ELECTRONUC INDUSTRIES

Call our hand on reliability*

We'll start the showdown with a pair of wirewound resistors. Our ARS is the world's most reliable power wirewound resistor. Our AGS will soon take this title as a result of testing in the Advanced Minuteman Program. Examine this chart. Note that in the AGS, we're building more reliability into a smaller resistor which has a higher power rating than the ARS. And we're doing it under more stringent test requirements. No one but Dale produces such a high degree of proven reliability in precision power resistors. Most of our customers don't need it. But they assume that what we've learned about reliability gives our standärd parts an edge in quality and performance. They're right.

ARS \& AGS RESISTOR DATA

Unit Test Hours:	ARS	AGS
	788,000,000 equivalent unit hours.	323,000,000 equivalent unit hours.
Operating Conditions:	50% rated power, $25^{\circ} \mathrm{C}$ ambient.	50% rated power. $25^{\circ} \mathrm{C}$ ambient.
Failure Rate:	.00045\% per 1,000 hours (60% confidence level.) Failure definition: $\Delta R>0.5 \%$.	$.0001 \%$ per 1,000 hours (60% confidence level is goal of new program.) Failure definition: $\perp R>0.5 \%$.
Specifications:	ARS available in 3 models, rated at 2,5 and 10 watts in a resistance range from. 1Ω to $40 \mathrm{~K} \Omega$. Standard tolerance 1%.	AGS available in 4 models, rated at $1,2.25,4$ and 7 watts in a resistance range from . 182 to 12.4K 2. Standard tolerance 1%.
Mil. Spec.:	Meets MIL-R-38101 and MIL-R26, and the new established reliability soec. MIL-R-39007.	Meets MIL-R-38101 and MIL-R. 26, and the new established reliability spec. MIL-R-39007
Comparative Size:	ARS-2 (2 watts) . $812^{\prime \prime}$ long x .187" dia.	AGS-3 (2 $1 / 2$ watts) $400^{\prime \prime}$ long x .078" dia.

* Write for • Detailed Test Reports on ARS \& AGS Testing • All-new Resistor Catalog A

Why So Slow With Direct Energy Conversion?

Why is it taking so long to develop the new types of power sources?
We must ask this question when we see how little has been done in this field over the past ten years.
True, some progress has been made. A decade ago, all new direct energy conversion schemes were either on the drafting board or laboratory curiosities. Today, a few supplies have reached limited production for space vehicles and for sophisticated "toys." But that's about all! Is it enough? We think not.
It is common knowledge that batteries have severe limitations as power sources for microminiature electronic equipment. They have limited life, don't store well, are poor sources at low temperatures. A-c supplies are heavy and bulky and highly inefficient, generating heat that must be dissipated to prevent damage to circuit components. And, they must be "plugged in" to some other source of energy and are thus only conversion devices-not true power sources.

Almost a decade ago, Westinghouse demonstrated in the laboratory the feasibility of a number of new direct energy conversion schemes. Among these were magnetohydrodynamics (MHD), fuel cells, thermoelectrics, thermionics and solar cells. New, ten years later, only solar cells are commercially available. The other devices are still laboratory curiosities or in limited use for powering space vehicles and equipment.
Yet, during the same period of time, look what has happened in semiconductor technology, in integrated circuits, in electronic circuit packaging, in television, in computer technology! All of these areas have had an almost complete evolution from laboratory to production.
The irony of it all is that when we look to improve the design of computers, semiconductor circuits, integrated circuits and portable TV sets, exist-
ing power sources constitute the principal limiting factor. And, it looks like nothing significant is being done about it.

A state-of-the-art piece on the subject of new power sources appears on p. 36 in this issue by an RCA scientist. Yet, David Sarnoff, in his reported remarks to stockholders recently, emphasized several glamorous areas of work at RCA without mentioning this important field. But, it is a field where work should be concentrated if other devices are to achieve full potential

We can't begin to guess at the vast number of possible applications for new direct energy converters. Our crystal ball could suggest many. But, you who are our readers- who are on the firing line to deliver a better product in smaller space, with less weight, at lower cost, and to last a "lifetime" -can put together a much more practical list of specifics.

What we hope is that you will put your "wheels" to work when you read Mr. Rappaport's article. We want you to come up with these specificsapplications that will place such requirements on power sources that they will stimulate RCA, Westinghouse, General Electric and others now engaged in limited research and development of energy sources, to step up their development progranis.

Think, for instance, of what could be tremendous new markets for portable power in the underdeveloped countries of the world as well as at home for marine applications and rural development. Think of all the potential applications in portable appliances of all kinds. It seems to us that companies should, in the future, allocate a higher percentage of their research and development funds for just such studies.
Here is a challenge for electronic engineers and engineering managements. Some good profits are in the offing for those with foresight and ingenuity in the field of direct energy power sources.

Why are we waiting?

New from Sprague!

a Molded Solid tantalum Capacior that Make sense

Especially qualified for applications such as printed circuits, where board space is at a premium and must be fully utilized.

Only the depth changes from case to case-face area remains constant, making Type 190D Capacitors extremely well-suited for automatic insertion.

Carefully selected height ($0.350^{\prime \prime}$) corresponds with most acceptable maximum height in normal printed board spacing.

- Uniform width ($0.375^{\prime \prime}$) permits neat, spacesaving alignment on wiring board.
- Present lead spacing based on popular 0.100" printed board grid. In anticipation of the $0.125^{\prime \prime}$ grid, Type 190D Capacitors will also be available with new lead spacing when required by future circuit designs.
- Encapsulated in tough molded case with excel-
lent dielectric properties, Type 190D Capacitors fully meet environmental test requirements of Specification MIL-C-26655A.
- Capacitance values from $.01 \mu \mathrm{~F}$ to $330 \mu \mathrm{~F}$ voltage range, 6 to 50 vdc .
- Stand-off feet at base of capacitors permit complete circulation of air, preventing moisture and solvent traps.
- Unlike many solid tantalums, these new capacitors exhibit the low impedance at high frequencies desired for high-speed computer applications.
- Low dissipation factor (high Q) permits higher ripple currents.

For complete technical data write for Engineering Bulletin 3531 to Technical Literature Service, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.
Editorial: Why So Slow with Direct Energy Conversion? 1
STATE-OF-THE-ART FEATURES:
State-of-the-Art in Electrical Energy Sour ces P. Rappaport 36
Specifying Connectors For Coaxial Cable Staff Report 52
The Evolution of Semiconductor Electronics M. Kawakami \& K. Takahashi 72
DESIGN/DEVELOPMENT:
How to Specify High Voltage Silicon Diode Stacks N. Mapham 74
Practical Design of All-Pass Networks A. I. Zverev 77
Shift Register Design Using Tunnel Diodes D. R. Lohrmann 81
Parallel Tuned Circuit Calculations P. L. Conant 83
MEASUREMENT/TEST:
Making Meaningful Measurements S. Silverman \& C. Suntag 90
Laboratory Accuracy in a Portable Dual-Trace Oscilloscope 98
PROFESSIONAL GUIDELINES:
Writing Persuasive Proposals O. L. Wadkins \& R. E. King 112
Solid State Circuits Conference 107
WHAT'S NEW

DEPARTMENTS

Highlights	4	Letters	30
Radarscope	8	New Tech Data	84
Coming Events	15	Editor's Notebook	101
Washington Trends	18	International News	102
Snapshots of the Electronic Industry	20	Employment News New Products	111
Marketing: Fact \& Figure Roundup	26	Books	136

COVER

When we took this picture back in December 1964 at RCA's Lancaster plant, a Model A1192 thermionic converter such as the one shown had been operating continuously for 738 hrs ., at temperatures of $1200^{\circ} \mathrm{C}$. and generating $\mathrm{lw} / \mathrm{cm}^{2}$. It subsequently reached $1,000 \mathrm{hrs}$. and the test was ended. For this unique background, Designer Mike Louridas used a piece of well-worn low temperature fire brick. More information on direct energy conversion will be found in the article "State-of-the-Art in Electrical Energy Sources" beginning on page 36.

Electrical Energy Sources

Coaxial Cable Connectors

All-Pass Networks

Making Meaningful Measurements
Portable Scope

STATE-OF-THE-ART IN ELECTRICAL ENERGY SOURCES 36
Extensive R \& D on half a dozen direct means of energy conversion is expected to result in widespread applications of several of these devices quite soon. Those of particular interest to electronic engineers are detailed.

SPECIFYING COAXIAL CABLE CONNECTORS

 52This is the second in a series of ELECTRONIC INDUSTRIES Special Reports on Connectors. Key technical specifications and design innovations of coaxial and shielded cable connectors are discussed. An easy-to-use directory of connector suppliers and an interchangeability chart are also included.

HIGH VOLTAGE SILICON DIODE STACKS

High-voltage silicon diode stacks can be used in place of vacuum tube rectifiers in some applications. If the proper stack is chosen, equipment reliability can be increased when compared with tube rectifiers. This article will guide the designer in writing the proper specifications and making useful measurements for silicon diode stacks.

PRACTICAL DESIGN OF ALL-PASS NETWORKS 77
The oldest use of all-pass networks is for phase correction. The theory of this was developed by Zobel. Today their use has expanded to many new applications. This expansion of uses required a more general synthesis procedure, like the one described here.

SHIFT REGISTER DESIGN USING TUNNEL DIODES81

Tunnel diodes offer advantages as storage elements in a shift register-they can provide very high shift rates. Design details and circuit values are included in the concise explanation.

MAKING MEANINGFUL MEASUREMENTS

How do you know that your measurement is accurate? Can you place a quantitative value on measurement error? How do you determine for certain whether a device is within tolerance and acceptable, or out of tolerance and a reject?

LAB ACCURACY IN A PORTABLE DUAL-TRACE SCOPE

A portable oscilloscope with laboratory accuracy is the result of solid-state components, tight packaging, a new CRT, and several new circuit designs. The circuit designs themselves include several innovations.

Abstract

- A REPRINT of ANY ARTICLE in this issue is available from ELECTRONIC INDUSTRIES Reader Service Department, 56th \& Chestnut Streets, Philadelphia, Pa. 19139

New Cast Mica Capacitors

Provide Major Change in

 High Power Mica Design

The first major change in high power transmitter-type Mica capacitors in over 25 years has resulted in a modern, miniaturized mica capacitor with liberal new design possibilities.

Designed and developed by the Sprague Electric Company, Cast Mica Capacitors are approximately 30% smaller in size and weight than oldfashioned, bulky, potted assemblies.

Encapsulated in high-temperature epoxy resin by a patented process, these unique capacitors will operate at temperatures to 125 C without deratinggreatly in excess of the 70 C or 85 C limits of conventional capacitors. This exclusive construction also provides superior thermal conductivity-far better than with porcelain-enabling these capacitors to carry higher r-f currents.

Unlike older units with fragile insulating housings, Sprague Cast Mica Capacitors are rugged. Their tough epoxy resin encapsulation, with improved hermeticseals, eliminates use of potting waxes which tend to melt and cause damage to electron tubes and other components.

Sprague Cast Mica Capacitors, designed not only to meet but exceed M1L Specifications, are made in both the familiar cylindrical as well as a new rectangular shape, with female threaded terminals on opposite ends.

Although smaller in size than conventional capacitors, Cast Micas can be procured-for interchangeability-with one or two aluminum plates having the same center-to-center mounting holes as standard types. Where space is critical, they may also be mounted or stacked without plates by means of dual-ended headless screws.

For application engineering assistance write to Mica Capacitor Section, Field Engineering Dept. For complete technical data write for Engineering Bulletins 1230 and 1240 to Technical Literature Service, Sprague Electric Co., 233 Marshall St., North Adams, Massachusetts.

45C-142-63

at the world's finest proving grounds for electronic cooling equipment.

McLean motors and blowers are designed and built right in McLean's 40,000 sq. ft. plant to high precision standards on the most advanced equipment. Each motor undergoes grueling tests with a battery of the iatest scientific instruments to assure across-the-board reliability. Every McLean blower gets a final hair-splitting checkout of mechanical, thermal and electrical characteristics. This is why not a single McLear, blower has ever been returned for failure to live up to specifications. Remember . . McLean is an originator, not a copier . . a manufacturer of fine packaged cooling . . . not an assembler of other companies' products! Place your cooling groblems with McLean's large engineering staff . . . not with companies that cannot boast a single qualified engineer.

YC 1 ENGINEERING LABORATORIES

P.O. Box 228, Princeton, New Jersey

Phone 609-799.0100 • TWX 609-799-0245
 telex 083-4345

Each McLean-built motor is fabricated to micro. scupic tolerances on the world's finest and most expensive machinery. Our investment in equipment pays you divijends in reliamility.

Air Flow Test Chamber for new product develop ment and for quality control and testing. Pro vides sure knowledge of pressure drop and air flow required to cool specific loads.

2N1722 in the TO. 53 package, and 2N1724 in the TO-61 package, are the latest. These, and all our triple-diffused, planar, silicon power transistors, have high frequency, high gain and high reliability characteristics, plus Silicon Transistor Corporation's overall quality and service. Use them in high frequency, linear amplifiers, for high speed switching, and converter and inverter circuits operating at 50 to 100 KC . Low leakage and stable electrical characteristics are inherent in the planar process.

For complete information and specifications, write to:

	Package P	Pc@ $100^{\circ} \mathrm{C}$	Ft	Vceo	hfe
2N1722	T0.53	50 watts	10 MC	80	20 @ 2A
2N1724	T0.61	50 watts	10 MC	80	20 @ 2A
2N2657	T0.5	1.25 watts	20 MC	60	-
2N2658	T0.5	1.25 watts	20 MC	80	-
2N2877	T0.59 (7 io' DES)	30 watts	30 MC	60	20 @ 1A
2N2878		30 watts	50 MC	60	40 @ 1A
2N2879	T0.59 ($7_{6}^{\prime \prime}$ " DES)	30 watts	30 MC	80	20 @ 1A
2N2880	TO-59 (\%6" ${ }^{\text {deS }}$)	30 watts	50 MC	80	40 @ 1A

S 3 SILCON TRANSISTOR COMPORATIONU
EAST GATE BOULEVARD, GARDEN CITY, L. I., N. Y. 11532, 516-Ploneer 2-4100. TWX 516-248-9085

[^0]
ELECTRONIC INDUSTRIES
 RADMASCOPE

Developments and trends affecting the State-of-the-Art of technologies throughout the electronic industries

MEASURING SPECTRAL LINE INTENSITIES
V. J. Caruso a spectro chemist in IRC's Research and Development Dept. uses a Microdensitometer to gain quantitative information on trace impurities in semiconductor materials. Photographic slide being measured was obtained from a JarrelAsh Mark IV 3.4 meter Ebert Type Grating Spectrograph.

SOUND is being used by two Iowa State Liniversity professors to measure atmospheric changes. Sonic instrumentation developed by Dr. R. M. Stewart, Jr., and Dr. R. E. Post, makes use of aconstic energy and a digital computer to measure instantaneous values of temperature and velocity of the atmosphere. Data collected through sonic anemometry research using these and other instruments could possibly be applied to everyday problems. Conceivably, the data could enable TV stations to vary power transmission according to variations in atmospheric conditions, instead of transmitting constantly at the rate needed to meet worst conditions.

A NATIONAL HEADQUARTERS for the newly created National Council on Radiation Protection and Measurements (NCRP) has been opened at 4000 Brandywine St., N.W., Washington, I.C. The council has been chartered by Congress as a nonprofit corporation. It is to collect, analyze, develop, and disseminate scientific information and recommendations about radiation measurement and protection against radiation. W. Roger Ney has been named Executive Director.

GaAs MICROWAVE GENERATOR has aroused much interest. An experimental device has been operated at room temperature by IBMI researchers. Unlike other microwave generators, no additional resonant circuitry is needed to operate the device. A block of gallium arsenide converts steady dc into fluctuating current in the microwave region. Connecting one side of the block to a matching network transforms the device current into microwave power. It may find use in receivers as a low cost local oscillator. Units have operated in the + to 7 Gc range.

SELF-CASED CAPACITOR has additional windings of Mylar film which replaces dipped or molded casings. The low-cost unit has been developed by Paktron Div, of lllinois Tool Works for consumer products. They have been cycled from - 55° to $125^{\circ} \mathrm{C}$. without mechanical or electrical damage. These capacitors weigh about half as much as the same value in a molded or dipped unit.

A RECORD HIGH $\$ 30,095,000$ has been forecast by NEMA (National Electrical Manufacturers Association) as the value of shipments of all electrical manufactured products in 1965. This forecast is based on a round-up of estimates for the new year by member companies of NEMA. In dollar volume, the 1965 leader is expected to be industrial electronics and communications equipment with predicted industry sales of $\$ 9,460,000$.

MILLIMETER WAVE region for space communications is the subject of an experiment design study by Raytheon Company for NASA. Experiments will be decided upon to define channel characteristics of two-way earth-to-space links. Higher bandwidths, smaller equipment, and an uncluttered region are hoped for. The study will include specific equipment recommendations and data processing needs for a later one-year propagation data program.

PLATING PROCESS which cleans and coats a surface with a tightly adhering film in one operation has been developed at the Atomic Energy Commission's Sandia Lab. The process involves the deposition of atoms and ions while the sulbstrate is being bombarded with inert gas ions. Substrate surface is cleaned by high energy gas ions, which remove contaminating material. Superior results were obtained with such combinations as copper and gold on molybdenum; aluninum on steel and uranium; and gold and copper on aluminum.

SOLDER BALLS are a large cause of transistor failures in military electronic equipment. Scientific personnel at Fort Monmouth have been doing research to find the cause of transistor failures. They found that balls of about 99% tin are formed when the transistor is exposed to an abnormal transient surge of power. Under shock or vibration these balls break loose and can cause a brief short circuit. This leads to a complete circuit failure. These balls can le formed even during testing of the unit and will not show up in any normal tests. The balls are usually formed in the emitter area. Their conclusions call for other than tin in solders.

RESEARCHERS from (ueen Mary College, London L'niversity, are using a new radio telescope to study the brighter planets and radio sources in the sky. The telescope operates at wavelengths in the region of 1 mm and uses a 15 ft . dish antenna. Built by The Marconi Co., Lttl, the antenna has been molded in glass fiber reinforced plastic, with a final reflecting surface of sprayed zinc. Final average (rms) measured accuracy of the entire surface is within five thousandths of an inch of the specified paraboloid, This is an accuracy almost as great as could be achieved by using cast iron or invar. And, it can be done at a fraction of the cost of more conventional methools according to Marconi.

THIN FILM MATERIAIS

Metallurgist James A. Seeman views purple glow given off by positively charged argon gas plasma in an experiment with a Honeywell, Inc. ion-sputtering device. Honeywell's Minneapolis aeronautical division is now using ion-sputtering techniques to explore the potential new uses for thin film materials.

ADVANCED COUNTERMEASURES RESEARCH

High temperature chemical reactions at simulated altitudes of over $160,000 \mathrm{ft}$ are shown under study at ITT Research Institute in Chicago. The production of high intensity UV, visible and IR radiation from high energy reactions are aimed at developing countermeasures for future aircraft and space use.

BIOTECHNOLOGY is receiving increased emphasis by Philco scientists. This deals with the application of biological sciences to electronics. One team is investigating the use of electrical potential of the skin to trigger remote mechanical devices. Sensors can intereept a motor command transmitted along the nervous system through electrical impulses generated on the skin. There is the possibility that these impulses conld be used with a controller to actuate machines. This would be one step beyond pushbutton control.

ANIMAL LANGUAGES are being analyzed in Germany by Telefunken engineers. Working with zoologists, the engineers are using special amplifiers and sound spectroscopes, and are systematically investigating the language with a view to their usefulness as a communications medium between man and animal.

A BROADBAND, GASEOUS CRYSTAL PROTECTOR TUBE has been made. This TR type tulbe is ignitorless and thus needs no external power source. It was developed at Westinghouse's Electronic Tube Division for protection of crystals in microwave systems. These crystals must be protected from occasional high power signals from either its own or external signals. Suitable breakdown and leakage characteristics were achieved by: use of enough radioactive material placed in the microwave cavity as an electron source. and a magnetic field for reduction of the effective EM field heeded for breakdown. The tube has a VSUR less than 1.40:1 and an insertion loss :nder 0.50 dH from 8.66 to 10.38 GC .

The Varo $18 R^{*}$ offers commercial and industrial OEM's a refiable, low-cost solution to rectification problems requiring a full wave bridge. The 1N4436 (250 V BV R_{m} min.) and 1 N 4437 ($450 \mathrm{VBV}_{\mathrm{R}}$ min.) are integrated bridge rectifiers in one small package with a circuil-to-case insulation of 2000 V min. An even greater economy in installation time is achieved through the small sized, single package and versatile mounting techniques.
Decreased PRV safety factors may be used in design considerations due to the SAR* (Silicon Avalanche Rectifier) characteristics that control avalanche voltages and eliminate junction perimeter destruction from tramsient overvoltages.
Varo's JBR devices feature 250 V and 450 V min. avalanche voltages, 10 amp DC output current at $100^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{C}}\right)$ and 100 amp one-cycle current surge.

Press-fit, single stud and T0-3 mountings are available.

Write today for complete information.
varo inc
SPECIAL PRODUCTS DIVISION
2201 WALNUT ST., GARLAND, TEXAS
AC 214 / BRoadway 6.6141
TM Varo Inc.

NICHROME RESISTORS are being deposited to very tight tolerances over a passivated active substrate by a technique developed by Raytheon Co. The new process, which forms another type of monolithic integrated circuit, climinates a common problem of unwanted parasitics. These are umwanted parasitic effects which occur between functions or regions of several types of normal integrated circuits. First circuit to use these resistors is a multiple-input DCTL gate designated RC-401.

COMPONENTS such as solid state tantalum capacitors can now be purchased with a "guaranteed failure rate," according to Union Carbide Corp. This unusual way of expressing reliability is due to the clecreasing failure rate with time of their solid tantalum capacitors. An accelerated testing method makes it possible to subject capacitors to millions of hours of simulated operation at rated conditions in a short time. This has led to data that sulbstantiate the guarantec. With this method, the weaklings are first eliminated. Later, healing of minor defects in the dielectric takes place so effectively that the capacitor has no predictable end to its service life.

AN R-F GASKET ADHESIVE has been developed by Chomerics, Inc., Plainville, Mass., as a compressible non-wicking adhesive for holding aluminum, stainless steel and monel woven wire gaskets in place. Conductive Resin B-584-208 has been developed to minimize wicking, and where (through misuse) wicking does occur, to permit proper seating. Also, while its cohesive strength is enough to hold a gasket permanently in place, it is low enough to allow removal of both the gasket and the adhesive when necessary.

AT LAST...

AMPHENOL slashes prices

Compare these coaxial connector prices*-
UG-88/U
UG-88C/U
UG-88E/U
UG-89/U
CW-159/U
UG-260/U
UG-260D/U
UG-290A/U
UG-657/U
UG-1094/U

Plug	.30
Plug	.32
Plug	.37
Jack	.39
Male Cap	.31
Plug	.31
Plug	.37
Panel Receptacle	.34
Bulkhead Receptacle	.46
Bulkhead Receptacle	.30

Same built-in Amphenol quality. Off-shelf delivery from 100 Amphenol Industrial Distributors or direct from factory through your local Amphenol man. Amphenol RF Division, 33 East Franklin Street, Room 25, Danbury, Connecticut 06813.

* In 2500-piece quantities. Call your Amphenol man to get lower prices for higher quantities.

Willi falizcon Will ARCO

polemiomemelers

 disistibuilion

delivery \& Service

Call ARCO and See!

FAIRCHILD

\square
 \qquad NTF L \Longleftrightarrow

 225 PARK AVENUE, HICKSVILLE, L. I., NEW YORK TELEPHONE: (516) 938-5600.TWX: (516) 433-9146 CABLE: FAIRCON-HICKSVILLE, NEW YORK, U.S.A.If it's trimmers, multi-turns or turns counting dials you need ...ARCO's fully stocked regional headquarters in New York, Dallas and Los Angeles can deliver FAIRCON potentiometers anywhere in the U.S. - overnight if you need it.
FAIRCON potentiometers give you MIL spec precision at industrial prices... backed by guaranteed FAIRCHILD quality.

What More Can You Ask? ASK ARCO!

Community Drive, Great Neck, New York $11022 \square 516$ HUnter 7-0500 \square TWX 516-465-0235 \square Branches: Pasadena: ARCO PACIFIC. INC. $\quad 2707$ East Foothill Blvd., Pasadena, Calif. 91107 $\square 213 \cdot 684 \cdot 1510 \square$ TWX 910.588.3293 D Dallas: ARCO ELECTRONICS, INC. $\square 2523$ Farrington Street, Dallas, Texas 75207口214-631-0270 \square TWX 214-631-5910

February

Feb. 17-19: Int'I Solid-State Circuits Conf., IEEE, G-CT, Univ. of Pa.; Sheraton Hotel \& Univ. of Pa., Phila., Pa.
Feb. 22-26: Western Metal \& Tool Exp. \& Conf., ASM; Great Western Exhibit Ctr. \& Biltmore Hotel, Los Angeles, Calif.

March

Mar. 1-5: 21st Annual Tech. Conf. (ANTEC), Soc. of Plastics Engineers, SPE; Statler-Hilton, Boston, Mass.
Mar. 10-12: Particle Acceleration Conf., APS, IEEE, NBS, AEC; Shoreham Hotel, Washington, D. C.
Mar. 21-24: 19th Annual Broadcast Eng. Conf., NAB; Sheraton-Park \& Shoreham Hotels, Washington, D. C.
Mar. 31-Apr. 2: 7th Annual Electron Beam Symp., Alloyd Corp.; Penn State Univ., University Park, Pa.

April

Apr. 6-8: Railroad Conf., IEEE, ASME; Penn-Sheraton Hotel, Pittsburgh, Pa.
Apr. 13-15: Nat'l Telemetering Conf., IEEE, AIAA-ISA; Shamrock Hilton, Houston, Tex.
Apr. 14-15: Electronics \& Instrumentation Conf. \& Exhibit, IEEE \& ISA; Cincinnati Garden, Cincinnati, Ohio.
Apr. 19-21: 3rd Nat'I ISA Biomedical Sciences Inst. Symp., ISA; StatlerHilton Hotel, Dallas, Tex.

'65 Highlights

IEEE Int'I Conv., Mar. 22-25; Coliseum, New York Hilton, New York, N. Y.
WESCON, Western Electronic Show \& Conv., Aug. 24-27, IEEE, WEMA; Cow Palace, San Francisco, Calif.
Nat'l Electronics Conf., Oct. 25-27; McCormick Place, Chicago, III.
NEREM, Northeast Research \& Eng. Mtg., Nov. 3-5, IEEE; Boston, Mass.

Apr. 20-22: Symp. on System Theory, IEEE, USDRA, SIAM; Polytechnic Inst. of Brooklyn, Brooklyn, N. Y.
Apr. 20-22: 19th Annual Freq. Control Symp., Army Electronics Labs.; Atlantic City, N. J.
Apr. 21-23: Southwestern IEEE Conf. \& Elect. Show, IEEE; Dallas Memorial Auditorium, Dallas, Texas.
Apr. 21-23: Int'l Nonlinear Magnetics Conf., IEEE; Sheraton Park Hotel, Washington, D. C.
Apr. 27-29: American Power Conf., IEEE; Sherman Hotel, Chicago, III.

May

May 4-6: 5th Annual Packaging Ind Conf., IEEE; Milwaukee Inn, Milwaukee, Wisc.
May 5-7: Microwave Theory \& Tech. Symp., IEEE; Americana Motor Hotel, Atlanta, Ga.

... is worth up to four straight hours of data logging in the bush-on a geological survey. In a laboratory - on a biomedical research project. Anywhere! The remarkable new KRS DATA-STACT ${ }^{\text {TM }}$ MD-2 fits any need for a portable recorder with big tape capacity. This trim 20 -pounder covers a range of DC to 100 kc , handles up to four channe!s, and gives you bigger performance features in a smaller package than any other portable tape recorder available today.

1200 FEET OF CONTINUOUS-LOOP TAPE! The handy size MD-2 recorder uses one KRS STACTape ${ }^{\text {TM }}$ Cartridge - the precision magnetic tape cartridge that holds up to 120C feet of $1 / 4^{\prime \prime}$ tape in an endless-loop roll, and incorporates unique reversing and fast-forward features. Models are available in all standard tape speeds from $15 / 16$ to 30 ips .
WOW? FLUTTER? Extremely low, even at low tape speeds. Classically simple design eliminates all mechanical adjustments - you concentrate on your work, not the machine. Complete with solid-state standard instrumentation electronics (FM or Direct), MD-2 recorders sell in the price range of $\$ 850$ to $\$ 2500$.

TM Trademarks of KRS Electronics

For complete data dn the new KRS DATA-STACT MD-2 Cartridge Instrumentation Recorder, send for Instrumentation Division Bulletin MD-2.

KRSElectronics, 2370 Charleston, Mountain View, California

A few months ago we introduced a new kind of miniature soldering iron.
We called it the "Little Dandy", and we thought its biggest selling point would be its $\$ 6.00$ list price.

But here's what production-soldering men are telling us: "the low original cost is important, but . . .
". . . life of the heating element frankly amazed us."
". . . the girls like it best, probably because of the balance and cool handle."
". . . none of the breakage we were experiencing when our irons had ceramic insulators."
". . . all service so far is done right on the line
. . . no crib time."
". . . despite its price . . . a real
American Beauty iron!"

American Beauty

[^1]

on10 tuan

PRECISION POTENTIOMETERS FOR AS LITTLE AS \$500 EACH

series 62 multi-turn precision potentiometers will fill the bill for all your requirements in industrial and instrument applications ... and the price is right! Check these outstanding features for a typical 10 -turn model: Absolute linearity $- \pm 0.25 \%$ Resistance Tolerance $- \pm 5 \%$ - Power Rating -2 watts @ $25^{\circ} \mathrm{C}$ Dielectric Strength 1000 V . rms for 1 minute at atmospheric pressure. Add to this, your choice of number of turns up to 10 and you've truly got top performance at lowest cost. Send today for complete details. . . .

ANTI-MISSILES, YES OR NO?-Defense Secretary McNamara will soon have to decide whether to go ahead with a massive U.S. missile defense system. If the 30 -billion-dollar project is approved, a substantial boost in defense electronic contracts will follow. The system will include long-range and short-range radar, plus components for Nike X anti-missile missiles and supporting equipment. The project, reportedly, is in favorable light in the Executive Branch. Certain Air Force Generals are not happy about the project. They want an advance bomber to replace the aging B-52. They also say that the missile project would not be ready and operable before 1972.

COMPUTERS OPEN NEW JOBS-Computers can cause problems as well as solve them, warns the Labor Department. Experts predict that demand for technical data support personnel in the communications equipment industry will jump by 50% by 1970. As computers create new jols, finding furalified people will be the problem. Jobs will include information center workers and technical writers.

AWARDS UNDER FIRE - Congressmen are criticizing aerospace and defense contract award methods. They insist that only 5% of $\$ 2$ billion in 1963 nasa procurement was let uuder formal advertised bidding. A sulbommittee of the House Committee on Science and Astronautics reports that 75.7% of grant and contract funds are kept in-house by prime contractors. It had been believed generally that some 50% of prime contracts were distributed geographically hy sull-contracts.

LUNAR TV CAMERA

Artist's concept of tiny TV camera (astronaut's hand) which will take TV pictures of astronauts and lunar scenery for immediate "live" broadcast over nationwide TV when the historical landing takes place. Developed by Westinghouse under NASA contract, the device uses molecular techniques, and is reported very reliable.

$$
\text { RCA-C31000 Bi-Alkali Photocuthode... } 2 \text { Nsec Rise Time }
$$

UNPARALLELED QE... $\mathbf{2 4 \%}$ (Typiala) @ $3850 \AA$

$10 \frac{\text { electrons }}{\mathrm{Cm}^{2} \text { sec }}$ @ $25^{\circ} \mathrm{C}$

RCA now offers a heretofore unobtainable combination of highly desirahle photo. multiplier characteristies in one tuhe. Foremost of these attributes are unparalleled bigh speed and low noise characteristics coupled with high quantum efficiency.

These are just a few of the exciting lienefits of RCA's new Photomultiplier-the de. velopmental RCA.C31000. A "universal" type of tube for pulse applications, this $2^{\prime \prime}$ photomultiplier has a rise time of less than 2 nanoseconds. In aldition, the improvement in the noise characteristic has been demonstrated by the measurement of thermionic emission values as low as 10 elec-
trons $\mathrm{rm}^{2} \mathrm{sec}^{1}$ at $25^{\circ} \mathrm{C}$ from the photo. rathode.

This new phototube offers unexcelled (QE. For example: RCA-(31000, with its bi-alkali photorathode, hat a typical quanlum effiriency of 24% at 3850 angstroms. Many S.ll types with Cissta cathorles have a QE of only 16 at 4200 angstroms. And of high importance, its dark current values are improved by ats murh as three orders of magnilude over S.ll types.

RCA. (:31000), already finding application in liguid seintillation commting, timeof flight measurememts, medical equipment, anl coinridence counting, has as
among its numerons features: Low resid. ual radioactivity envelope - 50 ohm output line to eliminate ringing - Teflon sock. et supplied, to accommodate base of rigid. pin construction - Uniform collection effi. ciency - CuBe sulbstrate for stability • 8% (max.) Pulse Height Resolution • Freetom from shock excitation - No after pulse.

For more information on RCA-C31000, or other RCA Plotomultipliers, including versions with semi-flexible leads, or potted voltage dividers, see your RCA Representative. For terhnical data, write: RCA Commercial Engineering, Section K31Q, Harrison, New Jersey.

The Changing STATE-OF-THE-ART

In the electronic industries

- ADVANCED RADAR

Experimental multi-function array radar (MAR-1) designed and installed by Sylvania at White Sands, N. M., to detect, track and identify missile warheads, is being tested and evaluated as part of the Nike-X program.

- ANTI-BOMB CABLE

Coaxial cable for Bell System's new blastresistant communications route run along 4,000 -mile trench across U. S. Cross country cable will add 9,000 telephone circuits to 15,000 circuits now spanning the nation.

< MINIATURE GYRO

Robert E. Var, scientist at Honeywell labs, operates small LIC, for Laser Integrating Gyro. LIG uses three prisms, and internal reflection principle to form small, low-loss triangle cavity. It works on 1.15 micron from a helium-neon discharge, rf or de pumped.

- A NEW YORK TO FLORIDA SPECIAL

For the first time in railroad history, television sets are being installed for passengers aboard the Atlantic Coast Line's "Florida Special" by the Olympic Radio \& Television Division of Lear Siegler, Inc. The initial passenger reaction is "enthusiastic."

- LASER BEAM VIEWER

Engineer J. R. Hansen, Westinghouse, prepares to view complicated patterns in a laser beam with a new infrared pattern viewer. "Eye" of the viewer is a thin film of liquid crystals in round vacuum cell on white cohmn. With laser beam, film heat will cause crystals to shift in color and display beam's structure.

- STRONGEST MAGNET
D. Bruce Montgomery, National Magnet Laboratory at MIT, adjusts apparatus on giant new water-cooled magnet, capable of putting out 255,000 gauss. It is a solenoid with three concentric copper coils, designed by Mr. Montgomery's research team under Air Force contract to probe magnetic properties of mafter.

When NASA's astronauts board their Gemini spacecraft it will be with the feeling of old hands at familiar jobs. Fven ground crews will operate with the farility of seasoned experts. This is the way it must be, even though it will be a first for both men and machines-earh person, each system functioning in unison.

MrDonnell engineers designed and built the trainers and simulators for Gemini's orbital rendezvous missions as well as launch, orbital flight and reentry.

The Gemini Mission Simulator is one example of how the skills and farilities of McDonnell Electronics Division are applied to murror desired situations through true simulation.

MCDONNELL ELECTRONICS DIVISION

DEPT. $946 \cdot \operatorname{BOX} 516 \cdot$ ST. LOUIS, MISSOURI 63166
APPLYING ELECTRONICS AS AN INTERDISCIPLINARY SCIENCE

Look who stepped out of the Great Seal to wear a CMC Crusading Engineers' medal. If you think he looks proud you should see us! He sits on the first and only solid-state, fully militarized electronic counter meeting full Mil Specs.
If you want the safety of a counter providing full Mil Specs reliability at a price surprisingly close to a commercial counter, then check these specs: 0 to 100 Mc frequency range; oscillator stability of 1 part in 10°; meets or exceeds MIL-E. 16400, including appropriate temperature
humidity, vibration, shock, and RFI specs; built-in time interval measurement. Three militarized plug-ins available: 500 Mc heterodyne converter, 3 Gc heterodyne, and a 15 Gc transfer oscillator.
It may take some time, but you can probably expect copies of this counter from our creative competition at high-powered H-P and big, bad Beck.

man. But they'll be copying the instrument originated and designed by CMC. State-of-the-art development of a fully militarized solid-state counter isn't the first technological coup for CMC. Add to it the first all solid-state counter, first 10 -line-persecond low-cost printer, first dual plug-in-counter, and numerous others. Write today for a complete spec sheet on our new Model 880 so you can compare when and if the others arrive on the market. And remember, we won't give you the bird, we'll give you a medal.

Tektronix oscilloscope displays both time-bases separately or alternately

NEW TYPE 547 and 1 A1 UNIT

DUAL
TRACE

DC-to-50 MC $50 \mathrm{MV} / \mathrm{CM}$
DC-TO-28 MC, 5 MV/CM

SINGLE TRACE

2 CPS-to-15 MC $500 \mu \mathrm{~V} / \mathrm{CM}$
(CHANNELS 1 AND 2 CASCADED)

With automatic display switching, the Type 547 provides two independent oscilloscope systems in one cabinet, time-sharing a single-beam crt.

Type 547 also uses
17 "letter-series" plug-in units

Some Type 547/1A1 Unit Features
New CRT (with internal gratıcule and controllable illuminatıon) provides bright "noparallax" displays of small spot size and uniform focus over the full $6 . \mathrm{cm}$ by $10 . \mathrm{cm}$ viewing area
Calibrated Sweep Delay extends continuously from 0.1 microsecond to 50 seconds.
2 Independent Sweep Systems provide 24 calibrated tirre-base rates from $5 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Three magnified positions of $2 X, 5 X$, and $10 X$, are common to both sweeps-with the 10 X magnifier increasing the maximum calibrated sweep rates to $10 \mathrm{nsec} / \mathrm{cm}$.

Single Sweep Operation enables one shot displays for photography of either nor mal or delayed sweeps, including alternate presentations.

2 Independent Triggering Systems simplify set-up procedures, provide stable displays over the full passband and to be yond 50 Mc , and include brightline automatic modes for convenience.

Type 547 Oscilloscose $\$ 1875$
(without plug-in unit)
Type 1 A \uparrow Dual-Trace Unit \$ 600

Rack-Mount Model Type RM547 ... $\$ 1975$
U.S. Saies Prices f.o.b. Beaverton, Oregon

For a demonstration, call your Tektronix Field Engineer

WWWM

2 signals - different sweeps
Upper trace is Charnel 1/A sweep, $1 \mu \mathrm{sec} / \mathrm{cm}$. Lower trace is Channel $2 / \mathrm{B}$ sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$. Using same or different sweep rales (and sensitivities) to alternately display different signals provides equivalent dual-scope operation, in many instances.
Triggering internally (normal) permits viewing stable displays of waveforms unrelated in frequency. Triggering internally (plug-in, Channel 1) permits viewing frequency or phase differences with respect to Channel 1

same signal - different sweeps
Upper trace is Channel $1 / \mathrm{A}$ sweep, $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Lower trace is Channel $1 / \mathrm{B}$ sweep, $1 \mu \mathrm{sec} / \mathrm{cm}$. Using different sweep rates to alternately display the same signal permits close analysis o* wavsform aberrations in different time domains.

2 signals - portions of each magnified Trace 1 is Channel $2 / B$ sweep, 10μ sec $/ \mathrm{cm}$. Trace 2 (brightened portion of Trace 1) is Channel 2/A sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$. Trace 3 is Channel $1 / B$ sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$. Trace 4 (brightened portion of Trace 3) is Channel 1/A sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$.
Using sweep delay technique-plus automatic alternate switching of the time bases-permits displaying both signals with a selected brightened portion ard the brightened portions expanded to a full 10 centimeters.
B sweep triggering internally from Channel 1 (piugin) assures a stable time-related display without using external trigger probe.

Tektronix, Inc.
P.O. BOX 500 - BEAVERTON. OREGON 97005 - Phone: (Area Code 503) Mitchell 4-0161 - Telex: 036-691

Tektronix International A.G., Zug, Switzerland • Tektronix Ltd., Guernsey, C. I. - Tektronix U. K. Ltd., Harpenden, Heris

Look who's counting on Durant now!

Designed and built by A. O. Smith Corp., this system uses Durant's subtracting predetermined electric counter and an electric totalizing counter. It automatically subtracts every gallon dispensed - to keep an accurate record of gallons remaining from a prepaid increment or credit limit. And it keeps a running total of gallons sold. When the dealer balance reaches "zero", a circuit is interrupted stopping the flow of gas. The service station operator can obtain more gas from the storage tank by dialing a code number. Result: bulk delivery, inventory and credit control costs are substantially reduced.

U.S. WEATHER BUREAU

MEASURES RAINFALL 100

That's how sophisticated weather science is becoming. A new system utilizing a "radar precipitation integrator" samples a returning radar signal from

150 points over a 30,000 sq. mile area in Oklahoma - five times each hour. This provides instantaneous measurements of precipitation at all these locations - and registers it cumulatively (in tenths of inches) on Durant Electric Counters miles away. Installed in a river basin display panel at River Forecast Centers, the counters provide a fast, accurate "picture" of accrued rainfall at all times. The Durant units used for this system have electric reset - ideal to instantly clear the display at the end of a measuring period.

TEXAS INSTRUMENT'S NEW QUARTZ GAGES CONVERT PRESSURE TO ELECTRIC CURRENT - MEASUREMENTS ARE RECORDED ON DURANT COUNTERS

The new units measure absolute pressure from vacuum to 500 psi utilizing interchangeable pressure sensitive elements. Texas Instruments Inc. developed these new Fused Quartz Pressure Gages to provide faster, more accurate pressure measurements. And Durant Instrument Counters were specified to assure it! The reason: high speed and unique design with 100 in crements on unit wheel provide the ability to produce readings at speeds of 150,000 increments per minute.

Âccuracy you can count on at high, low, intermediate speeds
There's no operating condition too tough for Durant electrically actuated counters. Exceptionaliy accurate and dependable, they fit a range of applications from simple production counting to intricate instrumentation and automation. And there's a model for practically any readout you can name. For more information write for our Electric Counter Catalog.

Wide choice of features to custom-match your design
These high speed counters for digital readout indicators are available as-you-need to meet practically any design requirement. There's a choice of: number of figures, rotation, side of drive, type of wheel imprint - and more. Components can also be ordered separately. All mount in diecast aluminum frames, operate quietly at high speeds with low torque. To get all the facts - write for catalog 400 . The complete line of Durant counters - from single stroke models to high speed electromechanical systems provide the answer to any count/control need. For specific application data, write direct. Durant Manufacturing Company, 685 N. Cass Street, Milwaukee, Wisconsin 53201.

ELECTRONIC INDUSTRIES

HI-FI GROWTH ESTIMATED FROM 10\% TO 15\% A YEAR

In the mid-1950s when the term "high fidelity" was known mainly among "hi-fi" buffs, high fidelity component sales were about $\$ 25$ million. As "hi fi" became a household phrase, sales quadrupled to about $\$ 100$ million in 1963.

This industry estimate was offered by Walter O. Stanton, president of the Institute of High Fidelity, Inc., and head of Pickering \& Co. He figures that hi-fi industry sales growth ranges between 10% and 15% yearly. (Other current estimates place hi-fi components at about $\$ 50$ million for 1964 and a possible $\$ 55$ million for 1965 .)

These figures are only fractions of the general consumer phonograph sales which totaled about $\$ 417$ million in 1963, according to Electronic industries Association. Data include lowcost as well as hi-fi units. Some estimates for 1964 and 1965 respectively are $\$ 405$ million and $\$ 410$ million.

LITTON OFFICIAL PREDICTS CORNER-STORE EDP

The business equipment industry is one of the most dramatic examples of this era of exploding technology, Charles B. Thornton, board chairman of Litton Industries, told the Business Equipment Manufacturers Association in Los Angeles.

In the past $15-20$ years the industry has grown 10 fold and by the early 1970's will become a $\$ 10$ billion industry, double its size today, he said.

He observed that new low-cost, highefficiency computers are being introduced that will make it possible for the corner drug store, the family doctor, the neighborhood grocery and the barber shop all to take advantage of the tremendous capability of the computer.

U.S. COMMERCE DEPT. OFFERS EXPORT PROMOTION SERVICE

Sample Displays, newest export promotion service of the Bureau of International Commerce, are now open for business at U. S. Embassies in Beirut, Lebanon; Manila, Philippines, and Nairobi, Kenya, the U. S. Department of Commerce announced.

The service will also be offered at the U.S. Trade Center in Bangkok, Thailand, in addition to regularly scheduled promotions of specific product themes.
"Primary objective of the new service," according to Eugene M. Braderman, Director of the Bureau of International Commerce, "will be to assist U. S. firms in establishing agents and distributors in foreign markets."

All-solid-state portable TV system introduced by Microwave Associates works from auto cigaret lighter. Works from 1.9 to 2.1 gc and mobile relay band. Applications include high-speed data sending, radar, telemetry, multi-channel TV. Usable to 50 -mile radius.

INDUSTRY OUTLOOK CLOUDY BUT PROMISING FOR 1965

The electronics industry, spurred by the general prosperity, closed its books on a successful year which saw sales move up by about $51 / 2 \%$.

A new report just issued by The Value Line Investment Survey states that the only conspicuous weak spot is the continuing slump among some military electronics firms. However, even those companies have taken steps to improve their earnings picture by cutting costs.

The report points out that the continuing upward trend in new orders suggests that favorable year-to-year comparisons for most companies will continue at least through early 1965. It cautions, however, that the possibility of a downturn in general econnomic activity late in 1965 has different implications for various industry segments.

A number of companies, especialiy those which depend heavily on a strong

ELECTRONIC TEST EQUIPMENT

fourth quarter for a successful full year, might prove particularly vulnerable to a serious economic recession. Similarly, several companies which have been most sensitive to over-all business fluctuations, may also suffer setbacks.

The report estimates that 46 of the 59 companies in the electronics indus. try under continuing review by the Value Line have increased sales in 1964 over 1963, while 48 of the companies show improved earnings.

SALES GROWTH EXPECTED FOR N/C EQUIPMENT

Increasing sales of numerical controls for machine tools were anticipated at a recent conference of the Numerical Control Society.

In the past ten years, numerical control machine sales have grown to about 5,000 units. One source estimated that about $500 \mathrm{~N} / \mathrm{C}$ machines had been installed from 1954 to 1960. It was further estimated that nine times as many units-some 4,500 -had been installed between 1960 and 1964.

LARGE SHARE OF SPACE MONEY FOR ELECTRONIC PRODUCTS

The lion's share of certain space hardware dollars still goes for electronic hardware. NASA estimates show electronic products and equipment represent some 40% of launch vehicle costs.

Electronic goods also represent about 70% of spacecraft costs, and 90% of tracking and data acquisition systems costs. Of about $\$ 5.2$ billions now being spent by NASA, from $\$ 1.8$ to $\$ 2$ billion reportedly go to electronic suppliers. Most of the balance of the funds are spent for ground installations and salaries.

ASSUREA LOW FAILURE RATE OF

 Only 1 Failure in 7,168,000 Unit-Hours for 0.1 MFD Capacitors ${ }^{\star}$
Setting A New High Standard Of Performance!

* Life tests have proved that El-Menco Mylar-Paper Dipped Capacitors - tested at $105^{\circ} \mathrm{C}$ with rated voltage applied have yielded a failure rate of only 1 per $1,433,600$ unit-hours for 1.0 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco Mylar-Paper Dipped Capacitors will yield ONLY 1 FAILURE IN 14,336,000 UNIT-HOURS.
CAPACITANCE AND VOLTAGE CHART - Five case sizes in working voltages and ranges:

200 WVDC -	.018 to .5 MFD
400 WVDC -	.0082 to .33 MFD
600 WVDC -	.0018 to .25 MFD
1000 WVDC -	.001 to .1 MFD
1600 WVDC -	.001 to .05 MFD

SPECIFICATIONS

- TOLERANCES: 10% and 20%. Closer tolerances available on request.
- INSULATION: Durex phenolic epoxy vacuum impregnated.
- LEADS: No. 20 B \& S (.032") annealed copper clad steel wire crimped leads for printed circuit application.
- DIELECTRIC STRENGTH: 2 or $21 / 2$ fimes rated voltoge, depending upon working voltage.
- INSULATION RESISTANCE AT $2 S^{\circ}$ C: For .O5MFD or less. 100,000 megohms minimum. Greater than .05MFD, 5000 megohm-microfarads.
- INSULATION RESISTANCE AT $105^{\circ} \mathrm{C}$: For .OSMFD or less, 1400 megohms minimum. Greater than .O5MFD, 70 megohm-microfarads.
- POWER FACTOR AT $25^{\circ} \mathrm{C}: 1.0 \%$ maximum al 1 KC
These capacitors will exceed all the electrical requirements of E. I. A. specification RS-164 and Military specifications MIL-C-91B and MIL-C-25C.

Write for Technical Brochure

MINIMUM LIFE EXPECTANCY FOR **1.O MFD *MYLAR-PAPER DIPPED CAPACITORS AS A FUNCTION OF VOLTAGE \& TEMPERATURE

UNIT-HOURS FOR ONE FAILURE

* Registered Trade Mark of DuPont CQ.

to the Editor

Octave Calculations

Editor, lìlectronic Industries:
Re: Item 75, p 58, EI, Dec. 1964
"Frequency Changes in Octaves"
Most engineers have slide rules: mine is an old Log Log Trig. Duplex. Try this:
Step 1) Divide f_{1} by $f_{2}\left(f_{1}=350 \mathrm{mc}\right)$

$$
\begin{array}{ll}
\left(f_{1} / f_{2}\right)=R_{1} & f_{2}=22 \mathrm{KC} \\
& R_{1}=16,000
\end{array}
$$

Step 2) On the LLL 3 scale, enter R_{1} $=16,000$
Step 3) bring left index of C-scale to align with R_{1} on LL 3
Step 4) move slide to (2) on the LL 2 scale
Step 5) at the hairline read (14) on the CI scale
Answer: 14 Octazes
For values that are above the extreme value $(20,000)$ of the LL. 3 scale, note the 6 db /octave is the same as 20 $\mathrm{db} /$ decade and account for excess powers of 10 in this mamer.
Conversely: for X db loss:

$$
\mathrm{X}
$$

Step 1) $-=$ No (No of Octaves) 6
$2^{N o}=$ the frequency ratio:
Step 2) move hairline to 2 on LL 2
Step 3) move left index of C to hairline
Step 4) suppose $\mathrm{X}=26$
X $=4.33$
6
Move slide to 4.33 on the C scale
Step 5) at the hairline on the LL 3 scale read 20.3
Step 6) multiply f_{2} by 20.3 to obtain f_{1}
Most decent slide rules have enough scales to do something like what I have just suggesterl.

\author{

1. K. Leichtman
 Engineering Specialist
}

Sylvania Electronic Systems
Wehrle 1)r. and (ayuga Rel.
Williamsville, N. Y. 14221

Measurements and Calibrations

Editor. Electronic Industries:
In reference to your recent editorial regarding Measurements and Calibration, and to your invitation to companies with qualified facilities and personnel to isstue certificates traceable to
the National Bureat of Standards.
I am enclosing our Service Division Brochure giving full information on our capabilities. Copics are avaibable to your readers. Our facilities have been approved by Govermment agencies and our procedure is in accordance with Mil-C-45662.1.

We therefore forward you this information with hopes that it will be of use to your reference file and to your readers in need of such services in this area.

Dave Krantz Service Mgr.
Sunshine Scientific lnstrument
1810 Grant Ave.
Philatelphia, Pa. 19115

An Answer . . .

Editor. Electronic Inijustries:
This is written in answer to Mr. M. T. Turner's plea in your December I.etters to the Eiditor of Eilectronic Industries.

The Nordson Corporation, Amberst, Ohio, is the American distributor for a West German-made measuring device called mikrotest. 'Two models are available-one for measuring thicknesses to 0.050 , and the other for thicknesses greater than 0.050 . The mikrotest is a hand tool and measures thicknesses of non-magnetic films or sheets that are backed by steel. It can be used on contoured surfaces and may fit your needs if you can provide a steel backing at the area to be measured.
W. (C. Durning

Methods \& Standards

Ihilco Corp.

Western Development Lals.
3825 Fabian Wiay
Palo Alto, (alif, 94,30.3

A Correction

Iiditor, Eilectronic 1 nuustries:
I find your Filter Chart on page 71 of the November 1964 issue extremely useful. However, the circuit figure shown within the graph should be changed to show C_{2} in the place of C_{R}.

This should correct all errors in the article and make the written material correlate with the illustration.

> L. J. Martens
> Equipnent Design Eng. (ieneral Electric Co.,
Momntain View Rd., I.ynchburg, Va. 24502

> OELCO RAOIO SEMICONOUCTORS AVALLABLE AT THESE OISTRIBUTORS

EAST

BINGHAMTON, N. Y.-Federal Electronics
P. D. Box 208/PI 8-8211

PHILADELPHIA 23, PENN.
Almo Industrial Electronics, Inc.
412 North Gih Street/WA 2-5918
PITISBURGH 6, PENN. - Ratio Parts Company, Iac.
6401 Penn Ave./361-4600
NEWTON 58, MASS.-Greane-Shaw Company
341 Walerlown Street/WD 9-8900
CLIFTON, N. J.-Eastern Radio Corporation
312 Clifton Aveaue / 471-6500
NEW YORK 36, N. Y. - Harvey Radio Company, lix.
103 West 43rd Street/JU 2.1500
BALTIMDRE 1, MD.-Radio Electric Servite Compmay 5 North Howard Street/LE 9.3035

SOUTH

BIRMINGHAM 5, ALA.
Forbes Distributing Company, Inc.
2610 Third Avenue, South/AL 1-4104
WEST PALM BEACH, FLA.-Goddard, Ime.
1309 North Dixie/TE 3-5701
RICHMDND 20, VA. - Meridian Electronites, Ime.
1001 West Broad Street/353-6648

MIDWEST

BATILE CREEK, MICH.-Electromic Supply Corparalion 94 Hamblin Ave./P.D. Box 430/955-1241
MINNEAPDLIS 62, MINN.-Admiral Distributors, Ine. 5333 Cedar Lake Road/545-8811

INDIANAPOLIS 25, IND.

Graham Electronics Surnly, Iae.
122 Soulh Senale Avemua/ME 4-8485
CLEVELANO 1, OHID - The W. M. Paltison Supdy co.
Industrial Electronies Division
171 Rockwell Arenue/621-7320
CHICAGO 30, ILL. - Merquip Electronics, IEe.
4939 North Elston Avenue/AY 2-5400
CINCINNATI 10, DHID_United Radio, Ime.
7713 Reinhold Drive /241-6530
KANSAS CITY 11, MO. - Walters Radio Surdly, Ime. 3635 Main Streel/JE 1-7015
ST. LDUIS 17, MO.
Electronie Components for Iadustry Co.
2605 South Hanley Road/MI 7-5505

WEST

daLLaS 1, TEXAS-Adela Company
1907 MeKinney Ave./RI 1-3151
HOUSTON I, TEXAS-Harrison Equipmenl Company, Iac.
1422 San Jxelato Street/CA 4-9131
SAN DIEGD I, CAL.
Electronic Components ol San Diego
2050 India Street, Box 2710/232-895
LOS ANGELES 15, CAL. - Radio Products Sales, Ine.
1501 South Hil Street/Ri 8-1271
LDS ANGELES, CAL. 90022 -Kierulif Electronics 2585 Commerce Way/OY 5-5511
MDUNTAIN YIEW, CAL.-Kierulfi Electronics 2484 Middilefield Road/958-6292
OENVER, COLO.-L. B. Walker Radio Company 300 Bryant Street/WE 5-2401
SEATTLE 1, WASH.-C \& G Etectronics Company 2600 2nd Ave./Main 4-4354
PHOENIX, ARIZ. - Midland Specialty Co., Inc.
1930 North 22nd Ave./258-4531
ALBUQUERQUE, N.M. - Midland Specially Co., Ine. 1712 Lomas Blvd., N.E./247-2486
TUCSON, ARIZ. - Midland Specially Co., Ide. 951 South Park Ave./MA 4-2315

Ask for a complete catalog
DELCO RADIO
oivision of general motors - kokomo, inolana

A COOL 400 V

Delco Radio's new DTS 413 and DTS 423 power transistors, are conservatively rated at 75 and 100 watts. Our standard $\mathrm{TO}-3$ package assures low thermal resistance (junction to heat sink $1.0^{\circ} \mathrm{C}$ per watt) for cool power. The silicon element gives you high voltage protection, high frequency response and low saturation voltage.

The price is low (less than 3ϕ a volt for sample quantities) for two reasons: special inter-digitated geometry of the devices and our unique 3D* process for high yields.

Now you can reduce current, the size of other components, and increase efficiency in high energy circuits. Vertical and horizontal TV outputs, for example.

Your Delco Radio Semiconductor distributor has these two new power transistors on his shelf. Call him today for data sheets, prices and delivery.

RATINGS	DTS 413	DTS 423
Voltage		
Vceo	400 V (Max)	400 V (Max)
$V_{\text {ceo (Sus) }}$	$325 \vee$ (Min)	$325 \vee$ (Min)
VCe (Sat)	0.8 (Max)	0.8 (Max)
	0.3 (Typ)	0.3 (Typ)
CURRENT		
Ic (Cont)	2.0A (Max)	3.5A (Max)
Ic (Peak)	5.0A (Max)	10.0A (Max)
I_{B} (Cont)	1.0A (Max)	2.0A (Max)
POWER		
	75 W (Max)	100 W (Max)
FREQUENCY RESPONSE		
I_{1}	6 MC (Typ)	5 MC (Typ)

General Sales Office:
700 E. Firmin, Kokomo, Ind.
(317) 452-8211-Ext. 500

DELCO RADIO
Division of General Motors

microminiature

ceramic capacitors

Scionics has a broad line of microminiature ceramic capacitors including rectangular and round pellets as small as .050 dia. by .020 thick.
These high reliability multilayer capacitors have been used for more than three yeass by a large number of companies building equipment for military and aerospace applications.

CAPACITOR DIVISION - 8900 Winnetka Avenue, Northridge, California / 213-341-5500/TWX 213.341-7559
The Scionics Corporation - Capacitor Division - Instrument Division - Information Systems Division

Let's not be too quick with the answer!

- Here are some factors you should not overlook! When an assembly line test shows up a faulty cheap resistor, the correction costs you real money-more than you had hoped you would save by using resistors of marginal dependability. And, when you are mass producing in a highly competitive field, each reject can make the complete assembly a "no profit" item. Can you afford to mess around with such costly gambling?

Allen-Bradley does not believe so-and neither do the countless customers that have been using A-B quality resistors-by the billions-during the last several decades. Consequently, Allen-Bradley offers but one line of commercial resistorswhose "quality" has never been topped. When you specify Allen-Bradley resistors, there can be no doubt about the quality of the resistors going into your equipment.

All Allen-Bradley resistors are made by an exclusive hot molding process on special automatic machines designed and patented by Allen-Bradley. With the "human element" virtually eliminated, such uniform quality and consistent properties in production are so automatically assured that long term resistor performance can be accurately predicted.

What the Purchasing Department may consider too much of a "premium" to pay for the acknowledged superiority of Allen-Bradley hot molded fixed and variable resistors most likely would prove to be a "dividend" earned by your shop for its trouble free production and an improved quality of your equipment. After all, satisfied customers remain as advertisements for your product which money cannot buy.

So you see there are economic advantages in standardizing on Allen-Bradley hot molded resistors. Let's become better acquainted! Please write for Technical Bulletin 5050 : Allen-Bradley Co., 222 W. Greenfield Avenue, Milwaukee, Wisconsin 53204. In Canada: Allen-Bradley Canada Ltd., Galt, Ontario.

A-B HOT MOLDED RESISTORS are available in $1 / 8,1 / 4,1 / 2,1$, and 2.watt ratings, and in all standard EIA and MIL-R-11 resistance values and tolerances, plus values above and below standard limits

20 years of undersea

operation

Photographed in the loborotorles of Pockard Instrument Company

See the special socket? It's a handy new convenience. You can attach the socket to the circuit-and insert a Class E taper-tab relay later on.
This new method can simplify packaging, shipping and inventory. You don't have to ship a printed-circuit board with the relay in place. Ship them separately-with all the resultant benefits.
At the receiving end, it's easy to insert the complete series ETA assembly with its plastic dust cover. Remove it anytime, quickly. The socket stays in place.

Want some helpful details? Just drop us a line, and ask for AE's Product News on the ETA socket.

Widest Mounting Choice

In addition to this new ETA socket with printed-circuit terminals,
other Class E relay sockets are available with dual taper-pin and taper-tab terminals. And the relays themselves can have conventional solder, taper-tabs, or wrapped-wire terminals, or pins for plug mounting.

This amounts to the industry's widest selection of Class E relay connections-another good reason to check Automatic Electric for all your relay needs. Write the Director, Relay Control Equipment Sales, Automatic Electric, Northlake, Illinois 60164.

AUTOMATIC ELECTRIC subsidiary of GENERAL TELEPHONE \& ELECTRONICS GTE

SOURCE OF ENERGY

FORM OF ENERGY

INORGANICS FOSSIL FUELS	CHEMICAL \longrightarrow	BATTERIES FUEL CELLS	
SOLAR	LIGHT \longrightarrow	SOLAR CELLS \longrightarrow	ELECTRICAL
SOLAR FOSSIL FUELS NUCLEAR FISSION NUCLEAR FUSION	HEAT \longrightarrow	MAGNETOHYDRODYNAMICS THERMIONICS \qquad THERMOELECTRICS	POWER

Fig. I: Direct-energy-conversion technologies

State-of-the-Art Report On Electrical

New techiniques of gienerating electrical enErtiy have been fostered by govermment, military and space requirements. The evolving technology should make a big impact on our every-day use of electrical power. For instance, the quiet energy converter that powers a soldier's portable radar set could one day power his lawn mower.

Govermment reguirements for specialized power sources stem in part from the need for high reliability and long life, light weight and compactness, silence, and ability to operate in remote places under extremes of environment. Power requirements go from tens of watts for commumications, navigation and weather satellites to millions of watts for space propulsion. To date, the solar cell has been the mainstay for space power below a few hundred watts. Radioisotopic thermoelectric generators (RTG) have also been demonstrated as feasible for space. Many other systems are now under development, and are expected to become practical during the present decade.

Primary Energy Sources

The various primary energy sources available, and the energy conversion technigues that can be employed to convert them into electrical power, are shown in Fig. 1. The three basic forms of this energy are the sum, fossil fuels and muclear reactors and isotopes. As time goes by and our fossil fuel reserves are consumed, the nuclear and solar sources will be the chief sources of electrical power inchiding that produced by central-station power plants which supply our conventional power lines.

In Fig. 1, inorganics include the hydrogen and oxygen that go into fuel cells and the lead, zinc and manganese dioxide that go into batteries. Fossil fuels include oil, gasoline, natural and produced gas and other hydrocarbons, including a host of organic chemicals useful as energy sources. Nuclear fusion and fission include, besides the reactor heat source, the heat in the waste material or alpha, heta and gamma emitting isotopes. These latter will be referred to as isotope heat sources and will be useful for power levels up to a kilowatt or so. Included are some artificially produced isotopic alpha heat sources such as polonium (also occurring naturally), plutonium and curium. Photons from the sum can be utilized, mostly in the visible region, or in the degraded form of heat. The type of energy converter selected determines the form of energy used. It is interesting to note that sucl heat sources as sunlight, isotopes and reactors actually require a new type energy converter for efficient electrical generation.

Energy Conversion Techniques

There are many methods of energy conversion, the most promising at the montent being those listed in lig. 1.

In the battery, the electrodes take part in a chemical reaction which produces a flow of electrons and ions resulting in an external flow of electrons in a load. P'rinary batteries are useless after the chemicals have been consumed. However, secondary (storage) batteries are capable of being recharged or having the chenical process reversed by external power being applied.

Extensive R \& D on half a dozen direct means of energy conversion is expected to result in widespread applications of several of these devices quite soon. Those of particular interest to electronic engineers are detailed.

By PAUL RAPPAPORT

RCA Laboratorios
Princeton, New Jersay

Energy Sources

A fuel cell is a form of battery in which the chemicals are constantly added and the by-products are constantly removed. The electrodes are also used up in different ways, but the life of the fuel cell is usually limited by the amount of fuel (chemicals) that can be supplied. Fuel cells have high efficiencies, ranging from 20 to 70% depending on the system. The major use for fuel cells in the near future will be for high power, short duration missions, in space, where the expensive fuels-hydrogen and oxygen-are used to achieve high efficiency.

The solar cell converts light photons directly into electricity by the photovoltaic effect, giving an efficiency of 10% for a sunlight spectra of photons, and considerably higher efficiency for a monoenergetic source of photons. If the source of photons is a heat source, the process is called the thermal photovoltaic effect (TPV).

The means for converting heat into electricity are manifold. One method, the conventional turbinegenerator system, operates at efficiencies of about 40% in central-station power plants. Another method, known as magnetohydrodynamics (MHD), may someday compete with rotating turbine-generator systems for central station power. MHD is analogous to a rotating machine except that the electrical current, in the form of hot ionized gasses or plasma, is forced through a magnetic field, producing a potential difference between electrodes which is perpendicular to the magnetic field and the gas flow. Electrical power can be generated by an MHD system at a much higher efficiency than the 40% obtainable at conventional power stations. Because of the
high temperature (about $3000^{\circ} \mathrm{C}$), and magnetic field that is required, plus the need for high velocity gas flow, the MHD technique would be most efficient in a large installation. It could produce megawatts of power from heat produced by a reactor. The major problem to be solved is to find materials that won't corrode at the high temperatures involved, in the presence of a high velocity ionized gas.

Thermoelectric (TE) and thermionic (TI) devices convert heat into electricity quite simply. Effciencies from a few percent to about 30% are possible with these Carnot-cycle-type heat engines.

The conventional conversion technique of the dynamic or rotating turbine-generator unit mentioned before is by no means completely out of the race as a compact, portable and efficient device useful in space. It may suffer from inherent reliability problems and operational difficulties because of the mechanical motion, but it is the reference against which other systems have to compete and be proved superior before their operational use is assured. This is especially true in the 30 to 300 kw power range. In a similar sense, the battery is the reference against which other systems must compete at lower powers.

Details of Direct Energy Conversion Systems

Detailed here are the three specific energy conversion techniques of particular interest to electronic engineers-solar cells, thermoelectrics and thermionics. These techniques are truly static and are called

EIEGTROMIC INDUSTRIES
StATE-OF-THE-ART
FEATURE

Fig. 2: Basic action of solar cell. Shaded region has intense ionization due to electron-hole pairs generated by light.

Fig. 3: Satellite, utilizing solar cells on extended panels.

Electrical energy sources (Continued)

direct energy conversion (DEC) devices. Fuel cells, MHD and dynamic machines all involve motion, and because of this, their ultinate reliability may not be as good as the completely static systems.
High reliability is the key. Without high reliability, the newer techniques will not be able to compete with the more conventional and less costly techniques presently in use.
An intriguing fact about energy conversion is that work in this field is based on many old ideas only now becoming practical because of new materials and technologies. Solar cells employ the photovoltaic effect which was discovered by Becquerel in 1839 ; the thermionic converter is based on the Edison effect discovered in 1821 ; and the thermoelectric effect was discovered by Seebeck in 1883. These three basic technologies are well entrenched in the electronics industry, where they have been utilized in vacuum tube and semiconductor technology. This explains why the electronics industry is now in the power business.

The Solar Cell

The solar cell is the only new energy-conversion device in production. A product of the new semiconductor industry, it is essentially one half of a transistor, a p-n junction, that has a large surface area. When this area is exposed to sunlight, the energy in the solar photons is converted into electricity by the p-n junction, Fig. 2. The shaded region is one of intense ionization due to electron-hole pairs generated by the light. The photons must have enough energy to break the silicon atom-to-atom bonds to produce this ionization. An energy of about 1 electron volt (e.v.) is required, and fortunately

about two thirds of the solar photons have energy exceedirg this value. The p-n junction is merely a potential barrier, similar to the barrier formed when two dissimilar metals are brought together. This barrier aliows a unidirectional current flow. Electrons flow from the p-type to the n-type silicon, and holes from the n-type to the p-type silicon, which constitutes a current flow as shown. Power can be delivered to a matched load with an overall efficiency of at least 10%. The $\mathrm{p}-11$ junction presents a nonlinear characteristic to the current voltage load curve. Thus, it is passible to deliver nearly 75% of the power generated to the load.

Such cells are ideally suited to provide low values of electrical power in space craft and will probably continue to be the mainstay for such use over the next 5 to 10 years. Well over 150 U.S. satellites have thus far iased solar cell power, ranging from the 5 w Vanguard to the 400 w Nimbus weather satellite. While development emphasis has been on space applications, the long range future for solar cells also includes terrestrial applications. A truly

Table 1
SOLAR CELL MATERIALS

Material	Bandgap Energy (e. v.)	Efficiency (\%)	
		Theoretical	Measured
Silicon	1.11	20	14
Indium Phosphide	1.25	23	3
Gallium Arsenide	1.35	24	11
Cadmium Telluride	1.45	21	7
Gallium Phosphide	2.25	17	1
Cadmium Sulfide	2.4	16	7

low-cost solar cell could have a profound effect on the economy of the emerging nations of the world.

When used for space power, the individual cells (a few square centimeters in area) are connected in series-parallel arrays. The cells are either attached to the surface of the satellite or they are attached to solar panels which project from the satellite, as shown in Fig. 3. On the Nimbus satellite shown, $10,9442 \times 2 \mathrm{~cm}$ cells are employed to yield about 400 w . Each panel is about 24 sq ft in area and is constantly oriented normal to the sun.

Many other solar energy conversion devices show promise of competing with solar cells for space power, but they have not yet been developed to the stage of (1) converting solar energy to electricity with 10% system efficiency, (2) operating without special power conditioning equipment to produce high voltages, (3) relative insensitivity to orientation effects, (4) being relatively light and rugged, and (5) requiring no special solar collector or heat radiator.

Solar cells also have limitations. They are (1) quite sensitive to damage from radiation (important in many space applications) ; (2) high in cost (important in terrestrial applications) ; (3) useless during dark periods, thus requiring storage equipment; and (4) limited to power levels up to a few kw, although power in the 10 kw range may be as feasible for solar cells as for other systems now being contemplated.
Almost all of the several million solar cells produced in 1964 were made of single-crystal silicon. Substantial research and development has been conducted, however, to determine whether the use of other crystalline materials, such as gallium-arsenide and cadmium-sulfide, would be feasible. Data on various semiconductors for solar cell use are given in Table 1. The efficiencies shown are the best measured to date.
Solar cells currently in use require single-crystal material. Silicon and gallium-arsenide are the most promising materials investigated to date. Silicon n -on-p cells have more radiation resistance than the p-on-n variety. Silicon solar cells are produced by five companies. Gallium-arsenide cells, which promise greater radiation resistance than silicon, are presently in development and in pilot-plant production.

While the present results with GaAs, as given in Table 1, represent many years of great effort applied to a most stubborn material, improvement in efficiency and reduction in cost are still necessary before the position of silicon for solar cells is challenged. However, for high temperature operations (Venus or Mercury satellites), and when the solar cell is exposed to high radiation, GaAs cells will be preferable to Si cells.
Two of the most urgent requirements for future solar cells are lower cost and lighter weight. Presently, cells range from $\$ 200$ to $\$ 1000$ per watt; as a result, their extensive use for terrestrial applications is not now economical. The major reason for this high cost is the need for single-crystal material in the cells. However, it has long been known that non-single-crystal films can be used for solar cells; for example, the selenium- and copper-oxide films which are used in the photoelectric exposure meter. More recently, the cadmium-sulfide and the cadmiumtelluride film type solar cells were developed. The

Fig. 4: Theoretical dependence of Seebeck coefficient S, electrical resistivity ρ, and $S^{2 / p}$ on carrier concentration n.

Fig. 5: Si-Ge thermoelement with tungsten contacts.

exposure meter type devices have efficiencies less than one percent, while the CdS cells have yielded efficiencies up to 5 percent.

Film devices are basically light in weight and offer potential advantages for space applications. This lightness of weight stems from the fact that only very thin layers (microns) of most semiconductors are required for converting solar photons into electricity. Most of the 10 to 20 mils of silicon or galliumarsenide used in single-crystal devices serves as structural support. The thickness of semiconductor film required for solar cells is determined by their optical absorption.

CdS and CdTe films are being studied by several different organizations, the state of development being about equal. Small area ($100 \mathrm{~cm}^{2}$) films, made by evaporating the semiconductor and then forming a barrier layer with copper, yield efficiencies up to 5%. However, in large area ($100 \mathrm{~cm}^{2}$) films, the efficiency drops to about 1 to 2% because of series resistance effects. Power-to-weight ratios of about 10 w per pound are claimed for flexible CdS cells. This improvement, by a factor of 3 over silicon cells, is important for space applications, even though these CdS cells are only 1 to 2% efficient. Higher efficiencies and lighter weight substrates should yield cells

ELECTRICAL ENERGY SOURCES (Continued)

with power to weight ratios above $40 \mathrm{w} / \mathrm{lb}$. It has been pointed out that such devices in very large area films ($1,000 \mathrm{~m}^{2}$) could supply power in the kilowatt range and may compete on a cost, weight, and timeavailable basis with a system such as SNAP 8. The large areas in such a solar cell system would require some ingenious unfurling technique so that an area about a third the size of a football field need not be launched while open. Presumably, a flexible cell would permit such a solution.

Thermoelectric Energy Conversion

The technology of thermoelectric energy conversion is developed to the point of demonstrated feasibility; yet TE devices are not in widespread use. Efficient thermoelectric generators utilize semiconductor $p-n$ junctions similar to the solar cell. However, where the solar cell converts photons on a particle or quantum basis, TE converts the heat produced by photons according to the thermodynamic principles of heat engines and limited by the Carnot cycle.

In this process, heat is applied to the p-n junction contact. The electrons and holes increase. In n-type material this results in an excess of electrons, which

Table 2
THERMOELECTRIC MATERIALS

Material	Max. Useful Temp. ${ }^{\circ} \mathrm{C}$	Z avg $10^{-3 /{ }^{\circ} \mathrm{C}}$	$\mathrm{Z} \Delta \mathrm{T}$
BiTe	250		1.8
CdS	1,200	0.2	0.18
PbSnTe	550	1.0	0.21
PbTe	600	1.0	0.40
SiGe	1,000	0.6	0.45
AgSbTe	600	1.5	0.51

Fig. 6: Energy conversion efficiency of Si-Ge alloys.
sets up an electron gradient forcing electrons along the n-type arm toward the cold end. A similar process occurs in the p-type arm resulting in the motion of holes toward the cold end. This flow of charge in both arms results in a potential across a load.

The thermoelectric figure of merit, Z, is generally regarded as the best single criterion in selecting a material's usefulness as an energy converter. It is defined as follows.

$$
Z \cong S^{2} / K p
$$

where S is the Seebeck coefficient (after the discoverer of this effect) or the voltage developed per degree centigrade temperature difference between the hot and cold end ; K is the thermal conductivity of the material in watts/cm-degree C, and ρ is the electrical resistivity in ohm-cm. In general, the higher the figure of merit, Z, the higher the efficiency of a TE converter, since (assuming $\mathrm{ZT} \ll 1$),

$$
\text { Efficiency } \cong 1 / 4 \mathrm{Z} \Delta \mathrm{~T}
$$

where $\Delta \mathrm{T}$ is the difference between the hot and cold temperature.

How the important parameters, S and ρ, vary for insulators, semiconductors and metals, is shown in Fig. 4. Note that the product S^{2} / ρ is maximum in the region of semiconductors. Theory predicts that semiconductors with carrier concentration of about 10^{19} carriers/ cm^{3}, or heavily doped semiconductors, are optimum for TE conversion. The thermal conductivity plays an important role in the process, since the heat, besides generating carriers at the hot end of the generator, can also be conducted away to the cold end without taking part in the energy conversion process. Unfortunately, semiconductors are good heat conductors via the crystal lattice. Because of this, it has been recognized that in semiconductor alloys, the heat conductivity is lower because of the disruption in the crystal lattice. Therefore, semiconductor alloys and compounds are deemed best for TE conversion. (Continued on page 42)

Fig. 7: SNAP 10-A atomic power unit.

TRYGON

HIGH-EFFICIENCY SERIES

Lcw and Nedium Power

Regulation:
Line - 0.01% or 2 mv Load - 0.05\% or 10 mv
(. 01% or 3 mv for units with suffix " A ")
Recovery Time: Better than
$50 \mu \mathrm{sec}$

- Constant Voltage/

Constant Gurrent Operation

- Remote Programming
- Rack Adapters Available
- Coarse and Fine Voltage and Current Cantrols

Model	Valts	Amps	RMS Ripple mv	Price
HR20-1.5*	0-20	0.1.5	0.25	\$164
HR40-750*	0-40	0.0 .75	0.15	149
HR20-5A	0-20	0.5	0.5	299
HR20-10A	0-20	0.10		379
HR40-2.5A	0-40	0.2 .5		299
HR40-5A	0.40	0.5		349
HR60.2.5A	0-60	0.2 .5		379
HR60.5A	0-60	0.5		449
PHR20-5A	0-20	0.5		250
PHR20-10A	0-20	0.10		325
PHR40-2.5A	0-40	0-2.5		250
PHR40-5A	0-40	0.5		295
PHR60-2.5A	0-60	0.2.5		325
PHR60-5A	0-60	0.5		395

*Single Meter Units
Models prefixed " P " are Series 8 Modular Supplies with blank front panels and voltage control on back. Units may be intermixed on same rack adapter used for Silicon Modules -or may be front-panel mounted with conventional rack adapters.

Regulation: 0.01% or 3 mv
all units with Suffix "A."
0.05% or 15 mv all other units Ripple: 1 mv RMS max. Recovery Time: Better than $50 \mu \mathrm{SeC}$

- Constant Voltage/

Constant Current Operation

- Remote Programming
- Remote Sensing
- Variable Current Limiting

Short Circuit Protection

Model	Volts	Amps	Panel	Price
tM 15.5	0.15	0.5	$312^{\prime \prime}$	\$425
tM 15.10	0.15	0.10	31/2"	\$510
+M 36-2.5	0.36	0-2.5	31/2	5415
tM 36.5	0.36	. 5	31	\$445
tM 60-2.5	0.60		317/2	
M 160.1	0.160	0.1	31/2	\$515
M 15-15A	0.15	0.1	5174'	\$595
M 15.30A	0.15	0.30	51/4	
M15.50A	0.15	0.5	$7^{\prime \prime}$	\$945
M 36.10A	0.36	0.10	51/4	9550
M 36-15A	0.36	0.15	51/4	5645
M 36-25A	0.36	0.25	$7^{\prime \prime}$	5725
M 36-30A	0.36	0.30	7"	\$795
M 60-5A	0.60	0.5	51/2"	
M 60-10A	0.60	0.10	51/2	
M 60.15A	0.60	0.15	$7{ }^{\circ}$	\$895
M 160.3A	0.160	0.3	51/4	\$725
M 160-5A	0.160	0.5	$17^{\prime \prime}$	\$925

Regulation:

0.2% or 50 mv , SR36.25, SR36-40
0.3% or $50 \mathrm{mv}, \mathrm{SR} 20-40$, SR20.70
Ripple: 100 mv RMS max Recovery Time: 10 millisec

- High Efficiency operation
- Economy provided by unique regulation techniques
- Variable Current Limiting Short Circuit Protection
- Highest quality components
- Remote Sensing

Model	Volts	Amps	Panel	Ht.
Price				
SR20-40	2.20	0.40	$7^{\prime \prime}$	$\$ 695$
SR36-25	2.36	0.25	$7^{\prime \prime}$	695
SR20.70	2.20	0.70	$83 / 4^{\prime \prime}$	925
SR36-40	2.36	0.40	$83 / 4^{\prime \prime}$	850

Note: Standard Semi-Regulated Supply Includes ammeter, voltmeter complete range remote programming and variable current limiting.

Fig. 8: RCA fossil-fueled thermoelectric test generator.

Fig. 9: Potential energy diagram for thermionic converters.

Fig. 10: Work function of tungsten in cesium vapor.

As yet, theory has not been able to predict the maximum limit of Z nor the material which would best produce it. Most of the materials used today have $\mathrm{Z} \Delta \mathrm{T}$ ranging between $\mathrm{I} / 2$ and 1 . A $\mathrm{Z} \mathrm{\Delta T}$ of 1 would be considered quite useful today. $Z \Delta T$ products for some of the best thermoelectric materials discovered, are shown in Table 2. The cold temperature is assumed to be $150^{\circ} \mathrm{C}$; however, in space applications where a higher radiator (cold) temperature is required, the best results are achieved by the higher temperature materials (e.g. SiGe).

Besides a maximum in $Z \Delta T$ for efficiency, reliability is important, since the materials must operate at high temperature. Until 1962, the tellurides, especially PbTe , were the most widely used materials for TE power generation in spite of some extreme difficulties, such as high volatilization, contacting problems and poor material strength. With the discovery of the TE properties of GeSi alloy in 1962, the situation quickly changed. GeSi can operate at considerably higher temperatures, has no volatile constituents, can be contacted permanently and has about five times the fracture strength of PbTe .

A photograph of a GeSi element with permanent tungsten contacts is shown in Fig. 5. This is the geometry used for space applications. The curve in Fig. 6 shows the percent conversion efficiency as a function of temperature for a cold temperature of $25^{\circ} \mathrm{C}$. The thermoelectric materials can be stacked together to take advantage of the fact that Z is greatest in different materials at different temperatures. Thus, a three-state generator is possible using $\mathrm{BiTe}, \mathrm{PbTe}$ and GeSi with transition temperatures at about $200^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. Such a device could possibly provide efficiencies in the 15 to 17% range.

Thermoelectric generators are of interest for converting heat from fossil fuels, reactors and isotope sources. Systems capability can range from milliwatts to kilowatts. Such systems can be portable and can be used in unattended operation for long periods under severe environmental conditions.

Thermoelectric generating systems that use fossil fuels, such as gasoline and propane, are operating today in a number of specialized terrestrial applications. Many new systems are being designed for both military and industrial applications, where the more conventional power generators are either unsatisfactory or unavailable. Radioisotope-thermoelectric (RTG) power systems have been constructed for a variety of uses and a number of such systems (SNAP-3 and 9A developed by the Nuclear Division of the Martin Company for the AEC) have successfully operated in space environments. More advanced RTG systems, for both space and terrestrial requirements, are under development. Solar and nuclear reactor thermoelectric systems are under development for space applications, but full operation in the space environment has not yet taken place.

Perhaps the largest program to date to use thermo-
electrics is SNAP-10A. This is a 500 w system where the heat energy is generated by a compact reactor and the electrical energy by a large number of GeSi TE elements. This system is being developed by the Atomics International Division of North American Aviation for the Atomic Energy Commission. At present, the system is under test and is scheduled for flight testing next year. It is the most advanced in development of any DEC reactor system and is expected to be the basis for higher power systems of the future.

A cutaway drawing of the SNAP-10A reactor TE unit is shown in Fig. 7. The unit is about 10 ft long and 5 ft at its greatest diameter. The reactor at the top can generate about 32 kw of thermal power. This heat is removed by Nak (sodium-potassium eutectic alloy) liquid which is pumped through forty stainless steel tubes positioned about the conical outer surface of the power unit. Thirty-six thermoelectric couples, each consisting of an n-type and p-type silicon-germanium element, are mounted on each of these tubes. The hot junction of each couple is formed at the stainless steel tube, which is the source of the thermal energy for the converter. The other ends of the elements are connected to individual aluminum radiators which reject the waste heat to space and form the cold junctions. (The individual radiators appear as the skin of the outer surface in the illustration.) Because the voltage developed by each thermoelectric couple is small, many couples are connected in series to provide an output of approximately 30 v .

The use of thermoelectrics in RTG's (isotope) appears to be promising for space and terrestrial applications. The power level of these devices is limited because of the large amount of isotope required. For example, a 100 -watt generator would require about $1 / 2$ million curies of Sr^{90} assuming a 5 percent conversion efficiency. Isotopes are also expensive; therefore, widespread use is not probable. Shielding requirements cause increase in weight; however, alpha emitters like Pu^{238}, while very expensive, require much less shielding. A number of isotope systems are under development, such as Snap-9, 13 and 17A by the AEC. For space applications, possible advantages of RTG over solar cells is that storage battery requirements are much less severe, and there would be little or no sensitivity to radiation belts.
For terrestrial use in military and special industrial requirements, fossil fuel TE generators seem ideally suited. Such generators are most often considered where conventional power is not available and where portable sources of electric energy such as batteries and motor-generated sets prove unsuitable. Battery power systems have been beset by problems, such as weight, shelf life, operating life, and poor resistance to adverse ambient environments. Although large motor-generator sets (2 to 10 kw)
(Continued on page 45)

Fig. 11: Idealized V-A characteristic for thermionic converter.

Fig. 13: Thermionic converter for operation in nuclear reactor.

Fig. 14: Thermionic converter for operation in external loop.

Should YOU specify this small four-pole relay by P\&B?

Here is why so many engineers have

An extraordinary combination of features distinguish the KH relay. Small size (only slightly larger than one cubic inch), 4-poles, exceptional electrical stability over a long life, a wide choice of mountings... all of these and more are found in the KH.

SWITCH FOUR CIRCUITS from low level to 3 amps

This is a four-pole relay normally used in a 4 Form C arrangement. It can be supplied with a 2 Form Z (DPDT-DB) configuration or, by not wiring certain contact terminations, any four-pole combination of Forms A or B may be achieved. Berylli-
 um copper is used for the contact arms for excellent conductivity and long mechanical life.

Both AC and DC relays are available. Minimum power requirement for AC relays is 0.55 volt amperes at $25^{\circ} \mathrm{C}$. DC relays will operate on only 0.5 watts at 25° C. KH relays are rated at 3 amperes, as shown below. Under certain favorable conditions, KH relays will switch up to 5 amperes providing extended life is not required.

TERMINAL BLOCK CONSTRUCTION CONTRIBUTES TO RELIABILITY

Glass reinforced alkyd, a material of exceptional dimensional stability and dielectric properties, is used for the terminal block. The terminals are molded into the block. This construction
 serves to keep the relay in precise adjustment throughout its life. The pierced solder terminals are easily accessible, speeding hook up.

CHOOSE FROM WIDE VARIETY OF MOUNTINGS

The terminal block is uniquely embossed to allow for mounting KH relays on metal strips or angles. This embossing, around the two bottom terminals,
 keeps the relay from turning when the nut is tightened on the stud. The KH may be mounted in a variety of ways. A tab-andstud mounting plate on any side or the top of the dust cover is available. Also, a choice of three sockets
 may be used to make the KH a plug-in relay. One socket has printed circuit tabs, the other two have pierced solder terminals.

CHOICE OF
 ENCLOSURES TO MEET ALL REQUIREMENTS

Dust covered KH relays (KHP) can be ordered with translucent nylon or clear Lexan cases. Hermetically sealed relays are designated KHS, and are enclosed in a steel cover. The nylon cases
 are available on special order in red, blue, green, yellow or black so that relays in various circuits may be color coded.

RELIABILITY OF KH SERIES FIELD-PROVED IN MANY APPLICATIONS

The KH has found its way into such diverse gear as citizens band transceivers, dictating machines, walkie-talkies, computers, aircraft communications equipment, scoreboards, alarm systems, and many others.

For full information call your local P\&B distributor or Sales Representative, or write: Potter \& Brumfield, Princeton, Indiana.

KH SERIES SPECIFICATIONS

CONTACTS:

Arrangements: 4 Form C (4PDT). 2 Form Z (DPDT-DB).
Rating: 3 amps @ 30 volts DC or 115 volts AC resistive for 100,000 operations.

COILS:
Resistance: DC: 11,000 ohms max.
AC: 3,900 ohms max.
Power: AC: 1.20 volt amperes nominal (a) $+25^{\circ}$ C., .550 volt amperes minimum @ $+25^{\circ} \mathrm{C}$.
DC: 0.9 watt nominal @ $+25^{\circ} \mathrm{C}$., 0.5 watt minimum operate @ $+25^{\circ} \mathrm{C}$., 2.0 watts maximum @ $+25^{\circ} \mathrm{C}$.

TIMING VALUES:
Nominal Voltage © $25^{\circ} \mathrm{C}$.
Max. Values
Pull-in time
13 ms
10 ms
INSULATION RESISTANCE:
1500 megohms min.
MECH. LIFE:
DC: In excess of 100 million cycles.
$\mathrm{AC}: \ln$ excess of 50 million cycles.
ENCLOSURES:
Dust cover or hermetically sealed.
TERMINALS:
Solder lug and taper tab.
SOCKET:
Solder lug or printed circuit terminals.
Avallable as accessory.

DIMENSIONS:

$1-21 / 64^{*} \times 1-7 / 64^{*} \times 55 / 64^{*}$

ELECTRICAL ENERGY SOURCES (Continued)

are capable of significantly better efficiencies than present day thermoelectric generators, the efficiency of motor-generator sets decreases rapidly as the power ratings decrease. As a result, in the power range below 500 w , the efficiency of thermoelectric generators becomes quite competitive. Also, thermoelectric generators, which have no moving parts, are capable of long periods of unattended silent operation.
A 50 w fossil-fuel TE generator made of special oxidation-resistant SiGe AIRVAC modules is shown in Fig. 8. Such modules have shown excellent lifetest results. Free convection cooling fins can be seen extending radially from the generator. The propane burner shown was developed specifically for this application.

Thermionic Energy Conversion

The thermionic energy converter is an electron tube that is capable of efficient conversion of heat into electrical energy. Solar, nuclear, or fossil fuel heat sources can be utilized with this type converter. It operates on the same principle as the TE converter; its higher efficiency results partially because it operates at temperatures up to $2000^{\circ} \mathrm{C}$ or more, thus giving a higher Carnot efficiency.

When heat is applied to the diode cathode, electrons are emitted by thermionic emission, and are collected at the anode. The voltage developed depends on the difference in work function of the cathode and anode minus any arc drop that occurs between these electrodes.

To avoid the problems of drawing large currents in a diode, a plasma medium is used to neutralize the space charge. Cesium is used for this purpose since it has the lowest ionization potential of any suitable gaseous material. With the use of cesium, it is possible to draw currents as large as the cathode can stand, typically up to $20 \mathrm{amps} / \mathrm{cm}^{2}$.

The potential energy diagram of a thermionic converter is shown in Fig. 9. The dotted line shows the
condition that would prevail if no cesium were added. To achieve efficient operation, the anode would have to be placed at or to the left of the maximum in the diagram, which corresponds to a few microns spacing, not a very practical solution. Under the conditions shown by the black line, where cesium is added, spacing usually is not critical.

Cesium performs another function in the converter in that it sets the surface work function. This is shown in Fig. 10 where it is shown that cesium covered tungsten surfaces can take on a wide range of work functions. For example, in a coverter operating at Cs pressure of 1 mm Hg , an anode temperature of $600^{\circ} \mathrm{C}$ would yield an anode work function of 1.8 v and a cathode temperature of $1200^{\circ} \mathrm{C}$ would yield a cathode work function of 2.3 v or a difference of $1 / 2 \mathrm{v}$. Since the Cs coating of the surfaces results from a dynamic equilibrium between the Cs in the gas and the surface, another advantage of Cs is obvious, namely that the surfaces have infinite life as long as the Cs is present. A major disadvantage of Cs is its corrosive nature, especially at high temperatures. Much work has been done to find materials that are compatible with cesium, and indications are that this problem is solved.

A current-voltage characteristic of a TI converter (similar to what one gets with a solar cell) under idealized conditions is shown in Fig. 11. This characteristic is a good approximation to the high temperature, low Cs pressure converter where the ionization takes place by surface contact ionization. This device requires a high-work-function cathode, and very little energy is used for generation of ions. However, when low temperature $\left(1500^{\circ} \mathrm{C}\right)$ operation is desired and the Cs pressure is increased so that the arc mode or ball-of-fire discharge is obtained, there is considerable arc drop and the I-V characteristic becomes distorted from that shown in the figure.

The efficiency of thermionic converters has been measured to be as high as 25%. In Fig. 12 is shown the state-of-the-art of power density versus temperature. At $1600^{\circ} \mathrm{C}$, power densities over $12 \mathrm{w} / \mathrm{cm}^{2}$ have been achieved at an efficiency of about 20%. Because

Fig. 15 (left) : Reactor thermionic system using liquid lithium.
Fig. 16: Three series-connected converters comprise this module.

NEW等:

> These contact form C relays follow signals up to 200 operations per second without variation in timing. Are available in single-side-stable, bi-stable and chopper forms. Adlake MWSB 16000 relays like the three on the left are the only ones you'll find anywhere molded in epoxy. Though less expensive, they operate cooler. Contain no waxtc overheat and run. Parts are rigidly secured -no movement to cause circuit noise. Epoxy is proof against all caustics and solvents except acetic acid. Metal encased versions on the right can be grounded to assure magnetic shielding. Use them where magnetic interference is a special problem. Ask for catalog.

Send for a free catalog.

The Adams \& Westlake Company, Dept. R-3402, Elkhart, Ind. Phone Area 219, COngress 4-1141

Electrical energy Sources (Continued)

the efficiency of the converter generally increases with cathode temperature, it is important to operate the cathode at a temperature as close to that of the heat source as possible. Thus, care must be taken to avoid temperature drops during the heat transfer from the heat source to the cathode. Another important factor is the heat rejection at the radiator. The anode must operate at a temperature low enough to avoid electron back emission. In practice, this temperature may be as high as 500 to $800^{\circ} \mathrm{C}$. This high heat-rejection temperature is a very important factor in thermionic energy conversion. It means, ior instance, that if heat is to be rejected by radiation, which is the case for space applications, a relatively small and lightweight radiator may be used. It also means that for ground applications this reject heat is at a sufficiently high temperature to be used by other heat-conversion methods.

A nuclear reactor is one of the ideal heat sources for TI converters. Present-day power plants use coal or nuclear fuel to produce heat to boil water; the generated steam is then used to drive turbines which in turn activate generators to produce electricity. A large amount of auxiliary equipment in the form of boilers, pumps, heaters, preheaters, condensers, and turbines is required. In time, all this equipment may be replaced with a thermionic nuclear reactor which can utilize the heat the reactor is capable of generating at a very high energy level, and convert it directly into electricity without moving parts, noise, or auxiliary equipment and with a minimum of maintenance. The thermionic converters may be placed inside or outside the reactor. If they are inside, the fuel may either be used as the cathode itself or the cathode may be indirectly heated by the fuel. If they are outside the reactor, the converters may be arranged at the periphery of the reactor or they may be heated from liquid metal in an external loop (the liquid metal is heated by the reactor similar to the SNAP10A system). The specific method chosen will depend upon the final application. It will also depend on the power level required, and whether it is to be used in space or for terrestrial applications.
An example of a converter designed for operation inside the reactor is shown in Fig. 13. This converter is designed to produce 150 w of electricity, and has run successfully for 310 hrs in a reactor. Many of these converters connected together could be used in a nuclear reactor power system which could produce power of a megawatt or more.
Shown in Fig. 14 is an example of a converter to be heated from liquid metal in an external loop in a reactor system. This converter is designed to deliver 80 w , and has operated successfully on a liquidlithium loop in a simulated space environment. A systems concept of this type is shown in Fig. 15.
(Continued on page 48)

ITT Heat-Shrink Tubing bonds/jackets/insulates/ splices/encapsulates/weatherproofs

ITT Heat-Shrink Tubing is used to insulate terminals and tools, to assemble and weatherproof wire bundles and to protect them against abrasion, to vibration-proof and weatherproof electrical connectors. Possibly you can add to the growing list of other mechanical and electrical insulation applications.

This highly versatile tubing is made of irradiated polyolefin which, upon exposure to heat at $250^{\circ} \mathrm{F}$., shrinks in seconds to form a tight mechanical bond over even irregularly shaped items. Heat can be applied by a hand held industrial hot air gun (for applications such as terminal insulation in junction boxes) or by
conveyor belt through-oven installations for mass production. In fact, almost any heating method except direct flame can be used.

ITT Heat-Shrink Tubing is available now from stock in a variety of colors (for color coding), sizes (up to $1^{\prime \prime}$ diameter) and wall thicknesses (for increased strength and high dielectric).

Undoubtedly there are money-saving, timesaving applications of ITT Heat-Shrink Tubing in your operation. Discover its almost limitless possibilities. For a free sample write Wire and Cable Division, International Telephone and Telegraph Corporation, Clinton, Mass.

ELECTRICAL ENERGY SOURCES (Concluded)

Because of the inherent low cost and high efficiency of thermionics, the concept of a fossil fuel converter is quite interesting. Several problems exist here, however. The first is that of the burner. Temperatures above $1200^{\circ} \mathrm{C}$ are required, and it would not be efficient to use oxygen or forced air. Several companies have developed fossil-fuel burners to work in air with burning efficiencies over 50%. A greater problem is that of providing a barrier around the metallic cathode to prevent unburned combustion products, such as hydrogen, from penetrating into the plasma region, thus causing rapid deterioration. Various ceramics have been successfully used for this purpose, with the added complication that the converter becomes more fragile and less able to withstand temperature cycling associated with start ups. This problem, however, seems soluble and should not limit the fossil fuel application.

The thermionic converter is a very low-voltage, high-current device. In order to generate $1 / 4 \mathrm{v}$ at perhaps 200 a, some form of power conditioning is required. Fortunately, tunnel diodes are being made as high efficiency inverters for this purpose and may help solve this difficult problem. However, where a large number of converters are used in one system, as in a reactor, a solution such as connecting converters in series must be sought. One solution to this problem is to construct converters that are integrally
connected together to fit one heat source. The cathode of one converter is connected to the anode of the next, and so forth. A three converter module, built and successfully tested for the U. S. Air Force, is shown in Fig. 16. A special insulator technique had to be developed for this purpose. Using this same approach, the stacking of many converters in series would seem to be practical.

While the feasibility of the TI converter has been established for a large number of applications, the question of reliability still has to be proven. Converters have been operated by various organizations for 2000 to 5000 hrs of life. Steady improvement is being achieved. When repeatable life of 10,000 to $20,000 \mathrm{hrs}$ is obtained, a large increase in demand for this device is expected. It is basically a very low-cost, lightweight, efficient and simple (therefore hopefully reliable) device.

How Close Are Practical Applications?

When can these devices be expected to come into real use? Three important factors are (1) the time it takes for the device to achieve operational reliability, (2) how urgent is the need, and (3) the cost.

A little "crystal balling" in Table 3 provides a very rough guess as to when a use will come into existence and what the price has to be for the use described. The cost level of $\$ 1$ to $\$ 10$ a watt is not far from reality at the present time. The cost of ten cents a watt or less is a distance off. If the governmental

UNIQUE ONE SQUEEZE THERMAL WIRE STRIPPER

The new Ideal Swing-Grip ${ }^{\text {® }}$ thermal wire stripper uses a unique mechanical action to strip in a single, continuous squeeze. Swinging grippers move the wire into contact with the thermal element so no twisting of the tool is necessary. The same grippers hold the insulation slug during removal, completely eliminating any contact with the conductor strands. Single element assures uniform heat.
"Beading" is reduced by the thin section of the element blade. "Drag-out" or "stringing" of insulation is eliminated since the heated element is not used to pull the slug.

The tool is light weight and designed to remain cool during production operations. Head size has been held to a minimum for easy access in close quarters. Three simple adjustments and a variety of element shapes permit

need for very large-area solar cells is urgent enough to put several companies into the production business, a very low cost could indeed result, since the film type cells are definitely suited to a mass production technique. It is interesting to note the pattern; first governmental need and expenditure, then reduction in cost and improvement in reliability, and finally consumer use. It happens in other industries (especially aviation) and it can happen in electronics.

When will the various energy conversion systems become operational and when will widespread use be seen? Applying the "crystal ball" again, we came up with Table 4. The information is presented only for perspective. The fact that almost all are predicted for widespread use has to be somewhat tempered by the definition of "widespread."

There is little doubt that we are at the beginning of a transformation in our electrical energy sources and that those who have the patience will see stand-by power sources in the homes that can afford them. This could be a TE, TI, or fuel cell device. There will be homes that will be fed purely by fossil fuel, probably gas, with all the electricity coming from an energy conversion device. The conventional central station power plant and automobile power plant still seem secure. However, with a technological breakthrough, no one can tell what role direct energy conversion will play in our future.

Table 3
FACTORS REQUIRED FOR UTILIZATION OF DEC

Customer	Application	Initial Equip. cost per watt ${ }^{*}$
Government	Space Military	$\$ 1000$
Military and Industrial	Special Purpose	$\$ 10-100$
Consumer	Auxiliary Power Boats Appliances	$\$ 1$
Under-Developed Countries	Water Pumping Lighting Appliances	$10 \$$
not including fuel costs		

Table 4
POSSIBLE TIME OF USE FOR ENERGY CONVERTERS

	Operational	Widespread Use
$1960-1970$	Solar Cells TE Solar Dynamic TI (Fossil Fuel)	TE
$1970-1980$	Fuel Cell (Fossil Fuel) TI (Reac'or)	Solar Cells (Large Area) Fuel Cell (Fossil)
$1980-1990$	MHD	TI (Reactor)
$1990-$	-	MHD

ANNOUNCIN!

PRRITED CIRCUIT PACKAGE - FOR RELIABLE ECONOMCCAL SOLDERING

FOR MAXIMUM EFFICIENCY AND REPRODUCIBILITY, ALL MATERIALS USED FOR PRINTED CIRCUIT SOLDERING SHOULD BE CDMPATIBLE. THE ALPHA PRINTED CIRCUIT SOLDER-CHEMICAL PACKAGE GUARANTEES COMPLETE CHEMICAL COMPATIBILITY!
One source and one responsibility mean increased solder reliability and lower solder costs.
Every Alpha salesman is thoroughly trained in the use of the equipment and materials required to secure reliable, economical printed circuit soldering. He carries a unique Alpha Solder-Chemical Kit containing 33 different items to help evaluate your printed circuit soldering process.
For further information on the Alpha Printed Circuit Package call or write for Bulletin No. A104.

56 WATER ST., JERSEY CITY, N. J. (201) 434-6778 Los Angeles, Calif. - Alphaloy Corp., (Div.) Chicago, III. Alpha Metals, Inc. (U.K.) Ltd., London, England

New Process Cuts Printed Circuit Costs

Standard practice in the printed circuit industry has always been to laminate copper sheet to an insulation board and then etch away up to 90% or more of the copper, leaving the desired "printed" circuit. If copper circuit patterns could be "deposited" directly on the insulation board, savings should be possible because there would be no waste copper and less steps in the process. Photocircuits Corporation (Glen Cove, N. Y.) after a decade of research, thinks it has the solution.

Announced in a paper presented by Robert L. Swiggett, Executive Vice-President of Photocircuits, at the National Electronics Conference in Chicago recently, the new process utilizes chemical deposition of ductile, fine-grained copper on nonconductive, catalytic adhesive inks which have been selectively applied to an insulating base. According to Swiggett, the deposited copper has excellent bond strength to the base insulator and is extremely solderable. The thickness of the copper can be suited to the application, from 0.0001 in . to 0.060 in . or more.
Known as the CC-4 additive process, it avoids the high cost of tooling associated with other additive processes such as die stamping, electro-plating, powdered metal fusing, metal spraying and vacuum deposition. The process is compatible with artwork

Fig. 2: Western Electric Relay Assembly using CC-4 process circuit on a resin coated metal blank. Plug-in fingers are hard gold plated, and a solder resist mask is used.

Fig. 3: CC-4 printed-circuit process.

POSITIVE PROCESS

BARE MATERIAL

PRINTED WITH CC-4 INK

COPPER DEPOSITED ON INK

INSULATING BASE
שדाटाट्य PERMANENT MASK

REVERSE PROCESS

MATERIAL COATED WITH CC-4 INK

2
reverse printed with mask

3
COPPER DEPOSITED ON CC-4 INK

Wmill CC-4 INK COPPER

Fig. 1: Typical solder joint in a one-sided CC-4 printed-circuit board, with punched holes that have been plated through.
and tooling of conventional etched circuit boards. In addition, it offers other than cost saving advantages over conventional printed wiring. It has successfully been applied to flexible films, ceramics, molded plastics and epoxy coated metals. Most important, plated-through holes with the CC-4 process give uniform deposition of coppe: resulting in superior solder joints, Fig. 1, and greatly improved repairability characteristics.

Steps in the CC-4 process are shown in Fig. 3. Some of the important tools of the process are:

- A stable copper solution which will continuously deposit heavy coatings of a ductile, fine-grained copper at low cost only on surfaces which have been specially catalyzed.
- A family of non-conductive catalytic adhesives which will accept the copper from the solution in such a way that they maintain good bond strength between the insulating support and the copper conductors. (These adhesives can be applied either over the entire surface of an insulator or applied in a pattern by screen printing or some other stencilling method.)
- Means of making surfaces of insulators catalytic to the bath without the application of a catalytic adhesive.
- Resinous masks which can be applied by a variety of methods over catalyzed surfaces to prevent the deposition of copper where desired.

Among materials that can be used for insulation boards are: paper base phenolics, polyester glass G10, G11, etc., Mylar ${ }^{\text {TM }}$ and other flexible films, ceramics, plastic molded parts, low-loss materials such as Teflon ${ }^{\text {TM }}$, H-film ${ }^{\text {TM }}$, Kel-F, and resin-coated metal blanks.

Credit for conceiving the CC-4 process is given to Frederick W. Schneble, Director of Research at Photocircuits.

Where three's a crowd... go miniature!

To be precise, these RPC miniature wire-wound resistors are the answer to your crowded layout problems. Except for power rating they meet all requirements of Military Style RB56, yet they measure a scant $1 / 8$ inch in dameter. What's more, they're completely encapsulated in epoxy . . . so you can use them freely in "hot spots".
Three versions cover resistance values from 1.0 ohm to .4 megohm and are conservatively rated at up to 250 V . Longest length is .375 inch.
RPC miniatures make ideal calibrating resistors in dense bridge or voltage divider circuits. And the two-inch leads allow plenty of play for locating printed circuit board holes. Quality controi throughout their manufacture assures the following perlormance parameters:

Resistance Values

1 ohm to 400,000 ohms
Power Ratings 0.15 watt to 0.3 watt
Voltage Rating Up to 250 V

Terminations

Weldable axial
Insulation Epoxy encapsulated

Tolerance

$\pm 1 \%$ standard; $\pm .5 \%$ to $.05 \%$ custom Temperature Coefficient
30 PPM $/{ }^{\circ} \mathrm{C}$, -55° to $+125^{\circ} \mathrm{C}$ standard
Size Diameter, 125 inch
Moral: If you need precision, but are pressed for space, write today for complete information on the RPC Miniature Series.

1965 Connector Specifications Guide

| Part 2: Connectors for Coaxial Cable and Shielded Cable

Eiectironic TXDUsTil|es

STATE-OF-THE-ART FEATURE

In this part 2 of the connector survey Eleectronic Industries tal)ulates the coaxial and shielded cable products of 69 suppliers in the clectronic connector inclustry.

Inclicated in the clarts are the types of connectors offered by each manufacturer. These range in size from standard to ultraminiathre. Configurations and uses inchule a variety of r-f and high voltage types, bot ${ }^{1}$, rectangular and round multiple coax connectors for rack and panel use, printed circuit board connectors. feed-through and splice, twin coax and triaxial types. Included also are connectors for flexible or rigicl line. hermetic seal types, and those with special dielectrics such as irradiated polyethylene or glass-filled silicone for radiation resistance and very high temperature uses.

Second of A Series of Reports Industry's Most Complete ELECTRONIC CONNECTOR SURVEY
Watch Future Issues For:
PART 3: MULTI-PIN CONNECTORS (Shell and Rack \& Panel Types)
PART 4: PLUGS, JACKS,
CORDS AND TERMINALS
PART 1: PRINTED CIRCUIT CONNECTORS, appeared in last month's issue of E . I.

Design innovations

Theresh the field is far fronn new, coaxial connector designers continue to produce some of industry's most exotic comnectors. This is partly due to a continuting proseran of weight reduction and miniaturigation and partly through genume effort to increase reliability in the presence of more severe environments.

Titamium. a material that is 44% lighter than stainless steel and needs no plating is leeing featured in bew lightweight comectors. Other examples are Amp"s "Coaxicon" comnector in which the inner and outer conductors are simultaneonsly crimper in one stroke, and Gremar's "Simplicon" 50 -olm connector. Incidentally, this comector provides a visur of 1.05 max. through 5 gc, and needs neither crimping nor soldering of the imer concluctor. The user of the Simplicon mercly trims his cable, inserts it into the comector and tightens the calle clanping nut.

Triaxial Connectors

Several companies offer impedance matehed connectors designed for triaxial cables which have the center conductor, inner braid and onter braid concentric and isolated from one another The comectors are similar to coaxial comectors, but with an extra shell wer the coaxial bocly. Triaxial assemblies are used in pulse applications and where r-f noise must be kept to a minimum.
(Tert continuted on paye 55)

Fig. 1: Subminiature Fast-Lock connector (opposite page) uses only straight "push-pull" action (National Connector). Fig. 2: Hermaphroditic coaxial connector (above) for applications up to 18 GC (Amphenol). Fig. 3: New Type GR900-BT coaxial connector (above right) for use on 50 -ohm rigid line, exhibits VSWR of only 1.01 at 9 GC. Curves for VSWR at nine frequencies are at right

TABLE 1 COAXIAL CONNECTOR CHARACTERISTICS*

CONNECTOR SERIES	APPLICATION DESCRIPTION	CABLES	KV (Peak)	FREQ.	VSWA	IMPEDANCE
BNC	r-f, Weatherproof, Bayonet-Locking	1/4 in.	0.5	2.5 Gc	1.1	52, 50
BNC "Improved"	$r-f$, Weatherproof, Bayonet-Locking	$1 / 4 \mathrm{in}$.	0.5	10 Gc	1.1	80
BN (BNC Predecessor)	r-f, i-f, Screw Type	1/4 in.	0.250	200 mc	-	-
C (Improved version of N)	r-f, Weatherproof, Bayonet-Locking	5/8 in.	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \mathrm{Gc} \\ & 2 \mathrm{GC} \end{aligned}$	1.25	50,70
HIGH IMPEDANCE	Pulse Systems. 10-9 sec. R. T.	-	-	-	-	125
HN (Enlarged version of LN)	r-f, Weatherproof, Screw Type	5/8 in.	5	4 gc	-	50
LC	r-f, Weatherproof, Screw Type	$\begin{aligned} & \text { RG } 17,18 / U \\ & \quad \text { RG } 19 / U, 20, U \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	1 Gc	-	50
LN (Enlarged version of N)	$r-f$, Weatherproof	RG 14/U	1	-	-	50
LT	r-f, Screw Type	RG 117A/U	5	1 gc	-	50
MHV	$r-f$, HV, Weatherproof	1/4 in.	5	50 mc	-	-
N	$r-f$, Weatherproof	5/8 in.	0.5	3.5 Gc,	gc. -	50
PULSE (Ceramic)	r-f, Shipboard, Bayonet-Locking	13/16 in.	15	-	-	-
PULSE (Rubber)	HV, dc	-	5 ($50,000 \mathrm{ft}$)	-	-	-
QDS	r-f, Weatherproof, Quick Connect	5/8 in., $13 / 16 \mathrm{in}$.	0.5, 10	10 Gc	-	50
QDL	r-f, Weatherproof, Quick Connect	RG 17, 18	9	1 ac	-	50
SC	r-f, Weatherproof, Screw Type	-	1	10 gc	-	50
SM	r-f, Non-weatherproof, Screw Type	$1 / 4 \mathrm{in}$.	0.1	1 Gc	-	50
SUBMINIATURE	r-f, MIL-C-22557A	0.0800 .110	-	-	-	50
TNC (Improved version of BNC)	r-f, Screw Type	-	0.5	10 Gc	1.25	50
TWIN	r-f, Weatherproof	2-cond. RG 22, 22A/U	0.5	200 mc	-	95
TPS	$r-f$, Weatherproof	-	1.5	-	-	50
UHF	r-f	-	0.5	200 Mc	-	-

It's got a lot of living to do!

This long-life Guardian MER electrical-reset stepper was good before-had a life of at least $1,500,000$ steps. But our Product Improvement Laboratory wasn't satisfied . . . felt that even more was possible. So they went to work. And through changes in design and materials they tripled its life . . . without increasing its cost.

Now you can anticipate at least $5,000,000$ operations from this MER stepper-and chances are you'll do even better. This isn't wishful thinking-we actually operate these steppers to failure to find out what they'll do.
So if you need smooth, high-speed stepping with dependable responses and long life, specify Guardian MER Steppers. Bulletin F tells all. Write today for your copy without cost or obligation.
GUARDIAN ${ }_{\boldsymbol{*}}^{(G)}$ ELECTRIC

Typical Coaxial Plug and Receptacle

Coaxial Cable Splices

Silser plated and Teflom insulated splices that are available permit the joining of two or more coaxial cables with sufficiently unform impedance factor to permit predetemined compensation in the circuit for production. Splices are used for continuation of the cable shielding or for inserting instraments in the circuit. They are also used for locating resistors and other componcots within the splice. or simply to save time and work in the repair of a defective coavial cable.

Specifying Considerations

When specifying combectors, it is important for the costomer always to include specific electrical and mechamical needs as wedl ats operating enviromments (1) De anconntered, if they are known.

Perfomance repuirements in existing Vilitary Specifications for r-f combectors are limited to tests at sea level for high potential, salt spray cormsion and for leakage of hermetically sealed types.

In lien of electrical and emvirommental performance tests, these specs stipulate dimensions for the connector component parts. This often restricts the performance a manufacturer can guaranter for a standard comector. As a result. connectors or arlaphers are morlifed to meet more strinest performatuer regurements and therefore in many cases. actually exceed applicable Military Specifications
(Continucel on payce 56)

TABLE 2

COAXIAL CABLE IMPEDANCES AND SIZES		
CABLE	CHARACTERISTIC IMPEDANCE	$\begin{gathered} \text { OUTSIDE } \\ \text { DIAMETER } \\ \text { (O.D.) } \end{gathered}$
RG 55B U	53.5	0.206
RG 58C U	50	0.195
RG 598 U	75	0.242
RG 62A U	93	0.242
RG 71B U	93	0.250
RG 140 U	75	0.233
RG 161 U	70	0.090
RG 174 U	50	0.100
RG 178 U	50	0.075
RG 179 U	70	0.090
RG 179A U	75	0.105
RG 180B U	95	0.145
RG 187A U	75	0.110
RG 188A U	50	0.110
RG 195 U	95	0.080
RG 196A U	50	0.080

Screw Types

Slide-on Types

Triaxial Plug

Module Block

Fig. 4: Types of coax connectors not shown above include quickconnect, hermetic seal, locking, and a variety of adapters (Microdot).

COAXIAL CONNECTORS (Continued)

Connector Interchangeability

Some degree of interchangeability exists between the coaxial connectors of at least a few manufacturers. This is indicated by the information being supplied that cross-references interchangeable or equivalent types.
Star-Tronics recently produced a TNC Connector Interchangeability Chart listing about 300 different "house" numbers and eight manufacturers, and relating the designations used by these manufacturers to about 35 Star-Tronics Types. Table 3 was prepared with the assistance of the manufacturers listed, and is believed to be highly accurate at the time this is being printed. But, it is pointed out that envelope dimensions, cross-mating characteristics, finishes and other parameters are functions of individual manufacturer machine and plating standards.
LIST OF COAXIAL CABLE CONNECTOR MANUFACTURERS, and their products, appears on page 60.

Fig. 5: Types of coaxial cable splices. (A) will accommodate the following cables at either end: 4 RC 196/U; 3 RC 161/U; 2 RC 187/U; and 1 RG 195/U. (B) can be adapted to various combinations of wire and coax. (C) will take 2 RG 195/U's at one end and one at the other (Nugent).

TABLE 3
TNC INTERCHANGEABILITY CHART

FOR CABLES RG-55, 58, 142, 223/U IWHERE APPLICABLE]

Connector Configurotions	
PIUG, STRAIGHT	800
PLUG, STR., CAPTIVE PIN	8
PIUG, RIGHT ANGLE	801
PLUG, RESISTIVE, 75R, $1 / 2$ WATT, W/CHAIN	81
JACK, STRAIGHT	8
JACK, STR., CAPTIVE PIN	8
JACK, PANEL	800
JACK, BULKHEAD	8
JACK, BLKD. (PRESS'0.)	82
JACK, RT. ANGLE	8
RECEPT., PANEL	100
RECEPT., 8IK'D.	
RECEPT., PANEL, RT. ANG.	80
RECEPT., BLK'D., RT. ANG.	80
RECEPT., BULKHEAD. STR., PRESS'D.	81
$\begin{aligned} & \text { RECEPT., BLK'D., RT. ANG., } \\ & \text { PRESS'D. } \end{aligned}$	82
RECEPT., PANEL., PRESS'D.	12
QECEPT., MALE PANEL MT.	80
ADAP., STR., PANEL MT. F.F	30
ADAP., STR., BLK'O., (PRESS'D.) F.F	
ADAP., STR., F.F	80
ADAP., STR., M.M	80
ADAP., STR., M-F	80
ADAP., RT. ANGLE, M-M	8
ADAP., RT. ANGLE, M-F	80
ADAP., TEE, F-M-F	80
ADAP., TEE, F-F-F	8
CAP \& CHAIN, MALE	81
CAP $\&$ CHAIN, FEMALE	81

PIUG, STRAIGHT	3104	8209-1. 8209-2	KA59.05	7067	36825, 36925	101.11900	TNC.PL13-M. 55		2900, 2901
PLUG, RIGHT ANGLE	3124	8210.1, 8210.2	KA59.06		97875, 97900	101-12900	TNC-RPL6-M-55		2902, 2903
JACK, STRAIGHT	3106	8211.1, 8211-2	KA39.03		36850, 36950	101-73900	TNC.JC6.F-55		2904, 2905
JACK, PANEL	3126		KA19.03			101-73900-10	TNC.JP1-F. 55		2906, 2907
JACK, BLK'D., STRAIGHT	3127	8212-1, 8212.2	KA19.02		97750, 97775	101-73900-75	INC-J83-F-55		2908, 2909

Chart provides a convenient cross-reference between basic TNC connector configurations and the nearest equivalent parts offered by nine manufacturers (Star-Tronics)

Meet the RF matchmakers

The A-MP \star COAXICON \star product line of coaxial connectors are RF matchmakers from the word "go." Why? Well, in case you haven't heard, there's a new specifi-cation-MIL-C-39012-which spells out the performance requirements for RF connectors. And our COAXICON Connectors have been designed, tested and modified to match this specification in every sense of the word. COAXICON Connectors have already exceeded the requirements of MIL-C-23329.

Why not? After all, one-crimp-terminated COAXICON Connectors are a product and design of their time. Their advanced design features provide high mechanical reliability. Take the special cable grip and support for example, or positive crimping of the center conductor, or really "anchoring" the braid so that values of 85 pounds are the norm for RG 58/U cable.

But more than merely meeting a design specification, these RF COAXICON Connectors meet performance specifications. They were "improved" at a time when MIL-C-23329 and MIL-C-39012 were being introduced and implemented by the military.

All A-MP COAXICON Connectors are applied with matching application tools that provide solderless, one-crimp termination of inner conductor, outer braid and cable support-simultaneous/y. This special technique assures you reliable, uniform terminations at lowest applied cost. And, the complete COAXICON Connector family includes threaded, miniature and subminiature, BNC and TNC Series, and UHF Connectors for every cable size, in addition to a full line of adaptors-right angle, "T" and feed-through-to match almost any panel installation. Try matching AMP's COAXICON Connectors spec for spec with other RF connectors on the market. Write today for complete information.
tTedamart of AMP INCORPORATEO

A-MP* products and engineering assistance are available through subsidiary companies in: Australia - Canadz - Ensland - France - Holland - Italy - Japan - Maxica. West Germany

An up-to-date report

on MIL-C-26500 connectors

The MIL-C-26500 connector has been called the most nearly perfect environmental connector yet produced for the space age.

No other connector is made to such tight dimensional tolerances for perfect mating. A compression seal measured in thousandths of an inch at the insert interfaces prevents entrapped air or contaminants from interrupting electrical performance

under altitude cycling. This positive envirommental seal is what you get with the Amphenol MIL-C-26500 connector.

Maybe you've heard claims like: "Interchanges with MIL-C-26500." Or "Intermates with MIL-C-26500."

In too many cases, they do not mate with an accepted MIL-C-26500 connector like the one in the picture.

They will couple with the Amphe-
nol connector. They look like the Amphenol connector. They may even cheek out on some routine tesis. But one of two things happens when you mix an unqualified connector with the military version of the 26500 connector: (1) An interfacial gap which defeats the whole concept of a sealed connector, or (2) interfacial compressior that will result in extreme galling or wearing of the coupling.

Mixing MIL-C-26500 connectors with unqualified connectors is never recommended by either Amphenol or the military.

Check the facts for yourself. A new engineering report is now available on request: "Mating Interchangeability Study of MIL-C-26500 and NAS-1599 Connectors." Amphenol Connector Division, 1830 S. 54th Avenue, Chicago, Illinois 60650.

AMPHENOL-BORG ELECTRONICS CORPORATION
Specify Amphenol . . . the leading name in cable, connectors, if switches, potentiometers, microelectronics

\begin{tabular}{|c|}
\hline \multicolumn{14}{|c|}{COAXIAL CABLE CONNECTORS} \& \multicolumn{6}{|c|}{SHIELDED CABLE CONNECTORS}

\hline \& 6u！zunow opqes \& \& 46nosul poos \& 若
른
흘
른 \& sןeu！umå ssepapplos \& sןeu！ume＿jeplos \& $$
\begin{aligned}
& \text { 氝 } \\
& \stackrel{\rightharpoonup}{E} \\
& \frac{E}{E}
\end{aligned}
$$ \& \& \& Microwave Types \& $$
\begin{aligned}
& \text { 』 } \\
& \stackrel{\Delta}{\Sigma} \\
& \stackrel{\text { k }}{5} \\
& \frac{1}{5}
\end{aligned}
$$ \& \& \& \& \& Microphone Connectors \& \& \& $$
s|00 \perp \mathcal{X}| q u e s s \forall
$$

\hline $$
\begin{aligned}
& X^{1} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& $$
\begin{aligned}
& X^{1} \\
& X \\
& X
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathbf{X}^{1} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathbf{X}^{1} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& X

X

X \& $$
\begin{aligned}
& X^{1} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& X \& \[

$$
\begin{aligned}
& \mathbf{X} \mathbf{1} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& X \\
& X
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

\mathrm{X}^{\mathbf{x}}

\] \& | X^{1} |
| :--- |
| X |
| X X^{3} | \& \[

$$
\begin{aligned}
& x^{1} \\
& x \\
& x \\
& X^{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x^{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x \\
& x^{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& X \& X \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$
\] \& \& X \& X \& X \& \& \&

\hline $$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& | x |
| :--- |
| X | \& X \& \[

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& X \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$
\]

$$
\mathbf{x}
$$ \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& | X |
| :--- |
| X | \& X \& X \& \& \& \[

$$
\begin{aligned}
& X \\
& X
\end{aligned}
$$
\] \&

\hline $$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& X \\
& X
\end{aligned}
$$

\] \& \[

\mathrm{x}
\]

X \& $$
\begin{aligned}
& \mathrm{X} \\
& \mathbf{x} \\
& \mathbf{X}
\end{aligned}
$$ \& X \& X \& X \& X \& X \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& X \\
& X
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& X \\
& X
\end{aligned}
$$
\] \& X

\hline $$
\begin{aligned}
& X \\
& X \\
& X \\
& X
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$

\] \& X \& X \& \[

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& X \& X \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$
\] \& X \& X \& X \& X \& \& X \&

\hline X \& \[
$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& | X |
| :--- |
| x X | \& \[

$$
\begin{aligned}
& X \\
& X \\
& X \\
& X \\
& X
\end{aligned}
$$
\] \& X

X \& X

\mathbf{X} \& X \& \[
$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

\] \& X \& X \& X \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& X \& X \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$
\] \& X

\hline $$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$
\] \& X

X \& $$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{x} \\
& \mathbf{x}
\end{aligned}
$$

\] \& X \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X} \\
& \mathbf{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& X^{4} \\
& \\
& X \\
& X
\end{aligned}
$$

\] \& | X |
| :--- |
| |
| \mathbf{X} |
| \mathbf{X} | \& X

X \& X \& X \& X \& X

\hline X \& \& \& X \& X \& \& x \& X \& X \& X \& X \& X \& \& X \& X \& \& X \& X \& X \& X

\hline
\end{tabular}

COAXIAL CONNECTORS（Concluded）

MANUFACTURERS OF

 coaxial cable and sheldeed cable connectors
ACI，DIV．of KENT CORP．， 206 Center，Princeton，N．J．

ADVAC PRODUCTS，INC．， 174 Richmond Hill Ave．，Stamford，Conn． 06904 AMECO，INC．，P．O．Box 11326，Phoenix 17，Ariz．
AMP，INC．，Harrisburg，Pa
AMP＇HENOL RF DIV．， 33 E．Franklin St．，Danbury，Conn． 06813
ANDREW CALIFORNIA CORP．， 941 E．Maryland Ave．，Claremont，Calif．
ANDREW CORP．，P．O．Box 807，Chicago，III． 60642
ARCO ELECTRONICS INC．，Community Drive，Great Neck，N．Y
ASTROLAB，INC．， 35 Commerce St．，Springfield，N．J． 07081
AUTOMATIC METAL PRODUCTS CORP．， 323 Berry St．，Brooklyn 11，N．Y．
AVIEL ELECTRONICS，INC．， 1755 Berkeley St．，Santa Monica，Calif．
BENCO TELEVISION ASSOCIATES，LTD．， 27 Taber Rd．，Toronto，Canada BENCO TELEVISION ASSOCIATES，LTD．，
BENDIX CORP．，Scintila Div．，Sidney，N．Y．Solana Beach Calif． BIRD ELECTRONIC CORP．， 30303 Aurora Rd．，Cleveland，Ohio 44139
BIRNBACH RADIO CO．，INC．， 145 Hudson St．，New York 13，N．Y． BURNDY CORP．，Norwalk，Conn． 06852
CARLOMA CORP．， 4610 N．Lindbergh Blvd．，Bridgeton，Mo
CINCH MFG．CO．， 1026 S．Homan Ave．，Chicago，III． 60624
CO－AX，INC．，Box 247，Roslyn，N．Y．
CONNECTORS INC．， 128 Broad St．，Stamford，Conn．
CONTINENTAL CONNECTOR CORP．，34－63 56th St．，Woodside，N．Y． 11377 DAGE ELECTRONIC CO．，INC．，Hurricane Rd．，Franklin，Ind．
DIELECTRIC PRODUCTS ENGINEERING CO．，INC．，Littleton，Mass．
DOW－KEY CO．，Thief River Falls，Minn．
D－CEMCO，INC．， 1024 W．9th St．，P．O．Box 8，Upland，Calif．
ECCO ELECTRONIC COMPONENTS CORP．， 30 Marbledale Rd．，Tuckahoe，N．Y． 10707 ELCO CORP．，Willow Grove，Pa
ELECTRONIC CONNECTORS，INC．，Kew Gardens，N．Y． 11415
ENTRON，INC．， 2141 Industrial Pkwy．，Silver Spring，Md
ERCONA CORP．， 432 Park Ave．，New York 16，N．Y．
GENERAL RADIO CO．，West Concord，Mass．
GENERAL RF FITTINGS，INC．， 702 Beacon St．，Boston 15，Mass GREMAR MFG．CO．INC．， 7 North Ave．，Wakefield，Mass． 01880 HUGHES CONNECTING DEVICES，P．O．Box H，Newport Beach，Calif． ITT CANNON ELECTRIC CO．， 3208 Humboldt St．，Los Angeles，Calif． 90031

MANUFACTURERS OF COAXIAL CABLE and SHIELDED CABLE CONNECTORS

COAXIAL CABLE CONNECTORS															SHIELDED CABLE CONNECTORS				
Rack and Panel Mtg．		$\begin{aligned} & \text { 븡 } \\ & \frac{0}{0} \\ & 0 \\ & \frac{\otimes}{0} \\ & 5 \end{aligned}$		$\begin{aligned} & \text { 들 } \\ & \text { 릉 } \\ & \text { 무 } \\ & \text { 른 } \end{aligned}$							$\begin{aligned} & \text { 』 } \\ & \stackrel{0}{2} \\ & \underset{\sim}{2} \\ & \stackrel{4}{5} \end{aligned}$								
$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	X	X		$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	X	X	X		$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	X	X	X	X	X		X
$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{X} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	X	X^{5} X	X	X	X	X	X \mathbf{X}	X
$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$		X	X	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	X X		$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	X					X \mathbf{x}	
$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	X	X X	X	$\underset{\mathbf{x}}{\mathbf{X}}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$		X		X	$\begin{aligned} & x \\ & x \end{aligned}$	X		$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	x X		$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	
$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{x} \end{aligned}$	X	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	X	$\begin{aligned} & x \\ & x \end{aligned}$	X	X	X	X	X
X	$\begin{aligned} & x \\ & X \end{aligned}$	X	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{X} \end{aligned}$		$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$			X \mathbf{X} X	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$		X^{6}	$\begin{aligned} & x \\ & x \end{aligned}$	X		X	$\begin{aligned} & x \\ & x \end{aligned}$	X
	X		X			X	X	X	X	X		X	X			X			

JERROLD ELECTRONICS，15th St．\＆Lehigh Ave．，Phila．，Pa．
KINGS ELECTRONICS CO．，INC．， 40 Marbledale Rd．，Tuckahoe，N．Y． 10707
LAB－TRONICS，INC．， 3656 N．Lincoln Ave．，Chicago，Iil． 60613
LITTON INDUSTRIES，Winchester Div．，Main St．and Hillside Ave．，Oakville，Conn．
MARCONI RADIO DIV．，ENGLISH ELECTRIC CORP．， 750 3rd Ave．，New York 17，N．Y．
MICON ELECTRONICS INC．，Roosevelt Field，Garden City，N．Y．
MICRODOT，INC．， 220 Pasadena Ave．，S．Pasadena，Calif．
MODULAR ELECTRONICS，INC．，Osseo，Minn． 55369
NATIONAL CONNECTOR CORP．，Science－Industry Ctr．，Minneapolis 28，Minn
NUGENT ELECTRONICS CO．，INC．， 802 E．8th St．，New Albany，Ind．
NU－LINE INDUSTRIES CO．INC．， 1015 S．6th St．，Minneapolis，Minn． 55415 OMNI SPECTRA，INC．， 8844 Puritan Ave．，Detroit，Mich． 48238
PEM MACHINE \＆TOOL CO．，INC．，39A Myrtle St．，Cranford，N．J．
PHELPS DODGE ELECTRONIC PRODUCTS CORP．， 60 Dodge Ave．，North Haven，Conn PHYSICAL SCIENCES CORP．， 314 E．Live Oak Ave．，Arcadia，Calif．
PROGRESS WEBSTER CORP．， 5 Bridge St．，Watertown 72，Mass． PYLE－NATIONAL CO 1334 N．＇K Brtner Av．，Whiortown 72，M
PYLE－NATIONAL CO．， 1334 N．Kostner Ave．，Chicago，III． 6065
REGO INDUSTRIES，INC．， 830 Monroe St．，Hoboken，N．J．
SEALECTRO CORP．， 139 Hoyt St，Mamaroneck，N．Y
SPENCER KENNEDY LABS．，INC．， 1320 Soldiers Field Rd．，Boston，Mass STAR－TRONICS，Georgetown，Mass．
SUPERIOR ELECTRIC CO．， 383 Middle St．，Bristol，Conn． 06012
TECHNICAL MATERIEL CORP．， 700 Fenimore Rd．，Mamaroneck，N．Y．
TELEPHONE DYNAMICS CORP．， 32 Sunrise Hwy．，Baldwin，L．I．，N．Y．
THOMAS \＆BETTS CO．， 36 Butler St．，Elizabeth，N．J．
TROMPETER ELECTRONICS，INC．， 7238 Eton Ave．，Canoga Park，Calif． 91303 TRU－CONNECTOR CORP．， 245 Lynnfield St．，Peabody，Mass．
U．S．COMPONENTS，INC．， 1320 Zerega Ave．，Bronx，N．Y． 10462 VACUUM CERAMICS，INC．，Cary，III．
VERITRON WEST，INC．， 20245 Sunburst St．，Chatsworth，Calif． 91311 WEINSCHEL ENGINEERING，Gaithersburg，Md
ZORON，INC．， 4853 N．Ravenswood Ave．，Chicago，III． 60640
ELECTRONIC
Furnishad only as components of custom－designed system intorconnecting assomblies．
Including twinaxial and twin r－f cablo connectors
Connector Div．， 1830 S ． 54 th Ave．，Chicago，III．
Also twinaxial connectors．
Including twinaxial and multi－coaxial connectors．
Including twinaxial connectors and patth assomblies．

LOW LEVEL AMPLIFIER

 PROBLEMS? Use a 2 N2524 and its PNP complement, 2N2605. Beta of 100 @ 10 microamps - both in TO-46 package.Check 51
Reader Service Card

NEED HIGH VOLTAGE? You'll get 100 V collector to emitter with the 2N2600A and its NPN complement, 2N2519.

Cbeck 52
Reader Service Card

DESIGNING A MICROWATT

 SWITCH? With the 2N3340 and 2N3341, you'll get 10 microwatts per flip-flop.Check 53
Reader Service Card

PNP LOW COST, LOW LEVEL INDUSTRIAL NEEDS? Use our 2N3579-80-81 and 82 - with voltages up to 60 and beta up to a minimum of 100 @ 100 microamps. Check 54
Reader Service Card

Here's something extra, for instance, popular NPN's, such as the 2N930A (typically in TO-18 cans) come to you at no extra cost in TO-46 package (2 N 2524). The transistors mentioned above represent a few ways to solve problems in designing circuits for military and industrial products. As a leader in low level silicon transistors, Sperry Semiconductor has developed the most complete line of PNP/NPN Complementary Silicon Planar Transistors - more ways to do the best job. For complete information on the Sperry complementary line, circle the reader-service number below. \square SPERRY SEMICONDUCTOR, Norwalk, Connecticut 06852.

Why did Engineers from over 600 Companies answer this Ad?

They decided to keep their skills competitive by teaching themselves PERT, Transistors and Transistor Circuits, Binary Arithmetic, and Applied Electricity. They did it with these Programmed Instruction* courses and then they started to write us . . .

compare your answer with theirs...

"I have recently received your programmed instruction course. The method which you employ is excellent, I cannot see how anyone could help learning the subject matter."
". . . I believe it is the best instructional method I have encountered..."
". . . it seemed to motivate me to learn..."
". . . I consider this an ideal instructional form . . ."
". . . feeling of accomplishment throughout the course..."
"I feel I really learned."
*The "teaching machine" technology.

Test your Knowledge

of these fundamental subjects. Here are some sample questions from comprehensive examinations being used in the electronics industry to measure performance in 2 of these 5 areas.

Try them yourself...

PERT

12. Examine the network you have just constructed.
(a) Identify the critical path by giving the sequence of events along the path:
(b) Give the T_{E} which you calculated for the ending event of the network \qquad weeks
(c) It is now reported that activity 6-9 cannot be complated in less than 11.8 weeks. Will it still be possible to meet T ? \qquad yes
(d) If the changes mentioned in (c) above would make it impossible to plan completion of the project by the time the allotted span has run out, what can he do to replan so that he does meet the schedule?

BASIC TRANSISTOR CIRCUITS
27.

(a) The schematic diagram above shows an emittercoupled one-shot
(b) In the stable state \mathbf{a}_{1} is \square on \square off and \mathbf{Q}_{2} is \square on \square off.
(c) The positive pulse turns on \mathbf{Q}_{1} which in turn: \square cuts off $\mathbf{a}_{2} \square$ turns on \mathbf{a}_{2}.
(d) When C_{1} discharges, a_{2} is: \square cut off \square turned on.
(e) When Q_{2} conducts, drawing current through R_{2}, Q_{1} becomes \qquad biased.

To rate your own performance and skill needs in these 5 subjects:

1) Send for your 10-day review copies of all 5 selfinstructional programs.
2) Try the final examination included with each program.
3) Only if you are convinced that the skills imparted by the program are valuable to you should you keep the programs. Otherwise, return them with completed exams and pay nothing.
\qquad
Title
Address
City__State___

Company
\square My check or company purchase order is enclosed.Bill me or my company directly.

Clip and send this coupon to:

Please send me the programs designated below. At the end of 10 days, l'll either send the indicated price, plus a few cents for packing and postage, or return the program and my completed final examination and owe nothing.

TITLE	PRICE
PERT	$\$ 12.50$
Introduction to Transistors	9.50
Basic Transistor Circuits	9.50
Counting Systems and Binary Arithmetic	7.50
Applied Electricity	12.50

SATELLITE DATA COMPRESSOR

In a good deal of scientific space exploration the problem is not getting data back from the satellite, but keeping the instruments from acting like an orator. While it is possible to sort out the right facts from the stream of telemetry ly using computers, it would be easier to eliminate the unwanted data lefore it is sent. A data compressor, developed by Lockheed Missiles \& Space Co., Sunnyvale, Calif., does this.

The unit uses integrated microelectronic circuits. In addition to other components, it contains 24,000 magnetic memory elements and 467 micro-miniature circuits in less than $1 \mathrm{cu} . \mathrm{ft}$.

The unit operates on the principle that if a sequence of numbers transmitted by telemetry is always the same, or any one number varies only a little within a certain limit of tolerance, there is no reason to transmit the sequence. As soon as any number gets larger or smaller than the limits of the sequence tolerance, it is sent. In other words, it transmits only interesting information.
The system handles up to 14,400 samples $/ \mathrm{sec}$. It operates with pulse code modulation telemetry system having 4 simultaneous sampling rates. The operating constants, such as the tolerance levels, can be altered from the ground during a satellite flight by a command link.

The unit eliminates redundant data from being transmitted.

DIGITAL INTEGRATED CIRCUITS

Low power, higl sieed, high noise immunty, high fan-out, and high capacitance-driving capability are features of the TTL, Digital Solid Cireuit ${ }^{\text {® }}$ semiconductor networks.

Series 54 silicon double-epitaxial line has speed

The series uses a multi-function concept-packing up to 4 circuit functions into one monolithic bar of silicon.
high enough for computers, while power needs are low enough for most aerospace systems. Typical characteristics include propagation delay of 15 nsec . fan-out of 15 , noise margin of 800 mv , and power dissipation of $10 \mathrm{mw} / \mathrm{gate}$. The circuits operate from a single 5 v . power supply, and have a temp. range from -55° to $+125^{\circ} \mathrm{C}$.

The compatible family of 7 multi-function positive NAND gates and J-K flip-flop is made in the tran-sistor-transistor-logic (TTL) form. Here, transistors perform diode functions. The extra transistor gain allows wider component tolerances, thus increasing yields.

A special design feature of the line is low output impedance in the ON and OFF conclitions. 'This provides high-speed even when driving high-capacitance loads. The low output impedance also terminates all data lines with low impedance in both "O" and "I" logical stages. This diminishes the effect of capacitively and inductively coupled noise. Performance parameters are largely independent of temp., loading, and capacitance.

The series is a product of Texas Instruments Incorporated, P.O. Box 5012, Dallas, Tex.

More What's New on Page 70

only one...

. . . circuit module manufacturer is totally committed to the design, manufacture and sale of packaged circuits. From 200 kilocycles to 20 megacycles. From standard card and encapsulated packages to state-of-the-art interplanetary probe pellet packaging. From comprehensive catalogs of extensive circuit product lines, to design aids and manuals. From plug-in to rack-mount power supplies. From standard BLOC card cages to front access tilt, slide and split drawer rack mounting hardware. From germanium to silicon. Only one company.
To date, over 1,000 different packaged circuit module types shipped. Sales total many millions. Customers: hundreds. Total commitment a customer orientation.

FERRITE SHEET MEMORY MODULES

A new electronic switching system, currently used by the Bell Telephone System, uses an array of multiple-aperture ferrite sheet memory modules in place of conventional memory banks. The conventional memory banks use criss-cross grid laced at the intersections of the ferrite cores. The new approach uses a flat sheet of ferrite punched with 256 tiny holes. The 256 holes, located within the 1 in . square sheet, behave similar to 256 conventional ferrite cores.

The new memory modules make possible such improvements as automatic follow-up and completion of phone calls when the line is busy the first time a number is dialed, or multiple station conference calls.

Western Electric has been able to make these sheets by attaining and maintaining precise control of particle size in the ferrite materials used. This was made possible lby using a Stokes Tornado Mill, developed ly F. J. Stokes Co. 5500 Tabor Rd., Philadelphia 20, Pa . This granulating equipment has a vertical flow path and a 360° screen which is completely surrounding a whirling multiple-blade rotor.

The ferrite raw materials are wet-mixed, dried, and pulverized in a Tornado Mill which uses a 20 -mesh screen. The finely divided powder is then calcined to produce a magnetic ferrite of the proper crystalline structure. The resulting black powder is milled with a binder, dried, and run through a second Tornado Mill. This Mill has a 60 -mesh screen and delivers ferrite press powder of the proper particle size needed for uniform pressing of the flat ferrite sheets.

The thin sheets are made by pressure compacting

The 256 holes in this magnetic memory module, made by the Western Electric Co., act similar to 256 ferrite cores.

the ferrite powder using a 256 -pin die. The perforated sheet is then sintered at a high temperature, using a controlled atmosphere to develop suitable magnetic properties. A copper circuit pattern with attached leads is then applied to the sheet and it is then wired by passing fine wires through each hole.

COLD-TIP SOLDERNG

A new soldering tool has been developed that is a departure from the conventional tools. The handheld soldering tool does not get hot ; rather, it causes heat to be generated on the surface of the work piece.

The tool, called Positermm ${ }^{\text {TM }}$, uses two tips which form a " V " shape. Every element in the circuit,

Tip causes heat to be generated only on work surface.
except the junction between the tips and work, have a very low resistance. As current flows through the circuit, heat occurs only at the points of high resistance, which is on the surface of the work. These points of high resistance are created through a tip design that makes good electrical contact, while limiting the contract area.

The tool also features a solder-feeding mechanism which is combined with the heating tool. This feature is possible because the tips never become hot. Just as it is the work that gets hot and not the tool, it is the work that melts the solder, not the tips. The tips and solder nozzle are positioned with respect to one another. This allows heat to be generated on one part of a typical joint, while solder is applied to the other. The obvious benefit of this solder-feeding heating tool is that one of the operator's hands is freed, and he is forced to properly apply solder to the joint.
The solder tool is a product of the Westinghouse Aerospace Div., Baltimore, Md.
\square

ADVANCED SOLID STATE AMPLIFIERS FOR YOUR CONTROL AND INSTRUMENTATION APPLICATIONS

ASTRODATA advanced design instrumentation amplifiers raise state-of-the-art standards to higher levels for measurement . . . conditioning . . . monitoring ... indicating ... control.

For custom designs, Astrodata's extensive experience provides a well-qualified capability for satisfying your specific performance needs.
Model 884 Wideband (dc to 100 kc) Floating, Guarded Amplifier... Model 885 Wideband (dc to 10 kc) Differential, Isolated Amplifier...
high-gain/performance amplifiers for low-level, wideband systems at lowest cost. Completely transistorized, these state-of-the-art amplifiers use field-effect transistors in place of mechanical choppers to achieve lowest drift rate, freedom from microphonics and maximum reliability. Gain range to 3000 and a continuously adjustable 10 -turn vernier control are provided as standard features. Two differential models with $\pm 10 \mathrm{ma}$ or $\pm 100 \mathrm{ma}$ output current from a low impedance can drive long lines, A to D converters, multiplexers, galvanometers or tape recorders. Transfer characteristic is optimized to provide wide frequency response with minimum overshoot, fastest settling and overload recovery times, and minimum phase shift. Common mode rejection is greater than 120 db with up to ± 300 volts dc or peak ac common mode voltage.

All models have built-in power supplies, feature drift less than $1 \mu \mathrm{~V}$ per week, wideband noise less than $4 \mu \mathrm{~V}$ rms, linearity better than 0.02%. Can be used either separately or in the same rack module with Model 1155 Universal Signal Conditioning Unit or Model 890 Electronic Filter to form complete, isolated signal conditioning channels.

Model 885.135 Differential Amplifier to drive multiplexers, tape recorders and A to D converters.

GAIN RANGE: 1 to 3000 INPUT RESISTANCE 100 megohms BANDWIDTH: dc to 10 kc
OUTPUT: ± 5 volts at $\pm 10 \mathrm{ma}$ DRIFT: $\pm 1 \mu \mathrm{~V}$ for 40 hours TEMP. COEFF $\pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{F}$ NOISE: $2 \mu \mathrm{~V}$ rms

Model i26-101 Charge Amplifier. All solid-state unit with internal dynamic calibration.

INPUT RESISTANCE:
10,000 megohms INPUT RANGE: 1 to $10,000 \mathrm{psi}, \mathrm{g}$ lbs GAGE FACTOR' RANGE: 1 to 11 or 10 to 110 pemb per psi, g of lb , continuously adjustable FREQUENCY RESPONSE: 0.3 cPS to 150 kc STATIC CALIBRATE MODE: Extends response virtually to dc for dead weight testing.

Model 885-235 Differential Amplifier to drive data systems, long lines and galvanometers.

GAIN RANGE: 3 to 3000 INPUT RESISTANCE 100 megohms BANDWIDTH: dc to 10 kc
OUTPUT: ± 10 volts at $\pm 100 \mathrm{ma}$ DRIFT: $\pm 1 \mu \vee$ for 40 hours TEMP. COEFF: $\pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{F}$ NOISE: $2 \mu \mathrm{~V} \mathrm{~ms}$

Model 1155 Universal Signal Conditioning Unit

Uses plug-in circuit 890 Filter to provide cards to supply excita- complete conditioning, tion or bias, attenua- calibration and normaltion, circuitcompletion, izing of transducer balancing, filtering and signals.
calibration. Used with low-level or high leve! signals from thermocouples, strain gages, resistance temperature sensors, thermistors, potentiometers and voltage sources. Can function separately or in same rack module in same rack module with Models 884 or 885 Amplifiers or Mode

Model 1212 Nanovoltmeter provides $0.1 \mu \mathrm{~V}$ full scale bridge balance detector or thermocouple indicator for standards and calibration work, in the field and in laboratories.

FULL SCALE RANGES:
$\pm 0.1 \mu \mathrm{~V}$ to

+ 100 mv
INPUT RESISTANCE: 1 megohm ZERO SUPPRESSION: $\pm 0.5 \mu \vee$ to $\pm 5 \mathrm{mv}$ AMPLIFIER OUTPUT:
Gain 30 to 3 million
delivers ± 5 volts
at $\pm 5 \mathrm{ma}$
Overload Indicator

Model 120 Nanovolt Amplifier gives you high-gain/low-noise amplification for seismic transducer signals, cryogenic studies, thermocouple or strain gage signals.

GAIN RANGE: 200 to 1,000,000 BANDWIDTH: de to 100 cps NOISE: $0.05 \mu \mathrm{~V} \mathrm{~ms}$ INPUT RESISTANCE: 1 megohm OUTPUT LEVEL: 0 to ± 5 volts at $\pm 5 \mathrm{ma}$

I'. O. Bor 3003-240 E. Palais Rond, Anaheim, Colifornia - 92803
Contact your Astrodata engineering representative for a demonstration.. or write today for technical literature giving complete specifications.

The Evolution of Semiconductor Electronics

ELECTRONIC INDUSTRIES

STATE-OF-THE-ART
FEATURE

A family tree drawing is used to chart the history of semiconductor electronics in this article. The roots represent basic research and the branches represent semiconductor devices. Growth of the tree since it was last published corresponds to the development in this field.

Since the sprouting of the semiconductor sapling drawn by W. C. White*, in 1952 it has grown tremendously. At that time, it was a relatively simple sapling having just a few branches. Now, 12 years later, it has grown into a large tree, and there are many new branches, Fig. 2. Who could have foreseen such a rapid growth? This growth is due to rich soil, i.e., the developments in solid state physics.

Because of space limitations all devices and developments could not be shown, and some branches were necessarily cut out.

Significance

The roots of this tree are the many basic researches that have made this science grow and which are expressed in general rather than specific terms.
*Electronics, p. 98, Sept. 1952
The large main divisions of the trunk represent the functional classification and the individual branches represent the devices.

In a sense, the lengths of the branches are measures of engineering development and commercialization.

Dates

Assignment of definite dates to some device or development is always a difficult problem. This is especially true for some researches, so the roots could not be given.

In case of the individual branches that are dated, space limitations necessitate brief titles. Qualifying words to make the item more specific are not included.

Where possille, the dates apply to the year when the device was commercially available. This is satisfactory, of course, and fairly definite for devices such as the "transistor" or "diode." But, it is not practical for others not readily available, such as "nemag" or "oscillistor."

Thus, on branches where commercial availability is not a good criterion, the dates apply to the year when the report concerning the device was pullished.

This tree will grow larger with the years. We hope that some new seeds are dropped from this tree, and that new saplings of our science will sprout in the near future.

Fig. I: At the time when this "semiconductor sapling" (left) was drawn, few devices were available.

Fig. 2: Due to developments in solid state physics, the "sapling" shown at the left has grown into the full size "tree" at the right. Roots of this tree signify the many basic researches that have made this science grow. The large main divisions of the trunk represent the functional classification. The individual branches represent the devices themselves. Where possible, the dates denote the year the device was commercially available. Where commercial availability is not a good criterion, the dates apply to the year when the report on the device was published.

SPECIFICATIONS FOR HIGH VOLTAGE SILICON DIODE STACK

Rectifier Configuration (half wave, full wave, center tap, bridge, doubler, etc.)

Design Requirements;

A. Voltage

1. Dc Output Voltage
2. Maximum Allowable "On-Voltage''/Stack__ Volts at___ Amps
3. Switching Transient Peak Voltage__Duration
4. Likely External Transient Voltages

B. Frequency

1. Input Voltage Frequency No. of Phases
C. Current
2. Dc Output Current
3. Duty Cycle: Time "ON"' \qquad
\qquad
4. Non-Repetitive Surge Current

Duration

D. Environmental Conditions

1. Ambient Temperature Range
2. Cooling Fluid Rate Temperature
3. Atmospheric Pressure Range
4. Contamination Requirements:

Stack to Surrounding Medium
Surrounding Medium to Stack
E. Circuit Considerations

1. Describe Transient Suppression if Used
2. Type of Filter on Output
(Give filter schematic)
3. Nearest Ground Plane (distance)
F. Mechanical
4. Size
5. Weight
6. Attitude
7. Vibration Requirement
8. Accessibility Requirement (individual components)
9. Special Mechanical Requirements (i.e. terminals, mounting screws, etc.

This check list contains all the information needed by the stack manufacturer. With this information the diode stack manufacturer can provide a suitable assembly which, if it meets the specs, will work admirably in the circuit.

How to Specify

The series connected silicon diode stack has been very successful in high voltage rectifiers. For this reason it is automatically the choice in new radio and TV transmitters, radar modulators, induction heating generators, electrostatic precipitators and like equipment. In fact, many engineers are converting existing equipment from mercury vapor rectifiers to silicon.

There are certain pitfalls in the use of these high voltage stacks. Thus, this article will guide the designer in writing the proper specs.

Two vital boundary conditions govern the choice of diode stacks; peak reverse voltage and peak forward, or surge, current.

Peak Reverse Voltage

Due to transients the peak reverse voltage seen by the stack is generally much higher than the value given by rectifier circuit-constant tables. Unfortunately, it's hard to predict the amplitude and duration of these transients, especially in 3phase circuits. The designer has two choices: he can apply a rule-ofthumb and say that they can easily be kept below, say, 150% of the de voltage, or he can measure them on prototype equipment.

Transient Voltage Measurement

The measuring method is shown in Fig. 1. Voltage across the rectifier output is divided by resistors shunted with capacitors. The resis-

IHigh-voltage silicon diode stacks can be used in place of vacuum tube rectifiers in some applications. If the proper stack is chosen, equipment reliability can be increased when compared with tube rectifiers. This article will guide the designer in writing the proper specifications and making useful measurements for silicon diode stacks.

High Voltage Silicon Diode Stacks

tors assure accurate division of the dc voltage. The capacitors swamp out stray capacitance and divide the transient (high-frequency) voltage accurately. The output across the $1 \mathrm{k} \Omega$ resistor is connected to an oscilloscope via coax cable. (Care must be taken to assure that this resistor never becomes open circuited in which case high voltages may appear at the scope.) The scope must have a frequency response of at least 10 mc .

The procedure for measurement is to switch the supply and load on and off randomly while observing the scope trace with a slow sweep of, say, $1 \mathrm{~cm} / \mathrm{sec}$. The transients are readily seen if the intensity is turned up high.

The above test should be conducted initially at, say, $1 / 4$ of the normal operating voltage. This is to protect the prototype diodes from destruction by unexpectedly high transients. The measured transient is then multiplied by 4 to arrive at a preliminary value. If this value is within the stack's capability, verification proceeds at full voltage.

Reducing Voltage Transients

In a rectifier with a choke input filter such as in Fig. 1, the transient voltage seen by a diode stack can be much higher than the dc voltage. The transient voltage can be greatly reduced by adding suppressors. There is as in all designs, a tradeoff between the cost of the sup-

Fig. 1: Measuring voltage transients. The resistors across the rectifier output assure accurate division of the dc voltage while the capacitors swamp out stray capacitance and divide the transient voltage accurately. The scope must have a frequency response of at least 10 MC .

pressors and the saving in diode cost.

A severe transient call be produced when the magnetizing current of the high voltage transformer is interrupted by the primary circuit breaker, Fig. 2. With a choke input filter no path exists for the energy in the magnetizing circuit to flow. Thus the voltage across the diodes can build up to a high value.

This transient may be suppressed by shunting the transformer primary with either a resistor, Thyrector, or Thyrite arrestor. Another means of suppression is to use a capacitor input filter.

Capacitor input filters are rapidly gaining favor because of the absence of the L-C circuit. If the capacitance is high, the regulation is better than with an L-C filter. The supply also has a much lower internal innpedance at low frequency. This is an asset in certain types of amplifiers such as transulutter modulators. When capacitor input filters are used care must be taken to design for the high inrush current through the diodes when the circuit is energized.

Current Surges

A high voltage rectifier usually ends up with the silicon diodes being chosen on the basis of surge current rating rather than average current handling capability. Thus, both the amplitude and duration of the highest surge current that can be withstood by the diode stacks must be known. This surge is usually due to a short circuit in the dc side of the filter. It can be either calculated or measured.
(Continued on paye 76)

SLIICON DIODE STACKS (Concluded)

Fig. 2: Tran:ient voltage can be produced when the magnetizing current of the transformer is interrupted by the circuit breaker.

Fig. 3 (above): Configuration for measuring the amplitude and duration of the surge current in the diode stacks.

Fig. 4: Curves for finding the amplitude and duration of surge current.

The worst surge current that can be seen by the stack will occur when a short circuit current occurs at the output of the diodes, ahead of the choke input filter (if any) and where the supply line is well regulated. In this case the surge current will be
$I_{\text {surge }}=\frac{\text { Normal Secondary Current }}{\% \text { Reactance of Transformer }} \times 1.5^{*}$
The percentage reaction of a high-voltage supply transformer is typically 5%. This means that the maximum surge current is typically 30 times the normal current.

The designer is cattioned against departing from this simple means of calculating surge current amplitude. One never knows when the equipment will be connected to a stiff line or when someone will hang a grounding switch onto the positive terminal of the stack.

A more difficult calculation is the duration of the surge current. This duration depends on the operating time of the overload sensing relay plus the time to operate and quench the arc in the circuit breaker. Manufacturers of these components should be consulted for this information. Again the alternative is to make the needed measurements on prototype equipment.

Fig. 3 shows the setup for measuring amplitude and duration of the surge current in the stacks. An artificial overload, R1, may be applied by means of the vacuum switch. The de current is measured by observing the voltage across the non-inductive resistor R 2 on an oscilloscope. R2 should be low, say $10 \mathrm{~m} \Omega$.

The test procedure is to measure the amplitude and duration of the overload current for decreasing values of R1. The result is plotted on curves such as Fig. 4. If R1 cannot be reduced to zero, the points of the curve may be extrapolated to zero.

Control of Surge Current

The surge current may be limited by current limiting reactors which are usually inserted in series with the primary of the high voltage transformer. Their purpose is to increase the percentage reactance of the circuit. Alternatively the transformer may be respecified with a higher percentage reactance. Any shortening of the duration of the surge current must involve an inprovement in the response time of the overload detecting and clearing components. As in the case of voltage transients, a trade-off exists between the cost of the surge-reducing components and the cost of high-surge-current diode stacks.

Specification of a Diode Stack

The designer can now, with the foregoing vital data and with his knowledge of the circuit and the environmental conditions, fully specify the diode stacks.
*The multiplier is used to allow for off set current.

By ANATOL I. ZVEREV
Surface Division, Westinghouse Defense and Space Ctr. Baltimore, Md.

The oldest use of all-pass networks is for phase correction. The theory of this was developed by Zobel. Today their use has expanded to many new applications. This expansion of uses required a more general synthesis procedure, like the one described here.

Practical Design of All-Pass Networks

The ali-pass network is one of the most important components--especially in a large number of communication and target-detection systems. Because of the large number of uses, it is hard to talk about general cases. But, it is helpful to mention a few outstanding uses:

1. Expansion of signals in the time domain
2. Plase-correction of signals
3. Phase-splitting of signals
4. Intermediate step in network synthesis
5. Delay of a signal without introducing frequency modulation

In the first case, a time-delay network with phase, usually parabolic, versus frequency response is obtained. In the second, a network is designed to a specified phase-frequency characteristic. In the third case, two all-pass networks with a common input are synthesized to provide, within the given frequency limits, two outputs which are constant in amplitude but whose phases are in quadrature. In the fourth, all-pass networks are used only in the intermediate synthesis procedure. And with the aid of transformations, the resulting networks take the forms of well-known filter types, such as the high-pass, lowpass, bandstop or the band-pass In the fifth casc, the all-pass network takes the form of a simple delay line.

The oldest use of all-pass networks is for phase correction. The theory of this was developed by Zobel. In recent years, a more general synthesis procedure has been used. A specific phase response is satisfied by complex calculation of a system with prescribed phase characteristic. Phase correction is still an important function of phase synthesis.

All-Pass Network as a Lattice

The all-pass network is used in lattice form. The following discussion of the lattice applies, therefore, to the network. Simple lattices in cascade may be transformed to a single equivalent lattice. This in turn may be transformed to its unbalanced form. This reduces the number of elements used.

All-pass network design requires sophisticated design ability. This is not obvious from physical appearance of end product.

A chain of lattices and its desired equivalent lattice leading to a more practical network are shown in Fig. 1. In the case of lattices with equal characteristic impedances:

$$
\begin{equation*}
\left(Z_{a}\right)\left(Z_{b}\right)=\left(Z_{a n}\right)\left(Z_{b n}\right)=\left(Z_{a k}\right)\left(Z_{b k}\right)=Z_{o}^{2} \tag{1}
\end{equation*}
$$

where $k=1,2, \cdots, n$.
Z_{a} and Z_{b} are the impedances of the lattice arm.
n is the number of lattices.
k is the number of lattices between 1 and n. Therefore:

$$
\begin{equation*}
Z_{0}{ }^{2}=Z_{a} Z_{b} \tag{2}
\end{equation*}
$$

The composite transmission constant g for any kind of non-equal lattices with equal impedances will be expressed by:

$$
\begin{equation*}
g=g_{1}+g_{2}+\cdots+g_{n}=n(a+j b) \tag{3}
\end{equation*}
$$

The index associated with g shows the number of the lattice to which it refers. The transmission constant for any lattices will he expressed by:

$$
\begin{equation*}
g_{k}=2 \tan h^{-1} \sqrt{\frac{Z_{a k}}{Z_{b k}}} \tag{4}
\end{equation*}
$$

Knowing that: (Continued on following page)

Fig. 1: A chain of lattices and its substitute lattice.

ALL-PASS NETWORK (Continued)

$$
\begin{equation*}
\tan h^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x} \tag{5}
\end{equation*}
$$

we can obtain

$$
\begin{equation*}
g_{k}=\ln \frac{1+\sqrt{\frac{Z_{a k}}{Z_{b k}}}}{1-\sqrt{\frac{Z_{a k}}{Z_{b k}}}} \tag{6}
\end{equation*}
$$

For the first-order lattice:

$$
\begin{aligned}
Z_{o} & =\sqrt{\frac{L}{C}} \\
g_{k}=\ln \frac{1+j \omega \sqrt{L C}}{1-j \omega \sqrt{L C}} & =\ln 1+j 2 \tan ^{-1}(\omega \sqrt{L C})
\end{aligned}
$$

This is an all-pass network whose phase b is given by:

$$
b=2 \tan ^{-1}(\omega \sqrt{L C})
$$

Normalizing the characteristic impedance Z_{0} :

$$
\begin{equation*}
\sqrt{\frac{Z_{a k}}{Z_{b k}}}=\frac{Z_{a k}}{Z_{o}}=z_{a k} \tag{7}
\end{equation*}
$$

From expression (6) it follows that

$$
\begin{equation*}
g_{k}=\ln \frac{1+z_{a k}}{1-z_{a k}} \tag{8}
\end{equation*}
$$

According to expression (3) for the transmission constant, a similar expression in a different form will be:

$$
\begin{equation*}
g=\ln \frac{1+z_{a}}{1-z_{a}}=\ln \prod_{1}^{n} \frac{1+z_{a k}}{1-z_{a k}} \tag{9}
\end{equation*}
$$

This expression can be solved in order to evaluate the normalized impedance z_{a} and z_{b}.

$$
\begin{align*}
& z_{a}=\frac{Z_{a}}{Z_{o}}=\frac{\frac{n}{|1|}\left(1+z_{a k}\right)-\frac{n}{| |}\left(1-z_{a k}\right)}{\frac{n}{\mid}\left(1+z_{a k}\right)+\frac{n}{\left.\right|_{1} \mid}\left(1-z_{a k}\right)} \tag{10}\\
& z_{b}=\frac{Z_{b}}{Z_{o}}=\frac{1}{z_{a}}
\end{align*}
$$

This means that z_{a} and z_{b} are reciprocal impedances. If we have equal lattices connected in cascade as in

Fig. 2: Principal schematic of phase networks (splitter).
the case of pulse stretching networks, the expression for z_{a} and z_{b} will be slightly modified and will take the form:

$$
\begin{equation*}
z_{a}=\frac{\left(1+z_{a k}\right)^{n}-\left(1-z_{a k}\right)^{n}}{\left(1+z_{a k}\right)^{n}+\left(1-z_{a k}\right)^{n}} \quad z_{b}=\frac{1}{z_{a}} \tag{11}
\end{equation*}
$$

In the case of purely reactive components, the characteristic function H of the resulting lattices will be:

$$
\begin{equation*}
H=\frac{\bar{z}_{a} \bar{z}_{b}-1}{\bar{z}_{b}-\bar{z}_{a}} \tag{12}
\end{equation*}
$$

where \bar{z}_{a} and \bar{z}_{b} are the lattice arms, normalized to the load resistance R (which should be equal on both sides of the networks). That is:

$$
\begin{equation*}
\bar{z}_{a}=\frac{Z_{a}}{R} \quad \bar{z}_{a}=\frac{Z_{b}}{R} \tag{13}
\end{equation*}
$$

The products in (10) could be defined in the following fashion:

$$
\begin{equation*}
P_{1}=\frac{n}{\prod_{1} \left\lvert\,\left(1-z_{a k}\right) \quad P_{2}=\frac{n}{| |}\left(1-z_{a k}\right)\right.} \tag{14}
\end{equation*}
$$

Using these values and substituting them in (10) for $\overline{z_{a}}$ and $\overline{z_{b}}$, the following expression for operating condition will be obtained:

$$
\begin{equation*}
e^{n}=\sqrt{1+|H|^{2}} \tag{15}
\end{equation*}
$$

In more open form, this is:

$$
\begin{equation*}
e^{n}=\sqrt{1+\left|\frac{P_{1}^{2}-I_{2}^{2}}{4 \Gamma_{1} P_{2}}\left(\frac{Z_{0}}{R}-\frac{R}{Z_{0}}\right)\right|^{2}} \tag{16}
\end{equation*}
$$

where Z_{0} is a characteristic impedance of the network when it is different from the load impedance.

Practical Application

Initially, it is assumed that the phase splitter in Fig. 2 is synthesized in non-elementary fashion. When the synthesis is done, information is obtained for symmetrical non-equal all-pass lattices such as 12 to 112 mC phase splitter design in Figs. 3 and 4.

[^2]

Fig. 3: Poles and zeros location of voltage ratio after synthesis of Fig. 2.

Fig. 4 (below): The elements of six pole networks according to the pole and zero distribution that is shown in Fig. 3 above.

The symmetrical lattice has some olvious bad points. First, it contains many repetitive elements and secondly, the lattice is a balanced network. Above, equivalence of several non-equal lattices to one combined lattice is shown. The following is devoted to the method of transforming first order networks to its equivalent half-lattice or differential bridge.

Despite simplicity, the first-degree networks are not the most practical. This becomes apparent when an attempt is made to produce a pair of networks operating over a wide band of frequencies covering several octaves. Then it is found that a network which is operating over a low frequency portion of the passland, as an all-pass network, is at the same time acting as a low-pass filter at the ligher frequencies, with the cutoff inside of the prescribed frequency limits.

The cause of this is the sclf-capacitance of the coils and lead inductance of the capacitors. All-pass sections with characteristic frequencies at low frequency cause a problem. It is usually impossible to place the self-resonance of the network coils outside of the passband.

The remedy is to combine pairs of the first-degree network together in the form of a second-degree network. It is possible to place across the higgest coil,

the offencler in the first order lattice, capacitance which can absorb the self-capacitance of the coil. It is advisable to combine one section of the high frequency and one section of the low frequency together to get a better second order lattice. The highest and lowest of what remains is next to be combined. The combining is continued until either one or none is left.

The second remedy is to make the impedance as low as possible, keeping in mind that the capacitors can also be offenders if they are too large. It may turn out that different impedances have to be used for different sections in tandem sections. In this case, impedance matching attenuators have to be fitted in the networks where appropriate.

In Fig. 5, the equivalent cascaded connection of two lattices with equal characteristic impedances is shown. liig. 6 shows the intermediate step in the transformation to combine two cascaded lattices into

Fig. 5 (below): First step to combine 2 lattices into one.
Fig. 6 (right): Equipotential points connected for simplicity.

ALL-PASS NETWORK (Concluded)

one equivalent lattice. The dotted line between the impedance in each arm shows that at these points the potentials are equal and therefore could be connected together (bridge is perfectly balanced).

The addition of three simple lattices can he done in a simple way. The first step is to combine two of the lattices, as done before, and then combine the resulting second degree lattice with the remaining simple lattice (of the first order). The best method for combining the simple lattices is to combine, at first, two lattices that have the lowest and highest poles. This method is used because, in an extreme case, the poles may not be realized in the single lattice forms.

Fig. 5 also shows the elements of a first and second order lattice which will be combined into a single third order lattice. Both lattices are ideal in the sense that no losses are involved. In the upper dipoles in Fig. 6, where equipotential points are connected for simplicity (by (lotted lines), there are two circuits which resonate at the same frequency: The first anti-resonance will be between L_{1} and $\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$, the second one between $\mathrm{I}_{2}, \mathrm{I}_{3}$ and C_{3}. The second anti-resonance is hidden and must be "extracted." In the lattice arm of Fig. 6, the first anti-resonance is produced when C_{1} resonates with $\mathrm{I}_{1} \mathrm{~L}_{2} /\left(\mathrm{I}_{1}+\mathrm{L}_{42}\right)$ and the second anti-resonance with $\mathrm{C}_{2}, \mathrm{C}_{3}$ and I_{3}. The second resonance in this circuit is also hidden and must be "extracted." The intermediate step of transformation consists of simplification as per above.

Fig. 7 shows the circuit after the proper dipole transformation has been applied. The two antiresonance circuits in each arm of the lattice are

Fig. 7: The dipoles shown in Figure 5 were transformed into the above to facilitate simplification of the circuit.
resonated at the same frequency. They may be combined by the simple addition of impedances. Fig. 8 shows the final schematic of a semilattice as a result of design and transformation with two reciprocal branches at all freguencies. This is a practical structure which is reduced to six coils and six capacitors.

The element values in Fig. 8 are given in terms of first and second order lattices that were originally combined. As a possible alternative for realization, the bridged-T equivalent form can be mentioned; but the necessity of high quality mutually coupled inductances and presence of parasitic capacitance between these inductances reduces the domain of its use

References

[^3]

Tunnel diodes offer advantages as storage elements in a shift register-they can provide very high shift rates. Design details and circuit values are included in the concise explanation.

Shift Register Design Using Tunnel Diodes

Fig. 1: Basic circuit of a tunnel diode in series with a resistor connected to de.

A shift register is a binary storage facility within which the stored bits of information may be shifted by applying shifting pulses.

For storage elements, generally flip flops or magnetic cores are used. This article describes a shift register using tunnel diodes for storage, providing one tumnel diode circuit for each bit of stored information.

Fig. 1 shows the basic circuit of a tunnel diode in series with a resistor R_{1}, connected to a dc voltage source of emf V_{1}. Looking at Fig. 2, there are two stable points of operation, A and B, if R_{1} and V_{1} are designed properly. Point A can be assigned to a stored "0," point B to a stored " 1 ."

Fig. 3 shows four such storage units connected together to furnish a 4 bit ring shift register. The information is stored in the tunnel diodes $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, D_{4}, as well as in the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$.

When a shift is to occur, first the tunnel storage diodes are all switched to their stable point A. This is done by decreasing the supply voltage V_{1} to 0 and afterwards increasing it to the value it had before. This is done at high speed so the capacitors C_{1} to C_{4} can not discharge in the meantime. Inmediately afterwards a second pulse, derived from the shifting pulse, feeds the charge of each capacitor to the tunnel storage circuit to its right by a short decreasing of the voltage V_{2}. Thereby all bits have been shifted to the right one section by the shifting event.

For details, suppose that in tunnel diode storage circuit number one a "one" is stored, in number two, a "zero," in number 3 a "one," and in number four a "0."
Then according to our assumptions made above we have:
between points a_{1} and 0 a voltage of 0.45 v
between points a_{2} and 0 a voltage of 80 mv
between points a_{3} and 0 a voltage of 0.45 v
between points a_{4} and 0 a voltage of 80 mv .
The voltage drop at the resistors $\mathrm{R}_{21}, \mathrm{R}_{22}, \mathrm{R}_{23}$, and R_{24} may be neglected, since the design has $\mathrm{R}_{11}=$ $\mathrm{R}_{12}=\mathrm{R}_{13}=\mathrm{R}_{14}>\mathrm{R}_{21}=\mathrm{R}_{22}=\mathrm{R}_{23}=\mathrm{R}_{24}$.
The rectifier diodes $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{CR}_{3}$, and CR_{4} are biased to cutoff by a voltage of +0.5 on line 2 . Therefore, the capacitor C_{1} is charged by the resistor R_{31}
to the potential of point A_{1}, about 0.45 v . Similarly. C_{2} is charged to about 85 mv , and so on.

As already mentioned above in the beginning of shifting, the voltage on line 1 is decreased to zero for a very short time T_{1} and increased again. Thereafter all points, A_{1} to A_{4} have the same potential of 80 mv . The potentials on points b_{1}, b_{2}, b_{3}, and b_{4} at first remain the same, that is, $0.45 \mathrm{v}, 80 \mathrm{mv}, 0.45 \mathrm{v}$ and 80 mv , as the circuit is designed $R_{31}=R_{32}=$ $R_{33}=R_{34}>R_{11}$ and finally time constant $R_{31} C_{1}$ $<\mathrm{T}_{1}$.

Immediately after that event, bias voltage on line 2 is decreased to zero potential for a short time, therely bringing the potential of point d_{2} to -0.45 v if we neglect the voltage drop across CR_{1} for simplicity. This is like rising the supply emf across the storage element $R_{12} D_{2}$ by 0.45 v , thus switching it to point of operation B (refer to Fig. 2) having transferred a "one" to tunnel diode D_{2}.

Diode CR_{2}, however, does not switch on when potential on line 2 is decreased to zero. Capacitor C_{2} was charged to only 80 mv , thus leaving tunnel diode circuit D_{3} unswitched in the position A. That means that tunnel diode circuit D_{3} has stored a zero.

Proceeding in this manner we find, after the shifting event, the "one" formerly stored in D_{3} is now stored in D_{4}, and the zero of D_{4} has been shifted to D_{1}. In this way, the shifting event transferred the storage pattern by one digit. After capacitors $\mathrm{C}_{1} \ldots \mathrm{C}_{4}$ have been charged to the new potentials on points a_{1} through a_{4} by resistors R_{31} through R_{34}, the circuit is ready for the next shifting pulse.

The stored pattern is not confined to the chosen example of 1010 , but can assume all possible combinations such as $1111,0000,1110,1100$ and 0001 as well.

Fig. 4 shows a circuit which had been tested in pratical operation, using tunnel diodes A100 by Telefunken, Germany.

The transistors Q_{1} and Q_{2} with transformer T derive the proper pulses for line 1 and 2 from the shifting pulse fed to point I of the circuit. Trans-

By DIETER R. LOHRMANN*

$$
\begin{array}{r}
\text { Dipl. Ing. } \\
\text { USAELRDL } \\
\text { Ft. Monmouth, N. J. }
\end{array}
$$

*Formerly with Telefunken, Ulm, Germany,

Fig. 2: Looking at tunnel diode curve there are 2 stable points of operation, $A \& B$ if R_{1} and V_{1} are properly designed.

former T provides the low impedance innulse sonrce for line 2 , by potentiometer R_{8} adjusting pulse height on line 2, Potentiometer R_{9} adjusts the storage feed voltage V_{1}. The additional capacitors C_{1}, were inserted for convenience of experimenting. The reason for this were pulses occurring in the lab and outside (for example plugging in solder iron), accidentally switching the high speed, (low switching energy) tumnel circuits. Therefore, in practice gonc! shielding will be needed when using high speed circuit elements.

The shifting rate was chosen to be as low as 100 cps for testing the performance and for studying the influence of tolerances of tunnel diodes to stability of operation. The circuit worked properly, being
able to shift all combinations.
Every one of the four tunnel diodes following the other differed in peak current by 8.5%, while the diodes CR_{1} through CR_{5}, had been selected for equal characteristics.

The circuit could shift all possible combinations within tolerances of $\pm 7.5 \%$ of V_{1}, or $\pm 8 \%$ of V_{2} respectively. Those tolerances seem to be handled well in practical circuits. Maximum available shift velocity may be very high, as the theoretical frequency limit of tumnel diocles is exceedingly high. It is supposed that the speed limit is set by the network providing pulses on line 1 and 2.

Mr. Schmidt, cand. phys., I thank for performing experimental work and measurements.

Fig. 4: A shift register circuit using tunnel diodes that has been tested.
together to furnish a 4 bit connected The information is stored in the tunnel diodes as well as the capacitors $\mathrm{C}_{\mathrm{t}}-\mathrm{C}_{4}$.

\#76 Parallel Tuned Circuit Calculations

Fig. 1: Practicable parallel tuned circuit.

Fig. 2: Practical parallel tuned circuit.

Practicable paraliel tuned circuit elements, Fig. 1, become practical when comprised of specific component parts, Fig. 2.
The "practicable" circuit, of Fig. 1, is theoretically capable of performing the function of the "practical" circuit, of Fig. 2. But, it is impractical! For, for any given frequency band there are infinite combinations of inductance, L, and capacitance, C. Obviously, the selection of L and C equivalents from commercially available sources will be very difficult . . . unless a well organized approach is used.
The following is a method of finding the commercial inductance and capitance equivalents of Fig. 2. It requires knowledge of the frequency band, and of the variable capacitor features. It assumes high component part Q.
(a) Define the frequency band by fl, the lowest frequency, and 52 , the highest frequency.
(1) Select a variable capacitor from a catalog. Define it by C2 max, maximt:m capacitance, and C2 min, minimum capacitance.
(c) Keeping in mind that $\pi=3.14$ (3.14159 26536 etc.), and that $\omega=2 \pi f$, solve for:

$$
\begin{gather*}
L 1=\left[(1 / \omega 1)^{2}-(1 / \omega 2)^{2}\right] /\left(\left(^{2} 2 \max -\left({ }^{\prime} 2 \min \right)\right.\right. \\
\left({ }^{\prime} 1=\left[(1 / \omega 1)^{2} / L 1\right]-\left({ }^{2} 2 \max \right.\right. \tag{2}
\end{gather*}
$$

(d) Select $L 1$ from the adjustalble inductances listed in the catalog.
(e) Select $C 1$ from the trimmer capacitors listed in the catalog.
Experience will guide you in choosing type of mounting, temperature coefficients, voltage/current ratings, etc.
The following example will serve as a practical guide:
(a) The frequency band is 535 kc to 1005 kc :

$$
\begin{aligned}
& f 1=0.5: 35 \times 10^{6} \mathrm{cps} \\
& f 2=1.605 \times 10^{6} \mathrm{cPs}
\end{aligned}
$$

(b) The variable capacitor is chosen to be a Hammarlund No. MC-325-M :

$$
\begin{aligned}
& C 2 \max =320 \times 10^{-12} \mathrm{f} \\
& C 2 \min =13.5 \times 10^{-12} \mathrm{f}
\end{aligned}
$$

(c) Solve for $L 1$ and $C 1$:

$$
\begin{align*}
L 1= & {\left[(1 / \omega 1)^{2}-(1 / \omega 2)^{2}\right] /(C 2 \max -C 2 \mathrm{~min}) } \\
= & {\left[\left(1 / 3.36 \times 10^{6}\right)^{2}-\left(1 / 10.07 \times 10^{6}\right)^{2}\right] / } \\
& \left(320 \times 10^{-12}-13.5 \times 10^{-12}\right) \\
= & 258 \times 10^{-6} \mathrm{~h}, \text { that is: } 258 \mu \mathrm{~h} \tag{2}
\end{align*}
$$

(d) $\quad C 1=\left[(1 / \omega 1)^{2} / L 1\right]-C 2 \max$

$$
=\left[0.0888 \times 10^{-12} / 258 \times 10^{-8}\right]-320 \times 10^{-12}
$$

$$
=345 \times 10^{-12}-320 \times 10^{-12}
$$

$$
=25 \times 10^{-12} \mathrm{f}, \text { that is: } 25 \mathrm{pf}
$$

Two checking equations are now introduced:

$$
\begin{align*}
f 1 & =1 /[2 \pi \sqrt{L 1(C 1+(2 \mathrm{max})}] \\
& =1 /\left[6.28 \sqrt{258 \times 10^{-6}\left(25 \times 10^{-12}+320 \times 10^{-12}\right)}\right] \\
& =0.535 \times 10^{6} \mathrm{CPS} \\
f 2 & =1 /[2 \pi \sqrt{L 1(C 1+C 2 \mathrm{~min})}] \tag{4}\\
& =1 /\left[6.28 \sqrt{258 \times 10^{-6}\left(25 \times 10^{-12}+13.5 \times 10^{-12}\right)}\right] \\
& =1.62 \times 10^{6} \mathrm{cPs}
\end{align*}
$$

These sliderule answers, to checking F.q. 3 and 4, confirm the results of Ec .1 and 2.
(d) $L 1$ is selected to be J. WV. Miller No. 4315, 178-300 $\mu \mathrm{h}$, adjustable.
(e) Cl is selected to be Bud No. MT-833, 3-36 pf, compression mica trimmer.
Alignment of this "practical" parallel tuned circuit follows estal)lished methods (e.i.: With C2 set at max. capacity, $L 1$ is adjusted for 535 kc . With $C 2$ set at min. capacity, $C 2$ is adjusted for 1605 kc . Repeat as necessary).
By the use of Eq. 1 and 2 practical parallel tuned circuits may be designed, breadboarded, and aligned without discouraging "cut and try" exercises.

By PAUL L. CONANT, SR.
Technical Staff
Reliability Division
Collins Radio Company
Dallas, Texas

ELECTRONIG TNOUSTRIES

MOS Transistors

Data is available on 2 metal-oxide semiconductor FETs. They are designed for general low-power applications up to 60 mc . They combine many features of both conventional transistors and vacuum tubes with certain unique features of their own. The high gain units are designated 3N98 and 3N99. Commercial Engineering, RCA Electronic Components \& Devices, Harrison, N. J.

Circle 175 on Inquiry Card

Silicon Planar Transistors

Data is available on the $2 \mathrm{~N} 2217-$ 2N2222 Leaf-Let transistors. These h-f low-power transistors are excellent for high speed switching and amplifier applications. The Leaf-Let configuration gives lower saturation voltage, higher gain because of larger emitter area; improved Beta linearity because of larger emitter periphery; and greater reliability because of larger bonding area when compared to other related planar configurations. Bendix Semiconductor Div., The Bendix Corp., Holmdel, N. J.

Circle 176 on Inquiry Card

Engineering Handbook

The 24-page "Handbook of Value Engineering Ideas" will help engineers and purchasing men apply VE techniques to the design of small die cast and molded plastic parts. Case studies, including detailed illustrations, demonstrate VE concepts. Gries Reproducer Corp., 400 Beechwood Ave., New Rochelle, N.' Y.

Circle 177 on Inquiry Card

Rectifier Bulletin

This brochure gives complete characteristics, ratings, mechanical data, application notes and testing procedures on the Glass-Amp silicon rectifiers. It is fully illustrated with charts and test circuits. Application notes include a device capacitance test circuit, recovery time test circuit, turn-on time test circuit and description of surge conditions, capacitive load operation and mounting procedures. Semiconductor Products Group, General Instrument Corp., 600 W. John St., Hicksville, L. I., N. Y.

Circle 178 on Inquiry Card

Designer's Manual

A 16-page photocell designer's manual is available. In addition, a photocell is described which combines the best performance characteristics of CdS and CdSe . The unit uses a new light-sensitive ' 5 H ' material. Speed is $1-2 \mathrm{msec}$. and the slope is 0.9 over the range of 0,1 to 100 ft . candles. The temp. coefficient is $0.5 \% /{ }^{\circ} \mathrm{C}$ and the memory $1 / 15$ that of CdSe . The color temp. response is $1.00 / 1.06$ from $2854^{\circ} \mathrm{K}$ to $6700^{\circ} \mathrm{K}$. Clairex Corp., 8 W . 30th St., New York, N. Y.

Circle 179 on Inquiry Card

Transistor Chart

This power transistor selection chart and cross-reference guide contains data needed for selecting germanium and silicon power transistors. Close to 1000 device types are described in a quick reference replacement section, which designates EIA registered numbers and closest available Motorola equivalents. The chart, No. PP 102 R8, may be obtained from Motorola Semiconductor Products Inc., Dept. TIC, Box 955, Phoenix, Ariz.

$$
\text { Circle } 180 \text { on Inquiry Card }
$$

Tape Components Catalog

This 20 -page, 2 -color brochure describes a complete line of paper tape components and data systems. Paper tape perforators, readers, accessories, 1- and 2-way data communications systems, and typing systems are described and illustrated. Tally Corp., 1310 Mercer St., Seattle, Wash.

$$
\text { Circle } 181 \text { on Inquiry Card }
$$

Analysis \& Control Paper

A technical paper entitled, "The New Era of X-ray Analysis and Control," is available. Illustrated with photos and diagrams, the article covers 7 distinct and different X-ray techniques for difficult analytical and quality control problenis. Philips Electronic Instruments, 750 So. Fulton Ave., Mt. Vernon, N. Y.

```
Circle 182 on Inquiry Card
```


Relay Catalog

Illustrated catalog F-5604 gives application data for the Micro-Scan relays. They may be used in multiplexing, direct digital control, data sampling, scanning, and analog acquisition. The 2 -color brochure shows stand-up chassis plug-in, lowsilhouette PC board, and laydown direct wire-in package configurations. It gives comprehensive specs. and definitions for operating voltage, driving source, relay speed, repetition rate, contact rating and bounce, noise and shielding, environmental limits, and other parameters. James Electronics, Inc., 4050 N. Rockwell St., Chicago, Ill.

Circle 183 on Inquiry Card

Microwave Components Catalog

This 32-page, 2-color, catalog lists a complete line of microwave components and ferrite devices. A special section is devoted to application and selection notes. E \& M Laboratories, 7419 Greenbush Ave., No. Hollywood, Calif.

Circle 184 on Inquiry Card

Counter Data File

A complete data file on the 600 series of all-silicon solid-state electronic counters and universal counter-timers is available. The instruments offer freq. readout up to 2.5 mc . CMC, 12970 Bradley Ave., San Fernando, Calif.

Circle 185 on Inquiry Card

Disc Files Capabilities

A tech. article describing the capabilities of the Series 4000 disc files is available. Discussed in detail is the capability of the disc files to bridge the gap between low-capacity, high-speed memory drums and cores, and high-capacity, slow-speed magnetic tape memories. Random access times, data storage capacity, operating speeds, disc storage data formating, and storage flexibility of the disc files are described. Bryant Computer Products, 850 Ladd Rd., Walled Lake, Mich.

Circle 186 on Inquiry Card

Hermetic Seal Catalog

This catalog gives complete data and specs. on hundreds of standard seals, and illustrates typical custom-type seals. The general data section contains tech. data of interest to engineers and designers, and discusses numbering and color coding available on E-I seals. Electrical Industries, 691 Central Ave., Murray Hill, N. J.

Circle 187 on Inquiry Card

Delay Line Brochures

This brochure includes a section on definitions reprinted from EIA Standard RS-242. Data such as distributed parameter vs. lumped parameter lines; measurements; applications; and how to specify electro-magnetic delay lines are included. LFE Advanced Components, div. of Laboratory for Electronics, Inc., 1601 Trapelo Rd., Waltham, Mass.

Circle 188 on Inquiry Card

Relay Brochure

A brochure entitled, "Inventory Relays" describes over 100 types. The brochure contains wiring diagrams, outline dimensions, and electrical and mechanical specs. for each unit. Electronic Specialty Co., 5121 San Fernando Rd., Los Angeles, Calif.

Circle 189 on Inquiry Card

PC Board Report

A paper entitled, "Multilayer Printed Circuit Boards Performance and Reliability" is available. The 18 -page report is supplemented by tables and block diagrams. Melpar Inc., 3000 Arlington Blvd., Falls Church, Va.

$$
\text { Circle } 190 \text { on Inquiry Card }
$$

Memory Systems

Data is available on an integrated-circuit, core-memory system with plug-in packaging. The Series ML uses integrated circuits in memory logic decoding, timing, and interface to take max. advantage of their low cost, low power consumption, and space saving capabilities. It is offered in 128,512 , and 2048 word capacities with word sizes up to 26 bits and a $5 \mu \mathrm{sec}$. cycle time. Fabri-Tek Inc., Foshay Tower, Minneapolis 2, Minn.

Circle 191 on Inquiry Card

Neon Indicator Lights

This 12-page catalog, L-178, presents a complete line of subminiature indicator lights that meet or exceed the environmental and operational requirements of Mil-L-6723 and Mil-L-3661. Complete specs. and data are given for assemblies that: accommodate incandescent or neon lamps; mount in $15 / 32$ in. or $17 / 32 \mathrm{in}$. clearance hole; offer a wide choice of lens cap shapes, finishes and colors; provide for use of hot-stamped or engraved legends. Dialight Corp., 60 Stewart Ave., Bklyn, N. Y.

Circle 192 on Inquiry Card

Wire Data Chart

This 9×11 data chart shows on 1 side all details on flexible and standard cables, rope strands and concentric strands. On the reverse side is a copper wire table showing wire size, diameters, cross-sectional area in circular mils, weight, etc. Boston Insulated Wire \& Cable Co., Boston 25, Mass.

Circle 193 on Inquiry Card

Display Systems Catalog

This 29-page catalog, in color, describes a new type of graphic information display. This highly versatile tool aids human comprehension of a great volume of highlycomplex, rapidly - changing information. LTV Military Electronics Div., P. O. Box 6118, Dallas, Tex.

Circle 194 on Inquiry Card

Antenna Catalog

Catalog 23, 96 pages, presents a wide selection of antenna systems. It covers complete product information, performance data and engineering information on antennas for freqs. from 2.5 Mc to 13.2 GC . Transmission lines, including Heliax flexible coaxial cables, range from $1 / 4$ to 9 in . with power ratings of 2 kw to 3000 kw . The catalog introduces latest developments in antenna positioners, flexible elliptical waveguides, microwave and telemetry antennas, coaxial switching matrices and high powered flexible coaxial cables. Andrew Corp., P. O. Box 807, Chicago, Ill.

Circle 195 on Inquiry Card

Technical Papers

This literature lists 137 technical papers and data sheets. These relate to the state-of-the-art in measuring vibration, shock, force, pressure and turbulance. In addition, papers describing ac and dc signal conditioning equipment are listed. Endevco Corp., 801 So. Arroyo Pkwy., Pasadena, Calif.

Circle 196 on Inquiry Card

SCR Bulletin

Bulletin CT-27 describes a series of silicon-controlled rectifiers. Forward current is 35 a . and peak 1 -cycle surge current is 150 a . The 12 types of SCRs in the 2N681 series are described by a listing of 14 parameters/type. The bulletin shows curves of firing characteristics, typical forward characteristics in the conducting state, and allowable peak current as a function of forward blocking voltage. Tung-Sol Electric Inc., One Summer Ave., Newark 4, N. J.

Circle 197 on Inquiry Card

HEW H-F MULIICOUPLER USES JEHNHIGS VICUUM CAPACITORS TO ACHIEVE HIGH O

Jennings vacuum capacitors are used in the reactive filter network of Granger Associates Model 520F multicoupler. The multicoupler connects two $\mathrm{h} \cdot \mathrm{f}$ transmitters to a single broadband antenna, permitting both to transmit simultaneously without interference or interaction and without significant insertion loss. The high frequency range of 2 to 32 megacycles is divided into two channels, separated by an extremely narrow open band, to accommodate each transmitter. Jennings capacitors provide the low dissipation factor and high Q characteristics which make this close channel operation possible.

In addition the vacuum capacitors offer extra high voltage and current ratings at high ambient temperatures to provide a very comfortable margin of safety.
A high degree of reliability was required because the capacitors are used under oil in a sealed enclosure. Jennings vacuum capacitors met these requirements with ease. No field problems have ever occurred which could be related to either electrical or mechanical fault in the Jennings capacitors.
This proven application is only one of the hundreds in which Jennings vacuum capacitors have solved difficult circuit design problems. For any capacitive problem involving high power rf generating devices examine the advantages of Jennings capacitors. They have an unequalled record of exceptional performance in all sections of high power transmitters, dielectric heating equipment, antenna phasing equipment, electronic equipment from cyclotrons to electron microscopes.
At your request we will be happy to send more detailed information about our complete line of vacuum capacitors.

JENMINGS RAOIO MFG. CORP., 970 McLAUGHLIM AVE., SAN JOSE 8, CALIF., PHONE CYpress 2.4025

MAKE THE 1965 WORLD ELECTRONIC POINT

International Exhibition of

ELECTRONIC COMPONENTS

International Exhibition of AUDIO EQUIPMENT

PARIS Porte de Versailles from April 8 to 13, 1965
the greatest world confrontation in the electronics field
All components, tubes and semi-conductors, measuring and control appliances, audio equipment

For all particulars and information:
S.D.S.A., 16, rue de Presies
PARIS 15"-Tel. 273.24 .70

Official carier to the Show: Air France
Overseas Trade Show Department:
683 Fifth Avenue, New York, N.Y. 10022

Under the patronage of the F.N.I.E.

INTERNATIONAL SYMPOSIUM ON THE TECHNIQUES OF MEMORIES

from April 5 to 10, 1965
PARIS, 125, avenue de Suffren

Logic Module Brochure

This 36-page illustrated brochure details a line of all-silicon digital logic circuit modules. Booklet gives specs. and logic diagrams for more than 75 modules. The modules are available in 3 freq. ranges: $300 \mathrm{Kc}, 1 \mathrm{mc}$, and 8 mc . Scientific Data Systems, Inc., 1649 17th St., Santa Monica, Calif.

Circle 222 on Inquiry Card

Connectors Catalog

Catalog RP-1, 32 pages, describes 9 different connector series for every standard application. The brochure gives mechanical, electrical and environmental characteristics. Full-size diagrams illustrate exact dimensions, and where applicable, the varieties of inserts available for it. Block diagrams or charts simplify ordering. Amphenol Connector Div., Am-phenol-Borg Electronics Corp., 1830 S. 54th Ave., Chicago, Ill.

Circle 223 on Inquiry Card

Coaxial Cable

The Shieldax Coaxial Cable achieves 100% shielding effectiveness against crosstalk. It also provides the added advantages of good flexibility, easy termination, and good attenuation. Samples, tech. data, and catalogs of the complete line of miniaturized coaxial cables can be obtained from Microdot Inc., 220 Pasadena Ave., So. Pasadena, Calif.

Circle 224 on Inquiry Card

Power Meter Bulletin

This data sheet describes the 668 Peak Power Meter. Uses and features as well as detailed specs. are shown. These include power ranges, accuracies, operating impedances, dimensions, auxiliary equipment, etc. Harris-Intertype Corp., 202 Tillary St., Bklyn, N. Y.

Circle 225 on Inquiry Card

Printed Circuit Catalog

This 12-page catalog describes die-cut symbols for PC masters. Trans-Pak diecut pressure-sensitive symbols are said to cut PC drawing time from 50 to 90%. Chart-Pak, Inc., Leeds, Mass.

Circle 226 on Inquiry Card

Seals \& Shields Catalog

This catalog is divided into 7 individual sections. Section HEX-1 deals with 1piece high pressure seals for standard and rotary switches and seals for indicator lights: section APC-1 covers armored power connectors; section CB-1 deals with protective circuit breaker shields; SF-1 with self-sealing screws, bolts, rivets and captive screws; OR-1 with silicone rubber and molded elastomeric O rings; SNP-1 with snap-on devices; and SK-1 with colored light filters which change the color of miniature incandescent lamps instantly. APM-HEXSEAL Corp., 41 Honeck St., Englewood, N. J.

Circle 227 on Inquiry Card

Relay Catalog

This stock relay catalog illustrates, gives specs., describes and prices 310 different high reliability relays. It includes a large selection of Mercury-wetted contact and dry-reed relays; telephone-type relays in subminiature to medium sizes with wide choice of contacts and contact combinations; general purpose relays; latching relays; plug-in, hermetically sealed and dust covered relays. Magnecraft Electric Co., 5577 N. Lynch Ave., Chicago, Ill.

Circle 198 on Inquiry Card

Multi-Megohm Tester

Data is available on a Multi-Megohm Tester which combines several megohm testers in 1 instrument. The combination of a variable voltage and a floating input permits, by a simple application of Ohm's law, an infinite number of possible readings. ACA International Corp., 104-33 41st Ave., Corona 68, N. Y.

Circle 199 on Inquiry Card

Logic Module Catalog

Catalog GLM-G describes a comprehensive line of germanium solid-state logic cards and accessory equipment. Provided as an engineering assist, this 35page catalog furnishes full specs. Equipment described includes flip-flops, gates, amplifiers, decoders, pulse generators, drivers, power supplies, and accessories. Wyle Laboratories, 128 Maryland St., El Segundo, Calif.

Circle 200 on Inquiry Card

Microvolt Relay

Six bulletins are available which cover the specs., theory, and application of Model $37050 \mu \mathrm{v}$ dc relay. The "New Design Ideas" include details and schematics for the use of the unit in such applications as a differential voltage comparator, a precision temp. controller, a thermocouple trip, and as process control signal trips. Acromag, Inc., 15360 Telegraph Rd., Detroit, Mich.

Circle 201 on Inquiry Card

Torque-Tension Handbook

"A Handbook of Torque-Tension Relationships," 16 pages, covers such topics as torque-tension standards; torque-tension relationship testing; general testing and procedures; a tool testing program; etc. Profusely illustrated with sketches and engineering drawings, the handbook has been expressly written for all those who are concerned with proper fastening. Skidmore - Wilhelm Mfg. Co., 442 So. Green Rd., Cleveland, Ohio.

Circle 202 on Inquiry Card

Console Components Catalog

"Dial Assemblies, Voltmeters, and Phase Generators for Test Consoles," 28 pages, is a 2 -color catalog. It describes panel-mounted dial assemblies, ac voltmeters, phase-sensitive voltmeters, dc voltmeters and phase shifters. Uses, specs., and full descriptive data are given, as well as price and delivery information. Theta Instrument Corp., Saddle Brook, N. J.

Circle 203 on Inquiry Card

Circle 40 on Inquiry Cord

"Quick-Acting" fuses for protection of sensitive instruments or delicate apparatus;-or normal acting fuses for protection where circuit is not subject to starting currents or surges.

Write for BUSS
Bulletin SFB

EUSSMANN MFE. DIVISON, MeCraw-Edison Co, St, Louls, Me, 63107

Circle 40 on Inquiry Cord

Relay Principles

This 56-page, full-color handbook, "The Hathaway Drireed in Electronic Switching," No. VII, discusses relay principles and contact characteristics needed to use the Drireed switching concept. It contains 20 pages of testing parameters and reports on test procedures and test equipment. Hathaway Instruments, Inc., 5800 E. Jewell Ave., Denver, Colo.

Circle 204 on Inquiry Cord

Tapes

Tapes of Teflon are described in this illustrated brochure. It gives technical data, tape construction, typical uses. The tapes are used on coils, transformers, power cables, harnesses, motor windings, and slot liners. Permacel, New Brunswick, N. J.

Circle 205 on Inquiry Card

Tape Transport

Brochure No. 2174 contains detailed description and specs. on the TM-11 highspeed, single-capstan drive tape transport. The foldout brochure also describes the TM-11200 tape memory systenis. Ampex Corp., 401 Rroadway, Redwood City, Calif.

Circle 206 on Inquiry Cord

Five-Wire Devices

The 12 -page booklet describes and illustrates 5 -wire "Twist-Lock" and "Hubbellock" devices. They provide 4 individual connections for 3 -phase, 4 -wire circuits, plus a fifth connection for the equipment ground. These 5 -wire devices are lesigned for safe grounding of electrical equipment, wiring simplicity and econoniy. Harvey Hubbell, Inc., Bridgeport, Conn.

Circle 207 on Inquiry Cord

Design Catalog

A variety of design possibilities available to the engineer whose circuit reguirements include lighted pushbutton switches are described and illustrated in catalog form SP-165. The catalog lists all data needed to design a variety of lighted pushbutton switch sub-assemblies in configurations as simplified or complicated as desired. Oak Electro/Netics Corp., Crystal Lake, III.

Circle 208 on Inquiry Cord

Optical Flat Glass

This folder describes the properties of optical grade V'ycor brand flat glass. The folder lists optical, mechanical, electrical, chemical and thermal properties of the 96% silica glass in chart and table form. Sizes, special grades and a price list insert are included. Optical Marketing Dept., Corning Glass Works, Corning. N. Y.

Circle 209 on Inquiry Cord

Transducer Catalog

Catalog 1164, 24 pages, features pre-cision-film potentioneter pressure transducers. It shows a full range of pressure transducers featuring infinite resolution, long life and high reliability. It uses a unique carbon-film resistance element, multiple wipers, and direct-coupling of pressure sensing element to potentiometer wipers. Computer Instruments Corp., 92 Madison Ave., Hempstead, L. I., N. Y.

Circle 210 on Inquiry Card

Transistor Discussion

"The Silicon-or-Germanium Question" is the title of this technical booklet Vol. 1, No. 5. It compares the advantages and disadvantages of these 2 types of transistors as applied to dc power supplies. Dressen-Barnes Electronics Corp., 250 N. Vinedo Ave., Pasadena, Calif.

Circle 211 on Inquiry Card

DC Power Supply

Model M3622 magnetic amplifier and transistor regulated dc power supply has an output voltage of 54 to 64 v .@ 200a. It has $\pm 0.1 \%$ regulation for line or load; output ripple is 1% max. ras. Unit meets the requirement of Mil-I-6181D. Features include regulation for transients, turn-on-turn-off transient suppression, overvoltage, overcurrent and elapsed time indication. Complete data available from Perkin Electronic Corp., 345 Kansas St., El Segundo, Calif.

Circle 212 on Inquiry Card

Scope Cameras

This booklet describes 4 complete, standard camera systems. It contains detailed specs. on available components and accessories which simplify custom-designing a camera. The booklet features a series of waveform photographs, illustrating many typical uses with various lens/ object-to-image ratio combinations. Tektronix, Inc., P. O. Box 500, Beaverton, Ore.

Circle 213 on Inquiry Card

Digital Module Catalog

Catalog No. 82 contains a line of silicon 2 mc digital modules. Included in the catalog are the logical and electrical specs., as well as applications, mechanical and environmental characteristics. Cambridge Thermionic Corp., 445 Concord Ave., Cambridge, Mass.

Circle 214 on Inquiry Card

Environmental Equipment

Catalog E-165, 128 pages, provides complete specs. for specialized environmental test chambers, ovens, baths and furnaces. Many of the units have been developed to meet specific Mil specs. or to perform joint testing/production jobs. All can be modified to suit virtually any requirement. Blue Engineering Co., div. of Blue \mathbf{M} Electric Co., 138th \& Chatham Sts., Blue Island, Ill.

Circle 215 on Inquiry Card

Power Amplifier Equipment

Data is available on power amplifier equipment for TV relay. Featured is the MA-8518 TWT amplifier with an all-solid-state power supply. The equipment may be used with existing klystron transmitters with output in the 100 mw to 1 w . range. No tuning is necessary at any freq. in the 6.875 to 7.125 Gc broadcast relay band. Microwave Associates, Inc., Northwest Industrial Park, Burlington, Mass.

Circle 216 on Inquiry Card

Lab Standards Bulletin

Bulletin S-28 describes a integrating digital voltmeter and a complete line of laboratory standards. It includes photographs, descriptions and basic ratings of 10 precision instrument models. Weston Instruments, Inc., 614 Frelinghuysen Ave., Newark 14, N. J.

Circle 217 on Inquiry Card

Transfer Function Computer

This illustrated 2 -color bulletin describes the Model SA-100 Transfer Function Computer and 4 accessory instruments. The TFC's features rapid, direct. electronic measurement of the transfer function of 4 -terminal networks, components, and systems without need for plots tables or calculations. The Wayne Kerr Corp., 18-22 Frank St., Montclair, N. J

Circle 218 on Inquiry Card

Metal Film Resistor

The DOT miniature metal film resistor is conformally coated. It is designed for in-board mounting within a pierced $1 / 16$ in. PC board. The unit has weldable, offset, flat ribbon gold-kovar leads. The S15-1 metal films have resistance tolerances of $\pm 2 \%, \pm 1 \%$ and $\pm 0.5 \%$. Resistance ranges are from 20Ω to $50 \mathrm{~K} \Omega$. Power rated from 20mw @ $125^{\circ} \mathrm{C}$ amb. to $80 \mathrm{mw} @ 25^{\circ} \mathrm{C}$ amb. More data available from Angstrohm Precision Inc., 7341 Greenbush Ave., No. Hollywood, Calif. Circle 219 on Inquiry Card

Insulation Testers

Data is available on a series of insulation test sets. It offers simple and reliable insulation breakdown results on components, cable, and equipment. Ten models are offered with voltage ranges between $0-3000$ and $0-40,000$, and with va ranging from 2.5 to 3,000 . Industrial Instruments Inc., 89 Commerce Rd., Cedar Grove, Essex County, N. J.

Circle 220 on Inquiry Card

I-F Hybrids

Data is available on a line of I-F Hybrids. Models HCQ or HCH are available as 90° or 180° types at center freqs. of $30,45,60,70,90,100$, and 120 mc Operation over a 26% bandwidth will yield isolation of greater than 30 db at the band center, and 20 db at the band edges. LEL, Inc., 75 Akron St., Copiague, L. I., N. Y.

Circle 221 on Inquiry Card

.....- of unquestioned high quality

When fuse opens, indicating pin completes a circuit that lights indicating lamp in holder and makes contact on external signal circuit. External signal can be an audible alarm or another lamp mounted at a distance, or it can operate a relay.

Making Meaningful Measurements

Part 1

How do you know that your measurement is accurate? Can you place a quantitative value on measurement error? How do you determine for certain whether a device is within tolerance and acceptable, or out of tolerance and a reject?

By S. SILVERMAN and C. SUNTAG

ELECTRONIC INDUSTRIES

STATE-OF-THE-ART
FEATURE

Modern complex defense, guidance, control and communication systems are only as reliable as any of their components. Seldom does a single contractor design, develop, manufacture and test all phases. One key to the success of any such system rests in the interchangealiility of countless parts; all built to a common specification. Thus, the tests and measurements of a given part must be consistent in each plant and from plant to plant. Interchangeability can only be accomplished when each contractor, prime or sulb, including those responsible for the research and development efforts, makes tests and measurements from the same frame of reference. In the United States, this is the National Bureau of Standards (See Fig. 1).

Error Factors

Even with a standard frame of reference for measurements, what is delivered loy one vendor may differ from that supplied by a second vendor, even though the part is tested to the same specifications. Why? Because of errors, ignorance, or misunderstanding. Those who can contribute to such errors include: - the design engineer, who develops the data to be utilized in defining the parameters to be measured; - the specification writer, who places quantitative values and limits on the drawings and specifications; - the test engineer, who relates these values into instructions and procedures for their measurement;

- manufacturing personnel, who produce the equipment to the design specifications;
- inspection and test personnel, who measure the specified parameters; and
- the calibration facilities which provide test equipment checked against calibration standards that are traceable to the National Bureau of Standards.

Units of Measurement

To establish measurable relationships amongst various parameters, a Unit of Measurement must be defined and assigned. This is decided upon such that parameter interrelationships are simple and may be easily manipulated algebraically.

Such practical Units of Measurement as may be defined must relate to some natural physical substance which can be measured with a high degree of accuracy, and which would, in its physical state, retain this measurable value to a high degree of permanence. This physical quantity is known as a Standard and possesses values consistent with the defined unit.

Since it is necessary to have these standards available in the various echelons of the measurement

process, they are usually designed to be reprotucible with a high degree of accuracy and are used to transfer measurements from the equipment under test to the National Bureatu of Standards for comparison with the National Standards.

The selection and definition of the basic units of measurement were made at various periods of technological development. Consequently, they reflect the state of art existing at the time of selection. It is not surprising, therefore, to find that the values assigned to these units varied from time to time.

To properly establish the relationship amongst the assigned units, measurement systems were developed. Presently used is the CGS system, based on the three natural units-length (centimeters), nass (grams) and time (seconds) ; and (recently introduced) the MKSA system based on four units-length (meters), mass (kilograms), time (seconds) and electrical current (amperes).

The Measurement Process

The measurement process is essentially a comparison of the magnitude of a quantity under test with that of the applicable standard. Because the standard bears some known relationship to the absolute unit of the parameter being measured, the observed value can be related or stated in terms of the absolute or true value.

The difference between the observed value and the true value is known as the error of measurement. However, if the magnitude of this difference is known, it may be expressed, as noted, in terms of the
true value, or in terms of the assigned value of the standard being used.

Traceability of Measurements

To insure that measurements taken by different people using different physical standards or transfer devices are comparable, it is necessary that all standards of each kind or quantity be related to a physical standard maintained in a central organization such as the National Bureau of Standards. International Standards have also been established to provide interchangeability with other countries, as well. The process of relating the various standards and measuring devices maintained in each plant to the Na tional or International Standards is known as the traceability of measurcments.

Measurement Error

The measurement error is generally made up of two components-the error of accuracy and the error of precision.

The error of accuracy is a measure of the displacement of the observed value from the true value. It is a fixed and constant error.

The error of precision is a measure of the closeness together of a series of measurements of the same quantity. It is a random error and establishes the degree of reproducibility of the measurement process.

These two errors result from inadequacies of
> - A REPRINT of ANY ARTICLE in this issue is available from ELECTRONIC INDUSTRIES Reader Service Department.

MEANINGFUL MEASUREMENTS (Continued)

equipment, personnel or techniques used during the performance of the measurements.

There are other sources of error, too, which may affect, to a considerable degree, the true determination of the quantity under evaluation: One such error results from the lack of recognition during the computational process of the principle of significant figures. For example, the number 105 , with three significant figures, denotes that the value under consideration is closer to 105 than it is to 104 or 106. Yet, the number 105.0, which appears to be the same number, actually provides additional information. This number indicates that it is closer to 105.0 than it is to 104.9 or 105.1 . It therefore denotes an accuracy to the fourth significant figure. A measurement should never be recorded to more significant figures than can definitely be established by the observer. In this regard, the observer must be able to read to one figure beyond the recorded value.

When combining a series of determinations of varying degrees of accuracy, one must be careful not to introduce errors of computation. For example: Consider the sum of the series $105.0+25.14+$ 5.246. In adding these quantities, 105.0 determines the significant figures in the sum; 25.14 should be added as 25.1 , and 5.246 as 5.2 . The sum of these quantities is 135.3 , not 135.386 or 135.4.

Defining An Uncertainty

One can define the limits of permissible error in connection with any measurement. One can also determine whether it is possible to perform the meas-

Fig. 1: Genealogy of a measuring system-traceable to NBS.

urement readily within such limits. In the process, one may become aware of the factors contributing to overall error; and if practical, he can take steps to eliminate them. If not practical, he can establish a range of measured values over which the equipment under test will perform satisfactory to a specified confidence level. Thus, a measurement which can never represent the true absolute value can nevertheless be expressed as a magnitude within defined limits of uncertainty.

In manufacturing, measurements are generally made on a part to determine the closeness of a physical characteristic to a specified value. The permitted limits of uncertainty are defined and should be noted in the specification for the item being evaluated. This permissible variation is referred to as the tolerance of the parameter.

Acquiring Data

In developing a new product and in establishing the parameters which define it, the engineer usually has recourse to several methodologies:

- He may revise a previous design, using empirical data from prior experimentations or from available reference sources.
- He may generate new data to use in defining the required parameters.
- He may develop a new concept from purely theoretical considerations and calculate the required parameters.

In practice, most designers incorporate several or all of these methods. Each method contributes it's share of error to the measurement process.

When utilizing data from prior experimentation or from reference sources, the engineer must establish the quality and pertinence of these data to his current requirement.

Vendor's Data

To utilize data on a component obtained from a vendor's cata\log, the engineer must ascertain whether the catalog values were obtained under the environmental or operational conditions pertinent to his requirement. In addition, the method of measurement used by the vendor in obtaining these data, the accuracy of his test equipment and standards, the adequacy of his measurement techniques, the number of determinations taken, and many other factors, may play an important part in the pertinence to his design of published data.

The electronic industry has taken a number of steps to con-

CAPACITANCE

Fig. 2: Accuracies of measurement, based on NBS standards.
trol the valiclity of available data. As a result of the high degree of reliability required by many types of equuipment used by the military, methods of data collection and the reporting of test results have been standardized. Various government-industry committees have prepared standards for component testing, for clefining the parameters to be checked, the stress levels to be applied, the methods of test to be employed, the equipment to be used, the number of samples to be tested and finally the method of reportting the generated data. The results of these tests are accumulated in a variety of interorganizational reports which are constantly being revised and upgraded as new clata are generated.

While a substantial amount of data is available in this form, care must be exercised in its use. It is necessary for the engineer wishing to utilize these data to acquaint himself with their extent and limitations and pertinence to his application. Since this is a highly specialized area, many companies have established a central standards group within their engineering areas specializing in component data collection, component evaluation and experimentation and development of company specifications for the procurement of components. This central group then acts as a source of information to the engineer in. the utilization of reliable experimental data.

Fallacious Data

Equally important is the methorl by which the engineer develops his own experimental data. Frequently, he selects a component for his breadboard model with only an assumption of the actual value of the component parameters. On the basis of experimental results in his circuit, and on an assumption of the values of the component parameters on which his data are based, he may establish a fallacious relationship between the effect of the parameter of the component and the corresponding parameter of the design. Further, he will then specify this component for future procurement by referring to the catalog specifications for the component on his specification control drawings. (Continued on following page)

RESISTANCE

INDUCTANCE

CURRENT

VOLTAGE

MEANINGFUL MEASUREMENTS (Continued)

Taking Data

In making R \& D measurements, data are typically taken by technicians utilizing a variety of measurement techniques, often not defined and frequently inconsistent with procedures atilized in the manufacturing operation. In a typical research and development operation, written procedures and test methods are rarely developed or utilized. Test methods are generally left to the discretion of the technician performing the measurement. Consequently, it is common to find data collected by different individuals to vary in techniques and test instruments used. Thus, consolidation of such data into a single specification results in a non-constant degree of accuracy in the specified requirements.
Another source of potential error here is in the degree of laxness generally existent in the implementation of a calibration program in an $\mathrm{R} \& \mathrm{D}$ area. Because measuring equipment is often utilized for purely qualitative determinations, a rigid implementation of a calibration schedule is frequently relaxed or deferred. Thus, when quantitative data are to be taken, there is a strong possibility that some equipment may be out of calibration, which results in inaccurate measurements.

Sufficient Sampling Needed

Owing to the cost of experimentation and the lack of time available to perform all desired tests, results are often based on too few observations. As a result, the degree of precision that can only be obtained by a number of repeated measurements of the same parameters is often inadequate. Hence, the results as reflected in the performance specifications are predicted on data which have an unknown degree of reliability.

Planning the Measurement Process

Because any of the above inadequacies may contribute not only to the inability of the manufacturing personnel to meet the specified requirements, or the equipment to perform its intended function, but also to the cost of the manufacturing and measurement program, it is important that the design engineer utilize a portion of his time in the planning of the measurement process within his area of operation.
Since very often the choice of the methods and procedures utilized in the R \& D areas is dependent on the equipment available, the contribution of the inadequacy of the equipment and methods used must be considered in the plan. The plan should take into consideration the effect upon the measurement of any anticipated spurious effects of equipment, power and environment. A consideration should be given to all possible types of errors which could affect the
accuracy of the results; and, techniques should be developed, when economically feasible, which will enable the balancing out of these inadequacies.
As a result of a planned operation, the engineer will find that there are many precautions which he can take to eliminate or minimize the effects of the errors noted.

An engineer should never utilize a component unless he is knowledgeable of the actual value of the applicable component parameters to the required degree of precision. This may be done by obtaining these values by direct measurement of the component. Another way is to insure that a stock of properly inspected components represents, where possible, random samples from the high and low tolerance range and production process of the supplier of the component.

FIG. 3: THREE METHODS OF CALIBRATION USED IN A STANDARDS LABORATORY

Define the Measurement Process

To minimize the errors which may be cansed by the use of non-standard techniques of measurement, a precise definition of the measurement process should be estallished. The equipment to be used, the degree of accuracy required, the environmental conditions in which the measurements are to be taken and the manner in which the test results are to be recorded, all should be defined. This may be done through the establishment of an engineering practice which would apply to a large percentage of the standard measurements normally taken in any experiment. Specific instructions would therefore be required only for those special measurements not covered in the standard practice. The issuance of these instructions should be followed by a training program for all technicians and engineers who would be engaged in the taking of measurements. A surveillance should be made at periodic intervals to insure that the procedures and test methods are being followed.

Where such a program cannot be applied, provisions should be made to provide a meticulous entry
(by the engineer or technician in his notebook) for all data, test methods, equipment used, last calibration date, and environmental conditions under which data were taken. Also, the engineer should review these data for accuracy as well as to insure that any repeated experiments are performed in precisely the same manner. A greater degree of confidence can be had if the experiment is repeated on the same item by another technician using the same method.

Where time and cost considerations do not permit the performance of extensive observations, the limit of uncertainty resulting from the small number of determinations should be reflected in the final data. Through the use of statistical techniques, confidence limits may be calculated based on the number of sample elements. Where these limits are well within the functional requirements, it may not be necessary
the final results. The use of these techniques does not require the services of a highly trained specialist in mathematics or statistics. The literature cited in this article, as well as many other sources of information, should provide sufficient information for the average engineer to enable him to avail himself of these methods.

Defining the Test Method

In electronic testing, it is often necessary to define the method of test and the equipment utilized to insure compatibility of test results obtained by both supplier and customer. In such cases, it is customary for the specification to denote the parameters which must be evaluated and to require the vendor to submit a detailed test procedure, for approval, which defines his method of evaluating the required parame-

to perform any additional experiments. If, on the other hand, the error represents a significant effect on the desired results, consideration on the basis of the economy of the entire operation-engineering, manufacturing and functional performance of the equipment-may indicate the desirability for additional experiments. A partial solution to this problem, where time does not permit any extensive engineering effort in the R \& D phase, is to follow the results of the equipment performance during the manufacturing process. In this way, the early production operations may be considered as an extension of the engineering development efforts and the data accumulated in the manufacturing area utilized in redefining the specification requirements.

Finally, through the use of more refined statistical techniques, a highly efficient method of planned experimentation may he developed. Through the use of such techniques as Statistical Designs of Experiments, Analysis of Variances, Random Balance, etc., an economical method can be developed for the performance of only those experiments which are necessary to provide a specified degree of confidence to
ters. Thus, the buyer can evaluate the adequacy of the vendor's test methods and their compatibility with his own, while at the same time not requiring the supplier to use a specific method.

Another way to handle this problem is to establish industry-wide standards for manufacturing processes and test methods which reflect methods utilized by many organizations for many years. By referencing these standard processes and test methods (in the specification), and by permitting the supplier to define and submit for approval only those methods needed for the exceptional conditions, the desired effects may be reached with only a minimal of review and interference by the buyer.

Assigning Tolerances

In many organizations, various systems have been established for the application of tolerances. One such system is the establishment of standard "block" tolerances to relatively unimportant characteristics. Another method is the classification of characteristics by the degree of importance of the parameter to the function of the equipment. In this classification, the

NOW . . . A Reliable

MINIATURE INCANDESCENT LAMP FOR 120 V OPERATION!

This T. 2 ($1 / 4^{\prime \prime}$ dia.) lamp is mounted in a minia. ture bayonet base-one of the smallest, most reliable 120 V lamps ever offered. It will fit exist. ing equipment permitting conversion to 120 V and the elimination of transformers without complete redesign of fixtures, packaging or spacing.

This is the first small but reliable 120 V incan. descent lamp. Excellent resistance to shock and vibration with a rated life of 5000 hours enable it to out-perform larger 120 V lamps. The flat end permits increased end foot-candle output for brighter signals and the miniature bayonet base offers quick, easy installation.

New design economies-greater signal lamp efficiency are yours with this amazing new lamp.

MEANINGFUL MEASUREMENTS (Continued)

shop would be permitted to deviate from the nonfunctional attributes and only require engineering approval in the functional area.

A more recent approach is to use statistical tolerancing. This is based on the concept of substituting an economical approach for the high cost of insuring that every part will mate with its corresponding part in the assembly. The economical approach merely insures that the probability of non-mating will be relatively low. Thus, rather than assign a tolerance to each part so that the sum of the tolerances of all the parts is equal to the tolerance of the final assembly, the tolerance of the mating parts is established on the basis of the root mean square of the sum of the tolerances of all the parts.

Care must be exercised in using this approach, since in small or medium sized lots the distribution may not be normal. Often a part is machined to one extreme of the tolerance to compensate for expected tool wear. In this case, the probability that a part in the assembly area would be at one extreme of the tolerance is high and thus offsets the probability of a normal distribution. However, when the specifications require that parts be manufactured under a state of statistical control with a normal distribution around the nominal value, the use of such an approach would be most advantageous.

In mechanical applications, various tolerance systems have been established and are currently in use. Such systems as the ABC, the ISA, the establishment of Classes of Fits, and several others have been utilized quite effectively for many years. Unfortunately, no such system exists in electronic manufacture. While past usage has established some basic tolerances for the common parameters of the more frequently utilized components, the assigument of specification limits is often based on a variety of methods or factors. Thus, an engineer may establish a tolerance value for an equipment parameter based on experimental results. He more frequently will establish his value on a good estimate of the interface requirements. When he must relate this overall requirement to the detailed requirements of the components which make up the equipment, he will generally utilize values which are of questionable accuracy.
(Continued on following page)

> REPRINTS
> REPRINTS of "DESIGN GUIDE for ELECTRONIC-OPTICAL SYSTEMS"

> 4-page, 4-color wall chart of information for design engineers
> is available free-of-charge from
> ELECTRONIC SPECIALTY CO.
> Advertising Department, 4561 Colorado Blvd., Los Angeles, Calif. 90039

Pitfalls in Specifying From Catalog Data

Many component values utilized in designs are taken from supplier's catalogs. It is, therefore, natural for the engineer to merely specify the component on his bill of materials or his electronic parts lists by the vendor's name and catalog number. While this may be adequate for defining the components already in use, it does not protect the buyer from any changes which the component supplier may make in the future. The supplier is generally under no obligation to request approval from the buyer for any change in his catalog item. Thus, to protect himself, the engineer should prepare a specification control drawing, in which he defines the parameters of the components. In this way, any change in the component must be coordinated with the buyer if it affects any parameter defined on the specification control drawing.

Tolerances vs. Data Uncertainty

The tolerances assigned to a specified parameter should also reflect any degree of uncertainty in the data supplied by the design engineer. It is important that the degree of imprecision in the development process be transmitted to the specification. 'Thus, a tolerance limit will then include both the limits of uncertainty of the manufacturing process and those in design.
(Continued next month)

MEASUREMENTS BY LASER

The absolute interferometric laser calibrator performs highly accurate linear length measurements in other than laboratory environments. The Calibrator, developed by Airborne Instruments Laboratory, a div. of Cutler-Hammer, Deer Park, N. Y., operates over a linear distance of 100 in ., with an accuracy of 0.00003 in . or $0.00001 \mathrm{in} . / \mathrm{ft}$.

A gas laser operating at the visible wavelength of $6328 \AA$ is used as the light source. The laser source, optics, and photo-detectors are rigidly connected together as a unit. This assembly is mounted to the frame of the machine that will be checked out. A reflector is mounted on the moving portion of this machine. The interference fringes generated by moving the reflector are detected by photosensitive devices and counted by a high-speed forward-backward digital counter. A small digital computing system converts the fringe count into inches, and automatically corrects for atmospheric pressure.

One application of the Calibrator is as an interferometric master which can be used for checking and calibrating linear distances. It has a very high accuracy over long ranges (which is difficult to achieve with any other instrument). It is, therefore, particularly useful for checking and calibrating inspection machines and numerically controlled precision machine tools.

HOLD MOTOR SPEED TO 1\%

with d.c. power in all environments
Maintain motor speed accurately to $\pm 1 \%$ at temperatures fluctuating from $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, at any factory set speed from 3,600 to $24,000 \mathrm{rpm}$, and with voltage fluctuating from 22 to 32 v.d.c. Globe's new frequency controlled d.c. to a.c. device combines all advantages of brushless d.c. operation with unusually precise 1% speed control over wide environment variations, and within 0.5% in a constant enviroament! Speed control weighs 10 ounces, measures $13 / 6_{6}^{\prime \prime}$ high $\times 21 / 4^{\prime \prime}$ wide $\times 31 / 4$ " long.
Life can exceed 10,000 hours. Device has no moving parts or electrical contacts, and is designed to meet MIL-E-5272 for environmental protection. Fits many sizes of motors. Reverse polarity protection and transient voltage protection are available. Request Bulletin OPC. Globe Industries, Inc., 1784 Staniey Avenue, Dayton, Ohio 45404.

Circle 43 on Inquiry Card

Here's everything you need...

to properly utilize and specify the reed relay

This 56-page handbook discusses the relay principles and contact characteristics necessary for proper utilization of the Drireed switching concept. Considering the advantages of Drireed switching, this reference is one of the most valuable books you can own.
The handbook is free for the asking... write to your local Hathaway representative or write to Hathaway Instruments, Inc., 5800 E. Jewell Ave., Denver, Colorado 80222.

HATHAWAY IMSTRUMEATS, IMC.

Laboratory Accuracy in a Portable Dual-Trace Oscilloscope

A portable oscilloscope with laboratory accuracy is the result of solid-state components, tight packaging, a new CRT, and several new circuit designs The circuit designs themselves include several innovations.

Fig. 1: Type 442 Dual-Trace Scope.

Tue tektronix type +42 is classed as a laboratory oscilloscope, and was developed for field engineers and servicemen who service electronic office calculators and computers. The scope weighs 20 lbs , and can be fitted with self-contained rechargeable batteries or a de or ac power supply.

The dual-trace is ohtained by time sharing techniques. Sensitivity is $10 \mathrm{my} /$ div. on chamel 1 and lmo/div. on channel 2 with ac coupling. Response is within 3 (b) from de to 15 mc . Care has been exercised to minimize drift, obtain high common-mode
rejection, good trigger sensitivity, lightweight, and compact size.

A new rectangular cathode-ray tube is used which has low heater power, short length, a 4.5 in . diagonal screen, and illuminated internal graticule.

Circuits of particular interest are the sweep trigger. sweep generator, and de power-supply.

Sweep Trigger Circuit

The sweep trigger (Fig. 2) is an operational amplifier with non-linear feedhack. A combination

Fig. 2: Sweep Trigger. For automatic trigger mode, a 3-stage RC phase-shift network provides a feedback path around the operational amplifier. This converts it to a 45 cps phase-shift oscillator and gives a base-line display if a trigger signal is absent.

Si-Ge diocle circuit in the feedlack path limits the output swing to approx. $\pm 0.5 \mathrm{v}$., and is established by the difference in forward drop of Ge and Si diodes. The circuit also protects the input transistor from large input transients. The gain is roughly unity before limiting, and $1 / 10$ th beyond. loor automatic trigger mode, a three-stage RC phase-slift network provides a feedlack path around the operational amplifier. This converts it to a +5 cPS phase-shift oscillator and produces a base-line display in the alsence of a trigger signal. When a 0.4 v . trigger signal occurs, the 45 crs oscillation ceases. Λ standardized sweep-trigger pulse is generated by a tunnel diode driven through a arounded emitter stage (Q27) from the operational amplifier. The trigger tumeldiode pulse switches the sweep, tumel diode through a coupling transformer and a pulse gating diode.

During the rise and return of the sawtooth pulse, the trigger-pulse gating diode is reverse biased and prevents any trigger pulses from interfering with the sawtooth pulse generator (Fig. 3). After the return of a sawtooth pulse to normal, the gating diode is zero biased, permitting a trigger pulse to change the sweep tumel diode to its high state.

Sweep Generator Circuit

The sweep generator (Fig. 3) is basically a Miller run-up integrator with de feedlack in the interval
between sweeps. The de feedback amplifier (Q29, Q30) is turned off when the sweep tumel diode fires. allowing the sawtooth pulse to rise. As the sawtooth reaches peak amplitude, the sweep-length tumnel diode fires, causing $Q 31$ to shunt the bias current to the sweep tumel diode. It switches to the low state, causing the sawtooth generator to return toward normal state. As normal state is approacherl. the de amplifier operates and the normal level is hedd by the direct coupled loop. Bias for the trigger gating diode is estallished by the state of this de amplifier. The trigger gate diode is zero biased only if the de amplifier is operating. This occurs when the sweep is held at the normal level.

Battery Power Supply

The battery operated supply (Fig. +) is somewhat unconventional in that a highly efficient duty cycle regulator and de-de converter are combined. The power transformer is also the energy storage inductor.

Here's how it works. First one transistor (Q33) switches on, putting nearly the full supply voltage across half the primary. The current increases at a uniform rate until the transistor switches off. Then the voltage on all windings rises rapidly to the regulation level where the output rectifiers will conduct. The energy stored while Q33 was on is now transferred to the filter capacitors and the load as the

Fig. 4a: In battery supply. a duty cycle regulator and de-de converter are combined.
secondary current falls uniformly to zero. As the current reaches zero, the voltage should fall to zero. This does not happen because the inductance rings a cycle or so with the stray capacitance. After a brief interval, transistor Q34 switches on and the same series of events occur except in the opposite direction.

Fig. 4b: Idealized power supply waveforms.

Thus there is no net dc component in the transformer. As the supply voltage varies, the on period of the switches varies inversely and delivers constant energy impulses to the filter capacitors.

The control circuits are normally powered by the regulator. But for start up, control-circuit current is drawn through series regulator Q 42 . Once the duty-cycle regulator starts, $Q 42$ is disconnected. Since the control and switch circuits are floated with respect to instrument ground, either input power terminal may be grounded. In the control circuit a free-running 8 Kc blocking oscillator (Q38) periodically turns on the lma tunnel diode, and simultaneously shifts the state of flip-flop Q29 and Q30. After the blocking oscillator (BO) fires, the tunnel diode remains on for a period deternined by the combination of currents from the BO timing capacitor (decreasing uniformly) and from error amplifier Q35, Q36, Q37. If the secondary voltage is low, the diode stays on longer. The diode pulse is then amplified by Q39 and Q40 and fed through the coupling transformer. It operates one or the other of the main switching transistors as determined by the state of the flip-flop.

ELECTRONIC INSTRUMENT, built by Varian Associates for earth magnetic field research in the U.S. space program, is helping archeologists map a 2,500 -year-old Greek settlement in Italy. The device, a rubidium magnetometer, is more than 100 times more sensistive than any other instrument used in archeology. The settlement is believed to be lalf-legendary Sybaris. The instrument clearly defines outlines of ruins 15 feet below the water table near the Ionian Sca.

S-BAND CIRCULATOR developed by Raytheon Company has been delivered by jet aircraft and helicopter to a new weather radar atop Japan's two-mile high Mt. Fuji. The 5 -kw circulator provides a threcfold safety margin for the radar whose 500 -mile range covers 90% of the nation. System is fully controlled by microwave link from Tokyo, 60 miles away. Up on Fuji, winds top 200 mph and temperatures drop to minus $32^{\circ} \mathrm{F}$.

EXPERIMENTAL PROGRAM to study how computers can meet student learning needs-kindergarten through post graduate-has been launclied by Florida State University, the State of Florida, and IBM. Using a keyboard torminal link with IBMI lalss in Yorktown Heights, N. Y., FSU's experiment uses programmed instruction in sequences, with answers supplied where needed, in conjunction with texts.

RECORDED SOUND Encyclopedia is an ambitious project now underway by the National Association of Broadcasters. According to NAB, this "sound barrier" consists of an utter lack of knowledge of the wherabouts of millions of sounds recorded on film. cylinders, discs, wire and tape during the past 40 years or so. NAB is now circularizing archivists, collectors and others for data.

ELECTRONIC RECOGNITION will cuable the Duluth, Missabe and Iron Range Railway Co. to identify and sort its 9,500 pieces of rolling stock at high speed. The system, supplied by Sylvania Electric Products, Inc., uses an unmanned trackside scanner to pick up reflected light from special "labels" on each car. Data is fed to a central point. System can read the ore car labels at $100 \mathrm{mpl}_{1}$ in blinding rain and snowstorms, day or night.

Anadex counters are designed to solve the counting and control job you have now, not the one you might have tomorrow. Anadex does not second guess you with costly functions that are unnecessary for the counting and control job at hand. Anadex gives you a smaller compact counter only $1 \frac{3}{4 \prime \prime}$ high with solid-state reliability and over thirty-five standard models with fifteen options. Now, isn't that all you really want in a counter? Of course, it is. When a counter with these features and a price that makes sense will do the job at hand, why pay for a lot of unnecessary functions? Send for our counter catalog and see how you can give your company the right counter at the best price. After all, isn't that what really counts.

Thousands of engineers are using the SOLA MULTI-TAP CV constant voltage transformer for research, prototyping and short run production

- Provides power source for ac or dc outputs or a combination of both; approximately 3.5 to 32.9 vdc or vac.
- Regulates line voltage to $\pm 1 \%$ or less, is current limiting and has primary voltage isolation.
- A valuable tool in designing and testing all types of circuits where regulated voltage is types of
needed.
- Saves time, money, inventory costs and space. Purchase cost is also less.
- Taps arranged so that voltages may be tapped from minimum to maximum in in. crements of about 10%.
- Available in six ratings: 40, 75, 150, 225, 300 and 450 va.
- Write for Bulletin CV-175R or contact your distributor for off-the-shelf delivery.
- Sola products are cataloged in VSMF and in Thomas' Micro-Catalog.

Divisıon of Basic
Products Corporation
SOLA ELECTRIC CO.
1717 Busse Rd.. Elk G̈rove, III., HEmpstead 9.2800
IN CANAOA: SOLA BASIC PROOUCTS, LTO.,
377 Evans Avenue, Toronto 18, Ontario

Industry's voltage regulation headquarters

Here's how l'd like to use the Sola Multi-Tap CV transformer; send me the facts covering this application.

NAME \qquad
title
COMPANY \qquad
ADDRESS
CITY \qquad
\qquad

London-The first magnetic tape computer system ever made in Scotland has been delivered to Management Computing Services Ltd., London. The system, a Honeywell 400 , was made at the Newhouse, Lanarkshire plant of Honeywell Controls Ltd.

Paris-Compagnie Generale de Telegraphie Sans Fil (CSF) and General Dynamics Corp. have joined forces in France; CSF holds majority interest. The new firm, called Societe D'Equipements Spatiaux et Astronautiques, will design and make satellite tracking gear.

Rome-Sigma Schede s.p.a., leading data processing agents in Italy, and agents for COMPUTRON, INC., Waltham, Mass., held a two-day meeting in Rome for representatives of 118 user firms.

Stuttgart—The 1965 Radio-Products Fair, an exhibit of the electronic achievements of the German radio industry, has been scheduled for Stuttgart's Killesberg August 27 to September 5, 1965.

Hamburg-Radar detectors and a traffic analyzer control made by Telefunken A.G. are being tested at a busy Hamburg intersection to speed traffic and eliminate congestion; lights remain green where traffic is heaviest.

Amsterdam-Data Products Corp. has opened a European sales and service office in The Netherlands, in the international area of the Amsterdam Schiphol Airport.

Tokyo-Mitsubishi, Ltd. has ordered more than $\$ 500,000$ worth of DISCfILES® from Data Products Corp., Culver City, Calif.

Tokyo-Nippon Petrochemicals Company and The Bunker-Ramo Corp. announced that the Bunker-Ramo 330 control computer system at NPCC's Chidori ethylene plant in Kawasaki has shown considerable savings, and that all requirements have been met.

Sidney-Qantas, one of Australia's largest airlines, is fitting the latest Marconi doppler navigator, type AD560 , in its fleet of aircraft, for its new route to London via Fiji, Tahiti, Mexico City and Bermuda.

Chilton Company
Chestnut \& 56th Sts.
Philadelphia, Pa. 19139

[^4]
豨 FEB

CIIY，STATE \＆ZIP

Company
Mail Stop／or
Dept．，Div．

Street

City
city

State \qquad $Z i p$ \qquad DRESS

 UNOOSTRUES
1．Do you wish to continue receiving ELECTRONIC INDUSTRIES？Yes＿－No－ Signature＿＿＿＿＿Title
2．Check－ONE－box for your PRIME FUNCTION

$\begin{array}{\|l} \text { Pres., V.P.'s, Chiefs, } \\ \text { Directors, Dept. Heads, } \end{array}$Mgrs. EAstt.			desicn enginetring						$\begin{aligned} & \frac{8}{3} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \frac{5}{5} \\ & \frac{1}{4} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \text { 空 } \\ & \frac{3}{3} \\ & \frac{8}{2} \end{aligned}$	$\begin{aligned} & \text { 를 } \\ & \frac{2}{2} \\ & \frac{2}{6} \end{aligned}$	导 豆	$\underset{\sim}{\ddot{D}}$	$\frac{3}{8}$		\％	\％03330088	
			$\begin{aligned} & \frac{2}{3} \\ & \frac{3}{4} \end{aligned}$			$\frac{\text { E }}{5}$														\＃
A	${ }^{8}$	c	0	E	F	G	H	1	\times	m	N	P	n	\＄	r	v	W	x	γ	z

3．Check－ONE－box for your plant＇s PRIME nature of business

MANUFACTURING INDUSTRIES
－（01）Computers，Data Processing \＆Periph eral Equipment Mfr．
［（02）Communication Systems \＆Equipment Mfr． －（03）Consumer Electronic Equipment Mfr．
－（04）Industrial Control Systems \＆Equipment Mfr．
（05）Navigation \＆Guidance System Mfr．
（06）Test Meassurement \＆Instrumentation Mfr．
\square（07）Aircraft，Ground Support，Missile，Space vehicle \＆Undersea Access \＆Equipment Mr．not covered in other product classifications
\square（08）Component Mfr．
－（09）Sub．System Assembly Mfr．（Modules， Assembled Circuits）
（10）Materials \＆Hardware Mifr．
\square（11）Industrial Co．Using or Incorporating Any Electronic Equipment in Their Manutacturing．Re search or Development Activities．（Other than Electronic Co．）

NON MANUFACTURING INDUSTRIES －（12）Commercial Users of Electronic Equipment \square（13）Independent Research，Test \＆Desig： Laboratories \＆Consultants（Not Part of a Manufacturing Company）
（14）Government Agencies \＆Military Agencies －（15）Distributors，Mfr，Representatives －（16）Education \＆Libraries Other（explain） \qquad

4．This Address is（check most applicable）
\square Mig．Plant（＊）\square Mfr＇s R\＆D Lab．（\＆）\square Other（explain）
If address shown is your horne，where is your company located？

NEM subscription Order

Company

E［EGTROMNG

Mail Stop／or
Name
Company
Address
City
State
Zip． \qquad

1．I wish to receive ELECTRONIC INDUSTRIES

3．Check－ONE－box for your plant＇s PRIME nature af business
MANUFACTURING INDUSTRIES
［］（01）Computers，Uata Processing \＆Peripheral Equipment Mfr．
（102）Communication Systems \＆Equipment Mfr
－（03）Consumer Electronic Equipment Mfr
－（04）Industrial Control Systems \＆Equipment Mfr． －（05）Navigation \＆Guidance System Mir．
\square（06）Test Measurement \＆Instrumentation Mir．
\square（07）Aircraft，Ground Support，Missile，Space Vehicle \＆Undersea Access \＆Equipment Mir，not covered in other product classifications
－（08）Component Mfr．
－（09）Sub．System Assembly Mfr．（Modules， Assembled Circuits）
\square（10）Materials \＆Hardware Mfr
\square（11）Industrial Co．Using or Incorporating Any Electronic Equipment In Their Manufacturing．Re－ search or Development Activities．（Other than Electronic Co．）

NON MANUFACTURING INDUSTRIES

－（12）Commercial Users of Electronic Equipment
［（13）Independent Research，Test \＆Design Laboratories \＆Consultants（Not Part of a Manufacturing Company）
\square（14）Government Agencies \＆Military Agencies ［（15）Distributors，Mfr．Representatives （16）Education \＆Libraries －Other（explain） \qquad

ω	ω	ω	$\omega N N N N N \sim N$
∞			
0	0		
0	0	N	

\square Mig．Plant（＂）\square Mfr＇s R\＆D Lab．（ $\&$ ）Other（explain） If address shown is your homr where ta your company loceted？
słonposd məu 子noqe uo！feusojul •
 ${ }^{\circ}$

을 을 \cdots

BUSINESS REPLY MAIL

No Postage Stamp Necessary If Mailed in U.S.A.

POSTAGE WILL BE PAID BY

P. O. Box 9801

Philadelphia, Pa. 19140

BUSINES! REPLY MAIL

POSTAGE WILL BE PAID BY

Chilton Company
Chestnut \& 56th Sts.
Philadelphia, Pa. $191: 39$

This looks like the year for ingrated circuirs. Thus, the editors will be surprised if this isn't the most significant technical conference of the year. According to General Chairman, James B. Angell, every effort is being made to present only state-of-the-art material and forecasts of things to come. It surely looks as though anyone in our industry who isn't "with it" in the area of integrated circuits will be truly obsolete almost immediately! The field is moving so fast that even the exponential growth of transistor technology looks tame by comparison.

Unfortunately, only a digest of the technical papers will be available at the time of the Conference. Some of the papers may never be published in their entirety, although the best undoubtedly will; bat, when is the question.

One of the truly hot subjects to be thrashed out is the one of hybrid circuits vs silicon monolithic circuits. Proponents of each will staff a panel on the subject on Wednesday afternoon, Feb. 17. Included on the panel will be E. M. Davis, Manager of Component Development at IBM, Poughkeepsie; E. A. Sack, Manager of Engineering for The Microelectronic Division at Westinghouse, Baltimore; J. M. Goldey, Head of Silicon Development at Bell Telephone Labs., Murray Hill; E. A. Thomas of General Instrument Corp.; J. S. Kilby of Texas Instruments ; J. T. Last of Amelco; and G. C. Moore of Fairchild. There seems little doubt that most everyone agrees that the monolithic circuit is the way things will be done in the long term future; yet, there is much disagreement on the near future.
Informal discussion sessions on Wednesday and Thursday evenings should be very worth attending, also. Knotty subjects are to be argued like linear integrated circuits, the impact on training of engineers and scientists by the evolution of integrated circuit

Over 80 scientists, engineers, and educators will present papers at this year's ISSCC. The program will be held at both the University of Penna. and the Sheraton Hotel from February 17-19.

General Chairman James B. Angell is a Professor of Electrical Engineering and Director of the Solid-State Electronics Laboratories at Stanford University.

Program Chairman Gerald B. Herzog is Head of Solid-State Computer Devices Group, RCA Laboratories, Princeton, N. J.
technology, progress in thin film active elements, circuit analysis problems, and the merits of various forms of Integrated Circuits.
Those who will discuss special problems of linear integrated circuits include G. J. Herskowitz of Bell Telephone Labs., W. E. Newell of Westinghouse Research Labs., G. Danielson from the Electronics Laboratory of General Electric Co., L. Housey of Texas Instruments, R. R. Wyndrum, Jr., of Bell Telephone Labs., and M. Kahn of Sprague Electric Co .

What will happen to engineers as a result of the impact of integrated circuits will be discussed by R. L. Pritchard of Stanford Electronics Laboratories, Stanford U., R. R. Webster of Texas Instruments, S. K. Ghandhi of RPI, D. Pederson of the University of California, and T. R. Finch of Bell Telephone Labs.
Merits of the various forms of integrated circuits will be considered by a panel composed of A. Shostak and R. Wilcox of the Office of Naval Research, J. J. Suran of General Electric, S. S. Vigliane and D. Joseph of Douglas Aircraft Co., and W. Gorke of (Continued on following page)

Requires Minimum Panel Space (mounts on 2" centers)
The new Series 360 IEE readout provides display characters up to $2^{\prime \prime}$ in height. These indications are clearly legible from over 50 ft . and meet human engineering requirements for distant viewing. Despite the jumbo characters, the device is only $3^{\prime \prime \prime} H$, $2^{\prime \prime}$ W, 73/4" D.
The new readouts operate on the same principle as other single-plane IEE readouts: each is a miniature rear-projector using 12 incandescent lamps, film with up to 12 messages (one per lamp), lenses, and a oon-glare viewing screen.
Smaller IEE readouts offer maximum character heights of $5 / 8^{\prime \prime}$ and $1^{\prime \prime}$. A larger model displays $33 / 8^{\prime \prime}$ high characters.
important features of all iee rear-projection readouts:

- SINGLE-PLANE PRESENTATION for visual crispness, wideangle readability. Only the message that's "on" is visible. - INFINITE DISPLAY VERSATILITY including colors, symbols, numbers, letters, words-anything that can be put on film. 12 MESSAGE POSITIONS PER READOUT that may be displayed individually or in combination.
- MOST READABLE CHARACTERS that meet any Mil Spec or commercial requirement.
- EASY OPERATION direct from straight decimal input or through low current driver/decoder for conventional binary codes. SEND TODAY FOR COMPLETE INFORMATION

INDUSTRIAL ELECTRONIC ENGINEERS, INC
7720 Lemona Avenue - Van Nuys, California Phone: (213) 787.0311 • TWX (213) 781-8115 Representatives in Principal Cities
Circle 47 on Inquiry Card

Circle 48 on Inquiry Card

SOLID-STATE CIRCUITS CONFERENCE (Continued)

the Institut fur Nachrichten-verarbeitung, Karlsruhe, Germany.
Microwave transistor circuits will be discussed by R. S. Englebrecht and A. E. Bakanowski of Bell Labs, F. A. Brand of the U. S. Army Signal R/D Lab., M. J. O. Strutt of the Federal Institute of Technology, Zurich, Switzerland, R. R. Webster of Texas Instruments, and M. Caulton of RCA Laboratories.
Current work in micropower circuit technology ($1-10 \mu \mathrm{w}$) is the subject of a discussion moderated by J. D. Meindl of the Semiconductor/Microelectronics Branch of the U. S. Army Electronics Labs. Others on the panel are R. H. Baker, MIT Center for Space Research, W. F. Sarles of MIT Lincoln Lab., R. Seeds of Fairchild Semiconductor, H. C. Lin, Molecular Electronics Div., Westinghouse, R. D. Lohman, Electronic Components and Devices Div. of RCA, and N. Miller of Motorola Semiconductor Products.
Discussing the problems of thin film active devices for microcircuits will be G. Abraham of the U. S. Naval Research Laboratory, G. B. Herzog of RCA Labs, R. W. Downing of Autonetics, J. P. Spratt of Philco Scientific Lab., T. Longo of Transitron, G. Diemer of Philips Research Labs., Eindhoven, H. L. Wilson of Melpar, and J. Lindmayer of Sprague Electric.
(Continued on following page)

METALIZED MYLAR CAPACITORS
Unique, self-healing units that remain in circuit during voltage surges with little or no loss of electrical properties. Use the M2W's where size and weight are limiting factors and long life and dependability are required. The units utilize metalized Mylar* Dielectric with film wrap and custom formulated epoxy resin end fill. Available in round and flat styles.
*Du Pont Trademark for Polyester Film
Send for Complate I nformation
Manufacturers of Hi-Quality Capacitors for the Electronics Industry

CONDENSER
CORPORATION
DEPT. El-2, 3749 N. CLARK STREET, CHICAGO, ILLINOIS
Circle 49 on Inquiry Card

Recent developments in techniques and circuits for generation of high frequency and microwave power using transistors, varactors and other solid state clevices will be critically examined with emphasis on varactor multipliers by a panel consisting of R. P. Rafuse of MIT Research Lab of Electronics, T. M. Hyltin of Texas Instruments, E. H. Speinbrecher of MIT, E. M. Snider of MIT Lincoln Lab., D. B. Leeson of Hughes Aircraft Co., and H. W. Andrews of Bell Telephone Lals.
A panel discussion most pertinent to those working on problems of practical integrated circuit hardware

- A REPRINT of ANY ARTICLE in this issue is available from ELECTRONIC INDUSTRIES Reader Service Department.
is entitled, "Specifying Digital Integrated Circuits." Moderated by P. G. Thomas of Sperry Rand, other panel members are G. Liecke of Texas Instruments, J. A. Narud of Motorola Semiconductor, H. Bloom of Fairchild Semiconductor, J. Fort of National Cash Register, J. Payton of Litton Industries, and E. J. Rymaszewski of IBM.

The program will consist of 48 papers and thirteen evening sessions. Meeting will be held at both the University of

Pennsylvania and the Sheraton Hotel The following is a list of the papers that will be presented:

Technical Papers Program

SESSION	PAPER
(Integrated Digital Circuits) Irvine Auditorium February 17	- Non-Saturating Monolithic Logic Circuits with Improved Stability. - An Integrated Decade Counter and Binary to Decimal Decoder. - High Speed DTL Logic. - Nanosecond Monolithic TTL Gate. - An Integrated Gated Differential Amplifier for High-Speed Variable Store Digi Detectors.
(Microw Univer Museum February 17	- Balanced Transistor Amplifiers for Precise Wideband Microwave Applications. - A Tantalum Film Gc Amplifier. - Lower Limit of Preamp Noise due to Pump Heating. - A Microwave Tunnel-Diode Amplifier in Stripline. - Resonator Tuning Using Semiconductor Diodes.
Irvine Auditorium February 17	Keynote Panel Discussion: Hybrid vs. Silicon Monolithic Integrated CIrcuits.
IV (Digital Circuits and Devices I) Irvine Auditorium February 18	- Systematic Modeling of Solld-State Devices and Integrated Circuits. - A New Charge Control Equivalent Circuit for Diodes and Transistors and its Relation to Other Large Signal Models. - Variable Threshold Logic Family. - Snap Diode Applications: Some Versatile Fast Pulse Generators.
(New Devlce Techniques) University Museum February 18	- CW Microwave Oscillations in GaAs. - Isolators Using Semiconductors. - GaAs Laser Inverter. - Frequency Modulation of GaAs Diode Laser. - Avalanche Multiplication in InAs Photodiodes.
\qquad (Radiative Interconnections) Fine Audity February 18	- The Photon's Impact on Computing Processes. - An Optically-Coupled Digital Integrated Circuit. - Radiative Interconnections of Solid-State Circuit Arrays. - A New Semiconductor Light-Actuated Chopper. - Avalanche Luminescence in Silicon and its Utilization in a Monolithic Light Source Array.
$\begin{gathered} \text { VII } \\ \text { (Special Circuit } \\ \text { Considerations) } \\ \text { University Museum } \\ \text { February } 18 \end{gathered}$	- Analog Circuit for Determining the Ratio and Product of Two Time Functions. - Thermal Feedback and 1/f-Flicker Noise in Semiconductor Devices. - Circuit Control of Microplasma Switching in Avalanche Diodes. - A Low-Power High-Efficiency DC to DC Converter. - Response of Linear Complementary Symmetry Amplifiers to Pulsed X-Radiation.
VIII (Digital Circuits and Devices II) Irvine Auditorium February 19	- The MOS Transistor. - MOS Micropower Complementary Transistor Logic. - The Use of Insulated Gate Field Effect Transistors in Digital Storage Systems. - A 110-Megabit Gray Code to Binary Code Serial Translator. - A Ferroelectric Transcharger-Controlled Electroluminescent Matrix Display.
IX (High-Frequency Amplifiers) University Museum February 19	- Tuned Noise Figures of Transistors at High Frequency in Grounded-Base and Grounded-Emitter Configuration. - A Transistor Amplifier with 500 MC Bandwidth. - Tunable Resonant Circuits Suitable for Integration. - An Evaluation of the Dielectric Isolation Technique for Linear Circuits. - A Wide-Band AGC Block Suitable for Integrated Realization.
(Microwave Circuits II) Irvine Auditorium February 19	- Design of the Hot Carrier Mixer and Detector. - Aluminum Alloy Junction Backward Diodes in Microwave Detection Systems. - The Transient Microwave Impedance of PIN Diodes. - Solid-State 1-Watt FM Source at 6 Gc. - Design and Evaluation of a Microwave Tripler.
(Low Level Amplification) University Museum February 19	- A Method of Enhancing Gain Stability and Linearity of Transistor Amplifier Systems. - Gain-Compensated Logarithmic Amplifier. - An Integrated Buffer Amplifier. - A Low Noise Integrated Amplifier with Novel Biasing Scheme and Structure.

Assignments are available in both these locations:

Mr. Gerald Caywood, Dept. El-1w Boeing Airplane Division 4300 East MacArthur Road Wichita, Kansas 67210

Mr. Tom Sheppard, Dept. EI.1w
Boeing Airplane Division
P. O. Box 707

Renton, Washington 98055

ETEANE
AIRPLANE DIVISION
wichita, kansas a renton, washington

Here are interesting challenges with betine Airplane Division

Opportunity and responsibility to engineers qualified to accept immediate staffing requirements for the following assignments are offered in the firm's Airplane Division with locations at Wichita, Kansas and Renton, Washington.
FLIGHT CONTRDL SYSTEMS - Establish design criteria and specifications for flight control systems, subsystems and components; selection of components; and monitoring of flight test.
CONTROL DYNAMICS - Servo control analysis to develop automatic terrain-following concepts, load-alleviating stability augmentation systems and automatic flight control systems. Experience in analog computer programming and familiarity with digital computer techniques.
ENVIRONMENTAL CONTROL - Heat transfer analysis with application to air cycle conditioning of jet aircraft. Emphasis upon avionic equipment conditioning to develop new environmental conditioning concepts. ANTENNA SYSTEMS - Design, performance
evaluation, and analysis of radome, antenna, and RF transmission systems. Experience in antenna, radome, or wave propagation.
navigation and guidance systems Analysis of electromechanical systems and derivation of system transfer functions to quantitatively predict system performance. Experience in feedback control systems.
RADAR TECHNOLOGY - Perform analytical studies of airborne reconnaissance sensors, data processing, and digital transmission techniques as pertain to beyond-line-ofsight transmission of high density information.
WEAPONS DELIVERY SYSTEMS - Analysis of weapons delivery problems and solution techniques. Establish requirements of systems, select equipment by trade-off studies and system analysis, and present results for proposed new weapon delivery system.
ELECTRICAL SYSTEMS - Design and load analysis of aircraft electrical power generation systems. Experience in power factor and load balancing parameters.

OTHER POSITIONS AVAILABLE IN: FLIGHT TEST OPERATIONS - FLIGHT TEST INSTRUMENTATION - FLIGHT TEST DATA PROCESSING - ELECTRONIC COUNTERMEASURES
All positions require a B. S. or advanced degree in engineering, physics or mathematics.

ENGINEER, R\&D EXECUTIVES MORE MOBILE THAN EVER

Engineering and R\&D executives today are more mobile than ever beforc. Moreover, those who change companies, rather than stay put, tend to earn higher incomes.
These are key findlings from a nationwide job mobility survey by Kiernan \& Company, Inc., an international executive recruiting firm. Hundreds of executives in a cross-section of large and small firms were questioned. Results show a significant increase in number of executives who move around.
R\&D executives in particular are highly mobile, the survey reveals. More than 50% of the R\&D men queried moved to their present jobs from other companies. The same figure is cited for marketing executives, reputed to be among the most mobile in industry. The engineering group ranks just below the R\&D group in job mobility.

Most executives in the study feel that they contribute their greatest value by staying put, but that the way to earn big salaries these clays is to change jobs.

ENGINEER WAGES RISE 2.9\%, REPORTS LABOR SURVEY

Engineering salaries in private industry rose 2.9% between March 1963 and the same period in 1964, according to a survey by the U. S. Bureau of Labor Statistics.

Conducted annually to determine federal salary policy, the survey reveals that engineering rates have increased by 10.2% since the spring of 1961. The survey is conducted to show median salaries for eight levels of professional engineering responsibility and qualification. It also covers chemists, technicians, draftsmen, and many other fields.

The full survey, entitled "National Survey of Professional Administrative, Technical, and Clerical Pay, Feb-ruary-March 1964," is available for 40ϕ from Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402.

Dr. Herbert Trotter, Chairman of Ceneral Telephone G Electronics Inc. demonstrates prototype of blackboard-by-wire system that allows teacher in one location to communicate with students miles away. Dr. Trotter suggests system as part answer to modern education problems. Combined system including TV, telephone lectures, and blackboard-by-wire may alter present teaching methods.

NEW SENATE BILL MAY HELP EASE DEFENSE CUT EFFECTS

The Senate has taken action on the National Economic Conversion Act, a bill aimed at easing the impact of defense contract cancellations on firms and employes.

Under the plan, a National Economic Conversion Commission (cabinet members and federal agency heads) would study government action and policy plus their effects on national manpower and industry.

The bill would require each defense contract or grant to include provisions requiring contractors to set up internal industrial conversion committees. Such groups would be charged with planning for conversion to civilian (industrial and consumer products) work arising from curtailing or ending of contracts.

[^5]
STARTING SALARIES UP, BUT RANK LOW AS JOB LURES

A survey of 1964 graduating seniors at the University of Detroit showed that while starting salaries for engineers in all fields were up significantly over 1963, salary ranked a poor fifth among primary reasons given for jol) selections.

Average monthly starting salaries listed were $\$ 626$ for B.S. engineers, up from $\$ 604$ in 1963. Primary factors affecting job selections were "type of work," followed by "location," "type of work employer does," "advancement," and "salary."

Among various conclusions from the survey, employers without graduate schools nearby might have difficulty hiring engineering graduates.

NO SHORTAGE, SAYS HOUSE; SUGGESTS SPECIAL STUDY

House Select Committee on Government Research has come to the conclusion that the U. S. is not reaily suffering from a shortage of engineering or scientific manpower except in a few specialized areas. The Committee does find, however, that data on future needs is scanty and that severe shortages could develop.
The Committee suggests a single Government agency be formed with specific resopnsibility and authority to coordinate various federal efforts to provide information on engineering and scientific manpower.

TECHNICAL HELP DEMAND HITS PEAK IN OCTOBER

An upswing in recruiting activity in October pushed the Deutsch \& Shea Engineer/Scientist Demand Index to its highest point in 1964 to 87.4. The Index remains well under the 100.0 of the base year, 1961, and is 9.8 points below the October 1963 figure.
Behind the rise in the Index is an apparent renewal of recruiting effort by U. S. industry, especially in the East and the Midwest. D\&S expects the demand will register about the same level for Noveniber, with a sharp seasonal drop showing in December.

Writing Persuasive Proposals

The successful proposal is the one that convinces the prospective customer that he should invest his money in your products or services. Above all things, to be successful, the proposal must be persuasive. To a large extent this involves being responsive to the RFQ (request for quote). Another way of saying this is; "give the requestor exactly what he asks for."

Do not make the mistake of telling him that what he is asking for is not really what he wants. Right or wrong, no one likes to be told that he doesn't want what he thinks he does want. Of course, after responding to the potential customer's needs, there is nothing wrong with alternate solutions or methods providing that you can justify them.

A proposal differs from a technical paper because the latter is required only to inform the reader. The proposal must also sell. It must impress the prospective buyer(s) or evaluator(s) who are faced with reading several, all containing more-or-less the same information. The evaluator(s) then has to decide which has a practical solution to meet his detailed needs. For this reason, statements in the proposal must be supported by facts and discussions. The best argument is the one that allows him to identify your contentions with basic scientific principles directly related to solving his problem at a fair price.

Important Points

1. Successful proposals usually have the following:
a. Interest-They command the evaluator's attention and awaken customer interest with the direct statement that his problem will be solved by your product. (Responsiveness to RFQ most important.)
b. Proof-They prove that your technical approach will meet his needs. (Persuasiveness very important.)
c. Completeness-They leave no doubt that all pertinent questions have been answered.
d. Accuracy-They make no statement that independent observers cannot confirm by referring to basic physical theory.
e. Brevity-They are short enough to hold reader interest throughout.

When preparing a proposal, you must remember that, if the text is not readily comparable, in detail, with the Technical Exhibit and other RFQ documents, the evaluator will abstract the proposal and base his evaluation on this. Abstracting is often used even when the proposal is readily comparable with the RFQ. The abstract is more likely to present your view if you provide a "Locator" or "Specification Cross Reference" to insure that the evaluator does not miss any important discussions.
2. Three distinct types of perstasive "proof" discussion should be used. The use of all three types is

Fig. 1: Flow diagram shows the proposal preparation process from the decision to bid, until the package is completed and sent to the evaluators in buyers company or organization.

All companies are eventually faced with the problem of submitting proposals. These proposals must be intelligent, logical and effective. The material here is an excellent guide for engineers required to help prepare such proposals.

OSCAR L. WADKINS
Mgr. of Marketing, TEMEC Div.
ROBERT E. KING
Dir. Tech. Publications
Cubic Corp.
very important. These are: ethical proof, logical proof, and emotional appeal.
a. Ethical Proof-Write from an authoritative standpoint to instill a belief in what you are saying, and a confidence in your company. Sincerity, wellestablished facts. completeness, and the absence of contradictions must be evident.

1. Logical Proof-Show the reader, through facts and the supporting material. that the discussion is not merely your opinion, but is based upon established principles and/or previous tests.
c. Emotional Appeal-Treat the evaluator as an important human being, not a logistic machine. Make him aware of your interest in his problems. It is your jol to show him that you appreciate his position as an entrusted employee. You must also convince him that you are trying to assist him hy proposing the lest product or service at the most reasonable price. A zeord of advice here: this is a sensitive area. Don't be maudlin or phoney. You must be assured that the evaluator(s) is assigned to his jol, because of a proven ability to handle it. If you do not feel this way, you had better try some field other than proposal writing.

Slanting the Proposal

As a proposal writer, or as an engineer assisting, you will probably be responsible for witing the introductory and technical portions. The front matter
such as the title page. table of contents, etc., will usually be prepared liy the proposal or technical publications group. Thee management portion will usually be handled by personnel familiar with this. Yon may have to assist with the scheduling and pricing information. But, your primary interest will be the technical presentation. For this reason. the remainder of this article is concerned with the following general headings:
a. The Introduction
b. Analysis of the Problem
c. Stummary of the Technical Approach
d. Detailed Technical Approach

The Introduction

Before writing this section. you should first realize that the executive reader will seldom read the entire document. Usually the higher his rank, the less he will read. Some top executives will read only the Introduction; others may read the Summary of the Technical Approach. It may seem hest to combine the Introduction, Analysis of the Problem, and the Summary of the Technical Approach. Here you must make a decision dependent upon the scope of the product or service being proposed. If combining these elements makes this portion of the proposal too long, do not do it.

The introduction must do the following:
(Continuted on page 115)

Professional Profile

The ELECTRONIC INDUSTRIES Job Resume Form for Electronic Engineers

Name

\qquad Tel. No. \qquad
Street
Address \qquad Zone \qquad
Clity State \qquad
\square Single
\square Married
\square Clitizen
\square Non-Citizen
Date of Birth \qquad
Will Relocate \square Yes \square No. If Yes \square Another Clty \square Another State

Salary Desired to Change Jobs In present area \qquad
Salary Desired to Change Jobs and relocate in another area
Professional Memberships

SIGNIFICANT EXPERIENCE AND OBJECTIVES
STATE ANY FACTS ABOUT YOURSELF THAT WILL HELP A PROSPECTIVE EMPLOYER EVALUATE YOUR EXPERIENCE AND JOB INTERESTS. INCLUDE SIGNIFICANT ACHIEVEMENTS, PUBLISHED PAPERS, AND CAREER GOALS.

Mail to: ELECTRONIC INDUSTRIES—Professional Profile-56th \& Chestnut Sts.-Philadelphia, Pa. 19139. This resume is confidential. A copy will be sent only to those Companies advertising for engineering personnel in this issue, whose number you circle below.

WRITING PROPOSALS (Continued)

a. Respond to the RFQ (identify the proposal with the customer's need).
b. Introduce your company or tean to the evaluator (s). Point out your company's history of good management-refer to successes with similar programs.
c. Express the reasons for your interest in the program.
d. Review your company's capability, experience, and willingness to devote resources to the program.
e. Highlight the basic and most cogent features of the proposed products or services.
f. Tell the reader what he will encounter in the remainder of the proposal.

Analysis of the Problem

Your problem here is very basic. The evaluator (s) usually adopts the position that unless the proposal reveals a complete understanding of the problem, you cannot provide an intelligent solution. He is mainly interested in knowing that the proposer (1) understands the problem, (2) has the experience and ability to solve the problem, and (3) has evolved a reasonable technical approach.

If you can convince him that you have a thorough understanding of his problem, and the capability to solve it, he will be inclined to award a good over-all rating to the proposal. To really be convincing, you must analyze and discuss the complete problem. The outline of this section should be somewhat as shown below.
a. Summary of the Customer's Problem: Present a brief review of the technical and program features.
b. Specific Technical Aspects: Identify the problem areas as they relate to the state-of-the-art and the $R F Q$ specs. A discussion of these areas is always requested by the RFQ. A solid discussion at this point will prove your awareness of the technical scope of the problem. Discuss specific items such as: (1) Technical problems-What are the major problem areas? Why? (2) Logistics-Does your approach increase the user's inventory and procurement problems? (3) Maintenance and operation -Will your proposed solution mean the hiring or training of highly skilled personnel? Will it require too-frequent maintenance? (4) Relialility-Will the proposed equipment meet the reliability goals? Will

it be done at a reasonable price? (5) Relation to existing problens-Will the proposed equipment increase existing operational problens? Will it modify them? How?
c. Interpretations and Exccptions to Specification: Specify and discuss your reasons for exceptions and/or special interpretations of the RFQ specification. Justify each exception on some definite basis (economy, unavailability of material, etc.). This specific discussion is always requested by the customer.
d. Program Aspects: Discuss specific program parameters such as: (1) Financial and scheduling as-pects-Does your company or team have the financial capability to support the program schedule? Are there any foreseeable scheduling problems such as subcontracts, long-lead item deliveries, etc.? What inter-relationship will exist between your company, the customer, and other contractors? (2) Procure-ment-Will the user be alle to satisfy his future needs for quantity production? (3) Manufacturing and economy-Can the equipment be economically made in the expected quantities? (4) Cost and incremental cost relations of future modifications-Will changes be costly to incorporate during the life of the contract? (5) Field support-Can your team support this product in the field?

Summary of the Technical Approach

This section is often read by high-ranking executives who can give final approval of expenditures of funds. You must, therefore, be brief, complete and convincing. Include the following types of discussions:
a. Technical Design Approach: Cover the present state-of-the-art, and the basic principles you intend to use. Justify your approach.
b. Specific Adzantages of Your Design Approach: Forcefully present the special features in which your design excels.
c. Specific Advantages of Your Technical Program: Present your company's unique qualifications which will enalle it to carry out the program. Whenever possible, display intimate knowledge of the potential customer's organizational operations, etc. Cover the various ways in which past and/or present contracts uniquely qualify your organization.

Detailed Technical Approach

To be persuasive this section must make good use of logical argument or proof. You must present the material in a manner that is both professional and clearly understandable. Your detailed discussion should cover a proposal in a descending level of detail as follows: a. System Concept; b. Sulbsystem Theory (including equipment groups) ; c. Major Functional Elements; d. Operational Components. Naturally, the less complex your product is the fewer breakdowns will be needed. (Continued on page 116)

General RF Fittings, Inc.
702 BEACON STREET, BOSTON, MASSACHUSETTS O211S Telephone: (617) 267.5120 Circle 55 on Inquiry Card

PRODUCTROM GNME IN-CIRCUIT TRANSISTOR TEESTER

designed for simplified operation

TEQUIPCO model 5 features automatic adjustment of test conditions. Effects of circuit impedances are balanced to provide a rapid, safe and economical means for testing transistors mounted in assemblies.

measures pulsed beta from 5 TO 500

Direct reading of $h_{p z}$ on a single meter scale. Pulse technique eliminates error caused by junction heating.
SAFE TO TRANSISTOR AND CIRCUIT UNDER TEST
Overload circuits protect the transistor from damage during test. Special test probe used for testing transistors mounted on printed circuit boards.

Send for complete brochure

 TEST EQUIPMENT CORPORATION3009 S. Post Oak Road
P. O. Box 22042

Houston, Texas 77027
(713) NA 2-4570

An illustration of each item (a through c), supported by your discussion, will make your presentation much more understandable. The most effective and persuasive way to structure your proposal is by the use of illustrations with the text built around them. Be sure to use the present tense and the active voice.

Use of Illustrations

Illustrations form an essential element in engineering. Graphical aids are used in all successful articles and text books. A good set of illustrations can sometimes be arranged to tell a complete story without recourse to the text.

Whenever possible, include a frontispiece in your proposal. This is a very valuable item. It can be a photographic composite or an artist's sketch, but in either case it should show the physical arrangement or a plan view of the proposed equipment.

To increase the value of your illustrations, group the same types together. For example, using the proposed concept of a system containing two ground stations and an airborne station, follow a simplified system block diagram with successively more detailed views, such as a simplified block diagram of each subsystem; then a complete block diagram of the major functional elements; and finally, diagrams showing the operational components of each block.

Select other illustrations to bolster the main points of your proposal. Don't try to use them for window dressing. These can include photographs, engineering drawings, artist's sketches, work and information flow diagrams, etc.

Remember too, that charts, graphs, and tables are a very effective means of summarizing test results or calculations to prove a point.

Conclusion

The successful proposal will have taken the evaluator (s) through the same four basic steps through which a good advertisement takes a reader. First, it will have commanded his attention. Second, it will have aroused his interest. Third, it will have created a desire for your product. Fourth, it will have resulted in favorable action. Ideally, this action will be an immediate sale, but it may simply direct the potential customer to the next step which may culminate in a later sale. At any rate, if you have skillfully done your job in the first, second, and third steps, you insure as much as possible the success of the fourth and last step.
> - A REPRINT of ANY ARTICLE in this issue is available from ELECTRONIC IN. DUSTRIES Reader Service Department.

How does IBM trim a resistor only .04 inch wide?

Approx. $35 x$ actual size
We've learned new ways to build components at IBM. For example, tiny sandblasting needles automatically trim to tolerances of $\pm 1 \%$ resistors which have been printed and fired onto ceramic substrates. Microminiature transistors and diodes are insulated with glass films 60 millionths-of-an-inch thick.
Solid state scientists at IBM are engaged in a broad program of materials research, device and circuit development, and systems design. One result: Solid Logic Technology, the basis for the new System 360 computers. Alongsidethis program, manufacturing research engineers are developing automatic methods to manufacture and test new devices.
Component technology at IBM is a rapidly advancing field. Semiconductor device engineers, component manufacturing engineers, electrical engineers, and mechanical engineers will find many opportunities to apply their new ideas. Write to Manager of Employment, Dept. 557 B, IBM Corporate Headquarters, Armonk, New York 10504.
IBM.
An Equal Opportunity Employer

ELECTRONIG INDUSTRIES

LOGIC DESIGNER

For integrated circuits. Allows complete systems design using plug-in boards.

Model DT-2605 Ir.te-Patch unit is a versatile logic design tool. With it complete systems, including interface with electromechanical devices, can be designed. It uses analog, digital, and hybrid plug-in logic boards which use integrated circuits and discrete components. It also allows integrated circuits to be evaluated. Data Technology Corp., Box 10935, Palo Alto, Calif.

Circle 228 on Inquiry Card

ELECTROSTATIC TUBES

High-resolution fast-zeriting tubes use fiber aptic face plates.

The Type K2427 reatures high deflection sensitivity and ligh reso'ution electrostatic focus. It enables low-level, fasttransient information to be directly coupled to the signal plates, and be contact printed in sharp detail through the fiber optic faceplate. It is capable of a writing speed of 10^{12} trace width $/ \mathrm{sec}$. at ar overall acceleration potential of 10 kv . Performance characteristics include resolution of 500 trace widths/in. and deflection factors of 3 and 10 v ./centimeter in the signal and time axis, respectively. Electronic Tube Div., Du Mont Laboratories, divs. of Fairchild Camera and Instrument Corp., Clifton, N. J.

Circe 229 on Inquiry Card

NEW PRODUCIS
". . . advancing the STATE-OF-THE-ART in Components \& Equipment.

LOW-VOLTAGE NEON LAMP

For loze voltage applications and use with transistors as an indicator.

Lamp type A079 is designed to hold its operating characteristics throughout its rated lifetime of $7,500 \mathrm{hrs}$. Operating characteristics include: max. breakdown voltage, 70 vdc ; max. maintaining voltage, 58 vdc ; minimum extinguishing voltage, 47 vdc ; and design current, 0.3 ma . Its operating temp. range is from $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Signalite, Inc., 1933 Heck Ave., Neptune, N. J.

Circle 230 on Inquiry Card

VARIABLE INDUCTORS

Tunable r - f coils span total nominal inductance range of from 0.1 to $1000 \mu \mathrm{~h}$.

Series 71 miniature inductors feature magnetic and electrostatic shielding by means of a powdered-iron cup core and external, gold-plated brass shield. They meet the requirements of Mil-C-15305, Grade 1, Class B $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. The units are shock resistant, moisture, and immersion proof. Temp. coefficient of inductance is $+30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ nominal; TC of Q is $-0.2 \% /{ }^{\circ} \mathrm{C}$ nominal. They have a torque device that allows very smooth, manual inductance adjustment while preventing unintentional detuning, without use of a locking device. Vanguard Electronics Co., 930 W. Hyde Park Blvd., Inglewood, Calif.

Circle 23I on Inquiry Card

MICROLOGIC CARDS

Eliminate the interconnection problem in breadboarding or system construction.

With 8500 series micrologic cards, each logic element has an easily accessible test point located on the upper surface of the board. Breadboarding of logic using these inexpensive devices will allow verification of logic design for military environments before fabrication of high. density packages. Systems Engineering Laboratories, Inc., Box 9148, Ft. Lauderdale, Fla.

Circle 232 on Inquiry Card

BACKUP POWER SYSTEM

Provides voltage within $\pm 5 \% 117$ vac zohether operating from line or batteries.

The 746 Battery Back-Up Power System assures continuity of system operation even when the system is in a remote and unattended location. It incorporates a dc-ac inverter and battery charger in 1 compact package. The unit automatically recharges the batteries even with power line variations up to 140 vac and as low as 100 vac . The system eliminates power line transients; disturbances as high as 560 v peak-to-peak on the ac line are not passed to the unit. Standard power rating is $300 \mathrm{va} @ 117 \mathrm{v} ., 60 \mathrm{cPs}$, and 5 a . at nominal 24vdc. Electronic Engineering Co. of California, 1601 E. Chestnat Ave., Santa Ana, Calif.

Circle 233 on Inquiry Card

Who ever heard of a kilovolt Zener?

Other Zener-equivalent Victoreen diodes range from 350 to 30,000 volts

In low voltage power supply circuits, transistors and Zeners are OK. But what about high voltage supplies? Wish you could eliminate voltage dividers and dc amplifiers used with low voltage references?

You can. You're wishing for a Victoreen diode, the gaseous equivalent of an ideal high-voltage Zener.

A single Victoreen Corotron diode can be used as a reference, shunt regulator, dc coupling element, or portion of a divider. Corotrons are microminiature... free from relaxation oscillation...free from catastrophic failure caused by surges or transients...immune to radiation or ambient light effects ... have excellent stability and temperature characteristics.

Sound ideal? That's only half the story. Get the rest by addressing Applications Engineering Department today.

THE VICTOREEN INSTRUMENT COMPANY 5806 Hough Ave. • Cleveland 3, Ohio, U.S.A.

This truly unique Bridge provides high resolution Capacitance and Conductance measurements at high frequencies and low test voltage levels. It offers a number of characteristics that make it particularly valuable for semiconductor testing:

- Capacitance Range: 0 to 150 pF (basic accuracy 1\%; resolution. 0.02 pF)

Conductance Range: 0 to 25.000 $\mu m h o s$ (basic accuracy 2\%; resolution, $0.5 \mu \mathrm{mho}$)

- Shunt Resistance, shunt inductance, dissipation factor, and 0 may also be readily determined.
- Test Frequencies: $1 \mathrm{Mc} / \mathrm{s}, 5 \mathrm{Mc} / \mathrm{s}$, $10 \mathrm{Mc} / \mathrm{s}, 20 \mathrm{Mc} / \mathrm{s}, 30 \mathrm{Mc} / \mathrm{s}$. 50 Mc/s, and $100 \mathrm{Mc} / \mathrm{s}$; all crystal controlled
- Operates with test signal levels as low as 1 mV ; continuously adjustable to $\mathbf{1 0 0} \mathbf{~ m V}$
■ DC Bias: Internal, -5 V to +100 V External, $\mathbf{\pm} 250 \mathrm{~V}$

Add up these unusual capabilities and you have an instrument ideally suited for a wide range of measurements that are difficult, if not impossible, with any other equipment.

The Model 33 A is now being used for

- Impedance measurements on transistors (including F.E.T.'s)
- Capacitance and loss measurements on diodes (particularly varactors and tunnel diodes)
- Determination of dielectric constants including those of thin films
- Measurements on resistors, capacitors, inductors, switches, connectors and connection assemblies, and transmission lines

Why not look into the Model 33A? Our Sales Engineering Representative will be glad to arrange a demonstration at your convenience. Or ask for our Technical Data Bulletin. In either case, a letter, phone call, or TWX to the address below will bring an immediate response.

REACTANCE SLIDE RULE: Our Reactance Slide Rule provides a handy means for calculating \mathbf{Q} and dissipation factor, and for determining the resonating capacitance and inductance for a given frequency. /t is available, free of charge, by writing on your company letterhead to Boonton Electronics. Dept. 1 . at the address below.

MICRO-PLOTTER
Maps the thermal distribution of a complex microcircuit in 3 sec.

This micro-plotter is based upon sensitive infrared detection. It uses a non-de. structive, non-contacting measurement technique. Its $1 / 2 \mu \mathrm{sec}$. response time and high spatial resolution open a wide range of microcircuit design and reliability-testing applications. The unit uses a solidstate detector of indium antimonide. A set of sensitive microscope optics focuses the detector cell on the sample. It can resolve microcircuit detail within spot dia. of 0.0014 in . Sierra Electronic Div., Philco, 3885 Bohannon Dr., Menlo Park, Calif.

Circle 237 on Inquiry Card

PHASE ANGLE VOLTMETER

Permits swecp frequcncy measurcment. Measures pulsed coherent sinnsoids.

Model VM-301 rejects harmonics by front panel plug-in filters. It is applicable to amplifier and network design, vibration and telemetry analysis, bio-medical research, and phase-sensitive null detection in production and laboratory. The unit measures both phase angle and magnitude of complex ac signals and their vector components with respect to a reference voltage. Frequency range is 10 cPS to 100 kc . It fills the need for a null and phase meter for measurements in which signal freq. itself may be a variable. North Atlantic Industries, Inc., 200 Terminal Dr., Plainview, N. Y.

Circle 238 on Inquiry Card

PUSHBUTTON SWITCH

Rated to make and break $1 / 4 a$. at 115vac resistive load.

Contact resistance of series 46 after 250,000 operations is 0.010Ω typical, 0.020Ω max. Voltage breakdown is 1500 vac and life expectancy is 250,000 operations at rated load. Actuating force is 16 oz . to bottom. The mounting nut and cover bushing are cadmium plated brass; contact terminals and shorting bars are sil-ver-plated phospher bronze. Grayhill, Inc., 561 Hillgrove Ave., La Grange, Ill.

Circle 239 on Inquiry Cord

TWT OSCILLATOR

Produces over 1000 CW power into mismatched loads as high as 2.5 to 1.

The WJ-282 operates as a forward wave oscillator near the center of the pass-band of the circuit, permitting a low cost power source at 35 Gc . Beam efficiencies of 13.5 to 16.7% have been obtained. Watkins-Johnson Co., 3333 Hillview Ave., Stanford Industrial Park, Palo Alto, Calif.

Circle 240 on Inquiry Card

ALL-WELDED RELAY

The 2 PDT subminiature whit operates at 100 G -shock and 30 G -vibration.

The Series " E " relay is designed to handle dry circuit or 2 a . switching requirements. It weighs 0.28 oz . and stands 0.410 in . high. It requires 0.131 cu . in. of space, making it especially suited for PC applications. The unit uses Teflon insulating materials to prevent outgassing at high temps. It is offered in a variety of vdic coil ratings, 6 standard mountings and 3 terminal styles. Leach Corp., 1123 Wilshire Blvd., Los Angeles, Calif.

Circle 241 on Inquiry Cord

the only thing NOT UNIQUE

 about the 6108 is the name ELECTROMETERThe Keithley 6108 Electrometer meas. ures more parameters over broader ranges than any other dc test instrument! One compact measuring system now gives you the capability to investigate:
VOLTAGE-20 microvolts to 100 volts. without circuit loading ($10^{14} \mathrm{ohms}$ input resistance)
CURRENT-10-15 ampere to 0.3 ampere RESISTANCE -2 ohms to 10^{14} ohms CHARGE -10^{13} coulomb to $10^{.5}$ cou. lomb
In addition, this neat package has only 200 microvolts per hour zero drift. That's ten times better than you can expect from any other tube èlecfrometer, and it approaches the stability of costly vibrating reed devices. Unique, too, is the 610B's 1% meter accuracy, and its $.005 \%$ unity gain output for impedance matching. An extra large 6 -inch taut-band meter and two easy. to-read dials accent ease and convenience of operation.
The remarkably superior 6108 replaces the 610A and sells for the same price

\$565

Send for Engineering Note on 6108 Electrometer
other electrometers
Model 610BR
Fack mounting 610B
Model 621
37 ranges, line operated
-

Model 600A
54 ranges, bat. operated.
$\$ 395$
Model 603
50 kc bandwidth amplifier.
$\$ 750$

K EITEITEX

 INSTRUMENTS 12415 Euclid Avenue - Cleveland 6, Ohiodc microvoltmeters • differential voltmeters • high voltage supplies

deep drawn aluminum boxes and covers
Choose from more than 25,000 sizes and shapes. Rectangular, square, round. Sizes from $7 / 8^{\prime \prime} \times 15 / 8^{\prime \prime}$ to $28^{\prime \prime} \times$ $54-3 / 16^{\prime \prime}$. Draft-free deep drawn aluminum. No Welds. Satiny, wrinkle-free surface requires no preparation for painting. Shipment made from $\$ 1,000,000$ inventory, normally within one week, from the nearest factory. Complete facilities available for economical secondary operations and finishing if required.
send for new bs.page catalog
Zero

ZERO MANUFACTURING CO. 1121 Chestnut St., Burbank, Calif. 91503 Telephone VIctoria 9.5521 area code 213 TWX 213.846-8094 Factories in Eurbank, Calif. and Monson, Mass.

Circle 60 on Inquiry Card

MICRO-RESISTIVE NETWORKS

Uses metal-film elements encapsulated in molded epoxy. Temp., $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$.

The MN series miniature networks are available with from 2 to 6 elements, each having a power rating of 50 mw at $125^{\circ} \mathrm{C}$. They can be supplied with matched temp. coefficients and matched resistance ratios, or with mixed high and low resistance values in the same package. Precision metal film elements within each network can be supplied with a resistance range of from 49.9Ω to $75 \mathrm{~K} \Omega$, and with temp. coefficients of $\pm 25,50,100$ or 150 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. All elements have good $\mathrm{h}-\mathrm{f}$ characteristics. Dale Electronics, Inc., P. O. Box 488, Columbus, Nebr.

$$
\text { Circle } 275 \text { on Inquiry Card }
$$

WIREWOUND RESISTORS

Resistance tolerance 1% to 0.001% with T / C stability to $0.5 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ or better.

This complete line of precision wirewound resistors is designed for ultrastability and reliability. Uses include digital voltmeters, precision servomechanisms, analog computers, and sophisticated instrumentation. Wattage 0.125 to 4.0 w . Resistance range 1Ω to 10 megohms. Case size contingent upon wattage. Nytronics, Inc., 550 Springfield Ave., Berkeley Heights, N. J.

Circle 276 on Inquiry Card

DATA LOGGER

Voltage ranges are from 10 mv full scale to 1 kv full scale.

The 7000 A Series data logging systems feature 600 points of input scan and a guarded differential 5 digit digital voltmeter with preamplifier. Recorded data is provided in the form of printed paper tape with a variety of other output options available. By changing input plugin accessories, the system may be used for ac or resistance measurements. Cimron Corp., 1152 Morena Blvd., San Diego, Calif.

Circle 277 on Inquiry Card

STRIP CHART RECORDER

Monitors and records ac voltage up to 520 vac on an expanded scale.

Model LAV3X is an expanded scale instrument with 3 ranges: 95-130/190-260/ $380-520 \mathrm{vac}$. The expanded scale on all ranges assures an accuracy of $\pm 1.25 \%$ FS, and easier readouts. The recorder uses an inkless stylus. With the chart removed, the unit can be used as a direct reading meter. Amprobe Instrument Corp., 630 Merrick Rd., Lynbrook, N. Y. Circle 244 on Inquiry Card

POTENTIOMETER

Rated at a true full 4 w. @ $40^{\circ} \mathrm{C}$, and derated to zero power at $150^{\circ} \mathrm{C}$.

Series 45 potentiometer is $11 / 8-\mathrm{in}$. in dia. and available in a resistance range of 10Ω to $15 \mathrm{~K} \Omega$ linear. Standard tolerance is $\pm 10 \%$. It has a standard bushing mounting, or split-locking bushing for set-and-forget applications. Clarostat Mfg. Co., Inc., Dover, N. H.

Circle 245 on Inquiry Card

COUNTER-TIMERS

All-silicon solid-state units have
a frequency range to 2.5 Mc .

The 600 series feature PC motherboards with plug-in circuit cards. This replaces the basic circuit wiring harnesses. Display time is variable from about 0.2 sec . to 5 sec ., and is independent of gate time. Memory or non-memory display mode may be selected by a front panel switch. The count gate may be locally or remotely controlled. Computer Measurements Co., 12970 Bradley Ave., San Fernando, Calif.

Circle 246 on Inquiry Card

EVERYTHING ABOUT THIS

 AemesMMPFectric VOLTROL* STABILIZER Is NEWNew in design - using the newest in approved naterials - the newest in construction. That's why you can expect better pertormance-from the VOLTROL Stabilizer.

FAST RESPONSE

On voltage drops of 15% or voltage surges of 15%, the VOLTROL Stabilizer will automatically correct to nominal voltage within 2 cycles. On lesser fluctuations of 3% to 5%, voltage is corrected to nominal in milliseconds.

AUTOMATICALLY CORRECTS LOW OR HIGH VOLTAGE

On continuous low voltage or high voltage input, output voltage is maintained within $\pm 1 \%$ of nominal.

WON'T BURN UP FROM OVERLOADS OR SHORT CIRCUITS

 Automatically protected against overload or short circuit condition in the powered equipment.
SUPPLIED WITH TAPS FOR RECTIFIER POWER SOURCE

The new VOLTROL Stabilizer has an output tap to supply regulated $A C$ voltage to rectifier circuits.
 sec.

How fast is $1 / 30^{t h}$ second? Faster than the blink of an eye. And the VOLTROL Stabilizer under the most severe conditions of voltoge fluctuotion is faster than that. So, if it's recovery in milliseconds you want - then the VOLTROL Stabilizer is for you.

OPEN TYPES FOR

BUILT-IN APPLICATIONS

Why pay for enclosures if the stabilizer is to be installed as part of the equipment? Most sizes of the VOLTROL Stabilizer are available without enclosures for OEM applications. Save money.

Write for new Bulletin 09-803

892 WATER STREET, CUBA, NEW YORK Canadian Representative: Polygon Services, ltd. 50 Northline Rd., Toronto 16, Ont.
*VOLTROL is a registered trodemork af Acme Electric Corp. I SAA 3B0日 3113 REGULATED POWER SUPPLIES STATIC POWER RECTIFIERS voltage stabilizers voltage regulators

March 22-26, 1965
ELECTRICAL-ELECTRONICS
Exhibit hours (4 days): Monday \&
(4) Thursday, 9:45 a.m.-9 p.m.; Tuesday \& Wednesday, 9:45 a.m.-6 p.m.

Technical sessions (5 days) 10 a.m. 5 p.m. (Hilton, Tuesday to 10 p.m.)

80 sujject-organized technical sessions presenting 400 vital "breakthrough" papers.

Over 1000 Exhibits using 140,000 ↔ running feet of display units in N.Y. Coliseum \& N. Y. Hilton

Gala IEEE Banquet on Wednesday, ↔) March 24, 1965 at 6:45 p.m. in Grand Ballroom, N.Y. Hilton

Registration: $\$ 2.00$ IEEE Members, $\$ 5.00$ Non-members. High School 4) students admitted Thursday afternoon only, $\$ 2.00$ if accompanied by an adult (not over 3 per adult).

Circle 71 on Inquiry Card

NANOSECOND TRACES stopped cold with new Oscillotron ${ }^{\text {® }}$ and Polaroid 10,000-speed Land film

A fast f/ 1.2 lens combined with Polaroid ${ }^{8} 10,000$-speed film makes it possible to record ultra high speed traces at a 1:1 ratio with the new B-C MII-565 Oscillotron. Interchangeable backs also enable use of Polaroid $31 / 4 \times 41 / 4$ Land film pack and 4×5 Land sheet films. Synchronous electric shutter. Data recording optional. There's a B-C Oscillotron model for every trace recording need. Send for catalog.

BAYONET CONNECTOR

Puts 3 times the standard number of contacts into a given MS shell.

Shell size 14 of the STK series connector can have as many as 44 No. 22 contacts. Other sizes and insert arrangements include MS 8, 10, 16, and 19 , with respectively $7,19,61$, and 85 contacts. The "Tri-Kam" coupling design provides grope-free engagement, eliminates lock wiring, and insures a positive lock and seal. The Deutsch Co., Electronic Components Div., Municipal Airport, Banning, Calif.

Circle 281 on Inquiry Card

FREQUENCY CHANGER

Solid state unit converts 400 CPS 3 phase to precision 60 CPS single phase.

The Model PS-64-162 converter is capable of converting 400 cPs 3 phase to 60 CPS single phase at 750 va . It features high efficiency, low distortion, precision freq., precision voltage regulation, and RFI protection. Unitron Inc., 1624 N . First St., Garland, Tex.

Circle 282 on Inquiry Card

RELAYS

Provides more than 100,000 operations for magnetic latching or non-latching uses.

These 4 pole/half-size crystal can relays operate in the dry circuit to 2 a . range. They are designed for low profile mounting. Featuring a specially-designed magnetic circuit, the BR-32 and 34 relays perform stably on low power consumption. A heat sink/magnetic flux conductor mounted on top of the relay coil greatly improves a heat dissipation. Features include: vibration: $30 \mathrm{G}, 30-2000 \mathrm{cPS}$; $10-40$ cPs @ 0.4 in. DA standard; insulation rea: 10,000 megohms min. @ $25^{\circ} \mathrm{C}, 1000$ megohms min. @ $125^{\circ} \mathrm{C}$; temp. range: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Babcock Relays, div. of Babcock Electronics Corp., 3501 Harbor Blvd., Costa Mesa, Calif.

Circle 283 on Inquiry Card

SAVE more than

 50% in assembly time! NO CRIMPING! only 3 PARTS TO HANDLE!
means

 reliability in coaxial connectors!- No indentation of dielectric-Low VSWR!
- No combing or trimming of braidNo "shorting" inside connector!
- Captive contact construction provides positive position of center contact!
- Positive cable clamping - withstands pull on cable greater than inherent strength of cable used!
- No special tools needed for assembly!
- Reusable cable clamping parts!
- Weatherproof - Pressurized (for cables with unperforated jackets)!

Automatic "wedge-Jock" Connectors can be supplied in most of the standard connector styles, in series from Micro-miniature through LC/LT, and for virtually all popular cables from $1 / 16^{\prime \prime}$ through $9 / 16^{\prime \prime}$ diameter.

Literature is available...
Write for brochure WL-WC 1-1062.

- patented

automatic METAL PRODUCTS CORPORATION 323 Berry Street, B'klyn I1, N. Y. Tel: (212) EY 8-6057
 Circle 73 on Inquiry Card

NEW PRODUCTS

ROTARY SWITCH

30° indcxing zeith 2 to 12 positions; continuous rotation or with stops.

Series 2500 is a totally enclosed, ex-plosion-prooi micro-miniature rotary switch. It measures $1 / 2 \mathrm{in}$. in dia., with a max. overall switch dimension of 0.62 in . The unit has 1 to 12 decks. Electrical rating: carries \&a. continuous, makes and breaks $1 / 2 \mathrm{a}$. 115 vac resistive, $/ 4 \mathrm{a}$. 28 vdc resistive and $1 / 8 \mathrm{a} 28 \mathrm{vdc}$ inductive. The switch has a contact resistance of 0.005Ω, and will meet minimum RFI requirements Janco Corp., 3111 Winona Ave., Burbank, Calif.

Circle 247 on Inquiry Card

SWEEP GENERATOR

Szuecps entire thf band in single swecp; provides pushbutton selectivity.

The Model SV-70 Uhf sweep generator is used for testing and aligning uHf-Tv tuners. The user may switch to any desired channel by pushing 2 back-lighted pushbuttons. It is the first sweep generator to combine wide sweep with positive channel identification and remote control, according to the marufacturer. The SV70 is a 3 -mode sweep generator: in mode 1, it sweeps across the entire channel 14 to 83 band with a 450 Mc wide single sweep; mode 2 is the positive, digitalcontrolled channel selection system; in mode 3, it sweeps over a narrow freq. range 20 to 40 mc in width. Marketing Dept., Telonic Industries, Inc., 60 N . First Ave., Beech Grove, Ind.

Circle 248 on Inquiry Card

2 NEW
 MAGNETIC SHIELDING PRODUCTS
 1. SHIELD MU

Tape and Foil
SHIELDMU is a new, high permeability, fully processed, ready-to-use material for shielding sensitive electronic and electrical components from stray mag. netic fields.
IT OFFERS:

- 2 to 3 times more shielding efficiency than material currently available
- an easy way to form shields in place around inductive components to save space, time, expense
- ductility without significant degradation of magnetic shielding properties
- 4 levels of permeability performance; availability in a number of thicknesses, widths and continuous lengths

Flexible Tubing

SHIELDFLEX is especially designed to: isolate conductors from external mag. netic fields; contain the magnetic field generated by current carying conductors; provide electrostatic shielding.

IT OFFERS:

- production economy since cable can be run through a length of Shieldflex for complete magnetic and mechani. cal protection.
- optimum shielding efficiency equiva. lent to that expected from high permeability shield structures
- 39 db attenuation in a 1 oersted, 60 cps field
- space economy since conductors can be routed very close to components or other conductors.

Write, wire or call for full details on SHIELDMU and SHIELDFLEX.

21ST \& HAYES AVE., CAMDEN, N.J. 08101
Phone: 609-964-7842 TWX: 609-964-6772

> Transformer Laminations Motor Laminations \quad Tape Wound Cores \quad Powdered Molybdenum Permalloy Cores ■ Electromagnetic Shielding \quad Metallurgical Services

[^6]
FREQUENCY STANDARD

Crystal-controlled freq. standard provides freqs. ranging from 0.5 cPS to 600 Kc .

The Model CU-2 Multiple Frequency Standard features an accuracy of 0.0005%. Freq. is selected by means of a 13 -position selector switch and a 4 -decade multiplier switch. Output voltage is a sq. wave with amplitude adjustable to 20 v . peak-to-peak. Both single ended and balanced outputs signals are provided. It may be used for calibration and test wherever precision reference or clock freqs. are needed. It replaces both the variable oscillator and freq. counter normally needed. Anadex Instruments Inc., 7833 Haskell Ave., Van Nuys, Calif.

Circle 278 on Inquiry Card

STEPPER MOTOR

Step rate is 0-320 steps/sec.; max. stcpping torque is 1.39 oz.-in.

Motor type K82501 general-duty logic stepper is rated for continuous duty; is bidirectional; and also may be operated as a synchronous motor. The output shaft turns a discrete increment each time a pulse is applied to the windings. The A. W. Haydon Co., 232 N. Elm St., Waterbury, Conn.

$$
\text { Circle } 279 \text { on Inquiry Card }
$$

PUSHBUTTON SWITCH

Switch life exceeds 100 million actuations with rating of 10a., 125/250vac.

Model E33-00G has an anti-rotation plunger shaft with a $3 / 8 \mathrm{in}$. flated section. A self-lubricating Delrin cam eliminates operation ambiguity by actuating the switch on the return stroke of the plunger. Panel mounting is by means of a threaded barrel for standard $3 / 8-32$ nut. Simplified wiring using standard 0.187 in. wide QC connectors, solder or screw terminals is provided for all units. Cherry Electrical Products Corp., P. O. Box 438, Highland Park, Ill.

Circle 280 on Inquiry Card

PARABOLIC REFLECTORS WITH
FREQUENCY INDEPENDENT FEEDS COVER the RANGE 0.3 to 11 Gc

FEATURES . . .

- Broadband, high gain performance over multi-octave bands
- Linear polarization - with the pyramidal log periodic feed
- Circular polarization - with the conical helix feed
- Impedance-matched to 50 ohms
- Eight standard models..
- OFF.THE-SHELF AVAILABILITY

Model No.		Frequency (Gc)	Reflector size (ft.)	Gain. $f_{10}{ }^{10} f_{\mathrm{hi}}$ db @ Gc to db@ Gc			
Circularly polarized	Linearly polarized						
ALN1238	APN1128	0.3-3.0	6	10	0.3	30	3.0
ALNL228	APN1118	1.0.11.0	6	20	1.0	39	11
ALN1218	APN1108	1.0.11.0	3	14	1.0	33	11
ALNIIIC	APN102C	1.0.11.0	1.5	8	1.0	27	11

Request Bulletin No. 20-8 for complete details

merican Enlectronic

ITaboratories, Inc.
P. O. B0X 552A, LANSDALE, PA.
(215) 822-2929 • TWX 510.661.4976
suburban Philadelphia
Circle 76 on Inquiry Card

TRANSPONDER DELAY LINES

Exhibit delays of $20.3 \mu s e c$. and $24.65 \mu \mathrm{sec}$. Each occupy $4 \times 4 x 3 / 8 \mathrm{in}$. board space.

Models 53-89 and 53-92 can be supplied as separate PC mounting components or together with associated circuitry. In:pedance is 400Ω for the Model 53-89 and 470Ω for the Model 53-92. The delay to rise time ratio is better than $50: 1$. Attenuation is less than $0.12 \mathrm{db} / \mu \mathrm{sec}$., and temp. coefficient is less than $50 \mathrm{ppn} /{ }^{\circ} \mathrm{C}$ over a temp. range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Taps are provided at $1.45 \mu \mathrm{sec}$. intervals to $\mathrm{a} \pm 0.05 \mu \mathrm{sec}$. tolerance. ESC Electronics Corp., 534 Bergen Blvd., Palisades Park, N. J.

Circle 249 on Inquiry Card
DIGITAL VOLTMETER
Capable of providing 0.005% accuracy at a reading sperd of 22 mscc.

The accuracy of the Model 5600 5-digit voltmeter is based on a percentage of reading, from 1 to 999.99 v . The high reading speed is made possible by solidstate switching and a direct-coupled input. Reading time is dependent on the value of the previous reading, except when a polarity or range change is required. The instrument follows a fixed, successive approximation sequence that balances the internal reference against the unknown signal. Resolution is 1 part in 10,000 or 0.001%. High reading speeds are also provided for ac measurements. Dana Laboratories Inc., Irvine, Calif. Circle 250 on Inquiry Card

bring economy to high-quality circuits

Try these high-density cards-up to twice the usual number of components. There couldn't be a better time! Because EECo has announced price cuts up to 35% on its GA Series line which contains more than 70 off-the-shelf modules for both synchronous and non-synchronous use ... speeds up to 10 mpps .
How's this for value? Four flip-flops and a nand on a single $41 / 2^{\prime \prime} \times 5^{\prime \prime}$ card at $\$ 9$ per flip-flop. Result: substantial savings in hardware and wiring costs ...plus patented short-circuit protection and EECo's lifetime warranty. Ail circuits use the widely accepted VARICON* connector.
Write, wire or phone for complete information.
*Trademark of ELCO Corp.
LOOK TO EECo for . the world's most complete line of packaged digital circuit modules...breadboard equipment which allows a designer to change system modular complement at will-without soldering or other permanent type of attachment.

ENGINEERED ELECTRONICS Company

1441 East Chestnut Ave. • Santa Ana, Calif.
Phone: (714) 547.5651 Cable: ENGELEX

SWITCH TO THE BEST

- 20,000 volt peak flashover at 60 cps
- 40 ampere current carrying capacity
- Current carrying members heavily silver plated
- Coin silver contact shoes

Circle 78 on Inquiry Card
> telephone quality relays

There is no higher
cone impregnated steatite stators and rotors

MARLBORO, NEW JERSEY Telephone: HOpkins $\mathbf{2 - 6 1 0 0}$

- Low loss silicone impregnated
- White glazed steatite spacers
- Nylon detent wheel
- Stainless steel detent arm
- Sleeve bearings
standard for relays. Specify Stromberg.

Carlson . . . known to telephony since 1894.
TYPE A: general-purpose relay. Up to 20 Form " A " spring combinations.
TYPE B: multi-contact relay. Up to 60 Form " A " spring combinations. TYPE BB: multi-contact relay. Up to 100 Form " A " springs.
TYPE C: two relays on one frame; mounts in same space as one Type A. TYPE E: general-purpose relay; universal mounting; interchangeable with relays of other manufacturers. Write for complete technical data.

STROMBERG-CARLSON

 a Division of GENERAL DYNAMICS 115 CarIson Road • Rochester, N. Y. 14603
DATA DISTRIBUTOR

Converts computed data to analog form under computer control.

Model 670 series uses solid-state circuitry. It distributes computed data to analog output channel. Accuracy is $\pm 0.02 \%$ @ dc; linearity is $\pm 0.01 \%$ @ dc, and stability is $\pm 0.01 \%$ @ dc. Decommutation rate is 50 kc to within $\pm 0.02 \%$; sample time is $30 \mu \mathrm{secs}$. to within $\pm 0.02 \%$ for 20 v . full scale excursion. Accepts input data up to 17 bit decimal, 14 bit binary; address up to 7 bit binary (104 channels max.) Redcor Corp., 7760 Deering Ave., Canoga Park, Calif.

Circle 25I on Inquiry Card

CERAMIC CAPACITOR

Working voltage is 25 vdc . Power factor is 1.5% at 1 kc .

This capacitor has a capacity of $0.47 \mu \mathrm{fd}$ in a CK06 case. It is available with No. 22 AWG tinned copper leads as standard; it may be ordered with special weldable lead material. Features include temp. range: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; insulation resistance: 100 K megohms or $1 \mathrm{~K} \Omega$ farads @ $25^{\circ} \mathrm{C}$; test voltage: 4 times rated voltage. Electro Materials Corp., 11620 Sorrento Rd., San Diego, Calif.

Circle 252 on Inquiry Card

CURRENT REGULATOR

For use with any sine or square zoave pulse generator or simulator.

Solid-state regulator Model 106 converts constant-voltage pulses to adjustable constant-current pulses. It is completely self-contained and requires no auxiliary power source. The zener diodes and silicon transistor use the power provided by the driving pulse, which may be from 60 to 135 v . Current ranges from 0.01 ma to 10ma. American Electronic Laboratories, Inc., Richardson Rd., Colmar, Pa. Circle 253 on Inquiry Card READOUT TUBES* APART FROM ALL OTHERS?

KNOW-HOW MAKES THE DIFFERENCE

National Electronics has more gas tube experience than any other company. This has now been applied to readout tubes . . . that's why National Know. How makes the difference. National Know.How is measured by performance . . . Ionglife ...300,000 hours life and more. National Ultra Long Life Readout Tubes provide both initial and long term uniformity . . . no variation in color or intensity from number to number, tube to tube. Readout is bright, clear, distinct and nonfading.

PLUS FLEXIBILITY...
Choice of shapes...
round or rectangular. Wide range of character sizes ($310^{\prime \prime}$ to $2.0^{\prime \prime}$).

ECONOMY TOO...
Simple, rugged,
attractive display. Easy to package. Low initial cost. Request full readout tube technical data and details.

[^7]
CDÉ CORNELL-

CAPACITORS

FACTORY PRICES TO 999 PIECES

- Electrolytics

- Ceramics

- Micas

- Tubulars
- DC oils
- Metallized
- Tantalum
- Immediate Delivery from Stock Factory OEM Prices

NEWARK CATALOG 80

- Industry's Most Complete Catalog
- Over 640 Pages - Over 70,000 Items
- Over 600 Standard Brand Lines
- Eight Stocking Warehouses - Over $\$ 6,000,000$ Industrial Electronics Inventory
NEWARK ELECTRONICS CORPORATION
Main office and warehouse - Dept. EI 223 West Madison - Chicago, III. 60606

Authorized Cornell-Dubilier Warehouses in:

CHICAGO, ILL (312) ST 2-2944

CINCINNATI, OHIO (513) 42:-5282

DENVER, COLORADO (303) SK 7.3351

DETROIT, MICHIGAN (313) JO 4-5490

GRAND RAPIDS, MICHIGAN (616) 452-141t

LOS ANGELES AREA (213) OR B-0441

SAN FRANCISCO AREA (415) 593-1881

NEW YORK CITY (212) AL 5-4600

Circle 82 on Inquiry Card

LASER

May use 5 different flash lamps and 3 types of cooling.

Ruby laser Model 1010c2 can be operated in high energy, high repetition rate, or Q switched modes, simply by changing the basic flash lamp component and cooling. This is done without involving system optics misalignment or modification. It can deliver up to 250 joules in 1.5 msec . In the high repetition rate mode, it is capable of delivering up to $20 \mathrm{pulses} / \mathrm{sec}$., at 0.5 joules/pulse or 10 joules/pulse at 4 pulses $/ \mathrm{sec}$. In the Q switched mode, the output can be varied between 1 joule in 30 nsec . ard 10 joules in $4 \mu \mathrm{sec}$., at repetition rates as high as 1 pulse $/ \mathrm{sec}$. Applied Lasers, Inc., 41 Montvale Ave., Stoneham, Mass.

Circle 257 on Inquiry Card

MULTI-TURN POTENTIOMETER

Power handling capability is 2w.@ $40^{\circ} \mathrm{C}$; resistances: 100Ω to $100 \mathrm{~K} \Omega$.

Model 7300 ieatures rear terminals for higher density packaging. The unit is $3 / 4$ in. in dia. and has a body length of $11 / 2$ in. behind panel. It uses a stop system which isolates mechanical and electrical functions, and gives it the 100 oz -in. stopstrength of larger units. Heated core winding, silver braze terminations, and screwdriver slotted shaft are standard features. International Resistance Co., 401 N. Broad St., Phila., Pa.

Circle 258 on Inquiry Card

BROADBAND TRANSFORMER

Freq. response flat to $\pm 1.5 \mathrm{db}$ over the range of 9 CPS to 1.2 Mc .

Transformer S5-346 has a 17 octave passband. Two balanced secondary windings optimize driving push-pull transistor bases from a single-ended transistor collector. The transformer is said to give better balance and higher efficiency than is possible with conventional $\mathrm{R}-\mathrm{C}$ coupling circuits. Toroidal windings nearly cancel hum pickup. Spectran Electronics Corp., 146 Main St., Maynard, Mass.

Circle 259 on Inquiry Card

EASIER THAN DIALING A PHONE USED TO BE!

This unique Microdot "connector selector," a simple-to-use circular slide rule, enables design engineers to customize crimp-type connectors to their specific requirements. Using this handy selector, you may choose from 40 parts and over 120 combinations of wire size, mating and mounting styles.
"Microcrimp" coaxial crimp-type slide-on connectors are commercially priced, and offer high reliability, small size and ease of assembly. Cablemounted connectors are available in three mounting versions: line-cable mounting, bulkhead mounting, and snap-lock mounting. Bulkhead receptacles with solder turrets are available with bulkhead or snap-lock mounting.

MICRODOT CRIMPING TOOL.
Assembly is fast and simple, on the bench or in the field, with this Microdot crimping tool. Merely strip the cable, crimp center contact, snap-on outer shell and crimp shield.
Write for free "Microcrimp" selector and product bulletins.

MICRODOT INC.

220 Pasadena Avenue
South Pasadena, California
Circle 83 on Inquiry Card

PROGRAMMING SYSTEM

Program changes accomplished without multiple coaxial connectors.

Complex switching is facilitated by this coaxial programming system. Changes involving up to 3036 coaxial circuits are accomplished by changing one or more removable front boards in the system. The procedure normally requires changing a series of individual or multiple coaxial connectors. The system comprises a lightweight metal frame which houses a molded plastic board containing individual coaxial spring contacts. One-crimp coaxial contacts connect the system with external equipment. AMP Inc., Harrisburg, Pa.

$$
\text { Circle } 260 \text { on Inquiry Card }
$$

MAGNETIC DIVISION MODULES

Accuracy is 1% over numerator and denominator ranges of 20 to 1 .
With this unit the numerator consists of an ac input signal while the denominator is a dc control signal. These new units make it possible to avoid complex and cumbersome circuitry previously used in solving analog equations and trig function conversion. Additional features are high reliability, and adaptability to any signal freq. from 60 cPS to over 100 Kc . General Magnetics, Inc., 135 Bloomfield Ave., Bloomfield, N. J.

Circle 261 on Inquiry Card

PRECISION CAPACITOR

Working voltage is 500 vdc ; operating temp. is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The SG-11129 glass dielectric piston trimmer capacitor is $1 / 4 \mathrm{in}$. dia. $\mathbf{x} \quad 13 / 32$ in. behind panel length. Ranges are 1.0 pf to 15.0 pf . Temp. coefficient is 0 ± 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Dielectric strength is 1 kvdc at 50% relative humidity and max, rated capacitance. Insulation resistance is $10^{\text {a }}$ megohms at 50% relative humidity. Q @ 1 MC is 750 minimum. Solid metal electro bands permit soldering and unsoldering without capacitor damage. Elcom Dept., Roanwell Corp., 180 Varick St., New York, N. Y.

Circle 262 on Inquiry Card

Speed Production...Lower Costs!

 wh RAMLE AUTOMATIC PRECISION ASSEMBIY MACHINESKAHLE service encompasses the complete responsibility for special machine projects from design to final testing. KAHLE designs and builds high efficiency production machines for manufacturers in electronics, glass and general industry. The machines illustrated are typical of the thousands of different types now in use.

KAHLE Engineers have the Experience and Facilities to Solve Your Production Problems!

Call or write KAHLE for recommendations on your specific assembly and production problems. KAHLE automatic high speed, precision machines are in use by hundreds of leading manufacturers where they have earned an industry-wide reputation for high efficiency and dependable performance!

3318 HUDSON AVENUE, UNION CITY, NEW JERSEY
Telephone: UNion 7-6500 (Area Code 201)
DESIGNERS \& BUILDERS OF AUTOMATIC MACHINES FOR HIGH SPEED, PRECISION PRODUCTION

Ho you lave
Ithis
helplulu operational amplifier handhook?

If not. you can obtain your copy simply by sendong us a note on your company letterhead. This 96 -page reference handloook deals exclusively with operational amplifiers. It covers theory, terminology, characteristics, testing, sclection, applications, and includes a 25 page collection of typical circuits. You'll find it a valuable aid in employing these versatile, modern circuit components

LOOK TO BURR-BROWN
FOR ALL YOUR
OPERATIONAL AMPLIFIER NEEDS
Burr-Brown offers the industry's widest selection of solid-state operational amplifier packages and performance ratings ... and, provides competent technical assistance in their application.

BURR-BROWN

research corporation Box 6444 TUCSON. ARIZONA
Teleghone: 602 -623.0328 - TwX: 602.792.2681

GROUNDOMETER

Measures resistance path through welich current must flow to ground.

The type A Groundometer features a transistor operated 1-f bridge power source. It lises a synchronous meter detector to eliminate stray ac and de ground currents. Full scale ranges are 1-10-1001 K and $10 \mathrm{~K} \Omega$. It is used for measuring the resistance path of grounding electrodes for lightning arrestors, transformers, relays, transmission line towers, telephone and telegraph equipment, etc. Industrial Instruments Inc., Borden Engineering Div., 89 Commerce Rd., Cedar Grove, N. J.

Circle 263 on Inquiry Card

MINIATURE CONNECTOR

Environmental circular connectors zeith miniaturization in all 3 directions.
Mini-Mate connectors are bayonet type with \#22 c-imp contacts on 0.080 centers. They are insertable from the rear but released from the front. The retention system permits each contact to be inserted or released independently. It maintains a minimum oi 18 lbs . retention after 10 or more insertions and removals. The contacts provide low engagement forces which average less than 2 oz . They maintained their values with virtually no change throughout a durability test of 2,000 cycles. Matrix Science Corp., 3311 Winona Ave., Burbank, Calif.

$$
\text { Ci-cle } 264 \text { on Inquiry Card }
$$

POWER TRANSISTORS

For converter and inverter circuits operating at 50 to 100 kc .

These triple-diffused, planar silicon power transistors meet and/or exceed the applicable requirements of Mil-S-19500C. They feature $h-f$. high gain, high reliability, and low leakage. The transistors may be used for h-f linear amplifier and high-speed switching applications. Silicon Transistor Corp., Carle Place, L. I., N. Y.

Circle 265 on Inquiry Card

Don't Remember Use a KLING Visual Control Board

ONE SYSTEM TO CHART YOUR PROGRESS
Lightweight, white steel board with aluminum frame, $24^{\prime \prime} \times 36^{\prime \prime}$. blank witi $1^{\prime \prime}$ square gridlines, 50 colorcoded magnets, and markers. Write on magnets and/or boards-or erase -for complete flexibility! No pins. No pegs. No flimsy cards.

ON APPROVAL TO RATED FIRMSor send for free booklet E-2

Regal \& Wade Mfg., Inc. / KLING SYSTEMS
Maspeth, New York 11378
Circle 85 on Inquiry Card

Sun Geared PRODUCTIUITY
 ne
 dAYtona Beach FIORIDA industrial area

Productivity . . . a plus from employees who can increase their skills. The new GENESYS (Graduate Engineering Educational System) Program brings graduate Engineering training for your employees right to your Daytona Beach Area's plant door. Add to your own productivity... allow our ..ıanpower pool to help solve your recruitment problems. Proof of the success of area industrial operations is found in the growth and expansion records of the diversified industries that have selected a Daytona Beach Area plant site.
Write to: Robert H. Miles, Industrial Manager DAYTONA BEACH Area Committee of 100 (Ormond Beach, Daytona Beach, Daytona Beach Shores, South Daytona, Holly Hill, Port Orange).'P.O. Box 1309, Dept. I-59' Daytona Beach, Florida

$\pm 1 \%$ tracking plus taut-band in 20 models, 9 styles---with

 many in stock

API offers 1 percent tracking, at no extra cost, in virtually every popular DC panel meter style, size and sensi-tivity-clear plastic, black phenolic, or ruggedized-sealed.

As long as you specify taut-band construction, you'll automatically get ± 1 per cent tracking-in all but the smallest and most sensitive API meters.

Taut-band is a bonus in sensitive meters

You don't even have to specify tautband if you order meters in ranges from $0-3$ to $0-50$ microamperes and from $0-3$ to $0-25$ millivolts. These meters just naturally come with taut-band. Besides responding best to exceptionally small signals, this friction-less design is much more resistant to damage from shock and vibration.
(Taut-band costs a little extra for less sensitive meters than those named above. There's also a slight charge for 1 per cent tracking in the $0-3 \mu \mathrm{a}$ or $0-3 \mathrm{mv}$ ranges.)

Immediate delivery for 10 models

Ten API panel meter models, in the most popular taut-band ranges, are now being stocked for off-the shelf delivery.

Ask for Bulletin 39 (Stock List)

For prices on all API taut-band meters Ask for Bulletin 38

For information on all API meters, taut-band or pivot-and-jewel

Ask for Bulletins
34-B and 107-C

Assembly Products, Inc. Chesterland, Ohio - Tel: 216-423-3131

CROSSED-FIELD AMPLIFIER

Freq. range: 16.0-17.0Gc; pk. volt.: 13.5-15.5kv; pk. current: 18-25a.

SFD-220 is a high power, high gain K_{u}-band crossed-field amplifier. The 100 kw tube is a continuous cathode, reentrant stream device. It is designed for use as the final amplifier in K_{u}-band coherent radar transmitters. It is forcedair cooled and features ceramic input and output windows. The tube offers 20 db gain, and possesses the phase stability needed for high resolution systems, and the broad bandwidth needed for freq. agile systems. S-F"-D Laboratories, Inc., 800 Rahway Ave., Union, N. J.

Circle 266 on Inquiry Card

MINIATURE COIL

$R-F$ units for printed circuits. Covers range from $0.9 \mu \mathrm{~h}$ to 125 mh .

The series 23A vertical mounting coils are wound on Resinite coil forms. These forms combine the mechanicai and dielectric advantages of phenolics with high dielectric strength, moisture resistance and non-corrosive properties of cellulose acetate. Temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. J. W. Miller Co., 5917 So. Main St., Los Angeles, Calif.

Circle 267 on Inquiry Card

MONITOR OSCILLOSCOPE

Miniature znit has features of laboratory type oscilloscopes.
Model 7000 Monitor Oscilloscope set allows continuous monitoring of analog tape record-reproduce systems, and other uses where mului-channel dynamic signal display is desired. Features include bandwidths of $5 \mathrm{mc} \pm 1 \mathrm{db}$; calibrated sensitivities of 0.1 v . RMS $/ \mathrm{in}$. to 10 v . RMS $/ \mathrm{in}$. in 7 steps; calibrated sweep rate of 0.01 to 100 Kc in 5 steps, plus a 10 times vernier control for sweep rate of 1 Mc ; very stable automatic triggering; and bright, sharp displays. California Instruments Corp., 3511 Midway Dr., San Diego, Calif.

Circle 268 on Inquiry Card
pLASMA
DEYMGE

a control/ed high temperature heat source for

- CRYSTAL GROWING
- SPHEROIDIZING PARTICLES - HEATING FLUIDS \& GASES - LABORATORY RESEARCH

The new Lepel inductively coupled plasma device is a low cost unit designec to permit
laboratories
and research departments
to conduct
experimental
work within
a modest
budget. It
can readily
be mounted on existing
laboratory
fixtures or
directly on the induction
generator. The plasma unit can be supplied with either a single-walled
quartz tube or a doublewalled water cooled
quartz tube. The adjustable water
cooled feeder tube provides for passage
of solid particles through the plasma.

> Lafal_ $\begin{gathered}\text { high freguency } \\ \text { Laboratories, inc. }\end{gathered}$
> 55th ST. \& 37th AVE., WOODSIDE 77, N.Y.C.

PRINTED CIRCUIT CARDS "COMPUTE" FLAWLESSLY

WITH

BARNSTEAD

PURE WATER EQUIPMENT

The General Products Division of International Business Machines at Endicott, N.Y., produces printed circuit cards which are literally the "brains" of IBM Computers - large and small.

Because of the extreme sensitivity of electronic equipment it is mandatory that these printed circuits be completely free from foreign or inorganic matter otherwise Computers will malfunction.

To "rinse away" all foreign matter from these printed circuit cards, IBM in its plating bath make-up, uses water that has been first demineralized and then distilled.

As city water enters the plant, it passes through a Barnstead Demineralizer to remove all mineral content and then through a Barnstead Still for distillation - the ultimate in Pure Water. It is then stored in a Barnstead storage tank to insure a steady supply of Pure Water as needed for the production line.

Installed in 1959, this Barnstead equipment is inspected three times yearly, and to date there has been no maintenance of any kind other than replacement of spent cartridges.

Want to know how Barnstead Pure Water can help your manufacturing and processing operations? Then write for Catalogs " G " and 160. No obligation, of course.

51 Lanesville Terrace, Boston 31, Mass.

Circle 89 on Inquiry Card

PROBING MACHINE
For rapid contacting of integrated circuits, transistors, diodes.

Model XY-540 is an automatically controlled production machine. It contacts components in the slice form prior to the scribing or dicing operations. Up to 16 probes and inkers can be set within a 0.015×0.015 in. area. Each probe is adjustable in X, Y, and Z-planes. The probes are stationary while the microcircuit slice is reciprocating up and down to contact the probes. Cycling speed of machine is $10 \mathrm{~K} / \mathrm{hr}$. Transistor Automation Corp., 18 Moulton St., Cambridge, Mass.

Circle 272 on Inquiry Card

HEAT SHRINKABLE TUBING

All purpose, irriadiated, polyolefin, with a 2:1 shrinkage ratio.

Within 7 sec. following application of heat, $\left(135^{\circ} \mathrm{C}\right)$ Alphlex FIT-221 shrinks to $1 / 2$ its original dia. It forms a permanent, tight fitting mechanical bond even over irregularly shaped objects. Its ability to shrink when heated makes it ideal for insulating components and cables with a wide variation in shape and size. It is thermally stable and will not cold-flow or melt. It retains form stability from $-55^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$. Alpha Wire Corp., sub. of Loral Corp., 180 Varick St., New York, N. Y.

Circle 273 on Inquiry Card

PULSE GENERATOR

Solid-state pulse generator has a repetition rate of 1 Kc to 200 Mc .

Model 122 has a risetime of less than 1nsec. Pulse width and pulse delay are 1 nsec . to $100 \mu \mathrm{sec}$. Delay, width and amplitude are fully controllable. Base line offset is $\pm 1 \mathrm{v}$. , adjustable, either polarity. The general purpose pulser may be used in testing and development of digital computer systems, telemetry systems and equipment, and high resolution radar systems. E-H Research Laboratories, Inc., Oakland, Calif.

Circle 274 on Inquiry Card
new!

A free guide book to the profit

 potential available in Florida's electronics industry. Write for your free copy today! Full, factual and detailed information about your future as a Florida industrialist. A partial list of subjects covered: the fantastic "Space-Age Market"; the solid growth of the industry in Florida; the markets for electronic components... instrumentation... and general manufacturing; the welcome climate that offers a tax structure so favorable, you'll want to investigate; the unlimited R\&D facilities available to you; the ease of recruitment of engineers and technicians, and the solid growth environment Florida offers you.But write today! Investigate Florida-the growth state! Discover what a Florida plant can mean to you and your company's profit picture! Write today for your free copy of "OPPORTUNITIES IN ELECTRONICS."

INTDUSTIRLAT

 in

for samples, technical data on hydrazineactivated flux* or core
SDIET. *U.S. Patent No. 2,612,459
Circle 93 on Inquiry Card

D

Electrical Correcting Elements in Automatic Control and Regulation Circuits By G. K. Krug and Ye K. Krug. Published 1964 by Pergamon Press L.td. and distributed by 11, N. Y. Price $\$ 5.00$. 88 pages.
This book provides a summary of the basic theory of automatic regulation. Also, many electrical correcting and stabilizing devices used in practice are described. Practical recommendations on their uses in automatic control systems are given. This book has been translated from the Russian.

Solid Circuits and Microminiaturization
Edited by G. W. A. Dummer. Published 1964 by Pergamon Press Ltad., and distributed by The MacMillan Co., 60 Fifth Ave., New York II, N. Y. Price $\$ 8.50$. 346 pages.
Proceedings of the Conference held at West Ham College of Technology, June, 1963.

Physics-Electronics Titles-

1960 Volume

Published 1964 by Boston Technical Publishers, Inc., 5 Bryant Rd., Lexington, Mass. 02173. Price 12.50. 455 pages.

Every Key-Word in the titles of major articles or papers which appeared in any of over 200 periodicals has been indexed using electronic computers.

Design of Low-Noise Transistor Input Circuits

By William A. Rheinfelder. Published 1964 by Hoyden Book Co., Inc., New York, N. Y. Price $\$ 5.50$. 160 pages.
The author develops a clear step-bystep method for calculating noise factor by separately calculating signal and noise powers. A complete chapter is also devoted to its measurement. This approach leads to success with the most complicated circuits. Many time-saving graphs and design curves are given for the circuit designer. New approaches in such areas as the problem of crowded frequency bands, generalized noise theory, and noise concepts, are discussed. Practical design details as well as discussions of typical modern circuits are included.

Books Received

Graphical Analysis: Understanding Graphs and Curves in Technology

By Philip Stein. Published 1964 by Hoyden Book Co., Inc., 850 Third Ave., New York 22, N.Y Price $\$ 9.95$ (Trade Edition) and $\$ 8.00$ (Taxt Edition). 270 pages.

Radar Scanners and Radomes

Edited by W. M. Cady, M. B. Karelitz and L. A. Turner. Published \& Distributed 1964 by Bosfon Technical Publishers, Inc., 5 Bryont Rd. Lexington, Mass. 02173. Price $\$ 4.50 .491$ pages.

Effective Public Relations, 3rd Edition
By Scott M. Cutlip and Allen H. Center. Published 1964 by Prentice-Hall, Inc., Englewood Cliffs, N.J. Price $\$ 11.95 .512$ pages.

Here are permanent, abrasion-resistant nameplates you can apply exactly where they're needed. No moistening, screws or rivets required. Self-bonding Poly-Plates adhere tightly to any clean, dry surface. Made of miracle sub-surface printed Mylar*. Non-conductive . . . safe on or near energized equipment. Any wording, shape, size or color, including rich gold or silver. Low cost. Write for bulletin and samples.
MDU PONT.S REC. TM
w. H. BRADY co., 750 w . Glendale Ave., Milwaukee 9, Wis.

Manufacturers of Quality Pressure-Sensitive Industrial Tape Products, Self-Bonding Nameplates, Automatic Machines for Dispensing Labels, Nameplates, Masks and Tape Circle 94 on Inquiry Card

Write us today for full particulars!
EISLER ENGINEERING COMPANY
Dr. Charles Eislep, M.E. President
770 South 13th Street, Newark, N. J., U.S.A. 07103
Circle 92 on Inquiry Card

Advertisers - February 1965

This index is published as a convenience.
No liability is assumed for errors or omissions.

B

Barnstead Still \& Sterilizer Co	4
Basic Systems, Inc.	65
Beattio-Coleman Incorporated	124
Bell Company, F. W.	63
Boeing	
Airplane Division	110
Boonton Electronics	120
Brady Company, W. H.	136
Brush Instruments	Inside Back Cover
Burr-Brown Research Corporation	32
Bussmann Mfg. Division	
By-Buk Company	

Dale Electronics, Incorporated Inside Front Cower Daytona Beach Industrial Area 132	
Delco Radio	30, 31
Dialight Corporation	122
Durant Manufacturing Compan	

E	
Eisler Engineering Company	136
Electro Motive Mfg. Company, Inc.	27
Electro-Tec Corporation	87
Engineered Electronics Company	127
F	
Fairchild Controls 14	
Fairmount Chemical Company, Incorporated	
Florida Development Commission	135
G	
General RF Fittings, Inc. 116	
Globe Industries Incorporated	
Guardian Electric Mfg. Company	54
H	
Hathaway Instruments, Incorporated	
Honeywall	
Semiconductor Products Division	28

Jennings Radio Mfg. Corporation $\mathbf{8 5}$

K
Kahle Engineering Company
Keithley instruments

L
Lepel High Frequency Laboratories, Inc. 133

M
Magnetic Metals Company 126
McDonnell Electronics Division 22
McLean Engineering Laboratories 6
Microdot Incorporated 130
N
National Electronics, Incorporated 129
Newark Electronics Corporation 130
0
Oak Mfg. CompanyInsert fol. p. 68

Phelps Dodge Electronic Products 29
Potter \& Brumfield Division
American Machine \& Foundry Company 44

R

Radio Corporation of America
Electronic Components \& Devices ..Back Cover
Tube Division
19
Radio Switch Corporation 128
Regal \& Wade Mfg., Incorporated 132
Resistance Products Company 51
\mathbf{s}

Sanborn Company	11
Sanwa Electric Instrument Co., Ltd.	134
Scionics Corporation	32
Silicon Transistor Corporation	7
Sola Electric Company	102
Sperry Rand Corporation	
Sperry Semiconductor Division	62
Sprague Electric Company	2, 5
Standard Condenser Corporation	108
Stanpat Products Incorporated	109
Stromberg-Carison Corporation	128

Tektronix, Incorporated	24
Test Equipment Corporation	116

U
United Shoe Machinery
Fastener Division

ELECTRONIC INDUSTRIES

REGIONAL SALES MANAGERS

Philadelphia 19139-56th \& Chestnut Sts. (Area Code 215) SHerwood 8.2000 JOSEPH DRUCKER

Now York (17)-100 East 42nd St.
(Area Code 212) OXford 7.3400
GERRY PELISSIER
HUGH ROBINSON
Boston (10), Mass. -10 High St.
(Area Code 617) Liberty 2.4460 ROBERT G. SMITH

Chicago (11)-540 N. Michigan Avo.
(Ara Code 312) 467.9660
JOHN W. BERNHARDT
PHILIP ${ }^{\text {T }}$. CLARK
Cleveland (15)-601 Rockwell Ave.
(Area Code 216) SUperior 1-2860 GREG JOHNSON

Los Angeles (57)-198 S. Alvarado St.
(Aree Code 213) DUnkirk 7-1271
GEORGE F. KELLEY
BURI UNDERWOOD
San Francisco (3)-1355 Market St. (Area Code 415) 861.7107 DON MAY

Atlanta (9)-1776 Paachtree St. N.W. (Area Code 404) 875-1255 JOHN W. SANGSTON

Dallas (6)-Meadows Bldg.
Expressway at Milton
(Area Code 214) EMerson 3.6426
HAROLD E. MOTT

EUROPEAN SALES OFFICES
London, S. W. (1)-67/68 Jermyn St.
St. James
MAX F. HOLSINGER
United International Industrial Press Eitelstrasse 32
4 Dusseldorf-Rath, Germany
MAX F. HOLSINGER
FAR EAST SALES OFFICE
Tokio Marunouchi, Japan
C. P. O. Box \#1572, Room 814

Tel.: 211-3506-3509
Togin bidg.
CLARENCE T. SAKMGUCHI

DATA TRANSMISSION UNIT IN CLOSED-CIRCUIT TV FORM

A new closed-circuit television data transmission console has been disclosed by Cohu Electronics, Inc., of San Diego, Calif.
Called ER-2333, the system uses a 2000 series miniaturized TV camera mounted on an adjustable boom permanently affixed to a desk top. Through a combination of specified lenses and vertical movement of the camera a small section of data, or an entire page, can fill the whole monitor screen.

FLUID CONTROL PASSES TEST IN ARMY MISSILE FLIGHT

A new concept in controls-a fluid system with no moving parts or elec-tronics-has successfully controlled a missile in flight at a Redstone Arsenal Missile Test range, according to Maj. Gen. John G. Zierdt, commander of the Army Missile Command.

The vehicle, a test instrumentation vehicle (TIM), contained a fluid-flow control system developed by Honeywell, Inc. The working fluid senses, computes, amplifies and controls by means of reaction jets. Streams of

Every year, more and more assemblies and sub-assemblies for electric and electronic equipment are being riveted with United's Eyelets, because manufacturers are discovering that eyelets provide uniformly strong, dependable fastenings-and in addition, help cut production time and costs, because both the initial and the all-important in-place costs are far less!
When you tackle your next product design or re-design project, investigate United's Eyelets for your riveted assemblies. Chances are you'll be able to reduce production costs-and you can probably reduce your own design time too, because United offers a complete Engineering Service, ready to work with you on your specific application requirements. Phone the United Office in your area.... or write direct to Fastener Division, United Shoe Machinery Corporation, 1258 River Road, Shelton, Connecticut.

United's Eyelets

FASTENER DIVISION
United Shoe Machinery Corporation SHELTON, CONNECTICUT
Branches: Atlanta, Ga. - Boston, Mass. - Chicago, III. - Cincinnati, Cleveland, Ohio - Dallas, Texas • Sun Valley (Los Angeles), Calif. - Lynchburg, Va. © Milwaukee, Wisc. • Nashville, Tenn. - New York, N.Y. - Rochester, N.Y. • St. Louis, Mo.
gas or liquid are directed by channeled plates inside the missile. By directing gas pressure the system performs control functions.

Fluid devices prevent missile from spinning by measuring spin rate and converting the rate to a memory of vehicle body position. Fluid amplifier cascades build up measured signals to power levels needed to control supersonic reaction jets to prevent spinning.

NEW SIEMENS DIVISION

New headquarters for distribution of Siemens components throughout the U. S. is at 230 Ferris Ave., White Plains, N. Y., according to Herbert Stadlinger, Vice President of Siemens America, Inc.

This office and warehouse location, formerly operated by William Brand Electronic Components, Inc., is being enlarged and extended with additional storage facilities to handle the complete Siemens component line.

STANDARDS MEDAL AWARD

In recognition of leadership in the development and application of voluntary standards, Virgil M. Grahan, associate director, Engineering Department, Electronic Industries Association, will receive the 1964 Standards Medal of the American Standards Association. Mr. Graham will receive the

Virgil M. Graham
award from the ASA at its annual Awards Banquet in Chicago on February 16 at the Sheraton-Chicago Hotel, in conjunction with the association's 15th National Conference on Standards. The award honors Mr. Graham for his role in setting the electron tube type designation system, central registration for tube types, standardization work on auto radios, and in international standardization.

These are Optional Penmotors for the Brush Mark 200 Series 1707 Recorders

You should see the information they give in combination!

(modern oscillography will never be the same)

Optional penmotors are the newest of several Brush innovations that change previous notions about today's direct writing recording. The pace-setting Mark 200 now gives you any combination of variables .. 80 mm channels for extreme resolution in absolute measurement ... 40 mm channels for coordination of dynamic information .. "yes-no" information from timecodes, relays, actuators, etc. One recorder presents them all . . . in any combination . . . on the same chart ... on a common time base! The choice is yours! And, a pressurized inking system with over 10,000 channels of performance produces traces so accurate and crisp that you can't misread the signal. True rectilinear motion results from a unique linkage that creates a straight line 99.9% accurate. A super-sensor called the Metrisite "polices" the pen position for instant self-correction without mechanical restraint. The rule book of oscillography is changed. Check Brush for new standards. Your letterhead request will bring the complete story.

See how easy it is to go solid state...

try these mass-produced RCA hi-fi transistors and this simple circuit

With this 5-transistor-per-channel solidstate amplifier circuit, you can make popu-larly-priced sets for today's big solid-state audio market.

This RCA-developed circuit can be driven by a tuner output or by standard ceramic phonograph pick-ups.

Despite its simplicity and low cost, this stereo amplifier circuit gives excellent performance: high gain with low distortion over a wide frequency range (response flat from 30 cps to $12,000 \mathrm{cps} \pm 3 \mathrm{db}$). It delivers 50 watts (RMS continuous) output power (75 watts music power) with a 4 -ohm load.

These four low-cost, mass-produced RCA germanium transistors . . specially designed for hi-fi applications make this a practical reality:

INPUT STAGE: RCA-2N2613 high-gain, low-noise (+db max) P-N-P alloy-junction small-signal audio amplifier transistor.
PREDRIVER STAGE: RCA-2N2614 P-N-P high-gain, high-voltage alloy-junction small-signal audio amplifier transistor.

DRIVER STAGE: RCA-2N591 P-N-P high-gain, large-signal driver transistor.
OUTPUT STAGE (Class B): Two RCA40051 P-N-P alloy-junction power transistors featuring excellent linearity.

Together, this RCA complement makes up the best hi-fi transistor value on the market today.

For full technical information request your copy of Advanced Application Note ST-2650 from your nearest RCA Field Office, or write to RCA Commercial Engineering, Section EJ2, Harrison, N. J.

AVAILABLE THROUGH YOUR RCA DISTRIBUTOR

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N. J.

[^0]: REGIONAL
 OFFICES: CHICAGO, ILL. 60625, 5555 NORTH LINCOLN AVE., 312-271-0366-7. TWX 910-221-1304
 LOS ALTOS, CALIF. 94022, 1 FIRST STREET, 415.941.2842. HUNTSVILLE. ALA. 35807, POST OFFICE BOX 1467

[^1]: American Beauty Division • American Electrical
 Heater Company - Detroit, Michigan 48202

[^2]: - A REPRINT of ANY ARTICLE in this issue is available from ELECTRONIC IN. DUSTRIES Reader Service Department.

[^3]: 1. A. Zwerev and It. Mlinchikoff. "Network Transformation in Wave Filter Design.- Filectronics, Jime $26,1959$. 1945 H. Rode. "Network Analysis and F'cedback Amplifier Design" 3. W. Herzog, "Siebschaltungen mit Schwingeristallen," 1949.
[^4]: Att: Circulation Dept.

[^5]: FOR MORE INFORMATION on opportunities described in this section fill out the convenient resume form, page 114.

[^6]: Circle 75 on Inquiry Card

[^7]: *Manufactured under license from Burroughs Corporation

