & \text { TO } \\ & \text { TO } 5 \\ & \text { TO. } \\ & \text { T0.47 } \\ & \text { T0.47 } \\ & \hline \end{aligned}$
Philco	$\begin{aligned} & \text { PL } 913 \\ & \text { PL } 905 \\ & \text { PL } 906 \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Half } \\ & \text { Half } \end{aligned}$	$\begin{aligned} & 80 \\ & 15 \\ & 22 \\ & \hline \end{aligned}$	Z	$\begin{array}{r} 3 \\ 4 \\ 4 \\ \hline \end{array}$	-	-	-
Fairchild	$\begin{aligned} & \mu \mathrm{LL} 905 \\ & \text { F } \mu \mathrm{L} 90529 \\ & \mu \mathrm{~L} 906 \end{aligned}$	$\begin{aligned} & \text { Half } \\ & \text { Half } \\ & \text { w/O inverter } \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 250 \\ & \hline \end{aligned}$	15 ¢0 55	TO. 5 \& llat pack TO.5 \& flot pock TO-5 \& flat pack
Raytheon	RC 301	Full	60	-	-	300	-	TO-5 \& flat pack
National	NB 1005	Holf	11	1	-	300	-	-
COUNTER ADAPTERS (DCL)								
Amelco	$\begin{array}{ll} C & 11004 \\ C & 11001 \\ \hline \end{array}$	-	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	-	-	-	$\begin{aligned} & 70 \\ & 125 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.47 \\ \text { TO. } 47 \end{array}$
National	NB 1001	-	21	1	-	300	-	-
Philco	PL 901	-	22	-	25	-	-	-
ADDERS (DCL)								
Fairchild	$\begin{aligned} & \mu L 904 \\ & M W \mu L, 908 \\ & M W \mu L 912 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Full } \\ & \text { Half } \end{aligned}$	$\begin{aligned} & 16 \\ & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	-	TO.5 \& flat pack TO. 5 \& flat pack TO. 5 \& flat pock
Philco	$\begin{aligned} & \text { PL } 908 \\ & \text { PL } 904 \\ & \text { PL } 912 \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Holf } \\ & \text { Half } \\ & \hline \end{aligned}$	80 14 80	-	4 5 4	-	-	-
Amelco	$\begin{aligned} & \text { H } 11001 \\ & \text { H } 11004 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Half } \\ & \text { Half } \end{aligned}$	22 22 1	-	-	-	$\begin{aligned} & 125 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { TO-47 } \\ & \text { TO-47 } \end{aligned}$
National	NB 1004	Half	17	2,2	-	300	-	-
Intallux	HA 15	Half	60		-	700	-	-
BUFFERS (DCL)								
Fairchild	$\begin{aligned} & \mu \mathrm{L} 900 \\ & F \mu \mathrm{~L} 90029 \\ & M W \mu \mathrm{~L} 909 \end{aligned}$	-	$\begin{aligned} & 16 \\ & 16 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 6 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 80 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & \hline \end{aligned}$	15-5	TO-5 \& flat pack TO. 5 \& flat pack TO.5 \& flat pack
Amelco	$\begin{aligned} & B C 11001 \\ & B C \quad 11004 \\ & \hline \end{aligned}$	-	15	-	-	-	125	$\begin{aligned} & \text { TO-47 } \\ & \text { TO-47 } \end{aligned}$
Philco	$\begin{aligned} & \text { PL } 900 \\ & \text { PL } 909 \\ & \hline \end{aligned}$	-	15 80	-	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	-	-	-
National	NB 1000	-	8	1	-	300	-	-
Intellux	GB 15	-	-	3	-	-	-	-
MULTIVIBRATORS (DCL)								
Amelco	T35-002	Single shot	100	-	-	-	125	T0.5
Intellux	CD 15	Current Driver	-	3	-	-	-	-
AND/OR/NOT GATE (TTL)								
Stewart-Warner	$\begin{aligned} & \text { SWG 5A } \\ & \text { SWG 5B } \\ & \text { SWG } 21 \end{aligned}$	$\begin{aligned} & \hline \text { Duol } \\ & \text { Dual } \\ & \text { Dual } \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	15 15 -	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	-	$\begin{aligned} & \hline \text { TO. } 5 \\ & \text { TO. } \\ & \text { TO. } \\ & \hline \end{aligned}$
NAND GATE (TTL)								
Stewart-Warner	SW 103 SW 104 SWG $4 A$ SWG $4 B$ SWG 14 SWG 16 SW 402 SWG 40 SWG 60 SWG 120	Dual Dual Dual Dual Dual - Dual 4-input 8-input 6-input	10 10 11 11 11 15 100 10 12 18	$\begin{aligned} & 4 \\ & 8 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 8 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 7 \\ & 5 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	1000 1000 1000 1000 1000 1000 300 $=$ $=$		TO.5 TO. TO.5 TO.5 TO.5 TO.5 TO.5 TO.5 flat pock TO.5 \& flat pock TO.5 \& flot pock

* -55° po $+125^{\circ} \mathrm{C}$ unless otherwise noted.

DIGITAL CIRCUITS - Continued

Manufacturer	Madel	Function	Propagation Deloy(nsec)	$\begin{gathered} \text { Fon-In } \\ (\max) \end{gathered}$	$\underset{\text { (max) }}{\text { Fon-Out }}$	Noise Morgin (mv)	Temp. Range $\left({ }^{\circ} \mathrm{C}\right)$	Package Type

T\|lct NAND GATE (TTL) (Continued)								
Texas Instruments	$\begin{aligned} & \text { SN } 5400 \\ & S N 5410 \\ & S N 5420 \\ & S N 5430 \\ & S N 5440 \end{aligned}$	Quad 2-input Triple 3-input Dual 4 -input 8 -input Dual 4-input	$\begin{array}{r} 13 \\ 13 \\ 13 \\ 15 \\ 17.5 \end{array}$	- - - -	10 gate 10 gate 10 gate $10 \begin{gathered}10 \text { gate } \\ 30\end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & \overline{-} \end{aligned}$	Flat pack Flat pack Flat pock Flat pock Flat pack
NAND/NOR GATE (TTL)								
Transition	TNG 3141 TNG 3041 TNG 3043 TNG 3045 TNG 3143 TNG 3145 TNG 3147 TNG 3011 TNG 3013 TNG 3015 TNG 3031 TNG 3113 TNG 3117 TNG 3115 TNG 3131 TNG 3231 TNG 3017	Dual Dual-4 Dual-3 Dual-3 \square Dual Dual Dual Dual Dual Dual	10 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 15	4 8 6 8 6 4 3 3 8 8 6 4 4 4 3 3 2 2 6	$\begin{aligned} & 20 \\ & 20 \\ & 7 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 7 \\ & 20 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	$\begin{gathered} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ \bar{Z} \\ +109060 \\ - \\ - \\ \bar{Z} \\ +109060 \\ +10 \text { to } 60 \end{gathered}$	TO-5 \& Hat pack TO-5 \& flat pack TO. 5 \& flat pack TO. 5 \& flat pack TO. 5 \& flat pack TO-5 \& flat pack TO-5 \& flat pack TO-5 \& flat pack TO-5 \& flat pack TO. TO-5 \& fiat pack TO. 5 \& fiat pack TO. 5 \& flat pack TO-5 TO-5 \& flat pack
Sylvania	$\begin{aligned} & \text { SG } 110,141,142 \text {, } \\ & \text { SG } 43,41,42,43 \\ & \text { SG } 60,61,62,63 \\ & \text { SG } 120,121,122, \end{aligned}$	Quad 2-input Dual 4-input Single 8-input Expandable	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	-	$\begin{aligned} & - \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	-	TO-5 \& flat pack
Silicanix	$\begin{array}{ll} 80 & 1 \\ B O & 2 \end{array}$	Dual	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	8 4	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{array}{lll} -55 & 105 \\ -55 & 10 & 165 \end{array}$	TO. 5 \& flat pock TO-5 \& flat pack
Foirchild	$\begin{array}{ll} T T \mu L & 103 \\ T T \mu L & 104 \end{array}$	Dual 4-input 8 -input	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	4	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	-	TO-5 \& flat pock TO. 5 \& llat pack
Westinghouse	$\begin{aligned} & \text { WM } 701 \\ & \text { WM } 704 \end{aligned}$	Dual	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\stackrel{4}{8}$	-	$\begin{array}{r} 550 \\ 500 \\ \hline \end{array}$	-	Flat pack Flat pack
NAND/OR (TTL)								
Transitran	TNG 3211 TNG 3213 TNG 3215 TNG 3217 TNG 3241 TNG 3243 TNG 3245 TNG 3247	Dual Dual Dual Dual Dual 4-input Dual Dual Dual	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	3 3 4 4 3 3	$\begin{aligned} & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \\ & 7 \\ & 20 \end{aligned}$	1000 1000 1000 1000 1000 1000 1000 1000	- - - -	TO-5 \& llat pack TO-5 \& flat pack TO-5 \& flat pack

Sylvania	SG $50,51,52,53$ SG $110,111,112$, $113,101,102$, SG $100,101,102$. 103	Quad 2-input Dual 4-input Triple 3-inpur	12 12 12	-	20 20 20	1000 1000 1000	-	-
Texas Instruments	SN 5450	Dual	15	-	10/gote	1000	-	Flat pack

GATE EXPANDER (TTL)								
Sylvania	$\begin{aligned} & \hline \text { SG } 170-173 \\ & \text { SG } 180-183 \end{aligned}$	$\begin{aligned} & \text { Dual } 4 \text { OR } \\ & \text { Dual } 4 \text { AND } \end{aligned}$	-	-	-	1000 1000	-	-
Texas Instruments	SN 5460	Dual 4-input	-	-	4	1000	-	Flat pock
Transition	TNG 3051 TNG 325	-	-	$\begin{aligned} & 8 \\ & 4 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	-	TO-5 \& flat pack TO-5 \& flat pack
BINARY ELEMENTS (TTL)								
Sylvanio	$\begin{array}{ll} \hline \text { SF } 10-13 \\ \text { SF } 20-23 \\ \text { SF } 30-33 \\ \hline \end{array}$	R-5 Clacked Single-phose	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\stackrel{-}{-}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & \hline \end{aligned}$	-	-
Transition	$\begin{aligned} & \text { TFF } 3011 \\ & \text { TFF } 3013 \\ & \text { TFF } 3015 \\ & \text { TFF } 3017 \end{aligned}$	$\begin{aligned} & \hline \text { Dual } \\ & \text { Dual } \\ & \text { Dual } \\ & \text { Dual } \end{aligned}$	$\begin{array}{r} 18 \\ 18 \\ 18 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 7 \\ & 20 \\ & 7 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & \hline \end{aligned}$	-	TO-5 \& flat pack TO-5 \& flat pack TO. 5 \& flot pack TO-5 \& flat pack
Texas Instruments	SN 5470	J-K	40	-	10	1000	-	Flat pack
ADDER (TTL)								
Sylvania	SG 90-93	Half	12	-	20	1000	-	-
GATES (ECL)								
Matarola	$\begin{aligned} & M C 309-311 \\ & M C \quad 359-361 \\ & \hline \end{aligned}$	Dual 2 -input NOR Dual 2 -input NOR-NAND	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	-	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	-	$0 \text { to } 75$	TO-5 \& flat pack TO-5 \& flat pack
Stewort-Warner	SW 309-311	Dual	6	-	26	-	-	T0.5 \& flat pack
Westinghouse	WS 371	Dual	10	4	-	250	0 10 75	Flat pack
Motarola	$\begin{aligned} & \hline M C 301 \\ & M C ~ 306-307 \\ & M C ~ 351 \\ & M C ~ 356-357 \end{aligned}$	5-input 3 -input 5 -input 3 -imput	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 5 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & 26 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0 \text { to } 75 \\ & 0 \text { to } 75 \end{aligned}$	TO. 5 \& llat pack TO-5 \& llat pack TO. 5 \& flat pack TO. 5 \& flat pack
Stewart-Worner	$\begin{aligned} & \text { SW 301 } \\ & \text { SW 306-307 } \\ & \hline \end{aligned}$	-	6	$\begin{aligned} & 5 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	-		TO. 5 \& flat pack TO-5 \& flat pack

GATE EXPANDERS (ECL)								
Motorola	MC 305 MC 355	-	6	-	-	-	$0 \text { to } 75$	TO-5 \& flat pack TO. 5 \& flat pack
Stowort-Worner	5W 305	-	6	-	-	-		TO-5 \& Hat pack
ADDERS (ECL)								
Motarolo	MC 303 MC 353	Half Half	6	-	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	-	$0 \text { ta } 75$	TO-5 \& flat pack TO-5 \& flat pack

DIGITAL CIRCUITS - Continued

LINEAR CIRCUITS						
Manufacturer	Madel	$\begin{aligned} & \text { Frequ. } \\ & \text { Range (K) } \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { (Valts) } \end{aligned}$	$2 \text { (ahmot }$	$\begin{aligned} & \text { Output } \\ & Z \text { (ahms) } \end{aligned}$	Package
VOLTAGE REGULATORS						
General Instrument	$\begin{aligned} & \text { PC } 501 \\ & P C 500 \\ & P C 503 \\ & P C 504 \\ & N C / P C 511 \\ & P C 512 \\ & N C / P C 513 \\ & P C 514 \end{aligned}$	100 100 100 100 100 100 100 100		- - - -	0.2 0.2 0.4 0.4 0.1 0.2 0.1 0.2	Flap pack Flat pack Flat pack TO-5 \& flat pack Flap pack TO-5 \& flat pack Flap pack
ANALOG SWITCH						
General Electric	$45 P 912$ 4 P 913 PC 401	100 MC 100 MC 200	$\begin{aligned} & 0.0006 \\ & 0.0006 \end{aligned}$	$\overline{\overline{10 K} / 3.9 K}$	=	$\begin{aligned} & \hline \text { TO. } 5 \\ & \text { TO-5 } \\ & \text { Flat pack } \end{aligned}$
General Instrument	PC 401	200	${ }^{3}$			
Texas fatioubints	SN 354A	5	CHOPPER 26	-	DEMODULATOR CHOPPER	
D-A SWITCH						
Genoral Electric	4JP3800	250 MC	-	-	20	TO. 5
DRIVER SWITCH						
Texas lnstruments	SN 355A	50	± 20	11 K	-	Flot pack
MIXER OSCILLATOR						
Westinghous*	WM 1102	30 MC	-	100	200	Flat pack

LINEAR CIRCUIT-A circuit whose output is an amplified version of its input, or, whose output is a pre-determined variation of its input.

MONOBRID-A method of manufacturing integrated circuits by using more than one monolithic chip within the same package.
"NOT"-A Boolean logic operator indicating negation. A variable designated "not" will be the opposite of its "and" or "or" function. A switching function for only one variable.
"OR"-A Boolean operator analogous to addition. (Except that two truths will only add up to one truth.) Of two variables, only one need be true for the output to be true.

PARALLEL OPERATION -Pertaining to the manipulation of information within computer circuitry in which the digits of a word are transmitted simultaneously on separate lines. Faster than serial operation, but requires more equipment.

PASSIVE ELEMENTS—Those components in a circuit which have no gain characteristics, capacitors, resistors, inductors.

POSITIVE LOGIC-The more positive voltage (or current level) represents the l-state; the less positive level represents the 0 -state.
PROPAGATION DELAY-A measure of the time required for a change in logic level to propaqate through a chain of circuit ele. ments.

RCTL: RESISTOR-CAPACITOR-TRANSIS-

 TOR-LOGIC-Same as RTL except that capacitors are used to :enhance switching speed.REGISTER-A device used to store a certain number of digits within the computer circuitry, often one word. Certain registers may also include provisions for shifting, circulating, or other operations.
RTL: RESISTOR-TRANSISTOR-LOGIC Logic is performed by resistors. The transistor produces an inverted output from any positive input.

SERIAL OPERATION - Pertaining to the manipulation of information within computer circuitry, in which the digits of a word are transmitted one at a time along a single line. Though slower than parallel operation its circuitry is considerably less complex.

SKEWING-Refers to time delay or offset between any two signals.

SKEWING RATE-Refers to rate at which output can be driven from limit to limit over the dynamic range.

SYNCHRONOUS-Operation of a switching network by a clock pulse generator. Slower and more critical than asynchronous timing but requires less and simpler circuitry.

THIN FILM-A method of manufacturing integrated circuits by depositing thin layers of materials to perform electrical functions: usually only passive elements are made this way.

TTL: TRANSISTOR-TRANSISTOR-LOGIC

A modification of DTL which replaces the diode cluster with a multiple-emitter transistor.

WORD_-The term "word" denotes an assemblage of bits considered as an entity

NELTTECH DATA

Instruments and Controls

This 58 -page catalog covers pressure transducers, accelerometers, gyros, instrument recorders, angle of attack vanes, temp. probes, potentioncters and stepping motors. Complete specs., diagrams and photographs are included. The publication contains tables of standard atnospheric data, second-order linear system curves, and data on transient response as a function of damping ratio in secondorder systems. (iamnini Controls Corp., 1600 S. Mountain Ave., Duarte, Calif.

Circle 325 on Inquiry Card

Transducer Report

"Optimization of Potentionetric Type Pressure Transducers" discusses potentiometric transducer state-of-the-art with emphasis on new design principles and optimization possibilities. It can be obtained from Bourns, Inc., 6135 Magnolia Ave., Riverside, Calif.

Circle 326 on Inquiry Card

PC Connectors

Catalog Form PC600-765 Rev., 48 pages, is a PC comector catalog covering printed-card and tape-cable uses. Line includes microminiature, miniature, and standard size connectors. Designated Scrics 600, these receptacle-type units are made in a variety of single and dual readouts with sizes from 6 to 210 contacts. They are capable of acconimodating board thicknesses of $1 / 32,3 / 64,1 / 16,3 / 32$, and $1 / 8 \mathrm{in}$. These connectors meet or exceed applicable Mil-C-19833 specs. Continental Connector Corp., Woodside 77, N. Y.

Circle 327 on Inquiry Card

Receptacles Catalog

Catalog I)HX-02 contains full description and spec. data on the 1)H02 series hermetic receptacles. The series meets all applicable specs. of Mil-C-5015 and all scaling specs. of Mil-S-8484. The recep. tacles mate with all MS ($A \mathrm{~N}$) plugs and use pin arrangements of the MS (AN) type. It is available in shell sizes 10 Sl , through size 32 MS (AN) to mate with MS and MS-E plugs; either round or scl.flange types may be ordered. Uses include direction linders, tachometers, relays, position indicators, transducers, ete. DeutschElectronic Components Div., Municipal Airport, Banning, Calif.

Circle 328 on Inquiry Card

Conductive Adhesive

This high-thermal conductivity adhesive can be used for honding semiconductor to chassis heat sinks: for fabricating heat sinks or thermal links; or for permanent bonding of all materials with highly thermal conductive interface. Called Delta l3ond 152 , the 100% solid adhesive is effective on porous and non-porous surfaces such as metals, glass, ceramics and most plastics. It produces a rigid high strength bond to most materials when cured. Complete details available from Wakefield Engineering, Inc., 139 Foundry St., Wakefield, Conn. 01881.

Circle 329 on Inquiry Card

Brushless Motors

Bulletin 7002 describes a line of brushless motors for high-speed uses. The litcrature explains how the units achieve high performance levels by substituting solid-state electronics for conventional brushes and commutators. It also tells how the motors, ranging in size from $1 / 100 \mathrm{hp}$, to $1 / 2 \mathrm{hp}$, can be adapted to meet exacting uses by modification of circuitry aud/ or components. Different sections discuss freq. and speed characteristics; component selection; ac and de packaging ; performance evaluation; and application potential. Lamb IElectric, Kent, Ohio.

Circle 330 on Inquiry Card

Mylar Capacitors

Bulletin Data-Log C-103C describes a greatly expanded line of metallized Mylar capacitors. They include expansions in round and flat wrap-and-fill and hermeti-cally-sealed tubulars and a new line of bathtub hermetics. Featured is a l00vde series. This line of miniature capacitors has been designed for complex circuits which require max. space econony and high performance. Hopkins Engineering Co., 1'. O. Box 191, San Fernando, Calif. 91341.

Circle 331 on Inquiry Card

Monitor/Controllers

Bulletin I'S-14 presents comprehensive data on a new and versatile line of ultRelay monitor/controllers. The 12-page, 2-color bulletin supplies general application background data, lists standard and optional features, thoroughly describes principles of operation, and provides many illustrations and drawings. Airborne Accessories Corp., Electronic Products Div., 1414 Chestmit Ave., Hillside, N. J. 0720.5 ,

Circle 332 on Inquiry Card

Test/Patch Panels

This data describes a new concept in design and construction of test panels. Metal panels of desired size or shape are drilled or stamped to spec, providing 0.250 in. dia. mounting holes. Then closedentry test jacks for 0.080 in . dia. probes are pressed in for fast installation. The Hexibility of design permits an influite combination of layouts, with up to 10 different colors of jacks for coding. Electronic Molding Corp., 36 Church St., Pawtucket, R. I. 02860 .

Circle 333 on Inquiry Card

Rectifier Catalog

A catalog entitled "Slater Assemblies" describes high-voltage rectifiers, bridges, miniature assemblies and other specially designed encapsulated units. It contains typical circuit uses, electrical spees. of high-voltage rectifiers, subminiature highwoltage silicon cartridge rectifiers and full wave bridge rectifiers. (One such rectifier produces 200 to 1000 v PIV/leg and 5a. average. The package measures $1 \times 1 \times$ $7 / 16$ in. and reguires no heat sink. Slater Electric Inc., Semiconductors Div., Glen Cove, N. Y.

Circle 334 on Inquiry Card

Measurement Note

Application Note \#69, 40 pages, is a practical text on dc voltage measurement. Entitled "Which DC Voltmeter?," it begins with a lucid explanation of the available types and the reasons for their existence. It goes on to show how a dc voltmeter sloould be specified so as to serve the purpose exactly, while avoiding under-specifying and unnecessary cost from over-specifying. One chapter tells how to minimize the effect of unwanted signals in any type of dc measuring instrument, removing all the mystery from "floating" and "guarding." Hewlett-Packard, P. O. Box 301, Loveland, Colo. ${ }_{80537}$.

Circle 291 on Inquiry Card

In-House Microcircuits

Small companies can now produce hybrid microcircuits within their own faciities for $\$ 110$ a month. The equipment includes: a master reduction camera, a layout board, an oven, and a resist spinner. All parts offer the greatest flexibility to users in producing a substantial number of high value, stable and close tolerance resistors. Also available are consulting and advisory services covering the design, production and application of liybrid microcircuits. Complete details available from Electronic Films, Inc., a sulb. of Xerox, Burlington, Mass.

Circle 292 on Inquiry Card

Nomographs

Two nomographs for determining Q from capacitance or inductance measurements are provided in a new technical publication. This folder also includes a convenient table of capacitance loss formulas for relating such quantities as D, Q, conductance, parallel resistance, and series resistance. Boonton Electronics Corp., Parsippany, N. J.

Circle 293 on Inquiry Card

Designers' Manual

This 16 -page photocell manual should be invaluable to designers. Included is a bulletin describing 5 H material, a photoconductive substance combining cadmium sulfide and cadmium selenide to realize the best features of each. The bulletin describes a series of photocells with speeds of between 1 and 2 msec ., and memory characteristics 15 times lower than those of CaSe photocells. Clairex Corp., 8 W . 30 th St., New York 1, N. Y.

Circle 294 on Inquiry Card

Telephone-Type Relays

Data sheet No. 552 describes miniature telephone-type relays. Types LB and LBP relays, which provide high switching capability and versatility for their size, are described in detail. Coil, contact, and other electrical characteristics, as well as important environmental, mechanical, and dimensional data of the relays are included. C. P. Clare \& Co., 3101 Pratt Blvd., Chicago, Ill. 60645.

FULL WAVE BRIDGES FULL WAVE CENTER TAP RECTIFIERS

HALF WAVE THREE PHASE RECTIFIERS

zach th one

 small backageYou can reduce rectifier cost, size requirements, and installation time with the Varo IBR® series of silicon avalanche integrated rectifiers. All IBR ${ }^{2}$ devices feature 2000 V min. circuit-to-case insulation and SAR ${ }^{\text {² }}$ (silicon avalanche rectifier) characteristics to control transient overvoltages and permit decreased PRV safety factors in design consideration. For full-wave bridge applications: the $1 \mathrm{~N} 4436\left(250 \mathrm{~V} \mathrm{~min} . \mathrm{BV}_{\mathrm{R}}\right)$, IN4437 ($450 \mathrm{~V} \mathrm{~min} . \mathrm{BV}_{\mathrm{R}}$), and 1 N 4438 (650 V min. BV_{R}), Output current is 10 amps at $100^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{C}}\right)$. The full-wave center tap and 3 -phase half and full wave rectifiers are designed for 140 V and 280 V RMS operation with 250 V and 450 V min . avalanche voltages. They have $5 \mathrm{amp} / \mathrm{leg} \mathrm{DC} \mathrm{I}_{0}$ at $100^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{C}}\right)$ and 100 amp , one-cycle current surge. IBRe voltage doublers for 70 V and 140 V RMS operation are also available.
IBR ${ }^{8}$ devices are available in three mounting configurations: press-fit, TO-3, and single stud. Flag terminals also available.

Write today for complete information and new low
 prices.

SPECIAL PRODUCTS DIVISION

Circle 295 on Inquiry Card

BODY SIZE
ONLY
$.145 \times .300$
INCHES

For use on miniaturized devices, or on gigantic space tight multi-circuit electronic devices.

Glass tube construction permits visual inspection of element.

Smallest fuses available with wide ampere range. Twenty-three ampere sizes from $1 / 100$ thru 15 amps.

Hermetically sealed for potting without danger of sealing material affecting operation. Extremely high resistance to shock or vibration. Operate without exterior venting.

Circle 48 on Inquiry Cord

BUSS SHIELDED FUSEHOLDERS

For use where fuse and fuseholder could pick up radio frequency radiation which interferes with circuit containing fuseholder -or other nearby circuits.
Fuseholder accomplishes both shielding and grounding.
Available to take two sizes of fuses- $1 / 4 \times 11 / 4^{\prime \prime}$ and $1 / 4 \times 1^{\prime \prime}$ fuses.
Meet all requirements of both MIL-I-6181D and MIL-F-19207A.

Relay Handbook

This relay handbook contains principles and contact characteristics necessary for proper use of the Drireed switching concept. The 56-page book contains graphs, drawings, and definitions for reed relays. The curves and data are planned as a guide to avoid misapplication of these relays. Hathaway Instruments, Inc., 5800 E. Jewell, Denver, Colo. 80222.

Circle 296 on Inquiry Card

Microdiodes

Bulletin 129 describes a microdiode production and reliability processing capability. The devices can be packaged into computer assemblies. Microsemiconductor Corp., 11250 Playa Court, Culver City, Calif.

Circle 297 on Inquiry Card

Electroplating Process

Brochure E-70 describes a bright gold electroplating process. A graph indicating the effect of plating temp. and current density on Knoop hardness is included. By proper cloice of conditions, deposits between 110 and 260 on the Knoop scale nlay be ohtained. Technical Service Dept., Engelhard Industries, Inc., 75 Austin St., Newark, N. J. 07114.

Circle 298 on Inquiry Card

Resistor Catalog

This catalog on fixed-carbon composition resistors includes tables of sizes and physical dimensions. Ratings are provided in watts as well as the Mil type and standard resistance values and tolerances. Adelitional data on the Mil numbering system, color code, max. continuous working voltage, and de resistance test voltages are also contained. Speer Resistor Div., Speer Carbon Co., P. O. Box 547, Bradford, Pa. 16701.

Circle 299 on Inquiry Card

Wire Bulletin

Bulletin \#R-150 covers a new wire which meets Mil-W-81044 spec. for midtemp., ligh-performance hook-up wire. Data contains mechanical performance, size, temp., rating, weight, charts, and other pertinent characteristics. Rachem Corp., Oakside at Northside, Redwood City, Calif.

Circle 300 on Inquiry Card

Oscillograph

Bulletin 5-124 contains data on a low. cost, portable recording oscillograph for aerospace, industrial, and medical uses. Type 5-124 can be operated by personmel with no training and features a new line of accessories. Chamel capacity of the 40 lb . oscillograph is 6,12 , or 18 , and static and dynamic data from de to 13,000 ('Ps can be recorded. Records are produced by the direct print process, which means no chemical processing is required. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

Circle 301 on Inquiry Card

Measurement Bulletin

The thermometer, resistance, and applied thermocouple methods that motor manufacturers use to measure temp. rise are fully detailed in "Bodine Motorgram" Vol. 45, No. 4. Pointers on applying inotors in amb. over the temp. rise rating are also discussed. Bodine Electric Co., 2500 W. Bradley Place, Chicago, Ill. 60618.

Circle 302 on Inquiry Card

Relay \& Contactor Catalog

This 19-page catalog features general and special-purpose relays and contactors. Pictures, dimension drawings, and specs are included for 15 basic models. Units described are the R and FE relays, the B contactor (with models rated from 25a. through 75a.), the type BR reverser, and the fused contactor. The Rowan Controller Co., Fatontown, N. J. 07724.

Circle 303 on Inquiry Card

Encapsulants Guide

Sclection Guide to RTV Encapsulants, a 2-color brochure, gives comparative plysical, chemical, and electrical properties of 6 room-temp.-vulcanizing silicone-rubber encapsulants for electronic packaging. The brochure, 08-156, also gives how-touse suggestions for the 6 naterials, including data on pot life with different catalyst concentrations and data on how viscosity can be adjusted to suit particular processing needs. Dow Corning, Midland, Mich.

Allied Catalog

Catalog 660, 544 pages, lists over 60,000 electronic components, communication gear, sound and allied equipment. Engineering data and prices of the new Knight relays, panel meters, variable and fixed transformers, wire and cable, and compact solid-state oscilloscopes are shown. Listed are: a complete section on integrated circuits; IC breadboarding equipment and connectors: precision thermistors; circuit morlules: optical fibers; etc. Allied Electronics Corp., 100 N . Western Ave., Chicago 80, Ill.

Circle 305 on Inquiry Card

Core Memory

A new core memory system with $1 \mu \mathrm{sec}$. speed and large memory capacity is described in bulletin 6534. The Series MFA1, with 400 hsec . access time, is a vailable in word capacities up to 32,000 in any bit length. Construction is all-silicon semiconductor PC modules. The brochure includes data for specifying any of + cycle operations, 6 access nodes and 9 combinations of address and data registers, power supply and self-test circuitry. Physical, electrical and environmental data, and a timing chart are included. Fabri-Tek Inc., Amery. Wis.

Circle 306 on Inquiry Card

Thin-Film Materials

This data gives pertinent facts concerning the properties of various materials used in thin-film vacuum deposition. The brochure, called Chart A, alphabetically lists the material, its chemical symbol, melting point, density and m in imum vaporization temp. at $10^{-8}, 10^{-6}, 10^{-4}$ Torr. It also includes brief notes concerning sources and deposition methods. Sloan Instruments Corp., P.O. Box 4206, Santa Barhara, Calif.

Circle 307 on Inquiry Card

Flat Pack

This data sheet describes the Mico Lead Design flat pack. The monolithic base oi the MLD is alumina or beryllia for high mechanical strength. The 14 leads are either Kovar or nickel. Chip attachment can be made by wire bonding, flip-chip, or cantilever chip attachment techniques. Coors Porcelain Co., Golden, Colo.

Circle 308 on Inquiry Card

Memory Cores

Preliminary specifications on a new wide temperature, two-aperture Ferramic ${ }^{\circledR}$ core for nondestructive memory uses are described and illustrated in bulletin $2 \mathrm{MAC}-503$. The bulletin contains dimensional drawings and typical oscilloscope photographs which show responses between $-10^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Indiana General Corp, Electronics Division/Memory Products, Keasbey, N. J.

Circle 309 on Inquiry Card

Motors Brochure

GEA-7374 provides mechanical and clectrical data on the 59 frame shaded-pole Unitized ${ }^{\text {Tsi }}$ fractional hp motors. These 3.4 in. dia., all-angle type KSM motors are for use in forced-draft space heaters, portable fans, ventilators, portable evaporative coolers, tape recorders, humidifiers, ctc. Publication includes a motor selection guide, mounting dimensions, and connection diagrams. General Electric Co., Specialty Motor Dept. 1635 Broadway, Ft. Wayne, Ind. 46804.

Circle 310 on Inquiry Card

Volt-Ratio Meter

Bulletin No. 92, 8 pages, describes the P9000B series digital instruments with a 3-vear unconditional warranty. The bulletin also includes the B series plug-ins and digital data acquisition system accessories. Cimron Corp., 1152 Morena Blvd., San Diego, Calif.

Circle 31I on Inquiry Card

Protective Coating

Data is a vailable on a new silver conductive coating for use on ceramics or plastics. Called HumiSeal Type CO-616, it is a low temp. cure, thermosetting material applicable to $500^{\circ} \mathrm{F}$. It can be easily applied by pen, brush, or spray, and is recommended for shielding instruments or components electrostatically or electromagnetically. Columbia Technical Corp., Woodside, N. Y.

Circle 312 on Inquiry Card

Fuseholders of Unquestioned High Quality

TERMINALS ON

BUSS FUSEHOLDERS

Eliminates soldering. Permits use of pre-assembled harness. Reduces assembly time.

For protection of all types of electronic and electric devices
The complete line of BUSS and "TRON Family" fuses includes quick-acting, slow-blowing, signal or visual indicating fuses in sizes from 1/500 amperes up.

All standard items are easily obtained through your BUSS distributor, but if you don't find what you want get in touch with us.

Bulova's American Time Products division has a patent pending on an important innovation in tuning forks: By affixing to the fork's tines a pair of vanes which can be slotted, notched or pierced as desired, the fork can be made to chop light or similar energy beams-making possible optical effects never before achieved.
Bulova fork light choppers offer great advantages over motor-driven types: There are no wearing parts-no lubrication is required-operational life is many times longer! Forks handle light more efficiently. They are smaller and lighter than any other chopper. Example: A 2 cu . inch package can chop 1,000 times per second!

And Bulova keeps coming up with important improvements. Among the latest- forks can now be supplied with peak-to-peak tine excursions of $3 / \mathbf{g}^{\prime \prime}$ at 200 cps .

In addition, Bulova has recently patented torsional tuning forks. Each tine twists about its own axis independently, in opposite phase. This eliminates rate change due to attitude or
 acceleration, and results in the most constantanduniform movement known. Bulova torsional forks can be used for any number of scanner variations-in spectrophotomers, automatic star tracking units and densitometers. Write for information. Address: Dept. El-19

AMERICAN TIME PRODUCTS

[^2]Circle 49 on Inquiry Card

Seal Catalog

A complete line of single pin glass-tometal seals is described in Catalog 701. Called "Single Pin Terminals" the catalog contains detailed specs. of the dimensions and terminal configurations for over 150 seals, and provides a chart giving the max. test voltage and current rating of cach seal as per Mil-C-8.38413. Graphs to spacing of the terminals are provided. Acrospace Components Div., Atlas Chemical Industries, Inc., Valley Forge, Pa.

Circle 313 on Inquiry Card

Multipurpose Relay

Scries 44 DC is a compact, versatile t-pole doulle-throw relay. Typical loadlife capability of 400 K cycles at 5 a . and a 50 -pulse/sec. response rate make it isleal for use in telephone and communications equipment, computers, and various tvpes of data processing and process control equipment. Detailed specs. cover both relay and socket assembly and include all essential electrical, environmental, and mechanical data. Sigma Instruments Inc., 170 Pearl St., Braintree, Mass. 02185.

Circle 314 on Inquiry Card

Instrument Knobs

A data sheet is available which describes a line of instrument knobs designed on the basis of human-engineering studies. Single knobs are offered in 6 models, including round, pointer and bar styles. Three models of concentric bases include pointer and round strles. A number of combinations are possible. All styles and sizes conform to requirements of equipment built to Mil-T-21200, Mil-E-16400, etc. North Atlantic Industries, Inc., 200 Terminal Dr., Ilainview, S. У. 11803.

Circle 315 on Inquiry Card

Resistor Catalog

This 16-page catalog describes a complete line of precision wirewound resistors. It gives detailed descriptions of the four major classes of resistors most commonly used in the electronics field: composition carbon, deposited carbon, metal film and precision wirewound resistors. The maximum capabilities are shown in comprehensive charts, and the advantages in specific uses for each of these classes are described. Daven, Iiv. of Thomas A. Edison Industries, Livingston, N. J.

$$
\text { Circle } 316 \text { on Inquiry Card }
$$

Semiconductor Package

This dlata describes the Versa-Pak, a relatively inexpensive line of semiconductor packages using $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic. The basic design is quite versatile. Without additional tooling, it can he varied to accommodate diode arrays, matched pair transistors, or 1 or more discrete or monolithic dice. In all cases, the dice area is recessed to permit ohmic bonding upward, away from the device; or if a flip-chip is used, it can also be oriented in most cases to accommodate this approach, presenting a flip-chip within a flip package. (FI, 320 I.ong Island Expressway So., Melville. N. Y. 11749.

Circle 317 on Inquiry Card

Delco Radio Semiconductors available at these distributors

EAST

BINGHAMTON, N. Y. -Federal Electronics
P. O. Box 1208/PI 8-8211

PHILADELPHIA 23, PENN.
Almo Industrial Electronics, Ine.
412 North 6th Street/WA $2-5918$
PITTSBURGH 6, PENN. - Radio Parts Company, Iac. 6401 Penn Ave./361-4600
NEWTON 58, MASS.-Greeno-Shaw Compawy
341 Watertown Street/W0 9-8900
CLIFTON, N. J.-Eastern Radio Corporation
312 Clifton Avenue / $471-6600$
NEW YORK 36, N. Y. - Harvey Radio Company, Itic. 103 West 43rd Street/JU 2-1500
BALTIMORE 1, MD.-Radio Electric Service Company
5 North Howard Street/LE 9-3835

SOUTH

BIRMINGHAM 5, ALA.
Forbes Distributing Company, Ine.
2610 Third Avenue, South/AL 1-4104
WEST PALM BEACH, FLA.-Goddard, Inc.
1309 North Dixie/TE 3-5701
RICHMOND 2日, YA. - Meridian Electronies, Ine.
1001 West Broad Street/353-6648

MIDWEST

BATTLE CREEK, MICH. - Electronic Supply Corporation
94 Hamblin Ave./P. O. Box 430/565-1241
INDIANAPOLIS 25, IND.
Graham Electronies Supply, Ine.
122 South Senate Avenue/ME 4.8486
CLEVELAND 1, OHIO - The W. M. Pattison Surndy Co. Industrial Electronies Division
777 Rockwell Avenue /621-7320
CHICAGO 30, ILL.-Merquip Elestronies, Inc. 4939 North Elston Avenue/AV 2-5400
CINCINNATI 10, OHID - United Radio, Ine.
7713 Reinhold Drive / $241-6530$
KANSAS CITY 11, MO. - Waliers Radio Suppody, Inc.
3635 Main Street/JE 1-7015
ST. LOUIS 17, MO.
Electronic Components for Industry Co.
2605 South Hanley Road/MI 7-5505
TULSA, OKLAHOMA 74119-Radio, Ine.
1000 South Main Street/(918)-587-9124
MINNEAPOLIS, MINNESOTA 55413
Northwest Electronics Corparation
335 Hoover St., N. E./(612)-331-6350
WEST
DALLAS 1, TEXAS-Adleta Company
1907 McKinney Ave./RI 2-8257
HOUSTON 1, TEXAS - Harison Equipment Company, Ine.
1422 San Jacinto Street/CA 4.9131
SAN DIEGD 1, CAL.
Electronic Components of San Diego
2050 India Street, Box 2710/232-8951
LDS ANGELES 15, CAL. - Radio Products Sales, Inc.
1501 South Hill Street/RI 8-1271
LOS ANGELES, CAL. 90022-Kierulff Electronics
2565 Commerce Way/OV 5-5511
MOUNTAIN VIEW, CAL - Kierulff Electronics
2484 Middlefield Road/968-6292
DENYER, COLO. - L. B. Walker Radio Company 300 Bryant Street/WE 5-2401
SEATTLE 1, WASH.-C \& G Electronics Company 2600 2nd Ave./ Main 4-4354
PHOENIX, ARIZ. - Midland Specialty Co., Ine.
1930 North 22nd Ave./258-4531
ALBUQUERQUE, N.M. - Midland Specialty Co., Ine.
1712 Lomas Blvd., N.E./247-2486
TUCSON, ARIZ. - Midtand Specialty Co., Inc.
351 South Park Ave./MA 4-2315
Ask for a complete catalog

oivision of general motors - kokomo. indiana

Flexible Way to Amplify, Store and Display Low Level DC-75KC data

1000X Amplification, high common mode rejection
new wideband, chopper-less, all-solid-state, differential DC amplifier precisely measures thermocouple, strain gage and similar DC outputs. Unmatched in 0.01% non-linearity, $\pm 0.1 \%$ gain accuracy, $\pm 0.01 \%$ gain stability and $120 \mathrm{db} \mathrm{c} . \mathrm{m}$. re jection (dc - 60 cps , up to 1 K source imped. in either side of input) - for $\$ 495$. including the power supply. Ten of these compact units rack- or case-mount in only $5^{\prime \prime} \times 19^{\prime \prime}$ of panel space, deliver 10 v across 100 ohms with up to 1000° of cable, to drive magnetic tape recorder, oscillograph, etc. as described at right.

IRIG-compatible tape recording at lower cost
with 7- or 14 -channel 3900A Series systems following 8875A Data Amplifiers. Record at $17 / 8$ to 60 ips , push-button-selected tape speeds, from $100-100,000 \mathrm{cps}$ in direct mode; 3 db response, better than 40 db signal/ noise ratio rms at 60 ips . Integral footage counter accurate to 99.95%, plug-in solid state amplifiers, snapon reels, no maintenance except occasional tape path cleaning. Fully-compatible with other IRIG-standards instrumentation, at basic system prices from $\$ 6,185$ (7 channels), or $\$ 8,415$ (14 channels), plus desired electronics. Store all your low level data signals on 3900A. recorded tape, then see . . .

High resolution graphic recordings immediately
made by slow-speed playback of taped signals into the new 8- to 24 -channel 4500 Series dc-5kc optical (ultraviolet) oscillograph. lmproved optical writing system and charts produce high contrast traces which may occupy entire $8^{\prime \prime}$ chart width, overlap, be positioned along a common baseline or anywhere on the chart. Traces clearly readable in room light immediately following recording, may be permanently preserved by chemical fixing. Entire dc-5 kc frequency range covered by one set of galvanometers, eliminating separate galvanometer inventories and tedious changes. Trace resolution aided by choice of 9 pushbutton chart speeds, 0.25 to 100 inches/sec.: full width time lines, amplitude lines partially or wholly removable, sequential trace interruption for trace identification. Complete 8-channel systems from $\$ 6,950$.

For complete specifications and application help, call your local HP/Sanborn field engineering office, or write: Sanborn Division, HewlettPackard Company, 175 Wy man Street, Waltham, Mass. 02154.

Cabinet Catalog

"Practical Cabinetry Designed with Alcoa Aluminum for the Electronics Industry" is a guide on how to design and fabricate electronic housings. It details the advantages of coated, vinyl-clad, and patterned aluminum sheet, patterned aluminum extrusions, and aluminum fasteners in both functional and appearance design for relay and cabinet racks, panels and brackets, decks, foundations, chassis bottom plates, and meter and speaker cases. Alcoa, 682 Alcoa Bldg., Pittsburgh, Pa. 15219.

Circle 318 on Inquiry Card

Toggle Switches

Publication LE-104 describes the "Designer Line" toggle switches. They come in a choice of 7 standard colors, 8 lever styles, 5 circuit arrangements, 3 terminal configurations, and 3 different ampere ratings for ac or dc. The full-color, illustrated publication lists design features, electrical ratings, circuit and terminal configurations, lever style and switch base dimensions on the complete line. CutlerHammer Inc., 4201 N. 27th St., Milwaukee, Wis. 53216.

Circle 319 on Inquiry Card

Slotted Lines

Bulletin SL-1 describes slotted lines which measure impedance of large size coaxial devices in their own dia. The bulletin offers data on freq. range, impedance, residual vswr and connector configuration for 3 standard models in $15 / 8$, $31 / 8$ and $61 / 8$ in. dia. Phelps Dodge Electronic Products Corp., 60 Dodge Ave., North Haven, Conn.

Circle 320 on Inquiry Card

Amplifiers Brochure

This brochure contains specs. and applications for a line of single-ended and differential amplifiers. The single - ended models use FET choppers and are shortcircuit proof. The differential units are small encapsulated models which use either regular transistors or FETs. In addition to the products, company facilities are included. Zeltex, Inc., 2350 Willow Pass Rd., Concord, Calif.

Circle 321 on Inquiry Card

Random Access Memory

Product Data 1-103 describes a dualcartridge random access memory system the RAM® Model TLM-4550. It uses a drive system which allows high-density magnetic tape loops as the storage medium. These loops give the RAM simplicity of design and flexibility. The memory provides 50.2 million bits of on-line capacity equally divided between the 2 cartridges. Data is recorded serially at a data density of 1000 bits/in., and any data may be written or read at random by transmitting address information to the unit with an appropriate command signal. Average access time is less than 90 msec . Potter Instrument Co., 151 Sunnyside Blvd., Plainview, N. Y. 11803.

Cirele 322 on Inquiry Card

LEAK DETECTOR

If you ever tried to locate a microscopic vacuum leak you know it can take up to several days. This time is reduced to minutes by using a simple tool called an Ultraprobe. Made by EitelMcCullough, San Carlos, Calif., it pinpoints leaks to within 0.010 in. when used with a mass spectrometer leak detector.

Rocket motor static level and high-frequency instability measurements from near dc to above 10 kc are made with a high-precision transducer which uses "helium bleed" techniques. In the Model 615A, a product of Kistler Instrument, Clarence, N.Y., a very small, helium gas-filled passage is used to transmit both static and dynamic pressures to a protected, miniature quartz element. Using helium instead of air nearly triples the frequency response of the passage. The constant flow of gas also maintains the transducer in an environment conducive to precision measurement, and eliminates the need for water-cooling connections.

A report is available that answers many questions relative to flexible bonding configurations and their effectiveness at high r-f frequencies. Called "Theoretical Analysis, Measurements, and Practical Applications of Flexible RadioFrequency Bonding Configurations," it is the result of tests conducted to compare the Z of various flexible bonding configurations, and gain a better insight concerning r-f bonding characteristics. Write to McDonnell Aircraft Corp., Lambert-St. Louis Airport, Box 516, St. Louis, Mo. Attention: R. M. Soldanels.

Engineers at the TRW Space Technology Labs. have found a way to stop the earth-at least as far as measurement purposes are concerned. Scientists trying to guide a missile to a target have the problem of compensating for the earth's movement. This problem is compounded by the instability of launch pads or structures. A new measurement technique, developed by TRW, combines optical and inertial sensing instruments to accurately measure the stability of launch structures. By determining the exact launch point, the boosters guidance system will have a reliable reference point on which to base its targeting.

How transfer standards are useful to compare standard cells against working standards to an accuracy of 2 ppm during a working day in a normal laboratory environment is explained in application note \#70. This should be especially useful to facilities which must maintain accuracy in the calibration of de standards, data acquisition systems, and dc digital voltmeters. Write to Hewlett-Packard Co., P.O. Eox 301, Loveland, Colo.

The Radio Standards Laboratory of the NBS Institute for Basic Standards at Boulder, Colo., has announced three changes in the microwave calibration services it offers: (1) Calibration of noise sources has been extended to WR62 waveguides. (2) Calibration of coaxial attenuators and couplers has been pushed beyond the former ceiling of $12 \mathrm{GH}_{3}$ up to $18 \mathrm{GH}_{z}$. (3) Measurements of reflection coefficient magnitude is now also available for WR137 waveguides.
Non-contact measurement of displacement, vibration, dimension, reflectivity, speed, quantity, etc., can be easily made with a versatile fibre-optics cartridge/probe device. Made by Mechanical Technology Inc., Latham, N.Y., it has a displacement range of 0.002 in . to 0.500 in .; freq. range is dc 2 MC ; and resolution is from 0.000001 in . in static instrument to $0.000010 / 25 \mathrm{in}$. in dynamic version.

Extremely high analytical sensitivity in the order of 1 part/ billion, and electronic recording of mass spectrometric data are features of the Ion Microprobe Solids Analytical Mass Spectrometer now being offered by GCA Corp., Bedford, Mass. The instrument can be used to obtain a recorded analysis of the surface and bulk of solid materials, rapidly and without sample preparation.

NOT QUITE

Almost perfect sphere isn't perfect enough at ACF Industries' AIbuquerque Div. standards laboratory. Technician Anthony Hofman demonstrates on chart how slighest deviation is shown in roundness of $31 / 2 \mathrm{in}$. reference ball that will be used in test equipment. Device rotates and charts ball to 3 -millionths of an inch.

Applying Directional RF Wattmeters

Directional r-f wattmeters are available to measure power of either the forward or the reflected wave in 50 -ohm coaxial r-f transmission lines. How is this done?

Whether for use with r-f cable connectors or for rigid lines to 9 in . dia., the wattmeters consist of an accurately constructed section of known characteristic impedance Z_{o} (50.0 ohms), precision-machined sockets for the insertion of the various plug-in elements which determine power and frequency range of the instrument, and one or two D'Arsonval meters. The sensing circuit, which is completely contained in each element, is basically a resistor R in series with a loop coupled to the center conductor by mutual inductance M. Since the elements can be rotated in their sockets by 180°, M is either positive (when the arrow points toward the load), Fig. 1 (a), or negative (with the arrow in the opposite direction), Fig. 1 (b).

The bottom of the resistor and the portion of the loop parallel to the axis form a third component, capacity C, with the center condluctor. The complete basic sensing circuit with associated voltages is shown in Fig. 2. This is the circuit of a "lumped constant" directional coupler, if the physical dimensions of the loop are kept to a small fraction of a wavelength.

How does this circuit discriminate between the forward and reflected waves, i.e., what makes it directional?

Fig. 1: Schematic of sensing circuit. At (a), mutual coupling is positive; at (b) negative.

The output voltage, e, is the sum of two samples: ε_{R} from the division of E by R and C,

$$
c_{R}=\frac{R E}{X_{c}}=R E\left[j \omega C^{\prime}\left(\text { if } R \ll X_{c}\right)\right], \text { and }
$$

$c_{\text {al }}$ by induction.

$$
e_{M}=I[j \omega(\pm M)]
$$

The sum, $c_{R}+c_{M}=j \omega(C R E \pm M I)=e$.
Besides selecting R very much smaller than X_{c}, the components of the circuit are chosen so that $C R=$ M / Z_{0}.
The output voltage is now:

$$
e=j \omega\left(E M / Z_{\circ} \pm M I\right)=j \omega M\left(E / Z_{0} \pm I\right)
$$

At any one point on a transmission line, the voltage, E, is the sum of the forward and reflected voltages $E_{f}+E_{r}$ (Fig. 4) ; and the current, I, is E_{f} / Z_{o} E_{r} / Z_{0}. (Since the reflected wave travels in the opposite direction $I_{r}=-E_{r} / Z_{0}$).

When the element is pointing toward the load, the output voltage is:

$$
\begin{aligned}
& e=j \omega M\left(E / Z_{0}+I\right)= \\
& \quad j \omega M\left(\frac{E_{f}+E_{r}}{Z_{0}}+\frac{E_{f}-E_{r}}{Z_{0}}\right)=\frac{j \omega M}{Z_{0}}\left(2 E_{f}\right) ;
\end{aligned}
$$

and turning the element toward the source, it becomes:

$$
\begin{aligned}
& e=j \omega M\left(E / Z_{0}-I\right)= \\
& \quad j \omega M\left(\frac{E_{f}+E_{r}}{Z_{0}}-\frac{E_{f}-E_{r}}{Z_{0}}\right)=\frac{j \omega M}{Z_{0}}\left(2 E_{r}\right)
\end{aligned}
$$

Fig. 2: Basic power sensing circuit used in wattmeter.

$C B R=$ voltage dividing network $M=$ mutual inductance between loop and center conductor
$E=$ voltoge between outer and center conductor
$I=$ current in line

Fig. 3: Typical sensitivity response curves for r-f wattmeters.

Fig. 4: Standing-wave diagram for voltage on a franamiscion line.

This proves that the r-f output voltage from the sensing element is directional and proportional to the voltage in the line due to either the forward or the reflected wave. It is also directly proportional to ω, that is to frequency ($\omega=2 \pi f$). To make it frequency independent, e can be terminated in a capacitive reactance which is inversely proportional to ω. The voltage across this capacitor is rectified, filtered and displayed on a meter calilrated in r-f watts.

How frequency-independent are the plug-in elements and what happens beyond their stated limits? The "frequency range," i.e., the band of frequencies for which 5% measurement accuracy is listed, varies from narrow to $15 / 1$. The most common top-to-bottom frequency ratio is presently $2.5 / 1$ as shown in Fig. 3. Designed for operation between 100 and 250 mc , the 500 w element is flat far beyond these limits, while the 10 w unit drops off on either side of the limits.
The explanation for this is simple. Since the same indicating meter is used for all power ranges, the output voltage, e, for full scale deflection must be the same. The sensing element must be coupled tighter to the line for low power levels than for higher powers, i.e., the C and the M must be larger. The larger C eventually violates the design condition that R be mucl smaller than X_{c}, and larger mutual inductances M are no longer purely reactive.

Furthermore, the ability of the circuit to discriminate between the forward and reflected wave components, i.e., its directivity, depends upon the relationship $C R$ $=M / Z_{o}$. While the C and the Z_{o} are easy to maintain, keeping undesirable reactance and resistance factors out of R and M requires state-of-the-art skill and components.

What is the effect of load impedance on the accuracy? The design formulas show that the only impedance influencing the output voltage is Z_{o}, the characteristic impedance of the line at the point of measurement.

Since each commercial wattmeter is supplied with a section of 50 -ohm line, this Z_{o} is accurately known.

Where should the wattmeter be inserted? Again referring to the formulas, it can be seen that the elements extract a voltage proportional to either E_{f} or E_{r}. While the total voltage, E, varies along an improperly terminated 50 -ohm line, the component voltages do not. This is simply another way of saying that the energy contained in the forward wave remains the same from the source to the load, where some or all of it is reflected (unless the load is 50 ohms) and that reflected energy remains constant from the load back to the source. The directional power meters can, therefore, be placed anywhere between the source and the load.

There are some logical exceptions. For instance, if the transmission line is long and lossy, some energy will be dissipated in it. A power meter at the transmitter will measure power at that point and, when transferred to the antenna, will measure how much of it arrived. Incidentally, the difference between the net power levels represents the line or cable losses. Similarly, a power meter inserted between a transmitter and a low-pass filter indicates the sum of the fundamental and harmonic frequencies power in the forward direction, and all of the harmonic frequencies power plus whatever fraction of the fundamental is reflected in the reverse direction (the sensitivity of elements to harmonics depends on their frequency response as shown in Fig. 3). If the meter is now transferred to the other side of the filter, it will only indicate fundamental power in either direction.

Wattmeters, designated "Thruline" by Bird Electronic Corp., are available from 1 w to 250 kw , from 0.45 to 2200 mc , and for all sizes of 50 -ohm rigid line or cables. Model 43 for cables, and details of rigid line and peak-reading models, are shown in general catalog GC-65, available on request from Bird Electronic Corp. direct.

Tung-Sol Subminiature Lamp

 Assemblies Improve Production, Cut CostsDo you have bulb shrinkage problems where small lamps are wired into circuit boards?

Tung-Sol lamps with molded nylon bases can save you money. The nylon base absorbs mounting strains to permit firm seating of the lamp. Lead wire breakage and bulb damage are eliminated. Production goes up. Costs go down. Inventory is reduced. When you order 1000 lamps, you get 1000 useable lamps. Nylon bases can be color-coded for production identification.

In addition to molding bases to any configuration, Tung-Sol can provide special harnessing. Write for free suggestions about how Tung-Sol can handle your lamp requirements.

If your application requires only bulbs, ask for a quotation from Tung-Sol. The Tung-Sol line of miniature and subminiature lamps is extensive. Quality is the best that more than half a century of know-how can produce.

TUNG-SOL

INSTRUMENT LAMPS
Tung-Sol Electric Inc., Newark, N. J. 07104

HIGH-RESOLUTION PICKUP TUBE

Lb to 3000 ty fines/in. are easily attained by a new 3 -in. image dissector pickip camera tube. Called the WVI, 23111 , it has excellent hack and white contrast as well as a short rise and decay time. The tube is ideal for microfilm readlont. TV film scanning, and high-speed flying-spot scanning.

Its mannfacturer, Westinghouse Electric, Elmira, N. Y., says the new tube is inherently more rugged and longer lived because it has no target or hot cathode to deteriorate. Circuitry is simpler since there is no beam-forming grun, and standard image orthicon components can be used when scan rates permit. A zoom effect can be attained electronically by magnification throngh scan reduction. By decreasing the deflection amplitude and underscanning the image, a magnification of several hundred times is possible. Resolution is the same as that for the original area imaged on the photocathode. No change in light level is necessary during the underscan operation.

In operation, an electronic picture corresponding to the optical image foctused on the faceplate is emitted from the photocathode. The picture is then scanned across an aperture, and at any instant in time only the electrons passing throngh the aperture enter the electron multiplier. The quantity varies with the light intensity on the portion of the image being scanned. Further amplification is accomplished by secondary emission in the 12 -stace multiplier section. The resulting output from the multiplier collector represents the dissection of the original image into an orderly sequence of electronic segments which are then fed into a video amplifier.

Image dissector pickup camera tube has no target or cathode.

General Micro-electronics has introduced a family of monolithic integrated MOS sub-system functions. The MOS sub-system functions are a continuation of GMe's PICOLOGIC family. The series contains counters, gates and registers, useful for many functions covering general logic design, digital computation, and analog signal multiplexing.

Electronic Films Inc., subsidiary of Xerox Corp. has announced an "unusual entry" into the equipment leasing business. For a monthly rental the firm will provide a complete set of equipment enabling users to custom-produce their own designs in hybrid microcircuits within their own facilities.

Sperry Semiconductor announced that it has available for delivery five monolithic RTL circuits in flat packages and in low profile TO-5 cans. The circuits are under the Sperry name "MICRONETS," but they are produced under processing methods patented by Fairchild Camera and Instrument Corp.; they are completely interchangeable with Fairchild units.

Microtek Electronic Inc. announces new thick-film capacitor networks from 1,000 to $500,000 \mathrm{pf} / \mathrm{in}^{2}$ with low temperature coefficients, low dissipation factors and low voltage coefficients which cover circuit applications ranging from bypassing to high-Q 500 MC tuning. Voltage is rated to 50 volts.

Complete process systems for washing and rinsing semiconductor substrates and other micro-electronic devices are offered by Interlab Inc. Standard designs incorporating up to six stages offer choice of overflow tanks, multi-stage cascades, automatic or manually adjustable heating systems and ultrasonic equipment specifically designed for processing the most fragile components.

Electroglas Model 131 Motorized/ Manual Wafer Die-Sort combines a number of advances for improved microcircuit and transistor wafer testing, according to Electroglas Inc. "Versatility of Model 131 probe head and vacuum stage adjustments-plus motorized, footswitch-operated probe ring -make it the fastest operating, nonautomatic die-sort in the industry."

AEROVOX DISTRIBUTORS STOCK CERALAM CAPACITORS

When you need Aerovox CERALAM CK.05, CK. 06 MIL-approved capacitors, go straight to your local Aerovox Distributor. These molded radial lead capacitors meet MIL. C.11015/18/19, they will operate without derating at 200 VDC from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, and have been life-tested at 400 VDC, $150^{\circ} \mathrm{C}$.

And when you're looking for high capacity (up to $100,000 \mathrm{pf}$) units for transistorized circuitry in CK.05, CK-06 sizes, just ask for Aerovox MC51, MC61 (100VDC).

Your authorized Aerovox Industrial Distrib. utor offers a top quality line of Aerovox products - with fast, efficient, friendly service... and at factory prices.

Ask him for Aerovox Bulletin NPJ-123 Rev. containing complete technical specifications.

DISTRIBUTOR DIVISION, NEW BEDFORD, MASS. 02741
Technical Leadership-Manufacturing Excellence

(A) HIGH PERFORMANCE PLUG-IN Type S1077A

- $1 \times 10^{-10} / \mathrm{C}^{\circ}$ from -20° to $+55^{\circ} \mathrm{C}$
- 1×10^{-10} Short Term Stability
- Less Than $1 \times 10^{-9} /$ Day Aging
- 1 MC Model S1077A . . . $\$ 450$
(B) LOW COST PLUG-IN Type S1072A
- Less Than $2 \times 10^{-9} / \mathrm{Day}$ Aging
- 5×10^{-8} from -55° to $+71^{\circ} \mathrm{C}$
- 60 KC to 12 MC Output Available
- 1 MC Model S1072A... $\$ 345$
(A) \& (B) All silicon solid state design using proportional ovens with glass-enclosed crystals assures unexcelled per-formance-with guaranteed specifications-in frequency and time applications. Ideal for use in digital frequency counters, phase-locked receivers, synthesizers, SSB systems, missile guidance and satellite tracking systems, navigation, computer and communications equipment.
(C) HIGH PERFORMANCE MILITARY Type SLN6039
- Fast Warm. Up within 5×10^{-9} in 1 hour
- 5×10^{-10} or $1 \times 10^{-9} /$ Day Aging
- 60 KC to 12 MC Output Available
- 3 MC Model SLN6039D . . . $\$ 540$
(C) This oscillator with its wide dynamic range proportional oven and glass-enclosed precision crystal meets many MIL specifications for both airborne and ground equipment.

For full specifications call or write: Motorola Communications \& Electronics, Inc., 4501 Augusta Blvd., Chicago, Illinois 60651. (312) 772-6500. A Subsidiary of Motorola Inc.

Precision Instrument Products

COMPUTER APPREHENDS OFFENDERS
A New application for a computer system is being tested out by the New York City police department with startling results so far.

The police lave been faced with a serious problem of apprehending over 100,000 scofflaw offenders a year who break traffic laws but fail to answer court summonses or pay the prescribed fines, and with solving some 30,000 cases of stolen cars and 10,000 stolen license plates. By working in cooperation with engineers at Sperry Rand Univac Division, a system was devised to aid in the solution of these crimes.

Called "Operation Corral" (Computer Oriented Retrieval of Auto Larcenists), the system operates as shown in Fig. 1. First, the license plate numbers of offending motorists are fed to the memory drums of a Univac 490 Real-Time Fastrand Mass Storage Subsystem located in the U.S. Pavilion at the New York World's Fair. Two police cars are strategically placed on a densely packed roadway. The rear police (observer) car obtains license numbers from passing cars and radios these numbers consecutively to police headquarters. A communicator at headquarters teletypes these numbers to the Univac 490 computer where the offending numbers are stored. If the number transmitted is in storage, a signal is given which is relayed to the forward police (apprehending) car which makes the arrest. Time for completion of the check is only 5 to 7 seconds from the time the car license number is first observed.

In demonstration before the press, a car was apprehended whose driver had passed through a red light early in 1964 but had failed to answer a summons or pay the customary fine for such offense. A warrant had previously been issued for her arrest but could not be served because she had moved without leaving a forwarding address. The warrant was in the apprehending police car and was served on the spot. The offender was driven to court and required to stand trial!

In use since May on a very limited basis, this electronic system has resulted in the apprehension of about 2,000 scofflaws. For instance, on May 27th, a 20 year old man was apprehended for a stolen license plate in the Bronx. When arrested, he was also charged for grand larceny, a forged drivers license, forgery of motor vehicle registration and a stolen car. On July 3rd, a man was apprehended in Manhattan for a stolen license plate. When arrested it was learned that he was wanted in Camden, N. J., for assault and robbery. On July 13th in Brooklyn, a young man was apprehended for a stolen license plate. Police discovered and charged him with illegal possession of narcotics.

Whether the electronic system will be continued beyond a trial period that will end with the closing of the World's Fair will depend upon the economics of it. This is yet to be evaluated. But, it looks good and could prove to be just one more mass application for computers.
blh recorder measures air pollution

Four-channel recorder, highly portable, easily installed in aircratt, used to record air pollution over metropolitan New York. The recorder, made by Baldwin-Lima-Hamilton Electronics, is adjusted by Alex Proudfit, head of Sign-X Labs., firm making air sample tests.

DOD STANDARDIZATION FLAW-Somewhat red-faced Pentagon brass, prodded by the Gene-al Accounting Office, are setting up a system to review new items and make sure that items dropped by the procurement standardization program stay dropped. GAO discovered that while one Defense group was busy cataloging and standardizing general supply items, other branches were blithely buying items that had been dropped. Apparently the problem arose where new items were not analyzed by persons with technical ability to decide whether a standard item would serve as well.

- Especially suited for degassing and drying electronic components in vacuum oven Components sealed in DRI-LAB under ultra-dry inert atmosphere conditions produced by DRI-TRAIN recirculating gas purification system Many other curing, pre-heating and aging applications Temperature range of oven to $600^{\circ} \mathrm{C}$ controlled to $\pm 1^{\circ}$ ${ }^{-}$Provisions for $6^{\prime \prime}$ diffusicn pumping system for highvacuum operations. Front panel can be adapted with sealed microscope for microsoldering, microweiding, etc.
For full information write or call: (Area code 213) 983-0763

VACUUM / ATMOSPHERES CORPORATION

7356 GREENBUSH AVENUE. NORTH HOLLYWOOD. CALIFORNIA
Circle 54 on Inquiry Card
ELECTRONIC INDUSTRIES • October 1965

POWER CONTACTOR

is for applications requiring up to six pole arrangements, $25,30,40,60$ or 75 amps , up to 600 volts, plus four auxiliary contacts N/O or N/C, and with either AC or DC coils. Ideal for simultaneous 2-motor operation, or transfer switching needing N / O and N / C main poles, or for additional auxiliaries above main poles. Simple double stacking of contact decks saves money and space.

Write for more information

Circle 55 on Inquiry Card

FUSED CONTACTOR

is a compact unit combining the Rowan type R or B contactor with 300 volt SC fuses in one package. The fuse block with clips is integrally mounted and electrically connected to the contactor. Only six connections are necessary for field wiring. Result: short circuit capacity for systems capable of delivering up to $100,000 \mathrm{amps}$ AND sufficient time delay to prevent needless interruption of service on starting currents or other harmless overloads. Write for more information

Circle 56 on Inquiry Card

EDTORTM

NOISE-CANCELLING dynamic microphone with built-in transistor amplifier for telephone-type handsets where a uniform frequency response, low noise and low distortion are required, has been introduced by Altec Lansing. Typical uses includes high quality sound systems where telephone transmitters are dialed into sound systems for paging.

AUTOMATED air conditioning and other functions is one of the newest uses for computers. The new International Monetary Fund building in Washington, D.C., is being fitted for a Westinghouse Prodac ${ }^{(B)} 50$, with a 12 ,000 -word memory, expandable with modules to 16,000 words at will. The system will handle the air, heat, ventilation, lights, power and fuel usage and other functions important to the operation of a large office building.

COMRADE SOLONS for Sovict legislative drafting agencies are thinking about using computers to prepare legislation, as reported by Radlio Liberty in West Germany. The law agencies are showing great interest in the possibility of using computers in the law office. A Soviet source hints that the first electronic law clerk will be employed "in the near future," although research is slow.

SOLID-STATE electronic control of large capacity trucks (up to $40,000 \mathrm{lbs}$.) opens up "exciting vistas in the use of electric trucks for material handling," according to Elwell-Parker Electric Co. Control circuitry employs silicon con-trolled-rectifiers instead of mechanical switches or power transistors to modulate traction motor power. SCR control delivers full motor torque, without jerks or wheel spinning, at ally truck speed.

COMPUTERS have landed and the U.S. Marines have them well in hand. The Corps has started a computerized logistic system-for almost instantaneous response to a world-wide military commitment. The system includes five IBM System/360s at three USMC locations. Hub of the system, and inventory control point, is at Philadelphia, Pa. The system will control some 380,000 supply items for the Fleet Marine Forces, ranging from transistors to liuge tanks.

GIRL FRIDAY - electronic style breezed through its first test of public opinion with all semiconductors flying. Fascinated customers at three South Florida banks gave the automated machine (Lectro-Teller by Milgo Electronic Corp., Miami) their strong approval after watching it unfailingly accept deposits, issue receipts and reject counterfeits.

ELECTRONIC REVENOOERS are

 closing in. The IRS has added five more Honeywell 200 computers to its nationwide system. There are now 15 systems being used to process individ-ual and business income tax returns. lRS believes the systems are improving mathematical verification of returns, increasing ability to detect improper refund claims.

ICE CONDITION detector designated I CED (Ice condition Electronic Detector) developed by Holley Carburetor Co., Warren, Mich. "I C E D can anticipate conditions that form ice before ice can form, and then actuate a predetermined mechanism to start an anti-ice action." System includes moisture and temperature sensing elements, power supply and logic circuit.

Physical Networks
By Richard S. Sanford. Published 1965 by PrenticeHall. Inc., Englewood Cliffs, N. J. 07632 . Price $\$ 17.25$. 576 pages.

Several areas of engineering are linked to present a unified treatment of linear lumped-parameter systems. Electrical, mechanical, hydraulic, acoustical, and thermal systems are examined side by side in this investigation. Subject matter ranges from classical techniques to modern developments that have exerted an influence on systems analysis methods.

Probability and its

Engineering Uses, 2nd Ed.
By Thornton C. Fry. Published 1965 by D. Van Nostrand Co., Inc., 120 Alexander St., Princeton, N. J. Price $\$ 15.00$. 462 pages.

First published in 1928, much of the material has been completely rewritten, and new material on Random Walks, Markov Processes, and the Foundations of Statistics has been added.

Book contains many examples and presents a well-graduated introduction to the mathematical theory of probability. This is followed by a treatment in greater depth of topics of special interest to physical and social scientists. It presupposes a knowledge of mathematics through the calculus.

3M brings you complete epoxy system capability

What form of epoxy would you like? A tape? Tubing? Flexible or rigid coated material? 3 M has them all, plus a complete line of room-curing and oven-curing epoxy resins in both rigid and semiflexible forms. Where complete encapsulation is desired, 3 M has an epoxy resin of the right viscosity and formulation to suit your needs. If complete encapsulation is not feasible, 3M offers epoxies engineered in other forms to build equipment with much of the same insulation qualities of units fully encapsulated. Whatever your epoxy insulating problem, 3M has the products and people to solve it. Want more facts? See your 3M "lQ" Man*.

""IQ" means Insulation Qualified. Your 3M Man is trained and qualified to advise and assist with insulation problems. Call him or write: 3M Co., St. Paul, Minn. 55119

No Production Slow-downs with KAHLE AUTOMATIC EQUIPMENT

Reduce YOUR Manufacturing Costs with KAHLE Automation Equipment

KAHLE Servos and Feedbacks detect rejects prior to completion of assembly Instrumentation feedbacks and servos can be supplied that will reject faulty parts prior to assembly and product finishing... saving materials and time in production.

KAHLE Machines are Customer-approved under actual operating conditions
Your equipment is run in our factory, using your materials in the presence of your engineers; the machine is not shipped to you unless you approve it!

CONSULT KAHLE-Save time and money by letting professionals build your specialty production equipment for automation!

Kahle Engineering Company
3318 HUDSON AVE., UNION CITY, N. J. Telephone: UNion 7-6500 (Area Code 201)

NTTER
 NEWS

London-Plessey Company Ltd. is undergoing a major realignment aimed at a larger share of world markets. UK operations will be divided into automation, components, dynamics, electronics, and teleconmmications, all under Plessey name.

Chelmsford, Essex - A cryogenic strip-line circulator has been developed by Marconi Co. to operate as low as $-260^{\circ} \mathrm{C}$, an essential component in certain types of low noise amplifier for satellite communications.

Hayes, Middlesex-A new portable professional tape-recorder, less than 11 pounds in weight including batteries, was announced by EMI Electronics Ltd. It can take a fourth magnetic lread for sound sync. and can mix two mike inputs.

Farnborough—New dynamic analysis equipment developed by Solartron is to be introduced to U.S. markets. Agreement has been reached between Solartron and the Boonshaft and Fuchs Division of Weston Instruments.

Glasgow-Complete automatic equipment for analyzing effect of rocket motor flame on radar signals has been developed by James Scott Ltd., Carntyne, Glasgow, for the Ministry of Aviation.

Carnarvon-CTS Corp., Elkhart, Ind, announced that a license agreement is being negotiated with A. B. Metal Products Ltd., Wales, for the manufacture of microelectronic components and circuits.

Belfast-An electronic components manufacturing operation is being established in Northern Ireland by Globe-Union, Inc., Milwaukee, and Simms Motors and Electronics Corporations, Ltd., London.

Toronto-Smiths Aviation Division announced that 15 Hawker Siddeley Trident 2 aircraft recently ordered by British European Airways will be fitted with Smiths' Series 5 Flight Control System.

Mar del Plata - Principal seaside resort and one of the largest cities in Argentina, will soon have one of the most modern Marconi television broadcasting stations in the country.

Mainz-IBM Germany announced plans to build a new computer manufacturing facility of 200,000 square feet. Plans call for start of manufacture of System/360 computers in the new plant by mid-1966.

Stuttgart-A Telefunken high-capacity computer TR4 has been acquired by Stuttgart Technical University for the solution of problems in solid-state physics and nuclear energy.

Munich-"electronica 66" International Trade Exhibition of Electronic Components and Related Measuring and Production Equipment will be held at Munich October 20, through 26, 1966.

The Hague-Dutch P.T.T. has ordered a radio link network from Telefunken. The system (FM 600-TV /7400) is transistorized except for one klystron in the transmitter stage. System can handle 600 telephone channels.

Emmen-Oak Electro/Netics Corp. has established a European R\&D center in the Netherlands. With 30 scientists and engineers, it will occupy the facility of N.V. Messa Electronics, continental branch of Oak.

Copenhagen-The International Fair for Electronics, Automation, and Gauges, will take place in Copenhagen February 25 through March 6, 1966.

Sevres - Alpha Microelectronic Co. lnc. (AME), Beltsville, Md., and Airtronics of Sevres, France, have a licensing agreement in thin film microelectronics. Airtronics' initial needs will be satisfied by Alpha Microelectronics directly.

Rome-Italian avionics firm-Construzioni Aeronautiche Giovanni Agusta -has purchased a light-weight LFE Doppler Radar Navigator for use in an Italian Navy anti-submarine warfare helicopter.

Milan-The 43,000 -ton flagship of the Italian merchant fleet, S.S. Michelangelo, is equipped with a radio-telephone station designed and manufactured by IT\&T FACE Standard.

Fukaya-Toshiba has opened another plant in Japan to meet the growing demand for color TV. Production is expected to begin in October, with the initial rate of 5,000 sets per month.

New Ghana-The Ghana television service installed by Marconi Co., "the most modern television system in Africa," has been officially declared open by President Dwame Nkrumah.

comes in a variety of shapes and types from General Electric. Backed by the most complete technology and engineering, G-E Quartz will help fill all your fused quartz requirements. For first-hand help, write or call:

EASTERN
133 Boyd Street
Newark, New Jersey
Area Code 201 824-5200

NEW ENGLAND
50 Industrial Place
Newton Upper Falls 64, Mass. Area Code 617 332-6200

WESTERN

2747 South Malt Avenue Los Angeles, California Area Code 213 723-2541

MIDWESTERN
Euclid Avenue and Campbell Road Willoughby, Ohio
Area Code 216 266-4001

CANADA

Canadian General Electric Company
165 Dufferin Street
Toronto 3, Ontario, Canada - Telephone 537-4481

OPTICAL-your choice of infra-red and ultraviolet in five optical grades including our Type 151 Schlieren grade fused silica.

MICROWAVE, ELECTRONIC fused quartz applications with insulating and dielectric properties needed at high temperatures. Radomes made to your specifications.

FIBER for ablative and radome applications. Comes in yarn, roving, wool and matt, readily fabricated into cloth or tape.

SEMI-CONOUCTOR maximum-purity crucibles for crystal pulling, slice boats, and tubing for zone refining and difrusion appliabout our new Type 510 crucible.

LABORATORY QUARTZWARE, made from our high-purity Type 204 fused quartz and fabri cated to your specs. G.E's quality product is essentially chemically inert and has high
thermal shock resistance.

Progress Is Our Most Important Product

GENERAL
electric

SELECTED FOR THE MINUTEMAN PROJECT More than 6 million filMlenco Dipped Mica Capacitors have been used in the Minuteman ground support and control equipment.

After $64,000,000$
unit-hours at $85^{\circ} \mathrm{C} \frac{\text { ACTUA TEST }}{\text { with }} 25 \%$ of the rated DC voltage applied, no failures of any type of ginged. The accumulated 64×10^{6} test unit-hours withou ony failures can be used to calculate many different failure rates depending upon the confidence level desired. However, we shall explore the meaning of the results at a 90% confidence level.

Assuming no acceleration factor for either temperature or voltage, we have verified a failure rate of less thion 0.004% per 1000 hours. (Actually, there is a temperature effect and it has been found that, with the $D C$ voltage stress remaining constant, the life decreases approximately 50% for every $10^{\circ} \mathrm{C}$ rise in temperature. There is also a voltage effect such that, with the temperature stress remaining constant, the life is inversely proportional to the 8 th power of the applied DC voltage.)
Assuming no temperature acceleration factor and assuming the voltage acceleration exponent is such as to yield an acceleration factor as low as 100, we have nevertheless verified a failure rate of less than 0.00004% per 1000 hours.
Assuming no temperature acceleration factor and assuming the voltage acceleration factor is on the order of 250 (test results are available to confirm this) we have accumulated sufficient unit-hours to verify a failure rate of less than 0.000015% per 1000 hours!
All above failure rates are calculated at a 90% confidence level!

DIPPED MICA CAPACITORS type M2DM

Write for a complete reliability study on your company lefterhead.

BUSINESS REPLY MAIL
 No Postage Stamp Necessary If Mailed in U.S.A.

POSTAGE WILL BE PAID BY

P. O. Box 9801

Philadelphia, Pa. 19140

FIRST CLASS
PERMIT NO. 36
PHILA., PA.

BUSINESS REPLY MAIL no postage stamp necessary if malled in untied states

POSTAGE WILL BE PAID BY
ELECTRONIC INOUSTRNES
Chilton Company
Chestnut \& 56th Sts.
Philadelphia, Pa. 19139

Att: Circulakion Dept.

Another Reader Service of the
nME
..............ime
COMPAIY
DEPT.
\qquad
Mall STOP

adoress

city, state
TELEPRONE MO. (area code)
Ib cole
ETT
Please send me the items I have circled.

													1-B		-229			ER	65
1	2	3	4	5	6	7	8	9	10	11	12	13	14		-229		18	19	1965
21	2	23	24	25	26	27	28	29	30	31	32	33	34		6	7	18	19	20
41	42	43	44	45	46	47	48	49	50	51	52	53	54	35	36	37	38	39	40
61	62	63	64	65	66	67	68	69	70	71	72		54	5	56	57	58	59	60
81	82	83	84	85	86	87	88	89	90	1	72	73	74	5	76	77	78	79	80
101	102	103	104	105	106	107	108	109	110	91	+12	93	94	95	96	97	98	99	100
121	122	123	124	125	126	127	128	129	130	131	112	113	114	115	116	117	118	119	120
141	142	143	144	145	146	147	148	149	150	151	132	133	134	135	136	137	138	139	140
161	162	163	164	165	166	167	168	169	170	171		153	154	155	156	157	158	159	160
181	182	183	184	185	186	187	188	189	190	191	17	173	174	175	176	177	178	179	180
201	202	203	204	205	206	207	208	209	190	191	192	193	194	195	196	197	198	199	200
221	222	223	224	225	226	227	228	229	230	231	212	213	214	215	216	217	218	219	220
241	242	243	244	245	246	247	248	249	250	251	232	33	234	235	236	237	238	239	240
261	262	263	264	265	266	267	268	269	270	271	25	25	254	255	256	257	258	259	260
281	282	283	284	285	286	287	288	289	290	291	272	273	274	275	276	277	278	279	280
301	302	303	304	305	306	307	308	309	310	291	292	293 313	294	295	296	297	298	299	300
321	322	323	324	325	326	327	328	329	330	331	312	313	314	315	316	317	318	319	320
341	342	343	344	345	346	347	348	349	330 350	331	332			335	336	337	338	339	340
361	362	363	364	365	366	367	368	369	350			353	354	355	356	357	358	359	360
381	382	383	384	385	386	387	388		390			37	374	375	376	377	378	379	380
SPECIAL PRIORITY REQUEST							For immediate need or a call by a sales representative; writebox (do not circle above)							395	396	397	398	399	400

MAGAZINE

OF THE ART
STATE

ELECTRONIC

 INDUSTRIESCatalogs, Literature New Products and New Tech Data Another Reader Service of the
ELECTRONIC INDUSTRIES

MAGAZINE
hame IITLE

DEPT.
COMPANY MAIL STOP

ADRESS \qquad
city, state \qquad TELEPMONE NO. (area code) .. EX.

ExT. .
code

OCTOBER 1965
Please send me the items I have circled.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20	20																	
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
100																		
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
120																		
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139
140																		
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160																		
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
18180																		
201	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199
200																		
221	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
2200																		
241	242	243	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240																		
261	262	263	264	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259
260																		
281	282	283	284	285	286	267	268	269	270	271	272	273	274	275	276	277	278	279
280																		
301	302	303	304	305	306	307	288	289	290	291	292	293	294	295	296	297	298	299
300																		
321	322	323	324	325	326	327	328	329	310	311	312	313	314	315	316	317	318	319
320																		
341	342	343	344	345	346	347	348	349	350	351	332	333	334	335	336	337	338	339
340																		
361	362	363	364	365	366	367	368	369	370	371	372	373	354	355	356	357	358	359
360																		
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	376	377	378	379
380																		

Postcard valid 8 weeks only

BUSINESS REPLY MAIL No Postage Stamp Necessary If Mailed in U.S.A.

POSTAGE WILL BE PAID BY

P. O. Box 9801

Philadelphia, Pa. 19140

POSTAGE WILL BE PAID BY
ELETTRONIC INDOSTIRES
Chilton Company
Chestnut \& 56th Sts.
Philadelphia, Pa. 19139

Reporting late developments affecting the employment picture in the Electronic Industries

TI PERSONNEL GROWTH MAY BECOME INDUSTRY TREND

Texas Instruments' President Patrick E. Haggerty commented recently on the rising need for highly-trained people to keep pace with the complexity of electronic technology. He said employees with master's or doctor's degrees in his firm had increased from a few in 1950 to more than 700 at the end of 1964.

From 1960 through 1964, Mr. Haggerty said, the growth rate of such degrees needed by TI had been nearly constant. He said the rate may accelerate over the next ten years. He projected that TI would require nearly 12,000 college-trained personnel of all degrees by 1974.

He also expects that over the next ten years TI will have hired more than 4,000 persons with master's degrees and about 10,000 with bachelor's degrees.

HIRING PACE QUICKENS

Hughes Aircraft Company wants to hire about 600 scientists and engineers by the end of this year. The firm is recruiting men with all degrees for work on Early Bird-type communications satellites, Surveyor soft-landing moon vehicle, Phoenix air-to-air missile system, TOW missile, tactical avionics systems, an air-to-surface missile system, lasers, infrared, radar and signal processing and display systems.

Hallicrafters Co. says it plans to hire 300 scientists, engineers and technicians by the end of 1965 for work on several programs involving advanced technologies in electronic countermeasures. The programs are in support of the new strategic and tactical requirements of the Department of Defense.

COURSES FOR ENGINEERS

In a further development of its special programs in science and engineering, Newark (N. J.) College of engineering has announced a new Division of Continuing Engineering Studies to provide very advanced noncredit courses for practicing engineers in various phases of technology.

SCIENCE AND MATH PROBLEMS A 'CINCH’ NOW

Stephen Downing (right) checks 900 -line-per-minute printer of GE 215 computer system at Altoona (Pa.) Senior High School. The $\$ 250,000$ system has become an important tool for 1,000 out of 3,300 students. Kenneth Long prepares to feed problems to the system.

SURVEY SHOWS ENGINEERING SECOND; MEDICINE IS FIRST

A Gallup survey has shown that engineering is topped only by medicine in terms of public esteem, reports the National Society of Professional Engineers.

In a report on the recent nationwide survey, Joseph L. Gillman, P.E., chairman of the NSPE Public Relations Committee, and consulting engineer, pointed out that while engineers in general ranked second, there was widespread lack of understanding as to what engineers actually do.

Respondents were handed a card listing nine professions, and asked: "Suppose a young man asked your opinion about a profession. Assuming he was qualified, which would you first recommend?" A total of 33% said doctor of medicine, 18% said engineer, and 11% said scientist.

Next in order was lawyer, 7\%; clergyman, 7%; dentist, 5%; professor, 4%; government administrator, 3%; and banker, 2%. About 23% of men chose engineering, while only 13% of women did so.

Survey findings were based on interviews with 1,633 adults selected as

FOR MORE INFORMATION . . . or opportunities described in this section fill out the convenient resume form, page 134.
a close approxination to the $\mathrm{U} . \mathrm{S}$. adult population. Mr. Gillman said interviewees chose engineering because of: best future, diversity of opportunity (40%); good income (29%); and engineers are needed (18%).
About 60% defined a scientist as one who invents, discovers, or researches. Some 29% think an engineer works with the practical application of known facts or of scientific discoveries. Some thought of an engineer as a builder (17%), while 8% said he plans, drafts or designs plans, 20% didn't know what an engineer does, and 21% didn't know what a scientist does. About 3% said there is no difference.

DEMAND INDEX RECORDS 5-YEAR HIGH FOR MID-1965

Heavy recruiting continues to characterize 1965 as the Deutsch \& Shea Engineer/Scientist Demand Index registered 128.7, the highest July demand in the five-year history of the Index.

Although down more than nine points from the previous month's 1965 high, this decline can be attributed to traditional seasonal factors. The July figure is the second highest thus far in 1965 and is 60 points above July, 1964 , an increase of 87%. All indications point to a continuing strong demand for technical people for the rest of the year.

Electronic enganeerinci, as it is today, could not have been studied 20 years ago.

A 1933 engineering graduate who has kept up with the times said: "Our technological world is changing so rapidly that its forward thrust, like that of the huge rocket that catapulted Gemini 5 into space, is overwhelming." He went on to say that 30 years ago, "it was inconceivalble that the length of a conductor and the time reguired for a pulse to travel its distance could ever present a problem. Today, one of the limiting iactors in computer design is the length of the conductors even on the small circuit hoards of approximately 2×4 in."

[^3]
Keeping Up

Much has been said and written recently about engineering obsolescence and an engineering half-life of 10 years. If the charge is true, engineers who graduated a decade or more ago could well fit into this category. This could be true whether his degree is B.S., M.S., or I Ph.D. But, olsolescence is hard to define. So is "continuing education"-the suggested cure for obsolescence. Although a relatively new term, "continuing education" (CE) programs are currently offered at almost every major college and university. Trouble is, there is no standard definition for CE. Some schools offer adult education courses imder this label; others call their graduate degree-granting programs "continuing education." Those courses of principal interest to practicing engineers some years out of college are those whose contents are specifically designed to meet their immediate or future needs without primary concern for credit toward advanced degrees.

That what constitutes CE may often seem confusing is not surprising when one understands that this term was virtually unheard of three years ago. If you don't know where to start on a program of continuing education, yourself, you are also in good company. How can a man know what to study when he doesn't know what he will be expected to co in his company six months hence? It is an indlictment of American Industry that advanced planning for personnel only exists in a very few enlightened companies.

You may not get much help from your supervisor, but there are gutidelines by which you can get started. During and immediately subsequent to World War II, most engineering courses were of a "how-to-do-it"
nature. The trend in recent years has been away from "hardware" oriented college courses and toward a broad scientific background of fundamentals. If you will get an up-to-date copy of your engineering school's catalog, you will undoubtedly see many course offerings unfamiliar to you-courses that weren't offered when you were in school. Undoubtedly, you will need these new courses if you are to compete with current graduates. If you can learn the contents of the new courses, you will continue as a valuable employee and be better able to supervise new engineering graduates who may report to you.

The Interface Problem

Unfortunately, educators often don't know what industry needs, and industry frequently can't accurately define the educational requirements for current or future jobs. Thus, this seems to point to the fact that there must be a high sensitivity on the part of each professional engineer to sense his own educational needs. He must become aware of his own inadequacies for an assigned job or job potential and initiate appropriate action to become "prepared."

Many large companies have personnel to assist the individual engineer or an engineering department to keep up with evolving technological developments. Such companies often pay all or part of the cost of formal courses pursued by the engineer in areas related to his work. The training director will post notices of technical short courses, adult educational programs, continu-
"Continuing education is that education which is needed by the professionally employed engineer, as perceived by him or his employer, to enhance his total job competence." . . . A.C.I. ${ }^{1}$
Both credit and noncredit studies are included in this definition. However, the Goals Committee of ASEE under Dr. Eric A. Walker of Penn State has considered it appropriate to differentiate between credit and noncredit programs. Graduate education is seen to perform an upgrading function, while continuing education better equips a person for his work through updating, diversifying or maturing.
ing educational studies, seminars, extension courses, technical meetings and the like. Many training directors arrange with colleges and universities for certain specific courses to be given for their engineers. Such courses are frequently open to engineers from other companies that wish to participate. Some of the biggest problems for any training director are to ascertain who needs what knowledge that he doesn't possess, when he needs it, who can provide it and practical means for providing it.

Continuing Education and the Colleges

Colleges and universities have traditionally been de-gree-granting institutions. As long as one satisfactorily pursues a standard program of studies, he receives a "sheep skin" that, in effect, says that he is "qualified"

[^4]Fig. 1: Where engineers obtain their "continuing education." (Based on a survey by Pennsylvania State University).

Professional Profile

The ELECTRONIC INDUSTRIES Job Resume Form for Electronic Engineers

Salary Desired to Change Jobs in present area \qquad
Salary Desired to Change Jobs and relocate in another area \qquad
Professional Memberships

| Professional Memberships \quad College or University | Major | Degree | Dates |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | |

RECENT WORK EXPERIENCE

Company $|$| Div. or Dept. | Title | Dates | |
| :--- | :--- | :--- | :--- | :--- |
| | - | | |

SIGNIFICANT EXPERIENCE AND OBJECTIVES

State any facts about yourself that will help a prospective employer evaluate your experience AND JOB INTERESTS. INCLUDE SIGNIFICANT ACHIEVEMENTS, PUBLISHED PAPERS, AND CAREER GOALS.

Mail to: ELECTRONIC INDUSTRIES—Professional Profile-56th \& Chestnut Sts.-Philadelphia, Pa. 19139. This resume is confidential. A copy will be sent only to those Companies advertising for engineering personnel in this issue, whose number you circle below.

| 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 8091 | 810 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

to perform engineering work. Faculty people gain "status" by teaching "standard" graduate programs and writing articles and books that can be used in degree-granting courses. It hasn't become popular, yet, to teach working engineers what they need to know (usually without formal academic credit) rather than what old-fashioned tradition dictates they should study. College teachers have always been able to assume that students taking a given course have completed established prerequisites in advance. Experienced engineers who return to school for refresher or retread courses may not have such prerequisites. The use of regular college teachers in such courses often proves disastrous because they can't explain the subject in simple terms or at the achievement level of the student body.

Technical versus Non-technical Courses

The professional engineer today cannot afford to limit his knowledge and understanding to strictly technological developments. More corporate executives are engineers by training and experience than ever before. But, such engineers must be trained in the humanities, in business, in economics and in cultural areas. They must take a keen interest in community and national affairs and in the world and the universe. In other words, they cannot be specialists only; they must have a broad outlook and knowledge to support it as well as up-to-date know-how of electronic technology.

Today's Engineering Curricula

It is hardly a secret anymore that the days of the "cook book" engineer are numbered. The valuable engineer of the future will be the one who is able to solve new engineering problems not yet conceived. The so-called "cook-book" engineering will undoubtedly be left to the engineering technician as it should be. These techmicians will be the practitioners, while engineers will be the innovators.

What Course to Take?

The $\$ 64$ question for most practicing engincers is: "What course should I take first ?" First step is to decide at the outset that obtaining academic credit must be secondary to obtaining specific knowledge that will help you do your job. Dr. Ernst Weber, who heads a Joint Advisory Committee on Continuing Engineering Studies for several professional societies, has stated:

MODERN MATHEMATICS AND ENGINEERING APPLICATIONS

(60 hours, 2 semesters)
Differential equations
(60 hours, 2 semesters)
Modern Algebra
Numerical analysis
Probability
Statistics
Linear systems analysis
Feedback systems
Digital systems
Communication and Contral systems
Reliability
\section*{modern physics and engineering applications}
(60 hours, 2 semesters)
Introductory Physical Electronics
(60 hours, 2 semesters)
Transistor circuit design
Magnetic devices and nonlinear magnetics
Transistor and device models and fabrication
Masers and microwave devices
\section*{ENGINEERING SCIENCE AND ENGINEERING APPLICATIONS}
(60 hours, 2 semesters)
Thermodynamics
Classical mechanics
Optics
Electromagnetic Theory
(60 hours, 2 semesters)
Energy conversion devices Gyrodynamics and guidance Optical systems
Electromagnetic characteristics of plasmas

TABLE: COURSES OFFERED AT THE POLYTECHNIC INSTITUTE OF BROOKLYN IN THEIR CONTINUING EDUCATION PROGRAM.
"The professional man has the obligation to kecp abreast of the adzances in science and enginecring by cvery available means."

One cannot give a specific list of sulbjects for courses needed by every electronic engineer. What courses to pursue will depend on when he received his formal engineering education and what he has learned since, plus a knowledge of what is expected of him on the jol, both now and in the foreseeable future. Table I gives a list of basic courses offered by the Polytechnic Institute of Brooklyn, none of which would have been offered to the graduate of 15 to 20 years ago! You may want to take some highly specialized courses or general lackground courses, depending on your immediate needs and past background. In any event, try to ascertain in advance of enrolling in a course just what topics will be covered, the teacher's background and reputation and the prerequisites required or assumed.

Types of Educational Programs

There are many ways one can keep lipdated on technical developments. See Fig. 1. In its interim report, the Professional Societies Task Force to the Joint Advisory Committee on Continuing. Engineering Studies (CES) listed some of these. They are: 1. Through reading of publications for general information, for new technical studies or developments in your field and by reading miscellaneous manuals and reports; 2 . Through attendance at society meetings-national, regional and local: 3. Through technical committee activities on a national or local level; 4. Through pursuit of new

TABLE 2: TYPICAL COURSES OFFERED AT NORTHEASTERN UNIVERSITY CENTER FOR CONTINUING EDUCATION.

Cryogenic Engineering

Direct Energy Conversion
Dynamic Analysis of Linear Systems
Heat Transfer in Electronics
Fundamentals of Digital Logic
Electromagnetic Scattering and Diffraction
Microwave Theory and Techniques
Antenna Theory and Techniques
Introduction to Optical Masers
Semiconductor Electronics
Computer Programming of Engineering Problems
Vector Analysis

Matrix Analysis
Ordinary Differential Equations
Mathematic Probability-Applications to Engineering
Principles of Quantum Systems
Statistical Communication Theory
Geometrical Optics
Introductory Mathematics to Advanced Optics
State Space Techniques in Systems Analysis
Random Processes in Electrical Engineering
Infrared Systems Engineering
Space Sciences

ENGINEERING OBSOLESCENCE (Continued)

academic courses of study, attendance at local seminars, and specialty conferences for new technical or state-ofthe art information ; 5. Through pursuit of programmed instruction courses and correspondence courses in certain limited areas.

Motivation

One of the most difficult problems facing the practicing engineer in a rapidly changing technology is motivation for "keeping up." Married men with growing families find full-time educational programs ont of the question financially. Part-time evening and Saturday classes are difficult to purstue for older engineers who have community and home responsibilities in addition to demanding jobs. Released time from work for the purpose of pursuing "continuing education" courses, even if granted, often places the engineer at a disadvantage with his supervisor who reluctantly spares him for the purpose.

Some larger companies sponsor seminars and courses of instruction either partially or fully on company time. Some companies pay the expenses for key engineers to study special courses at universities and colleges for periods up to a semester or two and with full pay and allowances. This, however, is more the exception than the rule.

Schools frequently take the initiative such as at Northeastern University in Boston. Such schools survey industry needs for knowledge in the geographical area served by the school.

Continuing Education Programs

Within the last year, many so-called "continuing education" departments have been set up around the country at colleges and universities. Unfortunately, the types of programs these departments offer vary not only in subjects offered but in their objectives. Some are departments of adult education with a new name; some are correspondence schools; some offer only courses toward advanced degrees but at times most convenient to employed students. Only a few offer courses designed strictly for the mature engineer with specific needs for becoming updated or retreaded. To
list all schools that claim to offer courses in "continuing education" would, we feel, serve no useful purpose. As time resolves the controversy on what constitutes continuting education, and as schools agree on some form of standards for courses for mature practicing engineers, a list of schools and courses each offer may be possible. Until then, we can only suggest that the engineer seriously interested in up-dating himself check with schools in his area for courses being offered and under what conditions - prerequisites, content, credit, type and background of instructors, costs, etc.

Where We Go From Here

According to President Fred H. Harrington of the University of Wisconsin, there are three areas where emphasis on continuing education is needed; Financial support, course organization and broadened curriculum.
"Industry would do well to heed the need for gifts and grants to miversities in the area of continuing education.
"The shot-gun approach of a wide variety of courses without any pattern or progression must be replaced with organized continuing education that will head toward a goal and, by progressive steps, get there.
"While the primary need is for professional and vocational learning, and continuing education must first meet this need, its offerings ultimately must include liberal educational opportunities.
"Engineers may take on more roles in administration and management in the future, and continuing education must equip engineers to play a key part in the world of tomorrow."

Enough serious effort is being put into solving the obsolescence problem by industry leaders, educators and professional societies to move the continting engineering studies programs forward rapidly. The Government is also vitally concerned and will put on the pressure. Yout canl do your part, too, by seeking and asking for educational programs that meet your immediate and future needs. You should make your needs known to your company and to educational institutions located in your area. You should also expect the engineering societies, such as I.E.E.E., to take a direct interest in prograns designed to keep you up-to-date.

669 If you think growing room is at a premium, look to McDonnell

 where there's no ceiling on professional growth. McDonnell's many more active programs in-house-in spacecraft, aircraft, missiles, electronics, precise time reference systems, and automation have kicked the lid off. © The McDonnell Team enjoys group insurance (McDonnell pays 90%); retirement income (McDonnell pays $2 / 3$); patent compensation; 8 paid holidays; educational assistance (up to full sponsorship and reduced work weeks); professional recognition; beautiful communities and natural vacationlands. © To arrange an interview appointment in your area of interest, please send your résumé with the completed coupon. We will answer every inquiry.Long-term positions are immediately available for the following specializations:

Aircraft Structural Design Engineers

- Electronic Systems Engineers - Structural Test Engineers - Propulsion, Aerodynamics Engineers
- Operations Analysis Engineers

Guidance \& Control Mechanics Engineers
Thermodynamics Engineers

- Industrial Engineers
- Stress Analysts

- Loads, Weights Engineers

Plant Design Engineers
Facilities Engineers
Specifications Engineers

- Engineering Psychologists
- Flight Test Engineers
- Aerospace Ground Equipment Designers
Chemical Engineers
Systems Analysts
Scientific Programmers
- Electronic Equipment Engineers

MCDONNELL, P.O. Box 516, St. Louis, Missouri 63166 Att: W. R. Warcle. Engineering Employment Office, Dept AZ. 10
Name
Home Address
City \& State
Phone
Present Position
Degree

HIGH DENSITY RELAYS DELIVER

These contact form C relays follow signals up to 200 operatiors per second without variation in timing. Are available in single-side-stable, bi-stable and chopper forms. Adlake MWSA 16000 relays like the one on the left are the only ones you'll finc anywhere molded in epoxy. Though less expensive, they stay cooler. Contain no wax to overheat and run. Parts are rigidly secured-no movement to cause circuit noise. Epoxy is proof against ail caustics and solvents except acetic acid. The metal encased version on the right can be grounded to assure magnetic shielding. Use it where magnetic interference is a special problem. For more information, call Adlake. And remember, Adlake makes more kinds of mercury relays than anybody.

The Adams \& Westlake Company Dept. R-8810, Elkhart, Indiana Phone Area 219, COngress 4-1141 Circle 107 on Inquiry Card

NEW PRODUCTS
". . . advancing the STATE-OF-THE-ART in Components \& Equipment.

TRIMMER CAPACITOR

V crtically-mounted for PC boards. Can be adjusted from the top.

The TF series is sealed and features a non-rotating piston construction. The " O " ring scal provides protection during user assembly, soldering, cleaning, encapsulation and in the field. The unique design offers long life, low inductance, low resistance, ligh " Q " and no self-resonance below 1200 mc . Operating working voltage is 750 and 1000 dc ; min. " Q " is 700 to 11100 @ l Mc and 500 to 1000 @ 20 Mc . Linearity is $\pm 1 \%$ with no capacitance reversals. Voltronics Corp., 296 Route 10, Hanover, N. J.

Circle 236 on Inquiry Card

HEAT SINKS

High resistivity and low diclectric loss with optimum thermal conductivity.

This line of 23 transistor beryllium oxide lieat sinks combine both dielectric insulation and high heat transfer from the device to the chassis. The heat sinks are available in JEDEC-TO numbers: 3, $5,8,9,11,12,16,18,33,38,39$, etc. They come int a standard thickness of $1 / 4 \mathrm{in}$., but are also available in $1 / 32 \mathrm{in}$. thickness. Beryllium oxide heat sinks increase transistor life and output, have freedom from outgassing, are extremely resistant to shock, vibration and moisture, and have infinite shelf life. Birnbach Radio Co., 435 Hudson St., New York, N. Y. Circle 237 on Inquiry Card

TUNING FORK OSCILLATOR

Fircq. stability accuratc to 0.1% over a temp. range of $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The model 6226 tuning-fork is small, measuring only $2 \mathrm{r} / 4 \times 31 / 4 \times 1 \mathrm{in}$. It has accuracy sufficient to perform in telemetry, gyroscope power standards, computers, precision motor drives, and musical standards. An internal coupling capacitor isolates the de from the output comnection. The case is floating and may be grounded to either the plus or the minus side of the power source. Starting time is approx. 5 sec ., and the output wave-slape is essentially square. Varo, Inc., Box 1500 , Santa Barbara, Calif.

Circle 238 on Inquiry Card

DIGITAL VOLTMETER

Accuracy: $\pm 0.005 \%$ of F.S.; linearity: $\pm 0.001 \%$ of reading ± 1 digit.

The DVX-315 Integrating Digital Voltmeter is used for de voltage measurements. Numerous plug-in units extend its capability so that ac voltage, resistance, and voltage ratios can be measured. Other plug-in units correct for zero offset of transducers, translate the reading into true engineering units of pressure, temp., etc., and make GO-NO GO comparisons. It has greater than 1000 megohms constant input impedance, and 6-digit display is up to $10 \mu \mathrm{v}$ resolution. Data Technology Corp., P. O. Box 10935, Palo Alto, Calif. 94303.

Circle 239 on Inquiry Card

PLUG-IN CONTROL

Translates mumerical data into precise linear or ro:ary motion.

The unique feature of this point-topoint positioning system is the use of a fixed program plug-in module to generate all directional and operational signals. The plug-ins, designed as a replacement for paper tape and punched cards, make it possible to have a low-cost library of stored fixed data programs. This modular approach allows the user to select specific sequences he wants instead of interrupting a tape program of fixed sequences. Pace Controls Corp., subs. of Warner Electric Brake \& Clutch Co., Beloit, Wis. Circle 240 on Inquiry Card

MAGNETORESISTORS

Display resistance increase of 8 to 20 times zero-ficld zoluc at 10 kilogauss.

The low cost Series M magnetoresistor is ideally suited to magnetic sensing and contactless switching, in many cases supplementing photoconductors and magnetic reed switches. It fits casily into switching circuits. Disc-shaped sensors can be made with a resistance change factor of up to 30 at 10 kilogauss. Resistance at zero field is generally between 1 and 4Ω. Other configurations, such as rectangular slabs of solid material, have a zero ficld resistance between 1Ω and several thousand ohms. Instrument Systems Corp., 770 Park Ave., Huntington, N. Y.

Circle 241 on Inquiry Card
uitra-light
weld force
$10 \mathrm{gms} .-2 \mathrm{lbs}$.

Thin film / hybrid circuit microbonding breakthrough from Hughes

Hughes new MCW/IL Microcircuit Welding System was specifically designed to help you simplify such high-precision bonding or welding tasks as:

- Bonding fine ribbon and wire conductors to metallic films on silicon, glass and ceramic substrates.
- Interconnecting discrete active components in hybrid circuits.
- Carefully controlling undesirable heating and deformation of delicate parts.
Outstanding features include: exceptional repeatability resulting from automatic, dynamic regulation of weld current during discharge; ability to weld to termination areas less than .004" diameter; remarkable versatility resulting from high maximum power for heavier materials too; wide ranging weld duration control ($1 \mathrm{~ms}-9.9 \mathrm{sec}$.); capability for opposed electrode welding - at no extra cost.
For complete information on the Hughes MCW/IL Microcircuit Welding System, wire, write or call today: HUGHES WELDERS, 2020 Oceanside Blvd., Oceanside, California 92057. For export information, write: Hughes International, Culver City, California 90232.

HUGHES

Complete MCW/IL thin film welding station
Microbonding 1 mil gold wire.

Like the mythological Roman guardian of portals, the U.S. Army's new AN/UPD- 2 airborne electronic sensor has the ability to look in opposite directions simultaneously. Produced by Motorola's Western Center, this sidelooking radar system (SLAR) transmits a high-energy pulse at a 90° angle to the line of flight - from horizon-to-horizon. A narrow fan shaped beam. less than 1° in thickness, penetrates fog and darkness and the intensity of the return echo from outlying terrain is recorded as a synchronous "range vs. time" video signal. This signal is displayed on a cathode ray tube as intensity modulation, and photographed synchronously with the illumination of successive strips of terrain by the radar antenna. The AN / UPD. 2 compensates for drift angle distortion by rotating the intensity-modulated line scan on the cathode ray tube a proportionate amount. This SLAR has outstanding stability and field-proven reliability.

Motorola's leadership ofters challenging opportunities to engineers and scientists. Specific program areas are;

Antennas \& Propagation
Solid State R.F
Microwave Techniques
Missile \& Space Instrumentation
Operational Support
Integrated Circuitry
Equipment Reliability Analysis Parts Reliability
Data Acquisition, Processing \& Display
CW Transponders
Radar \& Radar Transponders Fuzes
Guidance \& Navigation Command \& Control Space Communications Signal Processing ECM, CCM \& Surveillance Tracking \& Telemetry
Contact Phil Nienstedt. Manager of Recruitment, Department 6910

Military Electronics Division - Western Center • P.O. Box 1417, Scottsdale, Arizons MOTOROLA ALSO OFFERS OPPORTURITIES AT CHICAGO. ILLINOIS - AN EQUAL OPPORTUNITYEMPLOYER

RECTIFIER BRIDGE

Miniature design permits a sharp reduction in space requirements.

Series P miniature silicon rectifier circuits are available in full wave, half wave, doubler, center tap and open bridge types. Currents are from 50 to 600 ma and voltage ratings from 50 to 800 PIV. Special types are also available. Edal Industries, Inc., 4 Short Beach Road, East Haven 12, Conn.

Circle 242 on Inquiry Card

WIRE STRIPPER

For solid or stranded conductors with single layer insulation from AWG \#16-\#26.

The Precision Rotary Wire Stripper gives consistent nick-free wire stripping on a production basis. It will precisionstrip slick insulation such as Teflon or PVC with thicknesses up to $1 / 32$ in. and overall wire dia. up to $1 / 4$ in. The unit weighs $111 / 4 \mathrm{lbs}$. The stripping head contains a removable anodized aluminum wire guide which is available in 23 sizes from 0.040 in. through 0.250 in. Behind the wire guide is the stripping blade assembly. It consists of a blade guide and leaf spring to which a reversible, double-edged carbide blade is attached. The blade's stripping depth is adjusted with a calibrated tool. Each revolution of this tool moves the blade 0.006 in. giving the operator precise control over the adjustment. Ideal Industries, Inc., Sycamore, Ill.

Circle 243 on Inquiry Card

KERR CELL

Controls $1 / 2$ to 1 in. ruby rods in giant pulse laser uses.

In this Kerr cell the windows are flat to a quarter wavelength and are low-reflection coated for $6943 \AA$. The device is hermetically sealed and filled with hyper pure nitrobenzene. This eliminates space charge effects, produces an extremely uniform electric ficld, and creates a uniform and complete closure. Electrode separation or aperture width is 0.8 in . and aperture height is 1.5 in . Kappa Scientific Corp., 5785 Thorıwood Ave., Goleta, Calif.

Circle 244 on Inquiry Card

SADDLE CLAMP

Fastens components to circuit boards or holds zerire bundles to cylindrical objects.

The saddle part of this clamp accommodates a range of dia. from $x / 4$ to 1 in . The flat portion is limited only by the capacity of the Ty-Rap cable tic, which is adjustable from $1 / 16$ to 4 in . if the larger TY- 8 is used. For vertical, horizontal, overhead or base type mounting, the clamp accommodates 2 Ty-Rap cable tics-one for the saddle side to hold a cylindrical component or to hold the clamp against a cylindrical support, and the other to hold a wire bundle intact and space the bundle away from the metal conduit. A screw is used to secure the clamp to a flat surface. The clamps are premountable and reusable. Loads up to 50 lhs . in any direction can be accommodated with the new mounting base. The Thomas \& Betts Co., 36 Butler St., Elizabeth 1, N. J.

Circle 245 on Inquiry Card

a ney reaprinic cuncern
 [AND HERE'S WHAT IT WILL DO]

- A STRIP CHART
- X For X-Y
- T-Y (Sequencing Chart)
- PROGRAMMING CHART
- PROGRAMMABLE CHART
- PULSE CHART DRIVEN

Dollar for dollar, this new OMNIGRAPHIC $C_{T M}$ RECORDER will deliver more functions, more features and more conveniences than any other recorder ... or any other two recorders on the market today. Examples: Continuous or automatic advance feed for recording on Z-fold continuous $81 / 2^{\prime \prime}$ paper or on a $7^{\prime \prime} \times 10^{\prime \prime}$ paper grid with perforations for easy tearing to $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ file size; push button speed control provides 18 selections from $2^{\prime \prime} / \mathrm{sec}$. to $.05^{\prime \prime} / \mathrm{hr}$., or a $144,000: 1$ range; $.15 \%$ accuracy; $1 / 3 \mathrm{sec}$. f.s. pen response; 20 voltage ranges; and infinite input resistance.

The OMNIGRAPHIC TM $_{\text {m }}$ RECORDER is unique. It is a new concept in graphic recording. The cost is far less than you may imagine.

THIS AXIS IS the
highest quality servo available
in any type multi-range potentiometric recorder today.

WHEATSTONE BRIDGE

Measures the absolute value of resistors ozer a wide range.

Model 308-A provides in 1 compact, portable instrument a complete resistance measuring facility featuring both high accuracy and operating convenience. The balance controls are direct-reading with automatic placement of the decimal position at the time of bridge balance, thus completely eliminating the need for applying multiplication or ratio factors. Measuring range is 0 to 11 megohms; accuracy of resistance measurement is 0.05% or better. Brown Electro-Measurement Corp., 827 7th Ave., Kirkland, Wash. Circle 246 on Inquiry Card

GENERAL PURPOSE COMPUTER

Mredinn cupacity mnit has an add time of $4 \mu \mathrm{sec}$. and multiply time of $12 \mu \mathrm{sec}$.

SCS 670-2 is a $\$ 35,000$ unit. The price includes hardware, input-output channels, a direct register control console and index register. It is solid-state, binary, single address with indexing, indirect addressing and a complete instruction repertoire. Core memories have 4,096 -word capaci:y, expandable to 32,000 words of 24 bits. Software includes a sy:nbolic assembler, utility and mathematic routines, a Fortran compiler, diagnostic rcutines. Scientilic Control Systems, Inc., 14008 Distribufion Way, Dallas, Tex.

Circle 247 on Incuiry Card

CIRCULATOR AND DRIVER

A 5-port device, it has a
freq. range of 5.25 to 5.75 cc .

The CMC-1342S and QSP-17 are switchable 5 -port circulators and driver devices. The circulator is used with parametric amplifier to provide antomatic amplifier protection and test signal injection. The device is pulse switched and latched and returns to a predetermined switch position upon power failure. A holding current is not necessary to maintain the switch in either position. vSWR (Ports $1,2,4$) is 1.2 max. ; at lort 3 it is 1.1 max. Western Microwave Labs., Inc., $10+5$ DiGiulio Ale., Santa Clara, Calif.

Circle 248 on Inquiry Card

Now famous KRAEUTER Pliers wear the S.K Wayne name

Two famous names combine to bring you the utmost in hand tool value. Compare, for example, the features of these professional quality pliers: \quad Fine grain tool steel construction. Cushion Grip handles. Flame-hardened cutting edges. \square Polished faces. \square Individually fitted and tested for perfect performance. You'll like the pricing, too. Find out now about these and other value-packed S-K Wayne tools. Contact your indus. trial distributor. Or write for Free
 catalog.

S-K Wayne Tools • Chicago, Ill. 60632 • Defiance, Ohio Subsidiary of Symington Wayne Corporation

WHEN YOU NEED A PROTOTYPE MOTOR OR BLOWER RIGMT NOW CALL GLOBE 513-222-37 劓 WE WILL SHIP YOUR ORDER WITHIN 24 HOURS

Typical sample of our extensive 24 -hour stock (subject to change)

$\begin{aligned} & \text { A.C. MOTORS } \\ & \text { type } \quad P / N \end{aligned}$		dia.	length	hYSTERESIS torque	SYNCHRON rpm		cycles phase	
SC	53A106-2	$11 / 6$	19/6"	. 12 0z. in.	12,000	115	400	- 1
MC	184107	$11 / 4 \prime \prime$	21/4"	. 7 0z. in.	1,800	5	0	
MC	18 A 108	$11 / 4^{\prime \prime}$	21/4"	. 7 oz in.	3,600	115	60	
FC	75A119.2	1116"	21/4"	1.0 oz . in.	1,200	115	60	
FC	75A120-2	1116"	21/4"	1.0 oz. in.	00	115	60	0
FC	75A121-2	11/16"	$21 / 4$ "	0	3,600	115	60	0
D.C. MOTORS type P / N		dia. length		torque	rpm	volts		amps
SS	41A100-13	$7 / 8$	13/9"	. 20 0z. in.	17,000-20,000		27	. 18 to . 25
MM	3A1002-10	11/4"	21/3"	. 5 0z. in.	9,000			. 30
LL	3A1003-1	11/4"	23/8"	1,002. in.	11,000		24 27	4.0
GRP	166A100-7	21/4"	$33 / 4{ }^{\prime \prime}$. 75 lb in.	8,000		27	4.0

Globe Industries, Inc. 2275 Stanley Ave., Dayton, Ohio 45404, U.S.A., Area 513 222-3741

Material: High Thermal Nomex*
Process: Spiral Winding

Result: Great New Line

Of Tubing And Bobbins

Yes, these tubes and bobbins are spirally wound from Nomex to provide heat-resistant and insulation qualities equal to considerably more costly materials and fabrication methods. Here are a few quick facts:

- Rated for operation above Class "H."
- Temperature Characteristics: self extinguishing, will not melt but chars at $400^{\circ} \mathrm{C}$. $\left(750^{\circ} \mathrm{F}\right.$.).
- Outstanding overload and flash protection.
- Diameters from $.125^{\prime \prime}$ to $2.000^{\prime \prime}$
- Wall thicknesses from. $004^{\prime \prime}$ to $.040^{\prime \prime}$, dependent on dia.
- All shapes-round, square, rectangular.
- Combinations of Nomex with other materials for added economy or individual requirements.

Write or phone for full information.

1049R S. Noel Ave., Wheeling, Ill. 60090 (Chicago Suburb) TELEPHONE 312...537-4250 TWX 312...537-5202 Circle 68 on Inquiry Card

PANEL VOLTMETER

Replace thermat transfer standards, lab potentioncters and standarding supplics.

Featuring knife edge pointers and mirror scales, these meters maintain a $\pm 0.1 \%$ accuracy in any position, and may be used with magnetic or non-magnetic panels. They are available in either pivot and jewel or taut-band construction. Standard ranges are 115 ($\pm 5 \mathrm{vac}$), 26 ($\pm 1 \mathrm{vac}$), 28 ($\pm 1 \mathrm{vdc}$). AC freq. range is 50 to 500 cy cles; sensitivity is $300 \Omega / v$. Standard sizes are $31 / 2$ and $41 / 2 \mathrm{in}$. sq . and rectangular, $4 \times 6 \mathrm{in}$. and 7 in . sq. The meters are self-contained and self-powered requiring no external power source. A \& M Instrument, div. of Loral Corp., Community Mr., Great Neck, N. Y. 11022.

Circle 263 on Inquiry Card

PROBE POINT

Ensures lezel points in multipoint acr-for-probe machines. Fits most machines.

The probe-point I'lanerizer is used with multipoint wafer-probe machines. Available in 12- and 18 -point models, it connects a high-input impedance FET in series with each probe point. The FETs turn on individually numbered lights as each probe point is brought into contact with the conducting plate of the wafer-probe machine. Use of the FET as a switch prevents proint erosion and damage during the planning procedure by reducing current flow and arcing. With this accessory, probe points can be leveled to within 0.0005 in. Siliconix Inc., 1140 W. Evelyn Ave., Sumnvale, Calif. 94086

Circle 264 on Inquiry Card

TIN OXIDE RESISTORS

Used for general purpose, semi-precision and precision applications.

The C-4 and C-5 resistors surpass the requirements of Mil-R-22684B and Mil-$\mathrm{R}-10509 \mathrm{E}$, characteristic D. They are rated in 3 ways: by selecting various combinations of purchase tolerances, wattages, and load life requirements. This rating versatility means that 1 resistor can be stocked where several are now needed in an inventory. Initial tolerances are 1,2 , or 5%. Temp. coefficient of resistance is $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ between -55 and $+175^{\circ} \mathrm{C}$. Change in resistance under load life conditions is either 0.5 or 1%, depending on rating. Corning Glass Works, Corning, N. Y.

Circle 265 on Inquiry Card

\# Send for illustrated Brochure 6304, for full details.
8) DRAKE

MINIATURE LIGHTING SPECIALISTS

BY-BUK COMPANY

4326 W. Pico Blvd., Los Angeles, Calif. 90019 • (213) 937.3511
Cirele 70 on Inquiry Card
ELECTRONIC INDUSTRIES

FLAT PACKAGES

For intcurated sircuits. Unique recessed pad packot! siners assembly problems.

These hermetically-sealed flat packs come in 10 and 14 lead flush pad designs, and a new recessed pad 10 -lead design The recessed 10 -lead series FK22NAT-10-2 aroids bonding problems when silicon chips are assembled to the pad area. FK22NAT $10-1,10$ leads, is a $1 / 4 \mathrm{in}$. sq. package of hard glass fused to match nickel-iron cobalt alloy. The 14 -lead $F K$ 23NAT 14-1 is made with hard glass and gold-plated, expansion-matching, nickeliron cobalt. Glass-Tite Mfg., div. of G.T.I. Corp., Branch Ave., Provitlence, R. I.

Circle 266 on Inquiry Card

ANALOG MULTIPLIER

Output zoltage is proportional to intstuntancous product of 2 imput ioltages.

IHallefex(1) Model 1700-153 analog mul. tiplier is a self-contained solid-state device. This unit consists of 2 input amplifiers, a multiplier utilizing 2 thin-film Hall-effect voltage generators, and an out anplifier. True algebraic products are obtained through 4 -quadrant multiplication, and the output voltage has a true mathematical sign. Output voltage is 0.1 times the 2 inputs within the range of -10 to $+10 \mathrm{vdc} @ 1 \mathrm{ma}$. Helipot Div. of Peckman Instruments, Inc., Harbor Blvd., Fullerton, Calif. 92634.

Circle 268 on Inquiry Card

TAPE PROTECTORS

fits all standard $10 \frac{1}{2}$ in. solidjlange computer tape recls.

Protect-A-Tape ${ }^{T M}$ is a quick and simple "snap-on, snap-off" 1-piece computer tape reel package. It offers : a built-in environmental seal which provides total protection against dust and other contamination; stacking-ring which guarantees positive reel stacking without slip or tilt ; built-in positioning grooves which perfectly position the reel in the package so there is no pincling of recl or tape; and a positiveaction, snap-lock which is color-coded for instant identification. Computron Inc., 122 Calvary St., Waltham, Mass. 02154. Circle 267 on Inquiry Card

NEED HEAT?

One of our 85 Standard Industrial Ovems will meet your needs. BENCH - CABINET • WALK-IN TYPES.

For preparation of materials and chemicals for production.

On the production line for intermediate heating.

10 cu . ft. capacity-30'1 wide x $25^{\prime \prime}$ deep $\times 24^{\prime \prime}$ high. Removable shelves and drip pan. Forced air circulation.
$\$ 13250$
Quick quotations, prompt de. livery, reasonable prices on Ovens built to your requirements.
Write for literature

GRIEVE-HENDRY,CO.
1335 N. ELSTON AVE., CHICAGO, ILL. 60622
Circle 71 on Inquiry Card

Circle 72 on inquiry Card

ELECTRONIC INDUSTRIES • October 1965

COPPER-CLAD LAMINATES

For multilayer etched circuits. Furnished weith sheets of prepreg materials.

Two grades of ultrathin copper-clad laminated plastics are available for multilayer etched circuits. GEC-500 E, with base material, meets the specs. for NEMA grade G-10 laminate ; and Fireban 600 E , a flame-retardant grade with base material, meets the specs. for NEMA grades G-10 and FR-4. Prepreg (B-stage) insulating sheets of the corresponding base laminates can be furnished. Taylor Corp., Valley Forge, Pa. 19481.

Circle 269 on Inquiry Card

PHOTOCONDUCTIVE CELLS

Especially designated to operate in loze-voltage photoelectric choppers.

Type NSL-364C cadmium selenide photoconductive cells have chopping freqs. up to 2 kc . Very low applied voltage operation is possible since the photocells have a linear voltage-current characteristic. Illuminated by a neon lamp, typical photocell resistance is $5 \mathrm{~K} \Omega$, and dark resistance is 50 megohms minimum. Higher resistance types are also available. National Semiconductors Ltd., 2150 Ward St., Montreal 9, Canada.

Circle 270 on Inquiry Card

ENTRY PRINTER

Prints data at the same rate at which data is received.

Model 750 is a high-speed, alpha-numeric data printer. It combines the speed and reliability of a line printer with the ease of operation, flexibility and low cost of a serial entry printer. Printing speed is 75 char. $/ \mathrm{sec}$. Uses include on- or offline operation with tab card, punched tape, and magnetic tape devices. It accommodates roll paper as wide as 50 in . and all standard sizes of fan-fold paper. The Bristol Co., Waterbury, Conn. 06720. Circle 271 on Inquiry Card

I. C. SOCKETS

Contains a variety of the most commonly used sockets for circuit breadboarding.

This new kit, $\mathrm{Q}-401$, provides the semiconductor engineer with a greatlyincreased working fiexibility, especially when he has to secure single quantities of sockets for designing or specifying. The versatile and easy-to-use kit provides virtually every type of socket necessary for breadboarding, testing, and aging applications involving standard configurations. All sockets have a life of 50,000 insertions or better and each uses wipingtype contacts plated with nickel over a gold. Barnes Development Co., Lansdowne, Pa. 19050.

IC AMPLIFIERS

Operates from standard $\pm 15 v$. supply; full output of $\pm 11 v$.@ 2.2ma into $5 k$ load.

Integrated-circuit operational amplifiers, Models Q25AH and Q85AH, have dc gain of 20 K at full rated load. Gain-bandwidth is 50 MHz , and full output is 100 kHz as a unity-gain follower. Common-mode input range is $\pm 10 \mathrm{v}$. Model Q85AH has common-mode rejection exceeding 20 ,$000: 1$, and offset vs. temp. typically $5 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$. They are hermetically packaged in the special low-profile cylindrical TO-8 package having max. dimensions 0.6 in . D $\times 0.185$ in. H. Philbrick Researches, Allied Dr. at Route 128, Dedham, Mass. 02026.

Circle 273 on Inquiry Card

DATA TERMINAL

Used with real-time computers, timesharing systems, and inter-office networks.

The Data Terminal unit is compatible with all major computer systems which read and punch paper tape and edge-punch cards, while simultaneously producing a printed document and data. It also accommodates many types of systems. Speeds up to 175 words/min. are possible on-line or off-line. The system goes on-line via Data Phone or comparable equipment. Each machine is bi-directional and can serve as either a transmitter or receiver. Dura Business Machines, sub. of Dura Corp., 32200 Stephenson Hwy., Madison Heights, Mich.

Circle 274 on Inquiry Card

of electronic parts ond components, smoll tools, applionces, motors, tronsformers, etc.
Simple to operate. Make breakdown, leakage and shorts tests to U.L., C.S.A., ASTM, NEMA, IEEE, MIL and EASA standards. 115 vac $50 / 60$ cycle input. Continuously adjustable output. Included are : complete metering, controls, safety features, case with removable cover, test leads, line cord, instructions.

VISUAL INDICATOR MODELS
Have neon "breakdown" light for breakdown, corona or arcing indication . . . and separate neon leakage" light for leakage indication. 5 models from 0-1500 to 0-10,000 volts output. Priced from $\$ 137.50$ to $\$ 199.50$. Model 411 shown.
AUTOMATIC "SOUAWKER" MDDELS
Provide audible and visual test indications. 4 models from 0-1500 to $0-6000$ volts output. Priced from $\$ 255$ to $\$ 290$.

$$
4.35 .11
$$

Get all facts . . . write for Bulletin 4-1.3

ASSOCIATED RESEARCH. INC
3787 W. BELMONT AVE., CHICAGO, ILINOIS 60618

Circle 75 on Inquiry Card

CERAMIC CAPACITORS

Provides capacitance range from 10pf through $0.027 \mu \mathrm{f}$ in a $0.2 \times 0.1 \times 0.1 \mathrm{inc}$. case.

The Nailhead ${ }^{\text {T3s }}$ is part of the Neolythic ${ }^{\text {TM }}$ capacitor series. They are designed for miniature and subminiature electronic packaging in filters, coupling, phase shifting, and most commercial, industrial, and military general-purpose digital circuitry. The capacitors are available in radial-lead epoxy-encased rectangulars, as well as axial-lead round tabular configurations. Electron Products, div. of Marshall Industries, 1960 Walker Ave, Monrovia, Calif.

Circle 275 on Inquiry Card

SYMBOL TUBE

Generates a complete font of upper and lower case letters, numerals, etc.
The CK1414 Symbol Ray Tube provides the alpha-numeric inputs for computer read-out devices. Its 3 in . face can be scanned electronically by a computer to select the letters, numerals and symbols in the proper sequence to form the visible readout on a display tube. Raytheon Co., Components Div., Lexington, Mass. 02173.

Circle 276 on Inquiry Card

POWER TRANSISTORS

For power amplifier and oscillator uses in HF/VHF transmitters.
The B-3465 and B-3466 are 3a. r-f silicon planar-epitaxial NPN power transistors. High output power and high efficiency are characteristic. The B-3465 is contained in the solid TO-5 package and the $\mathrm{B}-3466$ in the stud nut heat sink MT-27 package. Gain bandwidth product is 200 mc minimum. Bendix Semiconductor Div., The Bendix Corp., Holmdel, N. J.

Circle 277 on Inauirv Card

PULSE GENERATOR

Output pulses are variable from 2 to $20 n s e c$. with 0.5 sec . rise and fall.

Model 961 provides high-voltage nsec. pulses for $R \& D$, engineering and calibration uses. Amplitudes are adjustable from 0 to 3 kv . Repetition rate is at 1 cPs , line freq., or pushbutton actuated. The primary use is for simulation of scintillations from nuclear events by driving nsec. light sources. Other uses include photosynthesis timing, impedance measurements, multiplier phototube testing. Huggins Laboratories, 999 E. Arques Ave., Sunnyvale, Calif.

Cirele 278 on Inquiry Card

PLASTIC SEALLESS PUMP

Standard capacities are from $1 / 3$ to 40 gpm

A rotor, mounted on an eccentric shaft in this plastic pump, rotates within a liner to create a progressive squeezing action on fluid trapped between the liner and the body block. All metal parts and mechanical action takes place inside the liner where fluid never reaches. This completely eliminates the need for stuffing boxes or shaft seals, guaranteeing no leakage.

The pump is self-priming, operates wet or dry and is suitable for extremely corrosive fluids, abrasive slurries or viscous materials. Applications include pumping of acids, alkalies, distilled water, diatomaceous earth slurries, electroplating solutions, ceramic tile glaze as well as shear sensitive emulsions.

Standard capacities are from $1 / 3$ to 40 gpm with discharge pressure up to 50 psi . Materials of construction include Teflon, PVC, linear polyethylene, Buna-N, Bakelite or stainless steel for body blocks and Viton-A, Kel-F elastomer, Hypalon, Neoprene and Buna-N for the liner. These are the only parts in contact with the fluid.

For additional information, write Vanton Pump \& Equipment Corporation, Hillside, New Jersey or telephone Area Code 201 Murdock 8-4120.

On display at the Chem-Show Booth \#1229

Most flexible insulating tubing or sleeving applications can be taken care of by the existing Varflex-manufactured lines. Occasionally something special comes along. Miniaturization in particular has produced a number of special needs.

However non-existent this sleeving may be today, it could be part of wired circuitry tomorrow. Varflex has cooperated with many engineers to develop specialized sleevings. We welcome the opportunity to work with you; our diversified experience will be helpful.

Circle 77 on Inquiry Card

FREQUENCY MULTIPLIER

Multiplication is adjusted by micrometer tuning. Input and output Z is 50Ω nom.

The Model 90600 tunable solid-state freq. multiplier is useful in L-Band and S-Band. The passive unit accepts input signals from 150 to 300 mc and delivers typically $1 / 2$ to 1 w . output power between 900 Mc and 2.4 Gc . A multiplier diode type of unit, it is compact and weighs less than 3 lbs. Output filtering holds undesired harmonics and spurious freq. oscillations down more than 30 db , typically 50 db or more. Resdel Engineering Corp., 990 S. Fair Oaks Ave., Pasadena, Calif.

Circle 279 on Inquiry Card

TIME DELAY RELAY

Capable of delaying dc voltages powering loads to 3 a. Life is 2 million cycles.

Model RST-2 is low-cost static timedelay relay. This subminiature device measures $115 / 16 \times 15 / 16 \times 17 / 32 \mathrm{in}$. and weighs approx. 1 oz . The delay time is continuously adjustable from 1.0 to 120 sec. by adding an external $1 / 2 \mathrm{w}$. resistor. Operate over temp. range is $-20^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Arnold Magnetics Corp., 6050 W . Jefferson Blvd., Los Angeles 16, Calif.

Circle 280 on Inquiry Card

HIGH-VOLTAGE CAPACITOR

Uses a combination of Mylar and paper dielectric impregnated with oil.

The B161Y and B161YT are high-voltage tubular capacitors (3 K to 3 Kv) for bypass, filter, or coupling uses. They feature an unusually high humidity resistance. Other features of these new capacitors include: no derating required up to $85^{\circ} \mathrm{C}$; power factor will not exceed 1%; high insulation resistance; case will not crack or chip. Aerovox Corp., New Bedford, Mass. 02741.

PCM GROUND STATION

Compact unit accommodates all presently used IRIG code formats.

Model TRC-138 PCM ground station decommutates, synchronizes and reconstructs signals in the presence of noise, freq. drift and signal fadeout. It provides max. versatility for accommodation of both present and future requirements with performance within 1 db of the theoretical optimum and bit synchronization to -10 db . Decommutated channels may be prime, subcommutated or supercommutated data. The Roback Corp., Dept. 1526, Huntingdon Valley, Pa.

Circle 282 on Inquiry Card

INTRODUCING DELTA BOND 152 THERMALLY CONDUCTIVE ADHESIVE
. . . To be used:

- For bonding thermally, yet isolating electrically. semiconductors to anodized or hard-coated chassis heat sinks.
- As a general adhesive. i.e. fabricating thermal links.
- For bonding when a thermally conductive interface is required.
Being 100% solid adhesive, it is effective on porous and non-porous surfaces. Features . . . high thermal conductivity, excellent dielectric strength, a coefficient of thermal expansion similar to Al and Cu , and produces a rigid high strength bond to most materials when cured.
Available in 4 oz . kits or 15 lb . cans ... from authorized WAKEFIELD Flectronic Distributors.
Write for BULLETIN 152.

Simple, Accurate Way To
MEASURE
LINEAR VELOCITY

Sanborn LVsyn® ${ }^{(1)}$ transducers are rugged, low cost and easily applied. Output voltage varies linearly with core velocity. No excitation voltage required. Thirteen standard models available with regular or non-breakable magnet cores - inquiries on "specials" invited.

- Working stroke ranges $0.5^{\prime \prime}$ to $20^{\prime \prime}$
- Outputs 7 to $650 \mathrm{mv} / \mathrm{inch} / \mathrm{sec}$.
- Linearity better than 1%
- Low friction (zero when mid. vertically)
- Immersible; temp. range -50° to $200^{\circ} \mathrm{F}$.
- No end stops required
- $\$ 40$ to $\$ 120$ (FOB Waltham, Mass.)

Bulletin \& Application Data on Request
HEWLETT
PACKARD, hP SANBORN
DIVISION
175 Wyman St., Waltham, Mass. 02154

COUNTER

Countm! intorad of (0.0), 10.1 1. ar 10 sci. is extondille.

The Type 11+4-A 100mic digital fregutney meter combines a 10 mo counter with a decade scaler. It features 100 mm sensitivity, full input controls, display and connting time selection, and a self-check morle. Display time for the 5 -digit incandescent in-line readout can be set at any one of 7 values from 0.16 to 10.24 see., or to infinity. Counting interval is extendible by a multiplier switch or set manmally. The 2 component instruments can he easily separated and used individually: (ielieral Radio Co., Wiest Concord, Mass. 01781.

Circle 283 on Inquiry Card

DIAMOND TOOLS

For drilling glazed alumina coramic substrates for thin-film circuits.

Series-107 diamond tools inclucle solid diamond drills and scribers for processing thin-film sulstrattes and semiconductor materials. They can be used for scribing fragile single crystals of silicon and germanium for semiconductor deriecs Aremeo Products, Inc., I. O. Box $1+5$. IRriarcliff Manor, N. Y. 10510.

Circle 284 on Inquiry Card

NPN TRANSISTOR

Combines thin-fim and planar-cpi-

 turial techniques. Handles 30 watts.FT7207 uses nichrome thin-film emitter resistance elements to equalize current flow through the multiple geometry of this monolithic unit. This equalization prevents thermal runaway, and enables the device to operate at high power, voltage, and temperature levels with a gainbandwidth product of 70 arc minimum. It is packaged in an isolated $7 / 16-\mathrm{in}$. hexagonal case. Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif.

Circle 285 on Inquiry Card

VOLT/RATIO DIVIDER

Combines a lead resistance compinsatur and i dial ri/ratio divider.

Model IVV 4007 compensated v . ratio divider eliminates crrors nor:nally associated with IR drops occurring in the intercomection of precision voltage dividers. The resistive, drift-compensated Kelvin-Varley divider operates over an amb. temp. range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Long term stability is better than $\pm 5 \mathrm{p} p \mathrm{~m} / \mathrm{yr}$. tecuracy is + parts $/$ million. The voltage divider may be used as a ratiometer or master moltage divider in precision ratio. voltage, resistance or current measurements. General Resistance. Ire., 430 Southern Bivd., New lork, N. Y. $10+55$.

Circle 286 on Inquiry Card

TOGGLE SWITCHES

Circle 80 on Inquiry Card

HOWARD PRESENTS
 Another Outstanding Air Movement Unit

Cyclohm MODEL 8040

DELIVERS 105 CFM.

Greater output, yet costs less than smaller-

- capacity competitive units (\$10.75 in 1-10 lots, much lower in larger quantities).
Powered by the Howard Unit Bearing Motor
- (over four million successful installations).

- Guaranteed for 5 years to require no maintenance or re-lubrication.

Write for Bulletin 8040, describing the complete line of Howard Guaranteed-Performance Air Movement Assemblies
 HOWARD INDUSTRIES Inc.

1760 State Street, Racine, Wisconsin
Telephone 414-632-2731 - Teletype 414-631-9231
DIVISIONS: ELECTRIC MOTOR CORP. - CYCLOHM MOTOR MICRO GEAR, INC. HOWCOR PRODUCTS - LCYD SCRUGGS CO ICRO GEAR, INC. - HOWCOR LAMINATIONS

Circle 81 on Inquiry Card

BREADBOARD KIT

Deveioping, checking out and testing digital circuits, sub-systems ard systoms.

The MBK2 silicon module breadboard kit provides a simple and convenient method of developing and testing circuits. A basic kit can accommodate up to 10 modnles. The kit contains a power sup. ply, a 1 pps to 1 mC signal generator for static or dynamic circuit analysis, and an indicator panel with lights for visual observation of circuit operation. Circuit wiring is then done with external patchcords. Raytheon Computer, 2700 So. Fairview St., Santa Ana, Calif. 92704.

Circle 287 on Inquiry Card

GREATEST PLUG-IN RELAY BREAK-THRU IN 10 YEARS!

NEW!
Plug-N-Socket RELAY

CROSSBAR SWITCH

Rapid circuit selection zolile climinating zuires, clips, pins and soldering.

This crossbar-type selector switch fits in a space $4 \times 4 \times 2 \mathrm{in}$. It consists of rhodium-plated printed-circuit base of parallel conductors, transverse to which are 10 cross rails carrying sliding contacts. The 10×11 arrangement provides 100 switching positions plus an off position for each circuit. Cherry Electrical Products, Box 439, Highland Park, Ill.

Circle 288 on Inquiry Card

VOLTMETER-AMMETER

Measures to 5 mv and 5 picoamps full scalc; has high input resistance.
As a voltmeter and null detector Model 153 has 34 full-scale ranges from 5 mv to 1 kv , and a $\pm 1 \%$ accuracy on 3 mv and higher ranges. Input resistance on 100/ microvolt and higher ranges is 200 meg ohm; zero drift is $\pm 2 \mathrm{mv} / 24$ hours. As an ammeter it has 42 full-scale ranges from 5×10^{-12} to 10^{-1} ampere, and $\pm 2 \%$ accuracy on 3×10^{-9} ampere and higher ranges. Keithley Instruments, 12415 Euclid Avenue, Cleveland 6, Ohio.

Circle 289 on Inquiry Card

ULTRASONIC SWITCH

Senses objects passing through or from a highly directional ultrasonic bean.

Model S-82 consists of a transmitter, receiver and control unit. The transmitter contains an $8=\mathrm{kc}$ piezoelectric trans-ducer. Transmitter power is supplied by the control unit or by battery if separation of the 2 units is desired. The control unit converts $60 \mathrm{cPS}, 110 \mathrm{v}$. to low voltages for the transistorized transmitter, receiver, relay driver and switching circuits. Flectronic Components Div., Genisco Technology Corp., 6320 W. Arizona Circle, Los Angeles, Calif. Circle 290 on Inquiry Card

Camb-actuated (laminated phenolic blade liffer plate) with remarkably high performance figures high contact pressure with low operating power - DC or AC coils. Slandard contacts are gold-flashed silver rated of 3 amps , Coils are vacuum impregnated with high quality electrical varnish. Available with standard or printed circuit

$S_{m a l l}$ size BIG PERFORMANCE Miniature RELAY TYPE RK

Now, DPDT, 3PDT and 4PDT relay with universal tube-type socket exclusively from Milwaukee Relays. A truly 10 amp 600 volt, 2, 3 or 4 -pole double throw relay using a low cost, high quality tube-type plug and socket. Developed jointly by Amphenol-Borg Electronics and Milwaukee Relays, this new plug-n-socket relay gives you:

1. 5,10 and 15 amp contact rating. Plug and socket supplied as combination.
2. Socket accepts solder connection or $3 / 10$ fast on.
3. Meets UL spacing requirements thru $10 \mathrm{amp} 1 / 4^{\prime \prime}$ over surface, $1 / 8{ }^{" 1}$ thru air, $1 / 22^{\prime \prime}$ thru material.
4. Rugged design - heavy duty locator key, sure gripping pins relay won't jiggle loose from shock or vibration.
Order now! Model 205, 5 and 10 amps. Model 225, 15 amps. Write, wire or phone.

Milwaukee Relays, Inc.

A Deltrol Corp. Affiliate
602 Pioneer Road, Cedarburg, Wis. 53012
Telephone (414) 377-4010
Circle 83 on Inquiry Card

MAGNETIC TAPE DEGRADATION CAN BE PREVENTED DURING STORAGE OR SHIPPING

with NETIC CONTAINERS

Widely adopted for military and industrial use since 1956, Netic Containers protect your valuable tapes from unpredictable, distortion-producing magnetic environments. Long life rugged containers withstand the rigors of repeated shipment. Available in a variety of shapes and sizes to solve your shipping or storage problems . . . they're non-retentive, impervious to shock or vibration, and require no periodic annealing.
A low cost form of insurance . . . the loss and inconvenience avoided are incalculable. Request Manual 106.

MAGNETIC SHIELD DIVISION
 Perfection Mica Company
 1322 N. ELSTON AVE., CHICAGO, ILLINOIS 60622
 ORIGINATORS CF PERMANENTLY EFFECTIVE NETIC CO-NETIC MAGNETIC SHIELDING

Circle 84 on Inquiry Card

METAL FILM RESISTOR

The $1 / 10$ watt miniaturized resistor features capped construction.

The MF35C conformally coated units are rated at $1 / 10$ watt at $125^{\circ} \mathrm{C}$, derating to 0 at $175^{\circ} \mathrm{C}$. They have a resistance range from 30.1 ohms to 100 K , and a tolerance of 1%. Tested in accordance with MIL-R-10509E, they feature a standard temperature coefficient of ± 100 $\mathrm{PPM} /{ }^{\circ} \mathrm{C}$, with TC of $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and $\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ also available. Body length is only 0.220 in . The diameter is 0.074 in. Electra Manufacturing Co., Independence, Kansas.

Circle 249 on Inquiry Card

SILICON POWER SUPPLY

Features 2 independent power outputs with dual ranges on cach output.

Model DL40-700 Silicon Dual Lab power supply is designed for general laboratory uses. Independent range switches permit selection of either 40 v . @ 350 ma , or 20 v .@ 700 ma outputs, from each section, with automatic voltmeter range switching. The individual sections can also be paralleled or put in series for greater versatility. One power supply provides the following outputs : two $0-20 \mathrm{v}$. outputs @ 0.7a. each; two 0-40v. outputs @ 0.35 a . each; one $0-20 \mathrm{v}$. (0.7 a .) and one $0-40 \mathrm{v}$. (0.35 a .) ; one $0-20 \mathrm{v}$. @ 1.4a. (parallel operation) ; one $0-40 \mathrm{v}$ @ 0.7 a . (series or parallel operation) ; and one $0-80 \mathrm{v}$. @ 0.35 a . (series operation). Trygon Electronics, Inc., 111 Pleasant Ave., Roosevelt, L. I., N. Y. 11575.

Circle 250 on Inquiry Card

Measure

10 Microvolts ($\mu \mathrm{V}$) to 320 Volts (V) TRUE-RMS of a wide range of waveforms and frequencies

with Ballantines' Model 320A True-RMS Voltmeter

The true-rms or "effective" voltage of white noise, pulse, square wave, or sinusoidal sig. nals may be measured accurately. Voltage readings are taken from individually-calibrated logarthmic scales designed to provide uniform accuracy and precision of reading over their entire five inch length. Accuracy is stated in \% of actual reading and not in $\%$ of full scale deflection. Model 320A may be used to make measurements on signals whose peals may be as much as 15 times as high as the true rms of the overall signal. The 320A measures true-rms over approximately one second of time, and special variations may be ordered for averaging readings over several seconds.

Voltage range \qquad $100 \mu \mathrm{~V}$ to 320 V
($10 \mu V$ to $100 \mu V$ in NULL DETECTOR mode) Frequency range \qquad 5 Hz to 4 MHz
(3 db bandwidth is 2 Hz to 7 MHz)
Accuracy at any POINT ON ThE SCALE,
ANY VOLTAGE $\ldots \ldots .2 \%, 20 \mathrm{~Hz}$ to 400 kHz ;
$3 \%, 10 \mathrm{~Hz}$ to $2 \mathrm{MHz}^{2} 4 \%, 10 \mathrm{~Hz}$ to 4 MHz
Input infpedance ... 10 megohms in parallel with 11 or 17 pF
Amplifier Characteristics $90 \pm 1 \mathrm{db}, 5 \mathrm{~Hz}$ to 4 MHz
DC Output to recorder. . 0.2 volts, corresponding Power supply ... $115 / 230 \mathrm{~V}, 50-420 \mathrm{~Hz}, 90$ watts Portable or rack versions available Price: Portable $\$ 485$; Rack $\$ 505$.

Please write for 4 -page brochure giving many more details
Member Scientific Apparatus Makers Association

- Since 1932 -

BALLANTINE LABORATORIES INC.

BOONTON NEW JERSEY
Circle 86 on Inquiry Card
ELECTRONIC INDUSTRIES • October 1965

Physicists and Electrical Engineers for research into

NEW COMPONENT PART CONCEPTS

Unusual opportunities now exist in the field of component development and performance analysis, due to a conceptual approach developed by our Research and Development Laboratories. These positions demand the ability to perform laboratory evaluation on existing components and prepare a critical analysis of their performance. Where the state of the art is a limiting factor, new approaches must be proposed and development work initiated to provide the required component performance.
In the process of developing new approaches to the solution of component problems, papers must be prepared which will be used as the basis for proposals.
Well equipped laboratories are provided in which the applicant can employ the latest techniques in development and instrumentation to assist in the exploitation of his ideas.
Qualifications should include at least a BS degree from an accredited university in Physics or Electrical Engineering. In addition, the applicant must be able to demonstrate 5 to 10 years of progressive creative experience through issued patents or publications in technical journals.

Please airmail your resume to:
MR. ROBERT A. MARTIN
Head of Employment
Hughes Aerospace Divisions
11940 W. Jefferson Blvd.
Culver City 21, California
Creating a new world with electronics

With the Model 970 Transistor Analyst, no alteration in printed circuits or removal of soldered-in transistors is normally necessary to make the test. The 970 uses an analysis technique of de signal injection into the transistor stage to be checked. The unit meters the total power supply current in a sensitive, easily balanced bridge circuit. Go, no-go indication of the transistor stage operation is shown on the meter. Power transistors may be accurately tested out of circuit with current up to 1a. The analyst also generates an AM or FM modulated, or unmodulated carrier freq. from 240 Kc to $2000 \mathrm{Kc}, 10$ to 11.4 Mc and 88 to 108 mc . B\&K Mfg. Co., div. of Dynascan Corp., 1801 W. Belle Plaine Ave., Chicago, Ill. 60613.

Circle 324 on Inquiry Card

HUGHES

HUGHES AIRGRAFT COMPANY
AEROSPACE DIVISIONS
An equal opportunlty employer.

These high performance static inverters surpass the extreme conditions of applicable military and FAA specifications for airborne equipment and are available at economical prices from stock. In addition they feature guaranteed reliability - protection of output from no load to short circuit under any and all conditions. The input is protected against high transients and high input voltage - low distortion • voltage regulated - high efficiency • stable frequency • light weight.

CAIN \& CO.

15840 Ventura Blvd,
Encino, California
(213) 783.4700

UNITRON, INC.

1624 N. First St.
Garland, Texas
(214) 276.8591

Circle 87 on Inquiry Card

WHICH DEFLECTION YOKE FOR YOUR DISPLAY ?

Syntronic's team of experts knows more about yoke design, engineering and quality control than anyone else. A solid 10 -year record of leadershipacknowledged throughout the industry. Benefit from it.

syntronic

INSTRUMENTS, INC. 100 Industrial Road, Addison, Illinois Phone: Kingswood 3-6444

NEW PRODOCTS

COMPONENT COOLER
Cools critical components prescuting a light heat load.

Model 094447 is a 2 -stage cascade thermoelectric unit. It is capable of achieving a zero load temp. differential of $85^{\circ} \mathrm{C}$. Carrying a 15 mw heat load, this cooler will maintain the cold plate junction at $-58^{\circ} \mathrm{C}$ in a vacuum of 10^{-6} Torr with a $+27^{\circ} \mathrm{C}$ heat sink temp. Cooler performance including vacuum level is guaranteed for 1 year. A 4 w . heat sirk is required, while input power is 3.5 a. @ 1.1vdc. Borg-Warner Thermoelectrics, Wolf \& Algonquin Rds., Des Plaines, III. 60018. Circle 251 on Inquiry Card

THYRISTOR

Unique cooling method allozes
for lover jumction temperature.

Thyristor type BStP has a silicon pellet which is more than 30 mm . Instead of the usual stud-mounted encapsulation, this large pellet is encapsulated in a disc cell. In this way the heat is conducted from the pellet to both sides. Therefore, it is possible to keep the junction temp. comparatively low and thus increase the surge load capacity. The continuous load capacity can also be increased without exceeding the max. permissible junction temp. of about $110^{\circ} \mathrm{C}$. With air cooling this thyristor has a current rating of about 500a. (mean de current). Siemens America Inc., Components Div., 230 Ferris Ave., White Plains, N. Y.

Cirele 252 on Inquiry Card

from BARNSTEAD

DISTILLED WATER
 NO OTHER STILL CAN MATCH

$\mathrm{T}_{\text {his NEW Still produces better qual- }}$ ity distilled water than any other Still including triple distillation types. Special patented high purity features insures water of 0.1 ppm or less - ten times purer than ordinary distilled water.

This New type Barnstead Still is now available in capacities of $1 / 2$ to 300 or more gallons per hour.

WRITE

For literature on this NEW Barnstead Still. . . . Bulletin \#168 . . . the result of 87 years of Pure Water experience.

Raristead
 STMLL ANH STEEILIZEREC.

51 Lanesville Terrace, Boston 31, Mass.

New York, Philadelphia, Washingion,

 Atlanta, Cleveland, Detroit, Chicago, St. Louis, San Francisco, Los Angeles
gLASS CAPACITORS
For circuits necding high stability and loze drift or losses.

These glass-dielectric capacitors come in military and industrial types. The military glass capacitors, type CY, cover the capacitance range of 0.5 through 300 pf with voltage ratings of 300 and 500 v . @ $125^{\circ} \mathrm{C}$. The industrial glass capacitors, type CYW, cover the range of 0.5 through 1200pf with voltage ratings of 100 and 500 v . @ $125^{\circ} \mathrm{C}$. Both meet or exceed the requirements of Mil-C-11272. The electrical characteristics are so stable that 2000 hrs. of operation at 150% rated volts and $125^{\circ} \mathrm{C}$ will change the capacitance no more than 0.5%. Westinghouse Electronic Capacitor 1)ept., Box 130, Irwin, Pa.

Circle 253 on Inquiry Card

FLASHTUBES

Watcrcooled to proxide more efficiont operations. E.reess of 300,0010 flashes.

The FX-62B, FX-65B, FX-67B, FX74B and FX-75B flashtubes economically replace main discharge tube with standard off-the-shelf replacement tubes. The FX-74B has a max. average power input of 0.5 kw with a max. energy/pulse of 100 joules at $200 \mu \mathrm{sec}$. pulse duration. The FX-75B has a max. average power input of 1 kw with a max. energy/pulse of 400 joules at $200 \mu \mathrm{sec}$. The FX-62B has a max. average power input of 4 kw with a max. energy/pulse of 600 joules at $1200 \mu \mathrm{sec}$. The FX-65B has a max. aver age power input of 8 kw with a max. energy/pulse of 2000 joules at $340 \mu \mathrm{sec}$. The FX-67B has a max. average power input of 10 kw with a max. energy/pulse of 4000 joules at $340 \mu \mathrm{sec}$. EG\&G, Inc., Products Div., 160 Brookline Ave., Boston, Mass. 02215

Circle 254 on Inquiry Card

SIDE-LOOKING RADAR SYSTEMS ANALYSTS

New programs at HUGHES are generating opportunities for Systems Analysts experienced in high-resolution data gathering, data transfer and data processing systems. Openings exist for Systems Engineers, Mathematicians and Physicists qualified in synthetic array radars, optical, and other data collection systems (IR, Electro-Optical, SIGINT and others). Assignments include:
Senior Systems Scientist with 20 years' electronic systems experience -at least 10 years relevant to side. looking radar systems. Applicants will be considered for important program management responsibilities. M.S. or Ph. D. degree required.

Senior Systems Analysts with 10 years' electronic systems experience -at least 5 years relevant to highresolution systems pre-design and evaluation. Applicants will be considered for assignments in concept formulation; single and multi-sensor applications; data transmission, processing and interpretation; systems integration and performance evaluation. M. S. or Ph. D. required.

Systems Analysts with 5 years' experience in: detection of signals in noise, optimum filter theory, nonlinear signal processing, information theory, MTI and doppler systems analysis. B. S. or M. S. required.

Please airmail your resume to:
MR. ROBERT A. MARTIN Head of Employment Hughes Aerospace Divisions 11940 W. Jefferson Blvd.
Culver City 23, California
Creating a new world with electronics

HUGHES

HUGHES AIRCRAFT COMPANY
AEROSPACE DIVISIONS
U. S. CITIZENSHIP REQUIRED An equal opportunity employer.

Ever need plug-in power supplies in a hurry?
Send for our 1965 catalog.
It lists $\mathbf{6 2 , 0 0 0}$ different types.
The one you need will be shipped in $\mathbf{3}$ days.
(We've never failed to make good on this promise)

3WIITBH TO THE BEST

MODEL 65 SWITCH

- Available as single section only
- 4500 volt peak flashover at 60 cps
- 25 ampere current carrying capacity
- Current carrying members
heavily silver plated
- Low loss silicone impregnated steatite stator and rotor
- Nylon detent wheel
- Sleeve bearing

NEW PRODUCTS

TELEMETRY OSCILLATORS

For use as freq.-modulated subcarricr oscillators for aerospace telcmetry.

These high-reliability units operate over the standard IRIG freq. bands and 6 additional h-f bands in the range of 95 kc to 165 kc . The oscillators use a new drift-field delay element. This element, coupled with a feedback amplifier to form an oscillator, provides a linear relationship between the freq. of oscillation and the applied input voltage. The delay time, which sets the freq., depends upon the velocity of carriers injected into the semiconductor. The velocity is in turn directly related to the voltage applied across the drift-field element. Westinghouse Flectric Corp., Box 2278, Pittsburgh, Pa. 15230.

$$
\text { Circle } 255 \text { os Inquiry Card }
$$

SERVO RECORDER

Records with 2/10 sec. full scale response over the full 10 in . span.

The Wide Chart Speed Servo features a unique sluttle servo motor with only 1 moving part. It has no drive cords or gears. In the inking system an inertial ink pump provides skip-free writing even when pen speed is $100 \mathrm{in} . / \mathrm{sec}$. Yet, the inking system will not bleed even when the recorder is stopped. An automatic chart drive enables users to instantly dial any one of 15 chart speeds including $1 / 2$, $1,2,4$ and $8 \mathrm{in} . / \mathrm{sec}$. , min. or hr. Single speed, 2 speed and 10 speed drives can also be ordered. None of the drives requires gear change, motor or screw driver adjustments. Esterline Angus Instrument Co., Inc., P. O. Box 24000, Indianapolis, Ind. 46224.

Cirele 256 on Inquiry Card

We've completed our line of Switching Diodes-

. π

Ask us anything.

When you consult with a supplier about the best type of switching diode for your application, it's good to know he can afford to be objective in his recommendation.
With the development of the Philco L8300 and L8400 series of silicon PIN diodes for high-power microwave applications, we have rounded out our line of switching diodes to what we believe is the most complete line in the industry.

If high speed is your primary concern, ask us about our germanium switching diodes (to 1 nsec .). If high frequency at medium power is the crux of your interest, ask us about our epitaxial silicon diodes. For Kilowatt peak power handling applications, ask about the new PIN switching diodes. These include a possibly unexpected bonus: they are also available in packages especially designed for field replacement in highfrequency waveguide switching applications.

Packages include cartridge and miniature glass for waveguide switches, welded ceramic and pill prong for coax or stripline uses.

To sum up, we believe that we are in a position to offer you competent and unbiased advice in connection with any switching-diode problem. It seems worth at least a try on your part. Call, write or wire Russ Wright - or, if speed is not of the essence, circle the Reader Service Card! (Phone: 215-855-4681.)
SOLID-STATE PRODUCTS OPERATION

HIGH-SPEED READER
Reads from bottom of tape at 1.50 cPs asynchrononsly and bidirectionally.

The R-150 reads 5, 6, 7, or 8 level tape without adjustment or moditication. Any tape, stuch as paper, mylar, or foil, in widths of $7 / 8 \mathrm{in}$., $11 / 16 \mathrm{in}$., or 1 in . can be used without regard to color, thickness or (n)acity. The new reader is a a ailable in either table top console without recling, or standard panel mount with or without integral reel tape handling. It operates on the non-return to zero principle and uses the starwheed methoul of reading which causes very little wear on tapes. Form "C" switching provides positive hole/nohole identification. Tally Corp., 1310 Mercer St., Suattle, Wash. 98109.

Circle 257 on Inquiry Card

for samples, technical data on hydrazineactivated flux ${ }^{*}$ or core

AIRBORNE RADAR SYSTEMS ENGINEERS

Our Aeronautical Systems Division has several openings for Airborne Radar Systems Engineers who are familiar with fire control systems and the associated AGE and maintenance testing, and who have experience defining test equipment requirements, or are familiar with development/integration testing.
The assignments will involve the analysis and definition of customer requirements related to the maintenance and checkout of prime aero equipment the functional design of AGE and/or the supervision of laboratory test activities. An accredited degree in E.E. and a minimum of three years of applicable, professional experience are required.
U.S. CITIZENSHIP IS REQUIRED.
please airnail your resume to:
MR, ROBERT A. MARTIN Head of Employment Hughes Aerospace Divisions 11940 W. Jefferson Blvd.
Culver City 22, California
Creating a new world with electronics
HUGHES
MUGHES AIRCRAFT COMPANY
aEROSPACE DIVISIONS
An equal opportunity employer.

International Resistance Co. aids engineers and buyers in specifying
 Refer to
 their 115-page catalog
 in the 1965
 eem - Electronic Engineers Master

 645 Stewart Ave. - Garden City, N. Y. 11533

Circle 94 on Inquiry Card

FOR 1966 NEW
 INDUSTRIAL ELECTRONICS CATALOG

Here's the standard of the industry from Allied, the world's largest stocking distributor of electronic components and equipment. 552 pages. 64,000 items, 6,000 new products. Factory OEM prices. Same-day shipment. Get your personal copy now.

For FREE catalog, check reader service card or write direct to:
Allifd electronirs
subsidiary of ALLIED RADIO CORPORATION
100 N. Western Ave., Dept. 217, Chicago, Illinois 60680

LOW-PASS FILTERS

For use in cable connctors. Prozides max. RiFl reduction in a uin. of space.

The subniniature FO type filters provide attenuation of greater than 50 db over the freq. range irom 10 m me to 10 ac . Unique design allows unusually close spacing so they can be introduced into cable comectors with no reluction in the mumber of terminals. Further, they provide the possibility of individual replacement oi filters if desired. When mounted through a ground piane in the comector, there is complete shicking to prevent any possibility of r-f cotpling between infut and ontput. Allen-Bradley Co., 130 W: Grecnfield Ave., Milwankee, Wis. 53204.

Circle 258 on Inquiry Card

LEAD FORMER

Makes precision bends in lead acires for monting in PC boards.

This plastic tool resembles a caliper laving a sliding section within a fixed mounting. Right-angle tramnel points on the end of each section are positioned to coincide with the hole spacing desired. To use the tool, the operator adjusts the spacing of the trammel poirts to conncide with the desired hoie spacing in the PC board. This spacing is precisely duplitated by V slots located one in the sliding section and one in the fixed section of the device. Once spacing is established, the component is placed midway between the V slots with a lead in each slot. A push of the fingers forms the bend. Davey Products, Box 567, Fairfield, Conn.

Circle 259 on Inquiry Card

These new general purpose dc operational amplifiers empioy matched junction FETs in the balanced input stage to achieve high input resistance and unusually low drift. Designed for ± 10 volt service, units have an operating emperature range of -40 to $+85^{\circ} \mathrm{C}$ Model 1552 is supplied in a modular $1.8^{\prime \prime} \times 1.2^{\prime \prime} \times 0.6^{\prime \prime}$ package. Model 1952 designed for high density applications, is $1.0^{\prime \prime} \times 1.0^{\prime \prime} \times 0.7^{\prime \prime}$. Units are priced at $\$ 145$ and $\$ 165$

	1532
Input Impedance	1952
Differential	
Common Mode	$10^{2,2} \Omega$
Voltage Gain	$10^{14} \Omega$
Bandwidth @ 0 db	$1.5 \mathrm{Mc} / \mathrm{s}$
Maximum Frequency	
for rated output	

Two additional new FET amplifiers (Models $1553 \& 1953$)) are also offered by Burr-Brown. Performance is similar to above except isolated-gate FETs are used to achieve $10^{12} \Omega$ input impedance with corresponding changes in offset and drift characteristics.
FOR COMPLETE TECHNICAL INFORMATION write, wire, or phone Burr-Brown, today.

BURR-BROWN

[^5]
NEW PRODOCTS

ATTENUATOR

Features low bias current and improved bias-current impedance.

Model X430 Switch/Modulator/Volt-age-Controlled Attenuator has its switching diodes connected in series, instead of the usual parallel. This allows a choice of either polarity grounded biasing or straight through bias drive in an ungrounded system. Min. attenuation of 3 db or less is realized from 8.5 to 9.5 Gc with a total diode current of 150 ma . Modulation freq. are dc to 500 mc . Modulation is 99% from 8.2 to 10.5 cc . Somerset Radiation Laboratory, Inc., Box 201, Edison, Pa. 18919.

Circle 260 on Inquiry Card

CAPACITOR PROTECTOR

Protects the CRT control grid in color TV sets from arc-overs.

The Gap-Cap ${ }^{\circledR}$ spark gap and capacitor protective device consists of a ceramic disc capacitor with a built-in spark gap which has a well defined arcing voltage Units now in production are for voltages of 1.5 kv and 2.5 kv and are available in several capacitance values. The Gap-Cap is used as a protective device in color TV sets to protect control grid circuitry from arc-overs in the color gun, and for protecting other high-voltage circuits. The cost of the device is said to be less than 7ϕ in production quantities. Centralab, Electronics Div. of Globe-Union Inc, P.O. Box 591, Milwaukee, Wis. 53201. Circle 261 on Inquiry Card

NATIONAL

ELECTRONICS, INC
A subsiolaary of vaalan associates PHONE (312) 232.4300 - GENEVA, ItUNOIS, U.S.A.

Now . . . for Analog and FM instrumentation applications... Nortronics offers two new 3-channel and 4-channel mag. netic record and reproduce tape heads. Format follows the standard IRIG 7channel interlace for $1 / 2$-inch tape Track width is 0.050 inches; tracks spaced 0.140 inches center-to-center across the head and .070 inches center-to-center across the tape when the two heads are interlaced. All channels within heads located within 0.002 inches of the nominal position required to match this track location. Heads feature deposited quart\% gaps down to one micron, and without mounts measure only 0.700 inches wide by 0.830 inches high by 0.665 inches deep. Mounts, terminal connections, impedances and resolution can be tailored to fit individual requirements.
ADDITIONAL FEATURES: Fine lam
nated, precistion lapped low. loss tour for intimate tape-to-gap contact; and highly polished, all metal faces which greatly reduce oxide
buildup and the need for frequent head cleaning.

For additional information, write:

Nortronics

8149-L 10th Ave. No. - Minneapolis. Minn. 55427

Advertisers-October 1965

This index is published as a convenience.
*Regional
No liability is assumed for errors or omissions.

Advertising

copian Corporation	
Adams \& Westlake Co.	138
Aerovox Corporation	
Alco Electronic Products, Inc.	150
Alexander Hamilton Institute 15Allen-Bradley 15	
Allied Control Company, Inc. 80, 81	
Allied Electronics	158
Alpha Metals, Inc. 120	
American Electrical Heater Co. American Beauty Division 45	
American Machine \& Foundry Co. Potter \& Brumfield Division	
Amperex Electronic Corp. . . . Insert Fol. p. 32, 105	
Amphenol Corporation Amphenol Controls Division66, 67	
Armco Steel Corporation	32
Associated Research, Inc.	
Astrodata Inc.	
Automatic Electric 50	50, 51
B	
Ballantine Laboratories Inc.	
Barnstead Still \& Sterilizer Co. 155	
Beckman Instruments, Inc. Helipot Division 70	
Bourns, Inc.Insert Fol. p. 52 Brush Instruments Div. of Clevite Corporation.....Inside Back Cover	
Bulova Watch Company, Inc. Electronics Division 110	
Burr-Brown Research Corp. 159	
Bussmann Mfg. Division McGraw-Edison Co. 108, 109	
By-Buk Company	
c	
*Canadian Department of Trade \& Commerce	erce 94
Centralab Division of Globe-Union Inc. \qquad	
Clarostat Mfg. Co., Inc. $\mathbf{1 1}$. 31Collins Radio Company 31	
Columbian Carbon Co. 41	
$\begin{array}{ll}\text { CMC-Computer Measurements Co. } \\ \text { Consolidated Avionics } & 77\end{array}$	
Consolidated Electrodynamics	

Drake .. 144

G

General Electric Company Lamp Glass Division	125
Globe Industries, Inc.	143
Gries Reproducer Company	29
Grieve-Hendry Company	145
Guardian Electric	79
H	
Hickok Electrical Instrument Co., The	$\begin{array}{r} 62 \\ 141 \end{array}$

Aerospace Divisions153, 155, 157	
Vacuum Tube Division 139	
Ideal Industries, Inc.	121
Industrial Electronic Engineers, Inc. 147	
ernational Rectifier Cor	93

Kahle Engineering Company \quad L \ldots................... 124

Lepel High Frequency Laboratories, Inc. 142

N	
National Electronics Inc.	... 160
Nortronics	160
0	
Omite Manufacturing Cond	mpany 49

Paktron Division

| Illinois Tool Works Inc. 19 |
| :--- |$\quad 19$.

Perfection Mica Company
Magnetic Shield Division 152
Phelps Dodge Electronic Products 12
Philco Corporation
Lansdale Division
157
Sierra Electronic Division …............ 7
Photocircuits Corporation 10
Potter \& Brumfield Division
American Machine \& Foundry Company 44
Precision Paper Tube Co. 143
R
Radio Corporation of America
Electronic Components and Devices 27
Semiconductor-Computer Div. Back Cover
Radio Switch Corporation 156
Rogan Brothers, Inc. 143
Rowan Controller Co., The 119
Sanborn Division
Hewlett-Packard Company112, 149

Schrack Electrical Sales Corp. 151
Sel-Rex Corporation 59
Silicon Transistor Corporation 63
S.K Wayne Tools 142

Sperry Rand Corporation
Sperry Semiconductor Division 60
Sprague Electric Co.2, 5
Stromberg-Carlson Corporation 152
Syntronic Instruments, Inc. 154

Tektronix, Inc. 20
Telonic Industries, Inc.52, 78
Texas Instruments Incorporated
Semiconductor-Components Division16, 17
Trygon Electronics, Inc. 159
U
United Shoe Machinery Corporation
United Eyelets Fastener Div.

United Systems Corporation	146
Unitron, Incorporated	154
v	
Vacuum Atmospheres Corporation	19
Vanton Pump \& Equipment Corporation	148
Varflex Corporation	148
Varo Inc.	107
Victoreen Instrument Company, The	6
W	
Wakefield Engineering, Inc.	149
Westinghouse Corporation	
Semiconductor Division	24

ELECTRONIC INDUSTRIES

REGIONAL SALES MANAGERS

Philadolphia 19139-56th \& Chestrut Sts. Area code 215) Sherwood 8-2000 JOSEPH DRUCKER
New York 10017-100 East 42nd St. (Area Code 212) OXford 7.3400
GERRY PELISSIER
Boston, Mass. 02110-10 High St.
(Area Code 617) LIberty 2.4460
ROBERT G. SMITH
Chicago 60621- 540 N. Michlgan Ave.
(Area Code 312) 467.9660
JOHN W. BERNHAROT
PHILIP T. CLARK
Cioveland 44114-601 Rockwoll Ave.
(Area Code 216) SUperior 1.2860
GREG JOHNSON
Hollywood, Fla. 33021
4831 Tyler St., Hollywood Hills
,
Los Angeles 90057- 1543 W. Olympic Btud
(Area Code 213) DUnkirk 7.1271
GEORGE F. KELLEY
BURT UNDERWOOD
San Francisco 94103-1355 Market St.
(Area Code 415) 861-7107
DON MAY
Atlanta 30309-1776 Poachtree St. N.W.
(Area Codo 404) 875.1255
JOHN W. SANGSTON
Dallas 75206-Meadows Bidg.
Expressway at Milton
(Area Code 214) EMerson 3.6426
harolo E. MOTT
EUROPEAN SALES OFFICES
London, S. W. (1)-67/68 Jermyn St.
St. James
mAX F. Holsinger
United International Industrial Pross
Eitelstrasse 32
${ }_{4}^{4}$ Dusseldorf Rath, Germany
MAX F. HOLSINGER

FAR EAST SALES OFFICE
rokio Marunouchi, Japan
C. P. O. Box \#1572, Room 814
T.e1.: $211-3506.3509$

Tol.: 211-
Togin Bidg.
CLARENCE
T. SAKAGUCHI

11 TH DEVICES MEET TO COVER MICROWAVE GENERATORS

New microwave generators which have attracted widespread attention in the industry will be discussed by four leaders in the field at the opening session of the 1965 International Electron Devices Meeting (IEDM) October 20-22.

The IEEE conference, which will be held at the Sheraton-Park Hotel in Washington, D. C., takes on a broader look in program this year as it goes international for the first time.

The broadened scope-in program topics and conference sessions plus extension of a formal invitation to engineers throughout the world to take part -was disclosed by Dr. Clare G. Thornton of Philco Corporation's Lansdale (Pa.) Division. Dr. Thornton is general chairman of the 11th annual convention.
The overall Program Committee has been increased in size and scope so as to provide additional emphasis on new areas that include microelectronics, power sources, and quantum electronics, he added; more flexibility has been

INTO WORDS: Only 21 sizes of United Standard Electronic Eyelets will handle an almost infinite range of your single-side and double-sided PW board eyeleting needs! As a result, you'll save engineering and specifying time and costs, simplify your purchasing procedures and reduce your inventories. Fewer sizes of setting tools will be needed, so you'll reduce tool costs too.

FOR COMPLETE INFORMATION on United Standard Electronic Eyelets (and Eyeleting Machines), ask today for your copy of Bulletin E-107-and for full details on the new Standard Electronic Eyelet Selection Kit, which contains generous samples of all 21 sizes. Phone the United Office in your area... or write direct to Fastener Division,

United Shoe Machinery Corp.
2053 River Road, Shelton, Connecticut

United Eyelets

FASTENER DIVISION
United Shoe Machinery Corporation
SHELTON, CONNECTICUT 06485
Branches: Atlanta, Ga. • Boston, Mass. - Chicago, III. - Cincinnati, Cleveland, Ohio Dallas, Texas - Sun Valley (Los Angeles), Calif. - Lynchburg, Va. - Milwaukee, Wisc. Nashville, Tenn. - E. Orange, N.J. (New York) - Rochester, N. Y. © St. Louis, Mo.
written into the program format.
The meeting will cover research, development, design and manufacture of electron devices in five major areas, each with its own program subcommittee.

Dr. James B. Gunn, of the IBM Research Center, Yorktown Heights, N. Y., will chair the general keynote session on "Two-Terminal Semiconductor Devices," Wednesday, October 20 .

He will introduce the discussion and then present Dr. A. L. McWhorter, MIT-Lincoln Laboratory, Lexington, Mass.; Dr. Bernard C. DeLoach, Bell Telephone Laboratories, Murray Hill, N. J., and Dr. C. Hilsum, England's Ministry of Aviation, Royal Radar Establishment.

William C. Hittinger, of Bell Labs.. program chairman for the conference, said, "These are new and very important devices and we feel most fortunate in having these four gentlemen on the program; they are the technical leaders in the field."

The program chairman said that considerable interest has been generated overseas in the 1965 meeting, both in university and industrial laboratories.

The conference will cover the areas of energy conversion, electron tubes, integrated circuits, solid state devices, and quantum electronic devices.

CLASSIFIED

DISTRIBUTOR WANTED

No Competition. To service and set up new accounts in exclusive territory. Investment secured by fast moving inventory of amazing plastic coating used on all types of surfaces, interior or exterior. Eliminates waxing when applied to any type of floor. Eliminates all painting when applied to wood, metal or concrete surfaces.

Minimum Investment - \$500
Maximum Investment - \$12,000
For details write or call:
Phone: 314 AX-1-1500 MERCHANDISING DIVISION
P. O. Box 66

Sł. Ann, Missouri 63074

Another Brush Innovation in Recording:

The Very versatile Brush Mark 842.

For people who never know what they'll be recording next!

You know what we mean.
Recording requirements change. So it makes sense to buy a recorder you can change with them. Like the Brush Mark 842. See the two preamplifiers right below the display and controls? They're the interchangeable plug-in type. Brush gives you a choice of nine. Plus a pick of seven conversion couplers. And any mounting arrangement
you can think of. Lets you match the new Mark 842 to whatever recording job comes along. Great performance, too. Highest usable frequency response of any direct writing recorder . . . 75 cps full scale; flat to 150 cps at reduced amplitude. $1 / 2 \%$ Linearity. All solid state electronics. High torque penmotors. Rugged, crisp-writing styli to assure razor-sharp traces
of unmatched reproducibility. Pushbutton choice of 12 writing speeds. All yours in the clean, neat, easy-to-operate Mark 842. Built by Brush to meet your recording needs tor years to come. Ask your local Brush Sales Engineer for a demonstration. A new brochure is yours for the asking. Brush Instruments Division, Clevite Corporation, 37th \& Perkins, Cleveland, Ohio 44114.
\therefore.

new

miniature core-driver...RCA-40283 믐

specially designed for ultra-compact computers

Now-commercially available, this tiny new RCA-40283 N-P-N silicon core-and-line driver packs substantially all the performance of TO-5 core drivers into a tiny TO-46 case.
\checkmark Check these features:HIGH POWER-HANDLING
CAPABILITY: 2 watts max at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
\square HIGH OUTPUT VOLTAGE:
$v_{\text {cEO }}=30$ volts max.HIGH GAIN-BANDWIDTH PRODUCT: $\mathfrak{f}_{\mathrm{r}}=375 \mathrm{Mc}$ (typical)

FAST SWITCHING:

Turn-on time: 16 nsec typ at $\mathrm{I}_{\mathrm{C}}=150 \mathrm{ma} . \mathrm{I}_{\mathrm{B}_{1}}=\mathrm{I}_{\mathrm{B}_{2}}=15 \mathrm{ma}$
Turn-off time: 27 nsec typ at $I_{\mathrm{C}}=150 \mathrm{ma}$. $\left.\right|_{\mathrm{B}_{1}}=I_{\mathrm{B}_{2}}=15 \mathrm{ma}$
Storage time: 17 nsec typ at $\mathrm{I}_{\mathrm{c}}=150 \mathrm{ma} . \mathrm{I}_{\mathrm{B}_{1}}=15 \mathrm{ma}$

WIDE TEMPERATURE RANGE:

-65° to $+200^{\circ} \mathrm{C}$. storage and operation

EXCELLENT HEAT DISSIPATION:

At case temperatures up to $25^{\circ} \mathrm{C}: 2$ watts max.
At free-air temperatures up to $25^{\circ} \mathrm{C}$: 0.4 watt max

VERY LOW COLLECTOR

 SATURATION VOLTAGES:$\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})=0.28 \mathrm{v}$. at $\mathrm{I}_{\epsilon}=150 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=7.5 \mathrm{ma}$
$V_{C E}(\mathrm{sat})=0.45 \mathrm{v}$, at $\mathrm{l}_{\varepsilon}=500 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{ma}$

[^6]RCA ELECTRONIC COMPONENTS AND DEVICES

[^0]:

 COLLINS RADIO COMPANY An equal opportunity employer

[^1]: *Output Smoothness is defined and measured in Output Smoothness is defined and measured in
 Bulletins TD-110 and TD-111 available from

[^2]: Electronics Div. of Bulova Watch Co., Inc. 61-20 Woodside Avenue, Woodside, New York 11377 (212) DE 5.6000

[^3]: The transition from what might be called "handbook engineering" to engineering based upon new scientific fundamentals was stimulated by the exigencies of World War II. The following years of uncertain peace have, in turn, continued the demand for creative scientific engineering and an engineering educational system capable of supporting it. The stimulation of competition, the increased tempo of engineering development, the demand for new materials, systems and processes has not diminished and, in fact, will not diminish. As a consequence, the changes in engineering curricula have been so rapid, that it is not now uncommon for a senior to graduate with a different program than he anticipated as an entering freshman. Alumni returning a few years after graduation would find a different vocabulary and would generate a feeling that they might best start all over again. It is in this context and for these reasons that continuing education for practicing engineers is assuming the proportions of a major challenge to the professional societies and universities alike.

 If one reflects upon the educational needs of experienced engineers and the attendant responsibilities of our professional societies and of engineering schools, he must recognize that new approaches to teaching and learning are needed which may differ widely from accepted academic practice in degree programs. The domain of continuing education must develop characteristics germane to the problems and must find solutions which assure acceptance and engender the respect of the engineering community.-Dr. Ernst Weber, President, Polytechnic Institute of Brooklyn.

[^4]: ${ }^{1}$ From a report by A. C. Ingersoll of the Univ. of So. Calif. to the 1964 annual meeting of the American Society for Engineering Education.

[^5]: INTE RNATIONAL AIRPORT INDUS
 BOX 11400 . TUCSON ARIVONA 85706

[^6]: These units are in stock-avallable for immediate de'ivery. For complete information call your RCA Field Representative today, or for technical data write-RCA Commercial Engineering, Sec. C-J-10, Harrison, N. I

 AVAILABLE THROUEH YOUR RCA DISTR゙ZUTOR

