ELEGTRONIC INDUSTRNES

SEPTEMBER 1963
MATHEMATICS FOR DESIGN

TWO ACCEPTED STANDARDS OF RELIABILITY

Reliability is an important reason why RMC Type C temperature compersating DISCAPS rank so high with users. It makes them the ideal cost-cutting replacement for tubular ceramic and mica capacitors. Rated capacities will not change under voltage. Smaller sizes permit compact circuit designs. Greater mechanical strength means lower cost production operations. Type C DISCAPS are rated at 1000 working volts yet cost no more than ordinary 600 volts capacitors.

TC	. 290	. 400	. 570	. 660	. 790	. 890
P-100	1. 5 MMF	6-10 MMF	11-20 MMF	-	-	-
NPO	1-15	16-33	34-69	70-85 MMF	86-115 MMF	116-175 MMF
N. 33	1-15	16-33	34-69	70-85	86-115	116-175
N- 75	2-15	16-33	34-69	70-95	96-130	131-190
N-150	2-15	16-36	37. 67	68-95	96-130	131-230
N-220	2-15	16-36	37-75	76-100	101-160	161-230
N-330	2-20	21-51	52-75	76-115	116-190	191-270
N-470	2-20	21-51	52-80	81-120	121-200	201-275
N-750	2-32	33-75	76-155	156-220	221-300	301-470
N-1500	10-74	75-140	141-220	221-399	400-550	551-800
N-2200	20-75	76-150	151-299	300-450	451-680	681-900
			FACTORIES	At Chicago	ILL. AND AT	CA, IND.

Circle I on Inquiry Card

SHELBY A. McMILLION, Publisher BERNARD F. OSBAHR, Editor

THE ENGINEER IS IN BUSINESS, TOO!

It is time that engineers take a long. hard look at the "business" side of electronics.

Designing and building equipment is fine. But until it is sold. there is no money for anyoneneither the engineers, salesmen, management nor stockholders.-It's as simple as that.

Part of the trouble has been that management feels sales figures are none of the engineer's business: that the less he knows, the better. And engineers, strangely. have gone along. There is a certain weird sense oi security in being insulated from the problems oi sales and management.-"We huild the equipment. It's up to them to sell it!"

That arrangement just wont work. This is much too complicated a business. For his own sense of security, and for his future professional development. the engineer must become faniliar with the facts of 1)usiness life.

There is certain basic information that the engineer should know about his firm, things that managenent should tell him.

For instance, engineers should know how products are marketed. Are they sold by factory salesmen? Or. reps? Or by both? And what percentage is sold by each?

How is the competition marketing its products? Does there seem to be an advantage either way?

Engincers should know the factory price of the
equipment on which they are working. Alsu, the retail price, if applicable.

Engineers should know how much total business is clone by the firm-and the percentage protit. "They should also know the competitive position of the firm -whether it is first, second-fifth—in its field.

Engineers should know management's objective. For instance, what percentage of the firm's business is military, and how much commercial. If the picture is clanging, they should know that, too, and the direction it is taking.

Managements must accept the fact that it is important for their engineers to be informed on these areas. Not just for their personal satisfaction, but becanse it enables team performance and helps in developing a strong. consistent, outside corporate image.

Of course, when management makes these figures available, it also opens itself to criticism. But a company management that can't stand criticism is probably on borrowed time, anyway.

One very simple device for engineers-become a stockholder in the firm. Even one share of stock entitles the holder to copies of the earnings statements. And frequently, the most important details on company plans and accomplishments are contained in the Ammal Report.

Successful business calls for teamwork between management. marketing and engineering.

SPRAGUE LOGIC TRANSISTORS GIVE SUPERIOR LATCH-UP PROTECTION!

*ralings for most prime germanium mesa †ypes. *based on guaranteed ratings!

For Guaranteed High Voltage Operation at High Speeds, Investigate Sprague ECDC ${ }^{\circ}$ and MADT ${ }^{\circ}$ Transistors

$\|\sqrt{2}\|$	Type No.	ft (iypicol)	$\begin{aligned} & \text { BVCES } \\ & \text { (minimum) } \end{aligned}$	$\begin{gathered} \mathrm{BVCEO} \\ \text { (minimum) } \end{gathered}$
	2N2795	450 mc	25 volis	15 volts
	2N2796	450 mc	20 volts	12 volts
	2N984	350 mc	15 volts	10 volts
	2N979	150 mc	20 volts	15 volts
TO-18	2N980	150 mc	20 volts	12 volts
CASE	2N2048 \dagger	250 mc	20 volts	15 volts

(ITO.9 Case)

SPRAGUECOMPONENTS

- For additional information on Sprague High Voltage Logic Transistors, write to the Technical Literature Service, Sprague Electric Company, 2.33 Marshall Street, North Adams, Massachusetts.
${ }^{(1)}$ Trademark, Philco Corp.

TRANSISTCRS
CAPACITORS RESISTORS microcircuits interference filters

PULSE TRANSFORMERS Piezoelectric ceramics PULSE-FORMING NETWORKS TOROIDAL INDUCTORS electric wave filters

CERAMIC-BASE PRINTED NETWORKS PaCKaged COMPONENT ASSEMBlies BOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS

Vol. 22, No. 9

EDITORIAL FEATURES

EDITORIAL: THE ENGINEER IS IN BUSINESS, TOO! 1
U.S. NEEDS ELECTRONIC CAPABILITY FOR SPACE (Staff Interview) 28
MATHEMATICAL MODELS FOR ENGINEERS, R. S. Berkowitz 39
IMPROVING RATE TABLES FOR GYRO TESTING, A. S. Hamilton 72
WHAT'S NEW 75
Delay Lines
Pocket Size LASER
Three-Mode Sweep Oscillators
Numerical Control
New Tricks With Strobes
Air Dielectric Cable
Automatic Relay Test Set
IMPROVEMENTS INCREASE CERAMIC CAPACITOR RELIABILITY, L. Nordquist 76
SMOOTHING-PREDICTING SAMPLED DATA, D. B. Borkum 81
ON THE PROPERTIES OF NEGATIVE IMMITTANCE, K. A. Pullen, Jr. 86
ENGINEER'S NOTEBOOK \#68—USEFUL MATHEMATICAL APPROXIMATIONS,
A. L. Plevy 89
A SPEEDY METHOD OF COMPUTING DIELECTRIC PROPERTIES, P. H. Gum \&
B. A. Schoomer, Jr. 90
ELECTRONIC SYSTEMS 167
A DIGITAL WIRE GUIDANCE SYSTEM, M. F. Borkowski, C. C. Craven and
J. B. Mynaugh 168
PROFESSIONAL OPPORTUNITIES 177
DECIDING ABOUT PROGRAMMED INSTRUCTION, J. L. Becker 179
DEPARTMENTS
Radarscope 8
Coming Events 16
Washington Trends 23
Marketing: Fact \& Figure Roundup 25
Snapshots of the Electronic Industries 30
Circuit-Wise 88
New Tech Data 104
New Products 118
Editor's Mail Box 158
Letters 160
BPA M8P

All from Sprague ... for "cordwood" packaging!

ULTRA-MINIATURE SOLID TANTALUM CAPACITORS

Type 172D in glass-to-metal hermetically-sealed cases. Performance characteristics identical to Sprague's famous Type 150D capacitors . . . including superior high frequency performance, lower leakage current values, lower dissipation factor limits, and higher permissible ripple currents as compared to customary industry specifications. Engineering Bulletin 3523

Type 1540 in molded cases. Another Sprague innovation to cut your costs. Offers nearly all the high performance characteristics of metalclad capacitors. For selected applications in digital computing equipment and other commercial and industrial electronic gear where you do not need the humidity protection of higher-priced, hermetically-sealed types.

Engineering Bulletin 3530
Type 165D in polyester-film tubes. Sealed with epoxy resin. Because of thin wall of tube casing, Type 165D gives you the highest capacitance of any solid tantalum capacitor anywhere! Recommended for use in encapsulated blocks or hermetically-sealed metal-encased subassemblies to assure protection from moisture.

Engineering Bulletin 3535

TYPE 206P Epoxy-Coafed PACER ${ }^{\text {© }}$ polyester film CAPACITORS Engineering Bulletin 2067	TYPE 252C Molded-Case CERA-MITE ${ }^{\text {D }}$ ceramic CAPACITORS Engineering Bulletin 6151	TYPE 262C, 263C Molded-Case MONOLYTHIC layer-built ceramic CAPACITORS Engineering Bulletin 6250	TYPE $903 Z$ Epoxy-Coated INDISTOR* induction-resistance DELAY NETWORKS Engineering Bulletin 45,001 "Trodemark	TYPE 416E, 418E Molded-Case FILMISTOR ${ }^{\text {D }}$ metal film RESISTORS Engineering Bulletin 70258
TYPE 405E,411E Molded-Case FILMISTOR ${ }^{\text {B }}$ deposited-carbon RESISTORS Engineering Bulletin 70008	TYPE 239E Vitreous-Enamel BLUE JACKET ${ }^{\text { }}$ power wirewound RESISTORS Engineering Bulletin 7410D	TYPE 219E Silicone-Encapsulated ACRASIL. precision power wirewewnd RESISTORS Engineering Bulletin 7450	TYPE 5000Z CONNECTORS and ISOLATORS ("sherts und opens") Engineering Bulletin 94,000	TYPE 7000Z Shielded Radio Frequency INDUCTORS Engineering Bulletin 41,800

The Sprague components shown here are available in the two basic sizes ($.090^{\prime \prime}$ D. x $.250^{\prime \prime}$ L. and $138^{\prime \prime}$ D. x. $390^{\prime \prime}$ L.) you need for the accepted high-density technique known as "cordwood" packaging. If you wish, they can be furnished on lead tape for automatic insertion on printed wiring boards. And with standardized sizes, these components can be installed with the same machines, permitting more efficient use of insertion equipment.

For complete technical data, write for Engineering Bulletins listed above. Address: Technical Literature Service, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS

CAPACITORS	PULSE TRANSFORMERS
TRANSISTORS	PIEZOELECTRIC CERAMICS
RESISTORS	PULSE-FORMING NETWORKS
MICROCIRCUITS	TOROIDAL INDUCTORS
INTERFERENCE FILTERS	ELECTRIC WAVE FILTERS

CERAMIC-BASE PRINTED NETWORKS PACKACED COMPONENT ASSEMBLIES bOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS

ARTICRE 凡RGתILCMTS

of this issue

Mathematical Models for Engineers
Do you still know how to use the primary tool of your profession-math? Here is the article that will bring you up to date . . . it is concise, yet comprehensive, ranging from elementary algebra to the abstract formalisms of differential equations and theory of a complex variable. Emphasis is placed on design applications for this tool.

Improvements Increase Ceramic Capacitor Reliability

76

Through constant, rugged testing the failure modes and the mechanisms involved for ceramic capacitors are known and understood. Using this knowledge as a base, a method was developed to fluorinate the dielectric material along with better encapsulation methods to further improve ceramic capacitor reliability.

On the Properties

 of Negative ImmittanceThe development of tunnel diodes and four-layer diodes has placed extra emphasis on the properties of negative immittance as a circuit property. Here is discussed the controversy of two aspects of this prop-erty-negative resistance and negative conductance.

Improving Rate Tables for Gyro Testing

72Changes for gyro acceptance testing and rate requirements reduce high cost and loss of time from retesting and/or rejections. This article describes equipment which exceeds present specifications and relates the way this is accomplished.

A Speedy Method of Computing Dielectric Properties 90
The search for specific dielectric materials for microwave has been speeded up by using a computer in conjunction with the Newton-Raphson method. This supplies the dielectric constants and attenuation quickly and accurately with minimum effort.

SHELBY A. McMILLION, Publisher
BERNARD F. OSBAHR, Editor
CREIGHTON M. MARCOTI
Executive Editor
JOHN E. HICKEY, If.
Senior Technical Editor
SMEDLEY B. RUTH
SIDNEY FELDMAN
Associate Editors
IOHN J. HUNTER
ROBERT S. BRAMLETT
Assistant Editors
OR. ALBERT F. MURRAY Consulting Editor
ELMER KETTERER. Art Director
SOL MEDNICK, Cover Design ANNE AXE, Editorial Assistant ANN LAVENDER, Research Assistant MAE MOYER, Reader Service IDA GOOD, Editorial Secy.
EDITORS-AT-LARGE
Eastern Region
ELMER T. EBERSOL,
100 East 42 nd St.
(Area Code 212) OXford 7.3400
Western Region
J. PHILIP GEDDES,

198 S. Alvarado St.
Los Angeles 57 Calif.
(Area Code 213) DUnkirk 7.1271
Defense/Space
CHARLES R. WILHIDE,
Pentagon News Room
The Pentagon
Washington, D. C.
WASHINGTON NEWS BUREAU
1093 National Press Bidg.
(Area Code 202) 965.0675
GEORGE BAKER, Mgr.
GEORGE BaKER, Mgr.
DAVID R. HEINLY
BUSINESS DEPARTMENT
ELMER DALTON
Advertising Promotion
\& Circuiation Manager
EOWMRD G. SHAUD, Jr.
EOWiRD G. SHAlJD
Marketing manager
GORDON HERNDON
GORDON HERNDON
Production Manager
ARA H. ELOIAN
Asst. Production Manager

See Advertisers Index on page 187 fo Regional Sales Managers.

Chilton Company-G. C. BUZBY, President Executive Vice Presidents: R. E. McKenna, G. T. Hook. Vice Presidents: P. M. Fahren Torhune, V. Rowlands, M. E. Cox, E. B Treasurer: Stanley Appleby. Secretary: J. A. Treasurer: Stanley Appleby. Secretary: J. A. Heinle, G. E. Cameron T. C. Camphelt H. W. Barclay, W. A. Phair; Assistant Treasurer: J. Miades; Assistant Secretary: I. C. Holloway.

JOHN H. KOFRON
Chilton Research Director
ELECTRONIC INDUSTRIES, September, 1963. Yol. 22, No. 9. A monthly publica: tion of Chilton Company. Executive Edi torial \& Advertising offices at Chestnut \& SHerwood 8.2000 39, Pa. (Area Code 215) Nostage paid at Philadelphis circulation postage paid at Philadelphia, Pa. \$1 a Subscription rates U. S. and \mathbf{U}. S. copy. sions; 1 yr. $\$ 10.00$. 2 yrs $\$ 1800$ Canad sions; 1 yr. $\$ 10.00 ; 2$ yrs. $\$ 18.00$. Canada 1 year, $\$ 12.00 ; 2$ yrs. $\$ 20.00$. All other countries $19{ }^{\text {yr. }}$ by Chilton ${ }^{2}$ company. Title Reg. U. S. Pat. Off. Reproduction or re. printing prohibited except by written au thorization.

SIERRA ELECTRONIC DIV.

For a free demonstration, more information about the 219B Tran sistor T.ester, or the complete Sierra Quick Reference Catalog. contact your Sierra representa tive, or write to address below:

HALF the world is half aslepp! Men who could be making twice their present salaries are coasting along, hoping for promotions but doing nothing to bring themselves forcefully to the attention of ranagement.

They re wasting the most fruitful years of their business lives . . . throwing away thousands of dollars they may never be able to make up. And, oddly enough, they don't realize-even remotely-1he tragic consequences of their failure to forge ahead while time is still on their side.

Engineers and other tectnically-trained men are particularly prone to "drift with the tide" because their starting salaries are reasonably high and promotions come at regular intervals early in their carpers. It isn't until later-too much later in many cases-that they discover there is a definite ceiling on their incomes as teclinicians,

Send for Your Free Copy of "Forging Ahead in Business"

If you want to discover how to succeed while you are still young-if you want to avoid the heartbreak of iailure in later years-send today for "Forging Ahead in Business" . . . one of the most practical and realistic booklets ever written on the problems of personal advancement.

Here you will find—not a "pep-talk," not ar academic lecture-but cold, hard facts on how to improve your position and increase your income. You will be told what the qualifications of an executive are in todays competitive market ... what you must linow to make $\$ 15,000, \$ 20.000$ or more a year . . . what you must do to accumulate this knoviedge.
"Forging Ahead in fusiness" was written for mature, anbitious men who seriously want to get down to bed-rock in their thinking about their business future. If you feel it is meant for you, simply fill ir and relurn this coupon. Your complimentary copy will be mailed to sou promptly.

Analyzing current developments and trends throughout the electronic industries that will shape tomorrow's research, manufacturing and operation

LASER SPACE WEAPONS were suggested as an "obvious area of speculation" and development by Sen. Barry Goldwater (R.-Ariz.) at the Ohio Wing Conference of the Xir Force Association. He suggrested that the Sovict Linion is perlaps doing more than just speculate. "We are now six full years into the space age. . . We have not athorized a single military space weapons system." He cleclared that Soviet concentration on manned satellites and manenverability in near space clearly point to military goals anll away from abstract science or precocupation with the moon. The Senator, in effect, has asked the L. S. to de-emphasize the moon and get moving on a military space program.

GOVERNMENT CONTRACTS AWARDED io small firms under the Small Business Administration: set-aside prograun rose 6.7% in fiscal 1963. SBX deputy - deministrator Irving Maness disclosed. During the yeat, $+6,356$ Government contracts valued at $\$ 1.9$ billion went to small businesses as a result of SBA program, which compares with $56,9+t$ contracts valued at $\$ 1.8$ billion awarded in fiscal 1962. The number oi contracts awarded to small firms fell below the 1962 level, but the rise in clollat value indicates a more specialized nature of contract being atwarded biv U. S. agencies to suall firms.

RAYTHEON-MARTIN SPACE TESTS

Raytheon's prototype rendezvous radar installed in Martin-
Marietta's terminal rendezvous closure and docking simulator.
Martin's full scale space simulator is being used to test
Raytheon's phase-modulated CW space rendezvous, all solid-
state radar, planned for use in advance spacecraft systems.

ZERO-VOLTAGE CURRENT and other phenomena in superconductivity in metals near $0^{\circ} \mathrm{K}$ have been verified, according to Dr. Sidney Shapiro of Arthur Little. Inc., Cambridge. Mass. In 1962, B. U. Josephson, Cambridge University (Eng.) predicted that in addition to single-electron tunneling, new effects in paired-electron tumeling should occur, one being a current entirely free of voltage. Josephson also predicted that on an E-I curve, r-f waves should influence paired tumeling, causing zero-voltage current to appear at regular intervals along the curve depending on frefuency: Another Josephson phenomenon, verified by 1)r. Shatpiro. is the ability of I to reverse itself while E remains melninged. It happens and no one knows why.

SIGHT BY INFRARED RADIATION has been advanced a big step by Westinghouse scientist ${ }^{T}$ '. P. Vogl with a new compact, high-speed, high-remolation lens system for infrared imaging. Although good electronic systems exist for making objects visible in total darkness throngla their self-radiated IR. at major technical problem hats been adequate lenses for collecting and focusing the $1 R$ rays. They have been typilied by low speed, bulkiness and poor image quality. Vogl's lems system is rery fast-f/0.75, four stops faster than a first clatss lens for a $35-\mathrm{mm}$ camera-f/2.8. Its radia-tion-gathering ability is. therefore, 16 times better l'ast IR lenses were limited to $\mathrm{f} / 1.5$.

PHYSICAL PHENOMENA associated with the re-entry of bodies into the earth's atmosphere will be studied by (ircat Briain, Australial and the U. S. The findings may help in developing new electronic systems for identifying and tracking re-entry bodies. Known as D $\backslash Z Z L E$, the project will use Britain's Black K゙night research missile. Latunchings will be at Woomera Range in Australiat. $1: . S$ Advanced Research Project: lgency will provide instrments to observe reentry. Britain and Anstralia will check data.

PATENT CATALOG, 1790 TO NOW, is a m:mmoth pulblishing project to place all U. S. patents at the fingertips of industry, science and engineering. The project is being handled by Rowan \& Littlefield, Inc., of New York City with the cooperation of the L.S. Patent Office. Called "The National Catalog of Patents," the project will draw together in orderly classification the massive patent information from more than $5(000)$ issues of the Patent Office Gazette. Patemts will be grouped by classes and sub-classes. The first four volumes of the Catalog just published list all patents filed in 1901 in the electrical and chemical fields.

THIN FILM DEPOSITING PROCESS, using a new solution-spraying method, has been developed by National Cash Register Co. A means of depositing inorganic thin films, the process is especially good for preparing photoconductors, according to an NCR official. The technique provides deposition over a large area. higher yields, greater reproduction of characteristics, ligh dark-to-light resistance ratios having rise and fall times measured in milliseconds, and improved spectruill response. The process affords good adhesion of films to substrates. Its advantages, according to NCR, inclucle simplicity in film forming, cheaper cost because no vacumen equipment is needed, and the technique can be used in large-area depositing as well as in contimuous depositing on belt-type substrates.

METRIC SYSTEM CONVERSION for American science and industry before the end of the century has been predicted by economists of the Stanford Research Institute. They also forecast a total national bill of alont $\$ 11$ billion for the whole changenver. But-the cost for industry will be more than mate up by increased lusiness and productivity. The switch will mean faster calculations for engineers, better understanding between scientists and businessinen, casier and better teaching of the young, and less chance for costly: errors. Some 82% of the world's people now use the metric system.

LIGHT BEAMS TO MICROWAVES

Experimental system for converting laser beams to microwaves is adjusted by developer, Kenneth E. Niebuhr, IBM engineer. Ruby laser and quartz crystal are coupled optically to produce an S-band signal from two beam frequencies. This was the first ase of electro-optics for microwave conversion.

BRAIN WAVE ‘DETECTIVES’

Honeywell scientists hope to isolate electrical brain waves which might allow forecast or even control of human behavior over great distance. Scientist Doland Tepas does preliminary test using colleague Roy jacob as subject. Brain waves are analyzed by a digital Computer of Average Transits (CAT).

MANPOWER TRAINING INCREASE was given a helpinul mudge by James Carey, International Electrical Workers Linion head, before a House Labor Subcommittee as he cited a "rapid and contiming shift from production to non-prodt:ction workers" in the electronics indtustry. He declared, in support of expanding the Manpower Training Act, that change in emphasis from the unskilled and the semi-skilled-hand workers and simple machine operators-continues with their replacenent ly operators of semi-automatic and automatic operations and the supporting skilled teclmicians: and professional employees. He reported that in 195.3 some 23% of e'ectrical workers were non-production. hout in 1962 the total was 32%. In electronics alme the figure was 3 . $\%$.

HOME ELECTRONIC PRODUCT MAKERS

 and dealers "are courting chaos," reports Roland J. Kalb, vice president of 45 -year-old Pilot Radio Corp., an industry pioncer, now in high-fidelity systems. "I ligh pressure selling. low profit merchandising, indiscriminate distribution and over-saturated markets are ynickly tightening the anose on the whole industry. We can either take thet heavily traveled road to chaos, or we can take the one paved with fair profits, professional salesmanship and protected trading areas." Kalb declared. Pilot management has begmn "an intensive campaiga to restore fair profits and sanity to the industry."(Hare R.IDARSCOPE on Page 11)

WE PUT THE EYEBALL AND the LOW NOISE AMPLIFIER IN ONE TO-18 package. result: a detectivity - D* - That will please stargaZers. SPECTRAL RESPONSE, HIGH-Z INPUT, AND SPEED MAKE IT IDEAL FOR READERS, COUNTERS, AND OTHER APPLICATIONS. THE third lead lets you bias it for threshold control and low D-C DRIFT. WRITE FOR FILE P-102 AND MORE APPLICATIONS IDEAS. *Photosensitive Field-Effect Transistors

Silicanix incorporated
1140 West Evelyn Ave. • Sunnyvale 14. California
Telephone 245-1000• Area Code 408•TWX 408-737-9948

SEMICONDUCTOR DIODE BEHAVIOR at

 power switch-on was studied by Yuan Feng Chang, electrical engineer at Purlue, who has come up with an answer to the mystery. Using a pulser for input signals and a scope, he reports that at switch-on a large current or input signal shows an immediate ligh peak, then a sharp drop in voltage that levels to a steady flow. With a small signal the voltage rises gradually and then levels. A medium current makes the voltage go up like a step instantaneously (10 millionths of a second) and stay there. Semiconductor diode response differs then according to the current. In contrast, vacuum tuhes always respond in the same way regardless of signal. Professor Clang's work implies that the most efficient use of semicondluctor diodes is from a medium input signal.LASER-IN-SPACE EXPERIMENTALDATA are being gathered by scientists at the Air Force Systems Command's Aeronatical Systems Division, WrightPatterson Air Force Base. Problems of operating lasers in a vacuum, such as space environment, are under investigation in an electro-magnetic radiation analyzer chamber by Avionics Lab scientists. Iaser projects at Avionics range from efforts to increase peak and average power of gaseous and solicl-state lasers to communications and optical radar. Space-to-space communications links are envisioned with enormous message handling abilities, requiring only small primary power. A multi-channel optical commumications transmitter using a CW laser as the signal source has been developed and is being evaluated at A.SD.

AIR TRAFFIC CONTROL RADARS are stilstandard in many of our big city airports, according to a survey made by Edward H. Cockerham, executive director of the Air Traffic Control Association. He found that most big city fields still rely on old ten-inch, ASR-2 scopes as compared to more efficient and accurate 16 -inch variety with modern circuits. Oddly enough, newer radars are being used by many smaller, less busy fields such as Harrisburg, Pa., and Greensville. N. C. Cockerham feels that the inefficient, out-ofdate equipment could not have been commissioned by responsible persons. The survey disclosed that many big fields trying to make the \triangle SR- 2 work with modification kits have already run up costs equal to the cost of the new 16 -inch units. And, the ASR-2 is still a detriment to air safety as targets fade in and out.

ADDITIONAL VHF STATIONS anvwhere in the nation would be contrary to the intent of Congress in its all-clamel TV law, effective April .30, 1964, according to James D. Secrest, executive vice president of ELS. It would delay the law's effectivenss and discourage investment in UHF stations. The slowdown of UHF station construction to any degree through FCC approval oi VHF" "drop-in" stations would retard sales of all-channel sets substantially and with it employment and lousiness for manufacturers. distributors. and dealers-or, many consumers would have to pay as much as $\$ 30$ or more for UHF tuning they could not use. EIA asked FCC not to reverse its recent decision denying VHF "drop-in" proposals.

COLOR MOVIES OF THE LARYNX, at 9.000 exposures per second, is an Air Force development directed toward realistic electronic and mechanical voice reproduction for advanced speech transmission systems. According to scientists at Cambridge Research Lab, the high-speed, color film clearly shows the onset and end of brief transition vocal sounds that normally occur in speech. Area of larynx opening of cords, as a function of time, will be measured from the film with the aid of a digital computer. Speech syuthesis tests may determine the degree of larynx activity needed for natural voice quality. speaker identification and emotional cues.

IMPENETRABLE WINDOW

A germanium window that visible light cannot penetrate was used in a DC-8 flying observatory for the National Geographic Society-Douglas Aircraft eclipse study in July. Reflecting Douglas scientist A. T. Ireland is germanium circle through which instruments recorded IR radiation in the sun's corona.

Optimizing circuit components to frequency? Get more from magnetics

THE BOAE: What's the best core for operating at low frequencies? What powder core or flake core is best for a higher frequency? That depends on what you're looking for. Frequency alone does not determine where one type of core should be used in favor of another. There's an overlap of usefulness and many core possibilities within a frequency range. Core choice for optimum performance at a given frequency must be related to core cost, and operating temperature, to name a few. Optimizing comes from a careful analysis of the many variables. The man from Magnetics Inc. will re-acquaint you with them and will assist you with your selection.

THE MOPE: The 550 mu Permalloy cores permit greater circuit miniaturization, bridging the design selection gap between laminations and powder cores. Or, choosing a laminated corc where you may have thought to use a powder core might be just the thing to effect lower costs, size reduction, operating stability, and high efficiency. Because we produce and stock a wide range of sizes and types of high permeability components, we can assist you a little more than most. Just how much more? Ask the man from Magnetics Inc. next time he calls . . . or write us on your letterhead giving the details of your problem. Magnetics Inc., Dept. EI-6 Butler, Pa.

. . . Because the Depth of Motorola's Research Group Assures Continuous Zener Diode Breakthroughs

Zener diode innovations never stop at Motorola! Deep in talent and proven experience, Motorola research engineers continually strive for new achievements you can use. Here are some examples:

FIRST 50 WATT ZENER DIODE - Motorola's depth of research contributed this first in the industry, and set the pace for high-wattage zener diodes.

SURMETIC* ZENER DIODES - Made by a new low temperature oxidation process, this was the industry's first glass surface passivated zener diode. So effective is this temperature oxidation process, that surface passivated dice with leads attached, and no further protection, passed all standard MIL high temperature-humidity storage tests!

LOW-LEVEL OXIDE PASSIVATED ZENER DIODES - This new Motorola series (1N4099-1N4135) is specifically designed for low power applications, and features low leakage, low knee impedance and low noise.

These are typical achievements you can expect from Motorola's research group. They place the emphasis on results . . . for you . . . at no extra cost.
*Trademark of Motorola Inc.

MOTOROLA Semiconductor Products Inc.
a SUBSIDIARY OF MOTOROLA INC.
83-059
POO. BOX 955 . PHOENIX 1, ARIZONA

0SCILLOSCOPES aren't necessarily cheaper by the dozen. Not if six will do the work of a dozen. Fairchild's new solid-state line offers you the widest choice of transistorized scopes in the field-so that you can cover all of your requirements with fewer instruments. The versatility is designed in, along with unsurpassed precision.

Consider, too, the advantages of solid-state circuitry. Compactness (the rack model is only $7^{\prime \prime}$ high). Low power requirements (no cooling fans needed). MIL reliability (through advanced engineering and Fairchild silicon semiconductors).

Before you invest in another scope, compare features. Compare performance. Then invest wisely... in Fairchild.

NEW FAIRCHILD SOLID-STATE SCOPES GIVE YOU UNMATCHED VERSATILITY WITH MIL RELIABILITY
 The new 765 Series shown here is made in

three basic configurations: bench, rack mounted and truly lightweight portable. The dual interchangeable plug-in units below work into any model in the 765 Series to provide laboratory to production line applications.
Additional versatility is afforded by an option of 5 kv or 13 kv CRT. The higher accelerating potential permits observation or recording of fast transients or pulses with low repetition rates. A no-parallax internal CRT graticule is optional.
CHECK THESE PERFORMANCE FEATURES • Transistorized for compactness, MIL reliability, low power requirements (185 watts-no cooling fans) - Frequency range: dc-100 mc - Sensitivity: up to $0.5 \mathrm{mv} / \mathrm{cm}$ - Rise time: to 0.35 nsec - Sweep rate: $10 \mathrm{nsec} / \mathrm{cm}-1 \mathrm{~min}$. full scale $\cdot 6 \times 10 \mathrm{~cm}$ display area \cdot No-parallax internal graticule optional - Dual interchangeable plug-ins drive CRT directly for maximum accuracy - no intermediate circuitry

Type 766-Bench model provides high precision measurements in all laboratory or production line applications.

Type 76-05-100 mc Plug-In

Type 74-13-Dual Time Base Delaying Sweep

Write for New Literature

A new catalog with specifications and prices on Fairchild scopes, scope cameras and accessories is waiting for you. Write for it today. Fairchild Scientific Instruments, Dept. 750 Bloomfield Ave., Clifton, N. J.

Type 765 "Portascope" - Fiberglass case is no larger than an overnight bag. Cover of case holds probes, leads, accessories. Weighs only 35 lbs . with case. Also available in militarized version.

Type 767-Rack-mount configuration is standard $19^{\prime \prime}$ in width, only $7^{\prime \prime}$ high.

NINE PLUG-INS AVAILABLE TODAY...MORE COMING SOON
Dual interchangeable plug-ins give Fairchild Series 765 scopes the widest range of application. With 9 units available now, 3 being readied for production, and still others in development, your investment in a Series 765 scope is insured against obsolescence for years to come.

A tape recorder?

Not A tape recorder. SIX tape recorders! Stacked inside a KRS DATA-Stact ${ }^{\text {MM }}$ Portable Instrumentation Recorder, six magnetic tape cartridges perform the functions of six tape recorders, giving you 12 full channels of data-logging capacity. The cartridge-stack is fitted into a single $1 \frac{1}{2}$-foot cube.

Loads like a toaster?

Slide six continuous-loop, reversible STACTape ${ }^{\text {rM }}$ Cartridges into a DATA-Stact Recorder. Ease them down guide rails with fingertip pressure. You've just loaded six tape recorders in less than 20 seconds. And you never need to handle factory-loaded tapes during opera. tion or storage.

Reproduce? While recording?

Nothing to it, when your recorder is Stact. While recording data on one or more tapes, you can reproduce them simultaneously on the remainder with automatic synchronous start-stap operation of the six cartridge stack.

Who puts S.A.* into

Data Recording?

Only KRS offers * Stack-Able design. Based on units thoroughly tested in broadcast and professional applications, DATA-Stact recorders are all-solid-state use only two moving parts, and require virtually no maintenance to keep in top operating trim.

Write for Instrumentation Division Bulletin DR-1 giving the vital statistics.

Dept. E.I.
4035 Transport Street Palo Alto, California

SEPTEMBER

Sept. 15-19: Electrical Insulation Conf., IEEE, NEMA; Conrad-Hilton Hotel, Chicago, III.
Sept. 16-20: 13th Int'I Mgmt. Cong., Int'l Committee for Scientific Mgmt.; Waldorf Astoria, New York Hilton Hotels, New York, N. Y.
Sept. 18-19: 12th Annual Ind. Electronics Symp., IEEE, ISA; Kellogg Ctr., Mich. St. Univ., E. Lansing, Mich.
Sept. 22-25: Nat'l Power Conf., IEEE, ASME; Netherlands-Hilton Hotel, Cincinnati, Ohio.
Sept. 23-24: Int'I Conf., AllE; New York, N. Y.

Sept. 25-28: Materials \& Eqpt. and White Wares Divs. Fall Mtg., ACS; Bedford Springs Hotel, Bedford, Pa.
Sept. 29-Oct. 2: 51st Nat'l Mtg., Amer. Inst. Chem. Engrs.; Hotel Americana, San Juan, Puerto Rico.
Sept. 29-Oct. 3: Fall Mtg., Electrochemical Soc.; Hotel New Yorker, New York, N. Y.
Sept. 30-Oct. 3: Nat'l Fall Mtg., AWS; Hotel Statier-Hilton, Boston, Mass.

'63-'64 Highlights

NEC, National Electronics Conf., Oct. 28-30, IEEE, McCormick Place, Chicago, III.
NEREM, Northeast Research and Eng. Mtg., Nov. 4-6, IEEE; Boston, Mass.
IEEE Int'l. Conv., Mar. 23-26; Coliseum, New York Hilton, New York, N. Y.
WESCON, Western Electronic Show and Conv., Aug. 25-28, IEEE, WEMA, Sports Arena, Los Angeles, Calif.

OCTOBER

Oct. 1-2: Engineering Problems of Manned Interplanetary Exploration Mtg., AIAA; Cabana Motor Hotel, Palo Alto, Calif.
Oct. 4-6: Amer. Radio Relay League Nat'I Conv.; Cleveland, Ohio.
Oct. 15-17: 9th Tri-Service Conf. on Electromagnetic Compatibility, IIT Res. Inst., U. S. Army, Navy and Air Force, IEEE (PTG-RFI); III. Inst. of Tech., Chicago, III.
Oct. 15-23: Anglo-American Conf., AIAA, Canadian Aeronautics \& Space Inst., Royal Aeronautical Soc.; New Ocean House, Swampscott, Mass.
Oct. 16-18: Nat'l Symp. on Vacuum Technology, Amer. Vacuum Soc.; Statler-Hilton Hotel, Boston, Mass.
Oct. 18-19: Mtg., American Physical Soc.; Chicago, III.
Oct. 21-25: ASM Metals/Materials Exp. \& Cong.; Cleveland-Sheraton Hotel, Cleveland Public Hall; Cleveland, O.
Oct. 23-25: 1963 Annual Mtg, of the Human Factors Soc.; Ricky's Hyatt House, Palo Alto, Calif.
Oct. 31-Nov. 1: 1963 Electron Devices Mtg., IEEE (PTG-ED); Sheraton-Park Hotel, Washington, D. C.

Special Report From AMP On PIN AND SOCKET CONNECTORS

What specific benefits are derived from gold over nickel plating?
What plastic insulating materials are needed and why?
How much resistance to environment should be built into a connector?

This special report contains the answers to these as well as other searching questions concerning compression-crimped, snap-in type contacts as used in pin and socket connectors. The facts to be presented emanate from our 20 -odd years experience in developing endless variations of the compres-sion-crimping technique plus other authentic data gathered from industry-wide sources.

What advantages are offered by crimped, snap-in-type pin and socket contacts?

The steady rise in the volume of crimping (versus soldering) as a method of terminating multiple connector contacts can be traced to the fundamental merits of this technique.

Basically, the AMP method consists in mating the terminal barrel with the wire by means of a hand or automatic crimping tool. In either case the crimping dies fully bottom on the terminal before it can be released. Since the dies in each instance are perfectly matched to the terminal all crimps virtually amount to a "cold weld" and are identical in appearance and performance. With this procedure the variables so persistent in other methods are eliminated.

The AMP termination technique has been adjudged superior to thermal and other bonding methods, particularly in low-level circuitry, for a number of reasons: (1) It is generally easier to crimp individual contacts before they are inserted in the connector block than to solder densely spaced contacts already in position; (2) both insulated wire and stranded wire are more readily crimped than soldered; (3) in most instances crimped joints are more resistant to shock, vibration and other environmental hazards than other types; (4) no special skills are required for crimping; (5) very often with thermal methods the entire connector must be replaced if a single contact is damaged; with crimping (since the contacts are removable), any individual contact can be replaced without removing the connector from its mounting; (6) with crimping there is no danger of insulation burns or the wire becoming brittle; (7) when crimped, the contacts are fully enclosed in the connector housing which forms a natural dielectric barrier between circuits; (8) crimped contacts are placed in the block only where needed, thus saving the cost of extra contacts; (9) simple tooling permits easy removal and re-insertion of snap-in contacts; rearrangement of circuits is costly and time-consuming with solder, weld, or wrap-type connections; (10) little or no set-up time is required whether crimping is done with manual or pneumatic hand tools, or by automatic machines; (11) the crimp, snap-in technique is much faster in assembly and usually results in lowest installed cost; (12) crimping permits extreme flexibility in production procedures. Contacts may be crimped to individual leads or harnesses any time, anywhere; and actual insertion of contacts can be done in any volume or sequence desired. This is particularly helpful in the building of modular electronic systems where each unit must be completely assembled and pre-tested before it is combined with another unit.

In addition: While the AMP crimping method offers such advantages as convenience, ease of assembly, production economies, etc., as noted above, the electrical quality of the crimp, snap-in termination is generally superior to that of thermal or wrap-type terminations. This conclusion has been substantiated by tests for tensile strength, relative immunity to vibration, millivolt drop, and corrosion resistance.
What specific benefits are derived from gold over nickel plating?

In sensitive signal circuits, "dry" circuits -in all critical circuitry-gold or rhodium is mandatory. Since gold is less costly, more readily available, has extremely low electrical resistance and high resistance to corrosion, oxidation and humidity, it is used as standard outer plating for contacts in connectors used in missiles,
computers, aircraft and many other applications where extreme reliability is demanded

But gold alone was not the final answer to the plating problem. Research and testing revealed that gold, even to a thickness of $.000100^{\prime \prime}$ did not prevent copper from migrating through the gold to form an oxide on its surface. The solution, after lengthy research, was the use of a plating barrier that would offer strength and stability. The sub-plating that proved most successful, and is used as an AMP standard, was nickel. This gold over nickel plating suited both the geometry of the product and periodic removal and insertion of the pins from and into their mating receptacles.

Another factor was electroplate porosity, which is defined by chemical engineers either in terms of the relative amount of "empty" volume in the deposit or in the relative amount of exposed base area.
During a series of porosity experi ments, AMP research teams found that different baths produced a measurable difference in porosity and that in some cases even bigger differences occurred with the same gold plating in different locations. A direct linear relationship between porosity and current density was also found. Efficiency decreased above 5 ampere/ft ${ }^{2}$. For this particular bath, the faster the rate of plating, the greater the porosity.

These experiments combined with other experimental work has resulted in a system of controls that produce gold over nickel plating with negligible porosity. Another notable refinement of the AMP method: an exclusive X-ray measuring technique so microscopically accurate that it measures plating thicknesses to the millionth of an inch. These two factorslow porosity and fully controlled plating thickness-have been found to be ideally suited to highly sensitive circuits where voltage drop is measured in millivolts. It has also proved that a similarly high and consistent standard for gold-plating of contacts does not generally exist throughout the industry-an urgent consideration in connection with many space-age appli cations.
What plastic insulating block materials are needed and why?

Most of the phenolics, alkyds, allyds, (diallyl phthalates) and other thermosetting materials used predominantly in connector insulating blocks vary considerably in their behavior pattern. This is why they should never be chosen by "handbook values", but always with the reputation of the supplier as a prime consideration.

Glass-reinforced diallyl phthalate approved by the military, for example, is used in connectors, switches and various other military as well as critical nonmilitary applications

With or without glass reinforcement, diallyl phthalates are characterized by high arc resistance, low dielectric loss, high dielectric strength, and excellent mechanical properties, even under high humidity, temperature and other stress conditions. Another plus value is their extremely low post-mold shrinkage which makes close-tolerance applications feas.
ible. Plastic components from which the parts are made are selected to give the best overall physical and electrical characteristics for the intended use of such parts.

High-grade phenolics have been found wholly suitable for less critical uses in more moderate environments.
They are used in more electrical applications than any other insulating material. They possess not just good electrical characteristics, but are also strong, rigid and dimensionally stable. Besides being poor electrical conductors they absorb unly minuscule quantities of water, are unaffected by oils, greases, alcohol, weak acids, and most solvents. They do not evidence creep or cold flow, and are extremely resistant to electrical conductivity.

Although the choice of connector block material is dictated by the environmental climate in which a connector operates, the performance of plastics must be backed by the connector manufacturer. Thus AMP has tested and established the proper standards for all plastics used in $\mathrm{A}-\mathrm{MP}{ }^{\star}$ connectors. The materials must be capable of conforming to all applicable military specification for any given connector and/or be wholly suited to commercial needs.

How much resistance to environment should be built into a connector?

Resistance to environment must be built into every connector, but the amount of such resistance varies with the degree of heat, vibration, corrosion and other hostile environmental factors to which a particular connector is subjected.

For example, the range of resistance to environment varies greatly between connectors with mated face seals between contact cavities as well as peripheral seals between the shells and inserts, and those with neither shell nor environmental seals. To a lesser degree the same is true of connectors with diallyl phthalate inserts and those with the phenolic type.
These and many other environmental specifics have been determined through actual and simulated conditions in the AMP laboratories, one of the largest and most modernly equipped in the industry. Each connector is designed to operate with maximum reliability in the particular environment for which it is designed. With this in mind, let us briefly examine two contrasting applications:

CONNECTOR FOR TYPICAL
 \section*{AIRBORNE APPLICATION}

Here the overall environment is hostile. The connector recommended for this use must withstand ambient temperatures of up to $400^{\circ} \mathrm{F}$. and have extremely low and stable electrical resistance. Maximum current is 5 amperes per contact for a total of 100 male and 100 female contacts. Working voltage must not exceed 200 V ac. Gold-over-nickel plating is mandatory on all contacts. As a further safeguard against hostile environments, cadmiumplated aluminum shells, face and peripheral seals, and suitable grommets to act as rear seals for all terminations must be used. In short, the connector must perform its stable electrical function in its own isolated environment despite the fluctuations and varying stresses inherent in its application.

CONNECTOR FOR TYPICAL BUSINESS MACHINE
This type works satisfactorily without the refinements required for an airborne application. It operates intermittently inside a stationary machine, with little harmful vibration or other environmental detractions. Snap-in type terminations applied with automatic machines are less costly, and low-cost phenolic resin is adequate for the housings. These connectors may or may not require shells or strainrelief hardware. In brief, a general-purpose connector is well suited to this environment.

A number of modifications of these two opposites may be had from AMP to meet every connector need whether its operation is intended for a mild, moderate, or hostile environment. This includes connectors that can withstand a temperature extreme of $1200^{\circ} \mathrm{F}$., with corresponding severity of vibration, shock and corrosioninducing factor.

To sum up: AMP's present line of pin and socket connectors is designed to operate faultlessly within the environment for which any particular type is intended. The potential user simply evaluates the conditions under which the connector must operate, and AMP recommends the type or types needed to meet this set of requirements.

The following information is a guide to the classifications and types of A-MP Pin and Sucket Connectors:

Types of connectors and contacts

At present AMP manufactures eleven classifications of Pin and Socket Connectors. Connectors range from the Series " M" general-purpose block connectors, without a shell, for relatively non-sensitive applications; to the "D-DE". with full environmental sealing for critical military and commercial use.

SERIES "M", "D", "D-D" AND "W" CONNECTORS

The series " M " is available in housings with $14,20,21,26,34,41,50,75,104$, (and 104 center fastener) positions. These housings can be obtained in molded phenolic resins, or diallyl phthalate. When fully assembled, these connectors have no metallic shell. They do, however, offer a complete line of shields $\left(180^{\circ}\right.$ or 90° exit.) and strain relief hardware. As a group they are general purpose connectors.

The Series "D" has housings with 45 and 78 positions, the Series "D-D" with 90 and 156 positions, and the Series "W" with 26,40 and 45 positions.

All Series "D" and "D-D" housings have positive polarization and floating bushings for accurate alignment with the receptacle. Plug shell skirts help protect pins against plug-in damage, while float space of pins and sockets also helps prevent misalignment. All inserts (phenolic or diallyl phthalate) are alpha numerically coded-front and rear-and encased in cadmium-plated aluminum shells. For the military, an olive drab finish is available.

Matched accessories include shields, cable-clamps, and strain relief clamps. Also available are polarizing block configurations, and keying pins.

AMP has designated Type II, Type III and Type III (+) pin and socket contacts for use with Series "M", "D", "D-D", and "W" Connectors. Obviously, choice depends on nature of application, installed cost and other modifying factors. Here, therefore, is basic information on the suitability of these contacts for specific needs.

TYPE \| CONTACT

This is a highly reliable crimp, snap-in, screw-machine processed contact that meets MIL-C-8384 and MIL-C-5015 specifications. At 7.5 amperes, resistance is less than 25 millivolts after environmental testing, and engagement forces vary from 1 to 12 ounces per line for a \#20 contact. External retention spring provides quick assembly and firm seating to the connector block; however, it can be easily removed and re-inserted. Minimum surface wear is assured with the use of cantilever-beam engagement spring Available in contact sizes 20 and 16 in a wire range of \#32 through \#14 AWG. May be ordered in loose piece form, or tape-mounted for high-speed application with automachines. Standard AMP nlating of gold over nickel. Other platings available on request.

TYPE III CONTACT

This is a crimp, snap-in, formed contact that may be fed in a continuous strip into automatic crimping machines for high-volume application. This contact has bell-mouthed sockets and closed entry for proper pin alignment and protection from probe damage. Cantilever-beam engagement spring provides sustained contact pressure which results in minimum surface wear. Quick assembly and firm seating in the block are assured through the use of an external retention spring. The contact can also be easily removed with an A-MP extraction tool. Contact sizes: $20,18,16$ for use with wire from \#24 through \#16 AWG. Also supplied in loose piece form. Standard AMP plating: Gold over nickel. Other platings available on request.
TYPE II(+) CONTACT
This contact is identical to Type III with the exception that, additionally, it features insulation support for greater mechanical strength and is supplied only in contact size 16 which encompasses a wire range of \#26 through \#16 AWG.
Series "A" connectors

Series "A" Connector is designed for either rack and panel or bulkhead use. It is an environmental connector with high performance ratings, and is available in either 50 or 100 positions. Both configurations are sealed or unsealed, as ordered. In both cases the insert material is diallyl phthalate. In the sealed version the peripheral and interfacial seals are made of fluid resilient silicone rubber. Shells are made of cadmium-plated diecast aluminum. This connector meets the following performance requirements: dielectric withstanding voltage at sea level -1500 V ac, rms; insulation resistance $-5,000$ megohms; temperature cycling-$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; vibration (method 204 and condition C of MIL-STD-202B) - 10 to 2,000 CPS; shock (method 202 of MIL-STD-202) - at 15 G's; humidity (method 106 of MIL-STD-202) - 5,000 megohms.

$$
\square 10207 \Longrightarrow-1=1
$$

TYPE I CONTACT

The Type I Contact is designed for critical circuitry and meets the electrical requirements of MIL-C-26636. It is a crimp, snap-in, precision screw-machine processed type, with resistance of less than 25 millivolts at 7.5 amperes after environmental testing, for a $\# 20$ contact. Minimum surface wear is assured through cantilever-beam engagement springs and is available with AMP gold over nickel plating which assures optimum corrosion resistance and long life. Available in sizes $20,18,14,10$, and 8 for wire range of \#26 through \#8 AWG. Loose piece form, or tape-mounted for high-speed application.

Series "D-DE" connectors

This design with 144,126 and 108 positions is intended primarily for high-altitude, high-temperature applications. It is fully sealed against hazards encountered at temperatures ranging up to $275^{\circ} \mathrm{F}$, altitudes of up to 100,000 feet, excessive vibration and other hostile environmental factors.

Series "D-DE" connectors are similar in construction to the Series "D-D". It contains all the environmental hardware and seals needed for maximum protection of contacts. Inserts are molded from glassfilled diallyl phthalate; both plug and single-lead grommets are included. For specific test data, refer to Series "A" connectors for bulkhead mounting.

TYPE V CONTACT

This contact is designed for hightemperature, high-altitude application and conforms to MIL-C-26636. Minimum resistance is 15 millivolts, maximum 23 millivolts after environmental testing. For a \#20 contact, insertion forces do not exceed 8 ounces per line on a steel pin. Cantilever-beam contact spring insures uniform contact pressures. Plating on Type V is optional. Military specifications call for either rhodium on the pin and socket or rhodium on the pin and gold on the socket. Contact is available in sizes $20,16,12,10$ for a wire range of \#26 through \#10 AWG. It is applied with a hand crimping tool or automatic tapefed tools.
Sub-miniature connector

The 50 -position A-MP sub-miniature connector with force-fit type contacts is no longer than an ordinary book match. Yet the contact area occupies a full 50% of the total area compared to 20% for other makes of sub-miniature connectors. The connector block, which is self-extinguishing, is made of polyurethane, the shell of cadmium-plated brass, and jack screw assemblies and strain relief clamp of stainless steel. The connector is polarized for error-free assembly, and can be mounted in a panel up to $1 / 4^{\prime \prime}$ thick.

TYPE VII CONTACT

This is a reliable sub-miniature, screwmachine processed, compression-crimp, snap-in type contact. It is made of bronze with a $.000030^{\prime \prime}$ gold-over $.000030^{\prime \prime}$ nickel plating. It accommodates stranded or solid wire in sizes \#26 to \#32 AWG.

This contact makes extreme density possible - $.060^{\prime \prime}$ center to center spacing in single lines and $.050^{\prime \prime}$ in clusters.

Series "C-PS" connectors

This connector features three coaxial and 12 pin and socket contacts. It is available in a phenolic or diallyl phthalate block, with 1-piece or 2-piece shields, center-guide assembly, pin hood, fixed or turnable jack screws, and other hardware accessories. It accommodates Type II, Type III, Type III (+), and Type IV miniature coaxial contacts.

T0

TYPE IV CONTACT

Aside from its use in "C-PS" Connectors as a "contact mix", the Type IV contact is suitable for many configurations in the series " M " and series " W " connectors. It is designed to outlast more than 500 insertions and extractions, and permits simultaneous one-crimp terminations of center conductor, outer braid, and cable support - (an exclusive with AMP). Dielectric material separates shells from male and female center contacts. Construction also features closed entry and a cantilever-beam engagement spring which is built into the socket. A special type of retention spring is used to provide firm seating into the connector block and to act as a shield for crimping ports. Operating temperature is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, operating voltage $1,000 \mathrm{~V}$ ac, flash-over voltage $1,900 \mathrm{~V}$ ac, and shock MIL-STD-202B, method 202A. Available in a wide range of cable sizes and applied with extreme reliability with A-MP crimping tools.

Breakaway connector

This single circuit pin-and-socket connector is characterized by high-reliability performance in military, aircraft, missile and commercial applications. Quick connect/disconnect versatility is combined with the reliability features of a permanent splice. It is fully insulated and available in a sealed or unsealed version. The A-MP. Breakaway Connector exceeds electrical and mechanical requirements of MIL-T-7928, MIL-C-5015D, MIL-C-8384A and MIL-E-5272.

Two types are avaiiable. Pullaway force for the $5 / 15$ type is 15 pounds maximum and 5 pounds minimum; for the $5 / 20$ type, 20 ounces maximum and 5 ounces minimum. Both utilize the same size crimp, snap-in contacts and the identical size nylon housing sleeves.

CONTACT FEATURES

At 7.5 amperes, Breakaway Connector Contacts have a minimum resistance of 15 millivolts and a maximum resistance of 20 millivolts after environmental testing. Available with AMP gold over nickel plating. Longer insertion/extraction life is assured with the use of a cantilever beam contact retention spring while bellmouthed sockets allow easy pin alignment.

Wire size for sealed units is \#20 AWG, and for unsealed units the range is $\# 26$ to \#20 AWG. "Dry circuit" quality and a low-cost, time-saving assembly method is assured with AMP's precision crimping technique.

Special application connectors

Two such connectors in AMP's pin and socket line: (1) Connector for Printed Circuits, (2) Tier Block Connector.

(1) The 19 position printed circuit connector utilizes the pin and socket principle and is used principally for aircraft, missiles and ground support equipment. It is an extremely stable connector, with Type V precision screw-machine processed contacts efficiently sealed against hostile environmental stresses. Pins and sockets are plated to a thickness of $.000050^{\prime \prime}$ gold over $.000030^{\prime \prime}$ nickel and satisfy requirements of MIL-C-26636. The female housing of this connector is rigidly staked to the edge of the printed circuit board to prevent warping and misalignment. Connector block is made of diallyl phthalate with retention member built into it.

(2) The Tier Block Pin and Socket Connector consists of 10 -position male and female blocks that unite firmly without hardware accessories. Normally, blocks are made of general-purpose phenolic, but are available on order in diallyl phthalate. When stacked, male members are locked into position with \#10 screws.

This connector utilizes Type II and Type III contacts rated at 7.5 amperes (size 20), and size 18 Type III contacts rated at 10 amperes.

The questions we have asked and answered encompass only the major elements of the AMP story. Much additional material - including detailed specifications - is needed to solidify the interest we hope we have aroused through the publication of this report. Facilities which include research, testing, engineering and product development are available to you, without obligation, to assist with any circuitry problems that may relate, in your mind, to the techniques and components discussed in the report. Your inquiry, addressed to AMP, INCORPORATED, Harrisburg, Pennsylvania will be promptly evaluated and answered.

SLIMLINE...the first standard line of

 lower cost precision potentiometers with all the exclusive advantages of Markite conductive plastics! ${ }^{\circ}$
(8.gang unit, actual size)

MARTITE

Markite Corporation, 155 Waverly Place New York 14, New York - ORegon 5.1384 TWX: 212.640.5534

IN ELECTRONICS ...AVIONICS ... ASTRIONICS

STM MAICO "TH Hu HRMOSTRATS

RANK FIRST
IN
PRECISION TEMPERATURE CONTROL

In today's military and commercial projects, you can't afford to overlook any one of these important areas: Reliability, Size, Availability, Economy.

And because Stevens is in production now on the largest number of different types and styles of bimetal thermostats, all these advantages are yours automatically when you specify Stemco thermostats.

1st in Reliability. Proven designs, latest production techniques, most stringent inspection procedures.

1st in Size. Stemco thermostats score in compactness and lightness without sacrificing performance.

1 st in Availability. Tooling for most types is in existence. Flexibility of design cuts lead time on other types.

1st in Economy. Mass production of many standard Stemco types with hundreds of terminal arrangements and mounting brackets cuts your costs.
*Refer to Guide 400EO for U.L. and C.S.A. approved ratings.

-TI =NO

THERMOSTATS

NASA MUST GET ALONG ON LESS-NASA is going to have fewer dollars than it would like this year. The agency wants $\$ 5.7$ billion for fiscal 1963-64, but the Senate approved a budget of about $\$ 5.5$ billion, and the House only about $\$ 5.2$ billion. Senate-House conferees met to resolve differences. While the trimming will not seriously hurt major NASA programs, it is important to note that the agency's honeymoon with the Congress is over. Congress has silently warned that all NASA projects will have to be justified in detail before money is appropriated.

MOON SHOT WILL GO--Controversial L. S. moon shot will go alhead as planned; however, it's still being heavily criticized. Most critics suggest sending only an instrumentation package to the moon. They would divert the dollars thus saved to other space research. But congressional leaders are convinced that NASA's moon-shot program is worth the time and money. They are prepared to back the moon shot against all critics. Because of their backing, money cutlacks are not foreseen.

MORE GRUMBLING OVER TRADE LAW-Is

President Kennedy's foreign trade program coming unstuck? There's increasing evidence it is. Industry after industry is asking Washington to slow volume of imports arriving in U. S. Politicians are now lending sympathetic ears to the complaints, after first having pooh-poohed protests as "isolated instances."

FEWER ITEMS, FEWER CONTRACTS-Set up in January, 1962, as the buying agency for DOD, Defense Supply Agency already reports it has taken control of 1 million common items. It claims a general 10% cut in inventories. Capitol Hill watclrdogs note, however, there are still over 3 million defense items not yet under its management. They urge study to determine what can be added to DSA's list. Within a year DSA's Defense Electronics Supply Center took control of some 521,000 of 725,000 items assigned to the class. Goals include elimination of duplicate inventories, a cut in annual supply surphuses, cuts in procurement budgets-all these will mean fewer contracts on many electronic items.

PATENT COSTS MAY RISE - U. S. Patent Office will charge inventors higher fees, if Congress approves. Both private inventors and companies own-
ing patents would pay more, both for filing fees and for maintenance fees.

FM ON THE MOVE AGAIN-FM broadeast is headed for a big leap, iorward. FCC dissolved ireeze it put on issue of new FM licenses last Dec., said it would start grants for new FM commercial stations this montll. Freeze cuded only in 48 states, however. Bur it should be removed fairly soon in Hawaii and Alaska. as well as Puerto Rico, the Virgin Islands and Guam.

RCA DISPUTES MCNAMARA SAVINGS

 CLAIMS - Defense Sec. McNamara's claims oi procurement cost salvings have been disputed the RCA. Pentagon boss says lie saved the government more than $\$ 1$ dillion in 196.3, and he offers this example : DOI) bought 8,570 radio receivers from RCA at $\$ 2.278$ each under a negotiated contract. Later, under competitive bidding, DOD bought additional receivers from RCA at $\$ \$ 43$ each. McNamara claims this cost saving ($\$ 10$,494,312) is due to competition among the suppliers: however. RCA points out factors glossed over by Pentagon: Price of first order included design engineering, tooling, other non-recurring production costs. In bidding on second order, RCA was able to omit these costs. In addition, subsequent contract called for larger quantity of receivers, therely making possible lower unit prices. Also, prices of transistors and other components bought from RCA suppliers declined, making possible further price cutting.IS IT DEDUCTIBLE? - Nervousness continut: over the 1963 Internal Revenue Service rules regarding: expense deductions. Nobody likes them, but there's no, immediate sign rules will be changed. IRS, still somewhat sheepish over the uproar it caused by the clampdown on expense-account spending, recently issued a question-and-answer booklet for the businessman to help make clear what can be deducted and what can't. (Samples: If a taxpayer takes a customer to lunch for business goodwill and the customer's wife comes along, will the expense be disallowed if they don't discuss business? Answer: No. What about convention entertaining? OK, if it measures up as ordinary and necessary entertaining.) Hotel and restaurant men have been lit hard by the new rules. All their business is off-up to 10% in the newer and fashionable places: as much as a crushing 50% in older places. Congressmen from convention cities and resort areas want a law to restore the pre-1963 expense-account rules.

NEW PHILCO vOLTACAP*

A new concept in voltage-variable capacitors... and a broad new range of applications

Philco brings a new set of values to voltage-variable capacitor design. Higher reverse bias voltage, higher Q, lower reverse leakage current, closer tracking and larger change ratios. Result: A new capability for electronic tuning.

The new concept - Philco VOLTACAP - is an Epitaxial Silicon Planar Voltage -Variable Capacitance Diode. Epitaxial growth raises \mathbf{Q} values. Planar
construction reduces I_{R}, and assures both inherent reliability and product uniformity. Voltacaps are so uniform that maximum tracking error is specified for every type.

Discover how Philco Voltacaps can add to your designs. Get types V2853 and V2854 today from your Philco Distributor. And send for complete datawrite Dept. EI963.

	PHILCO VOLTACAP RATINGS AND CHARACTERISTICS					
	PARAMETER	TYPE V2853	TYPE V2854	PARAMETER	TYPE V2853	TYPE V2854
	Max Reverse Bias Voltage, V_{R}	115 v	115 V	Capacitance ((a, 8v, 1 mc), C_{v}	47pf $\pm 20 \%$	150pf $\pm 20 \%$
	Max Storage Temperature, T_{s}	-65 to $+200^{\circ} \mathrm{C}$	-65 to $+200^{\circ} \mathrm{C}$	Capacitance Change Ratio ($a 4 \mathrm{v}$ to 100 v), $\triangle \mathrm{C}_{\mathrm{V}}$	4:1	$4: 1$
1	Max Reverse	$25 \mu \mathrm{a}$	$5.0 \mu \mathrm{a}$	Min Q ((a 8v)	90 (a 50 mc	$180 @ 25 \mathrm{mc}$
ACTUAL SIZE	($\left(a V_{R}=100 \vee\right.$, $85^{\circ} \mathrm{C}$ ambient), l_{R}	$2.5 \mu \mathrm{a}$	$5.0 \mu \mathrm{a}$	Max Tracking Error (ia 4 v to 100 v)	1.0\%	1.0\%

Facts and Figures Round-Up

'U.S. ALL-NUCLEAR BY 1999, ENERGY NEEDS TO TRIPLE'

Resources for the Future, Inc., a nonprofit organization dedicated to conservation and proper use of our resources, thinks that nuclear energy will become the medium for generating all electric power by the end of the century.

The group expects that total U.S. demand for energy may triple by the year 1999. It also believes, however, that at least through the 1970's there will be vigorous and continued use of oil, coal, natural gas and hydro-electric power.

At best, then, electronic instruments and controls will continue to be sold to new nuclear power plants in somewhat small quantities.

Public utilities should then continue to be good markets for computers, microwave systems, radio communications systems plus consumer household goods.

At the moment, commercial nuclear electric power is still in the think, talk, test stages. A controversy raised by the AEC-whether to permit nuclear plants in big cities-may determine whether Consolidated Edison of New York will have the OK to put up a plant in New York City. Its output would exceed combined power of all nuclear plants now operating in the U.S.

Plans are on the board for nuclear plants near Los Angeles and San Francisco. These plants may give California a technological edge over New York, which already has been out-populated by California.

Moreover, locating nuclear power palnts in or near large U.S. cities may help decide whether plants will be built in big cities in other nations.

SEVEN U.S. STATES HOLD 55\% IN DEFENSE CONTRACTS

Seven states lead in defense work, accounting for more than 55% of military prime contracts awarded in the first three quarters of the fiscal year, according to Commerce Clearing House.

Firms in California, New York, Ohio and Texas have $\$ 7.5$ billion in defense contracts out of a total $\$ 17.9$ billion. California leads with 23.2% of awards, but this represents a 0.7% drop from last year. New York ranks second with 8.9% of awards, but it dropped 1.8% from last year. Ohio with 5.1% and Texas with 5% rank third and fourth

Among states showing gains, Mis souri leads with an increase from 2.2% to 3.3%. Texas also showed a 1% gain. Three other states handling substantial contracts are New Jersey with 4.9%, Washington with 4.6% and Massachusetts, 4.2\%.

INDEPENDENT REPS LOSING OUT, FIRMS SELLING DIRECT

Electronic manufacturers' reps seem to be losing ground in high-cost, lowvolume equipment and instruments, and in low-cost, high-volume components.

There is a trend among manufac turers to side-step the middleman and sell directly to customers, offering them more sales and engineering assistance.

Early this year, Hewlett-Packard dis closed its own sales force recruited from independent local reps to sell H.P products exclusively. Beckman Instruments began selling directly through its offices in 33 U.S. and Ca nadian cities to strengthen customer relations.
G.E. Specialty Control reorganized field operations to better sell to and serve users of numerically controlled machine tools. Bendix Industrial Controls reshaped its national sales to give more engineering aid to machine tool builders and customers who use numerical control machines with these tools.

In components, areas once served only by independent reps are now being served more often by regional and na-
tional distributors, as well as by central holding companies with a national network of regional reps. Some reps are straddling these functions by becoming "stocking reps," maintaining inventories.

Little money is needed to pay commissions to a free lance rep whose sales orders are filled directly from manufacturers ${ }^{\text { }}$ stocks. However, many large firms feel they can afford to invest more money in their own sales networks and make or save more money by marketing to, and technically serving customers directly.

\$1,500,000 NOW AVAILABLE TO BUILD NEW ETV STATIONS

An allocation of $\$ 1.5$ million is now available to assist in construction of educational TV stations, according to the office of Anthony J. Celebrezze, Secretary of Health. Education and Welfare.

Total expenditures of $\$ 32$ million are authorized for a five-year life of the Educational Television Facilities Act. The total five-year grant within any one state cannot exceed $\$ 1$ million.

U.S. SALES ARE PROMISING IN COMMON MARKET NATIONS

Prospects for sales of U.S. elec tronic equipment in the European Common Market look promising. The market is good for computers and advanced systems for industrial and military use, but is somewhat poor for consumer goods.

Europeans have nearly saturated the consumer market and now export quite heavily. If the Common Market nations are to pay more for their share of NATO expenses, it seems they will want to sell a larger percentage of electronic and military equipment.

Economists and marketing men view.

ATOM-DETECTOR FIRMS LOOK FOR EXPANDING CD MARKET

Makers of electronic radiation-detection instruments are still largely mark-ing-time for a full-blown national civil defense program, though many Congressmen still regard $C D$ as a big "boondoggle."

Accordingly, Congress may continue its annual practice of whittling down the CD budget. President Kennedy's request for $\$ 300$ million for the FY 1964 CD program will probably be considerably slenderized.

Yet, the Administration has a back door to civil defense funding-the Department of Defense
ing this world electronics pie, predict a need for the U.S. to export more electronic gear since we have the lowest percentage of exports, although dollar volume is still high.

All the European Economic Community (EEC) nations export twice the dollar volume the U.S. exports. The question is-will EEC exporters manage to export a high volume of consumer goods, yet also absorb higher amounts of Japanese-made electronic goods?

COLOR TV SALES MAY YIELD
 1 MILLION SETS, $\$ 1 / 2$ BILLION

Color TV is making a colorful sales comeback along a road lined with golden optimism. Total industry sales of color TV sets in 1963 "could run from 750,000 to 1 million units, depending on availability of color CRT's," asserts W. Walter Watts, RCA Group Executive Vice President.

At an estimated average price of around $\$ 500$ per set, this market could soar to about a half billion dollars. Color-pioneer RCA still holds the lion's share of this market.

Meanwhile, to break the color CRT bottleneck and to cash in on this rejuvenated market, Zenith's Rauland Corp. and Sylvania have started producing color tubes.

TORCH IT! Withstands temperatures of $1500^{\circ} \mathrm{F}$ without a sign of deformation. No other vitreous-enameled resistor will stand $1500^{\circ} \mathrm{F}$ without burning, softening, or dripping away. There's absolutely no effect on markings either ... they are vitreous in nature ... a ceramic marking fired right into the coating. Markings on all other resistors burn off immediately, or rapidly become illegible.

ABRADE IT! Try it yourself. Use a glass fiber eraser, for example, on the markings. Rub them hard. Nothing happens. Do it again. Still the markings don't come off, because they are vitreous ceramic, fired into the molded vitreous coating. You can't remove them except with a grinding wheel. With any other resistor, the markings disappear with the first couple of rubs

DON'T try all these tests

 OHMITE Series $99 \begin{gathered}\text { wire. wound } \\ \text { Resistor }\end{gathered}$ "molded" in vitreous enamel ...for highest quality protection!
Enlarged $2 \frac{1}{2}$ times

\square Series 99 resistors represent a completely new approach -a breakthrough in the science of protective coatings. The result is an insulated (1000 V to ground) axial-lead resistor of the highest quality.

The molded vitreous coating of Series 99 resistors involves an entirely new process of vitreous enameling (patent applied for) which creates an entirely new product (patent applied for). It endures the red heat of manufacture. yet retains its precise molded shape and dimensions with a uniformity that varies only in thousandths of an inch. This new process locks the uniformly wound resistance wire in place which eliminates hotspots during operation.

Uniform, Controlled Coating on
 Series 99 Molded Resistors

 requirements of MIL-R-26C will pass the famous and

SOAKITIN SOLVENT! Here's another test you can run quickly. Fill a beaker with the most active of organic solvents used in degreasing and flux removal. Drop in a Series 99 molded resistor. Let it soak. Then try to rub off the markings. They're bright as new, Decause they're part of the ceramic coating. Try this on any other resistor... the markings dissolve and can be rubbed off.

BEND THE LEAD where it emerges from the resistor body! You can bend the lead repeatedly at this point without damage. Conventional axial-lead, vitreous-enameled resistors have a dipped coating which forms a meniscus around the lead where it joins the body of the resistor. Bending the lead ruptures the meniscus and damages the coating. Series 99 resistors are molded and there is no meniscus.

CLIP IT! Insert a molded Series 99 resistor into a metal clip. Don't baby it; ram it in. There's no danger of cutting, chipping, or scratching the hard coating which provides 1000 VAC insulation. Notice the snug fit, too. The clip mounting shown is resistart to high shock and vibration. When mounted on a metal chassis, it provides a heat sink which may increase the wattage rating as much as 100%.

on any other resistor!

10,964,000 UNIT-HOURS OF TESTING! This new molded construction has been proven in extensive load-life tests shown in the accompanying table.
These test results have been obtained from many experimental lots of resistors representing different constructional materials and manufacturing processes. These resistors were produced, tested, and evaluated for developmental purposes which ultimately determined our present production practices. Hence, the $\% \Delta R$ values given should not be specified as design or performance limits.
More typical $\triangle R$ data is presently being collected as part of another test program in which samples are being taken from standard production lots. Data will be available after sufficient time has elapsed.
CYCLIC LOAD-LIFE TEST SUMMARY ON TYPE 995 RESISTORS AT RATED WATTAGE
(GROUPS STARTEO AT OIFFERENT TIMES)

	TYPE	TOTALNUMBER OF UNITS	total UNIT-HOURS ON.TIME." AS OF 6/4/63	ALL GROUPS 2000 HRS. "ON-TIME"		ATTAINEO "ON.TIME" OF OIFFERENT SUBGROUPS AS OF JUNE 4. 1963					
						3000 HRS.		4000 HRS.		5000 HRS.	
				$\begin{aligned} & \text { NO. } \\ & \text { OF UNITS } \end{aligned}$	AV. \% 4 R	OF UN:	AV.\% $\%$ R	$\begin{aligned} & \text { NO. } \\ & \text { OF UNITS } \end{aligned}$	AV. 吕 \triangle R	NO. OF UNITS	$A V . \% \triangle R$
-	995-1A	409	1,304,000	409	0.447	284	0.536	101	1.051		
	995-3A	768	3,055,000	768	0.868	155	0.999	373	1.397	206	0.876
	995-5A	346	1,131,000	346	0.633	89	0.687	175	0.662		
	995-5B	281	1,124,000	281	2.109			281	2.740		
	995-10A	438	1,609,000	438	0.733	146	0.780	238	0.891	37	0.974
	ALL	2242	8,223,000*	2242	0.712	674	0.715	1168	1.455	243	0.891

*Equal to $10,964,000$ total unit-hours of test (cyclic: $11 / 2$ hours on, $1 / 2$ hour off).
"fatal" characteristic F (salt water immersion test) of former MIL-R-26B.

SPECIFICATIONS

Series 99 molded vitreous resistors meet all requirements of MIL-R-26C for insulated units RW69, RW67, and RW68, characteristics $V\left(350^{\circ} \mathrm{C} \max\right.$ hotspot) or G ($275^{\circ} \mathrm{C}$).

They can also be supplied as RW59, RW57, and RW58 resistors, characteristics G or V .

Standard tolerance is $\pm 5 \%$. Tolerances down to $\pm 0.25 \%$ supplied to order.

Low temperature-coefficient requirements of 0 ± 30 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for resistances of 10 ohms and greater, and 0 ± 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for resistances under 10 ohms (up to $350^{\circ} \mathrm{C}$) are available on order.

Standard leads are solder-dip coated for soldering; furnished bare for welding, or gold plated on order.

OHMITE STYLE	RATEO WATTS AT $25^{\circ} \mathrm{C}$	OIMENSIONS (INCHES)		OHMS RANGE (COMM'L)
		$\begin{array}{r} \text { OIAM. } \\ +.031-.000 \end{array}$	$\begin{gathered} \text { LENGTH } \\ \pm .015 \end{gathered}$	
995.1A	:	0.125_{+}^{+}	0.422^{+}	1 to 3,000
995-2A	2	0.188	0.375	1 to 3,000
995-3A*	3	0.203	0.547	1 to 10,000
995-5As	5	0.313	0.922	1 to 30,000
995.58	5	0.203	0.938	1 to 25,000
995-10A \dagger	10	0.313	1.781	1 to 51,000

NOTE: Standard lead length is $11 / 2^{n}$. *Also in MIL style RW69V (991.3). $\$$ Also in MIL

Write for Bulletin 103

MANUFACTURING COMPANY 3662 Howard Street, Skokie. Illinois
rheostats - power resistors - precision resistors - variable transformers tantalum capacitors - tap switches - relays - r.f.chokes - semiconductor diodes

In space science, where electronic equipment must not fail, we have adopted the habit of leaning on the "approximate" and the "less-than-perfect." Dr. Welsh suggests that we are neither technically nor educationally geared for the unfailing-perfection demands of our space program-though we could be.

U.S. NEEDS ELECTRONIC CAPABILITY FOR SPACE

. . . An Interview with Dr. Edward C. Welsh

THE COST OF SHACE-SHOT FオA1.URE IS SO GREAT-not only in money but in national prestige, in manpower, in time and in our national product-hat the cost of perfection. Whatever it may be, is small by comparisom.

The fact that we are still a long way from -ciontific and engincering perfection points up watay challenge to our proiessinn.

college fees are so high that many talented students are discouraged or drop out before reaching maximum potential, and are thus lost to our society
() ${ }^{1}$ a matter of grale concern to everyone in the electronics industry today, a top presidential adviser, Dr. Edward C. Welsh, executive secretary. National Seronatics and Space Council. speaks of what the industry needs to meet thin challenge, in a question and answer interview:
Q.-I understand you said recently that this country does not have an electronic capability to meet our space effort. Is this true?
A.-I would probably not state it as strongly as that. but it is a fact that technological needs brought about so rapidly by our space progran have resnlted in an inadequacy in what was at one time an adequate electronics capability. Be-
fore wir space program the industry may have been quite arlegtate but rapid developments have placed such -train and so many requirements on people and facilities that there is a great lag in electronics in our space effort.
Q.-Are you speaking for the space program in general, or is there specific electronic equipment or a system where we have this lack of capability?
A.-The whole program. Every phase las electronic equipment which must be reliable and function perfectly. The space program is fatr ahead of industry in its demands for sophisticated electronics.
Q.-Would you say that reliability is the problem?
A.-Rcliability is definitely a key problem: we can't allow for breakdowns. Yet, reliability is a field in itself. High volume and low cost production in our country have been based on a certain margin for error-something less than perfection-ant allowance for repair and maintenance. W'e just aren't geared for the demands of the space program which requires an entirely different attitude-that only the best is acceptable.

Approximate measurements and approximate tolerances will $n o t$ do in the space age. Selections ul firm- for pace work, based on reputation for (Continued on page 162)

By ELMER T. EBERSOL
Editor-at-Large ELECTRONIC INDUSTRIES

PRECISION. HIGH FREDUENCY

DC TO 500 MEGACYCLES

- $\mathbf{5 0 , 7 0}$, or 90 ohm impedance
- High-Frequency, Precision Teflon \& Silver Switches
- 1\% Carbon Film Resistors
- Fully Shielded Units
- Up to 101 db
- Fixed 0 or 10 db insertion loss
- SWR: 1.2:1 max up to 250 mc
1.4:1 max 250 to 500 mc
- Min. Insertion*: 0.1 db at 250 mc ; 0.2 db at $\mathbf{5 0 0} \mathbf{~ m c}$
- Accuracy: At full Attenuation: 0.5 db at $\mathbf{2 5 0} \mathbf{~ m c}, \mathbf{1 . 2 ~ d b}$ from 250 to 500 mc
- Price: (Model 20) \$79. f.o.b. factory. \$87. f.a.s. N. Y.
*Zero insertion loss (Model 20-0) \$75. f.o.b. factory

REMOTE CONTROL
FOR ALL UNITS
(Electrically Operated)
Price: $\$ 350$.
NEW
DC TO 1000 MC
SWITCHED ATTENUATOR PADS

Model 10-10A

Frequency Range: DC to 1000 MC VSWR: Less than 1.15:1
Insertion Loss: Less than 0.1 db
Accuracy: 0.25 db
Price: \$39.
Model 42-0 (Rotary): \$250.

Write for Catalog

[^0]

RELAY STATION
Antenna and feed horn shown at right are part of a relay station located on Trutch Island off the coast of British Columbia. It is part of a tropospheric scatter system between Annette Island, Alaska, and Vancouver Island, B. C. The General Telephone G Electronics Corp. system provides 240 channels for voice communications and data transmission for commercial and defense uses.

SNAPSHOTS...

OF THE

ELECTRONIC INDUSTRIES

PEAR-SHAPED

Prototype Echo II spheres (1), are shown during inflation. Skin of the space balloons is a plastic film, sandwiched between sheets of ultra-thin aluminum foil, produced by Aluminum Co. of America, Pittsburgh, Pa. Huge 135-ft. diameter spheres were inflated for a series of special tests to determine their value as reflectors of radio and radar signals.

LONG-STEMMED
Sue Huber examines multiplier phototubes as they are processed on a vacuum exhaust pump at RCA's tube plant in Lancaster, Pa . The tubes are used in scintillation counters to detect nuclear radiations. RCA plans a $\$ 11.6$ million new expansion program for the plant

STRAIN GAGES
Technicians install Metalfilm ${ }^{\text {TM }}$ strain gages on 2 tunnel liners in a new Toronto subway. Ninety-six of the gages-a product of the Instruments Div., The Budd Co., Phoenixville, Pa.-will be used to measure bending and hoop stresses imposed on the tunnel. Wires from the gages will be connected to a terminal board from which readings will be taken.

NEW... ENCAPSULATED INDUCTORS Delivered in 72 Hours - - from Sangamo

Fastest assembly job ever! Unique pin configuration prevents assembly errors. Plug into printed circuit board ... dip solder... the job is done. No wires - no wiring time. These rugged, high quality units provide extra benefits for printed circuit board applications. Solder-coated terminals are located on $0.10^{\prime \prime}$ grid with $0.20^{\prime \prime}$ minimum spacing. Header pads keep the unit off the board, preventing moisture entrapment while permitting easy removal of flux. The encapsulated design assures excellent temperature and moisture characteristics - plus dimensional uniformity. Header layout for up to 8 terminals provides wide choice of tapped inductors or transformers. The price?...competitive with molded or dipped units when on the board.

Inductance Ranges and Dimensions (Standard Type ET Inductors)

	TYPE ET-2	TYPE ET-4
Minimum Inductance *	2.4 mh	3.6 mh
Maximum Inductance*	3.9 h	30.4 h
Maximum Diameter	$1.08^{\prime \prime}$	$1.33^{\prime \prime}$
Maximum Height (Including header pads)	$.66^{\prime \prime}$	$.86^{\prime \prime}$

*Inductance is measured at 1 kilocycle per second.

Send us your specifications

Prototype units are shipped within 72 hours. Select your inductance values from the accompanying table. For additional information, write for Bulletin 2721.

Want to talk to a salesman who says,

"My Company Makes it Better--to Save You Money"?

The woods are full of hermetic terminal manufacturers selling price. Exactly how many no one knows. They come and go too fast to keep track of.

We won't pretend that Fusite is invulnerable against their allure for some of our customers.

But nearly always, a manufacturer learns the hard way that the most expensive terminal he can use is a cheap one that fails on the job. The very best Fusite Terminal you can use is
a small fraction of the total cost of your assembled product.

In the 20 years since Fusite pioneered in its field we've watched the "price sellers" come and go, while we continued to make the best terminals we know how.

If you want the least expensive terminals you can buy we'd like to do business with you now. If you're looking for the cheapest price-we'll still be around later. We hope you will.

WHAT'RE YOU DOING TOMORROW?...NEXT

WEEK?....A YEAR FROM TODAY?....1965?.... 1971

Make a date with the hp 5245L Universal Electronic Counter...it'll be working for you, whatever your measuring requirement!

MANY PLUG-INS AVAILABLE NOW MORE TO COME

Measure to 500 mc today, to $\mathbf{2 5 0 0} \mathbf{~ m c}$ tomorrow with the versatile hp 5245L and today's widest array of precision counter plug-ins.
The solid state 5245 L Counter and its plug-in units let you custom-design the instrument to your specific measuring need by adding plug-ins when, but not until you need them. As your requirements change, you can easily and economically change the 5245L to meet them.

The 5245L measures frequency, period, multiple period average, ratio and multiples of ratio. The basic counter, without plug-ins, offers a maximum counting rate of 50 mc with 8 -digit resolution. With just one plug-in you can measure from 50 to 512 mc .

Other plug-ins include a video amplifier which increases the 5245 L sensitivity to 1 mv rms and a time interval unit which enables the counter to measure time interval from $1 \mu \mathrm{sec}$ to 10 sec . More plug-ins, including one to extend the capability to 2500 mc , are in final development. All retain the basic accuracy of the counter.

SFECIFICATIONS

FREQUENCY MEASUREMENTS
Range: 0 to 50 mc
Gate time:
Accuracy: $\mu \mathrm{sec}$ to 10 sec in decade steps
Reads in:
Re or mc, with positioned decimal \pm time base accuracy

PERIOD AVERAGE MEASUREMENTS

Range: single period, 0 to 1 mc ; multiple period, 0 to 300 kc Accuracy: ± 1 count \pm time base accuracy \pm trigger error
Frequency counted: single period, 10° to 1 cps in decade steps; single period, 10° to 1 cps in decade steps;
multiple period, 10^{1} to, 10 the number of multiple period, ${ }^{10^{\prime}}$ to ${ }^{\text {periods the number }}$ averaged, cps in decade steps Reads in: sec, msec, $\mu \mathrm{sec}$ with positioned decimal

RADIO MEASUREMENTS

Displays: (f_{1} / f_{2}) times period multiplier
Range: $\quad f_{1}, 0$ to $50 \mathrm{mc}_{;} f_{2} 0$ to 1 mc in single period, $\mathrm{f}_{1}, 0$ to $50 \mathrm{mc} \mathrm{m}_{\text {f }} 0$ to 1 mc in single period,
0 to 300 kc in multiple period; periods averaged 1 to $10^{\circ} \mathrm{kc}$ in decade steps ± 1 count of $f_{1} \pm$ trigger error of f_{2}
TIME BASE
Frequency (internal):
Stability:

1 mc
aging rate: less than ± 3 parts in 10^{8} per day; as a function of temperature, less than ± 2 parts in $10^{10} \%^{\circ} \mathrm{C},-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; as a funcfor $\pm 10 \%$ change in line van ± 5 p
short term: less than ± 5 parts in $10^{10} \mathrm{p}-\mathrm{p}$ Short term: less than ± 5 parts in $10^{10} \mathrm{p}-\mathrm{p}$
with measurement averaging time of 1 sec with measurement averaging time of 1 sec
under constant environmental and line voltage under cons

With still more plug-ins on the way, the 5245 L will never lose its usefulness . . . in fact will become more useful as your measuring task becomes more demanding and you add plug-ins to the one basic counter.

Beyond this built-in flexibility, the 5245L offers these unparalleled advantages . . . yours to match against any comparable instrument:

- Direct counting to 50 mc
- Time base stability better than 3 parts in $10^{\circ} /$ day
- Display storage for continuous readout
- Sample rate, independent of gate time, adjustable 0.2 to 5 sec
- Readout in close-spaced rectangular Nixie tubes
- Four-line BCD output for systems, recorder use
- Remote programming capability
- Plug-in circuit construction for easy maintenance
- Compact, stackable cabinet only $51 / 4^{\prime \prime}$ high

The specifications tell the story briefly. Check them out for a partial indication of the superior performance offered by the 5245L. Then call your Hewlett-Packard field sales office for a demonstration on your bench.

Start using the 5245L today . . . and you'll be using it for a long time to come.

GENERAL

Registration: 8 digits in-line with Nixie tubes
Sample rate: 0.2 sec to 5 sec , independent of gate time
Operating
temperature:
Output:
Remote operation:
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
4-line BCD
all functions programmable from front panel controls except "sample rate" and sensitivity, may be programmed remotely
Size: $\quad 19^{\prime \prime} \times 51 / 4^{\prime \prime} \times 183 / 8^{\prime \prime}$ deep
Price: $\$ 3250$
PLUS THESE PLUG-INS AVAILABLE NOW:
hp 5253B Frequency Converter:
extends range of 5245 L to $512 \mathrm{mc}, \$ 500$
hp 5261A Video Amplifier:
increases sensitivity of 5245 L to 1 mv rms , 10 cps to $50 \mathrm{mc}, \$ 325$
hp 5262A Time Interval Unit:
converts 5245L to time interval counter with a resolution of $0.1 \mu \mathrm{sec}, \$ 300$
Data subject to change without notice. Prices f.o.b. factory.

> HEWLETT PACKARD COMPANY

1501 Page Mill Rd., Palo Alto, Calif., (415) 326-7000. Sales and service representatives in principal areas. Europe, Hewlett-Packard S.A., 54 Route des Acacias, Geneva, Switzerland; Canada, Hewlett-Packard (Canada) Ltd., 8270 Mayrand St., Montreal, Que.

POTENTIOMEEERS

INFINITE RESOLUTION CONDUCTIVE PLASTIC POTENTIOMETERS. Sizes $7 / \mathrm{s}^{\prime \prime}$ to $3^{\prime \prime}$, resistance values to $200 \mathrm{~K} \Omega$, single unit or ganged. Features include: Operating life over 10 million cycles; constant low electrical noise; high linearity; stable resistance throughout operating life; minimum torque; co-molded element, terminals, taps and base for high reliability through environmental extremes; taps shorted or switching sections, output curves in linear and non-linear functions to mee every requirement.

PRECISIDN WIREWOUND SINGLE-TURN POTENTIOMETERS. Most complete line of linear, nonlinear, sine-cosine pots in sizes from $3 / 4^{\prime \prime}$ to $5^{\prime \prime}$, single cup or ganged. Meet all requirements of MIL-E-5272 and MIL-R-12934 for linearity, resolutlon, operating life, noise and environmental compatability. Taps, shorted or switching sections, output curves and resistances to meet every requirement.

PRECISIDN MULTI-TURN POTENTIOMETERS. 7/4" and $13 / 4^{\prime \prime}$ diameter multi-turn pcts in 3, 10 and 20 turn sizes. Linearity to $\pm 0.05 \%$. Resistances ranges from 100 to 500 ?. Meet or exceed all applicable Mil specifications for electrical, mechanical and environmental conditions.

TRIMMERS. Trim-Tite Micro Ainiature and Rectilinear FilmPots ${ }^{6}$, in a wide range of resistance values. Trim-Tite reets MIL-STD 202A for shock, vibration, temperathre cycling and load life, and MIL-E-5272B. FilmPotse feature infinite resolution, high temperature range to $+225^{\circ} \mathrm{C}$. Up to 50 k . on special order.

TRANSOUCERS

SILICON SEMICONDUCTOR STRAIN-GAGE PRES SURE TRANSDUCERS. All solid state - 5 V out put with integral amplifier module, 250 my without amplifier - 0.25% combined linearity and hysteresis infinite resolution repeatability 0.05% operating temperature - 65 to $+250^{\circ} \mathrm{F}$, with internal compensation pres sure ranges to $20,000 \mathrm{psi}$ e internal shunt calibration - responsive to both static and high frequency dynamic pressures - 1000 G shock -100 G sinusoidal and $8 \mathrm{G}^{2}$ random vibration.
Six different models-gage, absolute and dif-ferential-can include regulator, isolator and emitter follower. Adjustable gain amplifier module separately available to sult installation needs.

POTENTIOMETER-TYPE PRESSURE TRANSDUCERS. Fairchild's line of precision transducers include bourdon tube, capsular diaphragm and new bellows types. Linear or non-linear precision potentiometer outputs. Pressure ranges from 1 to $10,000 \mathrm{psi}$ absolute gage or differential. Sizes from $1^{\prime \prime}$ to $3^{\prime \prime}$ diameter.

LINEAR ACCELEROMETERS. Ranges $\pm 1 / 4$ to ± 50 G. Natural frequencies to 175 cps depending upon G range. Excellent shock and vibration characteristics. Miniature size, linear or nonlinear outputs, light weight. Accuracy up to $\pm 0.5 \%$ in certain ranges.

Complete Data on These and Other Fairchild Precision Products on Request.

SUBMINIATURE AC RATE GYROS. Only ${ }^{15} \mathrm{KA}^{\prime \prime}$ In diameter by $15 / \mathrm{B}^{\prime \prime}$ long in its smallest slize Maximum ranges from $\pm 5 \% / \mathrm{sec}$. to $\pm 5000 \%$, sec . Threshold rates as low as $0.01 \% / \mathrm{sec}$. for ranges up to $200^{\circ} / \mathrm{sec}$. 0.05% of full scale for higher ranges. Withstand 150 G shock, 8 millisec duration aong any axis standard. Selt test is available.

3 AXIS GYRO/ACCELEROMETEIR PACKACE Designed to furnish control data for the autopilot in an underwater weapon, this package incorporates 3 gyros and also 2 accelerationsensing pendulums to measure linear acceleraiion alorig the pitch and roll axes. Miniaturization of this package to about $1 / 2$ the size of previous units-was accomplished by Fairchild engineers without compromising the accuracy, reliability and ruggedness required for such demanding applications.

3-AXIS RATE GYRO TELEMETRY PACKAGE. AN outstanding feature of this package is that of range switching to allow full use of a limited number of telemetry channels. It has a full scale range of $\pm 420 \% / s e c$. for roll and $\pm 90^{\circ} / \mathrm{sec}$. and $\pm 720^{\circ} / \mathrm{sec}$. for pitch and yaw. The unit was especially designed for missile and space probe applications where the rangeswitching feature plus light weight (4 lbs maximum) and ourstanding environmental stability and high shock and vibration resistance provide one of the smallest, lightest, most rugged and most precise rate gyro packages made for this type of application.

Fairchild E-S.P for Precision Components and Sub-Systems
$E \cdot S \cdot P$ is an integrated Engineering-Service-Production concept developed by Fairchild expressly to meet today's rigorous demands for technological competence, reliability and onschedule delivery of precision components and sub-systems.
east coast: 225 Park Avenue, Hicksville, L.I., New York WEST COAST: 6111 E. Washington BIvd., Los Angeles, Calif.

A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CCRPORATION

MAN-MADE MIRACLE Today's dynamic electronic industry compacts 50 standard components into a fraction of 1 cubic inch-hundreds into the space occupied by an early vacuum tube. ELECTRONIC INDUSTRIES, one of Chilton's 20 business magazines, meets the exciting editorial and marketing responsibilities of this growth market in a way that stirs both reader and advertiser enthusiasm. GHILTON PEBLICATMONES

FAST-ACTING BASIC SWITCHES-Our unique snap-action makes the vital difference in performance and reliability. It gives you the most abrupt make or break, with maximum contact pressure. The result is increased capacity, lowered contact resistance, ability to withstand vibration and impact. To solve your switching problems, see our complete line of basic switches and actuators: sub-subminiature, subminiature, miniature, SPDT, SPDT double break, DPDT 4 -circuit, TPDT 6 -circuit, $1 / 2$ to 40 amps , high inrush, and Mil Spec models. Write for free Basic Snap-Action Switch Catalog. \#110.

Do you still know how to use the primary tool of your profession-math? Here is the article that will bring you up to date it is concise, yet comprehensive, ranging from elementary concepts of algebra to the abstract formalisms of differential equations and theory of a complex variable. Emphasis is placed on applications of this tool.

MATHEMATICAL

 MODELS FOR ENGINEERSCover Story

Tur premose of this article is to present a survey of the main mathematical technifues used by engineers todaty. The scope will be comprehensive, ranging from elementary concepts of algebra and arithmetic manipulations to the abstract formalisms of differential equations and theory of functions of a complex variable.

In all cases our emphasis will be on application: What kinds of engineering problems are solved with each mathematical tool. Examples will be given. The specific mathematical tools will be described in a manner consistent with mathematical rigor, but hopefully clearly enough to bring out the potential usefulness readily for the engineer and to indicate the limitations. Key references will be given at the end for extended application details and proofs

Algebra is essentially the manipulation of letter: and symbols. For engineers such manipulations form a bridge between a conceptual or verbal problent definition and the clefinitive quantitative computations needed for problem solution.

The basic concept is the equation, a statement of equality of two quantities. The laws of nature are expressible in the form of equation; manipulation of equations or sets of equations to solve for the desired unknown is the pertinent computaticnal task.

It is well to recognize the relationship of the equit-

By Dr. RAYMOND S. BERKOWITZ
Assoclate Professor
Moore School of E. E. University of Pennsylvania

200 So. 33rd Street
Philadelphla 4, Pa .

Slide rules, such as the one shown here by Keuffel G Esser Co., are the engineers' primary calculator.

MATHEMATICAL MODELS

tion concept to that of the formula. While the equation represents a definite quantitative relationship, the formula msually gives only relative proportions of ingredients. Thus, the formula $\mathrm{H}_{2} \mathrm{O}$) represents the composition of a water molecule. A corresponding equation would be:

$$
\begin{equation*}
m_{n}=2 m_{H}+m_{0} \tag{1}
\end{equation*}
$$

where $m_{W}=$ the mass of a water molecnle
$m_{H}=$ the mass of a hydrogen atom
$m_{o}=$ the mass of an oxygen atom
The above illustrates the logic behind the use of mathematical concepts in solving engineering prolnlems. Eq. 1, together with the following stmbol definitions, constitute a mathematical model of a physical situation. In this case, of course, the problem of determining any one of the 3 quantities m_{W}, $m_{l f}$ or m_{o} from knowledge or measurement of the other two would be readily solved. In general, it is

Fig. 1: Elementary circuit theory and mathematics may be used to determine the smallest size fuse that can be used here.

Fig. 2: Cartesian and polar coordinate systems. Such coordinate systems provide a link between algebraic equations and geometrical relationships. Common terminology is also shown here.

If to the engineer w either find or create a mathematical model applicable to his real-life problem, then solve for the unknowns that can be translated into the required real-life solution the real-life-prololem.

Algebraic Problem Solving

A simple illustration of the above general logic is the following simple problem.

Statment of Problem: In the simple circuit shown in liig. 1 , we wish to find the smallest size fuse that can he used.

Mathematical Model: Using elemeniary circuit theory we set up the following equations:

$$
\begin{align*}
r_{1} & =E I_{1 .} I_{2}=E I_{2 .} P_{3}=E I_{3} \tag{2}\\
I & =I_{1}+I_{2}+I_{3} \tag{3}
\end{align*}
$$

Where $E=$ applied voltage $=115$ volts

$$
I_{1}, I_{2}, I_{3}=\text { currents through each bull) }
$$

$P_{1}, P_{2}, P_{3}=$ powers dissipated in each bulb $=50$, 100,150 watts respectively
$I=$ Current through fuse (unknown).

Mathematical Solution:

Solving for I, we have:

$$
\begin{equation*}
I=\frac{1}{E}\left(P_{1}+P_{2}+P_{3}\right)=\frac{300}{115} \cong 2.61 \mathrm{amps} \tag{4}
\end{equation*}
$$

Engincering Solution: The smallest size fuse rated at more than 2.01 amps will be satisfactory.
Algelraic equations which arise again and again in engineering can be found in any of the standard handbooks. These equations usually represent "laws" of nature and can be made to fit to the solution of many engineering problems.

Terms, Factors, Units

A word about the structure of algebraic equations. There is always an equal sign ($=$) , separating the "left-land" side or member from the "right-hand" side. I.etter symbols represent numerical quantities. known or unknown variables. Connecting these are operational symbols, designating operations:,+- , \times (also or implied),\div (or / or fraction representation), V^{-}, superscripts for raising to a power.
Any parts of an equation connected by + or - are referred to as "terms"; quantities multiplied together are thought of as "factors" of a term.

Different parts of an equation (Eq.) must be "dimensionally consistent." All terms connected by + or - signs must have the same dimensions or units. The climension or unit of a term is the product of the dimensions of the component factors. The different sides of an Eq. must have the same dimensions. Thus, looking at Eq. 2 above, for example, with E in volts and I in amperes, P must be in voltamperes or watts.

For more complicated equations, dimensional consistency is often a non-trivial consideration. l'requent checking of expressions is necessary-often dimensional consistency checks can indicate errors in manipulation rapidly.

Equations with One Unknown

In many problems it is possible to set $\mathfrak{i p}$ a mathematical moclel in which there is only one variathe quantity. In such cases the pertinent equation to solve can be written :

$$
\begin{equation*}
f(x)=0 \tag{5}
\end{equation*}
$$

Here $f(x)$ is a "function of x," where .1 is the unknown variable quantity. Typical such functions are:

$$
\begin{aligned}
& f_{\varepsilon}(x)=\sqrt{2+x^{2}}+3 x^{3} \sqrt{x} \\
& f_{f}(x)=\frac{5+2 x}{3+x^{3}} \\
& f_{c}(x)=2+3 x+4 x^{2}
\end{aligned}
$$

Function f_{a} examplifies an "irrational" function, since it implies other than the "elementary operation" :,,$+- \times$ and $\div f_{a}(x)$ is called a rational function or fraction and $f_{c}(x)$ is designated a polynomial.

An important part of algebra is concerned with the "roots" of polynomials, that is, solutions to Eq. 5 when $f(x)$ is a polynomial such as $f_{c}(x)$ above or a general n-th order polynomial given by:

$$
\begin{equation*}
p_{n}(x)=a_{0}+a_{1} x+a_{2} \cdot x^{2}+\cdots a_{n-1} x^{n-1}+a_{n} x^{n} \tag{6}
\end{equation*}
$$

or, in more compact form, using the standard "summation" symbol:

$$
\begin{equation*}
p_{n}(x)=\sum_{r=0}^{n} a_{r} x^{r} \tag{6a}
\end{equation*}
$$

where the a 's (i.e. the "coefficients") are known numbers.

The "Fundamental Theorem of Algel)ra" states that the equation

$$
\begin{equation*}
p_{n}(x)=0 \tag{7}
\end{equation*}
$$

has exactly n solution, i.e., $p_{n}(x)$ has exactly n roots. Knowing the roots of $p_{n}(x)$, say $x_{1}, x_{2}, \ldots x_{n}$, the polynomial can le factored as follows:

$$
p_{n}(x)=a_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right)\left(x-x_{n}\right)
$$

or, in more compact form, using the standard "product" symbol:

$$
\begin{equation*}
p_{n}(x)=a_{r} \stackrel{n}{r=1}\left(x-x_{r}\right) \tag{8a}
\end{equation*}
$$

"General closed form" solutions are readily available giving the roots in terms of the coefficients for $n=1,2,3$ and 4 . For higher n 's it is necessary to use numerical approximation methods for given specific values of the coefficients. In practice, the closed form solutions are usually only used in the cases

Fig. 3: Equations of conic sections in cartesian coordinates.
$n=1,2$: the approximate solution methods give useful answers faster for 3 and 4.

Specifically, the solutions for $n=1$ and 2 are as follows:

$$
\begin{align*}
n=1 & r_{1}=-a_{0} / n_{1} \tag{!1}\\
n=2 & r_{1}=\frac{1}{2 a_{1}}\left(-a_{1}+\sqrt{a_{1}{ }^{2}-4 a_{0} a_{2}}\right) \tag{10}\\
& x_{2}=\frac{1}{2 a_{2}}\left(-a_{1}-\sqrt{a_{1}{ }^{2}-4 a_{0} a_{2}}\right)
\end{align*}
$$

The quantity $a_{1}{ }^{2}-4 a_{0} a_{2}$ in Eq. 10 is known as the "discriminant." The roots of the quadratic with "real" coefficients (i.e. the catse $n=2$) will be real-uneyual, real-equal, or "complex" when the corresponding value of the discriminant is positive, zero, or negative. The concepts of "real" and "complex" numbers will he described a little later. We close this section with an example.

Statement of problem: The weight in a pile driver is given an upward velocity of $5 \mathrm{ft} . / \mathrm{sec}$. one foot above the pile. How long will it take to complete its stroke?

Mathematical model: The pertinent equation describing motion under gravitational attraction is:

$$
\begin{equation*}
d=v_{0} t-1 / 2 g t^{2} \tag{11}
\end{equation*}
$$

where d is the resultant upward distance travelled in time t

$$
\begin{aligned}
& v_{o}=\text { initial velocity (upward) } \\
& g=\text { acceleration due to gravity }
\end{aligned}
$$

Solution: Make the following sulstitutions:

$$
\begin{aligned}
& \mathrm{d}=-1 \mathrm{ft} \\
& \mathrm{v}_{0}=5 \mathrm{ft} . / \mathrm{sec} \\
& \mathrm{~g}=32.2 \mathrm{ft} . / \mathrm{sec} . / \mathrm{sec}
\end{aligned}
$$

The following quadratic equation results:

$$
\begin{equation*}
16.1 t^{2}-5 t-1=0 \tag{12}
\end{equation*}
$$

Solution is given by (10), with $x=t ; a_{0}=-1$, $a_{1}=-5$ and $a_{2}=16.1$.

Fig. 4: Vector addition and subtraction parallelogram law.

$$
\begin{align*}
& t_{1}=\frac{1}{32.2}(5+\sqrt{89.4})=0.418 \text { see. } \\
& t_{2}=\frac{1}{32.2}(5-\sqrt{89.4})=-0.138 \text { sec. } \tag{13}
\end{align*}
$$

Only the first solution, 0.418 sec . is significant, giving the duration of the driver stroke. Since the validity of Eq. 12 for the physical problem only holds for $t>0$, the existence of a root at -0.138 sec . is of no practical interest. Such "selection of roots" to fit the physical situation is a typical standard procedure.

"Number" Classifications

The simplest kind of number is the integer, such as $1,2,3,4,-2,-3$, etc. Then we have the set of rational numbers defined as the ratio of two integers. All numbers which can be written down explicity in fraction or decimal form exactly are rational numbers. Then we can add the class of irrational numbers which can only be written down implicitly or can at most be approximated by closed form fractions or decimals. Thus, $\sqrt{2,} \sqrt[3]{3}$. are typical examples, usual approximations being:

$$
\sqrt{2} \cong \quad \cong 1.414 \quad \sqrt{3} \cong 1.442
$$

Now in finding the roots of polynomials it becomes necessary to admit a further number classification: real and imaginary numbers. Take, for example the Eq. :

$$
\begin{equation*}
x^{2}+4=0 \tag{14}
\end{equation*}
$$

Applying the quadratic formula (Eq. 10 above), the ronts are:

$$
\begin{equation*}
x_{1}=\sqrt{-4,} x_{2}=-\sqrt{-4} \tag{15}
\end{equation*}
$$

Fig. 5: Vector in Cartesian coordinates.

Now we know that none of the above defined integers, rational, or irrational numbers; positive or negative ; will result in " -4 " when multiplied by itself ; hence what meaning can be ascribed to " $\sqrt{-4}$ " ? We take care of this simply by defining the concepts of imaginary and complex numbers, to take care of square roots of negative numbers as well as roots oi polynomials in general that are not expressible otherwise.

Actually, the only explicit definition required is :

$$
\begin{equation*}
j \equiv \sqrt{-1} \tag{16}
\end{equation*}
$$

By convention, all the number types defined above in the first paragraph of this section are called real numbers. Any real number multiplied by j as defined formally in Eq .16 is called an inaginary number. We are led naturally to the concept of complex numbers as simple combinations of real and imaginary numbers. In general, a complex number c is expressible as:

$$
\begin{equation*}
c=a+j b \tag{17}
\end{equation*}
$$

where a and b are real numbers; a is called the "real part" of $c ; j b$ is called the "imaginary part" of c, often written as:

$$
\begin{equation*}
a=\operatorname{Re}(c): j b=\operatorname{Im}(c) \tag{18}
\end{equation*}
$$

In complex notation as given above, the roots of Eq. 14 above are:

$$
\begin{equation*}
x_{1}=j \sqrt{4}=j 2 ; x_{2}=-j \sqrt{4}=-j 2 \tag{19}
\end{equation*}
$$

Similarly the roots of :

$$
\begin{equation*}
x^{2}+4 x+13=0 \tag{20}
\end{equation*}
$$

are:

$$
\begin{equation*}
x_{1}=-2+j 3 ; x_{2}=-2-j 3 \tag{21}
\end{equation*}
$$

The roots of any polynomial can be written as complex numbers (note that "real" numbers can be considered as special cases of complex numbers, having zero for imaginary parts). Further representations of complex numbers will be presented later: here we will close with one simple additional definition. For the complex number c defined in (17) above, we define c^{*}, its corresponding complex conjugate by: $c^{*}=a-j b$; i.e., just changing the sign of the imaginary part.

Note from Eq. 19 and 21 that in each case x_{2} is the conjugate of x_{1} and vice-versa. This points out a useful general property of polynomials with real coefficients (i.e., a 's of Eq. 6 above are real numbers) : their roots must either be real or they must occur in complex conjugate pairs.

Multivariable Problems

Many problems arise where the mathematical model consists of a number of equations with a number of unknown quantities. Here, the required solution consists of a set of values of the unknowns. Exact solutions are available only for certain forms of the set of equations. If there are " n " linear equations with " n " unknowns (n a known integer) the techniques of matrix algebra described later can be used. Otherwise, each problem must be examined separately-there are a number of manipulative tricks that a creative mathematician or engineer can devise to get an answer if one exists. One general statement we can make is that the effective number of equations in the model must be at least as large as the number of unknowns.

In some cases the stubstitution method can give an exact solution. Suppose we have 3 equations with variables x, y, and z. Solve the first equation for x in terms of y and z. Substitute the solution for x in equations 2 and 3 : these now constitute two equa-

Fig. 6: Argand diagram or "complex plane" representation of complex numbers. These are basic definitions.
tions in two unknowns. Now solution of 2 for y, substituting in 3 , gives a single equation in z. Solving this, we work backwards oltaining corresponding values for y and x. Example: solve the set :
(1) $x y z^{2}=12$
(2) $x^{2} y z=6$
(3) $x y^{2} z=18$
iolving (1) for $x: \quad x=\frac{12}{y z^{2}}$

Substituting:

$$
\begin{align*}
& \text { (2') } \frac{144}{y z^{3}}=6 \text { or } y z^{3}=24 \tag{2:3b}\\
& \text { (3') } \frac{12 y}{z}=18 \text { or } \frac{y}{z}=\frac{3}{2}
\end{align*}
$$

holving (2') for $y: \quad y=\frac{24}{z^{3}}$
Substituting: (3") $\frac{24}{z^{4}}=\frac{3}{2}$ or $z^{4}=16$
Solving $3^{\prime \prime}, z=2$
Now from $(23 \mathrm{~d}), y=\frac{24}{8}=3$
and finally. from (23a), $x=\frac{12}{(3)(4)}=1$
As seen above, we have taken the liberty of picking a problem with a simple answer; however. it cloes serve to show the solution procedure.

Fig. 7a: Circuit problem and solution.
GIVEN DATA
$X_{L}=2 \pi f L=4 \Omega$
$V=110$ VOLTS
$\theta_{v}=0$
Fig. 7b: Phasor diagram of Figure 7b.

Allen-Bradley Type J Variable Resistors used in constant impedance attenuators provide quiet, smooth control...at low cost!

In attenuators, which of these characteristics is most important to you - stability, or smooth control, or constant impedance? Not only will Allen-Bradley Type J variable resistors give you all of these . . . but also long life and a high wattage rating in a remarkably compact structure.

The famous Type J solid resistance element-made by A-B's exclusive hot molding process - provides smooth control at all times - you'll never experience an abrupt change in impedance or attenuation during adjustment.

Allen-Bradley's control of the resistance-rotation characteristics during production assures the desired attenuation approaching calibration accuracy. And, the characteristic impedance can be held to 10% throughout rotation - end to end! The discrete steps inherent in all wire-wound units are eliminated. Don't forget-freedom from inductance insures excellent high-frequency response

The Allen-Bradley Type J variable resistors are available in dual or triple units for use in attenuators rated up to 5 wats. For more complete information on these $\mathrm{T}_{\text {Ype }} \mathrm{J}$ controls, please send for Technical Bulletin B5200B. Write: Allen-Bradley Co., 1342 S. Second Street, Milwaukee 4, Wis. In Canada: Allen-Bradley C.anada Ltd., Galt, Ontario.

MATHEMATICAL MODELS

(Continued from page 43)
In many cases the best that can be done is to approximate the solution. This is usually done by a successive approrimation technique: assume a set of values for the unknowns; substitute into the equations; determine magnitude of resultant "errors"; compute modifications to assumed unknown values and repeat, continuing until resultant "errors" are acceptably small. This procedure is related to the trial and error method : find (by exhaustion if necessary) values of the "unknowns" which satisfy the equations. With high speed computers such a procedure is sometimes practical.

Numerical Techniques

U_{p} to this point we have presented mathematical models based on simple algebraic equations. However, the engineering logic implied by this discussion carries over to situations involving the more advanced mathematical concepts as well. As seen by the examples given, the last step in the solution of engineering problems consists in the insertion of numerical input values to obtain a numerical result. Here we shall discuss the different methods available for numerical calculations and indicate where they would be useful.
Longhand calculations: We refer here to the clementary number manipulations usually learned initially in elementary school $:+,-, \times$ and \div, also V^{-}. An engineer can expect to lave to call on these methods continually, certainly when no refined techniques are available, but also to clieck the computer or give fast order-of-magnitude results even when more sophisticated methods are at hand.

Methods of checking work are useful, such as "doing it twice" or by "casting out nines."
Slide-rule calculations: These are also a must for engineers, both for performing the elementary manipulations and also for trigonometric and "exponential" calculations. In practice a slide rule provides answers usually correct to three significant figures. One important feature of slide-rule calculations is the requirement for a rough order-of-magnitude longhand calculation for "fixing the decimal point." This is facilitated by expression of numbers using "pozeers of ten." Thus:

$$
\begin{align*}
24 \overline{7} .5 & =2.475 \times 10^{2} \\
0.00342 & =3.42 \times 10^{-3} \tag{27}
\end{align*}
$$

Desk Calculator: This is a tool for rapid performance of longhand calculations. It is preferable to a slide rule when more than three-significant-figure accuracy is required in intermediate steps of cal-
culations or even in the answer. It is also useful when accuracy may or may not be required, but when a large number of operations must be rejeated. Having a calculator available, it is relatively simple to teach a person with very little education to perform a large number of calculations rapidly and accurately.

One job especially suited to the desk calculator is the processing of statistical data: given a set of "observations" determine the mean and standard deviation. A slide rule is almost completely useless here, since to get, say, 3 significant figures in the result, it is usually necessary to carry 5 or 6 significant figures in the separate steps.
Use of Logarithms: This is essentially a manual technique for reducing the time needed for longhand calculations. Also, it enables one to raise numbers to any fractional power. It is a table-look-up method; the accuracy depends on the "size" of the table used. It provides a simplification of manual processes re-quired-for multiplication or division, only addition or sulbtraction is required.

All operations facilitated by logarithms can be done more rapidly on a slide rule; but, logarithms do provide more accuracy. Note that while a desk calculator does a better job with elementary operations than either a slide rule or logarithms, it is of questionable value for square roots and of no use at all for taking other fractional powers of numbers.
Automatic, general purpose, high-speed Digital Computers: We do not propose to present all exhaustive discourse here on the capabilities of digital computers, just some of the more significant characteristics. In some respects, a modern digital computer is essentially an electronic version of a desk calculator, since the basic operations performed are essentially elementary operations on integers. However, the speed and compactness achievable with electronic components provide many orders of magnitude greater capability and open up whole new classes of problems for which practical solutions can be obtained.

A primary feature of the use of such machines is the control by a "program," a listing of instructions fed into the machine on punched cards, paper tape, or magnetic tape. This program contains information that effectively defines the mathematical model for the given problem, in terms of machine operations and instructs the machine as to specific information required as solution. Using the program, together with any additional input data, the machine then generates the solution which is emitted in the prescribed form (typed or on cards or tape).

For many problems compiler languages exist which any engineer can use after a few hours instruction to prepare problem statements. These are then turned

IRC Fixed Composition Resistors give you SUPERIOR HIGH FREQUENCY CHARACTERISTICS

HERE'S WHY...IRC's resistance element is a film of carbon composition thermally bonded to a glass body. The small cross-sectional area of this exclusive film assures inherently low shunt capacitance.

All other brands of composition resistors use a slug consisting of carbon granules mixed with organic binders. Due to the large mass of binder material the slug type resistor has a high shunt capacitance.

The best high frequency characteristic is achieved when the ratio of cross-sectional area to the length of the resistor is minimized. IRC's film construction with fewer carbon-binder contacts results in superior performance at high frequencies.

Specify IRC composition resistors for applications where low shunt capacitance, superior pulse shaping and high frequency performance are needed. Write for GB'T Bulletin. International Resistance Co., Philadelphia 8, Pa.

PERFORMANCE ADVANTAGES

IRC Type GBT's also provide

- Greater moisture protection
- Lower operating temperature
- Better resistance-temperature characteristics
- Outstanding load life
- Ranges to 100,000 megohms
- Stronger termination
- Weldable leads

MATHEMATICAL MODELS

(Continued from page 45)
over to the computer for direct solution. For more complicated problems it is necessary to use the services of a programmer or coder to translate the engineer's instructions into suitable machine language. Frequently the services of a numerical analyst are needed to decide the "best ways" of using the computer to get the desired results and muild up contidence in the accuracy achieved.

Some interesting consequences of the use of highspeed computers have been: a refinement of methods of problem definition as well as a more widespread understanding of the nature of numbers. Concerning the latter item. it is often found useful to use hinary, ternary, and/or octal number systems, as well as the usual decimal number systems. (see Table 1). Here, equivalents for numbers from 1 thru 12 are given; also for the single large number 5280 . To check the results is easy: c.g. for the octal 12240, we have:

$$
\begin{align*}
& 1 \times 8^{4}+2 \times 8^{3}+2 \times x^{2}+4 \times 8+0 \times x^{\prime \prime} \\
& =4006+1024+128+32+0=5280 \tag{28}
\end{align*}
$$

Understanding of these different mumber-hase systems gives aseful insight into the mode of operation of modern computer components.

Some number system equivalents: Table 1

Decimal	Binary	Ternary	()ctal
1	1	1	1
2	10	2	2
3	11	10	3
4	100	11	4
5	101	12	5
6	110	20	6
7	111	21	7
8	1000	22	10
9	1001	100	11
10	1010	101	12
11	1011	102	13
12	1100	110	14
5280	1010010100000	21020120	12240

Geometrical Techniques

A fundamental branch of mathematics is geometry. dealing with the relations, properties, and measurements of lines. angles, surfaces and solids. Direct applications to engineering problems are unavoidable for civil and mechanical engineers and arise continually for all engineers. We shall concern ourselves here with some of the more indirect types of applications. For purposes of this discussion, we emphasize the related topics of trigonometry and analytical geometry.

Coordinate Systems: A coordinate system is a way of associating unambiguously a pair of mumbers with each point in a plane (or a triplet of numbers with a point in three-dimensional space; this discussion will be confined to 2 dimensions for simplicity). Cartesian and polar coordinate systems are illustrated in Fig. 2. showing the common terminology. Simple trigonometric relations between the two systems are the following:

$$
\begin{align*}
& x=r \operatorname{sos} \theta \\
& y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}} \tag{30a}\\
& A=\arctan ^{y} \equiv \tan ^{-1} \frac{y}{x} \tag{30~b}
\end{align*}
$$

(2!a) (29b)

Such coordinate systems in themselves provide a link between algelraic equations and geometrical relationships. Useful analogies can proceed in either direction. Thus a graph can be drawn for aisual display of numerical relationships. The cathode-rayoscilloscope does just this electronically with "waveform voltage" as ordinate and time as abscissa. Conversely, algebraic equations can be set up to describe gennetrical forms which occur in nature. Examples are shown in Fig. 3. Further examples provide material for the following.
Vectors: A Vector is defined as a generalized type of number having both magnitude and direction with respect to a 3 dimensionl space. For clarity of discussion, non-vector numbers are called scalars: rector number symbols are usually bold faced, scalar number symbols are plane. The basic manipulation law of vectors is addition as shown in Fig. 4.

In many cases it is useful to write vectors in terms of their cartesian coordinate components, Fig. 5. An important relation is immediately apparent: Vector addition is equivalent to scalar addition of corresponding cartesian coordinate components. Thus:
$\mathbf{A}+\mathbf{B}=\mathbf{i}\left(A_{z}+B_{z}\right)+\mathbf{j}\left(A_{v}+B_{v}\right)+\mathbf{k}\left(A_{z}+B_{z}\right)$
Other relations such as "scalar product" and "vector product" are also useful.

The most obvious use for vectors is for a precise general statement of the laws of mechanics. Forces on a body behave as vectors; motion of a body is readily expressed as a vector function of time. Applications to other problems involving "vector calculus" will be pointed out later.
Graphic representations of complex numbers: Referring back to uumber classifications above, it is seen that the law for adding complex numbers is very similar to the law for alldition of two-dimensional vectors (see Eq. 31).

[^1]

Tres wions

COUNTER TUBES

Versatility with minimum circuitryspeeds to 100 Kc

These are versatile components offering many thousands of hours of reliable service, capable of counting and displaying simultaneously with a minimum of circuitry. In addition to counting. the tubes can be used for subtracting, adding. frequency dividing, keying, timing, computing. scaling, coding, modulating, matrixing, indexing. and multiplexing.
Here are just a few of many possible applica. toons:

- Drill press control - tube stops press when transducer sensor signals end of stroke.
- Process control and counting-tube shuts off photo developer when associated timer indicates end of cycle; tube stops paper.stacking machine when selected number of cycles has been reached
- Radiation detection - tube activates alarm when preset number of pulses has been accumulated from Geiger tube.
- Particle counting - series of tubes indicates number of particles of various sizes, according to amplitude of signal each particle causes.
The Sylvania line of reliable counter tubes consists of two groups:

1. Low-speed types, operate up to 4000 cps .
2. High-speed types, operate up to 50 and 100 Kc .

Sylvania special-purpose counting or triggering job

GOLD CATHODE THYRATRON

New design provides minimum leakage resistance of 10^{12} ohms!
Ideal for use with an ionization chamber to sense smoke. humidity or dust, the Sylvania cold cathode thyratron features a new design with the starter anode at the top. The result is very good insulation, further enhanced by a silicone coating on the bulb to prevent leakage caused by condensation. Compact and equipped with long. flexible leads for ease in mounting. the tube is adaptable to high im. pedance bridge circuits as a coupling device to lower impedance devices.
Here are some of the many application possibilities:

- Detection of light changes, when used with a photocell.
- Detection of smoke. moisture, dust, etc. when used with an ionization chamber.
- Radiation detection.
- Heat. pressure and gas detection.

Typical Circuit for Ionization Chamber Application

In addition thers are severnal bult sires and sockets
SEND FOF NEW क्ष
Thation and assistanes in the vae of Sypuatz counter tubes Data stheets and circuls are inctuded.

Ahtifute kiver Fhown

INDICATOR TUBES

Econamical direct numerical readout driven by transistors
Here io memoersulve divet numarit inditalion for apprichitiont up is I Kt - velidistute com puters. scalers and counting devites for exam pie: Desugred for iong life, mote wibe testure the Sy watia dorefoped niegraigian tume An

 hind one of the namber catputs. meving this reagout tube didal for ase mith transuttorized ciftuits: used an combined cemten and indi.

tubes may do your better, more economically

TRIGGER TUBES

Deliver 10 amps or greater surge within 1-watt capability
These mgzediznd cold cathode ingere fubes (Types 6883 submintature and ORs miniature)

In addition to these speciai purpose tubes. Sywanil aise afters monization gaugnt for praturne
 emicron. For infortiation ton amy of the tubes detorited bere sen your Sylvatur sates enaineer or

MATHEMATICAL MODELS

(Continued from paye t7)
As a result it is convenient to represent complex numbers as points on a plane: see Fig. 6 for the basic definitions. Thus, to find the point corresponding to the "sum" of the complex number for two given points, draw "vectors" from the origin to the given points: the point of the vector sum position will thus represent the sum of the two complex numbers.

At this point it is convenient to introduce the polar representation of a complex number. Referring to Fig. 6 and using obvious geometrical relationships we obtaill:

$$
\begin{align*}
& z=x+j y \\
& =|z|\left(\cos \theta_{z}+j \sin \theta_{z}\right) \tag{33}
\end{align*}
$$

Ol°

$$
\begin{equation*}
z=|z| 0^{j \theta_{z}} \tag{33a}
\end{equation*}
$$

(the use of $e^{j \theta_{z}}$ as equivalent to $\cos \theta_{z}+j \sin$ θ : will be discussed below).
Here $\mid z$ is known as the "absolute value" or "modulus" of z; the angle θ_{z} is its "argument." Important relationships include:

$$
\begin{equation*}
(34 a) \tag{3+a}
\end{equation*}
$$

(36a)
(36)
Thus, the Polar form of a complex number (Eq. 33a) is most convenient for multiplying, dividing, or raising to a power. On the other hand, for adding or subtracting, the Real-Imaginary form (see Eq. 32. ior example) is most convenient.
Phasors: In describing the "steady state" behavior of alternating current electrical networks we must deal with voltages and currents of the form:

$$
\begin{align*}
r(l) & =\sqrt{2} V \cos \left(2 \pi f t+\theta_{v}\right) \\
i(l) & =\sqrt{2} I \cos \left(2 \pi f l+\theta_{l}\right) \tag{37}
\end{align*}
$$

Here, v and i are "instantaneous values" varying with time t (in seconds) ; f is the "frequency": in cycles per second; V and I are the rass values that would be read on an "ac" voltmeter or anmeter. θ_{V} and θ_{I} are the "phase angles" with respect to a reference ("leads" if >0 : "lags" if <0). From our complex number definitions. it is apparent that $v(t)$ and $i(t)$ are given by:

$$
\begin{align*}
& r(t)=\operatorname{Re}\left\{\mathrm{V}_{e^{i 2} \pi^{\prime \prime}}\right\} \tag{38a}\\
& i(t)=\operatorname{Re}\left\{\mathrm{I}_{\left.e^{i 2} \pi^{\prime \prime}\right\}}\right. \tag{38b}
\end{align*}
$$

$$
\begin{align*}
& \text { a. Prorluct: } \\
& \left|\boldsymbol{Z}_{1} \boldsymbol{Z}_{2}\right|=\left|\boldsymbol{Z}_{1}\right| \cdot\left|\boldsymbol{Z}_{3}\right| \\
& \theta_{z 152}=\theta_{z 1}+\theta_{z 2} \tag{3+b}\\
& \left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| \\
& \theta z_{1} / z_{2}=\theta z_{1}=\theta z_{2} \tag{35b}\\
& \text { r. Raise to a powror:(} z^{n} \text {) }=\mid z^{1 n} \\
& \theta z^{n}=n \theta z \\
& \text { h. (Quotient: }\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| \tag{35a}
\end{align*}
$$

lere V and I are complex numbers given by:

$$
\begin{equation*}
\mathrm{V}=\sqrt{2} V_{e j \theta_{r}} \quad \mathrm{I}=\sqrt{2} I e j \theta_{v} \tag{39}
\end{equation*}
$$

V and I are called the "plasors" corresponding to the voltage and current $v(t)$ and $i(t)$. Solutions can be worked out either algebraically or by using the "argand diagram" which in this case is called the "Plaasor diagram."

A sanple problem is shown in Fig. 7: 110 v. rms applied to a series circuit of 3 ohns resistance and 4 ohms reactance. Shown are solutions for current, resistive voltage drop, and reactive voltage drop: e.g. the current has an rms value of 22 amps and lags the voltage by 0.928 radians or 53.1°.

Sums, Products, Series

In this section we shall start out by giving some standard mathematical notations that are used constantly in mathematical or engineering contexts where "economy of space" or "writer fatigue" are important : e.g. conciseness.

a. Summation notation:

$$
\begin{equation*}
\sum_{n=a}^{b} x_{n}=x_{a}+x_{a}+1+\ldots+x_{b-1}+x_{b} \tag{40}
\end{equation*}
$$

read: "The sum of the x_{n} from $n=a$ to $n=b$." (a, b integers; n takes consecutive values).
Example:

$$
x_{n}=\frac{1}{n+1}, n=1, b=4
$$

$$
\begin{equation*}
\sum_{n=1}^{1} \frac{1}{n+1}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{77}{60}=1 \frac{17}{60} \tag{41}
\end{equation*}
$$

b. P'roduct notation:

$$
\begin{equation*}
\stackrel{b}{\pi}_{n}^{\frac{\pi}{a}} x_{n}=x_{a} x_{a}+1 \cdots x_{b-1} \cdot x_{n} \tag{42}
\end{equation*}
$$

read: "The product of the x_{n} from $n=a$ to $n=b . "$ Example:

$$
\begin{align*}
x_{n} & =\frac{1}{n+1} ; a=1, b=4 \\
n_{n=1}^{+} \frac{1}{n+1} & =1 / 2 \cdot 1 / 3 \cdot 1 / 4 \cdot 1 / 5=\frac{1}{120} \tag{43}
\end{align*}
$$

Another example is the definition of the "factorial" function. Thus, for any positive integer m we define " m factorial" written: m ! as follows:

$$
\begin{equation*}
m!={ }_{m \stackrel{\pi}{=}, m=1 \cdot 2 \cdots(m-1) m}^{m}, m \tag{44}
\end{equation*}
$$

for example:

$$
\begin{equation*}
1!=1,2!=2,3!=6,4!=24,5!=120, \text { etc. } \tag{45}
\end{equation*}
$$

It is convenient to define $O!$ as :

$$
O!=1
$$

New Attenuator CAPABILITY

 ...fom Al:FFED

First to Combine ALL FOUR Attenuator Features!

* LOW INSERTION LOSS

An insertion loss of only 5 db at the zero db setting permits the ALFRED attenuator to be used where limited power is available.

* WIDE RANGE ATTENUATOR

Greater than 60 db continuously variable attenuation in L, S, and C bands.

* FLAT RESPONSE

Frequency sensitivity is less than $\pm 3 / 4 \mathrm{db}$ at minimum attenuation with external terminations having VSWR less than 1.1:1.

* EXPANDED DIAL SCALE

The 8" calibrated scale length, four times longer than is provided on other coaxial attenuators, gives fine resolution. Accuracy of calibration at midband is $\pm 0.2 \mathrm{db}$ or $\pm 2 \%$, whichever is greater.

In addition, good directivity allows the instrument to be used as a directional coupler with high decoupling action or as a variable coupler for mixer applications. Maximum power rating is 100 watts.

SPECIFICATIONS

Model	E101	E103	E105
Frequency Range Gc	1 to 2	2 to 4	4 to 8
Insertion Loss (at 0 db setting)	5 db	5 db	5 db
Frequency Response (at 0 db setting)	$\pm 3 / 4 \mathrm{db}$	$\pm 3 / 4 \mathrm{db}$	$\pm 3 / 4 \mathrm{db}$
Frequency Response (at 60 db setting)	$\pm 11 / 2 \mathrm{db}$	$\pm 11 / 2 \mathrm{db}$	$\pm 2 \mathrm{db}$
Calibration accuracy at center frequency	$\pm 0.2 \mathrm{db}$ or $\pm 2 \%$, whichever is greater		
Impedance	50Ω	50Ω	50Ω
Connectors	Type N female		
Price	\$400	\$450	\$480

MATHEMATICAL MODELS

(Continued from page 51)
so that a direct analogy to the "Gamma function" of higher mathematics can be stated as:

$$
\begin{equation*}
I^{\prime}(m+1)=m! \tag{47}
\end{equation*}
$$

The gamma function $\Gamma^{\prime}(x)$ is defined for all real values of x; it satisfies the recurrence relation:

$$
\begin{equation*}
\mathrm{I}(x+1)=x \mathrm{I}^{\prime}(x) \text {; } \tag{48}
\end{equation*}
$$

it is expressible as a factorial when x is a positive integer.

Summation notation is more commonly used in mathematical models of engineering problems than product notation. Certain standard "finite" sums are frequently used in simplifying computations. "Infinite series" often arise (e.g. Eq. 40 with $A=1$ or 0 and $\mathrm{s}=\infty=$ infinity) in definitions of useful functions and for approximate calculations. The remainder of this section will cover some examples of both.
Permutations and combinations: The number of arrangements of a set of n objects in a line is given by n ! These arrangements are sometimes called "permutations."

Erample: Given 4 letters, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and I); how many possible "words" can be constructed using each letter once and only once?

Solution: number of letters $=+; 4!=2+$, which is thus the answer required.

Chick: we enmmerate the possible words as follows:

ABCD	BACD	CABD	DABC
ABDC	BADC	CADB	DACB
ACBD	BCAD	CBAD	DBAC
ACDB	BCDA	CBDA	DBCA
ADBC	BDAC	CDAB	DCAB
ADCB	BDCA	CDBA	DCBA

Evidently there are just 24 possibilities.
The number of ways of selecting n objects from a set of m objects is given by:

$$
\begin{equation*}
\binom{m}{n} \equiv \frac{m!}{n!(m-n)!} \tag{49}
\end{equation*}
$$

The notation $\binom{m}{n}$ is read: "The number of combinations of m things taken n at a time."

Example: How many ways can two resistors be selected from a group of five?

Solution:

$$
\binom{5}{2}=\frac{5!}{2!3!}=\frac{120}{2 \times 6}=10
$$

Answer: 10 selections possible.
Chech: numbering them $1,2,3,4$, and 5 , the possible selections-of-two are:

```
(1,2),(1,3),(1,4),(1, 5); (2, 3), (2, t).
(2,5); (3,4), (3,5); (4,5).
```

Another useful application of the notation of E. . 49 is the binomial theorcm, giving the following series expression for raising the sum of two numbers to a power:

$$
\begin{equation*}
(a+b)^{m}=\sum_{n=0}^{m}\binom{m}{n}^{a^{m-n} b^{n}} \tag{50}
\end{equation*}
$$

Common Finite Sums:

a. Arithnetic progression:

$$
\begin{gather*}
\sum_{m=1}^{m} n=\frac{1}{2} m(m+1) \tag{51}\\
E: \text { amples: } \quad 1+2=1 / 2 \times 2 \times 3=3 \\
1+2+3+4=1 / 2 \times 4 \times 5=10 \\
1+2+3+\cdots+50=1 / 2 \times 50 \times 51 \\
\\
1 \\
=1 / 2 \times 2550=1275
\end{gather*}
$$

b. (icometric progression:

$$
\begin{equation*}
\sum_{n=0}^{m} r^{n}=\frac{1-r^{m+1}}{1-r} \tag{52}
\end{equation*}
$$

where r is any finite number, real or complex.
Example: $r=0.1, m=5$:

$$
\begin{aligned}
& 1+.1+.01+.001+.0001+.00001 \\
& =\frac{1-.000001}{1-.1}=\frac{.999099}{9}=1.11111
\end{aligned}
$$

c. Sum of squares

$$
\begin{equation*}
\sum_{n=1}^{m} m^{2}=\frac{1}{6} m(m+1)(2 m+1) \tag{53}
\end{equation*}
$$

E.ramples:

$$
\begin{gathered}
1^{2}+2^{2}=\frac{1}{6} \times 2 \times 3 \times 5=5 \\
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=\frac{1}{6} \times 5 \times 6 \times 11=55
\end{gathered}
$$

Expressions such as (53) and (51) are especially useful in calculations of statistical parameters of numerical data.
Infinite series: Infinite series usually arise as functions-of-a-variable and are ustally defined over a "region of convergence" of the variable. Thus we have Power Series of the form :

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{54}
\end{equation*}
$$

In general, a power series is convergent (i.e. the sum is finite and single-valued) for z anywhere within a "circle of convergence" centered at the origin in the complex plane or Argand diagram.

Example: $a_{n}=1$

$$
\begin{equation*}
\delta(z) \sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+\cdots \tag{55}
\end{equation*}
$$

DALE RELIAB/LITY...

 package it into smaller space with New "G"Series Precision Power Resistors

Dale "G" Resistors drastically reduce space requirements

Acclaimed as a major breakthrough in the relation of precision power to size, Dale " G " Series provide a much wider heat dissipation pattern than conventional size wirewound precision resistors-assuring you of inherert stability you expect from Dale. Now available in seven sizes, the "G" Series Resistors are an outstanding example of the new levels of achievement in resistor design and manufacture which have resulted from Dale's participation in the MINUTEMAN High Reliability Component Development Program.

SPECIFICATIONS

- Seven sizes: $1,1.5,2.25,4,6,7,15$ watts. Rating based on .001 minimum wire diameter
- Exceed functional requirements of MIL-R-26C
- Resistance Range from 10 to 175 K ohms, depending on size and tolerance
- Tolerances: . $05 \% .0 .1 \%, 0.25 \%, 0.5 \%, 1 \%, 3 \%$
- Temperature Coefficient: 0.00002/degree C.
- Operating Temperature Range: -55° to $275^{\circ} \mathrm{C}$.

MATHEMATICAL MODELS

(Continued from page 53)
This series has a radius-of-convergence of unity; so for any value of z for which $/ z /<1$ the series converges, in this case, to the value of $1 /(1-z)$. For $/ z />1$ the series is divergent, i.e., it blows up to infinity.

Common power series with infinite radius-of-convergence are the following trigonometric and exponential functions:

$$
\begin{align*}
& \text { cosine: } \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \tag{56}\\
& \text { sine: } \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2-n+1} \tag{55}\\
& \text { exponential: exp } x=e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} \cdot n^{n} \tag{58}
\end{align*}
$$

Note that the exponential function series satisfies the following relationship:

$$
\begin{gather*}
\exp \left(x_{1}+x_{2}\right)=\left(\exp x_{1}\right) \cdot\left(\exp , x_{2}\right) \tag{5!}\\
\text { for any numbers } x_{1} \text { and } x_{1}
\end{gather*}
$$

This accounts for its usually being written " $e^{x \text { " }}$, i.e., the number " e " raised to the power " x " where " e " is given by:

$$
\begin{equation*}
e=\exp 1=\sum_{0}^{\infty} \frac{1}{n!} \cong 2.718 \ldots \tag{60}
\end{equation*}
$$

The exponential function is of great utility in mathematical analysis because of the property of Eq . 59. The series (58) is reasonably rapidly convergent and thus is useful for numerical calculations. As shown in Complex Numbers and Phasors sections above, it provides a convenient "shorthand" for describing complex numbers through a relation with the trigonometric functions easily proved from Eqs.56 . 57 and 58 above as used in Eq. 33. The number c is the base of the natural logarithm system":
natural $\log y=l n y=$ that number x such that $v^{x}=y$.
Other uses will be pointed out in later sections.
There are many other types of infinite series that are useful in engineering. One particularly useful type is the Fourier Series:

$$
\begin{equation*}
v(t)=a_{0}+\sum_{n=1}^{\infty}\left|a_{n} \cos (2 \pi n f t)+b_{n} \sin (2 \pi, f t)\right| \tag{62}
\end{equation*}
$$

In this series t is a real number variable, often designating time: the individual terms are sinusoids of frequencies integer multiples of f cycles per second. Properly choosing the coefficients α_{n}. the series can represent any periodic "ualacform functions." "f" is
the "fundanental frequency"; multiples of f are called "harmonics"; the period of the waveiorm is $1 / f \mathrm{sec}$. An example is shown in Fig. 8 , giving a square wave of period 4 units, fundamental frequency $1 / 4$ unit. From its Fourier series expansion, it is seen that only odd-numbered harmonics are present. Letting $t=0$, we get the following series for numerical evaluation of " \bar{n} "; (since $v(o)=2 ; \cos o=1)$

Fig. 8: An example of a Fourier Series is diagrammed.

$$
\begin{align*}
\pi & =+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \\
& =4(1-1 / 3+1 / 5-1 / \overline{3}+1 / 9-\cdots) \\
v(t) & =1+\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \cos \left[(2 n+1) \frac{\pi t}{2}\right]
\end{align*}
$$

Partial Fraction Expansion: This is a method for simplifying certain proper algebraic fractions of the form:

$$
\begin{equation*}
f(x)=\frac{q_{k}(x)}{p_{m}(x)} \tag{64}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{k}}(x)$ and $\mathrm{p}_{\mathrm{m}}(x)$ are polynomials in x as clefined in section, Equations of one unknown, above and the "orders" k and m satisfy:

$$
\begin{equation*}
k<m \tag{65}
\end{equation*}
$$

The method requires knowledge of the roots of p_{n} (x). Let these be designated $r_{1}, r_{2}, \ldots, r_{m}$ (assume for convenience that no two of these roots are equal). The partial fraction expansion is now given by:

$$
\begin{equation*}
F(x)=\sum_{n=1}^{m} \frac{A_{n}}{x-r_{n}} \tag{66}
\end{equation*}
$$

Where the A_{n} are constants, given by:

$$
\begin{equation*}
\left.A_{n}=q_{k}\left(r_{n}\right) \div \frac{p_{m}(x)}{x-r_{n}} \right\rvert\, n=r_{n} \tag{67}
\end{equation*}
$$

Example

$$
\begin{gather*}
\frac{x+1}{x^{3}-6 x^{2}+11 x-6}= \\
\frac{x+1}{(x-1)(x-2)(x-3)}= \\
\frac{A_{1}}{x-1}+\frac{A_{2}}{x-2}+\frac{A_{3}}{x-3}
\end{gather*}
$$

wher

$$
\begin{align*}
& A_{1}=(1+1) \div(1-2)(1-3)=1 \\
& A_{3}=(2+1) \div(2-1)(2-3)=-3 \tag{6!}\\
& A_{3}=(3+1) \div(3-1)(3-2)=2
\end{align*}
$$

1. $3 \mathrm{~V}, 0.02 \mathrm{mf}$ ULTRA-KAP ${ }^{\text {an }}$ micro-miniature capacitor for transistor ciicuits. Other sizes available in voltages to 20 VDC , capacities to 2.2 mf .
2. 0.3 meg resistor, 470 of capacitor TUEE-R-KAP ${ }^{2}$ combination (in parallel). Ranges: 1003 to 4 mes and 100 to $12,400 \mathrm{pf}$.
3. $500 \mathrm{pf}, 500$ V FLAT PLATE capacitor for miniaturization applications. Broad raage of shapes in capacities to 0.1 mf .
4. $22 \mathrm{mf}, 150$ VDC, THIN FILM CAPACITOR, for high capacity, intermediate voltage applications. Range: . $022-.47 \mathrm{mf}$.
5. $104 \mathrm{pf} \pm 1 \%, 500 \mathrm{~V}$ PRECISION capacitor, NPO Also available $\pm 5 \%$ and N750. Range: $100-2500$ pf. 6. 250 pf, 20 KV TRANSMITIING capacitor for high frequency, high RF current circuits. Ranges: 3-1000 pi, 5-20 KV.
6. $5 \mathrm{pf}_{\mathrm{s}} 500 \mathrm{~V}$ DISCCIDAL capacitor with extremely low incuctance. Range : 5-1000 pf.
7. $500 \mathrm{pf}, 100 \mathrm{~V}$ micro-miniature FEED-THRU. $0.16^{\prime \prime}$ diameter $0.165^{\prime \prime}$ high. Range: 500-800 pf, 100 and 250 V . Available with leads.
8. $1.5-5.0 \mathrm{pf}, 130 \mathrm{~V}$ MICROMINIATURE TRIMMER for micromodule application. Other styles available, ranges up to 20 pf.
9. $1.5-7.0 \mathrm{pf}, 500 \mathrm{~V}$ dual ROTARY TRIMMER. 6 styles of rotary trimmers with ranges up to 400 pf are available.
10. 5 pf, $500 \vee$ FEED-THRU meets MIL-C-11015 Withstands severe mechanical requirements. Range 5-1000 pi.
11. $1000 \mathrm{pf}, \pm 5 \%, 125 \vee$ POLYSTYRENE FOIL capacitor with higher Q. longer life and greater freedom from drift at half the cost of micas. Ranges $20-600,000 \mathrm{pf}, \pm .625$ to $20 \%, 63$ to 750 V .
Centralab.

No matter how unusual your design requirements, there is an excellent chance a standard Centralab type-or an engineered modification-will meet your needs. Centralab offers the industry's most extensive line of ceramic capacitors-almost twice as many types as any other manufacturer. The units shown here are just a few examples of the special-yet standard-Certralab capacitors. For detailed information write for Centralab Capacitor Cataiogs.

D-6332
THE ELECTRONICS DIYISION OF GLOBE.UNION INC
9381 E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: Centralab Canada Lid.. Box 400, Ajax, Ontario

MATHEMATICAL MODELS

(Continued from paye 55)
These methods are of primary importance in Lat place transform manipulations.

Determinants, Matrices

An important class of problems regnires the solution of sets of linear equations with several "unknowns." A simple example from circuit theory is shown in Fig. 9. Here the idea is to learn how many amperes are drawn by the circuit from each hattery.

Fig. 9: Simple circuit problem with the mathematical model.
The mathematical model consists of the two (mesh) equations to solve for i_{1} and $i .$. The solution is readily obtained by the determinant method. Thus:

$$
\left.\begin{aligned}
& i_{1}=\left|\begin{array}{rr}
1 & -3 \\
6 & 4 \\
5 & -3 \\
-3 & 4 \\
5 & 1 \\
-3 & 6 \\
-5 & -3 \\
-3 & 4 \\
i_{2}=
\end{array}\right|=\frac{4+18}{20-9}=\frac{22}{11}=2 \text { amps } \\
& 20-30 \\
& 5 i_{1}-3 i_{2}
\end{aligned} \right\rvert\,=\frac{33}{11}=3 \text { amps } \quad(61)
$$

While the above demonstrated technique is straightforward, it would take many words and diagrans to explain the general procedures in the general case of n linear equations in n mannowns. We adopt the procedure here of deferring such an explanation till after we have presented some of the concepts of Matrix Algcbra. Solution of a set of linear equations is equivalent to "inverting a matrix."

In addition to providing a vehicle for concise unequivocal description of methods of solving linear systems of equations, matrices provide a convenient conceptual shorthand for describing mathematical models involving many variables. Besides being useful in circuit analysis, matrix algebra has important applications in physics (e.g. coordinate transformations) and statistics (as in description of the general multivariate Gaussian distribution).

Matrix definitions: We start out with some detinitions and notations. These notations differ considerably, depending on which book you look in: the ones used here are due to the late Dr. Harold Pender, at one time Dean of the Moore School of Electrical Engincering of the University of Pennsylvania.
a. A matrix is a rectangular array of scalar quantities, usually numbers or letters representing numbers. Thus a matrix A would be given by:

$$
\mathbf{A}=\begin{array}{|c|c|c|c|}
A_{11} & A_{12} & A_{13} & A_{14} \tag{72}\\
\hline A_{21} & A_{22} & A_{23} & A_{24} \\
\hline A_{31} & A_{32} & A_{33} & A_{34} \\
\hline
\end{array}
$$

Note the use of the bold \mathbf{A} for the complete array. the regular $A_{m n}$ for the "element" in the m-th row and n-th column (Note-when writing longhand use A, underlined, to represent A bold). While the above is a $3 x+$ matrix the size can be specified arbitrarily $r \times c$ as required.
1). Equality of matrices:
$\mathbf{A}=\mathrm{B}$ if ancl only if $r_{A}=r_{l ;} ; c_{a}=c_{r} ;$ and all $A_{m n}=B_{m n}$
i.e. all corresponding elements equal.
c. The transpose of a matrix \mathbf{A} is that matrix \mathbf{A}, formed by interchanging the rows and columns of \mathbf{A}. Symbolically:
$\mathbf{B}=\mathbf{A}_{t}$ if and only if $B_{m n}=A_{m n}$ for all m and n.
d. Addition of matrices: add all corresponding elements. Symbolically, if $r_{A}=r_{r}, c_{A}=c_{B}$, then:
$\mathrm{D}=\mathrm{A}+\mathrm{B}$ if and only if $I_{m n}=A_{m n}+B_{m n}$ for all n and n.
e. Multiplication by scalar: multiply all elements by the scalar. Symbolically:
$\mathbf{B}=k \mathbf{A}$ if and only if $B_{m n}=k \cdot 1_{n m}$ for all m and n.
f. Multiplication of matrices: The procluct of any two matrices A and B for which
is written $\quad c_{A}=r_{B}$
$D=A B$
where, by definition

$$
\begin{equation*}
D_{m n}=\sum_{i=1}^{r_{A}} A_{m i} B_{i n} \tag{75}
\end{equation*}
$$

i.e. multiply m-th row elements of \mathbf{A} by corresponding n-th column elements of B and add resulting products to get $D_{m n}$. Note that in (74) it is important to distinguish the prefactor \mathbf{A} from the postfactor B since the multiplication process defined by (75) is not commutative; i.e., in general $A B \neq B A$. g. "row matrix": only one row: $r=1$.
h. "column matrix": only one column.
i. null matrix: 0: all elements zero.

CLAMP AROUND THE LEAD:

and measure dc current 0.1 ma to 10 amps , without breaking circuit leads, without loading the circuit.

Pull back the probe flange, the probe opens. Aim it at a lead and let loose. The probe closes. Now you can measure dc current, on a bare or insulated wire ... and you can read it directly, even in the presence of equally strong ac on the same wire, without breaking a lead and without loading the circuit.
The hp 428B Clip-on DC Ammeter reads dc current directly in 9 ranges by sensing the magnetic flux induced by the dc current. To measure the sum or difference of currents flowing through two separate wires, you simply clamp the probe around them both . . . and read. The standard 428 B has a range of 0.1 ma to 10 amps and lets you read dc currents on wires up to $\$ 2_{2}^{\prime \prime}$ in diameter. A recorder, oscilloscope output is provided on the 428B.

The hp 3528A Current Probe ($\$ 450$ with degausser) lets you measure dc current in conductors up to $2 \frac{1}{2} 2^{\prime \prime}$ in their maximum dimensions ... even pipes, multiconductor cables, lead-sheathed cables, microwave waveguide.

The hp 3529A Magnetometer Probe (\$75) is useful in applications ranging from acoustical transducer design to study of the Zeeman effect; it measures the direction or magnitude of any magnetic field with 1 milligauss sensitivity.
Look at the 428B specs, then call your hp field engineer or write direct for a single data sheet which describes all its capabilities.

428B SPECIFICATIONS

Current Range: 1 ma to 10 a full scale in 9 ranges Accuracy: $\pm 3 \%, \pm 0.1 \mathrm{ma}$
Probe Inductance: $<0.5 \mu \mathrm{~h}$ introduced into measured circuit
Probe Induced-Voltage: $<15 \mathrm{mv}$ peak into measured circuit
AC Rejection: ac with peak value less than full scale affects meter accuracy less than 2% at trequencies above 5 cps and diferent from carrier (40 kc) and its harmonics; (on 10 range, ac is limited to 4 a peak)
Recorder/Oscillo-
scope output: app. 1.4 V across 1400 ohms full scale; frequency response
Probe Insulation: $300 \vee$ maximum
Price: $\mathrm{hp} 428 \mathrm{~B}, \$ 600$ (cabinet); hp 4288R, $\$ 605$ (rack mount) (428 A also available; same as 428 B except range: 3 ma to 1 ampere full scale; no recorder output, $\$ 500$) Data subject to change without notice. Prices f.o.b. factory.

HEWLETT PACKARD COMPANY

1501 Page Mill Rd., Palo Alto, Calif., (415) 326-7000. Sales and service representatives in principal areas. Europe, Hewlett-Packard S.A., 54 Route des Acacias, Geneva, Switzerland; Canada, Hewlett-Packard (Canada) Ltd., 8270 Mayrand St., Montreal, Que.

MATHEMATICAL MODELS

(Continued from page 57)

j. square matrix: same number rows and columns: $r=c=$ "order" of square matrix.
k. unit matrix: square matrix with all l's in the principal diagonal ; zeroes elsewhere, e.g.
$r=r=2:$
$r=r=3:$

$$
1=\begin{array}{|c|cc}
1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{array}
$$

For any suitable \mathbf{A}, \mathbf{B} (not necessarily square)

$$
\mathbf{1 A}=\mathbf{A} ; \quad \mathbf{B} 1=\mathbf{B}
$$

1. Determinant of Square matrix: $A_{H} \equiv$ determinant of matrix A. $A \#$ is a scalar number. Rules for calculating $A \#$ from the scuare matrix A are well known for order $=1,2$ or 3 :

$$
\begin{aligned}
& \text { order }=1: A=A_{11} \\
& \text { order }=2: A=A_{11} A_{22}-A_{12} A_{21} \\
& \text { order }=3: A=\text { sum of sis terms }(+ \text { and }- \\
& \text { order } Q: \quad A=\text { (} Q \text { (}) \\
& \text { on of } Q!\text { terms }(+ \text { and }-)
\end{aligned}
$$

An important relationship that can be proved consistent with the definition of the matrix product is that if A and B are of the same order andi square, the determinant of the product is the product of the determinants. Thus:

$$
\begin{equation*}
(\mathbf{A B})=(\mathbf{B} \mathbf{A})=A \tag{N2}
\end{equation*}
$$

m. Acljoint matrix: A^{*} is defined as the adjoint of square matrix A by:
$A^{*}{ }_{m n}$ is the cofactor of $A_{m n}$, i.e. $(-1)^{n+n}$ times the ($8: 3$) determinant of the square array formed by deleting the m-th row and n-th column of A.

A convenient way of computing a determinant as a linear combination of lower order determinants is one of the cofactor expansions:

$$
\begin{aligned}
\mathbf{A}_{\|} & =\sum_{m=1}^{r} A^{*}{ }_{m n} A_{m n}, \text { any value of } n \\
& =\sum_{n=1}^{r} A^{*}{ }_{m n} A_{m n}, \text { any value of } m
\end{aligned}
$$

(84a)
(84h)
n. The inverse of a square matrix \mathbf{A}, is that matrix \mathbf{A}^{-1} which when multiplied by A gives the unit matrix. i.e.:

$$
\begin{equation*}
\mathbf{A}^{-1} \mathbf{A}=1 ; \mathbf{A} \mathbf{A}^{-1}=\mathbf{1} \tag{85}
\end{equation*}
$$

The value of the inverse is given by:

$$
\begin{equation*}
\mathbf{A}^{-1}=\frac{1}{A} \mathbf{A}^{*}: \text { or } A^{-1}{ }_{m n}=\frac{1}{A} A_{n m}^{*} \tag{86}
\end{equation*}
$$

Note that if the matrix determinant is zero (86) blows up and we must conclude that there is no inverse to the matrix. in which case it is said to be a singular matrix.

Matrix Equations: \backslash set of n lincar (scalar) equations in n unknowns can be writtell as a single matrix equation and the solution can be obtained by using the inverse matrix.

First, referring to item b above we recognize that a single matrix equality is equivalent to $r c$ scalar equalities, one for each set of corresponding matrix elements. With this in mind consider the matrix equation:

$$
\begin{equation*}
\mathbf{A} \mathbf{y}=\mathbf{x} \tag{7}
\end{equation*}
$$

Where A is a spuare matris. order r; and y and x are column matrices-one column and r rows. For the case $r=3$ this can be written :

Multiplying (see Eq. 75 above) and equating like elements we get the following set of equations:

$$
\begin{array}{ll}
A_{11}!_{1}+A_{12}!/ 2+A_{13}!/ 3=x_{1} & \left.(8!)_{1}\right) \\
A_{21}!_{1}+A_{22} y_{2}+A_{23}!_{3}=x_{2} & (8!!) \\
A_{31}!_{1}+A_{32}!_{2}+A_{33} y_{3}=x_{3} & (8!(\cdot)
\end{array}
$$

The extension to higher orders is evident ; also the converse process of converting an arhitrary set of linear equations to a matrix equation is apparent. Once we hawe the matrix Eq. 88 or 87 we can solve by "matrix algebra"; thus pre-multiplying both sides of (87) by the inverse A^{-1}. using (85) and (77). we get :

$$
\begin{aligned}
\mathbf{A}^{-1} \mathbf{A} \mathbf{y} & =\mathbf{A}^{-1} \mathbf{x} \\
\mathbf{1} \mathbf{y} & =\mathbf{A}^{-1} \mathbf{x} \\
\mathbf{y} & =\mathbf{A}^{-1} \mathbf{x}
\end{aligned}
$$

Computationally. to obtain the "solution" represellted by (90 c), we need only compute the inverse matrix as defined in (86). Needless to say, this solution must be equivalent to the solution-by-determinants mentioned at the beginning of Determinants. Matrices.

Applying this procedure to the problem given by Fig. 9. we have the matrix equation:

$$
\begin{align*}
& \mathbf{z i}=\mathbf{v} \tag{01}\\
& \text { where } \mathbf{v}=\overline{\frac{v_{1}}{v_{2}}}=\sqrt{\frac{1}{\mathbf{6}}}: \quad \mathbf{i}=\overline{i_{1}}, \\
& z=\begin{array}{|r|r|}
\hline 5 & -3 \\
\hline-3 & 4 \\
\hline
\end{array} \tag{92}
\end{align*}
$$

Proceeding as indicated:

$$
\begin{array}{r}
z=20-9=11 \\
\left.z_{1}^{*}=\left|\frac{4}{3}\right| \frac{3}{5} \right\rvert\, \tag{94}
\end{array}
$$

Assembly
(less than 30 seconds)

Performance
(up to 10Gc.)

Cost
(save up to \$1.20)

These are FXR's revolutionary new Amphenol/ipc "quick-crimp" BNC coaxial connectors.

Assembly: Simplicity itself. No hypercritical tolerances, no tiny washers or inserts. Just three pieces that even a butterfingers can assemble in 15 to 30 seconds. And of course no braid comb-out or anything like that.

Cost: Less, much less. ($\$ 0.60$ each in quantities of 250.) That's 60 cents to $\$ 1.20$ less than other crimp-type connectors. And it's seven cents less than its UG $260 \mathrm{~B} / \mathrm{U}$ counterpart. Plus the much-reduced assembly labor costs of quick-crimps over UGs.

Performance: Positive electrical and mechanical uniformity. Increased cable retention. 500 volts rating. VSWR is uniformly excellent to 10 Gc . Connectors are impedance matched to all 50 ohm RG cables normally associated with the BNC Series, but may also be used with 75 and 95 ohm RG cables when VSWR is not critical.

Test them yourself. Order a few (or a lot-we're in mass-production now) from FXR or your local Amphenol-Borg distributor. FXR, 33 East Franklin St., Danbury, Conn.

TM THE RF PRODUCTS AND MICROWAVE DIVISION OF AMPHENOL-BORG ELECTRONICS CORPORATION

MATHEMATICAL MODELS

(Continued from page 59)

$$
\begin{gather*}
z^{-1}=\frac{z_{t}^{*}}{z_{i}} \begin{array}{|c|c|}
\hline 4 / 11 & 3 / 11 \\
\hline 3 / 11 & 5 / 11 \\
\hline \frac{i_{1}}{i_{2}} & =\mathbf{i}=\mathbf{z}^{-1} \mathbf{v}=\begin{array}{|c}
\frac{4}{11} r_{1}+\frac{3}{11} v_{2} \\
\hline \frac{3}{11} v_{1}+\frac{5}{11}-v_{2} \\
\hline
\end{array}
\end{array} \frac{1}{} \tag{95}
\end{gather*}
$$

$$
=\left|\frac{\frac{4+18}{11}}{\frac{3+30}{11}}\right|=\frac{2}{3}
$$

Which of course agrees with Eqs. 70 and 71.
The beatuty of the matrix method becomes apparent when several sets of transformations are involved. An important relation here is the fact that the inverse of a product of square matrices is the reverseorder product of the inverses of the individual factors:

$$
\begin{equation*}
(\mathbf{A} \mathbf{B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \tag{97}
\end{equation*}
$$

This makes for straightforward solution of problem, such as repeated coordinate transformations in missile trajectory calculations, and circuit solutions for "element currents" in terms of "mesh currents" or "node voltages."

Differential Calculus

The derivative of a function $y=f(x)$ is defined as the rate of change of the function y with respect to changes in x. This is illustrated in Fig. 10. We write:

$$
\begin{align*}
& \frac{d y}{d x} \equiv f^{\prime}(x) \equiv \begin{array}{l}
\lim \prime \prime \frac{\Delta y}{\Delta x \rightarrow 0} \frac{y}{\Delta} \\
=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
\end{array} . \frac{}{\Delta x}
\end{align*}
$$

[Note: the notation " $\lim ()$ " is read "the limit of () as delta - x approaches zero."']
"Differentiation" is the process of oltaining the derivative of a function; "there are well estal)lished rules for differentiating a variety of algebraic, trigonometric, and other expressions; these are welltabulated in elementary calculus texts and handloooks. For example; if $f(x)=g(x) / h(x)$, we have:

$$
\begin{equation*}
f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-g(x) h^{\prime}(x)}{[h(x)]^{2}} \tag{09}
\end{equation*}
$$

Repeated differentiation is often used, such as:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}} \equiv f^{\prime \prime}(x) \equiv \frac{d}{d x} f^{\prime}(x) \tag{100}
\end{equation*}
$$

Fig. 10: Derivative of a function is shown graphically.

Similarly $\frac{d^{3} y}{d x^{3}}$, etc., give "higher" order derivatives.
Λ direct application of differentiation is the calculation of the instantaneous voltage drop across an inductor, given by:

$$
\begin{equation*}
v(t)=L \frac{d i(t)}{d t} \tag{101}
\end{equation*}
$$

where L is the inductance, or the displacement current in a capacitor :

$$
\begin{equation*}
i(t)=C \frac{d v(t)}{d t} \tag{102}
\end{equation*}
$$

where C is the capacitance.
Another use of differentiation is the determination of maxima and minima. Thus, in Fig. 10, $f(x)$ has a maximum at $x=x_{1}$ and a minimum at $x=x_{2}$. The following general rule can be stated:

$$
\begin{align*}
& f(x) \text { is maximum if } f^{\prime}(x)=0 \text { and } f^{\prime \prime}(x)<0 \tag{103}\\
& f(x) \text { is minimum if } f^{\prime}(x)=0 \text { and } f^{\prime \prime}(x)>0 \tag{104}
\end{align*}
$$

Fig. 11: Matching for maximum power transfer is illustrated.

An example of this application is shown in Fig. 11. For the power in the load to be maximum, we must have (using Eq. 99 as well as elementary differentiating rules) :
$O=\frac{d P_{L}}{d R_{L}}=E_{\rho}{ }^{2} \frac{\left(R_{G}+R_{L}\right)^{2}-R_{L} \cdot 2\left(R_{G}+R_{L}\right)}{\left(R_{G}+R_{L}\right)^{4}}$
(105)

Taking out common factors, we get:

$$
\begin{equation*}
R_{G}+R_{L}-2 R_{L}=0 \cdots R_{L}=k_{G} \tag{100}
\end{equation*}
$$

Going On Here?

This is a cam and follower - moving at 3000 rpm . They're noisy and you suspect that the follower is floating off the cam at this rather high speed.

There's a Quick and Easy Way to Find Out. . .

The Strobotac and its two new accessories make it possible to see and oxamine this operation in detail - even while the mechanism runs at full speed. It can be "stopped" at any point of interest in its cycle, as above - or made to reveal its troubles in apparent slow motion.

A Photoelectric Pickoff permits perfect synchronization of the Strobotac to any given point in the cycle - even though the speed is not constant. By "holding", the synchronizing pulse produced by the Pickoff in a Time-Delay Unit, you can make the Strobotac flash later and so stop the motion at a different point in the cycle.

With the Strobotac, the Photoelectric Pickoff, and the continuously adjustable

Time-Delay, you can easily observe or photograph any point in the cycle.

To photograph the moving part, you simply flick a switch on the Time-Delay to single-flash operation. In this mode, opening the camera shutter (any camera with X contacts) causes the Strobotac to produce a $3 \mu \mathrm{sec}$-duration flash at the precise point of the cycle you have selected. The camera shutter, open for a much longer time, records the detail revealed by the flash - and the photo you need is yours.

Type 1531-A Strobotac $\$ 275$
New Type 1536-A Photoelectric Pickoff S65
New Type 1531-P2 Flash Delay Unit \$160

The Cam and Follower sequence was photo graphed at 122 on Polaroid 57 film (ASA 3000)

Write for New Strobotac Bulletin

MATHEMATICAL MODELS

(Continued from page 61)
It is readily shown that this "matched" value of R_{L} makes P_{L} maximum, not minimum. The resultant maximum available power from the generator is then given by:

$$
\begin{equation*}
P_{L \max }=\frac{E g^{2}}{2 R_{G}} \tag{107}
\end{equation*}
$$

Integral Calculus

"Indefinite integration" is the inverse of differentiation. Thus, if $f(x)$ is the derivative of $g(x)$, then $g(x)$ plus an arbitrary constant is the "indefinite integral" of $f(x)$. Thus, symbolically;
$f(x)=\frac{d}{d x} g(x) \longleftrightarrow \longrightarrow g(x)+c=\int f(x) d x$
Rules and tables are available in any elementary calculus book for calculating the indefinite integral of a wide variety of algebraic, trigonometric and other functions of a variable such as " x ".

Practical applications are concerned in most cases with "definite integrals." Fig. 12 shows the definition of a definite integral as the "net area" under the given function between the two limits. Here the stated expression is read: "integral of function $f(x)$ from $x=x_{1}$ to $x=x_{2}{ }^{\prime \prime}$. In cases where $f(x)$ has an indefinite integral $g(x)+c$, the definite integral has the value:

$$
\begin{equation*}
\int_{x=x_{1}}^{x_{2}} f(x) d x=g\left(x_{2}\right)-g\left(x_{1}\right) \tag{109}
\end{equation*}
$$

As an example, for $f(x)=1-6 x+3 x^{2}$, the indefinite integral is $x-3 x^{2}+x^{3}$; the definite integral from to 1 to 2 can be written:

$$
\begin{array}{r}
\int_{1}^{2}\left(1-6 x+3 x^{2}\right) d x=x-3 x^{2}+x^{3} /_{1}^{2} \\
=(2-12+8)-(1-3+1) \\
 \tag{110}\\
=-2+1=-1
\end{array}
$$

In many cases the indefinite integral is not avail-able-here approximate solutions may be used (such as replacing the integral by an approximate sum) or in certain special cases techniques of ligher mathematics, such as complex variable theory, may lead to an approximate or even exact solution in closed or series form.

A ready extension of the simple "integral" concept presented here is the multiple integral, such as:

$$
\begin{equation*}
\int_{x=x_{1}}^{x^{2}} \int_{y=y_{1}}^{y_{8}} f(x . y) d x d y \tag{111}
\end{equation*}
$$

Fig. 12: Plot illustrates definite integral-f(x).
representing the volume under the surface $z=$ $f(x, y)$ in 3-dimensional space, bounded by vertical planes at $x=x_{1}, x_{2} ; y=y_{1}, y_{2}$. Extensions to irregularly bounded volumes and to spaces of more than three dimensions are straightforward and sometimes extremely useful.

An important concept in dealing with definite integrals is the recognition that the argument of the function being integrated has the status of a "dummy variable." A definite integral is strictly a function of its limits, not of its dummy variable. Thus, the charge on a capacitor is related to the displacement current as follows:

$$
\begin{equation*}
q(l)=q(0)+\int_{0}^{t} i(\tau) d \tau \tag{112}
\end{equation*}
$$

Thus while $i(t)$ is the current at time t; the charge at time t requires integration to be performed with respect to the "dummy variable" τ varying from 0 to t. Of course, differentiating (112) with respect to t gives the usual :

$$
\begin{align*}
i(t) & =\frac{d}{d t} q(t) \tag{113}\\
\int_{x=x_{1}}^{x_{2}} f(x) d x & =(\text { Area } A)-(\text { Area } B)
\end{align*}
$$

Differential Equations

A differential equation represents a generalization of the algebraic equation in which the "unknowns" are not simply numbers but functions of one or more independent variables. Further, not only the unknown function or functions appear explicitly in the differential equation, but also the first and possibly higher order derivatives with respect to the independent variable or variables, as the case may be. The present discussion will present the major classifications of types of differential equations showing where they are useful in setting up mathematical models for engineering problems.

ROTOR and STATOR LAMINATIONS

FROM THESE SIZES DOWN TO A DIME

Arnold's Pacific Division produces motor laminations to meet a wide range of requirements. Materials include a broad selection of silicon steel and nickel-iron alloys to achieve the characteristics desired. Sizes range from the tiniest thingauge laminations to diameters of $20^{\prime \prime}$ and more.

Special note: Many rotary shapes for motors and generators must be produced in somewhat limited quantities often so low that the cost of a multi-station die would be prohibitive. Arnold has available notching presses for producing rotor
and stator laminations to meet these limited order requirements at low-cost tooling.

To help you further minimize tooling costs and improve delivery time on such parts, a number of ring dies owned by Arnold are available for use where applicable. Our engineers will help you work out special designs by this method.

- Other Arnoid Pacific Division products include a complete line of transformer laminations, cans and mounting hardware, and magnetic shields. Let us work with you.

MATHEMATICAL MODELS

(Continued from page oj)
Ordinary vs. partial differential equations: Ordinary differential equations are those where there is only one independent variable. The monowns are functions of this variable, all derivatives in the equations are with respect to this variable.

In most applications, the independent variable is time; the unknowns are the bariations of physical quantities with time. Outstanding examples are circuit theory: monnowns are currents and/or voltage drops; also mechanics of rigid bodies: unknowns are positions, angles, speeds, etc.

Partial differential equations are those with more than one independent variables. Here the independent variables are usually position coordinates (x, y and z) and also time in some cases. Practically all problems in Electromagnetic Field Theory are solved by starting with a set of partial differential equations known as Maxwell's Equations. Additional examples of disciplines having basic mathematical models consisting of sets of partial differential equations are thermodynamics, fluid and gas dynamics, and the modern magnetohydrodynamics.

To facilitate setting up and solving partial-differ-ential-equation mathematical models, formalisms of zector calculus have been developed as well as the technicutues of tensor analysis for some of the more difficult problems in modern physics. To understand these techniques much careful study must be devoted to understanding the details of the symbology. Fur this reason we shall be satisfied with having monlioned the field of partial differential equations and concentrate on the ordinary variety. In many cases the techniques for solving the partial differential equations are simply techniques for reduction to an equivalent set of ordinary differential equations.
Linear differential equations: The general furmat of this type of equation is a follows:

$$
a_{2}(t) f^{\prime \prime}(t)+a_{1}(t) f^{\prime}(t)+a_{0}(t) f(t)=g(t)
$$

This is a second order linear differential equation. $a_{0}(t), a_{1}(t), a_{2}(t)$ and $g(t)$ are knozen functions of the independent variable $t ; f(t)$ is the unknown tunction. "Solution" consists in obtaining $f(t)$ to satisfy (114) over a specified range of t values. Extension to higher order simply consists in adding terms with corresponding higher order derivatives of $f(t)$. Distinction from non-linear differential equations lies in the fact that the coefficients a_{0}, a_{1}, and a_{2} are known functions of t rather than functions of the unknown $f(t)$ or its derivatives.

An important consequence of the form of (114) is the fact that "superposition" with respect to the "driving furce" $y(t)$ is satisfied. Thus, if $f_{1}(t)$ is a solution when $g(t)=g_{1}(t)$ and $f_{2}(t)$ is a solution when $g(t)=g_{2}(t)$, then $f_{1}(t)+f_{2}(t)$ will be a solution when $g(t)=g_{1}(t)+g_{2}(t)$.

Another consequence is the fact that the general solution to a linear differential equation will be of the form:

$$
\begin{equation*}
f(t)=j_{i}(t)+\sum_{n=1}^{r} r_{n} f_{c n}(t) \tag{115}
\end{equation*}
$$

Here $f_{p}(t)$ is called a "particular solution" being any function which satisfies the equation with the given $g(t)$; the sum is clesignated ats the "complementary function" being the most general form of the solution to the "homogeneous equation," i.e., that in which $g(t)=0$. Here r is equal to the order of the differential equation ($r=2$ for Eq. 114) ; the functions $f_{c n}(t)$ are the set of r linearly independent (i.e., no one of the set can be expressed for all pertinent t as a linear combination of the rest) solutions to the homogeneous equation: the in are arbitrary numerical constants.

Thus, the use of lincar differential equations as mathematical models of engineering situations requires not only the equation but a set of boundary conditions from which the r arbitrary constant values can be found. These can be introduced as specification of $f(t)$ and/or one or more of its derivatives at fixed value or values of time. Is an example, consider:

$$
f^{\prime \prime}(l)+3 j^{\prime}(1)+2 j(1)=1
$$

(116)

The general solution is given by :

$$
\begin{equation*}
f(t)=2+c_{1} r^{-t}+c_{2} t^{-2 t} \tag{117}
\end{equation*}
$$

A possible set of boundary conditions is: $f(o)=$ $f^{\prime}(0)=0$. These give rise to :

$$
\begin{align*}
& c_{1}+c_{2}=-2 \tag{118:a}\\
& c_{1}+2 c_{2}=2 \tag{118b}
\end{align*}
$$

Solving (118) for c_{1} and c_{2} gives:

$$
\begin{equation*}
c_{1}=-6 ; c_{2}=4 \tag{119}
\end{equation*}
$$

so that the final solution is:

$$
\begin{equation*}
f(1)=2-0 e^{-t}+4 e^{-w t} \tag{120}
\end{equation*}
$$

The rader can prove by substitution that (120) sattisfies (110 with the stated houndary conditions at $t=0$.
General applications: Much of circuit and system theory developed over the last few decaldes has been concerned with solution methods for sets of linear differcntial equations with constant coefficients. "Constant coefficients" refers to the case exemplified by Eq. 116 or more generally (114) with a_{0}, a_{1} and a_{2} not varying with time. "Sets of" equations refers to situations in which there are several rather than only

WHERE ENVIRONMENTAL CONDITIONS ARE AT THEIR WORST, PYLE-STAR-LINE ${ }^{\oplus}$ CONNECTORS ARE AT THEIR BEST. Rugged, Neptune Series (ZZM) heavy-duty connectors are designed to withstand the most severe operating conditions ... to resist shock, vibration, and pressure. These compact, lightweight connectors perform with outstanding reliability under environmental extremes of temperature, humidity, moisture, dust, oil, and corrosive atmospheres.

An extensive variety of contact configurations is offered in MOD I, captive contact, inserts; and MOD II, push-in crimp-type removable contact, inserts.

Now also being offered is MOD III inserts with collet retained, rear entry and release contacts, in sizes No. 18 to No. 4/0.

A wide choice of cable and installation accessories enable these versatile connectors to be easily adaptable for ground support equipment, electronic packaging and cabling, electrical control, power, and communications. Hardware having RFI shielding capabilities is also available.
Design features include: reversible inserts for plug or receptacle shells, positive selfsealing insert construction, closed-entry rigid socket insulators, and closed-entry socket contacts. Power inserts have circuitbreaking capabilities, and are U.L. listed.

Years of field-performance have proven Pyle-Star-Line reliability to provide electrical and mechanical capabilities for the roughest and toughest assignments. Write today for complete technical data, and information on our engineering service.

CONNECTOR DIVISION, THE PYLE-NATIONAL COMPANY, 1334 NORTH KOSTNER AVENUE, CHICAGO 51, ILLINOIS

Pyle|l|lional

MATHEMATICAL MODELS

(Continued from page 65)

one unknown functions of time: e.g., the voltages and currents at different parts of a network. Matrix methods are frequently used as "bookkeeping" aidsto keep straight the different variables and coefficients.

We close this section by a discussion of non-linear differential equations. Most plysical systems require sets of non-linear differential equations for a complete description of their behavior. However, the analysis tools for handling such complete mathematical models are rather meager. As a result much analytical effort has been directed toward solving problems where the unknowns are known to vary over restricted ranges over which linearity is a valid assumption. Thus the theory of "small-signal" behavior of vacuum tube and transistor amplifiers. In many cases such restricted analyses prove sufficient for practical needs. In cases where it is necessary to go beyond the linear regions it is usual to proceed experimentally, either by building a physical model of the device or by simulating it on an analog or digital computer.

Linear, Time Invariant Systems

We deal here with communication, control, and power systems having mathematical models equivalent to sets of linear differential equations with constant coefficients. The main problems which arise are the pre-determination or "analysis" of "outputs" resulting from given "inputs," knowing what is in the system. (Of course, such techniques must also be understood to solve the design problem of synthesizing a system to have a desired response.) The main solution techniques in use these days are of the following three categories:
a. Steady-state sinusoidal solutions.
b. Solutions via superposition.
c. Operational, Laplace-Transform methods.

Our attempt here will be to point out the main features of each solution method and indicate what kind of problems it is suited for. Of course, in many actual problems, a number of methods may be useful or even a combination of methods.
Steady-state sinusoidal eqs.: These, of course, arise continually in electric power and communication problems. Consider a typical differential equation:

$$
\begin{equation*}
a_{2} v^{\prime \prime}(t)+a_{1} v^{\prime}(t)+a_{0} v(t)=c(t) . \tag{121}
\end{equation*}
$$

Desired is the response to a sinusoidal applied voltage: $e(t)=$ applied voltage, $v(t)=$ desired re-
sponse, constants a_{2}, a_{1}, a_{0} depend on network element values. We have applied:

$$
\begin{equation*}
e(t)=E_{0} \cos (2 \pi f t+\theta) \tag{122}
\end{equation*}
$$

The technique is to solve by phasors. In equation replace $\varepsilon(t), v(t)$, by $E c^{\text {j } \omega t}$ and $V e^{\text {jut }}$ where $\omega=$ $2 \pi f$ and E, I are complex phasors, simplifying these results

$$
\begin{equation*}
\left|a_{2}(j \omega)^{2}+a_{1} j \omega+a_{0}\right| \Gamma=E \tag{12:3}
\end{equation*}
$$

Solving (123) for V, letting $E=E_{o}{ }_{o}{ }^{j \theta}$, the desired solution for $v(t)$ is then:

$$
\begin{equation*}
v(t)=\operatorname{Re}\left\{V e^{i} \omega^{t}\right\} \tag{124}
\end{equation*}
$$

Note that (123) differs from (121) in two respects: first, the independent variable is ω rather than t; then, it is an algebraic rather than a differential equa-

Fig. 13: Generalized time-invariant linear system.

tion. This latter property enables steady-state ac circuits to be solved by the same basic operations as dc circuits. Thus the "impedance concept":

$$
\begin{align*}
& \text { for a resistor: } Z=R \tag{125a}\\
& \text { for an inductor: } Z=j \omega L \tag{125b}\\
& \text { for a capacitor: } Z=1 / j \omega C
\end{align*}
$$

(125c)
From here on Kirchhoff's laws give a set of linear algebraic equations which result in the desired steadystate solutions.

Superposition methods: If a driving force to a linear system can be expressed as a suitable sum of "simple" driving forces, then the response to the given driving force will be representable as the sum of the responses to the simple driving forces. The trick is to choose the "simple" driving forces so that the mechanics of solution need be gone through only once. Two such simple types of driving forces are:
a. exponential sinusoid $e^{j \omega t}$
b. unit impulse

First let us examine the exponential sinusoid method. (Refer to general system block diagram of Fig. 13.) A wide class of input functions $x(t)$ can be represented by :

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} X(j \omega) e^{i} \omega^{t} d \omega \tag{126}
\end{equation*}
$$

This integral can be thought of as the infinite sum of a number of sinusoids $e^{j \omega t}$. Applying superposition, the general response will be:

In our photocell, too-the Blue Dot says it works

Sylvania photocells and flashbulbs have one obvious thing in common: Blue Dot insurance against a common enemy, moisture.

Reliable protection for the cadmium sulfide in Sylvania photocells comes from hermetic sealing in a one-piece, glass enclosure. For extra safety, the moisture-sensitive Blue Dot is put there. If the hermetic seal is ever
broken and moisture enters from any cause whatsoever, the Blue Dot turns pink. As little as . 22% water vapor triggers this warning, enabling you to spot the defective cell, in most cases, days or weeks before it actually becomes inoperative.

If you're in the market for photoconductors, consider the Sylvania T. 4 line. Rated at 400 volts and featuring

300 mW dissipation, the selection ranges from 750 ohms to 16,000 widest in the industry. One of them is probably right for your streetlighting, furnace alarm, remote control or other application.

See your Sylvania sales engineer or write to Electronic Tube Division, Sylvania Electric Products Inc., Box 87, Buffalo, New York.

(Continued from page 67)

$$
\begin{equation*}
\|(t)=\frac{1}{2 \pi} \int_{\frac{\infty}{\infty}}^{\infty} X(j \omega) / I(j \omega),^{j} \omega^{t} d \omega \tag{127}
\end{equation*}
$$

Where $H(j(0)$ is the steady state response innction of steady-state sinusoidal eq. above based on a system input $e^{j \omega t}$. The integral of (127) gives the desired solution; however we need a method of calculating $r(j \omega)$ to satisfy (126) for the given.$r(t)$. It is reatlily shown that $X(j(\omega)$ is the Pourier Inte(tral of .rtt). given by:

$$
\begin{equation*}
N(j \omega)=\int_{-\infty}^{\infty} x(1) e^{-j} \omega^{\prime} d l \tag{128}
\end{equation*}
$$

Obviously (127) represents an Inverse Fourier Tran:formation. In many practical cases direct and inverse Fourier transformations can be looked up in a transform table.

Use of Fourier series representations of periodic waveforms can be considered a special case of this overall technique.

The Fourier Integral technique is ustally best suited to problems where the input $x(t)$ is of effectively finite duration, so that the integral (128) has a finite value for all real ω. Such problems arise continually in radar system studies and frequently in radio communications.

The second method is based on the unit impulse function. Rather than give its rigorous mathematical definition we give a simple graphical representation in Fig. 14. In words, $\bar{\delta}(t-\tau)$ is "a unit impulse occurring at $t=\tau^{\prime \prime}$, or "a function having unit arca all confined at the point $t=\tau^{\prime \prime}$.

For a time invariant network we can define: a function $h(t)$ as the response of the system to a unit impulse applied at $t=0$; then the response to $\delta(t-\tau)$ will simply be the time-displaced replica of $h(t)$, namely $h(t-\tau)$.

The final tool required in this method is the decomposition of an arbitrary driving force into an infinite sum of time-displaced impulse functions as shown in Fig. 15. Thus, applying the superposition principle, the response to the arbitrary $x(t)$ is given by:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{129}
\end{equation*}
$$

This is the well-known "convolution integral" in which : is the "dummy variable." It can also be

Fig. 14: Graphic representation of unit impulse.

written in the equivalent form:

$$
\begin{equation*}
\|(\ell)=\int_{-\infty}^{\infty} h(\tau) x(\ell-r) d \tau \tag{1:30}
\end{equation*}
$$

This integral can be used directly in obtaining reaponses or in approximating responses. It is the basis of timc-domain synthesis of electric networks. It is particularly useful for systems which are not simple lumped-parameter electric networks but contain delay elements or possibly unknown elements; in the latter case a single impulse response measurement can serve for predicting response to arbitrary inputs.

It is well to mention that the two superposition methols given above are related in that the system

Fig. 15: Unit impulse decomposition of arbitrary driving force.

descriptive functions $I I(j \omega)$ and $h(t)$ are "Fourier mates"; that is :

$$
\begin{align*}
H(j \omega)= & \int_{-\infty}^{\infty} h(t) e^{-j} \omega^{t} d t ; h(t)= \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} H(j \omega) e^{i} \omega^{t} d \omega \tag{131}
\end{align*}
$$

Laplace Transform methods: The usual starting point in the application of this technique is a set of linear, constant parameter integro-differential equations, with independent variable t, driving forces $x_{1}(t), x_{2}(t)$, etc., and unknowns $y_{1}(t), y_{2}(t)$, etc. These equations are then transformed into a set of linear algebraic equations with independent variables parameter s as follows:

The Laplace transform of a function $z(t)$ is given by:

$$
\begin{equation*}
\text { L. }\{z(l)\} \equiv Z(x)=\int_{0}^{\infty} z(l) r^{-n t} d l \tag{132}
\end{equation*}
$$

()hor uscrul rules:

$$
\begin{align*}
& \text { L. }\left\{z^{\prime}(t)\right\}=x Z(s)-z(l) \tag{1:3:3}\\
& \text { L. }\left\{\int_{0}^{1} z(t) d t\right\}=\frac{1}{s} Z(s) \tag{1:34}\\
& \text { L. }\left\{\frac{1}{s+a}\right\}=e^{-a t}(l>0) \tag{135}
\end{align*}
$$

The solution to the algebraic set of equations gives expressions for the unknown $Y_{1}(s), Y_{2}(s) \ldots$ in terms of s. For lumped parameter networks driven by constant, ramp, exponentially or sinusoidally varying inputs, the $Y(s)$ will be be ratios of polynomials in s. Decomposition ly partial fraction expansion (see Partial Fraction Expansion) leads to the usual form of solution (a sum of exponentials) after inversion correspondences are taken account of (see (135) above). The solution so obtained represents the solution to the original set of integro-differential equations with houndary conditions $x(0), x^{\prime}(0)$, etc., resulting from repeated application of rule 133 above. For the system "initially at rest" a popular case, these quantities may all be zero; however they may also be readily calculated in problems concerned with evaluation of transients caused by open or short circuits in operating systems.

Aside from providing a good basis for transient calculations of power system faults, Laplace transforms are almost universally used in design of control systems with feedback. Behavior of response functions in the s-plane can be closely related to rapidity of time response and is of great importance to system stability.

It should he pointed out that major oljectives in engineering mathematics have been the utilization, formalization, and extension of the system analysis techniques presented in this section. An important tonl of mathematical analysis in evaluating special inverse lourrier and Laplace transforms is the Theory-of-l'unctions-of-a-Complex-Tariable, especially its concepts of "analytic function" and the "theory of residues." Another type of transform technique that has recently become popular is the method of "z-transforms"--having the same relation to "difference equations" as Laplace transforms have to differential equations (note: in difference equations, the unknowns can change only at discrete values of the independent variable, time).

Conclusions

Up to this puint we have covered a considerable segment of the mathematical techniques in use today in engineering analysis and system design. We close by mentioning some concepts not mentioned above and also by giving some key references that we have found useful.

First we have a group of functions usually defined as solutions to certain linear differential equations with variable coefficients, such as Bessel liunctions. Modified Bessel Functions, Legendre Functions, Hypergeometric Functions. Such equations frequently arise in Field problems, in situations with specified symmetry, after some preliminary manipulations of Maxwell's equations (e.g. via "Laplace's equation" or the "wave equation"). These functions have been thoroughly studied. solutions in terms of infinite series as functions of complex arguments have found diverse useful applications. Thus Bessel Functions are widely used in signal theory (Spectral decomposition of Frequency-Modulated carriers), iterated filter analysis, as well as study of electromagnetic fields with cylindrical symmetry. Modified Bessel Functions arise in the solution of voltages and currents on a transmission line.

Next we should mention the important fields of probability and statistics which are recognized increasingly as having importance in general system analysis and design. To some extent techmiques useful in circuit analysis and design have parallel applications here. Important keystones are the higher mathematical functions such as the probability or error function as well as others such as the modified Ressel Function. These disciplines are of importance in engineering problems in evaluation of measurement accuracies and also when effects of "random noise" must be considered.

Concerning references, the earlier portions of this paper are well-covered by standard texts on College Algebra, Differential and Integral Calculus, Analytic Geometry. Other texts found useful to the author covering the later items are:

References

[^2]

QUIET PERFORMANCE!

Yes, Beldfoil* shielding definitely breaks the noise barrier. It breaks the noise barrier by being a noise barrier. Beldfoil gives total shielding . . 100% isolation between adjacent pairs. For audio and radio frequency, it completely eliminates cross talk, spurious signal impulses . . and it's ideal for stationary or limited flexing. Beldfoil is lighter in weight, requires less space, and is usually lower in cost.

MINIATURIZES!

Beldfoil stielding reduces the diameter of multi-conductor cables . . by as much as $662 / 3 \%$. It gives design engineers extra space . . extra conduit space, extra raceway space, extra console and rack space. Beldfoil shielding means that you can "think small."
ASK FOR DATA SHEET. Get your copy of newly published bulletin 8-63-A and techrical data sheet. They give complete information on Beldfoil shielding. Write Belden Manufacturing Company, 415 South Kilpatrick Avenue, Chicago 44, Illinois.

WHAT IS BELDFOIL? It's a lamination of aluminum foil with Mylar** that provides a high dielectric insulation. A patented Belden method of folding*** gives definite benefits. An inner fold creates a continuous metallic path around the surface of the cable. This eliminates any possiole inductive effects. An outer fold tucks the cut edge of the aluminum under the Mylar. This gives complete isolation from other adjacent shielded catles.

Typical cross section looks like this.
*Beiden Trademark Reg. U. S. Patent Office

- "u u Pont Trademark *U.S. Patent 3,032.60

Belden
wingmaken fon moustry
simet ivoz-cticaco

Changes for gyro acceptance testing and rate requirements reduce high cost and loss of time from retesting and/or rejections. This article describes equipment which exceeds present specifications and relates the way this is accomplished.

IMPROVING
RATE TABLES
FOR GYRO TESTING

Gyros must be tested after they are built to learn how much they will drift. This drift must not exceed a specified rate or rejection occurs.

New or repaired gyros are tested on a rate table. This rate table cancels the effect of the earth's motion so that actual gyro drift can be found and plotted.

The addition of a device to the rate table will improve its testing ability and will shorten the testing time.

With the advent of rate table control during periods as small as 20 msec . of time, it is now possible to hold the band-width to better than 0.001 degrees per hr. during intervals as small as 0.36 sec . of arc . . .

In preparing to enter this market, we were interested in learning:

1. The effect of smooth rates on gyros under test.
2. The short-term drift and rate characteristics of sidereal rate tables.
3. Whether advanced instrumentation could overcome the perturbations which are generated by pres-ent-day test equipment, with the result that these uncertainties are attributed to poor performance on the part of the gyro.
4. A method to control the speed of the rate tables used in the acceptance testing of gyros to extend their usefulness.

With the above in mind, we applied more than two years experience with MIDARM ${ }^{(1)}$ (Micro-Dynamic Angle and Rate Monitor) for monitoring table rotation (see Fig. 1) and extended the system to include rate control through a feed-back, closed-loop (rate-control) network.

The MIDARM system is comprised of an optical unit and an electronic unit. (See Fig. 1.) Light from a monochromatic light point source (1) passes through a grid (2), a beamsplitter (3), a collimating
lens (4), and strikes a mirror (5) mounted on the rotating specimen to be tested (6). The image is reflected back into the system where it is directed by a beamsplitter (7) to the reference photosensor (8). The inage is also reflected by beamsplitter through a second grid (9) to the control photosensor (10).

Rate Table Performance

Today, the gyro to be tested is mounted on a sidereal rate table and its drift characteristics are measured by recording the output of its gimbal position sensors. Its long-term drift, excluding the apparent drift caused by the earth's rotation, usually falls within the specifications. This is true since much of the drift error caused by bearings and pickup drag tend to be random in nature. That is, the drift occurs in either direction about the inertial axis and eventually tends to cancel itself.

During short-term periods, however, drift errors are often found to be excessive and the perturbations -in many cases-exceed the limits. These drift errors, therefore, could cause gross errors in the instantaneous performance of the gyro, even though they tend to cancel themselves over the long-term because of averaging. The gyro manufacturer assumes that the gyro is at fault and rejects it . . . the only safe assumption when a million-dollar missile's success is dependent upon the accuracy of the gyros in the guidance system.

The sidereal rate table, then, is a test device used to develop earth rates, vectorial additions to earth's rate, or to buck-out earth's rate so that only true drift errors remain.

Rate table performance for the testing of advanced gyros requires a long-term drift rate of $0.001^{\circ} / \mathrm{hr}$. (or $0.001 \mathrm{arc}-\mathrm{sec}$. per sec. of time, since they are the same rate) so that drift errors can be resolved into

Fig. 1 (right): The MIDARM system is comprised of an ontical unit and an electronic unit. The simplified diagram shows how MIDARM operates.

By A. SCOTT HAMILTON

Supervisior,
Application Engineering
Razdow Laboratories, Inc.
377 bth St.
Newark, N.J.

GYRO RATE TESTING (Continued)

their separate components and analyzed to find their cause.

The usual pickoff or readout devices (either optical or magnetic) are, at best, accurate to within 2 sec . of arc. With this positional accuracy it requires 2000 sec . of time to achieve $0.001 \mathrm{arc}-\mathrm{sec}$. per sec., since: $T=d / R$, where R is the desired rate accuracy, d is the accuracy of the pickoff, and T is the time of measurement.

A second factor must also be introduced to insure proper test conditions, i.e., a smooth, or constant, rate should be held during the period of evaluation. Since the best of the conventional optical and magnetic pickoffs determine table position every 0.1°, they measure table position every 24 sec . of time when the table is turning at one (1) earth rate, which is equall to $15^{\circ} / \mathrm{hr}$. or $15 \mathrm{arc}-\mathrm{sec}$. per sec. of time. It, therefore, follows that short-term rate control cannot be done to a drift rate of 0.001 arc-sec. per sec. if a rate control or correctional signal is being developed every 24 sec . of time, when 2000 sec . of time are needed for a system with 2 -arc-sec. accuracy.

The ahove may appear to be a misstatement. But, it is this misunderstanding which can lead to gross errors in drift measurement. The table could wander as much as 0.024 arc-sec. during the 0.1° interval if the rate error was constant and did not exceed 0.001 arc-sec. per sec. When this condition occurs, the gyro under evaluation reacts to an error which has been

Fig. 2: Schematic drawing of the various sections of the MIDARM-DIREC, rate readout and control system Mk. II.

caused ly the control interval of the rate control system being used with the sidereal rate table.

Advanced Table Position Monitor

The first (and perhaps most obvious) conclusion from the above is that a pickoff, or monitor, with a shorter period and higher accuracy should be better able to correct both of the stated causes of error. Here, then, is where Midarm enters the story. With an accuracy of 0.1 arc-sec., the electro-optical sensor reduces the time to achieve 0.001 to 100 sec . of time (since d equals $R \times T$). The Midarm Mark II (see photograph) also satisfies the second condition since its period of 10.4 arc-sec. means that a control or correctional signal is being developed each 0.67 sec . of time at a rate of 15 arc -sec. per sec. of time. This means that the gyro can be held within the specification and that the measurement can be made in $1 / 20$ th the time needed by a pickoff with 2 arc-sec. accuracy. It also means that short-term drift measurements can be made to the same accuracy as those required during long-term testing.

An interest was shown in a sensor with a twophase output and so Midarm Mark IV (see photograph) was developed. Sensor has a 0.1 arc-sec. accuracy so that the time to achieve $0.001^{\circ} / \mathrm{hr}$. at one (1) earth rate is still 100 sec . of time. The period is divided by an electronic follower so that it can be used effectively as an interval of 0.36 sec . of arc. Therefore, it lends itself for use with ultra-precise rate control needs since the time period for the generation of the interval is 20 msec .

Rate Control with DIREC and CLEAR

In the conventional rate control systems the aterage rate can be found but they require longer periods of time than do the Midarm systems. Here, though, we must remind the reader that smooth rates are also necessary and that the system should be able to operate within the band-width or tolerance of the gyro spec. These two are important since widely varying "instantaneous" table rates caused by gearing and bearing inaccuracies, motor lamination slotting effects, and out-of-roundness conditions cause corresponding variations in the drift rate of the gyro under test; and are possible causes for the rejection of advanced gyros. These conditions are most likely to influence the conventional systems with their 0.1° periods and the greater the chance that small, fast perturbations will go uncontrolled.

With the Midarm systems, the rate table moving at 1 earth rate turns less than 0.5° in 100 sec . of time as compared to a rotation of better than 8° in 2000 sec . The smaller test interval is advantageous since the errors from slot effects and inequities in the drive
system have less chance to exert their influence as major canses of gyro error. This is important since the rate errors caused by table perturbations show up as clrift errors in the output of the gyro. At the same time, gennine drift errors in gyro performance are calnsed by gyro bearing inequities. pickup) dras. air bearing turbine effects, dynamic unbatance, etc. Since both the gyro drift error and the table perturlations occur at the same time they appear as gyro drift errors.
liecanse the two causes of error cannot be separated and the level of gyo drift errors should not exceed 0.001 arc-sec. per sec. of time, it is clear that the element of high-order control is one of the major needs in an advanced sidereal rate control system. This need can be satisfied by controlling the speed of the table through its servo loop, but only when the error signal lieing developed is an instantaneous and nearly continnous representation of what is taking place hetween the actual rate and the desired rate of rotation.

In the Miclarm-Direc (Digital Kate Error Computer) system (sce lig. 2), the rate measurement is made each 10.4 sec . of arc. The time base for the desired rate of rotation is "set" into the 5 -decade controller which will operate over a range from 0.5 to 100 times earth's rate. The time period between Midarm cyeles is compared to a reference period and the difference, if any, is fed to the table torquer. The system is nearly continnous, since it is responding to the slightest change in rate at 1.5 crs when the rate of rotation is 15 arc-sec. per sec . The signal of the Midarm-Direc is a deviation from the desired rate, which is used to smooth the motion of the table to improve the positional accuracy of the gyro under test. Since the control signal represents a change from the desired rate, it call also be fed into a commercial printer to record the deviations during the period of olservation.

Since the response characteristics of the torquer

DELAY LINES

These superconductive delay lines were developed as ready access memory units for logic functions operating at clock rates ahove 125 mc .

As computer clock speeds increase, it becomes increasingly difficult to provide memory capability. But with each increase in speed, the capacity of a transmission line for data storage increases accordingly. For example, at a 125 mc clock rate, a line providing

Here is the 360° continuous MIDARM-CLEAR, Mark IV system.
and the table are the limiting tactors, the system response is more on the orcler of 50 msec . The correction signal. however. builds up a bias in the torquer which is, for all practical purposes, continnous, so that the response characteristics of the system are very shooth.

In the Midarm-Clear (Closed-Loop Error of Angular Rate) system, the 2-phase output of the Mark IV sensor is fed into an electronic clivide-down circuit so that positional information is protluced every 0.36 sec . of arc. The time between these very small periods is compared to the output of an oscillator with the difference, again, representing the rate error of the sidereal rate table. The error signal is amplified and fed to the table torquer during time periods which are as small as 20 msec .

A REPRINT OF THIS ARTICLE CAN BE OBTAINED
 by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES
 Chestnut G 56th Sts., Phila. 39, Pa.

a delay of 800 nsec. has a 100 -bit storage capacity. The delay-line memory is a space saver also. A $1 \mu \mathrm{sec}$. delay line that stores 125 bits at 125 mc occupies a volume of $27 / 8 \mathrm{in}$. diameter by $1-7 / 16 \mathrm{in}$. high.

The superconductive delay line is based on propagation delay resulting when a signal travels through a long length of small-diameter coaxial cable. This technique uses low temperatures ($4.2^{\circ} \mathrm{K}$) to eliminate conductor losses and reduce dielectric losses.

The units give precise delay times from 100 to 2000 nsec., with an insertion loss of less than 1 db per μ sec. With Snsec. pulses. Rise time is uncler $0.5 n s e c$. Martin Co., a dis. of Martin Marietta Corp., Baltimore 3 , Md.

As a result of extended test programs, common ceramic capacitor failure modes and the mechanisms involved are known and understood. A method developed to fluorinate the dielectric material and advanced encapsulation techniques now establish a high degree of reliability in the ceramic capacitor. Their details are presented.

IMPROVEMENTS INCREASE CERAMIC CAPACITOR RELIABILITY

Abstract

Understanding the reliablitity of ceramic capacitors needs a thorough knowledge of all factors which contribute toward the performance of these components. Most significant of these are the nature and characteristic of the dielectric, method of construction, encapsulating materials, failure modes and performance under varying conditions of use. The relationship of each to component reliability is shown and the results of a new approach to high relialility construction are examined here (see Fig. 1).

The significant feature of any ceramic capacitor is its dielectric. It is possible to manufacture ceramic dielectrics with a dielectric constant (K) as low as 8 to more than 10,000 . This wide range can be best appreciated when one considers that air has a K of 1 , mica 7 and paper only 4 or 5 .

The history of this remarkable dielectric is old and new-old because the art of ceramics is ancient, and new because recent synthetic materials are the main elements of modern compositions. Early synthetic materials, normally steatite, had properties which approached those of mica. Though not superior to mica in all respects, some of the new ceramic dielectrics had features that no other material had.

The use of barium titanate soon followed, and a whole new type of capacitor industry took root. Most of the raw materials presently used are manufactured solely for electronic ceramic devices and are constantly being improved.

Construction of Capacitors

The ceramic dielectric is formed from a carefully blended mixture of raw materials consisting mainly of oxides of the alkaline earths plus addlitives of other elements, including rare earths. By using set ceramic forming methods, this mixture, or boody. can be pressed, extruded, sprayed or cast into almost any convenient shape. See Fig. 2. The green ceramic piece is fired to high temperatures where a solid state
reaction or sintering can take place. The chemistry and physics of this reaction are highly complex, but the net result is a nonporous, hard ceramic, suitable for capacitor dielectrics. The most familiar form of the ceramic dielectric has been the disc, or coin shape. However, tubulars, slugs, and rectangular plates are also used.
To form a capacitor, electrodes are fixed to opposite surfaces of the dielectric. The most common electrode material is a glass-filled, silver paste or fluid which is either screened, sprayed or dipperl on the ceramic surface. The "electroded" ceramic is then fired at about $1400^{\circ} \mathrm{F}$. At this temperature the glass in the silver paste melts and permanently bonds the silver to the ceramic surface. Now, lead wires are attached to the disc, normally by dip-soldering. The capacitor is de-greased, cleaned of soldering flux and encapsulated with a phenolic resin. The phenolic dip contains volatile solvents which evaporate and leave a porous network of capillary voids. This porous matrix is vacuum impregnated with a special wax which protects the capacitor from the rigors of normal humidity environment.

Military and EIA Grouping

Ceramic capacitors have been divided into two basic groups loased on dielectric claracteristic and application: Temperature compensating and general purpose fixed ceramic capacitors.
Definition of each group per military and EIA specs is as follows.

By LARRY NORDQUIST
Ceramic Engineerlng Mgk CDE Dlv.
Federal Pacific Elec. Co. 50 Parls St.
Newark 1, N.J.

Fluorinated disc ceramic capacitors developed by Cornell-Dubilier when thrust into $1000^{\circ} \mathrm{F}$ still maintain original characteristics. The hot flame only chars the capacitor's jacket made of rubber.

Of 1000 capacitors life tested at $200^{\circ} \mathrm{C}$ and 500 vdc , one failed after 763 hours. No other failures after $1.7 \times 10^{\prime \prime}$ component-hrs.

This is a capacitor that failed. The tiny black spot seen on the side of the unit shows where the dielectric broke down during the extended life test.

For a trip through the fluorination kitn, the once fired ceramic discs are placed in trays called "saggers" made of special ceramic to withstand chemical reaction.
A. MIL-C-20D and EIA RS-198, Class 2-Temperature Compensating and Precision: Capacitors in this group normally are made from rather low dielectric constant materials but show high stability and precision. The dielectric is compounded to provirle a controlled change in capacitance with temperature. The temperature coefficient of capacitance normally found in this group ranges from +100 parts per million per degree centigrade. ($\mathrm{pmm} /{ }^{\circ} \mathrm{C}$), to $-4700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Also, the low power factor (or high Q) makes this type of capacitor ideal for tuned
circuits where a controlled temperature coefficient is needed to olifset the change of other components with temperature.
B. MIL-C-11015 and EIA RS-198, Class 1-General Purpose: This group more truly represents the versatility of ceramic capacitors. The dielectric constant normally ranges from 250 to 10,000 . Dielectrics in this class can be compounded to be very stable or unstable with respect to temperature change. For example. awailable temperature coefficients of these dielectrics cun be $\pm 5 \%$ in an operating temperature

CERAMIC CAPACITOR (Continued)

range of -55° to $+150^{\circ} \mathrm{C}$; or, $+22,-80 \%$ in an operating range of $+10^{\circ}$ to $+85^{\circ} \mathrm{C}$.

Both military and EIA specs have codes to identify temperature characteristic with respect to temperature range. Capacitors in this class can be used for by-pass and coupling.

Failure Modes

Failure modes of ceramic capacitors due to human error and poor workmanship can be greatly minimized through training of personnel, controlled manufacturing procedures and strict supervision. They are readily detected through inspection and testing.

Failure modes from dielectric degradation, poor encapsulation and material deficiencies are more difficult to control, and require a combination of soumd design practice and proper selection of compositions and materials.
Degradation: Failure of a ceramic dielectric resulting from degradation is a serious shortcoming of titanate bodies, and leads to electrical breakdown. This is the result of an electro-reduction process under voltage and temperature which changes the crystal from an insulator into a n-type semiconductor. The chemistry of this process can be described as a hydrogen or proton migraton in the lattice, restulting in a valence change of the crystal materials.

Electrical degradation can be improved by adding tri- and pentavalent exides such as Iron $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, Tantalum ($\mathrm{Ta}^{2} \mathrm{O}^{5}$) and even rare earths. These addiuves alone do not completely arrest this degradation. Studies show that fluorides are more effective, since they not only enter into the lattice structure but also react with the crystal matrices of the dielectric.

Encapsulation: The materials and technique of capacitor encapsulation have a pronounced effect on both moisture resistance and degradation. Wax impreguants are used because they seal the capacitor element from moisture. Water on the silver electrodes will cause a migration of silver ions from the anode to the cathode with applied voltage. This migration results in a conducting path forming on the surface of the ceramic. It will caluse capacitor failure. Also. the presence of water at the anode provides a source for hydrogen protons which accelerate dielectric degradation.

Fluorinated, Glass Encapsulated Capacitors

Under contract to the Signal Corps, a new approach was established for ceramic capacitor manufacture. The contract was to develop and manufacture a fluorinated ceramic capacitor able to operate at $200^{\circ} \mathrm{C}$ for 2000 hrs . The form factor specified was a Cl゙63 disc capacitor having a capacitance of 10,000 1f. An intensive investigation of fluoride additions to the dielectric barimm titanate was started and improvements were noted.

The fluorination of the dielectric was performed in a specially built tumnel kiln capable of close temperature control. A controlled level of volatile fluorides was held in the kiln atmosphere and the dielectrics were cycled through the kiln. This treatment, at elewated temperatures, fully exposed the dielectrics to the permeating fluoride atmosphere, causing a solid state reaction.

The fluoride materials react with both the crystalline structure and matrixes of the barium titanate complexes, altering their chemical composition. This additive acts in a manner similar to the trivalent and pentavalent additions, except that the single valence fluoride ion (F^{-}) replaces oxygen in the crystal com-

Fig. I: From product concept to retirement, a component flows through design and production stages to assure reliability.

[^3]plex and reduces anion vacancy to a point where ion and proton migration is greatly restricted. As a result, the dielectric has a high resistance to electrochemical reduction and degradation.

This resistance to degradation can be seen in Fig. 3. Note the high resistive value for the fluorinated high K dielectric while the value of the standard commercial dielectric falls off rapidly at even moderate temperatures. This comparison was further demonstrated during life tests when unfluorinated dielectrics failed from a few minutes up to 500 lirs.. while fluorinated dielectrics had no failures up to 3000 hrs . Both types were tested at 500 r . and $200^{\circ} \mathrm{C}$.
Glass Encapsulation: Since the Sigual Corps needs a capacitor to operate at $200^{\circ} \mathrm{C}$, it lecame necessary to use encapsulating materials a the to withstand this high temperature. Standard organic enc:ipsulating materials and methods which were investigated could not meet the temperature needs of the capacitor. After further study, it was found that glass encapsulation would be the correct approach.

The high-temperature glass-encapsulation method used precluded the use of standard lead materials. We had to employ pure silver wire leads which were fired-on during the electrode firing process.

The glass coated capacitors were given a second coating of silicone rubber for additional protection to the capacitor and glass coating. Finisled capacitors (Fig. 4) were then tested per Signal Corps. specs.
Qualifications: Both lots, totaling 100 capacitors, had no failures during the $2000-\mathrm{hr}$. life test at 500 v . and 200°. Additional capacitors were continued on to 3000 hrs . with no evidence of degradation. In addition, environmental tests of humidity, shock, temperature immersion and vibration did not produce any failures. Thus, the fluorinated, glass encapsulated capacitor was qualified.

Data Accumulation

An expanded program of evaluation was started to test larger quantities for reliability data. A total of 1000 capacitors, having a fluorinated dielectric, silver leads and glass encapsulation, were made up for life test evaluation. It was necessary to select this large quantity for study because the capacitor embraced new design concepts. Therefore, an accurate understanding of its reliability must lee established.

Established Reliability

One failure was noted at 763 hrs.; wo additional failures were recorded up to a final check at 1.7 million component hrs. This performance of a high K dielectric, normally considered inferior, proved the merits of this new concept. Test conditions for this program were maintained at $200^{\circ} \mathrm{C}$ and 500 v . to ac-
celerate failure mechanisms. Failure rate calculations based on test conditions resulted in failure rates of $0.229 \% / \mathrm{M}$ hrs. at 90% confidence level and $0.1189 \% / \mathrm{M}$ hirs. at 60% confidence level. When considering this capacitor for operation at normal conditions of 250 v . and $85^{\circ} \mathrm{C}$ by using standard voltage and temperature accelerating factors, failure rates of $0.00000312 \% / \mathrm{M}$ hrs. at a 90% confidence level and $0.00000161 \% / \mathrm{M}$ hrs. at a 60% confidence level are established.

Calculation of failure rates at rated voltage and temperature were made as follows:
$x^{2}=$ Chi-squared Value
$N=$ Number of Linits on Test
$T=$ Time in Hours on Test
$R=$ Number of Observed Failures
$\lambda=$ Failure Rate
$10^{5}=$ Constant 10 redure λ to $\% / \mathrm{Mhrs}$.

$$
\begin{aligned}
\therefore \times T & =1.7 \times 10^{6} \\
R & =1
\end{aligned}
$$

Where χ^{2} is entered with $2(R+1)$ degrees of freedom. Chi-Squared values for confidence levels are:

R	$x^{2}(60 \%$ conf. lev. $)$	$x^{2}(90 \%$ conf. lev. $)$
0	$1.8: 32$	4.610
1	4.044	7.780
2	6.240	10.640
3	8.320	13.360
4	10.500	15.990

$$
\lambda=\frac{x^{2} \times 10^{5}}{2 N T}
$$

At 90% contidence level,

$$
\lambda=\frac{7.88 \times 10^{5}}{2 \times 1.7 \times 10^{6}}=0.229 \% / \mathrm{Mhrs}
$$

At $\mathbf{6 0 \%} \%$ confidence level,

$$
\lambda=\frac{4.044 \times 10^{5}}{2 \times 1.7 \times 10^{6}}=0.1189 \% / \mathrm{M} \text { hrs. }
$$

Voltage Acceleration is based on life expectancy varying inversely with the third power of the ratio of the test voltage to actual voltage. That is, operating a capacitor at one-half rated voltage should increase life expectancy by a factor of 8 .

$$
K_{v}=\left(\frac{V_{1}}{V_{2}}\right)^{3}
$$

Where:
$K_{v}=$ Voltage Acceleration Constant.
$V_{1}=$ A Given Voltage (500 v .)
$V_{2}=$ Another Voltage (250 v.)

$$
K_{\mathrm{t}}=\left(\frac{500}{250}\right)^{3}=8
$$

Temperature Acceleration is not based on a linear or power law relationship. Graduated temperature ranges are more accurate for ceramic capacitors. Therefore, CDE engineers separated the over-all temperature range into 3 steps, with individual rules of $20^{\circ}, 10^{\circ}$, and $8^{\circ} \mathrm{C}$. Below $85^{\circ} \mathrm{C}$, life is doubled for every $20^{\circ} \mathrm{C}$ decrease in temperature. From 85° to

CERAMIC CAPACITOR (Concluded)

$125^{\circ} \mathrm{C}$, life time is halved for every $10^{\circ} \mathrm{C}$ rise. Above $125^{\circ} \mathrm{C}$, life time is halved for every $\mathrm{S}^{\circ} \mathrm{C}$ rise in temperature.

$$
K_{T}=2^{\left(T_{1}-T_{2}\right) / T_{3}}
$$

Where:
$K_{T}=$ Temperature Acceleration Constant.
$T_{1}=$ A given temperature.
$T_{2}=$ Another temperature.
$T_{3}=$ Temperature increase or decrease $\left(8^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}\right.$ or $\left.20^{\circ} \mathrm{C}\right)$

Fig. 3: In these graphs of typical resistivity vs. temperature high K dielectric with and without fluorination is compared.

$$
\begin{gathered}
K_{T}=2^{(200-125) 8} \times 2^{(125-85) / 10} \\
K_{T}=2^{9.4} \times 2^{4}=2^{13.4}
\end{gathered}
$$

The prochuct of two temperature acceleration factors is necessary since the temperature varied from 85° to $125^{\circ} \mathrm{C}$ and from 125° to $200^{\circ} \mathrm{C}$. For accuracy, then, the $8^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ temperature rules are applied.
$K_{r_{T} T}$, or test acceleration factor, is the result of operating conditions of voltage and temperature, and is the prochuct of voltage acceleration and temperature acceleration factors.

These acceleration factors are used to extrapolate actual test data into failure rates expected under normal operating conditions.

$$
\lambda_{E}=\frac{\lambda_{9 \theta}}{K_{\mathrm{V} T}}
$$

Where:
Fig. 4: These fluorinated disc ceramic capacitors operate at $200^{\circ} \mathrm{C}$ temperature while requiring no voltage derating.

$$
\begin{aligned}
\lambda_{E}= & \text { Extrapelated Failure Rate. } \\
\lambda_{90}= & \text { Failure Rate at ! } \% \text { confidence level } \\
& (0.229 \% / \mathrm{M} \text { h\% }) \\
K_{V T}= & K_{V} \times K_{T}=8 \times 2^{13.4 \cong 9192 .} \\
& \lambda_{E}=\frac{0.22!}{8 \times 9192}=0.00000312 \% / \mathrm{M} \mathrm{hr} .
\end{aligned}
$$

It 60°; ronfidenere level where $\lambda_{80}=0.1189 \%$, ${ }^{\circ}$ hirs.

$$
\lambda_{E}=\frac{0.118!1}{8 \times 9192}=0.00000161 \% / \mathrm{M} / \mathrm{hr}
$$

The Results Applied

The technique and value of fluorination has been established and will be of significant value in these new products.

Advantages of ceramic sealing of the electrodes has also been proven and both features are in a new series of miniaturized ceramic capacitors having very high relialility. These products have very high capacitance to volume ratios. They are available in tubular and rectangular form factors, as well as with weldable and solderable leads.

SMOOTHING-PREDICTING SAMPLED DATA

In military and control systems, techniques which smooth sampled data and predict behavior are widely used. Complexity requires these to be instrumented on a computer. Discussed here is the simplest class of smoothing-predicting including design data and hardware considerations.

Techniques which smooth sampled data and predict the behavior of the phenomenon based on a sampled history of its past performance are being put to more use. Such methods are widely used in military Track-while-scan systems which develop a target's track from search radar data; also in control systems which act on the expected behavior of the processes.

The smoothing-predicting ability is often instrumented on a computer because of the complexity. This article discusses the simplest class of smoothingpredicting techniques (first-order) and presents design data and hardware considerations for exponentially weighted first-order filters with sampled inputs.

The order of a filter is the order of the difierential or difference equation which descrihes the response of the network. Here, first-order filters are discussed: therefore, the first difference is the highest-order term considered. The output of the filter is assumed constant (clamped) between inputs.

The method used for selecting a final filter configuration is based on a least-mean-squared-error criterion. The input samples are given time-dependent weights. so that any computation of the filter's output yields a value which minimizes the sum of the weighted squared deviations of these input samples from the output value being computed.

To stress the importance of the more recent samples, the output will be fitted to the last k inputs only. and the deviations of these k inputs from the output will be weighted exponentially in time. (The special cases of the equally weighted and the infinite memory filters require only making the weighting function mity and k infinite.)

Derivation of Basic Network Equations

Definitions:
$T=$ sampling period (assumed constant).
$n T=$ time of the most recent input sample.
$k=$ number of samples heing smoothed.
$X_{m, i}=$ input at the $i^{\text {th }}$ sample.
$X_{e, n}=$ most recent output, the one being computed.
$E_{(n-i)}=$ deviation of the $\mathrm{i}^{\text {th }}$ input from the latest output.
$W_{(n-i)}=$ weighting function. It represents the weight that the information present at the $i^{\text {th }}$ sample has at the time of the latest sample.
$b=$ smoothing constant.
$S_{n}=$ sum of the weighted squared deviations from the latest output.

In equation form:

$$
\begin{gather*}
W_{(n-s)}=b^{n-i} \tag{1}\\
B_{(n-i)}^{\prime}=X_{m, i}-X_{c, n} \tag{2}\\
S_{n}=\sum_{i=n-k+1}^{n} H_{(n-i)} E_{(n-i}^{2} \tag{3}
\end{gather*}
$$

To minimize the sum of the weighted squared deviations, set:

$$
\begin{equation*}
-\frac{\partial S_{n}}{\partial X_{c, n}}=0 \tag{4}
\end{equation*}
$$

This results in the equation:

By DAVID B. BORKUM
Group Leader Computer Eng'g. Section Grumman Aircraft Eng'g. Corp Bethpage, 1.1. N.Y

Table 1

Weighting: Exponential Memory: Finite	Weighting: Exponential Menory: Infinite	Weighting: Equa Memory: Finite
$X_{e, n}=b X_{c, n-1}$	$X_{c, n}=X_{c, n-1}$	$X_{c, n}=X_{c, n-1}$
$+\frac{1-b}{1-b^{k}}\left[X_{m, n}-b^{k} X_{m, n-k}\right]$	$+(1-b)\left(X_{m, n}-X_{c, n-1}\right.$	$+\frac{1}{k}\left[X_{m, n}-X_{m, n-k}\right]$

Response to

Response to
a unit ramp $\left(0 \leq n \leq k-1\left[\frac{1}{1-b^{k}}\right]\left[n-b \frac{1-b^{n}}{1-b}\right] \quad n-b \frac{1-b^{n}}{1-b} \quad \frac{n(n+1)}{2 k}\right.$ applied $\begin{aligned} & \text { when } \\ & n=0\end{aligned} \quad n>k-1 \quad n-\frac{1}{1-b}+\frac{k b^{k}}{1-b^{k}} \quad$ Not applicable $\quad n-\frac{k-1}{2}$

Ratio of the variance of output noise to the variance of input white noise

$$
\left[\frac{1-b}{1+b}\right]\left[\frac{1+b^{k}}{1-b^{k}}\right] \quad \frac{1-b}{1+b}
$$

$$
\frac{1}{k}
$$

$$
k+1
$$

1
$k+1$

Figs. 1 and 2: These design curves aid in synthesis and analysis of first-order networks discussed. Fig. 1 (on left) allows the filter's

$$
\begin{equation*}
X_{c, n}=\frac{1-b}{1-b^{k}} \sum_{i=n-k+1}^{n} b^{n-i} X_{m, i} \tag{5}
\end{equation*}
$$

By writing this one look ahead and changing limits:

$$
\begin{align*}
X_{c, a+1}=\frac{1-b}{1-b^{k}} b[& \sum_{i=n-k+1}^{n} b^{n-i} X_{m, i} \\
& \left.+b^{-1} X_{m, n+i}-b^{k-1} X_{m, n-k+1}\right] \tag{6}
\end{align*}
$$

Eq .5 and 6 yield the network equation for an exponentially weighted finite memory filter:

$$
\begin{equation*}
X_{c, n}=b X_{c, n-1}+\frac{1-b}{1-b^{k}}\left[X_{m, n}-b^{k} X_{m, n-k}\right] \tag{7}
\end{equation*}
$$

For stability, Eq. 5 must be finite for all values of n. However, when considering a finite memory filter, b may be any finite number and the system will be alsolutely stable. It is possible, of course, to define a relative stability by placing an upper limit on Eq. 5. When considering an infinite memory filter, Eq. 5 becomes an infinite series. For this series to be convergent, and the system hence stable, we must have:

$$
-1<b<+1
$$

(inder the above condition:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} b^{k}=0 \tag{9}
\end{equation*}
$$

Therefore, from (7) and (9), the network equation for an exponentially weighted infinite memory filter is:

$$
\begin{equation*}
X_{c, n}=X_{c, n-1}+(1-b)\left(X_{m, n}-X_{c, n-1}\right) \tag{10}
\end{equation*}
$$

When $b=1$, all of the last k inputs have equal weight, and the output of the filter is the average of the last k inputs. To determine the network equation of this filter, use is made of L'Hospital's rule which shows that:

$$
\begin{equation*}
\lim _{b \rightarrow 1} \frac{1-b}{1-b^{k}}=\lim _{b \rightarrow 1} \frac{1}{k b^{k-1}}=1 / k \tag{11}
\end{equation*}
$$

From (7) and (11), the network equation for an equally weighted finite memory filter is:

$$
\begin{equation*}
\boldsymbol{X}_{c, n}=\boldsymbol{X}_{c, n-1}+\left(\frac{1}{k}\right)\left(\boldsymbol{X}_{m, n}-\boldsymbol{X}_{m, n-k}\right) \tag{12}
\end{equation*}
$$

Note that an equally weighted infinite memory filter is impractical. Eq. 12 shows that as k becomes large, the output does not respond to changes at the input.

Response to White Noise

Equation 5 squared is:

$$
\begin{equation*}
\Lambda_{c, n}=\left[\frac{1-b}{1-b^{k}}\right]^{2} \sum_{i=n-k+1}^{n} b^{n-i} X_{m, i} \sum_{i=n-k+1}^{n} b^{n-i} \Lambda_{m, i} \tag{13}
\end{equation*}
$$

If the inputs, $X_{m, i}$ are white noise and expectations
are taken of both sides of this equation, the expectations reduce to the following:

$$
\begin{aligned}
& E\left(X_{c, n}\right)=\sigma^{2} X_{c} \\
& E\left(X_{m, i} \cdot X_{m, j}\right)= \begin{cases}\sigma^{2} X_{m} & \text { when } i=j \\
0 & \text { when } i \neq j\end{cases}
\end{aligned}
$$

Here:
E denotes expertation.
$\sigma^{2} X_{c, n}$ denotes the variance of the output.
$\sigma^{2} X_{m}$ denotes the variance of the input.
Therefore for an exponentially weighted finite memory filter:
$\frac{\sigma^{2} X_{c}}{\sigma^{2} X_{m}}=\left[\frac{1-b}{1-b^{k}}\right]^{2} \sum_{i=n-k+1}^{n} b^{2(n-i)}=\left[\frac{1-b}{1+b}\right]\left[\frac{1+b^{k}}{1-b^{k}}\right]$
This equation is a measure of the network's smoothing ability.

From (9) and (14), the response to white noise of an exponentially weighted infinite memory filter is:

$$
\begin{equation*}
\frac{a^{2} X_{c}}{\sigma^{2} X_{m}}=\frac{1-b}{1+b} \tag{15}
\end{equation*}
$$

By utilizing L'Hospital's rule, the response of an equally weighted finite memory filter to white noise is found to be:

$$
\begin{equation*}
\frac{\sigma^{2} X_{c}}{\sigma^{2} X_{m}}=1 / k \tag{16}
\end{equation*}
$$

Response to Step and Ramp Inputs

A. Response to a unit step input: Assume that a unit step is applied after $n=-1$ but before $n=0$ so that:

$$
X_{m, n}= \begin{cases}0 & \text { when } n<0 \\ 1 & \text { when } n \geq 0\end{cases}
$$

The network response to this step will be different when it "remembers" both the old $\left(X_{m, n}=0\right)$ and the new ($X_{m, n}=1$) inputs (that is, with fewer than k samples of the new input) than when it "remembers" only the new inputs.

Consider first when the network remembers both inputs $(0 \leqslant n \leqslant k-1)$. Assume that the particular solution of the difference Eq. 7, hereafter called $X_{c, n}$ (P.S.), is γ.

From (7):

$$
\begin{equation*}
\gamma=b \gamma+\frac{1-b}{1-b^{k}}\left(1-0 b^{k}\right) \tag{17}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
X_{c . n}(\text { P.S. })=\gamma=\frac{1}{1-b^{k}} \tag{18}
\end{equation*}
$$

Assume that the complementary solution, hereafter called $X_{c, n}$ (C.S.), of equation 7 is $C b^{n}$:

$$
\begin{equation*}
X_{c, n}=X_{c, n}(\text { P.S. })+X_{c . n}(\text { C.S. })=\frac{1}{1-b^{k}}+C b^{n} \tag{19}
\end{equation*}
$$

From (7) and (19), at $n=0$:

SAMPLED DATA (Concluded)

$$
\begin{equation*}
C=-\frac{b}{1-b^{k}} \tag{20}
\end{equation*}
$$

From (19) and (20), for an exponentially weighed finite memory filter when $0 \leqslant n \leqslant k-1$:

$$
\begin{equation*}
\boldsymbol{X}_{c, n}=\frac{1-b^{n+1}}{1-b^{k}} \tag{21}
\end{equation*}
$$

For an exponentially weighted infinite memory' filter the network always "remembers" the old inputs as well as the new. Therefore, for all non-negative values of n, from (9) and (21):

$$
\begin{equation*}
X_{c, n}=1-b^{n+1} \tag{22}
\end{equation*}
$$

L'Hospital's rule and (21) show that the response to a unit step of a finite memory equally weighted filter when $0 \leqslant n \leqslant k-1$ is:

$$
\begin{equation*}
\boldsymbol{X}_{c, n}=\frac{\prime \prime+1}{k} \tag{2:3}
\end{equation*}
$$

2) The network remembers only the new input ($n>k-1$). Proceeding as before, we find:

$$
\begin{equation*}
X_{c, n}(\text { P.S. })=\gamma=1 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{c, n}=\left(b^{n}+1\right. \tag{5}
\end{equation*}
$$

From (7) and (25) at $n=k$, and from (21) at $n=(k-1)$, we find that:

$$
\begin{equation*}
c=0 \tag{26}
\end{equation*}
$$

Therefore, from (25), the output of a finite memory exponentially weighted filter is, as we would expect:

$$
\begin{equation*}
X_{c, n}=1 \tag{27}
\end{equation*}
$$

Since $X_{c, n}$ is independent of b when $n>k-1$, the above equation is also applicable to a finite memory equally weighted filter.

Fig. 3: Response to a unit step for a filter meeting set conditions.

B. Response to a unit ramp input: Assume that a unit ramp is applied at $n=0$ so that:

$$
X_{m, n}= \begin{cases}0 & \text { when } n<0 \\ n & \text { when } n \geq 0\end{cases}
$$

Similarly to the case where a step input was applied, the network response will be different when it "remembers" both types of inputs, from when it "remembers" only the ramp input.
Assume:

$$
\begin{gather*}
X_{c, n}(P . S .)=\beta n+\gamma \tag{28}\\
X_{c, n}(\text { C.S. })=\left(b^{n}\right. \tag{2!}
\end{gather*}
$$

These equations can be solved in a manner similar to that used in determining the response to a step input. The network responses to a unit ramp input are given in Table 1. Table 1 summarizes the mathematical results which have been derived in this paper.

A REPRINT OF THIS ARTICLE CAN be obtained
 by writing on company letterhead to The Editor
 ELECTRONIC INDUSTRIES
 Chestnut \& 56th Sts., Phila. 39, Pa.

Filter Design

Design curves are presented in Figs. 1 and 2, to facilitate the synthesis and analysis of the first-order networks discussed in this paper. Fig. 1 shows the ratio of the standard deviation of output noise to the standard deviation of input white noise; this is a measure of the filter's smoothing capability, or its ability to suppress spurious random inputs. It is clear that, for negative values of the smoothing constant. b. the system is no longer a filter because it amplifies incoming noise. Fig. 2 shows the steady-state output error due to a unit ramp input, long after enough sallples have been received to fill the memory store, or after a great many samples have been stored for the infinite memory filter. Here, the important characteristic is not the absolute magnitude of the error, but rather the variation in relative error as b and k are varied. Note that Fig. 2 shows that b and k should be minimized for a filter to accurately follow a first-order input. The equations show that the transient error is small when b is small. However, reductions in b and k are only made at the expense of reducing the importance of the earlier inputs, which, as shown by Fig. 1, is detrimental to the noise suppression capability of the filter. Thus the smoothing constant, b, and the memory capacity, k, should be largely selected by a judicious compromise between transient and tracking error, on the one hand, and noise considerations, on the other, within the limits imposed by the filter specifications.

For example, suppose we must design a digital
filter which will reduce the standard deviation of the input noise to less than 50%, and which must have a steady-state error no greater than $1 .+\%$ after 100 input samplings. Thus, the initial limits are found by investigating the area below the 0.5 ordinate on Fig. 1 ; this gives $k_{\text {min }}=4$, and $b_{\text {min }}=0.6$. Referring to Fig. 2 , and dividing the ordinate scale by 100 (the specified value for n), the $k_{\text {max }}$ is found to be above $k=7$, using the previous $b_{\text {min }}$ value.

Similarly, using the previous $k_{\text {min }}$ value and reading along the $-1.4 / n$ ordinate, we find $b_{\max }=0.96$ for $k=4,0.78$ for $k=5,0.68$ for $k=6$, and 0.62 for $k=7$. The acceptable $b-k$ pairs must be chosen from within these limits. Trying first $k=+$, we see from Fig. 1 that there is no point on this curve for $b<0.96$ below the 0.5 ordinate ; hence, $k=4$ is not acceptable. Using $k=5$, we find that this curve is below the 0.5 ordinate on Fig. 1 for $b>0.72$; hence, we may choose any pair of $k=5$, and $0.72<b<0.78$. Similarly, for $k=6$ we find that this curve is below the 0.5 ordinate for $b>0.68$; hence, we may choose $k=6$ and $b=0.68$. No $k>6$ is acceptable, because $b_{\min }$ would exceed $b_{\text {max. }}$. The final choice would be based on such considerations as storage cost and computational ease.

The response to a unit step is shown in Fig. 3 for one of the filters meeting the above conditions. This figure shows the rapid transient response realized 1)y
using a finite memory filter.
It can be seen from the basic network equations that a finite memory filter which remembers k requires $k+1$ stores when instrumented on a computer. Since storage space is costly in terms of time, power, weight and volume, it is desirable to keep k as small as possible. It is of considerable significance, however, that when k is made infinite, the basic network equation reduces to the extent that only one store is now required. Therefore, an infinite memory filter is considerably less demanding on computer storage than is a finite memory filter, since it is only necessary to update the single stored output at each sampling time.

A word of caution is in order regarding the evaluation of the filter's response to an input of noise. The assumption was made that the cross-correlation of $X_{m}\left[E\left(X_{m, i} \cdot X_{m, j}\right)\right.$ when $\left.i \neq j\right]$ was zero. This is often valid in practice when a large number of these cross-terms are averaged, but if only a small number of these terms are used, this assumption becomes questionable.

The author gratefully acknowledges the technical assistance provided by Mr. A. DiStefano of the Newark College of Engineering, Newark, N. J., and the editorial contribution of Mr. K. Aldershof, of the Cornell Design Co., E. Rutherford, N. J.

POCKET-SIZE LASER

Tifis hilifiputian-sized laser can be used by distressed boatsmen and downed pilots to signal their position. About the size and shape of a small frozen juice can, the laser emits energy pulses that can be detected by rescuers 30 air-miles away. The device can be fired repeatedly-up to 50 times-before battery recharging is required. The battery charger plugs into any electrical outlet.

In addlition to its survival-kit capability, the small size lends itself to other possibilities. Coupled to a microscope, it can punch tiny holes into the specimen being studied. Size of the combined laser head and lattery is $2 \times 4 \times 4 \mathrm{in}$.; total weight is $1+\mathrm{oz}$. The laser rod, which replaces the ruby crystal in a conventional solid-state laser, is made of neodymiumdoped calcium tungstate. The rechargeable battery consists of nickel-cadmium cells. Raytheon Laser Advanced Development Center, Waltham, Mass.

The rechargeable, battery-powered unit operates without the usual ruby-crystal laser rod.

The development of tunnel diodes and four-layer diodes has placed extra emphasis on the properties of negative immittance as a circuit property. Here is discussed the controversy of two aspects of this property - negative resistance and negative conductance.

ON THE

PROPERTIES OF

 NEGATIVE IMMITTANCETile effect of negative resistance came into importance with the point-contact transistor. When $x_{0}>1$, a negative resistance appeared between any pair of its terminals as, for example, between emitter and base in the common-l)ase connection. This meant possible self-oscillation, which proved to be a disadvantage in designing stable amplifiers.

The advent of the junction tetrode enabled junction devices to take over the high-frequency field. In this component, as well as in the Esaki tummel diode, the property of negative-immittance took on increased importance.

There are growing misconceptions regarding the differences between negative resistance and negative conductance. These are clarified here, in their theoretical aspects and practical uses to which these components, e.g., the tumnel diode, can be put.

The current-voltage relations for a negative-conductance device are shown in Fig. 1. This is a curve commonly associated with a tumnel diode. If the voltage axis is taken horizontal, an " N-shaped" curve results (the Russians call this an "n-type" negative immittance) and the function is a single-ralued function of applied voltage. Similarly, the current-voltage relations for a negative resistance are shown in Fig. 2. Here, an "S-shaped" curve is formed which is single-valued in applied current.

Discussion

The slope of the negative-immittance section of Fig. 1 varies from zero at the ends A -A to a finite maximum value in the middle, whereas the slope of the corresponding section of Fig. 2 ranges from a minimum value to an infinite slope. In other words, whereas the negative-slope section of Fig, 1 has a maximum magnitude of slope in the mid-range, the corresponding section of Fig. 2 has a minimum magnitude of slope in the mid-range.

Since the slopes of both contours correspond to $d I / d V$, or conductances, the properties of these two types of devices of necessity must be widely diver-
gent. The range of negative conductance for Fig. 1 is from zero to a fixed magnitude, but the corresponding range of negative resistance is from a fixed magnitude to infinity. The range of negative resistance for Fig. 2 is from zero to a fixed magnitude.

If a negative immittance device is used to sulbtract out part of the positive immittance of an associated circuit element or combination, it is essential that it be used in the manner in which the negative immittance has an upper bound, as otherwise controlled cancellation is not possible. For this reason, amplifiers using devices like tunnel diodes are limited to shunt configuration with respect to the associated circuitry. The arrangement must provide completely stable operation at all frequencies but the desired operating frequency, and must possess the needed gain stability margin even at that frequency.

The negative-immittance phenomenon can be understood more fully from an examination of the behavior of a lictional device with typical loads. For example, in Fig. 3, an expanded view of the nega-tive-conductance area for a tumnel diode is shown along with 3 typical load lines. The line A corresponds to a resistance for which stable operation occurs, line B corresponds to the critical impedance at the inflection point of the curve, and line C to an unstable condition. The triple intersections at 3 independent points with line C have reduced to a triplepoint with line 13 and to a single point for the com-pletely-stable case.

If resistances are combined with a tunnel diode in a series configuration and then in a parallel conliguration, the significance of the difference between the two types of negative immittance can be clarified. When resistances are paralleled, the currents in them are summerl. Consequently, as the value of parallel resistance is decreased (conductance increased) and its current increases more and more rapidly, the slope of the combination in the area of interest changes from negative to zero and then to positive through the full length of the curve. If, on the other hand, the resistances are connected in series with the diode,

a curious situation develops. The slope of the nega-tive-conductance region gets greater and greater until finally it hecomes positive by passing through infinite slope. In the process, however, two corners are left which have negative slopes covering the full range from zero to negative infinity, Fig, +

This positive resistance region bracketed by two negative-immittance conners is important practically, since the negative immittances on the corners make it impossible to obtain stable operation in the positive region between. Or, the stabilization of a negative conductance cant only be achieved by the use of a shumt positive resistance, but not by the use of a series positive resistance.

Fig. 1: Curve of a currentvoltage relationship of a negative-conductance device

Fig. 3: Curves of the operation of a fictional device with typical loads.

Practical Circuit

By Dr. KEATS A. PULLEN, JR.
Ballistic Research Labs
Aberdeen Proving Ground, idd.

That this is physically a fact is readily observeable by testing a tunnel diode in the circuit shown in Fig. 5. The negative portion of the trace can be observed only if the series-metering resistance, R_{m},

NEGATIVE IMMITANCE (Concluded)

Fig. 4: Curves show the difference between uses of a tunnel diode with resistance combined with it in parallel (solid line) and in series (broken).
is appreciably less than a specified value, typically $1 / 2|g|$, and the source admittance G is greater than $2|g|$. When the sum $G+$ $\left(1 / R_{m}\right)<|g|$, the net con-
ductance of the complete circuit, the value of ($G+$ $\left.g+1 / R_{m}\right)$, will be positive throughout the operating range of the device, and the full trace can be seen on a cathode-ray oscilloscope connected as indicated. Otherwise, switching always occurs, and the negative region cannot be observed.

The belavior along load-line C in Fig. 3 has considerable similarity to the build-up curve of a dc generator in that a small change in voltage introduced from the center intersection causes a larger change in device current than is needed to maintain the voltage change. As a result, run-away action, carrying the operation to one of the outer intersections, occurs. The kind of slope rotation needed to shift the triple-
point for line B to 3 separate points on line C measures the immittance properties of the device that cause it to behave as either a negative conductance or a negative resistance.

TRANSSTOO "AND" CIRCUITS

Two "AND" CIRCUITs using transistors are shown in figure. Notice that the grounded-base configuration is used. In either case, the basic principle is the same as with diode circuits. The transistor conducts heavily in the absence of coinciding input signals, and the output is clamped at ground level. However, when a proper input signal is applied to all inputs, the emitter-base junction is reverse biased; the transistor is driven into cutoff; and the output rises to the full collector supply value. Isolation resistors R_{1}, R_{2}, and R_{3} are required to prevent interaction among the 3 signal sources. Their values are chosen in relation to R_{B}, so that reverse bias is obtained only when pulses are applied to all inputs simultaneously.

Since these circuits use a combination of resistors (for isolation), and a transistor for the AND action, they are known as transistor-resistor logic or TRL circuits.

In the above logic circuits, the output pulse polarity was the same as the input pulse polarity. For computer service, the pulse polarity is quite inmportant. However, there are other applications of these circuits wherein the polarity of the output has no special significance. In such cases, the transistor of the TRL circuit can be connected in the commonemitter connection, and the output will be inverted with respect to the input signals.

When better isolation between signal sources is needed, each signal is fed through a separate transistor to a common load. The transistors can be interconnected in parallel or in series, and depending on whether phase inversion between input and output can or cannot be allowed, the transistors can be connected in a conmon-emitter or a commonbase configuration. Also depending on the input pulse polarity, the transistors used could be NPN or PNP type.

The basic principle of the two AND circuits is the same as in diode types.

ENGNEERRS NOTEBOOK

\#68 USEFUL MATHEMATICAL APPROXIMATIONS

Many of these equations were cued in the vlf transmission. They play an important role in calculations involving refraction and absorption of such waves in the ionosphere. Of course the trigonometric identities are useful in ac circuit analysis, sampling and modulation techniques, etc. Many of the relationships are useful in statistical studies.

1. $\|!\cong n^{n} e^{-n} \sqrt{2 \pi n}$

This relation is known as Stirling's formula. The error for "greater than 10 is less than 1%.

In the following relations delta Δ is a very small quantity and gamma I' a very large quantity. luoth $د$ and I' being small or large in comparison.
2. $\sin (x \pm \Delta) \cong \sin x \pm \Delta \cos x$
3. (ors $(x \pm \Delta) \cong \cos x \pm \Delta \sin x$
4. $\tan (x \pm \Delta) \cong \tan x \pm \frac{\Delta}{\cos ^{2} x}$
5. $\sin \Delta \cong \Delta$
6. $(\cdot) \Delta \cong 1$
7. $\tan \Delta \cong \Delta$
8. $\sin ^{-1} \Delta \cong \Delta$
9. $\tan ^{-1} \Delta \cong \Delta$
10. $\sinh \Delta \cong \Delta$
11. rosh Δ N 1
12. tanh $\Delta \cong \Delta$
13. $\sinh ^{-1} \Delta \cong \Delta$
14. tanh $^{-1} \Delta \cong \Delta$
15. sinh $(x \pm \Delta) \cong \sinh x \pm \Delta \cosh x$
16. (osh $(x \pm \Delta) \cong \cosh x \pm \Delta \sinh x$
17. $\tanh (x \pm \Delta) \cong \frac{\tanh x}{1 \pm \Delta \tanh x}$
18. sinh $I^{\top} \cong \cosh I^{\top} \cong \frac{1}{2} e^{I^{\top}}$
19. tanh Γ N 1
20. $\sin (د \pm j A) \cong د \cosh A \pm j$ sinh A
21. $\operatorname{ros}(\Delta \pm j A) \cong \cosh A \pm j \Delta \sinh A$
22. $\tan (\Delta \pm j A) \cong \frac{2 \Delta \pm j \sinh 2 A}{1+\cosh 2 A}$
23. $(1 \pm \Delta)^{x} \cong 1 \pm x \Delta$, if $x>1$
24. $\frac{1}{(1 \pm \Delta)^{x}} \cong 1 \pm x \Delta$, if $x>1$
25. $r^{\Delta} \cong 1+\Delta$
26. $e^{-\Delta} \cong 1-3$
27. $\sqrt{A(A+J)} \cong A+\frac{\Delta}{2}$
28. $\sqrt{A \pm د} \cong \sqrt{A} \pm \frac{\Delta}{2 \sqrt{A}}$
29. $\ln (x \pm \Delta) \cong \ln x \pm \frac{\Delta}{x}-\frac{1}{2}\left(\frac{\Delta}{x}\right)^{2}$
30. $\ln (1 \pm \Delta) \cong \pm د-\frac{1}{2} \Delta^{2}$
31. $\sinh (A \pm j \Delta) \cong \sinh A \pm j \Delta \cosh A$
32. $\cosh (A \pm j د) \cong \cosh A \pm j \Delta \sinh A$
33. $\tanh (A \pm j د) \cong \frac{\tanh A \pm j \Delta}{1 \pm j د \tanh A}$
34. $\tanh (1 \pm j A) \cong 1$
35. $\sin (A \pm j \Gamma)$
$\cong \cosh I^{\vee} / \pm \tan ^{-1}(\cot A) \cong \frac{1}{2} e^{l} / \pm\left(\frac{\pi}{2}-A\right)$
36. $\cos \left(A \pm j \mathrm{I}^{\prime}\right)$

$$
\cong \cosh ^{\Gamma} / \pm \tan ^{-1}(\tan A) \cong \frac{1}{2} e^{r} / \pm A
$$

37. $\tan \left(A \pm j \Gamma^{\circ}\right) \cong \tanh 2 \Gamma / \pm 90^{\circ}$

$\$ \$$ for Circuit Designs

Have you come up with any simple or unique circuit designs lately? Do you think that they would be useful to fellow engineers? If so, why not send them to us for possible publication? We pay our usual space rates for those accepted. Please keep them as concise as possible and send to: Circuit Design Editor, ELECTRONIC INDUSTRIES, 56th \& Chestnut Sts., Philadelphia 39, Pa.

By ARTHUR L. PLEVY
Member Technical Staff
Surface Communication Division Radio Corp. of America. New York, N.Y.

A SPEEDY METHOD OF COMPUTING DIELECTRIC PROPERTIES

The search for specific dielectric materials has been speeded up by using a computer in conjunction with the Newton-Raphson method. This supplies the dielectric constants and losses quickly and accurately.

An increasing numper of sew melectric materials are available for microwave use. This has created a need for a fast, accurate method of determining the dielectric constant and attenuation. A method which can perform the data reduction has been adapted in a FORTRAN program. It is a variation of the shorted waveguide method of Bowie and Kelleher. The expression tan $(x) / x=c$ is solve d rapidly and accurately ly applying the Newton-Raphson iterative procedure to a related expression.

Dielectric constant and loss tangent are obtained algebraically without use of graphs and without regard to preset dimensions.

The standing-wave ratio and the dielectric and attenation constants are related by an expression derived by S. Roberts and A. von Hipple ${ }^{3}$:

$$
\begin{equation*}
\frac{\frac{E_{\min }}{E_{m a x}}-i \tan \frac{2 \pi X_{0}}{\lambda_{\theta}}}{1-i \frac{E_{m i n}}{E_{\max }} \tan \frac{2 \pi X_{0}}{\lambda_{y}}} \cdot \frac{\lambda_{\theta}}{i \underline{2} \pi l}=\frac{\operatorname{tanh\gamma d}}{\gamma d} . \tag{1}
\end{equation*}
$$

In this equation $E_{\text {min }} / E_{\text {max. }}$ is the standing-wave ratio, X_{0} is the distance from the sample face to an electric field strengtl minimum. $i_{n, n}$ is the guide wavelength, d is the thickness of the sample, and $\gamma=\alpha+i \beta$ is the complex propagation constant of the sample.
By restricting attention to materials with dissipation factor less than $0.1, \mathrm{~T} . \mathrm{W}$. Dakin and C. N. Works ${ }^{4}$ reduce Eq. 1 to
$\frac{\tan \beta d}{\beta d}=-\frac{\lambda_{0}}{2 \pi l}$ taln $\frac{2-\lambda_{0}}{\lambda_{d}}$
The expression for dielectric constant, E, becomes
$\mathrm{E}=\frac{\frac{1}{\lambda^{2} e}+\left(\frac{\beta d}{2 \pi d}\right)^{2}}{\frac{1}{\lambda^{2}{ }_{e}}+\frac{1}{\lambda^{2}{ }_{g}}} ;$
(3)
P. H. Gum

the dissipation factor is olstained from

$$
\begin{equation*}
\ln s \operatorname{la}_{1:!} \delta=\frac{\Delta X}{d} \cdot F_{1} \cdot F_{2} \tag{-1}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}=\frac{\frac{1}{\lambda^{2}}+\frac{1}{\lambda_{0}^{2}}-\frac{1}{\lambda_{0}^{2}} \cdot \frac{1}{\mathrm{~F}_{2}}}{\frac{1}{\lambda^{2}}+\frac{1}{\lambda_{0}^{2}}} \text { and } \\
& I_{2}=\frac{\operatorname{sel}\left(1+\tan ^{2} \frac{2 \pi \lambda_{0}}{\lambda_{0}}\right)}{\operatorname{\beta al}\left(1+\frac{\left.1 \tan ^{2} \beta l l\right)-\tan \beta d}{}(1)\right.} \tag{5}
\end{align*}
$$

In these expressions i_{c} is the cut-off wavelength, $\Delta \Lambda^{-}$ is the width of the standing wave, and E is the "uncorrected ${ }^{\circ}$ dielectric constant ${ }^{2}$.

Introducing stobstitutions

$$
\begin{align*}
& I^{\prime}=\left(\frac{\lambda}{\lambda_{c}}\right)^{2} \\
& x=\beta r l \tag{6}
\end{align*}
$$

where $\%$ is the frec-space wavelength, permits a compact presentation of Eq. 2 through 5 :

$$
\begin{align*}
& \frac{1: \tan (r)}{\lambda^{\prime}}=C_{1}, C_{1}=-\frac{\lambda_{0}}{2 \pi d} \tan \frac{2 \pi \cdot \lambda_{0}}{\lambda_{\theta}} \\
& \mathrm{K}=I^{\prime}+\left(1-P^{\prime}\right)\left(\frac{\lambda_{i l}}{2 \pi d}\right)^{2} x^{2} \tag{7}\\
& \text { oss } \tan \delta=\frac{\Delta .1}{d}\left(1-\frac{I^{2}}{L_{j}}\right)\left(\frac{x+x \tan ^{2} \frac{2 x \cdot \lambda_{0}}{\lambda_{0}}}{x+x \tan ^{2} x-\tan x}\right)
\end{align*}
$$

The parancters are easily determined. The difficulty is to olmain the quatity x. Table look-up.
B. A. Schoomer, Jr.

By PETER H. GUM
Research Mathematician U.S. Navy Research Laborators Washington 25, D.C.
and B. ALVA SCHOOMER, Jr.
Staff Member Arthur D. Little Acorn Park
Cambridge, Mass.
graphical ${ }^{2,6}$, and linear iterative ${ }^{5}$ procedures, and combinations of these ${ }^{1}$, have been used to cope with this problem. By applying the Newton-Raphson method to an expression to be clerived, a more efficient procedure is obtained whose convergence properties can be well established.

Mathematical Analysis

Denote by R_{n} the open interwal, or resion, defined bs

$$
\begin{align*}
& R_{n}=\left(\frac{2 n-1}{2} \pi, \frac{2 n+1}{2} \pi\right), " \geq 1 \\
& R_{0}=\left(0, \frac{\pi}{2}\right) . \tag{8}
\end{align*}
$$

Within any region $\mathrm{R}_{n}, n \geqslant 1$, the function

$$
\begin{equation*}
g_{n}(x)=\frac{\text { tan }(x)}{x}, x \in R_{n} \tag{9}
\end{equation*}
$$

is continuous, has an inflection point at $n \pi$. and diverges to $-\infty$ and $+\infty$ at the respective enfl-points of the region. $G_{n}(x)$ is almost periodic with period π; its graph resembles that of the tansent function. For Ro

$$
\begin{equation*}
\lim _{x \rightarrow 0} \mu_{0}(x)=1 \tag{10}
\end{equation*}
$$

Since in

$$
\begin{equation*}
!_{n}(x)-r_{1}=0 \tag{II}
\end{equation*}
$$

the variable x appears both explicitly and as the argument of a transcendental function, there is no tractable analytical inverse in terms of which x can be found directly. An iterative solution is a natural alternative. However, periodicity and the presence of inflection points caln introduce serious difficulties, although with an accurate first estimate of the root by a search method it is possible to use, for example, the Newton-Raphson method for later refinement. This approach wastes time and is unrelialle. This is due largely to a lack of knowledge as to the accuracy required of the first estimate. This estimate must be accurate to assure comvergence of the iterative procedure.

Another approach circuments many of these difficulties. Set

$$
\begin{equation*}
y=\tan (x-\mu \pi) \tag{12}
\end{equation*}
$$

whence

$$
\begin{equation*}
x=\tan ^{-1}!+n \pi \tag{1:3}
\end{equation*}
$$

Define $f_{n}(y)$ by sulstitution for r according to Eq. (13) in the reciprocal of $g_{n}(x)$:

Equipment used for dielectric determinations at test frequencies from 8.5 to 11 CC and temperatures to 1650 degrees Centigrade.

 Each chart shows results for two samples of beryllium oxide. These are typical cases. Charts are courtesy of Melpar, Inc.

TEMPERATURE, DEGREES FAHRENHEIT
a reprint of this article can be obtained
by writing on company letterhead to
ELECTRONIC INDUSTRIES
Chestnut \& 56th Sts., Phila. 39, Pa.

$$
\begin{equation*}
f_{n}(y)=\frac{\tan ^{-1}(y)}{y}+\frac{n \pi}{y} \tag{1-1}
\end{equation*}
$$

The expression whose root is sought is

$$
\begin{equation*}
f_{n}(y)-c=0, c=\frac{1}{C_{1}} . \tag{15}
\end{equation*}
$$

From Eq. (14) it is clear that

$$
\begin{align*}
& f_{0}(y)=f_{0}(-y) \\
& \lim _{y \rightarrow 0} f_{c}(y)=1 \tag{1,i}\\
& \lim _{\rightarrow \pm \infty} f_{0}(y)=+0
\end{align*}
$$

whence, for $n>0$,

$$
\begin{align*}
& \lim _{y \rightarrow \pm 0} f_{n}(y)= \pm \infty \\
& \lim _{y \rightarrow \pm \infty} f_{n}(y)= \pm 0 \tag{17}
\end{align*}
$$

A simple FOR'TRAN code of Eq. 14 run on an IBM 7090 reveals that the graph of $f_{o}(y)$ resembles a $w \cdot i t c h$, wherens for $n>0$, the graph of $f_{n}(y)$ resembles the hyperbola $r y=$ constant. The latter suggests a mumber of claracteristics of the derivatives of $f_{n}\left(y^{\prime}\right)$:

$$
\begin{align*}
& f_{n}^{\prime}(y)<0, y \neq 0 \\
& f^{\prime}{ }_{n}(y) \cdot f^{\prime \prime}{ }_{n}(y) \neq 0, y \neq 0 . \tag{IN}
\end{align*}
$$

Furthermore, for y "near" 0 ,

$$
\begin{equation*}
f_{n}(y) \cdot f^{\prime \prime}{ }_{n}(y)>0, y \rightarrow 0 . \tag{19}
\end{equation*}
$$

The Newton-Raphson method is especially well suited to solving Eq. 15. Most importantly, it can be proven analytically that where conditions such as E». 18 and 19 prevail, the method converges. Furthermore, this occurs quadratically, i.e., the number of significant figures obtained with each iteration increases geometrically. The initial point is easily ohtained with reference to Eq. 19.

The case $n=0$ must be handled as a special one, due to the presence of an inflection point for $f_{o}(y)$. However, the rapidity of table look-up can be used to advantage, with later refinement by the NewtonKaphson method.

The Code

In practice, an estimated dielectric constant is provided as iuput from which an approximate x° is calculated. This x is used to find n, thus establishing the region R_{n} within which the correct x probably lies. However, in order to accommodate large errors in these estimates, the first solution is actually found in R_{n-2}. The solution in R_{n-1} is then found starting with the point obtained by adding π to the solution found in R_{n-2}. Solutions are similarly found in R_{n}, R_{n+1} and R_{n+2}. Dielectric and attenuation constants appropriate to the x values obtained in each of the 5 regions are listed as found. For each batch of data a final report is also produced listing only that dielectric constant actually computed that agrees hest with the input estimate.
(Continued on pagc 9+)

CM. 6312

CINCH MANUFACTURING COMPANY

1026 South Homan Avenue, Chicago 24, Illinois
Plants located in Chicago. Illinois; Shelbyville, Indiana: City of Industry. California, and St. Louis. Missouri.

A DIVISION OF UNITED-CARR FASTENER CORPORATION, BOSTON, MASSACHUSETTS

WHY PAY
 THE PRICE OF A SAGE PREMIUM PERFORMANCE POWER RESISTOR?

Here are 5 convincing reasons:

(1) MINIATURIZATION Ounce for ounce, square inch for square inch, no other type resistor comes close in matching these power ratings- $14,25,50$ watts.
(2) PRECISION \& STABILITY 1% tolerance, paced by MIL-R-18546C usage, and $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ T.C. are standard everyday features. Specials are available to $.5 \%$, $.25 \%, .1 \%$ and $.05 \%$ accuracy; and fractional values can be made well below .1 ohm .
(3) ENVIRONMENTAL SUPERIORITY Type M chassis mount resistors are strides ahead of other components in surviving today's space oriented requirements such as temperature extremes, shock, vibration, salt water immersion and humidity. For example, tens of cycles of moisture resistance testing (voltage polarized) typically cause no more than slight fractional percent resistance change.
(4) ESTABLISHED RELIABILITY Inquire about special screening test methods developed for Titan and Polaris programs.
5 PRICE Yes, all said and done, you'll find price is the one exception to all this talk about premium features.

DIELECTRIC PROPERTIES (Concluded)

Five significant ligures are preserved throughout the computations, with double-precision used in places as a precaution. Fifteen input parameters are needed ; they are listed along with the results. Seven sets of data. with dielectric constant estimates ranging from 5 to 3000 , and with the additional output of the results of each itcration, were processed by an IBM 7090 in less than 0.01 hours. The iterative procedure usually provicles 5 significant figures in 4 iterations.

Summary

Use of the Newton-Raphson iterative method to solve E (1. 15 provides a rapid, accurate, and assured method of funding .t to satisfy Eq. 11. This permits an accurate algelbaic determination of the dielectric constant and loss tangent according to Eq. 7.

The work described here was performed under contracts with Melpar, Inc., Falls Church, V'a.

References

1. "A Tentative Methol for Measuring Dielectric Constant and loss at Microwave Frequencies," submitted to American Society for Tisting Matcrials, (ommittee D.9, Subcommittee 5, Section B, Sept 21, 1959.
2. Howie: I). M., and K. S. Kelleher. "Rapid Measurement of Dielectric (onstant and Loss Tangent," I $\dot{R} E$ Transactions on Micro zave Theory and Trihniques, July, 1956.
3. Robrets. S., and A. von Mipple, "A New Method for Measuring) ielectric constant and Loss in the Range of Centimeter Waves." . Appl. Phys. 17. 610 (1946).
4. Nakin, ${ }^{\circ}$ and (${ }^{\circ}$. Works, "Microwave Dielcetric Measure 5. Gray. D, (.. "Frogramming for Dielectric Constants." E/ec. tronic Industrics. Aug., 1961. Compatation of Dielectric R Constants," J. Appl. Phys., 23.505 (1957)

WMATM NEEV

THREE-MODE SWEEP OSCHLATORS

Nodel 691A (1-2GC) and Model 692A (2-4Gc) have three swecp-operation modes. In the normal sweep) mode, the output frequency is swept in either direction between two continuously adjustable limits. In the $\Delta \mathrm{F}$ mode, frequency is swept about an adjustable center freduency. Two inclependently adjustable frequency markers amplitude modulate the output in both the normal or $\triangle \mathrm{F}$ modes, an especially useful feature when making an $\mathrm{X}-\mathrm{Y}$ recording or observing an oscilloscope sweep. The frequencymarker controls can also be used to establish sweep limits for a third operating mode which is similar to the normal mocle. Pushbutton mode selection makes it easy to first sweep the entire pass band of a filter (for example), and then make an expanded sweep of the filter's rejection region-without having to re-adjust sweep limits.
(Continucd on page 98)

COMPLETE NEW PRODUCTION FACILITIES FOR

AlSiMag beryllia ceramics are now produced in a new separate facility. This plant was engineered specifically and exclusively for beryllia ceramics. It has its own material preparation, fabrication, firing, metallizing, grinding and inspection facilities. In the range of $100^{\circ} \mathrm{C}$. high purity dense AISiMag beryllia has a thermal conductivity 10 times greater than dense alumina. It is an excellent electrical insulator. At $10,000 \mathrm{MC}$ electrical losses are about one-fourth that of alumina. A Property Chart, sent on request, will give you details.
These outstanding characteristics of AlSiMag beryllia suggest electronic applications such as resistor cores, substrates, heat sinks, semi-conductor packages, microwave windows, envelopes and other places where heat dissipation and low electrical losses are important.
AlSiMag beryllia ceramics are suggested only when other ceramic compositions are determined to be in-
adequate, because the raw material is costly and fabrication is expensive. However, there are many applications where AlSiMag beryllia ceramics have a well es. tablished position. lllustrated here are examples of some of these applications where beryllia ceramics are finding increasing acceptance.
With the metallization techniques worked out by our technical staff, strong hermetic seals with high thermal conductivity are being produced. Flat, thin AlSiMag beryllia substrates can be had with a smooth glaze resulting in one micro-inch or better surface finishes All AlSiMag beryllia parts are carefully cleaned, packaged and labeled to permit appropriate handling on arrival. No-charge samples are generally not available in AlsiMag beryllia ceramics. Prototype orders are sup. plied to your specifications at a definite quoted price. Technical data will be sent on request.

American Lava Corporation

PHONE 265-3411, CHATTANOOGA 5, TENN
A SUBSIDIARY OF

3m COMPANY

[^4]

The 3 most stubborn men in the switch field

Just try lowering a switch standard on Daven's Quality Control Supervisors.

That's when they lower the boom. On the subject of quality control this trio is doggedly stubborn, often downright unreasonable...but oh, so right.

They know darn well that no instrument is more reliable thian the switch that controls it. And if that switch bears the name Daven, they are determined to make sure it never lets the instrument down.

They have precedent, too. For over 30 years, Daven switches have proven their reliability. No
breakdowns. No spec shifts in operation. The reasons: solid silver alloy contacts and wiper arms; patented enclosed "knee-action" silver alloy multileaf rotor blades; high-grade, accurately machined dielectric; accurate contact positioning; and switch stops that are independent of switch blades.

There is a Daven precision rotary step-type circuit switch tor every instrument, every application.... many available off-the-shelf from your local distributor, others on direct order from the factory.

Write today for your Daven Switch catalog!

LIVINGSTON, NEW JERSEY (Area code 201) WYman 2-4300 TWX 201 992-7356 Cable: Daven Livingston, N.J.

SOLPD STATE

Men of vision thrive here. And it takes men of vision to cope with today's electronics and space problems. Space in more ways than just up. Space problems of a different nature plague the manufacturer who must expand, but hasn't the land to expand on.

Here in Florida we have the space, the climate, the work force. Florida has more to offer electronics firms than any other area on earth. Men think better where life is pleasant, where off hours can be devoted to just plain living-and to just plain thinking.

Yes, Florida is a Solid State in Electronics. Already the sun, Mother of Life, shines on over sixty thriving electronics firms in our busy state.

Cape Canaveral is here, too, with its massive, awesome missiles blasting off to make space history. Electronics makes possible every thrust into the universe. Every hope of getting to the moon depends upon electronics-and the first American to the moon will definitely soar to history from Florida.

Engineers and their families dream of living here in Florida. Give them this dream by moving your plant here. Nurture the brains that will give your business a greater and greater stature in this, the Electronics Age.

For complete details of the many advantages Florida offers the Electronics Industry, write us. Let us tell you why some of the greatest names in electronics have impressive plants here in Florida.

FLORIDA'S ASSURANCE POLICY

"You have my personal assurance of a sunny business climate here in Florida. You have positive assurance of every aid and assistance possible from our Florida Development Commission and from the overwhelming majority of our businessmen. industrialists, and financiers. We have everything to make your large or small enterprise healthy and successful. Write, wire, or phone us TODAY. The only thing better than a FLORIDA varation is having your plant here."

Investigate

Florida

...AN 11 BILLION DOLLAR MARKET

(1DEAL CUSTOM STBiamatates.

Strip solid or stranded wire easily-with no wire nicxs, insulation scratches-no waste or rejects. Unique matched blades, drilled to exact wire size on watchmaker's equipment, plus colleting action, help you meet high-confidence standards even on toughest insulation. Three models-for Type E Teflon, Type EE Teflon and general purpose plastic and fibre-glass insulation. Sizes for 10 to 14,16 to 26 , or 26 to 30 wire. Optional transparent wire stop adjusts to strip exact insulation length. Send coupon for full information.
IDEAL INDUSTRIES, Inc.. S127.I Becker Pl., Sycamore, III.
Please send me my free copy of Praduction Wire Strippers Catalog
Name_
Company
Address
City_ Zone__ State

SOLD THRU AMERICA'S LEADING DISTRIBUTORS
In Canada: IDI Electric: (Canada) Ltd., Ajax, Onlar.'o

THREE-MODE SWEEP OSCILLATORS (Continued)

Both oscillators use electrically-controllerl 1'L diodes for modulation and attenuation, making it possil)le to remotely-control output amplitude (for leveling as an example), as well as output frepucney. Hewlett-Packard Co., 1501 Page Mill Rd., l'alu Alto, Calif.

The output freq. can sweep in either direction between an adjustable center freq. The AM output is useful in X-Y recording.

NUMERICAL CONTROL

Auromatic Tare l'conch allows machinists to generate a control tape while making the original part.
Working from a blueprint, the operator dials in the information needed to produce the part. Since the part and tape are mate simultaneously, the possibility of dialing incorrect information is reduced. After the tape is cut. it can be used to make additional tapes.

The tape unit and associated mill should find use in morlel shops where its flexibility will reduce time in making and modifying precision parts. Hydrat Point Dir.. Moog Servocontrols, Inc., Proner Airport. East Aurora, N. Y.

Using the tape unit (right) the operator dials in part information. The tape produced is used to make subsequent parts.

Guess how many Honeywell Meters in this fishbowl. Win a baby shark.

Imagine the fun of having your very own shark! Imagine the delighted laughter of neighbors when they discover it in your swimming pool! All you do is guess how many Honeywell miniature meters are in that fishbowl. Come closest, and the shark is yours for life! (Why the contest? To dramatize how many different miniature meters we make-most in the business-and just how miniature our miniatures are. Like the HS-1 Ruggedized that shrugs off vibra-
tion, is immune to dust and moisture; the MCE-1 Edgewise; the stylish MM-1 Medalist meter; and the new, square-shaped MS-1.) Entries must be postmarked before midnight, Nov. 15, 1963. In case of tie, earliest postmark wins. People who work for Honeywell may compete but we warn them: they won't win. Send your guess to Honeywell, Precision Meter Division, Manchester, N.H. While you're at it, ask for our latest catalog. Fascinating poolside reading.

FUSETRON dual-element fuses time-delay
type

> hirmien wurges occur. The fure provent needlest outhgen ly -safely holding atarting curruntr or aurge, - yot they provide nufe, Donitive predection wewiant ihart-ciraulis or continned overiourfs-

BUSS: the complete line of fuses

NEW TRICKS WITH STROBES

By syenchronizing the light FLASH of a stroboscope with a cyclic motion, engineers can examine every detail of a machine's behavior at tens of thousands rpm.

Three new accessories extend the use and versatility of the strole. They are a photoelectric pickoff. a flash delay and linear speed wheel.

Photoelectric Pickoff

Developed by General Radio Co. the photoelectric pickoff consists of a small lamp, a photocell, an optical system-all in a cylindrical housing -plus an output cable and a flexible. multiple-joint linkage system. Usually, this accessory is clamper near the observed object, and the lamp is pointed. A strip of reflecting lape placed on the object reflects light

Photoelectric pickoff (right) senses light reflecting from moving object, and sends trigger pulse to strobe (left) via flash delay. Flash delay powers pickoff, amplifies pulse, and introduces adiustable time delay for phase control of flash. User can observe moving object at any point.

to the photocell during each revolution, then sends a trigger pulse to the strobe.

The photocell must be placed within an inch or so of the rotating object-depending on ambient light, speed, and tape or object reflectivity. High speeds around $100,000 \mathrm{rpm}$ are no problem for the pickoff-strobe combination.

The human eye is unable to hold atn image for more than a fraction of a second at very low speeds. Then we get flicker. To get around this, three lapes spaced around the observed object will make the strobe flash three times faster. The multiple image may be preferable to flicker.

If the photoelectric pickoff is used with an electronic counter for speed measure, six tapes and a 10 -second commting time produce an rpm readont (as would 60 tapes and a oncsecond count).
Flash Delay
A flash should be producible at

STROBE TRICKS (Concluded)

any point in the cycle. For this, another accessory-the flash delay-is comnected to the pickoff output, to delay the trigger pulse. Delay is widely adjustable, and the user can easily phase the flash to show the moving object at any point in its motion.

The flash delay, in addition to delaying the trigger pulse, also amplifies the pulse, which otherwise would not be strong enough to fire the strobe. It also furnishes power to the pickoff.

Linear Speed Wheel

Another gadget-the linear speed wheel-extends the strobe's use as a tachometer. Flash rate is adjusted manually until flash and motion are in synch: rpm is read from the strobe dial. Linear speed in feet-perminute is sometimes required. The

AIR DEIECCTRIC CABLE

\ New air dielectric cable ('Type 119 Heliax) which can be used for high power communication systems up to 9.50 mc has been amounced by the Andrew Corp., Clicago, Ill. It

Wheel, a black nylon disk with a White radial stripe, converts rpm to ipme. When in contact with a moving surface. the disk turns at a rate related to the linear speed of the surface. Wheel circumference allow: fuick conversion.

H9 Heliax cable has a 5 in . dia. and a power handling capability of 826 kw .
is the largest known flexible, air diclectric cable available for high power installations. It has a 5 im . diameter and a power handling capability of 826 kw .

The convoluted conductors permit easy bending around obstructions. simplifying installation and eliminating discontinuities found in broken length installations. Produced in continuous lengths, Type H 9 is available in lengtlis up to 1.000 ft . (shipping reel capacity). It may be readlily formed to a radius of 50 in .

Pressure tight flanged end fittings for Type H9 are designed and prodluced to assure maximum peak power service and low attennation.

Type H9 Heliax may be ordered with a polyethylene outer jacket for extreme envirommental protection or direct burial. End fittings may be factory attached or readily assembled to the Heliax in the field.

BUSS FUSEHOLDERS

- LAMP INDICATING SERIES HK
AND HJ FOR
$1 / 4 \times 1$ and $1 / 4 \times 1 / 4$

Pcovilin guick puitive vintel idmlifigtiotio of
 figat to be revidls weint

Bayenet iype kybb-nalided bods-atrohg, chil apring provide popitive cpntart on enels of frape Fu iohelder desifped to Fithataind wibration suih As occurs in sireratt hpplicationit Terminate bolt meethinically an well at by soldar: Haldar cim be unet in paricls ip th 316 inchan thites.

 Circle 41 on Inquiry Card

Miniature
Sub-Miniature Ultra-Miniature

Long Life-lo 1 million operations depending on Series
Low Contact Resistance-. 004 ohms typical Insulation Resistance-over 50,000 megohms typical

[^5]
AUTOMAICC RELAY TEST SET

A console type relay test set for automatically checking up to 6 relays with one program setting has been cleveloped ly Associated Research, Inc., Chicago, Ill.

The new unit (Model 8555) handles relays with contact arrangements from SPDT through 6-pole double throw. Relays may be single coil non-polarized. single coil polarized, double coil polarized, latching or non-latching.
The Model 8555 will measure pull-in voltage or current. release voltage or current, operate time, release time, coil resistance, insulation resistance, dielectric strength, contact resistance, contact bounce on operate and contact bounce on release.
It will operate completely unattended and supply a printed or punch record giving the serial number of the relay, the test identification, measured value and pass or fail information.
To speed the testing of a large number of relays, the tester provides for the connection of 6 relays at a time through a scammer to the input of the tester. Tester and scamner operate so that one relay is completely tested before the scanner moves to the next position.

The set is of modular design. Each module is a self-contained integrated package, a complete functional unit, which is mounted on pull-outt slides and plugged into the appropriate input and output channels.

Data regarding type of relay to be tested and the operating parameters are programmed with digital dials on left panel. Independent pass-fail limits for each test are set on the digital dials on the right panel. Photo shows one fixture in place holding 3 relays and the other only partially loaded.

1,000,000,000 Why's

In data processing machines, in radar installations, in missile guidance systems-in well over 1 billion electrical-electronic circuits, A-MP* Taper products rate first choice. And with good reason. Maximum Density-An A-MP termination, just slightly thicker than the wire insulation diameter, permits maximum circuit concentration. Provides greater space freedom for design requirements of other vital components.
Front-end Fitness-AMP's precision taper creates peak mechanical and electrical characteristics. It makes the pins self-cleaning and self-locking. Makes sure they stay put under the most gruelling operating conditions.
Compression-crimp Consistency-Quick, precise attachment by matching crimping tools eliminates oxide creep, burnt and brittle insulation, cold solder joints. Assures uniformity throughout the connections, and at a lower total installed cost than any other method.

Broadest Selection-With AMP you choose from the most complete line of taper products in the industry. All types of pins-stamped and formed, uninsulated and insulation piercing types, screw machine with insulation support and pre-insulated Diamond Grip. One and two piece stackable taper blocks in standard configurations of 10, 20 and 30 cavities. Plus a long list of companion items, such as vertical entrance blocks, taper bus bar and taper tab blocks.
For all maximum density, high reliability circuits, choose A.MP Taper products. Complete information available on request.
-trademark ol amp incorporateo.
 Australia - Canada - England - France - Holland - Italy - Japan - Mexico - Wen Germany

for Engineers.

Film Resistor

tine 1) $\begin{gathered}\text { series of precision tilm resis- }\end{gathered}$ wors have toierances to ($0.01 / \mathrm{h}$ and temp. coellicients standardized at 20 pmon. They are also avalable at 15,10 , and 5 pmon, meeting applicable specs. of Mil-K105091). Nominal TC can be selected, and values of 0 ppen or a wide variety of values irom -100 to $+1000 \mathrm{ppms} /{ }^{\circ} \mathrm{C}$ are wailable. Kesistance range is lomes to 100k!. Angstrohm Precision Ine.. $73+1$ (areenbush Ave., N. Hollywood. Calif.

Circle 130 on Inquiry Card

Piezo Accelerometer

The capabilities of Type +280 piezoelectric accelerometer, which combines integral impedance-matching clectronics and the sensing element into a single miniature package, are described in bulletin t-280 irom Consolidated Electrodynamics Corp.. a subs of Bell \& Howell, 3er) Sierra Madre \illa, Pasalena, Calii. The minstrument permits direct readont and recording of the output signal without intervening electronic equipment.

Circle 131 on inquiry Card

Tape Reader

Specs and operating information on model 52 periorated-tape reader with continuous tape-loop cartridge are given in this brochure. Contintoms tape-loop cartrifge allows tape to the drawn from the inside suriace of a red and rewound on the outside. Reader is suited to computer programming and control and checkont uses. logic circuits detect malfunctions. Cook Filectric Co., Datat-stor Div., 81010 X. Monticello Are., Skokie. Ill.

Circle 132 on Inquiry Card

SSB Transmitter

Tect. data is avalable on a new 50kw. h-i. SSl: transmitter. Featuring reduced size and weight, the type MST transmitter is hased on the clesign of proven transmitters and linear power amplifiers. Completely housed in 3 standard cabinets. the unit is atir cooled, provides antomatic thming ower 10 pre-set channds, and has low distortion. Silicon-controlled rectifiers and transistors are used in all power supplies. Marketing Dept., W'estinghouse Electronics Biv. Bow 1897. Baltimore 3. Id.

$$
\text { Circle } 133 \text { on Inquiry Card }
$$

Thermoelectric Modules

Thermoelectric modules consisting of several couples arranged electrically in series and thermally in parallel are described in this 2 -page publication. Tech.) ata $54-768$ gives data on uses, dimensions, plus typical characteristics. Special Products Dept., Semiconductor Div., Westinghouse Electric Corp., Youngwoorl, Ia.

Circle 134 on Inquiry Card

Photoelectric Components

The 32-page Catalog A eescribes photoclectric athe atutomation componemts. including miniature tubular scanters, proximity semsors, miniature scammers, explo-sion-prooi scamers, long-range systems, scamer relay systems, electronic imers, rototmers, ankl clectonic relays. Complete data includes detailed description of each item. dimension drawings, photograph, electrical specs., installation methonls, adjustments. weight and prices. Farmer belectic Products Co. Teeh. Circle Natick. Mass.

> Circle I35 on Inquiry Card

Connector Slide Rule

The connector selector circular slide rule enables the circuit designer to choose foom 40 pats when desiguing crimp-type comicetors. Over 120 combinations oi wire size. mating. and monting styles are available. Nso offered are deata sluects griving specs.. dimensional outline drawings, and other features of Nicrocrimp coaxial connectors. Microdot lace, 2?0 l'asalena . Tre., So. Pasadena, Calif.

Circle 136 on Inquiry Card

Magnet Charger

Tech. information and application data on a low-voltage magnet charger are given in this bulletin. The RFI. Momel 2470 is capable of saturating all the Noneo as well as the newer barimm-ferrite compromeds. Output emi is adjustable in 7 steps irom 35 to 150 . Test \& Service Products Div.. Radio Frefuency Laborattorics. Inc. Boomton, X. J.

Circle 137 on Inquiry Card

Solid-State Counter

Information is available on a solidstate frey. counter. Model +EX15A. prowneed by General Electric Co. and Computer Seasurements (0 . It is fully transistorized. coyers all irems. from 10 c ps to $\overline{5}(\mathrm{H}) \mathrm{MC}$ comimuonsly without extra heads, phag-ins or modules. Highly accurate. Commmication Products Dept. Ciencral Electric Co., Lyuchburg. Va.

Circle 138 on Inquiry Card

Commutator and Motor Upkeep

Commmator and motor maintenance products designed for in-place use, is the subject of this 8 -page color brochure. It describes artificial ahrasives. commutator resurfacers, brush seaters and flexible abrasives designed for copper removal. seatimg of brushes, cleaning and burnishing. Information on selecting grade and size is given. Also inclucled are data and specs. on precision grinders. mica undercutting equipment, and other small tools. Theal Industries. Inc. 5180 Becker Pl., Sycamore. III.

Circle 139 on Inquiry Card

Microwave Diode

Data Sheet $f 0$ on on ceramic cartridge diodes lists many new mixer and video detector dioses in high burnome hernetically saled and high temp. ratings. Data Sheet Xos. Clom lists many newer and higher burnont types in addition to the established ! N8.30 and 1×831 series. Dicroware procurement and engineering persomel should find this literature valuable. Alpha Microwate. Inc., 381 Filliot St., Newton Cpper Falls of, Mass.

Circle 140 on Inquiry Card

Gaussmeter Adapter

Model MXA-1 is a gatussmeter adapter for a de IT\M. It consists of a magnetic sensor, power supply, and control system. The device is calibrated to have all output of $1 \mathrm{mv} / 100$ gaths. Provision is made for incrasing this sensitivity to 3mw/100 ganss. Readoun is accomplished by comneeting the unit to any high-impedance do
 aud it is usciul to 30 kilogatuss. Data awailable from Scientific Colmobus, Inc.. $8+0$ Kimear Kd., Columbus 12 . ()hio.

Circle 141 on Inquiry Card

Research Laser

Model 3166 is composed of : all optical pumpiner lead complete with ruby liser crestal and matehinge xemon thath lamp: a basic 10,000 Joule capacitor module, variable in 100 Joule increments, or a 12,000 Joule module with 1ORO Joule increments: a Sks. 0.5 a . charge and control untit: and a trigger generator. Additional $[0,(1)(H)$ I and 12.000 I capacitor moxlules can be added. \} 1 { } ^ { ith } minor adjustments, the pumber ine cavity will accept ruby, glass, Hooride and oxide rods from $1 / 4$ to $3 / 4 \mathrm{in}$. dia. and in 1-8 in. lemeths. \backslash drlitional information from Katlation Inc.. Mellooume, Fla.

Circle 142 on Inquiry Card

VHF Accelerometers

Specs. and detailed performance characteristies of the latest models in a series of high sensitivity. VHF micro-miniature accelerometers are incluked in data sheet T-133. Diagrams and photos and a 1 to 50 unit price list are given. Columbia Research Laboratories, Ine.. Macbade Blvol. \& Bullens I ane, Worllyn, Pa.

Circle 143 on Inquiry Card

Driving Motors

Data sheet describes standaded Slo-Syn driving motors with a $72 \mathrm{kr} M \pm 10^{\prime \prime} \mathrm{m}$ shatt speed irom either de or high-ireg. power sources. The new 50 and 1.50 oz.-in. de Slo-Syn Motors are operated irom a 2Rvale $\pm 5 \%$ imput or from a 120 v., 2010 1000 CPS source. Superior Electric Co., Bristol. Comn.

Circle 144 on Inquiry Card

resistance:-a-1?

?

Not quite. But it's no trick at all to get values as high as 10^{14} ohms with famous Victoreen Hi-Meg Resistors, and input resistances to 10^{15} ohms with Victoreen Electrometer Tubes. They belong in your circuit if you demand exotic performance at a realistic price.

VICTOREEN

INSTABILITY OF THE DC LEVEL of electrometer tubes, particularly in a direct-coupled amplifier, has long been a disconcerting problem for design engineers. One factor contributing to this instability is the result of simultaneous application of plate voltage and filament voltage. Even the 10 mA filaments commonly used in these tubes require up to 1 second to come to full emission temperature. During this time the tube is operating in an emission-limited mode. Resulting instability may require from a few seconds to several hours for correction.

Victoreen has produced two Thermal Time Delay Relays to prevent this destabilization: The VX-10 and VX-69, each of which automatically provides approximately 1 second delay in the application of plate voltages.

Due to thehigh leakage resistance ($10^{15} \mathrm{ohms}$) of the open contacts, these Thermal Time Delay Relays provide excellent means for remote switching of Hi-Meg Resistors and other high resistance circuits. This is particularly useful when a multirange radiation detector must be located in a high radiation field precluding the possibility of manually adjusting zero or changing ranges. VX-69 provides isolation between thermal element and relay contacts, permits the switching of circuits which have no common electrical connection. VX-10 has control circuit and contact circuits electrically connected, making them particularly suitable for series operation with electrometer tubes. Filament reading for these tubes is nominally 1.25 volts at 10 mA .

Full details on request to Applications Engineering Department the victoreen instrument company 5806 Hough Ave., Cleveland 3, Ohio, U. S. A.

EASY ADAPTABILITY TO PARTICULAR NEEDS

[^6]> FOR MORE INFORMATION ON EITHER MODEL OF THIS NEW OSCILLOSCOPE AND ANY COMBINATION OF PLUG-IN UNITS, PLEASE CALL YOUR TEKTRONIX FIELD ENGINEER.

COUS: TEKTRONIX - OVERSEAS DISTRIBUTORS IN 27 COUNTRIES
Tektronix Field Offices: in principal cities in the United States. Consult Tclephone Directory • Tektronix Limited, Guernsey, Channellslands Tektronix Canada L!d.: Montreal, Quebec • Toronto (Willo.vdale), Ontario - Tektronix Australia Pty. Limited, Sydney, New South Wales

resistance $=\infty-1$ -

(2, Conct

Not quite. But it's no trick at all to get values as high as 10^{14} ohms with famous Victoreen Hi-Meg Resistors, and input resistances to 10^{15} ohms with Victoreen Electrometer Tubes. They belong in your circuit if you demand exotic performance at a realistic price.

VICTOREEN

THE VICTOREEN INSTRUMENT COMPANY
5806 HOUGH AVENUE • CLEVELAND 3, OHIO, U.S.A.
Victoreen European Office: P. O. Box 654. The Hague

INSTABILITY OF THE DC LEVEL of electrometer tubes, particularly in a direct-coupled amplifier, has long been a disconcerting problem for design engineers. One factor contributing to this instability is the result of simultaneous application of plate voltage and filament voltage. Even the 10 mA filaments commonly used in these tubes require up to 1 second to come to full emission temperature. During this time the tube is operating in an emission-limited mode. Resulting instability may require from a few seconds to several hours for correction.

Victoreen has produced two Thermal Time Delay Relays to prevent this destabilization: The VX-10 and VX-69, each of which automatically provides approximately 1 second delay in the application of plate voltages.

Due to the high leakageresistance ($10^{15} \mathrm{ohms}$) of the open contacts, these Thermal Time Delay Relays provide excellent means for remote switching of Hi-Meg Resistors and other high resistance circuits. This is particularly useful when a multirange radiation detector must be located in a high radiation field precluding the possibility of manually adjusting zero or changing ranges. VX-69 provides isolation between thermal element and relay contacts, permits the switching of circuits which have no common electrical connection. VX-10 has control circuit and contact circuits electrically connected, making them particularly suitable for series operation with electrometer tubes. Filament reading for these tubes is nominally 1.25 volts at 10 mA .

Full details on request to Applications Engineering Department THE VICTOREEN INSTRUMENT COMPANY 5806 Hough Ave., Cleveland 3, Ohio, U.S.A.

Clear, clean control signals are now readily available when you specify Dekoron Computer Twist-Ex thermocouple extension wire.

Twisted pair construction enables the EDP designer to increase wire density and cut installed costs substantially. Twisted pairs with total coverage shield of Mylaro tape with aluminum backing in contact with bare copper drain wire provides maximum electrostatic and electromagnetic noise rejection.

Dekoron Computer Twist-Ex is also available in cables (lower left) of from 4 to 36 pairs per cable in up to 1000 ft . lengths. Wire insulation and cable jackets are color coded to ISA standards. Engineered to highest standards, Dekoron computer wire products assure cleaner signals and lower installed costs. Samuel Moore \& Co., Mantua, Ohio.
SAMUEL AOMORE
Circle 45 on Inquiry Cord

UNIVERSAL COUNTER-TIMER

SOLID STATE! VERSATILE!

High quality at a low price!
Here is the smallest rack mount counter-timer available! The unique transistorized circuitry operates with lower power, contains fewer components and provides high reliability. Other features10 mv sensitivity and long-life Nixie display. Your best buy in either rack mount or cabinet configuration.

FREQUENCY MEASUREMENT
0 to 120 KC over. 1,1 and 10 second intervals

PERIOD MEASUREMENT

1. 10 and 100 period averaging

TIMING

Intervats from 10^{-4} seconds to 11.6 days

TOTALIZING

Manual or remote-electronic gating
Model CF-200R

${ }^{5} 895$

7617 HAYVENH URST AVENUE, VAN NUYS, CALIFORNIA Phone: 213.873.6620 TWX: 213.781.6811

Switch Catalog

2-color switch catalog is avaliable from "pech laboratories, Inc., 52 1:. Ed sall St., l'alisarles l'ark, N. J. This 24 page catalog provides complete engincering specs. on the full stanclard line switcles. It defines industrial terminology and proper switch maintenance.

Circle 157 on Inquiry Cord

Nuvistor Triode

Soise figure and gain characteristics for the R(. $1-8050$ muvistor trionle operating at 2 (M)MC under noise-matelied conditions are presented in note $\mathbf{A N}-195$. it includes practical curves for constant moise figure and constant gain. Design exanples amd measuring-circuit used are given. Comnercial Engineering. Vilectron Tube Dis. Raclio Corp. of America, llarrisom, … J.

Circle 158 on Inquiry Cord

Multiplier Phototube

Type No. C701201; is $1 / 2 \mathrm{in}$. diat. multiplier phototube. It is expected to have wide usage in missiles, satellite applications, spectrophotometric measurements, and instrumentation. It is a 9 -stage sideon type having S - 4 spectral response, and is a scaled-down version of the RCA1P21. It has survived 30 g for 11 msec . - Additional data from RCA Inclustrial Tube and Semiconductor Dis., Lancaster, I'a.

Circle 159 on Inquiry Cord

Detector Module

This tech. data sheet highlights features ankl operation of a freg. cletector modinke nsed in FM detection for telemetry de readont of input freq. and automatic freg. or speed control. The $11 / 4 \times+$ inh. transistorized cylinderical module produces a de ontput voltage proportional to fred. of the mput sp-wave signal. A preamp. of $0.25 v$. Ras sensitivity is also available for use with inputs having other than se-wave form, Daystrom, Inc., Manchester Rd., P'oughkeepsic, N. J.

Circle 160 on Inquiry Cord

Rubberized Abrasives

This catalog describes 17 new rubberized abrasives for deburring. smoothing and polishing. It also suggests many costcutting uses for these abrasives, which are available in wheels, points, sticks, blocks and cones in + grit textures and in a wide range of sizes. Included are operation instructions, application data, speed tables. graphs, plotos, and other tech. information. Cratex Mfg. Co., Inc., 1 Goo Rollins Rel., Burlingame, Calif.

Circle 161 on Inquiry Cord

Timer Terminology

This glossary of timer terminology is offered to reduce the use of several clifferent terms to describe the same function. Copies available from Automatic Timing \& Controls, Inc., King of Prussia, Pa. Circle 162 on Inquiry Cord

The CLARE Type JDP Relay assembly provides for direct plug-in mounting of the CLARE Type J Relay with the contact springs and coil terminals serving as plug pins. This complete assembly of relay, mounting socket and clear plastic dust cover is available at much lower cost than comparable relay assemblies. Part numbers and prices include complete assembly at one low price.
And that's not all. The Clare JDP Relay assembly provides a simple, economical plug-in relay with all the advantages of the stable operation and adjustment, the consistent performance and the optimum reliability which have made the CLARE Type J Relay so widely accepted as the ideal component for critical control applications.

Direct plug-in mounting eliminates costly internal wir-

ELECTRICAL AND MECHANICAL CHARACTERISTICS

 OF CLARE TYPE J RELAYS| Contact
 Arrangements | Contact Ratings | Coil Resistance | Nominal Operating Voltages | Operate Time | Release Time |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Forms
 A, B, C, D, E, up to 24 contact springs max | Low level to 5 amps . 500 watts | Up to 21,000 ohms | Up to 300 vde Up to 220 vac . 50-60 cps | Fast operate: 5 ms min Delayed operate: $6 C$ ms max | Fast release: 5 ms min Delayed release: 125 ms max |

ing, and makes possible cost savings with no sacrifice of Type J Relay quality. There is space-saving, too. Overall height of the JDP assembly when mounted is 20% less than the height of relays with the conventional octal plug.

Type JDP assemblies are available in two sizes. A 28-pin assembly for 24 contact springs and four coil terminals, and a 16 -pin assembly for 12 contact springs and four coil terminals. Relay terminals are slotted so relays intended for JDP assembly can also be wired directly into chassis.

All standard Type J Relay features are available in the Type JDP assembly. These include: contact forms A, B, C, D, and E; contacts for low level to 5 ampere switching; double-wound coils; slow operate; slow release; and a-c coil operation.

GET COMPLETE

 INFORMATIONincluding prices, detailed specifications, and standard part numbers. Circle Reader Service Number below, or write C. P. Clare \& Co., Group 9D5, 3101 Prott Blyd.
 Chicago 45, Illinois.

$\bullet \%$ \because $\therefore:$: $40=0$ 10 $0=6$

 EASY ADAPTABILITY TO PARTICULAR NEEDS

Deflection factor and Sweep Rate are variable between steps, uncalibrated. * Provides 6 -cm linear scan.

> FOR MORE INFORMATION ON EITHER MODEL OF THIS NEW OSCILLOSCOPE AND ANY COMBINATION OF PLUG-IN UNITS, PLEASE CALL YOUR TEKTRONIX FIELD ENGINEER.
 TWX: 503-291-6805 - Cable:TEKTRONIX • OVERSEAS DISTRIBUTORS IN 27 COUNTRIES Tektronix Field Offices: in principal cities in the United States. Consult Tclephone Directory • Tektronix Limited, Guernsey, Channel Islands Tektronix Canada Lid.: Montreal, Quebec • Toronto (W'illoivdale), Ontario • Tektronix Australia Pty. Limited, Sydney, New South Wales

IN COMPACT NEW TEKTRONIX OSCILLOSCOPE

Here's a high-performance oscilloscope featuring operational simplicity and versatility through a new series of plug-in units. Presently, you can select from 10 amplifier units and 4 time-base units.
Knowing your application area, you select those units that fit your needs. Some of the generalpurpose plug-in unit combinations available include those for low-level applications, differential applications, multi-trace applications, wideband applications, sweep-delay applications, among other presentations. A special-purpose plug-in combination equips the oscilloscope for sampling applications, in which the instrument becomes a low-drift sampling system as easy to operate as a conventional oscilloscope, but with sensifivity and bandwidth possible only through sampiing.
With any combination of plug-in units in the os-cilloscope-including the same type amplifier units in both channels for $X-Y$ displays-this new value package provides you with "no-parallax" displays and sharp trace photography.

The 2A63/2B67 Plug-In Unit combination-illustrated with Type 561 A-equips the oscilloscope for low-level difierential applications.

OSCILLOSCOPE

features

NEW RECTANGULAR CRT with an internar graticule and controllable edge lighting: ...egulated power supplies . . . regulated dc heater supply . . . Z.axis inaut . . . 3.5 -kv accelerating potential amplitude calibrator... and operation from 105 v to 125 v 0.210 v to 250 v . (The Type 561A operates from $50-40 \mathrm{cps}$ and the Type RM561A operates from 50-60 cps.)
Type 561A (shown in low level application)
Type RM561A (shown in
sweep de ay applica:ion) . 525 Oscilloscope prices without plug-in units.
U. S. Sales Prizes, f.o.b. Beaverton. Oregon

The 3A1/3B3 Plug-In Unit combination-illustrated with the rack-mount model, Type RM561A-equips the oscilloscope for high-sensitivity, wide-band, dual-trace operation and sweep-delay applications.

Circle 49 on Inquiry Card

- SCAN CONVERSION

 FLICKERLESS DISPLAY STORE - VIDEO STORAGERecornimg storage fube srstems
Single-gun, dual-gun, multi-tube systems to convert scan for radar, sonar, television, and to perform analog processing, data analysis, contract or expand time scale, auto correlation.

- SLOWED TELEVISION TRANSMISSION
by telephone line or other narrow. band systems.

- IMAGE ENGINEERING

OPTICAL CHART READERS, FLY. ING SPOT SCANNERS, LOW-LIGHTLEVEL CAMERAS, and IMAGE RECTIFICATION. Automatic inspection and recognition of size, shape, color, and texture.

2300 Washington Street Newton 62, Massachuset 617 WOodward 9.8440 Circle 50 on Inquiry Card

NESW TEBCM DASA

Industrial Parts Catalog

The 190.3-1964 edition of the Cramer indlustrial electronics catalog lists over 45,000 separate items in 458 pages. This buyers' guide is profusely illustrated and provides complete descriptions, latest product data, and factory OEX pricing. Featured are the newest microminiature devices, semiconductors, electronic components and equipment for use in industrial, researcl, and aerospace. (ramer t-lectronies, lnc. Newton, Mass.

Circle 163 on Inquiry Card

Laminated Plastic

'Tech. data bulletin No. 3.1.22.3 describes grade XXXP-733, a paper-base. phenolic-resin laminated plastic which can be punched at room temp. It has highinsulation resistance under high-humidity conditions, excellent electrical properties and good dimensional stability. Insulation resistance under condition ($-96 / 35 / 00$ is $500,(0) 0$ megohms for sheets $1 / 32,1 / 1 \%$, and $1 / 8$ in. thick. Taylor Corp, Valley Forge, Pa .

```
Circle 164 on Inquiry Card
```


Soldering Stands

Bulletin \#633 describes the molel SS series soldering stands that permit max. freedom of movement and eliminate the handling of soldering irons. Viewing window makes it easy for the operator to focus attention on soldered joint. Lost motion is eliminated and the pace of soldering is accelerated. I'hotomation. [uc., Box +60, Mountain View, Calii.

Circ'e 165 on Inquiry Card

VHF Pentode

In this bulketin the Type 814) SIIF pentode, a single-ended T-12 compactron design, is described in depth, with complete sets of mechanical and electrical specs., as well as detailed outline and basing diagrams. Includes a chart showing Intermittent Commercial and Amateur Service (IC.AS) ratings, and 3 characteristic curve performance charts. Fref. limit is 175 mc , with a max. plate dissipation of 35 w . (IC.AS). Tung-Sol Electric lic., ()ne Summer Ave., Newark 4, N. J. Circle 166 on Inquiry Card

Transistor Application

This booklet contains graph, tables. schematics, and equations applicable to the design of circuits using field-effect transistors. Temp. effects, de biasing. fref. and switching, limitations, and cir cuits are discussed. Amelco Semiconduc tor, Div. of Teledyne, lac., 1300 Terra Della Ave., Mountain View, Calif. Circle 167 on Inquiry Card

Nickel Plating Solution

Technical information is available on a new nickel plating formula which inproves the stress and ductility of nickel sulfamate plating. Called S(LFAMEN, the solution is available in ready-to-plate form. The Meaker Co., subs of Sel-Rex Corp., Nutley, …J.

Circle 168 on Inquiry Card

5 watt miniature Zener Diodes, high voltage temperature compensated Reference Elements, non-polar solid and hermetically sealed wet Tantalum Capacitors, 400MW Glass Zeners Mil Types USN IN 962BM

Circle 51 on Inquiry Card

Q.MAX impregnating and coating composi tion penetrates deeply, seals out moisture, pro vides a surface finish. Q.MAX imparts rigidity and promotes stability of the electrical constants of high frequency circuits. Effect on the " Q " of RF windings is negligible.

Write lor colalog today.

Q-max Corporation

MARLBORO, NEW JERSEY
Telephone: 462.3636 (Area Code 201)
Circle 52 on Inquiry Card

Freq. Control Handbook
A $4+$-page, letterhead-size handbook and catalog lists standardized crystals. filters and fred. sources. The handloonk. with illustrated design parameters, is divided into 3 mator sections: crystals ranging from 400 cycles to 100 me : filters ranging in center freq. from below 1 кс to over 20 mc , and freg. sources ranging from les's to over 250 mc . Hill Electronies. luc.. Mechanicsburg, Pa.

Circle 169 on Inquiry Card

Semiconductor Catalog

This catalog, in full color, presents complete information on a line of transistors, diodes, micrologic, custom microcircuits, test equipment, and special products. The parameters of each transistor and diode are presented in tabular form, along With a brief description of the design and manufacturing processes. Photos and schematics illustrate the 6 mits needed to fabricate an entire logic system. Custom microcircuit design are pictorially shown from schematic to finished product. Fairchild Semiconductor, $545 \mathrm{Whis}-$ man Kıl., Mountain View, Calif.

Circle 170 on Inquiry Card

Nsec Interval Counter

Intormation is available on the Model 783 G 10nsec. time interval counter that counts 100 mc pulses obtained from either an internal or external 1 mC standard. Readings are in μ sec. with fixed decimal point ; unit is available with 3 to 9 digits. l.evels to $\pm 40 \mathrm{v}$ will wot damage inputs. Eldorado Electronics, 1832 Second St.. Herkeley 10. Calif.

Circle 171 on Inquiry Card

Impact Melamine

Design engineers and plastic molders will be interested in this tech. data report on medim impact melamine molding compound published by the Plastics Dic.. Allied Chemical Corp., Box 355, Morristown, N. J. Melamine molding compound — $M \mathrm{~F}(\mathrm{i}-33$-provides 25% to 100% more impact strength than standard cellulosefilled melamine. Tech. data report M1-3 presents electrical, physical, mechanical and chemical properties, as well as molding properties.

Circle 172 on Inquiry Card

Laminated-Edge Connectors

Iroduct Bulletin \mathcal{N} o. PBM-21 on lowcost laminated edge connectors gives dimensional data and electrical specs. on 6 styles with up to 56 contacts/comector. The 8 types of contact tails available are described. Cinch Mfg. Co., $1026 \mathrm{~S} . \mathrm{Ho}$ man Ave.. Chicago 24, Ill.

Circle 173 on Inquiry Card

ECDC Transistors

The use of Type $2 \mathbb{N} 2095$ and $2 \mathbb{N} 2098$ E(1)C transistors as ${ }^{\circ} \mathrm{HF}$ amplifiers and oscillators at freqs. up to 160 Mc are described in Semiconductor Application Note No. 38016 available upon letterhead request to the Technical Literature Service, Sprague Electric Co., Marshall St., N. Adams, Mass.

NEW! Three BALLANTINE Sensitive VIDEO VTVM'S

...give you choice of log or linear scales

MODEL 310B LOG VTVM (without probe)
MODEL 311 LINEAR VTVM (without probe)
MODEL 314A LOG VTVM (with probe)
Ballantine now offers you a ehoice of precision, labora-tory-type VTVM'S with either logarithmic or linear voltage scales. Each new model gives you these advantages: wide frequency and voltage measurements - up to $10,000 \mathrm{~V}$ with accessories; large indicating meter; extreme sensitivity and accuracy; use as a 60 db amplifier; high feedback over the entire band; and more than 3,000 hours between calibration checks due to conservative operation of both tubes and components. All three models are now available in both portable and rack versions.

MODEL	VOLTAGE SCALE(S)	FREQUENCY RANGE	$\begin{aligned} & \text { VOLTAGE } \\ & \text { RANGE } \end{aligned}$	ACCURACY	PRICE
3108	LOG	$10 \mathrm{cps}-6 \mathrm{Mc}$	$\begin{aligned} & 100 \mu \mathrm{~V}-100 \mathrm{~V} \\ & \text { (down to } 30 \mu \mathrm{~V} \text { as } \\ & \text { null detector) } \end{aligned}$	(\% of reading) $2 \%, 20 \mathrm{cps}-2 \mathrm{Mc}$ $3 \%, 10$ cps-4 Mc $5 \%, 10$ cps- 6 Mc	\$250
311	LINEAR	$10 \mathrm{cps}-6 \mathrm{Mc}$	1 mV -320V (full scale) (down to 30μ Vas null detector)	(\% f.s.d.) $2 \%, 20 \mathrm{cps}-2 \mathrm{Mc}$ $3 \%, 10$ cos. 4 Mc $5 \%, 10$ cps. 6 Mc $5 \%, 10 \mathrm{cps}$-6 MC	\$250
$\begin{gathered} 314 \mathrm{~A} \\ \text { (includes } \\ \text { probe) } \end{gathered}$	LOG	$10 \mathrm{cps}-6 \mathrm{Mc}$	$1 \mathrm{mV}-1000 \mathrm{~V}$ with probe; $100 \mu \mathrm{~V}-100 \mathrm{~V}$ without probe (down to $30 \mu \mathrm{~V}$ as null detector)	(\% of reading) $2 \%, 20 \mathrm{cps}-2 \mathrm{Mc}$ $3 \%, 10$ cps-4 Mc $5 \%, 10 \mathrm{cps}-6 \mathrm{Mc}$	$\begin{gathered} \$ 300 \\ \text { (including } \\ \text { probe) } \end{gathered}$

Write for brochures giving many more details

- Since 1932 -
 BALLANTINE LABORATORIES inc.

Boonton, New Jersey
Check with ballantime first for laboratory vacutw tube volimeters, regardless df your requtrements for amplitude, frequency, or waveform. we have a large tine. with additions each year, atso ac/bc limear converters, calibrators, wide gand amplifiers, direct-reading capacitance meters, and a line dF lagoratory voliage stamdards o to 1,000 mc.

(Illustrated: Flush recorder with $8^{\prime} \times 8^{\prime}$ front. Portable "Labgraph" also available.)

New Speedservo...swift, sure, simple, small!

High Speed: $1 / 8$ second full scale response. Records 4 cycle signals without significant attentuation. - Versatile: Accommodates DC circuits with output impedance 100,000 ohms or less. - Sensitive: 0-1 MV DC without jitter. Many higher ranges. Accuracy $1 / 2 \%$. . Efficient: Raymond Loewy styled $8^{\prime \prime} \times 8^{\prime \prime}$ case front conserves valuable panel space. Full $6^{\prime \prime}$ wide 100^{\prime} long chart. - Convenient: Dial 14 chart speeds from $3 / 4$ " per hour to 6 " per second. "Drop in" chart loading. Disconnect and pull chassis from case in seconds. Chart supply indicator. - Less Maintenance: Simple linear motion pen motor, no strings, no pulleys. Zener reference voltage. Infinite resolution glass hard potentiometer prevents hunting.

In addition to "Speedservo" and the new "Labgraph" with sloped writing surface, the radically new EA "Graph" Line of rectilinear recorders includes both single and two-channel DC Microammeters, DC Milliammeters, AC or DC Ammeters or Voltmeters, plus inkless and ink type event recorders. Your inquiry is invited. If desired, Esterline Angus will gladly adapt standard instruments to your needs, or develop new ones for you. Write for new "Graph" Line Brochure.
Esterline Angus Instrument Company, Inc., Box 596EI, Indianapolis 6, Indiana

ESTERLINE ANGUS

Excellence in instrumentation for over 60 years

Racks and Consoles

Catalog 63 contains it pages of illustrations, detailed engincering drawings, tech. specs., descriptions and prices of modular cabinet racks and consoles. together with appropriate standard acces sories. Mustrations give examples of how these cabinets and consoles can be used singly as well as in multiple assemblies. 1'ar-Metal Products Corp., $32-62$ 4 4 th St. Long Island City 3, N. Y.

Circle 174 on Inquiry Cord

Insulating Materials

Information on 19 insulating materials - varnishes, impregmating resins and enamels-are on individual loose-leaf ted. data sheets. Materials include new l oryl Class H varnisles, modified polyester base Class F varnishes, varnishes for high speed rotating effuipment, epoxy varnish for chemical uses, and a varicty of other Dicarta liguid insulating materials. West inghouse Electric Corp., Micarta Div. Tratford. Pa.

Circle 175 on Inquiry Card

Directional Couplers

This bulletin covers 8 coax. dircctional couplers which provide overlapping of freds. from 1 to 1200 anc at power levels up) to 1000 w . IV ideband characteristics of the complers allow transmission-line measurements over a freg. range of more than ant octave. Sierra Electronic ()perations. Phileo Corp., 3885 Bohammon Dr., Menla Park, Calif.

Circle 176 on Inquiry Cord

Irradiated Polyolefin Dielectric

Tech. data is available on a low-loss dielectric called Rexolene 1^{\prime}. An irrarliated polyolefin, Kexolene \mid ' is photoetchable with standard methods and can be precision-machined. Its uses inclunle phased arrays, strip lines, directional conplers. duplexers, and electronic drive components. Brand Rex Dis.. Anerican Enka Corp., 31 Sudbury Rd., Concord, Mass. Circle 177 on Inquiry Cord

Plain Foil Capacitor

This tech bulletin describes high-volt age tantalum pain-foil cabacitors that conform to Mil-C-3965. They are describ)ed as polar and nompolar mints with 2()). 250 and 300 v . ratings. The higher de working voltages eliminate the need for series circuit comnections to obtain combparahle voltage ratings. Operating tomp. is -55° to $+85^{\circ} \mathrm{C}$ without voltage derating. (apacitance ratings are said to range from 0.015 to $15 \mu \mathrm{f}(\pm 15 \%)$. Standard Iressed Steel Co.. Box 89\%, Jenkintown.「'a.

Circle 178 on Inquiry Cord

Paints \& Washers

Data sheet details series of pressure sensitive paints and washers for transducers. Washers are deseribed as "a molecular engineering development in furce or pressure resistivity." (lark Vike tronic Laboratories, P. (). Box 165. I'alm Springs. (alif.

Circle 179 on Inquiry Cord

Profit from Armco's 60 Years' experience with magnetic materials

This year marks Armco's 60th year of continuous research and commercial production of special steels for the electrical industry.

Armco's long experience in the production and application of electrical steels and other magnetic alloys is directed to supplying you with materials that best meet your specific needs. Supplemented by continuing research, this valuable experience has enabled Armco to pioneer in significant achievements such as the development of grain-oriented silicon grades, thin gage electrical steels and nickel-iron magnetic alloys.

In adcition to these progressive accomplishments, Armco is aggressively working in both plant and Research Center to achieve even more. Widespread use of Armco Electrical Steels and Magnetic Alloys throughout the industry also has broadened our knowledge of your design and fabrication problems.

We would like to make this 60 years' of varied experience available to you for use in creating better products at lower cost. Just write us for more information. Armco Division, Armco Steel Corporation, Department A-3603, P. O. Box 600, Middletown, Ohio.

Armco Division

Jennings vacuum coaxial relays were specially designed to solve the problems of remote switching of coaxial lines of all standard sizes for television, communications, and radar transmitters at high frequencies and high power levels. We will be pleased to send more detailed literature on Jennings complete line of vacuum coaxial relays at your request.

IENNINGS RADIO MFG. CORP., 970 McLAUGHLIN AVE., SAN JOSE 8.CALIF., PHONE CYpress $2-4025$

Coaxial Cables

Complete data on line of coax. cables. including plysical dimensions, engineering evaluations and closest equivalents, where applicable, is a a ailable in a 2 -color, stand-ard-size form. Design engineers and purchasing agents using this data sheet will save time and effort when searching for standard, high-tenn. insulated coax. caDles. Boston Insulated Wire \& Cable Co., 25 Bay St., Boston 25, Mass

Circle 180 on Inquiry Card

Modular Packaging

This 16-page illustrated catalog. No. E-(03, describes modular packaging system of reusable aluminum shipping and storage containers for systems and instrument packaging. Includes a summary of benefits and adrantages of the system: typical applications: pallet and shroud packaging system; modular container facilities: shock/vibration isolation; design and specs.: accessories: and information on how to order. Zero Mig. Co., 1121 Chestnut St., Burbank, Calif.

Circle 181 on Inquiry Card

Temperature Converter

This t-scale table, in color, for Fahrenheit, Centigrade, Kelvin and Rankine gives over 400 conversions for each temp. scale. It includes quick reference conversions every 10°. Table was prepared with basic temp. conversion formulas. It is laid out in columns with each scale dis tinguished by color shadings. The table can be loung as an $11 \times 251 / 2$ in. wall chart. Dept. SK, Air Products and Chemicals, Inc., Allentown, Pa.

$$
\text { Circle } 182 \text { on Inquiry Card }
$$

Sensitive Thermistors

This 2-page data sheet, "Veco Microlead (TM) Thermistors,' describes thermistors which are 0.005 in . in dia., with lead wires 0.0007 in . in dia. These thermistors, highly sensitive to power, are very useful in gas chromatography, high altitude temp. measurement, microwave power measurement, medical and biological uses and many others. They are hermetically sealed in glass, protected from contamination, safe for use with explosive gases, and feature high stability and fast time response. Victory Engineering Corp., 124-28 Springfield Ave, Springfield, N. J.

$$
\text { Circle } 183 \text { on Inquiry Card }
$$

Heat Dissipators

This short-form catalog lists components for cooling and retention of electron tubes and semiconductor devices. It contains part numbers, description, and photos for over 200 standard heat-dissipating electron tube shields. Accessories and a complete line of heat dissipators for transistor and diode thernal control are included. Heat dissipators listed are designed for all types of semiconductors and meet milliwatt-to-high-power dissipation needs. IERC Div., International Flectronic Research Corp., 135 W. Magnolia Blvd., Burbank, Calif.

Circle 184 on Inquiry Card

NEWW TEM DATA

for Engineers.

Components Catalog

Catalog 63 offers information on integrated mixer-preamplifiers, strip-type components, including filters, dividers. mivers and morlulators: laboratory recevers, i-i and r-i amplifiers: and other special-purpose receiving equipment. This 72-page catalog gives tech. mformation, photos, dimension drawings, curves, tables. electrical and mechanical characteristics. d.el, Inc., 75 Akron St., Copiaguc. N. Y. Circle 205 on Inquiry Card

Bench Top

The Sturdilite copper top is a ? in. thick: (o-p)y laminated and self edged on all sides. It is used where shielding or $r-i$ interference problems are present. . copper sereen is laminated between the smriace material and a balanced wood core. Cooper dises are used in 2 contact holes that expose the screen. Neasurements conducted on a 30 x 72 in . top showed a capacity of $1710 \mathrm{pf} / \mathrm{sq}$. ft., and insulation resistance greater than 50,000 megohms/st: it. Sturdilite Proclucts. Inc., 30101 Palmolive Bolg.. Chicago 11. III.

Circle 206 on Inquiry Cord

Test Instrument Catalog

This well illustrated. 16-page catalog, - . . 14 , presents a comprehensive product line of volt-ohn-ammeters, recorders and high-intensity lamps. Aso included are prices, specs., other descriptions and a complete explanation of Amprobe's trade-in prograns. Amprobe [nstrument Corp., 630 Merrick Red., Lyubrook. N. Y.

Circle 207 on Inquiry Card

Card Tester

1)ata sleect 37 describes the Model 110 phog-in tester that tests the circuits of phog-in card modules. These include sandard 17-pin cards, 20-pin cards, and 6ttransistor matrix cards. Complete stecs. are provided. Telemetrics. Inc., 12927 So. budlong Ive., Gardena, Calif.

Circle 208 on Inquiry Card

Shockproof Resistors

bulletin 104 describes wire-wound, vitreous enameded resistors designeel to meet Xil-R-151091: Listed are mounting and insulating hardware that satisiy all refuirements. Ohmite Mig. Co.. 3671 Howard St.. Skokie. 111.

Circle 209 on Inquiry Card

FROM ELECTRA: UP TO -

COMPONENTS PER CUBIC FOOT DENSITY

Density - Electra Com-Pak Integrated Circuit Modules offer the design engineer outstanding opportunities for achieving miniaturization and component density. A component density of 600,000 por cubic foot is by no means impractical, and the most sophisticated applications are filled by Electra Com-Pak units.
Reliability - Electra reliability and fidelity to specifications are unmatched in the industry-a claim backed by continuing power-temperature testing. Electra products consistantly meet or exceed the various MIL-specifications for which
 they are indicated.
Capability - Electra capabilities, both in personnel and equipment, are especially well suited to custom design and production of units to meet a specific application. We invite your inquiry, and Electra engineers will be happy to work with you to produce a Com-Pak unit to meet your exact specifications.

New G-E glow lamp circuit reduces cost of SCR power control

Here's a tiny General Electric glow lamp, \rightarrow the NE-83, that can save you up to $30{ }^{c}$ over conventional means-with no sacrifice in performance. The glow lamp half-wave control circuit shown above will fire and control between 5° and 165° of the full 180° half cycle. It can handle the job of controlling power into resistive loads for many applications. A few possible applications are: variable speed control on mixers, low-torque sewing machines, hand tools and blendersand as a simple, lamp-dimming device. If you'd like to know more about the $\mathrm{NE}-83$ and this new power control application, write today for Bulletin 3-3474. General Electric Company, Miniature Lamp Department M-313, Nela Park, Cleveland 12, Ohio.

Progress /s Our Most Important Product

Gearless Torque Motor

Information is available on a de operated torgue motor featuring a +in . bore The motor, designed both for torque and for servo uses, is direct driven and uses no gears, thus providing increased resolution without backlash and a high ratio of torque to inertia. Parameters: low flux leakage: min. motor inductance for use of pulsed power input ; and max. torgue/ lb. of motor weight. Permanent magnets produce a high level of magnetic-circuit saturation and eliminate any fixed-phase or fiele winding excitation. Magnetic Technology, Inc., 13735 Saticoy St., V'an Nuys, Calif.

$$
\text { Circle } 185 \text { on Inquiry Card }
$$

Compact AC Motor

Brochure 107 describes the type MC mutor which operates on 60 or 400 cycles in 2, 4 and 6 pole types. Hysteresis or induction rotors are standard in this military qualified motor, with options of spur-gear reducers and odd ratio planetary gear reducers in 129 total reductions. Motor is $11 / 4 \mathrm{in}$. dia. $\times 21 / 4 \mathrm{in}$. long and gear reducers add up to 2 in. max. for largest gear reduction. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4 , ()hio.

Circle 186 on Inquiry Card

Pin Catalog

This 2-color, 12-page catalog gives complete product listings for all standard spring pins, their dia. and lengths in zinc-plated, cadmium-plated, plain carbon steel and +20 corrosion resistant steel. In addition, it carries list prices as well as minimum order quantities and quantity discounts. Atlantic Spring Pin Corp., 45 Hatdon Ave., Shrewsbury, N. J.

Circle 187 on Inquiry Card

Plastics Bulletin

A 26-page bulletin, NVF Laminated Plastics, describes a complete line of phenolic, melamine, polyester, epoxy and silicone units. Grades, modification ranges, electrical qualities, insulation resistance, Hame retardant claracteristics, and punching grades are discussed in detail. National Vulcanized Fibre Co., 1063 Beech Sti., Wilmington 99, Del.

Circle 188 on Inquiry Card

Test Console Catalogs

Described in this 28-page, 2-color catalog, "Components for Test Consoles," are pancl-mounted dial assemblies, ac voltmeters, plase-sensitive voltmeters, and plate slifters. Eses, specs., and other data are given. Theta Instrument Corp., Sadtle Irook, N. J.

Circle 189 on Inquiry Card

Heating Tubes

KT silicon carbicie radiant heating tubes are described and shown in this 3 -color folder. Impermeability, high thermal conductivity and good thermal shock resistance are featured. The Carborundum Co., P. O. Pox 337, Niagara Falls, ズ. У. Circle 190 on Inquiry Card

FLUKE

offers the most complete line of differential voltmeters

 on the marketFeatures common to all models are infinite input resistance at null; in-line readout with automatic lighted decimal; front panel DC polarity switch; standard cell reference (zener diode optional); taut band suspension meter and flow-soldered glass epoxy printed circuit boards.
Choose the degree of accuracy that meets your need...

DC ACCURACY $\pm \%$ of input voltage			0.01\%		0.02\%	$0.01 \% 0.1 \%$
		0.02\%				
	0.05%			$0.05 \% 0.2 \%$		
AC ACCURACY $\pm \%$ of input voltage						
	DC	DC	DC	DC AC	OC AC	OC AC
Models	8018	$825 A$	821 A	$803 B$	$803 D$	$823 A$
InPut range	0.500V	0.500 V	0.500 V	0.500V	0-500V	0.500 V
FREQUENCY RANGE			$20 \mathrm{cps}-10 \mathrm{kc}$	$5 \mathrm{cps}-100 \mathrm{kc}$	$5 \mathrm{cps}-100 \mathrm{kc}$
maximum full scale SENSITIVITY	10 mv	1 mv	1 mv	$\begin{gathered} 10 \mathrm{mv} \mathrm{DC} \\ 1 \mathrm{mv} \end{gathered}$	1 mv	1 mv
MAXIMUM METER RESOLUTION	50 uv	5 uv	5 uv	$\begin{array}{r} 50 \mathrm{uv} D C \\ 5 \mathrm{uv} A C \end{array}$	5 uv	5 uv
REFERENCE	Std. cell (zener diode optional)	Std. cell (zener diode optional)	Standard cell	Std. cell (zener diode optional)	Std. cell (zener diode optional)	Standard cell
PRICE Cabinet model	$\$ 485.00$	$\$ 590.00$	$\$ 795.00$ $\$ 815.00$	$\$ 875.00$ $\$ 895.00$	$\$ 1,100.00$	$\$ 1,300.00$
	\$505.00					

Prices and data subject to change without notice. Prices f.o.b. factory.

MILITARIZED-DC DIFF. VOLTMETER

Meets all environmental requirements of Mil-T-945A. Provides accurate voltage measurements (0 1o 500 V) under adverse environmental conditions.

MODEL 8011A
PRICE: \$1745.00
Complete technical data on all FLUKE vollmeters acailable upon request.

PARTIAL 8011A SPECIFICATIONS
ACCURACY: $=0.05 \%$ of input from 0.1 to 500 V
$=0.1{ }^{\circ}$ of input or 0.5 mv , whichever is greater, below 0.1 V NULL RANGES: $\pm 10, \pm 1, \pm 0.1, \pm 0.01 \mathrm{~V}$
INPUT IMPEOANCE: Infinite at null from 0 to 500 V MAXIMUM METER RESOLUTION: 50 uv
REFERENCE: Temperature controlled Zener diode

John Fiuke Mfg. Co., Inc., Hox 7428

INSTRUMENTE Seattle 33, Wash.
PR 6-1171 TWX 206-879-1861 TLX 852 Cable: FLUKE

The new NRC Model 2406 Vacuum Electron Beam Welder is a compact production facility for precision welds in reactive and super alloy metals. It makes possible fusion welding of "hard-to-weld" metals ranging from aluminum through tungster. Additional applications include button melting, annealing, outgassing, sintering and brazing of small parts as well as evaporating any known material.
Advantages . . . Externally adjustable gun electrodes speed production by providing proper spacing at any desired beam current without shutting down equipment. Straight line, undisturbed beam path makes pinpoint precision possible. Electron path is unaffected by shape or position of workpiece. Insulated micrometer adjustments enable the filament to be centered and positioned vertically while watching for smallest spot and highest energy density. \square Spot can be varied from $1 / 2^{\prime \prime}$ to more than $10^{\prime \prime}$ below coil to provide clearance for vertical projections and internal welds. \square Maximum production capability is provided by NRC's high speed pumping system - welder can re-cycle to operating pressure in less than 5 minutes. EL Low voltage electron gun features economy and simplicity with low X-ray emission, eliminating operator hazards.
The Model 2406 is available now for your research or production requirements. Write or call for data sheet SW-1.

NRC EQUIPMENT CORPORATION
A Subsidiary of National Research Corporation
160 Charlemont Street
Newton 61, Massachusetts
Area Code 617 DEcatur 2.5800

SUBMINIATURE TRIMMERS

Jorated to ()at. at $17.5^{\circ} \mathrm{C}$: rasolufion of adjustmint is 1.0% to $0.08 \mathrm{~F} \%$.

These $3 / 8$ and $1 / 2$ in. sq. wirewound trimming potentiometers are humidity-proof. dust proof, and shock-proof to 100 g . They operate from $-65^{\circ} \mathrm{C}^{\circ}$ to $+175^{\circ} \mathrm{C}$. The $1 / 2$ in. model meets all requirements of Mil-R-27208A, Style RT-22. Resistance ranges for $1 / 2 \mathrm{in}$. is 10 to 100 h ? ($\pm 5 \%$) and 10 to 50 K ? ($\pm 5 \%$) for the $3 / 8 \mathrm{in}$. trimmer. Power rating is 1 w , at $70^{\circ} \mathrm{C}$ for $1 / 2$ in., and the $3 / 8$ in. is 1 w . at $30^{\circ} \mathrm{C}$. Borg Vquipment Div., Amphenol-Ibrg Electronics Corp. Janesville, Wisc.

Circle 191 on Inquiry Card

RELAY COVERS

Thi contersion does not reguire wisoldering or rewiring.

Relays wit'i taper-tabs or solder terminals may be readily enclosed by assembling a metal bracket and clear-plastic dust cover to the relay mounting. The corrosion-resistant nickel-silver bracket is simply sandwiched between the chassis and the relay and held down by the relay mounting screws. Dimples on the bracket hold down the removable plastic cover. The dust covers are available in 2 sizes to enclose relays with up to 12 and 24 springs. Industrial Products Div, Autometic Electric, . Northlake, III.

Circle 192 on Inquiry Card

MLL-T. 55164 TERMINAL BOARDS

Immediate delivery from industry's largest stocks

The first coordinated military specification on terminal boards for use in all electrical and electronic equipment manufactured for the Department of Defense, Gen-Pro boards are produced in full accordance with MIL-T55164 and are available for immediate delivery.

The Gen-Pro military blocks feature solid, insulated backs with completely smooth surface; molded-in conductors to assure positive, contamination-proof terminals; molded-in saddle plates around mounting holes for greater strength and easier handling. They are molded of Compound GDI-30F per MIL-M-19833.

Gen-Pro maintains full inventories at all times. TBLS and TBLD hardware is also available for immediate delivery. Gen-Pro, the originator of solid-back blocks, can meet your production schedules with complete service . . . no need to worry about slow shipments or back orders.

For descriptive literature, write to Military Products Manager

GENERAL PRODUCTS CORPORATION UNION SPRINGS, N.Y.

Phone: (area code 315) TT9.7367 - TWX: 315-999-1455

NEW RRODUCIS

TUNNEL－DIODE AMPLIFIER

Min．gam is 2idl aith an r－f bondandth of／Ge comtered at Yice．

This wide－band，high－gain，X－band tun－ nel－diode amplifier is for microware uses in the 8.5 － 9.3 onc freq．range．The gain is flat within $\pm 1 \mathrm{kib}$ over the 1 gc pass bancl．The max．gain variation is ± 1 dh over a temp．range of -30° to $+60^{\circ} \mathrm{C}$ ． The noise is 5.5 d b max．The total weight is 1.3 lls．with overall dimensions of 23 x $x+5 \times 6$ in．The max．power drain is 10 ma ．With $10-15 \mathrm{vel}$ applied．Interma－ tiomal Microwave Corp． 105 River Rd．， Cos Cob，Comn．

Circle 151 on Inquiry Card

UHF TV TUNERS

Tube type hemers aith direct and planifars drize features．

Series［＂are L＂HF＇＇T＇tumers for use as original equipment in receivers．Aver－ age noise is 9 db ：low drift，low micro－ plonics．catse of mounting，compacthess． and long life are featured．They will fit all reccivers using standard tianc $i-f$ ．It uses a bloth oscillator tube and silicon diode mixer．For LJHF comverter manu－ facturers a model $C^{\prime}\left({ }^{\prime}\right.$ is a vailable．Stand－ ard Kollsman holustries．Inc．，Melrose Park．Ill．

$$
\text { Circle } 152 \text { on Inquiry Card }
$$

MICRODIODE ASSEMBLIES
l＇ulse current of l．īd．and re－ corery fimes of 0.0 （o） 2 pase

These silicon microdiode assemblies are ior core driver and other high－current computer uses．Inverse operating voltages are exceptionally high．Jumction capacity is as low as ？pi．The assmblies are avail－ able in encapsulated models．They meet or exceed Mil－S－195uk and Mil－STD－ 750．Versatility in packaging dimensions and circuit variations permit ready inser－ tion into mentory planes and stacks． MicroLemiconducior Corp．， 11250 Piaya Court，Culver Citu，Calii．

Circle 153 on Inquiry Card

H－F IMPEDANCE BRIDGE

Inserted directly into an li－f antoma spatems aith little inserfion effect．

The DlB－？measures the operating imperlance oi individual radiators，net－ work inputs，transmission line terminals． etc．．under powei．The transmitter．or a high－power signal generator may be used as a signal source．The power rating of the bridge is liw．The insertion effect of the bridge is equal to 5 inn ．of 150 n trans－ mission line．It operates between ？and 30xic．Delta Electronics，Ene．，tolo Wheeler ．Ire．．Nexatdria．Via．

Circle 154 on Inquiry Card

WIREWOUND RESISTORS

Tamp．coiflicith is 30ppm，${ }^{\circ} \mathrm{C}$ ； ＂nits urailuble to 1.5 m ©g．

This full－line of silicone－coated HI，re－ sistors mect the electrical，envirommental and dimensional needs of Mil－K－20C and are interchangeable with the major types of vitreous emabei resistors．Offered are 1.3 tubular models，ranging in size from 5 to 210 w ．and 5 flat models ranging in size from 21 to 910 ．Resistance capabili－ ties range from 0.10 to 1.5 megohms （ $\pm 5 \% / \%$ ）Tolerances irom 0.05% to 10% are atailahke．Date Electronics．Inc．．I＇．（）． lion tix．Columbus．Nebr．

$$
\text { Circle } 155 \text { on Inquiry Card }
$$

DIGITAL READOUT

Self－containcd transistorized diyital recodout mounts on 1 in ．conters．

The Tec－l．ite 「「ごR－30 series is atail able in 8 models to handle 8 －wire or t wire B．C．I）．input in 1．2． 4.8 cole． Supply roltage oi＋180velc（ $\pm 10 \mathrm{cdc}$ ）＠ 2 to omat is confined to the pancl area． Elements of the rectangular neon readont tube are controlled by internal all－tran－ sistor decoder components．Numerals are 0.010 high．Liife expectalley is 100,000 to 200，（00）hrs．Transistor Electronics Corp． P．（）．Box 6191．Mimeapolis 24，Winn．

Circle 156 on Inquiry Card

NUMERALS AND LETTERS

Up to 12 individual numbers and
letters can be displayed, each using one of the 12 available lamps.

DIGITS WITH POLARITY

Up to 10 individual numerals can be combined with a plus or a minus sign, using one lamp for each numeral and one lamp each for the plus and minus signs.

WORDS AND MULTI-DIGITS

one-plane readouts

 give you such versatile displays

Up to 12 individual words or multi-digit numbers can be displayed, each using one lamp.

MODES AND WORDS

Up to 12 mode/word indications can be displayed, each using one lamp; separate mode and word indications can be obtained by using one of the 12 available lamps for each mode and one for each word.

MULTIPLE WORDS

Up to 12 individual words used in combination (each word using one lamp), or up to
12 combination messages using one lamp for each group of words can be displayed.

COLOR EMPHASIS

Color can be added by using one lamp for each color and one lamp for each message, or up to 12 messages combined with color can be displayed, each using one lamp.
SYMBOLS
Any symbol that can be put on film can be displayed, using one of the 12 available lamps for each symbol.
IEE produces the industry's widest line of readout displays with models having maximum character heights from $5 / 8^{\prime \prime}$ to $35 / 8^{\prime \prime} \ldots$ front plug-in readouts... Cue Indicator Switches with pushbutton viewing screens... Bina-View self decoding readouts with 38 character capabilities for full alphanumeric display.
IEE rear-projection operation provides bright, distinct displays all on the same plane with unused characters completely invisible.
INDUSTRIAL ELECTRONIC ENGINEERS, INC.
5528 Vineland Avenue - North Hollywood, Calif.
and new full line catalog.

Over 1000 delivered

CEC's High Output Pressure Transducer

The CEC 4-390 is a high-output, unbonded strain gage pressure transducer with integral, solid state power supply and amplifier, providing a 5 volt DC outpur signal. This is a chamber-type instrument designed for absolute and gage measurements of fluids and gasses in pressure ranges of 0.100 psi and $0-5000$ psi. Its excitation circuit isolation is 100 megohms minimum between output and primary power ground at 50 volts DC.

Major aerospace contractors have
proven this instrument capable of maintaining superior performance characteristics in extreme acceleration, vibration, and shock environments.

The 4.390 is a slandard item, being produced in quantity. There are variations for specialized environments or unusual structural application requirements.

If you're in the market for high-outpur pressure transducers, study the specifications of CEC's 4-390. Those specifications and this instrument are the result of CEC's

27 years of design, engineering, and manufacturing experience; experience that ensures that the 4-390's you order will perform to your specifications - when the pressure's on.
Call or write for Bulletin CEC 4390-X2.
CEC
Transducer Division
TED ELECTRODYNAMICS
A Subsidiary of Bell \& Howell • Pasadena, Calif. 91109

VERSATILITY in PRESSURE MEASUREMENT begins with CEC

From CEC, the only single source for all your pressure instrumentation needs, four strain gage pressure transducers designed to solve problems in measurement and control application:

Type 4-326, "universal": Pressure range: $0-10$ to $0-10,000$ psia, psig. Temperature range: -65° to $+250^{\circ} \mathrm{F}$.

Type 4.317, "high temperature": Pres. sure range: $0-100$ to $0-5000$ psig, psi ud. Temperature range: $+75^{\circ}$ to $+600^{\circ} \mathrm{F}$.

Type 4-354, "cryogenic": Pressure range: $0-100$ psi to $0-5000$ psia, psig. Temperature range: -320° to $+250^{\circ} \mathrm{F}$.

Type 4-325, "small size": Pressure range: $0-10$ to $0-100$ psia, $0-2$ to $0-100$ psig, ± 2 to ± 50 psi bd. Temperature range: -65° to $+250^{\circ} \mathrm{F}$.

Further data? Call or write your CEC office for bulletins in Kit \#3463-X2.

CEC

CONSOLIDATED ELECTRODYNAMICS

A Subsidiary of Bell \& Howell - Pasadeno, Calif. 91109 Circle 62 on Inquiry Card

PORTABLE RECORDERS

Chits offer pushbution solicfion of 4 chari specols: 1,5, 20 and $100 \mathrm{~mm} /$ scc .

Thee 290 series consist oi single twoand threechanmel units. Phog-in amplifiers (Models 29) and 293 multiple-channel units) have a sensitivity range from $5 m v-5 v . /$ chart div. Input impedance: 2.5 megohms, either side 10 groumd. Fower: $1155^{\circ} \pm 10 \%$. 0 ocps. 125 w . Weight: 20 bbs. (single-chamel) and 40 lbs . (nmul-tiple-chanmels). Americal ()ptical (o., lnstrument Div., Butialo 15. N. Y.

Circle 193 on Inquiry Card

FIXED POWER SUPPLIES

Looad regulation less than 1% to 1% : autfut $\pm 1 \%$ for $\pm 15 \%$ of input ioriation.

Powerguard solid-state fixed de voltage power supplies offer good load regulation for opern-loop devices. lower ratings from 50 to 300 . Output voltages range from Gvele to 250 vele, with nominal 117ate inputs. Stancor Electronics. Inc.. 3501 Addison St., Chicago 18. Ill.

Circle 194 on Inquiry Card

RECTANGULAR CONNECTOR

Eirpendable tool cmables contats to be inserted and cortracted from reat.

This rack and patnel comector features collect-retanded, rear-entry and rear-rebease contats The design permits crimped contacts to be smapeel-in or removed from terminating side of the miniature connector. The Pyle-National Co.. 1334 N. Kosmer Ave., Chicago 51, 1ll. Circle 195 on Inquiry Card

MODEL "V"

WITH VaRIABLE
voltage dial and
GAS PRESSURE GAGE

DIAL THE FLAME SIZE YOU WANT

The new model " V " Water

 Welder is our second oxy-hydrogen gas generator with selfcontained power supply and electrolytic reactor. It operates with distilled water as its primary fuel, but with 100% increased capacity it handles a wider range of metal working operations. And it meets more miniature and sub-miniature electronic requirements of space age technology. It will even butt-weld exotic metal wires as fine as three tenthousandths diameter up to $1 / 10$ inch diameter. For welding, annealing, brazing, glass polishing, and silver soldering its performance is unequaled when correctly operated. Also welds stainless steel in the 300-400 series and other nickel base alloys. Produces temperatures over $6000^{\circ} \mathrm{F}$ where needed. Plugs into any 110-120 V.A.C. outlet. Uses only one oz. distilled water per hour. Operating cost only a few cents a day. Write for bulletin V-1 giving complete specifications and technical information.Write for Bulletin V-1

Electronics Division
4315 East Madison St.
Phoenix 34, Arizona Canadian Dist:
Canadian Curtiss-Wright Ltd., Toronto 'Tratle Mark Registered 1. S. l'atent Offre Circle 63 on Inquiry Card

but transistor heat dissipators like these, from volume production, cost as little as ordinary "fuse-clip"' retainers.

Our Therma-link retainers give you a choice of screw, rivet or solder mounting. Fan-top radiators provide easy slip.on installation. They effectively retain and cool TO. 18, TO-5 and TO-8 cases on printed circuit boards. heat sinks or chassis. You can save assembly time because the beryllium copper fingers adapt to varying case diameters. Gold, nickel, black cadmium and our insulating finish, Insulube, are available for space and all other environments.

Research makes the difference in our complete line of advanced design heat dissipators. Request technical data and ask our field engineers about the most economical devices for semiconductor thermal control.

Patented and Patent Pending

ERC
 (o) $0 \quad 0 \quad 50 \infty N$

International electronic research corporation
a subsidiary of Dunamirs Corporation of Anerica
135 WEST MAGNOLIA BOULEVARD - BURBANK, CALIFORNIA

SCREENED CAPACITOR

For micro wr thiu-film circuits Oll flat altmina sulatrates.

The Corafor capacitor has at capaci-
 It has comstant cabacitance and hioh () into the su range Voitage breakenom execeds 2suste and temp. Cocliciont is
 insulation resistance exceols book the whms at Soble. Max. capacitance change is $3 \% / 4$ in 1006 hrs. life test ($1185^{\circ} \mathrm{C}$ and 75vale continuous. T(ant). - 05° 10 $+125^{\circ} \mathrm{C}$. ("Ps Corn. B:lkhart. Ind.

Circle 196 on inquity Card

DRY REED RELAY

Combact resistalacia is 5 . Cl milliwhams and

Scries FRI' is a plag-in type, 8 or 11 bin header dry-rsed rolay. Liic is fous million operations at a rated load or 2 on million operations muler dry-circuit comditions. It opreates in the mese range Nax. current is In.sa.: max. volage is 110x. Vime biectric (i.. 2ty Riser St., ()range, N. J

Circle 197 on Inquiry Card

THYRATRON PLATE RELAYS
(onturt types: siter ratid ."a. at 11.50 öd

Type (il'R relay, wark withont parallel capaciors or fine adjustmenta. They hold withont chatter during hati-nater comdaction ai the Lhyatrom. "Mey work with 2050 and 2() 21 thyratrons with 115 val

 Circle 198 on Inquiry Card

Here, at Lockheed Missiles \& Space Company's Space Communications Laboratory, scientists are re-investigating the possibility of using the moon to facilitate earth communications. Possibilities for the use of the moon as a relay station for earth-to-earth communications have been largely neglected because the moon's shape and rugged surface greatly distorted a return signal. But Lockheed research into the extension of communications on difficult communication channels, using techniques applicable to dispersive time variant channels, is making significant inroads into this problem.
Another area receiving intense study at Lockheed is satellite tracking of deep space probes. Since tracking accuracy

depends greatly on stations being as far from each other as possible, while retaining line-of-sight communications, Lockheed is studying the use of two earthorbiting satelite tracking stations, 8000 miles apart. Not only would great accuracy be gained by the separation, but it would be further enhanced by the positioning of the stations above the earth's atmosphere, thus eliminating atmospheric distortion.
Examples of other research projects being pursued by Lockheed in the communications area include: Random multiplexing, sateliite readout techniques, scatter communications, radar mapping, submarine tracking, modulation of optical energy, communications over multipath channels, and learning systems.

LOOK AT LOCKHEED... AS A CAREER
Consider Lockheed's leadership in space technology. Evaluate its accomplishments -such as the Polaris missile and the Agena vehicle's superb record of space missions. Examine its outstanding advan-tages-location, advancement policies, creative climate, opportunity for individual recognition.
Then write for a brochure that gives you a more complete Look at Lockheed. Address: Research \& Development Staff, Dept. M-43B; P.O. Box 504, Sunnyvale, California. Lockheed is an equal opportunity employer.
SCIENTISTS \& ENGINEERS: In addition to positions in the research and development of communications and optics, other important openings include: Inertial guidance . Orbit thermodynamics Electromagnetics . Mission \& trajectory analysis . Gas dynamics . Chemical and nuclear propulsion. Systems engineering

LOCKHEED
 MISSILES \& SPACE COMPANY

Sunnyvale, Palo Alto, Van Nuys, Santa Cruz, Santa Maria, California - Cape Canaveral, Florida - Huntsville, Alabama - Hawaii

LOOK AT LOCKHEED IN SPACE COMMUNICATIONS:

Where outstanding successes have created aerospace leadership

SOLAR PANELS

Parallel connection assures current flose if one coll is damaged.

These silicon solar cell panels are capable of optimum operation in enviromments encountered in space satellites. They incorporate gridded $\boldsymbol{N - o m - P ~ o r ~} \mathrm{P}$-on- N cells and use printed circuits to assure optimum conduction from all cells. Flatmounting replaces shingling of solar cells, making for more rugged panels. International Rectifier Corp., 233 K゙ansas St.. Fil Segundo, Calif.

Circle 210 on Inquiry Card

PULSE MODULATOR

- Vegatiáe or positize pulses haz'c rise and fall times of 3 Onses. max.

Model 751 pulse modulator has outputs from 0.2 kv to 3 kv peak and is continuously variable. It is used in the development and test of low-power beacon type magnetrons with puise witths as short as 0.05 msec. Peak pulse current may be as great as 3a. Pulse characteristics are obtained with a $1 \mathrm{~K} \Omega$ resistive load across the pulse output terminals shunted with a 20pf capacitor. Manson laboratories, Inc., a sub. of Hallicrafters Co., Stamforl. Conn.

Circle 211 on Inquiry Card

DIFFERENTIAL AMPLIFIER

The fired bandzidth can be changed by the addition of the capacitor.

The Model 361400 is a self-contained solid-state de differential amplifier that does not require a moslule for rack mounting or a bench case for portable use. It is available with an output of $\pm 10 \mathrm{v}$., $\pm 10 \mathrm{ma}$. A $\pm 10 \mathrm{v} ., \pm 100 \mathrm{ma}$ unit is also available. Specs: gain is 10 to 1000 in + steps; accuracy is $\pm 0.02 \%$ (a dc; linearity is $\pm 0.01 \%$ a dc: common mode rejection is $1000 \times$ gain. Redcor Corp.. 7760 Deering Ave., Canoga Park, (alif. Circle 212 on Inquiry Card

GENERAL ELECTRIC now offers gold-plated Dumet wiressolid gold-plated, gold flashed, or gold-plated over silver or nickel. Gold's high resistance to corrosion and excellent weldability gives your key components 24 karat reliability. These plated Dumet wires are ideal for semiconductor leads, module interconnections, and other hermetically sealed units.

Tests prove new Dumet plated wire will:

- Increase corrosion resistance significantly-lengthen shelf life.
- Eliminate critical welding schedules and setups-reduce number of schedules necessary.
- Permit stronger cross-wire welds to give maximum reliability.

To get similar advantages when soldering, use General Electric Dumet wire with varying gages of electro-tin plate.
Write for highly informative chart showing which specific combinations of gold, silver, nickel or tin-plated Dumet wires are best for you. General Electric Co., Lamp Metals and Components Dept., 21800 Tungsten Road, Cleveland, Ohio 44117

> Progress /s Our Most Important Product GENERAL ELECTRIC

THERMISTORS -
 how they measure and control temperature

Although they perform a broad variety of functions, thermistors are probably best known for their unique advantages in the measurement and control of temperature. No other available transducer can match their high sensitivity, fast response, exceptional reliability, miniature size, and ability to monitor and control many remote points simultaneously.

Temperature Measurement

In temperature measurement applications the thermistor's relatively large resistance change per degree change in temperature provides good accuracy and resolution. A typical FEI 2,000 -ohm thermistor with a temperature coefficient of $3.9 \% /{ }^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C}$ will exhibit a resistance change of 78 ohms per degree C change in temperature, compared to only 7,2 ohms for a platinum resistance bulb with the same basic resistance. Connected in a simple bridge circuit with an indicating galvanometer, a thermistor will readily indicate a temperature change of as little as $0.0005^{\circ} \mathrm{C}$. It is a

Fig. 1. Typical thermistor temperature indication circuit
simple matter, with such a circuit, to obtain a $1 \mathrm{C}^{\circ}$ full-scale output. This high sensitivity, together with the relatively high thermistor resistance which may be selected, makes the thermistor ideal for remote measurements or control, since changes in contact or transmission line resistance due to ambient temperature effects are negligible. For example, 400^{\prime} of \#18 AWG copper wire transmission line, subjected to a $25^{\circ} \mathrm{C}$ temperature change, will affect the accuracy of measurementor control approximately $0.05^{\circ} \mathrm{C}$.

Temperature Control

Thermistor control systems are inherently sensitive, stable, and fast acting, and require relatively simple circuitry, Neither polarity nor lead length is significant, and no reference temperature or cold junction compensation is required, as with thermocouples.

Fig. 2. Typical thermistor telemetry circuit
Due to the large voltage outputs provided by a typical thermistor bridge (figure 1) or by a standard thermistor telemetering circuit (figure 2), no amplification is required. The voltage output of the standard thermistor bridge or telemetering circuit at $25^{\circ} \mathrm{C}$ will be 18 millivolts $/{ }^{\circ} \mathrm{C}$ using a 4,000 ohms GB34P92 thermistor; 450 times greater than that of a Chromel/Alumel thermocouple whose output is only 0.040 millivolts $/{ }^{\circ} \mathrm{C}$.

Fig. 3. Typical thermistor temperature control circuit
In our plant at Fenwal Electronics. where thermistors are used to control precision temperature calibration baths, controller differentials of $\pm .0005 \mathrm{C}^{\circ}$ or less are normal.

The only manufacturer of Iso-curve* thermistors - interchangeable units with identical resistance/temperature curves.

- pat. applied for

63 Fountain Street Framingham, Massachusetts

TRACER SYSTEM

The slystem a'orles off latout dratain!ls a'ilh rolios from 1 to 20.

By optically scaming a pencil-line tool path layout drawing, practically anty shape that can be drawn with standard drafting instruments can be produced in metal in 2 dimensions ($\mathrm{X} \& \mathrm{Y}^{\circ}$) with this Masterline Tracer system and method. It is pret vicled with a large vertical special mill equipped with 2 zero-backlash ball-bearing table movement lead screws. Any 2 dimensional contour can be machined to a high degree of accuracy. Andrew Eingineering Co., Minneapolis 20, Minn.

Circle 213 an Inquiry Card

AC/DC AMPLIFIER

After 500% warrloud, the unit recozers to 0.05% in 2 ompsic:

Model $1+4$ is a general-purpose. Wideband amplifier which has a commen mode rejection of 120 db at 60 cycles with $1 \mathrm{~K} \Omega$ unbalance, and 150 clb at de. Gain accuracy, linearity, and stability are $\pm 0.01 \%$. It has 7 fixed gain settings: contimuons gain control variable from 1.0 (0) $12(0)$. NonLinear Systems, Inc., Del Mar. Calii.

Circle 214 on Inquiry Card

REFERENCE AMPLIFIER

Functions as zolltere referonce and or-ror-iollage amplifice in pozer supplies
The integrated reference amplifiers which comprise the RA 1 series have a temp. range from $00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$: ref. voltage is 7 v . ($\pm 10 \%$). Temp. coefficient is $0.02 \% /{ }^{\circ} \mathrm{C}, 0.015 \% /{ }^{\circ} \mathrm{C}$, and $0.002 \% /{ }^{\circ} \mathrm{C}$. The RA 1 series has an additional device with the temp. cocfficient of $0.001 \% /{ }^{\circ} \mathrm{C}$. Series RA 1 and R.A 2 operate with mo zener bias current. KA 1 and RA 2 have a max. collector-to-emitter roltage of 45r. Max. collector-to-emilter voltage for RA 3 is 6 or. Max, power is 3 (0)hmw. L'sed in regulated power supplies. Gencral Electric Semiconductor Products 1 ept., Bidg. 7. Electronies Park, Syrachse, N. Y.

Circle 215 an Inquiry Card

We've never had purple plague!

Why?

We use aluminum alloy leads; not gold. Without the gold, you just don't get the purple plague AuAl_{2} compound that forms on conventional silicon planar transistors.

Purple plague will usually begin to show up around 50 hours-and almost always by 500 hours-at elevated temperatures. After 5000 hours at $300^{\circ} \mathrm{C}$, Bendix ${ }^{\circledR}$ silicon planars are unchanged electrically and mechanically.

Why doesn't everybody use aluminum leads? Eventually, they probably will, but bonding the Al lead to the

Al metalized contact area is tricky and takes some rather advanced techniques. As proof of our bonding superiority, Bendix planar transistors have been tested in excess of $37,000 \mathrm{~g}$'s centrifuge and $5,000 \mathrm{~g}$'s shock without a failure. Our Al-Al bonding technique gives us a pull factor at least three times greater than any reported yet.

Order from your nearest Bendix franchised stocking distributor or contact the Bendix sales office nearest you for further information.

Bendix Semiconductor Division

 holmdel, new jersey

GROMMETS

...by the Millions

Grommets for any conceivable industrial purpose from natural, all purpose (GR-S), Neoprene and Buna-N rubbers.
Western grommets come in hundreds of standard sizes, and can be ordered in any formulation from molds already prepared.

- Western Rubber is fully equipped for production of either standard or custom designed grommets in any size, shape or volume. All are quality controlled and economical. ly produced to your specifications.
Write or phone for information or a visit by our sales engineer in your area.

WESTERN RUBBER GO.
 GOSHEN 3, INDIANA

MOLDED AND LATHE-CUT RUBBER
PARTS FOR ALL INDUSTRIES
Circle 70 on Inquiry Cord

NEW PRODUCTS

T-Y SERVO RECORDER

Plots sariable as. time on standurd! araph paper; sculd rumge from 10 sec. to 1.5 min .

Models HR-80 and HK-87 T-Y' recorders replace conventional strip-chart and circular-chart recorders for clart lengtiss of 10 in . or 15 in . Both have a null-secking servo which moves an ink pen on the vertical axis in proportion to a bow level de imput signal. Houstom Instrument Corp., 4050 Terminal Ave., Bellaire 101, Tex.

Circle 216 on Inquiry Cord

time-delay relay

Mellay wdiustulle from 0.2 to 4.5 sed the.. list., and Siad. contact ratings.
In this timing relay the switeling mechanism remains undisturbed during the timing cyele; thus it is free from any tendency to vibrate or chatter. Timing repeat accuracy is $\pm 10 \%$. Approx. orerall dimensions, open type: $313 / 16 x$ $17 / 16 \times 115 / 16 \mathrm{in}$. Magnecrait Electric Co., 5577 N. L.ynch Ave., Chíago 30, III.

Circle 217 on Inquiry Cord

THREE CHANNEL AMPLIFIER

Spans $15 \cdot \mathrm{r} \mathrm{s}$ - 180 mc ; gains to 100 . Ko spomse flat $\pm 0.5 d b$ between $25 \mathrm{cps}-15 / \mathrm{mac}$.
Dodel 104 consists of 3 separate amplifiers which can be used individually or in cascade for an overall gain oi 100 ($f(0$ ell)). Two amplifiers are identical, with gains of 10 (20 db), 50Ω input impedances, and mas. outputs of $1 . \mathrm{A}_{\mathrm{v}}$ (P to P) into a 508 load. The third amplifier is a mitygain (0 k(b) inluredance-matching wit with a 1 megolim, 10 pf input imperlance. It reduces loading and matches other innpedance systems to a 50% comaxial system with no loss. Rise time less than 3nsec: ; delay time less than 5 nsec. Keithley lnstruments. Inc., $12+15$ Euclicl Ave., Cleveland 6. Olio.

Circle 218 on Inquiry Cord

Model 500 Basic Counter ($\$ 2.870$) with 511 plug. in $\$ 3,180$ Direct count capability to 100 MC
Model 500L Basic Counter ($\$ 2.520$) with 515 plug.in $\$ 2,800$ Direct count capability to 20 MC *

Model 520 Heterodynie Frequency Extender (\$680) Turret-tunes in 6 fixed steps to 500 MC 5 other plug-ins available

Match a TSI Counter To Your Needs-Select From 6 Standard Plug.Ins

TSI's TRANSISTORIZED MODULAR COUNTERS FACILITATE:

- Precise Frequency measurement from DC to 500 MC - Frequency Ratio measurements from 0.20 MC , measured over 1 to 10^{5} periods for greater resolution - Time Interval measurements from 0.1 micro sec. to 10 sec .

The eight digit, direct reading Nixie ${ }^{8}$ display provides storage or count-display operation. Decimal point is automatically positioned and units as KC or MC are Nixie indicated.

Sensitivity is 100 MV for AC or DC signals, with stability better than ± 2 parts in 10^{8} per week. Packaged in an engineered enclosure, the TSI 500 or 500L courter with plug.in weighs less than 45 pounds.
*Factory conversion to 100 MC capability available for $\$ 480$

Plug-in	$\begin{gathered} \text { "A" } \\ \text { input } \\ \text { OC-2OMC } \end{gathered}$	$\begin{gathered} \text { " } \mathrm{B} \text { " } \\ \text { input } \\ \text { OC-2OKC } \end{gathered}$	"C'" input IMC. 100 MC	$\begin{gathered} " \mathrm{O}^{\prime \prime \prime} \\ \text { input } \\ 10 \mathrm{MC} \\ \mathrm{~s} 80 \mathrm{MC} \end{gathered}$	Function \dagger	$\begin{aligned} & \text { used } \\ & \text { uwith } \\ & \text { Mosel } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { used } \\ & \text { with } \\ & \text { Mosel } \\ & \text { Sole } \\ & \hline \end{aligned}$	price
510	x	*	x		F, FR, P, II, E	χ		420
511	\times		x		F, P, E	χ		310
512			x		F	\times		200
515	x	x			F, FR, P, II, E	x	x	280
516	χ				F, P, E	χ	x	170
520				χ	F	x		680

$\dagger \mathrm{F}=$ Frequency - $\mathrm{FR}=$ Frequency Ratio - $\mathrm{P}=$ Period and Multiple period average $\bullet \mathrm{TI}=$ Time Interval $\bullet \mathrm{E}=$ Total Events

WRITE FOR COMPLETE SPECIFICATIONS

kearfott technical information report

 SERMO

Our publication "Technical Information for the Engineer" Number 1 was written and published for two major reasons. First, as the nation's leading innovator and producer of precision components, we wanted to sell more of them and secondly, some time ago we recognized that although textbooks on servomechanisms were very complete, the field suffered through a lack of uniform terminology and tests methods.
We attempted to cover the theory lightly in our book with major emphasis on terms, applications and component behavior from the user's point of view. You may obtain a copy of this 60 page booklet simply by writing to us.

ComPac 8 SERVO ASSEMBLIES. Kearfott's advanced Size 8 component designs have made possible the most complete variety of in-line servo assemblies available. The ComPac 8 units, $3 / 4^{\prime \prime}$ in diameter, provide high performance "closed end" devices incorporating a wide range of driving and driven elements coupled through precision single or dual speed gear reducers.
System designs based on the ComPac configurations benefit from high packaging density, and elimination of provisions for the multiple mounting of independent elements and geartrains. A typical ComPac consisting of a servomotor-gear reducer resolver and potentiometer combination measures only 3 inches long and weighs 3 ounces.
Size 8 components available for ComPac assemblies:
\square Motors - Servo, Stepper, Braked, Inertial and Viscous Damped.
\square Motor Generators and Tachometers.
\square Synchros and Resolvers Transmitters, Transformers, Differential Transmitters, Resolvers, Linear Synchros, 4 wire Synchros.

SIZE 8 COMPENSATED RESOLVERS. Winding compensated Size 8 and 11 resolvers and matching Size 11 buffer amplifier are also available from Kearfott for high precision computing resolver chains. Trimmed for unity transformation ratio, the resolver-amplifier combinations provide TR of 1.0000 ± 0.0017 over the temperature range of -55 to $+125^{\circ} \mathrm{C}$, frequency variation of 400 ± 20 cps and voltage variations from 0.5 to 20 volts or simultaneous combinations of these variations. When used with size 8 resolvers, the servo mounted size 11 buffer can be installed adjacent to the resolver. A "Piggy-Back" tandem assembly of the Size 11 resolver and buffer amplifier is available as well as separate Size 11 resolver and servomounted Size 11 buffer. Additional characteristics of the combined buffer-amplifier assemblies are as follows:

Size 8 Resolver		
Phase Shift*	Function	Rotor Amp in.
(Rotor/Amp in.)	Error	
$0.00^{\circ} \pm 30^{\circ}$	$\pm 0.1 \%$	$0.5-9.0 \mathrm{v}$
Size 11 Resolver		
$0.00^{\circ} \pm 12^{\circ}$	$\pm 0.1 \%$	0.5-20.0v

*This value constant over wide temperature, frequency and voltage range.

COMPONENTS

4 WIRE SYNCHROS．High sys－ tem accuracy using Size 8 com－ ponents is made possible through Kearfott＇s 4 wire syn－ chros．Wound as resolvers，but with appropriate electrical characteristics to permit their use as transmitters，differen－ tials or control transformers， these components can be di－ rectly applied in feedback loops without the use of special buf－ fer amplifiers．Features indi－ vidual component accuracy of 3 minutes of arc from electrical zero，when these components are used in a typical 3 compo－ nent string，overall accuracy will be approximately 5.2 minutes of arc from EZ．Designated RX， RDX and RC corresponding to transmitter，differential and con－ trol transformer respectively， the application of these compo－ nents to your analog computa－ tion devices will contribute to increased accuracy，while re－ ducing volume and weight． Units for high vibration（2000 cps 20 g ＇s ）and high tempera－ ture $\left(200^{\circ} \mathrm{C}\right)$ environments can be provided on special order．

STEPPER MOTORS．Size 8 stepper motors provide non－ ambiguous shaft position cor－ responding to a sequentially pulsed digital input．Positive positioning of shaft through a magnetic detent rather than mechanical devices contributes to the reliability and perform－ ance of these motors by elimi－ nating shock loading and me－ chanical wear．Accurate and positive shaft position makes this unit ideal for application in counting，positioning and switching mechanisms and in applications involving the use of two motors in a self－syn－ chronizing manner．The latter application permits a form of closed loop servo operational from a digital input．
Typical characteristics include： 400 pulses／sec response rate； 0.80 in ．oz．holding torque； 0.30 $\mathrm{gm} \mathrm{cm}^{2}$ rotor moment of inertia； 28 V excitation，other values available．Overall dimensions； $3 / 4^{\prime \prime}$ diam $\times 0.875^{\prime \prime}$ long；weight 1.5 oz ．

Compatible welded electronic switching assemblies can be provided for driving these step－ per motors．Other motors in various frame sizes are also available．

AND ELECTRONICS．Compli－ menting Kearfott＇s wide range of wound components，a com－ plete family of high density， transistorized servo and buffer amplifiers，pre－amplifiers and power supplies can be provided featuring welded or soldered construction．Servo amplifier voltage gain is variable through the use of external resistors． Phase shift networks matched to some of our servo motors have been included in the am－ plifier assembly．One represen－ tative amplifier，C70 3146001 is an all－welded unit occupying one cubic inch，provides a 5 watt output．．This amplifier is suitable for driving any size 5 ， 10 or 11 motor manufactured by Kearfott．Also available：Single and dual channel buffer ampli－ fiers matched to larger diameter compensated resolvers；pre－ amplifiers and quadrature re－ jection circuits for use in high performance tachometer inte－ grating loops．

"WHEN SHOULD I WORRY ABOUT REPLACING FC-75 COOLANT?"

don't

3M Brand Inert Liquid FC-75 is one of the most "permanent" coolants ever developed! Used in an efficient closed system, it can last as long as the equipment it cools so well.

The key to this longevity is stability . . . thermal, electrical, chemical. When FC-75 vaporizes (boiling point range of $210-225^{\circ} \mathrm{F}$.) it functions as an extremely effective cooling medium, without degradation. And both FC-75 and its companion liquid, FC-43, retain their high electric strength of 35 KV when they change
from liquid to vapor.
Another reason you shouldn't worry about "losing" FC-75 is its compatibility. It's not affected by metals, plastics or elastomers. Neither does it affect those materials. Won't sludge or gum. FC-75 inertness combined with ideal coolant properties means indefinite worry-free use.

For details on non-explosive, non-flammable, odorless FC-75 and FC-43, write Chemical Division, Dept. KCQ-93, 3M Company, St. Paul 19, Minn.

FREEI Use These Cards for:

- Catalogs, Bulletins, Literature • Design features of advertised products
- Information about new Products • New Tech Data for Engineers

YOUR NAME
FIRM
FIRM ADDRESS

TITLE
Mail Stop or
Div./Dept.

CITY OR TOWN

1	2	3	4	5	6	7	8
21	22	23	24	25	26	27	28
41	42	43	44	45	46	47	48
61	62	63	64	65	66	67	68
81	82	83	84	85	86	87	88
101	102	103	104	105	106	107	108
121	122	123	124	125	126	127	128
141	142	143	144	145	146	147	148
161	162	163	164	165	166	167	168
181	182	183	184	185	186	187	188
201	202	203	204	205	206	207	208
221	222	223	224	225	226	227	228
241	242	243	244	245	246	247	248
261	262	263	264	265	266	267	268
281	282	283	284	285	286	287	288
301	302	303	304	305	306	307	308
321	322	323	324	325	326	327	328
341	342	343	344	345	346	347	348
361	362	363	364	365	366	367	368
381	382	383	384	385	386	387	388

ZONE

9	10
29	30
49	50
69	70
89	90
109	110
129	130
149	150
169	170
189	190
209	210
229	230
249	250
269	270
289	290
309	310
329	330
349	350
369	370
389	390

STATE

11	12	13	14	15	16	17	18	19	20
31	32	33	34	35	36	37	38	39	40
51	52	53	54	55	56	57	58	59	60
71	72	73	74	75	76	77	78	79	80
91	92	93	94	95	96	97	98	99	100
111	112	113	114	115	116	117	118	119	120
131	132	133	134	135	136	137	138	139	140
151	152	153	154	155	156	157	158	159	160
171	172	173	174	175	176	177	178	179	180
191	192	193	194	195	196	197	198	199	200
211	212	213	214	215	216	217	218	219	220
231	232	233	234	235	236	237	238	239	240
251	252	253	254	255	256	257	258	259	260
271	272	273	274	275	276	277	278	279	280
291	292	293	294	295	296	297	298	299	300
311	312	313	314	315	316	317	318	319	320
331	332	333	334	335	336	337	338	339	340
351	352	353	354	355	356	357	358	359	360
371	372	373	374	375	376	377	378	379	380
391	392	393	394	395	396	397	398	399	400

Postcard valid 8 weeks only. After that use own letterhead describing item wanted Please send me further information on the items I have circled above.

```
BUSINESS REPLY MAIL
No Postage Stamp Necessary If Mailed in U.S.A.
```

POSTAGE WILL BE PAID BY

The Computer Center
P. O. Box 1970

Camden 1, New Jersey 08100

FREEI Use These Cards for:

- Catalogs, Bulletins, Literature - Design features of advertised products
- Information about new Products • New Tech Data for Engineers

YOUR NAME

FIRM

TITLE
Mail Stop or Div./Dept.

FIRM ADDRESS
CITY OR TOWN

1	2	$\mathbf{2}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400

Postcard valid 8 weeks only. After that use own letterhead describing item wanted.
Please send me further information on the items I have circled above.

- Catalogs, Bulletins, Literature - Design features of advertised products
- Information about new Products • New Tech Data for Engineers

YOUR NAME .. TITE	NAME		TITLE																
FIRM																			
FIRM ADDRESS																			
CITY OR TOWN																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400

Please send me further information on the items I have circled above.
Postcard valid 8 weeks only. After that use own letterhead describing item wanted.

FREEI I so Theses Caras or or

- Catalogs, Bulletins, Literature - Design features of advertised products
- Information about new Products • New Tech Data for Engineers

BUSINESS REPLY MAIL
 No Postage Stamp Necessary If Mailed in U.S.A.

POSTAGE WILL BE PAID BY

The Computer Center
P. O. Box 1970

Camden 1, New Jersey 08100

YOUR NAME
FIRM

TITLE
Mail Stop or Div./Dept.

FIRM ADDRESS

CITY OR TOWN

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	147	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400

This new relay concept saves you time, stocking and money

AE's new Series EIN relay, that plugs in Jike a tube, has taken the field hy storm-and no wonder:

It's the first telephone quality relay having all the conveniences of octal-type plug mounting, with savings of $\$ 1.93$ or more per relay!

The special sockets are available separately from AE stock. You can order the number you need for a complete production run, and buy the relays and plastic covers "off the shelf" to meet delivery schedules. There's no need to maintain large relay inventories.

The EIN's modern, low silhouette design improves the
appearance of your product and cuts space requirements up to 20%.

EIN relays are available in various spring combinations to meet most design requirements. Sockets are available for taper tab, solder, or printed circuit board terminations.
In initial cost and versatility, the EIN can solve many of your design, production and inventery problems.

For full information, write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois.

Versatile Series AW

Available with: 1 Bushing Mounting 2 Twist Tab Mounting 3 Pull-on, Push-off Switch 4 Straight Tandems 5 Concentric Tandems. (The new Series AW wirewound controls can also be used with CTS Series 45 '5/6" dia. $1 / 2$-watt carbon control to make any combination of straight or concentric tandems desired.) Series AW can be supplied in L and T pads. Element wire can be soldered to end terminals if required.

Priced less than larger diameter lower wattage commercial wirewound variable resistors. Unique high temperature heat resistanf winding core and liner permit a 5 -watt rating at $25^{\circ} \mathrm{C}$, or a 4 -watt rating at $55^{\circ} \mathrm{C}$ derated to no load at $105^{\circ} \mathrm{C}$. Resistance range is one ohm through 25,000 ohms, linear taper. The unit is completely enclosed for full protection.

Write for Catalog 2100. (West Coast Inquiries to Chicago Telephone of California, Inc., 1010 Sycansore Ave., So. Pasadena, Calif.)

CTS of asheville, inc. SKYLAND, NORTH CAROLINA

What should you look for in a Direct-Writing Recorder?

The true criterion of performance of a direct-writing recorder is the ability to produce a trace that faithfully duplicates incoming signals of all degrees of complexity - not only DC signals or wave forms of simple content, but highly complex signals and fast transients full of high harmonic content. The AO Tracemaster Recorder has this ability to a much greater degree than any other direct-writing recorder. The reason for this superior performance is a radically unique pen motor design with far better dynamic response characteristics than the galvanometers used by other direct-writers, and a completely different writing technique known as Direct Carbon Transfer (DCT).
Before you select any direct-writing recorder, you should investigate the following four basic performance requirements of most recording problems and compare to what degree available direct-writing recorders meet this requirement.

1. Signal Resolution

Signal resolution is the ability to obtain the maximum amount of useful information from the recorded trace. Very small signal variations can be missed due to insufficient pen excursion or from the signal becoming masked in a wide trace. AO specifications are based on a full 50 division pen excursion, since only then can maximum signal resolution be attained. This permits the trace to be "spread" over a wider area of the chart, thus making it much easier to see and interpret meaningful variations in the signal.

2. Frequency Response-Amplitude

For faithful reproduction of complex wave forms, even with low fundamental frequencies or repetition rates, a frequency response expressed at full 50 division pen excursion is vital. Frequency response expressed at small pen excursion or a substantial roll-off from an initial pen deflection is not a satisfactory representation of recording capabilities. The frequency response at full amplitude is the true gage of a recorder's ability to provide the greatest amount of information on complex incoming signals or transients.
The frequency response of the Series 250 Tracemaster Recorder is DC- $110 \mathrm{cps} \pm 1 \%$ at 50 divisions -tu'ice that of any other unit. At a frequency response up to 200 cps the AO still provides an excursion of $12-14$ divisions, where other recorder pens cease to deflect or barely deflect at such frequencies.

3. Rise Time

The ability of a recorder to record short duration transients with steep wave fronts - their presence, accurate amplitude without attenuation and exact complexion - depends upon its rise time capabilities over a full 50 divisions. The dynamic response of AO's Pen Motor backed up with fine electronics provides a rise time of 3.2 milliseconds $(10 \%-90 \%)$ at a full 50 divisions. Other recorders may specify equal rise time, but generally fail to mention that this is only at 5,10 or 25 divisions of pen excursion. This superior rise time capability enables the Tracemaster Recorder to record transients far more faithfully.

4. Trace Uniformity and Definition

The trace must be uniform and of absolute minimum width in order to make clearly visible the smallest detail of information. The user must not confuse aesthetics with function; a relatively heavy "pretty" trace cannot provide as much signal information as a thin trace.
The AO Tracemaster Recorder uses the Direct-Carbon-Transfer technique to provide the finest line definition of any recorder and a degree of trace uniformity, under radically varying operating conditions, far superior to other writing techniques. The AO trace width is approximately $0.005 \cdot 0.008$ inches. This very fine, highly uniform trace is possible because it is independent of pen speed, paper speed or amplitude; line width is a direct function of stylus design, stylus pressure and carbon characteristics - all constant factors.

The Direct-Carbon-Transfer writing technique uses the principle of a very low mass rigid structure stylus operating against a Mylar base carbon film in direct contact with chart paper - all across a knife edge. The Mylar base serves as a natural lubricant between the stylus and knife edge, minimizing the friction loading effects and greatly extending stylus and knife edge life. It is the only writing system that can produce a good trace of (a) high frequency signals at full amplitude, and (b) wide excursion short duration transients as well as simple wave forms and DC inputs. It fully exploits the unique dynamic properties of the Tracemaster Pen Motor to provide a trace that can reveal the most minute variations in the input signal, thus providing the user with more useful information.
Thermal or heat writing systems cannot provide the trace uniformity or constancy of the AO DCT writing method. Any change in pen velocity or paper speed will cause (a) loss of signal, (b) burning of paper, or (c) wide variations in line width. While chart speed changes of such systems vary the amount of current to the styli, thermal lag still results in several seconds loss of trace or widening (or burning) of line. For pen speed changes, however, adequate adjustment of heat is impossible and sharp transients can be completely lost.
While pressurized ink writing alleviates some of the disadvantages of heat writing, its line width is substantially greater than AO DCT and it still does not have the capability of writing at the high frequency response-amplitude and rise time necessary for faithful reproduction of complex wave forms and transients. Pen clogging, ink splatter, run out and changes in flow characteristics under varying operating conditions may still cause loss of information. In addition pen breakage on transients can be critical.

Other Considerations

There are other things to look for when comparing direct-writing recorders-chart speed range, chart paper costs, operating convenience and flexibility. The AO Tracemaster 250 has the widest chart speed range $-0.1 \mathrm{~mm} / \mathrm{sec}$ to $500 \mathrm{~mm} / \mathrm{sec}$-of any recorder. Chart paper costs range from 3.6 c to 4.6 c per foot, including carbon. This is similar to ink paper costs and balf that of heat writing paper. Roll length and paper take-up is a full 1000 feet. The AO 250 Series includes an exclusive tilt front writing table for convenient observation of chart traces and easy notations. It also features a completely modular plug-in approach for all couplers, pre-amplifiers and driver amplifiers to provide maximum flexibility of selection and interchangeability.
These are the reasons why Tracemaster Recorders are the highest performing direct-writing recorders on the market. These are the reasons why AO has established new standards for quality and recording performance. These are the reasons you should specify Tracemaster! For complete information or a demonstration write: American Optical Co., Instrument Division, Industrial Electronics Dept., P. O. Box A, Buffalo 15, N. Y. Phone: 716-895-4000, TWX 716-858-1380.

NEW PROUUGIS

DELAY LINES

Time delays are: 20, 30, 40, 50, 60, T0, 80, 90, 100 nsec ; imp demese is 100 ?.

The Series N insec. lumped constant delay lines are constructed using mica capacitors and iton toroids. Size is $5 / 8 \times 5 / 8$ $x 0.450$ in. anr it may be mounted on printed-circuit boards. Attemation is 2% max.; temp. coefficient is 50 parts/mil lion $/{ }^{\circ} \mathrm{C}$. DC working is $30(+\mathrm{v}$. : time delay to rise time ratio is $3.5 / 1$ for 1 wnit. Allen Avionics, Inc., 255 E . 2nd St., Mineola, N. Y.

Circle 222 on Inquiry Card

SLAVE CLOCK

Adjusted according to the number of loads to be driven.

The Model DBSC1151 slave clocl consists of a 4-stage high-gain diode-clamped amplifier and is useful in applications requiring increased clock fanout capability. The input circuit is a direct-coupled gate which minimizes driver-circuit loarling and increases gate response time. Each stage uses silicon transistors and diodes. Solid State Electronics Corp., 15321 Kayen St., Sepulveda. Calif.

Circle 223 on Inquiry Card

CONNECTOR

Contacts are arailable for wire range sizes \#40 to \#18 AWG

The miniature Dualatch hermaphroditic connector is composed of both conventional and modular-type 4 -position comectors, whicil permit the max. grouping of 28 units to form a single connecting unit. The conventional model is available in $40-, 60$ - and 132 -position sizes. Stantlard A-MP(B) gold-plating assures max. conluctivity. AMP Inc.. Harrisburg. Pa.

Circle 224 on Inquiry Card

place your production overload in...

 produce. on schedule, complete units or component assemblies you cannot clear through your present facilities . . . turn ideas and designs into finished products. No job too complicated ... no job too small.

A Representative will be glad to discuss your problems and objectives.

PARAPLEGICS MFG. CO.
Exclusive Contract Manufacturers to Industry
Dept. El-9, 304 North York Road • Bensenville inois
Circle 79 on Inquiry Card

test us... but PLEASE!!! DON'T CREMATE US!

use an An-in-circuit

SEMICONDUCTOR TESTER ${ }^{+}$

the first completely safe, fool-proof, line of semiconductor testers ever developed positively will not damage semicanductors, tantalytics and other low power passive devices

Semiconductor Testers ...

- In-circuit
- Out-of-circuit
- Circuit

Model 245 In-Circuit SEMICONOUCTOR TESTER*
...for quantitative trouble shooting of transistors, diodes and rectifiers
... with 6 -inch meter readout
In-circuit or Out-of-circuit Tests

- Measures Beta (low and high power transistors) with as low as 50 ohms emitter-to-base loading . . . with accuracy of $\pm 10 \%$. Range: $1-1000$.
- Measures resistance between semiconductor electrodes (power limited to one microwatt) independent of semiconductor loading . . . with accuracy of $\pm 5 \%$.
- Measures diodes and rectifiers for shorts and opens with resistive loading as low as 20 ohms.
- Measures Icbo of transistors and I_{R} of diodes (out-of-circuit only).

Model 250
SEMICONDUCTOR CIRCUIT TESTER
...for quantitative trouble shooting of semiconductor circuitry . . . with 6 -inch meter readout

- Only known multimeter SAFE for testing semiconductor circuitry.
- Checks front-back ratio of diodes.
- Measures correct value of resistors at semiconductor terminals.
- Conventional multimeters can cause costly self-made failures. The AEL Model 250 delivers a maximum of 150 microwatts in any resistance range - eliminates any possibility of self-made failures.
-6 DC voltage ranges; 5 AC voltage ranges; 5 DC current ranges; 5 DC resistance ranges.

Model 240 Automatic In-Circuit TRANSISTOR TESTER*
...for qualitative, in-circuit trouble shooting of transistors on "GO" . . . "NO-GO" basis

- Automatically detects shorts, opens and low gain units.
- No previous knowledge required of transistor type or lead configuration.
- Checks transistors both in-circuit and out-of-circuit.
- Each test completed within two seconds.
- "GO" . . . "NO-GO" immediately indicated by lights.
- Power requirements: 115 Volts, 60 cycles, approximately 30 watts.
ALSO AVAILABLE , . . a punched card programmed, fully automatic semiconductor tester with digital readout . . . Niodel 236.

Ammerican Electronic Inaboratories, Inc.

1313 RICHARDSON ROAD, COLMAR, PENNSYLVANIA • (215) 822.2929
suburban Philadelphia
*Available with in-circuit test probe
tPatents pending
For more information on the complete line . . . or a demonstration of AEL's SEMICONDUCTOR TESTERS, contact your nearest AEL Product Sales Representative . . . or write direct to AEL.

CONTACT MODULATORS

Chopping efficiency is 99% at 60 CPS zith a phase angle lag of 5°.

The Model 42 features the advantages offered hy contact modulators along with the following features: life is more than 25,000 hrs. with negligible change in noive and plase angle; self-generated current is less than 10^{-42} a. ; current is $10^{-14} \mathrm{a}$. RMs. Operating voltage is $80-130$ v. r.ms with an average current of 2 ma with a frem. range of $30-400 \mathrm{CPS}$. It may be mounted directly on PC boards. Instrumentation Laboratory Inc., 9 (ialen St., Watertown 72, Mass.

CERAMIC CAPACITORS

Both stud mounting standoff and fecd-thru designs are azailable.

These buttonhead ceramic capacitors have glass-to-metal seals. Max. capacitances in the stud mounting bypass capacitors range up to 1800 pf at 500%; capacitance in feed-thru designs is 12. (K) 1 pip at 500 v . They operate at voltages up to $85^{\circ} \mathrm{C}$, with special units available operating up to $125^{\circ} \mathrm{C}$. Capacitors mect Mil-C11015C. Sprague Electric Co., Marshall St., N. Adams, Mass.

Circle 226 on Inquiry Card

SNAP-ACTION SWITCHES

Rated at 3a. sealed inductize load. 5a. resistive load at 282 d c.

Miniature 6pdt snap-action switcles contain switch mechanism, actuator, and light circuits in a single, sealed package. Metal body provides complete RFI seal. Model A has a back panel depth of 0.590 in., and O.D. of 0.937 in . and requires a $15 / 32 \mathrm{in}$. mounting hole. Weight is approx. $1 / 2 \mathrm{oz}$.; actuator travel is 0.094 inn , and lamp current is la. Unit can be adapted to any lens configuration. Precision Electrical Products, Inc., 2080 Placentia Ave., Costa Mesa, Calif. Circle 227 on Inquiry Card

Circle 81 on Inquiry Card

Circle 82 on Inquiry Card

EACH OF OUR CABLE AND CONNECTOR CUSTOMERS IS A FEATHER IN OUR HAT.

FEED-THRU TERMINAL

Overall height is (1.351 in.; minor dia. of bushing is 0.148 in .

The FT-SM-74 L.5 tubular Press-Fit Teflon(B) feed-thru terminal has a brass lug with a 0.002 in. dia. thru-hole. The brass lug above the bushing shoulder has 2 turrets 0.125 in . dia.; the solderable purtion between the tunnels is 0.100 in dia. Sealectro Corp., 130 Hoyt St., Ma maroneck, N. Y'

Circle 228 on Inquiry Cord

SOCKET \& SHIELD

Heat dissipating tube sheld reduces bulb temp 40 to 50%.

This electron-tube shield, designed for use with JAN sockets, meets characteristic B of Mil-S-19786C (Navy). Installation does not require twisting and turning. The shield is pushed down over the JAN socket and locks in place with the socket detents. Atlee Corp., 2 Lowell Ave., Winchester, Mass.

Circle 229 on Inquiry Cord

MICROWAVE SOURCE DOUBLER
Freq. range of 8.45 to 9.55 GC ; pozerer output 2.تmze (min.).

Type 9189, part No. 9189-1000, is an X-band CW mirrowave oscillator and doubler used as a local oscillator for beacons, altimeters and system ground checkout equipment. Power input requirement 140 v . @ 20ma, 6.3v. @ 290ma. The unit weighs 4 oz . and is $21 / 2 \times 1 \times 1 / 4 \mathrm{in}$. It can be modified to other frecs. Trak Microwave Corp., Tampa. Fla.

Circle 230 on Inquiry Card

POWER RESISTOR DECADES

They supply required resist-
ance values in out ohm steps.
These power-iesistor decades handle up to 225 w . at 1000 v . and permit dial-in resistance values from 1 to $999,999 \Omega$ in 1Ω increments. Decades are made in bench and rack mounted models. A design in the switching arrangement places a constant load across the circuit at all times, with no discontinuity during switch stepping. (larostat Mfg. Co., Inc., Dover, N. H.

Circle 231 on Inquiry Cord

TWO.GUN CRT

Tube has almminized scrien and electrostatic fucus and defliction.

CC-35 25 is a 2 -gun, spiral acceleratu (R'T is designerl for max. display in highaltitude, fighter-plane, fire-control radar. It has a $3 \times 5 \mathrm{in}$. display face and features wood pattern and tracking linearity. Sylvania Electric Products Inc., 1100 Main St., Buffalo 9, N. V°.

Circle 232 on Inquiry Card

Just a light pressure and versatile Cratex makes quick work of any finishing job. Deburrs, smooths, cleans and polishes easy and hard-toreach surfaces without changing workpiece dimensions.
Full details in an
Idea-packed free
8-page catalog.

(Wheel guard removed for purposes of illustration) Cratex available in wheels, points, blocks, sticks and cones; in a practical range of sizes and in 4 grit textures-Coarse, Medium, Fine and Extra Finc.

CRATEX

 MANUFACTURING CO., INC. 1600 ROLLINS ROAD • BURLINGAME, CALIFORNIA Cratex is sold through leading industrial distributors. Circle 84 on Inquiry Cord
The DEGI-DUGTOR

new subminiature molded inductor - 24 Hour Dellvery up to 1000 uH in $1 / 10^{\prime \prime}$ dla. $\times 1 / 4^{\prime \prime} / g$. envelope 10X the inductance avallable in the same size

DECI-DUCTOR is the latest addition to Nytronics' DECI Series-a series that consists of inductors, capacitors and resistors in a uniform ($1 / 4$ watt resistor and diode size) envelope to facilitate point-to-point assembly in cordwood, printed circuit and other high density module assemblies.

For complete engineering data, write Dept. WL•49, or phone 201-464.9300.

NWIRONRCS. NNE: 550 Springfield Ave., Berkeley Helghts, N.J.

Design Leaders STANDARO components to meet CUSTOM requirements
Circle 85 on Inquiry Cord

so what makes one a better buy than the other?

The one on the left (our connector) is far and away your best buy. The reasons are simple: quality and immediate delivery. \square Every LIONEL connector nas been developed and produced by top-notch technical experts. Each element is made from the best, most reliable material we can make or buy. The result? Consistent on-the-job performance. \square You'll never have to worry abcut slipping schedules when you crder from LIONEL. We have a complete inventory of connector types, sizes and configurations. In other words, we begin delivery the hour we get your order. \square By the way, have you sent for our new catalog? We deliver them as quickly as connectors.

CURRENT LIMITERS KIT

Alloa's a acide sclection of current cut-off lea, for experimental arork.
Kits using Currector current-limiting diorles aid the elesigner in selecting various tulits for breadborerling or prototypes. Limiters are available in germamimn and silicon types. and are rated as high as 100 k . and 205ma. C"ircuit)yne Corp., 480 Mermaid St., I.aguia lieach, Calif.

Circle 233 on Inquiry Card

DIGITAL VOM

Fochares: fully allomatic po-

larity saifthing and indicating.

The Reporter las a semsitivity of lmw accuracy is ± 0.1 ", full scale. A regenerative voltage comparator combines the function of a precision ranp generator, voltage comparator, and memory circuits into a single circuit. Automatic ohm indication, aracking illuminated decimal point, and high-toltage protection are also features. Harman- ドardon, Inc., I'lainview, I. I.. N. Y"

Circle 234 on Inquiry Card

AXIAL FIELD PROBE

I ses Mall effect for sensing maynitude. polarity, and field dircction.

Probe Type $\mathrm{SB} V^{\top}-555$ has an wuter dia. oi 0.10 in. which permits magnetic field measurements within small decp bores. They use the basic Hall-effect principle to permit sensing of the magnitucle, polarity and direction of magnetic fields. Instrument Systems Corp., 111 Camiague Rd., W'estbury, I. I., N. Y'.

SIGNATURE MONITOR

Misporsion range and sensitizity is limitid only by the receiver used.
Wie DM-1 spectrum signature monitor converts a receiver or $\mathrm{RI} / \mathrm{Fl}$ meter into a complete spectrum analyzer, providing pretral displays in accordance with Mil-1-11748B. It can be used with any microwave receiver having a 140 to 160 me i-f. I'olarad Flectronic Instruments, $3+-0$) Unteens Blvel, Long Island City 1, N. Y.

Circle 236 on Inquiry Card

MAGNETIC PICKUP

Thi 0.250 ir 0.50% in. wit gonorates Seac. Il riuht is less than 0.1 ow.

Shell construction in the microminatture 3053 pickup is stamless steel. It can "ithotand temps. ranging from - $1000^{\circ} \mathrm{F}$ (1) $10+225^{\circ} \mathrm{F}^{*}$. Two 6 in. long vinyl insulated leads eliminate the need for a commector. Flectro Products Laboratories, Hic.. (,120 $\mathrm{II}^{\text {: }}$. Howard St, Chicago 48 , 111.

Circle 237 on Inquiry Card

Circle 87 on Inquiry Card

of electronic parts and components, small tools, appliances, motors, transformers, etc.
Simple to operate. Make breakdown, leakage and shorts tests to U.L., C.S.A., ASTM, NEMA, IEEE, MIL and EASA standards. 115 vac, 50 / 60 cycle input. Continuously adjustable output. Included are: complete metering, controls, safety features, case with removable cover, test leads, line cord, instructions.

VISUAL INDICATOR MODELS

Have neon "breakdown" light for breakdown, corona or arcing indication . . . and separate neon "leakage" light for leakage indication. 5 models from $0-1500$ to $0-10,000$ volts output. Priced from $\$ 137.50$ to $\$ 199.50$. Model 411 shown.
AUTOMATIC "SQUAWKER" MODELS Provide audible and visual test indications. 4 models from 0-1500 to $0-6000$ volts output. Priced from $\$ 255$ to $\$ 290$.

Gel all facts . . . write for Bulletin 4-1.3

We even put a hat on our drum to avoid contamination

This is only one of the ways we protect GENESOLV ${ }^{*}$ D "Electronic Grade," the purest precision cleaning solvent you can buy.
We do everything possible to protect the purity of our precision cleaning solvent.
Even to using this film cover to keep dirt and moisture from settling on the drum top and possibly contaminating the solvent when you open the drum.

Precautions like this help keep Genesolv D "Electronic Grade" the purest solvent available. Residue is less than 1 part per million.

Genesolv D fluorocarbon solvent for critical cleaning cuts rejects due to contamination. It penetrates into
even the smallest surface openings for easy, fast cleaning. The solvent has little or no effect on plastics, elastomers, paints and varnishes. There are no additives and it's compatible with any cleaning method.

It offers an outstanding combination of dielectric properties, exceptionally high resistivity with low dielectric constant.

Genesolv D "Electronic Grade" is safer to use than other solvents because it's nonflammable, nonexplosive and virtually nontoxic.

It's easy to recover for reuse. This helps keep your cleaning costs down. And our technical people will be glad to advise you on the best recovery set-up for your particular operation
and on proper equipment and solvent storage and handling procedures.

Genesolv D "Electronic Grade" is available in non-returnable drums of $65-, 200$ - and 690 -pound capacity, and in tank trucks of 3800 gallons.

Call on us for answers to any cleaning problems you have. Our years of experience and leadership in supplying high-purity chemicals can help you.

GENERAL CHEMICAL DIVISION
P. O. Box 353, Morristown, N. J.

AC VOLTAGE REGULATOR

Sinses voltage changes and corrict zoltage to zeithin 0.1% in $100 \mu s t i$.
Model 760 regulates, stabilizes, and conditions a 60 crs , at voltage source. 1) esigned to condition a 95 to 135 vac , ofters line, it handles power to lkva. The instrument provides 40 db (100 to 1) transient rejection and harmonic attenuation. and 100 db isolation. Beckman Matrin. ments, Inc., 2200 Wright Ave., Richmmal. (alif.

Circle 238 on Inquiry Cord

POWER MODULE

IK antputs from 10 to ofra at 13 B and are adjustoble up or domen 5%

Model T12D small-size, regulated power module comerts 115% f(o) excle to de use. Measures $3 \times 51 / 2 \times .31 / 4 \mathrm{in}$. athl weighs 5 lbs . It is hermetically sealed and meets all envirommental needs of Mil-E-5272C. Temp. range is from $-65^{\circ} \mathrm{F}$ to $+160^{\circ} \mathrm{F}$. Abbott Transistor l.aboratories, Inc., 3055 Buckinghan Rd., I.os Angeles 10, Calii.

Circle 239 on Inquiry Card

COMPONENT OVEN

Capacity sufficicut for one $11 / 8 \times 31 / 8$ in. circuit board.

Dimensions of $17 / 8 \times 17 / 8 \times+$ in.. © cluding studs and header. Operating temb, is $75^{\circ} \mathrm{C}\left(\pm 2^{\circ} \mathrm{C}\right)$. Stability is $\pm 4^{\circ} \mathrm{C}$ over an amb. temp. range of -55° ' $^{\circ}$ tu $15^{\circ} 1$ fower requirements: 20w at 110 was Kecere-hoffman Div. of Dynamic ((irp (if Anterica, Cherry and North Situr. (arlisle, Pa.

MAGNETIC TRANSDUCER

Controls fluid floze and determines mechanical specd and movement.

Applications of the commercial types indicate speed, motion, freq., and vibration. They operate from $-100^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$. The military types are fabricated stainless steel and hermetically sealed to pass helium mass-spectrometer leak tests. Produces an ac voltage if there is a variation in external magnetic field. Nova-Netics Corp., 232 Glasgow Ave., Inglenood 1, Calif.

Circle 241 on Inquiry Cord

WAVEGUIDE TRANSITIONS

Frequency range is 3.95 to
40.0Gc. Max. vswr is 1.05 .

This complete series of standard waveguide taper transitions allow one size waveguide system to connect another waveguide of different size. Optimum transition is accomplished with a minimum of reflected power. Waveline Inc., colrwell. $\therefore .1$.

Circle 240 on Inquiry Cord
Circle 242 on Inquiry Cord

FREE APPLICATION ENGINEERING SERVICE-Our ongineers will process your work samples and submit recommendations.
 55th St. \& 37th Ave., Woodside 77, N.Y.C.
Chicago Office for Sales \& Service: 6246 w. NORTH AVE.

In high-volume requirements, pin-money can be big money. That's where the Multi-Swage process pays off
in big savings on P-C Board Contacts, Terminals, Pivot Pins and Custom Parts. Dimensionally consistent Multi-Swage parts can cut costs in a wide range of applications.

For our new catalog or special information write: THE BEAD CHAIN MANUFACTURING CO. 201 Mountain Grove St., Bridgeport 5, Conn.

[^7]
NEW DESIGN AND PRODUCTION TECHNIQUES PRODUCE SUPERIOR RELIABILITY AT A NEW LOW COST (98¢)

A dramatic engineering break-through has made possible a revolutionary price break-through in the production of the Guardian Series "900' Relay. New design and production techniques actually reduce the number of parts 50%, and assembly operations 60%. The new U.L. approved 115v. AC " 900 " relay now features a one-piece field and core, capsulated coil with cover, onepiece molded switches, one-piece mounting clip and return spring, and other simplified parts. With fewer parts, and precision engineering, you're bound to get exceptional dependability and longer life. The Guardian " 900 " actually out-performs relays selling at many times the low price. All you pay is 98 c in quantities of 200 or more. Sure you can pay more-but why? CONTACTS: D.P.D.T. combination with rating of 10 amperes at 115 V.A.C. resistive load.

T COIL: Voltages 24, 115, 230 V.A.C. or 6, 12, or 24 V.D.C.

NEW "FORM-FITTED" TRAY-Special assembly-line packaging speeds your operation, at no extra cost.
WRITE TODAY-The "900" Relay is carried in stock for immediate delivery. Write today for complete information.

These 8 parts now replace 22 parts

LIGHTED SWITCH

Available in alternate, magnetic holding, or momentary types.

The Series 4 lighted switch fills the need for an illuminated indicator with control action. Light-tight legend divisions are arailable in quadrants, halves, or in combination configurations. Colored actuation barriers may be ordered for switch and indicator coding or isolation. Switches rated at $5 \mathrm{a} ., 30 \mathrm{vdc}$; or $5 \mathrm{a} ., 115 / 250 \mathrm{vac}$ pole. They cant be supplied in 1,2,3, or $\mathcal{A}_{\mathrm{p}} \mathrm{d}$ d contact arrangements. Lym-Western, Inc., 2525 W. 8th St., Los Angeles 57. Calif.

Circle 243 on Inquiry Card

SSB CRYSTAL

Passband flat to 1 db from 200 cycles to 6 kc from carrier.

Miniature 100 kc SSB filter measures $16 \mathrm{cu} . \mathrm{in}$. in volume. Specs: 2 db from 100 cps to 6.2 Kc ; opposite sideband rejection greater than $60 \mathrm{db} ; 50 \mathrm{db}$ at 120 cycles from carrier. Upper and lower SB available. Burnell \& Co., Inc., 10 Pelham Pkwy., Pelham, N. Y.

Circle 244 on Inquiry Card

NAND GATE

Typical propagation delay is 8nsec.; min. fonout is 5 over $-55^{\circ}+125^{\circ} \mathrm{C}$.

This epitaxial-planer component is a 0.25 in . sq. single-chip microcircuit which effectively replaces 4 diodes, a transistor. and a resistor. The epitaxial NANI) gate consists of a 3 -itput AND gate followed by an inverting stage. The package is a morlified TO-5, but other configurations are available. Sylvania Electric Products Inc., 100 Sylvan Rd., Woburn, Mas:.

Circle 245 on Inquiry Card

SERVOAMPLIFIERS

Units available in 60 and 400 cycles: two have 90° phase shifts.
Models 951, 952, and 953 amplifiers drive $33-40 \mathrm{v} 60$-cycle and 400 -cycle servomotors. They come in 5, 8 and 11 sizes. Model 951, 400 -cycles, weighs less than 2 o\%.: Model 952, 400 -cycles features built-in 90° phase slift; Model 953, $60-$ cycles, las a 90° phase shift. Models are fully transistorized and conform with the temp., vibration, and shock requirements of Mil-E-5400D. Helipot Technical Iniormation Service, 2500 Harbor Blvd., Fullerton, Calif

Circle 246 on Inquiry Card

POWER SOURCE

Output pozcer from 0.1 to 50 zw . in the fred. range of 23 to 74 Gc .
Model 258 is a portable r-f power source which provides CW or pulsed power. Input power for tie manually-tuned unit is 1800 w . nominal, 115 or 220 v . Pulse modulation duty is rated up to 100%. Litton Industries, Electron Tube Div., San Carlos, Calif.

Circle 247 on Inquiry Card

Circle 93 on Inquiry Card

SEND FOR NEW CATALOG ON solder
solders, fluxes, preforms, special alloys and ultra high purity metals for semi-conductor devices.
alpha metals, inc. 56 Water St., Jersey City. N.J .HE 4-6778

Circle 94 on Inquiry Card

Anthorn
 NATO voice of command...

During World War II, the air over Anthorn, England, crackled with control-tower chatter typical of B-17 bases everywhere. Soon, that air will be charged again - this time with the big voice of NATO's new Very-Low-Frequency radio transmitter. With a power of $550-\mathrm{kw}$, it will feed a six-point-star antenna array stretching 4300 ft . over the old runways.

Like the U. S. Navy's staggering 2-megawatt VLF facility at Cutler, Maine, and VLF Pacific in Australia, the transmitting equipment for this new NATO command communication system is being designed and produced by LTV's Continental Electronics. VLF operation in the $16 \cdot 20-\mathrm{kc}$ range was selected for its immunity to ionospheric disturbances and because VLF propagation follows the curvature of the earth, thus giving added range to the station. Continental is associated with Redifon, Ltd. of London on the Anthorn project.

Long recognized as the producer of the world's most powerful transmitters, Continental produced the megawatt Voice of America transmitters, the BMEWS multimegawatt radar transmitters, and NikeZeus acquisition radar. Combined with Continental's activity in the fields of standard broadcast AM, HF, UHF, Single Sideband and microwave transmitters, these projects reflect another facet of LTV versatility. Continental Electronics Manufacturing Company, 4212 South Buckner Blvd., Dallas 27, Texas, a subsidiary of Ling-TemcoVought, Inc.

WILL IT WORK AT 10 MC?

FIND OUT FAST WITH AN EECo HIGH-SPEED DICITAL SYSTEM BREADBOARD

It looks good on paper. Now - what will be the effect of clock duty cycle? Wiring? Propagation delay?
You can get the answers fast with EECo system breadboard equipment-an exceptionally simple means of formulating and testing digital electronic circuits at clock speeds to 10 Mpps.
This versatile transistor equipment lets you patch up trial circuit combinations with the same catalog modules that go into the final system, perform tests at operating frequencies by pushing a button on the control panel, and get a "stopaction" look at the over-all logic flow.
The built-in clock generator permits fast set-up of a wide range of test conditions, and indicators give you an immediate reading on any part of the circuit. Plastic symbol cards
further speed your work by giving you a road map of the system as you put it together.
You may operate the system slowly to check individual operations or at end-system speeds, introducing high-speed pulses either singly or in pairs. If you want to try an altemative design idea, a few minutes of patching will make your brainstorm a reality.
Discover for yourself this specdy route from paper to prototype. Write for our new breadboard brochure
 today'.

ENGINEERED ELECTRONICS Company
1441 East Chestnut Avenue, Santa Ana, California
Telephone: 547-5651 Cable Address: ENGELEX

Company Name
\qquad
Company Address
City
Zone \qquad State

IMPORTANT

FOR OUR STATISTICAL RECORDS PLEASE CHECK THE ONE APPROPRIATE CATEGORY THAT BEST DESCRIBES YOUR COMPANY OR DEPARTMENT. Failure to do so will delay your subscription.

[^8]
CHANGE OF ADDRESS

I wish to continue receiving ELECTRONDE INOUSTRTES Change my address as indicated.

OLD

Paste wrapper imprint here, or . . .
Write In complete old address
: NEW
Company
Mail Stop or
Div./Dept.

Title/Position
Company Address
City__Zone__State

Signature

IMPORTANT

FOR OUR STATISTICAL RECORDS PLEASE CHECK THE ONE APPROPRIATE CATEGORY THAT BEST DESCRIBES YOUR COMPANY OR DEPARTMENT. Failure to do so will delay your address change.
\square Mfr. of non-military electronic receiving and transmitting equipment.
[] Mfr. of non-military electronic instruments, measuring, control and test equipment.
\square Mfr. of non-military electronic computers, data processing, analysers, business machines.
\square Mfr. of Guided Missiles and Accessories; Aircraft and Accessories, All Types of Military Products and Equipment.
\square Mfr. of electronic components, parts, tubes and like products.
\square Mfg. Co. (non electronic) using any of the above equip. In mfr., research or development worl.
[] Broadcasting or telecasting station.
\square Commercial communication user (Tel \& Tel, Police, Airports, Recording Studio, Etc.).
\square Independent research, test, design laboratories and independent consultants-not part of afg. Co.
\square Gov't Bureaus, Gov't laboratories, Gov't research center, military installation.
\square Wholesaler, mfg. representative, service firm.
University (educational) Public Library.
Other (Please explain)

BUSINESS REPLY MAIL no postage stamp necessary if malled in united states

POSTAGE WILL BE PAID BY
ELECTRONOC INNOOSTROE®
Chilton Company
Chestnut \& 56th Sts.
Philadelphia 39, Pa. 19139

Att: Circulation Dept.

BUSINESS REPLY MAIL

no postage stamp necessary if malled in united states

POSTAGE WILL BE PAID BY

Chilton Company
Chestnut \& 56th Sts.
Philadelphia 39, Pa. 19139

Att: Circulation Dept.

Our high-voltage capacitors

offer superior electrical characteristics

Our series of small, high voitage capacitors is designed for installations requiring a high degree of component reliability at operating temperatures as high as $200^{\circ} \mathrm{C}$. We're proud of the fact that our capacitors are now being used on Republic's Plasma Space Engine.
The engine is designed for a variety of space applications. As a propulsion device, due to the low thrust-toweight ratio, this engine can be used to maintain a satel-

are smaller

and have impressed some pretty
important people.
lite in a particular orbit, correct interplanetary vehicle course, or provide propulsion for a solar probe.

Bendix capacitors are ideal for applications such as this. They offer excellent qualities of radiation resistance. High temperature capability and mica-like electrical characteristics enable them to withstand extremely high orders of AC in small envelope size at all ambients under $200^{\circ} \mathrm{C}$. For full details, write us in Sidney, New York.

ROCKET ENGINE'S ABILITY to shatter building materials is being probed at NASA's Langley Research Center. Results should help NASA select spacecraft launch sites that will minimize damage to surrounding communities. Project engineer Henry S. Freynik Jr., reports that space vehicle engines will be many times more powerful and make much more noise than those now being tested. They may develop in excess of $10,000,000$ pounds of thrust, generate as much as 145 decibels of noise three miles from the launch.

SOUNDING SENTINEL, developed by Raytheon, makes red lights flash, bells ring, horns blow, or sirens scream when a ship gets too close to shoal water. As accessory for the firm's larger model Fathometer depth sounders, the new DE-734 depth alarm can be set for depths between 10 and 150 feet. When the preset minimum depth is reported by the vessel's depth sounder, the device warns of the approach to dangerous waters.

ELECTROSTATIC PRINTING, expected to have a major impact on the printing industry, was patented recent1y. Also called pressure printing, it permits rapid, inexpensive, and high quality impressions on almost any material from bricks to oranges. Invented by engineers at Stanford Research Institute, the process involves screening dry ink particles onto the material. Ink particles are attracted to the material surface by an electrically charged backing plate. The image to be printed is the other electrode plate. Ink particles are fused permanently on material by heat or chemicals.

EVERYBODY'S USIN' EDP to save time and money, including banks, airlines, hospitals, and even T-men and G-men. Now Northeastern University is going to use EDP to raise money by putting giving on the installment plan with a $\$ 40,000,000$ Diamond Anniversary Development Fund coming up. A lot of little gifts over a long period entails a big clerical bill. Everybody wants a tax deductible gift acknowledgement, there's bookkeeping on a running gift total, and also universities want their own record of who coughs up what. Reducing human labor will also make the gift dollar go a little further.

MUD, MUD, MUD and how to get rid of it has annoyed military men ever since the first howitzer got stuck in the stuff. Passing DC through mud makes the water go away but past methods have been too slow and too expensive. For the U. S. Corps of Engineers, Cornell U. engineers are considering a grid 15 to 20 feet wide, average road width, and as long as possible. Buried below the grid's center would be a series of pipes, both acting as opposite poles. When activated, the water would surface under the grid and be drawn away in ditches. At the same time, chemicals would be introduced through the pipes to help stabilize the road.

HEART BEATS of an unborn baby have been transmitted from a Milwaukee hospital to a Paris laboratory in Marquette University's first attempt at trans-atlantic transmission of fetal electrocardiograms. Transmission was by telephone cable from Mount Sinai Ilospital in Milwaukee. Paris confirmed that the signal was strong, heart beats of both expectant mother and fetus were recorded. Dr. Saul Larks, Marquette professor of electrical engineering, who directed transmission, said the tests open the door for international medical consultation.

Precision specializes in square, rectangular, round or special shaped coil forms . . kraft, fish paper, acetate, DuPont Mylar, Johns-Manville Quinterra, Resinite impregnated, other high dielectric materials or combinations . . . to help you solve any dielectric or corrosion problem. Forms can be made to your exact specifications in all sizes from $1 /$ /6 $^{\prime \prime}$ square to $8^{\prime \prime}$ square with wall thicknesses of from .010 to .125 .

Precision Paper Tubes are available in standard or exclusive patented DI-FORMED construction for greater crush resistance, high tensile strength and extreme dimensional stability.

540 PAGES . COMPLETE INDUSTRIALELECTRONICS CATALOG FOR the special use of purchasing agents and engineers

- World's Largest Stocks of Electronic Components
- Same Day Shipment • Factory OEM Prices

for FREE copy, check reader service card or wrife direct

ALLIED ELECTRONICS
subsidiary of allied radio corporation
100 N. Western Ave., Dept. 77-J, Chicago 80. III.
For seporate Cotolog No. 230 feoturing hi-fi,
build-your-own kits, home tope recording, hom geor,
etc., write directhy to Allied Rodio,
Dept. AX, 100 N. Western Ave., Chicogo 80, III.

Adlake Type 1155 Mighty Midgets are protected by a patented anti spin-out feature. It doesn't show on the outside. Hardly shows on the inside. Yet, it stops uncontrolled making and breaking of contact circuits. Prevents the self-destruction that would normally result. With this protection, contacts rated 30 amperes at 115 volts have sustained inrush currents of 200 amperes for 10 seconds. Done so without uncontrolled breaking of the circuit load. To find out how this anti spin-out feature works, study the diagrams below. Contact your Adlake representative, or Adlake direct, for additional information.

Spin-out occurs when a mercury plunger relay is subjected to high inrush currents of relatively fong duration. This sets up a heavy magnetio field which imparts a rotary motion to the mercury column. Centrifugal force displaces the mercury in the center of the columin against the side of the plunger, causing the center of the column te sink. The phenomenon stops when cup and load circuit ars exposed. However, it begins again as soon as anough mercury has been pestored to the area over the cup and central electrode. Uncontrolted making and breaking of the contist circuit may continue until the reay is destroyed.

In an Adlake 1155 Mighty Midget, ports in plunger and refractory liner let the mercury re-enter the area surrounding the cup and central electrode as illustrated. This completely eliminates the tendency toward selfdestruction of the contact mechanism.

ADLAKE MAKES MORE KINDS OF MERCURY RELAYS THAN ANYBODY

The Adams \& Westlake Company Dept. N8809 Elkhart, Indiana Phone Area 219, COngress 4-1141

Improving Semiconductor Reliability"

Editor, Electronic Industries:
I would appreciate it very much if you would publish the list of reference bibliography in comection with my manuscript "Improving Semiconductor Reliability" in order to give credit to other authors in this field.
Bibliography: High Stress Λ ging to Failure of Semiconductor Devices, G. A. Dodson and B. T. HowardBell Telephone Lab.; Statistical Techniques in Life-Testing, Benjamin Ep-stein-PB 171580, U. S. Department of Commerce; Random Balance, Thomas A. Budne-Industrial Quality Control, Vol. XV 1959; Reliability Training Text, ASQC, IRE, March 1960, Weibull Statistics \& Burn-in, J. N. Perry.

Hauw T. Go
Chief Reliability Engineer Diode Division

POWER TC ZENERS for "brute-force" regulation

Abstract

These new Pickson power Temperature Compensated Zener Reference Diodes allow orecise "brute force" regulafion without complicated circuitry. Power supply and circuit designers will a so welcome the extremely wide curreat range over which the temperature coefficients ate guaranteed.

For complete information contact your authorized Dickson Representalive, or write, wire or phone Dickson Electronics, P. 0 Box 1387 , Scoltsdale, Arkonx Pione code 602, 946.5357.

248 weils Farco Avenue, Scotudere, Arz.

"Any Back Issues-?"

Editor, Eiectronic Industries:
If still available, I would like reprints of "Inexpensive Remote Pickup Transmitter" from your September 1961 issue, and "Build a Suitcase Studio" in your March 1960 issue.

Being quite new to the business. I do not have the past issues of Electronic Industries. But judging from the issues I do have, the past issues must have loads of informative articles.

Perhaps some of the readers who want to rid themselves of old issues of E. I. could arrange to send them to me.
W. J. Wolfenbarger. Chief Engincer,
Willapa Broadcasting Co.
P.O. Box 626,

Raymond, Wash.

"The Search For New Semiconductor Materials"

Editor, Eiectronic Industries:
I certainly enjoyed reading and would like to compliment you on your fine article entitled "The Search for New Semiconductor Materials" pul)lished in the June, 1963 Electronic Industries Magazine. This undoubtedly is the best article I have read in recent months on the "state of the art" on semi-conductor materials.

There is one minor point that I believe may be somewhat misleading and that is your statement on the availability of Gallium. Your first paragraph points out that if any material is to supplant germanium and silicon, it will have to be available in quantities of 50,000 to 100,000 pounds per year. For a compound semi-conductor like Gallium Arsenide, this means that Gallium would have to be available in quantities of 25,000 to 50,000 pounds per year. With present facilities, our calculations indicate that Alcoa alone can supply approximately 37,000 pounds per year of (dallium required. We further believe that with just a minimum of effort extraction rates could be improved with reasonable hope that 50,000 pounds per year could be prodluced. When you consider the magnitude of the world wide aluminum industry, you can see that Gallium is readily available in the quantities set up as your criterion for adequate supplies.

F. M. Townsend, Manager Industrial Chemical Sales

 Aluminum Co. of America(Continued on page 164)

481L. A self-healing system for post-attack recovery and reestablishment of command structure in case of direct nuclear bombardment.
It's MITRE's job to design such a system and make sure it works.
It's just one of MITRE's jobs.
Among others are the development of a new aerospace communications system, a nuclear detection and reporting system, a hardened underground command post for NORAD,
and a system to help end mid-air collisions.
MITRE needs men for this work. It is probably the most challenging work of its kind in the field of military command technology.
MITRE is located in Bedford, Mass., a country town 25 minutes from Boston, one hour from the White Mountains, a half-hour from the ocean. Advanced degrees in electronics, physics or mathematics are preferred.

If you are interested in working here, write Vice President Technical Operations, The MITRE Corporation, Box 208 AN, Bedford, Mass. Openings are also available in Washington, D.C. and Colorado Springs, Colorado.

THE

Pioneer in the design and development of command and control systems, MITRE was chartered in 1958 to serve only the United States Government. The independent nonprofit firm is technical advisor and system engineer for the Air Force Electronic Systems Division and also serves the Federal Aviation Agency and the Department of Defense.

Printed Circuit Connectors with operating voltages to 1500 V RMS...up to 5 amps current carrying capacity!

Ideally suited for limited space applications! Extremely compact -highly resistant to extremes of shock, vibration, temperature and moisture. Body, tough low-loss polyamide per MIL-P-17091 (Du Pont Zytel 101 nylon). Available in 13 colors, including basic colors for MS16108C coding applications. Contact resistance: less than 2 milliohms. Capacitance between two adjacent jacks: less than one mmf.
TIP JACKs-Formed silver-plated berylium contact. Horizontal Jack accepts $.080^{\prime \prime}$ dia. tip plug in either end, top or bottom. Vertical Jack mounts through single $.052^{\prime \prime}$ hole requiring minimum mounting area.
Sub-Miniature Tip Plugs-One-piece, nickel-plated, machined brass tip. Solder type lead connection. Available in standard length or with 4" body for access to "hard to reach" test points.
STANDARD NYLON CONNECTORS-Complete line of Tip Plugs; Standard, Metal-Clad, and Rapid-Mount Tip Jacks; Banana Plugs and Jacks; Binding Posts. Tough, low-loss, shockproof nylon will not chip or crack. Voltage breakdowns to 12,500 VDC. Catalog lists available types.
OTHER CONNECTORS-In addition to nylon types, Johnson also manufactures standard connectors. Catalog lists available types.
E. F. JOHNSON CDMPANY

3002 tenth avenue s.w. - waseca, minnesota

ELICTTRONC CAPABLITYY (Continued)

quality of output and manpower rather than on sales records and size of facilities, will increase.
Q.-What do you suggest we do about this gap in our technological ability?
A.-This is not easy to answer. It's hard to assess the basic competence of the electronics industry, whether it needs to grow, or be stimulated in certain directions. We know that we are not getting what we need, and that our electronics capability must be geared to grow with the space program.
Q.-Are American workers geared to think and work with precise requirements?
A.-This is a real problem. We know there is laxity in precision and perfection in our manufacturing in contrast to the handicraft society as exemplified by the Swiss in their watch movements. The "Let's get the product out on the market" drive has been paramount in our thinking. Success of a space mission may hinge on the absence of any inferior component. Shoddy work and imperfect materials have no place in space equipment.
Q.-Do you consider that we may not have enough highly-trained scientists?
A.--Those who talk about our space program in my opinion usually over-emphasize the importance of highly-trained scientists as opposed to engineers who do most of the work. We need more highly-trained engineers if we are to get the electronics reliability and competence we need to make every space shot successful.
Q.-What can we do about the shortage of trained and experienced electronic engineers?
A.-There is always a shortage of able people in any line. There is not only a shortage of scientists and engineers but also of competent managers to supervise and hold onto the skilled personnel in industry who are more and more in great demand elsewhere. We should offer incentives to engineers, both in education and on the job.

Q.-What remedies do you suggest?

A.-For one thing, our educational system is archaic. It lags behind changes in our society. There is a lack of money for rebuilding facilities and up-dating curricula, and there is a lack of stimulation for change in educational circles. Lack of facilities and insufficient maintenance are also factors. These problems always have beset education, but with the space program, requiring greater emphasis on skills and training, the prob-
lem of education is far more severe.
So much is being published today that was not published only a few years ago. This is important, for it helps to motivate young people and to provide instruction and training for those already in the jobs.
Q.-How do we stimulate this lagging educational system?
A.-If you want to lead our society in any particular direction-speed it up, or change its direc-tion-most of this sort of effort, seemingly, must be done in Washington.
Q.-What is the Government's role in this?
A.-Legislation should provide scholarships, funds for new facilities at technical colleges and universities. Actually, NASA is making funds available for new facilities for scientists at the present time, and this program could easily be broadened to include engineering.
Q.-How effective is our total effort to speed up our technological capability through this NASA effort?
A.-NASA's program is just a little wedge toward a solution to the whole problem. However, there is evidence that NASA's current program may be sufficient to replace all the PhDs required by the Government in its space program.
Q.-Do industry leaders support NASA's program and the concept that the Government should place its weight behind stepped-up education and experience programs for scientists and engineers?
A.-I know of no adverse criticism from industry leaders. There may be some support for the program, but such support is not yet particularly noticeable.
Q.-What is the U. S. position on the mobility of scientists and engineers, brought about by the awarding of contracts?
A.-The Government is not sure it wants to get into this problem. In fact, it appears that it is the most highly skilled and valuable person that has opportunities coming his way that causes him to move. There is a question whether the Government should interfere in this phase of our free enterprise society.
Q.-What is your feeling as to the responsibility of Government and industry toward providing training and experience for technical personnel?
A.-Government should support educational opportunities for citizens, and industry should provide training and experience in practical know-how, and in leadership, leading to manage-
(Continued on payc 165)

NEW 1/2-SIZE CRYSTAL CASE RELAY MODEL 902 (DPDT)
 Meets requirements of MIL-R-5757D

Rigid frame construction
Positive contact wiping action
High-temp. coil wire rated $+220^{\circ} \mathrm{C}$
Size: $800^{\prime \prime} \mathrm{L} \times .40^{\prime \prime} \mathrm{H}$ x $.40^{\prime \prime} \mathrm{W}$
Weight: 0.3 ounce
Contact arrangement: Form C
Coil rating: 6, 12, 26.5, 48 VDC (others available)
Contact rated load: low level dry circuit to 2 amps resistive to 26.5 VDC

Contact life: 100,000 operations at rated loads
Vibration: 0.1" D.A. or 20 G peak, 10 to 2000 cps
Temperature: $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Shock: 50G for 11 milliseconds
Dielectric strength: 1000 volts RMS except 500 volts RMS from coil to case and across open contacts

Terminals: Plug.in, hook-type and 3" leads
Corrosion resistant materials used throughout
Produced with meticulous care under white room
conditions and rigid quality control procedures

This new relay is reliable! It is constructed of precision made parts to exacting tolerances for uniformity of production, and provides consistent, dependable performance. Available from factory shelf stock and from stock in our Los Angeles and New York offices. Ordering references for $1 / 2$-size Crystal Case Relay with hook terminals and bracket mounting. 26.5 VDC is Catalog No. 90210320.

For technical information call Aerospace Products, or write for Bulletin 1073. Telephone: 242-5000, Area Code 412. TWX 412-642-4097, TELEX 086748.

"Diode 'And' Gate"

I:ditor, Electronic lnuustries:
The "Diode 'And' (iate' circuit that you have drawn on p .86 of the lu ! y . 1963 issue of Electronic Industries hat a mistake in the B diode leg. The circuit as shown will not operate as a coincirlence circuit since the B leg is independent of the A and C circuit elements.
The corrected circtit is shown below.

The It leg should be corrected as shown so that the circuit will function as originally intended.
C. A. Kallas,

Electronics Engineer
Missile \& Space Systems Div.
Douglas Aircrait Company, Inc. Santa Montica, Calif.

MOOEL 909 wir 3264 POSITIONS

MAC Panel Plugboara Programming Systems are designed to meet all your requirements for dependable program control of electronic equipment. Available in sizes ranging from 200 to 5120 positions, systems include receivers, lighiweight phenolic or diallyl phthalate plugboards and a complete set of manual and fixed plugwires.

Check the complete line . . . write for catalog, price list and set of receiver mounting dimension sheets.
MAC PANEL CO./O.E.M, DIIISION
High Point, North Carolina

"Guide To Lamp Selection"

Editor, Electronic Industries:
Congratulations on the very fine and comprehensive article, "Designer's Guide to Lamps, Indicators and Switches," in Jan. 1963 issue. The article reflects your extensive and thorough research of the industry.

One slight misprint occurs in the copy immediately above the cut of the Licon Type 04, Page 166. The second line should read . . "-crease of switch operating point," instead of "actuating pressure."

Howard J. Roeser
Advertising Manager
Licon
Division Illinois Tonl Works Inc. 6615 II. Irving Park Ruad Chicago 34, Illinois
(Continued from page 163) ment positions.

Little known is the fact that the Government sometimes helps in training people for management positions. It often selects talented persons from industry to work for a period in difficult nlanagement slots in Government where they get some of the best lessons in management, which can be applied at their companies.
Q.-You implied that our scientists, engineers and production people need to be motivated in order to achieve the excellence and perfection demanded by our space effort. How should this be done?
A.-Motivation is very important. Some feel that motivation is a basic problem with our citizens as compared to grandfather's time; things are not as black as they seem. There is tremendous excitement among our young people over our space program. If we relied on the excitement of our 9-15-year-olds, our space budget would be tripled. Television and reading material on space have aided this and have made our young people much more advanced in knowledge and ability. If we can help them capitalize on that interest through public schools and colleges, we may have solved part of the motivation problem. Public schools have lagged far more than our colleges in training young people for a new and rapidly changing world.
Q.-In your opinion, is it the systems engineer that is in shortest supply?
A.-The man who can plan a complete system is the hardest to find and in greatest demand. This is where we have the greatest shortage. So far, there are few schools, if any, for training in systems technology and planning. Such knowledge comes by experience and not enough people have this experience yet.
Q.-Is the Government doing anything to help encourage-possibly through the Department of Health, Education and Welfare - high school guidance people to steer talented students into science and engineering?
A.-This can be sticky. The Govermment doesn't want to be a dictator to local schools. I think there is one thing the colleges and universities can do, however, to interest young people in technology. Schooling costs are so high that many talented students are discouraged or drop out before reaching maximum potential and are thus lost to society. I suggest that colleges find a way to reduce tuition fees according to a student's academic record. The better the student's performance the less the fees charged.

NEW 1/6-SIZE CRYSTAL CASE RELAYS MODELS 900 (SPDT) and 901 (DPDT) Meets requirements of MIL-R-5757D Self-mounting to printed circuit boards $0.1^{\prime \prime}$ grid spaced terminals
Balanced rotary type armature Positive contact wiping action High-temp. coil wire rated $+220^{\circ} \mathrm{C}$ Large coil provides greater coil power
All welded rigid frame construction
Corrosion resistant throughout
Size: $.500^{\prime \prime} \mathrm{L} \times .230^{\prime \prime} \mathrm{W} \times .430^{\prime \prime} \mathrm{H}$
Weight: 0.15 ounce
Coil rating: $6,12,26,5,48,76$ VDC (others available)
Contact arrangement: Form C
Contact rated load: low level dry circuit to 1.0 amp resistive at 26.5 VDC

Contact life: 100,000 operations at rated load
Terminals: $11 / 2^{\prime \prime}$ or $1 / 2^{\prime \prime}$ leads, or solder hook
Vibration: 0.1" D.A. or 20 G peak, 10 to 2000 c.p.s.
Shock: 50G for 11 milliseconds
Temperature: $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Produced with meticu'ous care under white room
conditions and rigid quality control procedures
These relays are reliable! They are constructed of precision made parts to exacting tolerances for uniformity of production, and provide consistent, dependable performance. Available from factory shelf stock and from stock in our Los Angeles and New York offices, Ordering references for $1 / 6$-Size Crystal Case Relays with $11 / 2 "$ leads, 26.5 VDC coil rating: Model 900 -Catalog No. 90030301 ; Model 901 -Catalog No. 90130301. For technical information call Aerospace Products, or write for Bulletins 1076 (Model 900) and 1077 (Model 901). Telephone: 242.5000, Area Code 412. TWX 412.642-4097, TELEX 086748.

Look at all the Virtues

 has packed into the NEW

- Provides both one- and 16 -speed outputs from the same compact resolver.
- Direct two-speed operation - eliminating need for additional mechanical elements - simplifies circuitry and assures superior reliability.
- Readily adaptable to digital systems.
- 10-second accuracy consistently maintained in production units.
- Integral bearings permit direct mounting to gimballed structures.
- Beryllium housings provide light weight and high thermal stability.

Qualified engineers who are seeking rewarding oppartumities for their talents in this and related fields are Invited to get in touch with us.

This new series of Pancake Resolvers once again emphasizes the advanced design capabilities that Reeves can bring to bear on problems in this field. For further information, write for Data File 309.

A Subsidiary of Dynamics Corporation of America. Roosevelt Field. Garden City. New York

The Systems

Engineering

Section of
ELECTRONIC
INDUSTRIES

"EDGE" ON PRODUCTION

With Navy P-3 Orion patrol plane in BC, production worker at the Lockheed-California Co., Burbank, reports status of job via remote EDGE (Electronic Data Cathering Equipment) unit. Flashed in under a sec. to central RCA computer is production data in 36 subject areas. Lockheed-California now has 127 EDCE units in operation.

New production data reporting and acquisition system conceived by Lockheed, and designed and built by RCA. is being installed in Lockheed plants throughout country. Automatic DPS makes production data from assembly lines available to top management in a few seconds. It will save about $\$ 2.8$ million next year at Lockheed Missiles \& Space Co. alone. Reports are made by production line employees through "nerve ends" called EDGE (Electronic Data Gathering Equipment). Management uses information to locate parts in production, check status of jobs Days, weeks are cut off normal report times.

WBIR-TV, Knoxville, Tenn., received 297 tons of prefabricated steel for its $1751-\mathrm{ft}$. TV tower, which will replace an existing $700-\mathrm{ft}$. support. Tower will extend the WBIRTV coverage over a 50% greater area. The tower will be equipped with a 2 -man elevator for making repairs or changing lights. A man would take an estimated 3 hrs . to climb the one-third mile height. The elevator will ascend it in 15 min . Designed and built by Stainless, Inc., N. Wales, Pa., the guyed, triangular tower will support a high-gain helical antemna. Stainless has already built a $1749-\mathrm{ft}$. tower in Columbus, Ga., shared by WTVM and WRBL-TV.

ELECTRONUC
 SYSTEM

A $\$ 36$ million contract for the development and manufacturing of an air defense system for Japan was recently awarded to the Hughes Aircraft Co., Fullerton, Calif. The Hughes Tactical Air Weapons Control System was selected over systems proposed by two other American companies. The selection was not made until after 3 years of system development, presentations and demonstrations by the 3 companies, plus exhaustive evaluation by the Japanese Air Self Defense Force.

New equipment FAA has ordered will give air traffic controllers more command over inputs to their radar scopes. Burroughs Corp. is designing the equipment that will be part of FAA's improved national air traffic safety system. Automatic processors will do filtering now performed manually by human operators. Radar and airborne beacon data will be fel automatically into scope unless controller changes type(s) of information desired.

A totally integrated data system designed by G. E. for the Chicago public schools may lead to new methods in educational data processing. Dr. Benjamin C. Willis, General Supt. of Schools, said the DPS will begin operating when school opens this month. It will serve the entire school system within 5 years. "When the system is fully implemented, the Chicago public schools expect to save over $\$ 3,500,000$ per year," Willis said. The service will reduce the clerical load of teachers, thus making more instruction time available for students.

AIR WEAPONS CONTROL SYSTEM

View of Tactical Air Weapons Control System demonstration facility, at Hughes Aircraft Co., Fullerton, Calif., shows Colordata screen with flanking status boards, Command Console (lower left), and Data Display Consoles with Auxiliary Readout Console (lower center). An H. 330 Computer and supporting systems are outside partition at left.

Deep sea vehicles are being used for oceanography and ASW research. In many cases these vehicles are remotely controlled from a surface vessel. A system which provides this remote control via a wire-sea water transmission line, is described here.

For Underwater Vehicles...
A DIGITAL WIRE GUIDANCE SYSTEM

A remote control system that handles present underwater needs and can also be expanded for the future has been developed by Westinghouse Ordnance Div. It sends coded information between mother and remote vehicles via a wire and sea water line. A prototype demonstrated the system at distances over 10 miles. It's described here.

Designers of the communication system had to work for reliability and minimum volume and weighn. There were other goals, too:
-The system had to be easily maintained and serviced.
-It had to be compatible with different vessels.
-It needed a range of 10 miles.

Because water won't carry acoustics well over such distances, and because electromagnetic waves are severely attenuated, a clirect wire link is the only satisfactory underwater communication channel. And the wire must be small in diameter and expendable. so that compact, lightweight spools can handle it over long distances. A $20-\mathrm{lb}$. tensile load had to be withstood by the wire, and this determined its minimum diameter. The wire is payed out from spools in both vehicles, so that both can maneuver.

Signal attentation and distortion must be kept down, and the link's bandwidth kept wide enough to allow adequate transmission rates.

The l-f resistance of the sea is about 2 ohnns at these distances. That allows the sea itself to be one

conductor, so that the line is essentially a coaxial cable, with an insulated inner conductor of wire and an outer one consisting of the sea.

More conventional lines using 2 metallic conductors can be used. These will have about twice the series resistance of a wire-sea water combination of the same diameter. However, 2 -wire lines have an advantage: their inductance is small and constant. The wire-sea water line has considerable inductance when coiled in a spool. But it decreases as the wire is dispensed from the spool.
Long lines are inefficient at high frequencies. Only the very low end of the frequency spectrum is of value with long, small diameter underwater lines. Electrical characteristics of these lines are due mostly to their distributed series resistance and shunt capacitance, and also to their inductance on the spool if they are the single-wire type (see Table 1 and Fig. 2).

Types of signals that can be used depend on the transmission line characteristics. The signals should have most of their spectrum within the link pass band. The plots in Fig. 2 show that the higher frequencies are greatly attenuated.
lass bands of the transmission lines can be increased by reducing either their distributed series resistance or their shunt capacitance. Series resistance can lee reduced by increasing the wire diameter or, in the case of the copper-clad wire, increasing the amount of copper. Increasing wire diameter increases the volume needed to store a given length. Increasing the percentage of copper in copper-clad wires of equal diameter decreases their breaking strength. This makes necessary an additional increase in diameter to meet the strength requirement. The insulation on the wires contributes little to breaking force resistance.

Shunt capacitance can be decreased by increasing

Fig. 2: Attenuation vs frequency characteristics for several lines (when fully dispensed from spools) are plotted here.
the distance between conductors. The insulation for coaxial lines can be thickened, or a two-wire parallel line can be used. Both procedures result in an increase in the cross sectional area of the wire and thus, a decrease in the storage density. Another way of reducing shunt capacity is to use insulation with lower permittivity. However, since Teflon seems to have the lowest permittivity of the practical solid insulation materials now available, no further improvement ly this method is possible at present.

If a single wire is used, its inductance can be quite

Fig. 1: (left) System concept is illustrated here. A prototype model was built that successfully demonstrated system's feasibility for use at distances of over ten miles.

By M. F. BORKOWSKI, C. C. CRAVEN

Engineers

and J. B. MYNAUGH

Sr. Engineer
Ordnance Div.
Westinghouse Defense Center
Baltimore, Md.

Table 1
Distributed Parameters of Several Underwater Transmission Lines
Type 1
Type 2
Type 3
Type 4

Series resistance $($ ohms $/ 1000 \mathrm{ft})$	106	26.17	77	103
Shunt capacitance (farads $/ 1000 \mathrm{ft})$	0.069×10^{-6}	0.0444×10^{-6}	0.101×10^{-6}	0.028×10^{-6}

Type 1: No. 26 AWG 30% copper, copper-clad steel wire, 4 -mil-thick Teflon insulation. The sea is the second conductor.
Type 2: No, 24 AWG hard drawn copper, 16 -mil-thick polyethylene insulation. The sea is the secome conductor.
Type 3: A coaxial cable with 20 -11). tensile strength, No, 24 AWG hard drawn copper, 4Tyue 3: A coaxial cable
Type 4: Twisted pair with $20-\mathrm{lb}$. tensile strength, two No. 27 AWG hard drawn copper wires spaced 4 mils, Teflon insulation.

GUIDANCE SYSTEM (Continued)

Fig. 3: Command word timing. The time interval for each command is subdivided into intervals of forty milliseconds each.

Table 2

COMMAND	S	A	B	C	D
1	1	0	0	0	0
2	1	0	0	0	1
3	1	0	0	1	0
4	1	0	0	1	1
5	1	0	1	0	0
6	1	0	1	0	1
7	1	0	1	1	0
8	1	0	1	1	1
9	1	1	0	0	0
10	1	1	0	0	1
11	1	1	0	1	0
12	1	1	0	1	1
13	1	1	1	0	0
14	1	1	1	0	1
15	1	1	1	1	0
16	1	1	1	1	1

Fig. 4: Timing program. Information pulses during the time intervals A, B, C, and D are sensed by AND gates that use counter and inspection pulses generated by the command word.
large when it is coiled in a spool. Effect of the inductance is to modify the transmission line pass band by creating a resonant peak in conjunction with the capacity of wires. Since the inductance decreases as the wire pays out of its container, the frequency of resonance changes. The moving resonance peak places severe dynamic demands on certain types of irequency-sensitive receivers. At times the gain of the receiver would have to be radically adjusted at various frequencies. Two-wire lines do not have this problem.

Selection of the type of line to use is dependent upon relative importance of storage space, band width, and spooled inductance. Amount of wire that can be stored in a cylindrical container is inversely proportional to the square of the diameter of the wire.

The communication system selected uses only the lowest end of the frequency spectrum and thus a wire-sea water line composed of a single No. 26 copper-clad wire was selected. This wire has the highest storage density of those considered, since it has the smallest diameter.

Operation

The selected system uses 1 -f coded pulses. It has a pulse encoder on the launching vessel which generates a series of pulses coded according to the desired command. The underwater vehicle carries a command decoder which interprets pulses as they arrive and applies them to circuits that execute the command. Although the selected system does not provide for return signals, they could be used by sinnply reversing the process and using essentially the same equipment on a time-sharing basis.

The system's logic circuitry uses 2 basic circuits: the AND gate and the "set-reset" flip-flop. Each command word is transmitted during a time interval of 200 msec . Separation between conmmands (dead time) is 40 msec . A total time of 250 msec is thus needed to transmit one command. At this rate, slightly over 4 commands can be transmitted per sec.

Time interval for each command is subdivided into smaller intervals of 40 msec each, Fig. 3, Fundamental operating frequency of this word structure is 12.5 cPS. First pulse is the S or start pulse followed by information pulses. Provision is made to transmit information pulses during time intervals $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. Function of the start pulse is to start action in the decoder and to act as a time reference. Each command word must have a start pulse. Information pulses during the time intervals $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are sensed by AND gates that use counter and inspection pulses generated by the command word, Fig. 4. (Continued on page 172)

COMMAND DECODER

Fig. 6: Arrangement of 16 decoding AND gates. These gates are wired to the outputs of the memory flip-flops to decode the command. There is one gate for each command possibility.

INSTANT COLOR!

CHANGE COLORS OF

 glear lichideseent MINIATURE LAMPS
INSTANTLY with

SIT/KiOMF COLORED FILTERS

- Elastomeric, unbreakable, reuseable

Send for FREE SAMPLES and IIterature
APM-HEXSEAL CORP.
SILI/ROME
41.0 Honeck St., Englewood, N. J.

Tel.: (201) LO 9-5700
SZal without redesign with hexseals* SEELSKREWS* SEELBOLTS* SEELRIVITS* RUBRGLAS-SEELS* SILICORINGS*

GUIDANCE SYSTEM (Concluded)

Decoding Logic Circuit

The decoding logic circuit is shown in Fig. 5. Transmission line input is fed into a normal Schmitt trigger circuit which reshapes the received command pulses. The first pulse emitted from the Schmitt trigger, which is the start pulse, sets the clock-enabling flip-flop which in turn starts the clock oscillator. The clock starts and regulates the ring counter's progression S-A-B-C-D-EX at 40 msec intervals. When the " S " stage of the ring counter is switched "On," it generates a pulse to "Reset" the memory flip-flops, thus erasing the previous command memory storage and preparing for new storage.
The start pulse also energizes the inspection pulse generator. This unit contains an oscillator that generates pulses 5 msec long and 40 msec apart as long as a signal is being emitted from the Schmitt trigger. This oscillator is delayed to start 20 msec after the start of the clock oscillator regulating the ring counter, Fig. 4.
$\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D stages of the ring counter individually supply an input to the 2 -input inspection gates. The other input is supplied by the inspection pulse generator. If both inputs of an inspection AND gate are energized simultaneously, the gate will conduct and set its corresponding memory flip-flop. The memory flip-flops will remain set until the start pulse of the next command word causes a reset.
With both signals present simultaneously, gate "A" conducts and sets memory flip-flop "A." Thus, the existence of pulse "A" has been established. This same process is repeated as the ring counter progresses, setting to memory the existence of command
pulses A, B, C, and D. Nonexistence of a command pulse is also detected because the absence of a command pulse on the line fails to generate an inspection pulse, thus preventing the setting of its particular memory flip-flop. The last stage of the ring counter is the execute command. This stage has a two-fold purpose: it resets the clock-enabling flip-flop, thereby stopping the ring counter, and it supplies one of the inputs to each of the 16 decoding AND gates.
At the end of 200 msec , the pulses of any given command have been accumulated and are stored in the memory flip-flops. There are 16 possible combinations (Table 2) of pulses which can be transmitted by this basic system using the information pulses A, B, C, and D.
To decode the command, 16 AND gates (one for each command possibility) are wired to the outputs of the memory flip-flops per the code given in Table 2. (See Fig. 6.)
After 200 msec , one and only one of the decoding A.ND gates will be satisfied, except for the existence of the execute pulse. As soon as the execute pulse arrives, the decoding gate transmits a pulse to its output flip-flop which can drive other circuitry to execute the command. Reset inputs of these flipflops are also controlled by the reset pulse generated by the ring counter start stage at the beginning of the command time. Or, they can be reset by feedback from the device which actually executes the command.

One more bit (F) could be inserted as a parity check. It would be inserted as needed by the encoder to produce an even number of pulses for each command. By doing this we eliminate the possibility that any single noise pulse or the loss of a single pulse could cause a false command.

The Encoder

The encoder or command transmitter for this system is stored aboard the launching vessel. Its circuitry is similar to that of the decoder in a reversed

Fig. 7: Command Encoder. A command is generated by manually selecting the desired command on a multiplexer. Approximate volume of the encoder is 25 cubic inches.
fashion, Fig. 7. A command is generated by manually selecting the desired command on a multiplexer (a 16 -position, 4 -wafer rotary switch can be used). The multiplexer in turn supplies power to energize one input of the 2 -input AND gates $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D in a combination unique to the command being transmitted.
At the same time that power is supplied to set the memory flip-flops, the clock-enabling fip-flop is energized, thus starting the clock oscillator. The clock starts and regulates the ring counter through its S-A-B-C-D-E progression at 40 msec intervals. When the first stage (S) of the ring counter is switched, it supplies the second input to each of the AND gates, Λ, B, C, and D. The gates that have both inputs energized will conduct and set their respective memory flip-flops. This procedure prevents changing the memory storage during ring counter progression.

Outputs of the memory fip-flops stupply one input to the 2 -input inspection AND gates. The other input from the gates is supplied by the ring counter as shown. The outputs of these inspection gates are amplified and operate a relay. The relay in turn connects a voltage source to the transmission line. Thus, as the ring counter progresses, stage " S " switches on the transmitting relay for 40 msec (since all commands must have a start pulse).

Stages A, B, C, and D also switcl command power as the ring counter progresses if their inspection gates are satisfied. Stage E in the ring counter provides for 40 msec dead time between commands and supplies the reset pulse to the memory flip-flops and the clock-enabling flip-flop to turn the ring counter "off." Transmitter end of the transmission line is normally shorted out through the contacts of the de-energized transmitting relay so that after every 40 msec transmission, the line is shorted. This is done to prevent the line from charging up during transmission and to create pulses with trailing edge decay times equal to the rise times of their leading edges.

The approximate volumes of the 16 -command encoder and decoder are 25 cu . in. and 50 cu . in. respectively. These volumes are based on a 4 -command breadboard model of this system that has leeen built. The size of a spinning reel-type wire dispenser containing 10 miles of No. 26 AWG copper weld wire with a 4 -mil Teflon insulation would be about 9.5 in . long and 15.5 in . in diameter.

A REPRINT OF THIS ARTICLE CAN BE OBTAINED
by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES
Chestnut E 56th Sts., Phila. 39, Pa.

KINNEY . . . EVERYTHING IN VACUUM

High Vacuum to 5×10^{-7} Torr with KINNEY Portable High Vacuum System

Each unit consists of a mechanical pump, a diffusion pump, roughing and backing valves, liquid nitrogen or water cooted baffle, high vacuum valve, and ionization-thermocouple gauge enclosed in a hammertone grey enamel cabinet topped with a formica work surface.

FEATURES

- Rapid Evacuation to 1×10^{-6} torr
- 5×10^{-7} torr ultimate pressure
- Straight through pumping
- Ultra-high vacuum baffling
- Designed around dependable Kinney components

NEN HIOH-SUROE DCtoAC INVERERSS

In addition to high-efficiency DC to AC continuous power conversion, new TRANSPAC ${ }^{(}$Solid-State Inverters provide high-surge power for limited periods. Ideal for motor starting, incandescent lamp powering, capacitor charging, powering refrigeration systems, etc. Typical model converts 12 VDC or 24 VDC nominal input to 115 VAC nominal, $60 \mathrm{cps}, 250$ VA continuous with peak power capability of 1000 VA for 20 -second duration.

WRITE FOR COMPLETE CATALOG

Complete line of TRANSPAC Inverters feature full range of power outputs to 500 VA . . . sine wave and square wave, fully regulated, frequeney regulated and unregulated models. Wide selection of standard DC inputs with 115 VAC nom. outputs. 60 and 400 cps models. Prices: $\$ 75.00$ to $\$ 510.00$. Also special designs with outputs to 5 kw .

Complete Line of TRANSPAC ${ }^{\circledR}$ Converters, Frequency Changers

Write for additional information on ERA TRANSPAC DC Power Modules, Laboratory Power Supplies and Transistor Test Equipment.

ELECTRONIC RESEARCH ASSOCIATES, INC.

Dept El-9, 67 Focłary Place - Cedor Grave, N. J. - CEnter 9-3000
SUBSIDIARIES: ERA Electric Co. - Advanced Acoustics Co. - ERA Dynamics Corp. - ERA Pacific, Inc.

AF HITCH-HIKER SATELLITE TO STUDY ATOMIC RADIATION

A 176-lb. hitchhiker satellite, designed to measure angular distributions and energies of charged particles in the earth's magnetic field and upper ionosphere, is now in orbit. It was ejected from another satellite launched by the Air Force from Vandenberg AIFB, Calif.
The satellite is part of an Air loorce program to gain more data on the rate of decay of radiation caused by recent U. S. and Soviet high-altitude nuclear blasts.

The experimental satellite, which carries six types of instruments, was made by Lockheed Aircraft Corp. Mass. Inst. of Technology and American Science \& Engineering, Inc., Cambridge, Mass., built the instrumentation.

Instruments include a proton detector, plasma probe, electron detector, electrostatic analyzers, geiger counter and magnetometers. It also carries a conmand receiver, tape recorder and telemetry equipment. Power for the equipment will be supplied by solar cells.

The satellite is expected to have a six-month life. Barring damage to the electronic equipment by high-energy bombardment, it could last years.

ASA MEMBERS UNITS URGE GLOBAL VACUUM STANDARDS

The Electronic Industries Association and 5 other member groups of the American Standards Association are urging adoption of global vacuum technology standards.

The 6 organizations have backed a British-sponsored move for a study of the problem by the 50 -nation International Organization for Standardization. Their action came at a recent ASA general conference in New York.

ASA said the ISO study appears certain, since approval by only 3 other nations will make it official.
The American Vacuum Society was named to organize the U.S. advisory group for the study. Also participating at the New York meeting were the American Petroleum Institute, Manufacturing Chemists Association, $\mathrm{Na}-$ tional Bureau of Standards, and the Telephone Group of ASA.

Six standards nearing completion by the AVS, along with 2 British standards, may be submitted to the ISO committee for study. One of the AVS standards is a glossary for vacuum technology.

Engineer begins the test cycle of new CEBN (corona, eddy current, beta ray, microwave) Polaris A-3 motor chamber test system. The unit, built by Magnaflux, will test complex glass-epoxy structures. Microwave, beta and corona testing equipment is on end of boom. Eddy current is tested with hand-held probe.

LARGE CENTRAL DPS TO SPEED DOD DATA FLOW

A central computer that allows immediate access to 500 million alphanumeric characters on drums has been selected for the Defense Documentation Center for Scientific and Technical Information.

The contract calls for a Univac 1107 thin-film menory computer and peripheral equipment for the DDC , which in 3 years has outgrown 2 computers.

The storage will contain the information needed to identify and retrieve documents in the Center's master file. More than a million requests are received each year for this data from the Army, Navy, Air Force, other DOD agencies and contractors.

Included in the storage will be identification, security status and release limitations for each document, plus complete information on the amount of service authorized for the more than 4,000 organizations DDC currently serves.

The third-generation 1107 has a 128-word, 330 nano-sec. memory with 32,758 words of core storage. The new DPS will be in operation by early 1964. DDC now is using 2 solid-state Univac 90's.

TAPE RECORDER OPERATES UNDER 100 G ACCELERATION

Magnetic tape recorder that operates successfully under sustained acceleration of 100 g has been developed by Borg-Warner Controls, Santa Ana, Calif.

Designed to obtain accurate data during severe re-entry, launch and other difficult conditions, the new tape recorder, Model R-304, has operated with low wow and flutter under the high-g pull.

INOICATOR LIGHTS for your miniaturization program must be of high reliability. To assure this, we offer such vital features as: Watertight construction; resistance to vibration and corrosion; hightheat plastic, or glass, lenses; rugged brass terminals; anti-rotation (locked) construction; phenolic insulation of Mil. Spec. grade; 7 lens colors, etc.

SUB-MINIATURES

No. 162-8430-931

For NEON or INCANDESCENT LAMPS

$\overbrace{1-2}$
The T-2 Neon Lamp is available in two types: NE-2D (MS25252) for 105.125 V AC-DC; and the High Brightness type NE-2) (not MS) for 110.125 V AC only. In DIALCO units the current-limiting resistor is built-in (U.S. Pat. No. 2, 421,321).

No. 181-8836-931

No. 134-3830-375-9

No. 174-8430W-131
(Units shown approx. actual size)

NOW...MULTIPLY YOUR LAB FREQUENCY STANDARD BY $2 \underline{1}$!

U Up to 21 independent amplifiers available in a $31 / 2^{\prime \prime}$ panel
\square Solid state circuitry with silicon transistor reliability

- Very low phase shift with temperature

Supplied for $100 \mathrm{kc}, 1 \mathrm{mc}$, or 5 mc frequencies
Maximum isolation between outputs

Write for further details-MONTRONICS, Inc. (P. O. Box 345)
703 W. Babcock Street, Bozeman, Montana
MONTADNICS INC.

When there's not even room for a Pygmy,

IThat's the nickname we've given a new line of connectors that we've just finished designing. They're the Junior Tri-lock or J'T connectors, and they're about half the size and weight of our standard Pygmy ${ }^{B}$ connectors. Quite a feat, especially since mounting dimensions staly the same. This makes the new pancake connector adaptable to present equipment.

A few of the features include: a clocked coupling nut eliminating rotation of the coupling nut prior to actual mating: thating of the coupling nut permits easy grasping and/or use of an extension spanner assist for hard to reach

414

Both actual size

reach for our brand-new Pancake.

locations; contacts are molded into a glass-fiber-impregnated epoxy hard dielectric insert.

In the plamning stages for this remarkable connector are styles and insert arrangements for a complete line of designs for many applications. Currently, jam-nut receptacle, box-mount receptacle, and straight plug are available in solder termination with potting provision. In addition. glass seal receptacles, crimp and grommeted versions are being developed. All this plus the dependable electrical performance of our present Pvgmy line. For more information, write us in Sidney, New York.

Design Engineers Development Engineers
Administrative Engineers
Engineering Writers Physicists
Mathematicians
Electronic Instructors
Field Engineers
Production Engineers

Reporting late developments affecting the employment picture in the Electronic Industries

HOME-STUDY HELPS COMPANIES TRAIN EDP PROGRAMMERS

Beiore mployers venture to compete for the scarce supply of computer operators and programmers, they should consider traming their own persomel. atvises John C. Villamme. president of International Correspondence Schools.

ICS currently provides job-related instruction to 100.000 workers and has some 7.000 lraning agreements with fioms. unions and government asencies.

ICS School of Business has expancled its curriculum to include "Programming the IBN 1401 Computer." Comprised oi lis instruclion tunts deating with economics. accounting, and report writing in addition to programming. the average stuclent can complete it in about 240 hours. or six months of home-study at the normal pace.

The cost to the company sponsoring the training should be under $\$ 150$ for cach worker. says Villaume.

There are nearly 50.000 full-time computer operators in the [i. S. today. but the growing use of computers indicates that 200.000 qualified programmets will be needed by 1970 .

ENGINEERING SOCIETY URGES AID TO TECHNICAL EDUCATION

The 60.000-member National Society of I'oiessional lingineers is urging Congress to accept the Administration's proposals for expanding and setting up college-level technical institutes.

A spokesman for the Society has pointed out to a Senate edication sub)commitee that nearly every recent surver on engineering and scientific manpower has confirmed the need for maintaining a ratio of wo to five technicians for each graduate engineer. Yet the U. S. is now producing only half as many techncians an engineers.

Patul FT. Robbins. executive director of the Society, said that Congress should "adopt a specific. meaningful program to increase the number of college-level engineering and scicatific technicians.

He recommended amendments to the Administration's National Defense lidlucation . Set proposals which would make stutents in technical institutes eligible for loans, and which would extend grants to technical institutes for construction from three to five lears.

Wis six-point program recommends

PLANNING TUBE PLANT EXPANSION
RCA executives review $\$ 11.6$ million expansion of Lancaster, Pa., plant to provide 200,000 square feet for making color TV, industrial, military tubes. From left: D. Y. Smith, Electronic Components $\&$ Devices; 1. B. Farese, Picture Tube Division; C. E. Burnett, Industrial and Semiconductor Division.

1. Legislation and action to improve the ability of all educational institutions to attract and hold superior faculty members.
2. Legrislation to help stimulate high school students to continue their education beyond high school.
3. Legislation and action to stimulate expansion of technical institute ellucation programs at post high school level.
4. Federal assistance to engineering and science students of proven ability to purste graduate work.
5. Financial assistance to help qualified students pursue undergaduate engineering education, with selection of students and study program controlled locally.
6. Financial assistance for the study of engincering which insure the full utilization and participation of all engincering schools having ECP (l) accredited curricula.

ELECTRONIC CAREERS WILL BE OUTLINED TO STUDENTS

Two mdergraduates have been assigned to prodnce Vale University News annual career supplement, which this year will be devoted to the electronics industry and its career opportunities for college graduates.
"The Electric Future" will include articles by leaders in the industry as well as advertising. The supplement will appear early in October and distribution will cover more than 60 col leges and miversities across the mation. It least 100.000 graduates and undergradnates in these institutions will receive the publication free of charge.

Contents will cover vocational opportunities in the manntacture of electronic components. calculators. computers and processing systems.

FOR MORE INFORXITION

on opportunities described in this section fill out the convenient resume form, page 178.

Professional Profile

The ELECTRONIC INDUSTRIES Job Resume Form for Electronic Engineers
Name \qquad Tel. No. \qquad
Street
Address \qquad Zone \qquad
City State
Single
\square Married
\square Citizen
\square Non-Citizen
Date of Birth \qquad
Will RelocateYes \square No If Yes Another City \square Another State Salary Desired to Change Jobs in present area \qquad
Salary Desired to Change Jobs and relocate in another area \qquad
Professional Memberships

| College or University | $-\quad$ Major | Degree | Dates |
| :---: | :---: | :---: | :---: | :---: |
| - | - | - | |

RECENT WORK EXPERIENCE

SIGNIFICANT EXPERIENCE AND OBJECTIVES

STATE ANY FACTS ABOUT YOURSELF THAT WILL HELP A PROSPECTIVE EMPLOYER EVALUATE YOUR EXPERIENCE AND JOB INTERESTS. INCLUDE SIGNIFICANT ACHIEVEMENTS, PUBLISHED PAPERS, AND CAREER GOALS.

Mail to: ELECTRONIC INDUSTRIES—Professional Profile—56th \& Chestnut Sts.—Philadelphia 39, Pa.
This resume is confidential. A copy will be sent only to those Companies whose number you circle below.
$\begin{array}{lllllllllll}800 & 801 & 802 & 803 & 804 & 805 & 806 & 807 & 808 & 809\end{array}$

DECIDING ABOUT PROGRAMMED INSTRUCTION

An adequate knowledge of programmed instruction is a must for the modern training director. Here are the pertinent facts he must know to make an intelligent programming decision.

Technology's rapld growth has spurred a need for efficient in-plant training, and programmed instruction has become more important. Many polemic and prophetic articles have touched on it, without covering the necessary facts.

This article doesn't try to summarize all pertinent facts, but it does provide a good structure for guiding further investigation.

A program is a training aid, yet it transcends training aids and affects the entire philosophy of training. A program is controlled by an end objective; it is never complete until the student masters this objective. It treats each training task as a specific problem with a specific solution and solves it. Thus, it is similar to mathematics.

The Frame

Heart of the program is the frame. It looks like a short, simple test item, except that it has feedlack. The frame presents a problem (stimulus), the student replies (response) , and feedback occurs. Some feedback (reinforcement) tells the sturlent if he was right or wrong, and he adapts his behavior. Some feedback goes to the program, sequencing and selecting the stimuli that should mext be given to the student. Some feedback goes to the programmer, who revises the text and program logic until it is nearly autonomous-hence, auto instruction. When the program is developed enough to teach by itself, the program is born.

Through use of programmed instruction, the new worker in the remote branch office can become just as efficient as her counterpart in the home office.

By JAMES L. BECKER
Coordinator of Programmed Instruction, RCA Service Co.. Building 204-2 Cherry Hill: Delaware Township Camden 8, N.J.

The great extent to which it uses feedback establishes programming as an adaptive, thought-provoking process. However, the technology of writing programs can be transferred from one person to another.

Text vs Machine

Programs can be presented in a textbook format or through a teaching machine. The text is generally favored for savings in time and cost, although both methods seem to do an equally good job of teaching. But in certain instances, the machine has a decided arlvantage.

Teaching machines are either paper-moving, microfilm, or logical. The paper-moving machine is practical when less than 50 copies of a program are needed and these will be used over again many times. When a program needs freguent revision, papermovers are ideal since only a few copies need be modified and accurate records of the changes can be kept.
(Continued on following page)

PROCRAMMED INSTRUCTION (COntinued)

Microfinn machines contain most paper-moving machine adrantages plus all storage and postal advantages of microfiln. An 8,000-frame linear program is likely to use more than a ream of paper. The same size intrinsic program will use 16 reams. Hence, microfilming can save money when programs are long.

Some machines use logical circuits to evaluate and utilize feedlback. Such equipment may someday be the standard medium for prograns, but programming methods cannot now use this refined hardware well enough to justify its expense.

When buying costly hardware, be certain that the features camot be duplicated satisfactorily on cheaper machines or in programmed texts. Most users of auto-instructional programs prefer the text format. But format is not nearly as important as quality.

Program Limitation

There are limitations; good programs take a long time to prepare, and are apt to lag behind technological advances. Normally, 2 to 6 months should be allowed from the beginning of programming to implementation of the first mits. An ambitious project may take years to complete the program.

Althongl programs as training aids are cheaper than motion picture films, they are still costly. About 2.000 men would have to be trained to justify programming through anticipated reductions in training costs. If they are trained in a 5 -year period, will the subject matter still be current? Programs can be updated easier than films, but not without some added costs.

Although teaching can be automated, learning cannot. Mere possession of a good program does not guarantee its use. Programs are best used as tools in the lands of skilled instructors. Thus, the argument that programs will save money on the training payroll is not valid.

Advantages of Programmed Instruction

Still, programmed instruction has many virtues. The first is standardization. Through programming, instruction can be standardized without regard for geographic dispersion and differences among instructors. The new clerk becomes just as efficient in Winabago as her counterpart in the New York home office. Technicians will meet identical, reliable work standards all over the globe. This is especially important where the trainer regards his duty as collateral. Hit-and-miss training practices often inflict tangible harm on a growing industry.

The Complete Tube Tester or

Electronic Research Industrial Electronic Maintenance

The HICKOK Electrical Instrument Co. 10608 Dupont Avenue, Cleveland, Ohio 44108

The Model 539C is equally at home in the tube research laboratory or on important maintenance assignments. It tests all the latest tubes completely and accurately-no paral. leled elements. It also tests VR Tubes, low power Thyratrons, "4-digit" types.-All to handbook specifications or under actual operating conditions. 6 Gm ranges -600 to 60,000 umhos.

The second basic advantage is reduction in training time. Several experiments have suggested that people generally learn faster and better with programs than under normal instruction, although it's tricky to define "normal." Your learning time may or may not be reduced, but faster ambient training time is common. Programming can be scheduled individually, so that executives need not drop their jobs for long. Matter that used to consume hours of classroom time catn often be relegated to homework or self-study. The ease in distributing programs could save the time and cost of travel to and from a training site. This in itself can amortize program cost, even if it takes twice as long as normal training.

Seldom explored but perlaps its most significant attribute, is programmed instruction's ease in hurdling the abilities barrier. Correlations between intelligence and acquirement in classrooms have generally clustered around +0.45 , and many think it would be much higher with valid test instruments. But correlations among students using programs have repeatedly approached 0.00 . The possibilities in retraining are tremendous.

Programming also offers managenent a tool to retrain and upgrade the worker, regardless of his limiting endowment.

Sources of Programs

A training director has three sources of programs. He may purchase ready-made stock programs, have consultants write them for him, or try to do them with his own staff. Stock programs come with the lowest price tag. They are generally bought by the copy, but in some cases the purchaser pays a fixed fee for his unlimited use and reproduction. Stock programs can be just as good as customized ones, if the intended audience and teaching objectives are well-matched to the situation. Mere similarity of topic or title won't do ; out of 4 or 5 programs on transistors, only one (maybe none) will serve your needs. Computer technicians want the emphasis on switching parameters. A different course is needed for men who repair radios.

There is no standard method, but every program should describe its intended andience and end objectives. Some include formal objectives, or a criterion test, or a diagrammed behavioral matrix. Others merely use a summary paragraph or a table of contents.

Prices for customized consultants' programs run from $\$ 4$ to $\$ 30$ per frame. But that doesn't give the purchaser a clear idea of what he gets for his money. The buyer must weigh the program cost against the objectives. If you're thinking mainly of cutting training time, bear in mind that a typical student can work

120 linear frames/hr. Also, many users suggest that not more than four hrs./day be devoted to working programs.

The contract is your best assurance of customized program quality. Make sure it spells out the exact end hehavior that you want. Reserve the right to edit the program data, but don't expect to dictate its order of presentation. Recpuire the program to be tested on a sample of the audlience on which it will be used. Establish beforehand the standard for acceptance. All this may raise the program cost, but the increased value is generally worth it.

Programmers

The other way to get programs is "do-it-yourself." Any company that wants to use it in much of its curriculum should consider this. In the long run it is the cheapest, yet it takes much time and effort. Programmers must be selected, trained, and given a good working enviromment.

Prospective programmers must know the subject area. Other desirable traits include success at normal teaching, a high $I \Omega$ and a flair for written communication. The candidate should enjoy teaching.

Proper training for programmers is not easy to get. although a variety of seminars are scheduled every year. Some are designed for users, others for makers of teaching machines. A few of them deal mainly with program writing. The one, two, or three weeks that they last are not enougl to make good programmers out of your candidates, but they are the best start. Attendance at more than one of them may be advisable. Many colleges offer courses, but before enrolling, check to see they are in your area of interest.

Occasionally a firm will retain a consulting company or a psychologist to train candidates. Success depends on who does the jol. He must be experienced in writing programs and in training others. But reserve some of your training money to train supervisors. Many pilot projects have been unsuccessful simply because management didn't understand the problems confronting its programmers.

The frames that a programmer writes in one day are best tested that same day, so the programmer shouldn't be too far from his audience. The most frequent mistake is not having test students around to evalluate the work. Another error is expecting too much progress. It takes even a competent programmer 4 or 5 weeks to prepare one hour of instruction. The part-time programmer's efforts are doomed to futility. That shouldn't prevent a person who teaches nomal classes during the winter from programming in the summer. Just let him do one thing at a time.

ANSWERS TO YOUR SUB-MINIATURE ceramic CAPACITOR problems

MUCON THINLINE CAPACITORS

CAPACITANCE RANGE: 1 pF- $150,000 \mathrm{pF}$ VOLTAGES: 25 WVDC-500 WVDC
TEMP. CHARACTERISTICS: Any of 9 temperature-compensating and 4 general-purpose materia!s.
SIZES: Starting at . $100^{\prime \prime}$ square max. by .090" thick max.
LEADS: Tinned copper, nickel or dumet. SHAPES: Square or rectangular, single or multiple element.

Inspecting 800 -ine resolutior. TV prcture successfully transmitted by new Lenkurt Electric 76TV microwave eqpt. (in BC) at San Carlos, Calif., facilities are (I to r) M. H. Kebby, Project Mgr.; W. H. Jorgenson, Project Engr., and L. Menta, Tech. Supt. The system will transmit color and B\&W. Except for the klystron, it is solid-state.

"PEDIGREED" TRANSFORMER FAILURES 50 TIMES FEWER

Two Sperry Rard Corp. units have devised a "pedigree" system which has bettered reliability of Minuteman missile tranformers by over 50 times.

Wheeler Electronic Corp., Waterbury. Conn., and its subcontractor, Sperry Electro Devices Laboratory, Long Island, devised the program for Autonetics Div., North American Aviation.
The program so far has a laboratory failure rate of $.019 \%$ per 1,000 hours operation. Normal rate is $.1 \%$. A $.001 \%$ failure rate is the goal.

Complete "pedigree" on every unit enables company to pinpoint each tool, machine and operator and the lot number of matcrial used.

Units are made of carefully selected materials with proven methods in new, air conditioned, dust-free manufacturing space. Workers are pre-screened and specially indoctrinated. (It is found that new people perform better than veterans with set habits.)
Transformers are subject to intensive testing, including vibration, mechanical shock, heat shock, humidity, and high voltage. Failures are analyzed by engineers, physicists and chemists, who then suggest improved specs., controls.

Field results are not yet available, but the failure rate should continue to decline since the same "pedigree concept is being used on equipment coming back from the field.

201 Mitchell 2-1476-7-8
Circle 117 on Inquiry Cord

MUCON CORPORATION

9 ST. FRANCIS ST., NEWARK, N. J. 07105

OPPORTUNITIES AT ALL LOCATIONS OF SYLVANIA ELECTRONIC SYSTEMS

in suburban Boston, Buffalo \& San Francisco

APPLIED RESEARCH LABORATORY

(Suburban Boston) Central Research Facility at Waltham, Mass.

Research Assignments in:
(1) Advanced Communications Techniques
(2) Perception \& Learning Theory
(3) Character \& Speech Recognition
(4) Advanced Control Theory Techniques
(5) Operations Research
(5) Operations Research
(6) Radio \& Space Physics

SYSTEMS ENGINEERING \&

MANAGEMENT OPERATION
(Suburban Boston-Waltham, Mass.) Responsible for acquisition \& management of communications and command and control systems.

Assignments in:
(7) Command \& Control Systems Engineering (8) Communications Systems Engineering

EASTERN OPERATION

(Suburban Boston) Laboratories at Waltham, Mass.

R\&D Assignments in:

(9) Phased Array Radars
(10) Receiver \& Transmitter Design
(11) Microwave \& Antenna Systems
(13) Circuitry \& Systems Development \& Analysis
(14) Radio Frequency
(Suburban Boston) Laboratories at Needham, Mass
R\&D Assignments in:
(15) Optical Data Sensing Systems
(16) Digital Control Systems
(17) Special Purpose Data Processing
(18) Programming Research
(19) Display \& Instrumentation Systems
(20) Advanced Techniques
(21) Digital Simulators

CENTRAL OPERATION

(Suburban Buffalo) Laboratories at Williamsville. New York.
R\&D Assignments in:
(22) Advanced Communication Systems
23) Microwave, Milimeter \& Optical Systems
(24) Countermeasures Systems
(25) Navigational Systems
(26) Transmitter \& Receiver Techniques

WESTERN OPERATION

(Suburban San Francisco) Laboratories at Moun. tain View, California.
R\&D Assignments in:
(27) Electromagnetic Reconnaissance Studies
(28) Signal Analysis \& Processing Studies
(29) Operations Analysis
(30) Advanced Broadband \& DF Antenna Studies \& Design
(31) Advanced Solid State Techniques \&

Receiver, Transmitter \& Parametric Device Design
(32) Digital \& Analog Signal Processing Equipment Design
(33) Intruder Warning Systems Design
(34) Arms Control \& Disarmament Studies
(35) Missile \& Space Vehicle Detection

PRODUCT SUPPORT ORGANIZATION
(Suburban Boston) West Roxbury, Massachusetts
Field Engineering Assignments:
(36) U.S. Continental
(37) Overseas

Production facilities at Santa Cruz, Calif.; Muncy,
Pa.; Buffalo, N. Y.; Needham, Mass.

study the position guide above -THEN USE THE CONVENIENT COUPON and numerical key at the right.

Where SCIENTIFIC INDIVIDUALITY IS ENCOURAGED

At Sylvania Electronic Systems, the principle of objective assessment, technical individuality and free expression of professional opinion - traditional with science - permeates the entire technical organization. We at Sylvania Electronic Systems believe strongly in independent-minded inquiry and discussion on all systems problems. Without this totally professional atmosphere, we doubt if Sylvania Electronic Systems could have earned its reputation in the world of peacetime, defense electronic systems.

We feel this attitude makes Sylvania Electronic Systems an ideal place for the continued growth of the creative technical man. Three parallel advancement
paths offer the opportunity to advance as a technical manager, technical specialist, or program/project manager - with equal rewards. Nineteen research and advanced development laboratories, and a world-wide Product Support Organization allow mobility within the company in a number of geographical locations. And supporting all this is the stability of the entire General Telephone and Electronics organization.

Our advanced work spans many disciplines and areas: earth/space communications; electronic reconnaissance, detection, countermeasures; radar; information handling; aerospace; and complex systems for military command and control.

Manager of Professional Staffing, Dept. El Sylvania Electronic Systems
A Division of Sylvania Electric Products Inc.
40 Sylvan Road - Waltham 54, Massachusetts
\square Please send me a copy of Sylvania's "Digest of 170 Opportunities"

Name
Address
City

\qquad
Geographical Preference: Boston
ne__State \qquad

Buffalo \qquad San Fr n. Francisco. ; MS in \qquad , 19__;
PhD in
\qquad .9 -19 _. My specially area is:
\qquad

When You Need ELECTRIC WAVE FLITERS

 Depend on Sprague for V SERVICE \checkmark DELIVERY \checkmark RELIABILITY

Sprague Electric Wave Filters for use in telemetry, telephony, and various types of communications systems and laboratory equipment which require selection and/or rejection of specific frequencies are now being designed by Modern Network Sythesis, which assures exact matching of wave filter characteristics to application requirements for Low Pass, High Pass, Band Pass, and Band Rejection filters.

Drawing on Sprague's long experience in component manufacture, wave filter engineers are able to employ capacitor. inductor and resistor production facilities for particular sizes, shapes, and materials best suited for specific filter applications. Unlike most filter manufacturers. Sprague is not dependent upon other component suppliers. therefore faster deliveries can be provided.

To further Sprague capabilities, wave filter design and field engineering offices as well as pilot production facilities are maintained in North Adams. Mass.; Vandalia, Ohio; and Los Angeles, Calif. Specialized mass production facilities are located at Visalia, Calif. and North Adams.

For additional information on Sprague Electric Wave Filters, write for Engincering Bulletin 46000 to Technical Literature Section. Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.

Circle 118 on Inquiry Card

Subminiature Nanosecond Pulse Transformers Now Available In
TO-5 Transistor Cases

Nanosecond pulse transformers which are less than half the size of previous designs have been developed by the Sprague Electric Company. Type $45 Z$ Subminiature Pulse Transformers are especially designed for use in low-power, ultra-high-speed computer circuitry, particularly where size is a primary consideration.

TO-5 Package Adds New Feafures

The tiny TO-5 transistor case offers several distinct advantages: (a) It is another step forward in minification; (b) It permits a welded hermetic seal on a high-density package; (c) It increases uniformity and reliability: (d) It provides compatibility with transistor mounting techniques.

Good Performance Characteristics

Especially designed for use in the nanosecond region, Type $45 Z$ Pulse Transformers may be used in pulse amplifiers, in blocking oscillators, pulse shaping, and other digital circuits. Designed for a maximum voltage rating between windings of 200 volts $\mathrm{d}-\mathrm{c}$, these transformers will operate efficiently over a temperature range of -55 C to +105 C . Transformers in this series are also available with ratings to 125 C . The windings in Type $45 Z$ Pulse Transformers are kept uniform to minimize reflections in the transmission line mode.

Variety of Lead Styles Available

In order to suit various installation and packaging techniques, Sprague Type $45 Z$ Pulse Transformers are available with standard long-length wire leads, which permit cropping as desired. Welded or solderable leads can be furnished. Short pin-type leads for use with subminiature sockets are also available. For complete technical information on Type $45 Z$ Pulse Transformers, write for Engineering Data Sheet 40210 to Technical Literature Service, Sprague Electric Company, 23.3 Marshall Street, North Adams, Massachusetts.
455P-101-63 R1
Circle 119 on Inquiry Card
ELECTRONIC INDUSTRIES • September 1963

Three cranes load the prototype of Typhon Weapons Control System aboard test ship USS Norton Sound. Cloth-covered equipment, built at Westinghouse Baltimore Defense Ctr., is one of largest single pieces of electronic gear ever put on a Navy ship. The system will control anti-air missiles.

ARF CHANGES NAME

The name of the Armour Research Foundation, Chicago, Ill., has been changed to IIT Research Institute. It is located at the Illinois Institute of Technology, thus the new name.

EIA PUBLISHES 5 ENGINEERING STANDARDS

The Electronic Indmetries Asociation's langineering I ept. has published 5 new standards. They are: High Volage Ceramic Capacitors, Class 2 ; Signaling Speeds for Data Transmission: Acceptance Testing of Radio Receiver Speakers; EIA Standard for Designation System for Metal Electron Tube Shells; and Mounting 1)imensions for Loudspeakers.
The new standards are available from the EIS lingineering Dept., Koom 2260, 11 iV. 42 nd St., New York $36, N . Y^{\prime}$. The second and fifth are 50 cents, the others. 25 cents each. Minimunn order is $\$ 1$.

BECKMAN INSTRUMENTS BEGINS DIRECT MARKETING

Scientific and I'rocess Instruments Dis., Beckman Instruments, Inc., has begun marketing laboratory instruments through a direct sales and service organization in the U. S. and Canada.

The division, which makes instruments for analysis and control, formerly marketed its laboratory products through 28 franchised dealers.

LOW-POWER LASER CAN OPERATE WITH SOLAR POWER

A 15 -w. cw laser developed for the Air force by RCA has been pumped continuously by the sun. Such a laser could prove valuable for space use, since it would need no other power.

The system, which can also be pumpefl by a tungsten bulb, was developed for the Air Force Systems Command by RCA Laboratories, Princeton, N. J.

A dysprosium-doped calcium Huoride crystal was selected from 200 types investigated. RCA generated continuous radiation in a longitudinal mode, pumped by a tungsten bulb. Crystal was about $1 / 16 \mathrm{in}$. in dia., 1 in. long. It was operated in liquid neon and lifuid atmospheres.

A single cuprous-chloride crystal modulates the output beam that handles the dysprosium spectrum. It is capable of 100% modulation of calcium fluoride crystal emission at 2.36 microns. Since available detectors can respond to this wave length, the system of generator, modulator and detector is complete.

Fnergy levels within the calcium Anoride crystal have also been modulated, using a very small marnetio. fiekl.

Big, 16-page, illustrated catalog lists 4700 stock Brady Wire Markers . . . Tech Data, Industrial and Mil specs, types, sizes, prices . . . plus time-saving automatic application methods. Over 200 individual self-sticking markers included for testing. Order your free kit now for complete data on Brady's low-cost, flexible wire marking system.

[^9]

IRON CORE COMPONENTS FOR EVERY PHASE OF THE ELECTRONICS ART

- Power transformers - Audio transformers - Reactors - Pulse transformers - Electric Wava Filters Lumped constant delay lines - High Q coils - Magnetic Amplifiers - Saturable Reactors - Referance Units.

> IMMEDATE TELIVERY
> FROM STOCK UNITED TRANSFORMER CORPORATION 150 Varick Street, New York 13, N. Y. pacific mpg. division
> 3630 Eastham Drive, Culver City, Calif. EXPORT DIVISION:
> 13 East 40 th Street, New Yort 16 , N. Y. WRITE FOR LATEST CATALOE

SNAP VOLTAGE REGULATOR

F. H. Guterman (I), Pres., ITT Industrial Products, and R. Hansen, project engineer, examine package of radiation-resistant voltage regulator. It is for AEC's SNAP program (Systems for Nuclear Auxiliary Power), which is to develop power systems for satellite and interplanetary craft.

THERMIONIC GENERATOR FEATURES 3 DEVELOPMENTS

A hydrocarbon-fueled thermionic generator featuring three developments has been tested successfully by Thermo Electron Engineering Corp., Waltham, Mass.

This generator uses heat from natural gas, propane or leaded gasoline to drive a thermionic converter that produces electricity directly. Thermo built it under contracts with the American Gas Assoc. and the U. S. Army Electronics R \& D Laboratories, Ft. Monmouth, N. J.
In the first development, a prototype converter was operated for more than 2,000 hours in a vacuum to show the device's inherent reliability. A total of 14 kw .-hrs. of power were produced in a test during which the converter went through 85 thermal cycles. At test's end, the tube was still producing power and showed no signs of failure.

A burner fueled with natural gas or leaded gas consistently produced temps. over $1500^{\circ} \mathrm{C}$. and heat flux densities over $50 \mathrm{w} . / \mathrm{cm} .{ }^{2}$. Continuous operation for 300 hrs . was achieved with natural gas.

The third development is a material that protects the converters from oxidation in high-temp. combustion. High Temperature Materials, Inc., supplied protective enclosures made from pyrolytically deposited silicon carbide.
The best sample held vacuum at combustion-produced temps. of 1300° to $1400^{\circ} \mathrm{C}$. for almost 900 hrs . Another withstood over 100 thermal cycles from room temp. to $1300^{\circ} \mathrm{C}$., and accumulated nearly 525 operation hrs.

with BARNSTEAD MIXED-BED DEMINERALIZER
 SAND AND CAREON FILTER

Manufacturing hermetic seals and terminals for the electronics industry is tricky, painstaking business. And when it comes to washing and rinsing these parts, things can really get complicated . . . impure or poorly processed water . causes rejects to get out of hand.

Ordinarily, sand and carbon filters and mixed-bed demineralizers are "standard equipment" for this work. But when there's an organic removal problem, as at Glass-Tite Mfg. Division, then special equipment is called for. Barnstead's organic removal equipment was installed along with other units . . . and the result, continuous production of pure water free of organics, with high electrical resistance for washing and rinsing operations. RESULT: minimum rejects faster production.
Plant officials at the Glass-Tite Mfg. Division report that these Barnstead Pure Water Units have been in operation for over a year, and have required no maintenance of any kind other than regenerating the resin. Regeneration usually takes place after 20,000 gallons of purified water has been produced.
Since 1878 .Barnstead has been helping all kinds of businesses with water purification problems. Perhaps we have the right answer for you. Write today for Catalog \#160 on Demineralizers and related pure water equipment.

 STILLAND STERILIZER CO.

51 Lanesville Terrace, Boston s1, Mass. Circle 123 on Inquiry Card

This index is published as a convenience. No liability is assumed for errors or omissions.

B	
Ballantine Laboratories, Inc. 111	
Barnstead Still and Sterilizer Co.	186
Bead Chain Manufacturing Company	150
Belden Manufacturing Company	71
Bendix Corporation	
Scintilla Division	145, 157, 176
Semiconductor Division	129
Binswanger Corporation	144
Brady Company, W. H.	185
Brush Instruments	Inside Back Cover
Bussmann Manufacturing Division	100, 101

Centralab

The Electronic Division of Globe-Union 56
Cinch Manufacturing Company 93
Clare \& Company, C. P. 107
Consolidated Electrodynamics 122, 123
Controls Company of America
Control Switch Division 38
Cratex Manufacturing Company 146
CTS of Asheville, Incorporated 140

Dale Electronics, Incorporated 54	
Daven	
Division of General Mills, Inc.	96
Deutsch Company	50
Dialight Corporation	175
Dickson Electronics Corporation	160
Drake Manufacturing Co., Inc.	142
E	
ELECTRONIC INDUSTRIES ins. fol. p. 36	
Electronic Research Associates, Inc. 174	
Engineered Electronics Company	
Esterline Angus Instrument Co.	112

F	
Fairchild Controls	36
Fairchild DuMont Laboratories	14, 15
Fenwal Electronics	128
Florida Development Commission	97
Fluke, John, Manufacturing Co.,	117
Fusite Corporation	33
FXR Division of Amphenol Borg	60

G

General Electric Company		
Lamp Metals and Components 127		
Minia	ture Lamp Department	116
General Precision Aerospace		
Keario	ott Division	132, 133
General	Products Corporation	119

General Radio Company 62
Grayhill Inc. 102

Guardian Electric Manufacturing Co. 151

H	
Hamilton Institute, Alexander	
Henes Manufacturing Company 123	
Hewlett Packard Company 34, 35, 58	
Hickok Electrical Instrument Co. 80	
Holub Industries, Inc. 148	
Honeywell	
Precision Meter Division 99	
Hoskins Manufacturing Company 126	
1	
Ideal Industries, Incorporated 98 Image Instruments, Incorporated.......... 110	
Industrial Electronic Engineers, Inc. 121	
International Electronic Research Corporation .. 124	

Jennings Radio Mfg. Corp. 114
Johnson Company, E. F. 162
?
Kay Electric Company . 29
Keinath Instrument Company 144
Kinney Vacuum Division 173
KRS Electronics 16

1
Lepel High Frequency Laboratories, Inc. 150
Ling. Temco-Vought, Inc. 153
Lionel Electronics Laboratories, Inc. 147
Lockheed Missiles \& Space Company 125

Paraplegics Mfg. Co. 142
Philco Corporation
Lansdalo Division . 24
Sierre Electronic Division 6
Precision Paper Tube Company 158
Pyle-National Company66

0

Q.Max Corporation

110

Radio Cores, Incorporated
Radio Corporation of America Back Cover
Radio Materials Company Inside Front Cover
Sage Electronics Corporation 94
Sangamo Electric Company 32
Siliconix Incorporated 10
Solid State Electronics Corp. 188
Sprague Electric Company 2, 4, 184
Stevens Manufacturing Company, Inc. 22Sylvania Electric Products, Inc. 48, 49, 68, 182, 183
TTA Manufacturing Company 185
Tektronix, Incorporated 108, 109
Transistor Specialties, Incorporated 131
UUnion Switch \& Signal Division 163, 165United Transformer Corporation 186
V
Victoreen Instrument Company 105
Western Gear Corporation 152
Western Rubber Company 130

ELECTRONIC INDUSTRIES
REGIONAL SALES MANAGERS

Philadolphia (39)-56th \& Chestnut Sts. (Aree Code 215) SHerwood 8-2000 OSEPR DRUCKER
ROBER e. HINCKLE, Jr
(Classified Advertising)
New Yerk 17-100 East 42nd St.
(Area Corle 212) OXford 7.3400
GERRY PELISSIER
HUGH ROBINSON
W. Hartford, Conn. -62 LaSalle Rd. (Area Coda 203) 236.4237 AL KAISER
Boston (10), Mass.-10 High St.
(Area Code 617) LIberty 2.4460
ROBERT G. SMITH
Chicago (11)-540 N. Michigan Ave.
(Area Code 312) 467-9660
OHN W. BERNHARD
PHILIP T. CLARK
Cleveland (15)-930 Keith Bldg.
(Area Code 216) SUperior 1-2860
ROBERT COBURN
Los Angeles (57) - -98 S . Alvarado St.
(Area Code 213) DUnkirk 7.1271
GEORGE F. KELLEY
BURT UNDERWOOD
San Francisco (3)-1355 Market St.
(Area Code 415) 861.7107
DON MAY
Atlanta (9)-1776 Peachtree St., N.W.
Area Code 415) 861.7107
JOHN W. SANGSTON
Dalias (6)-Meadows Bldg.
Axpressway at Milton
HAROLD E. MOTT
EUROPEAN SALES OFFICES
London, S. W. (1)-67/68 Jermyn St.
St. James
MAX F. HOLSINGER
Dusseldorf—Huttenstrasse 17
Am Ernst-Reuter.Platz
MAX F. HOLSINGER
FAR EAST SALES OFFICE
Tokio Marunouchi, Japan
C. P. O. Box \#1572, Room 814

Tal: 211-3506-3509
Togin Bldg.
CLARENCE T. SAKAGUCHI

Cuts costs-saves space!

4-Track Stereo Combination Head available in production quantities First of a new series of combination heads to be available in production quantities, Nortronics' 4-Track Stereo head combines Record/Playback and Erase functions in one miniature case. Saves space in compact equipment cuts component costs with a single head and one mounting bracket instead of two-cuts assembly and adjustment time! Case size measures only $0.490^{\prime \prime}$ high, $0.575^{\prime \prime}$ wide, and $0.580^{\prime \prime}$ deep-the same size case as previously used for our Record/Playback head alone!
The new 4-track stereo combination head is offered in two different versions, and although engineered to meet different applications, both heads deliver outstanding high frequency response due to their laminated core construction. Premium (rSQ) head designed for professional broadcast use and studio applications-offers low core-loss characteristics never before available in any mass produced magnetic head. Standard (TSQ) head designed for use in home-type high fidelity tape recorders.
SPECIFICATIONS: Laminated Core; Depos. ited Quartz Gap; Hyperbolic or Cylindrical All-Metal Face; with Connector Plugs. Avail and base-mount types-mount, side-mount NEED MAGNETIC HEAD
NEED MAGNETIC HEADS?
Cut specification time- check Nortronics first!
Industry s.s widest line of "standards" plus pecial. Industry's. widest line of "standards" plus special
ized "know-how".

Nottronica

8144-A 10th Ave. No.. Minneapolis 27, Minn.
Circle 107 on Inquiry Card

J. O. Sherrard, General Business Systems Mgr., N. J. Bell Telephorc Co., and J. H. Young, GBS Supt., examine first RCA 601 EDPS installed anywhere. Computer processes 35,000 bills/day, correlating such factors as length, time and type of call vs. rate. The 601 and 4 301's process 14 million calls made through 120 exchanges per month.

EIA MANUAL DESCRIBES

VALUE ENGINEERING COURSES
The "Value Fingincering Education Training Manual," recently published by the EIA, outines short management training programs on value engineering. It also clescribes seminars for personmel at all operating levels of industry and the military.

The mamal is arailable from the E.I. 1 Engineering Dept., 11 IV. H2nd

The WELDED MODULE
Shown in the photograph
on page 37
was supplied to
"Electronic Industries" by ELECTRONIC PRODUCTS
CORP., Baltimore, Md.

4 NAVY CONTRACTS
 TOTAL $\$ 7$ MILLION

The Navy is awarding four contracts totaling $\$ 7.099 .942$. The Bureat of Ships is awarding two of them. The first is at $\$ 1.239 .863$ fixed-price contract to Sang:mo Vlectric Co., Springfield. Ill., for 15 surface ship sonar trausducers and spare parts. The second is a $\$ 1.335,079$ cost pilus contract to Spery Gyroscope Co., Great Neck, N. Y'.. for 47 Polar is submarine gyros.

The Bureau of Nawal Weapons is issuing two supplements to an existing contract with U'nited \ircraft's Pratt \& Whimey Div.. E. Hatford, Conn. The first. for $\$ 1.725,000$, is for contimed general development testing of the $)$ Tli-30-I'-1 aircrait engines. The seconel. for $\$ 2.800,000$, is for producing these engines. Previous obligations moder this fixed-price contract are $\$ 33^{\circ},+17.950$

UMA SPONSORS CONTEST

The ITtrasonic Manufacturers λ ssociation is sponsoring a contest for articles dealing with that field. Catsh prizes we offered. For more information. write: Ultrasonic Manufacturers Association. Inc.. 271 North Ave.. New Rochelle, N. Y.

Seeking person or company interested in producing my automatic electro-acoustic notescript machine for any type of music. Absolute world-novelty, patent pending. A future mass-article for musicians

IMRE SPONGA

Garinerstr. 14 Zurich 8, Switzerland

The Proprietor of British Patent No. 830,736 for "An improved Magnetic Recording and Reproducing method and an apoaratus for Carrying out such for the sale of the Patent, or for the grant of a Licence thereunder. Communication should be ad. dressed to

PAGE, WHITE \& FARRER
27 Chancery Lane, London, W.C.2.

Circle 124 on Inquiry Card

Brush lightbeam recorder eliminates RFI with silent light!

The unique incandescent optical system of this new directprint oscillograph completely eliminates confused data caused by generation of RF interference into associated equipment. It is the only lightbeam recorder that meets RFI specs MIL-I-26600 and MIL-I-6181D. Whether your application is industrial or aero-space, check out these important facts.

Start and Re-start Recording time . . . 50 milliseconds
Writing Speed . . . Greater than $\mathbf{3 0 , 0 0 0}$ in./sec.
Companion Amplifiers . . . Especially Designed
Complete Line of Accessories
8 Pushbutton Record Speeds
Internal Chart Take-up
High Contrast Traces 16 Channels

Now you can record over the whole range of most-used frequencies with Brush systems incorporating all the known refinements in oscillography. Write for full details.

RCA 2N2405 OFFERS 0.5 VOLT MAX. $V_{\text {CE(sat) }}$ @150 Ma $\mathbf{9 0}$-VOLT MIN. $\mathrm{V}_{\text {ceo (sus); }} \mathbf{1 2 0} \mathbf{~ M c ~} \mathrm{f}_{\mathrm{T}}$

RCA SOLID-BLOCK METAL HEADER now available in RCA's growing 2 N 2102 family

RCA FIELD OFFICES
EAST: 32 Green St., Newark 2, N.J., 485-3900-731 James Sr., Rm. 402, Syrocuse 3, N. Y., GR 4.5591-605 Mar'ton Pike, Eflion, N. J., HA 8.4802 - Grealer Boltimare ${ }^{\text {Area, }} 1725$ "K" St., N.W., Washington 6, D. C.. FE 7.8500 . NORTHEAST: 64 Si.. Orlanda, Fla., 425-5563 . CENTRAL: Suite i154, Merchandise Mar! Plaza, Chicago 54, ill., 527.2900 - 2132 East 52 nd Si., Indionopolis 5, Ind., CL 1.1405 - 5805 Excelsior Blyd., Minneopalis 15. Minn., WE 9.0676 - 714 New Center Bldg.. De'rait 2, Mich., TR 5-5600-7905 Carpenter Frewwor, Dallas 7. Tex., ME 1.9720: Cantinental Terrace Bldg., 2785 Narth Speer Blud., Raam 346, Denver 11, Cala., 477.1688 . WEST: 6801 E. Washingtan Blvd., Las Angeles 22, Colif., RA 3.8361 - 1838 El Camino Real, Burlingame, Calif, OX $7-1620$ - 2250 First Avenue, S..
 INTERNATIONAL DIVISION, 30 Rackefeller Plaza, New Yark 20, New Yark, Cocle Address: RADIOINTER, N. Y.

Out of RCA's revolutionary 2N2102, triple-diffused silicon transistor, comes the new high-voltage 2 N 2405 . Using the same technique of multipoint control that defines the 2N2102 at six current levels-RCA CON. TROLS MINIMUM VCER OF THE NEW 2N2405 ALONG THE FULL LENGTH OF THE CURVE FROM ZERO OHMS TO 100 KILOHMS.

Through the use of triple-diffused construction-precision manufacturing controls-and RCA solid-block metal header-RCA 2N2405 offers: Min. $\mathrm{V}_{\text {CEO }}$ (sus) of 90 Volts•Max. $\mathrm{V}_{\text {CE }}$ (sat) of $0.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma} \cdot$ f_{T} of $120 \mathrm{Mc} \cdot$ low leakage, $\mathrm{I}_{\text {cво }}(\max)=10$ nanoamp $@ V_{C B}=90 \mathrm{~V}$ - 5 watts max. dissipation • exceptional mechanical stability.

Check RCA 2N2405 today for your appications where supply-voltage transients are a problem-in video drivers, RF and AF power amplifiers, and high-voltage linear and switching amplifier applications. Ask your RCA Representative about the broad RCA 2N2405-2N2102 family and related types RCA 2N1893, 2N718A, 2N720A. Or write Commercial Engineering, Dept. IJ.8, RCA Electronic Components and Devices, Harrison, N. J.

	TO-5	TO-18	TO-46
HIGH-VOLTAGE TYPES (min VCEO(SUS)			
UNIVERSAL TYPE			
(Beta controlled over full current range) ECONOMY VERSIONS Of RCA 2N2102	RCA 2N2405	2N2896	2N2899

[^0]: Dept. El-9, MAPLE AVENUE - PINE BROOK, MORRIS COUNTY, N. J. CAPital 6-4000

[^1]: Thus:

 $$
 \begin{gather*}
 \text { if } C_{1}=a_{1}+j b_{1} \tag{32a}\\
 \text { and } C_{2}=a_{2}+j b_{2} \tag{32b}\\
 \text { then } C_{1}+r_{2}^{\prime}=\left(a_{1}+a_{2}\right)+j\left(b_{2}+b_{2}\right)
 \end{gather*}
 $$

[^2]: a. H. Margenau and G. M. Murphy The Mathematics of Physics and Chrmistry-I). van Nostrand (Good broad coverage of many items).
 b. E. Jahnke and F. Emde-Tables of Functions with Formulac and Curaes-Dover (Good numerical tables-higher functions).
 c. Mathematical Tables from Handbook of Physics and ChemistryChemical Rubber Publishing Co. (Good numerical tables-basic).
 d. G. A. Campbell and R. M. Foster-Fourier Intcgrals for Practical Applications-D. van Nostrand. (Good tables of Fourier mates). e. A. Papoulis-The Fourier Integral and its Applications-McGraw e. A. Papoulis-Th
 (Good theory).
 f. M. F. Gardner and J. L. Barnes-Transients in Linear Systems J. Wiley and Sons (Good study of Laplace transforms-applications to circuit analysis and comprehensive table of mates).
 g. J. G. Truxal-Automatic Feedback Control System SynthesisMcGraw Hill (Good introduction to nodern design concepts).

[^3]: Courtesy of Roth and Strong, Management Consultants, Boston

[^4]: For service, contact American Lava representatives in Offices of Minnesota Mining and Manufacturing Co. in these cities (se: your local telephone directory): Boston: Needham Heighis, Mass. - Chicago: Bedford Park, Illinos - Cleveland, Ohio Birmingham, Mich. - Laurens, S C. - Los Angeles, Cal. - Minneapolis, Minn. - Metropolitan New York: Ridgefield, N. J. Up-Stare New York: Newark, N. Y. - Philadelphia, Pennsylvania - Richardson, Texas - South San Franeisco, California All export exsept Canada: Minnesora Mining and Manufacturing Co., International Division, 99 Park Ave., New York, N. Y.

[^5]: "'PIONEERS IN MINIATURIZATION." Circle 42 on Inquiry Card

[^6]: \dagger Deflection factor and Sweep Rate are variable between steps, uncalibrated. * Provides 6 - cm linear scan

[^7]: Circle 91 on Inquiry Card

[^8]: . Mir. of non-military electronic receiving and transmitting equipment.
 $\square \mathrm{Mfr}$. of non-military electronic instruments, measuring, control and test equipment.
 Mir. of non-military electronic computers, data processing, analysers, business machines.
 \square Mfr. of Guided Missiles and Accessories; Aircraft and Accessories, All Types of Military Products and Equipment.
 \square Mfr. of electronic components, parts, tubes and like products.
 \square Mfg. Co. (non electronic) using any of the above equip. In mfr., research or development work.
 \square Broadcasting or telecasting station.
 \square Commercial communication user (Tel \& Tel, Police, Airports, Recording Studio, Etc.).
 \square Independent research, test, design laboratories and independent consultants-not part of a mfg. Co.
 \square Gov't Bureaus, Gov't laboratories, Gov't research center, military installation.
 \square Wholesaler, mfg. representative, service firm.
 \square University (educational) Public Library.
 \square Other (Please explain)

[^9]: W. H. $\mathbf{B} \boldsymbol{A} \boldsymbol{A} \boldsymbol{B}$ CO. 751 W. Glendale Ave., Milwaukee, Wis. 53209 Est. 1914
 Manufacturers of Quality Pressure-Sensitive Industrial Tape Products, Self-Bonding Nameplates, Automatic Machines fer Dispensing Labels, Nameplates, Masks and Tape Circle 120 on Inquiry Card

