
 N

Cathode Ray Oscilloscopes

Performance specifications on more than 150 types made by 29 manufacfurers

Also in This lasue:

- Applying Dot Components to Electronic Packaging
- Interpreting Trasisistor Noise Performance
- Preview of 17fh Anaual Mational Electronics Conference

Complate Contents pages 2 and 3

October

SANGAMO 460-SERIES MAGNETIC TAPE INSTRUMENTATION

Sangamo's Hare Tape Synchronized speed control reduces instantaneous and long term record-playback speed deviations to a level several times lower than other speed control systems. As a result, it is now possible to achieve magnetic tape instrumentation system accuracies heretofore considered unattainable. The Sangamo 460-Series is a fully transistorized magnetic tape Recorder/Reproducer for application in direct analog, wide band FM, PDM, and PCM instrumentation systems.
The Hare Tape Synchronized servo speed control outperforms other servo speed controls in speed of response and range of control. Since a high torque to inertia ratio is designed into the capstan drive, the servo system can respond more rapidly to changes in tape reference signal frequency than drive systems utilizing massive flywheels. For example, an instantaneous change in record tape speed of several percent will be corrected on playback in less than 40 milliseconds. Furthermore, the control is completely damped, eliminating overshoot or the necessity to average the speed. In addition, the Hare servo speed control range is $\pm 15 \%$ without loss of synchronism, while conventional tape speed servos have a range of only $\pm 2.5 \%$.

The Sangamo 460-Series Recorder/Reproducer can instantly be changed from reel to loop operation without rehandling the tape or making any changes in the transport. Exclusive vacuum tensioning and tape guiding provides gentle but firm and precise control of tape position and head-to-tape contact. This design, in addition to a long tape path, results in the extremely low interchannel time displacement error specified. In addition, the vacuum pad removes loose particles from the tape before it passes over the head, thus substantially reducing dropouts and oxide build-up on the head.
The tape transport and fourteen (14) tracks of Record/ Reproduce electronics are contained in a single standard $19^{\prime \prime} \mathrm{W} \times 71^{\prime \prime} \mathrm{H}$ cabinet. This unusual compactness is achieved through transistorized electronic circuitry. The solid state circuitry means greater reliability, reduced weight, lower heat dissipation, and lower power consumption.

For the name of the technically qualified Sangamo representative nearest you, and for complete details on the Sangamo 460-Series, please write for Bulletin 3400.

ELECTRONIC INDUSTRIES

Opportunity on the Horizon Electronic Teaching!

THERE is no more imaginative vista in the electronic field than that offered by modern education techniques. Through computer analysis of performance, and teaching machines, a new concept of learning has emerged. At the present time, the application of electronic equipment to education processes is still largely in the laboratory stage. Nevertheless, the principles are laid down and the experimental programs well under way. In industry and schools, this new art is making a revolutionary breakthrough.

Teaching machines are based on the theories of programmed learning. The first concepts of this art grew from a series of test questions-in the classical Socratic method-and developed to the present question-answer-reward pattern, in a step-by-step process.

The scientific terms for these processes are of no great importance. The vital thing is that these methods work, and have shown remarkable success in all levels of education.

The name teaching machine is misleading, as the actual process of learning is through programmed teaching by questions. The machine came into the picture when it was found advantageous to have the answers concealed until the question was answered. When a programmed course was placed in a box which allowed the student to take each question a step at a time, and write the answer in a provided aperture, then the name "machine" was used.

This principle which was begun by Dr. B. F. Skinner only a few years ago has developed to the point where laboratory experimenters have computerized installations capable of analyzing a student's work, and issuing him "homework" to do before he continues with the next part of the study.

As in all revolutions, there are those who decry the innovation of teaching machines. Actually, it is an irrefutable fact that it is a major breakthrough in the need to improve our educational system. Space does not allow us to present a full description of all the amazing
developments to date, but there appears no doubt that this is going to be a new gigantic market for the electronic industries.

At the moment programs are used in industry to train salesmen in new techniques and product engineering; for basic computer training; teaching telephone operators; or in schools for teaching algebra; basic electronics; trigonometry and almost any subject desired, including languages.

In addition, the new teaching technology embraces audio-visual aids, such as films and recordings. Most of the material is programmed by educational psychologists to increase the depth of teaching and to increase the speed of assimulating information. Such methods help to release the teachers from humdrum tasks, and allow them to devote their valuable time to more creative education. The overall effect of these concepts gives the student a higher quality education, and the teacher better and more precise tools to communicate knowledge.

Our present crisis in the communication of information is in many respects a reflection on the educational problems. We are multiplying these problems every day as technology advances and civilization becomes more complicated.

The shortage of skilled teachers is acute. We have at present over 1.5 mil lion teachers and 37 million students. Ours is one of the best educated nations in the world, but consider also Asia and Africa, where educational problems must be staggering. Even in this country with the expanding population growth, the market for education is impossible to saturate. Estimates are for more than $\$ 30$ billion to be spent in the next year alone.

The time is very near when the art of teaching technology and the alliance with the electronic industries will click . . . and a vital new concept will emerge in the world of education.

We have this market under study and we shall soon again be reporting details.

RODERT E. McKENNA, Publicher BERNARD F. OSEAHR, Editor

CREIGHTON M. MARCOTT Monoging Edifo
RICHARD G. STRANIX JOHN E. HICKEY, dr Associote Editors SMEDLEY B. RUTH LOUIS S. GOMOLAK JOHN WATKINS Assitiont Edifors OR. ALRERT F. MURRAY Confributing Editor ROLAND C. DAVIES Westington News ELMER KETTERE Ant Editor IDA M. 6000 Editorial Socretary MAE E. MOTER Leaderi Service

CITOALAL CORRESPONPENTS
Washington-1013 National Prass Ildg. GEORGE BARE EIL R. REEEIMRAL DAVIO \& HEINLY
OUSINESS DRPAOVMET
ELMER DALTON Cireulotion Menoger DONALD d. MORAN Morteting Manager
GORDON HERNDON
Production Monoge
RESIONAL SALES MAMACDS
Philadelphia (39) S5th a Chestnut Sts (Areo Code 215) SHerveod C-2ile JOSEPH DRUCKE
HERMANN W COZARTI (Clemalfed Advertislong) New Yort (17)-100 fast And Si. (Aree Code 212) Oxford 7.3we GERALD O. MELISSIER Mefrepoliton N. Y. MEMARO DOSWELL II New Englend Chisege (1)-3e0 N. Michigen Avo. (Areo Code 312) RAndelph C 21 is GEORGE H. FELT Clovelond (15)-930 Koith ildg. (Aree Code 216) SUperior I-zeno SHELAY A. McMILLION Lon Angoles (57)-15 S. Alverodo St. (Areo Code 213) DUntirt 7-4337 - WESLEV OLSON on Franciaco (3)-i3ss Merket $5 t$. (Aree Code 415) UNderhill 1.7107 DON MAY St. N.W.
JOHN W. SANESTON Dalles (6)-Meadows Olde.a Expressway (Arec Code 214) EMorion C-4/51 HAROLD E. MOTT
TUROPEAM SALS Oricts
London, S.W. (1)-67/4 Jormyn St: MAX F. HOLSINGER
Dusse'cort-Müflenstrasea 17 An Emer-Roufor-Plaf MAX F. HOLSINGER
JOMN H. KOFRON
Ghilton Research Director
G. C. Duzer, President

Vice Presidonts: P. M. Fahrondori, Leonord V. Rowlands, George T . Hook, Lobert E. Mckenna; Ireasurer. A. Montgomery: Decretory, demes E Con Frant i Tiphe Ererin Tor E. Cox Frant D, Tighe, Everin E. Terhune, Jr. Russell W. Case, Jr., George E. Centeran, Williom M. Veller.
I. C. Holloway, Alat. Secrefory.

Cable Addreen "CHILTON PHILADELPHIA"
ELECTIONIC INDUSTRIES, October, INSI. Vol. 20. No. 10 . a monfthly prblication of Chiltoe Company. Enocutive, Edilorial A Advertising offrollod circulafion pestoge poid of Mhilodolohia. Fo. \$1 e copy: Directory poid of Ahilodelphic, copy. Sabscriplion rates U. S, and U. S. Posses slons: 1 yr . \$10.00: 2 mm sis.io. Canada 1 year. 812.00: 2 ym 220.00. All other countries yr . sic.en; 2 ms sioce. Coppright 1851 by Chilton Compary. Tite Reg. U. S. Pet. On. Leproduc tion or reprinfing erohiblted ezcept by written

ELECTRONIC INDUSTRIES

Vol. 20, No. 10
October, 1961

COVER: Of all electronic instruments the cathode ray oscilloscope is probably the
most versatile and informative. Illistrated to the lett ore some typical oscilloscope
patterns, ond ocross the bottom, some patterns that ore typical of specific CRO
applications. The cover wus designed to attract attention to a very important
engineering reference ieature beginning on page $120 \ldots$... our 1961 Survey of
Cathode Roy Oscilloscopes.

MONTHLY NEWS ROUND-UP

Radarscope: What's Ahead for the Electroalc Industries..... 4
As We Go to Press. 6
Electroale Sherfs .. 8
Coning Events ... II
Electronic Industries' News Briefs. 21
TOTALS: Laft Martofing Stafistics. 23
Smapshots . . . of the Electroaic Industries. 26
Infornational News 30
Nort Month In Electronic Industries 17
Weshington Mews Letter 195

Editorial .. 1
Applying Dot Components to Electronic Packaging
J. R. Geodykeonts \& R. C. Frank 88

Using the S-Plane for Filters.. J. Jones 93
Deriving the Tunnel Diode Curve.................F. H. Mitchell, dr. 96
Phase Equalization Is Important................................ Jargensen 98
A Survey of Thin-Film Technology Part II..........John Watties 102
Inferprefing Transistor Noise Performance........L Calgogae 8
R. E. Hobsen 109

Analyzing Non-Linear Circuits............................ V. Pefracelly 112
Whaf's New ,.. 118
1961 Survey of Cathode Ray Oscilloscopes 120
Infermational Electronic Sources.. 212
Electronic Operafions... 185
Broadeasfers . . . Simplify Your Turntable Operafion. N. F. Ronad 186
Professional Opparfunities . 203
National Electronics Conference Opens October 9th 204
The Representative's Role in Electronies..................... . . As. Asen 206

NEW PRODUCTS \& TECH DATA
New Products. ... 131
New Tech Dafa for Engineers... 134

DEPARTMENTS

Tele-Tips	44	Sysfoms.Wise 185
Letfers	53	Cues for Broadcastors. 192
Personals	66	News of Mfrs. Mepresenfaflves . 196
Sooks	72	Industry Nows 198

Highlights

of this issue

Applying Dot Components to Electronic Packagingpage 88Thin films are in the research "limelight." Miero-miniature units arein production. What will be the interim category? Here's onesuggestion-using discrete components.
Design is Speeded by . . . Using the S-Plane for Filters page 93
An earlier article dealt with single-tuned filters; here, we treat the double-tuned band pass type. For such a circuit, transformer coupled, we show how a simple pencil compass is enough to make not only the locus of the hump frequencies, but also, the 3 and 6 db bandwidth frequencies.
Deriving the Tunnel Diode Curve page 96

Through quantum mechanics, Esaki predicted the I-V characteristic
curve for a tunnel diode. This article shows how to evaluate that
integral and produce a useful, algebraic equation for the curve.

Phase Equalization Is Important
page 98
In audio work, only a musician's ear can detect phase-distorted transients. But in instrumentation recording. phase distortion has far more importanco-it can be highly detrimental. Here's how to provide proper phase equalization without sacrificing frequency response.

Interpreting Transistor Noise Performance
page 109
Equivalent Noise Voltage can prove a useful and simple concept as a noise facter. With relaticely inexpensive equipment the ENV can be measured, and a noise figure can be obtained from a single algebraic calculation.

For the Designer . . . Analyzing Non-Linear Circuits
page 112
By using the volt-ampere characteristics of non-linear devices, designers can get a graphical picture of the action of a component under chosen conditions. He is then better able to modify parameters by visual observation of the graphical parameters.

1961 Survey of Cathode Ray Oscilloscopes

page 120
This listing of cathode ray 'scopes and performance specifications is the result of a survey just completed by ELECTRONIC INDUSTRIES of oscilloscope manufacturers here and abroad. Twenty-nine manufacturers are represented in the chart, which contains more than 150 types of oscilloscopes now in production.

Broadcasters . . . Simplify Your Turntable Operation
page 186
Too many switches or controls can cause odd offects and create added burdens to the operators. Here is information about modifying your units to a one-knob control for easier operation.

National Electronics Conference Opens October 9th
page 204
The Conference is anticipating an attendance of 15,000 engineers and scientists. Over 400 electronic firms are exhibiting their products. A concentrated effort is also being made to acquaint the visitors with the techniques of computer operations and applications.

Tunnel Diode

Turntable Operation

Phase Equalization

National Electronics Conference

RADARSCOPE

MOON VEHICLE

Advanced model of the Ranger spacecraft and the lunar capsule it will carry to the vicinity of the moon is studied by Dr. D. E. Duncan (1), general operations manager of Space Systems Operations at Aeronutronic Division of Ford Mofor Co., where the capsule is being developed; and James D. Burke, Ranger project manager at the Jet Propulsion Laboratory.

A NUMBER OF CONGRESSMEN have petitioned President Kennedy to order the FCC and other Federal agencies to review their position in regard to ownership and control of the communications satellite program.

CANADIAN ELECTRONIC INDUSTRY exployment declined 28% between 1956 and 1960 , reflecting a loss of half its radio receiver market and 29% of its electron tube sales. Japanese competition did the damage.

THE TV INDUSTRY reported total broadcast revenues of $\$ 1,268.6$ million for calendar year 1960, 9% above the 1959 total of $\$ 1,163.9$ million. (Total broadcast revenues comprise the sale of time. talent, and program material to advertisers.) Total broadcast expenses of the TV industry for 1960 were $\$ 1,024.5$ million, an increase of 8.8% over the $\$ 941.6$ million in 1959.

SALES OF COMMUNICATIONS equipment increased about 5% during the first half of 1961 over the corresponding period of 1960, the business and Defense Services Administration, U. S. Dept. of Commerce, reports.

IF RUSSIA'S STEPPED-UP PRODUCTION of business machines-including "mass production of electronic computers"-reaches the goal announced in the current Soviet Seven-Year Plan, the USSR will have a threefold increase in calculating machines during the 1959-65 period.

ELECTRON BEAM PROCESSING holds promise as a technique for fabricating semiconductor devices, according to CBS Labs.

ULTRAMINIATURE TRANSISTOR has been developed by RCA. Still in experimental stage, transistor is made by depositing thin films of cadmium sulfide and metal on an insulating base. This technique fits in with present methods of making thin-film devices of other types, indicating possibility of low-cost mass production of entire transistorized circuits.

BRAKES SHOULD BE APPLIED to imports "whenever they seriously threaten any segment of the American economy," says Robert C. Sprague, chairman of Imports Committee. The best way to slow electronic imports, he says, would be to establish quotas on specific products or industry sectors, "as the need arises," rather than on a broad basis.

AIR DEFENSE SYSTEM

The U. S. Army's BIRDIE air defense coordination system. developed and produced by The Martin Company's Orlando Division, coordinates the firing of guided missile batteries around cities and military installations. System uses data from its own radar and correlating inputs from external sources such as SACE.

Analyzing current developments and trends throughout the electronic

industries that will shape tomorrow's research, manufacturing and operation

WORLD'S PUREST BERYLLIUM has been produced by Franklin Institute, now making it possible to form the material by the drawing process. According to a Defense Metals Information Center the Institute has produced beryllium exceeding the 99.987% purity reported by the Soviet scientists.

SOLID-STATE IR DETECTOR eliminates cryogenics. Under development at Armour Research Foundation, process involves neutral transfer of energy in cadmium sulfide crystals. Visible light, entering crystal at one end, causes photoconductive response across electrodes placed at other end of crystal. Long wavelength radiation striking crystal between the incident visible radiation and electrodes causes the photoconductive response to be quenched. A signal is produced upon absorption of radiation.

NEW EXPERIMENTAL ELECTRONIC SYSTEM helps a composer create new music by suggesting variations and new tone combinations based on his own musical ideas. Experimental unit is specialpurpose type of computer known as a "random probability" system. This is an arrangement of circuits designed to select notes in random fashion from many choices, with the probability of choice determined by the frequency with which various note sequences occur in style favored by composer.

A HIGH VOLUME PRODUCTION SYSTEM for the continuous manufacture of thin film subassemblies, will be developed for the Navy by IBM. IBM plans either to market the thin film production equipment, or to establish one or more sources for the marketing and fabrication of this equipment. The Navy will encourage other companies to install duplicate production lines as part of its industrial readiness plan.

THE RENEGOTIATION BOARD has revised its regulation so that contractors faced with a refund can present their case directly to those charged with the responsibility of decision. Each contractor has the right to meet with a panel of the regional board, and if it is not satisfied with the regional board determination, with a division of the statutory board.

CRYOGENIC TRANSFORMER is now operating at 15-kw level. Superconducting transformers, utilizing ability of some metals to conduct electricity without resistance near absolute zero ($-459^{\circ} \mathrm{F}$), have been tried before, but magnetic fields above certain trigger strengths have quenched the superconducting state. Dr. R. McFee, of Arthur D. Little, Inc., discovered total magnetic-field strength could be kept below critical level by interweaving layers of primary and secondary windings. Current in the adjacent layers flows in opposite directions. Result: fields nearly cancel each other. Only the coils are cooled in the new transformer, keeping cost of refrigeration reasonable.

SOLID-STATE MICROWAVE TRANSMITTER. developed for space communications by Sylvania Electric Products, reportedly has 11 times the life expectancy and 10 times the frequency stability of conventional transmitters. Engineering model has been operated with two watts of output power within the S-band (1,700 to $2,300 \mathrm{mc}$). Transmitter could be linked with solid-state radio receiver to form complete space communications system.

ARMY MODERNIZATION can be expected by 1970 to boost by many millions of dollars the sums now being spend for procurement of electronic equipment for aviation. Reflecting tactical needs imposed by dispersal of modern armies over battlefields 200 miles deep, expenditures for electronics will rise from 5 to 10% of the fly-away cost of aircraft, said L. G. Regan, defense requirements specialist for Douglas Aircraft Co. In the case of deep-penetration surveillance aircraft, 30% of cost will be represented by electronics, Mr. Regan said.

> For More Nows On Industry Developments
> Turn To "As Wo Go To Press"-on page 6

LANDING SYSTEM FOR SPACECRAFT

This radar (AN/TPQ-10), originally developed by CE's Heavy Military Electronics Dept. for U. S. Marines, will be used to guide space vehicles back to earth in a system under developitent by CE's Defense Systems Department, Syracuse. New York.

As We Go To Press

RACEP Provides Gains In Specłrum Efficiency

After three years of investigation and research, The Martin Co., Orlando, Fla., has developed an approach and equipment to help solve the problem of the crowded frequency spectrum. RACEP Discrete Address communications system (Random Access and Correlation for Extended Performance) puts to use the pauses and breaks in normal conversation and the idle time between calls. This is done by disintegrating and coding scores of speech signals into microsecond bits, combining them randomly, and simultaneously transmitting them over the same channel to a receiver which then selects the properly coded signal and reconstructs the bits into normal flowing conversation.

With this system, the user may call (discretely address) any one of some 700 users, either singly or collectively. Future developmental work on the system could increase the number of users considerably.

RACEP is a low-duty-cycle allpurpose system, as opposed to a cw system, which gives it the capability of random access and increases its efficiency over conventional systems. It has already stimulated a number of other research organizations to investigate this type of communications.

SOLAR ENERGY CONVERTER

Converter follows the sun, generating elecPricity with silicon solar cells. Engineer R. White points out the separate bank of cells which operates the tracking motor. Selfpowered unit is made by Hoffman Electronics Corp., Los Angeles, Calif.

Arctic Weather Research System

A 20 channel system for measuring and recording information on Arctic weather is being designed by Datex Corp., Monrovia, Calif., for use by the Army Signal R\&D Laboratory in Greenland. Called a Temperature and Radiation Integrating System, the equipment will provide and receive eight differential temperature signals, two absolute temperature signals, and ten radiation signals. Each of the input variables will be measured 100 times each hour. Data will be recorded on a punched tape at the end of each hour. A computer will be used to analyze the data on the tapes.

Infrared Device Contraet Awarded

A $\$ 1.8$ million contract for the production of a new infrared device which measures very small changes in temperatures has been awarded the Hughes Aircraft Co. by the Bureau of Naval Weapons The device is so sensitive that it has measured the cooling of the moon during a total eclipse.

The detector operates at $-452^{\circ} \mathrm{F}$. It incorporates a miniature refrigerating device which uses liquid helium as the refrigerant. The cooling unit, called a cryostat, weighs 27 pounds and has a volume of less than one cubic foot.

Project ALARM Being Evaluated

Department of Defense has announced that electronic checkout techniques similar to those used in missile launchings are being tested on Army aircraft to determine if the planes are safe for flight. Research into the feasibility of this concept is being carried out by the York, Pa., division of the Bendix Corp. under a contract with the U. S. Army Transportation Research Command. Fort Eustis, Va. The Army may adopt this system to check on the safety of its aircraft. Known as Project ALARM (Automatic Light Aircraft Readiness Monitor), the concept envisions the use of strategically placed sensors to forecast electronically the condition of various critical mechanical and structural components.

ELECTRONIC RESERVATIONS

M. L. Perry (1), director of rese:vations for United Airlines, explains the function of "Instamatic" equipment to R. C. Petifte (c), director of reservations for Trans World Airlines, and E. K. Rhatigan, director of reservations for American Airlines. "Instamatic" is the largest electronic resersations system in the air transport industry. Unit shown is at United's Reservations Control Center in Denver.

Joint Use of Radar Saves $\$ 15$ Million

More than $\$ 15$ million in equipment costs has been saved by the Federal Aviation Agency and the U. S. Air Force since 1957 through joint use of long range radar. The joint use program was worked out by an FAA/ADC Joint Radar Planning Group.

Under the joint use plan long range radar units are adapted to serve both military and FAA functions. This is accomplished by transmitting radar signals to display scopes at both the military sites and FAA Air Route Traffic Control Centers. There are now 15 radars in joint use with 33 additional to be used jointly by Dec., 1963. Each joint use radar saves approximately $\$ 1$ million in establishment costs.
In addition to the initial savings from purchasing and installing the radars the FAA/ADC Joint Radar Planning Group has found other benefits. One of the most important is the reduction or elimination of radar interference that would result from two nearby radar installations operated separately.

More News On Page :

Latest space-maker for sizeconscious designers of transistorized commercial and entertainment equipment is the new Sprague Type 157P Moldedcase Filmite ${ }^{\text {® }}$ " E " Capacifor, which combines unusual compactness with exceptional performance characteristics.

TAN...

Distinctive tan coloring identifies the Type 157P Capacitor and serves as your warranty of outstanding shock-andhumidity resistance. The tough molded armor also protects against possible damage during soldering operations, or changes in capacitance from mechanical pressure where wrapped capacitors are clamped or cast in assemblies.

TERRIFIC!

Standard operating temperature range is -40 C to +85 C . And with voltage derating, this outstanding capacitor may be operated to +105 C ! Its high insulation resistance (due to the polyester film dielectric and molded housing) is another characteristic which qualifies the 157P Capacitor for critical coupling applications.

For complete technical data on Type 157 P Filmite " E " Capacitors, write for Engineering Bulletin 2065 to Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Mass.

CAPACITORS	InTERFERENCE FILTERS
RESISTORS	PULSE TRANSFORMERS
MAGMETIC COMPONENTS	PIEZOELECTAIC CERAMICS
TRANSISTORS	PUISE.FORMING METWORKS

RESISTORS
transistors

PULSE TRANSFORMERS PIEzOELECTRIC CERAMICS PULSE-FORMING METWORKS
high temperature magnet wire ceramic base printed networks PACKAGED COMPONENT ASSEMBLIES functional digital circuits

THE MARK OF REIIABILITY

Electronic

SHORTS

- A contract for design, construction and test operations of a foating nuclear power plant to supply electricity to military installations or port citiea cut off from normal service by peacetime disaster or wartime action has been awarded to the Martin Co. by the U. S. Army Corps of Engineers. The $\mathbf{1 0 , 0 0 0} \mathrm{kw}$ plant will be installed in the hull of a reconditioned and modified surplus Liberty ship.

D A method which makes it possible to produce semiconducting diamonds has been discovered at the General Electric Research Laboratory at Schenectady, N. Y. Such diamonds are extremely rare in nature, accounting for less than one per cent of natural diamonds, but can now be grown at will in the laboratory using a high-temperature, ultra-high pressure process.

- A new system of communication. called CBS Radio NetALERT, will make it possible, for the first time, for CBS Radio affiliates from coast to coast, whether on or of the air, to be instantaneously alerted to receive urgent news bulletins, unscheduled on-the-spot news coverage or national emergency announcements.
- A Repetitively Pulsed Plasma Propulsion Engine (REPPAC III) has been fired continuously for 60 hours at a rate of 1000 firings a minute at GE's MSVD Space Sciences Lab in Phila. The engine was run in a 13 -foot vacuum chamber that maintained a pressure of $5 \times 10^{-6} \mathrm{~mm}$ of mercury so that there was no interaction between the plasma exhaust and residual gas in the test chamber.
A. U. S. Army Signal Research and Development Laboratory contract to develop methods of generating relativistic plasma has been awarded to Stevens Institute of Technology, Hoboken, N. J. Relativistic plasma. the kind of matter composing the Van Allen radiation belte surrounding the earth, has never been produced in a laboratory under controlled conditions.
- NASA has awarded the J. W. Fecker Div. of American Optical Co., Southbridge, Mass., a contract to produce a vacuum chamber and optical bench with an ultraviolet monochrometer. It will be used to align the various optical systems to be launched in the orbiting astronomical observatory planned by NASA.
- A study contract for the design of an electronic method of iransferring control of aircraft from an air route traffic control center to an airport control tower has been awarded the Orlando Div. of the Martin Co. by the FAA. The investigation is to define the most feasible methods and equipment required for interconnecting remotely separated radar scan converter TV marker hand-off equipments and adaptation of this equipment for presentation of data on various types of existing PPI displays.
- Radar and TV display device that can be used like a small telescope has been announced by Westinghouse. Dubbed the Private Eye because it can be used by only one person at a time, it is expected to make possible the installation of radar in places where the weight and bulk of conventional equipment would otherwise make it impractical.
- According to a survey by Motorola, 45% of all FM stations intend to add stereo service via FM multiplex. About 370 FM stations will have stereo programs on the air by the end of 1963. Ninety-two expect to be in operation by the end of this year.
- A $\$ 3$ million prime contract for classified airborne Electronic Warfare Penetration Systems has been awarded the Hallicrafters Co. by the USAF. Award is the first of a new program for equipments aimed at increasing the penetration capabilities of the SAC Bomber Force.

Development of an electronic "exerciser" that tests core memory units before installation in computers has been announced by the Radio Corp. of America. It functions by setting up a pattern for writing digital information into the memory unit and reading it back.

FAA Inaugurates DME Procedures

The Federal Aviation Agency is now using DME (DistanceMeasuring Equipment) procedures on a nationwide basis to provide air traffic control service for an entire fleet of civil jets. FAA has had DME air traffic control procedures in effect since January, 1960, but their use has been limited by the small number of DME-equipped civil aircraft. Now, for the first time, one airline has its entire je. fleet equipped with DME and another airline will soon have jet fleet-wide DME installation.

FAA Administrator N. E. Halaby said, "While no formal official requirement has as yet been established for all air carrier planes to carry DME, I see no reason to delay the application of our special DME procedures so long as we have properly-equipped aircraft and qualified pilots to use them."

DME will enable a pilot to orbit as thunderstorm or restricted area without losing navigational course. It will simplify his procedure for entering and remaining within a holding pattern area by indicating where turns are to be started, regardless of wind conditions.

DME promotes more efficient air traffic control service by enabling the controller to issue more exact and practicable clearances for pilots. Number of aircraft which can be safely and efficiently handled is increased. Finally, DME permits more efficient use of altitudes, facilitates aircraft transition between routes and reduces holding delays.

MOBILE RADIO TRYOUT

RCA's new 2 -way mobile radio for business communications gets a tryout by Eileen Rafferty. Smaller unit contains control head, speaker and power supply. It mounts under vehicle's dashboard. Transmittor - receiver unit can be dash or trunk mountod. UHF "efficiency line" is available in a $12-v$. model and a 6 or 12-v. model.

WHEN THE HEAT'S ON DEPEND ON THESE CTS CERMET RESISTORS with Space Age 500° C High Stability Metal-Ceramic Element

CTS cermet resistors have exceptionally high stability and reliability . . . tested extensively and proven under extreme environmental conditions... achieved by a unique, rugged, hard-surfaced metal-ceramic element processed at over $600^{\circ} \mathrm{C}$. Specially adaptable to miniaturization because of high load and heat capabilities in small areas. Wide resistance range.

CERADOT

Solid Cermet Fixed Resiators - 50 ohms thru 100 K ohms.

- 050° dia. x $.030^{\circ} \mathrm{L}$. Other sizes available with or without leads.
- Power rating: $1 / 10$ watl at $125^{\circ} \mathrm{C}$.

Kit of E different resisfance values available at nominal cost.
Request Data Sheet 185 for technical specs.

CeraTrolS ${ }_{6}$

Series 400

3 Watt 130 die. Soml-Preclision Milltary Varieble Resistor

- Interchangeable with Style RV4 MIL-R-94 but far exceeds temperature and stability requirements.
- Available with $1 \%, 2 \%$ or 3% linearity.
- Power ratinos: 3 watts at $85^{\circ} \mathrm{C}, 2$ watts at $125^{\circ} \mathrm{C}$, derated linearly to zero load at $175^{\circ} \mathrm{C}$.
Request Data Sheet 179 for technical specs.

CERAFER

Modular Fired Resistors

- 5 to 300,000 ohms resistance per square. Resistance of 10 ohms to 1 meoohm available in short straight paths without resorting to lattice or grid patterns.
- Unaffected by solvents, potting compounds or corrosive atmosphere.
- Resistant to nuclear radiation and high vacuum conditions.
Kit of 10 different resistance values10 walers with 2 identical resistors per water-available at nominal cost.
Request Data Sheet 181 for fechnical specs.

CeraTrolS

Series 500

1\% Watt $\%_{0}^{\circ}$ die. Semi-Precialon Milltary Variable Resistor

- Interchangeable with Style RV5 MIL-R-94 but far exceeds temperature and stability requirements.
- Available with $1 \%, 2 \%$ or 3% lin. earily.
- Power ratings: $11 / 2$ watts at $85^{\circ} \mathrm{C}, 1$ wath at $125^{\circ} \mathrm{C}$, derated linearly to zero load at $175^{\circ} \mathrm{C}$.
Request Data Sheet 180 for technical specs.

CERATRIM

 Serles 17042-Turn $150^{\circ} \mathrm{C}$ Square Trimmer Resistor

- Available with wire leads or p.c. pins out bottom or side.
- Power Rating: 1 watt at $50^{\circ} \mathrm{C}$ derated linearly to zero load at $150^{\circ} \mathrm{C}$.
Request Data Sheet 178 for technical specs.

CeraTrols

Sories 600
\% Watt $1 / 2$ dia. Milltary Variable Resistor

- Interchangeable with Style RV6 MIL-R-948 but far exceeds temperature and stability requirements.
- Power ratings: $\% /$ watt $^{\text {at }} 85^{\circ} \mathrm{C}$, $1 / 2$ watt at $125^{\circ} \mathrm{C}$, derated linearly to zero load at $175^{\circ} \mathrm{C}$.
Request Data Sheet 175 for technical specs.

25-Turn $200^{\circ} \mathrm{C}$ Rectangular Trimmer Resistor

- Available with D.C. Dins or wire leads. - Power Rating: 1 watt at $125^{\circ} \mathrm{C}$ derated linearly to zero load at $200^{\circ} \mathrm{C}$. Request Data Sheet 177 for technical specs.

CTS Corporation

Elkhart, Indiana
Factories in Elkhart \& Berne, Indiana; South Pasadena, California; Asheville, North Carolina and Streetsville, Ontario, Canada.

Sales Offices and Representatives conveniently located throughout the world. CTS specialists are willing to help solve your cermet resistor problems.

EECO'S 1-MC ALL-WELDED NOR CIRCUIT MODULES

HOW WOULD YOU IMPLEMENT THIS EQUATION AT RATES UP TO 1 MEGACYCLE?
$\mathbf{X}=\overline{\mathbf{A}}(\mathbf{B}+\mathbf{C}+\overline{\mathbf{D}} \overline{\mathrm{E}})(\mathbf{F}+\overline{\mathbf{G}} \mathbf{F} \mathbf{K})$
HERE'S HOW YOU CAN DO IT USING EECO 1-MEGACYCLE, ALL-WELDED NOR CIRCUIT MODULES:

These new one-megacycle units form important additions to EECO's all-welded U-Series of NOR Circuit Modules.
They feature:

- All-welded construction for increased reliability.
- Low cost.
- Extreme versatility - only a minimum number of basic unit types to stock.
- Standardized loading.
- Restored levels out of each gate.
- Choice of package styles.
- Miniaturized.

PACKAGING

Two packaging styles are available. Both use ALL-WELDED electrical connections and both are encapsulated. Rectangular units with wire leads (to simplify dip-soldering) are available for installation on circuit cards. Cylindrical units with pins are available for plug-in installation in tube. type sockets.
The cylindrical packages measure $7 / 6^{\prime \prime}$ diameter by $1.0^{\prime \prime}$ seated height. The rectangular packages measure $0.95^{\prime \prime}$ long by $0.95^{\prime \prime}$ wide by $0.5^{\prime \prime}$ seated height.
Our Application Engineering staff stands ready to servo you in implementing your digital systems block diagram. Wrke, wire, or phone today for defalled informatlon on the EECO U-Serles of NOR units or for Information on any of our other famllies of digifal circute modules.

ENGINEERED ELECTRONICS COMPANY

1441 EAST CHESTMUT AVENUE - SANTA ANA, CALIFORNIA Cable Address: ENGELEX

Coming

Events ${ }^{\text {in the electronic industry }}$

Oct. 9-11: 17th Annual Nat'l. Elec. tronics Conf., AIEE, IRE, Ill. Inst. of Tech., Northwestern Univ., Univ. of Ill.; International Amphitheatre, Chicago, Ill.
Oct. 9-12: 11th Annual Instrument Symp., Nat'l. Institute of Health, Bethesda, Md.
Oct. 8-13: Annual AES Conv.: Hotel New Yorker, New York, N. Y.
Oct. 9-13: ARS Space Flight Report to the Nation; Coliseum, New York, N. Y.

Oct. 10-11: Symp. Mfe's. with Space Age Metals. ASTME; Sheraton Hotel, Phila., Pa.
Oct. 10-12: 12th Nat'l. Conf. on Stand. ards. ASA; Rice Hotel, Houston, Tex.
Oct. 11-13: Application of Digital Computers to Automated Instruction, ONR, System Development Corp.; Washington, D. C.
Oct. 14: NAB Fall Conf.; Atlanta, Ga.
Oct. 15-19: 17th Annual ISA Instru-ment-Automation Conf. \& Exhib.; Coliseum, New York, N. Y.
Oct. 15-20: Fall General Mtg. of the AIEE; Detroit, Mich.
Oct. 16-17: Nat'l. Symp. on Engineering Writing \& Speech, Kellogg Center for Continued Education; Michigan State Univ., E. Lansing, Mich.
Oct. 17: Workshop Seminar-Working With Your Sales Representative Effectively, AEPEM, Inc.; McCormick Place, Chicago, Ill.
Oct. 17: Annual Dinner, American Inst. of Consulting Engineers; New York, N. Y.
Oct. 18-20: Nat'l. Assoc. of Educational Broadcasters Conv.; San Francisco, Calif.
Oct. 18-20: Annual Mtg. of the Optical Soc. of America: Biltmore, Hotel, Los Angeles, Calif.
Oct. 19-20: Symp. on Electronics Engineering \& Education, IRE (N. C. Sec.): Greensboro Coliseum, Greensboro, N. C.
Oct. 19-20: 16th Midwest Conf. of the ASQC; Hotel Chase-Park Plaza, St. Louis, Mo.
Oct. 19-21: Fall Mtg. of the Nat'I. Soc. of Prof. Engineers: Roanoke Hotel, Roanoke, Va.
Oct. 20: 2nd N. Y. Conf. on Electronic Reliability, N. Y. Metropolitan Chap. IRE (PGRQC) ; NYU's College of Eng'g., University Heights, New York, N. Y.
Oct. 23-25: East Coast Conf. on Aeronpace \& Navigational Electronics, IRE (PGANE) ; Lord Baltimore Hotel, Baltimore, Md.
Oct. 23-25: URSI-IRE Fall Mtg., URSI, IRE (PGAP); Univ. of Texas, Austin, Tex.

Oct. 23-27: 1961 Detroit Metal Show, ASM; Cobo Hall, Detroit, Mich. Oct. 23-25: Conf. on Electrical Insulation, NAS, NRC; Pocono Manor, Pocono Manor, Pa.

Highlights of '61

Nov. 14-16: 1961 Northeast Electronics Research and Eng'g. Mtg. (NEREM), IRE; Commonwealth Armory and Somerset Hotel, Boston, Mass.
Dec. 12-14: 1961 Eastern Joint Computer Conf. AFIPS, IRE (PGEC), AIEE, ACM; Sheraton Park Hotel, Washington, D. C.

Oct. 2t-26: 1961 Michigan Industrial Electronics Exposition, Electronic Representatives, Inc.; Detroit Artillery Armory, Detroit, Mich.
Oct. 25-26: Conf. on Reliability Assurance Techniques for Semi-conductor Specifications, AIA, ASQC, EIA, IRE, JEDEC; Dept. of Interior Auditorium, Washington, D. C.

Oct. 25-26: 1961 Computer Applications Symp., Armour Research Foundation; Morrison Hotel, Chicago, Ill.

Highlights '62

IRE Internat'l. Conv, Mar. 26. 29. Coliseum \& Waldorf-Astoria Hotel, New York, N. Y.
WESCON, Aug. 21-24, IRE, WEMA; Los Angeles, Calif.
Nat'l. Electronics Conf, Oct. 911. IRE, AIEE, EIA, SMPTE; Chicago, Ill.
NEREM (Northeast Res. \& Eng. Mtg.) Nov. 13-15. IRE; Boston, Mass.

Oct. 26-27: The Organization of BioMedical Instrumentation and Engineering in Universities and Hospitals, AIEE, IRE; Sheraton-Fontenelle Hotel, Omaha, Neb.
Oct. 26-28: 1961 Electronic Devices Mtg., IRE (PGED); Sheraton Park Hotel, Washington, D. C.
Oct. 29-31: 15th Conf. on Electrical Techniques in Med. \& Bio., ISA, AIEE, IRE; Edgewater Beach Hotel. Chicago, Ill.
Oct. 30-Nov. 1: Radio Fall Mig., EIA, IRE (PGED, BTR, RQC); Hotel Syracuse, Syracuse, N. Y.

INTERNATIONAL

Oct. 2-4: Canadian Electronic Conf., IRE; Automotive Bldg., Exhibition Park, Toronto, Ont., Canada.
Oct. 3-12: British Electronic Computer Exhibition; Olympia, London, England.
Oct. 23-24: Joint Mtg., Canadian Aeronautical Institute C Institute of Aerospace Sciences; Quebec, Que., Canada.
Oct. 26-27: Semiannual Conf., American Soc. of Tool and Mfg'g. Engineers: Royal York Hotel, Toronto, Ont., Canada.

NOVEMBER

Nov. 1-3: Internat'l. Conf. on Hixh Magnetic Fields. MIT, AFOSR/ Solid State Sciences Div.; MIT, Cambridge, Mass.
Nov. 1-3: Industrial Engineering Managing Clinic, Industrial Management Soc.; Pick-Congress Hotel, Chicago, Ill.
Nov. 1-3: Mtg. Soc. for Experimental Stress Analysis: Hotel New Yorker, New York, N. Y.
Nov. 1-3: Plastics in Packaging and Engineering Exhibition, North Texas Sec. SPE, SPE Southwestern Div. Chapter; Sheraton-Dallas Hotel, Dallas, 'I'ex.
Nov. 2-3: Annual Mig. American Inst. of Mining, Metallurgical and Petroleum Engineers; Los Angeles, Calif.
Nov. 2-3: 10th Annual Instrumentation Conf., Louisiana Polytecl:nic Institute, Dept. of Mech. Eng's.; Rushton, La.
Nov. 5-8: Annual Conva American Documentation Institute, ADI; Somerset Hotel \& Kresege Auditorium, MIT, Boston, Mass.
Nov. 6-8: Special Tech. Conf. on Nonlinear Magnetics, AIEE, IRE (PGEC, PGIE): Statler-Hilton Hotel, Los Angeles, Calif.
Nov. 6-9: 1961 Nuclear Conf., Atomic Industrial Forum \& AtomFair, ANS; Conrad Hilton Hotel, Chicago, Ill.
Nov. 7-9: 7th Conf. on Radio Interference Reduction and Electronic Compatibility, IRE (PGRFI), Armour Research Foundation; Illinois Institute of Tech., Technology Center, Chicago, Ill.
Nov. 7-9: 8th Industrial Electric Exposition, Electric League of Western Penna., Penn-Sheraton Hotel, Pittsburgh, Penna.
(Continued on page 12)

new generation

TA-51 Measures in two planes simultaneously

The new TA-51 Universal Microptic Auto-Collimator permits reading of horizontal and vertical displacements simultaneously-with a measuring range of 10 minutes of arc and direct reading to 0.1 second. Illuminator and micrometer units are interchangeable, permitting straight or right-angle viewing, as required; a dual-doublet objective lens produces improved definition and greater effective focal length, with a working distance to 100 feet. Model TA-50 has one micrometer unit, for viewing two planes individually.
Microptic Auto-Collimators establish squareness, parallelism, flatness, angles, circular spacing-the standard for testing of surface plates. machine tool alingment, or missile

TA-3 Auto-Collimator Features Photo-Electric Read-Out

The Photo-Electric Microptic Auto-Collimator TA-3 permits repeated observations to a setting accuracy of 0.05 second. In a series of tests, it reduces operating time, increases precision and convenience. May be used visually, and is adaptable for use with graph recorder.

For complete description of these and other "New Generation" Auto-Collimators, ask for Cotalog EM-101

ENGIS

Division of Engincering
and Scientific Instrumentation
EQUIPMENT COMPANY
431 S. DEARBORN ST. . CHICAOO S. ILL.

Coming Events

(Continued from page 11)
"CALL FOR PAPERS"

1962 IRE Internat'l. Conv., Mar. 26. 29, 1962, Waldorf Astoria and Coliseum. New York, N. Y. Only original papers not published or presented prior to the 1962 IRE Conv. will be considered. Papers may be on any field associated with or in Electronics. Deadline for 100 word abstracts (3) and 500 word summary (3): Oct. 20, 1961. Forward to: Dr. Donald B. Sinclair, Chairman, 1962 Technical Program Committee, The Institute of Radio Engineers, Inc., 1 E. 79th St., New York 21, N. Y.

1962 Spring Joint Computer Conf., May 1-3. 1962, San Francisco, Calif. Post eard notice of intent to submit paper is requested as soon as possible. No adiance summary or abstract is required. Complete preliminary draft (3 copies with legible drawings) should be forwarded. Deadline-Nov. 10, 1961, to: Mr. R. F. Tanaka, Chairman, Technical Program Committee, 1962 SJCC, Lockheed Missiles \& Space Co., 3251 Hanover St., Palo Alto, Calif.

1962 Internat'l. Solid-State Circuits Conf., Feb. 14-16, Phila., Pa. Papers to deal with circuit properties, circuit philosophy, and design techniques related to solid-state devices. Deadline for 300 to 500 word abstracts is Nov. 1, 1961. Forward to: Mr. Richard H. Baker, Room C-237, MIT Lincoln Laboratory, Lexington, Mass.

Symp. on Electromagnetic Theory and Antennas, June 25-30, 1962, The Technical Univ. of Denmark, Copenhagen, Denmark. Papers will deal with: Electromagnetic fields in anisotropic media; Diffraction theory; Antenna pattern synthesis; and Quasi-static electromagnetic problems. Deadline for 800-1200 word 3 page summary is December 1, 1961. Forward to: Technical Program Committee, The Technical Univ. of Denmark, Oster Voldgade 10 G, Copenhagen K Denmark.

1962 PGMTT Nat'l. Symp, May 2224, 1962. Boulder Labs., Boulder, Colo. Papers to deal with research, development and applications in all areas of the microwave field. Deadline: Dec. 18, 1961 for both 50-100 word abstracts and $500-1000$ word summaries with up to 6 illustrations. Forward to: R. W. Beatty, Chairman, Technical Program Committee, 1962 PGMTT Nat'l. Symp., National Bureau of Standards, Boulder, Colo.

if it's news, expect it first from IRC

No derative with RCC Resisteg Coated Power Resistors

Exclusive RESISTEG COATING accounts directly for the ability of IRC Power Resistors to operate at full rated power-even at high resistance values. Resisteg Coating is cured at less than $205^{\circ} \mathrm{F}$. This is more than 1000° lower than is required for other power resistor coatings.

With Resisteg low-temperature curing there is no tendency for wire turns to shift, no necessity for tight windings, no hot spots from arcing-over, no appreciable change in temperature coefficient or resistance.

Resisteg Coating permits the use of close spacing, large wire diameter, and maximum number of turns. This increases the transfer of heat from the interior of the IRC resistor to the termi-nals-providing a safety margin for surges and minimizing any need to derate at high amblent temperatures. Request Bulletin C-IC. International Resistance Co., 401 N. Broad St., Phila. B, Pa.

COMPLETE LINE OF POWER RESISTORS • STOCKED BY IRC MAJOR INDUSTRIAL DISTRIBUTORS

Leading oupplier to manufacturere of electronic equipment

As We Go To Press...

"Wingless Wonder" Developed by W. O.

Warrant Officer James M. Schneider, Assistant Shop Avionics for the Seaplane Branch, Norfolk Naval Air Station, has developed a proficiency trainer for Anti-Submarine Warfare crews. Known as the "Wingless Wonder," it was constructed with the aid of Frank Angelo and the Air Station crew of the Avionics Branch.

Need for a device to train entire ASW crews, including tactical coordination as a crew, was pressing. Loral Electronics Corp. of New York provided NAS Norfolk with aircraft mockup suitable for conversion to operational trainer, along with certain electronic equipment needed and Frank Angelo, a top engineering assistant.

The trainer contains electronic equipment comparable to that which was installed in the P5M aircraft backfit program earlier this year. Basic idea of the trainer is to promote proficiency training on the ground for the entire ASW crew. Any problems that may arise while the aircraft is in the air are simulated and solved by the entire crew. The unit, with the extensive research and expensive equipment, was constructed without cost to the government and is comparable to a $\$ 2,000,000$ trainer.

SPACE "FLOWER"

Parabolic mirror for C.E.'s new Solar Test Facility af Phoenix, Ariz. is part of an experimental solar thermionic electrical power system being developed for the Air Force's Aeronautical Systems Division.

PRECISION MACHINE

Gaging of a transparent part demonstrates the mew Bendiz Dynapoint controlled precision measuring machine developed by The Sheffield Corp., a Bendix subsidiary. System is capsble of detecting part deviations in the order of ten millionths.

Ultrasonic Treatment Improves Soft Drinks

Ultrasonic equipment that sends silent sound waves through a carbonated beverage, creating a controlled foaming condition which drives most of the entrapped air from the bottle, has been perfected by the Electronic Assistance Corp. of Red Bank, N. J.
Coca-Cola Co. has agreed to assist EAC in promoting the adoption and use of this equipment by all authorized bottlers of Coca-Cola. Operation of the equipment consists of electronically generating the foam in the head space of a bottle during the filling process to displace unwanted air and then introducing carbon dioxide gas into the small remaining space just prior to sealing. By removing the excess air, shelf life of the beverage is improved.

Patents Granted

Two patents on improvements in thermistor infrared detectors have been granted to Eric M. Wormser and assigned to Barnes Engineering Co., Stamford, Conn. One patent covers new bolometers in which the sensitivity may be increased nearly 16 times by optically immersing the thermistor flake in an extremely fast germanium lens. The other patent covers optically flat thermistor flakes which are used in al! of the best modern bolometers, including the immersed type.

Low Cost Sonic Gun Developed

A Sonic Gun developed by Ulerasonic Industries, Inc., Engineers Hill, Plainview, L. I., N. Y., makes possible instantaneous ultrasonic defoaming, degassing, mixing, and dispersing in pipe lines or tanks. The device can also be used as a high level noise source for signaling or environmental testing but, unlike conventional sirens or whistles used for the purpose, the Sonic Gun has no moving parts. It is essentially a series of vibrant antennae composed of acoustically resonant elements which are ex cited at their natural resonant frequency by a free-floating air-driven piston.

The Sonic Gun can be used tn suit specifications for any work requiring a specific frequency from 10 kc to 100 kc . The output fre quency can be varied by altering the dimensions of the resonant elements.

BANK COMPUTER

Dause L. Bibby, president, Remington Rand (II), and Earl B. Schwulst, president, The Bowery Savings Bank, discuss the $\$ 2$ million Univac 490 Real-Time computer gystem pupchased by the bank. Computer system is capable of handling up to 800,000 accounts at a rate of 50,000 customer transactions an hour.

VHF-FM Porłables To Be Markefed

A new portable two-way radio described as the smallest, lightest, most compact VHF-FM communications unit to be marketed to date (with the transmitter and receiver in a single case), has been announced by the General Electric Co. The new personal communication units will be manufactured for high band frequencies (132-174 mc) with one watt transmitter RF power output.

Called the "Voice Commander," the new equipment weighs slightly more than four pounds and is only 9.5 inches high, 5.3 inches wide and 1.7 inches deep. It is self-contained with a built-in microphone and speaker.

FHLN/LSTZOR METAL FILM RESISTORS OFFER 5 DISTINCT TEMPERATURE COEFFICIENTS TO MEET ALL CIRCUIT REQUIREMENTS

RUGGED END-CAP CONSTRUCTION FOR LONG TERM STABILITY

EXCEPTIONAL
RESISTANCE TO
MOISTURE AND MECHANICAL DAMAGE

SURPASS MIL-R-10509
PERFORMANCE
REQUIREMENTS

Providing close accuracy, reliability and stability with low controlled temperature coefficients, these molded case metal-film resistors outperform precision wirewound and carbon film resistors. Prime characteristics include minimum inherent noise level, negligible voltage coefficient of resistance and excellent long-time stability under rated load as well as under severe conditions of humidity.

Close tracking of resistance values of 2 or more resistors over a wide temperature range is another key performance characteristic of molded-case Filmistor "C" Resistors. This is especially important where they are used to make highly accurate ratio dividers.

Filmistor "C" Resistors are automatically spiralled to desired resistance values by exclusive Sprague equipment. The metallic resistive film, deposited by high vacuum evaporation, bonds firmly to special ceramic cores. Noble metal terminals insure low contact resistance.

The resistance elements, complete with end caps and leads attached are molded in dense, high temperature thermosetting material to form a tough molded shell for maximum protection against mechanical damage, moisture penetration and repeated temperature cycling.

Filmistor "C" Resistors, in $1 / 8,1 / 4,1 / 2$ and 1 watt ratings, surpass stringent performance requirements of MIL-R-10509C, Characteristic C. Write for Engineering Bulletin No. 7025 to: Technical Literature Section, Sprague Electric Co., 233 Marshall Street, North Adams, Mass.
For application engineering assistance write:
Resistor Division, Sprague Electric Co.
Nashua, New Hampshire

RESISTORS

CAPACITORS
MAGNETIC COMPONENTS
transistors
interference filters PULSE TRANSFORMERS PIEzOELECTRIC CERAMICS PULSE-FORMING NETWORKS

HIGH TEMPERATURE MAGNET WIRE CERAMIC. BASE PRINTED NETWORKS packaged componemt assemblies FUNCTIONAL DIGITAL CIRCUITS

SPRAGUE
THE MARK OF RELIABILITY

TAKE A SECOND LOOK

IT'S THE 2NI74—PART OF DELCO RADIO'S POWER TRANSISTOR FAMILY WHICH HAS PROVED ITS STUFF FOR YEARS IN HUNDREDS OF MILITARY AND INDUSTRIAL APPLICA. TIONS: MISSILES, COMMUNICATIONS, DATA PROCESSING. AND ULTRASONICS. TO NAME AFEW. THIS MULTI-PURPOSE PNP GERMANIUM POWER TRANSISTOR HAS THE HIGH PERFORMANCE AND VERSATILITY TO MEET OR EXCEED THE MOST RIGID ELECTRICAL AND ENVIRONMENTAL REQUIREMENTS I DESIGNED FOR GENERAL USE WITH 28-VOLT POWER SUPPLIES. THE 2NI74 MAY ALSO BE USED WITH 12 VOLTS WHERE HIGMER RELIABILITY IS OESIREO. MAXIMUM EMITTER CURRENT-I5 AMPERES. MAXIMUM COLLECTOR DIODE RATING-IO VOLTS. THERMAL RESISTANCE-BELOW $6^{\circ} \mathrm{C} / \mathrm{W}$ AND MAKIMUM POWER DISSIPATION-5U WATTS AT $7 I^{\circ} C$. MOUNTING BASE TEMPERATURE. THE 2NI74'S LOW SATURATION RESISTANCE PROVIDES HIGH EFFICIENCY IN SWITCHING OPERATIONS. 1 LIKE ALL DELCO TRANSISTORS, EVERY 2NI74 MUST PASS AT LEAST A DOZEN ELECTRICAL AND ENVIRONMENTAL TESTS-BEFORE AND AFTER AGING-BEFORE IT LEAVES DELCO RADIO'S LABORATORIES. THIS 200 PERCENT TESTING. COMBINED WITH FIVE YEARS OF REFINEMENTS IN MASS PRODUCTION. MEANS CONSISTENT UNIFORMITY IN THE PRODUCT...AT A LOW PRICE I THE 2NIT4 IS JUST ONE OF MANY DEPENDABLE TRANSISTORS PRODUCED BY DELCO RADIO TO SUPPLY ALL YOUR TRANSISTOR NEEDS. FOR MORE DETAILS OR APPLICATIONS ASSISTANCE ON THE 2NI74 OR OTHER DELCOTRANSISTORS. CONTACT YOUR NEAREST DELCO RADIO SALES OFFICE.

Santa Monica, California 72 Santa Monica Blvd. UPIon 0.8807

Chicapo. Illinois 5750 West 51 st Street POrtsmouth 7-3500 TAinty 3-6560

Use Low Cost Allen-Bradley Type J

 Pots for Constant Impedance Attenuators

Allen-Bradley dual and triple Type J variable resistors are widely used in attenuators in electronic circuitry because they provide dependably smooth and uniform attenuation plus constant characteristic impedance.
Stability, high wattage, long life, ideal uniformity, plus remarkable compact structure are combined in the Type J to assure top perform. ance. The solid resistance element-made by A-B's exclusive hot molding process-provides smooth control at all times.

With this precise control over the resistancerotation characteristics during production, A-B attenuators have a consistently uniform attenuation that approaches calibration accuracy . . . and the characteristic impedance can be held to $\pm 10 \%$ over entire rotation-end to end. The virtually infinite resolution eliminates the definite incremental steps of wire-wound units. while freedom from inductance insures excellent high frequency response. For full details on Type J variable resistors, send for Publication 6024. Allen-Bradley Co.. 222 W. Greenfleld Ave., Milwaukee 4, Wis. . In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

> Non-Linear Systems, Inc. designs first digital voltmeter to satisfy critical standards for missile work

To satisfy the high standards of consistent accuracy and reliability demanded for missile and weapons checkout, Non-Linear Systems, Inc., developed this digital voltmeter. It uses scores of AllenBradley fixed resistors. (i'or example, the latest Series 20 unit, shown above, contains about 1.000 in each instrument.) "In the selection of A-B resistors," says NLS, "quality and availability have never been a problem."

A-B resistors have such consistently uniform electrical characteristics that their performance can be accurately predicted over long periods of time under various operating conditions . . . with complete freedom from catastrophic failure while in service! The hot molding process used exclusively by A-B is the reason for this uniformity and reliability.

To obtain this same measure of superior performance for your equipment, always insist on Allen-Bradley quality fixed resistors available in various types. For full details, send today for your copy of Technical Bulletin 5000 or Publication 6024. Write to: AllenBradley Co., 222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ontario.

Digital voltmeters - originated by NLS permit rapid and accurate voltage measurements. New Series 20 unit - with one plug-In decade board removed - shows the use of Allon-Bradley fixed resistors.

ALLEN-BRADLEY

Hot Molded Resistors
actual size
Hot molded composition resistors are available in all standard EIA and MIL-R-11 resistance values and tolerances.
*Pending MIL Spec Assignment

QUALITY
ELECTRONIC COMPONENTS

SILICON PLANAR 2 NTO
 6 NSEC T max． made possible by fairchild planar process

2N709 vERY HIGH SPEED MPM SILICON PLANAR TRAMSISTOR ULTRA－FAST SWITCHING APPLICATIONS

IEDEC $10-18$ PACKAGE
300 mW POWER DISSIPATION AT $25^{\circ} \mathrm{C}$ FREE AIR TEMPERATURE

2N709 CHARACTERISTICS

	Mia．	Typ．	Max．	Condition	
$C_{\text {ob }}$	．	－－	3.0 pf	$N_{C B}=5.0 \mathrm{~V}_{\text {i }} \mathrm{I}$	$=0 \mathrm{mA)}$
CTE	－．．－	．．．．	2.0 pf	$\mathrm{N}_{8}=0.5 \mathrm{~V}$ ； I_{C}	$=0 \mathrm{~mA}$
TT	．t．＂	800 mc	－	$\mathrm{N}_{\mathrm{C}}=4.0 \mathrm{~V}$ ； lc	$=5.0 \mathrm{~mA}$
${ }^{\text {s }}$	4	3.0 ns	6.0 ns	$I_{B}=I_{B}=I_{C}$	$=5.0 \mathrm{~mA})$
$H_{\text {FE }}$	20	－	120	${ }^{\prime \prime} C_{C}=10 \mathrm{~mA}: \mathrm{V}_{\text {CE }}$	$=0.5 \mathrm{n}$
$\mathrm{BV}_{\text {CBO }}$	12 V	－．．	．．．．	${ }^{\prime \prime} \mathrm{C} C=10 \mu \mathrm{~A}$ ；I	＝0）
${ }^{\text {ICBO }}$	m．	－	$100 \mathrm{~m} / \mathrm{A}$	$\mathrm{N}_{\mathrm{CB}}=5.0 \mathrm{~V}$ I	$=0)$

ULTRA－FAST SPEED

$100-200 \mathrm{mc}$ saturated switching circuits are now made possible and practical because of：typical \uparrow 个 of 800 mc ，average DC propa－ gation delay time of 3 nsec ．（ 6 nsec ．max．）， 3 pf Cob（max．）and 2 pf CTE（max．）．

LOW LEAKAGE

With the 2N709 you can design micropower high speed satellite circuits with minimum allowances for leakage．Provides the param－ eter stability and uniformity characteristic of Fairchild＇s silicon Planar devices．

LOW COST

2N709 is on distributor shelves，ready for immediate delivery．You can have this ultra－ fast，guaranteed，high－performance device at prices practical for the＂breadboard＂ budget as well as quantity production．

Contact your Fairchild Distributor or Field Office．Or write for complete specifications and pricing information．

THERMO IT \rightarrow

CRN is a new irradiated Thermofit insulation sleeving designed for maximum mechanical strength at stress or connection points. As with other Thermofit products, the sleeving diameter may be reduced 50% upon the application of heat in excess of $275^{\circ} \mathrm{F}$ for a few seconds. It does not cold flow or melt and retains form stability at any temperature. It is available in eight standard color-coded sizes.

CRN
A NEW PLABTIC MEMORY PRQDUCT OF

News

Briefs

Capsule summaries of important happenings in

 affairs of equipment and component manufacturers
EAST

LABORATORY FOR ELECTRONICS, INC. hat opened a mer Washington Reglonal Office in Suite 818, Riddell Bullding 1730 K St . N.W. Weshington, D. C.

CONTINENTAL CONNECTOR CORP., bas licensed AMP. Ine., to manufacture, ana and licensed AMP, Ine., ell manufacture, io arable aseembly mechanioms for insell separable asembly mechaniams for in-
ternal connectors used in misailes, rockets. ternal connectors used in misaite, rockets. buninese machines and other electronic units. The besio.

Definitization of a $\$ 15,381.250$ contract has been completed covering development of the misaile suidance computer for skybolt. The contrect mas amarded by Nortronics, div. of Northrod Corp., to GE'E LIGBT MILITARY RLECTRONICB DEPT, Utica, N. Y.
giyrotronics, INC.o Asbury Park, N. J. a subsidiary, has been formed by United Telecontrol Electronics. Inc., to manufacture hermetic enclosures and precinion metal parts metic in melosures and precimion metal parta used in milit.

Clarostat mpg. Co., INC., Dover, N. h., has renovated and converted approx. $100,0 n 0$ ac. ft. of their Dover. N. H., plant for precision potentiometer manufacturing apace. This arma is in addition to previous apane devoted to prectaion component manufacturing.

RCA's Burlington plant to having an additional 178.000 sa . ft. of Aloor apare added to it. The enlarged plant will be oceupied by RCA's AEROSPACE COMMUNICATIONS AND CONTROLS DIV. nuw operating on the alte. Com. pletion io scheduled for early 1962.

GULTON INDUBTRIES, INC., Metochen. N. J., has received contracts, totalling 8427,N. J.o hao received contracts, totalling 8427,000 to supply power storage and conversion ayalems for the Orbiting Astronomical Observa. tory atellite program from Grumman Aircraft Engineering Corp., Bethpage, N. Y.

The Bureau of 8 hipn . U. S. Navy Dept., has a warded Polarad electronics Corp., Long Loland City, N. Y., a contraet in ercers of 86 million for an undloclosed quantity of AN/URC-82 8ingle Sideband Ship-to-Shore Tranoceivers and auxiliary equipment.

MICROWAVE A8BOCIATES, INC., Burling. ion, Mass., bas received a $\$ 1$ million contract from the Navy Dept., Bureau of Naval Weap. from tor magnetron tubee.

To provide a more selective distribution base, WESTINGHOUSE ELECTRIC CORP., ELEC TRONIC TUBE DIV., Elmíra, N. Y., has anpounced the cancellation of als distributor franchises from conat to const. Along with the cancellation, Westinghouse plans to offer several different franchises based on distribu tor needo and product scope.

TIMES WIRE \& CABLE CO., INC., Wallingford. Conn., annovanem a new techalque for producing coaxial cable with a phase shift of only $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, within the range of 10 to $82^{\circ} \mathrm{C}$.

The U. S. Army bee announced award of wo contracte totalling approximately 870,685 . yha to the MARTIN COMPANY. Orlando, Fla., for continued work am the Peribing minalle yatem. One contract provide for completion of the teat program now in the advanced phace. The other nuvern subsequent production of miasiles for delivers w combat unite.

SPRAGUE ELECTRIC CO., North Adams. Mass., has opened a new branch manufecturIng plent in Hilleville, Ve. The plent on longcerm lease from the Carroll Knitting Co. conLains approximately 30,000 eq. ft . of manu facturing and offlee space.

DAY8TROM, INC., Murray Rill, N. J., has tranaferred its Weston reconder controller and Induatrial rauge operations from the Poughseepsie. N. Y., plant to ita facilitien is Archbald, Pa.

ADLER ELECTRONICB, INC., New Rochelle, N. Y., has been awarded a contract approximating $81,200,000$ by the U. 8. Army Signal Corpe for the production of 8 AN/-TSC-18 air-tranaportable communicationa aystems.
melpar. inc., Falla Chureb, Va., bas breen warded a $\$ 957,940$ contract by the U. 8. Air Foree. for production of 7 GAM (Gulded Air Misaile) $83 \mathrm{~A} / \mathrm{B}$ missile trainers. Primary purpose of the trainer is to inotruct aireraft pilote In pre-launch, launch and guldance technloues.
Electro-Sclence Investora, Inc., Dallas. Tez. has announced amliation of anw partner frm, ULTRASONIC INDUSTRIES, INC., Plainview, L. I., N, Y. The initial invertment to le $\$ 240,000$ in the form of stock, converible debentures and senior notes. This will give E8I an ownerahip interest in Ultranonic in exee of 88%.
the LIONEL CORP., Hillaide, N. J., hat acquired the government producte division of M. Steinthal © Co., Inc., New Yort City and Roxboro, N. C.

MIDWEST

AMERICAN SEMICONDUCTOR CORP. Chicago. III., has moved its entire plant and operation 20 new and larger quarters at 3940 N. Kilpatrick Ave., Chicago 41, 111 .

BENDIX SYSTEMS DIV., BENDIX CORP. Ann Arbor, Mich., has been awarded a U. S Ann Arbor, Mich., has been awarded for million for work on arce rock-borne communications system.

OPFNER ELECTRONIC8, INC.。 8chiller Park, Ill., has been acquired by BECKMAN INBTRUMENTB, INC., Fullerton, Calif., for 58,823 shares of Beckman common atock.

ELGIN NATIONAL Watce CO., Elein, IIL. bas received orders totalling s547.984 from the sovernment for production of safety and arming devices for use in the Sidewinder. Sparrow and Hawk misalles.
dELCO RADIO DIV. General Motore Corp., Kokomo. Ind., has broken ground for a new semiconductor manufacturing building. The $160,000 \mathrm{sa}$. f. building will be erected near Delco's new reearch and engineering building. Completion is expected in early 1962.
CLEVITE ELECTRONIC COMPONENT8, DIV., CLEVITE CORP., Cleveland, Ohio, has announced the signing of an agreement granting rights to produce piezoelectric barlum rimanate to CBANNEL INDUSTRIES, INC. Sadia Barbara, Calif.

JAMES ELECTRONICB, INC., has moved ite Magnetic Div. to a mfur 12,000 e9. Rt, bulldiag near the main plant on Chicaso's northweat side.
gYNTHANE CORP.0 Oaks, Pa, has opened a eales office for the 8L. Louta aree at 2aso Humming Bind Drive Floriseant, Ma

WEST

CONBOLIDATEDELECTRODYNAMICS CORP., TRANBDUCER DIV., Pemadena, Calif., has received a contract in excess of $81,900,000$ from the Bureau of Naval Weapons for the manufacture of pressure detectors, hydrophonee. and depth compensators. 8819,000 will be subcontrected to Miller Research Laboratoriea, Haltimore, Md., and the Dukane Corp., 8t. Charles, Ill., for the bydrophones and depth compenator.

The RF PRODUCT8 DIV., AMPAENOL BORG ELECTRONIC8 CORP., Broadview. III., is establishing a western marketing regio with headquartery at Chataworth, Calif.

HEWLETT-PACKARD CO., Palo Alto, Calif., and the BANBORN CO.. Waltham, Masa., have combined operations with the adproval of their stockholders, effective Ausuat 3lat. Under ternas of the combination, Sanborn atockholdert will recelve for each share born stoekto dert, 1.4 thares of common stock and 1 share of cumulative convertible preferred stoek of Hewlett-Packard.
GEMICONDUCTOR DISTRIBUTOR BPECIALTIES, INC., Chicago, III., han opened a CIALTIES, INC., Chicago, 111 ., has opened at
new Southweat branch at 2216 N . Olive St. new Southwest
Dallea 1, Tex.

FAIRCHILD SEMICONDUCTOR CORP. Mountain View, Calif., hat been awarded a subcontract by the Boeing Co., Seattle. Wash., valued in excess of 8500,000 for the production of transistors of high reliability, for use in the Air Force Minuteman weapon system.

AMPEX CORP. Redwood Clity. Callf., has announced the sale of it majority Interest in Invar Electronics Corp., to BERLMAN ENGINEERING CO., Burbank, Calle.

NASA has a warded BPACE TECBNOLOGY Laboratories. INC., Los Angelea. Calif. a contract to conduct a study of the payloed capabilities of current U. 8. medium clase apace vehicles, with reapect to future require ments of apace misions and satellites. The otudy lo to be completed in 6 montha.

8IGMUND CORN CORP., Me. Veraon, N. Y.. has organized the Sigmund Cobn Corp. of Californis with omees at 151 C . North Maple St., Burbank, Calif.

RCA's West Coart MIB8ILE AND BURFACE RADAR DIV., has received 2 contracts totaling $\$ 1,917,000$ from General Dynamics/. Astronautics for Atles Misaile launch control and checkout equipment. The equipment will be used at the Pacific Misoile Range, and for accelerated activation of the "F" serien Atlas Missile sites.
hughes aircraft Co., Culver Cits. Calif., in including a mem infrared device which operatea as 452° below zero Fahrenhelt into equipment being developed under $\$ 1.8$ into equipment being developed under eontraet from the Navy Bureau of ${ }_{W}$ million

COLLINS RADIO CO., Dallas, Tez., hea announced the integration of all mierowave ecnounced the integration of all microwive netivities iato one organization within ite new aystems diviaion, the Alpha Corp. ALPBA CORP.: formerly sivion of Collin.

CONTINENTAL ELECTRONICS MPG. CO. SUB. LING-TEMCO-VOUGHT, INC. hee m celved a $\$ 767.000$ addition to ite contract for BMEWS radar tranamitter equipment. The original contract wne signed with the RCA prime contractor for the Alr Force's BMEW8.

With SPAT: Matched-Pair Uniformity Bring High Fidelity To Low Level Switching!

For low level switching applications, Philco now makes available "Silicon Precision Alloy Transistor Choppers-produced on industry's only fully-automatic chopper production line-to assure the uniformity so important to matched pairs.
Only Philco Choppers offer you all these advantages-made possible by the SPAT. process:

- Low offset current-1 nanoampere maximum;
- Low offset voltage-50 μ volls maximum (for the matched pair);
- Guaranteed match over a temperature range- 25° to $85^{\circ} \mathrm{C}$;
- Guaranteed maximum offset vollage for a vide range of base current values;
- High gain-bandwidth product;
- Meet all requirements of MIL-S-19500B.

To assure ultra-high fidelity in multiplex systems for telemetry, multichannel communications, analog computers, and other low level data handling applications, be sure to specify Philco SPAT. Choppers. For complete data, write Dept. EI1061.

Philco 8PATa
Chcppers are
immediately available
in quantities 1.999
from your Philco
Industrial Semiconductor Distributor.

Facts and Figures Round-Up October 1961

ELECTRONIC induestries
 TOTALS

Estimated Shipments of Electron Tubes during 1960
QUANTITY
(in thousands of units)

CATEGORY	QUANTITY (in thousands of units			VALUE in thousands of dollars)		
	Total	Military	Nonmilitary	Total	Military	Nonmilitary
POWER AND SPECIAL PURPOSE TUBES	11,063	2,763	8,300	252.324	164,835	87.489
High vacuum tubes	3.478	1,383	2,095	57,948	29,339	28,609
Diodes.	451	221	230	5,374	3,129	2,245
External anodo, except diodes, 100 w or less	839	460	379	14,300	7,601	6,699
External anodo, except diodes, over 100 w ...	304	215	89	24,170	13,519	10,651
Internal anode, except diodes	1,884	487	1,397	14,104	5,090	9,014
Gas and vapor tubes.	2,306	824	1,482	26,825	13,815	13,010
Diodes	. 643	269	374	3,731	1,632	2,099
Thyratrons, Ignitrons	1,441	366	1,075	13,999	4.079	9,920
Gas switching device ${ }^{2}$	222	189	33	9,095	8,104	991
Klystrons....	157	101	58	50,111	41,697	8,414
Reflex klystrons (1 w and under) ... -...	144	94	50	18,442	13.251	5,191
Other, CW and pulsed (over 1 w)	13	7	8	31,669	28,446	3,223
Magnetrons	78	68	10	43,516	41,038	2.480
Forward wave devicesnin .-.	8	7	1	17,967	18,229	1,738
dackward wave dovices	4	3	1	4,281	3.402	878
Light sensing tubes.	1,054	56	988	15,123	3,028	12,097
Light emitting tubes	324	159	165	10,475	6,366	4,109
Storage tubes	6	4	2	6,314	4,253	2,061
Other ${ }^{3}$	3,648	158	3,490	19,764	5,672	14,092
RECEIVING TUBES	398,327	22,715	375.612	347,941	48.872	299,069
Subminiature	6,871	5,402	1,469	23,729	19,970	3,759
Miniature . .	291,899	14,610	277,289	226,493	22,475	204,018
Military reliable	15,024	8,901	6,123	26,144	16,801	9,343
All other types	276,875	5,709	271,166	200,349	5,674	194,675
Standard Glass (G and GT)	88,834	1,920	86,914	84,948	3,848	81.100
Military rellable	1.259	548	710	4,582	1,987	2,575
All other types.	87.575	1,371	86,204	80,386	1,861	78,525
Other (metal, ceramic, lock-in, etc.) . .	10,723	783	8.840	12,771	2,579	10,192
TELEVISION PICTURE TUBES	13,035	(4)	13,035	259,109	(4)	259,109

[^0]

MICRO-MINIATURE \& SUB-MINIATURE • MINIATURE • PRINTED CIRCUIT • RIGHT ANGLE PIN \& SOCKET • CENTER SCREWLOCK

CONTINENTAL CONNECTOR CORPORATION O WOODSIDE 7 7, NEW YORK

WYOMING PATROL BOAT
A Raytheon Model 1700 marine radar extends the effectiveness of this National Park Service boat on Yellowstone Lake where it is used to patrol the lake, search for lost bostmen, and provide emergency assistance.

SOLAR-THERMOELECTRIC POWER

Sunlight concentrated by the reflector of this Westinghouse Corp. solar-thermoelectric power plant is hot enough to ignite a thick piece of wood almost instantly. The heat is converted directly into electricity.

RUBY MASER

Dr. P. P. Kisluk of Bell Telephone Laboratories, New York, adjusts collimator which directs the beam from a ruby maser sacillator (right) through the ruby maser amplifier (center) to the photomultiplier tube (far left). Amplitication of the light by a factor of two was observed. It was reported in a paper by Drs. P. P. Kisliuk and W. S. Boyle at the 1961 Western Electronic Conference and Show at San Francisco, California.

Snapshots . . . of the Electronic Industries

HARNESS ASSEMRLY

Making the harnesses has been put on a production-line basis at Pleasantuille Instrument $\mathrm{Cor}^{\mathrm{P}} \mathrm{P}$ Pleasantuille, N. \mathbf{Y}. Framework hoiding Harness Boards can be adjusted to handle boards of varying sizes, from $4 \geq 8$ feet to 10×12 inches.

BUILT-IN DICTATION SYSTEM
New Chase Manhaftan Bank Building has a built-in dictation system. It utilizes Dictaphone Time-Master dictating machines, transcribers and a Telecord "telephone dictation" system 'abovel with multiple recorders.

FUEL CELL DISPLAY
Model monorail system powered by converting chemicals directly into electrical energy in fuel cell is part of a display demonstrating various fuel-cell electrical power sources under development at Exide Industrial Div. of The Electric Storage Battery Co., Phila., Pa. Exide officials viewing model are (1 to p) H . Casterlin, advertising dept. supervisor: H. Riggs, engineering dept. staff asst: and A. Hedges, supervisor of publicity.

WHEELS HELP MAKE TUBES
Two employees of the RCA Electron Tube Division at Harrison, N. J., are framed within giant wheels of an automatic lead wire loading device which speeds production of tiny nuvistor tubes. High efficiency tubes are small enough fil fit into an ordinary thimble.

AS ONE ENGINEER TO ANOTHER
Miss Universe of 1961, Marlene Schmidt, who is a practicing engineer representing North American Electronics, Inc., West Lynn, Mass., chats with Mrs. Ampex (Mrs. B. Warren) at the Wescon show. Mrs. Warren is an Engineer with Ampex Corp-, Redwood City, California.

K

... whether you need 10 or $10,000,000$ pieces -

Versatility Plus . . .
A partial list of small discs and rods. all with identical characteristics

Temperature Coefficient $\left(25^{\circ} \mathrm{C}\right) \mathbf{- 3 . 8 \%} /{ }^{\circ} \mathrm{C}$
Beta Value $\left(37.8^{\circ} \mathrm{C} / 104.4^{\circ} \mathrm{C}\right) 3500^{\circ} \mathrm{K}$
Ratio ($37.8^{\circ} \mathrm{C} / 104.4^{\circ} \mathrm{C}$) 7.3

Resistance $25^{\circ} \mathrm{C}$	Keystone Type Number	Diameter (Inches)	Thickness (Inches)
500	L0503-312.73	0.050	0.030
$\begin{array}{r} 160 \\ 500 \\ 1000 \end{array}$	$\begin{array}{r} \text { Lo903.100.73 } \\ \text { L0903.312.73 } \\ \text { LO909 } 623.73 \\ \hline \end{array}$	$\begin{aligned} & 0.100 \\ & 0.100 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.030 \\ & 0.100 \\ & \hline \end{aligned}$
$\begin{aligned} & 100 \\ & 180 \\ & 180 \\ & 230 \\ & 270 \\ & 270 \\ & 300 \end{aligned}$	L2003.62.73 L2006. 112.73 L2006.125.73 L2006-143-73 L2008.168.73 L2008.182.73	$\begin{aligned} & 0.200 \\ & 0.200 \\ & 0.200 \\ & 0.200 \\ & 0.200 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.060 \\ & 0.060 \\ & 0.060 \\ & 0.060 \\ & 0.080 \end{aligned}$
$\begin{aligned} & 100 \\ & 200 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{L} 3006-62.73 \\ & \mathrm{~L} 3008.125 .73 \\ & 13008.156 .72 \end{aligned}$ $13008.156 .73$	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.080 \\ & 0.080 \\ & 0.180 \end{aligned}$
$\begin{array}{r} 270 \\ 5000 \\ 10000 \end{array}$	L060637.168.73. L060637.3120.73 L060437.6234.73	${ }^{\circ}$ Rod, 0.060° square. \% " Length.	

Special Mounting Requirements

Thermistor applications often dictate special mounting requirements. As a result, Keystone units are supplied with many types of special lead assemblies, mounting tabs, heat dissipating fins. Units are mounted in probes and transistor type cans, attached to plates and metal parts of wide variety.

Keystone has the experience (over almost a quarter of a century), the knowledge and production capability to handle your thermistor requirements in any quantity-of any type and size.

Because of unsurpassed quality control, your tolerance specifications are acceptable to $\pm 2 \%$ on resistance value and Beta value (in fact, we maintain a $\pm 2 \%$ production tolerance on the material constant of all Keystone thermistors regardless of resistance tolerance). All parts can be supplied in pairs or sets matched closely in resistancetemperature or voltage drop characteristics.

We can supply discs, washers, rods, beads and special shapes including washer segments, square rods, rectangular wafers, square wafers, etc, Our experienced sales staff and engineering and research and development organizations are available for consultation. Write us or call today.

F bystone
 CARBON COMPANY
 RESISTOR DIVISION • St. Marys, Pa.

Telephone: Terminal 4-1591

BUSSMANN MFG. DIVISION, MeGrow-Edison Co, UNIVERSITY AT JEFFERSON, ST, LOUIS 7, MO.

Eis International News

JAPAN

Asia's Largest Research Center

What will be the Far East's largest research center is scheduled for completion by the end of November, it has been announced by Taro Kuraishi, vice president of the Tokyo Shibaura Electric Company.

Mr. Kuraishi, newly appointed director of Toshiba's Central Research Laboratory, said that the laboratory buildings which are being built at a cost of $\$ 15,277,000$, a re expected to be completed by the end of August and the remainder of the facilities by the end of November.
The plant will occupy 452,000 square feet in Kawasaki, near Tokyo.
Toshiba, Japan's largest manufacturer of electronics and electrical equipment, is planning to invest over $\$ 333,000$ for research purposes, representing an investment of more than $\$ 11,000$ for each of 300 research specialists and scientists who initially will form the research staff cadre. Other workers will bring the total staff to about 950 initially.

Tsuneo Harada, who has been appointed deputy director of the Toshiba laboratory, said that the new laboratory will be used by Toshiba for research in both light and heavy electrical fields, which thus far have been conducted at the company's Hatsuda and Tsurumi laboratories.

CZECHOSLOVAKIA

New Landing System by Pye

Pye Telecommunications Limited of Cambridge, England, announce that a Pye Instrument Landing System has been ordered by the Czechoslovakian Government for installation at Bratislava International Airport.

The Instrument Landing System will be the third supplied by Pye to Czechoslovakia, the previous two installations being at Prague International Airport.

The Pye contract brings the value of I. L. S. and ancillary equipment supplied by the Company to Czechoslovakia to over $\$ 300,000$.
The latest contract covers additionally the supply of transistorized radiotelephones for use on Czechoslovak airfields.

BERMUDA

Electronic Finance Bank

Electronics International Capital Limited is the first international capital banking institution concentrating its investments in free world electronics companies. Electronics International, a Bermuda Corporation, was created through a Special Act of the Parliament of Bermuda.
Through its second major investment commitment, Electronics International will acquire 83% equity in AREL, a leading European electronics manufacturer based in Scoten (Antwerp), Belgium. Mr. Charles E. Salik, President of Electronics International, suid, "The total commitment involves $\$ 2,900,000$."

Organized in 1952, AREL engages in a continent-wide business, with operating subsidiaries in Amsterdam, Luxembourg, Copenhagen and Innsbruck and an associated company in Italy.

In addition to television and radio receivers, AREL has been very active in the design and manufacture of mobile communication equipment for military and industrial use, electronic organs, automatic test equipment, and research and development in the field of specialized industrial computers. The company also operates a factory producing high-unit-cost, reinforced plastic tanks and containers.

AREL's facilities are among the most modern and efficient on the Continent. It manufactures many of its own components, such as transformers, coils, and tuners. Depending on tariff, cartel, and other local conditions, AREL is in a position either to manufacture basic subassemblies in Belgium and do final subassembly in the ultimate country of sale, or merely to manufacture certain components and complete both subassembly and final assembly in the subsidiary plants.

SWITZERLAND

New Raytheon Subsidiary

Raytheon Company has formed a new subsidiary to market electronic components in Europe. The new firm, Raytheon-Elsi AG, will have its headquarters at 1 Alpenstrasse, Zug, Switzerland. They will promote and sell

View of Tokyo's Giant Research Center

See story on Tokyo above describing Asia's biggest research center for electronic research. (See story on Tokyo.)

The new plant built by Burndy Corporation, Norwalk. Conn., for its wholly-owned Belgium subsidiary Burndy Electra S.A. will supply and service electrical connector requirements throughout Europe.
components manufactured by Raytheon and Elettronica Sicula, Palermo (Elsi). Products to be marketed by the new firm include microwave, receiving and industrial tuhes; transistors, diodes and other semiconductor devices; rectifiers; and magnetic and electro-mechanical components.

Raytheon-Europe AG holds a 51% interest in the new corporation with the remaining interest owned by La Centrale Finanziaria Generale S.P.A Fred H. Brooke has been named Gen eral Manager of Raytheon-Elsi AG

ENGLAND

Built-In TV System

When residents move into 88 bungalows and flats on Bognor Regis, England, they will find that a wired television system has been installed with the gas, water and electricity. This is believed to be the first estate where a television system has been built in at the same time as other essential services and where the owners have undertaken not to erect individual TV aerials on their properties. This will preserve the amenities of the estate against the disfig urement of unsightly aerial arrays.

To preserve the estate's amenities in every possible way, cabling from the aerial tower to all dwellings will be buried underground and amplifier cabinets along the route will be camouflaged.

BRAZIL

Computer Markets in S.A.

Computer Control Co. announces the recent addition of two new representatives to supplement its foreign sales force in the marketing of highspeed digital computers, core memory systems, logic modules, and related products. Ambriex in Rio De Janeiro, Brazil and Coasin, S.R.L. in Buenos Aires, Argentina will cover South American territories. Other overseas representatives include Kyokuto, Boeki, Kaisha, Ltd., Tokyo, Japan, and Andrew Thom, Ltd., Sydney, Australia.
(Continued on page 34)

You can place the utmost confidence in Dale precision resistors even when today's new and unprecedented standards of "missile reliability" are the goals towards which you are designing.
Under any and all conditions, Dale resistors retain their stability because it has been "firmly infixed" by Dale design and methods of manufacture . . . methods which have now reached new levels of achievement as part of Dale's super-high reliability development program.
SPECIAL PROBLEMS? Let us help you with your requirements for special resistance products. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.
PROMPT DELIVERY. Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

Write for Bulleting R-23, R-25 and R-30 with handy cross-reference file cards

DALE ELECTRONICS, INC.
iser zsth Aro., Colvembers, Molvarie
A subsidiary of HATHAWAY INSTRUMENTS, INC.

DAEI

TYPE RS RESISTORS
WIRE WOUND - PRECISION - POWER Designed for advanced electronic circuits where space is at a premium. Three configurations: Type RS with axial leads and in most ratings and resistances shown; Type RLS with radial leads; Type RSE for clip mounting.

- Rated at $1 / 2,1,2,21 / 2,3,5,7,10$ watts
- Resistance range from .05 ohm to 175 K ohms, depending on type
- Tolerance $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%$, 1\%, 3\%
- Temperature coefficient within $0.00002 /$ degree C.
- Operating temperature range from -55* C. $10275^{\circ} \mathrm{C}$.
- Smallest in size, ranging from 5/64" by $5 / 16^{\prime \prime}$ to $3 / 8^{\prime \prime}$ by $1-25 / 32^{\prime \prime}$. Ten choices
- Completely protocted, imporvious to moisture and salt spray
- Complete welded construction from terminal to terminal
- Silicone sealed, offering high dielectric strangth and maximum resistance to abrasion
- Meet functional requirements of MIL-R-26C

IT HAPPENS IN THE MIND...
... It is essentially a thing of the mind for it works through concepts, symbols and relationships . . it helps man to analyze and synthesize the complex phenomena of the universe and himself... it works in many ways to advance electrical communications:

IT 15 CALLED MATHEMATICS

At Bell Telephone Laboratories mathematics works powerfully to solve problems involving complex data. For example, engineers must design and synthesize complex systems to process specific signals in precisely controlled ways. At the same time the technology provides a wide choice of circuits and components. Mathematical circuit analysis reveals the circuits which can do the job most efficiently and economically.

Intriguingly, too, the mathematical approach leads to basically new knowledge. For example, it led to the invention of the electric wave filter . . . disclosed a kind of wave trans-
mission which may some day carry huge amounts of information in waveguide systems ... foretold the feasibility of modern quality control ... led to a scientific technique for determining how many circuits must be provided for good service without having costly equipment lie idle.

In the continuing creation of new devices, technologies and systems, Bell Laboratories utilizes whatever serves best-mathematical analysis, laboratory experimentation, simulation with electronic computers. Together they assure the economical advancement of all Bell System communications services.

TRUE RMS VOLTMETER

now . . . measure

 true RMS value of virtually all waveforms

woor 910 A

Accurate measurement of comples waves is now possible over a wide range of frequency with the NEW jf MODEL 910 A .

For the first time one instrument provides 1% midband accuracy, 10 cps to 7 mc bandwidth, plus $100 \mathrm{u} v$ sensitivity. For added versatility an amplifier output is provided for simultaneous oscilloscope or recorder monitoring.

Model 910A employs a thermocouple located in the feedback loop of a sensitive DC amplifier to measure the actual heating effect of the input waveform. This circuit arrangement is the key to the rapid response and high calibration accuracy of the Model 910A and also prevents any error in reading due to ambient temperature variation. Isolation of the thermocouple from the input terminals by a high gain, ultra stable AC amplifier provides high input impedance and completely protects the thermocouple from burnout under any condition of overload.

Model 910A is ideal for measuring AC currents in non linear devices, total harmonic content of distorted waveforms, noise, average power of pulse trains, and other measurements that involve waveforms which are not necessarily pure sinusoids.

Partial Specifications-jf MODEL 810A Veltage hange: $\quad 1$ MV to 300 V (full scate readings) Declbal Aange: $\quad-72$ to +52 dbm
Frequency Respense: 10 cps to 7 Mc
Accuracy:
$\pm 1 \%$ of full scale 50 cps to 800 KC
$\pm 2 \%$ of full scale 20 cps to 2 Mc $\frac{ \pm}{35} 3 \%$ of full scale 20 cps to
$\pm 5 \%$ of full scale 10 cps to 7 ME 10 megohms shunted by 30 pf for 03 volt range and below. 10 meg ohms shunted by 15 pf for 1.0 volt

Crast Factor:

Price:

3 at full scale, proportionately higher for readings less than full scale.
Cabinet Model-\$545.00
Rack Model-\$565 00
Prices fo.b factory.

Prices and data subject to change without notice.

A more complete description will be sent to you upon request.

FLபKK
$\longrightarrow \longrightarrow \longrightarrow 2$

It's easy to SEE why

[nceou Glass Enclosed Quartz Crystals are "tops" from $\underline{5}$ points of view
 Frequency inft etabulitios of $\pm 0025 \%$ over $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Their fabulous quality - which, heretofore, could only be enjoyed - can now be seen in the now McCo\% G.1, G.20, G-21 and Micro-Module vacuum sealed ALL-GLASS Crystals.
Because they are sealed in vacu. um, their performane CANNOT be affected by atmospheric pres-

sure changes or exposure to another vacuum.

This true "hard glass" seal results in lower resistance (higher Q), greatly increased long torm stability plus ability to withstand oxtremes of shock and vibration, as well as, better control of erystal parasedors.

G-20

G-21
 (Military

 HC-29/U) (Military HC.26/U)

This vacuum sealed, hard glass crystal unit possesses all of the quality features for which the McCoy M-1 is so famous it has long term frequency stability, approximately five times better than the conventional metal types. Available in freauencies from 2000 kc to 200 mc

Shown
actual slize

This vacuum sealed. hard glass crystal unit meets the new CR.73/U and CR-74/U specifications. It has long term frequency stability approximately five times better than the conventional metal type. Avail-

$$
\begin{aligned}
& \text { in } \\
& \text { in }
\end{aligned}
$$

 Write soday for our free illustretod eataloze which mehnde complete Hsting of military specifications. For specific needs, write, wire or phone us. Our research section is enxtous to assiot you.

ELECTRONICS COMPANY
 Dept. El-10

mt. holly springs, pa.
Phone: HUnter 6-3411

International News

(Continued from page 30)

W. GERMANY

New U.S. Plant in Germany

The Hewlett-Packard Company has started a major expansion of its European operations, and is building a new plant in West Germany.
The company's decision to expand its operations in Europe, according to Mr. Packard, is based on that area's rapidly growing market for electronic products.

Hewlett-Packard's new plant in Germany will be located on an eightacre site in Boeblingen, which is near Stuttgart. Construction will begin immediately on the first of four projected buildings of 25,800 square feet each. The initial building, in singlestory structure costing approximately $\$ 300,000$ is expected to be completed early in 1962.

The plant will be operated by Hew-lett-Packard G.m.b.H., the company's manufacturing subsidiary in Germany. The plant's initial unit is expected to employ over 150 persons, many of whom are already employed at the company's leased facility in Boeblingen.

HONG KONG

Hong Kong Challenges Japanese Markets

The current production rate for transistor radios in Hong Kong is 20,000 to 25,000 units a month, mostly 6 -transistor models. None of the plants were operating at capacity in the spring. Additional facilities being established will expand capacity by about 20,000 units.

The principal market is the United States, although some items are sold locally, some are exported to the United Kingdom, and some to Latin America.

A low wage scale prevails in the Hong Kong radio industry. The usual payment to production workers is 75 cents a day for a 9 - to 10 -hour day. No fringe benefits are given. The f.o.h. quotations on a-transistor radio range from $\$ 7.50$ to $\$ 8.50$.

Components are generally of Japanese origin, although one firm was about to switch to a U. S. brand of transistor as a result of a quotation approximating the amount paid for a Japanese brand. The radio manufacturer felt that the quality of the U.S. product was better than that of the Japanese transistor he was using.

If U. S. importers do a good job in marketing Hong Kong radios, competition could become keener than that from Japanese producers.

1. 20 V Ultra-Kaps ${ }^{(1)}$ are smaller than paper units of equivalent capacity.

CAPACITY MFD.	ULTRA-KAPS (diameter \times thickness)	PAPERS (diameter \times length)
.05	$.408^{\circ} \times .156^{\circ}$	$.468^{\circ} \times 1.0^{\circ}$
.1	$.590^{\circ} \times .156^{\circ}$	$.625^{\circ} \times 1.125^{\circ}$
.2	$.890^{\circ} \times .156^{\circ}$	$.625^{\circ} \times 1.688^{\circ}$

2. Ultra-Kaps provide the utmost in reliability. They have excellent stability from $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and electrical failure is virtually unknown among the millions of them now in the field.
3. Ultra-Kaps © are easier to work with than paper ('aparitors. No axial leads! This construction feature greatly simplifies insertion into printed circuit boards.

Ultra-Kaps ${ }^{\ominus}$ also out-perform other ceramic capacitors, because of their more stable temperature coefficient and higher capacity for their size. For every low voltage application requiring high capacities, high reliability and small size - use Centralab's 20 V Ultra-Kaps ${ }^{\text {® }}$.
For additional technical information on these new units, write for Engineering Bulletin EP-1245.

Centralab.

[^1]
Why Pacific Semiconductors. Inc.

uses

Ultra-high purity B\&A" "Electronic Grade" Chemicals share in PSI's intensive reliability program

PSI is engaged in some of the most far-reaching reliability programs ever undertaken. In the Minuteman silicon diode reliability program, for example, PSI has facilities for testing 500,000 diodes at one time.
In excess of $1,134,000,000$ diode-hours of test information is being accumulated by PSI in seeking to achieve a failure rate of $.0002 \%$ per 1,000 hours for Minuteman diodes. Exacting standards of these proportions can be achieved only when every piece of equipment and every item of material and supply is faultless.

PSI depends on ultra-high purity Baker \& Adamson "Electronic Grade" Chemicals to perform important functions in the manufacture of high performance, high reliability semi-conductor devices. These chemicals meet the strictest standards for purity and uniformity...hold impurities to the lowest levels ever attained.
If a requirement of your products is ultra-high purity and reliability, get the full B\&A quality story. Write on your letterhead for detailed information.

GENERAL CHEMICAL DIVISION
40 Eectar Sireet, Mow York ©, M. Y.

$\square \cap \square$

precision resolver developments by
FOR GUIDANCE • STABILIZATION • COMPUTER APPLICATIONS

10-SECOND ACCURACY PANCAKE RESOLVER
Integral bearings permit direct mounting to gimbal structures of stable platforms. Beryllium housings provide highly stable operation in environments with extreme temperature variations.

HIOM IMPEDANEE PANCAKE RESOLVERS

Tuned impedance of 80,000 ohms makes these units ideally suited for use as control receivers. Rotor and stator assemblies may be independently attached to their mounting members. Standard units have an accuracy of 3 minutes of arc. One-minute accuracy can be supplied on special order.

-.00\%\% FUNGTIONAL ACCURACY PANGAKE RESOLVER
100\% compensated Resolver with integral Class III precision rotor gear. The ideal unit for high accuracy computer chains.
0.01\% PUNCTIONAL ACCURACV EIER 23 RESOLVEN
100% compensated winding. Extreme accuracy in a standard resolver case size.

For complete information, write for Technical Data File 310
Qualified ongineare seoking rewarding apportunitios in these advanced ffolds are invited to get in teuch with ue.

80-BCCOND ACCURACV size 23 REsOLVERS
Double-ended design simplifies their incorporation into data transmission systems.

REEVES INSTRUMENT CORPORATION
A Subsidiary of Dynamics Corporation of America. Roosevelt Field. Garden City, New York

Resistance Values up to 100,000,000 Megohims

- Model RX-1 Hi-Meg Resistor

Victoreen Hi-Meg Resistors Standard of the Industry for Over 18 Years

Available tolerances

1\% 2\% 5\% 10\%

For longer life, Victoreen Hi-Meg Resistors are in a class by themselves, especially for all high-impedance, low-current applications. Hi-Meg Resistors have a carbon-coated glass rod element with silver-banded ends for best electrical contact . . . are vacuum sealed in a glass envelope treated with special silicone varnish that minimizes moisture effects. Always specify Victoreen Hi-Meg Resistors for the ultimate in long-term stability.

5006 HOUGM AVENUE CLEVELAND 3. OHIO EXPORT: 240 WEST 17 TH ST. * NEW YORK 17, NEW VORK

Circle 28 on Inquiry Card

Aid For Small Business Owner

A wall chart of "Do It Yourself" cost reduction program is available to company owners on letterhead request. There is a charge of $\$ 0.35$ to cover mailing charges. The chart tells of the Cost Reduction Program and gives steps necessary to the installation of the program. It also concerns itself with the recognition of two theories pertinent to small business. Orders should be sent to Small Business Service, 65 Linden St., Malverne, L. I., N. Y.

Moon Room

The first settlers on the moon will live in quarters similar to the one pictured. The bed and chair are of lightweight metals, vinyl lacing and poly-urethane foam. They are designed to support 30 lbs. This is equivalent to 180 lbs . on earth. The top of the table-desk. cabinets and other surfaces are of rigid urethane foam and lightweight metal frames.

The room contains a table-top television and microfilm unit. Reading material will be on tapes. There is also a television camera and an ultra-violet lamp. The latter for suntans. Exercise equipment, inter-com, system and recessed ceiling lights complete the room's accouterments. The room is a 10 ft . di. by 7 ft . high section of a space ship. The rocket that carried the men to the moon will be sliced up to provide the rooms.

Fig. 1: "Moon Room" donated by the Decker Corp. 10 the Fels Planetarium, Phila., Pa.

It was designed by Harper Landell Assoc. of Phila. under the direction of Dr. I. M. Levitt, Dir. of the Fels Planetarium, Franklin Institute, Phila., Pa. The room was R\&D'd by the Decker Corp. of Bala-Cynwyd, Pa., and constructed by Accent Graphic Industries, Inc., of Camden, N. J.
This room has been donated by The Decker Corp. to the Fels Planetarium. Others will start touring the U. S., South America, Europe and Japan in the next 6 months.

(hp)456A AC CURRENT PROBE Converts ac current to ac voltage directly (1 amp = 1 volt) for reading on your scope or voltmeter

Tube circuits view current on your scope or measure it with a VTVM
Transistor circuits measure small signals dynamically, without clipping leads or circuit loading; study diodes at breakdown

Logic circuits . measure ac current in presence of dc current

Impedance measuring . . with a dual-channel scope, measure current, voltage magnitude; phase angle
Power measuring with dual-channel scope read current, voltage directly, calculate power
Frequency counting use 456A with counter for clip-on frequency access
And, how about these? . . phase comparisons of ac carrier waveforms; instrument fuse current ratings; cable identification, response of magnetic cores; magnetic field sensing; silicon rectifier peak currents

SPECIFICATIONS

Sensitivity: $1 \mathrm{mv} / \mathrm{ma} \pm 1 \%$ at 1 KC
Frequenty Respanee: $\pm 2 \%, 100 \mathrm{cps}$ to 3 MC $\pm 5 \%, 60 \mathrm{cps} 104 \mathrm{MC}$

- 3 db ot 25 cps and above 20 MC

Mazimum Inpul: 1 amp rms; 1.5 amp peok. 100 ma rms above 5 MC
Maximum de eurront: Dc up to 0.5 amp has no appreciable effect
input Impodances Probe adde to test circuit only approx. 0.05 ohms In series with $0.05 \mathrm{\mu h}$ Equivalent Input Noises Lese than 50 me rms (100 нe ec powered)
Pewers 10 radio mercury cells; epprox. 400 hours service normally supplied. he supply
Sizes $5^{\prime \prime}$ wide, $14 z^{\prime \prime}$ high, 6° deep, welght 3 Ibs. Prices $\$ 190.00$; for ec operation $\$ 210.00$. hp 456-98A ec supply for field installation $\$ 32.00$
Data subject to change without notice
Prices F.O.D. Fictory

Just clamp the 458A probe uround a wire under test and view or read ac current directly on an indicating device. Model 456A's 1 mv to 1 ma unity conversion permits direct readings up to 1 ampere rms. The instrument' wide bandwidth permits use with oecilloscopes to view complez current waveforms with rise times to $0.017 \mu \mathrm{sec}$. No direct circuit connection is required; there is no loading, no appreciable impedance change in the circuit under test, and the impedance of the test circuit is immaterial.

HEWLETT-PACKARD COMPANY

1028B Pago Mill Road, Palo Alto, California, U. S. A. Cable "HEWPACK" - DAvenport
HEWLETT-PACKARD S.A.
Rue du Vieur Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" - TeL. No. (022) 26. 13.38

INTERNATIONAL RECTIFIER SILICON CONTROLLED RECTIFIERS

3. E , to AND IS AMPERE TYPCS PATED TO 400 VOLTS PRVI

in SILICON CONTROLLED RECTIFIERS are the remarkable solid-state devices that provide complete control of current furn-on at microsecond switching speeds with no moving Daris...no contacts. In the field of high frequency power conversion they offer a totally new cencept for versalle, contemporary circuitry highiy efficient in operation. dramatically smaller in size

THE TABLE BELOW lists the devices now in full production at International Rectifier that feature:

> - Low Caso Curneato ilhat Comted Migh Loed Curronts
> - Feer Exmmiles Ipecto
> - Lew Ferwerd Vekrage Drep
> - Lew Ferned and Fiesnte Leetege

			Sinpotis:		
			Nat	Henen	
$\begin{gathered} 3 \mathrm{cez} \\ \text { thry } \\ 3 \end{gathered}$		1	1	6.1	1.38
$\begin{aligned} & 509 \\ & \text { sine } \\ & \text { sine } \end{aligned}$	\% ${ }_{5}^{50}$	4.7	1	1.8	10
	8	10	8	es	1.23
	\%	14	1	6.8	838

Circle 30 me Iesely Cant

Beyond the advanced design opportunities they present, International Rectifier Silicon Controlled Rectifiers possess significant technical advantā̃es: ELECTRICAL CHARACTERISTICS representative of the highest state of the art. MECHANICAL CHARACTERISTICS that provide rugoed packages in configurations that have become industry standards...directly interchangeable with other makes. RELIABILITY that stems from two and a half years of continuous refinement of production techniques. test procedures WRITE FOR DETAILS ON HOW YOU MAY OBTAIM SAMPLE SCR' AT NO COST ON THE NEW IR COOPERATIVE SAMPLIMG PROGRAMI

INTERNATIONAL RECTIFIER CORPORATION: BL SEEUNDO, CALLF. - PHONE OREGON Peeq . CABLE RECTUSA REGIONAL OFFICES IN NEW YORK CITY, CMICKERING 40740 - FORT LEE, NEW JERSEY, WINDSOR 7.3311 - SYRACUSE, MEW YORK, HEMPSTEAD 1 OEEE CAMBRIDGE, MASSACHUSETTS, UNIVERSITY 4 SS20. ARDMORE, PENNSYIVANIA, MIOWAY RIES. SIIVER SPAIME, MARYLAND JUNIPER OZ305. CHICACO, ILUNOIS, JUNIPER SD. BEAKLEY, MICHIGAN, LINCOLN BIIA - LOS ANGELES, CAIIFORNIA

IMMEDIATE OFF.TME-SMELF DELIVIRY BROM

INTERNATIONAL工居
 symosk or ountiry in atwiconouerons

and rigid military quality control programs including the U.S. Army Signal Corps RIQAP plan, a disfinguishing mark of quality assurance awarded to International Rectifier for six consecutive years. As a source of supply. International Rectifier extends these benefits: APPLICATION ASSISTANCE without delay from three strategically located engineering groups. DELIVERY from stock on most tydes...from the factory or from 65 industrial distributors. PRICE AND DELIVERY attractively competitive on both counts...TRY USI PRICE AND DELIVERY attractively competitive on both counts...TRY USI

precision

 circuitnews

Standard 'Specials' in Shallcross

 Miniature Switches

PAE-WIRED \& WARNESSED SWITCHES - Decks pro. wired before ganging to reduce your production costs end time.

GOLD PLATED CONTACTS \& TEAMINALS-for the ultimate in mainteining low, stable contect resistance under corresive conditions.

PRINTED CIRCUIT TERMINALS-available on sin-sle-deck or last deck of multi-deck switches.

CLUSTER ARM WOTORS-for aregressive. shorting or progresoive-moking circuits.

SHING RETURN BOTORS-On EIThET or both directions of retor travel.

MAXIMUM CIRCUIT SWITCHING IN MINIMUM SPACE

Here's a positive approach to mini-aturization-a way to handle more circuits per cubic inch! Conservatively estimated, over 650 circuits may be switched in only 38 cubic inches by a Shallcross Miniature Series switch ... and with the quality and reliability only a buttoncontact, multi-leaf wiper arm switch can provide. In one recent application, the single 24-deck Shallcross Miniature switch shown above replaced four "subminiature" units.
Equally impressive space advantages are possible with dual concentric shaft versions of the Shallcross Miniature Series. Either shaft may

For indirect switching of complex circuits, or to avoid "over stepping" positions in critical circuits, most Shallcross Miniature Switches can be furnished with solenoid operation. Outline your circuit requirements for a prompt recommendation by Shallcross engineers.
operate up to five of a total of ten decks. The inner shaft may also control a rheostat, variable capacitor, or other device.

If, in addition to size, switch quality is also your concern, the following highlights substantiate why Shallcross Miniature Switch users repeatedly specify these switches, and no others, for critical airborne, missile control, and computer applications.
Low Initial contect resistance-less than 0.002 ohm.

Stable confact resisfance- 0.5 milli. ohm for 10,000 operations.
Highly Immune to vibretion damageexceeds MIL-S-3786 requirements. Uncompromised marerial avality-silver button contacts; silver alloy, multileaf. self-cleaning wipers: diallyl phthalate rotors; epoxy-laminate decks (filament woven with glass fiber).
Designed to oppliceble MIL-s-3786 Specificertions.
Minimum thermocouple eflect-similar materials for all current-carrying parts.
Excollont RF charecteristles.
Minimum depth-1" first deck. $5 / 8^{\text {" }}$ each additional deck.
Maximum Versarlify-up to 32 positions, 1 to 4 poles, shorting or nonshorting in the same switch. 1 to 24 decks, ball detents, many special modifications.

For complofo defalls, wrife for Shallerose switet Bullofin

THIS AMAZING EPGIPEERIPG ACHIEVEISENT RESIJLYED FROJM SIJFIFB TEAMWOFK BETWEEN THE PRIBE CONTRAC,TOF - COONTIAFTIAL EER. TRONICS .. THE UNITED STATES GONGPESS .. AROD THE IJ: NAVY WORKING TOGEJHER IN HAFPAONV TC STRERGTHEP: ANO GOLIDIT TA TIONAL DEFENSE. THAT THE U.S. NAVAL RADIO STATIOPA AT CIJILEH WAS CORAPLETED IN RECORD TIME, ONE FULL YEAF AHEAD OF SCHEDULE IS AGF QUATE TESTARIONY TO THE SBOOTH EFFICIERA, Y OF THIS COMBINED EFFORI MANUFACTURING
4212 South Buckner Boulevard Dallas 27. Itazs
DESIGNERS AND BUILDERS OF THE WORLD'S

WERFUL TRANSMITTER..2.000.000 WATTS VLF

Huge Helix coil 20 feet in diameter and 40 feet tall is wound with $31 / 2$ inch Litz Wire . . . just one of the scores of huge components that combine to give this new communication station maximum power . . . range . . . reliability . . . and the special penetration possibilities VLF possesses that no normal high frequency radio provides.

Control console and portion of the unique CEMC Type-125 2,000,000 watt VLF Transmitter that propagates along the curvature of the earth instead of bouncing off the IONOSPHERE: thus eliminating dead communication areas or skip distances to give this Naval voice of command greater range and improved reliability.

In one instant $2,000,000$ watts will blast the U. S. Navy's voice of command around the world. At the control console, during operation, push-button simplicity provides a new and highly reliable major element of command to the U. S. Navy . . . another element of that might by which the nation promotes the keeping of the peace.

Circle 32 on Inquiry Card

WORLD'S MIGHTIEST VOICE OF COMMAND TO HELP KEEP THE PEACE OFFERING NEW

RELIABILITY
DEPENDABILITY MAINTAINABILITY
ONE FULL YEAR AHEAD OF SCHEDULE

JENNINGS VACUUM CAPACITORS FOR ELECTRONIC ENGINEERS WHO WANT COMPACT EFFICIENCY

D OR HIGHER CURRENT RATIMG OR LOWER INDUCTIVE LOSSES

Witness how Gates Radio Company has created a smaller, more efficient transmitter through the use of these high voltage fixed vacuum capacitors. Vacuum dielectric results in very low dielectric losses thus making capacitors more efficient. All copper construction and large surface area permits high current ratings. And, most important, unlike other types of capacitors, vacuum capacitors are self healing after moderate overloads.

Jennings also manufactures a complete line of variable vacuum caracitors. Their vacuum dielectric permits a maximum amount of capacitance at high voltages to be packed into an extremely small physical space, thus reducing inductive losses. They also feature the lowest minimum capacities and highest maximum to minimum ratio of capacitance change attainable anywhere.

Catalog literature of Jennings complote line of vacuum capacitors is available upon request.
iemmings radio meg corp. 970 mclaughlin ave, san iose m, calif. phone cypress 24025

Tele-Tips

THE EIGHT-HOUR DAY is not necessarily the most efficient means of accomplishing certain specialized tasks involving around-the-clock operations. The Air Force selected 16 male college students and tested them for 96 continuous hours under varying conditions. Four different work-rest cycles were used: two hours on and two hours off, four on and four off, six on and six off and eight on and eight off. Tests showed that subjects in the two hour and four hour cycles "achieved a much more favorable adjustment" than the other groups.
"HAM" WEEK. A bill before Congress would designate the third week in June of each year as National Amateur Radio Week. Americans would be encouraged to observe the week with appropriate exercises to stimulate interest in amateur radio in the United States.

AIR FORCE RESEARCHERS have discovered a world-wide aerosol layer consisting mainly of sulphur particles which completely envelopes the earth. The layer forms a three-mile thick shell about 11 miles out in space.

ELECTRONIC ENGINEERS with teenage youngsters are being subjected to an exquisite form of torture these days, listening to their offspring refer to portable radios as "transistors."

A MISSILE IN FLIGHT is not where the radio fix says it is, because radio waves bend in air. At sunrise, when you see the sun, you don't, because it's still three minutes below the horizon. Scientists at NBS say these phenomena are caused by the passage of electromagnetic energy through a medium of variable refractive index. The amount of bending of radio waves is further affected by the amount of moisture in the airthe relative humidity These phenomena are being investigated by the Radio Refractive-Index Center at the Boulder Laboratories of NBS in Boulder, Colorado.

Tele-Tips

NEW MOVIE TECHNIQUE developed in Europe uses a technique in which live actors play their role side-by-side with their own or other actors' filmed images. For example, a living ballet dancer might dance with a film partner. The actor's action is then "inseparably combined with the motion picture," giving the impression that both are live performers.

AUTOMATIC JOB KEEPER. U.S.I. Robodyne, a division of U.S. Industries, Inc., has developed a machine that trains people to keep their jobs when they are threatened with automation. The Post Office is the first organization to use it. Men who are now sorting mail by hand are being trained to handle new electronic letter sorters. The machine uses the principle of the conditioned reflex. Students see sample address flashed on the film screen. Simultaneously, the correct combination of keys rises on the keyboards and the students automatically push the keys back. Their reflexes are thus conditioned to operate the machine quickly and correctly.
"GUST ALLEVIATORS," to provide smooth air travel, rely on a computer to instantly measure the force of random air currents and automatically adjust the plane's control to compensate for them.

BERYLLIUM is expensive, hard to work, hard to handle, and has a number of other drawbacks, but it may yet find favor with engineers building space vehicles. It is extremely lightweight and very stiff (as long as the temperature doesn't get too hot).

EXOTIC METALS like columbium, molybdenum, zirconium and beryllium, are difficult to join. Among the new techniques for joining these metals are welding them together with an invisible beam of high speed electrons, welding them in a vacuum chamber by remote control, and ultrasonic welding.

Because it never varies from birth to death, a fingerprint is the most reliable method of personal identification.

NAE silicon devices have fingerprint reliability because they never vary in performance, even under extreme conditions of temperature, shock or humidity. Test our semi-conductor devices. You can count on them to perform with reliability These hermetically sealed, corrosion resistant units perform at full capacity for the life of the equipment. Wherever reliability is important specify NAE. Here, at North American Electronics, Inc.. we manufacture Silicon Rectifiers, Controlled Rectifiers and Voltage Regulators to exclusive specifications. These give them the finest
characteristics available. In process, reliability is further assured by 100% testing to all specified parameters. Get acquainted with NAE devices. Write for specifications, data and details.
nae"fistr in scliability"
NORTH AMERICAN ELECTRONICS. INC.
afmuate or

For protection of value

New casting resin-Sylgard* 182is tough, flexible and repairable

Visual inspection . . . environmental protection . . . ease of processing . . . simplicity of repairs - these and other features make Sylgard 182 an important new tool when engineering for value.
Tough yet flexible, this solventless silicone casting resin cushions against shock and vibration from -70 to $225 \mathrm{C} \ldots$ assures constant dielectric strength in any environment . . . resists the effects of ozone, voltage stress, heat aging and thermal cycling.
Procpssing is simplified since Sylgard 182 and its curing agent are not toxic to the skin . . nor do they give of toxic fumes or heat during blending or curing. Curing time can be controlled by the external heat applied - from as little as 15 minutes at 225 C to 72 hours at 25 C .

Deep sections cure thoroughly. There are no solvent fumes to be trapped . . . and visibility is excellent. Applied as a ीluid, Sylgard 182 resin flows readily around in. tricate shapes . . . cures even in deep sections without damage from internal stresses or exothermic heating.
Repairability is assured when circuits are embedded in Sylgard 182. Defective components can be removed and replaced after cutting away the cured resin with a sharp knife. New resin, poured over the repaired area. adheres to the existing encapsulant restoring the entire unit to its original condition.

Circle 21 en Inquiry Card

Dow Corning is your best source for a broad line of silicone fluids, gels, elastomers and rigid forms for potting, filling, embedding and encapsulating.

-- specify these silicones

Visually inspect... instrument check and replace faulty parts with ease

Dielectric Gel permits both visual and instrument inspection of potted circuits and components. Poured as a liquid, Dielectric Gel fills all voids, then sets up as a transparent, heat-stable, resilient mass. No significant stresses or exothermic heating develops during cure. Even the most delicate electronic components are safe. Instrument probes can be inserted and withdrawn repeatedly without damaging the outstanding dielectric properties of this Dow Corning silicone potting material.

Circuil Repair is easy to accomplish. Simply cut away the gel surrounding a defective component with knife or scissors. After the circuit is repaired. simply pour new gel into the repaired area to restore original high quality protection.

Circle 22 on Inquiry Card

Deep section ... rugged protection with repairable Silastic ${ }^{8}$ RTV

Silastic RTV, Dow Corning's fluid silicone rubber that vulcanizes at room temperature, is available in several variations. Select the best one suited for your application or processing requirements. All have excellent dielectric properties, low water absorption, stability under extreme temperatures, resistance to thermal cycling and aging. The newest Silastic RTV cures in thick sections in 21 hours at 77 F . Variations in thickness have no significant effect on curing rate or material uniformity.
Vulcanized Patch. Defective parts embedded or encapsulated in Silastic RTV . . . even where thick sections are used . . . can be replaced. The cured Silastic RTV is cut away with a knife, the component replaced, and new Silastic RTV applied to the repair area. The fresh material bonds to the original, restoring the encapsulant's integrity.

Circle 23 on Inquiry Card

Free 12-page manual, "Silicones for the Electronic Engineer".
Write Dept. 4122, Dow Corning Corporation, Midland, Michig̣an.

When should you use Mercury-Mitted Contact Relays?

An unusual combination of advantages found only in mercury-wetted relays has led many design engineers to specify them for tough switching jobs. Here are but 3 typical characteristics of our JM series:
RELIABILITY. Sealed-in-glass mercury contacts are renewed with every operation. Won't pit or weld. Make or break is positive . . . every time. No bounce. no chatter. Signals ranging from a few micro amps to 5 amps are switched with singular consistency.
LONG LIFE. Think in terms of billions of operations when considering JM series relays. Proper application, of course, is a requisite.
SPEED. Operate time is just less than 3 milliseconds using 2 watts of power. Release time is about 3.2 milliseconds. Thus, relays can be driven 100 times per second.
If your project calls for exceptional relay performance, perhaps the answer lies in our JM MercuryWetted contact relay.

JM SERIES ENGINEERING DATA

Contact Rating:
5 amperes maximum
500 volt maximum
250 volt-amp max. with required contact protection.

Contact Configuration:

Each capsule SPDT. Combination of capsules in one enclosure can form DPDT, 3PDT. $4 P D T$. (All Form D.)
Terminals:
Plug-in or hook solder; 8. 11, 14. or 20-pin headers.

Coil Resistance:

2 to 58,000 ohms.
More information?
Write today for free catalogue.

pab standabd relays are available at your local electronic parts distributor
© POTTER \& BRUMFIELD

GET 5\% DESIGN TOLERANCE IN CORNING C RESISTORS FOR 6¢́

You can design better circuits for less money when you know your resistance values won't budge more than $5 \% \ldots$ ever. Corning C resistors give you this assurance of stability, the kind that lets you drop an entire amplifier stage or use broader tolerance, cheaper tubes or transistors. We build stability into $1 / 2,1$ and 2 watt C resistors with a tin-oxide conductor fired into a glass substrate. The helix is cut under precise electronic control. Then we add a special solvent-resistant insulation. These resistors meet MIL-R-22684 (Navy) all the way . . . and cost as little as 6 ¢ . Use C resistors in place of composition types to boost product performance at virtually the same cost or to maintain the high performance of precision-type resistors at much less cost.

New, free booklet Get full details on C resistors and the remarkable design tolerances they give you. Write for "The Story Behind the Corning C Resistor" and for Data Sheet CE-2.12 to Coming Glass Works, 546 High Street, Bradford, Pa.

CORNING ELECTRONIC COMPONENTS CORNING GLASS WORKS, BRADFORD, PA.

High-energy density electron-beam welding techniques, recently developed by the Zeiss Foundation of West Germany and the Hamilton-Standard Division of United Aircraft, markedly improved packaging density and production methods in the field of microelectronics.
In microcircuitry, for example, packaged circuits no bigger than a thumbnail can now be reliably produced. Electron-beam equipment now welds microelectronic components into circuits with pinpoint precision, making intra- and inter-circuit connection, and hermetically encapsulating the completed micromodule.
Only electron-beam welding, performed in a high vacuum, can offer these significant advantages for the field of microelectronics: virtual elimination of contamination; a close control of penetration; low thermal distortion; and close dimensional control. The upper illustration shows weldments of $0.002^{\prime \prime}$ thick copper leads to 0.002^{*} thick nickel-plated ceramic substrate. In the field of thin films difficult welds are possible with this revolutionary new equipment such as 0.002^{*} gold tabs to chromium-gold films $3000-A^{\circ}$ thick.
Another important use of electron-beam equipment is the welding of ceramics used in vacuum tubes which

> Electronic Giants no bigger than your thumbnail... nhow electron-beam welding
require extremely high temperature performance. For these procedures, tight ceramic-to-ceramic bonds are necessary - bonds available only through high-energy density electron-beam welding. The lower illustration is a $12 \times$ magnification of two aluminum oxide ceramic wafers $1 / 2^{\prime \prime} \times 3 / 4^{\prime \prime} \times .010^{\text {" }}$ thick edge-welded by deflecting the high energy density beam of a Hamilton-Zeiss electron beam welder across the edge surface.
Hamilton-Standard, with over twenty years of metallurgical experience and meeting rigid government specifications, has exhaustively tested the welds produced with Hamilton-Zeiss equipment. The data, which are available for your inspection, demonstrate conclusively that the Hamilton-Zeiss method produces welds in miniature workpieces that are as strong as the original materials themselves. Such results are possible only by the use of high energy density and precision focus. ing by the Zeiss magnetic lens system which are exclusive features of the Hamilton-Zeiss equipment. Find out what this revolutionary equipment can mean in your business. For full information call Hamilton-Electrona, Inc., exclusive marketing agent for Hamilton-Zeiss equipment in the United States and Canada.

MICROWAVE DEVICE NEWS from SYLVANIA

Provides: linear tuning, precision tuning; low thermal dritt; Ireedom from vibrational resonance; rugged, reliable structure!

Sylvania-7692A is a highly stable pulsed magnetron offering 220 KW peak power output over the 8550 to 9650 MC range. It combines a remarkable new tuner design with proven dispenser type cathode in a rugged package capable of withstanding heavy shock and excessive temperatures. (Tests to date indicate $300^{\circ} \mathrm{C}$ capabilities.)
Inductive Post Tuner, a Sylvania design, provides linear tuning, simplifying local oscillator tracking, eliminating associated compensating equipment of coupled cavity designs. Features include: a single bellows that tunes all posts simultaneously-secure and precise alignment of tuning posts by means of a guide ring that also serves as an effective heat sink-free tuning post length restricted to 0.200 inches, eliminating electrical and mechanical resonances at very high frequencies-electrically and thermally grounding the tuning posts for very low thermal drift.
Reliable dispenser type cathode, incorporated in Sylvania-7692A. features low heater power requirements, therefore low cathode temperatures, high stability, outstanding life. Cathode memory is of extremely short duration-abrupt switches in pulse length do not detract from cathode performance or life. Too, the molybdenum cathode support is virtually unyielding to vibrational stresses, exhibits very low heat loss. permitting zero heater voltage operation at rated operating current.
Vacuum firing up to $1000^{\circ} \mathrm{C}$ of individual parts prior to assembly effectively de-gasses elements. contributing to reliability and the exceptional starting stability of approximately 0.05% average missing pulse count.
Additional X-band, tunable types from Sylvania include: $7006,210 \mathrm{KW}$ peak power output: M-4164. 220KW peak power output; 7692 , 220 KW peak power output. Presently under development are significant refinements to the 7692A, including a hydraulically tuned version.
In short, the intensive magnetron development program underway at Sylvania deserves your close investigation. Contact your Sylvania Sales Engineer for up-to-the-minute information. For tech data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc.,

1100 Main St., Buffalo 9, N, Y.

Letters

10 the Editor

Editor, Electronic Industries:
I shall feel very grateful if you would kindly send me one copy of each of the following articles from back issues of E.I.
(Sender lists 8 articles on microwave.)
S. S. S. Agarwala Senior Scientific Officer Vacuum Tubes Division Central Electronics Engineering
Research Institute
Pilani Rajasthan, India

As Teaching Aids

Editor, Electronic lndustries:
In your monthly publication. Elec. tronic Industries, it is mentioned that reprints of articles may be obtained by writing to your office. The May 1961 issue contains three articles that are of major interest to me.

Would you please send me a reprint of each of the following articles:

1. "Develop Practical Hall Devices."
2. "Direct Coupling and DC Stability."
3. "Suppressing a Single Interference Frequency.'

These three topics will be very useful as references in teaching transistor and network theory.

George A. McKean Instructor
University of Idaho
College of Engineering
Electrical Engineering
Moscow, Idaho

Low-Noise Amplifiers

Editor, Electronic Industries:
Please forward to this company, in care of the undersigned, n copy of the article "How to Design Low-Noise Amplifiers" which appeared in the August 1961 issue of Electronic InDUSTRIES.

In order that equation (1) be consistent with the stated definition of noise factor, F and the use of this definition in the deviation of equation (10), equation (1) should read:

$$
F=\frac{S i N o}{S o N i}
$$

R. A. Fraser

Lead Engineer
Systems Development Division Orlando
Radiation Incorporated
5800 McCoy Road
P. O. Box 13010

Orlando, Fla.

One head listens. the other talis fin between, there's an infalible magnetic memory which comprehends all of the languages of science - temperature, velocity. pressure. acceleration, vibration, dozens of others - and captures as many as sixteen different emes at a time. Seconds later, or years hter, and once or a theusand times, the oricinal event can be recreated without dropping a single syllable 口aime marvel of it is that today, to record and ieproduce laboratory dato with laboratory accuracy, you an longer meed an elaborate ibberatory recerding installation. Precision's now concept in instrymentation magaetic tape recording brings you full-size performance in a fraction of the space, al far less cest tham conventional equipment. May we send our current brechere?

PRECISION INSTRUMENT COMPANY IOll Commorcial Sireet . San Carlos. Calliornia Phone t.Ytell $1-4441$ TWXI SCAR BEL 30 Representativei in principat cifies throughouf the world

simple, low-cost way to increase equipment

Letters

10 the

 Editor
(Continued from page 53)

"Low-Noise Amplifiers"

Editor, Electronic Industries:

I would like to call to the attention of your readers two mistakes in Francis Opp's article "How to Design LowNoise Amplifiers."

The IRE definition of noise figure is "The ratio of 1) the total noise power per unit bandwidth at a corresponding output frequency available at the output part when the noise temperature of the input termination is standard ($290 \mathrm{k}^{\circ}$) to 2) that portion of 1$)$ engendered at the input frequency by the input termination." Thus the noise figure of amplifier is equal to the ratio of signal-to-noise ratios if and only if the input and output frequencies are the same. This is not true if the output frequency is different from the input frequency as in a parametric up-converter amplifier or frequency multiplier or mixer or other devices for which noise figure measurements are applicable.

John Banzhaf Engineer
Olympic Radio \& Telvision
Division of the Siegler Corp.
34-01 38th Avenue
Long Island City 1, New York
Mr. Opp replies :
Reference your letter on the mistakes in my Electronic Industries article. The noise factor definition is of course incomplete if applied to all types of networks. I considered only the simple amplifier and therefore, felt justified in using the abbreviated definition.

Francis Opp
refrofit uith IERC TR Series Heat-dissipating Electronic Tube
Shields for increased tube life and equipment reliability!
The easiest low-cost answer for increasing electronic equipment Mean Time Between Failures is to recognize that 70\% of equipment downtime is caused by tube failures! IERC TR shields effectively safeguard tube life up to twelve times longer - automatically eliminate equipment downtime and replacement costs due to tube failures caused by heat. The easy way to meet your MTBF reliability contract requirements is to start with the tubes - it costs so little to make them "TR safe"!

WRITE TODAY FOR IERC TR TECH BULLETIN NO. 1121

IERC 2

Interational Electronic Research Corporation 135 West Magnolia Boulevard, Burbank, California

For Long Life and Power Economy

- NEW
 CLAREE Latching SUBMINIATURE crystal can RELAY

The new CLARE Type LF, magnetic latching subminiature relay offers designers simplified circuitry in small space by providing latching effect without transistors. Magnetic latching results in power economy.

The Type LF is available with either 2-coil or 1-coil configuration. The 2-coil relay allows complete control of the latching operation within the relay and provides an extremely compact operating unit. The 1-coil relay is somewhat more sensitive; it is adaptable to existing circuits where outside control is provided. (See opposite page for specifications and circuit diagrams.) The Type LF provides the same wide range of mounting arrangements and terminals as the CLARE Type F relay.

CLARE TYpe F Subminiature
The CLARE Type F rolay it extremoly fast and more than moderately sensitive. It is bullt to withetand tomperature extremes, heavy shock and extreme vibration. Contacte, rated et 3 amperes, are oxcellent for low-lovel circult eperations. Sond for Dosion Manual 203.

Lifo Expoctancy

Wot Circult:
3.0 amperes, 28VDC resistive $-100,000$ operations
2.0 amperes, 28VDC resiativo- 250,000 operations
1.0 ampere, 28 VDC resistive $-1,000,000$ operations
1.0 ampere, 28 VDC Inductive (100 millihenry)- 100,000 operations
1.0 ampere, 115 VAC resistive- 100,000 operations Dry Circult:
$1,000,000$ miss free operations when subject to
conventional dry circuit requirements.
Temperature- $+125^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$
Bheck-100g's for $1 / 2$ sine wave 11 ± 1 MS pulse
Linear Acceloration-100g's minimum
Vibration-. 250° DA or $30 \mathrm{~g}^{\circ} \mathrm{s}, 5-2000 \mathrm{cps}$.
Humidity \& 8 alt 8pray-MIL-R-5757D
Enclosures: Tinned brass cover with fungus-resistant finish. Hermetically sealed and filled with dry
nitrogen at atmospheric pressure.
Contact Arrangement-2PDT latching
Torminale-Plug-In (3/10 straight), solder hook, 3° straight
Wiring-Two coils (as shown on drawing above)
One coll (as shown on drawing above)
Weighte-. 54 02, for plug-In
.62 02. for 2 studs, 8° loads

Operate Time-Two coll: When applying-for a minimum of 5 milliseconds-a voltage of at least two times the must operato voltage, the operate time Including bounce will not exceed 5 milliseconds. One Coil: operate time will not exceed 8 milliseconds.
Sensitivity - Two coll, approximately 150 milliwatts
One coil, approximately 75 milliwatts

Dialectric Strength

Sea level: 1000 volts rms-all terminals to case
1000 volte rms-between contact sets
600 volts rms-between open contacts of a set
$70,000 \mathrm{ft}$: 350 volts rms-all terminals to caso
Insulation Resistance- 1000 megohme minimum at $+125^{\circ} \mathrm{C}$ between any two terminals and between all terminals and case.
Maximum Intorelectrodo Capacitanes-

Between adjacent contact sete 3.5 picofarads

Maximum Coll Dissipation

Two Coll: .50 watts at $+125^{\circ}$ C
.75 watts at $+25^{\circ} \mathrm{C}$
One Coil: 1.25 watts at $+125^{\circ} \mathrm{C}$
2.0 watte at $+25^{\circ} \mathrm{C}$

Standard Adjustment-Relay will operate and hold when the must operate voltage is applied

Contact Resistance:

Maximum: 50 milliohms at 6 volts, 100 milliamperes.
Typical: $\mathbf{2 5}$ milliohms at 6 volts, 100 milliamperes.

For coll and mounting data on CLARE Type LF relay send for CPC-12. Address: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinols, In Canada: C. P. Clare Canada Lid., 840 Caledonia Road, Toronto 19, Ontario. Cable Address: CLARELAY.
C. P. CLARE a CO. Relays and rolated control components

"I am a Borg 900 Series MicropotR. Streeter-Amet, Grayslake, Illinois, manufacturer of heavy-duty electronic scales, put me on the job weighing railroad cars two years and ten months ago. I lasted longer than any other make potentiomet:r used - 34 times longer to de exact, in an application where pot life had formerly been measured in terms of ueeks! I rolled up $6,800,000$ revolutions and withstood four quick random reverses for each railroad car."
"Then Streeter-Amet sent me back to Borg with a note saying I was the first Borg Micropot to fail our of more than 500 they now have in the same service (secretly, they had been wondering just how much longer I could continue). They meant well, but it
just wasn't so. Fact is I only had a broken lead wire. Borg also found that I was Micropor Serial No. 15458 which had been lab-tested at Streeter-Amet for $1,566,000$ revolutions before I was reconditioned and put to work."
"Even now my linearity is within $.05 \%$ and total resistance tolerance within 1%. For a 50 -ohm model that is better than good. Best of all, I now have the satisfaction that Streeter-Amet uses only Borg Micropot Potentiometers!'
"Iff my sfory fouches you, comfoct your neorest Borg Technical Representative about the 900 Series Mieropot or write Borg direct."

BORG EQUIPMENT DIVISION

Amphenol-Borg Electronics Corporation
Janesville. Wisconsin - Phone Pleasant 4-6616

HUGHES' BWO'S - SMOOTH AND CLEAN!

Hughes' BWO's are smooth and clean!

Smooth-because fine grain power output variations are less than 1 db . Extremely smooth tuning curves make AFC easy. Clean-because signal outputs with spectrum widths as narrow as .05 mc are typical, with commercially available power supplies. In phase-locked loops, signals of width well under 1 kc have been ottained. Noise 30 mc off carrier in two 1 mc bands was -96 dbm in a typical case. Also-Hughes' tubes feature nonintercepting grids, low pushing and pu'ling factors, stability in phase-locked operation, and very high signal-tonoise ratios. EPictured below are four popular models, available for immediate delivery, which cover the frequency range from 7 to 20 kMc . Further information on these or any special requirements for BWO's may be obtained from Hughes MTD. NORTHEASTERN 4 Federal Street, Woburn, Mass, WElls 3-4824 EASTERN 2000"K" Street, N.W., Washington 6, D. C. FEderal 7-6760: 13 Lloyd Avenue, West Long Branch, N. J. CApital 2.4111 WESTERN 11105 South La Cienega Blivd., Los Angeles 45, Calit. SPring 6-1515

Airpax electro-magnetic circuit breakers add less than 0.5% to an equipment's base price while adding years of mainlenance free, fail-safe performance. These circuil breakers have a versatility of application not available with other circuit protectors. They incorporale the protective fealures of fuses, thermal units and overload relays without their inherent disadvantages.

Series 500 , Military Type
hermetically sealed, withstands 75 G shock

Series C-500, Industrial Type positive protection at lowesl cost

Series 500-R, Remote Indicating Type
auxiliary contacts for remote indication

Ratings from 50 MA to 15 amps DC, 60 and 400 CPS types

No temperature deraling .
Instantaneous or delay types

Gang assemblies available Series, shunt and relay circuit use --55 C to $+100 \underset{\text { Cremperature range }}{\text { Trip free }}$

Letters 60 sho Edisor

(Continued from page 54)
ing and production of microwave systems, subsystems, components and tubes should, I believe, stand me in good stead for this practice. My services are available to anyone having problems concerned with the specific fields of my specialization or other areas relating to microwaves.

Alvin R. Margolin
Alvin R. Margolin
Microwave Consultant
16218 Ventura Boulevard
Encino, California

Cathode Follower

Editor, Electronic Industries:
Would you please send me a reprint of the article entitled "Analyzing a Realistic Cathode Follower" from the May 1961 issue of your magazine.
The circuit for Figure 5 does not have a value for the grid resistor, as is shown in Figure 4. Information on this resistor value would also be appreciated as this makes the graph more meaningful.

Lee Whitman
Electronic Engineer
Pickard \& Burns, Inc.
240 Highland Avenue
Needham Heights 94, Massachusetts

Magnetic Fields To Aid Research

A continuous magnetic field of over 126,000 gauss has been generated at Mass. Inst. of Technology. Believed to be the most powerful ever produced, it was achieved in the core of a special solenoid magnet invented by Dr. Henry H. Kolm, staff member of the M. I. T. National Magnet Laboratory. The magnet, about the size of a grapefruit. was built by High Voltage Engineering Corp., Burlington, Mass., under contract to Lincoln Laboratory.

Higher magnetic fields have been achieved in pulses of only a few millionths of a second duration, but the field produced by the new solenoid was continuous. The 126,000 gauss field may be compared with the earth's magnetic field which is only $1 / 2$ gauss. It is expected that such high magnetic fields will make possible research in many scientific and engineering areas including those related to fusion power, superconductivity and solid state physics.

PLATINUM POINTS THE WAY TO LOWER COSTS

The low cost of platinum is real, because of its long life, high recovery rate and scrap value (once you have purchased platinum, you have it almost forever).
LONG LIFE-it is almost indestructible, even in the most difficult environment.

EXCELLENT RECOVERY - most of the original metal is easily recovered, even after years of use.
HIGH SCRAP VALUE-the dollar value of recovered scrap is almost as great as the original metal cost.

When you need Platinum, take advantage of Bishop's long experience (. . . since 1842), ample supply . . . broad capabilities:

- Forms-foil, gauze, plate, sheet, strip, tubing
- Wire-pure, commercial, composite, thermocouple
- Laboratory Apparatus
- Clads and Bimetallics
- Chemicals
- Catalyst Recovery
- Scrap Conversion

For the full story, write for Bulletin P-6.

」.EIBHOPAOO- platinum works / M ALVERN. PENNEYLVANIA
A JOHNBON MATTHEY ABBOCIATE
'METALE FOR PRECIBION AND PERFORMANCE'.

How to find laminations when you need them fast! High permeability lamination stock list goes out to purchasing agents and engineers semimonthly

A stock list, mailed every other week, pinpoints the quantities and sizes of our high permeability laminations that are immediately available from stock. It's sent to purchasing agents and interested engineers throughout the country. To get your regular copy, just address a request to Magnetics Inc., Department El-94, Butler, Pa.
What makes the stock list important? Depleted inventories or stepped-up production means that when laminations are needed, they're needed fast-and in perfect condition. Magnetics Inc. stock list shows what types are available for immediate shipment. In addition, the stock list contains infornation on the new higher permeability " E " grade laminations. What's more, stocks listed reinforce those maintained at regional outlets on the east and west coast (all connected by teletype to assure fast delivery). What makes Magnetics Inc. high permeability lamina-
tions special is the fact that they are the heart of high performance audio transformers, chokes and countless other fast response magnetic devices. They're burr-frec, precision-sized and flat (thanks in part to a standardized $9^{\prime \prime}$ long carton that keeps the laminations undistorted during shipment and stocking). For more information, write to Magnetics Inc., EI-94, Butler, Pa.
Magnetics Inc. also publishes a bi-weekly stock list on tape wound cores and permalloy powder cores. It's available 10 you along with the laminations stock list. Ask for it.

MAGRETICS inc.
 1

Need 1-0-0 Silicon?

Specify float zoned crystals for these three reasons...

You will find Dow Corning Hyper-Pure (100) crystals provide a number of definite advantages over Czochralski pulled crystals with (1) 00) orientation.

More Uniform Dimensions. With Dow Corning vacuum float-zoned (100) crystals. you get more than twice the useable length of the usual Czochralski crystal . . . better than 50% more than the best premium Czochralski crystal. Physical profile is far more uniform, so wafers have more consistent physical dimensions. Result: crystals that are easier to process less waste.
More Uniform Parameters. Lateral and radial parameters are more uniform throughout the entire length of Dow Corning vacuum floatzoned (10001 crystals. Typical resistivity curves show float-zoned crystals vary less from end to end-and the ends are up to three times further apart. This consistent quality - plus uniformity from rod to rod - means fewer rejects . . . increased device yield.
Fase of Handling. For the clean cleavage ind nearly wastefree handling of (100) oriented silicon crystals, plus the advantages of uniform dimensions and uniform parameters, specify Dow Corning crystals. Greater length means less chance for contamination, less waste and easier handling in scribing and scoring wafers.
Whatever your need - float-zoned crystals of (100) orientation; crystals of (111) orientation: doped to specification or high resistivity rod; polycrystalline rod or prepackaged one-piece crucible charges - Dow Corning should lead your list of sources.

For free brochure - "Hyper-Pure Silicon for Semiconductor Devices" write Dept. 4122a.

AC Instrument Calibration

Voltmeters and ammeters, plus zattmeters, are quickly calibrated over frequencies from 50 to 2400 cps by one operator.

The Model $196{ }^{7}$ Semi-Automatic AC Instrument Calibration Standard provides, in a single convenient console, a precise and rapid means for standardizing and calibrating alternating current wattmeters, expanded scale, digital, indicating and recording volemeters and ammeters.

Basic accuracy is maintained by an AC reference source consisting of a servo amplifier, thermal transfer circuit and a sensitive light beam galvanometer all balanced against a $\pm .01 \%$ lab. oratory type standard cell. Resistive components are made of selected manganin properly heat-treated, aged for six months and adjusted to $\pm .01 \%$ of absolute value. The thermoelement is unaffected by waveform errors, has flat frequency response and is protected against overloads.

moer isel crameanom macts ac odinat lac cumartit			
unat	${ }^{\text {Exa }}$	unal	\%ax min
max	tax	тия	100

FOR
TECH.
DATA
Fer additional informerion, incluting applicer ion dele, write or thene DE 43100. Dornphone onstrations aveilable by lecal representafives.

We are specialists in the design and manufacture of instrument calibration con. soles - offering more types than any other source in the world. Accuracy of all units is certificated and traceable to primary standards maintained by the National Bureau of Standards.

Performance is rigidly guarenteed. Prices are f.e.b. Boenton, N.J. and subject to change without notice. T.

Kadio Frequency LABORATORIES, INC. Boonton, New Jersey, U. S. A.

Communications Centrals Are Air-transportable

Three air-transportable centrals which provide the U. S. Army with unlimited communications in limited war situations have been developed by Adler Electronics, Inc., New Rochelle, N. Y. These compact stations can be transported to any world trouble spot and quickly erected for reliable telephone and teletypewriter contact with the Pentagon. Known as the AN/TSC18, AN/TSC-19 and AN TSC-20, they are compatible with STARCOM, the Army's global communications network. A TSC central operating in any potential trouble spot in Asia or Africa is within range of the STARCOM network.

The TSC-18 and 19 each provide three voice and 16 teletype channels, while the TSC-20 has one voice and three teletype channels. Where needed, one facsimile chan-

A Signal Corpsman uses Ieletype equipment in the shelter of one of the systems in the Army's family of long-range, air-transportable communications systems.
nel can replace one voice channel in each of the systems. The TSC-18 has a range of 7,000 miles. Ranges of the TSC-19 and 20 are 5,000 and 2,500 miles respectively.

Radio Controlled Signs

Radio controlled roadside warning signs will soon be in operation on the New Jersey Turnpike. The signs, part of a $\$ 290,000$ system to be supplied by Motorola Communications and Electronics, Inc., Chicago, III., will show motorists six basic messages. They will be turned on and off by radio from a central location. The system will also provide linked and extended two-way communications coverage for fixed and mobile maintenance units along the 131 mile roadway.

[^2]
Lعt mUELLER

МАКЕ IT!

Mueller Brass Co. of Port Huron is much more diversified than the name "Brass" implies . . . a lot more. In fact, because of its many and varied facilities . . . its men, methods and metals . . . Mueller is in the unique position of being able to offer true single source service.
nueller has the men . . . experienced engineers with the ability to work out, creatively, tough design problems, and improve a part or components for production by the most economical method. You get sound engineering plus 44 years of practical metalworking production experience when you "Let Mueller Make It."
mueller has the methods . . . when you "Let Mueller Make It", you are utilizing one single source that is able to produce parts any one of these ways: as forgings, impact extrusions, sintered metal parts, screw machine products, formed tube or as castings.
mueller has the metals . . . and the materials . . . to produce precision parts in aluminum, brass, bronze, copper, iron, and steel in hundreds of different alloys to meet each exact requirement.
In addition, Mueller Brass Co. has complete and modern facilities for performing all types of finishing and sub-assembly operations. Another plus value is nation-wide sales engineering service.

So, in the final analysis, no matter where you fit in the American industrial picture, whether you're making missiles or mowers... and no matter where you're located, it will pay you to Let muell.er make it!

MUELLER BRASB CO. PORT HURON 24, MICHIGAN

Dr. R. E. Henning - named Chief Engineer, Sperry Microwave Div., Clearwater, Fla.
Rudolph Furrer - named Special Assistant, Reliability to the President, Lockheed Missiles \& Space Co., Div. Lockheed Aircraft Corp., Sunnyvale, Calif.

Joe S. Kirk-named Manager, Commercial Engineering, National. Electronics, Inc., Geneva, Ill.

Robert W. Carr-appointed Manager of Product Development, Shure Bros., Inc., Evanston, Ill.

Walter W. Kunde, Jr.-promoted to Vice President, Engineering, HST Div., Dresser Electronics, Garland, Tex.

W. W, Kuade, Jr.

Dr, W. I. Perry

Dr. William J. Perry - appointed Director, Electronic Defense Laboratories, Sylvania Electric Products Inc., Mountain View, Calif.

Fred W. Hannula-named Product Planning Manager, Computer Products Div., Laboratory for Electronics Inc., Boston, Mass.

Robert A. Morgan-appointed Manufacturing Manager, Clevite Electronic Components, Div. of Clevite Corp., Cleveland, Ohio.

Alfred C. Evans-named Director of Research and Development, Weston Instruments Div., Daystrom, Inc., Newark, N. J.

Dr. M. John Rice, Jr-appointed Director of Engineering, CBS Electronics Semiconductor Operations, Danvers, Mass.

Gary Himler-named Director of Engineering, Computer Measurements Co., San Fernando, Calif.
Richard S. Treter-named Princi. pal Mechanical Engineer, S. Himmelstein and Co., Chicago, Ill.

Robert J. Shafranek-named Chief Engineer, Electrical Power Equipment Section, and Fred H. Guth - named Chief Engineer, Control Equipment Section, Electrical Product Development, Tapco, Div. of Thompson Ramo Wooldridge Inc., Cleveland, Ohio.

Dr. 1). E. Newell-named to the Staff of the Pioneer-Central Div., The Bendix Corp., Davenport, Ia.

Elmer W. Torok—named Development Manager, Microcircuitry, International Rectifier Corp., El Segundo, Calif.

Rosnell P. Barnes - appointed Head, Applied Science Div., Physics Laboratory, Melpar, Inc., Watertown. Mass.

Malcolm H. Burdetf-named Chief Engineer, Dage Electric Co., Inc., Beech Grove, Ind.

Dr. Lester C. Van Atta-appointed Technical Director, Research Laboratories. Hughes Aircraft Co., Malibu, Calif.

Dr. L. C. Van Atra

B. Rosen

Bernard Rosen-appointed General Manager, Equipment Engineering Dept., Defense Products Div. Polarad Electronics Corp., Long Island City, N. Y.

Russell T. Dean-appointed Chief Engineer, Resistor Engineering Dept., Electronic Components Div., Stackpole Carbon Co., St. Marys, Pa.

Frederick Walzer-appointed Manager, Quality Control and Reliability, Allen B. Du Mont Laboratories, Div. of Fairchild Camera and Instrument Corp., Clifton, N. J.

Dr. Gabriel Novick-has joined Tucor, Inc., sub. Trak Electronics Co., Wilton, Conn.

Allied Chemical Corp., General Chemical Div., Morris Township, N. J., announces the following appointments: Charles B. Miller and Dr. Curtis B. Hayworth-named Assistant Technical Directors.

Amperex Electronic Corp., Hicksville, L. I., N. Y., announces the following appointments: Ur. James Mc-Kenzie-Manager, Gas Tube and Semiconductor Depts.; Kenneth Spitzer-Manager, Microwave Tube Development Dept.; Selig GertzisManager, Tube \& Semiconductor Applications Laboratory; and Walter Bosse-Manager, Quality Control Dept.

MUELLER CAN MAKE MOST ANYTHING IN IMPACT EXTRUSIONS...

LعT MUELLER mAKE IT!

MUELLER BRASS CO. PORT HURON 24, MICHIGAN

... that's a Job for Tele-Dynamics

The design, development, and production of solidstate relemetry components and complete systems for aerospace projects are important capabilities at TeleDynamics. Today, Tele-Dynamics equipment is recognized for top performance and reliability in a majority of missile and space programs.
In addition to aerospace telemetry, Tele-Dynamics
offers basic knowledge and experience in analog and digital data handling systems, electrostatic recording equipment, instrumentation and systems for underwater and meteorological applications, and electronic support equipment. Tele-Dynamics new capabilities bulletin is now available, write for a copy today. TeloDynamics, 5000 Parkside Avenue, Philadelphia 31, Pa.

Newest

 Hermetically Sealed SHAPE- Extromely small size provides maximum capacity per unit of chassis area.
- Ideal alternate for axial lead tubulars when space and weight is critical.
- Meots all MIL-SPEC. environmental requirements.

This rugged, dependable 50 Volt series was developed specifically for military applications. It combines the thin. flat shape of popular Good-All instrument grade 601PE capacitors with a hermetically sealed metal case of oval cross-section.

> SPECIFICATIONS

Windian Constration - Extended foil Inon inductivel MYLAR• Dielectric. CASE - Metal enclosed, Mermetically sealed.
femprature longe $-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$ al full paled voltage.
Lhe Test - $\mathbf{2 5 0}$ hours at 125% of rated vallage and $125^{\circ} \mathrm{C}$.
Vibration - Meets all requirements of specifications MIL-C.25C and MIL. C-19978A.
 requirements of specilications MIL-C.25C and MIL-C.19978A.
Insalatios Resistance - Greater than 75,000 megohms when measured at 100 valls D.C. at $25^{\circ} \mathrm{C}$ for a marimum of 2 minutes.
Caperily Tolerance - Available $10 \pm 20 \% \pm 10 \% \pm 5 \%$.

The 605 is capable of being produced to HICH-RELIABILITY specifications comparable to MIL-C-14157 and MIL-C-26244(USAF)

-Du Pont's Tredemark for Folyseter Fium

Write for detailed literature

GOQD-ALL ELECTRIC MFG. CO.
oGALLALA, NEBR.

Help yourself to improved circuit performance at a new low cost with these Tarzian I-watt units. Epoxy-enclosed, they combine:

1. sharp and instantaneous breakdown (avalanche) and instantaneous recovery
2. small size, inherent ruggedness, and physical simplicity that are distinct improvements over other types of regulators
3. low cost-less than a dollar in production quantities at the standard 20% tolerance. All standard tolerances available on request.
At these low prices, their regulating, clipping, limiting, and protecting functions and advantages can be used to improve the performance of more circuits than ever before.

Write for price and ordering information. Application assistance is available: For even faster service, contact the Tarzian Industrial Distributor near you.

Other Tarzian silicon voltage regulators are available in $1 / 4-1-1$, and 10 -watt series, 31 units in each series, 5.6 to 100 Zener volts in 10% increments; standard tolerance 10%.

Send for free SVR Catalog: includes data on all four Tarzian series of silicon voltage regulators, plus design and sest information.

Tarzian Type	Zener Voltage (V)	Test Current (MA)	Oyn. Imp.(MaX) (Ohms)
VR6	6	25	4.0
VR7	7	25	5.0
VR8.5	8.5	25	6.0
VR10	10	12	8.0
VR12	12	12	10
VR14	14	12	11
VR18	18	12	17
VR20	20	4	20
VR24	24	4	28
VR28	28	4	42
VR33	33	4	50
VR39	39	4	70
VR47	47	4	98
VR56	56	1	140
VR67	67	2	200
VR80	80	2	280
VR90	90	1	340
VR105	105	1	400

SARKES TARZIAN, INC.
World's Leading Manufacturers of TV and FM Tuners • Closed Circuit TV Systems e Broadcast Equipment • Air Trimmers • FM Radios • Magnetic Recording Tape • Semiconductor Devices
EEMICONDUCTOR DIVISION - BLOOMINOTON, INDIANA
In Canada: 700 Weston Rd., Toronto 9 - Export: Ad Aurlema, Inc., Now York

World's Largest Selection

GIZES - VALUES • STOCK UNITS • SPECIAL FEATURES

OHMITE offers the largest and most varied assortment of power rheostats ever developed.

You can choose from 413 stock commercial sizes and types ranging from $121 / 2$ to 1000 watts . . . or from over 400 stock MIL-R-22A sizes and values, with "special fast delivery" on all other MIL units. You can find, for example, scores of different shaft styles, sizes, configurations-already engineered and waiting. Literally, hundreds of other special features take care of any rheostat application envisioned today.

But Ohmite rheostats give you more than just "largest selection." Ohmite wire-wound units of all ceramic and metal construction represent the highest degree of operational reliability ever attained in rheostats. They bring you the backup of industry's greatest reservoir of engineering talent in rheostat design and application.

Because of this, you find more Ohmite units in use than all other makes combined. On your next project calling for rheostats, make your selection from the smooth, close control units preferred throughout industry.

Stocked by the Factory and Electronic Distributors Everywhere

OHMITE RHEOSTATS

OHMITE MANUFACTURING COMPANY 3662 Howard Stroot, Skokie, Illinols

Rheostats
Power Resistors Precision Resistors Variable Transformers Tantalum Capacitors Tap Switches
Relays
R.F. Chokes

Germanium Diodes Micromodules

WHY YOU SHOULD THINK OF MAPICO WHEN YOU THINK OF
 IRON OXIDES FOR FERRITES!...

First of all, Mapico provides a wide range of pure synthetic iron oxides ... unmatched for uniformity ...produced through the most precise automatic production controls ... in a plant with tremendous capacity. And Mapico iron oxides are made in three typically different particle shapes, each shape available in many accurately graded particle sizes The selection of the proper Mapico oxide assists you in controlling electronic characteristics and shrinkage.

MAPICO IRON OXIDFS UNIE

* columbian carbon company 380 Madison Ave., New York 17, N. Y.

Books

Conversion Factors and Tables,

 Third EditionBy O. T. Zimmerman and 1. Lovine. Published 1961 by Industrial Reseorch Service. Inc., Mo sonic Building. Dover. New Hompshire. 710 pages. Price \$7.50.
This is a pocket-size, time-saving handbook for workers in all technical and scientific fields. It contains over 15,000 conversion factors and 122 pages of conversion tables based on the latest and most accurate fundamental data. It contains information on weights, measures, velocities, densities, energies, viscosities, pressures -mechanical, electrical, thermal, nautical, astronomical units-refrigeration, air conditioning, hydraulic power, heat transfer, surveyors' photometric, apothecary units - and numerous others.

The Design of

Small Direct-Current Motors
By A. F. Puchstein. Published 1961 by John

Emphasis throughout the book is on electromagnetic aspects of design problems and orderly procedure. The book is eminently suited for use either as a reference or as a textbook. Problems calling attention to significant theoretical and practical points are included for the use of both the general reader and the student.

Advances in X-Ray Analysis, Vol. 4
Edited by W. M. Muellor. Published 1961 by the University of Denver and ovailable from Plenum Press, Inc., 227 West 17th St. Now York 11 N.Y. 576 pages. Price $\$ 15.00$.

Contains the complete texts of 3 s reports presented at the Ninth An nual Conference on Applications of X-Ray Analysis held August 10-12, 1960 in Denver, Colorado.

Operational Electricity

By Charles I. Hubert. Published 1961 by John York 16, N- Y. 530 pages. Price $\$ 8.50$.
After careful analysis of the traditional methods of teaching this subject and critical examination of the demands the subject places on teacher and student alike, the author concludes that an integrated study of ac and de circuits and machines offers much more than the usual separate treatment.
The text is arranged for two levels of instruction. This is realized by blocking off the more complex derivations of formulas not essential to a basic understanding of electrical theory. The blocked off derivations provide additional interest for the faster students without confusing and slowing students less well grounded in the requisite physics and mathematics.
(Continued on page 16)

microwave swichlig with SOLID STAIE RELIMBIITYY

LOW POWER LEVEL COAXIAL SWITCHES

Froguency (Mac)	Insertion Loss (Max)	Isolation (Min)	Switchins Power
210.240	0.2 db	20 db	10 mw
260.340	0.2 db	18 db	10 mw
400.500	0.3 db	20 db	10 mw
570.630	0.3 db	20 db	10 mw
900.1000	0.3 db	20 db	10 mw
$1250-1350$	0.5 db	20 db	10 mw
MEDIUM POWER LEVEL COAXIAL SWITCHES			
200.1000	1.5 db	22 db	70 mw
1000.2000	1.5 db	20 db	70 mw
2000.4000	2.0 db	16 db	70 mw

LOW POWER LEVEL VOLTAGE
VARIABLE ATTENUATORS

Frequency (Mc)	Attonuation Range
260.340	$0.2 \mathrm{db}-18 \mathrm{db}$
400.450	$0.3 \mathrm{db}-20 \mathrm{db}$
570.630	$0.3 \mathrm{db}-20 \mathrm{db}$
1250.1350	0.5 db .20 db

Marrow.band migher freguoncy units are available with lowat lose and increased isolation.

TYPICAL PERFORMANCE BROADBAND MICROWAVE SWITCH SPST

TYPICAL PERFORMANCE
VOLTAGE VARIABLE ATTENUATOR ($425 \mathrm{Mc}=25$)

Units for handling higher powers are now in development. Microwave Associates has capabilities for meeting your requirements for single-pole multiple-throw and waveguide switching devices. Our switches invite comparison. We invite your inquiries.

A quotation/data sheet will be sent on request.
MICROWAVEASSOCIATES, INC. AL
Western Union FAX . TWX: Burlington, Mass., 942 - BRowning 2.3000

United Van Lines'

the mouing serwice that makes FRAGILE stickers UNNECESSARY
"HANDLE WITH CARE" reminders are never needed on United Safe-guard shipments. The United Agent takes special pride in protecting every article entrusted to him. His Sanitized* vans, customequipped with cushion-soft padding and manned by well-trained crews, turn this pride into practical advantages for you.

When you're planning to move exhibits, electronic devices, office equipment or machines-any fragile, high-value commodity-get the safety, convenience and personalized care that only SAFE-GUARD Moving Service provides. Call your United Agent today! He's listed under "movers" in the Yellow Pages.

United Van Lines MOVING WITH CARE EVERYWHERE® INTERNATIONAL MEADQUARTERS * ST. LOUIS 17. MO.

Shilelded Power Supply Cables-Rubber
Shielded Interconnecting Cables

Duplex Connector Extension Cords

Low Impedance Lies

Miniatulred Cables
Engrinerix $=$ Grid Wires

\longrightarrow

 $\xrightarrow{\square}$Unpaired Intercom

Cables

Mr. Design Engineer... BELDEN Has It

Every electronic and electrical wire you need-from the finest drawn magnet wire to the most complex multiconductor cable.

There is a Belden wire or cable in every insulation and shielding to meet your design and application requirements. Here is just part of this complete line. Available from stock.

Belden
 WIMEMAMER FOF INDUSTM since $1902-$ chicago

One Wire Source for Everything Electronic and Electrical

- electronic wire - magnet wire - lead wire - power supply conds - cord sets - portable cordage

Call System Cables
 Strain Gauge Cables

Camera Cable

Color, Studio, Closed Circuit Camera Cables

75.Ohm Video Cable

Portable Cordege

Coiled Cords

2 \& 3 Conductor
Extension Cords

Audio Cables

Control Cables
 Coiled Test Prod Wire

Migiature Audio Cables

Wavernide Smithes

Waveline precision Waveguide Switches are available in seven waveguide sizes to cover the frequency range of 3.95 to 40.0 KMC . These manually operated devices have been designed for applications in the laboratory or for microwave systems to make alternate connections between two waveguide inputs and two waveguide outputs.

Excellent electrical characteristics are achieved by unique precision and assembly techniques which Waveline has developed to provide the highest quality of microwave instruments. Full waveguide range operation is obtained with a VSWR of 1.10 maximum and an isolation greater than 60 db .

The switches are normally supplied with rotation in the narrow wall plane (circular bend of the rotor in the " E " plane) and are manually operated by means of a knob. Also available are " H " plane versions which are designated by suffix letter \mathbf{H}.

Waveline Model No.	Frequency Range, KMC	Waveguide Type
$378-E$	3.95 to 5.85	RG-95/U
$478-E$	5.85 to 8.20	RG-106/U
$578-E$	7.05 to 10.00	RG-68/U
$678-E$	8.20 to 12.40	RG-67/U
$778-E$	12.40 to 18.00	RG-107/U (AL)
$878-E$	18.00 to 26.50	RG-66/U (AL)
$1078-E$	26.50 to 40.00	RG-96/U (AL)

Whiveline INC.
 CALDWELL. NEW IERSEY

Phone: CApital 59100
IWX Caldwell, N. J. 703

Books

(Continued from page 72)
Monogement Models δ Industrial Applications of Linear Programming. Vol. 1
By A. Charnes and W. W. Cooper. Published 1961 by John Wilay 6 Sons. Inc., 140 Pork Avenue South. New York 16. N. Y. 477 Dages. Price $\$ 11.75$.
These volumes illustrate all aspects of the underlying theory of linear programming with concrete numerical examples accompanied by explanations which 1) carefully explain the theories and examples, and 2) suggest further possible applications. Accompanying geometric representations are included whenever possible as a further aid to intuition and understanding. Volume I provides a thorough preparation for Volume II and serves as an introductory text.

Magnetic Control of Industrial Motors

Part I: A.C Control Devices and Assenblies. By Gerhort W. Heumann. Published 1961 by John Wiley 6 Sons. Inc. 440 Pork Ave. South
New York $16 \mathrm{~N} . \mathrm{Y}^{4} 273$ poges. Price $\$ 9.00$. Now II: A-C Motor Controllers. By Gertort W Heumann. Published 1961 by John Wiley i Sons. Inc., 440 Park Ave. South. New York 16. N. Y. 334 pages. Price $\$ 9.00$

In what are primarily application books, controllers for industrial type A-C and D-C motors are carefully analyzed and each type of motor is granted full treatment in conjunction with its associated controllers. Motor performance data for the A-C squir-rel-cage, wound-rotor, and synchronous motore are presented as well as data on D-C series and shunt motors; this is accompanied by formulas useful for calculating motor performance when motors are used with different types of controllers. Principal circuits, selection of controller sizes and components, economic factors affecting controller selection, motor protecsion, and existing safety codes and standards are all given the most complete coverage possible.

Plasmas and Controlled Fusion

By Dovid J. Rose and Malville Clark, Jr. Pub lished 1961 by The Technology Press. Moss. Inst. of Tochnology ond John Wilor 6 S Sons.
Inct
40 Pork Ave south New York 16 ,

This book is graduate-level textbook on the principles underlying plasma physics and controlled fusion. The authors are M.I.T. professors experienced in teaching, research, and engineering applications of plasma physics.

The first twelve chapters cover plasma physics, hydromagnetics, and elementary gaseous electronics in association with transport and electromagnetic theories. The last four chapters dwell more specifically upon the controlled fusion problem, including experimental and theoretical approaches, and methods of eventual energy recovery.
(Continued on page 82)

front end

AMPin-cert* Pin And Socket Connectors Cost Less!

... and there are two good reasons why!
AMPin-cert Connectors give you the only stamped and formed pin and socket contacts in the industry.
Automatic application of the AMP* solderless termination technique precision
crimps contacts to leads at rates of 1,600 or more per hour with the use of minimum skill labor.
AMPin-cert Connectors cost less to buy and . . . less to apply-give you connector performance of extreme reliability at the lowest installed cost in the industry. Additional features include:

- Choice of 5 types of contacts
- Snap-in design contacts with cantilever beam construction for easy insertion and dependable retention forces
- Wide variety of configurations and sizes
- Complete line of matching hardware

For all the money-saving facts on AMPin-cert Pin and Socket Connectors write for complete information today!

- Trocementr el amp Ime.

 AMP INCORPORATED

GENERAL OFFICES: HARRISEURG, PENNSYLVANIA

Westinghouse announces new 16-amp "Rock-Top" Trinistor controlled rectifier

Proven "Rock-Top" quality is now available in JEDEC 2N681 Trinistor Controlled Rectifier series! These latest additions to the Westinghouse power semiconductor family incorporate the field-proven design features of the broadest line of medium and high-power switching devices. Such features as hard-soldered junctions and hermetically welded cases provide an extra assurance of reliability at no extra cost. Additionally, each device is 100% tested to maximum ratings. These new devices from Westinghouse, world leader in silicon technology, are backed by production experience with high-power semiconductors for military and industrial applications.

Westinghouse 2N681 series Trinistors are ideal for such applications as: motor speed control * temperature control . inverters . static switching. For more information, or technical assistance, call or write: Westinghouse Electric Corporation, Semiconductor Dept., Youngwood, Penna. You can be sure...if it's Westinghouse.

For prompt delivery, order from these Westinghouse distributors:

[Astin	MALLmatm imsteumemis Comp	Doltos, Tosco/al $/$-63u
MEI SEmiconouctoin Inc. Birmmenoms. Alo /FA 2.0888	IMTEA-STATE RADIO E SUPPLYCO.	Oenver 4. Colo /TA S-2257
CAMERADIO Pitsburen, คo /Ex 1.4000	Lement ${ }^{\text {cos }}$	Mowsion, Terss/CA 4-2653
	midlamo specialty co.	
		Prowne, Ariz 'Al \% 839
		Abvoverose. M. M./Cw 7 -0035
GENESEE RADIO PARTS CO. Bitais, M. Y./TR 3 SEA	2 ClO distale co.	Inoisappolis, ond / me 7.5511
WAMN ELLERT ELECTMONICS, INC. Bemimore, Me. TU 9-0242	STMICONDUCTOR SPEC, IMC	Chicseo. III /MA 2 -30
milaray electmonics Mo Yofk M Y/ate 2400	\% STERLING 60.	Defront, Mich / 60 3.25e0
RRDIO 4 ELICTROMIC PARTS COEP. Clovelond, Onio/UT 1-6050	UNITED RADIO, INC.	Cracimand Onio/ma 1 -8530
SCMwEeta tlectromics Leng islond, M. Y/PIG-es20		
Silver Sorme Ma/ /JU S.T023	Exinl	
MSTEM	ALmAC ELECTMONICS CORP.	Imalle, Wesh PA 3-7310
wistum	ELmAR ELECTROMICS	Oaklond. Cal TEE 4.3311
(CI Scmiconouctons, ImC Kases City, Ho./WE Ioers	HAMLLTON ELECTRO SLS.	Les Angele: Col/bil 2.9154
ELECTRONIC COMPONEMTS FOE ImDUSTRY CO.		Pato Akto, Cal /DA 1-7511
St. Loun, Ma./W0 2-9915		Ingineos, Col/OR 4.3eco

NOW！

Measure phase
angle directly
in degrees with counter speed and accuracy！ allows fast，direct phase angle measurements－ ideal for servo applications

Other Plug－ins for 524C／D Counters

Order the measuring capability you need at present，later add other plug－ins to increase the usefulness of your 524 counter．

－EesA Prequency Converter． 1950. ertonde counter to 100 MC

9．508A Videe Amplifier， $\mathbf{s 2 0 0 . 0 0}$ ， incrasess sensitivity to 10 mv

6）5月⿹\zh26灬 Frequency Converter， 8900.00 ortende countor to geo MC

9）sase Time Interval Unit， $\mathbf{8 2 0 0 . 0 0}$ ， for measurement． 4 usec to 10^{\prime} sec．

－besc Frequency Convertor，Lens co ertende counter to 800 MC

PIS2sC Period Multiplier，sMas．00． allows messurement to 100 KC of 100，1．000， 10.000 period averege．

With the 524 Counter and the new 526D Phase Unit, you can measure phase angle between two signals conveniently, accurately and at any frequency from 1 cps to 20 KC . At 400 cps, readings are direct in 10ths of degrees; at other frequencies readings are in time units with a resolution of 0.1 microsecond.

The new phase unit plug-in, whose specifications are given in detail below thus adds still greater versatility to the unique $524 \mathrm{C} / \mathrm{D}$ counters. Details of other 525/526 series plug-ins appear on opposite page.

Brief details, 1 524C/D Electronics Counters Measure frequency 10 cps to 10.1 MC , period to 100 KC without plug-ins. With plug-ins measure frequency to 500 MC (with accessories to 18.0 GC), time interval $1 \mu \mathrm{sec}$ to 100 days. Measurements are automatic, direct reading, require no tedious calculation or interpolation. Big, bright Nixie readout (524C) or columnar neon readout (524D). Maximum resolution $0.1 \mu \mathrm{sec}$, stability $3 / 10^{0}$ short term, $5 / 100$ per week. High sensitivity, high impedance. Can be standardized with $\mathbf{W W V}$; available for printer operation. Readily used by non-technical personnel. Highest quality construction, military type design. 524C, $\$ 2,400.00$. $524 \mathrm{D}, \$ 2,150.00$. Rack mount models available.

SPECIFICATIONS 526D Phase Unit

Range: Phase angle 0 to 360°, lead or lag
Frequency Range: 1 cps to 20 KC
Roads In: Time units with maximum resolution of $0.1 \mu \mathrm{sec}$ over full frequency range. For frequencies 396 to $404 \mathrm{cps}, \times 3,600$ frequency multiplier provides readings direct in 10ths of degrees.
Accuracy $\pm 0.1^{\circ} \pm F_{l} / F_{8} \approx 360^{\circ}$ (where F_{0} is frequency of phase-measured signal and $F_{\text {, }}$ is counted frequency, assuming noise 65 db below signal).
Input Voltage: 5 to 120 v rms; usable to 240 v ms .
Input Impedance: Approx. 1 megohm, 80 pf shunt
Price: $\$ 750.00$

8 other widely used Electronic Counters

4923C/CR Electronic Counter 10 cps to 1.2 MC with now 0.1 v sensitivity. Bright Nixie in-line readoul. Messures Itime interval 1 peec to 10 sec . and period 0.00001 cps to 100 KC and phase angle. Stability $2 / 200$ per meen. Improved cir cultry provents triggering by unwanted siznals. noise. Results eppear In seconds, meec, usec or KC with automatic decimal. © S23CR (rack mount) $\$ 1,550.00$; S23C (cabinet) $31,575.00$.

- 623D/DR Electronic Countor

Offers olectronic features Identical with those of - 523CR but has six-place neon columnar readout. © s230R (rack mount) \$1,205.00; 523 D (cabinet) \$1,310.00.

(1) 522B/BR Electronic Counter

Popular 0 seze/bR measures froquency 10 cps to 120 KC , period 0.00001 cps to 10 KC , time interval 10 μ sece to 10° sec. Reads dirext in Cps^{2} KC, seconds, milliseconds. Time base stabilly $1 / 10^{\prime}$ per weok, counts automatically, resets, action repetttive. Applicetions include measure. ment of production line quantities. nuclear radiation, power line fre: quencies, very low froquenclea, and, with transducers, a wide array of physical quantities and phonomens. - 5228 (cabinot) 9915.00 - 9 522BR (rack mount) $\$ 900.00$.

4521 Series Industrial Counter

- affere five Modal 521 count. ors, all usetul in moesuring troquency, random evente per unit of time, and, with trensducers. speed, ros, ipm, wolaht, pressure, tomosiature ete. Direct suredinges, display time variable readinges, display time variable or frequency renge 1 cpe to 120 KC; the fith measures to 1.2 MC. Two models with big, bright, In-line numeric resdout, three with columnar neon display. Prices $\$ 475.00$ to $\$ 955.00$. Cabinot and rack mounts avallable.

HEWLETT-PACKARD COMPANY

10898 Page Mill Road
Cable "HEWPACK"
Palo Alto, California
DAvenport 6-7000
Sates representatives in all principal areas

MEWLETT-PACKARD B.A.
Rue du Vioux Billard No. 1 CODIE "HEWPACKSA"

Geneva, Switavitend Tel. Ma (002) 2.43 .35

Bythode
 Thru-Connected

Printed Wiring Boards ,

Reliability! Re-usability!

Solder flowed under flanges by high current electrode set dies using latest equipment improvements - fast, flexible, economical

Plated Thra Holes

Using copper reduction techniques for sensitizing in conjunction with preclad laminates - compact, reliable, excellent component soldering and high component density.

New Three-Dee

Sealed Harness

Methode's new fully en. capsulated multi-layer circuitry - permits unlimited cross-overs and taps, fiexible, conformal, light and tough for interconnecting individual circuit cards or black boxes.

- 37 to one micro photographic
cross-section view

Use the Bast Prefabricated Wiring Technique for Your Requiroment . .. all are avallable from:
fethode manufacturing corp.
7447 W. Wilson Ave
Chicego 31, III.

Books

(Continued from page 76)

Automatic Control and Computer Engineering. Vol. I

Edifed by V. V. Solodornikov. Published 1961 by Porgomon Press. Lid.. Heodinaton Hill Holl

These volumes contain papers pre sented at a recent U.S.S.R. conference on Automatic Control and Computer Engineering organized by the Scientific Technical Society of the Instrument Making Industry. Volume I is devoted to the problems of developing and applying the resources of up-todate computer engineering in the automatic control of manufacturing processes. Attention is given to both analogue and digital computing techniques.

Statistical Processes and Reliability Engineering

By Dimitris N. Chorafos. Published 1960 by D Princefon. N. J. 438 pages. Price $\$ 12.75$.
This book is designed primarily as a tool for engineers, and particularly for reliability engineers. It presents to the reader an integrated approach to stochastic processes and to their use as a means for prediction and control. The author views statistics as a fundamental tool for scientific investigation and he first presents and explains statistical laws, and then explores their relationships with engineering disciplines and practices.

Modern Mathematics for the
 Engineer, Second Series

Edited by Edwin F. Beckenbach. Published 1961 by the McGiow Hill Book Co. Inc.. 330 West and Si.. New York 36, N. Y. 456 poges. ice 89.50 .
Book is intended for engineers, scientists, mathematicians, students, teachers, and others who wish to keep abreast with current applied mathematical developments, resulting largely from the demands of modern engineering programming and design. Material is divided into three parts: Mathematical Methods, Statistical and Scheduling Studies and Physical Phenomena.

Sensory Communication

Edifen by Wolter A. Rosenblith. Published 1961 by The M.I.T. Press. Mass. Inst. of Technology. Cambridge 39, Mass., and John Wiley 6 Sons Inc., 440 Park Ave.. South, New York 16, N. Y 44 pages. Price $\$ 16.00$
Chapters in this book represent the contributions by forty-two participants in the International Symposium held at M.I.T.'s Endicott House in July 1959. The chapters present experimental results and theoretical considerations from a variety of approaches. The authors, who are well known for their research contributions, have tried to present evidence that should prove useful to formulation of principles of sensory communication.

sUBMIN TRANSISTORS
 Reliability

Key to the ability of Raytheon subminiature transistors to meet the shock and vibration of stringent military and industrial applications is their reliable welded hermetic seal. Made possible by Raytheon's thirty-five years of achievement in welding and glass seal technology they fully meet the variable frequency vibration, centrifuge, and mechanical shock requirements of MIL-S-19500B. To further assure reliable operation and stability of electrical parameters all units are sealed in a carefully controlled atmosphere. Vacuum baked and aged at elevated temperatures.

More than 95% smaller and 87% lighter than their TO-5 equivalents, Raytheon subminiature transistors provide excellent power dissipation and extreme dependability for high density circuit packages. Raytheon's complete line offers a wide selection of silicon and germanium types in low-cost, single and doubleended versions, immediately available in quantity.

For complete rechnical data and application engineering assistance, as well as price information, please write or call the Raytheon office nearest you. For immediate local delivery, call on your Raytheon distributor.

RAYTHEON COMPANY

SEMICONDUCTOR DIVISION

Magnets for three newest accelerators made of Armco A-6 Electrical Steel

Deutsches Elektronen-Synchrotron, Cambridge Electron Accelerator and Princeton-Pennsylvania Accelerator utilize special magnetic properties of Armco A-6

Design and construction of magnets for these powerful but precise research devices demanded the maximum in material performance and uniformity. Key factor in the selection of Armco A-6 for these special multi-ton magnets was its desirable combination of properties-exceptionally good permeability at low inductions, low coercive force, and uniformity of properties in all directions. Excellent flatness and good punchability of A. 6 also facilitated
 production of the thousands of laminations required.

In addition, Armco's long experience in the manufacture of magnetic alloys provided an important bonus. An official at one of the laboratories expressed it this way, "Our physicists and engineers feel that the success of the magnet design and construction is in part due to the exceptional cooperation extended by Armco Steel Corporation."

Armco TRAN-COR A-6 also offers unique advantages for electrical apparatus such as audio transformers, high-impedance devices and high frequency generators (400 to 1200 cycles). Complete design data as well as technical assistance are available to help you use this special Armco Electrical Steel most effectively. Just write us for complete information. Armeo Division, Armco Steel Corporation. 3041 Curtis Street, Middletown, Ohio.

Armco Division

in multi-channel

recording

systems

there is
nothing newer
There are many reasons why Brush's newest oscillograph is the ideal choice for today's most advanced telemetry and computer systems. Its precision and reliability are proven. You get analog data instantly recorded on eight 40 mm channels... and the sharpest traces on rectilinear coordinates you've ever seen. Thirteen electrically controlled chart speeds take the guesswork out of interpretation. All functions are operated by pushbutton . . . including an ingenious auto-load chart changing arrangement. But . . . the most important reason of all is that this vertical panel oscillograph carries the name "Brush". No one is as qualified. See for yourself. Call, write or wire.

New Hughes Tonotron Tube for the space age

Unretouched phote of simulated display on face of $\mathrm{H}-1038$ multi-mode Tonotron tube.
Now you can get clear, constant image displays of slow-scan TV transmissions from space vehicles, satellites, or earthbound subjects. The new Hughes multi-mode Tonotron* storage tube, the most unique display device on the market, makes this possible. In addition to the excellent capabilities previously available from Tonotron tubes - controllable persistence and high brightnessthese new multi-mode tubes offer the ability to selectively erase target information, present moving cursors on stored displays, and produce high resolution light or dark trace halftone images.
The Hughes multi-mode Tonotron tube can solve your display problems too. Write or wire today for full information.

> For export information, write: Hughes International, Culver City. California.

- Trademark, Hughes Aircraft Company

Creating a new world with Electronics

HUGHES

….................
 2020 smort stroet, occamsido, Calit.

Dark Trace Wrising: For high-contrast, black-on-white, line or halftone displays with

Write-through: Superimpose non-stored data like cursors target markers, artificial hori-

Selective Erasure: Retains full brightness of entire display with high resolution. Eliminates unwanted information.

- MICROWAVE ROUND-UP STORY

A round-up story which gives a very brief history of the art, highlights recent developments in the field, and dwells af length on masers and lasers.

- DESIGNING A POWER METER FOR THE MICROWAVE REGION

A double bridge principle is used to compensate for temperature variations in this extremely accurate new instrument.

- TWT FOCUSING GOES MODERN

The cumbersome solenoids used with the early TWT's are now passe, except for very low noise tubes. Today's small, lightweight integrally packaged tubes contain the focus structure within the tube capsule. This article describes the three modern focusing techniques: uniform-magnetic-field by miniature solenoids, electrostatic, and periodic-permanent-magnet.

- HIGH POWER TWT'S WITH WAVEGUIDE BANDWIDTHS

Present TWT's which exhibit bandwidths, comparable to waveguide or other passive microwave com. ponents are limited in power to only a fow watts of average power and to about a KW of peak power. A loaded waveguide inter-action circuit is described which has just had its frequency capabilities extended to equal that of waveguide.

- MEASUREMENT OF VSWR IN COAXIAL SYSTEMS

This article provides a simplified explanation of the definition and measurement of coaxial VSWR. It lists the accuracy obtainable with presently available equipment and brings to light the lack of standardizafion still present in the measurement and specification of coaxial VSWR.

Plus all other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don'ł miss Radarscope. As We Go To Press, Elec-
tronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, Nows, Briefs, Tele-Tips, Books, Representatives Nows, Infernational Electronic Sources, Personals, efc.

COMING SOON-

- ELECTRONIC MATERIALS-NOW AND IN THE FUTURE!

Within the last two years there has been a new comprehension of the inherent electrical properties of materials. Stemming from the science of solid-state techniques a deeper appreciation of the behavior of the electron and its reactions to its environments is taking place. This article reviews the various areas of materials of particular current inferest to electronic engineers, and points out the direction of future advancements.

Applying Dot Components

to Electronic Packaging

TTHE Dot packaging system uses discrete, individual components. By keeping components as basic circuit elements, adequate design flexibility is retained. Thus, design progress in new systems is not stifled by lack of suitable, standard circuits or modules.
Small size is attained by using very small components with a single, standard dimension. The Dot system standardizes on a disc-shaped component $\mathbf{0 . 0 3 0}$ in. thick, Fig. 1. The disc diameter may vary. The ends of the dise form the component terminals.

Dot component availability is basic to the system's success. At the start of 1960, there were few Dot components-only some experimental diodes. By the end of that year a number of Dot component sources were available, Fig. 2. More components have been

Fig. 1 (left): Discshaped component with a Phickness of 0.030 im . is standard of the Dot System.

Fig. 2 (right): Available Dot components with manufacturer's name.
added and their preliminary evaluation completed. Availability is constantly improving as more firms become aware of the advantages and potential of the Dot system. Once units are available, the next step is to assemble them. Here is where one of the system's main advantages becomes apparent-the designer is free to do as he chooses.

Assembly

For many uses, the following assembly method is satisfactory. First, select a sub-strate material. Substrate problems are slight. Ordinary materials, e.g., epoxy/glass, which have long been used in printed
circuits, can be used here; but, for some uses, the more exotic materials, e.g., ceramics, beryllia, and insulated metals may be preferable.

Next, we bond the components in the holes. This can be done with a thick epoxy adhesive, applied to the assembly with a "squeegee" action. This forms all the bonds in a single, simple operation.

Finally, a conductor pattern is applied to each side of the sub-strate, or card. Perhaps the easiest way of doing this is to apply conductive adhesives, e.g., silver-filled epoxy, by silk screening. Of course, other methods of connection may be used.

If desired, the completed cards may be spray- or dip-coated for moisture protection. Some circuits which have been made this way are shown in Figs. 3 and 4.

This audio amplifier has a parte donsity of 630 perte/in ${ }^{\circ}$, containing 2 fransistors, 6 resistors, and 2 fantalum capacitora, The power gain is 48 db.

By J. R. GOODYKOONTZ

Spoce Technology Loboratories. Inc.
2400 E, El Sagundo Blid.
El Segundo, Calit.
and R. C. FRANK
Douglas Aircreft Co.
627 Son Vincente Blvd.
Sonto Monice, Colif.

Reliability Considerations

The basic feasibility of the Dot packaging system has been shown. But how good is the system? What is its reliability?

Answer. The objective is to produce equipment by this method which is far more reliable than present equipment. It will take time, of course, to develop data which will yield a meaningful reliability picture. Reliability data accumulation is still in the early stages; the results to date have been encouraging.

Basically, the program is divided into two parts:
(1) Component Evaluation or Qualification Testing. This effort's scope is quite normal. We simply apply the same test methods used for other components. This evaluation is proceeding independently of any particular system considerations.
(2) Evaluation of the Fabricating Process. Here we are concerned with connection reliability, resistivity, insulation resistance, etc.

Figs. 5 and 6 show something of the general nature of these evaluations. Using many of these boards we are able to obtain statistical data on connection reliability, as well as on resistivities.

Since evaluation is still in the early stages, it would be premature to quote figures. However, the results so far are most encouraging; and, we are confident that both components and processes will combine to produce equipment of superior reliability.

Unit Assemblies

In Figs. 3 and 4 three wafer-like circuits, roughly the size of postage stamps, were shown. These units were built for feasibility demonstration only. We would not seriously propose building up complex systems from these units because of the prohibitive interconnection problem.

A better approach we feel is to put more functions

[^3]
on a single board or card. This is a layout of a subunit (the digital delay line of the AN/URC-15 airborne converter) using Dot components.

Originally, the subunit had 300 components packaged in 17 plug-in modules-three double flip-fiop cordwood modules and 14 diode gating modules. It required some 219 plug-in connections and a greater number of wire-wrapped connections. The subunit occupied a $32 \mathrm{in} .^{3}$ and had a parts density of 16.000 parts/ft. ${ }^{3}$

The same subunit, redesigned with Dot components,

Fig. 3: This 18 component flip.flop contains 2 transistors. 4 diodes. eight resistors, and 4 capacitors: gross parts density, 1100 parts/in' 8.

Fig. 4: This blocking oscillator has a relatively modest parts density of 500 parts $/ \mathrm{in}^{3} /$ with 1 transistor. 1 diode, 2 capacitors, 2 resistors, and 1 transformer. The latter was made af the Hughes lab.

Dot Components (Continued)

occupies $1 / 3$ in. ${ }^{3}$ Allowing an equal volume for clearance on each side of the card results in a total volume of $2_{3} \mathrm{in}^{3}$ and a net parts density near 780,000 parts, $\mathrm{ft}{ }^{3}$

In addition to the excellent size reduction, the number of external connections is reduced to 11. This is a decrease of the external connections by a factor of 20 . Such a decrease is the battle half won. A number of such sub-units, or cards, would be stacked together to form a whole unit or system.

This many-layered sandwich consists of functional cards alternating with sheets of aluminum which act as heat conductors. Thin sheets of mylar or other insulating material lie between the aluminum and the cards. The assembly is compressed by screws or other members so that it becomes a brick-like structurevirtually immune to the effects of vibration. Yet, it can be disassembled completely and repaired-down to the component level. Components may be punched or drilled from the cards and replaced. Connection repair is then made by hand. A small brush, or pen, can be used to apply new conductive adhesive connections.

Although it is possible to reduce the number of interconnections by placing numerous related functions on a single card, it is still necessary to have some. Wire-wrap terminals can be brought out from the card edge and the interconnections made by the standard wire-wrapping technique. Of course. to take such a unit apart, it would be necessary to unwrap; however, this is possible, although not easy.

A fully disconnectable connector is also desired. The main problem is to conserve connector width. Considerable effort has been exerted to achieve a card only $0.030-\mathrm{in}$. thick. We cannot permit the connector to cancel out this gain; in short, a 0.030 -in. thick connector is needed also.

To achieve this, two spring contacts are provided; one flat, one curved. These are fastened permanently to the card edge. The spring connector, however, does not grasp its mating part in the usual fashion. Instead, the mating part is inserted and then the connector is compressed. The compressing action is natural since the cards are going to be stacked and compressed anyway.

Thermal Aspects

In microelectronics, attention must be given to the thermal problem. Certainly as parts densities go up, power densities go up also. But there is a bright side to the picture in that the geometry of a Dot assembly is so simple that accurate calculations can be made of the temperature that will exist within the assembly.

Thus, the thermal analysis will be right the first time and it will not be necessary to design thermal mockups to gather empirical data; nor, will it be necessary to overdesign thermally to avoid unpredictable hot spots. Examining the structure in cross section, Fig. 7. we see that convection and radiation are ruled out as heat transfer means. Only conduction through the aluminum spacers needs to be considered and this conduction is limited essentially to two dimensions. Note that spacer technique is only one of the methods of heat removal. Others might be to use metal or beryllia substrate materials.

Using the spacers, there are 3 main thermal drops to consider: (1) Δt_{1} across the interface, (2) Δt_{2} along the length of the aluminum conductor. The amount of drop is dependent upon the length of the path and the thickness. Knowing these two things, and the dissipation densities involved, the drop can be calculated. For power dissipation densities anticipated (say, 1 watt/in. ${ }^{2}$), paths only 2 or 3 in . long, and aluminum spacers $0.020-\mathrm{in}$. or $0.030-\mathrm{in}$. thick, this drop is negligible. (3) The third drop, Δt_{3}, is at the junction of the aluminum conductors and the heat exchange or sink; and, this will be a function of the particular design. Of course, this junction will be

designed with low drop as its major objective. In any event, prior to building any equipment for test, it should be possible, knowing the sink temperature, to establish the temperature inside the substrate within a degree or so.
Δt_{1} was measured by an experiment conducted to insure that the calculations of this value were correct. To do this 16 resistors were imbedded in epoxy glass in a one-inch-square area. Calibrated thermistors were also imbedded in this area so that the substrate temperature could be monitored. Eight layers of $1 / 4$-mil mylar were then placed over each side of this
test piece and thick metal plates, or heat sinks, were pressed against each side of that. Thermocouples were imbedded in the metal plates near the surface of the interface. By dissipating power in the resistors we were able to produce a Δt across the mylar. At 1 - or 2-watts dissipation, this drop was not measurable. At 10 watts, curves indicate that even at this high wattage, Δt_{1} could only be a few degrees; the curve indicates from 4.5° to $1.5^{\circ} \mathrm{C}$.

Thus, we do not feel that getting the heat out of the package is a particularly difficult problem. However, some sophistication will be needed in the design of the compact heat exchangers needed for these assemblies.

Monufacturability

Another problem is that of identifying and handling these small components. Is automation possible? Or practical?

The advantage afforded by the small size of the Dot component is realized only after it has been installed in a circuit. Preceding that time, its small size is a disadvantage.

Identification is a major problem since even color coding is impractical. The small size also makes handling by the user, if not by the supplier as well, quite difficult. The component simply cannot be handled readily by "hands" or even by what could be considered normal-size machinery. This problem is not merely a matter of installing the component at the production line, but includes the whole gamut of handling from the time the component is made-inspection, packing, shipping, receiving, unpacking, testing. transfer into stores, transfer out of stores, etc.

Dot components must be packed so that identification and handling will be facilitated. Further, a standard packing method must be used for all Dot units. This technique must be compatible with both manual and automatic methods of testing, storing, inspecting, and installing.

The method suggested is that the components be mounted individually in cards, Fig. 8. By use of such a card the component identity, as well as record of test and inspection when this is desired, can be maintained up to the instant of insertion onto a substrate.

A REPRINT
of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut G 56th Sts, Phila. 39, Pa

Moreover, the card is large enough to be handled easily by people as well as machines. Actual installation is also simplified; the card is merely positioned so that the component rests directly over the proper hole in the substrate and the component is then "punched" from the card to the substrate.

Besides providing a simplified means of identification and handling, the card provides a high degree of protection for the component. Spare parts handling in military establishments would also be facilitated by use of this mounting means.

Finally, the arrival of the automatic factory would be hastened since these cards can be handled easily by simple, standard machinery. Of course, the simpler the automation machinery is, the cheaper it is; the cheaper it is, the sooner it becomes justified economically, and put into use.

A magazine or dispenser, solenoid operated, can dispense one component at a time. It can be used for all Dot units regardless of their diameter. Such a magazine could be used as a basic component of a fully or partially automated assembly system.

Considering the assembly operation, the elimination of errors is a major objective of an assembly device, be it automatic or manual. Our auto-manual station achieves error elimination by eliminating the necessity of the operator to make a decision of any kind. In addition, the station makes the assembly task easier and more rapid.

The station is programmed by means of a plastic impregnated paper or fabric roll, which is divided into frames, one per component. Each frame has one indexing hole at the side and a row of magazine program holes. In addition, there will be a component mounting card outline drawn on each frame with a hole at the component position.

The cycle of operations to install one component is as follows:

Fig. 5 (left): Photograph of the comb pattern used to investigate insulation resistance, and also silver migration effects.

Fig. 6 (right): This is the connection test board which contains some 1200 brass slugs, or feedthroughs, connected in series.

Dot Components (Concluded)

(1) The operator presses an advance button,
(2) A motor drives the roll to the next frame, automatically stopping at the correct position by sensing the indexing hole,
(3) The magazine program reader le:ids the magazine program holes in the top of the frame and so generates a signal which actuates one of the solenoid operated magazines.

Fig. 8: For case of handling and ideatification, each componeat is mounted on a cand. This also is advanalageous for systelas using automation.

(4) The selected component falls into a constantly moving belt and is delivered to the operator,
(5) The operator places the component mounting card within the component mounting card outline and, by means of a small tool, pushes the component from its mounting card into the substrate.
(6) The emfty component mounting card is discarded, and
(7) The operator presses the advance button, causing the program roll to advance to the next frame.

When all components are installed, the substrate and tray are passed on to the next station for component bonding and conductor application. These will be batch processes.

REFERENCE PACES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHINC NEW HAS BEEN ADDED An extra-wide margin is now provided to permit them to be punched with a standard three-hole. punch without obliterating any of the text. They ean be filed in standard three-hole notebooks or folders.

y JOHN J. JONES

Researeh Eagineer
Applied Rescorch Loboratory Sylvanio Eloctric Products Inc. 100 First Avenve
Wolthom 54, Mass.

Design is Speeded By...

 Using theIIN an earlier article we showed how some simple graphical techniques can aid the analysis and design of single-tuned band-pass filters. Now we'll treat double-tuned band-pass filters, i. e., filters with a transfer function containing a pair of closely spaced, isolated, complex poles. Let's examine a commonly occurring circuit: the transformer-coupled, doubletuned band-pass filter, Fig. 1.
The transformer is described by 3 measured parameters: \boldsymbol{L}_{1}, the self-inductance of the primary side: L_{2}, the self-inductance of the secondary side; and, $\left(N_{2} / N_{1}\right)$ efr the effective turns ratio of the tralssformer. Additionally, we known that the primary actually contains N_{1} turns and the secondary, N_{2} turns. For convenience, we replace the transformer with the equivalent circuit model, ${ }^{2}$ Fig. 2 a , where $L_{m 1}$ is the magnetizing inductance (that part of L_{1} which is coupled by common flux with L_{2}) measured on the primary side, and $L_{l 1}$ and $L_{t 2}$ are the leakage inductances of the primary and secondary, respectively. The ideal transformer in the model has a turns ratio N_{a} / N_{1} for all frequencies including dc, infinite magnetizing inductance, and zero leakage inductances. All of these various parameters of the transformer may be tied together by Eqs. (1), (2), and (3).

$$
\begin{gather*}
L_{1}=L_{n}+L_{m 1} \tag{1}\\
L_{2}=L_{i n}+L_{m i}\left(\frac{N_{2}}{N_{1}}\right)^{1} \tag{2}\\
\left(\frac{N_{2}}{N_{1}}\right)_{z / f}=\frac{L_{m 1}}{L_{1}}\left(\frac{N_{2}}{N_{1}}\right) \tag{3}
\end{gather*}
$$

The \mathbf{T} of inductances in Fig. 2a are characterized by the inductance matrix ${ }^{8}$

$$
\left[L_{1} \left\lvert\,=\left[\begin{array}{cc}
L_{1} & L_{m 1} \tag{t}\\
L_{m 1} & L_{2}\left(\frac{N_{1}}{N_{1}}\right)^{2}
\end{array}\right]\right.\right.
$$

An earlier article dealt with single-tuned filters; here, we treat the double-tuned band pass type. For such a circuit, transformer coupled, we show how a simple pencil compass is enough to make not only the locus of the hump frequencies, but also, the 3 and 6 db bandwidth frequencies.

S-Plane for Filters

the determinant of which is

$$
\begin{equation*}
|L|=L_{1} L_{2}\left(\frac{N_{1}}{N_{1}}\right)^{2}-L_{m 1} \tag{5}
\end{equation*}
$$

Transformer Circuit Function

Thus, the circuit function of the transformer is in the form of Fig. 2b, where the inductances of the π section are given by ${ }^{8}$ (6), (7), and (8)

$$
\begin{align*}
& L=\frac{|\boldsymbol{L}|}{L_{2}}\left(\frac{N_{2}}{N_{1}}\right)^{t}=\frac{L_{1}}{L_{1}}\left[L_{2}-L_{1}\left(\frac{N_{1}}{N_{1}}\right)^{t}{ }^{\prime \prime}\right] \tag{i}\\
& a L=\frac{|L|}{L_{=1}}=\left(\frac{N_{1}}{N_{1}}\right)^{-1}\left(\frac{N_{2}}{N_{1}}\right)^{-1 / \ell} \\
& {\left[L_{2}-L_{1}\left(\frac{N_{2}}{N_{1}}\right)^{3}{ }_{w \prime}\right]} \tag{7}\\
& \omega_{L}=\frac{|L|}{L_{1}}=\left(\frac{N_{1}}{N_{1}}\right)^{-t}\left[L_{2}-L_{1}\left(\frac{N_{1}}{N_{i}}\right)^{3} / f\right] \tag{8}
\end{align*}
$$

and the factors a and b are

$$
\begin{align*}
& u=\frac{L_{2}}{L_{7}}\left(\frac{N_{\mathrm{i}}}{N_{2}}\right)\left(\frac{N_{1}}{N_{2}}\right), \tag{0}\\
& b=\frac{L_{2}}{L_{1}}\left(\frac{N_{1}}{N_{2}}\right)^{2} \tag{10}
\end{align*}
$$

Since both the primary and the secondary are to be tuned to the same center frequency, we must choose C_{2} and R_{2} of Fig. 1 such that

$$
\begin{align*}
& C_{2}=\frac{L_{1}}{L_{2}} C \tag{11}\\
& R_{2}=\frac{L_{t}}{L_{1}} R \tag{12}
\end{align*}
$$

resulting in the convenient equivalent circuit of Fig. 3. This circuit is two single-tuned filters tuned to the same center frequency, but differing in impedance level by a factor b. The filters are coupled by the inductance $a L$; the ideal transformer accounts for the transformer action.

The transfer impedance $Z_{21}(8)$ is characterized apart from a constant multiplying factor by the ratio of its zeros to its poles. ${ }^{4}$ The poles are the open-circuit natural or characteristic resonant frequencies of the circuit. One pair of complex poles is seen to be the

Fig. 1: This trang. former-compled, day. ble-tuned, band-pass filter is the circuit which is dealf with.

Fig. 2a: Transformer of Fis. 1 is replaced with this equivalent cireuif model.

Fig. 2b: Here the inductive T has been transformed into a

Fig. 3: Proper choice of $C_{2} \in R_{1}$ gives this equivalent circuit.

S-Plane (Continued)

common natural frequency of the single-tuned filters and is given ${ }^{1}$ by

$$
\begin{equation*}
s^{t}+\frac{1}{R C} s+\frac{1}{R C^{\prime}}=0 . \tag{13}
\end{equation*}
$$

The other pair of poles is a little harder to envision but may be computed from Fig. 4 where the two single-tuned filters are thought of as a series connection of two similar impedances (see Eq. 25, Ref. 1) in parallel with the coupling inductance. The LC-product of the equivalent circuit in Fig. 4 is

$$
(L C)_{n}=\frac{a(b+1) L^{2}}{a L+(b+1) L} \cdot \frac{c}{b+1}=\frac{a L C}{a+b+1}(14)
$$

(a)

Fig. 4: The two single tuned fifters may be thought of as a series circuit of two similar impedances paralleling the coupling inductance.
and the remaining poles are given by

$$
\begin{equation*}
s^{2}+\frac{1}{R C} z+\frac{a+b+1}{a L C}=0 \tag{15}
\end{equation*}
$$

The zeros of $Z_{21}(s)$ are those frequencies for which there is no transmission through the network. There is one zero at zero frequency due to the $\%$ of inductances, and there are 3 zeros at infinite frequency because of the two shunt capacitances separated by the coupling inductance. $Z_{21}(8)$ is now characterized except for the constant multiplier which may be calculated by assuming a limiting frequency (infinity) and a convenient output voltage. Thus we find

$$
\begin{equation*}
z_{\mathrm{ni}}(x \rightarrow=) \rightarrow \frac{\left(\frac{N_{\mathrm{i}}}{N_{\mathrm{i}}}\right) b}{a l c^{3} z^{3}} \tag{16}
\end{equation*}
$$

and
$Z_{n}(s)$

$$
\begin{equation*}
\frac{\left(\frac{N_{\mathrm{z}}}{N_{1}}\right) \frac{b}{a L C^{2}} a}{\left(s^{2}+\frac{1}{R C} s+\frac{1}{L C}\right)\left(s^{2}+\frac{1}{R C} s+\frac{a+b+1}{a b C}\right)} \tag{17}
\end{equation*}
$$

$Z_{21}(s)$ is seen to contain two closely spaced, isolated (high Q case) poles, equidistant from, but close to, the j-axis typical of the type of circuit we are analyzing. The general character of the amplitude response of this filter is a double-humped or peaked band-pass shape.

Impedance Vectors

We may show an impedance by vectors drawn in the S-plane from its poles and zeros to the point (fre-
quency) at which we wish to evaluate its response.' Also in the vicinity of interest near the isolated poles, all vectors are essentially constant in length and angle, except those drawn from the two nearby poles. For this condition, $\left|Z_{2_{1}}(j \omega)\right|$ behaves as

$$
\begin{equation*}
\left|Z_{31}(j \omega)\right|=\frac{k}{s_{1} s_{2}} \tag{18}
\end{equation*}
$$

where s_{1} and s_{2} are the magnitudes of the vectors from the two poles, and k is an appropriate constant. Fig. 5 is a magnified view of the S-plane in the vicinity of the two poles and shows the two-pole vectors and the angle θ between them. The area of the triangle ${ }^{5}$ formed by the two vectors and the line of length

$$
\begin{gather*}
2 s_{c}=\left(\frac{a+b+1}{a L C}\right)^{1 / t}-\left(\frac{1}{L C}\right)^{1 / 2} \text { joining the two poles is } \\
\text { arra of } \Delta=\delta_{4} \alpha=\frac{1}{2} s_{1} s_{2} \sin \theta \tag{18}
\end{gather*}
$$

therefore,

$$
\begin{equation*}
\left|Z_{a 1}(j \omega)\right|=h^{\bullet} \sin 0 \tag{20}
\end{equation*}
$$

where k^{*} is a constant. In the vicinity of the two poles $\left|Z_{21}(j \omega)\right|$ is dependent only on $\sin \theta$. The center or trough frequency of the filter is determined by the minimum value of $\sin \theta$ between the humps and from Fig. 5 is seen to be

$$
\begin{equation*}
\omega_{c}=\left(\frac{\mathrm{t}}{L C}\right)^{1 / 2}+s_{0} \cdot \text { IRadians/sec } \tag{21}
\end{equation*}
$$

Recall from geometry that the 3 points of a triangle describe a circumscribed circle of radius r given by the ratio of the length of a side to twice the sine of the interior angle opposite this side. Choosing from our triangle, the side $2 s_{0}$ and the angle θ we have

$$
\begin{equation*}
r=\frac{2 \theta_{\theta}}{2 \sin \theta}=\frac{\theta}{\sin \theta} \tag{22}
\end{equation*}
$$

for the radius of a circle circumscribing the triangle of Fig. 5. The condition for the hump frequencies

Fig. 6: This is the condition for maximally flat response-circle and j tangent meeting.

A REPRINT

of this article can be obrained by writing on company lettorhead to

The Editor
ELECTRONIC INDUSTRIES Chestaut \& 56th Sts., Phila. 39, Pa.

One other parameter of the double-tuned filter may be of interest, and that is the trough depth relative to the hump height. At a hump frequency, the magnitude of the impedance is $k\left(\theta=90^{\circ}\right)$ and at the center frequency, it is k sin θ_{C}, where θ_{0} is the corresponding angle between s_{1} and s_{2}. The relative trough depth is then
Depth $=\frac{k-k \sin \theta_{c}}{k}$
may be found by setting $\sin \theta$ equal to its maximum value unity and solving for the corresponding radius $r_{\mathrm{A}}=s_{0}$. The hump frequencies are then as shown in Fig. 5 given by the intersections of the j-axis with a circle drawn through the two poles with its center midway between them. As the loss factor a is allowed to increase, the hump frequencies are seen to move closer together until at the critically coupled or maximally flat condition, the humps merge into a single flat peak at the center frequency. This condition results as shown in Fig. 6 when the circle lies tangent to the j-axis and $\alpha=s_{\sigma}$ so that the center frequency is

$$
\begin{equation*}
\omega \text { mer. } / \text { lot }=\left(\frac{1}{L C}\right)^{1 / 2}+\frac{1}{2 R C^{\prime}} \cdot \text { IRadians } / \text { sec } \tag{2:3}
\end{equation*}
$$

Bandwidths

The 3 db points down from the peaks are determined by setting $\theta=45^{\circ}$ for which the radius of the circumscribed circle is $r_{3 \Delta b}=\sqrt{2} s_{o}$. As in Fig. 7, the center of this circle is at the intersection of a line through the center frequency with the circle that determines the hump frequencies. The intersections of the j-axis with this new circle determine the 3 db bandwith. For the critically coupled case, the 3 db bandwidth is

$$
\begin{equation*}
\left.3 d b B W\right|_{\text {mas. }} / l \mathrm{st}=\frac{(2)^{1 / s}}{R C} \cdot \quad \text { Radians } / \mathrm{sec} \tag{24}
\end{equation*}
$$

Similarly, if the assumptions leading to Eqs. (18) and (20) hold over a slightly wider range of frequencies, the 6 db bandwidth may be found by setting $\theta=30^{\circ}$ for which the radius is $r_{\text {bab }}=2 s_{0}$. The center of this circle lies on a line through the center frequency and $\sqrt{\mathbf{3}}$, to the right of the center of the locus of hump frequencies circle. Fig. 8 shows the 6 db points as determined by the intersections of the j-axis with this circle. For the critically coupled case, the 6 db bandwidth is

$$
\begin{equation*}
\text { It }\left.d b B W\right|_{\text {mas. }} \text { flat }=\frac{(12)^{1 / 4}}{R C} \cdot \text { Radians } / \mathrm{sec} \tag{25}
\end{equation*}
$$

From reference to Fig. 5, we see that

$$
\begin{equation*}
\sin \theta_{c}=\frac{2 \boldsymbol{\alpha} s_{e}}{s^{2}+\alpha^{2}} \tag{27}
\end{equation*}
$$

and thus the relative trough depth is

$$
\begin{equation*}
\text { Depth }=\frac{\left(1-\frac{\alpha}{s_{0}}\right)^{v}}{1+\left(\frac{\alpha}{s_{0}}\right)^{2}} \tag{28}
\end{equation*}
$$

1. J. J. Jones, "S-Plane Ails Filter Design," Electronic Industries. Feb. 1961.
2. Reintjes and Coate, Irinciples of Radar, McGraw-Hill, pl) 12t-130.
3. F. A. Guillemin. Introductory Circuit Theory, John Willey and Sons, pp. $158,159,371$.
4. E. A. Gulllemin, "An Introduction to Modern Filter Theory.: froc. National Electronic Cunference, Vol. 9. Februars, 19.it.
5. H. J. Mclaughlin, "Design and Adjustment of Bandpass Amplifiers," M.I.T., Research Lab. of Electronics, I'rog. Repurt 47, Uctuber. 1917.

F. H, Mitchell. Jr.

Through quantum mechanics,
Esoki predicted the I-V characteristic curve for a tunnel diode. This article shows how to evaluate that integral and produce a useful, algebraic equation for the curve

Deriving the Tunnel Diode Curve

By FERDINAND H. MITCHELL, JR.
 Eloctronic Dosign Engr.
 Chrysler Corporotion
 Miszile Division
 Hunfsville. Alaboma

FOR a slightly forward-biased tunnel diode, quantum mechanics predicts the following $I-V$ characteristic curve:

where, $f_{c}(E)$ and $f_{v}(E)$ are Fermi-Dirac distribution functions, μ_{c} and μ_{v} are the Fermi levels, and E_{c} and E_{0} are band edges, in the conduction and valance bands, respectively, in each case, Fig. 1. The integral, Eq. 1, may be evaluated in an approximate manner to give a useful algebraic equation for the tunnel diode curve.

The factor $f_{c}(E)-f_{v}(E)$ has the general form shown in Fig. 2. The factor has its peak value

$$
\|_{v}=\frac{1-e^{-i} \rho^{V / R T}}{1+e^{-i} q^{V / K T}} \text { at energy } E_{v}=\frac{1}{2}\left(\mu_{s}+\mu_{v}\right)
$$

The second factor under the integral, $\sqrt{\boldsymbol{E}-E_{0}} \sqrt{E_{0}-\boldsymbol{E}}$. \boldsymbol{u} the product of two parabolas, Fig. 3, symmetrical about $B=\frac{E_{e}+E_{0}}{2}$

Since $E_{0}+E_{e}-\left(\mu_{0}+\mu_{0}\right)=\left(\zeta_{0}-\zeta_{0}\right)$ with ζ_{0} and ζ_{0} constants, Fig. 1, the two sets of curves, Figs. 2 and 3 may be superimposed on the mance axis $E_{0}+B_{0}=$ const., $\mu_{0}+\mu_{0}=$ const., with ares of symmetry displaced by a distance $e=50-5$.

To perform the integration, approximate the integrand as follows:**

$$
\begin{array}{ll}
f_{0}(E)-f_{0}(E)=\left[V \alpha_{1}-\left|E-E_{p}\right|+\alpha_{2}\right] \alpha_{4} & n>0 \\
\sqrt{E-E_{0}} \sqrt{\bar{E}--E}= & \\
\quad\left[\left(\alpha_{1}-V \omega_{0}\right) \alpha_{3}-\left|E-E_{p}+\cdot\right|+\alpha_{t}\right] \alpha_{7} & m>0
\end{array}
$$

- L. Esaki, Phys. Rev. 109, $608(1958)$.
- In the following development, the alphas represent constants.

Fig. 1: The energy band diagram indicates the various constants used in derivation.

Fig. 2: The Fermi-Dirac distribution function has the general form shown below.

Fig 3: The parabolic product forms the second factor ender the integral of Eq. I.

If $s=\theta$, the curves are symmetrical about E_{p}, and F.q. (1) now becomes:

$$
\begin{align*}
I=\alpha_{c} & \int_{E_{p}}^{E_{0}}\left|V \alpha_{1}-\left(E-E_{p}\right)+\alpha_{7}\right| \\
& \mid\left(\alpha_{1}-V^{m}\right) \alpha_{0}-\left(E-E_{p}\left|+\alpha_{0}\right| d E\right. \tag{2}
\end{align*}
$$

Letting $X=E-E$,

$$
I=\alpha_{c} \int_{0}^{1}\left[\zeta_{0}+\zeta_{0}-q V\right) \quad\left[\alpha_{i}+\alpha_{1}-x\right]\left[\left(\alpha_{4}-V=\right) \alpha_{3}+\alpha_{1}-x\right] d x
$$

If n and m are integers, the integrated expression is a power series of order $m+n+1$:

$$
I=\sum_{i=0}^{n+m+1} a_{0} v^{n} \quad 3 \leq n+m+1
$$

Therefure, the above integration predicts a cubic is the lowest order equation that will approximate the tunneling current curve. Since $I=0$ for $V=0, a_{0}$ can be set equal to zero.

$$
I=a_{1} V+a_{3} V^{\prime} v+w_{3} V^{\eta}
$$

Shifting the origin, this can be written

$$
\begin{equation*}
I=A(a-V)^{3}+B\left(a-V^{\prime}\right)^{2} \tag{3}
\end{equation*}
$$

The three constants of Eq. (3) may be evaluated by demanding:

$$
\begin{aligned}
& \left.\frac{d I}{d V}\right|_{V=V}=0 \\
& I=I_{n}, V=V_{n} \\
& I=0, V=0
\end{aligned}
$$

The resulting equation is:

$$
\begin{align*}
& I=I_{V}\left[\frac{19}{4}\left(\frac{V}{V_{y}}\right)-\frac{3}{2}\left(\frac{V}{V_{\nu}}\right)^{2}+\frac{1}{4}\left(\frac{V}{V_{v}}\right)^{\prime}\right] \\
&=\frac{I_{D}}{4 V_{D}^{2}} V\left(3 V_{D}-V\right)^{2} \tag{4}
\end{align*}
$$

This is the lowest-order approximation to the actual curve, and generally agrees with the theoretical curve, for small V, Fig. 4. To obtain a more exact fit, a higher order solution can be found by noting that the tunneling current curve should approach the $i=0$ axis tangentially as V / V, becomes large. The final equation

A REPRINT

of this article can be obfained by writing on company lefterhead to The Editor
ELECTRONIC INDUSTRIES. Chestnut \& 56th Sts., Phila. 39, Pa.
should also be exponential, since the original integral was of this form. Applying these conditions, the equation can be rewritten

$$
\frac{I}{I_{*}}=f(V) \exp -\beta V / V
$$

where $f(V)$ is arbitrary. Expanding exp $-\beta V / V$, in an infinite series:

$$
\begin{equation*}
\frac{I}{I_{F}}=f(V)\left[1-\frac{\beta V}{V_{\theta}}+\frac{\beta^{\beta}}{2}\left(\frac{V}{V_{F}}\right)^{\prime}-\cdots \cdot\right] \tag{5}
\end{equation*}
$$

For Eq. 5 to conform with Eq. 4, $f(V)$ must be evaluated as:

$$
\begin{equation*}
f(V)=K\left(\frac{V}{V_{p}}\right) \tag{6}
\end{equation*}
$$

Where K is a constant. Substituting:

$$
\frac{I}{I_{p}}=K \frac{V}{V_{p}}-K \beta\left(\frac{V}{V_{p}}\right)^{2}+K \frac{\beta^{0}}{2}\left(\frac{V}{V_{p}}\right)^{2}-\ldots
$$

The characteriatic equation has now become:

$$
\frac{I}{I_{p}}=\kappa \frac{V}{V_{p}} \exp -\beta V / V
$$

Inserting boundary conditions as given above

$$
K=e \quad \beta=1
$$

The equation for the tunneling current becomes:

$$
\begin{equation*}
\frac{I}{I_{D}}=\frac{V}{V_{D}} \exp \left(1-\frac{V}{V_{D}}\right) \tag{7}
\end{equation*}
$$

The usual diode equation can be added to Eq. (7) to form a semi-empirical tunnel diode characteristic curve that includes the excess current, Fig. 5.

$$
I=I, \frac{V}{V_{\theta}} \exp \left(1-\frac{V}{V_{*}}\right)+I_{*}\left[\left(\exp \frac{q V}{K T}\right)-1\right]
$$

Fig. 4: The lowest order approximation to the actual agrees with the theoretical curve.

Fig. 5: This semi-empirical tunnel diode characteristic curve includes excess current.

By FINN JORGENSEN
Sr. Electronic Engr.
Mincom Division
Minnesoto Mining $\& \mathrm{Mrg}$. Co.
Los Angoles, Calif.

In Magnetic Instrumentation Recording...

Phase Equalization Is Important

In audio work, only a musician's ear can detect phase-distorted transients. But in instrumentation recording, phase distortion has far more importanceit can be highly detrimental. Here's how to provide proper phase equalization without sacrificing trequency response.

TNSTRUMENTATION recording systems are an important factor in modern science and research; and, the demands for accurate data preservation are increasing. The word accurate is thoroughly emphasized by MIL-specs and IRIG Telemetry Standards. Tremendous progress has been achieved in the recording field over the last decade, and the state of the art is constantly improving.

One important specification in recording is frequency response. Until recently, this has been considered to be of paramount importance, along with signal-to-noise ratio and high standards of performance in the mechanical transport of the tape. Frequency response, however, is closely allied with phase response; and when complex waveforms must be reproduced faithfully, the latter appears to be more important, even at the expense of a Hat frequency response. Improper phase equalization can cause serious impairment of pulse waveforms and misinterpretation, or even loss, of vital data.

In audio work, where magnetic recording first became accepted, only a musician's ear can detect the phase-distorted transients. But in instrumentation recording, phase distortion becomes highly detrimental. Fig. 1 shows what happens to a recorded and reproduced square wave with and without phase distortion. When amplitude and phase of a waveform are correctly equalized, the reproduction is as faithful as the frequency response permits, but any phase distortion shows up very strongly. Not only is the original waveform obscured, but as the frequency of the square
wave changes, the reproduced waveform also changes and the correlation with the original data may be entirely lost.

It is possible, however, to provide proper phase equalization in an instrumentation recorder without sacrifice of frequency response. For a complete understanding, we will review the magnetic record-playback process.

Record-Playbock Analog

For a first approximation of the analog circuit for the record-playback process, we will consider only the inevitable thickness losses during recording and the playback equalizer to correct these losses. The thickness losses are due primarily to self-demagnetization when the recorded wavelength is in the order of, or less than, the thickness of the magnetic coating, and can be expressed mathematically :

$$
\text { Thirkness lose } A_{1}=\frac{\lambda}{2 \pi c}\left(1-\exp \frac{-2 c}{\lambda}\right)
$$

where,
$\lambda=$ the wavelength, and
$c=$ coating thickness.
The remanence in the coating is determined by the trailing edge of the recording field, which has both a longitudinal and a perpendicular component. For long wavelengths, the demagnetization factor N is nil for the longitudinal remanence but almost unity for the perpendicular colponent. For decreasing wavelengths, N increases for the longitudinal component and when λ equals 2π times the thickness c, it is approximately 0.5 , causing a 3 db loss in the outer flux. The perpendicular component becomes more effective and will be the dominating remanence for shorter wavelengths associated with a $+90^{\circ}$ phase shift. The remanence will further concentrate in the surface of the coating and the outer flux will decrease 6 db per octave.

During playback, the flux is differentiated and a flat frequency response is finally restored through an integrator with s shelf for frequencies above f_{n}, Fig. 2.

Therefore, the analog circuit is as shown in Fig. 2. where the amplitude versus frequency curves for the flux and voltages also are shown. The net response for the record current i to the output voltage V_{o} is flat with no phase shift.

Other losses also play an important role in the magnetic recording, and at frequencies above f_{o} the first losses encountered are those caused by the finite length of the gap in the playback head and the epacing between the tape and the head interface. Mathematically these losses can be expressed:
(iap loss:

$$
20 \log \frac{\sin \frac{\pi}{\lambda}}{\frac{\pi l}{\lambda}} d b
$$

Spacing loss: $\quad 54.6 \frac{d}{\lambda}$
where,
$l=$ effective gap length.
$\lambda=$ recorded wavelength, and
$d=$ distance between tape and playback head.
In the analog circuit, these losses are represented by

Fig. 2: This is the magnetic record-playback analog: there is no loss encountered except the tape thickness loss.

REFERENCE PACES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHINC NEW HAS BEEN ADDED
An extra-wide margia is now provided to permit them to be punchod with a standard three-holepunch without obliterating any of the text. They can be filed in standard three.hole aotebooks or folders.

Fig. 3: Analog circuit and characteristics for the magnetic record - playback process: (1) response considering only thickness loss, in. duced playback volt. age, and integrating equalizer: (2) includes gap and spacing losses; (note the constant phase) ; the net transfer characteristics including the head losses.

Fis. 5: By applying delay line rechnigues Phis equalizer is med in the Mincam CM100.
$\theta_{0}=A\left(e_{r}-k e_{g}\right)=A e_{i}(1-k \cos \theta) 上 \theta$

A REPRINT

of this article can be obfaied by writing on company leffertead to The Edifior
ELECTRONIC INDUSTRIES, Chestaut 6 56th Sts, Phila. 39, Pa.

Phase Equalization (Continued)

$R_{l}(\lambda)$ and $R_{c}(i)$, and the losses they introduce are not accompanied by phase shifts.

At very high frequencies, eddy currents in the head introduce further losses (skin-effect, complex permeability) accompanied by positive phase shifts; they are represented by Z, and Z, to indicate their complex nature.

Equalization

Fig. 3 shows the complete analog circuit together with the over-all amplitude and phase characteristic. Note that the magnetic record-playback process violates this almost universal rule for electrical networks: "If the frequency response is flat within a certain frequency range, there is no phase shift within the same range." Without discrimination, this rule has been applied to magnetic tape recorder/reproducers. and the amplitude characteristic simply equalized with common RC and/or RLC networks.

Before we discuss how this distortion can be partly corrected or, by proper equalization, eliminated. we will introduce the concept of envelope delay.
Consider a four-terminal network with a certaill phase characteristic:

$$
\bullet=f(\omega)
$$

where, $w=2 \pi f$ the anvelope delay is defined as

$$
T=\frac{d \phi}{d \omega} .
$$

It is simply the slope of the phase characteristic, and its magnitude is equal to the transmission time for the corresponding frequency. If the phase characteristic for a given network varies linearly with the frequency, the envelope delay T is a constant and all frequencies arrive at the output simultaneously, so a complex waveform is correctly reproduced. But if the slope varies, different frequencies will arrive at the output with different time delays, and destructive interference will result.

Now let us return to the problem of correct equalization. RC and/or RLC networks can easily produce the necessary equalization which results in a flat frequency response, Fig. 4. But the phase characteristic will be nonlinear and result in a considerable envelope delay for the higher frequencies. If an all-pass lattice network is inserted after the equalizer, we can obtain a more linear phase characteristic and consequently: reduce the envelope delay.

Notural Solution

From the analog circuit we recall that there were certain losses during recording as well as during playback; and, since the tape, to be properly used, should leave the record head with a constant flux (less, of course, the thickness losses), both pre- and postequalization are used in most recorders. Therefore, a natural solution is to apply constant phase equalizers rather than add phase-correcting networks to a standard recorder where the pre-equalizer already has recorded considerable high frequency phase distortion

Fig. 6: Overall envelope delay curve for the Mincom CM100; the tape speed is 120 cps .
onto the tape. Furthermore, it removes the problem of phase matching.

Such equalizers are sometimes used by applying delay line technique. The equalizer is shown in Fig. 5. The input voltage e_{i} is transmitted along the delay line and received without attenuation at the receiving end. Since the termination here is open circuited, the signal is reflected and combines with e_{i} at the transmitting end to the voltage e_{g}. The termination here is equal to the characteristic impedance Z_{n} of the delay line, and there is no further reflection. The voltage e_{0} at the sending end, therefore, will vary cosinusoidally with frequency because of the reflected signal.

When the voltages e_{r} and a slightly attenuated portion ke, are applied to a differential amplifier, the output voltage e_{0} will vary with frequency as shown.

In practice, the value of k is in the order of 0.99 , resulting in a 40 db attenuation of the low frequencies and a rise toward 0 db at f_{0}^{\prime}. When k equals unity, the slope approaches 12 db /octave with no phase shift from input to output of the equalizer.
We use one delay line equalizer in the record circuitry to overcome the record losses, and one in the playback circuitry where a low-pass filter with a Gaussian roll-off also is incorporated. This eliminates noise and unwanted frequencies above the upper frequency limit of the recorder, and the Gaussian characteristic assures a smooth attenuation with excellent phase response.

Fig. 7: (Top) Square wave inpur; (center) reproduction from a recorder with ao phase equalization; and (bottom) the reproduction from a recorder with proper phase equalization.

Fig. 6 shows the over-all envelope delay curve to be
 good pulse reproduction. This is shown in Fig. 7 for $10 \mu \mathrm{sec}$ pulses separated by $10 \mu s e c$. The input to the recorder is a well-defined square wave and the photographs below it show the reproduction from a standard recorder (b) and from the Mincom CM-100 with constant phase and better frequency response (c). In (b) the phase distortion is heavy with the high Irequencies arriving too soon, but in (c) the reproduction is faithful, clearly underlining the most important role of proper phase equalization.

Shifted Raster Reads Variable Font

ALTHOUGH many firms are interested from the inventory control aspect, the Post Office has been the driving force behind activity in the automatic reading machine field.

Since the Post Office has no control of the printed material to be read by the machine - the ad-dresses-it requires a device that can automatically read not one, not several, but various styles of typewriter print and a large range of print sizes obtainable from the printing press.

One of the latest entries into the race for an acceptable machine and a very promising one, is that of the Philco Data Recognition Dept., Blue Bell, Pa.

This data recognition system reads about 60,000 written characters a minute-the average person reads 1500 . The device being developed for the Post Office will read addresses on envelopes by separate recognition of individual letters and numbers. Combined with a mail sorting machine supplied by the Post Office Dept., it will read 36,000 letter-sized envelopes pel hour.

If we stop to think for a minute about the various fonts of type available, and don't forget italics in

The flying spot beam from the CRT at the left is focused through the lens in the center to scan the lefter. The unit is capable of reading machine printed alphanumeric symbols but not handwritten ones.
the same font, we can begin to appreciate how tough a job this can be. Philco's solution is the use of a flying spot scanner with a raster which shifts automatically until it recognizes the type face, spacing, and the possibility of italics.

From the knowledge gained through solid state electronics, and the study of transistors and epitaxial growths, the art of thin-film technique developed. The building of crystalline structures by vaporizing and other methods introduced new processes to grow metallic structures for electronic applications. The fechnology has made extraordinary progress in the creation of electronic components, and is leading to many revolutionary concepts.

A Survey of Thin-Film

 TechnologyBY JOHN WATKINS
Assisfant Editor
Eloctronic Industries

Part Twe of Twe Parts

Pesistance may be provided in integrated circuits in at least four ways. The three intrinsic ways are by bulk resistivity, by transverse conduction in thin diffused back-biased regions within a semiconductor substrate, or by an epitaxial layer of opposite impurity back-biased with respect to the parent substrate. The extrinsic way is by deposited thin-film resistors on top of the substrate. Each method has particular advantages for certain applications and a complete integrated circuit capability requires mastery and evaluation of each. Both methods may be sensitive to their ambients.

Tin oxide films have reached sheet resistance values of over 5000 ohms per square. With conventional resistance patterns, values of up to 1.0 meg ohm can be achieved. The films are produced by hydrolysis in a technique that has been brought to a high degree of development.

Indium oxide films have been produced by a twostep metallizing-oxidizing process involving a vacuum deposition of pure indium in a low pressure pure O_{2} atmosphere followed by a low temperature (below $200^{\circ} \mathrm{C}$) thermal oxidation for several hours. This low temperature technique has application in instances where higher temperature resistance fabrication would damage other temperature sensitive thin film functions.

Nichrome films can be evaporated directly on clean substrates by volatilizing the alloy from is tungsten heater. These films show excellent adhesion when
substrate surfaces are heated to $300^{\circ} \mathrm{C}$. Nichrome resistance films can be reproducibly deposited and show relatively high stability on standing. They possess an average temperature coefficient of resistance of 6×10^{-5} ohms per ohm per degree centigrade over the temperature range $-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. However, these films have low resistivities which limit their application to 500 ohms per square. In addition, the surfaces of unencapsulated Nichrome films are prone to a certain amount of corrosion and oxidation and contamination which limit compatability with other thin-film circuit element fabrication. Specific geometries of Nichrome resistance elements are usually achieved by the use of mechanical masks during evaporation. These films are quite amenable to forming ohmic contacts with other metal films.

After processing as one substrate the
cut provides two plug-in lugged decks.

Back-Bias Types
Diffused back-biased regions cover the class of resistors formed by transverse conduction within a thin diffused back-biased layer of semiconductor. They cover a much wider range of values and have additional advantages in their possible range of temperature coefficients. By control of the diffusion profile it is possible to achieve positive, negative, or substantially zero temperature coefficient at room temperature. The difficulty in using diffused resistors in practical circuits lies in their great sensitivity to the back-biasing voltage including the selfgenerated component of back bias caused by the voltage drop in the resistor. Where very high resistance of non-critical value is required, diffused resistors may have great value. Their other attractive application is in circuits needing an electrically alterable resistance.
Epitaxially grown resistive layers can form resistive regions with useful characteristics. The method is similar to the diffused back-biased resistance described above but the epitaxial process promises better control of the junction characteristics. The epitaxial resistor requires a compatible masking technique during layer growth if mesa techniques and wet chemistry are to be avoided.

Resisfor Construction

As an alternative to the carbon resistor, attention has been centered on the use of metal alloy films deposited chemically, or physically onto a ceramic, or glass substrate. Applications such as deposits on ceramic rods, by evaporation of nickel chrome films in a high vacuum. have shown much success.
The evaporated metal film resistor has the great advantage that it can be made with a substantially zero temperature coefficient of resistance by deposition of the correct alloy composition on a substrate.

Through the use of masks, patterns can be produced to make multiple resistors in one evaporation. In some instances, conductors, resistors and insulators can be deposited to form laminar circuits. Satisfactory resistors can be made from semiconductors such as oxides of tin, and antimony deposited onto a substrate.

Looking to the future, the use of monocrystalline elements such as silicon suitably doped into the correct resistivity range, is more attractive as it presents the possibility of making resistors together within the same block of material. If the resistance and temperature problems can be overcome, the advantages will be considerable.
A recent application by RCA, at the micro-electron ics Department, produced a vacuum deposition resistor directly on a substrate in the form of a ceramic rod resistor, 0.020 inch diameter by 0.1 inch long. Each end of the resistor was metallized for soldering to the circuit pad. The resistive was vacuum deposited on a 0.060 inch of the body and covered with a deposited inorganic film and a silicone resin to avoid damage during handling.

Design of Thin-Film Resisfors The geometrical design of Thin-Film resistors is

A Univac engineer is shown taking thin Film sub-
strate measurements of individual spot parameters.
discussed in detail in the following description based on CBS Electronics research data.

Thin-film resistors to be produced in multiple on microcircuit substrate can be calculated if the following information is available;

1) The value required for each resistor.
2) The watts to be dissipated in each resistor.
3) The ambient temperature of the substrate.
4) The approximate area available for each resistor.

Three charts have been designed to assist in the design of these resistor arrays.

Chart 1 presents the unit resistance values, using lin. as the unit of length for various line widths, and several practical thicknesses of chromium films given in ohms per square.

Chart 2 is a graph relating film thickness in ohm per square to the loading, in watts per square in. allowable on a glass or Fotoceram substrate to maintain a reasonable stability for normal life under a load at $25^{\circ} \mathrm{C}$ ambient.

Experimental data is being validated to stabilize it at less than a 3 per cent change in resistance during a 1000 hour load life. At present it serves as a reasonable design basis.

A four layer unit of computer logic circuits by I.R.C. Philadelphia.

Thin Film (Continued)

Another chart shows the derating curve for ambient temperatures up to $150^{\circ} \mathrm{C}$ which must be applied to the loading in watts per square in. determined by Chart 2 where a resistor is to operate above $70^{\circ} \mathrm{C}$. This derating curve is consistent with characteristic B of MIL-R-10509C for fixed film resistors.

The desired value of a resistor (R) is related to the unit resistance from Chart $1\left(\mathbf{R}_{1}\right)$ and length in inches by the formula:

$$
L=\frac{R}{R_{i}}
$$

The evaporation of a single thickness of film for all resistors on a substrate is a practical requirement. A choice of this film thickness must be made, considering both permissible loading and available area for all the resistors.

Generally a choice of resistor parameters is possible. The practical approach is to work toward the heaviest film (lowest ohms per square) without losing sight of the physical dimensions of the resistor. The total area for placing a high value resistor may restrict the thickness of a film that can be chosen. Extremely short lengths require high accuracy in the conductor registration to obtain accurate resistance values in production.

A consideration of the several possible geometries can be obtained from Chart 1 and a tentative film thickness chosen.

For this chosen thickness a maximum permissible loading is obtained from Chart 2 and modified for the ambient temperature at which the substrate is to operate from another prepared chart.

Having this permissible watts per square in. and the desired watts to be dissipated, the minimum allowable square ins. can be calculated from:
(Chart 2)
An actual area for the required resistance value (R) is then;

Actual area of $R=$ width \times lugth. where Iength $=$
$\frac{R}{\text { unit mesistancre }}$
from Cliart $1\left(\boldsymbol{R}_{1}\right)$

When the length of the resistor is greater than the length of the allocated areas, a simple folding of the resistor line for maximum surface utilization can be resorted to. The insulating area between folds should be held to at least .002 in .

Example;

Find the minimum practical area required for three 0.1 watt resistors of $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}$ value operating at $110^{\circ} \mathrm{C}$ ambient.
Solution :
Space is a controlling factor for the 10 K resistor as seen from a study of Chart 1. Allowable loading may be a determining factor for the 2 K resistor if too thin a film is chosen. Supposing a 500 ohms per square had been chosen. The new minimum area for adequate dissipation would be $\frac{1}{2,5}=0.4 \mathrm{sin}_{1}$. it.

Now examine the $\mathbf{2 K}$ resistor;

The $\mathbf{5 0 0}$ ohms per square column (Chart 1) shows a .100 in . width which gives a 5000 ohms/ one in. line and a length of $\frac{2000}{5000}=.04 \mathrm{in}$. The area then will be 0.04 sq . in., which is adequate for the dissipation requirement, but it is not a desirable resistor configuration because of its excessive width.
With experience the circuit translator learns to select for his starting point a film thickness which pro-

glossary of terms

To avoid ambiguity the following terms are defined

Active ... The condition when a device is acting as an amplifier, or an active device capable of any form of amplification. The iransfer of a quantity of energy to an atomic system to raise it to an excited state, in which it can parficipate in a process not pcssible when the system is in its ground state.

A: Angstrom, the Angstrom unit equals 10^{-0} centimeters Visible light has a wavelength of a few thousand (4000-7500) Angstrem:

Anodise . . . A process used to impart corrosion resistant or decorative colored films to metal surfaces The protection afforded by the axide film ordinarily present on the surface of aluminum arricles is considerably increased by bui!ding up this film by anodic oxidation. The process is useful for identification by coloring components, and for creating dielectric surfaces as the anodization provides an insulating film

Back-wall Photovolraic Cell, a cell in which the light must pass through the front electrode and a semi - conductor layer before reaching the barrier layer.

Barrier layer. An electrical double layer formed at the sarface of contact between a metal and a semi-conductor, or between: two metals, in order that the fermi leveis in each material should be the same
Epitaxy. The oriented intergrowth between two solid phases. The surface of one crystal provides, through its lattice structure, preferred positions for the depositions of the second erystal
Fermi level, the point of an energy level diagram corresponding to the top of the fermi distribution; or the energy level (in a semiconductor) for which the Fermi-Dirac distribution function has a value of $1 / 2$

Magnetostriction. The term literally implies magnetic contraction, but it is understood to include a number of closely allied phenomena relating to ferromagnetic substances under magnetic influence

Junction p-n type, a region between p and n type semi-conducting material

Photon, a quantum of electromagnetic energy
Permeability, the capacity of a membrane or other material to allow another substance to penetrate or pass through it. Absolute perme-
ability, B / H. or magnetic induction divided by magnetizing force.

Photovoltaic Effect, the produrtion of an eiecpromotive force by incidence of radiant energy. commonly light, upon the junction of two dissimilar materials, such as p-n function or metal semi-conductor junction

Piezo-electric Effect. The interaction of mechanical or electrical stress-strain variajoles in a medium Piezo-electricity is only pussible in crystals classes which do not possess a center of symmetry. The directions in which tension or compression develop polarization parallel to the strain are called the piezo-electric axis of the cristal.

Q . . . A figure of merit equal to whi' for an inductor, where R is the equivalent series resistance For a capacitor. Q is $I / w C R$, again the ratio of reactance to effective resistance For a medium Q is the ratio of displacement current density to conduction current density The basic equation may also be expanded to include series and parallel resonant circuits. for which cases appropriate approximations of equations may be developed Q value is also used as a synonym for nuclear disintegration energy
duces a satisfactory geometry for production of all resistors.

Conduction

Evaporation of conductors covers the vaporization of metals at high temperatures in vacuums at $10^{-4} \mathrm{~mm}$ Hg or better. The metallic vapor moves in substantially straight lines onto a substrate which may be mechanically masked to limit the deposition to desired regions. The nubstrate must be very clean and must generally be raised to an elevated temperature in order to assure intimate contact of the particles with the substrates after impact before solidifying. Alternative means of producing conductive material by one of a number of techniques. Evaporation may be of a single metal or of an alloy. In the latter case the deposition may be made simultaneously from a common source or sequentially from separate sources, after which the substrate may be heated to produce an alloy on the surface of the substrate. If the alloy penetrates the substrate, as in the case of a semiconducting substrate, the result is classed as intrinsic.

In the study of conductors by deposited techniques, resistivities below one order of magnitude higher than metal conduction have been achieved. Where mechanical or thermal considerations made adhesion more important than achieving the lowest ohmic resistance the introduction of a chrome-gold alloy has been useful.

Sputtering differs from the evaporation process

Chart One

pCRMISSIBLL LOADING IN WATtS PLR aCUARL INCH FOR A REASONABLL STABLLITY AT AMBILNT TEMPLRATURE OF $25^{\circ} \mathrm{C}$
discussed above in the conditions under which the conductive material reaches the substrate. Sputtering is the result of a glow discharge between an inert anode and a bombarded cathode of the desired conducting material. Because the presence of gas at 10^{-2} to $10^{-1} \mathrm{~mm} \mathrm{Hg}$ is necessary for the generation of the ionized bambarding molecules, the sputtering process is inherently harder to keep clean. Even so the process has certain advantages over vacuum evaporation in the relatively low temperatures needed or generated in the system, and thus the lower chance of contamination from the evaporative source. It finds one of its most important applications in the production of thin films of tantalum for resistors or capacitors.

Pyrolysis as used for deposition of conducting films is the same process discussed previously for insulators. It has the advantage of flexibility of materials and conditions of deposition but the disadvantage that the deposited material cannot be masked by mechanical shields as satisfactorily as the vacuum evaporated materials. Pyrolysis finds application where an entire surface can be coated as for electrostatic or magnetic shielding, or where the unwanted material can be removed selectively after deposition. Pyrolysis may also be carried out on selective regions under certain circumstances by employing a catalyst.

Plating of conductors includes electroplating, chemical or electroless plating, and vapor plating. Electroless plating tends to cover everything as does vapor plating. Selective removal of unwanted material can be combined with electroplating to build up conduct-

Chart Twe

UNIS SHY RESISTANCE CHURT								
$\begin{aligned} & \frac{\ddot{y}}{\frac{2}{5}} \\ & \frac{5}{5} \\ & \frac{9}{4} \end{aligned}$								
. 006	4166	8333	16,606	23,000	33.332	50,000	66,664	83,333
. 007	3560	1120	16,260	21,360	28.400	42,720	56,960	71,200
. 008	3160	- 280	- 12,360	18,840	25.120	37,680	30,240	62,100
. 009	2790	3;80	11,160	16.760	22.320	36,400	4.640	\$5,800
. 010	2500	sono	10,000	13,000	20,000	30,000	40,000	30,000
. 011	2275	45\%	9100	13,650	13.200	27.300	36,400	45.00
. 012	2080	4100	3320	12,400	16,640	24,960	33,280	41.600
. 013	19.0	3840	7680	11,420	15,360	22,840	30.720	31,600
. 016	1780	3560	7120	10,680	16,240	21,460	23.480	33,600
. 015	1665	3330	6660	10,000	13,320	20,000	26,060	33,300
. 016	1565	3130	6260	9390	12,520	10,780	25.040	31,300
. 017	1670	2940	Saso	8820	11,760	17,640	23,520	24,400
. 010	+383	2770	SS50	8310	11,080	16,620	22,160	27,700
. 019	1315	2630	S260	7890	10,520	13,780	21.040	26,300
. 020	1230	2500	5000	7500	10,000	15,000	20,000	25,000
. 021	2170	2340	4680	2020	9360	14,060	16.720	23.400
. 022	1135	2270	6360	6810	9000	13,620	18.160	2:,700
. 023	1085	2170	4360	6510	sam	13.020	17,360	21,700
. 024	1040	2080	4160	6240	8320	12,480	16,840	20,200
. 023	1000	2000	4000	6000	8000	12,000	16,000	20,000
. 050	500	1000	2000	3000	2000	6.000	0.000	10.000
.100	250	300	1000	1500	2000	3,000	6,000	5.000

Thin Film (Continued)

ing paths. Both electroplating and electroless plating suffer from danger of contamination from the wet chemistry involved. Vapor plating is capable of achieving high-purity deposition.

Mechanical Coating includes conducting glass pastes which can be painted onto gross terminal pads to bridge irregularities that vapor deposition cannot manage. It also includes various solders that may find temporary use in making conductive paths to external terminals. The conductive glasses have the advantages of bonding well to many substrate materials and of reasonable match in thermal expansion coefficient.

Inducfance

Deposited nickel-iron films are among the extrinsic means available for storing energy resulting from the flow of current. Deposited nickel-iron films of 82% 18% composition and 1000A to 4000A thickness have been used for storing energy for logical matrices and as small-valued low-frequency inductors. A requirement is the presence of a magnetic field during the deposition process to orient the magnetic anisotrophy. Unfortunately this limits the magnetic film configuration to simple forms. If the driving magnetic field is applied in the direction of the "easy" magnetization of the domains, a square-loop B-H curve results which is useful for memory and for magnetic logic applications. When the magnetic field intensity is applied normally to the direction of "easy" magnetization, a more linear B-H curve results which is useful for linear systems and impedance transformation.

Deposited ferrites have possibilities as a second extrinsic technique for obtaining inductance. Glass, which is a mixture of metal oxides, is currently deposited by the pyrolytic decomposition of suitable metallic-organic esters. The reaction temperature required to form the ferrite material from mixed oxides is in the order of $300^{\circ} \mathrm{C}$. Since ferrites do not have the same magnetic anisotrophy as thin nickel-iron films, no magnetic field is needed upon deposition and the form factor is not limited as it is with metallic films. Magnesium-manganese ferrite material provides a square-loop B-H curve and is, therefore, suitable for magnetic logic elements. Manganese-zinc ferrite provides a high Q linear material usable to about 500 kc . Nickel-zinc ferrite provides a high $\mu \mathrm{Q}$ linear material suitable for the frequency range 0.5 to 100 mc . By proper masking methods it is possible to form thin-film solenoids which surround such deposited ferrite materials and provide a means for coupling energy into and out of the material. Finally ferrite materials possess variable permeability which is a function of the applied dc magnetic field, and this can provide a control element for ac magnetic flux. Such variable inductors can serve as electronic tuning elements or other control elements.

Air core geometries are suitable for r-f coils and other high-frequency small-valued inductors. It is possible to deposit "air core" pancake-type windings of thin-film conductors. When associated with thinfilm insulators of low dielectric constant the pancake-
type winding can be formed in multilayers to increase the total inductance of the element.

Ferrite substrates provide the possibility of using a single or multi-aperture ferrite material both as an inductive core and as a substrate for other integrated circuit elements. The coupling to the ferrite can be achieved by thin-film conductors. These elements, because of dependence of their permeability on the applied field, can also serve as a means for controlling magnetic flux.

Photovoltaic Cells

Photovoltaic cells are self-contained current and voltage generators, which produce a potential difference between their terminals when exposed to light or ionizing radiation. Recent research by RCA laboratories, hes investigated the use of Thin-Film in the application of polycrystalline photovoltaic cells.

The essential properties that a Thin-Film of a polycrystalline semi-conductor must possess to be applicable to this type of cell is described.

In the case of a p-n junction cell, the thickness of the film must be great enough to absorb an appreciable amount of the protons having an energy greater than the band gap of the film material. In addition the carrier diffusion lengths must be equal or exceed the film thickness. A polycrystalline layer must have minimum grain size at least equal to the film thickness. This ensures that a carrier diffusing towards the junction will not be intercepted by a grain boundary and thus have the opportunity to recombine. In the case of a metal semi-conductor junction these requirements for a thin layer may not have to be as astringent as for a p-n junction device.

The silicon p-n junction electronvoltaic cell unveiled in 1954, converted radioactive radiation into electrical energy with practical efficiencies. At the same period a silicon p-n junction photovoltaic cell was developed to give a solar conversion efficiency of 6 per cent. Recent production line units have obtained $10-14$ per cent, ani laboratory units have reached 15 per cent. The advent of this cell made it possible to convert useful amounts of solar energy directly and efficiently into electricity. The present cost of silicon cells is about 200 dollars per watt for high efficiency cells, and 100 dollars for low efficiency cells.

Cadmium sulfide photovoltaic cells have been investigated by RCA Laboratories to find the feasibility of large-area Thin-Film cells. A brief description of this technique follows:

Thin-Film cadmium sulfide layers were deposited on a transparent conducting (tin oxide Pyrex* substrates). The pressure during evaporation was slightly lower than $10^{-5} \mathrm{~mm} \mathrm{Hg}$. These layers were about $1-2$ microns thick and were hard and adherent.

Microscopic observation revealed the layers to be microstalline and free of pin holes. Their optical properties appeared to be very similar to cadmium sulfide single crystals and were transparent to wavelengths greater than 5200A. There was no visible evidence of layer deterioration even after standing for several months in the atmosphere. Indications show the resistivities of the layers to be about 100 ohm- cm .

The photovoltaic cell was completed by applying an - Registered Trade Mark
opaque layer of copper to the exposed surface of the cadmium sulfide layer. Electrical contacts to the cell were made on the copper layer and on the tin oxide. The transparent tin oxide coating appears to make an ohmic contact to the evaporated cadmium sulfide film.

Thin-Film Superconductors

A discovery made by Ivar Giaver of General Electric Research Laboratories is contributing to tunneling and superconductivity technology, using Thin-Film applications. In 1960 it was announced that tunneling had been observed in devices consisting of two metal thin films, which were separated by a thin insulating layer, with one or both of the films in the superconducting state.

From the phenomena of these functions it may be possible to new forms of diodes, switches, triodes, resistors or capacitors.

In this device the tunneling occurs through the simple barrier of an insulating film, rather than through the charge depletion region of a semiconductor p-n junction.

If the tunneling of electrons is regarded as waves rather than particles of energy, the transmission through the thin layer can be better understood. When the charge-carrying waves strike a barrier, such as an insulator, almost all of them will be reflected back from the barrier. Possibly a portion of the waves will pass through the barrier if it is thin enough. On the other side the presence of these tunneling waves can be detected as current. A substantial current may flow through the barrier film due to the large number of waves generated.

To produce a capacitor it was found necessary to make the insulating film infinitesimally thin, in the region of 10 to 100 atoms thick. In using ultra thin insulating films it was found that when one of the conducting films was a superconductor, instead of a straight line graph showing the current increased proportionately with voltage, a conrex curve was produced. This indicated that a tunnel diode effect might be involved.

This led to the revelation that a region of "negative
resistance" in which the current decreases with voltage, when both metal films were superconducting.

It was apparent that certain energy levels in a superconductor are "forbidden" to electrons, and that where energies are equal in the metal film the electron cannot tunnel through.

The negative resistance effect is unique in that it is independent of the direction in which the current flows. Which is not the case in a tunnel diode. In addition the negative resistance may be changed by subjecting the device to a magnetic field or by changing the temperature.

These experiments have been conducted using thinfilms of aluminum, lead, indium, and tin, all of which are superconductive near liquid helium temperatures.

In almost all the experiments, aluminum oxide was the insulating layer. It was found also possible to obtain tunneling with tantalum oxide, niobium oxide, and nickel oxide as well.

Thin-Film Amplifiers

New means for achieving electronic amplification based on thin films has been demonstrated recently.

The term "Metal Interface Amplifier" (MIA) designates a new Thin Film device developed by Philco Research Division. Experimental devices are described and the central role played in them by thin metal films.

The amplifier in its present form consists of a thin film sandwich of metal, metal oxide, and metal deposited on a germanium substrate. Under the control of signal voltages applied across the two metal films, "energetic" electrons are transferred through the intermediate oxide layer by the process known as quan-tum-mechanical tunnelling. The inner metal layer is so thin that these injected electrons pass completely through to the succeeding layer where they undergo an energy boost. At the same time, electrons normally residing in this thin metal film at low energy remain confined by natural electrical barriers at the metal interfaces and do not contaminate the process of controlled conduction of injected electrons.

The two metal layers and the germanium substrate serve as injector, control film, and collector respectively corresponding to the emitter, base, and collector

A diagram of a multiple cathode sputtering system.

A REPRINT

of this article can be obtained by writing os company lettertead to

The Editor
ELECTRONIC INDUSTRIES Chestaut 656 h Sts., Phila. 39, Pa.

Thin Film (Concluded)

of the transistor. The MIA cannot be classed as a transistor, however, since electron current through the metal base is actually the flow of "majority carriers." This is distinct from transistors where base current is always effected by the flow of "minority carriers" in a semiconducting material. The MIA likewise differs from tunnel diodes, either as semiconductors or as cryogenic metal films, which depend on a negative resistance characteristic between two terminals. Moreover, the three-terminal arrangement permits isolation of the circuits which couple energy in and out of the device.

The power gain characteristics of the MIA have been demonstrated in several fashions. Initially, power gain was computed from detailed measurements of the electrical characteristics of the device, thereby confirming theoretical predictions. The MIA has since been combined with suitable passive elements to form an oscillator.

Significance of the MIA lies in low cost, reliable circuitry, microminiaturization techniques. Indications show higher operating frequencies, bandwidths. gain, and power handling capabilities are possible. The use of films of polycrystalline metals and their oxides may lead to devices to operate over a wider temperature range, and which withstand greater radiation fluxes, without sustaining permanent damage. in all respects-undoubtedly the electronic theories, It is anticipated the MIA will supercede the transistor and successful prototypes indicate this potential.

Sputtering

Philco Research Division have had considerable success in the development of sputtering techniques, and a brief description of the technique is given. An arrangement for sputtering tantalum is shown in the diagram. A plain tantalum cathode, 6 in . sq. and $1 / 4 \mathrm{in}$. thick. is suspended from the grounded cathode cover. The glow discharge from the upper surface of the plate is avoided by making the gap " D " less than the crookes dark space between the cathore and anode, thereby confining the discharge to that region, which results in much higher sputtering current densities. It also prevents the metal being deposited on the upper surfaces of the bell jar.

The substrates are preheated by a nichrome heater element attached to the underside of the anode which is also connected to a thermocouple. The anode can be raised or lowered in respect to the cathode to obtain optimum sputtering conditions.

A gold cathode is suspended from the grounded aluminum cover which serves the same purpose as the tantalum cathode cover. The cover is attached to a rotary arm which enables the gold cathode to swing between the anode and cathode.

The cathode acts also as a shield to prevent tantalum oxide being deposited onto the substrates during the cleaning period of the tantalum cathode, which takes about ten minutes. The gold cathode is cleaned by allowing it to sputter for several minutes well out of the way of the substrates.

The positive side of the high tension supply is grounded, and taken into the chamber via the baseplate. The negative side of the supply enters the system via a high voltage terminal. The lead wire from this terminal plugs into the tantalum cathode suspension stud, otherwise the bare end of the negative terminal would discharge to ground unless closely encased by the grounded covers; the function of which is exactly the same as the cathode covers.

The thickness of the tantalum film on the substrate is measured by the resistance of the tantalum deposited on a small monitor alongside the substrate on the anode.

The sputtering was performed in an argon atmosphere of $\mathbf{5 0 - 1 0 0}$ microns $\mathbf{H g}$. The cathode potential was approximately 2500 volts, and the current density approximately $2 \mathrm{ma} / \mathrm{cm}^{2}$. The cathode to anode distance was 1 in .

With a six in. sq. cathode, only a central area, three ins. sq. can be used if the same value of sheet resistivity is to be obtained for all circuit plates, as thirtysix $1 / 2 \mathrm{in}$. wide substrates can fit into this area with adequate zone safety.

It was discovered that if the cathode is not utterly clean before operation the sheet resistivity distribution will be inconsistent.

An interesting effect was shown in the sheet resistivity of the monitoring resistor which was alway: about 10 per cent higher than the substrates around it. The effect was attributed to the passage of current through the tantalum film as it was deposited. Investigations into the cause of this effect have so far enabled no conclusions to be drawn.

Acknowledgments

This survey is made from the studies of many engtneers and companies who provided most valuable assistance, and are acknowledged with appreciation. Peter B. Myers, Motorola, Inc., "A Survey of Microsystem Electronics," 1961, Los Angeles.
CBS Electronics Report, Research Laboratory, Lowell, Mass.
Eric Bittman, Burroughs Research Center, Paoli, Pa. John G. Simmons, Research Div., Philco Corp., Phila., Pa .
Leon I. Maissel, IBM, Poughkeepsie, N. Y.
Univac Engineering Center, Blue Bell, Pa.
Ivar Giaver, General Electric Co., Research Labs., Schenectady, N. Y.
J. A. A. Raper, Electronics Lab., Syracuse, N. Y.
H. I. Moss, RCA Labs., Princeton, N. J.
E. Luedicke and A. H. Medwin, Micro-Electronics Dept., RCA, Somerville, N. J.
Texas Instruments Incorporated, Dallas, Texas.
Dr. John Bohrer, International Resistance Co., Phila., Pa .
David Moore, Lear Inc., Solid State Physics.
Contributions were helpfully given by British Communications \& Electronics.
Mr. A. C. Lynch, Post Office Research Station, England.
Mr. G. C. Gaut, Plessey Co., England.
Prof. L. F. Bates, Dept. of Physics, University of Nottingham, England.

By LOUIS CALGAGNO and RICHARD E. HOLSON
Rheom Somiconductor Corp.,
Mounfain View. California.

Interpreting
 Transistor Noise Performance

Abstract

Equivalent Noise Voltage can prove a useful, and simple concept as a noise factor. With relatively inexpensive equipment the ENV can be measured, and a noise figure can be obłained from a single algebraic calculation.

WITH the advent of the production of silicon double-diffused mesa transistors in large quantities, the circuit designer now has available transistors which combine many desirable features. Not the least of these is a high degree of uniformity in many parameters, including that of excellent low-noise characteristics. This article evaluates "Equivalent Noise Voltage" referred to the input, as a useful measure of transistor low-noise performance, compared with the commonly used parameter Noise Figure. The effects of source impedance variation are illustrated.

Theoretical Background
Transistor noise is due to several phenomena intrinsic to the device. This noise is termed fluctuation noise, and its important sources can be summarized:1
(A) Semiconductor or "excess" noise, which is believed to be a consequence of surface phenomena, such as collector leakage, and which has been empirically determined to have a frequency dependent characteristic

$$
\begin{equation*}
v^{2}=\frac{K_{1} V_{f}}{f^{n}} \tag{1}
\end{equation*}
$$

where $0.9<n<1.2$.
(B) Shot noise associated with the flow of carriers across the emitter-base junction

$$
\begin{equation*}
\overline{v_{2}}=\kappa_{2} l_{0} r_{0}^{2} B_{0 f f} \tag{2}
\end{equation*}
$$

(C) Shot noise associated with the flow of carriers across the collector-base junction

$$
\begin{equation*}
\overline{r^{a}}=\kappa_{3} I_{e} r_{z}^{2} B_{e f /} \tag{3}
\end{equation*}
$$

Fig I. Frequency dependent Noise Factor Components.

(D) Shot noise associated with the partition of emitter current between collector and base

$$
\overline{i^{2}}=K_{1} l_{1} R_{0!!}
$$

(E) Thermal noise generated by the base resistance r_{b}, which according to Nyquist's theorem is

$$
\begin{equation*}
\overline{v^{2}}=\downarrow k T r_{b} B_{01 /} \tag{151}
\end{equation*}
$$

where, in the above equations,
V_{c} is collector voltage
$r_{\text {, is emitter resistance }}$
r_{e} is collector resistance
r_{b} is base resistance
I_{c} is collector current
1 . is enitter current
k is Boltzmann's constant
T is temperature in degrees Kelvin
$B_{e / f}$ is Effective Noise Bandwidth
$\boldsymbol{K}_{1}, \boldsymbol{K}_{2}, \boldsymbol{K}_{3} . \boldsymbol{K}_{4}$ are empirically determined constants
These several sources can be lumped into three terms: $1 / \mathrm{f}$ noise, shot noise, and thermal noise.
The above equations contain a term $B_{\text {eff }}$ for Effec-

Transistor Noise (Continued)

tive Noise Bandwidth. This is the bandwidth of the idealized power passband, i.e., a rectangle with the same height and total area as the true passband. For a 6 db per octave rolloff of the passband, the $B_{\text {efl }}$ equals 1.57 times the 3 db passband. ${ }^{2}$

A common figure of merit for an amplifier is Noise Factor, commonly stated in decibels. Several definitions exist, all equivalent, each expressing Noise Factor from a slightly different viewpoint. The simplest is

$$
\begin{equation*}
\text { Noise Factor }=\frac{\text { Signal to Noise ratio at input }}{\text { Signal to Noise ratio at output }} \tag{6}
\end{equation*}
$$

Since an amplifier is always driven from some source impedance, which generates some thermal noise, another common definition is

$$
\text { Novise Factor }=\frac{\text { Total Output Noise Power }}{\begin{array}{c}
\text { Output Noise Power due to thermal } \tag{7}\\
\text { Noise of the Source Impedance }
\end{array}}
$$

This latter definition is useful because it indicates a relatively simple method of measuring Noise Factor. Total Output Noise Power is the sum of that due to the thermal noise of the source resistance plus that noise power generated within the amplifier. Therefore, if a signal is injected sufficient to double the observed output power, that signal is then equal to the RMS value of thermal noise plus the noise, referred to the input, generated within the amplifier. Then:

$$
N F=\frac{\overline{v_{v}^{J}}}{4 k T R_{v} B_{* \delta J}}
$$

where
v_{0} is.the injected signal that doubles output power.
R_{θ} is the source resistance.
Note that the thermal noise voltage, v_{T}, generated in a resistor R_{g} is described by the equation.

$$
V^{\prime} T^{2}=4 k T R_{\theta} B_{e f /}
$$

or at room temperature by

$$
v \tau^{2}=1.6 \times 10^{-20} R_{v} B_{\text {os }}
$$

The noise sources indicated may be included in the equivalent circuit of the transistor. Noise Factor may then be calculated according to the most convenient of the several definitions. This is well covered in the literature. ${ }^{3}$ It is shown that for all practical purposes, the Noise Factor equation is identical for all three transistor connections. It is further shown that the Noise Factor equation consists of three terms,

$$
\begin{equation*}
N F=N F_{L O}+N F_{I N T}+N F_{H I} \tag{9}
\end{equation*}
$$

where

REFERENCE PACES

The pasta in this section are perforated for easy remeval and relention as valuable reference matesial. SOMETHINC NEW HAS BEEN ADDED
An extra-wide margin is now provided to permit them to be punched with a standard three-hole. punch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

$$
\begin{align*}
N F_{L O}= & \frac{\left(R_{\theta}+r_{\theta}\right)^{2}}{4 k T R_{\theta} f}\left(K_{i} I_{c}+K_{2}\right) \tag{10}\\
N F_{I N T}= & 1+\frac{r_{b}}{R_{\theta}}+\left(\frac{q}{2 k T R_{\theta}}\right)\left(R_{\theta}+r_{b}\right)^{2} \\
& \left\{\left[\left(1-a_{0}\right)+\left(\frac{r_{\theta}}{R_{\theta}+r_{s}}\right)^{2}\right] I_{c}+I_{c o}\right\} \tag{11}\\
N F_{H t}= & {\left[\frac{q}{2 k T R_{\theta}}\right]\left(R_{\theta}+r_{b}\right)^{2} I_{c}\left(\frac{f}{f_{v}}\right)^{2} } \tag{12}
\end{align*}
$$

Examination of equations (10), (11), and (12) yields that the Noise Factor curve will have the shape indicated in Fig. 1. The high frequency portion of the curve is of academic interest only, since that portion is significant only beyond the useful frequency range of the transistor.

Calculation of Noise Factor from the above equations is at best difficult. For this reason, it is more convenient to measure Noise Factor.

Equivalent Noise Voltoge

A useful measure of the noise characteristics of a transistor may be defined as input "Equivalent Noise Voltage." Consider the circuit of Fig. 2. In this circuit E_{b} sets the operating point of the transistor.
The gain of the circuit is easily calculated. Since

Fig 3. Equivalent circuir for detormining ENV.
the input is a-c short-circuited through E_{b}, any noise at the output must, therefore, be generated in the transistor or the resistors. If the resistors are made small enough, their contribution will be insignificant. For practical circuit values, even to hundreds of Kilohms, this is the case. If the measured output noise voltage is referred to the input, the Equivalent Noise Voltage (ENV) is obtained. This quantity is a function of collector current, collector voltage, circuit effective noise bandwidth, and circuit impedances.

Its usefulness lies in the fact that it gives the designer a reference value for a minimum detectable
signal. For example, for a signal-to-noise ratio of unity, the rms signal voltage equals the rms ENV. For higher S / N ratios the signal must be proportionately higher than the ENV.

Noise Factor can easily be calculated from ENV. Consider the equivalent noise circuit of Fig. 3, where a signal source v_{0} of impedance R_{g} is added. The ENV generator must be modified by the factor ($R_{j 0}+$ $\left.R_{g}\right) / R_{\text {c }}$ so that the voltage across terminals a-a ${ }^{1}$ with the input short-circuited (short $a-b$) will be ENV. Noise Factor is then derived from equation (7), For $v_{p}=\mathbf{0}$,

$$
\begin{align*}
P_{\text {oot }}\left[R_{v}\right]= & {\left[A\left(v_{r}\right) \frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right]^{2} } \\
& =A^{2} 4 k T R_{0} B\left[\frac{R_{\text {in }}}{R_{\varepsilon}+R_{\text {in }}}\right]^{2} \tag{13}\\
P_{\text {owt }}\left[E N V^{\prime}\right] & =\left[A\left(E N V^{\prime \prime}\right) \frac{R_{\text {in }}}{R_{\theta}+R_{\text {in }}}\right]^{2}=A^{2}(E N V)^{2}(14)
\end{align*}
$$

Then from equation (7)
The point is that NF is a measure of the degradation of the S / N ratio of equation (6), but the highest S/N ratio is obtained at the lowest ENV where the signal voltage remains constant. However, if a transformer is used to drive the transistor, its ratio should be chosen so that the transistor sees the optimum source impedance for lowest NF.

Summary
The concept of Equivalent Noise voltage (ENV) is discussed. Its relation to Noise Factor is derived to be:

TABLE I

Samp!e measurements to show correlatlon between
(

Comparison of the averages of the two methods, 13.8 db and 14.5 db , shows good agreement to two significant deures, the accuracy of measurement.

Fig. 4. Noise test circuitry.

$$
N F=1+\frac{\left(R_{\varepsilon}+R_{i n}\right)^{2} E N V^{2}}{4 k T B_{i / f} R_{v} R_{i n}^{2}}
$$

This result is experimentally verified (see Table 1). It is shown that wide-band ENV can be measured easily with an amplifier and a true RMS voltmeter. (Fig. 4). The complete measuring technique is described in the section on "Measurements."

A study of the variation of ENV and NF shows that ENV is lowest if R_{g} is low, less than 500 ohms. (Fig. 5).
N.F. is low if $R_{0}<10 \mathrm{~K}$ except for very low values of R_{0}. Below $R_{0} \approx 500$ ohms, NF rises. This indicates a degradation in the signal to noise ratio rather than an increase in noise level. In considering noise level with respect to source impedance, when not using an impedance transformer, better results will be obtained by considering ENV rather than N.F.

Conclusion

Equivalent Noise Voltage is a useful, easily understood concept. The measurement of ENV requires simple, relatively inexpensive equipment and yields noise figure from a single algebraic calculation.

$$
\begin{align*}
N F & =1+\frac{\left(E N V^{\prime}\right)^{2}}{4 k T B_{0 / f} R_{\theta}} \\
\text { or } N F & =1+\frac{\left(R_{\theta}+R_{i n}\right)^{2} E N V^{\prime 2}}{4 k T B_{u / f} R_{\theta} R_{* o^{2}}} \tag{16}
\end{align*}
$$

This relationship was experimentally verified by measuring the Noise Factor by the single-frequency method and comparing the result with that calculated

Fig. 5. Transistor Type RT5230 Noise Figure and ENV vs. Source Resistance.

Transistor Noise

(Concluded)

from the ENV measurement. Agreement was in all cases excellent as shown by the comparison in Table 1.

ENV was experimentally determined to be a function of both R_{g} and R_{cm}. Therefore equations 15 and 16 are not by themselves sufficient to determine minimum NF.

Meosurements

The test circuit of Fig. 4 was used to determine ENV as a function of $R_{0}{ }^{*}$. The test procedure was as follows:

1. Set the desired operatiug condition. (ise fig. 5).

2 Determine B off.
3. Masure overall gain by inserting a signal r_{v}.

3. Measure rms volts at output.
6. Divide by measured gain to obtain $\sqrt{E N V^{12}+v T^{2}}$.
7. Determine ENV' using $\mathrm{I}^{2} \mathrm{~T}^{2}=4 k T B_{\text {aff }} R_{a}$.
8. Correct ENV' to ENV. (See fig. 3).

The measurements were made wide-band, i.e., 3 db down at 0.8 cps and 10 KC .

Experimental Results

Fig. 5 shows the experimentally determined variation of ENV us a function of R_{p}. The Noise Figure curve was calculated from the ENV curve according to equation (16). The NF curve was then experimentally checked by the single frequency powerdoubling method of equation (8). Agreement was excellent.

Fig. 5, ENV vs. source resistance R_{p}, indicates lowest ENV for R_{g} less than about 500 ohms. The NF curve shows a broad minimum for $500<R_{g}<10,000$ ohms. The reason for the increase in NF for $R_{p}<500$ is obvious from equation (16). ENV is essentially constant as R o decreases, therefore NF increases. Note that ENV increases rapidly above $R_{g} \approx 500$ ohms, doubling in value while NF remains essentially constant. Therefore, the NF curve should not be the primary criterion for choosing a source resistance.

[^4] noisy.

References

145, Findres, et al, "Transistur Electronics." Prentice Hall, 455. H1 122-134
= Davidson. "Semirconductor Frod." Fell. 1959, 1pp. 15-20. 19:- DeWitt and Rossoft "Transistor Electronics," McGraw-Hill,

A REPRINT

of this article can he obrained by writing on company letterthead to
The Editor
ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

By Vincent petrucelly
 Section Monoger

American Mochine \& Foundry Co. II Bruce Ploce
Greenwich, Conn.

For the Designer...

Analyzing

FROM Ohm's Law we know that for any given resistance the current will be proportional to the voltage. The volt-ampere characteristic of a resistor may be determined by "interrogating" the resistor with a voltage and determining the current that flow:

In Fig. 4, R_{1} and E_{1} could be in a "black box." Their volt-ampere characteristics can still be determined by interrogating the black box at points a and b. Such an interrogation results in characteristic (1) of Fig. 4b. Also, interrogration of R_{2} results in characteristic (2).

If we interrogate R_{1} and E_{1} in parallel with R_{2}, we can determine the characteristic of the combination by noting that the interrogating voltage is common to R_{1} and E_{1} in parallel with R_{2}. Therefore, we may use characteristics (1) and (2) to obtain combined characteristic (3) graphically by reading the currents for (1) and (2) at each assumed common voltage e_{x} and adding them algebraically. The shortcircuit current of the E_{1}, R_{1} and R_{2} combination is again the current that flows when a and b are shorted. It is point (4) in Fig. 4b. Thus, the short-circuit current is E_{1} / R_{1}. The open circuit voltage of the E_{1}. R_{1} and R_{2} combination may be found from curve (3) at point (5) where the current is zero, and this is $\left(E_{1} / R_{1}\right) \times R_{2}$.

Diodes

If the non-linear circuit element is a diode, its voltampere characteristic appears as curve (1), Fig. 5c. Suppose 4 resistor and battery are placed in series with the diode and we want to find the voltage drop across the diode and the current through it. If the circuit of Fig. 5a is redrawn so that the resistor is the load for the diode, we obtain Fig. 5b. We plot the volt-ampere characteristic of the diode as curve (1) and of the resistor and battery as curve (2). Then the mirror image of curve (2) gives us the load line for the diode. The point of intersection of curves (1) and (3) is the operating point of the diode.

```
By using the volt-ampere characteristics of non-linear devices,
designers can get a grophical picture of the action of a component under chosen conditions. He is then better able to modify parameters by visual observation of the graphical parameters.
```


Non-Linear Circuits

If we want to determine the volt-ampere characteristic of the diode with the resistor and battery in parallel, we need only interrogate at a-b, Fig. 5b. By noting that the interrogating voltage e_{3} is common to both branches and that the currents in both branches add algebraically, sets of points for i_{s}, and e_{s}, for the parallel combination are obtained, curve (4).

Curve (4) then represents the volt-ampere characteristic of the combination shown in Fig. 5b. If a new combination is desired, Fig. 6a, the graphical analysis may be made again by considering each element in turn. Note that Fig. bia shows a form of an AND) circuit (an output occurs only if all inputs are present). The solution for AND circuits driving other AND or OR (an output occurs if any input is present) circuits may be found by the process just described. considering each element in turn.

The AND circuit of Fig. 6a should be analyzed for the several conditions under which it will operate. For one case the input to D1 could be at a high voltage, while the input to D2, low. This would prevent the appearance of a high voltage output at point 0 in Fig. 6a. An example of this is given in Fig. 7, which shows how curve (1) of Fig. 6c is displaced because of the presence of voltage E_{2}. Using the same principles discussed above, the operating point is found as shown in Fig. 7c. Note this point is not far different from that in Fig. 6c, where both diodes are at a low potential.

Fig. 8 is drawn for the case where both diodes are at a high potential. This is the case where the output of the AND circuit should be high, and it will be observed that this is so on the graph of Fig. 8c.
(Continued on following page)

Fip. I: Volt-ampere characteristics of a resistor by interrogation.

Fig. 2: The interrogation of a resisfor and a battery in series

Non-Linear Circuits (Continued)

Fig. 3: V-A characteristic of a resistorbaptery combination with the battery polarity reversed.

Fig. 5: Diode characteristics; (a) with resistor in series, (b) resistor as load.
(b)

Common Base

Fig. 9 shows a family of curves of collector voltage versus collector current for a PNP transistor, for constant emitter voltages. Operating points may be determined as follows:

The interrogating voltage e_{s} may be used to obtain the volt-ampere characteristic of the load resistor and battery, curve (1) in Fig. 1. If this curve is reflected on to the transistor characteristic, we obtain curve (2), which is the proper load line for the transistor when the characteristics are plotted as shown. The load line (2) may now be used to obtain other operating points.

Assume that we want the quiescent collector operating point to be 2 milliamperes. From Fig. 9, this corresponds to $V_{\mathrm{e}}=150 \mathrm{mv}$, at the point marked Q . It is now necessary to determine the emitter conditions for 150 mv . This can be done by referring to a second set of curves, Fig. 10, where V_{e} is plotted against I_{e} for constant V_{c}.
Fig. 9 shows that at point Q the collector voltage is -10 volts and the emitter voltage is 150 mv . This point may be located on Fig. 10, where it is also shown as Q. Fig. 10 tells us that the emitter current is also 2 milliamperes. We now have enough information to determine \boldsymbol{R}_{ν}.

$$
E_{t}-I_{\theta} R_{g}-V_{0}=0
$$

If we assume $E_{0}=1.5$ volts, we may solve for R_{g}

$$
R_{\theta}=745 \Omega
$$

The input impedance R_{i} is also obtained from Fig. 10 at point \mathbf{Q}.

$$
R_{i}=\left.\frac{\Delta V_{e}}{\Delta I_{e}}\right|_{V_{e}}=41.5 \Omega
$$

This common base configuration has a low input impedance.

If we want to determine the change in output with change in input, we may proceed as follows:

Fig. 9 shows that for the load line plotted, a change in V_{e} from 125 to 150 mv produces a change in V_{c} of 13 to 10 volts, while I_{c} goes from 1.2 to 2 ma . Fig. 10 at the transferred load line shows that a change in V_{c} from 13 to 10 volts at V_{e} from 125 to 150 mv produces a change in I_{e} of from 1.5 to 2 ma .

Table 1 summarizes this data.
The transferred load line, Fig. 10, may be derived from Fig. 9 , point by point from the load line (2). The transferred load line then serves to yield information concerning the output for various input values. Thus for $V_{0}=200 \mathrm{mv}$, the transferred load line tells us that $V_{c}=-1$ (in Fig. 10). Fig. 9 shows that with $V_{c}=-1$, for load line (2), $I_{c} \cong 3.9 \mathrm{ma}$.

The voltage gain is $A_{0}=\frac{I_{c 1} R_{L}-I_{c 2} R_{L}}{I_{01} K_{0}-\bar{I}_{02} \bar{R}_{0}}=10$
The current gain is $A_{1}=\frac{I_{c 1}-I_{e 2}}{I_{01}-I_{02}}=1$
The power gain is $A_{p}=\frac{I_{e c^{2}} R_{L}-I_{d a^{2}} R_{L}}{\bar{I}_{e 1^{2}} \bar{R}_{\theta}-I_{\theta 2^{2}} \bar{R}_{\theta}}=10$
The transferred load line, Fig 10, shows that we cannot D.C. couple the circuit of Fig. 9a to another

stage like itself, unless we use bias to effectively shift the transferred load line so that it appears in the second quadrant. Then, if in the second quadrant, it may be considered the load line for the preceding stage; and, therefore, reflected onto the third quadrant output characteristics of the preceding stage to obtain operating points.

Common Emitter

Fig. 11 shows a family of curves of collector voltage versus collector current for constant base voltage. Operating points may be determined as follows:

Assume a load resistance, $R_{L}=8 \mathrm{~K}$. By interrogation, curve (1) of Fig. 11 is obtained, and this becomes load line (2) when it is reflected onto the transistor characteristics.

As before, if we wish to operate with $I_{c}=2 \mathrm{ma}$. we see now that the base should be operated at $\mathbf{- 1 5 0}$ mv with respect to the emitter. (See Fig. 11.) Also the collector is at -10 volts. Referring to Fig. 12, we see that for $V_{e}=-10, V_{e}=-150 \mathrm{mv}$, and I_{b}, is -12μ a. We now have enough information to determine R_{p} and E_{b} from Fig. 12a:

(a)
(b)

(c)

Fig. 8 (left): The AND circuit of Fig. 6 with both diodes biased.

Fig. 12: Interrogation of the base for a common emitter circuit.

Non-Linear Circuits (Continued)

$$
-I_{0} R_{0}+E_{0}-V_{0}=0
$$

Aswuming $E_{6}=1.5$ volts

$$
\therefore R_{\theta}=102,000 \Omega
$$

The input impedance from Fig. 12h, at point Q is

$$
R_{0}=\left.\frac{\Delta}{\Delta} \frac{I_{0}}{I_{0}}\right|_{V_{e}}=3000 \Omega
$$

Here's how to determine change in output with change in input.

Fig. 11 shows that for the load line plotted, a change in V_{n} from 125 to 150 mv produces t change in V_{c} of from 13 to 10 volts, while I_{0} goes from 1.2 to 2 ma . With this information, Fig. 12 shows that $I_{\text {s }}$ goes from 4 to 12 microamps under these conditions. Summarizing this, we obtain Table 2.

Tho voltage gain is $A_{0}=\frac{I_{e 1} R_{L}-I_{\infty} R_{l}}{V_{\omega 0}-V_{\infty}}=2 \%$
The current gain is $A_{b}=\frac{I_{a t}-I_{a t}}{I_{b 1}-I_{b 2}}=I(K)$
Common Collector
This circuit is shown in Fig. 13a. The equations that describe the static conditions are given below: (Assuming voltage drops to be positive).

$$
\begin{gather*}
P_{0}-V_{0}-V_{0 \theta}=0 \tag{1}\\
I_{0}=I_{0}-I_{c} \tag{2}\\
f_{i r}-V_{r e}-V_{00}=0 \tag{:3}
\end{gather*}
$$

Fig. 13 b is a plot of collector to emitter voltage V_{r} versus collector current. I_{e}. Interrogation is accomplished from collector to emitter by e_{r} Fig. 13a. yielding curve (1). The reflection of curve (1) ento the collector plane yields the load line (2). This Inad line gives us $V_{r e r} I_{c}$, and $V_{s 1}$, Fig. 13b, which are uniquely determined for the 8 K load. With V_{h} and $V_{\text {ce }}$ determined, we may enter the base plane of Fig .

Fig. 13: Interrogation of collector for common collector circuit

12 to obtain I_{b}. Knowing I_{b} and $I_{\text {c }} I_{\text {c }}$ may be calculated from $I_{0}=I_{e}-I_{e}$. With V_{0} determined we may calculate $V_{0,}$ from Eq. (1), above, for assumed values of $e_{\text {a }}$.

Using numerical values, we obtain the following: From Fig. 13b, the parameters of Table 3 are obtained for selected portions of the load line.
From Fig. 12b, I_{0} may be obtained for the values of V_{b} and V_{0} in Table 3. This is shown in Table 4.
Now that I_{b} and I_{c} are known, $I_{\text {e }}$, may be calculated from Eq. (2), above. This is tabulated in Table 5.
Knowing $V_{\text {b }}$, we may calculate $V_{\text {eg }}$ for assumed values of e_{0}.
Table 6 illustrates the emitter follower action of the common collector configuration, where $V_{p o}$ follows closely the variations of e_{s}.
The base resistor and battery may be determined as follows:
Assume we wish 2 ma to flow in R_{r}. From Fig. 13 this corresponds to point Q, where $V_{r}=-10$ volts, $I_{\mathrm{e}}=2 \mathrm{ma}, V_{\mathrm{b}}=150 \mathrm{mv}$. With this data, Fig. 12 tells us that $I_{b}=-12 \mu \mathrm{a}$. We may now express voltages in the base circuit as follows:

$$
-I_{\mathrm{t}} R_{z}+E_{v}-V_{t}=0
$$

Aswuming $E_{1}=1.5$ volta

$$
R_{\theta}=112.500 \Omega 8
$$

The voltage gain in expresearl as $A_{1}=\frac{\Delta V_{00}}{\Delta c_{0}}=0.85$

$$
\text { The current gain is } A_{1}=\frac{\Delta I_{0}}{\Delta I_{b}}=51.0
$$

Output Impedance

The output impedance is $V_{\text {ef }} / I_{\text {e }}$. On Fig. 12, R_{g} is plotted for both $E_{\mathrm{b}}=1.5 \mathrm{v}$ and $E_{\mathrm{b}}=330 \mathrm{mv}$.

For the value of $E_{0}=330 \mathrm{mv}$, the load line in Fig. 12 intersects V_{e} at -1 where $V_{b}=-142 \mathrm{mv}$. From Fig. 13, we find that $I_{0}=0.9 \mathrm{ma}$ at the point $V_{r}=-1$. $V_{b}=-142 \mathrm{mv}$. Since $I_{c} \cong I_{c}$. we obtain:

A REPRINT

of this article can be obtained by writing on company lefterthead to The Editor
ELECTRONIC INDUSTRIES, Chestnut $656 \mathrm{th} \mathrm{Sts.}, \mathrm{Phila}. \mathrm{39}, \mathrm{Pa}$.

$$
\begin{aligned}
& R_{0}=\frac{V_{v e}}{I_{\theta}}=\frac{19}{1.1} \times 10^{-s}=17,300 \Omega z \\
& \text { sincr. } V_{e q}=E_{e}-V_{e e}=20-1=19 v .
\end{aligned}
$$

Also, for the value $E_{\mathrm{b}}=1.5 \mathrm{v}$, the load line in Fig. 12 intersects V_{c} at -1 where $V_{b}=140$. From Fig. 13. $I_{e}-1.0 \cong I_{e}$,

$$
R_{0}=\frac{19}{1 \times 10^{-8}}=19,000 \Omega
$$

For $E_{b}=1.5 \mathrm{v}$ and $E_{b}=330 \mathrm{mv}$, both curves cross at the same point at $V_{e}=-15$ in Fig. 12. This point is $V_{\mathrm{t}}=155 \mathrm{mv}$. In Fig. 13 for $V_{t}=-15, V_{\mathrm{b}}=$ -155 mv this yields $I_{r}=2.7 \mathrm{ma} \cong I_{e}$.

$$
R_{0}=\frac{5}{2.7 \times 10^{-8}}=1850!2
$$

Thus it can be seen how both the value of R_{g} and the operating point affects the value of the output impedance.

Refercmee

1. Henle, R. A., and Walsh. J. L. "The Application of TrankIstors to Computers," Proo. of the f.R.R., June 1958.
2. DeWitt and Rosoff, Transistor Eleotronice
3. Hunter, I. P., Handbook of Seml-Conductor Electronicn. Sections 11 and 17 .
4. Mowers. H. T. "Denign Procedures for Power Trannkiors Electrowic Design, Vol. 3. No. 7; Vol. 3, No. 9 : Vol. 3. No. 10. 5. Hunter. L. P. and Fleisher. H." "Graphical Analysis of Some Transigtor Switching Circuits," Proo. of the I.R.E., Page 1659, Nov. 1952.
5. Armstrong, H. L., "On the Usefulness of Transconductance a- Transistor Parameter," Proo. of the I.R.B., Page 83, Jan 1959.
6. Lohman, R D, "Complementary Symmetry Tranklstor Cir
rults." Elecironica, Pagps $140-143$. Sept. 1953 .

TABLE 1

$\begin{gathered} V_{8} \\ \text { (mv) } \end{gathered}$	$\begin{gathered} 1 . \\ (\mathrm{ma}) \end{gathered}$	$\underset{(\text { volts })}{\boldsymbol{V}_{e}}$	$\begin{gathered} 1 \\ (\mathrm{ma}) \end{gathered}$
+125	15	-13	15
$+150$	20	-10	20

TABLE 2

Fi $($ Inv $)$	I $(\mu \mathrm{a})$	Ve $($ volis $)$	$I /$ $($ ma $)$
125	4	13	12
100	12	10	20

TABLE 3
From Fig. 13b

V_{Δ} (mv)	$V_{\text {ef }}$ (volts)	I_{e} $(\mathrm{~m} 2)$
0	-19	-02
-100	-17	-05
-150	-10	-20
-200	-25	-35

TABLE 4 From Fig. 126

V_{n} (IIV)	$V_{\text {ce }}$ $($ volts $)$	I_{b} $(\mu 8)$
0	-19	+9
-100	-17	+1
-150	-10	-13
-200	-25	-43

TABLE 5

I_{6}	I_{6} (ma)	(ma)

TABLE 6

V_{b} (inv)	ef (volts)	V.ve (volts)
0	0	0
-100	-1	-0.9
-150	-2	-1.85
-200	-3	-280

What's New...

Lincoln Laboratory's FX-1 Computer

0NE of the fastest digital computers ever built is now in operation at the M.I.T. Lincoln Laboratory in Lexington, Mass. Known as the "FX-1", this computer is a working model for a new generation of machines, 10 times faster than any computers in general use today. The significance of the new machine lies in the unusually high speed, random-access storage. FX-1 is designed to be a complete, smallscale general-purpose computer, for realistic tests of fast logic circuitry

Fig. 2: Completed 3328 -bit, $0.3 \mu \mathrm{sec}$. mas-netic-film main memory of the FX-I computer.

and magnetic film storage in system operation.

The read-write cycle time for the central memory of the Lincoln FX-1 is $0.3 \mu \mathrm{sec}$. The initial $\mathrm{FX}-1 \mathrm{mem}-$ ory has a capacity of 256 words of 13 bits each, but provision has been made to increase the initial capacity by a factor of 4.

The memory uses printed-circuit wiring on a flexible sheet of resinimpregnated glass-fiber cloth. As shown in Fig. 3, the two halves of the flexible wiring sheet are mounted on stiff backing boards, leaving a flexible hinge between the halves. The arrays of memory elements deposited on thin glass backing plates, are positioned on the wiring so that each magnetic film element rests on the intersection of 2 perpendicular leads on the wiring sheet. When all the memory element arrays are in place on the lower half of the wiring sheet, the upper half is folded over to make the completed memory, shown in Fig. 2 with associated circuitry. This single unit contains the 256word, 3328 -bit memory of the FX-1 computer.

The logic circuits in Lincoln's

FX-1 operate at an effective clock rate of 50 million pulses/sec., 10 times faster than TX-2 and other large machines currently in operation, and 4 times the rate of the fastest commercial machine disclosed to date. This increase in speed is made possible by high-

Fig. 3: Printed-circuit wiring assembly for high-speed magnetic-film main memory in the FX-I computer at the M.I.T. Lincoln Laboratory.
speed switching transistors developed under subcontract, with the collaboration of Lincoln's Computer Components Group, and now in commercial production. Approximately 3000 transistors are used in the FX-1.
(Continued on page 196)

More

What's New
on page 177

NEW FROM BU[BMRGARER CINCH... Printed circuit

board edge connectors

to maintain positive contact!

NOW AVAILABLE FOR IMMEDIATE DELIVERY! Bifurcated Contact Connectors with two flexing surfaces instead of one to provide positive contact! . . accommodate irregularities in Printed Circuit Boards.
TWO TYPES-conventional wiring tail (type 251) or dip solder (ior . 051 dia. hole) (type 252) . . . with 6 to 25 conlact positions (12-50 contacts).
INSULATION-glass filed diallyl phthalate type GDI 30 per MIL-M-19833.
POLARIZING KEYS-can be supplied loose, or inserted in any position designated.
FINISHES-phosphor bronze or beryllium copper 00003 Min. Sel-rex. gold plated.
PART NUMBERS-customer part numbers imprinted when required.
MEETS MIL-C-2109A (ships) specs for printed wiring board connectors.

WRITE FOR FULL INFORMATION TODAY: Complete details and performance specifications on new Bifurcated Cinch Printed Circuit Board Edge Connectors are available for the asking. Write for full information now.

Circle 68 on Inquiry Card
Cinch Manufactubing Company
1026 South Homan Avenue - Chicago 24, Illinois Divislon of Uniled-Cary Festonor Corporation, Bosfon, Messechusetts

Wumber of contecte equale contact positions times two.

ELECTRONIC INDUSTRIES

1961 Survey of
 Cathode Ray Oscilloscopes

This listing of cathode ray oscilloseopes and performance spacifications is the result of a survey iust completed by ELECTRONIC INDUSTRIES of oscilloscope manufacturers here and abroad. Twenty-nine manufacturers are represented in the chart which contains more than 150 types of oscilloscopes currantly in production.

The surver covers real-time and storage CRT's. Every offort has
been made to present in the space ovailable the most significant data concerning each instrument. The frequency limits of scopes with dual vertical amplifiers or wideband-narrowband inputs are listed separatoly for each type. In some instances where price information is not given, it may be obtained by directly contacting the manufocturer.

-cbannel B specs given; channel A identical to type 700
ALLEN B. DUMONT LABS., 750 Bloomfield Ave, Clifton, M.J.

1% accuracy $100 \mu \mathrm{v}$ to 1,000 volts!

Also 2\% accuracy, 1μ a to 1 amp full scale.

Measures 0.02 ohms to 5,000 megohms.

No zero adjustment. Fast warm-up.
Floating chassis. $\$ 1,000$ worth of convenience for $\$ 400$!

Haven't you wished for one compact, simple instrument that would make precision de voltage, dc current and resistance measurements over a wide range?

The (4) 412A is it! In its VTVM circuit, the 412A uses an exclusive (4) photo-chopper instead of old-style mechanical vibrators-no drift, no 60 cps pickup. Input is floating, with resistance increasing from 10 megohms on the 1 mv range to 200 megohms on ranges above 100 mv . Current and voltage ranges have a 10 db sequence for
maximum readability and overlap. The ohmmeter is a modified Kelvin bridge eliminating lead resistance error; you measure resistance accurately on hook-up wire sections as short as $6^{\prime \prime}$.

Model 412A also includes a 1 v or 1 ma recorder output, and 3 separate probes. Call your rep today for a demonstration on your bench. Price, $\$ 100$.

HEWLETT-PACKARD COMPANY
100ID PAGE MIII ROAD - PALO ALTO, CALIFORNIA, U.S.A.
CABLE HEWPACK'. DAVENPORT 6-7000
fiELD REPRESENTATIVES IN ALL PRINCIPAL AREAS

© 100 H PRECISION VOLTMETER-\$325
Extreme accuracy as high as $\pm 1 \%$ to $500 \mathrm{KC}, \pm 2 \%$ to $1 \mathrm{MC}, \pm 5 \%$ full range. Frequency coverage 10 cps to 4 MC. Large $5^{\prime \prime}$ meter with precision mirror scale. Voltage range 0.1 mv to 300 v ; max. full scale sensitivity 1 mv . High 10 megohm input impedance minimizes circuit disturbances. Amplifier with 56 db feedback insures lasting atability. Reads direct in db or volts.

400D WIDE RANGE VOLTMETER-\$250
Highest quality, extremely versatile. Covers 10 cps to 4 MC. Highly sensitive, accurate to within $\pm 2 \%$ to 1 MC. Measures 0.1 mv to 300 ק; max. full scale sensitivity 1 mv . Reads direct in dbm. High 10 megohm input impedance virtually eliminates circuit loading. 56 db amplifier feedback insures high stability and freedom from change due to external conditions.

Data subject to change without notice. Prices f.o.b. factory

CATHODE RAY OSCILLOSCOPES

TYPE NO.	\checkmark AMPL				H MMPL			SWEEP		CRT	DIM. (In.) WT. (Iba)	PRICE
	$\begin{aligned} & \text { FREQ (cpp) } \\ & \text { RESP (db) } \\ & \text { w/n bands } \end{aligned}$	$\begin{aligned} & \text { RISE } \\ & T_{\mu \mathrm{E}} \end{aligned}$	$\begin{array}{\|c} \text { SENS. } \\ \text { SEv/cem } \end{array}$	$\begin{aligned} & \text { 2-IM } \\ & \text { mas } \mathrm{pf} \end{aligned}$	FREO cps	SENS. mv/c.	$\begin{aligned} & \text { Z-IN } \\ & \mathrm{mog} / \mathrm{PI} \end{aligned}$	FREQ (eps) SPEED (mm)	$\operatorname{ExP}_{x 1}$			

ALLEN B. DUMONT LABS. - (Continued)

(Plug in units for Series 4D oscillosccopest:
4206 (Compazar Sens $500, \mathrm{w}$ ory hise T : $4 \mathrm{nms} 0 \cdot .7 .5 \mathrm{mc}$)

EDGERTON, GERMESHAUSEN \& GRIER, 161 Brookline Ave, Boston 15, Mass,

2236 A do 2 km . Ins $27 / \mathrm{in}$

EICO ELECTRONIC INSTRUMENT CO., $33-00$ Northem Bivd, L I. City 1, M.Y.

460	$0 c-4.5 \mathrm{~m}$.06	25	3.35	5400 k	$.6 \mathrm{w} / \mathrm{in}$	5.35
625	5.500 k		$.05 \mathrm{v} / \mathrm{in}$	1.	500 k	$.05 \mathrm{v} / \mathrm{in}$	5

ELECTRO INSTRUMENTS, INC., 8611 Balboa Ave., San Diego 11, Calif.
201 dolmi3 $\quad .35$ 250/in 1.25 (7plise in scope modules) 260R (1 ach-mig 260)

ELECTRONIC TUBE CORP., 1200 E. Mermaid Lane, Philadelphia 18, P_{2}

(plugins for K220 and K470):

70A	dc-5m; 3	50	2-25
708	delm; 3	10	2.25
70 C	dc. 5000 ; 3	2	2.25
700	de-250c, 3	0.5	2.25
70E	dc. $50 \mathrm{k} ; 3$. 05	$2 \cdot 25$

$\begin{array}{ll}70 \mathrm{E} & \text { dc. } 50 \mathrm{k} ; 3 \\ 70 \mathrm{~A} & \text { (sweep gon.) } \\ 70 & \text { (calibrator and time-makk gen.) }\end{array}$
$\begin{array}{lll}\text { K10R (Calibrator and bme-makik gen.) } \\ \text { H428 } & \text { de.30in } & 25 / \text { in }\end{array}$

H 428	de. $150 \mathrm{~m}, 3$	$2 / \mathrm{in}$
K 215	dc. -15 m	

HEATH CO., Benton Harbor, Mich.

$0 R 1$	$d c-200$		100	3.620	$d c-200$	100
0.33	$4 c-1.2 n$.25	100		2.425	20
$0 P 1$	$d c-3.6 m$.1	100	3.628	$d c-600 \%$	200

HEWLETT PACKARD CO., 1501 Page Mill Road, Palo Alto, Calif.

25ns5us KR3B

10. 100k	SUPI	$13 \times 8 \% \times 1626$	§ 129.50
$15.75 k$	5^{n}	$15 \times 8 \% \times 17 \% ; 30$	79.95

4e-1s

2.30 k	8	4KPL	19 = $516 \times 11 \%$ 22
0.2s-100 15		4 sun	$28 \times 60 \times 34$
		2-900	

$3.6-28$	$5 c-50 k c$	$5^{\prime \prime}$	
$10-25$	$20 c-150 k c$	5°	$9 \times 14 \times 18 ; 18$

40.5s	5	5AQP	$\begin{aligned} & \text { Yi } \times 15 / 8 \times 20 \% 34 \\ & 19 \times 7 \times 204 / 30 \\ & 9 \% \times 15 \times 21 \% ; 32 \end{aligned}$	$\begin{aligned} & 450.00 \\ & 450.00 \end{aligned}$
fus.2s	5	5AQP		675.00
. 2 \% 123	5	5AQP	$\begin{aligned} & 19 \times 7 \times 20 \% 33 \\ & 9 \% \times 15 \times 21 \% ; 41 \\ & 19 \times 84 \times 2547 \end{aligned}$	$\begin{aligned} & 675.00 \\ & 650.00 \\ & 650.00 \end{aligned}$
.140-5s	100	5AMP	14×17/2 $\times 24 \% ; 83$	1300.00
sw. 100 K				$\begin{aligned} & 200.000 \\ & 250.00 \\ & 150.00 \end{aligned}$
				430.00
.140-5s	100	5AMP	$19 \times 14 \% \times 24 \%$; 8	1850.00
			$19 \times 12 \% \times 21 ; 85$	1850.00
. 40 -58	100	SOHP	$\begin{aligned} & 19 \times 14 \% \times 221 / ; 85 \\ & 19 \times 12 \% \times 21 / 85 \end{aligned}$	$\begin{aligned} & 2150.00 \\ & 2150.00 \end{aligned}$
				$\begin{aligned} & 350.00 \\ & 350.00 \end{aligned}$
. Ins.lus				$\begin{aligned} & 145.00 \\ & 145.00 \end{aligned}$
	100	549	$19 \times 14 \% \times 23 / 4 ; 75$	2000.00
				1000.00

A FUNDAMENTAL INSTRUMENT

... useful for measurements ranging from interelectrode capacitance of semiconductors to impedance of transformers weighing several tons.

Proven Accuracy • Day-In, Day-Out Dependability Completely Self Contained - Convenient Operation

CATHODE RAY OSCILLOSCOPES

TYPE NO.	V AMPL				H AMPL			SWEEP		CRT	DM. (In.) wT. (lbs)	PRICE
	$\begin{aligned} & \text { FREQ (cps) } \\ & \text { RESP (db) } \\ & \text { w/n bands } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RLSE } \\ & T_{\mu \mathrm{s}} \end{aligned}$	SENS. -vic.	$\begin{gathered} \text { Z-IN } \\ \text { end } \end{gathered}$	FREO ©	SENS. mv/cm	$\begin{aligned} & \text { Z-IN } \\ & \text { meg/pf } \end{aligned}$	FREQ (сра) SRED ('CD)	$\underset{\text { EXP. }}{\text { EXP. }}$			

HICKOR ELECTRICAL INSTRUMENT CO., 10514 Dupont Ave., Cleveland 8, Ohio

1810	dc-4m		10	2.2.50			2.2.50	2.30k	6	5ABP	12\% $\times 14 \% \times 18 \%$; 50	\$ 470.00
387 R	de.500k, 3	0.7	10	1-50	dc. 500 m	15	1.50	1.100k	10	3RP1	$19 \times 51 / 9 \times 1{ }^{2} / 15$	385.00
385C8M	dc-4m;3	. 08	75/in	2.2-25	do. 500\%	75/in	2.2-25	350 x	3	3RP1	$6 \times 9 \times 131 / 215$	430.00
	dc. $2 \mathrm{~m} ; 3$. 15										
685	ace 750	0.5	20/in	1.40	de.750k	30/in	1-40	1.100k	10	SUP1	$10 \times 13 \times 16 ; 35$	303.00
70	de $5 \mathrm{sm} ; 3$. 07	35/in	2.2 .50								
	de-2.5m;3		$10 / 1 \mathrm{n}$		de 500 m	75/1n	2.2.50	2.302	6	5ADP	$12 \times 14 \times 18 ; 50$	
675A	dc. $4.5 \mathrm{~m} ; 3$. 08	$20 / \mathrm{in}$		1-450\%	250/ia		10.103	10	SUP1	$10 \times 13 \times 16 ; 35$	
MUGMES, Vacuum Tube Products Div., $\mathbf{D 2 0}$ Short SL, Oce anside, Calif.												
105	dc. 10 m	. 035	50/div.		dc 350k	.25v/dv.	1.50	. 4 cols	5	5*	$13 \times 16 \% \times 23 \% / 58$	2870.00
105R	(rack-mtg 105)										$19=17 \frac{1}{2} \times 231 / 463$	2915.00
(Plugin amplifiers for 105/R):												
05-1	dc. 10 m		50/div.	1.50	(general p	pose)						125.00
05.2	de-10me		50/div.	1.50	(dual trac							350.00
053	oc-400		1/div.	1.50	(two chan	amplifier)						175.00

ITI ELECTRONICS, IMC.
15006369 Lexington Ave., Clifton, N.J.
$\mathrm{dc}-50 \mathrm{k} ; 3$
5

$3.5 \mathrm{vin} \quad 2.80$
SADP $19 \times 8 \frac{1}{6} \times 19,30$
400.00

1TT, Industrial Products Div., 15191 Bledsoe SL, San Femando, Calif.

21350	dc. 200 k	Vin	2.35	dc-200k	2-35	Vin
17350	(rack-mig 21350) (ext. P.S.):					
21400	dc-85\%	Vin	2.35	dc-85*	2.35	Via
17400	(rack-mig 21400)					

$17{ }^{\circ} \quad$| $19 \times 19 \times 21$ |
| :--- |
| $19 \times 7 \times 10^{\prime}$ |
| $19 \times 19 \times 20$ |
| $19 \times 7 \times 10^{2}$ |

JACKSON ELECTRICAL INSTRUMENT CO., Dayion, Ovio

601	10c-4.9m;1	30/in	1.5-20	10c-650k	. $8 \mathrm{~V} / \mathrm{in}$	1.1-12	10. 100 k	5BTP	$91 / 0 \times 15 \times 13,24 \frac{1}{4}$
CRO-2	$10 \mathrm{c}-40 \mathrm{k} ; 6$ $20 \mathrm{c}-4.5 \mathrm{~m}$	20/in	1.5-25	20.200k	. $4 \mathrm{~V} / \mathrm{in}$	1.1	200.50\%	5UP1	10\% $2131 / 2 \times 15$
	20 c - 300 k	18/in							1014 $\times 13 \% \times 15 \%$

KINGSTON ELECTRONIC CORP., Meffield, Mass.

5BGP7 $2 \frac{1}{1 / 2} \quad 12 \frac{1}{2} \times 17 \frac{1}{2} ; 105$
$17 \times 13 \times 9$

PACKARD BELL ELECTRONICS, 12333 w. Olympic Blvd, Los Angeles 64, Calif.

PHILIPS ELECTRONIC INSTRUMENTS, 750 S. Fulton Ave., Mount Vemon, N.Y.

GI5655	1-250;6		00	803.35		100	0.1 .45	5-30k		DG7.32	$41 / 2 \times 91 / 2 \times 11 \% ; 14$
GM5606	dc-2004;3		10	0.520	dc.300\%	1000	1.1-5	25001 s	5	ON10.78	11% = $8 / 2 \times 15 \% ; 31$
Cw5666	0.60k; 3		3	4.5.25	0.100 kc	400	1.25	$15-3 / 5$	10	DN10-78	9\% $\times 14 \times 20 \% ; 66$
GM5658	1-1m;6		60	1-15	1.1 m	90	1.15	3250 k		DG7. 32	$8 \frac{1}{6} \times 11 \% \times 15 \frac{1}{4} ; 37$
GM5600	dc. $5 \mathrm{~m} ; 3$	70	50	10-8	5-2m	3v		. 545530 ms		DH7-78	
GM5601	do.5m; 3	75	100	0.5.35	dc. 3000	Iv	1.5	.5 0 -2004s	5	DH10-78	$113 / 4881 / 2 \times 15 \% / 31$
cm502	3-14m;3	25	75	510	dc.800k	Iv		. $215-10 \mathrm{~ns}$	5	DH10-78	
GU5603	de. $15 \mathrm{~m} ; 3$	25	50	1-2	de.2a	IV	1.35	. $20-15$	5	DN1379	$11 \frac{1}{4} \times 15 \frac{1}{4} \times 23 \frac{1}{2} ; 77$
GM5650	$\begin{aligned} & 0.1 m ; 3 \\ & 0.700 \mathrm{c} ; 3 \end{aligned}$	45	300	$1-60$	20-106	5	108	. $5 / \mathrm{s}$ - 20 ms		DG7.32	$4 \frac{1}{2} \times 91 / 2 \times 1216 ?$
GM5662	de-20m;6	. 025	50	2.25	0.8006	700	10.30	.05\%-10ms	1	DH1078	$9 \% \times 14 \times 20 \% \% 66$
RCA, Election Tube Div., Harison, N.J.											
W0-33A	$\begin{aligned} & 5.5 c-5.5 m \\ & 20 c-150 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 100 \\ & 3 \end{aligned}$	10-10				15c-75		3"	$6 \% \times 8 \frac{1}{4} \times 10 \frac{1}{4} \times 14$
m0-91a	$10 \mathrm{c}-4.5 \mathrm{~s}: 1$	$\begin{aligned} & .1 \\ & 5 \end{aligned}$	$50 / \mathrm{in}$ -	1.40	10a.500k		22.30	10c.100.		SUP1	9 $\mathrm{x} 131 / 2 \times 16 \frac{1}{2} ; 30$
wo-56A	do 500 m	. 7	12	1.30	de-500n	24	1.30	3 c 30 K	3	7VP1	$9 \times 14 \times 17$
wo-88A	de 500 k	. 5	28	1.30	dc-200\%		22.55	$15 \mathrm{c}-30 \mathrm{k}$		SUP1	$9 \times 14 \times 17$
W0.788	3c-5m; 1	. 1	40	1.54	3 c -19		$1-20$	100.100	3	$54 B P$	9.13×18

ROHDE \& SCHWARZ, Ill Laxjigton Ave, Passic, M.J.

Need a precision-measurement tool in the dc-to. 4 mc range? A small-size, light-weight, semi-ruggedized instrument that operates almost anywhere from 50 -to- 800 cycles line frequency?
One that combines stability in performance, simplicity of operation, accessibility for maintenance?
Then consider a Tektronix Type 310A Oscilloscope
For size, convenience, presentation of trace display-a Type 310A ideally suits precision-measurement applications at point-of-use . . such as quality-control checks in production testing . . . or maintenance and calibration of complex electronic equipment in the laboratory or in the field.

Call your Tektronix Field Engineer for a demonstration.

TYPE 310A CHARACTERISTICS

Frequency Response-dc to 4 mc : $100 \mathrm{mv} / \mathrm{div}$ to $125 \mathrm{v} / \mathrm{div}$; 2 cycles to 3.5 mc : $10 \mathrm{mv} / \mathrm{div}$ to $100 \mathrm{mv} / \mathrm{div}$. Risetime-less than 90 nanoseconds. Sweep Range- 0.5μ sec/div to 0.2 sec/div in 18 calibrated steps, continujusly variable between steps and to 0.6 sec/div uncalibrated. $5 \times$ Magnifier-extends calibrated sweep range to $0.1 \mu \mathrm{sec} / \mathrm{div}$. Trig gering-amplitude-level selection with manual or preset stability control, and automatic facility. Horizontal Input. Amplitude Calibrator. Electronically-Regulated Power Supplies.

Type 310A Oscilloscope (F.O.8. Facton)
$\$ 625.00$
Dimensions $-10^{\prime \prime}$ high, $6 \frac{10}{}{ }^{\prime \prime}$ wide, 17° deep. Weight-231/2 pounds.

 Other Orerseas avan please write en cable directly to Tehtronis, Inc., Internationat Marketing Department, © O Bor int Beaverton, Oregon, U.S.A Cable: TEKTRONIX.

CATHODE RAY OSCILLOSCOPES

$\begin{aligned} & \text { TYPE } \\ & \text { NO: } \end{aligned}$	\checkmark AMPL				H MMPL			SWEEP		CRT	DIM. (in.) WT. (lbs)	PRICE
	$\begin{aligned} & \text { FREQ (cpz) } \\ & \text { RESP (db) } \\ & \mathrm{w} / \mathrm{n} \text { band } \end{aligned}$	$\begin{aligned} & \text { RISE } \\ & \mathbf{T}_{\mu \mathrm{s}} \end{aligned}$	SENS. $\mathrm{mv} / \mathrm{cm}$	$\begin{gathered} \mathrm{Z}-\mathbb{N N} \\ \mathrm{meg} / \mathrm{pf} \end{gathered}$	FREQ cp:	SENS. mv/em	$\begin{aligned} & \text { Z-IN } \\ & m e g / p f \end{aligned}$	FREQ (cps) SWEEP (/cm)	$\underset{x 1}{\operatorname{Exp} .}$			
SCOPES CO., INC., (Telegipment, Lte.) P.0. Box St, Monsey, N.Y.												
S32 D33 (Plugin $\stackrel{A}{B}$			10	1.30				$\begin{aligned} & 1 / 4.5 \mathrm{~s} \\ & 1 / 45.58 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 3^{*} \\ 31^{*} \end{gathered}$	$\begin{aligned} & \begin{array}{l} 6 \% \times 8 \times 13 ; 16 \\ 7 \% \times 121 / 2 \times 16 \% ; 33 \end{array} \end{aligned}$	$\$ 365.00$

SIERRA ELECTRONIC COPP., Siss Bohamon Dr., Menlo Pakk, Calif.

218	$2 c .300 k ; 3$	$35 / i \mathrm{in}$	7.50	40.100 K	500

2.35
(seven plugin scopes for function monitorine)
SIMPSON ELECTRIC CO., 5900 West Kiazie SL, Chicapo 4, III.

458	$\begin{aligned} & 60-4.5 m ; 1 \\ & 10.300 ; 2 \end{aligned}$	$\begin{aligned} & 30 / 10 \\ & 20 / \mathrm{in} \end{aligned}$		
466	15.100n;1	$30 / \mathrm{in}$	0.535	1520k
2610	de.5m;0.5	$6 / 1 \mathrm{in}$		

200k	$7{ }^{\circ}$	$11 \times 14 \frac{1}{2} \times 16 \frac{1}{2} ; 29$	249.95
1500k $5.5 \mathrm{k} \mu \mathrm{s}$	$5 *$		$\begin{aligned} & 149.95 \\ & 575.00 \end{aligned}$

SOLARTRON, INC., 1713 Sorth Zeyn R., Amacim, Calif.

TEKTRONIX, INC., P.O. Box 81, Pontiand 7, One.

531 A	dc-150/7	23.88	50		dc-240x	15	1-47
RM31A	(rack-mitg 531A)						
532	$\mathrm{dc}-5 ; 5 ; 3$.07/3	100		de. 3 ml	15	1-40
${ }_{533}{ }^{\text {RM32 }}$	(radk-mig dc- $53 \mathrm{~m} / 1$	$2 \mathrm{nn} / 2$	50		dc.500,	100	1-45
R433	(radk-mite 533)						
5354	dc. $15 \mathrm{~m} / 1$	$2 \mathrm{nns} / 2$	50		dc-240k	15	1.47
R435A	(rack-mitg 535A)						
536	dc-10, $/ 4$	35ns/4	50/dv.		de $10 \mathrm{~m} / 4$	50/dy.	
5414	de-30m;3/5	12as/5			dc-240		1-47
puala	(rack-mits S41A)						
543	dc-3im; $3 / \mathrm{s}$	12ns/5	50		dc-500	100	1.45
PM13 $545 A$	(radk-mtg 513) dc- $30 \mathrm{~m} / \mathrm{s}$	12ns/5	50		do 240r	200	1.4
RMM5A	(rack-mitg 545A)		0		do24m		
551	(ext. P.S.):	1/ns/5	50		dc. 400 O	200	. $1-40$
555	$\begin{aligned} & \text { de. } 3 . \mathrm{m}^{\mathrm{m} / \mathrm{s}} \\ & \text { (exL P.S.) } \end{aligned}$	12ne/s	50		da 240%	200	1-47
581	de. $100 \mathrm{~m} ; 3$	$3.5 n 8$	100		de-240m	200	1.47
505	dc- $100 \mathrm{~m} ; 3$	3.508			dc-240k	200	1.47
517A	(ext P.S.):	7as	50				
507	(0xL P.S.).	10ns	50				
3104	(ext. P.S.).	Ons					
316	dc-10m	35 ns	10/div.		ce-500n	1.4r/dix.	
8416	(rack-mie 316)						
317	dc. 10 m	35ns	10/div.	1-40	dc. 5000	1.tw/div.	
R017	(rack-itit 317)						
321	dc-5m	. 07	10/div.	1-30	dc.in	1.5v/div.	.1-20
502	dc-15		. 2	1-47			
503	dc-450n		1	1-47	dc-450m	1	1.47
RU503	(rack-mitg 503)						
504	dc-450.		5	$1-47$			
RM504	(radk-mis 504)						
515A	dcl 15	23ns	50	1.36	dc.500:	1.41	
RMa 15 516	(rack-mite 515A)						
516	$\begin{aligned} & \mathrm{de}-15 m ; 3 \\ & \mathrm{dc}-15 m ; 3 \end{aligned}$	$\begin{aligned} & 23 \mathrm{~ns} \\ & 23 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1-20 \end{aligned}$	dc. 500 m	1.4	
524AD	de- 10 m	35ns	150	1-45			
525	60c-5m; 1%		15	75 chans	(TV wavelo	manitor)	
1. wisb C.A, K, L, or N plug-ins: A, B, or G: 14m: D: 2m: E: 60k: Q: Gu; Z: 10 m 2. witb C-A, K, L or R plug-ins; A, B, G: 25 ms; H: 31 ms; $N: 0.6 \mathrm{~ns}$ 3. witb wide-band plug-ins 4. witb G plug-ins; $X-Y$ main prame almost identical 3. vitb K or L olegeins							

Data loss due to dropouts is eliminated in FM predetection recordingreproducing by Mincom's new, exclusive Tracklok ${ }^{\bullet}$

This is because, for the first time in the field of instrumentation, the Tracklok makes possible redundant FM data recording at the carrier level. In any desired FM or PM-type carrier system, data loss is eliminated by a 99% skew reduction; existing skew of $\pm 0.3 \mu$ s for example, is effectively reduced to $\pm 0.003 \mu \mathrm{~s}$, a reduc. tion of 100 to 1 .

Shown here with the Mincom
Series CM-100 1.5 -me Instrumentation
Recorder/Reproducer, a standard auxiliary rack
houses (from the top down) an oscilloscope monitor unit, the new Tracklok, and a demodulator.

Reliable Simplicity: The same reliability that has been typical of Mincom's instrumentation systems for years has been built into Tracklok.

2049 SO. BARRINGTON AVE., LOS ANGELES 25, CALIFORNIA• 529 PENN BLDG., 42513 th ST. N. W., WASHINGTON 4, D. C.

CATHODE RAY OSCILLOSCOPES

$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	\checkmark AMPL				H MMPL			SWEEP		CRT	DIM. (in.) WT. (lbo)	PRICE
	$\begin{aligned} & \text { FREQ (cps) } \\ & \text { RESP (db) } \\ & \text { w/a bands } \end{aligned}$	$\begin{aligned} & \text { RISE } \\ & \boldsymbol{T}_{\mu \mathrm{E}} \end{aligned}$	$\begin{array}{\|c} \text { SENS. } \\ \text { mv/cm } \end{array}$	$\begin{aligned} & \text { 2-IN } \\ & \text { mog } / \mathrm{pf} \end{aligned}$	FREQ ©	SENS. $\mathrm{mv} / \mathrm{cm}$	$\begin{aligned} & \text { Z-IN } \\ & \text { meg'ol } \end{aligned}$	$\begin{array}{\|l} \mid \text { FREQ (eps) } \\ \text { SPEED (/em) } \end{array}$	$\underset{x 1}{\operatorname{Exp} .}$			

TEKTRONIX, INC. $-($ Continued)

TRIPLETT ELECTRICAL INSTRUMENT CO., Buffion, Onio
$341 \mathrm{~A} \quad \mathrm{dc}-4.5 \mathrm{~m} \quad 10 / \mathrm{in} \quad 20-60 \mathrm{~m}$
WATERMAN PRODUCTS CO., INC., 2455-63 Emerald SL, Phladelphia 25, Pa

MARKI	dc. 75 k	26	25/in.	. 5100	20-75k	1.5v/in	. 5100	20-20k	$3{ }^{\circ}$	31/2 $\times 7 \frac{1}{1 / 4} \times 10,5{ }^{2} / 4$	69.95
S11A	dc-200k	2	100/in	10.10	dc-200.	100/in	10.10	3-50k	30	$5 \times 7 \times 11 ; 8 \%$	149.50
SIHA	dc. 159	2.2	10/in	1-25	dc-155k	15/in	1.35	5-50.	3 "	$6 \times 7 \times 12 ; 12 \%$	249.00
S14B	de. 700 K	. 35	50/in	1-25	dc-200k	150/in	1-25	5.50 K	3*	$6 \times 7 \times 12,14$	239.00
S14C	dc-700k	. 35	7/in	1.25				$20 \mu \mathrm{~s}$-2s	3"	$6 \times 7 \times 12,16$	289.00
S15A ${ }^{\circ}$	dc-159\%	2.2	$28 / \mathrm{in}$	1-25	dc. 140 k		1.25	5.50 k	$11_{2}{ }^{\circ} \times 3^{\prime \prime}$	$6 \times 7 \times 12,16 \%$	399.00
S16A	da. 5 m dc. 500 k	. 07	2.5	1.40	3180k	10	1.120	5.50k	$5{ }^{2}$	$7 \times 10 \times 12,18 \frac{1}{2}$	245.00
S17A	dc-230k	2	3.6/fiv.	1-53	3-170.	140/div.	1-85	109us 10 s	112" ${ }^{\prime \prime}$ "	51/2 $\times 43 / 4 \times 10,8$	295.00
P1			56v/in		0ct	$80 \mathrm{w} / \mathrm{in}$			$11 /{ }^{12} \times 3^{\prime \prime}$	$5 \% \times 5 \% \times 10,5$	109.50
P100			20 y /in		$3-1$	28 v 'in			$14 / 3 \times 3^{\prime \prime}$	$51 / 9 \times 5 \%$ 36 $\times 10,5$	129.50
SIC	1.5-11m;6	. 05	100/in	1-25			1-17	1:2-124.s	$11_{3}{ }^{1} \times 3^{\circ}$		
S5C	2.6 m	. 07	60/in	0.340			6.2-47	8-800k	31 Pl	$174 / 29 \times 1418 / 20 \times 14 \% ; 74$	
S12C	dc. 700 k	. 35	50/in	$1-40$	dc. 700 K	70/in	1.35	.5-50n	3RPIA	$19 \times 7 \times 10,30$	

- tuin cbarnel; tuin tube

WATERS MFG. CO., INC. Boston Post Road, Wayiand, Mass.

70008	dc-100k	25/in	1.70	dc-100k	35/in	170	15-40k	RP1A	$19 \times 5 \% \times 11 \% / 17$	

[^5]sented digitolly on alzie reodoufs. Cellbrefed BC oflset he also Eresented digieally en en in-line display.
The CIC Automatle Osellloscope wes designed for leboratery, wold. production test and tautomatic chochout applicetions. Overall dimen-
 $\$ 1,500$.

SET Development Contract Awarded

NASA has awarded ElectroOptical Systems, Inc., Pasadena, Calif., a contract for the development of a Solar Energy Thermionic Conversion System (SET). The contract will be administered by the Jet Propulsion Laboratory of the California Institute of Technology.

Designed to generate 135 watts at a solar constant 40% that available on Earth, SET can be used as the prime source of spacecraft electric power on vehicles of the Mariner class. Total weight of the system will be approximately 25 pounds.
SET will consist primarily of a lightweight solar concentrator which will focus solar radiation into a cavity used to heat several cesium vapor-filled thermionic di-
odes. These diodes will transform the heat into electrical current. The concentrator will be approximately 5 feet in diameter. The thermionic generator will consist of an array of diodes arranged about the cavity.

Low Cost Test Equipment

An ordinary 100-watt light bulb is used to measure capabilities of a new G. E. television tube at G. E.'s power tube department. It is used as an accurately calibrated light source inside a black, plywood box. A system of special light filters and apertures allow sensitive TV camera tubes to be precisely tested in light levels measured exactly to below one-millionth of a foot-candle. Thirty foot candles are required to read a newspaper. The highly
sensitive TV tube, called a GL-7967 image orthicon, transmits the image it sees to a television screen as a bright and clear picture.

Millivolt Discriminators

Models 710 and 711 millivolt discriminators made by Keithley Instruments, Inc., Cleveland, Ohio, are designed for use with automatic testing, process control and nuclear reactor monitoring. They are ideally suited for use in a broad range of Go, No-Go automatic control applications such as the testing of diode and capacitor leakage currents, controlling temperatures, and sorting resistors in automatic bridges. They can also be used in nuclear safety installations and numerous process control functions. Models 710 and 711 are identical except for means of adjusting the trip level.

THE SIEE DIMINSHES;

Tiny New $3 / 8^{\circ}\left(0.375^{\circ}\right)$ Squaretrim ${ }^{\text {® }}$
Potentiometer Dissipates One Full Watt In Still Air!

The performance of this new Daystrom subminiature Squaretrim is as great as its half-inch cousins. Further, the one-watt rating is based on still-air tests...typical of our conservative specifications. Contained in a stackable package only $3 / /^{\prime \prime}$ square and just $1 / g^{\prime \prime}$ thick, the new Series 200 Squaretrims permit great circuit density (27 per cubic inch) and the 144 different models offered give wide design latitude. The Series 200 Squaretrims range from 10 ohms to 35 K , operate from -55 to $+150^{\circ} \mathrm{C}$, and need no mounting brackets for stacking. A true precision instrument with all the exclusive features of the Daystrom line, this new potentiometer is designed to meet MIL R-27208 and MIL R-22097. Write for detailed information.

This new Control Switch concept in multi-station interlocking switches features a unique "CHEAT-PROOF" design. One station is always committed. It is impossible to tease the system into an "all stations up" position. Actuating any of the four lighted pushbuttons causes the previously depressed button to return to normal at the exact point the system is committed to an alternate station. A lockout system makes it impossible to commit two stations simultaneously.

The Pushbuttons are individually illuminated with standard MS 25237 type lamps which are easily re placed from the front. Buttons are available in six colors and can be engraved.
The new Control Switch Interlock has been designed to permit various other station combinations. All units are engineered to withstand unusually high shock and vibration conditions.

CHARACTERISTICS

Station Circuit Electrical Ratings

Lamps (not furnished)
Weight
Size.
D.P.D.T. 5 amps @ 125-250 VAC 5 amps Res. @ 30 VDC 2.5 amps Ind. @ 30 VDC Switches per MS 25085 1

MS 25237 Type
9 oz. max. panel surface $33 / /^{\prime \prime} \times 2^{\prime \prime}$ depth behind panel 1 13i"

for the Electronic Industries

TRANSIENT VOLTAGES

Detects and records pulses dow: to 1 usec.

Indicator aids design engineers to accurately develop semiconductor circuitry without the necessity of over design or loss of costly semiconductors. Includes indicator light with memory feature for unattended operation up to 3 weeks. Selector switch has 2 voltage ranges- $0-200 \mathrm{v}$. at $\pm 5 \%$ full scale accuracy and $0-2000 \mathrm{v}$. $\pm 2 \%$ full scale accuracy. Imput impedance is 5 pf in shunt with 1 meg. ohm, both ranges. The VAP-AIR Div., Vapor Heating Corp., 6444 W. How. ard St., Chicago, III.

Circle 170 on Inquiry Card

MAGNETIC SENSOR
Operating temp. range $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

The transverse field "Hall-Pak," designated Model BH200, measures $0.500 \times 0.130 \times 0.019 \mathrm{in}$. and is furnished with $71 / 8 \mathrm{in}$. leads of \#34 ga. copper. The active area is 0.080×0.180 in. Model BH203, the axial field "Hall-Pak," is 0.195 in . dia. and $3 / 16 \mathrm{in}$. in total length and carries \#34 ga. copper leads 14 in . long. The active area of this unit is $0.058 \times$ 0.148 in. For continuous operation at 85° C. Semi-conductor Div., F. W. Bell, Inc., 1356 Norton Ave., Columbus 12, Ohio.

Circle 171 on Inquiry Card

X-Y RECORDER

Options include carrying case and zener diode reference supplies.

Model HR-95 X-Y Recorder includes vacuum paper holddown, continuous 10 turn precision attenuators, and in electric pen lifter as standard features. Uses standard $81 / 2 \times 11 \mathrm{in}$. graph paper or new paper divided into 100×150 minor divisions. Available with either $1 \mathrm{mv} / \mathrm{in}$. $10 \mathrm{mv} / \mathrm{in}$. amplifiers. The servo amplifiers have separate power supplies and are completely independent, isolated and interchangeable. Houston Instrument Corp., P. O. Box 22234, Houston 27. Tex.

Circle 172 on Inquiry Card

FREQUENCY MEASUREMENTS

For accurate measurement of S, C and X-bands freqs.

Panel-mounted unit incorporates a series of tunable bandpass filters. Insertion loss of the tunable filter in each of the bands (including a low pass filter, bandpass filter adapters and interconnecting line) is less than 5 db average. Absolute accuracy of the calibrated freq. is $\pm 0.01 \%$ Bandwith at 11 and 9 mc is 3 db down and 0.25 db down respectively. Each filter is terminated in a thermistor for spectrum power measurements. Frequency standards, P. O. Box 504. Asbury Park, N. J.

Circle 173 on Imquiry Card

CONTROLLED-RECTIFIERS

Ratings: Current-16 a. half-uave (25 adc) : voltage-to $300 v$.

"Rock-Top" Transistor controlledrectifier now available in a new highreliability design (JEDEC 2N681 series). Features hard soldered junctions and hermetically weld-sealed cases which are intended for industrial, military and consumer use. The design of this new product is based on the 70 a. type 809 Trinistor unit. Availability of the 16 a . units extends the potential application range for static switching devices. Westinghouse Electric Corp., Semiconductor Dept., Youngwood, Pa.

Circle 174 on Inquiry Card

COAXIAL CONNECTORS

Feature higher voltages, low vSWr and low leakage.

New versions of the Type 874 Coaxial Connectors, include locking cable and panel, and recessed locking panel types. Retaining the hermaphrodite feature of the standard 874's, the new locking connector is fully compatible with the non-locking types. The vSWR lower for locking and nonlocking versions, up to 8 Gc , than N, C. BNC and UHF types. Locking adaptors available to connect the Type 874 to Types BNC, C, N, SC, TNC and UHF plugs. General Radio, Co., West Coneord, Mass.

Circlo 175 on Inquiry Cand

New ... for the Electronic Industries

PLASTIC HEADER

Maintains a tight seal under severe humidity conditions.

Molded plastic terminal header now incorporated in all Ace $1 / 2 \mathrm{in}$. precision pots. Will withstand temps, to $500^{\circ} \mathrm{F}$. The plastic material is approved under spec. Mil-M-18794SDG. Header also improves heat dissipation and permits terminal identification and circuit diagrams to be molded in permanently. Terminal pins are imbedded under pressure to provide high torsional and pull strength. Ace Electronics Associated, Inc., 99 Dover St., Somerville 44, Mass.

Circle 176 on Inquiry Card

HIGH SPEED RELAY

"Micro-Scan" sPDT unit features 600 нsec. switching speed.

Other features: low level ($\mu \mathrm{v}$), low thermal noise (less than $1 \mu \mathrm{~V}$ in 100 K ?. Unit is for sampling, multiplexing, time sharing and control circuits. The 3PDT construction permits complete switching of low level 2 wire transducer data plus the associated guard shield allowing differential input isolation, low loss and high speed control. Life expectancy is in excess of 1 billion operations. James Electronics, Inc., 4050 N. Rockwell St., Chicago 18, Ill.

Circle 177 on Inguiry Card

MULTI-TRACE CRT

Has s independently controlled guns for simultaneous displays.

Designated Type SC-3061, the 10 in . tube is available in a variety of phosphors, is electrostatically focused and deflected, and features an astigmatism control electode. Deflection factors, at 5 kv anode voltage, are approx. 130 v./in, horizontal and 70 v ./in. vertical. The useful horizontal scan of each parallel trace is approx. $81 / 2 \mathrm{in}$. Traces are $1 / 3$ in. apart on a common vertical line. Sylvania Electric Products, Inc., 730 Third Ave., New York 17, N. Y.

Circle 178 on Inquiry Card

BAND PASS FILTERS

Series covers the freq. range from 255 to 3655 CPS.

The filters, CircuitDyne series FBH 102 use toroid coils exclusively as inductor elements. Coils adjusted to inductance tolearance of $\pm 1 \%$ for sharp filter cutoff characteristics. Insertion loss is 6 db max. and bandwidth is approx. 10% to 30% of center freq. at the 3 db down point. Source and load impedance is 600Ω for standard versions, other impedance values available. For use in both transmitters and receivers. CircuitDyne Corp., 480 Mermaid Ave., Laguna Beach, Calif. Circle 179 on Inquiry Card

KU-BAND MIXER

Ku-band Orthomode (3) Mixer covers from 18.3 to 18.7 GC.

The V-8312 is for airborne radar receiver balanced modulator applications. The mixer is $15 / 16 \times 15 / 16 \times$ $\% / \mathrm{in}$. in size and can be supplied at a weight under 2 o2. Max. noise figure is 10 db at 13.5 Gc . The noise figure includes noise contribution of $11 / 2 \mathrm{db}$ 30 mC i-f strip and a 3 db allowance for image freq. The signal and local oscillator input VSWR is less than 2 to 1 over a 500 Mc bandwith. Radiation Div. Varian Associates, 611 Hansen Way, Palo Alto, Calif.

Cirele 180 on Inquiry Card

AC RELAY

Series $5 s 00,50 \%$ smaller than comparable general purpose relays.

The relay is rated at 3 a. max., 115 vac resistive. The 1 Form C, cross-bar contacts are arranged for SPDT operation. Min. operating power for 1 Form C is 2.5 va . The max. ac coil voltage is 220 v. 60 CPS. Size-less than 1 cu . in.-it weighs 1.25 oz . max. It withstands 95% humidity and vibration or shock of 10 g 's at 5-55 CPs operating or 50 g 's non-operating. Cornell-Dubilier Electronics, div. of Federal Pacific Electric Co., Fuquay Springs, N. C.

Circle 181 on Inquiry Card

New
 Products for the Electronic Industries

DUAL POLARIZED HORNS

Offered in standard sizes from WR-4s0 through WR-2s00

Are available with waveguide inputs, or 1 or 2 coax, inputs. They feature a vswr of less than 1.2 for 30% of the freq. band. The decoupling between inputs is greater than 30 db , and the standard aperture for $1 / d$ ratio is between 0.35 and 0.50 but other aperatures are available upon request. The units are weatherized, can be pressurized and/or anti-iced, and come equipped with mounting brackets as per customer require. ments. Antenna Systems, Inc., Hing. ham, Mass.

Circle 267 on Inquiry Card

BAR SOLDER

Designated Alpha Vaculoy ${ }^{(38)}$ Bar Solder.

Photomicrographs indicate that it is significantly freer from oxide-forming elements than are other com-mercially-made solders. As a result, Alpha Vaculoy Solder cuts dross, increases bath life, reduces inherent inclusions, improves wetting and produces brighter joints. It is available from stock in most of the common tinlead alloys; comes in standard 1 lb . bars, or 9 lb . ingots for automatic soldering machines. Alpha Metals, Inc., 56 Water St., Jersey City 4, N. J.

Circle 268 on Inquiry Card

SLIDE SWITCH

Low cost 6 a. unit designed for tight spaces.

Designated Series SS-37, the switch is $18 / 8 \times 1 / 8 \times 1 / 2 \mathrm{in}$., excluding trigger. Mounting clearance is only $1 / 2 \mathrm{in}$. Lead wires do not affect clearance because leads enter the switch base from the ends and connect to recessed terminals. Rated by Underwriters' Laboratories, Inc., a 6 a., 125 vac the Series SS-37 slide switch consists of a nickleplated steel case which is permanently attached to a molded nylon base. Electronic Components Div., Stackpole Carbon Co., St. Marys, Pa.

Circle 269 on Inquiry Card

SINGLE-DETECTOR SYSTEM

Senses and counts alpha and beta independently and simultaneously.

For use in any laboratory, plant or area where radioactive materials are used. The all transistorized system, PC-22 consists of a universal shield with gas flow proportional counter detector, and 2 decade scalers -1 to count and register each type of radiation. The shield features a 2 pi counting chamber shielded for low background alphas (1 count/hr.) and betas (30 counts/min.). Nuclear Measurements Corp., 2460 N. Arlington Ave., Indianapolis 18, Ind.

Cirele 270 on Inquiry Card

TANTALUM CAPACITORS

Will withstand military shock and vibration requirements.

Series 125 C "cup style" sinteredanode tantalum capacitors supplement the 85 C ratings now available. Three case sizes are furnished. In the smallest case size, ratings range from 30 $\mu \mathrm{f}$ at $\downarrow \mathrm{v}$. to $1.7 \mu \mathrm{f}$ at 85 v ; in the middle case size, capacitances range frum $140 \mu \mathrm{f}$ at 4 v . to $9 \mu \mathrm{f}$ at 85 v .; and the largest case size capacitances range from $320 \mu f$ at 4 v . to $25 \mu \mathrm{f}$ at 85 v . All units are available in both $\pm 10 \%$ and $-15+20 \%$ tolerances. Sprague Electric Co., 233 Marshall St., North Adams, Mass.

Circle 271 on Inquiry Card

DC POWER SUPPLY

For military, commercial, and industrial computers.

The power-bloc module is a regulated dc power supply using Varo's "frozen diode" circuit principle (patent applied for) to achieve high regulation without transistors, tubes or capacitors. Completely sealed in an epoxy encapsulation with an aluminum outer housing, power-bloc modules are being manufactured in over 40 standard voltage-current-ratings from 1 v. at 10 a. to 30 v. at 0.8 a. Varo Inc., 2201 Walnut St., Garland, Tex.

Circle 272 on Inquiry Card

New Tech Data

for Engineers

Time Meters

GEZ-3354 describes the latest addition to GE's line of BIG LOOK panel instruments, the Type 236 Elapsed Time Meter. Information contains applications, features, specs., standard ratings and schematics. General Electric Co., Schenectady 5, N. Y.

$$
\text { Circle } 214 \text { on Inquiry Card }
$$

Mierofilm

Three illustrated booklets describing the use of microfilm in the Social Security Administration, the U. S. Bureau of Public Debt and the U. S. Army Finance Center, are available from Minnesota Mining and Mfg. Co., Dept. S1-417, 900 Bush Ave., St. Paul 6. Minn.

Circle 215 on Inquiry Card

Control Equipment

Boonshaft and Fuchs, Inc., Hatboro Industrial Park, Hatboro, Pa.. is offering a 6-page control equipment brochure illustrating and giving brief descriptions of high-performance feedback control hardware. Included in the brochure are operational amplifiers, freq. response test equipment, pressure transmitters and receivers, actuators, and programmers.

Circle 216 on Inquiry Card

Zener Diodes

Fansteel Metallurgical Corp., Rec-tifier-Capecitor Div., N. Chicago, Ill., has 2 bulletins describing JEDEC Type miniaturized silicon Zener diodes for voltage regulation. The 1 w regulator requires no heat sink and dissipates max. power at amb. to $+25^{\circ} \mathrm{C}$. The 10 w regulator units for chassis or cooling fin mounting, dissipate max. power at case temp. to $+55^{\circ} \mathrm{C}$.

Circle 217 on Inquiry Card

Synchre Standards

Gertsch Products. Inc., 3211 S. La Cienega Blvd., Los Angeles 16, Calif., is offering tech data on series of synchro standards designed to simulate the output of a Master Synchro Transmitter (CX). All models feature a ratio accuracy of 10 ppm equivalent to an accuracy of better than 2 sec. of arc. Specs. on 6 models in the series are included.

$$
\text { Circle } 218 \text { on Inquiry Card }
$$

Telemetry Filters

PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif., is offering tech data on band pass telemetry filters designed for the replacement of conventional filters in telemetering uses. Information includes a chart displaying Typical 71/2\% IRIG Channel, tech. बilter data and ordering specs.

Circle 219 on Inguiry Card

Resistance Standards

Julie Research Laboratories. Inc., 603 W. 130th St., New York 27, N. Y. is offering tech data describing resistance standards and techniques for establishing resistance ratio accuracy to one part in 10 million.

Circle 220 on Inquiry Card

Test Receptacles

AMP Inc., Harrisburg, Pa., has tech. data available covering complete specs. on a new line of test probe receptacles, used to test probe printed board circuitry. The bulletin gives details for both 2-lag and 3lag AMP receptacles.

Circle 221 on Inquiry Card

Power Supply

John Fluke Mfg. Co., Inc., P.O. Box 7428, Seattle 33, Wash., has available tech data describing new general purpose power supply. The unit is rated at 0 to 500 v., output current 0 to 500 ma .

Circle 222 on Inquiry Card

Subcarrier Oscillator

Dorsett Electronics, Inc., 119 W. Boyd St., Norman, Okla., has tech. data available on their Model 0-18 sili-con-transistor, subcarrier oscillator designed for FM telemetering systems and available in all standard IRIG channels. Temp. stability from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, with high input impedance, low power consumption and compact packaging.

Circle 223 on Inquiry Card

Silicon Rectifiers

Slater Electric, Inc., Industrial Div., Semiconductors \& Electronic Products, 45 Sea Cliff Ave., Glen Cove, L. I., N. Y., has tech. data available on their new series of miniature silicon rectifiers designed to replace top IN1095 and IN1096. These units are approx. half the size of the top hat and require no heat sink for printed

Cincle 224 on Inguin Card

Space Technology

"General Electric Valley Forge Space Technology Center," an 8-page pamphlet describes the main features of this first large space center in the United States built by private industry. Designated PIB-58, the pamphlet is illustrated with facility photos and drawings. Information includes general description, a list of facilities and details of the Space Environment Simulation Laboratory. General Electric Co., Missile and Space Vehicle Dept., 3198 Chestnut St., Phila. 1. Pa.

Circla 225 en Inquiry Card

Power Supply

Lite Power Supply Data Sheet \# 152 from Transistor Electronics Corp., 3357 Republic Ave., Minneap olis 26, Minn., covers tech. data, features, specs., installations, outline drawings and ordering information for TEC's LPS Lite Power Supply. The unit is designed to provide supply and bias voltages for TEC-LITE

Circle 226 on Inquiry Card

4-Terminal Test Clips

Electro Scientific Industries (formerly Electro Measurements), 7524 S.W. Macadam Ave., Portland 19, Ore., has tech. data available describing their Kelvin Klips and Kelvin Klamps. Catalog Sheet C-31 describes their accessories designed for making rapid, high accuracy 4 -terminal measurements even with relatively high lead and contact resistances.

Circle 227 on Inquiry Card

Cooling Equipment

McLean Engineering Laboratories P. O. Box 228, Princeton, N. J., is uffering a 48 -page catalog on their line of packaged blowers, propeller fans, centrifugal blowers, ring fans and accessory items. All mechanical and electrical characteristics of each model are included with performance curves and engineering drawings. A special section is given to basic design information for ventilating elec tronic equipment using forced-air cooling. Mathematical formulae and graphs are provided for problems in cooling solid state circuitry or tube assemblies.

Circle 228 on Inquiry Card

General Purpose Relays

Branson Corp., 41 S. Jefferson Rd., Whippany, N. J., has tech. data avail. able on their transistor sized general purpose relay Type JR. Specs., char. acteristics, capabilities and dimensional diagrams are included. The unit is 0.04 cu . in. and weighs 5 grams .

Circle 229 on Inquiry Card

Microwave Tube Catalog

Raytheon Co., Microwave Power Tube Div., Waltham 54, Mass., is offering a 70 -page microwave tube catalog. The catalog lists 201 active, unclassified microwave tubes of all types, as well as ferrite devices, magnetic components, high power test modulators and infrared detectors. The catalog is color-tabbed, with descriptive 'specs,' for sections including magnetrons, klystrons, amplitrons and stabilotrons, BWOS, TWTS, crossed field amplifiers and associated components.

Circle 230 on Inquiry Card

A D TRANSFORMERS • FILTERS • REACTORS JACKS \& PLUGS. JACK PANELS

Choose from over 500 stock ifems or lef ADC design to your requirements
 ADCPRODUCTS A Division of Magnetic Controls Company 2839.13TH AVENUE SOUTH - MINNEAPOLIS 7. MINNESOTA pacific sranch North Hollywood, California - Filters - jacks and plugs - sack panele

SCOTCH ${ }^{\text {® }}$ BRAND MAGNETIC INSTRUMENTATION TAPES OFFER A RIGHT TAPE FOR EVERY APPLICATION

Knowledgeable tape users realize that magnetic tapes are not all alike-that it takes specific constructions to meet the needs of specific applications. And they've learned to rely on "Scotch" brand to supply the one right tape for each application. Not only does "Scotch" brand offer a complete line, it offers that something extra that makes all the difference in performance-the uniformity and reliability that result from 3M's experience, technical skill, and continuing research. Make the "Scotch" brand label your guide in buying instrumentation tapes. Your 3M Representative is close at hand in all major cities-a convenient source of supply and information. For details, consult him or write Magnetic Products Division, 3M Co., St. Paul 6, Minnesota.

The wide "Sсотсн" brind line provides many tapes, including these broad classifications:
SANDWICH TAPES 488 and 489 -exclusive with "SCOTCH" BRAND, offering 30 times the wear of standard tapes, drastic reductions in head wear, elimination of oxide rub-off. In standard or extra-play lengths. HIOH RESOLUTION TAPES 458 and 459-offering superior resolution in high frequencies, greater pulse density in digital recording. In standard and extra-play lengths.
MEAVY DUTY TAPES 498 and 499-offering exceptional life, good resolution, high resistance to temperature and humidity, reduction in the build-up of static charge. In standard and extra-play lengths. HIOH OUTPUT TAPE 428-offering top output in low frequencies. Performs well even in temperature extremes.
STANDARD TAPES 403 and 408 -offering the good all-round performance at low relative cost which has made them the standards of the instrumentation field.
"SCorcn" and the Plaid Design are registered trademarks of 3M Company, SL. Paul 6, Minnesota. Export: 99 Park Avenue. New York, N.Y. In Canada: London, Ontario.

New Tech Data

for Engineers

Ulitrasonic Writing

Ultrasonic Industries, Inc., Ames Court. Engineers Hill, Plainview, L. I., N. Y., has tech. data available on their ultrasonic ball point writing instrument. The device capable of writing at a linear speed of 9000 ft. min. requires no writing fluids or marking compounds. It consists of a small generator which develops high freq. oscillations activating an ultrasonically transducerized pen of size and shape comparable to a conventional pen or pencil

Circle 249 on Inquiry Card

Noise Analysis

A Tech. Report, entitled "A Practical Approach to Transistor Noise" is available from Quan-Tech Laboratories, Inc., Boonton, N. J. The report deals with the origin and nature of the various types of electrical noise generated in transistors. Specific methods for the quantitative analysis of transistor noise are treated in detail.

Circle 250 on Inquiry Card

Descent Indicator

Gulton Industries, Inc., 212 Durham Ave., Metuchen, N. J., has tech. data available on their RDI-06 Rate of Descent Indicator with a range of $0-10 \mathrm{ft}$. and an accuracy of 0.2 ft . $/ \mathrm{sec}$. This airborne ultrasonic doppler system gives precise measurements of an aircraft's rate of descent during the last 18 in . before touchdown.

Circle 251 on Inquiry Card

R. F. Chokes

J. W. Miller Co., 5917 So. Main St. Los Angeles 3, Calif., is offering a 48page catalog which includes specs. on molded (military type) r-f chokes, in termediate freq. transformers, adjustable coils wound on stable Ceramic and Resinite materials, exact replacement coils, and other related items. Industrial Catalog No. 62.

Circle 252 on Inquiry Card

Information Searching

American Society for Metals. Metals Park, Novelty, Ohio, has an 8 -page brochure which describes a new electronic system of searching tech. articles, documents and patents on metals and related subjects for specific mention of any aspect of the subject.

Circle 253 on Inquiry Card

Power Converters

Texas Instruments Incorporated. P. O. Box 5012, Dallas 22, Tex., has an application note or DC-DC GERMANIUM POWER CONVERTERS. The application note discusses the use of medium and high power transistors in de to de converter circuits.

Circle 254 on Inquiry Card

Nanocircuitry

General Instrument Corp.'s Semiconductor Div., 600 W. John St., Hicksville, N. Y., is offering Bulletin NC-10, describing their facilities and capabilities in the field of nanocircuits. Some of the headings include typical nanocircuit applications, what is available today, a graph for translating a present problem into nanocircuitry, and the nanocircuit concept. Circle 255 on Inquiry Card

Heating \& Cooling

Tech. Data Bulletin 356 from Dean Products, Inc., 1042 Dean St., Brooklyn 38, N. Y., contains information on heating, cooling, heat transfer, an instantaneous LMTD chart, how to figure heating load, how to select heating surface and pressure drop short cuts, and uses of their Panelcoilts.

Circle 256 on Inquiry Card

Timing and Control Systems

Intermountain Branch. CurtissWright Corp.. Electronics Div., P. O. Box 10044, Albuquerque, N. Mex., has tech. data available on their programmed Timing and Control Systems. The systems are designed to provide accurate and reliable initiation and termination of various switching functions at pre-selected times.

Circle 257 on Inquiry Card

Air Bearing Turntable

Dunn Engineering Corp., 225 O'Brien Hwy., Cambridge 41, Mass., has tech. data available on their Model T900 rate turntable, which is equipped with air bearings. The T900 is designed for testing the dynamic performance of inertial systems, all types of gyroscopes, accelerometers and pendulums.

Circle 258 on Inquiry Card

Capacitors

Catalog MS61-10 from Aerovox Corp., Distributor Div., New Bedford, Mass., contains up-to-date data on their motor-run, motor-start capacitors. Information includes capacities and physical dimensions, hardware and terminal variations. Illustrated for quick reference.

Circle 259 on Inquiry Card

Microscopy

Ernest F. Fullam, Inc., P. O. Box 444, Schenectady 1, N. Y., is offering a brochure entitled, "Accessories for Microscopy." Included are accessories for evaporation, sheet screening, ordering instructions, magnification calibration, general accessories, and specimen screen for Siemens microscopes.

Circle 260 on Inquiry Card

RF Power Levels

Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md., has available a brochure on precise methods of determining r-f power levels, which discusses the sources of error of these methods. Entitled, "RF Power Bridges and Thermistor Mounts." the brochure also describes their line of precision power bridges, thermistor mounts and X-band power standards. Circle 261 on Inquiry Card

Potenfiometers

Duncan Electronics, 2865 Fairview Rd., Costa Mesta, Calif., has a tech. bulletin available covering their new 3600 Series of 5 to 600 K!! potentiometers. Included are complete specs., dimensional drawings and performance characteristics of the 3 to 10 turn Series models.

Circle 262 on Inquiry Card

Angle Repeater

Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J., has tech. information available on their Precise Position Repeater, Model PPR-10 which provides both a visual readout and binary coded data output of the angular position with 20 sec.-of-arc accuracy and $\$$ sec.-of-arc resolution. Circle 263 on Inquiry Card

Power Penfode

Application Note AN-192 from Radio Corp. of America, Electron Tube Div., Harrison, N. J., contains information on their RCA-6939 UHF twin power pentode. Uses are for Class A r-f amplifier and freq. tripler service at freqs. up to 500 Mc . Under CCS conditions at 500 MC , it can deliver an average of 5 w and under ICAS conditions, 6 w.

Circle 264 on Inquiry Card

Medium Speed Printer

Soroban Engineering, Inc., Melbourne, Fla., has tech. data available on their medium speed printer which is capable of printing 100 characters or the average line of type in 1 sec . The printing platen accepts a paper width up to 11 in . and pin feed continuous forms up to 11% in. Loading is similar to teletype, using roll or fanfold papers.

Circle 265 on Inquiry Card

Solid State Time Delay

Shockley Transistor unit of Clevite Transistor, Stanford Industrial Park, Palo Alto, Calif., has tech. data available describing simple, variable time delay circuits, using a small number of components which can be designed with the Shockley 4-layer diode as the active element.

Circle 266 on Inquiry Card

GET THE FULL STORY . . .

BEHIND THE
 \section*{Beaml X° switch}

 GIVES VOU Nomer
Burroughe Corporation

New Tech Data

for Engineers

Programmer-Comparator

Bulletin LMEJ 4643 describes second in GE's Programmer-Comparator offering simple, automatic test equipment for use at flight line, base shops. aircraft carriers, and depot facilities. Analog comparison techniques, applications, characteristics, and specs. are discussed. General Electric Co., Light Military Electronics Dept.. Armament \& Control Section, 600 Main St., Johnson City, N. Y

Circle $2 \mathfrak{F} 1$ on Inquiny Card

Transformer Finishes

James Electronics Inc.. 4050 N. Rockwell St., Chicago 18, Ill., is offering a new catalog describing standard miniature transformer finishes for military and commercial applications.

Circle 232 on Inquiry Card

Magnefic Metals

Magnetic Metals Co., Hayes Ave. at 21 st St., Camden, N. J., has a 40-page booklet describing high permeability magnetic metals. Entitled "Carpenter High Permeability Alloys," the book contains information on permeability and core loss of Carpenter high permeability " 49 " and Carpenter HyMu " 80 " alloys at both 60 and 400 cPS. Also described is a new approach to core loss calculations and booklet contains a considerable amount of 60 and 400 CPS loss data.

Circle 233 on Inquiry Card

Semiconductor Packages

Corning Glass Works, Corning, N. Y., has tech. data available on a micro-miniature semiconductor package made of glass, that is opaque to visible and infrared light. The package complies with the microminiature transistor outline designation, TO-51. They have passed thermal shock tests of Mil-Std-202B, Method 107 A, Condition \mathbf{C}, and withstand $300^{\circ} \mathrm{C}$ storage without damage.

Circle 234 on Inquiry Card

HV Power Supply

Mikros, Inc., 7620 S. W. Macadam Ave., Portland 19, Ore., has tech. data available on their Model HV-40 high voltage power supply, an r-f type unit providing continuously variable dc output voltages in the range from 10 to 40 KV. Catalog Sheet C-1.

Circle 235 on Inquiry Card

Wire-Wound Resistors

Bulletin 0-1 from Kelvin Electric Co., 5907 Noble Ave., Van Nuys Calif., gives electrical and mechanical specs. of very stable, encapsulated precision wire-wound resistors.

Circle 236 on Inquiry Card

Ceramic Dielectrics

Bulletin 517, an 8-page bouklet, is designed to inform the O.E.M. users of ceramic dielectrics and piezoelectric ceramic transducers of the manufacturing, design, and research facil. ities available from Erie Technical Ceramics, Div. of Erie Resistor Corp.. State College, Pa .

$$
\text { Circle } 237 \text { on Inquiry Card }
$$

Induetors

Vari-L Co., Inc., P. O. Box 1433, Stamford, Conn., has available Cata$\log 61$ on their electrically-variable inductors. Information includes function of the variable inductor, principles of operation, special types, applications. explanation of tabular data, characteristic curves and dimensional drawings.

Circle 238 on Inquiry Card

Ground Stud

Jan Engineering, 2018 Pico Blvd., Santa Monica, Calif., has tech. data available on their ground stud, \mathbf{P} / \mathbf{N} 5008 . Designed for circuits requiring up to \#14 AWG wire and for establishing a true reference for single point ground to eliminate the possibility of ground loops and noise pickup. Information includes spec. sheets and outline drawings.

Circle 239 on Inquiry Card

Clean Room Uniforms

Techni-Tool, Inc., 1033 Chestnut St., Phila. 7, Pa., has tech. data available on their clean room synthetic uniforms. Information is included on their lint-free uniforms and accessories made of Dacron \mathbb{R} polyester.

Circle 240 on Inquiry Card

Mfg.Rep. Agreement

The Industry Relations Committee of the Association of Electronic Parts and Equipment Manufacturers, Inc., Suite 1500, 11 So. La Salle St., Chicago 3, Ill., has available a checklist of points for consideration in the preparation of n formal agreement between manufacturers and sales representatives.

Circle 241 on Inquiry Card

Digital Transceiver

Hughes Aircraft Co., P. O. Box 90-902, Los Angeles 45, Calif., has tech. data available on their digital data transceiver, which is capable of high speed serial transmission up to 4800 bits/sec. over high quality lines. The transistorized transceiver, HC270 , operates by information coded by the transmitter on a single tone in the form of 4 orthogonal phases and recognized at the receiver by element-to-element comparison.

Circle 242 on Inquiry Card

DC Power Supplies

Jordan Electronics, Div. of Victoreen Instrument Co., 121 So. Palm Ave., P. O. Box 2047, Alhambra, Calif., has a dc power supply catalog, 12 pages, which describes their line of dc power supplies.

Circle 243 on Inquiry Card

Klystron Oscillators

Sperry Electronic Tube Div., Section 101, Gainesville, Fla., has a brochure available on their family of 2 . cavity Klystron oscillators. These units are developed for parametric amplifier pumping applications and FM doppler radars. One design feature is the constant output power vs beam voltage characteristic which results in a flat top power output mode.

Circle 244 on Inquiry Card

Phase Mefer

Industrial Test Equipment Co., 55 E. 11th St., New York 3, N. Y., is offering tech. data on their Model 200 A phase meter. Information is also included on their null meter, impedance comparators, power oscillators, and electronic generators.

Circle 245 on Inquiry Card

DC Power Supplies

Electro Products Laboratories, Inc., Power Supply Div., 4500 N. Ravenswood Ave., Chicago 40, Ill., has available Bulletin PS-561 covering their line of 14 low voltage, regulated, semiregulated and conventional dc power supplies. Information includes handy selection chart, characteristics and performance data.

Circle 246 on Inquiry Card

Fixed Resistor

Data Sheet 185 from CTS Corp., Elkhart, Ind., illustrates, describes and tabulates extensive tests of their new 0.050 in. dia. $x 0.030$ in. thick solid cermet high temp. high stability fixed resistor, using Mil-R-10509D, Characteristic B (RN60) as a guide to evaluation.

Circle 247 on Inquiry Card

Four Layer Semiconductor

Tung-Sol Electric Inc., 1 Summer Ave., Newark 4, N. J., has tech. data available on their Dynaquad, n low cost, germanium, alloy junction PNPN device that can be turned on and off at the base in $0.1 \mu \mathrm{sec}$ and can switch in the megacycle range. Information includes a comparison of the circuitry of a conventional flip-flop and a Dynaquad flip-flop, illustrates a waveform of the Dynaquad's switching action and shows curves of the base turn-on and collector turn-on characteristics.

Circle 248 on Inquiry Card
sets up quickly...easy to operate... takes wide range of wire sizes

SPRCIFICATONS:

- Min. finished hole size: . 18 In.
- Max. finished torold O.D.i 4.0 In .
-Winding speed: 1800 tums $/ \mathrm{min}$.
- WIre range: AWG 44 to AWC 26
- Dual, self-chacking turna
counting syatem
- Loading (wire lencth) counter
- Core range: \%" I.D. to \& O.D.
to $1 \frac{1}{2}{ }^{\circ}$ high

LaBORATORY USE

- Change wire and core sire in 45 sec.

PRODUCTION USE

- 1500 turns der minute
- Insart core and load in 20 sec.

includes all rings, counters and accessurice immedinte deldoery. Itterature on request ARNOLD MAONETICS CORP. 6050 W. Jefferson Blvd., Les Angeles 16, Collf.

VErmont 7-5313 Circle 78 on Inquiry Card

Speeds up soldering and

 reduces faulty connections!

Instant Heat Gun PLUS Solder Dispenser.
For faster, better connections, 100 watt Gun heats instantly when trigger is pulled. Tip is made of copper for superior heat transfer, iron-plated for long life, and has long reach. Weller-Kormat Dispenser feeds the solder-saves time, particularly in difficult-to-reach spots-and reduces solder waste. It eliminates manual handling of the solder and resulting contamination from dirt, grease and hand acids that cause faulty connections.

COMBINATION PRICE $\mathbf{\$ 9 . 9 5}$ list
(en2 model malal solotamg set
available at your electronic parts distributor WELLER ELECTRIC CORP., EASTON, PA. Circle 79 on Inquiry Card

Large production gives you low prices!

Thermosfatic DELAY RELAYS

2 fo 180 Seconds

Actuoted by a heoter, they operote on AC, DC, or Pulsating Current. Hermeticaliy sealed. Not offected by altitude moisture, or climate changes. SPST only-normally open or closed Compensaled for ambient remperoture changes from — 55 to -80 6. Healers consume approximotely 2 W and may be operated continuoustr. The units ore rugged, explosion-proet, longlived, mid-inexpensive!
TYPIS: Srandard Radio Octal and 9 Pin Miniature . . List Price, \$4.00.
Also - Amperite Differential Re. PROBLEM? Send for lays: Used for outomofic overlood, un- Bullefin No. TR-81 dor-volicege of under-current protection

BALLAST REGULATORS

Amperite Regulators are designad to Isap the current in o circuit automatically regulated of a definite value (for examplo os amp I . For currents of 60 mo . to 5 mpps . Operate on A.C., D.C., of Pulsoting Current.
 REGUL ATOR

Hermetically sealed, thay are not affected by changes in alfitude. ambient temperature $1-50$ 10 -70 (), or humidity ... Rugged light, compoct, most inexpensive

List Price, \$3.00.
Write for 4-page Technical Bullefin No, AB.51
AWPERITE

561 Broadway. New York 12, N. Y. CAnal 6.19A6
In Canada: Atlas Radio Corp, Ltd., 50 Wingold Ave, Toronto 10

New Eendlx silicon rectifiers offer lower current leakage for greater circuit stability - as low as 10 microamps at 600 volts. They're 'Dynamically Tested'. an exclusive Bendix quality control process that individually tests each unit to assure uniform reliability. The result: dependable, versatile units that offer a wide range of voltage capabilities (50 to 600 volts PRV). Designs conform to JEDEC DO-4 outlines-with welded case and glass-to-metal hermetic seal between case and anode lead. Ideally suited for applications including magnetic amplifiers, DC blocking units, and power rectification. Write Bendix Semiconductor Division for information.
maximum ratings

Type Number	Formard Current	Peak Reverse Voltage	Reverse Current at PRV		$\begin{aligned} & \text { Forward } \\ & \text { Drop at } \\ & 25 \text { C } \end{aligned}$
	Ade	Vdc	\& $150^{\circ} \mathrm{C}$	(4) $25^{\circ} \mathrm{C}$	V dc
1N1124-1N1128	3 @ $50^{\circ} \mathrm{C}$	200.600	-	10 HAdc	1.1 (2) 6 Adc
IN1199.1N1206	12 (ii) $150^{\circ} \mathrm{C}$	50.600	10.0 mAdc	LeAdc	1.25 亿 12 Adc
1N1341-1N1348	6 (2) $150{ }^{\circ} \mathrm{C}$	50.600	10.0	-	1.15 (a) 6 Adc
1N1581-1N1587	3 ¢ $150^{\circ} \mathrm{C}$	50.600	0.5	-	1.5 (i. 6 Adc
1N1612.1N1616	5 (a) $150^{\circ} \mathrm{C}$	50.600	1.0	-	1.5 (a) 10 Adc
1N2491-1N2497	6 @ $150^{\circ} \mathrm{C}$	50.600	2.0	-	1.1 @ 6 Adc
B-443-B-449	12 (a) $150^{\circ} \mathrm{C}$	50.600	2.0	-	1.2 (a) 12 Adc

Bendix Semiconductor Division

HOLMDEL, N. J.

[^6]

on this
 Plant Location Business

No area can be all things to all industries. But we've got down-to-earth facts that prove the Toledo-Northwestern Ohio area is right for Electronics Industries. These facts are reported in a study of the area by Fantus Research, Inc., one of the nation's foremost industrial location services. If you would like to evaluate this information in terms of your plant location plans, write R. E. Johnson, Manager, Industrial Development Department, The Toledo Edison Company, Toledo 1, 0.

> THE TOLEDO EDISON COMPANY
> an investor-amad acelris light and power company sarving Northwestern Ohio

New
 Products

SILICON TRANSISTORS

Total awifehing time: 25 nsec; collecfor fo pmitter safuration: $0.2 v$.

EIA-resistered units in the new TO-51 micro package are 2 triple diffused silicon planar high speed computer switches, 2N958 and 2N!5!. New industry-standard T()-51 micro package is 0.165 in . dia. max. and 0.060 in. high max. Leads are flat ribhon 0.500 in . min. length. It is particularly suited to "swiss cheese" assembly as well as other advanced techniques. Pacific Semiconductors, Inc., 1:2955 Chadron Ave., Hawthorne. Calif

Circle 188 on Inquiry Card

SPECTRUM TAPE RECORDER

Can be remote programmed and rack mounted.

Model TRS, Transistorized Spectrum Tape Recorder, designed to record, store, and playback the spectral information of any r-f modulated signal which can be normally displayed on the crt of Polarad Spectrum Analyzer. A standard 3600 ft . $1 / 1 \mathrm{in}$. magnetic tape reel permits 48 min . of recording time at 15 ips . A "RECORD" lock is provided to prevent accidental erasure. Fast forward and rewind of $60 \mathrm{ft} . / \mathrm{sec}$. is provided. Polarad Electronics Corp., 43-20 34th St., Long Island City, N. Y.

Circle 189 on Inquiry Card

NEW STRAIGHT WALL TANTALUM CAPACITOR CAN'T LEAK

Meets MIL C 3965-8, Style CL-64, CL-85.
A new space-saving approach to the design of wet tantalum capacitors ends mounting problems encountered with flanged types and yet will not leak.

ITT's compact, sintered slug tantaium capacitor features a wedge-shaped seal held under compression by an epoxy retainer ring formulated for thermal characteristics inverse to those of silver. Ordinary, straightwall capacitors leak along the lead when elastomer compression is reduced as the silver can expands. Not so with the new ITT design!
This new, compact capacitor conforms to specifications MIL C 3965-B, Style CL-64, CL-65 and provides both the compactness and rugged reliability required in missile, airborne and mobile equipment. For details, write today requesting Bulletin No. 610.

CORPORATION. PALO ALTO, CALIFORNIA Circle 82 on Inquiry Card

CLEAN PRINTEDCIRCUIT BOARDS

 AUTOMATICALLYRemove activated and non-activated fluxes and other contamina. tion from assembled printed-circuit boards with new ultrasonic cleaner using Freon* solvent. No trace of flux under "Black light" inspection; no trace of residual contamination; no damage to mounted components.
Will handle $300 \cdot 500$ boards per hour-board sizes up to 10×20 inches. Also available less conveyor for manual operation, Written quotation upon receipt of production volume and board sizes.

Brmeon is a medistereo trademamk of dupont
NATIONAL ULTRASONIC CORPORATION 95 Park Avenue - Nuiley 10, N. J.
NOth 1-1515 • TWX NUT 1030
Circle 83 on Inquiry Card

Aglag: $1 \times 10^{-9} / \mathrm{d}$ ay. Frequacer Chasps: Less than 1×10^{-0} under vibration of 10 to 200 cps at 10 G , and under 100 G shock when tested per MIL-STD 202A Method 202A. Freqwacy Range: From $4 \% 6 \mathrm{mc}$ to 6.133 mc. Write for literature to James Knights Company, Sandwich. Illinois.

New

Products

TIME TOTALIZER

Features include: small size, low cost and trouble free operation.

Uses include: timing of machinery and parts for preventive maintenance; timing of devices used intermittently; and life tests. Functionally, the Time Totalizer is a mercury coulometer. Full scale range is $\mathbf{1 0 0 0}$ hrs. Voltage source, ac version, 105 to 125 v ., freq. range 50 to 2400 CPS , de: version 24 to 32 v. ; Power consumed, approx. $0.5 \mathrm{w} . ;$ Compensated temp. range, from $-35^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$; Accuracy, $\pm 6 \%$ over full temp., voltage and freq. range. American Machine \& Foundry Co., AMF Bldg., 261 Madison Ave., New York 16, N. Y.

Circle 186 on Inquiry Card

HIGH GAIN AMPLIFIER

High common mode rejection with $.5 \mathrm{mv} / \mathrm{cm}$ sensitivity.

Amplifier Model 162D is a plug-in unit designed for the HewlettPackard Model 160B and 170A oscilloscopes. It has 12 calibrated ranges $5 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} . / \mathrm{cm}$, with a vernier control extending min. sensitivitv to $50 \mathrm{v} . / \mathrm{cm}$. At max. sensitivity. the 162D/170A combination has a rise time of 10 nsec . ; the $162 \mathrm{D} / 160 \mathrm{~B}$ combination has a rise time of 29 nsec. It has a differential input with 40 db . common mode rejection. HewlettPackard Co., 1501 Page Mill Rd., Palo Alto, Calif., Dept. 2114.

Circle 187 on Inquiry Card

ANNOUNCING THE NEW HONEYWELL IRON VANE

 PANEL METERS

Here are the AC counterparts of Honeywell's popular DC panel meters. Iron Vane AC Meters are perfectly matched to the DC range and are available in both the Medalist and "standard" case styles. This means a minimum of trouble and expense in mounting. And you are assured of harmonious styling in'every detail.
Iron Vane AC Meters are designed for a wide variety of commercial applications - including portable equipment, testers, power supplies, generator equipment and medical equipment. The improved moving iron mechanism features magnetic damping, impregnated field coils, and selected fixed and moving iron material to provide long, trouble-free operation.
These meters are available in a wide selection of case styles and colors. Dials can be custom designed with your company name, trade-mark or other data. For full information, contact our representative in your area - he's listed in your classified telephone directory. Or us: Precision Meter Division, Minneapolis-Honeywell Regulator Co., Manchester, N. H., U.S. A. In Canada, Honeywell Controls Limited, Toronto 17, Ontario and around the world: HONETWELL INTERNATIONAL Sales and service offices in all principal cities of the world.

Honeywell
 1 Pracision Materat

RITE-LINE coPYHOLDER

SPEEDS PRODUCTION REDCCS ERRORS

In assembly line production, the $^{\text {n }}$ master instruction sheet showing operational sequence must be accurately followed. This often calls for concentration greater than can be reasonably expected unless the operator is provid with a positive eye guide. When the information sheet is in a RITE-LINE copyholder, the operator sees above the eye guide only the instructions for the operation on which she is working. On its completion, a touch of the finger brings up the instructions for the next operation. This simple, inexpensive device speeds production and reduces the principal causes of errors. Takes any width of copy up to 20 inches. Free ten-day trial offer, no obligation.

Write for additional information RITE-LINE CORPORATION
 4211 39ih St., N.W., Washington 16, D.C. Circle 86 on Inquiry Card

New	
	Products

PARABOLIC ANTENNAS

For use in the 806 to 960 MC fre. range.

Spun and mesh parabolic antennas offered in sizes from 4 to 12 ft . 110 ft . for spun). 36 newly catalogued tennas offered in sizes from 4 to 12 ft . (10 ft . for spun). 36 newly catalogued models for UHF translator, studiotransmitter link, or government use. Features ability to mount feed from front or rear and the intershangeability of different feed designs. All feeds are continuously adjustable through 360° in spun reflector models -in steps of 90° in mesh models. Technical Appliance Corp., Sherburne, N. Y

Circle 184 on Inquiry Card

POWER TRANSISTOR TESTER

Tests transistors, pou'er diodes and Zener diodes.

Model 1885 designed to test transistors to 50 a. of IC, power diodes to 5 a. of forward current, and Zener diodes to leakage current of 150 ma . Measures the following parometers: $I_{\text {tlo, }}$, I...u, $I_{\text {tha, }}$ de Beta, imput impedance, Zin, output impedance Hoe, GM in μ mhos and mho. It will also determine Alpha and collector voltages and Vcc (SAT). This full transistorized instrument is set up from either built-in roll chart or direct from transistor manufacturers handbook specs. Hickok Electrical Instrument Co., 10606 DuPont Ave., Cleveland 8. Ohio.

Circle 185 on Inquiry Card

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.
BALTIMORE, Maryland
2319 Maryland Ave..
CHesapeake 33220
BOSTON. Massachusetts
168.182 Albion St.

Waketield Mass
............ 295.5640
Camden, New Jersey
Terrace Otfice. Park View Apls Collingswood 6 N. I

ULysses t-7082
chicago, Illinois
664l W. North Ave. Oak Park. III.
................VIllage 8-5556
Cleveland. Ohio
14625 Detroit Ave.
Lakewood. Ohio
. ACademy 1-9191
dallas. Texas
511 Braniff Aırways Bldg.
Dallas 35, Texas.
.... FLeetwood 7.9448
DAYTON, Ohio
379 W. First St.
...BAldwin 49651
denver, Colorado
First National Bank Bldg.
621 Seventeenth St.
....... AComa 2-1686
DETROIt, Michigan
2842 West Grand Blvd.
............. 875-2490
KANSAS CITY. MISSOUTI
Wirtham Blds.
31st and Troost Sts............. VAlentine 1-1819
LOS ANGELES. California
6362 Hollywood Blud.
Hollywood 28. Calif.
...HOllywood 2.2381
NEWARK, New Jersey
1060 Broad St...
..... MArket 3-3151
orlando, Florida
10 facklind Bldg. 205 E. Jackson St
......CHerry 1-4526
PhoENIX. Arizona
2727 North Central Ave.. CRestwood 7.3366 ST. PAUL. Minnesota
Griggs-Midway Bldg.
1821 University Ave.
..... MIdway 6.1891
SAN DIEGO, Califormia
3620 30th St.
......CYpress 7.3708
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif. .
.DAvenport 1-2064
SEATTLE, Washington
3466 East Marginal Way South.......inAin 4.0783 stracuse, New York
2360 James St.
....HOward 3.4502
winston-salem. North Carolina
Nissen Building
310 W. Fourth St.
.PArk 30363

CANADIAN SALES:

Transitron Electromic Corporation of Canada Lid
Toronto and Montreal

Trangitron

electronic eorporation wakofiold, meesechusett

ambly mine Ir
Circle 87 on Inquiry Card

WELDED CIRCUIT PACKACES Transitron custom-assembles and encapsulates any variety of three-dimensional circuit configurations of conventional, miniature or micro-miniature components. Utilization of advanced production processes, including precision welding, assures strong, uniform joints and results in high packing density, light weight and high structural reliability. Typical custommade packages are:

FLIP.FLOP

A general purpose fllp-flop module capable of counting at speeds of $3-5 \mathrm{Mc}$ and operating as a logic element at bit rates in excess of 2Mc.

(Tentative Data)

Frequency in excess of 3 Mc
Supply Voltage 12 Volts DC $\pm 30 \%$
Power Dissipation (typical) 150 mW
Clock Rate in excess of 2 me
Maximum Load $1.5 \mathrm{~K}_{\Omega}$

LOW LEVEL AMPLIFIER

Gives high input impedance and low noise performance with a voltage gain of approximately 20.
(Tentative Data)
Input Impedance $500 \mathrm{~K} \Omega$
Output Impedance 3k』
Voltage Gain 20
Equivalont Input Noiso Voltege $\mathrm{s}_{\mu} \mathrm{V}$
Voltage Supply +18 Volts
Band width DC to 100Ke

3 to 5 WATT AUDIO AMPLIFIER

Contains a stable gain push-pull amplifier circuit capable of up to 5 Watts. (Tentative Data)
Voltage Supply is Volts
meximum Input Voltage 1 Volt p.p.
from 3Kn source resistance
Maximum LInear Output (Push-Pull)
3 Watts (20 Ω load)
Band width $20-20,000 \mathrm{cps}$

First to introduce the REF-AMP, Transition, a 5 -year pioneer in the development of packaged semiconductor assemblies, is pleased to announce the broad expansion of its Special Products Service Department. In response to the increasing demand for packeged assemblies. Transitron offers the electronic industry a growing line of standard assemblies as well as a highly versatile and flexible custom design service.

VIDEO AMPLIFIER DOUBLET

Utilizes a stable gain circuit giving a broad flat band width and relatively low noise operation.
(Tontativo Data)
Band width
20 cps to 7 Mc
Voltage Supply 22 Volis

Curront Gain of approximatoly 20 per doublet
Equivalent Input Nolse Current over ontire band width is typically loss than $0.02 \mu \mathrm{~A}$ RMS

MULTIPLE

SEMICONDUCTOR ASSEMBLIES

- An extension of standard assembly techniques has resulted in the pack. aging of a number of devices in the same space normally occupied by one standard transistor package. Transi-- tron's compact packaging features electrical isolation, close thermal proximity between junctions, matching of specific electrical specifications, and reduction of external connections. Three typical Transitron Multiple Assemblies are:

PACKAGED REFERENCE ASSEMBLIES

A further diversification of Transitron's packaged assembly program has produced two new additions to the firm's broad standard line of quality silicon references...
Selecting from among its most reliable and stable units, including devices used in the Minuteman missile, Transitron combines for the first time both temperature-compensation and close tolerances in a double anode packaged reference assembly. Furthet effiorts have also produced a low current reference assembly which offiers precision tolerance reference voltages (10 to 100 volts) in a package especially suited for high-density circuitry.
For further information, ask for Transitron's "Packaged Reference Assembly" bulletins.

Gertsch announces:

the CRB line of complex ratio bridges

Ideal for voltage and phase comparison.

Measures complex voltage ratios - both in-phase and quadrature - with high accuracy.

These Gertsch CRB instruments are designed for testing 3 - or 4 -terminal networks, including transformers, synchros, resolvers, gyros, and transducers. The Gertsch line includes:
SOLID STATE BRIDGE Modil ('RB-4. Instrument is fully transistorized .. . highly accurate. A self-contained. phase-sensitive null indicator permits rapid measure. ments. R. + R, voltage ratios are read from concerntric switch dials. Battery or line operation ... case or rack mounting. Operating frequency range: $38(0) 420$ cps Weight 20 pounds.

COmplex ratio bridge - Models ('RB-1B and ('RB-2B In these units, quadrature component reading is indicated either as rectangular coordinate. tan $\#$, or " directly in degrees. Useful for measuring angles as small as .001 . Six-place resolution. with high accuracy. Cabinet or rack mounting.

$$
\begin{array}{llr}
\text { CRB-1B } & 30-1.000 \mathrm{cps} & 2.5 \mathrm{f} \text { or } 200 \mathrm{~V} \text { max. } \\
\text { CRB-2B } & 50-3 .(\mathrm{KK}(\mathrm{cps} & .35 \mathrm{f} \text { or } 200 \mathrm{~V} \text { max. }
\end{array}
$$

aUTOMATIC COMPLEX RATIO BRIDGE-Model CRB-3. A self-nulling AC bridge with digital readout of both in-phase and quadrature voltage ratios. Excellent for production testing.
Accuracy of bridge is $.002^{\prime \prime}$ ", max. Five-place resolution. with automatic quadrant indication. Unit is selfcontained. requiring no external calibration sources, and is equipped for external printer readout.

Complete literature on all units sent on request. Bulletin CRB.

$$
\begin{aligned}
& -7 E M f S C h= \\
& \text { GERTSCH PRODUCTS, INC. }
\end{aligned}
$$

[^7]
New
 Products

SERVICE TOOL BAG

Leather tool bag for sereice, repair and maintenance mechanica.

Made of top grain cowhide. Upper section holds large tools, parts, meters, instruments. Lower section has 3 sliding metal trays with variety of divided compartments for smaller parts. Outside dimensions: $15 \times 12 \mathrm{~L} / \mathrm{z}$ $x 15 \mathrm{in}$. Can be equipped with an outside pocket for service books and papers. Porket measurements: $131 / 2 \mathrm{in}$. long, 9 in. high, with $1^{3} 4 \mathrm{in}$. gusset expansion. K. Leather Products, Inc., 427 Broadway. New York 13, N. Y.

Circle 182 on Inquiry Card

ANTENNA MOUNT

Telemetry reception and tracking of misriles and satellites.

Model 28, servo controlled pedestal, features include gyro stabilization for shipboard use, a complete solid state ac servo system and automatic beam crossover switching from 3 db to 9 db . Current production model employs a 5 ft . reflector for use in the 5 Gc range, but other reflectors and freqs. are available. The current system has slew rates of $36^{\circ} / \mathrm{sec}$., and accelerations of $130^{\circ} / \mathrm{sec} . / \mathrm{sec}$. TEMEC, Inc., 7833 Haskell Ave., Van Nuys, Calif. Circle 183 on Inguiry Card

MY SIN. COURTESY OF LANVIN

NEW TO-18 TYPES NOW AVAILABLE

2N935
2N936
2N937
2N938
2N939
2N940
2N941*
2N942*
2N943*
2N944*
2N945*
2N946*

TO. 5 EQUIVALENT 2N327A 2N328A 2N329A $2 N 329 A$
$2 N 1025$ 2N1026 2N1469 2N1917* 2N1918* 2N1919* 2N1919*
2N1920* 2N1921 2N1922*

OF
SPERRY RAND CORPORATION NORWALK. CONNECTICUT

division
 UCTOR

More than just another transistor available now, a full line of PNP Alloy Junction Silicon Transistors in a smaller case (TO-18) with the same high performance as TO-5.

The engineering problem of getting the exact performance from a substantially smaller unit has for years faced engineers using silicon transistors. Now Sperry offers you PNP Alloy Junction Silicon Transistors in a higher density package than the popular TO-5. These new TO-18s have the same electrical characteristics, are smaller in size, lighter in weight than TO-5 . . . and at no increase in price.

THESE PNP ALLOY
- Medium frequency digital switching circuits
SILICON TRANSISTORS,
- Operational analogue elements
- Audio and communication circuits
- Airborne and missile instrumentation
- Nuclear instrumentation
IN EITHER CASE, ARE
PARTICULARLY WELL-SUITED FOR

Chopper Transistors - for single use or matched pairs that have the best combination of chopper characteristics availabie - high breakdown ratings 50 to 80 voits. Two point control of current/voltage offset parameters. Matched pairs to standard tolerance of 100 MV .

[^8]
and other standard Aladdin TRANSFORMERS
for applications in

- Data Processing Equipment
- Missile Guidance
- Aufomatic Controls
- Multiplex Telephone Systems
- Telemetry Interstage Coupling

Aladdin DURA-CLADS are designed for reliability and made on automatic machinery.

The DURA-CLAD's and other Aladdin fransformers are used at frequencies from 20 CYCLES to 30 MEGACYCLES.
Fur a free sample to try on for size, iinfinite impedance-ie., no windings), chech No. 89 on the Reader-Service card in this issue.

NOW AVAILABLE:
The Aladdin Transformer Encyclopedia Write for your copy on company letterhead to:

New

Products

CAPACITOR TESTER

Automatic unit measures leakage current and gives record of failures.

Model 8515 Automatic Capacitor Tester Fixture has panel lights to indicate the unit under lest. Memory light signals failure of a unit and remains on as the automatic test sequence continues. Model 8514 automatic hypot supplies a dc potential continuously adjustable from 0 to 20 kv for capacitor testing. The leakage current measurement ranges are 0-10 and $0-250 \mu \mathrm{a}$. Power supply gives a charging current of 20 ma . Associated Research, Inc., 3777 W. Belmont Ave., Chicago 18, Ill.

Circle 190 on Inquiry Card

HIGH VOLUME FAN

Rugged fan, Model 1PB.95W, delivers 550 CFM at low decibel rating.

They are panel mounted units for use in electronic racks, for mobile or stationary generators, military vans, or field vehicles. Powered by a continuous duty totally enclosed 115 v ., 60 CPS, 1ϕ, shaded pole motor, meeting Federal Specs, CC-M-636A. Ball bearings meet spec. FF-B-171 and lubrication meets Mil-G-3278 with temp. range of $-68^{\circ} \mathrm{C}$ to $+93^{\circ} \mathrm{C}$. Motor is corrosive resistant and fungus protected. Motor and propeller are vibration isolated. McLean Engineering Labs., Princeton, N. J.

Circle 191 on Inquiry Card

New

 Products
SHORTING SWITCHES

For dual wanegnides and feature switching time of 10 msec .

Shorting switches mechanically short-circuit waveguide. Switches aro normally closed and are available for W R90 dual sidewall waveguide covering both 8.5 to 9.6 and 9.6 to 10.0 Gc . These switches are unaffected by external magnetic fields, permitting their use near ferrite and other magnetic devices. Microwave Development Labs., Inc., 15 Strathmore Rd.. Natick Industrial Centre, Natick, Mass.

Circle 192 on Inquiry Card

WAVEGUIDE SEALS

Provide posifive mechanical scaling; provent r-f leakage.

Complete line of seals for WRseries and X-band waveguides eliminate burning and/or arcing. Called Electr-O-Seals, (t) the seals are made to fit EIA (RETMA) standard guides and, in addition to positive sealing, provide savings by making special machining of flanges unnecessary. The inside metal mating edges of the seal are knurled to assure positive electrical contact. They are also reuseable. Parker Seal Co., Div. ParkerHannifin Corp., 10567 W. Jefferson Blvd., Culver City, Calif.

Circle 193 on Inquiry Card

ROTRON MODEL D

BLOWERS

For cooling these tightly packed electronic components use Rotron Model D Blowers-specifically designed to work against high airflow impedance. Offered in a wide range of sizes, styles and motor types. Motors totally sealed and have double shielded precision ball bearings.

- CAPACITY-10.720 CFM.
- Simplex or Duplex models in wheel sizes from $11 / 2^{\prime \prime}$ to $7^{\text {". }}$
- $50.60 \mathrm{cps}, 400 \mathrm{cps}, 1$ or 3 phase.
- Altivar motors for automatic air density compensation.
- Choice of rotation, outlet blast direction, inlet or outlet adaptors, mountings, and insulation Class A, F or H.
- Inverted types in wheel sizes from $4^{\prime \prime}$ to 7"
- Completely maintenance-free.

INSTALL THEM, FORGET THEM.

ROTRON

tefseal:.: A GREAT NEW ADVANCE IN HERMETIC SEAL RF CONNECTORS

Smaller, more compact, and with greatly improved electrical and mechanical characteristics!

Now, through connectronics Gremar has developed an advanced heumetic seal connector series taking full advantage of the excellent cielectric, high temperature and mechanical properties of Tefons

Gremar's Tefseal connectors provide a unique combination of sealing reliability and superior electrical characteristics nerer before achiered in RF connecfors. By avoiding all transmission line discontinuities with straight-through insulator and single center conductor, there is no inherent impedance mismatch and vswr is low.

Tefseal replaces glass-to-metal type hermetic seal connectors which have inherent design problems in balancing weight and size with specific impedance values.

GREMAR'S 100% INSPECTION POL'CY
Helium mass spectrometer leak test performed on critical hermetic seal problems can detect a leak that would pass only 1 oz. of fluid in 500 years! Just one of 142 separate quality checks performed to make Gremar RF Connectors specified for use in all major missile programs.
(A) duPons Rep. T. M.

To solve your hermetic seal connector problems contact:

MANUFACTURING COMPANY, INC. WAKEFIELD, MASS., Tel. 245-4560
RELJABILITY THROUGH QUALITY CONTROL

\section*{| New | |
| :---: | :---: |
| | Products |}

NOISE FIGURE TEST SET

Provides noise figure measurement from 0 to 15 db . at 5 Mc to 2 GC .

The temp. reference which serves as the noise source is essentially a temp-modulated resistor with low vSWR (less than 1.1 over the entire freq. range), negligible vswr variation during the temp. modulating cycle (less than 2 parts in 1000) and small variations of excess noise over the freq. range (less than 0.1 db .). The Auto-Node is suited for production line test work. Unit has all necessary equipment for measurements. Kay Electric Co., 14 Maple Ave., Pine Brook, N. J.

Circle 194 on Inquiry Card

REFLECTIVE TAPE

Pressure-sensitive tape reflects extreme heat from motors and wires.

"Scotch" brand No. Y-9050 is capable of performing continuously from 500 to $600^{\circ} \mathrm{F}$, and can withstand $3000^{\circ} \mathrm{F}$ of radiant heat for short periods. Caliper of the tape, which is readily conformable to irregular shapes and curved pipes, is 0.006 in. Weight $0.0038 \mathrm{lbs} / \mathrm{ft} . / \mathrm{in}$. of width, tensile strength of 75 lbs ./in. of width. Available in widths of from $1 / 6$ to 36 in., and in roll lengths of 36 yds. Dept. J1-1, Minnesota Mining and Mfg. Co., 900 Bush Ave., St. Paul, Minn.

Circle 195 on Inquiry Card

New
 Products

TIME DELAYS

Features accuracy of 0.01%, and delay from 50 msec . to infinity.

Temp. range, $-54^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Hermetically sealed timer rated at 30G for shock, and 500 cPs at 10 G for vibration. Designated 31800 Series Precision Electronic Time Ielay Relay, it offers contacts from SPST to 4 PDT, contact rating at 28 vide or 115 vac and 10 a. resistive, 5 a . inductive; 5 a. resistive, 3 a. inductive; or 2 a. resistive, 1 a. inductive. Input voltage is $24-30 \mathrm{vdc}$, power required is 5.75 w. max. A. W. Haydon Co., Culver City, Calif.

Circle 196 on Inquiry Card

HIGH TEMP. DIODES

Operate in sustained ambient temps. up to $500^{\circ} \mathrm{C}$.

Designed for use in a high temp. generator regulating circuit for military aircraft and missile uses. All 3 tubes are of ceramic construction and filled with an inert gas. Current ratings range from 0.15 to 10 a . The 10 a. Z-5437 is a medium size rectifier with a PIV of 200 v. The 2 a. Z-5434 is a small size rectifier with a PIV of 750 v. The 0.15 a. Z-5365, a small size rectifier has a PIV of 1000 v . Available in limited quantities for engineering samples. General Electric Co., Power Tube Dept., Schenectady. N. Y.

Circle 197 on Inquiry Card

Netic and Co-Netic foils are universally used as an evaluation tool; ultimately, as a production solution. Available in continuous lengthe on rolls up to 15° wide ... for human production line or to fit automated unisting reels of your tape serving machinery. Furnished in final annealed state ready for your operation.

HOW YOU SAVE SPACE, WEIGHT, TIME, MONEY

Minimum weight and displacement shielding designs are possible due to the magnetic shielding effectiveness of Co-Netic and Netic foils . . . foils can be supplied FROM .002", even thinner if you desire. Ordinary scissors cut foil easily to exact contour and size required. Foil can be wrapped quickly around hard-to-get-at components, saving valuable time, minimizing tooling costs.

HOW TO INCREASE RELIABILITY
Guard against performance degradation from unpredictable magnetic field conditions to which your equipment may be exposed. Eliminate such failure or erratic performance possibilities with dependable Co-Netic and Netic protection
assuring performance repeatability for your device over a wider range of magnetic field conditions.
Co-Netic and Netic alloys are not affected significantly by dropping, vibration or shock. They are characterized by low magnetic retention and do not require periodic annealing. When grounded, they effectively shield electrostatic as well as magnetic fields over a wide range of intensities.
Every satellite and virtually all guidance devices Increase reliability with Netic and Co-Netic magnetic shielding alloys. Use these highly adaptable foils for saving valuable space, weight, time and money . . , in solving your magnetic shielding problems for military, commercial and laboratory applications.

PHONE YOUR MEAREST SALES OFFICE TODAY:

MERIDEN. CONNECTICUT. BEverly $7-9232$ UNION CITY, NEW JERSEY, UNION 4.9577 BALTIMORE. MARYLAND. HOplans 7.3766 DECATUR GEORGIA. 3787516 CORAL GABLES. FLORIDA. HIghlands 3-7439 MAITLAND. FLORIOA. MIdway 7-7830 SI PETERSBURG. FLORIDA. WAverly 1.9735 DALLAS. IEXAS. Fleetwood 1.1615

HOUSTON. TEXAS. HOmestead 5.7780 ALBUQUERQUE. MEW MEXICO. AMherst E-6797 PHOENIX. ARIZONA. AMhuIst 4-4934 SAN DIEGO. CALIFORNIA, BRowning 8-6230 LOS ANGELES. CALIFORNIA. WEbster $1-1041$ PALO ALTO. CALIFORNIA. DAvenport 1.5064 SEATTLE. WASHINGTON. EA 3-8545 MONTREAL, QUEBEC, WEllington 7.1167

MAGNETIC SHIELD DIVISION

Perioction Mica Company
1322 N. ELSTON AVENUE. CHICAGO 22. ILLINOIS originators of permanetilly effective netic co.netic magne tic shielding

Sflectio BY RCA

Here is MEASURED RELIABILITY!

Ten thousand El-Menco high reliability dipped mica capacitors were put on life test at $85^{\circ} \mathrm{C}$ with 225% of the rated DC voltage applied in accordance with an RCA high reliability specification.

After 22,000,000 actual test unit-hours no**failures of any type occurred

The accumulated $22 \times 10^{\text {ti }}$ test unit-hours without any failures can be used to calculate many different failure rates depending upon the confidence level desired. However, we shall explore the meaning of the results at a 90% confidence level.

Assuming no acceleration factor for either temperature or voltage, we have verified a failure rate of approximately 01% per 1000 hours. (Actually, there is a temperature effect and it has been found that. with the DC voltage stress remaining constant, the life decreases approximately 50% for every $10^{\circ} \mathrm{C}$ rise in temperature. There is also a voltage effect such that, with the temperature stress remaining constant, the life is inversely proportional to the 8th power of the applied DC voltage.)

Assuming no temperature acceleration factor and assuming the voltage acceleration exponent is such as to yield an acceleration factor as low as 100 , we have nevertheless verified a failure rate of approximately $.0001 \%$ per 1000 hours.

Assuming no temperature acceleration factor and assuming the voltage acceleration factor is on the order of 250 (test results are available to confirm this) we have accumulated sufficient unit-hours to verify a failure rate of less than $.00005 \%$ per 1000 hours!

Note that all the above failure rates are calculated at a 90% confidence level!

*The El-Menco high reliability dipped mica capacitors are being supplied to the Radio Corporation of America for a high reliability military ground electronics project.
$\star \star$ A failure was defined as follows:

1. A short or open circuited capacitor occurring during life test.
2. A part whose capacitance changed more than $\pm 2 \%$ and whose capacitance did not fall within the original tolerance of $\pm 5 \%$.
3. A part whose final dissipation factor exceeded .002 .
4. A part whose final insulation resistance measured less than 100,000 megohms.

Write for a copy of our "Reliability Study of Silvered Mica Capacitors".

THE ELECTRO MOTIVE MFG. CO., INC.
 Menufaclurers of El-Mence Capocilors
 WILLIMANTIC
 CONNECTICUT

 - rubular paper - mylar-paper dippad - coramic feed thrus - ceramis discı Arco Electronics, Inc., Community Drive, Great Neek, L.I., New York Exclusive Supplier To Jobbers and Distributors in the U.S. and Canado WEST COAST MANÜFACTURERS CONTACT: COLIINS ILECTMONIC SALES, INC., SJS MIDOLEFIELO ROAD, PALO ALTO, CALIFORNIA

Immediate

 delivery! ELDENCOCAPACITORS
in quantiter up to
500 Per Item
CONTACI THESE AUTHORIZED
ELMENCO INDUSTRIAL DISTRIBUIORS
ARIzOMA: indie spoelalties \& Appl. Cerp, 017 N. 7th St., Phoonix.

CALIFORNIA: BrIII Elect., 610 E. 101 S St., Oahland: Electroaic supply Corg.i 2085 E . Foothill Blvd. Pasadena: Fectorated Purchaser Inc. 11275 W . Olympic Blvd. L. A. 64; Mollyweed hasie Eloc, tronics inc., 5250 Mollywood Bivd., Hollywood 27; inglewood; Paelific Wholesale Ce., 1850 Mission Intiewood: Pacific wholesale Co.; 1850 mission
St., San Francisco 3; Paninsula Eiect., 656 S . Ist St., San Jose: shanks I Wricht Inc., 2045 Keitner Blvo., San Diego: Shelley hadie Ce. Ine., 2008 Westwood Bivd., L, A. 25; a. V. Weathertert Ce., 6921 San Fornando ind., Glendalo 1i zeet Eleetreales, 654 High St., Palo Alto.
COLORADO: Danver Electremies Sepply Co., 1254 Arepahoe St., Denver 4.
Distinict of columain, cepitel ilasio whelesalors Ime. 2120 14 St., N.W., Washo, D. C. FLORIDA: Elect. Supply, 1301 Miblscus Blvo., Melbourne; Elect. Supply, 61 N. E. 9th St., Miami. ILLINOIS: Nowart Electreales Cenp-, 223 W. Medison St ${ }^{\text {, }}$ Chicago 6.
ManYLaND: O in Distributing Company, Inc., 2025 Worcester St., Baltimore 30; Lamo Ellort Electronics, Ime., 2050 Roci Rose Avenue, Balti. mors; Whelesale Radis Parts Ce, Ine.s 308 W . Redwood St., BaleImore I.
MASSACNUSETTS: Cramer Eloctremics Iac. 811 Boylston St., Boston 16; Radlo shaek Eorp-, 730 Commonwealth Ave., Boston 17.
MEW JEASEY: Foderated Purchaser Ine., 1021 U.S. Rte. 22, Mountainside; General hadie Sup ply Ce., 600 Penn St. Camden 2; nadle Eloc. service Co., ine., 513 Coopar St^{2}, Camden 2. WEW MEXICOI Electreales Parts Co., Inc., 222 Iraman St., N. E., Albuquerque; Mialand Specialty Ce., 1712 Lomas BI. N.E., Albuquerque; Ratio Spacialties Co., Iac., 209 Penn Ave., Alamagordo. WEW YORK: Arraw Elect. Ime., 525 Jericho Turn plate, Mineola, L. I.; Electroaic Center, Inc., 160 5th Ave-, N. Y.i Marvay Ratlo Co., Iac., 103 W 43 rd St., N. Y. 36; Lafayotte Rasio Elect. Corp. 100 Sixth Ave. N. Y. 13; Start Iadustrid Eloct. Mudien Elect. IEc., 236 W . I7th St. M. Y 17 MORTM CAMOLIMA: Datton-Moge Rallo supply Co., Inc., 938 Burto St., Winston-Salem.
PENHSYIVANIA: Alme Radle Co.g 913 Arch St. Phildodelphia; Geergo D. Barbey Ce. Inc., 622 Columbla Ave., Lancaster; ceerge O. Barbey Ce. Inc., 2nd a Penn Sts., Reading; B. B. M. Distribut Iaf Co., Inc., 2535 N .7 7h St. Marrisburg; Phlla. serviee Co., Inc., 701 Arch st, phllá 6. stele bers Co., 2520 N . Brod St. Philla. Whalesale Radto Parts Ce., Ine., 1650 Whiteford Rd., York. TENMESSEE: Eloctra Distrianting C0., 1914 West End Ave., Mashville 4.
 Dallas 1: Busacker Elect. Equip. Co. Iac., 1216 W. Clay, Houston 19; Engincoring Supply Co. 500 w paisano Dr as 35 ; midiand specialy $\mathrm{Co} ., 1801 \mathrm{~S}$. Flores St., San Antonio.

UTAMs Carter supply Ce., 3214 Washington Blvd., Ogden.
WASHINBTON: C ic Radie supply Co. 2221 Third Ave., Seattle.
CAMABA: Electro Sonie Supply Co., Lte., 543 Yonge Street, Toronto 5 , Ont.

ART

new yoor , DALIAS * IOS ANGELES
Erclusive Supplier oi fimenco los angeles
Distributors and lobbers in U.SA. and Canada

POWER RESISTORS

Non-inductive precision components range from $3 / 2$ through 10 w .

Available with either axial (series \cdots) or radial (series NR) leads. Resistors have resistance range from 1 ! to 40 Gr , with tolerances $\pm 0.05 \%$ to $\pm 5.0 \%$. Use of TEMP-COTE E , a coating material, these resisturs will operate in temp. to $350^{\circ} \mathrm{C}$, and are completely impervious to abrasion, salt-spray or humidity in accordance with applicable paragraphs of Mil-R26. Omtronics Mfg., Ine., P. O. Bux 141!, Peony Park Sta., Omaha 14. Nebr.

Circle 198 on Inquiry Card

COATING MACHINE

For high production plastic coating of axial lead components.

Model PR-1 Powered Resin Coating Machine for use with the C.M. Model TL-1 Tray Loader and CM Magazine Loader. The axial lead components are placed in trays, loaded in magazines and automatically fed through a radiant heat oven. They are brought up to desired heat, up to $600^{\circ} \mathrm{F}$, and passed through a controlled stream of finely ground plastic powder. The thickness is controlled by the temp. of unit and the length of time, and may be varied from 5 to 15 mils . Conforming Matrix Corp., 839 New York Ave., Toledo 11, Ohio.

Circle 199 on Inquiry Card

Voltage Controlled Oscillator

Positive, reliable oscillator performance is essential to your aerospace telemetry needs. And Tele-Dynamic'snewest-the Type 1270A Voltage-Controlled Oscillator is representative of Tele-Dynamic's creative effort in the complete telemetry field.

Characterized by excellent overall specifications, this new oscillator is high in electrical performance and environmental characteristics. Input 0 to 5 volts or ± 2.5 volts, linearity $\pm 0.25 \%$ best straight line . . . a power requirement of 28 volts at 9 milliamps maximum. Distortion is 1% and amplitude modulation 10%.

Environmental characteristics include thermal stability of $\pm 1.5 \%$ design bandwidth from $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. unlimited altitude, 30 G random vibration and 100 G acceleration and shock. The 1270A weighs less than two ounces and has a volume of two cubic inches.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone TRinity 8-3000.

AMERICAN BOSCN AREAT CORPORATION

5000 Parkaide Aver, Philodelphla 31, Pus.
Circle 95 on Inquiry Card

READ
RF FREQUENCIES TO $\pm 0.03 \%$

WITHOUT TABLES

NOW you can get direct-reading convenience plus extreme precision of tuning plus broad frequency coverage . . . without using tables or calibration charts.
Only DATA-DIAL (patented) direct-reading wavemeters bring you these advantages. The tuning knob drives a long tape carrying a sloped frequency scale, which moves behind an index curve accurately drawn on a transparent window. As the cavity is tuned, the moving intersection point of these curves compensates for inherent variations, giving the frequency for each setting without further correction.
Model 3102 covers frequencies from 900 to 2100 mc , with a direct-reading accuracy of $\pm 0.03 \%$ below 1700 mc and $\pm 0.05 \%$ above that point. The cavity has an integral crystal detector output. Model 3103, in final development, covers frequencies from 2350 to 3750 mc . Other models will extend the range of this new line to further bands. WRITE TODAY for more information on this and other new GCC developments in microwave components, pulse power calibrators, attenuators, oscillators and test sets.

GENERAL COMMUNICATION
 COMPANY

Circle 9 on Inquiry Card

New
 Products

POWER TRANSISTORS

Feature low saturation resistance and operation to $200^{\circ} \mathrm{C}$.

RCA-2N2015 and 2N2016 are 150 w. Silicon npn power transistors having low saturation resistance (0.25Ω max.), high betas (7.5 min . at $\mathrm{I}_{\mathrm{r}}=$ 10 a., 15 to 50 at $I_{c}=5$ a.), and an operating temp. of -65 to $+200^{\circ} \mathrm{C}$. In JEDEC TO-36 package, they are for use as power switching for dc to de connectors, inverters, choppers, and oscillators. Radio Corp. of America, Semiconductor and Materials Div., Somerville, N. J.

Circle 200 on Inquiry Card

FERRITE AM MODULATOR

Multi-purpose, broadband unit covers entire X-band, 8.2 to 12.4 Gc.

Primary use of the $\mathrm{X}-158 \mathrm{~A}$ is to provide a clean am microwave signal for high accuracy measurements. X158A's modulator coil is designed so that a standard, 1 w., commercial audio oscillator will provide substantially 100% modulation at 1000 CPS. Max. input and output VSWR held to 1.20. Max. average r-f input power is 2 w., max. solenoid current require-ment- 300 ma . dc. FXR, AmphenolBorg Electronics Corp., 25-26 50th St.. Woodside, N. Y.

Circle 201 on Inquiry Card

Circle 97 on Inquiry Card

New

Products

FIFTY CPS SUPPLY

For ure in testing components for 50 CPS countries.

Type MU motor-generator delivers 50.0 cPs from no load to full load from a standard $3 \phi, 30 \mathrm{cPS}$ line. Generator output is either $2 \mathrm{kva}, 1 \phi$ or 3 kva, 3 ф, at 8 pf. Voltage regulation is $\pm 2 \%$. The machine is readily convertible for an input of 50 CPS and an output of 60 cPs . William I. Hor. lick Co., Inc., 266 Summer St., Boston 10, Mass.

Circle 202 on Inquiry Card

PHOTOELECTRIC READER

Compaet single unit provides detection up to 10 ft .

Model 200 Reader, designed for automatic control systems, using electronic circuits activated by changes in reflected light. For position control, cueing, sorting, counting and inspecting by number, shade, color and size. Specs.: weight, 12 oz .; light source, G. E. No. 1619 lamp (keyed) 6.7 v . at 2 a.; photocell, Clairex Type 603A photoconductive; max. photocell power, 75 mw ; photocell response time, 4 msec.; max. counting rate, 300 counts $/ \mathrm{sec}$. Melpar, Inc., Falls Church, Va.

Circle 203 on Inquiry Card

The Right Rubber Part

TO FIT YOUR PRODUCT
Must be: 1. Custom made. 2. The product of a carefully designed die or mold. 3. Developed from properly compounded rubber stocks. 4. Backed by ability and experience gained through a wide variety of industrial applications.
Western serves such diverse industries as communications, electronics, transportation, farming, plumbing, heating, chemistry and pharmaceuticals.
Why not let Western's proven succese in these and allied fields help to produce the rubber part you need.

Write or phone for
information, llterature
or a visit dy our eales
ongineer In your area

MOLDED AND LATME-CUT RUBEER PARTS FOR ALL INDUETRIEB Circle 162 on Inquiry Card

Mew RELAY PROVIDES
 $0.000,000,001$ WATT DC SENSITIVITY

Model 301 units available from stock for IMMEDIATE DELIVERY!
Price for 1-5 units: $\$ 98.75$ each. Full details available in Bulletin No. 30-A.

This industrial "ACRO-RELAY". Model 301, closes its output relay with a DC signal of 1.0 microamp and 1.0 millivolt into its 1000 ohm input winding-an input power of only 10 - watts! It is the most sensitive, high-reliability industrial relay unit available. The input magnetic amplifier drives a trigger amplifier which drives the DPDT output relay . . . controlling up to 1800 watts!

 TELETYPE SFLD-970 PHONE ELGIN 7.0030

now...analyze both SSB \& AM transmitters \& receivers faster, with uniform sensitivity over entire $\mathbf{1 0 0} \mathbf{c p s}-40 \mathrm{mc}$ range

 AT MINIMUM COST

new - improved

panoramic SSEBESE SPECTRUM ANALYZER

Panoramic odds important NEW design feafures to the time.
proven Model $558.3!$ Now in proven Model S58.3! Now. in age you get the comprehensive unit you need to set up. adiust monitor and trouble shoot SSB ond AM tronsmitters and receivers.

TWO TONE TEST*
Fired sweep width 2000 cps . Full scale log sideband tones 1.5 he and 2.1 ke from carrior (nat tortion products down 37 db .

HUM TEST*
Indication of ene sideband in above photo increased 20 db . sweep width set to 150 cps redb and 60 db .
-Se Ponoromic Anayizer No. 3 describing testing. techniques. etc. for single sidebonds. A coDy is yours for the ostring.

GREATER FREQUENCT RAMGE New Optional REC-I Ronge Converter entends SSE-30 $2 \mathrm{me}-40 \mathrm{me}$ range down to 100 cps . . . speeds distortion analysis of receiver AF and If outputh, transmitter bass band.

NEW 2-TONE AF GENERATOR MODEL TTE-2 2 gonero for frequencies, eoch selectable from $100 \mathrm{cps}-10$ ke Resattable to 3 significant digits Accuracy: $+1 \%$ Output Levels each adjustable from 2 to valts into matched 600 ohm lood - Output D8 Meter - Spurious. hum, ofc, less than $-60 \mathrm{db} \cdot 100 \mathrm{db}$ precision atten uation in 1 db steps.

FASTER-NEW TUNING HEAD FEATURES RAPID "SIG. MAL SEARCN* PLUS PRECISE FINE TUNING.

ALL THESE NEW FEATURES . . . PLUS A SENSITIVE SPECTRUM ANALYZER

Ponoramic's Model SE-120s Ponalyzor. Pie-set sweep widths of 150, 500, 2000, 19,000 ond $30,000 \mathrm{cps}$ with outomatic optimum resolution for fost, easy operation. Continuously variable sweep width up to 100 te for addifional flexibility. 60 db dynamic range. 60 cps hum sidebands measurable to - 60 db . High order sweep stability thru AFC network. Precisely colibrated lin log amplitude scales. Standard 5" CRT with camera mount bexel. Two auxiliary outputs for chart recorder or large screen CRT.
internal calierating circuitay Two RF signal sources simulate twotone test and checir infernal distor. fion and hum of analyzer. Center frequency morker with external AM provisions for sweep width calibrations.

See us at NEC - Booth 401

Write, wire, phone RIGHT NOW for fechnical bulletin and prices on the now SSB-3o. Send for our new CATALOG DIGEST and ask to be put on our regular moiling list for the PANORAMIC ANALYZER featuring opplicotion dato.

PANORAMIC

ELECTRONICS. INC.
540 Sv. Fulton Ave., Mount Vernon, N. Y. Phone: OWens e-coo
TWX: MT V-NY-5229
Cobles: Panoramic, Mount Vernon N.Y. State
SRE IS at EIME. Ceder Greve, W.J., The Tewers, Oct. 2 * Whils, Pe., Hellevee-Stratferd Motal, Oct, 3, 4

New

Products

CHOPPER TRANSISTORS

For use in high accuracy choppers, multiplexes and demodulators.

Silicon precision alloy transistors (SPAT capable of operating at collector ($\mathrm{V}_{\mathrm{cos}}$) and emitter ($\mathrm{V}_{\text {ano }}$) voltages of 30 v . each with leakage current of only 15 nanoamps max. at $65^{\circ} \mathrm{C}$. Max. leakage current of the T2363 and matched pair T2357, at 10 v. is 1 nanoamp $\left(25^{\circ} \mathrm{C}\right)$ which corresponds to an "open-switch" resistance of 10 G $\Omega 2$. The T2357 pair is intended for "back-to-back" operation in a low level system. Philco Corp., Lansdale. Pa.

$$
\text { Circle } 204 \text { on Inquiry Card }
$$

CAPACITOR

Hermetically sealed flat shape for mar. capacity/chassis arca.

Designed for military applications, the 605 Capacitor combines the thin, flat shape of 601 PE series with hermetically sealed metal case or oval cross section. Meets all Mil-Spec environmental requirements and is available in capacities from 0.01 to 0.33 in 50 v . ratings only. Temp. range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ at full rated voltage. Tolerances are $\pm 20 \%, \pm 10 \%$ and $\pm 5 \mathrm{f} / \mathrm{c}$ and the dielectric is Mylar. Good-All Electric Mfr. Co., Sub. Thompson Ramo Wooldridge, Inc., Ogallala, Nebr.

Circle 205 on Inquiry Card

For complete details of the many advantages Florida offers the Electronics Industry, write us. Let us tell you why some of the greatest names in electronics have impressive plants here in Florida.

FLORIDA'S ASSURANCE POLICY
'You have my personal assurance of a sunny business climate here in Florids. You have positive atsurance of every aid and assistance possible. assurance of every aid and assistance possible from our Fiorida Development Commission and
from the overwhelming majority of our business. from the overwheiming majority of our businessmen, industrialists, and financiers. We have everything to make your large of small enterprise us today. The only thing better than i FLORIDA
us ait us today. The only thing better than
vacation is having your plant here."

Investigate DEBT-FREE

...A 10 BILION DOLLAR MARKET

Ask about free film "Profile of Progress."

Mr. Wendell Jarrard, Chairman Florida Development Commission Box 4121A
Tallahassee, Florida
Please send me the facts about Florida's labor, climate, schools, natural resources, taxes, etc.

- - - - - - - - - - - - - - - - - - - - - - - - -

FIORIDA FOR CONVENTIONS - Write for free information on Florida's wonderful focilities for your group meeting.

Is it a relay or coaxial switch?
Some people call this electro-magnetically actuated device a relay. We call it a coaxial switch. Do you know what the difference is?

First, the conventional relay, even when shielded and coaxially terminated isn't suited for use in circuits above 400 mc . In fact, even at this relatively low frequency, such a relay may have a VSWR of 1.5. The DK Coaxial Switch with improved impedance match will show a VSWR
of only 1.1 at the same frequency. Standard DK Coaxial Switches are designed for frequencies up to 5,000 mc . Models under development will soon extend this to the $10,000 \mathrm{mc}$ range. Improved VSWR is only one difference. DK Coaxial Switches offer lower crosstalk, reduced insertion losses, and great environmental reliability.

RF Products can supply over 1300 individual switch designs. But, since

132 of these meet 90 per cent of known applications, we have prepared a simplified catalog which makes it easy for you to find the switch you need. Write for Catalog DK61.

If you don't find the switch you want in this catalog, your local RF Products representative can supply you with information on hundreds of existing alternatives, or help you to design a new switch to solve your specific problem.

New

Products

SCOPE-CAMERA

For direct recording of oscilloscope traces.

The C-13 camera accepts Polaroid or conventionel film. It uses a sliding back (adjustable to horizontal or vertical) on which the parfocal, filmholding backs can be interchanged, can be locked securely in 5 detent positions, also rotated thru 90° increments (with the long axis of the film horizontal or vertical). It uses any of 6 easily-interchangeable lenses in varying object-to-image ratios and max. aperture to $\mathrm{f} / 1.5$. Tektronix, Inc., P. O. Box 500, Beaverton, Ore. Circle 206 on Inquiry Caid

VLF RECEIVER

Features dual channel reception and a built-a strip recorder.

The V RMS Model LF-18-20/A Receiver is an all transistorized receiver designed for standarizing the freq. of a 100 Kc local secondary freq. standard by comparison with the Standard National Signals, 18 кс of NBA and 20 kc of WWVL. The receiver contains a strip recorder providing a permanent record of u drift or error in the local standard. The sensitivity is $2 \mu \mathrm{v}$. \vee RMS Engineering, Inc., P. O. Box 6354, Station H. Atlanta 8, Ga.

Circle 207 on Inquiry Card

FOR STEREOPHONIC FM RECEIVERS

NOW THAT THE FCC HAS SHOWN THE GREEN LIGHT FOR STEREO FM BROADCASTING, manufacturers of receivers and other audio equipment will find LENZ prepared to supply "MULTIPLEX" Cable (code no. 17555). This double channel audio cable was designed especially for connecting amplifiers to decoders in stereo receivers and conversion kits.
"MULTIPLEX" Cable consists of a pair of completely insulated, color coded conductors in a small diameter cable of extreme flexibility. Each conductor has a spirally wrapped, tinned copper shield that is used as a conductor. The spirally wrapped shield is easily formed into a pig-tail connection. Capacity is 30 uuf per foot.

You will find "MULTIPLEX" (code no. 17555) useful wherever you need a double channel connection.

Write for Complete Information and Sample Today! LeNZ ELECTRIC manufacturing co.

1751 No. Western Avenue Chicago 47, Illinois

New Products

SILICON RECTIFIER

Handle 1010 to $25(10$ v. (PRV) with from 85 to 100 man de output.

Subminiature rectifiers for a wide range of low current, high voltage multiplier uses. The devices exhibit max. leakage current of $2.0 \mu \mathrm{a}$ at PRV at $25^{\circ} \mathrm{C}$, and max. forward voltage drop of 4 v . at $150^{\circ} \mathrm{C}$. Designated types Q10X through Q25X, the 4 units have an operating temp. range from -20° to $130^{\circ} \mathrm{C}$. Units measure $0.265 x$ 0.120 in. (dia.) max. not counting leads. International Rectifier Corp. 233 Kansas St., El Segundo, Calif.

Circle 164 on Inquiry Card

TRIPLE TRIMMER RESISTOR

Each resistor in the unit is rated at 0.1 u.

Resistance range is 500 s to 5 meg ohms, linear taper. The complete unit measures $0.406 \times 1.375 \mathrm{in}$. and is 0.1
 packaged circuit technique, the unit can be supplied with additional fixed resistors as an integral part of the device. These can be either associated with or independent of the trimmer circuitry. Centralab, The Electronics Div. of Globe-Union Inc., 900 E . Keefe Ave., Milwaukee 1, Wis.

Circle 165 on Inquiry Card

MICRO LAMP
Operates on 1.2 or 1.5 v , drawing 5 ma.

This lowered current drain makes Micro Lamps useful for operation on miniature batteries, or with transistors. The lamps start with an envelope dia. of 0.0139 in . with a length of 0.138 in . They give a light output of 40 to 45 millilumens, and have a lifetime of $1000 \mathrm{hr} . \mathrm{min}$. Uses include: mounted on the tip of instrument pointers, or in photoelectric systems. Miniature Lamp Engineering Co., 350 Broadway, New York 13, N. Y. Circle 166 on Inquiry Card

INSULATION TESTING

Engineering - Production - Maintenance

Materials
Components
Equipment
High Volroge Breakdown
H) POT Test Sets with outputs from 5 kv 10 150 hi and up. Test wire, cables, transformers. molors and components is ASTM and Federal speciticatione. Wirite for manual. Insulation Resistonce
IIBROTEST Megohmmeters have direct read ing ranges to FIVE MILLION Megohms. Self contained electronic power supply eliminates craoking and leveling. W'rite for manual.
Insulation Maforials Iester
Interchangeable Inal fixtures for tape. plastic sheet. film, tubing. porcelain, cloth and var. nisher. Models provide 35 kv and up for test.

Insulating Oils Pester

Dielectric strength testing of insulating liquids to ASTM specifications Rapid, simplifed operation. Automatic rate of rise coblrol optional.

Are lesistence Tester

Tests ability of insulating materials to resist arcing in accord with ASTM and Federal specifications. Complete with electrode assem bly and specimen holder.

Mobile HIPOT for tess. ing heaiy dute elertrical equipment

Madel 4501 HYPOT Mate rak Tister. Meres D. 149 fti . ASTM eperitications.

Write for Manual J-67

Associated Research.

Use Them up to $150^{\circ} \mathrm{C}$-They're Twice as Stable as Competitive Units!

Whatever carbon potentiometer type or configuration you need. Bourns can now fill it with Trimpot Resiston models - potentiometers incorporating the exclusive carbon-film element that virtually eliminates problems of heat and humidity. Most models operate at temperatures to $150^{\circ} \mathrm{C}$ and under cycling humidity conditions with only half the resistance shift of ordinary carbon potentiometers.
All units feature infinite resolution and standard resistances up to $1,000,000$ ohms. Check the expanded selection below. It offers you eight ways of obtaining high resistance values and infinite resolution without sacrificing reliability. You can get the exact environmental specs you need, and you can find the right price range for your budget. Write for complete data and list of stocking distributors.

Menufacturer: Trimpot (3) potentiometers; transducere for positlon, pressure, ecceleration, Plants: Riverside, Calif.; Ames, Iowa: and Toronto, Canade

Sperry extends 30-day delivery to cover ECM and augmenter TWT's operating in L, S, and X bands

In a dramatic extension of its capability for delivering high-performance microwave tubes on short notice, Sperry Electronic Tube Division has added three system-proved traveling wave tubes to the list of those available in 30 days. Included in the move are tubes uperating in L, S, and X bands. They cover a frequency range 1.1 to 11.0 kMc .

APPLICATION FLEXIBILITY

The tubes in this series are particularly suited to application in augmenters and ECM equipment. The inherent broadband characteristic and unusual ruggedness of these PPM focused tubes makes them unusually versatile in airborne applications. A full course of MIL and environment tests, as well as considerable in-sys-

A Iypical saturated power versus frequency curve for an L band Sperry TWT.
tem experience have verified these characteristics.

INCREASED POWER POSSIBLE
 Although these tubes nominally op-

 erate in the 1-2 watt power output range, optimum tuning can increase power to as much as 5 watts. A highmu control grid adds to the versatility

Drive characteristics af mid-band for a typical Sperry ECM/augmenter TWT.
of these tubes by allowing remote switching, modulation control and gain adjustment.

SYSTEM DESIGN SIMPLIFIED

Use of these Sperry tubes greatly simplifies system design problems. Low voltage and high gain reduce power supply requirements. Application is further simplified, since ambient cooling is sufficient in most applications and the tubes may be mounted in any position.
For FREE technical information on these Sperry Traveling Wave Tubes, write to Section 402, Sperry Electronic Tube Division, Gainesville, Florida.

The L-Band tube is priced at $\$ 1,900$., the S-Band tube at $\$ 2,195$., and the X -Band at $\$ 2,540$.

For application assistance and quotation, consult your nearest Cain \& Co. representative. His address and phone number appear on the opposite page.

ELECTRONIC TUEE
DIVISION
GANESVILLE, FLA. y GREAT NECK. H . Y , SPERRY RANO CORPORATION

Inquire about Sperry Tubes from these convenient Cain \& Company offices

REGIONAL OFFICES

Burbank, California 2615 W. Magnolia Blvd. VI 9-6781

Great Neck, Long Island,
N. Y.

260 Northern Boulevard HN 6-0600

Chicago 45, Illinois 3508 Devon Avenue OR 6-9500

St. Petersburg, Florida 410-150th Avenue Madeira Beach Prof.Bldg. 391-0151

DISTRICT OFFICES

Boston. Massachusetts Phone VO 2-5330

Philadelphia, Pennsylvania Phone HA 8-3700

Washington, D. C. Phone EX 3.7587

Dayton, Ohio
Phone RO 7-8661
Dallas, Texas
Phone BL 5-2050
Albuquerque, New Mexico
Phone 268-5300
San Francisco. California Phone YO 8-0995

San Diego, California
Phone HU 8-0665
Seattle, Washington
Phone MA 3-3303

ELECTRONIC TUBE
DIVISION

New
 Products

POWER SOURCE

Offer accuracien of 0.25% of any output voltage dialed.

Model 120 provides 20 ma over the range of 500 to 2210 vdc ; the Model 122, 20 ma from 0 to 3000 vdc , and Model 123, 20 ma from 0 to 6000 vdc. Model 120, $31 / 2 \mathrm{in}$. high features inline controls, regulated filament power, polarity reversal, and modular construction. Models 122 and 123, mounted on $51 / 6 \mathrm{in}$. panels, feature Handi-Vider in-line controls, voltage and current metering, and reversible polarity. Smith-Florence, Inc., Seattle, Wash.

Circle 208 on Inquiry Card

TRANSISTORS

For high speed switching applications.

Six germanium expitaxial mesas combine improved switching characteristics with reduced prices. The 6 new type numbers, including 2 N 960 to 2 N 962 and 2 N 964 to 2 N 966 are housed in the TO-18 package, and are designed for high speed switching applications in both high and low current circuits. They permit greater standardization of components and smaller inventories. Motorols Semiconductor Products Inc., 5005 E. McDowell Rd., Phoenix 8, Ariz. Circle 209 on Inquiry Card

THE NEW YOKE DESIGN BY "CELCO"

MORE INFORMATION PER UNIT AREA PER UNIT TIME. - Fastest of spot recovery - to lus, low hysteresis and highest accuracy.

Maximum resolution.
Critical rectilinearity of spot sweep.

Write for the new "Deflectron" data and standard yoke catalog. Your guide to better displays.

Constantine Engincering Laboratories Company

MAIM PLANT BOX 555. MAKWAH. M. J DAvis 7-1123. 7.1124
pacmic arvistom 1150 east 8TM ST. UPLAND. CALIF, YULION 2.0215

Circle 108 on Inquiry Card

ROUND OR RECTANGULAR LONG SHORT THICK THIN PUNCHED SLOTTED THREADED EMBOSSED CLEVELITE*

In every way CLEVELITE is the favorite phenolic tubing. It is made in seven grades to assure dependable performance in any application.

CLEVELITE is unaffected by sils and solvents, is easily

- machined, light in weight, yet mechanically strong.

Dependable because of its non-tracking and insulation resistance . . low moisture absorption . . . dielectric strength 150 v.p.m. . . . heat resistance over 250° F. ... diameters and wall thicknesses as required.

WRITE FOR OUR LATEST CLEVELITE BROCHURE

fully outlining its electrical and physical characteristics and many applications.
*Reg. U. S. Pat. Off.

PLANTS \&

SALES OFFICES:

cteveland
CHICAGO MEMPHIS dallas LOS ANGELES PLYMOUTH, WISC. JAMESBURG. N. J. GREENSBORO. N.C.

THE

[^9]NEW YORKA AREA: WALTERA MURRAY \& CO.
100 HEPBURN ROAD. CLIFTON. N J.
NEW JERSEY: THE MURRAY SALES CO.
MEW NMORTHFIELD RD.. LIVINGSTON. N. J.
NEW ENGLAND: A S. PETTIGREW \& CO.
IO N. MAIN ST., WEST HARTFORD. CONN.

New

Products

ROTARY SWITCH

Tri-IBall. Tri-Spring unit achicu's a min. of 50,000 cycles.

Life tests showed a 400% increase in cycling and operating life expectancy over the 2-ball index previously used for military applications. Additional advantage of the Tri-Rall assembly is qreater shaft stability, the tripod arrangement providing uniform support in all positions. Currently the new Tri-Spring, Tri-Ball mechanism can be specified for 20° throw, 18 position switches and for $15{ }^{\circ}$ throw, 24 position switches. Oak Mfg. Co.. Crystal lake, III.

Circle 210 on Inquiry Card

STANDARD BRIDGES

Permit chocking symchros or :esolleres to 20 parts/million accuracy.

Models MSB-5 and MRB-5 provide measurements in 5° steps from $10-360^{-}$ Selector switch-contact resistance, מs a result of circuit design, has no effect on the accuracy of the measurements. Absolute accuracy from $0-800 \mathrm{cPS}$ is 0.002%. Freq. range extends to 10 KC at reduced accuracy. Individual arm resistance is $10 \mathrm{Kc} \pm 0.01 \%$. Harmonic distortion is 0 . Max. input voltage is 115 v . rms. Julie Research Laboratories, Inc., 603 W. 130 St., New York 27, N. Y.

Circle 211 on Inquiry Card

-EXCLUSIVE WITH

Only KEMET can offer you the widest selection of dependable high-voltage solid tantalum capacitors. Topping the list is KEMET's new 75 -volt type - the highest rated working voltage unit of its kind available foday - by a margin of 50% !

KEMET's complete J-Series and N-Series comprise voltages of 60 and 50 - ranging downward through $35,20,15,10$, and 6 volts - providing standard E.I.A. values with $\pm 5 \%, \pm 10 \%$, and $\pm 20 \%$ tolerances.
J-Series capacitance values range from . 0047 to 330 microfarads; operating temperatures from -55 to $+125^{\circ} \mathrm{C}$. N-Series capacitance values
range from 0024 to 160 microfarads; operating temperatures from -55 to $+105^{\circ} \mathrm{C}$.
"KEMET" solid tantalum capacitors are designed, manufactured, and icsted to serve the most demanding industrial/military applications. All are hermetically sealed in corrosion-resistant metal cans, with solderable and weldable leads. Four J-Series case sizes mect or exceed the performance requirements of MIL-C-26655A/2.

For utmost reliability in solid tantalum capaci-tors-high or low voltage-specify "KEMET". Kemet Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland 1, Ohio.

Write for technical data on the complete line of "KEMET"
Solid Tantalum Capacitors
"Kemet" and "Union Carbide"
are registered trade-marks for products of

GLASS DIODES

Feature the $4 / 8$ size of the standard subminiature type.

U'ses glass encapsulated package, proven effective in sealing against moisture, contamination, and in withstanding high mechanical stress. Specs for the "milliminiature" line include: Max. de inverse operating voltagefrom 15 to $100 \mathrm{v} . ;$ max. de forward current- 25 ma ; max. forward voltage drop@10 ma-0.5 v.; max. inverse current-from10 10 a @ 5 v . to 50 ma@ 80 v. ; and max. reverse recovery time- 0.0008 to $0.5 \mu \mathrm{sec}$. Clevite Transistor, Waltham, Mass.

Circle 167 on Inquiry Card

RACK \& PANEL CONNECTORS

For Multi-cirewit switching or rerouting applications.

The 2P-SD-600 series receptacle and the 2P-MD-600 series plug have the glass filled "Diall" insulator providing high dimensional stability and high resistance at elevated temps. Female contacts provide low mv drop after repeated insertions and assure positive contact under extreme vibration. Contacts are of spring tempered, gold-plated phosphor bronze. Mounting plates are cadmium plated steel. Methode Electronics, Inc, 7447 W. Wilson Ave., Chicago 31, Ill.

Circle 168 on Inquiry Card

SILICON RECTIFIERS

Replacement types from 1500 to 10, 600 PIV available.

Line of high voltage silicon rectifier units include 1 N1237 series, 1 N2630 series, 1N570, 1N1150, 1N2389, and 1N2490. Designed with standard tube bases (Octal, 4-pin, 5-pin, and 7-pin) for the direct replacement of mercury and vacuum tubes. Offer the advantages of silicon and also savings in space and weight. Are highly re sistant to extreme moisture, shock, vibration and acceleration. General Instrument Corp., Semiconductor Div. 65 Gouverneur St., Newark 4, N. J.

Circle 169 on Inquiry Card

For the finest engraved components, manufactured with precision, delivered on time - try Force. Engraving that's bound to be superior because engraving is our business. Companies that require engraved parts for electronic scanning, numbering, recording, dating, timing or coding rely on Force for quality production.
Examples of just a few Force engraved units:

Write for more information, brochures, samples or a visit from a Force representative.

Choice of engineers everywhere!

air
 Variables

NEW! Type: "U" and "UB" Sub-minialures. available in Single-Section or Butlerfly Types.

- 3 Mounting Metherd.
 formily and out itindimimerh.inir il al ibility'
* Hegh "D" $=$ yreater than 1500 at 1 me.' Hegh
 Eer rationnally low tempererture , ise fliesentappecosimitely 3^{5}, PमM C are.isiond

- acian	prinito f.ircuit

TYPE "R" CAPACITORS
This popular variable has extra. heavy steatite stator support insulators end soldered $.023^{\circ}$ thick brass plates. Metal parts heavily nickel.plated. Sturdy brass end irames-double bearing construc tion-silver-riated beryllium copper wiping contacts-peak voltage rating 1200 volts. Available in 0 num. ber of plate spacings is well as special platings, shaft lengths and without mounting feet for panel mounting applications. Bearing threaded ${ }^{\prime \prime}{ }^{*} .32$

Free Catalog
 Johnson olso manufoctures

 lime of heavy dufy and speciol purpose copocitors in oddition 10 the lypes described above. For complete specifications and current prices on oll Johnson electronic components, write for our newest components cofolog.Plugs
Jacks
Insulators

ENGINEERING

MORE FROM PRD

BROADBAND DIRECT-READING ATTENUATORS

now available through K bands...up to 40 kmc . Compact, precision instruments feature 60 DB Attenuation Range, VSWR 1.15 Maximum,

Accuracy to $\pm 0.1 \mathrm{DB}$, Insertion Loss as low as 0.5 DB , Spectrum Coverage from 3.95 to $40.0 \mathrm{kmc} / \mathrm{s}$ (nine models). Direct Reading. Send for data on PRD 101 Series!

PRD ELECTRONICS, INC.

202 Tillary St., Brooklyn 1, New York, ULster 2-6800 1608 Centinela Ave., Inglewood, California, ORegon 8-9048

A Subsidiary of Harris-Intertype Corporation \qquad

GET THE

USE THIS FREE READER SERVICE CARD
Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

BUSINESS REPLY MAIL
no postage stamp mecessury if mailed in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Box 1970

Camden 1. New Jersey

ALPHABETICAL LISTING OF
 CIRCLE THE NUMBERS OPPOSITE THE MAMES OF THE

Amperite-Thermanatic itiay velars a

Airpan Elertronice Ine.-Flectro-magaelic circuit breakers
Aladdin Electronica - Special purvere
Alfind Manufarturing Co.--Slutied line Allen-Bradley-Atrenuatcors
Allen-Rradley-Hot mulded resinton Allied Chemical. Genera! Chewical Divi allied Radio- 1062 chemicals
Allied Radio-1962 Electrunies suprly Alpha Met
Alpha Metaln, lne.-Rnain-hlled muider Abuerican Bonch Arma Cord - Teleraetry Americen Bosch Arma
Amsrisan Destly Arma Cord.-Voltare
controlled osefllator
-Preciaion Metere
American Optical Co
writiag recorders
AMP lacirporthe Pin and bocit consectars

U2 Amallast reyulatore
Amphenol-Borg Electronlen (orp., RF
Products-Conxind mwiteh
Arru Electrunics inc. Capecitair distri-
buto
Arenco Division. Armeo Steel CorpArenco
Fhertriral eteel Armeo Steel Corp35 Arnuld Magnetion Corp.-Turnismal coll 134 14

108
sl Bendiz Semiconductor. The liendiz 8 Curd.-Silicon rectifiers 4 *ir
Boontun Electronirs Cord.-RF vole 표응
Borg Equipment Divinion-Trimmer Dotentiometer
Bourne Ise., Trimpot Divislun - Trimmer putentlomalers
Runo-diew York Industries Corp PasBruah Inecrumenta
Brumh Inecrumente-Multi-chanmel recording aystems
91 Hialova Electruaice Divialun-DC
7 Burroughe Corporation-SFitching tube Buaimann MPg. Diviaion-Fuechuluera

Celco Conatantive bisimerr as 1 aborsCentralab. The E:lertronics D Divi n of Lilube-Untun Ine.- Ceranio if uestora Cinch Manuracturtur cirruin
elrcule boand I'rinied Clare \& Cumpany. C. I'. I.alethive sut miniature erpsial van relas Cleveland Cuntainer. The Phent
tubing Culumbien Carbinng. Inat
Culumbian Carbon
Sonnecticus Hard Rublier-Silicune
rubber cunductive raahuting
Cuptinental Connecture Curb. Prinied eircule ronnectur
 Compa Controls
Costrols Cumpany of Amurn on Countrul
Switeb Divisiunlighted puobhution awiteh interloer cornell Dublier Eleciruitis Iubilar cepaeteore
CTS Corpuration- Ciramic-metal no slators

Dale kiectrinwi. Ife Preciaion
resistors
nayulrom Ine. Interti metep DiviotonTrimamer vulenthumeler
Deleo Radio, Dlvisiun of General Ma tors-Tower Trahdistor
Dorsett Blectrunies, Inc. Subemplep becilleture
-actine resin Corpuratoun Silicuae uncline resin
Now Curning Corioratiun Dialectric
Now Corning Curporation-Fluld sill.
thum Copnink Cul, wintio - Stilirun
eryatals

K100-Elertranie irolrument retalog
Eisder E.ngimeering CU., Inc.- Welder and accessories

- indown Series - Seled visual

Electro M
Electro Mutive MIE. C'o., Inc., The
Mira eapallura
Enifineernef Eliertnanion Campaby -
King is Equipmerie Campany-Mieregtia
autocullimatars

Pairchild bemice tollat ton Siluron whanar Vitn Cavecitars, in y $\mathrm{d} \infty \mathrm{m}$ yey-whire Induntrial Develuyment Fluke Mfe. Co.. Inc., Jubn-RMS Forrt 5 Ce fars Wm. A-K-rrared Crost A Sulilvan Tbe Deforia markel.

Ceneral Communicution Cumpany-RF frequency mater rectifiers
General Eblectrodynamios CorporationSran cunversion unis
General Radio Compariy-Impedence bridge
Gerlach Products, Inc.- Complea ratio
Guod-All Eleetrie MPs. Co.-Rarmati-
Graphie Sgatems-Vianal comerol board liremar Mamufacturing Cumbinol Iac Hermetic seal KF connecturn

H
17 Hamilton-Electruns Inc. Fievtrun.hear warrimon Electrinics Curp.:-LTTC marrimon Esectrinics Curp.:-LTC Havair danufarturing CumtanyHealethPeckard Cumpany-Vahmetera

ADVERTISERS IN THIS ISSUE

advertisers from whom you desire further information

```
27 Hewlett-Packard Company AC curront
5% probe
    Hewlett-Packerd Cumpeng-viectronic
    evunterm
    Honeywell Precialon Meters-AC panel
    maker
    Hughes Alreraft Company, Microweve
        Tube Divfloion-Heckward wave
        oacillawra
81 Hughes Alreraft Company. Veruum
        ughes Airreaft Company, Varuum
```

188 Ideal Induatries, Inc.- Wire ntrippar
annatrial Eilectranle Ensibeers. Inc.-
Uala reabout diapley
PROFESSIONAL ENGINEERING
OPPORTUNITIES
Circle nismher of cummany on rard at riaht
frum whim you desirg further infurmitiull
BUl AC Spark Plug. Elecervaice Diviaion of
lieneral Motora
Buz Natlunal Cah Regindor Compony, The
40 International Blectronic Resempich Cor-
10 vuration-Eloctrunie tutio shielda
$s 0$ International Rectifer Corvurntion-
5 International Realatance Co. - Power
82 lea $\begin{gathered}\text { Capara }\end{gathered}$
Diviationtor Devartment Componenta
Division-Tantalum capacilur
83 Jenninge Radio Mfg. Cord.-Vecuum
114 JFD Filectronica Curduration Irimmer
111 Johneon Company. E.. F.-Air varlable
12i Jonea Diviaion, Howard B.-Plige and

116 Kernet Company Division Vinion Car.
bide-Tantalum eaperition
Keyatune Cerbun Compariy-Thermio-
vere
Anights Cumpaay. James-Frequency
187 Kulka Electrie Cord.-Terminal Losrde
Los Lenz Electric Manufacturiug Company
Audlo cable

M

24 MeCory Electronica Company-Cilase enelosed guarts erystals
89 Masnetics Ine.- Lamination
116 Medeo. Inc.-Cerbon N1m reviolors Methode Manufncturlas Curp.-Thru sunneeted printed wiring buards Micruwave Associaten, Inc.-Cossial awitche
TL Minnesota Mining Menufacturine Company Mincom Division-Masnetle love circult
Minneata Minine A Manfarturing Company. Magnetic Tape-Muanctic Inatrumentation fadean
180 Motorole Semicunductor Produce Inc. M-AMP Duwer transistor serimimpact extrueiuna

N
$51 \quad$ National Ulerasunie
36 Tlirastonic cleaner
Silicon devicee
148 North Atlantlo Industrien Retio buil
s8 Ohmite Manufacturing Combiany Rhewstate

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 203 of this issue.

Posicard valid \& weak enly. After phat use own lefterhead describing item wanfed.
OCT. 1961
PROFESSIONAL ENGINEERING OPPORTUNITIES
Please send me further information on the engineering position 1 have circled below.

801	806	811	816	821
802	807	812	817	822
803	808	813	818	823
804	809	814	819	824
805	810	815	820	825

YOUR NAME
PITLE

HOME ADDRESS

CITY or TOWN
ZONE
STATE

NEW Subscription
 OCT. 1961 Order

I wish a new complimentary subscription to ELECTRONIC INDUSTRIES

Company Name:
Name:
Position
Company Address:

City:
Zone
State
Specific Products Manufactured

P
100 Penoramic Electronite Inc.-Spectrum analyser
Perfaction Mia Company Maenelic Shield Division-Wrep-around Phieid Divibion-
Philco Lansdale Diviston-8illoom choppers
41 . Potter Brumfield Mercury wettert contares rataye

161 Power Desisns lac.-Semiconductorized
power supply
108 PRD Electronica, Inc.-Broadiand
39 Preciaino Instrument Company
Magnetic tape recording mulument

ค
49 Radio Fraguenc: Ieboratories. Inc AC instrument calibration

FIRST CLASS
PERMIT NO. 2333
CAMDEN. N. J.

BUSINESS REPLY MAIL
mo postage stanp mecessary if mailed in united staies

POSTAGE WILL BE PAID BY

ELECTRONIC INDUSTRIES

The Computer Center
P. O. Boz 1970

Camden 1, New Jersey

FIRST ClASS
PERMIT NO. 36
PHILA., PA.

BUSINESS REPLY MAIL
mo postage stamp mecessury if malleo im united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
Chestrant 8 56th 5ts.
Pilledelphle 39. Pe.
Chilton Compony

FIRST CLASS
PERMIT NO. 2333
CAMDEN, N. J.

BUSINESS REPLY MAIL

no postage stamp necessary if mailed im umited states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Dox 1970

Camden 1, New Jersey

Rohn Manufacturing Company-
Communication wamb
Cummunication wowne
Hulmin Mfe. Company Inc.-Model D
Lluwers
d

```
Sinngarm, Klertric C.,mpuny Bagnetic
    lape inatrumentation
        Surked Tarsian, Inc.- Silicon vullace
        revulatore
    Mhallerae Manufarturing Compang
        Miniature ewlechee
    Sperry Semiconductor Division of Sperry
        Rand Cord.-Sllleon tranasstors
    Sperry Flectronic Tube Divising-
        Traveling नeve qube
    Sprague Fimertric Comapany-Caparliom
    Sprague Electric Cumpany-Metal Alm
    Stancor Electrunica Ine.-Special Dup-
    Nose fllers
Brnimmle Instruments. Ise.-Yare
```

T
Tekironix. Inc.-Oscilloscope
Telerad Division of The lionel Corp. -
Antennas, Weveauide Cunial
Component
Telonic Industries-D.P.D.T. co-axial
Telonic
Telonic Industrles Inc.- Sweep
Generator
Telonic Induatries Inc.-Precision RF
Atienuatorn
Telonic Induitries Ine,-PD eveep
reneratora
Toledo Fdison Compeny. The-Induntrlal
plant location aiteo
Torrington Menufacturing Compeny -
Fans blowers
Trannistor Electronics Corpuration-
Indicators
Transistoon Electmonic Corporation-
packagen assemblie
I'nited Van lines-Transportation
movine
United Transformer Corporation-
Transistor inverter tranaformere
\mathbf{V}
Varfiex Sale Company Inc.-Sillicom
renia
Varian Asacistes-Pulee power ampll
fiep traveling wave tube
Victoreen-RI-meg resiator

w

Waveline Inc.-Waveeuide switches
Weekesser Company-Molded screws A nuts eable clipa
Weller Emactric Corp.-Solder Eun A dispenser
Western Rubber Company-rubber parta
Weatinghouse Electric Corp., Semi. conductor Dept.-Controlled rectifier

x

15 n Xeelite inc-Mand wools

2
1月5 Zierick Manufacturing C,up.-Clipe A Lerminala

$\bar{\pi}$

WHY USE TWO...?

a trimmer capacitor and inductor when one JFD LC Tuner will do!

When your tuned circuit "package" calls for higher stability, greater economy, finer tuning - it's time for the versatile JFD LC Tuner.
This unique package combines the characteristics of a precision variable capacitor and a metalized inductor in one compact tuneable LC circuit. It improves performance, simplifies specifying, speeds assenbly, and enhances high frequency capability.

JFD LC Tuners are available in 16 different standard panel and printed circuit types. The inductance, capacitance range, \mathbf{Q} and other parancters can be designed to
suit individual circuit requirements. Performance characteristics can also be varied by using other core materials or other lead configurations, by having the piston grounded or ungrounded, and by various types of loading.
For complete information, contact your local JFD Field office or your local JFD franchised Industrial Distributor, or write direct for Bulletins 216 and 216-1.
FEATLRES: Rugged shock-proof, vibration-proof electromechanical construction. - Glass or quartz dielectric and invar assures low temperature coefficient - No derating at high temperature - Preciscly repeatable tuning-no reversals. - Single resonating frequency for each adjust screw setting.

(hownactual sizel	Self-Resonating Freq. Range, Mc. Min. Max.	Nominal 0 of Inductor Over Tuning	Nominal Inductance uh.	
Model		Range	Min.	Max.
LC 303	400725	170.200	. 025	. 028

JFO

JFD ELECTRONICS CORPORATION

Components Division - 6101 16th Avenue - Phone DEwey 1-1000 • TWX-NY25040

JFD WESTERN
P. O. Box 3416
7311 Van Nuys Blud.
Van Nuys, Calif.
Phone STate I. 3530

JFD MIDWESTERN
6414 W. Higgins Ave. Chicago. Illinois Phone: SPing 4.4175

Phone. MUntley 5.7311

JFD CANADA
51 McCormack Street Toronto. Ontario. Canada Phone: ROger 9-1129

[^10]
molded Black Nyfon screws and nuts

Insuiote and Fasten without bushings. washers, efc. In Sroek 2.56, 4-40, 6-32, 8-32 10.32 and $1 / 4-20$

Black Nylon "NyGrip" cable clips
Light-weight nonconducling support for wiring. lubing, elc. In Siocie ! io to 1 /1/2"Dia.

Free somples - write WECKESSER CO.
5711 Northwest Highway

- Chicage 46, III. Circle 115 on Inquiry Card

PRECISION METERS

Catalog Available

If your operation demands accuracy to $1 / 10$ of 1% you need this AMF Catalog, which includes specifications, sizes and weights of Frequency and Volt Meters for test, research, industrial, military and government use.
AMF Meters are rugged. They compensate for practically any temperature and environment. They can be tailored to your requirements - or are available immediately from stock. Send today for your Catalog! Address Department -N .

AmF American Machine \& Foundry Company 1101 N. Rayof Street, Alezandria, Virginia

Circlo 122 on Inquiry Cord

free
 send for the
 ALIIED 1862 Itecriomes SUPPLY CATALOG 592 PIGES MOST COMPLETE

BUY AT FACTORY PRICES

WORLD'S LAROEST STOCKS... SPEGALIZINO IN

- Semiconductors - Special-Purpose Tubos
- Connecters
- Relays, Switches
- Transformers
- Tese Equipment. Meter
- Reslsters, Conirols
- Capachors
- Knigho-KiCO Instruments in Low-Cost Kir Form
- Electronic Ponts for Every Indushial Need

ANYTMING IN ELECTRONICS IN A MURRY

One order so Allied fills the whole bill-irom the world 's largest stock of electronic equipment. You get same-day shipment. You buy of factory prices. Write today for the ONE ORDE TO ALUED FHLS TME whote ail

ALLIED ELECTRONICS

 - mbsidiary of
ALLIED RADIO

100 N. Westera Ave., Dept. श07-K1, Caleage 10. III,

Circle 116 on Inquiry Card ELECTRONIC INDUSTRIES - October 1961

The Dynaquad, an alloyed junction, four layer device, has been introduced by Tung-Sol Electric, Inc. The device, made possible by a new manufacturing technique, has 4 outstanding features. It is a natural switch; it has both turn-on and turn-off control at the base; it uses an established and reliable design, and is lower in cost than comparable components.
The Dynaquad is a germanium, 3-terminal, pnpn structure packaged in a standard TO-5 case. Basically, it is a 2 -position switch whose capacities and speeds are those usually associated with digital computers. It switches in the megacycles range, with rise times of the order of $0.1 \mu \mathrm{sec}$, and is capable of providing an output voltage swing of 35 v . Because of its bistable nature, a single Dynaquad can replace a number of transistors and associated components in many applications, and in simple on-off switching it behaves as a pulse operated latching relay with no bounce, chatter or sticking contacts.
In normal operation, the Dynaquad is turned on by applying a small negative pulse to the base, and it will remain on after the signal is removed. Turnoff is accomplished by applying a positive pulse to the base, or by dropping the collector current below the sustaining point.

Fig. 2: The iwo printed circuit boards perform identical functions. The large board is an all transistor decade counter. The small board is the Dynaquad equivalent.

With the Dynaquad, Tung-Sol has developed a technique for forming multiple junctions with the same simplicity and reproductibility as single alloy junctions.
The binary nature of the Dynaquad makes it an efficient component in computer applications or wher-
(Continued on page 179)

With the Telonic HD-IA Sweep Cenerator you can now cover frequencies from 1 to 900 megacycles with a single instrument for both the laboratory and the production line. The HD-1A provides continuously variable center frequency selection, a built-in 0 to 50 db attennator, external marker input, and provisions for up to eight plug-in fixed markers.
The military type sweep unit used in the HD-1A assures a service life of .5 years, plus, and features excellent stability even at minimum sweep width. Flatness is $\pm 5 \%$ and display linearity better than 1.2:1.

Priced at only $\$ 99.500$, the HD-1A is widely used in design and mannufacturing of IF and RF amplifiers, broad-band video equipment, and other devices requiring broad center frequency testing. Function-wise, it will normally replace a number of ordinary signal or sweep generators. Full details on Bulletin T-209A.

BEECH GROVE. INDIANA - PHONE STATE 7.7241

[^11]

Wigh reliability and efficiency in small size are achieved through the use of layer insulation, in sharp contrast to the random wound coil so often encountered in this field. Advanced coupling technique, between windings, has reduced the spikes that often endanger the driving transisfors. A frequency of approximately 1000 cycles was chosen for optimum results Input voltages of $12 / 14$ V or $24 / 28 \mathrm{~V}$ can be used. With 6/7 V input instead of $12 / 14 \mathrm{~V}$, output is halved, current rating remains the same.

$\begin{aligned} & \text { Type } \\ & \text { Wo. } \end{aligned}$	DC output, when used in circuit shown	MIL
H-97	250V- cena	AM
N-89	375V-100mA	N
N-99	425V-178MA	FA
M-180	550V-2004A	38

UNITED
 TRANSFORMER CORPORATION

150 Verich Strut, Mew Yort 13, M. Y. pacific mpe, Dwisicm
 EXPORT ONISION:
13 East 40th Street, New York 16, M. Y.

WRITE FOR LATEST CATALOG

Circle 118 on Inquiry Card

New
 Products

TIME DELAY CONTROL
For use in magnetic amplifier circuits.

Thermo-Electric Control is also for use with flip-flop gating circuits in electronic computers and analyzers, missile controls and in other uses subject to wide and varying changes in temp. In effect, the control develops pure dc voltage from signals of any wave length applied to it. It features operation independent of amb. temp. up to $350^{\circ} \mathrm{F}$. Typical control, pictured, is 2 in . long and $5 / 16 \mathrm{in}$. in dia. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Circle 212 on Inquiry Card

HARMONIC GENERATOR

A vailable with various crystal fregs. from 0.1 to 100 Mc .

Designated the CDH-0.1 Harmonic Marker, it uses 3 tubes and 2 crystal diodes for uperation, and is supplied as a plug-in unit. The accuracy of the crystal used is $\pm 0.005 \%$ and the use of the 2 diodes provides highly efficient harmonic generation. In operation, the CDH unit is plugged into the sweep generator and produces harmonics of the sweep sample via freq. multiplication. The resulting harmonics are mixed with a portion of the swept signal to create audio beats which are then superimposed upon the display across the sweep range. Telonic Industries, Inc., Beech Grove, Ind

Circle 213 on Inquiry Card

for immediate delivery of

from our IBM controlled inventory.
$\left[\begin{array}{l}\text { Save design and purchasing time } \\ \text { - call for free UTC catalog today. }\end{array}\right.$

ELECTRONICS CORP.
227 GREENWICH STREET NEW YORK 7. NEW YORK
[Industrial sales division]
[of Harrison Radio Corp.]

LONG ISLAND: IVanhoe 6.7660 NEW JEASEV: DElaware 3-8780
CALE COLLECT ORDER OCPF. - 8A 7.778 IWX-WYI-177 / CABLE: "MAMAISORAD" Circle 119 on Inquiry Card

What's New

ever digital techniques are employed. Flip-flops, counters, shift-registers and various forms of logic can be accomplished with a saving of one-third to one-half in components, labor and space.
The high gain and sharp rise time of the Dynaquad give the device great utility as a driver. It can accept small or smeared signals and convert them into sizeable current pulses sufficient to drive magnetic cores, relays and thyratrons. A single Dynaquad can be operated in the 3 basic multivibrator modes-monostable, bistable, and astable.

U. S. Army's

Field X-Ray Unit

THE Army Medical Service has unveiled its latest experimental model of a compact, portable field x-ray unit.

Kesearch on this x-ray device now being developed for field use, was initiated under a civilian research contract supported by U. S. Army Medical Research and Development Command. Feature also shown was a field developer which permits processing an x-ray film within seconds after the unit has "snapped" a picture. The $85-\mathrm{lb}$. unit, which can also be carried in a medium sized suitcase, is designed to perform most of the more important functions of a unit weighing approximately $1,000 \mathrm{lbs}$.

This self-powered device can operate on rechargeable batteries, or on any standard military vehicle battery-a particularly important feature during combat or disaster conditions.

If tests of this experimental model result in its acceptance by the military, field medical units will find the device of value in locating metal or other foreign bodies in wounds, in diagnosing fractures, and in examining certain internal organs.

The x-ray device operates at such speeds that films are not blurred by movement during chest radiography while the patient is breathing normally. This feature is particularly important when patient is dazed or unconscious and is not able to "hold his breath."

High Power Sweep To 1250 MC From TELONIC

With a maximum output of 14 volts $-\&$ watts, Telonic PD) Sweep (ienerators provide a new era in swepp technigues. They operate in \& difterent moxles - swept RF, mexhlated swept RF: ($\mathbf{N 1}$. and modnlated (11 -selected by a tunction switch. Their display linearity is better than 1.2:1. and output is flat within 5.5% wer the masimmen sweep width.
The instrmments built-in turet attemators prowide a range of (1) to. 5.9 (1) in I dll steps with direct dial readont of attennation value. Provisions for an external marker and fixed plug.an materers are also include ed.
Available in 7 models covering various frequency ranges up to 12.51 me , the PI) units are icleal for high power applications. Since their ontput level is 100 times greater than that of other sweep gencrators. the usefulness of swept techmiques is seratly expanded. In fact, the response of a device having as much as (it) or it dh, loss can be casily displayed orn at high-gatin oscillescoper with a PD wite.
Specifications on all PD moxlels may be ohtained from Technical Bulletin T-217B.

INDUSTRIES. INC.
BEECH GROVE. INDIANA - PHONE STATE 7-7241

[^12]
NEC TECHNICAL PROGRAM

Monday Morning. October 9
COMMUNICATION SYSTEMS
Chairman: D. Campbell, Kelloge. ITT. High Speed Teleprinfing Systeme." H. C. Water "A.r Traffic Control Radar Beacon System: A tem. ${ }^{2}$ K. Wise. Federal Aviation Agency. Communication. Central Sysiation AN Agency. J. W. Hart. Motorola, Inc.

MICROELECTRONICS

Chairman: R. A. Greiner, Univ. of Wiscoasin
Nonlinear Resistance of M.croelectronics." H
 Lockheed Aircratt Corp.
Design Procedure For Film Troe Distributed Purameter Circuits." W. W. Hopp and W. D. Fuller, Loctheed Aircroft Corp. "Distribulted Porameter Cirruii Design Tech A rcratt Corp. Happ and P. Castro, Lockheed A crrate Corp

NETWORK TMEORY

Chairman: L. P. Hualsman, University of Arizono L.near Systems With Time-Vorying Compo The Analysis of Notworks Containina Periodi ca Variable Piecemise Constant Elements.: 1. W. Sandburg. Bell Telephone Labs. of Losses in Terminated LC Networks.: G. C. Temes, Northern Electric Co. Synthesis of Signal Generotors and Matched ${ }^{\text {F }}$ 'ers N N Claris and H.S. McGaughan. Cornell University

COMPUTER LECTURE SERIES
Chairman: T. F. Jones, Jr., Purdue University "The Digital Computer." (0) Structure of a Diaital Computer (b) A Simple Approach to SYNNOETICS

Sunnoetics:
D:scuss.on)
srnnoetics

12 Sales co. Inc.
"Nover Satishod Unill You Aro"

FLEXIBLE-0 -70° to $+500^{\circ}$ F. without cracking or checking. Dielectric strength remains. Dite krric strencin RADIATION RESISTANT ductive under higher pondom intensities. SIZE AND COLOR CODES-O10" to $3^{\prime \prime} 1 . \mathrm{D}$ non-tade colors. 5000': 36° lengths where preferred IMMEDIATE DELIVERY on stondard items from .

Ideal where minioturization increases heat and dielectric load on small wires.

- Send for free pest samples

Manufacturers of Electricent Insalafing Tublag and Sleoving 308 N. Jay St-a Rome, M. Y.
Circle 153 on Inquiry Card Cirle IS3 on Inair Car

Speolter: Dr. L. V. Aerkner, Prosident IRE
Monday Afternoon, October \uparrow
ENGINEERING MANAGEMENT I
Sponsored by IRE Professional Group an Engi neering Monagement.

Chairman: E. White.
Warvick Manulacturing Co.
Evaluation of Technical Proposals in the Defense Products Industry." B. J. Goldiarb, Westinghouse Electric Corp.
Enabling: Management's first Function." H.N. Boris, Science Research Assoc.. Inc.: , Developing Creative-Inventive Ability." R. Renc Relative Activity' of Research in the Midwost." W. Kent. Armour Research Foundation On the Application of PERT to Massive Engi nearing." E. Codier, General Electric Co.

instrumentation

Chairman: H. Woed, Ohio State Universily "Dynamic Three-Dimensional Display Systems." "Incremental Spectrum Analyzer., J. Bartels, J. McGowan, Jr. and C. Montalto, Halli crofters Co. Mannetic. Field Sensor." Mognetoresistive Maonetic. Field Sensor.
Epstein, J. N. Van Scoyoc. L. J. Greenstein illinois institute of rechnolog
A Pulsed Electromagnetic FFlowmeter Trans ducer." F. R. Johnson, Jaoger Labs.

COMPUTER LECTURE SERIES
Chairman: T. F. Jones, Jr., Purdue University Repeat of morning Digital Computer Lecture

optical communications

Chairman: G. K. Westel.
Gonoral Electric Electronics Lab. 'Optical Masers." R. J. Collins, Bell Telephone A Cbw Optical Frequency Oseillator Using Gaseous Discharge." A. Javan, Bell Telephone Labs.

STAMP ELECTRONIC COMPONENTS FASTER, MORE ACCURATELY

DIGITAL CONTROL SYSTEMS
Chairman: S. Mori, Armour Research Foundalion A Simple But Eract Model for Sampled-Dala Feedbach Systems With Non.Negligible Pulse Modern Gy. J. Murphy. Northwestern University P. D. Joseph and J. T. Tou. Purdue University Simulation of Digifally Controlled Systoms." E. Noges, University of Washington
The Application of a Digital Computer to the Sludy of Discrate Control Systems." H. C. Tong. Cornell University

SOLID-STATE DEVICES AND CIRCUITS II
Chairman: L. L Ogborn, Purdue University ithe Electro.Chemical Diffused-Collector Tran-- Tistor. Juclear Magnetic Resonance Devices Which Automatically follow Time Vorying Magnetic Automatically follow rime Vorying Magnelic Minneapolis. Honerwall Regulator Co. An Audio Amplifier Without Tubes or Pransis. tors.' M. J. Cudahy, Cozzens \& Cudahy, Inc Magneto-Optical Readout of Information Ferromagetic Thin Films." P. Smaller. Ampex Corp.

NOON LUNCHEON

Speaker: Irig. Generel D Gibbs, NORAD Communications and Electronics

Tuesday Affernoon, October 10
ANTENNAS II

Chairman: E. C. Jordan Univarsity of Illinois Some New Results in Linear. Array Theory." S. S. Sandler R W. P. King. Cruft Lab.. Horvard University
Mutual Impedance of Thin Lineor Antennas in any Configuration." H. C. Baker, A
Sconning Antenno for Satellite Applicatio V. S. Kelleher and H. P. Coleman. Aero Geo Astro CorD.
"On the Problem of Antenna Beam Brosdening." C. M. Angulo and J. Farber, Brown University

HONICS (A畀TIFICIAL NEURONS)
Chairman: R. W. Jones, Northmestern University "Improved Iransistor Neuron Models." E. MeGrogan. RCA
'Speech Recognition by Analog Neutral N works." F. Putbrath and T. B. Martin, RCA "Signal Processing by Analog Neural Networks." T. B. Martin, RCA
"An Optoelectronic. Magnetic Neuron Component." T. E. Brav. General Electric Co.

LOGIC AND SWITCHING THEORY
Chairman: M. G. Keeney, Michigan State Uni"Monlinear Resistor Matrices for Logic Opera. tions." M. S. Waserman. General Telephon s Electronics Labs, Ine.
Statistical Theory of Dispersion in High.Speed Synchronous Combination Switching Networks."
. biezer, Philco Corp.
Thprovement of Electronic Computer Reliability dundancy." W. G. Brown. Cook Researeh Re. J. Tierney, MiT, R. Wasserman, Hermes Llec tronics Co.
A Signal Processing Photoconductive Switching Device." R. D. Stewart. General Electric Co.

COMPUTER LECTURE SERIES
Chairmon: V. Rideout, Unlversity of Wisconsin Repeat of morning Anolog Computer Lecture.

MICROWAVE THEORY AND TECHNIQUES
Choirmon: W. A. Edson, Electro-Magnetic Corp. Understanding Plane Wave Propogation in Plasma Media." G. T. Flesher, Pondiz Systoms 'New' Techniques for Mierowave Diagnostics Solids." M. E. Brodwin. Northwestern University "The Uitity of Scottering Matrir Orthogonolity Conditions." R. S. Potter, U. S. Noval Research Labs.
"A New Microwove Filter Design Technique." E. Tahan. Sylvania Electric Prod., Inc.

Wednesdey Morning. October II
DIGITAL COMPUTER APPLICATIONS
Chairman: J. Von Nass, Northeasforn University "Simulating Transfer Functions by Digital Means." R. C. Radnik and W. C. Schultz. Cornell Uni -Technia
Techniques for the Digital Computer Analysis of Chain-Encoded Arbitrary Plane Curves." H
Dreemon. New York University for Prafic flow Analysis." N. Brainard, et al, General Motors Research Labs.
An Information Retrieval System Tailored to the Needs of an Electronic Engg. Organizotion." L. Gilmon and C. M. Jennings, Westing. house Electric Corp.
(Continued on page 183)

Precision RF Attenuators From TELONIC

The wide selection of Telonic RF Attennators presents the electronic design engincer with an off-the-shelf unit for al varrety of applications. Availible in turret, dual turrets, gangs, and toggle switch styles, each Telonic attenuator carries the same characteristics of high quality and accuracy at a low, low cost.

Turret attenuators, such as the TA- 50 shown above, are used individually or collectively to cover ranges as wide as 110 db in 1 db steps, frepuencies up to 1250 mc , with accuracies approaching high-priced microwatve units. Multiple turret attenuators are capable of operating two separate RF circuits, or may be used in series. Rotary switching action is prositive and without the inconvenience of push-pull mechanisms.

Toggle switch attenuators cover a range up to 102 db in 9 db steps over 0 to 300 megacycles. Featuring ruggedness and high reliability, these attentators are available in both standard and custom versions.

Full details on all types are available in Data File T-400.

NEED ONE NOW 24 HOUR DELIVERY VIA TELONIC JET ORDER SERVICE

SPECIFICATIONS

Manufacturers of Precision Resistors

LOW-FREOUENCY SOLID-STATE AMPLIFICATION I
Tutorial Session sponsored by AIEE Electronic Circuits and Systems Committee.
Chairmon: K. Enslein, Drooks Research, Inc.
"'Limitations in the Design of Instrument Amplifiers. G. H. Cohen, University of Rochester. Noise Aspects of Low Frequency Solid State Cireuits." A. van der Ziel, University of Minnesola Etiects of Signal. Source Characteristics on Amplifier Design." W. McAdam ef al, Leeds \& Northrup Co.

COMPUTER LECTURE SERIE

Chalrmen I. F. Jones, Jr., Purdue University. and V. Ridoout, University of Wisconsin
Detailed examples of Problem Solving on D gital and Analog Computers

PARAMETRIC DEVICES AND TECHNIQUES
Choirman: A. Kamal, Purdue University
'Synthesis of Negative Resistance Amplifiers" N. L. Weinberg. Westinghouse Electric Corp. Analy Leon Hughes Research Labs
-The Electron Beam Parametric Amplifier as a System Component." W. S. Von Slyck, Zenith Radio Corp.
-A C. Band Superregenerative Detector for Rodar Beacon Applications." R. D. Standley. Armour Research Foundation

SPACE COMMUNICATIONS

Chairmen: S Luts, Hughes Research Labs
"On the Response of a High Gain Antenna to Complex Radio Waves." H. C. Ko, Ohio State Univarsity.
-Radiation Characteristies of Slot Antennos in Lossy Anisotropic Plasma." H. Hodara Halli. crofters Co., and G. I. Cohn, Illinois Instifute of Technology
Mocive andwidth Measurements Using the General Electric Co

NOON LUNCHEON

Speoker: R. W. Galvin, Motorola, Inc
Wednesday Atternoon, October II
APPLICATIONS OF CERAMICS
Chairman: K. E Rollefson, Mufer Co
"A High Stability $\mathrm{S} 1 \mathrm{O}_{2}$ Capacitor." J. Minaham. et al, Sprogue Electric Co.
"Miniature Ceramic Band Pass Filters." D. Q. Miniature Ceramic Kand Pass Fiters. - Passive Electromechanical Gyralors and 130 lators." J. H. Silverman, et al. Clevite Corp.

COMPUTER LECTURE SERIES

Chairmen: T. F. Jones, Jr. Purdue University, \checkmark Rideout, University of Wisconsin

Repeat of Morning Lecture.
DIGITAL DATA TRANSMISSION
Chairman: R. Gibby, Bell Telaphone Labs
An Analysis of Frequency Shift Keving Systems. J. R. Feldman and J. N. Farone. Armour Re. seareh Foundation
"A Highly Versatile Corrector of Dintortion and Impulse Noise." E. D. Gibson. AFC Industries Onc.
Experiments in Signaling Through Non Gaussian Noise." R. M. Lerner, et al. Lincoln Labs. MIT

LOW-FREOUENCY SOLID.STATE AMPLIFICATION II
rutorial session sponsored by AIEE Electronic Circuits and Systems Committee
Chairmon: G. H. Cohen, University of Rochester
"Feedback, Stability and Transients in Solid-State Low Froquency Amplifiers. V. R. Saari, Bell Tolephone Labs.
D. C. Amplifiers Using Sami-Conductor Modu. lators." N. F. Moody. University of Saskatche wan
"Low-Leval Magnetic Amplifiers." W. A. Geyger, U. S. Noval Ordnance Lab.

Ponel Discussion: The Fufure of Chicago Area Sponsored by NEC and IRE PGEM

Moderafor: A. MacDonald, Chairman
Presentafion of a survey report by Dr. A. Ruben.
stein
(See poge 204 for N.E.C. Story)

D.P.D.T. Co-Axial Switch By TELONIC

Low VSWR and minimmon cross-talk are just (wo) of the mants advantages vonll get with Telonices TS-I (o-axial switch A double pole, donble throw moit, the TS-I is comprate light in weight, and preceision macle to give the ultimate in service (iseful to 15000 me, it has a ISWR less than 1.1:I, insertion loss below . 1 (lh), and coosstalk rejection of over f() db, all at $\mathrm{l}(1) \mathrm{K}) \mathrm{mc}$.

Ideal for cirenit switching applications where comstant impedance is required. the TS-I is made for lath, production, and field use. Point contact design and positise detent action assures precese repeatabilitys Sile er-plated, sell cleaning contacts garame longe trouble-fere operation.
Xormally furnished with indicator huob and BN: comectors, the $\mathrm{TS}-1$ is also atailable in (anstonn versioms. Two or more may be stacked in tandem. and water swith sections may be added if desirecl.

Complete sperefications are available in Technical Bullettin I'-226.

BEECH GROVE. INDIANA - PHONE STATE 7-7241

```
NEED ONE NOW? }24\mathrm{ HOUR DELIVERY VIA
    TELONIC JET ORDER SERVICE
```


From An Established Source...TELERAD

Antennas, Waveguide $\mathscr{6}$ Coaxial Components

Designed to meet the critical demands of modern R-F systems. Telerad parabolic antennas and waveguide components offer the utmost in engineering, materials, and craftsmanship. Telerad's test range facilities are in con-
 stant use measuring antenna patterns and power gain levels. supplying the most efficient equipment possible... whether it be for established designs, or for highly specialized new radar systems applications. Telerad antennas such as this incorporate a onepiece, spun aluminum reflector, which provides excellent dimensional accuracy while minimizing weight and installation problems.
Other features:

- L'nique backup structure provides a clean, undistorted retlective area.
- Furnished with a 7 adjustment for both azimuth and elevation.
- Comply with FCC specifications and ElA recommendations.
- Standard antennas cower frequency ranges from 5.9 to 16 KMC .
- Diameters range from 4 to 10 feet.

This is but one type installation: Telerad's capabilities include design and manufacture of many types and sizes for special requirements. such as helical, slotted arrays, dipole and horn antennas.
Telerad waveguide is available in four types: - Rigid - Flexible - Twistable - Pre-formed.

Rigid waveguide (Tele-Guide) is supplied in straight sections to 20 -foot lengths, meeting all requirements of MlL-W-85C, and čonstructed of aluminum. brass, silser or magnesium. Choke and cover Hanges are fabricated with strict adherence to MII. Specs. Tees. elbows. adapters, pressurized units, directional couplers, c‘avities, mixers and du-
 plexers, rotary joints and special devices are catalog items. Each Telerad waveguide assembly is thoroughly inspected for end fitting alignment, pressuretight ness, and l'SW R beforeshipment.
These components are only a portion of the stock equipment which Telerad offers. In addition, our engineering and production facilities are highly capable of designing or custom-building specialized coaxial equipment for individual installations..
From components to complete microware or radar systems: Tee Assemblies • Sweep Elbows • Rotary Joints - Flexible Sections - Flbows - Adapters - Reducers Special Devices • Plus-High Power. Lightweight Aluminum Sections for Airborne Application.

We welcome the opportunity to discuss your special antenna, coarial, and wareynide requirements...from individual components throu!gh complete frout end assemblies.

- Write Dept. 310-Y for new Telerad catalog covering expanded product line.

Route 69-202. Flemington. N.J.

Tele-Tech's
 ELECTRONIC OPERATIONS

SYSTEMS-WISE . . .

UTILITY NERVE CENTER

Nerve Center of Philadelphia Electric Co.'s digital compu-ter-directed automatic economic dispatch system is this control console. Here power directors operate and supervise loading of generating units at minimum incrementa cost. Control system -as developed jointly by Minneapolis-Honeywell Regulator Co and the utility. Array of knobs, dials and push-buttons are for allocating generation and its rate to 34 controlled units

- New technique for high speed data transmission, DEFT (for I)ynamic Error-Free Transmission) can send data at rates up to $\mathbf{1 5 , 0 0 0}$ words/min. over telephone lines. Present high speed transmission systems generally require either a coaxial cable or a broadband, very high frequency radio channel. The speed is equivalent to sending up to 150 conventional teletypewriter messages simultaneously over the same telephone line. In fact, it could be used in exactly that way-to carry 150 different teletypewriter messages at once, sort them automatically at the receiving end, and feed them into $\mathbf{1 5 0}$ separate teletypewriters. The system employs a radically new phase modulation technique. General Dynamies/Electronics is the designerdeveloper.
- The FAA has awarded Servo Corp. of America a large contract for 100 VHF/UHF advanced Doppler direction finders. The new equipment provides accurate bearings to pilots within $\pm 1^{\circ}$. These direction finders will be installed in stations throughout the U. S., Alaska, and Hawaii, operated by FAA. to help insure the safety of lost aircraft. They operate on a frequency range of 100 to 400 MC and are completely compatible with all existing navigation systems.
- An invtallation for ground-based explorations of upper atmosphere and outer space is being constructed by the National Bureau of Standards, Boulder (Colo.) Labs and the Instituto Geofisico de Huancayo (Peru). It will be a site 17 miles east of Lima. Peru. The Jicamarca Obser-vatory-named for a nearby village-will have, when completed, 6-million watt pulse transmitter and a 22 -acre antenna with 9216 crossed dipoles mounted 6 ft . above a reflecting ground screen. The antenna will be used 10 transmit a very high frequency wave lasting from 50 to 1500 microsec., and when switched to the receiving state, to detect the faint re-radiation of the pulsed radio wave by free electrons in the upper atmosphere.
- RCA has developed electronic equipment for transmitting data to a computer thousands of miles away at a speed 3,000 times faster than teletypew riter. Magnetic tape terminal (MTT) units have been installed at San Francisco and Kansas City to speed social security data. In use, the equipment works with the Bell System's Dataset 201 A at each end of the private line circuit. Ilata is relayed through the MTT's magnetic core memory to standard telephone, leased line, or microwave hookups. At the receiving end. the information once more passes through magnetic core memory and on to a magnetic tape unit for recording and computer processing. The use of core memory provides the highest rate of line efficiency by blanking out tape gap time.
- The McDonnell Automation Center, which supplies data processing services to more than 30 industries in the East, Midwest and Southwest, is the first firm in the nation to install an IBM 7080 Computer. Addition of the huge solid-state machine brings to some $\$ 10$ million the value of the analog and digital equipment in use by the Automation Center and its staff of more than 400.
- Ryan Electronics is developing a radar system capable of recording altitude measurements up to 250 miles for NASA. Although radar altimeters are being used in current rockets, none meet the long-range requirements of the Saturn space vehicle program. The radar altimeter will measure the travel time of a single radar impulse transmitted from the vehicle to the ocean (in this application) and reflected back to the vehicle. Weighing only some 16 lbs., the compact unit will be employed in later multi-stage firing of the 1.5 million pound thrust Saturn.

PUNCHED CARD ELECTRONIC COMPUTER

Burroughs Corp. has entered into the punched card electronic computer business, putting the company squarely into competition for the largest single bloc of the billion-dollar-a-year market for automatic business data processing equipment. The basic punched card system in the 8200 series, the 8260 , is described as the "workhorse computer." The series was designed for increasing productivity in medium and large-scale punched card applications. Photo shows a unit receiving a comprehensive system check-out before equipment is released.

Too many switches or controls can cause odd effects and create added burdens to the operators. Here is information about modifying your units to a one-knob control for easier operation.

Broadcasters...

Simplify Your Turntable

WITH the majority of announcer - operators spinning their own records, it is imperative to make the operation as simplified and reliable as possible for them. At the same time it will improve program continuity. The following are to be kept in mind when building or improving a turntable system.
(1) Quality and number of turntables and pickups.
(2) Methods of switching.

The engineer should listen to his station on a good high fidelity tuner-amplifier-speaker combination. He may be surprised at what he hears. If there is rumble or hum in any of his turntables, it certainly becomes evident, especially on bass boost. A small radio will not in-
dicate these defects nearly as well. Also listen intently for any signs of wow, flutter, clicks, noise, operator errors, too many pauses, and distortion of any kind. It pays to be critical.

Turntables δ Pickups

Most engineers and announceroperators will agree that there should be more than two turntables in the control room. With all of the commercials, themes, and various speed records, etc., there is a definite need for at least 3 and preferably $\&$ for smooth operation. Here we use 4 turntables in each control room; two Robinson's and two Garrod T MK II's as shuwn in Figs. 1 and 2. The Robinsons have

Fig. 1: The control room set-up which is used by the combo man in small stations.

33 and 78 speeds. We use the Garrods exclusively for 45 's and only rarely for 33 's. These give our combo men plenty of flexibility. All turntables are within easy reach. which is an important factor.

There are many good small turntables on the market that meet NAB specifications. The Garrod is one of them. Don't always put too much confidence in manufacturer's data. Putting them to the test with a standard test record will tell the story better.

As far as the big Robinsons are concerned, they easily exceed NAB specs. The mercury switches are the only items that we have replaced on them. Belt driven turntables, such as the Robinsons, are always good for low :umble content. When planning to broadcast stereo, beware of rim driven turntables, some broadcast types too. as their rumble content may be rather high.

Automatic 45 turntables are a great help to combo men, but they will probably never take the place of the regular turntables in the control room.

I would say that 6 pickups are best for 4 turntables, two pickups for each large one and one pickup for each small one. This eliminates turnover type cartridges, plug-in heads, weight changing, etc. These always add work for the combo man, and the resultant mistakes that go with it. I believe that LP's should be played with one arm of correct stylus and weight, and the 78s and ETs with another arm of correct stylus and weight. Mistakes

Fig. 2: The Robinson furniable is shown withthe 1245 L switch installed.

By NORMAN F. ROUND

Chief Engineer

Lawrence Broodeasfing Co.
Lawrence, Mass.

Operation

are rare using this arrangement and the added arm will pay for itself.

There are many good cartridges on the market and the following should be considered when choosing a pickup: Frequency response, output voltage, load impedance, compliance, harmonic and intermodulation distortion, tracking force, channel separation, accurate tracking, arm resonance, and dynamic mass. Always follow manufacturers specs. to the letter when installing pickups. Much more could be said about specifications and exact data on various equipment, etc., but this is readily obtainable information.

Methods of Switching

The fewer the switches, levers, or pushbuttons the operator has to bother with, the fewer the mistakes. The following should be kept in mind for good switching:

1. Noiseless as possible both mechanically and electrically.
2. Able to perform as many functions mechanically and electrically as possible, such as, change speeds, select any one of the pickups, put all pickups on cue, put turntables on and off, change equalization when using different cartridges, and operate indicators, etc.
3. Must not introduce hum in lowlevel circuits.
4. Be as reliable as possible.
5. Must be able to perform with stereo recordings.
6. Must be in an easily reached location.
7. If possible, one switch should do all of the above.

The above has been done with remarkable success, the combo men are happy and errors are practically nonexistent.

One type Mallory 1245L, shorting, 4 -section, 8 -pole, 5 -position switch does all of the above with ease. This switch was chosen because of its ruggedness. The schematic of the switch and wiring is given in Fig. 3.

The 1245L took the place of 6 switches that the station used to have on each side of the console. They were: two mercury switches for the motors, cue switch, 33 or 45 pickup switch, 78 or LP switch in the Gray equalizer, and the Robinson transmission speed lever. The switch is so wired that when it is in the middle position, all 3 pickups are in parallel ready for cuing. The cue amplifier is always on except when the mike key is on. This prevents any cuing going over the air. The operator can still cue a record by an earphone switch on the console if he so desires.

I installed an 8PDT telephone type relay in the console to take care of cue speaker cut-off and several other speaker cut-off's, as well as Conelrad, intercom, mobile, etc.

[^13]Having the cue amplifier on at all other times is not annoying as no sound is heard except when cuing a record. Cue volume is good and loud, and adjustable. In the " Q " position of the 1245 L the turntable motors are off.

I modernized the Western Electric potentiometers so that they now have a cue position at the infinity end. It is quite easy to take these old pots apart and add a cue position. The 1245L could be wired to perform this function if the console didn't have cue pots. Cue pots have one advantage when using the 1245 L . They allow the operator to listen to his records over the cue amplifier when the switch isn't in the " Q " position.

Rim Driven Turntables

One other feature that our combo men, at times, have found desirable is a small pushbutton close to the front of each Garrod. With this they can start the turntable spinning for cuing their records. Some rim driven turntables want to keep going backwards when the operator back tracks for cuing. This occurs even when the turntable is held for a second or so. To prevent this, he just makes a quick tap on the pushbutton and the turntable stays put.
In the 45 position, the Garrod pickup is the only one feeding the console and the motor goes on at the same time. This is the only position where an indicator would be desired when using idler wheel disengagement on rim driven turntables. It's easy to fix the turntable so that when the pickup is on its

Turntables

(Continued)

rest, the idler wheel is pulled away from the motor pulley. This prevents the disturbing flat spots. Just add a one inch length of metal to the bottom end of the pickup arm near the shaft. Attach a length of dial cord between this and the idler wheel holder. When the pickup is on the record the dial cord just hangs loose and has no tension on the idler wheel. At the end of the broadcast day the operator could leave the 1245 L in the 45 position, as he doesn't see the turntable running. An eye-catching indicator will prevent this.

In the 78 position the 15 gram pickup is the only one feeding the console, and the Robinson transmission is changed to 78 by a lever and the motor is also turned on. Equalization can also be done on one of the 1245 L sections if desired. This is necessary when using a cartridge not exactly designed for the equalizer.

On the LP position, the LP pickup is the only one feeding the console. The transmission is now placed at 33 RPM by the lever and the motor is turned on. Another section of the 1245 L can be used for stereo cartridges. If stereo is used during various periods throughout the day or evening you

Fig. 3: Wiring diagram of the right hand 1245L switch is shown. Connections and switch sections are shown viewed from the bottom side of the switch.

will want to install stereo cartridges. This would require a small switch near the LP pickup. Switch connects the cartridge's output wires together to play regular monaural LP's. Even this switch could be eliminated if a station does not use 78 records, or uses very few. The 78 position could then be used for stereo LP's. The few 78's that are used could be played on the Garrod with a plug-in head.

The small turntable should not be used for only 78's and the big turntable for 45's and 33's as this lessens the operator's convenience and flexibility of operation. Having 3 turntables on a side, one for each speed, is going to the other extreme and is not necessary. The 78 position is good here as we use quite a few 78's for request shows, etc. Without the need for transmission changing at some stations, the engineer could use a 1256L switch to give him 6 available positions if he needed that many. The sixth position could be for stereo 45's. Six positions cannot be used with transmission changing as the metal piece would touch the side of the switch before it arrived at the sixth position.

On the ET position, the 15 gram pickup is the only one feeding the console, and the transmission is on 33 RPM.

Using the 1245L to mechanically change speeds on idler wheel turntables would be quite difficult if not impossible. It might be done electrically by using magnetic coils to pull-in the idler wheels on turntables that use 3 idler wheels. Wire it so that all the idlers are touching the motor shaft at same time on " Q " position. When turning to a particular speed the two unused idlers are pulled off, thereby preserving smooth starting of the turntable. Engineers shouldn't consider this a lot of work as it certainly will give him a sense of accomplishment, decrease maintenance, improve the station's sound, and keep everybody happy.

A floor switch could be used to turn on the turntables. However, this is just an added switching function that our operators would just as soon be without. The 1245L would have to be set beforehand and this might cause mistakes. Mechanical noise would also be another problem with a floor switch.

50\% SMALIER!

G-E miniarure Vac-u-Sel ${ }^{\text {º }}$ Selenium Rectifier advanfages include:

+ New thin cell construction (.010" in thickness) \uparrow Voliage ratings up to 31,500 PRV (50\% greater than ordinary
units) \uparrow New phonelic housing (opproximatoly iwice tho dielectric strength of aloss melamine heusings) \mathcal{f} Operation
at ambient temperalures up to $130^{=} \mathrm{C}$ with no doratingl \uparrow Now Automatic Continuous Evaporation (ACE) manufacturing
precess (greator uniformity from call to cell, srack lo sfack) $\uparrow 15 \%$ price reduction \mathcal{f} Current range 1.5 io 25 ma .

General Electric's new line of thin cell. high voltage. cartridge type half wave selenium rectifiers features the smallest cartridge size on the market today for a given voltage rating. You can specify one rectifier rated as high as 31.500 volts
for as little as 19 per KV! And. of course. the lower the voltage rating, the smaller the cartridge will be. The units shown are actual size.

Your G.E Semiconductor District Sales Man-
ager will give you complete information to satisfy your requirements for ion generators, radar power supplies, or other low current. high voltage applications. Or write to Rectifier Components Department. Section 24J33, General Electric Company. Auburn. New York. In Canada: Canadian General Electric. 189 Dufferin St., Toronto. Ont. Export: International General Electric, 150 E. 42nd St., New York 17, N. Y.
for fast delivery of selenium, germanium and silicon rectifiers at factory-low prices, call your g-e semiconductor distaibutor

GENERAL ELECTRIC

ROHN COMMUNICATION TOWERS STAND THE TEST!

Evoryone knows that ice loading, coupled with high winds, is the soverest of all tests for a fower. Hore are details of how a ROHN No. 55 Communication Tower withstood such a fost:

A parfially arected ROHN Tower was cought in a severe Canadion ice and snow sform in December, 1960. Only 120 ft . was erected of the 250 ft . complefod towar when the sform broke. If withsteod the tremendous rigers of the ice and windl After the sform passed, this ROHN Tower was completed to become part of a communication system in Monfane. Midwest Communications did the eraction for Rohn Systoms, Ine.
For Towers That Stand Rigorous Abuse, Call or Write:

ROHN Manufacturing Co.

P. O. Bex 2000
Peoria, Illinols

"Pioneer Manufacturer of
Towers of All Kinds"
Representatives Ceass-to-Coasf, Circle 132 on Inquiry Card

Turntables
 (Continued)

Another idea is to have microswitches on the turntable pots, or if these make too much mechanical noise, then add a small cam shaft to the back of the pots to operate a lever switch. There are several ways to do it. It is also a good idea to have silent switches on the tape pots. These switches could operate de relays, which in turn would put on the turntables or tape machines. With shielded ac wire and good placement of this wire in the console, the relays, possibly could be eliminated. As the engineer can see, the use of various relays, multiple pushbuttons, key switches, and what have you, could not possibly compete with the 1245 L for simplicity of operation. These might simplify it to a certain extent but why settle for something less than the best? Before building or renovating your turntable system, plan it out as much as possible beforehand.

Switch Installation

Now for the actual construction of the system. The cabinets as shown in Figs. 1 and 2 were designed and constructed. Anyone that may desire the measurements, etc., just write to me, the author.

Set the Robinsons on top of the cabinets and drill a hole $11 / 8 \mathrm{in}$. from the front at the middle of the Robinson. This is the only place that the 1245 L can be placed and it's also easy to operate here.

Before installing the 1245L, take it apart and round off the 12 humps with a grindstone, being careful not to go too far. This makes it much quieter in operation. Also solder the center section shaft to the bottom of the knob shaft for added strength. Put grease on the rollers. Now align the stop washer so that the "off" position is not used. Mount the switch in the Robinson with large lock washers so that it will not move out of position.

Now wire up sections 1 and 2 as shown in Fig. 3. Doubling up on contacts makes the switch more reliable. Before sliding the sections on the shaft, cut up the tie rod metal spacers so that the sections are very close to each other and

Fig. 4: Drawing may be used as the pattern for the metal gear change piece on switch.
yet not enough to touch. This enables at least 6 sections to be placed on the switch and more if desired. Now put the unwired section 3 up close to section 2 . This can be wired up later while it's in position for possible equalization or other use. Next, remove the Robinson's mercury and transmission levers, leaving the spring on the transmission shaft. This spring must be soldered on so that it will not come off.

Make the metal piece as shown in Fig. 4. Make certain that the metal isn't too thin and that it can be soldered. This metal piece is drawn to the exact size needed. The center slot is exactly at the correct angle and can be punched with a chisel. Make the hole at the end the same as shown. If you're working on the right hand Robinson first, then slide this metal piece up on the shaft with the small hole pointing toward you. Place the metal piece close to section 3 and solder it on the shaft. Be sure to use plenty of heat and solder.

For linkage to the transmission. use a metal rod about 6 in . long with small hooks at both ends. Do not just drop one end into the top of the spring but through a spacing nearest the top. This keeps it from coming out and stops noise. Make absolutely certain that the spring is in a straight up and down position and that the 1245 L is in the " Q " position when the rod is installed. The rod length may be slightly less or more than 6 in. Put grease on these hooks.
Now wire section 4. One pole of sect. 4 can be connected to an indicator to show that the motor is running. It could operate on filament voltage from the console or cue amplifier. Slide section 4 on
(Continued on page 193)

NEW FROM MOTOROLA..

Motorola's new 3 -amp power transistor series, the 2N2137-46, offers $I_{\text {cıo }}$ (at 2 volts) of only $50 \mu \mathrm{~A}$ instead of the usual $200 \mu \mathrm{~A}$. Also the thermal resistance of the new small junction devices has been reduced to $1.2^{\circ} \mathrm{C} / \mathrm{W}$ instead of the usual values of 1.5 to $2.5^{\circ} \mathrm{C} / \mathrm{W}$ previously associated with such units. This results in a power dissipation rating of 62.5 watts at $25^{\circ} \mathrm{C}$ instead of the 35 watts you may be getting out of your present devices.

These new Motorola units are ideal as drivers for such types as the 2 N 2082 as illustrated in the accompanying circuit diagram. They are also superior in such applications as the direct-coupled amplifier circuit shown above.

The new devices are more completely specified... are available in " A " versions with complete life test data under Motorola's exclusive Meg-A-Life program ... and they are available now at lower prices than comparable old-type units.

For complete specifications on the standard 2N2137-46 series, or the " A " versions available under the Meg-ALife program, contact your Motorola district office, or call or write: Motorola Semiconductor Products Inc., Technical Information Department, 5005 East McDowell Road, Phoenix 8, Arizona.

MOTOROLA DISTRICT OFFICES:

Belmont, Mass. / Burlingame, Calif. / Chicago / Clifton, N. J. / Dallas Dayton / Detroit / Glenside. Pa. / Hollywood / Minneapolis / Orlando, Fla. / Phoenıx / Silver Spring. Md. / Syracuse / Toronto, Canada.

Pick the device for your application from this new 2N2137-46 Series Box Selection Chart.

	hise@ 2V and ic of 0.5A/2.0A	
	$30.60 / 15 \mathrm{~min}$	$50-100 / 25$ min
BVces 90V BVceo 90V BVcゃ 65 V BVeso 45V	2N2141	2N2146
$\begin{aligned} & \text { BVcis } 75 \mathrm{~V} \\ & \text { BVcso } 75 \mathrm{~V} \\ & \text { BVceo } 60 \mathrm{~V} \\ & \text { BV } 40 \mathrm{~V} \end{aligned}$	2N2140	2N2145
$\begin{aligned} & \text { BVces } 60 \mathrm{~V} \\ & \text { BVcso } 60 \mathrm{~V} \\ & \text { BVceo } 45 \mathrm{~V} \\ & \text { BV } 100 \mathrm{~V} \end{aligned}$	2N2139	2N2144
$\begin{aligned} & \text { BVces } 45 V \\ & \text { BVces } 45 V \\ & \text { BVce } 30 V \\ & \text { BV feo } 25 \mathrm{~V} \end{aligned}$	2N2138	2N2143
$\begin{aligned} & \text { BVces } 30 \mathrm{~V} \\ & \text { BVcoo } 30 \mathrm{~V} \\ & \text { BVcio 20V } \\ & \text { BV } 10015 \mathrm{~V} \end{aligned}$	2N2137	2N2142

MOTOROLA
Semiconductor Proctucta inc.
a subsionary of motorola inc.
5005 EAST MCDOWELL ROAD • PHOENIX B. ARIZONA

CUES
 for Broadcasters

Dynamic Frequency Monitor Tesł

ELMO D.ARRAH, Ch. of Operations
KOB, Albuquerque, N. M.
Monitoring equipment that is trustworthy is of great concern to broadcasters. "Will it monitor?" Here I describe simple means of making a routine dynamic test of the broadcast station frequency monitor's ability to show frequency deviation.
In our test circuit a small variable, or fixed, capacitor of between 5 and 30 pf is momentarily shunted across the frequency monitor crystal. The shunt capacity lowers the crystal frequency by a certain number of cycles per second. This is indicated on the frequency meter dial as a change between the transmitter and monitor oscillator frequencies.

At KOB, the capacitor used to detune the monitor oscillator is a tiny mica compression unit. It is connected through a small ceramic insulated 6 vac relay, which is controlled by a push button on the front panel of the monitor. Monitor filament voltage energizes the relay. In our monitor, the test button causes the monitor to read " 4 cycles high." If pushing the button causes no deviation, or something more or less than 4 cycles, we know the monitor is out of order.

In mounting the capacitor and relay, care should be taken to keep the capacitor completely in the oscillator

With the addition of a few components, a test circuit for your station's frequency monitor can be simply built.
shield box. and the relay should be mounted outside, as close to the capacitor as possible. The main consideration is to not upset or change the basic circuit of the monitor, and not to destroy the effectiveness of the shielding by running outside wiring into the oscillator compartment.

In some monitors it may be possible to do without a relay by using a low capacity switch. Do not attempt this job casually, study it out carefully, and do not leave your station unprotected.

\$\$\$ for Your Ideas

Readers are lavited to contribute their own suggestlons which should be short and include phofographs or rough stetches. Typewritten, double speced text is requested. Our usmal rafe wil be paid for material used.

revolutionizes soldering!

Sample. left, ahows ordinary solder. Sample, righe, shown ALPHA Cin-Tri-Core Solder's 331 j Cio greater flow.
You get $33 \% \%$ greater flow with ALPHA Cen-Tri-Core Energized ${ }^{\text {² }}$ Rosin-filled Solder because only ALPHA Cen-Tri-Core is made this way ...
AiPHA Cen-Tri-Core is specially processed from virgin tin and lead plus highly mobile energized rosin. Result ? A $331 / 3 \%$ increase in flow and wetting. More reliable solder connections. Increased joints per pound.
Made of rosin-coated center wire which is visually inspected before an extruded outer sleeve is added. every inch of this "core within a core" solder is filled with fast-acting, non-conductive flur. Meets Fed. Spec. QQS-57IC. Wrile for delails!

When dependebility counts!
 alpha metals, inc. ©
 58C Water St., dersey City 4, N. J.

In Lee Aaroles, Calid.: 2333 Sapbredt Ave.
In Chicago. III.: ALPHALOY Corp., 2250 S. Lumber St.
Ot her ALPHA producte : Fluses - Solde Predorma - High Purity Metals

MINIATURIZED! LIGHTWEIGHT!

ID-LINE
DATA READOUT

Readouts that do more than display numbers
Ideal for airborne computers, con trol systems consoles. other elec tronic test equipment features twelve messages per unit, choice of words, numbers, or color. Light weight. only $3 \frac{1}{6}$ ozs. Price \$35.00. Write today for complete sperifintions and quantity prices

Circle 145 on Inquiry Card
ELECTRONIC INDUSTRIES

Turntables (Concluded)

the shaft. For sections 5 and 6 you will need to buy another 1245L or buy the sections separately, if possible. On sections 5 and 6 put solder in the tiny contact cups. The Robinsons draw a heavy starting current and soldering these contacts makes them last longer. Using two sections and 4 poles for turning the Robinson motor on will give the contacts a long life expectancy.

The spark that is produced by turning on these motors will gradually wear down these contacts. Using non-shorting type contacts would render a shorter life. Another way to start the Robinson would be to use a 115 vac relay between the 1245 L switch and the motor. Only one section of the 1245L would now be necessary to run the Robinson.

Another important consideration is that the 1245 L on the left side will be wired differently than the right 1245L. This can be seen since the 78 position will be nearest the console on both sides. The metal piece will point toward the operator on the right side and away from the operator on the left side.

Switching the turntable motors on may produce noticeable clicks in the output. To reduce this use a resistor and capacitor in series and wire in parallel with the motors. A one watt resistor of 100 ohms and a capacitor of .25 mfd will take care of electrical noise very well.

Electric Shock

Operators of some Robinson turntables have probably found, to their astonishment, that they can get a good healthy shock from touching the center pin of the turntable if their other hand is grounded on the console, etc. The reason for this is that the platen is insulated from the rest of the turntable by large rubber washers. The friction of the belt builds up a considerable charge between the platen and the rest of the turntable. A simple remedy is to strap both together with a flexible wire, such as the outer shield of audio wire.

It is important to use a large knob on the switch. It gives the operator a good grip and reduces mechanical noise. The Gee-Lar J-

312 is an excellent size with skirt or the cheaper 650SS. It is also important to use large letter designations such as Walsco No. 2115 white alphabet decals. Always spray these letters with several coats of clear coating. Be certain to file a flat spot on the shaft for the knob screw.

Now clean the top of the Robinson thoroughly and fill in holes with Lab-metal or similar material. Put tape beneath the holes to hold the Lab-metal until it dries. Spray the top with paint.

It's a good idea to remove the "LP or Other" switch in the Gray equalizer as it is not needed. While working on this equalizer you should change the 1 -section switch to a Centralab 1020 3-section switch. Wire the first section the same as the original, the second section for a stereo cartridge, and the third for an indicator light that will light on any position that isn't the NAB position. This way the operator will be alerted to change the switch after using.

Fig. 5: Designations for the 1245L switch.
I'm a firm believer in having plenty of indicators for the benefit of the operators. Other indicators can be for: Conelrad, telephone, overmodulation, intercom, someone at front or back door after business hours, remote call-in, mobile call-in, etc. The engineer can use impulse or latching relays for some of these and also Amperite 6F60 flashers for making the indicators go on and off.
The equalizer can be wired either balanced or unbalanced into the console. The engineer must remember to avoid ground loops when wiring. Have the shield grounded at the console only and the turntables and equalizer grounded with separate wires. Ganged pots are necessary in the console for stereo. A balance control or two output controls are also necessary.

Unique thumb-wheel operation and in-line readout permit ease of setting even under severe field conditions. Sealed switch modules and environ-ment-proof case make these Ratio Boxes ideal for rigorous GSE and commercial applications. In addition to high readability and accuracy in minimum space, they provide previously unavailable design and performance features:

- Four digit in-line readout
- Ratio range to 1.1110
- Accuracy 10 ppm
- Frequency range to 10 he
- Series impedance as low as 0.8 ohm
- No switching transients
- Splash and drip-proof design
- Meets rugged MIL requirements

For complete data,
write today for Bulletin RB520/521
NORTH ATLANTIC
indust ries, inc.
termimal drive, plainview, li. new york
Telephone: OVertrook 1.8600
Circle 149 on Inquiry Card

A NEW CONGEPT IN SGAN GONVEREION

from

Now a low cost completely transistorized Scan Conversion unit is available which is capable of : \& + TRANSLATION of video information from one scanning mode to another; + STORAGE and INTEGRATION of video information;
Expansion or reduction of bandwidth through TIME-COORDINATE TRANSFORMATION. This completely transistorized, versatile system can be readily tailored to your specific needs through its plug-in printed circuits. For more information about conversion of radar PPI to TV, TV standards conversion or conversion of slow scan narrow band systems to standard TV or vice versa, contact GEC today.
...advanced electronics at work

WASHINGTON

FCC POSITION-FCC Chairman Newton N. Minow and Commissioner T. A. M. Craven in one of the multi-faceted Congressional committee hearingsthe Senate Small Business Monopoly Subcommitteesigorously defended the FCC's development of the satellite communications program and emphasized that they and the FCC have no intention of permitting single company domination of a satellite joint venture. NASA Administrator Webb reported to the Senate body that NASA is negotiating with Hughes Aircraft Co. for a 24 -hour synchronous altitude satellite, together with the AT\&T and RCA contracts.

NLCLEAR SATELLITE-The Congressional Joint Committee on Atomic Energy heard about a plan for a nuclear-powered television satellite which could transmit directly to TV viewers around the world. Atomic Energy Commissioner Wilson stressed that such a nuclear space transmitter would mean much more in national prestige than a man landing on the moon. He felt that a nuclear space satellite is "possible in this decade." The nuclear system, he outlined would relay TV signals with 1 kw to ground networks and could be developed in 2-3 years. For world TV coverage a satellite would require about 150 kw of nuclear-developed power.

DEFER OWNERSHIP-In a letter to President Kennedy, made public by Rep. Fmanuel Celler of New York, three Senators and 33 Representatives. all Democrats, urged that, while the United States should strive to be first to put into active operation a satellite communications system, this should be accomplished "through government research and development contracts and that consideration of the question of ultimate ownership of such a system be deferred until the system is fully operational." The letter charged that the American Telephone \& Telegraph Co. would have a dominant and "very probably" a monopoly position in the ownership of the space communications system. The Congressional group urged that there should be the widest participation by all interested communications and aerospace manufacturers.

MILITARY - COMMERCIAL PROGRAMS - The Army's ADVENT project and the government's program to have private enterprise, like AT\&T, RCA and Hughes, develop a plan for operation of a satellite communications system to meet international commercial requirements do not constitute a duplication of effort. This view was given to the House Science \& Astronautics Committee by the commander of the ADVENT agency, NASA Administrator Webb and the executive secretary of the National Aeronautics \& Space Council. The NASA Administrator lauded the AT\&T on its "very forward lonking view" regarding patent rights and cooperative relationships between government and industry.
National Press Building ROLAND C. DAVIES Washington 4

Due Off Press-Oct. 15 THE PD\&D PRODUCT ENCYCLOPEDIA OF MATERIALS \& PARTS

The Industry's First Complete Round-Up of Materials, Parts, and R\&D Equipment.

- More than 200 pages of product information, bound in stiff cover
- Descriptions of more than 1200 materials, components, and R\&D equipment items. Each description includes dimensions, specifications, properties, applications, performance characteristics, availability, and other engineering data
- Descriptions of more than 600 manufacturers' literature items, covering every phase of the product design field
All of These Items Will Be Arranged in Chapter Form by Major Product Classification, Including:

> Electrical \& Electronic Components - Hydraulic \& Pneumatic Components © Mechanical Components - Hardware Materials Finishes \& Coatings © Shapes \& Forms \& R\& Equipment Methods \& Processes

All Items Will Be Cross Indexed by Product and Manufacturer's Name

If you act now, you can get this valuable refer. ence book at the pre-publication price of only

$\$ 3.00$

Price after October 15 will be $\$ 4.00$. Simply fill in the coupon below and drop it in the mail today. We'll reserve a copy of the PD\&D Product Encyclopedia and send it to you just as soon as it comes off press, on or before October 15. Coupon should be mailed to: The Editor, Product Design \& Development, Chestnut \& 56th Sts., Philadelphia 39, Pa.

Please send me copies of the new PD\&D Product Encyclopedia of Materials and Parts, at the Special Pre-Publication Price of $\$ 3.00$ each.

Payment Enclosed Please Bill Me
Name
Company Title
Street
City
State

โTM COMPONENT DENSITY

FX-I Computer

(Continued from page 118)

Some of the trays in the FX-1 are fabricated by a developmental technique called "plated-circuit" wiring, as contrasted with "printedcircuit" wiring for the plug-in units and conventional point - to - point soldered wiring for most of the trays. The plated-circuit trays use 2 layers of etched wiring sandwiched on either side of a central copper ground plane. Wiring of this type behaves like strip transmission line, with uniform impedance characteristics that should simplify and improve circuit performance at high freqs. Interconnections from 1 layer of wiring to another are made by plated-through holes rather than by soldering.

Fig. 4: Development plated-circuit tray. holding up to 20 plug-in units, has two layers of wiring on either side of a central ground plane, functioning as strip transmission line with uniform impedance characteristics.

The FX-1 logic circuits are packaged in plug-in units that have been designed for compactness, as well as being particularly suited to high freq. operation. The plug-in units are mounted in trays (Fig. 4) that hold up to 20 units each and themselves plug into the computer frame. Approx. 325 plug-in units of 12 standardized basic types are used in the FX-1. They are mounted in 24 trays, of 13 different types. The entire computer, with power supplies, occupies only 3 relay racks.

FX-1 computer was designed and built by the Digital Computers Group in the Information Processing Div. of the M.I.T. Lincoln Laboratory, with assistance from Lincoln's Computer Components Group.

STAncor

ELECTRONICS, INC.
(Formerly Chicago Standard
Transformer Corporation)
A shorter name for a broader product line

A typical design achievement is this Stancor high power, 400 cycle line filter for airborne computer applications. It is one of the hundreds of special purpose filters for telemetering, high and low pass, band pass, glide slope indicators, line attenuation, frequency discrimination, etc., designed and built by Stancor engineers. For additional information on the wide range of Stancor filters, write for Engineering Bulletin 602.

Over 80() Stancor "stock transformers, filters, toroids, and other components for military and commercial applications, are available for immediate delivery through your local Stancor Industrial Distriburor. Ask him for Catalog CS-101.

Stancor

ELECTRONICS, INC.
(Formerly Chicago Standard
Transformer Corporation)
3516 W . ADDISON STREET CHICAGO I8, ILLINOIS

Circle 160 on Inquiry Card

News of Mirs'

Representatives

Atcheson and Adams-named rep. resentatives by CTS Corp., Elkhart, Ind., to cover Georgia, Alabama, North and South Carolina, Mississippi, Tennessee and the counties of Pittsylvania and Washington in Virginia.

General Electric Co., Schenectady, N. Y., has appointed, for their line of high-voltage test sets, the following representatives: Electro-Tech Equipment Co., New York, N. Y.; Gordon Yale Associates, Boston, Mass: Sunshine Scientific Instruments Phila., Pa.; Wadsworth Mfg. Asooc ates, Liverpool (Syracuse) N Y.: Cioristie Lahoratories, Cleveland, Ohio; and Excel Electric Service Co. Chicaso, III.

George Kangas Sales Co., Overland Park, Kans.-named representative by Transistor Electronics Corp., Minneapolis, Minn., to cover Kansas and Western Missouri.

The Robert R. Thomas Co.. Dallas, Tex.-named representatives for CBS Electronics in Texas, Louisiana, Arkansas, Oklahoma, Kansas, New Mexico, and Kansas City, Mo.

Goddard. Inc., West Palm Beach, Fla.-named representatives by Fairchild Semiconductor Corp., Mt. View Calif., to cover the Southeast, including Virginia, North and South Carolina, Florida, Georgia, Alabama, Mississippi and Tennessee.
D. A. Schultz Co., Minneapolis, Minn. - named representatives by Burnell \& Co., Inc., Pelham, N. Y., cover Minnesota and Iowa. Schultz will also represent Burnell's Gray \& Kuhn Div.

The Deutsch Co., Electronic Components Div., Banning, Calif., has named Arco Electronics, Inc., Great Neck, L. I., N. Y., as representatives for the entire country excepting the 11 Western states. The G. S. Marshall Co., San Marino, Calif., will cover the 11 Western states.

Bulova Research \& Development Laboratories, Woodside, N. Y., announces the appointment as representatives of Joseph Gillman Associates, Washington, D. C., cover Washington, D. C. area and Dayton Technical Services Co., Dayton, Ohio, to cover the Dayton area.

Audax Inc., Div. of Rek-O-Kut Co., Inc., Corona, N. Y., announces the appointment of Farrow and Dobbs, Saratoga, Calif., as representatives in the Northern California territory.

Transistor Electronics Corp., Minneapolis, Minn., has appointed Adolph Friedman Co., Mt. Vernon, N. Y., es representative for Metropolitan New York and Northern New Jersey.

Louis J. Van Eperen named Customer Sales Representative in the Eastern sales area for Fairchild Controls Corp., Hicksville, L. I., N. Y.

Westinghouse Electronic Tube Div., Elmira, N. Y., announces Townley Metal \& Hardware Co., Kansas City, Mo., representatives in the Greater Kansas City area, Colorado, Kansas, Oklahoma, Missouri and Arkansas.

Oak Mfg. Co., Crystal Lake, Ill., announces the following representative appointments: Product Sales Corp., East Lansing, Mich., to cover Michigan: Lloyd F. Murphy \& Associates, Inc., Minneapolis, Minn., to cover Minnesota, Northern Wisconsin, North and South Dakota; Cartwright \& Beane. Memphis, Tenn., to cover Florida, South Carolina, Georgia, Alabama, Mississippi and Tennessee; and Robert O. Whitesell \& Associates. Cincinnati, Ohio, to cover Ohio.

Parker Seal Co., Culver City, Calif., announces the appointment of Seals \& Engineering, Inc., Rockford, Ill., as representatives covering Rockford, Illinois and surrounding area.

General Resistance, Inc., New York, N. Y., has appointed Q.E.D. Eleetronics Sales, Inc., Mt. Vernon, N. Y., ar representatives in the New York Metropolitan area.

Wheatland Electric Products Co., Carnegie, Pa., has appointed Joseph F. Devereau's Mid-South Sales Agency as representatives in Arkansas, Western Tennessee and Northern Mississippi.
R. M. S. Associates, Inc., Mamaroneck, N. Y., has appointed as sales representatives Brogan Associates, Inc., Mineola, N. Y., for New York, New England, and Northern New Jersey; S and S Associates, King of Prussia. Pa., for Eastern Pennsylvania, Southern New Jersey, Mary. land, Virginia, Delaware and Washington, D. C., and Lowry Dietrich Co. Dayton, Ohio, for Ohio, Kentucky, West Virginia and Western Pennsylvania.

Drew Associates, Boston, Mass., have been appointed representatives in the New England States for International Resistance Co.'s Control Components Div., Philadelphia, Pa.

SPECIAL WELDING TIPS, HOLDERS and WELDING JIGS

MADE TO YOUR SPECIFICATIONS

EISIER ENGNEERNGGCO. INC.

Witte for Cotalog W-St

Industry
 News

L.ee Ballengee - appointed Vice President-Marketing, Cinch Mfg. Co, Chicago, III.

John J. Moran-elected Executive Vice President, Sigma Instruments, Inc., South Braintree, Mass.
I'atrick J. Morrisey-appointed Vice President, Marketing. Dresser Electronics, HST Div., Garland, Tex.

P. I. Morrisey

E. Bachorik

Eduard Bachorik-appointed Executive Vice President, Allied Control Co., Inc., New York, N. Y.

Arthur P. Hill-named Head, Advanced Systems Dept., Government and Industrial Group, Philco Corp., Lexington, Mass.

Miles Powell, Jr.-appointed General Sales Manager, Chemplast, Inc.. E. Newark, N. J.
J. Burton Renry-named Director of Sales. International Resistance Co., Phila., Pa.

Richard K. Mosher-promoted to Vice President, Systems Div., Laboratury for Electronics Inc., Boston, Mass.

David W. L. Hickie - appointed Manager of Marketing, Lynchburg Operation, General Electric Co.'s Rectifier Components Dept., L.ynchburg. Va .

Vincent DiNapoli-appointed Vice President and General Manager, Eastern Operations, Hermetic Seal Corp., No. Arlington, N. J.

Captain Sam E. Edelstein. Jr. U'SN -appointed Director of the Armed Services Electro-Standards Agency, Ft. Monmouth, N. J.
R. M. Duncan-named Head of the Procurement and Distribution Section. General Electric Tube Dept., Owensboro, Ky .

Joseph J. Kaleba-named Manager of Product Design and Specifications Section, Shure Brothers, Inc., Evanston, Ill.

David F. Hansen-appointed Sales Manager. Howard Industries, Inc., Racine, Wis.
Rolert E. Gaffney - named Man-ager-Systems Marketing, General Electric Co.'s Light Military Electronics Dept., Utica, N. Y.

Lance IP. Johnson-named to the post of Product Exploitation Director, Hughes Aircraft Co., Culver City, Calif.

L. P. Johnson

T. H. O'Brien

Thomas H. O'Brien-promoted to Vice President-Operations, PRD Electronics, Inc., Brooklyn, N. Y.
Heinz K. Kuhlmann - appointed Product Manager, Appliance and Vending Controls, Oak Mfg. Co., Crystal Lake, III.

John E. Johnson-appointed Staff Vice President, Radio Corp. of America, New York, N. Y.

108 Beachwood Ave. Now Rocholle, N.Y. © NEw Rocholle 6-8520 Circle 136 on Inquiry Card

Silicone Rubber
CONDUCTIVE GASKETIMG
COHRlastc Conductive Gasteting Types 8515 and 8520 are 30 and 24 merih aluminum alloy wire cloth impregnated with silicone rubber to a thickness of $.016^{\prime \prime}$ and $.020^{\circ}$. Developed by CHR specifically for high temperature use, this conductive gasketing material conforms easily to Irregular isurfaces and is impervious to huids. It seals and shield; enies tively yer conducts high frequency currents with integrity. COHRIastic Conductive Gasketing is recommended for wave guide gasketing, for shielding between magnetos and their bases, in ignition haroesses, in quick disconnect plugs, etc.
In addition to this new high temperature materla, COHRlastlc conductive gasketing is available with 30 and 24 mesh aluminum wire impregnated with neoprene to a thickness of $.016^{\prime \prime}$ and $.020^{\circ}$. (COHRIastic Type 8016 and 8020).
Both types of Conductive Gasketing are available from stock in $8^{\circ \prime}$ wdidhs in lengths up to 50 yards or as cut gaskets. FREE SAMPLES
(1 P) Sold mattonally through distributops
Main Office: Now Haven 9, Connecticul Circle 137 on Iaguiry Card

E-200 HIGH TEMPERATURE CAPACITORS Operable to $+200^{\circ} \mathrm{C}$.

The Bendix ${ }^{3}$ E-200 series of lightweight, small size capacitors is designed for installations requiring a high degree of component reliability at operating temperatures as high as $200^{\circ} \mathrm{C}$.

High temperature capability and mica-like electrical characteristics enable the E-200 series to withstand extremely high orders of AC in small envelope size at all ambients under $200^{\circ} \mathrm{C}$.

The new series is designed and manufactured
to a Bendix specification which is patterned after the high reliability specification MIL-C14157B, proposed.

Hermetically sealed in tubular or rectangular housings, these capacitors offer superior resistance to mechanical and climatic environments. E-200 CHARACTERISTICS: - Wound mica papers Solid impregnants - Exceptional stability. High insulation resistance - Radiation resistance • Outstanding dependability

Canodian Affiliate: Aviation Electrle, LId., 200 Laurention Blvd., Monireal 9, Quebee. Export Sales Ba Service: Bendia bitemational, 20S E. 42nd St., Naw Yort I7. N. Y.

RF VOLTMETER
mobll thea
Sventen rircrionics Cemp

THE LEADER

in R.F. Voltage Measurements at Low Level

 from 10 KC to $\mathbf{6 0 0} \mathrm{Mc}$MODEL 91-CA 300 microvolts to 3 volts

Price: $\$ 495$

MODEL 91-C
1000 microvolts to 3 volts
Price: $\$ 395$

ALSO MANUFACTURERS OF THE FOLIOWING INSTRUMENTS:

DC Millitwoltmeter

Inductance Bridge

Capacitance Bridge

UHF Grid Dip Meter

Industry

News

Gordon I.. Ness-named Instrumentation Marketing Manager, Fairchild Semiconductor Corp., Mountain View. Calif.
Aba M. Pearson-appointed Director of Electronic Marketing, National Geophysical Co., Ine., Dallas, Tex.

Robert R. Jay-named Manager of Product Marketing, Transistor Div., Sprague Electric Co., Concord, N. H.

John T. Ralph-appointed Product Planning Manager, Cinch Manufacturing Co., Chicago, Ill.
Clarence E. Watson-appointed Vice President-Business Administration, CBS Laboratories, Stamford, Conn.

C. E. Watson

S. Harman

Sidney Harman-elected President and Chief Executive Officer, Jerrold Electronics Corp., Phila., Pa.

Taylor Fibre Co., Norristown, Pa., announces the following appointments: Richard R. Hydeman-named Vice President, Marketing and Engineering; and Frank P. Kelly-named Vice President, Manufacturing.

Robert Shevlot - appointed Sales Manager, Telonic Industries, Inc., Beech Grove, Ind.

Sperry Electronic Tube Div., Gainesville, Fla., announces the following appointments: Charles E. Rich -Assistant Manager for Special Projects; David E. Musgrave-Assistant Market Manager; Oscar W. NestorProduction Manager; and Warren L. Vergason-Market Development Manager.
W. Herbert Lamb-appointed Vice President, Microwave Device Div., Sylvania Electric Products Inc., New York, N. Y.
Gordon S. Burroughs, former Vice President for Military, Industrial and Advanced Systems at CBS Labora-tories-has formed Burroughs Electronics, Inc., River Rd., Cos Cob, Conn.. R\&D firm with emphasis on space exploration and satellite applications.

Jaguar: Cornell-Dubilier's new dual-dielectric (polyester film and impregnated kraft paper), triclad cardboard tubulars, Type PTL. Triclad case consists of specially-impregnated glossy black kraft envelope enclosing a bonded shield of aluminum foil and moisture-resistant polyester film.

JAGUAR! ${ }^{\text {" }}$

Molded Capacitor Characteristics at a Cardboard Tubular Price

The skin of the rugged, wax-free CDE Jaguar opens a new era in cardboard tubular capacitors. Here's why: Unbelievable moisture resistance! Withstands 95 . 100% relative humidity at $75^{\circ} \mathrm{C}$ for more than 48 hours!
Unprecedented temperature capabilities! $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with no derating. It is unaffected by accidental contact with a hot soldering iron! Remarkable insulation resistance! 5,000 megohms x mfds @ $25^{\circ} \mathrm{C}$.

Solid dielectric impregnant! Eliminates the messy leakage encountered with oil-impregnated tubulars. Wherever you need a capacitor for commercial or industrial DC, AC and pulsed DC applications-spark suppression, power supplies, RC circuits, coupling or bypassing-wherever a 200 to 1600 volt, .001 to 1.0 mfd performance band fits your requirements, you owe it to yourself to specify Jaguar.
You get molded capacitor characteristics at a cardboard tubular price! Ask your CDE representative.

AC engineers are presently developing an improved Bombing Navigational System (BNS) that will enable the B-52C\&D to fly lowlevel, high-speed bombing missions-regardless of terrain. The Air Force has assigned AC the responsibility for Systems Integration of the B-52C \&D BNS. This responsibility will include program and engineering integration, and coordination of the associate contractors involved in the production phase. *

radar systems engineers are charting

$A C$ is seeking qualified men with radar experience to work on this important program.
If you have radar systems experience and a BS or MS in Electrical Engineering, Mechanical Engineering or Physics please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. 5753, 7929S. Howell,Milwaukee 1, Wisc.

An Equal Opportunity Employer

AChiever Inertial Guidance Systems for Titan II. Thor and Mace.
Bombing Navigation Systems for B-52CsD and B-47, AChieverfone mobile andioteleptiones.

AC SPARK PLUG 88 THE ELECTRONICS DIVISION OF GENERAL MOTORS MILWAUKEE LOS ANGELES

PROFESSIONAL OPPORTUNITIES

Repoting tate dovalopmonts affecting the employmont picture in the Electronic Industrios

Design Engineers - Development Engineers • Administrative Engineers
Engincering Wrifers
Physicists - Mathematicians - Electronic Instructors - Field Engineers - Production Engineers

Image of Scientist Disputed by Psychologist

According to Harvard psychologist Dr. Anne Roe, the widely held public image of the scientist as cold, detached, completely objective and impersonal about his work "could hardly be further from the truth." Any creative scientist "is very deeply involved emotionally and personally in his work," and is himself his own most essential tool, she said.

Dr. Roe notes that studies relating to the personality patterns of productive scientists have shown them to be independent and openminded, with is "strong liking for turning disorder into order." They have strong egos and strong control over their impuses. They prefer interpersonal relations of low intensity and dislike interpersonal controversy in any form. They also show "much stronger preoccupation with things and ideas than with people." They like to take calculated risks, but risks involving nature, not people, and risks not dependent on luck.

Higher Salaries For Engineers

Beginning salaries for graduating engineers at Cornell University are 4 per cent higher this year than last, according to Donald H. Moyer, director of the office of student personnel for the College of Engineering.

Reporting on salaries in the field. Mr. Moyer commented that significant changes occurred during the 60's. Previously engineers were hired at good salaries but reached a plateau midway in their careers, after which it was difficult to rise without entering some phase of administration. Increasingly, and especially in large corporations, exceptional professional engineers are being better paid than formerly without the need to resort to administrative work.

U. S. Office of Education Reports Increase In Number of Doctorates

At least 10,500 doctorates were granted during the 1960-61 academic year, according to the U. S. Office of Education. This compares with 9,800 in 1959-60 and 9,400 in 1958-59. Final figures on the number of doctorates granted during 1960-61 will be available in a few months following a survey begun at the close of the school year.

The Office of Education said that 605 colleges and universities granting

Instructor Bill Williams directs practice in sign language training class at Lockheed Missiles and Space Div., Sunnyvale, Calif. Students are supervisory personnel who are learning how to communicate with deaf employees. Cirl in foreground is Odessa Pate, deaf electronics assembler who is present to give class experience in sign communications.

Women Engineers Award

Miss Laurel van der Wal, head of bio-astronautics at Space Technology Laboratories Inc., Calif., has received the 1961 Society of Women Engineers Achievement Award, the highest honor presented by the 600 -members-plus organization.

Miss van der Wal, who was named 1961 Woman Scientist of the Year by the Los Angeles Times, is best known for originating and implementing Project MIA in which white mice hitchhiked rides to outer space in the nose cones of Thor-Able rockets in 1958. Heartbeats of the mice were measured and telemetered to earth. advanced degrees reported that about 13,400 graduate students were scheduled to complete their last year of work necessary for a doctorate during the 1960-61 academic year. However, experience has shown that about one out of five candidates does not complete his last year of work on schedule.
Of the 13,400 students working on their doctorates 2,400 were majoring in such subjects as chemistry, metallurgy, physics, geophyhics and oceanography. Next in popularity were education with approximately 1,900 doctoral candidates; social sciences with about 1,600 ; engineering, with 1,500 and the biological sciences, with nearly 1,400 .

Approximately 314,000 students were enrolled in 1959-60 for all levels of advanced degrees. Of these, about two-thirds had completed less than one full year of required work. Another third had completed more than a year of graduate work for either a doctor's or master's degree.

Almost 95,000 were enrolled in graduate work in education; 37,300 in social sciences; 36,600 in engineering: 25,700 in physical sciences; 25,300 in business and commerce; 14,800 in biological sciences; 13,500 in English and journalism; 11,800 in mathematics; and 6,300 in foreign language and literature.

> FOR MORE INFORMATION an positions described in this section fill out the convenient laquiry eard, page 173.

The Conference is anticipating on attendance of 15,000 engineers and scientists. Over 400 electronic firms are exhibiting their products. A concentrated effort is also being made to ocquaint the visitors with the techniques of computer operations and applications.

National Electronics Conference

ENGINEERS attending the 17th Annual National Electronics Conference in Chicago at the International Amphitheater on October 9. 10,11 , will have the opportunity of learning how to use modern digital computer systems. A special computer workshop using actual modern digital and analog computer installations will be one of the highlights of the 1961 conference. According to Thomas \mathbf{F}. Jones, head of Purdue University's electrical engineering department. The program will include demonstrations of basic computer concepts and techniques.

Citing the increasing utilization of electronic data processing techniques in all areas of engineering, he stated that the workshop will be

Dr. Lloyd V. Berkner, President of IRE who will speak on "Electronics-The Nerve System of Industry."

Opens

directed toward those concerned with elementary engineering mathematics in design and sales. Exhibits and demonstrations of computers will run continuously through exhibit hours.

E.R.A. Becomes Sponsor

Over 400 electronic firms will exhibit their products. About 15,000 engineers and scientists are expected to attend the conference. The NEC is a non-profit organization devoted to the advancement of electronic science and education. In addition to the eleven participants, the conference is sponsored by the American Institute of Electrical Engineers, Illinois Institute of Technology, Institute of Radio

Directors and will contribute to the management of the National Electronics Conference programs and activities. NEC is recognized as the nation's leading forum on electronic research, development, application and education.

Special R and D Studies
 A study of Research and Development in the Chicago-Area Electronics Industry is in its final

Engineers, Illinois and Northwestern Universities.

Joseph J. Gershon, NEC President announced that the Electronic Representatives Association becomes the eleventh NEC participant. As a participant, ERA will be represented on the NEC Board of plicalion and education.

Brig. Gen. David P. Cibbs, Deputy Chief of Communications and Electronics for North American Air Defense Command. He will speak on "NORAND Communications and Electronics."

Robert W. Galvin, President of Motorola Inc.,
who will speak on "Electronics Unlimited." who will speak on Electronics Unlimited.

October 9th

stages at Northwestern University. It is scheduled for completion in time for the results to be presented at this next conference. The study was initiated by the Professional Group on Engineering Management (PGEM) of the Institute of Radio Engineers and has been sponsored by the National Electronics Conference and supported by grants from 25 Chicago electronic companies.

The study is aimed at a better understanding of the relationships between the following factors in the Chicago-area Electronics Industry: management attitudes toward research, attitudes of the financial community, research climate in the community, resources allocated to and constraints imposed upon company research and development, R and D capabilities in the Chicago area, R and D achievements of Chicago companies, and economic results (primarily rates of growth).

One of these other studies is a long term investigation of the effects of corporate decentralization on research and development in over 100 large corporations in half a dozen industries (including electronics). Another is a survey of the time and effort required to develop new technical skills in the military electronics industry, such as infrared, computers, human factors, and inertial guidance.

No final conclusions have been reached as yet, but the general impression is that the Chicago-Area Electronics Industry has not placed
enough emphasis on advanced research in the new areas of electronics such as: solid-state, computers, microwave, weapons systems, control systems, and sophisticated instrumentation.

Recruiting Problems

Chicago firms have had poor success in recruiting and holding outstanding researchers, as compared with other areas of electronic research, such as Boston, New York, and the San Francisco Bay area.

Relations with local universities in terms of company-sponsored advanced degrees, cooperative research projects, and participation in research seminars, are also lacking for a large percentage of Chicago electronics companies, and at a low rental for most.

A striking aspect of the composition of the Chicago area electronics industry is the small num-
ber of new Research-Based Enterprises, which abound in such locations as Boston, Washington, D. C., the San Francisco Bay area, and the New York Metropolitan area. Heavy concentrations of such firms in these other areas set the tone and pace of electronics research and development. So far the study has turned up less than a dozen of this kind of firm in Chicago-area electronics.

Industrial Evaluation

In addition to the NU report, results of an Armour Research Foundation study on research activity in the midwest will be reported at the National Electronics Conference. The Foundation study is being conducted by Wayne Kent of the ARF Techno-Economics Research Div.
Both studies were prompted by
(Continued on page 211)

COMPUTER WORKSHOP PROGRAM

Monday (morning and repeated in afternoon)

The Digital Computer, Thomas F. Jones, head of Electrical Engineering, Purdue University.

1. The Structure of a Digital Computer
2. Simple Approach to Programming a Digital Computer
At the end of the first session, attendees should be able to use a digital computer to solve simple problems.

Tuesday (morning and repeated in afternoon)
The Analog Computer, Professor Vincent Rideout, University of Wisconsin

1. Operational Components
2. Problem Set Up
3. Basic Concepts and Techniques Demonstrated
Wednesday (morning and repeated in afternoon)

Detailed Examples of Problem Solv. ing on Digital and Analog Computers, Jones and Rideout.

The Representative's Role in Electronics

By ROBERT ASEN
President, RMC Associates

I- many manufacturer-representative relationships, a time occurs when the manufacturer looks quizzically at the commission checks he's paying out, and ponders whether he should begin employing his own salesmen? The merits of both methods of marketing have been debated for years-sometimes even logically!

When a $\$ 5$ million sales mark is reached in the electronics business, commissions paid to a representative become significant. Naturally, the manufacturer shows increasing concern about his sales operations and procedure; it may occur to him, for instance, that he lacks complete control over the men who sell his product. But this would disregard the fact that independent rep organizations have a much stronger motivation than company-employed salesmen.

In practice, the lower the sales volume the more necessary the experienced representative becomes. Indeed. for a company just starting out in business, any other sales method would require too great an investment. too much internal supervisory personnel, and too large a fixed overhead.

In electronics, particularly, the new manufacturer would have to think of salesmen in terms of OIEOverall Instrumentation Experience. This means Field Engineers-men whose unique combination of talents includes ability to sell, engineering education and electronic experience. Men of this calibre can only be fielded by a new manufacturer at prohibitive cost.

Considering that his reps handle several lines, the manufacturer may feel that his own line suffers from what appears to be a part-time selling effort. Here he overlooki a key fact: The representative's area salesmen usually outnumber company salesmen. Also, the rep's salesmen-especially because they handle more than one line-generate leads for all lines each time they call on a customer. This provides an automatic entree for our dubious manufacturer's products into potential sales areas his own sales force could have missed.

Eventually, the company chief will face the fact that his representatives are making quite a bit of money. And at this time he may be in a position to finance his own sales force.

At this point the representative faces the danger of losing the investment he has made in developing the manufacturer-and there is no doubt that a considerable investment has been made. Even if the early association of the manufacturer and his representative occurs under ideal business conditions, some time must elapse before the representative's commissions will begin to match his expenses. This is particularly true when the manufacturer first opens his doorsbefore he has earned product acceptance. In all likeli-
hood, when a representative takes on a new manufacturer several years will pass before the representative reaps any return.

The representative's problem, then, is how to protect his investment after the manufacturer has grown, has achieved market acceptance, and is operating on a soundly profitable basis. Though formidable, this problem can be equally resolved.

The salient thought, while thinking of a solution, is that the manufacturer's marketing requirements change as he grows.

Beginning our analysis with a situation typifying the electronics industry, let us take a new manufacturer requiring engineering field representation: At the outset, one objective is of paramount importanceto guarantee a sales volume that will yield the manufacturer sufficient income to cover his expenses plus an adequate sum for expansion. In the period following the business launching, the sales volume is veritably a life and death matter. It determines whether the manufacturer will survive. In this critical time the representative's organization can supply the immediate sales power that is the marrow of survival. During this time an all-inclusive marketing program would logically be held in abeyance. This means that advertising, technical mailings and comprehensive sales promotion aids would be kept to an absolute minimum.

A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
elertronic industries, Chestnut \& 56th Sts., Phila. 39, Pa.
However, when the manufacturer matures and develops, when he introduces new products, gains market acceptance and attains favorable industry recognition, these sales-supporting activities become increasingly important. At this phase both the manufacturer and his representative have grown to a degree that complicates their close personal ties. Most important of all, the marketing function has chariged so that the rep's original crucial importance in the pure selling aspect has now lessened. At this juncture, it is necessary for the rep to anticipate supporting activities and develop his role in them so that he remains as essential to his principal as he was initially. The evolving marketing function calls for the rep's weighty contribution which enables the manufacturer to concentrate on areas other than marketing. Local advertising and promotion programs, minimizing of paperwork, equipment servicing, future market feel and new product suggestions are a few of the rep's contributions to the manufacturer's long term growth and stability.

KEEPING GOOD COMPANY ?

As an electrical-electronic engineer, you realize that many factors play a part in your professional advancement. Among these are the reputation of the company that employs you; the opportunity to express your ideas and theories; adequate, up-todate facilities; and associates recognized for their abilities and accomplishments. We call this "Keeping Good Company." We believe you'll find all these at Boeing / Wichita. Our engineers are currently pursuing a number of new concepts and working in New Product Development areas. These activities have created some top-level opportunities for senior electrical-electronic engineers experienced in...

Antenna design and application... Microwave systems . . . Acoustics . . . Infrared systems . . . Optics . . Navigational systems... Electronic systems analysis... and related areas. Start "Keeping Good Company" now. If you have a B.S. degree and a minimum of five years experience or if you are working toward or already have an MS or PhD degree. you may find your future here. And you and your family will like mid-America living. For more about your opportunities for professional advancement, write in complete confidence to Mr. Melvin Vobach, Dept. OEO, The Boeing Company, Wichita Division, Wichita 1, Kansas.

Representative's Role

The aforementioned functions in no way negate the manufacturers' rep's major responsibilities:
a) To promote sales of the manufacturer's products in a manner making for long-term customer relationships;
b) To aid the manufacturer in achieving his growth objectives via sufficient sales volume and information feedback.
c) To carry out both of these responsibilities with greater efficiency and at lower cost than the manufacturer.
The leader of the representative organization should cooperate closely with the manufacturer's sales manager. Plan sales meetings, contribute to the agenda and add to the broad-gauge thinking that shapes the manufacturer's sales program.

A manufacturer would think twice before trying to replace a rep whose field organization is supplying him with important specific services for the commissions he pays. Listing some of the rep's major services:

1) Territory coverage in depth and scope-enough sales specialists to keep ahead of the growth in the territory. The rep should also be cognizant of and introduce new and better marketing techniques. The manufacturer will then rely on him and look to him for leadership in this area.
2) Local service and stocking of parts.
(3) An order department which would minimize the manufacturer's paperwork. This spells out into the rep's order department correcting orders at source; processing orders; fully controlling the paperwork so that customers' questions can be cleared up by phone: expediting orders via teletype connections with principals.
3) The rep should have proper facilities which project an impressive image of his principal's company to callers at his (rep's) office.
4) The rep should carry the burden of local advertising and promotion. This includes regular direct mailings and regional space ads which supplement the manufacturer's national advertising. Sponsoring and participating in local trade shows or open houses is also within this category. Assisting his principals at national trade shows which takes place in his sales region represents another facet of promotional support the rep can render.

In conclusion, it has been suggested that stronger contracts between the rep and his principals would help the rep protect his investment. Following this logic, some have said that even the word "contract" is misnomer-that the legal binder should rather be called a "working agreement." Behind this reasoning is the fact that dissatisfaction on either side can render even the most binding contract useless. For the manufacturer, the relationship can continue and be effective only while he gives co-operation and still more cooperation.

military electronics

Our rapidly expanding Military Development and Marketing Department in Dayton needs qualified, experienced men to fill these positions:

- MECHAMICAL ENGIMEER - ESME or MSME. 2-5 years in design of mechanical assemblies. Should have a sound back. ground in shock mounting and packaging of electronic equipment. Advanced opening also exists for commercial work involving precision mechanism design.
- senior communications engimeer STAFF LEVEL MSEE or BSEE, 8-12 years in development of communications systems. Experience in pulse and digital techniques desirable. Requires technical depth and project management experience.
- ELECTRONIC EMGIMEERS - DSEE or MSEE. 2-5 years with electronic ground based and airborne equipment development. A background in one of the following areas is necessary: Circuit Design, Logic Design, Electronic Power Supplies, Electronic Packaging, or Test Equipment Design.
- CIRCUT EMGINEERS - ISEE or MSEE, 5-7 years in design of solid state and vacuum tube circuits. Experience in designing circuits for reliable operation under worst case conditions.
- LOGIC EMGIMEERS-CSEE OT MSEE, 3-5 years in design of digital logic systems. Should be acquainted with methods of achieving reliable operation with minimum circuit elements.
- COMMUNICATION SYSTEM ENGINEERS ESEE or MSEE. 5-7 years in the high frequency communication area. Should have the experience in long distance propagation with emphasis on solution of multipath effects in the $2-30 \mathrm{mc}$ range.
- COMPONENT ENGINEERS-DSE, 2-4 years in testing and evaluation of electronic components. Should be familiar with Mil Specs and component selection.
If you are qualified and interested in applying for one of these challenging positions, send your resume to:

Mr. Thomas E. Wade, Technical Placement, The National Cash Register Company. Main and K Streets, Dayton 9, Ohio

All auallifed eppliconts will be cansidered regardleas of rece, croed. color, or natlonel origin.

The Role of Electronics Engineers

IN
 WEAPON SYSTEM MANAGEMENT AT REPUBLIC

Opportunities are at 2 Republic Locationa: Farmingulale and Mineola. Long Island, N. I.
|lrite to:
Mr. George R. Hickman
Technical Employment Manager
Dept. 13 K
Republic Aviation Corporation
Farmingdale. Long Island, N, Y.
Mr. Paul Hartman
Technical Employment
Depl. 13K-A
Missile Systems Division
Republic Aviation Corporation
223 Jericho Turnpike
Mineola, Long Island. M. Y.

As one of the top 15 Prime Contractors to the DOD. Republic has demonstrated its capability to create total aircraft, missile, and space vehicle systems. Electronics is an important part of this capability.

Over 250 Electronics Engineers and Scientists at Republic are extending parameters in communications, navigation. guidance \& control, detection and data handling. A recent prime contract award has placed special emphasis on reconnaissance. As Weapon System Manager, Republic is responsible for developing this capability for its F-105D "flying electronic platform," the free world's most versatile and sophisticated manned weapon system.
Defining system requirements, conducting analytical studies, evaluating overall design, and monitoring progress of subcontractors are engineering tasks requiring broad technical knowledge and high analytical ability. Difficult problems in subsystem integration, density packaging, and reliability must be solved.

Inquiries are invited from Electronics Engineers and Physicists with experience in: Radar (front \& side looking) / Infrared \& Optical Systems / Antennas \& Radomes / Digital Computers \& Data Links / Flight \& Fire Control Systems / High Speed Tape Recorders / Aerospace Ground Support Equipment.

All programs are backed by the 8 lalmoratories of
Kepublic's new Paul Moore Research \& I evelopment Center
the only fully integrated research complex
exploring every vital aspect of the aerospace technology

An Equal Opportunity Employer

 for a mechani. a cal engineer to design and \boldsymbol{T} (T) develop trans. ducer computer packages used for supplying basic aerodynamic data with extreme accuracy.

This work also involves synthesis of transducer outputs to compute information such as true angle of attack and yaw, free stream static pressure, rocket or jump angle and absolute air density at flight altitude.

Valuable experience would include the utilization of air data for armament, fire control and autopilot; jet engine pressure ratio indicators and engine inlet controls.

At least three years experience is necessary, and an MS degree is highly desirable. Location of this assignment will be in AiResearch's new electronic-electromechanical facility.
U.S. citizenship or previous security clearance required. Garrett is an "equal opportunity" employer. Send complete resume to Mr. Thomas Watson.

GE Refurns to Diodes Affer 7-Year Absence

After a 7 -year absence, the General Electric Company is back in the semiconductor diode business. Since 1954, G.E. has marketed only transistors and rectifiers in the semiconductor field.

As its first signal diode product GE announced a silicon planar, epitaxial, passivated diode designed for the very high speed computer market and for general purpose use.
James H. Sweeney, manager of the signal diode project, estimates that industry sales of signal diodes in 1961 will reach $\$ 100$ million. This would be about 20% of the semiconductor industry's predicted total sales of $\$ 500-$ million for the year. He predicts that the industry's signal diode sales will double by 1965 .

General Electric is also producing an extensive line of tunnel and back diodes in germanium and gallium arsenide.

Sweeney estimates that usage of tunnel diodes will increase "from today's million or so units to well over 100 -million units by 1965 ."

GE's new signal diode, which has been designated the SD-150, is available with the same electrical specifications in both the conventional subminiature glass diode package and a new, hermetically sealed microminiature package.

General Electric also has the diodes available in a line of molded matched pairs and quads.

Price of the SD-150 in quantity to original equipment manufacturers is $\$ 5.50$ each. In the microminiature package in quantity, also to OEM's, it is priced at $\$ 8.90$ each.

Polarad Awarded S4 Million Contract

The Bureau of Ships of the U. S. Navy has awarded Polarad Electronics Corp., Long Island City, New York, a contract in excess of $\$ 4,000,000$ to furnish a quantity of AN/URC-32 Single Sideband Ship-to-Shore Transceivers and auxiliary equipment.

The AN/URC-32 is a combined transmitter-receiver designed for shipboard installation. Covering the frequencies of from 2 to 29.9 mc , it features single sideband transmission of 500 watts, which is equivalent to 4,000 watts $\mathrm{a}-\mathrm{m}$, in the audio frequencies of 200 to 2,600 cycles. The unit is crystal-controlled throughout its entire transmission spectrum and is accurate to one part in a million.

WHY

MAJOR C. R. TUBE MFGRS. RECOMMEND Y
SYNTRONIC

Syntronic yoke procedure originated the industry standard for specification correlation between yoke, c. r. tube and circuitry. For a helpful, time-saving checklist covering all physical and electrical yoke parameters and their determining conditions, request ELECTRONICS reprint \$12-59. Thorough correlation enables Syntronic to guarantee accepted specifications.

Call your nearest SYNTRONIC REP today
Boston-New Eng.: NOrwood 7-3104 Now York Area:

OXford 9 -0255 Phila. Area:
Wash.-Balt. Area: Indianapolis:
Los Angolos:

MOhawk 4-4200
APpleton 7.1023 Victor 0-0359 CUmberland 3-1201

syntronic

ANTRUMENTS. INS.
100 Industrial Road, Addison, Illinois Phone: KIngswood 3-6444

The Induatry'e broadest yole line . . . alresty teoled for quantity production. Or, yoltes cen be custom doaigned to yout procise regulrement.

Cincle 144 on Inquiry Card

N. E. C.

(Continued from page 205)
charges levelled at Chicago-area electronic firms by Dr. Frederick E. Terman of Stanford University, who appeared as a speaker during the 1960 National Electronics Conference. Terman, at that time, claimed that the Chicago-area was deficient in electronic research and development, and that, as a result. major systems contracts were being awarded to firms on the east and west coasts.

Student Program

About 600 high school students have been invited to the convention with a view to interesting them in an electronics career. It is believed that this will be the first time that such an invitation has been made for students to attend a professional meeting of this nature. The students will hear experts speak on three subjects covering the electronics industry in its vast scope, and the careers it offers.

MODEL 5015A

SEMICONDUCTORIZED POWER SUPPLY

0-50 V.D.C. - 0-1.5 AMP

- All Silicom Mall-Sigmal Trefuriseo Alspar Difused Juberion Impur Stage
\$23450
P. O. PACTOR

High stability solid state DC power supply with adjustable current limiting. $.05 \%$ regulation, $500 \mu \mathrm{v}$ ripple, 01Ω source imped ance, 50μ s response time, 01 volts drift/24 hours, 55-440~ input. IMMEDIATE DELIVERY
Wrise For Complote Catalog

Circle 161 on Inquiry Card

TELEMETRY BY TELE-DYNAMICS

NEW Low Level Subcarrier Oscillator

The Type 1274A Low Level Subcarrier Oscillator is an outstanding member of TeleDynamic's new line of transistorized telemetry components for today's aerospace applications.

Designed to operate at unlimited altitudes, the 1274A can be activated by a ± 5 millivolt level differential signal. The input impedance is greater than 90 K ohms. It is extremely stable, has true differential floating input, and inherent deviation limiting which prevents over-deviation of greater than \pm 22% from center frequency. Common mode rejection is 110 db min. for a 10 volt peak to peak AC signal up to 2100 cycles. Silicon transistors allow operation over broad tem perature ranges and latest packaging techniques reduce the volume of the 1274A to only 4.5 cu . in. and its weight to approximately 4 ounces.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, Amer. ican Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone: TRinity 8-3000.

TEM - M M MME TIVISION

ABMERNCAN BOScN Anvel CORPORATION
5000 Parkalde Avev, Philodelphla 31, Pos
Circle 146 on Inquiry Card

Electronic Sources

REGULARLY REVIEWED

AUSTRALIA

Awa Tech. Rev. AWA Tectusleal Revile Proc. AIRE. Procredings of the Institution Ratio Eingineers

CAMADA

Can. Elec. Eno. Canadian Electrondes EnglEl. © Conerne Electronics amil Communications

ENGLAND

ATE J. ATE Journal
BBC Mono. BBC Englneering Monagraphs Brit. C.EE. Brilish Communications of Elec
E1. Trontes. Eleetronie Technolos.
GEC J. General Eleetrical Ca Journal
J. BIRE, Jouma of the British Institution
of Radio Engineers
Filecrical Proreedings of Institution of
Tech. Comm. Tertinleal Commundeations

pramee

Bull. Fr. Ed Bultetin la societe Frascaise des Electriciens
Comp. Rend. Comptes Reridus Hebdomadaires Onde ti'unces Elertique
El. et Auto. Eleen rondque on Rutomatlsme Rev. Tech. Rerue Technique
Telonde Telonde
ide torle Ia Radio

GERMANY

AEG Pron. aEg Progre Arc. El Uber. Arehir der Eletitristhen UberEI Rund. By
I Rund. Bectronliche Rundkehau
Frea. Frequene
Hochirea. Hoch?requenz technil und Eleetro-
Nach. Z. Nachrichtentechnssche Zeltschrife I. Regelungestechmils

Aundfunk. Rundfumititerhndorthe Mittellungen Vak. Tech. Vakuum-Terhnlt

POLAND

Prace ITR. Prace Instrtutu Tele-1 RadiotechRoz. Elek. Rozpramy Electrotechnizne

Uss.

Anto. irel. Artomatika I Telemalkhanika Radio. Radio
Radiotek. Kadoteknike 1 Eletiranika Rad. i Elet Rudioteknita I ELektranita 2. Acad. Bullelin of Academs of Seiences

- Photocopies of all foreign articles are available at 75 cents per page. remitted with order. Unleas ather wise indicated, articles appear in langlage native to comatry of origia.
- A reprint of this section. "International Electronic Sources" is available without charge.

Requests for the above should be sent, on company letterhead, to:

Electronic Sourcen Editur ELECTRONIC INDUSTRIES Chestnut © 56th Sts.
Philadelphia 39, Pa.

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering manuals

ANTENNAS, PROPAGATION

LenerCompeneared Bicenical Aerial. L. Soly. mar. "El. Tech." June 1961. 8 pp. The dimensions of a biconical serial can be virgificantly reduced by correcting the phase prror in the mouth by a hrperbolic lens. The rediation pattern of this aerisl in calculated with the aid of the Stration-Chu formula. (England.)
Reduced Frequency Senaitivity of the Redie. tion Pattern of Wide-Band Omildírectional Radiators, H. Meinke and H. Kraus. "Nech. Z." May 1961. Sp. The aim in antenna design la radiation pattern with the loweat possible frequency sensitivity in addition to the lowest possible frequency sensitivity of the input impedance. The existing possibilities are discussed. Test arrangements with dielectric lenses are described and the results obtained are discussed. (Germany.)

AUDIO

The Evolation of the Package. J. R. Simpson. "Can. Elec. Eng." April 1961. \& DD. The growing complexity of operating procedures in modern radio and television studios, and the need to keep operating custs at a minimum. have lead to the evolution of packeged audio control consoles. This is a discussion of the main desisn considerations with exemples of new packaged equipment. (Canada.)

Radto Meat Meet the Challenge of Lfsteners Changing Neede, D. C. Trowell. "El. Elec. Eng." April 1961. 8 Dp. In the past few years radio has undergone a major change. years radio ha- undergone a major change. foa, become a conktant companion for most people and is ansociated with their daily activities. Radio atation personnel must adapt to the new techniques to keep up with listener needs. (Canada.)

Rexord Plesing Equipment-Dewlen. Constrme. tion and Performance, W. T. Muscio. "Proc. AIRE." March 1961. 10 ps . The purpose of this paper is to consider nome of the basic features of the design. construction and perfurnance of dise record playing equipment, with particular reference to the types normally employed in domestic and portable systems. (Australia.)

A 8ummary of the Main Proposall for Sterea. phonic Broadcasting. K. Wilhem "Nach. Z." March 1961. 13 DD. Since stereophonic repro duction by means of records has gained more and more in importance. the question of stereophonic broadcasting has also cained in importance. This paper discusses the posabilities for stereophonic broadessting. (Germany.)

The Type I'E 100 Univeral Equalizer. "Rundo funk." April 1961. हो pp. The paper describes an electronic filter which provider sound engineers with new posnibilities of distortionless sound correction. (Germany.)

Fonr-Tuned I-F Filtera, J. Temler and B Orlewicz. "Prace ITE." Vol. 4. \#3. 37 pp The paper deals with four-tuned fliters used in i-f amplifiers of a radio receiver AM channel. The equal circuit marnification factore and equal coupling corefficients between en terior circuits have been assumed and the ex pedience of this assumption is proved. $\cdot \mathrm{Po}$ land.)

circuits

Energy Relationshipe in Palee Andio Power Ampliser V. V, Malanof. K. P. Poloff. "Radiotek" 16. No. B, 1961. \& pp. This is an eneray analyais of the operation of a pulse audio frequency amplifier Relationships are obtained which aro useful in the design of these amplifiern. It is also shown that high losses on sereens of multi-grid tubes make it necessary to use triodea in order to ubtain better efficiencies. IU.S.S.R.I

Canonleal Methed of 8yatheas of Switching Clreuile, A. Sh. Blokh. "Avto. I Tel." Jun 1861. 9 pp. A new method of eynthesis of nwitching circuits is described Upper eatimates for general and mean number of contacts are given. IU.S.S.R.I

A Linear Voltage-Controlled Telemetry Oacll lator, D. H. Taylor. "Brit. C E." July 1961 Dp. Thim article describes a telemetry oscil lator having a Prequency proportional to the magnitude of a control voltaze applied to it (England.)

Silicon Four Layer Devicee as Righ Power Pulee Generators, R. P. F. Lauder, A. M Brit. "Elec. Eng." July 1961. 6 pp. Several circuits are presented showing that pnpn de vices in the two nr three terminal confleuraion may be used as pulee senerators deliver hos accurately rectanguler power pulses for neriecty of purposes includine iranemliters in arie of durpaes includine iran (Ineland
llee of Giow-Diacharge Thyratrone in Control Gee Diecharte Computer Trien and Com Gab-Discharze Compater Tusem and Com matator Fuba, M. M. M Yablonsky. "Radiotek" 16. No. 7. 1961. DP This article describes three relaxation oscil lator circuits which operate on slow-dia charge type TH5B thyratrons and are used to trizger type OG3 and OG4 dec
Al01 commutators. IU.S.S.R.I

Certain Aaperts of Cathode Repeater Ap plications in a Phantastron Circelt. A. M Tomashprolski. "Radiotek" 16, No. 7, 1961. 8 pp. The additional non-linearity which arises in phantastron circuits as a result of introducing a cathode repeater to analyzed. Examples of circuits aro given where the sawtooth voltage is corrected by introducing a cathode repeater which creates additional feedback IU.S.S.R.)

A Method to Generate Sinusoidal Preqseney Modulated Ouelllations. V. G- Kriksuunov. "Radiotek" 16, No. 7. 1961. E DD. A singlepentode relaxation circuit if analyzed. Freo queney modulated oscillations are produced in this circuit through relaxation action. Design fundamentals for such e circuit are siven, and experimental data are included. (U.S.S.R.)

Raytheon Reliability-Controlled Tubes are certified to have an average life span of more than 10,000 hours when used under approved conditions - with full credit for failure within 1,000 hours - at no increase in price!

Through the use of special design and manufacturing techniques, Raytheon now brings
you a line of Reliability-Controlled Tubes to meet your most critical needs for long life and reliability. Each Reliability-Controlled type is monitored by tests far more severe than those normally encountered in service and is backed up by an unprecedented 10,000 Hour Life Certificate.

> Applicable to shipments of 100 tubes or more from factory or Raytheon Distributor stock. Raytheon's 10,000 Hour Life Certificate assures you of:

1 Full credit for any and all tube failures which occur during the first 1,000 hours of service.
2 Proportional credit on the shipment lot to the extent that failures prevent that shipment lot from achieving an average life of 10,000 hours.

Eight Reliability-Controlled types are now available - 6AH6WA, 6AN5WA. 5670, 5654/6AK5W, 5755, 6414, 0A2WA, 565IWA - more types in development. Each data sheet contains a section devoted to operating conditions and ratings recommended to achieve the
long and reliable service built into these tubes. Full technical data and complete details on the new Raytheon 10.000 Hour Life Certificate are available from Raytheon Company, Industrial Components Division, Newton 58, Massachusetts.

International ELECTRONIC SOURCES

Amplifiers with Band Filter Ceapilne. J. Har mans. "E1. Rund." May 1961. App. Feldkeller's method of describins 2-cireuit band fliters by the marnitudes F and D iform value and single-loss mean) is extended in its cange of epplication by armalization of the cuupling coefficient. (Germany.)

Towards Clasalifeation of Rectifier Circuits, A. Schief. "El. Rund." May 1961. 2 pp. Starting from basic requirements preseated to rectitier circuits employed for mevureanents of beak and mean alternating voluges, simple examples of realized circuits are described. i Cermany. 1

The Tristable Círeuits, A. Sowinski. "Prace ITR." Vol 5, \#1, 18 pp. The paper describe the simplest pulse counter operating in ternary system as well as a control syatem, where the tristable circuit is direetly determining the maximum, minimum and eero state condstions. IPolend. I

Strmetural Traneformations of Linear VaryingParameter Syatema. A. V. Solodov. Avtu. Tel." May 1961. 12 pp. Structural circuite of varying parameter systems are considered, the systems possessing two types of generalized units-lag network and phase-lead one. For transformations of such atructural eireuita, laws based on application of linear differential uperatore are given (U.S.S.R.)

Controlled Rectifier Relazazion Oscillatore, R H. Morphy and P. Nambiar. "El. et Auto." July-Aug. 1961. 3 pp. This paper indicates how to design a trigger circuit for controlled rectifiers. working al irequencies ransing from 10 KCS down to pulse every 12.6 are. The general design principles are illustrated. A eypicul example of design is then worked out. (France.)

A Niew Wide-range Oscillator Technigae, L. M. Sargent "Brit. C. \&E." Aug. 1961. A PD. Modificatinns to the well-known Wien bridge $\mathbf{R}-\mathrm{C}$ uscillator enable it to be used as the rignal nource in an instrument which performs aderuately from 10 CPs to 10 Mc . IEngland.

Decade Tubes Simplify Deaign of preael Counter. P. G. Hodgsun. "Can. I. Comm" July 1461. 2 pp. A counter. which can le preset to give an output pulse for a range
of 1 to 100 input pulses is described. (Canada.

Stable Oacillators Operating at a Prequeney Close to the Nataral Frequency of the Induetion Colls in the Cireall. G. T. Sbitikof. "Radiotek" 16. No. 4. 1961.10 pp . This article deals with the analysis of a singlelayer shielded induction coil un a ceramic form. Accurding to this article. it possible (i) ubtain in certain circuits excellent resulte in the stability of the oscillator frequency by in the atability of the oscillator frequency, by inperating it at a requency near the natural frequency
UU.S.S.R.।

COMMUNICATIONS
Ferrite Rectifiers Redweed in Weight and Over. all Size. S. S. Perelmuter. "Radiotek" 16, No 6. 1961. 4 Pp. The structure of waveguide rewonunt rectifiers is described, which with its short length. provides good matching in the frequency band of the order of 15%. These rectifiers are used in radio relay communication lines and in measurement techniques. Electrical nroperties of and data for these rectifiers are given. (U.S.S.R.)

Terms and Definitions in Information Theory. P. Neidhardt. "El. Rund." July 1961. B pp. Various types of the information entropy in the communication channel are investigated: properties of important statistical proote is well mopecific theoreme of the theory of information are described. Germany.I

Improverent of UHF Coverage in Flight Bya lemas C. Ancuna. "Onde." May 1961. 8 Dp. The prublem inveutigated in this article is that of providing reliable air-to-ground and air-to-ir UHF (226-400 mes) cummunication links in every conceivable fight condition Two solutions are siven, each one empluying two complementary polar diagram mevimla mounted on boerd (France.)

Conatami Level Speech In Sinsle Side Band (8.S.B.) Tranamittera, J. Daguet and K. Gíla bert. "Onde." May 1961. 12 pp. The proposed system is based on the analysis of a speech signal into two components which determine its amplitude and relative phase angle. (France.)

Signal Extremal Reception, A. A. Krasuvsky 'Avto. I Tel." June 1961. 9 pp. The system in conaidered where a received signal is compared with a signal of an automatically adjusted inner generator. IU.S.S.R.I

VHF/FM Broadcaat Recelvers with PIT Tea Mark. Fimil Wey. "Rundfund." June 1961. 6 PD. The paper gives information cuncernink the creation of a Swiss PTT test mark for
Lener
Lanar and Space Communications Studies.
J. W. B. Day. "Can. Ele. Eng." June 1961 . b pp. Studies of the use of the moon and artificial satellites as passive communications refiectors are dexcribed in the following ar ticle iCanada.

Control and Tracting of Satellites in Deep Spare, Rexinald G. Lascelles. "El. © Comm." June 1961 . 9 pp . The unique characteristics of the Jodrell Bank telescope have made it pupsible for British and American scientists to maintain communications with, and thereby treck. setellites on their journeys into deep apuce. 'Canada.

COMPUTERS

To Problem of Application of Digital Compating Devices To Differentiation and Smooth ing of Sequences With Rendom Noises. A N. Pockrovsky. "Avtu. i Tel." June 1961. | pp. Pockrovsky. "Avto. i Tel." June 1961. Up. It in stressed that une has to realize a great
number of arithmetic operations when using number of arithmetic operations when using digital computing devices fur solving problems of uptimum amoothing and linear transforma-
tiuns of sequences of signala with randum tious of sequence
noises. (1l).S.S.R.)

Use of an Electronic Compater to Automate Statistical Processing of Radio Signals. A. V Prossin. I. P. Irosheff. I. P. Levshin. "Radiotek" 16, No. 5, 1961. 7 pD. This article presents a method for automated processing of experimental data on en electrunic computer. (U.S.S.R.)

Aatomatic Control and Optimization of PriAary Distillation by Meane of a Digital Compater. G. Gau. "Rt." May 1961. \& pp. The possibility of applying electronic digital compossibuity of applying electronic disital computeresses are investigated in this article. using primary diatillation as an example. IGermany.I

Digite! Memory for Analog Compaters. J Smith. "El. et Auto." July-Aug 1961. 2 DD This paper describes new type of digita memory uaing atandand 35 mm tape and 16 tracks. Its motion is discontinuous and in produced by step-by-step motors. iFrance. 1

Safe Programming for Digital Controle by Meane of a Fivedigit Code, W. Krageluh. "rL, June 1961. ${ }^{3} \mathrm{PD}$. As a contribution 20 the fiscussion of suitable methods of programmin has been suggested which contains, besides the siganal codes for the teleprinter, the 10 digit. 2 gigns and 14 letters. (Germany.)

Syntheais of Threehold Logic Combinatorial Networks. Luigi Dadda. "Alta Frea." March Networks. Luigi Dadda. "Alta Frea." March 1961. \& PD. The problem of aynthesizing ar-
bitrarily assisned awitching functions using bitrarily assigned awitching functions using
only threshold element is considered. (lualy. only thresho
in Einglieh.)

A Method for the Research of the Zeres of Polynomial with an Analoz Computer. Antonio bepachy. "Alca Frea." March 1961. 3 up. A method is presented to determine the zern of - polynomial by means of an analue com puter. Iltaly. in Engliah.I

On Multi-Variable Method of Automatie Search for Extremam of cuntion. K B Norkin. "Avtu. i Tel." May 1961. 6 pp. SufiNorkin. Avto. Tel. May 1961. ${ }^{6} \mathrm{pp}$. Sumicient conditions for extremum of n-variable for computer use. (U.S.S.R.)

On Syntheals of Linear Automatie Control Systeme. D. 1. Gladkov. "Avto. i Tel." March 1961. 8 pD. The aynthesis of linear dynamic systems with cunstant and variable param eters to considered. The structure and parame eters of corrective nets are determined (USSR)

Logit Coatrol Servosystem, E. K Shigin "Avto. i Tel." March 1961. \& pp. An electrumechanic servoeystem with mep change of corrective network parameters which is realized by semiconductor logic unit is deacribed (USSR)

Tranafer Fanction of Automatie Control Sys tem with Modelator and Half-Wave Demodula. tor. E. I. Livov. "Aveo. i Tel." Merch 1961 12 pp . An automatic control system with modulator and half-wave demudulator is reduced to a continuous equivalent linear ays tem. To find iransfer functiona the methed if modulated harmonics is used IUSSR,

An Antomatic Constant Level Gauge for Líquid Cooling Mediuma. Hans-Werner Drawin "Vak. Tech." March 1961. Dp. The article deacriber a device whereby the level of a liquid cooling medium re.s. liquid nitrogen. liquid oxygen, etc.) as used in cold traps is being kept constant to an accuracy of ± 0.28 mm over lung operating periods. (Germany)

Precise Frequency Control for a Rotary Con vertor. M. J. Tucker. "Elec. Eng." April 1961. 2 pD. The Ruyal Research Ship Discuvery II has been pruvided with e $50 \mathrm{c} / \mathrm{s}$ power supply whose Prequency is precise to approximately 1 part in 10° by locking the phase of a amall rotary convertur to that of a $50 \mathrm{c} / \mathrm{s}$ reference signal derived from a quartz-crystal uscil. lator. (England)

Time Quantization Error in Automatic Control. S. M. Mandelshtam. "Avto. Tel." June 1961. 7 pp. The technique of determining desirable frequency of parameter messuring in automatic discrete control is considered (U.S.S.R.)

On Investigation of Stability of Periodi State in Nonlinear Pulse Aatomatie Syateme Ya. 2. Taypkin. "Avto. i Tel." June 1961. 11 pp. Inveatigation of periodic states in non linear pulse control ayatems is reduced $t 0$ investigation of etability of a linear pulse eystem with periodically varying gain. This system is shown to be equivalent to a multiplefeedbeck linear pulse system with constant parameters. (U.S.S.R.)

Optimination in Control Syateme with Dis. tribated Parameters, A. G. Butkowski and A. Ja. Lerner "Rt." May 1961. ©pp. Transminsion lines with distributed parametera ar IGermany.l

NEW DEFENSE MARKETING TOOL

Unlock your firm's full sales potential by knowing WHEN a specific company has a demand for your specific product. Insure yourself of the maximum opportunity to increase sales.
Now you can actually follow the daily-changing defense industry nıarket. You can know which of the many companios comprising your market are ready-to-buy, because they have the money to buy and the reguirement for your procluct.
The DFFENSE SALES DIRECTOR is designed to give you complete and timely information on your specific selling
opportunities-and it is tailor-made to your specific selling requirements. Gathering full information about your everchanging market is always costly, of ten impossible. It means night work for you, many trade reports to read, and frequent blind and unproductive calls by your salesmen.

The DEFENSE SALES DIRECTOR supplies in one aervice your intelligence requirements. And the information is supplied at the Timo you need it-the time your selling opportunities exist. If it is important that you have this type of information, the DFFENSE SALES DIREC TOR is important to your sales effort.

Infrared 17/5/61 detection eqpt. for Midas Satellites COnTBACT OESCAIPTION	One Memorial Drive Cambridge, Mass. atceiving conitactor	Lockheed Aircraft Co. Missile Systems Div. P.O. Box 504 Sunnyvale ${ }^{\text {Colifor }}$	Infrared detection qpt. for Midas Satellites
rps.0			mactise $\quad \$ 2,000,000$
			cowrectrmuse Production
Lockheed A/C Co. Sunnyvale, Calif. or comitation	This is a létter contract aword announced 7/5/61 expanding FCA's participation in the MIDAS satellite program. Purchasing agent is Herbert Prebble. The Loskheed Prime contract was awarded by the Air Force Ballistic Misaile Division of Vandenberg AFB.		
(Froost ${ }^{\text {EW }} 31$ sulliva followur sue Enmst sales Dietio	FROST \& i70 Bnoadway BE 3	LIVAN, INC. new Yonk 3e, N.r. 0	out hus hen issuid to sulscristes of he dimens salts diacton wir olven use will momelto

here's how the DEFENSE SALES DIRECTOR WORKS:

The entire defense industry is divided into 180 system and product categories. Through an extensive intelligencekathering network plugged into a data processing facility, the IDEFFENSE SALES DIRECTOR supplies you with the complete information on who gets each system award. So you can rifle your sales effort to get the profitable subcontract and component business.

You receive bi-weekly a card with follow-up stub similar to the one illustrated. You receive a card on rach prime and signilicant sub-contract over $\$ 50,000$ in each system or proiluct category that comprises your specific market. The cards are designed so you can refer them directly to your field sales people indicating the action you desire. No memos or letters necessary. And you have all the pertinent information on the control stub. The reverse of the card is for comment when the card is returned.

The cost? Just $\$ 10$ annually for national coverage of each defense system category.

here's how the Defense Sales director HELPS YOU:

1. Pinpoints on a continuing hasis, your ready-tobuy prospects-gives you maximum opportunity for sales.
2. Insures complete sales intelligence about your specific martict-broken down award by award.
3. Furnishes, in one-tailor-made service, the opportunities open to your firm.
4. Reduces your sales lead screening time from hours to minutes-eliminates unproductive sales intelligence gathering.
5. Provides a remarkably simple sales-control and follow-up system.
6. Focuses your selling effort on what countssales.
CLIP AND MAIL THIS COUPON FOR FULL INFORMATION
FROST 8 SULLIVAN, INC., Dept. 87, 170 Dreedway. Mew Yerli 38, M. Y.
Ploase sond me full information on the DEFENSE SALES DIRECTOR
Nome ETitle
Compony
Addross

Sources

A Hodel of a Fully Electronic Telephone Ea change for 200 Subseribers. G. Merz and K Braun. "Nach. Z." May 1961. N pp. The audio wires are switched through by means of gan flled dioden. A time multiplex method is used for the control. The control circuita cumprise semiconductors and ferrite core stores. A direct connection with throughdimlling facilities to electromechanical ex-
change equipments is provided by apecial exchange equipments is provided by special external link unita. IGermany.

Ciraphiral Procelaces for Bolving the Approsimation Problem of Electrieal Fillers. R. Rubini. "Alta Freq." March 1961. 18 pp. A mtudy bini. Alta Freq. March 1961. 18 pp. A ntudy characterintic function of after as the sum characteriatic function of a fiter as the sum
and difference of functiona having equal geoand difference of functiona having equal seo-
metric shape, that is, of such type as can metric shape, that is, of such type as can
readily be traced with the belp of a suitable readily be iraced with the help of
outline curve. Ilaly. in English.)

An Apparatan for Antomatically Ploting Electron Trajectories. J. L. Verster. "Phil Tech." No. 8. 1961. 15 up. The electrolytic tank is a versatile cuol for determining she paths of electrons in an electric field. Generally, the procedure is to use the tank to determine the equipotential surfacen, from which the electron trajectoriew are then con which the electron by step. The apparatus described atrued step by atep. The apparatus described here. which based on a principle put forerajectorien utomatically. (Netherlandn, in English.)

A New D. C. Level Control for Adaptive Systems. R. A. Johnsun J. D. Hill. "Elec. Eng." April 1961. EDP. A novel electronic circuit is described and analyzed which maintains the potential drop acrons a laad constant to within a fraction of 1% while permitting the de level of the load to be varied through a wide range. IEngland)

Transdactor Electrade Control for Are Far nares. Walter Gruber. "AEG Prog." \#t? 1961. 9 pp. The article deseribee cuntrollem in conjunction with induction motors. re the automatic control of the arc-furnace electrodes. Germany in English,

Data Fiandling Equipment and its Application for the Automatic Control of Manufactarine Proceneen. J. J. Jardine. "Rt." March 1961. 7 pp. It is the purpose of this article to discuss generally the basic principles underlying the design of data handling equipment. tu point out its advantages in comparison with the conventional measuring instruments and to describe its application as most important member in a manufacturing process contril loop. (Germany)

Dieital Contral of Machine Teols. P. Boese, et al. "Rt." March 1961. © pp. The differences are explained between point machining re.g. drillingl and contour machinine with ezternal and internal interpolation. (Germany)

A New Type Rance of Transdactor-eontrolled DC Drives for 2.9 \& 187 kW Heribert Winkler. "AEG Prog." \#7, 1961. 7 DD. The method of operation and construction of power supply equipment with magnetic power amplifiers for de drives is deacribed. Germany in EnsJish)

Automatic Control of Manafacturing Processea using Mathematic-Statistical Terhniques, K. Brucker-Steinkuh1. "Rt." Feb. 1961. 6 PD. In control engincering it is sometimes necessary to supplement the principle of actuation by deviation with the principle of operation on the sirength of statiatical data or to replace the former altogether by the latter. Different statistical systems ean be compared by reference to the power of reat which is calculated for simple statistical operations. The author deals in particular with methods based on muns. The instrumentation for these methods is liscused ccording to their mathemads statistical elements. (Germany.)

Aboorbing Rods and Aseociated Artantore as Regulating Units for the Aatomatic Control of Nieclear Power Reactors. H. Braun. "Rt." May 1961. 7 pp. The author gives, firat of all an introduction into the nature of the abourbing rod and, following this. discunsen the various methods of actuation. for which elerirical, hydraulic or pneumatic devicen might be employed. The automatic cuntrol of the actuator th also dencribed. IGermany.)

Dintribation of Duration of Pulee Noises at Remote Comitral Devico Outpat, 1. It. Venchkoviky. "Avto. i Tel." June 1961. 6 pp. The effect of pulse noises with logarithmie-normal distribution of amplitudes on a remute control device is conaidered. There in determined distribution dennity of prubabilitien of the pulse nuise durations at the device output for KC and gaumian luw frevuency filern. IUS.S.R.I

Magnetle Amplifiers for Reversing Drives. Karl Heinz Hielefield and Hana Chrintof Heinzerling. "AEG I'ros." \$7, 1961 \& pp. The methud of operetion and dynamic characterintics of servo-amplifiers for the reversing uf universal de and ar moturs are dewcribed. (Germany In English)

The Beheviar of the Controlled Plant and of the Members of the Contral Loop with Autematic Frequenry and Power Control of Power Diseribution Networte. F. Cahen a H. Faves. Dharibution Networka. P. Cahen A. Faves. "rt." April 1961. DP. A Reneral review is given of the problems encountered when
dexirning aystems for the automatic control dexirning ayytems for the automatic cuntrol \&rid eystem. (Germany)

Voltage-Regalation of Belf-excited Cieneratore by Meane of Traneductors, Eugen Renz. "AEC; Prog." \#7. 1961. \& pp. The close terminal voltage regulation of self-excited generatorx by means of biased iransformers is dewcrihed. CGermany in English

GENERAL

A Reader for Band-Marked Documents. Cynthia M. H. Reid. "Elec. Enr." May 1961. s pp. A dewien be described for a simple machine to read hand-marked documenta such as invoices. (Encland)

A Linear to Lorarithmic Convertor linit for ase with Lanear Cownting Ratometer. J. T. Turnbull E D. N. Walder. "Elec. Enr." April 1961. 2 pp . A description is eiven of a convertor unit which. fed from a seale of iwo stace capable of cenerating negative going square rave 130 v . amplitude), will tive an approximately logarithmic output over two derade. (England)

Wire Frequency Resonator in Telemetering, I Pivovarov \& M. Tzodikov. "Avto. i Tel." April 1961. \& pp. The operation of a wire frequency resonator uned for industrial telemetering is considered. (U.S.S.R.)

Tranafer Panctions and Prooseney Reaponsem of Carbon-Pilo Regulators, D. A. Popov. "Avto. T Tel." April 1961. 9 pp. Frequency renpunnen of $d c$ and ace enerator carbon-pile resulatorn ore determined. On the basis of analysia of iranaient processes some expressions err obtained for rerulator transfer functions and for currespondine frequency reaponsea. IU.S.S.R.)

Gyromagnetle Resonance in Perrites and Ciarnets in the Prosmency Range 400 to 1200 Me/a, J. Deutach and R. G. Maier. "Nach. 2." March 1961. B DP. Measurements of the non reciprocel attenuation at magnetic rownane have confirmed the equation which states the relationship between the lowest irequency of resonance under the condition of a saturated material and the properties of the material and its dimensions. The greatest possible ratio of the non-reciprocal attenuation can be obtained only under these conditions. IGermany.)

Only specifically designed indicators can meet the critical electro-mechanical specifications and high reliability levels demanded for computers, data processing and control systems.

TEC engineers, who conceived the selfcontained iransistorized indicator, have designed literally hundreds of special TEC•L Ires . . . indicators, "button-lites". switches and readout units . . . to give designers the exact device they meed! Your problem may be met with one of these special units or a new TECoLITR created to your specifications.

Write for detailed information on custom Tec.Lntes ... designed to give you precisely the indicator you need!

ORIOINATOR OF PATEMTED
TRANSISTORIZED INDICATORS
Transistor
Electronics
Corporation
3357 Ropublic Ave. - Minneopolis 26, Minas TWX MP 331 - WE 9-6754

Circle 141 on Inquiry Card

Sources

New Diatortion Criterion-Part 2: A CriterIon Besed Upon that Distortion speetram, E. R. Wigan. "El. Tech." May 1961. 12 DD. This part of the paper is cuncerned with the relationship between the subjectively entimated unpleasantnes and the purely objective caune -the degree of non-linearity distortion. IEnsland.)

Paloe Reaponec of a Delay Line, P. Poincelot. "Cab. ATrane." April 1961. 6 pD. A theoretical determination of the reoponse of a ladder delay network to an applied pulse, asladder delay network to an applied pulse, assuming each line section to be derived from the basic constant-K low-pass nection by halfseries elementa. (France.)
sel

Analozue Bolation of Alcebrale and Transcendental Equations by Gradient Method, M. Rybashov. "Avto. I Tel." January 1961. 12 pp. The method for solvine systems of finite equatione on electronic analugue computers is deseribed (U.S.S.R.)

Btatiatical Relay Automata and Bone Methods of Their Investigation, 1. 1. Perelman "Avet. I Tel." June 1961. 15 DD. Automatic relay systems for statistical control of aerial production quality are conaidered. There is deacribed
determination of Jimiting lawi for control determination of limiting laws for control parameter distribution which are obtained dur-
ing operation of the conaidered systems under ins operation of the considered ayotems under
conditions of linearly time-changing regular disturbance. IU.S.S.R.)

A Probabillty Diatribation Amalyear Utilizing Electrostatie Storage, I. K. Harvey "Elec. Ene." July 1961. B DD. An inutrument is dencribed which by electronic techniques, provides the one-dimensional probability distribution of any electrical variable. (England.)

To Problem of Tranaient Proceses in Mas. netic Amplitior with Feedbacks and Inductive load Comnected Throush Rectiter, V. A. Sokolov. "Avto. I Tel." June 1981. 5 DD. The paper deals with the Inventigation of transient processes in flexible feedback magnetic amplifier with outer positive feedback and with inductive load connected through a rectifier (U.S.S.R.)

Calealation of tho Spectrun as the Outpat of a Non-Linear Four-Pola Network. B. V. Teloft. "Radiotek" 16. No. 5. 1961. 8 pp . The spectrum is determined by the output of a non-linear four-pole network driven by an input of two hermonic waves and noise. A method based on dividing the volt-ampere characteriatic into several sections and un alsebralc summation of the spectrum components corresponding to individual sections, is used to determine the opectrum. (U.S.S.R.)

8table Oseillatore Employing a Concoured Induetion Coll Operating Near Its Natural Freaeeney. G. T. Shitikof. "Redlotek" 16, No. B. 1961. B pp. This is the continuation of the article which first appeared in the preceding tasue of "Radiotek." Thls part deals with movere of continuoualy changing the operating frequency. Geometrical deaien equations for such an inductor are presented. It is also shown that the elimination of an outside ea. pacitor and the use of the internal capacitance of the inductor for the tank circuit greatly Improven the stability of the oacillator. (U.S.S.R.)

Theory of Two-Core Magmetic Amplifier Which Even Harmonics are Rectitud by Symetrical Nonlinear Reatntance, Tai Tse Hoin. "Avto. I Tel." June 1081. 9 pp. The mechanism of the marnetic amplifier at which even harmonica are uned th discussed. IU.S.S.R.I

Erfect of Complex Pulses on the Operation of an Inertial Detertor. I. A. Fastovsky. "Radiotek" 16. No. B, 1961. 9 DD. Exprensions are de rived for the calculation of the pulse characteristics of an inertial detector with known time constants when the following several forms of pulse are impressed on the detector: rectangular, cosinunoidal, sin x / x functions and triangular. IU.S.S.R.,
for the most complete line
of $\pm 1 \%$ precision carbon-
deposited resistors... specify AEROVOX

CARBOMOLD* RESISTORS

Encapsulated in a strons reinforced moistule and heat-resistant plastic for added stability and reliability. $1 / 2,1 / 4,1 / 2,1$ and 2 watt sizes. MIL-R-10509C.

CARBOFILM ${ }^{*}$ RESISTORS

Feature 100\% solid epoxy conformal coating applied by exclusive Aeroglazee process, elliminating weak coatings and assuring uniform size.

Aerovox resistors combine high stability, precision tolerances, tow voltage coefficient, and excellent high trequency characteristics.

FOR PROMPT

OFF-THE-SHELF delivery at oem PRICES

You can save valuable time and cost by ordering your prototype, production and maintenance quantities from the local Aerovox Industrial Distributor serving your area. He can deliver the most complete quality line from fac-tory-fresh stock when you need it . . . at OEM prices in production quantities. Write today for his name and address.

FREE - Technical Bulletins
Write on your company letterhead today for copies of
Carbomold Bulletin NPJ-115 and Carborilm Bulletin
ald

AEROVOX CORPORATION
sesmisivios arvision sis \square NPJ-116.

Circle 151 on Inquiry Card

NEW moderately priced high-precision SLOTTED LINES

Write for complete information on AMCI Slotted Lines.

- Rated residual VSWR under 1.010; rated error in detected signal under $\mathbf{1 . 0 0 5}$.

穴

An AMCI Type 2181 Slotted Line with interchangeable precision tapered-reducers provides for accurate measurements in several transmission line sizes from Type BNC to 1 \%" or larger. An untuned rf probe is supplied as part of the slotted line. Several tunable detector probes are available as optional accessories.

Type	Frequency range	Slof length	Price
2181.2	30020400 mc	20 inches	
2181.3	200804000 mc	30 inches	$\$ 700$
$2181-4$	150 to 400 mc	$\$ 750$	
21816	100104000 mc	40 inches	60 inches

including an inout adepter te Prop N and on unfuned H probe but arcludine outpur lapored reducern and Iunoble probes. Aices ore F.O.B. Bosion moss.,

AMCl amrense srsmes-compoments-ain mavicanion aids - imstmuments
 ALFORD

Circle 126 on Inquiry Card

TERMINAL BOARDS

Kulka Military Terminal Boards were designed by the Bureau of Ships according to MIL-T.167848. They are made to BUSHIPS 9000-S6505-73214 drawings, with latest revisions, and BUORD S64101.
Kulka Military Boards are available as single row, double row, or through connected type units, and are molded of Type MAI-60 glass-filled alkyd resin according to the latest revision of $\mathrm{M}-14$ specifications.
Kulka offers the complete line of these Military Boards, along with a wide selection of hardware accessories...

The complate catalog on Military Termimal Boards. Write for your FREE copy..

Sources

Experimental Stedie of Spherical Eloctrie Lemees and Reflectore. B. Chiron and Holvoet. Vermaut. "Onde." 1961. DD. With R. K Luneburg's apherical dielectric lens theorian in mind, the authors indieate how a complete dielectric ayatem ran ba adjuated by focusolas dielectric ayatem ran adjuated by oocusolas individually or reflectorn, the latter being lenses metallized over part of their surfaces. (France.)

Un Approzimpte Realization of Motion Alone 8et Trajectory. E. A. Barbeahin. "Avia I Tel." Jume 1961. 7 pp. Ways of selecting srstem barmmeter which mever approximate realina. tion of the set process are proposed. (U.S.S.R.)

Introdnetion to Electro- Encephalography, H. Leain. "El et Auto." June 1961. \& Dp. Nervous function to accompanied by men electrical diecharge, the exact mechaniam being not well known. (France.)

Extrapolating-Gradient Method of Search of Square Function Minimum. R. E. Vinotrad, Yu V. Geronimue. "Avto. Tel." June 1961 15 pp . The method of extrapolation by three valuee in equally remote points in surgested for minimisation of a square function (U.S.S.R.)

Simple Boldere for Ceyatal Detectore Peature Low VSWR, High Senalitivity. A. Staniforth J. K. Pulfer. "Can. Elec. Eng." July 1061. dD. Broadband mierowave measuremente often require low level erystal detectors with high sensitivity and low. uniform VSWR. Thit paper describes two coaxial holder for cartridge type cryatals similar to the 1 N 28 B (Canada.)

Regmlator Circuit Improven Operation of Cd8 Sun-8witeh. S. A. Gardiner. "Can. Elec. Eng." July 1961. 2 pp . The term ann awitch is used to deacribe device which will witch air cuit when sunlight or daylight activates it (Canada.)

The Required Channel Capacity in Link fo Vocoder Signale and Pre-emphaslaed Speech K. O. Schmidt. "Nach Z." June 1961. 7 DD The channel capacity requirements in link for "synthetic" speech iVocoder siznals) ani "pre-emphasized" apeech iwith the high opeech frequenciea emphasized and the amplitudes in the speech signal compreased) are compared with each other. (Germany.)

Reveraible Decimal Countern, J. L. Goldberg "El Tech." July 1961. 12 pp. Counten which reverse their direction of counting in response to external control sianals are described These devices are required in the application of optical interferometry to the precise mene urement of length. (England.)

MEASURE \& TESTIMG

Pulse Contactless Telemetering Syatem. "Prace ITR." Vol. 5, \#1. 6 pp. The paper describee a telemetering system intended for measure menta of electrical and non-electrical quan tities. IPoland.

Digital Voll-Ohmmeter, "DV 41," E. Sehurig "El. Rund." May 1961. S DD. This oet is equipped with a novel single-row diaplay facilitating quick and aceurate readings of direct voltages and resistances. (Germany.)

The Detection of Cable Faults by Means of Radio-Isotopes, G. Lemm and W. Reusse. "Nach. 2." May 1961. 2 DD. An application of radio-isotopes permite X-ras film photographe to be made of the position of the center conduetor is coaxial cables and thus diaplacements of the center conductor in bends can be detected. (Germany.)

Acme Electric CUSTOM BUILT POWER SUPPLIES

These units are engineered to provide specified electrical characteristics in a practical physical design and to perform properly under a wide range of environmental conditions.

Our facilities can accommodate continuous production quantities as well as small lots.

QDOVE - STATIC POWER RECTIFIER
Output: 500 KW. 500 volts DC 1000 amperes Ingut: $\quad 13.800$ volts. 33 amp 3 phase, 60 cycle

ADOVE - 6 CIRCUIT
POWER SUPPLY
Outout: 4 circuits. 45 amp .
65 volt DC
2 circuits. 1.8 amp.
65 volt DC
Input: 460 volts. 3 phase. 60 cyclo

RIGNI -- MODULE ANALYZER
Output: $-6.5+65-13$
$\pm 13-19.5+$
Inout: 115 volts. single
115 rolts. singlo
Dhase. 60 cycio

Our vast store of engineering experience ia available to assist you in developing a practical solution to your problem.

ACMEELECTRICCORPORATION
 1910 Water St.
 Cube, N.Y.

to Cennder Acmo Elective Corp. Ird., So Mormline Rd., Toromo, Ont.

Acme - Min Flectric

Now NO-BLADE Stripping

 makes wire damage impossible!New

IDEAD

THERMO-STRIP FOR PLASTIC INSULATION

- For use where absolutely no wire damage is permissible
- Can operate continuously-no warm-up delay
- Infinitely variable heat control-prolongs element life-reduces fumes

Especially designed to meet zero-defect requirements in assembly of missiles components, aircraft, computers and other precision electronic systems and instruments, the new Ideal Thermo-Strip Hot Wire Stripper completely eliminates the possibility of nicks, breaking or disturbing of strands in even the finest wires. Not just a converted soldering iron, it is all new. light-weight, easy-to-use,
and safely removes all types of thermo-plastic insulation, including Teflon.

COMPLETE ...

READY TO USE...
Includes 50 -watt
transformer and toot
of your choice.
Shown with Pincer
mounted for high-speed

Sold Through America's Leading Distributors In CAMADA: IRVING SMITH, Led. Montieal

Circle 155 on Inquiny Card

- 'PIG-TAILORING•• - revelutionery mew methenical precest lop highat Poduriton of lomer cests. Festest PREPARATION and ASSEMAET of Redstore, Cupadiers. Diodes and oll eflope aziol loed sempoment let TERMINAL COAROS, PIINTE cIncuirs en miniaturize assemsloss.

PIG-IAILOATNG ellminetest - Diggenal sume.e - leng nots allers. Opereter ludganem . vor eporater treining lies. Iroken cempenents Braten loeds - Shert sircults from elippinge C5E dressh hondiling. Ercessive leed peutmose - Mapheserd aseembly momede.
pIG-TALLOANG prevides: Uniform compenent scellion - Unllerm marting oxpesuro. Minie. turlsolien spacing centrol - "S" leads for terminels - "U" leode for printed circuits = Individual cut and mond longthe . Somer tlmo/rate enalvile - Cleser cest centrol - Iavalueble laber sevia - Immedieta cent recovery

Pays for ifself in 2 weeks

Write for illusfrofed book to Dept. El-10

Sources

Serondary Flare in Lemees. "BRC Mono." April 1961. 10 pp. The image formed by a lens is often reduced in contrast by extranerous lisht spread extenxively over the imake plane as a reault of apecular interfacial reflection. within the lens and scattering by vurface irregularities. A method of messuring the mas. nitude of the flare light io described. (Engnitude
land.)
Bootstrap Sawtoeth Generators with Increased Sawteoth Limearity, K. Thiele. "El. Rund." May 1961. \& Dp. The second part of thin sinper cunsidera the limiting case of an amplification factor 1 where the sawtooth generator supplies an ideal sawtixuth voltage. IGermany.) Acoastic Teating of Electronic Organe for Churches. W. Lottermoser and J. Meyer. "El. Rund." May 1961. 4 pp. Deacription of conatruction and operation of mamo large electronic organs for churches. including examples of tone specta and transients. Germany. 1 A Unit Ior Measuring Amplitade and Phase Distortione of the Chromenance Carrier as a Function of Modulation Desth. \mathfrak{F}. Coennink. "Nach. Z" May 1961. 6 pp. A new unit for measuring chromenance carrier distortions an a function of modulation depth is deacribed. (Germany.)
To Calcolation of Thermal Regimee in Transiators, A. N. Afanasev. "Avto. i Tel." May 1961. 7 DD. Calculation of teady thermal regimes in transistors is described. Properties of cooling plate are found out. Practical recommendations on the way of using power tranaistors me given. (U.S.S.R.)
Rertangelar Pulse Generator for Teating Magnetic Function and Memory Circuita. "Prace ITR." Vol. 5. No. 1.8 pp. The paper describes a generator which provides an output of a a generator which provides an output of rectangular current pulses, especially designed for testing magnetic function and memory circuits. 'Poland.

Moisture Measurement in Jute. D. F, Leach "Brit. C. E. E." July 1961. DD. This probe molsture meter uses a single needle-like cepacitor which can be plunged into a package. The relative merite of capacitance and resiat wnce type moisture meters are discussed, and the probe, calibration, circuit methods and aceuracy of the inatrument are deacribed. (England.)

A Method to Determine Antenna Loeses, Y, V. Pavlov. "Radiotek" 16, No. 7, 1961. BD. One pussible method to determine anterns losses caused by scattering and by heat lossem is offered. Formulae are derived for the use uf determining heat losses in acattering and methud (1) measure these losses is offered. (U.S.S.R.)

The Use of the Onnegatron for Quantitative Partial Preanure Analyois in Righ Vacuum. S. Dummler. "Vak. Tech." June 1961. 8 DP An imeyatron (eyclotron resonance masa apectrometer) is described. By using mat. netic field of 6180 Gause, the resolving power of the instrument has been increased up to 100. so that the peaks corresponding to masa numbers 100 and 101 man be separated. ICier many.)

Measuring Methods in Nuelear Physics 111, F. H. Rinn. "El. Rund." July 1961. 8 pp. This third part contains a discussion of pulse amplifiers and discriminatora processing the radiation-detector output pulses in accordance with the problem in hand. This discussion It introduced by remarks on the hiah-voltage generator for power supply. (Germany.)

Waier Determination in Spray Mixture for Oxide Coated Cathodes, K. Ettre and P. F. Varadi. "Vide." MayJune 1961. 6 pp. The Karl Fischer method is applied for determinaicn of the water content in the spray mixture which commonly used for the preparation of the electron emissive layer of electron tubes. (France in Englioh.

ACOUSTICA ULTRISONICS MAY DO YOUR CLEANING JOB IN $1 / 35$ THE TIME!
Incomparably fast and thorough cleaning is yours with Acoustica ultrasonic eleaning systems. One major connector manufacturer, for example, has reduced the jol, of cleaning 21,000 components from 416 man-hours to 12! Another company cleans 600 -circuit slip rings in a 15 second ultrasonic dip. lou, too, can save time, money and rejects with an Aroustica system. Write for free application data sheets.

acoustica

GENERAI, ULTRASONICS DIVISION

10400 Aviation Boulevard, Los Angeles 45, Calif 463 Old Country Road, Westhury, L.1., N. Y

ELECTRONIC INDUSTRIES Advertisers-October 1961

This index is published as a convenience. No liabilify is ossumed for errors or omissions.

Celco-Constantine Engineering Laboratories
Company 165 Centralab Electronies Div. of Globe-Union 35 Cinch Monufocturing Compony waray 119 C. P. Clore Co. 56.57

Clovaland Container Company 164
Columbion Corbon Company 72
Connecticut Hard Rubber. .vinurnenturen 198
Continental Connectors
Continantal Electronles Mfg. Co. $42-43$
Controls Company of America 130
Cornell Dubilier ... 201
Corning Electronic Components 49
CTS Corporation

D
Dale Electronics, Inc. .acu....................... 31
Daystrom, Inc, Potentiometer Division 129
Dorsott Electronics, Ine
Dow Corning Corporation46-47, 63

EICO
CO 222
Eisler Engineering Co., Inc. I97
Electrical Industries
197
Electro Motive Mig. Co., Inc. 55
Engineered Electronics Company 10
Engis Equipment Company 12

Fairchild Semiconductor	19
Film Capocitors, Inc.	222
Floride Development Commisslon	159
Fluike Mig. Co., Inc., John	33
Force \& Co., Inc., Wm. A.	168
Frost 5 Sullivan, Inc.	215
6	
Garrefl Copp.	210
General Communication Company	156
General Electric Company. Rectifier Div.	189
General Electrodynamics Corp inf	194
General Mofors Corp. AC Spart Plua Div. Delco Radio Div.	202 16
General Radio Company	123
Gertsch Products, Inc.	148
Good-All Electric Mig. Co.	69
Grophic Systoms	222
Gremer Manufocturing Company. Inc.	152
H	
Hamilson-Electrono, Inc.	50
Harrison Electronics Corp.	178
Hovir Monufacturing Co.	180
Hewlett-Pactard Compony 39, 30, 81,	, 121
Honeywell Precision Meters	145
Hughes Aircraft Co. Vocuum Tube Products Division Microwave Tube Division	86 59

Ideal Industrles, Inc. 219
Industrial Electronic Engineers, Inc. 192
Infernational Electronic Research Corp. 64
Infernational Rectifier Co.
Infernational Resistance C_{0}..................... 13
International Telephone and Telegraph 143
J
$\begin{array}{llr}\text { Jennings Radio } & 44 \\ \text { JFD Electronics Corp. . . . } & 175 \\ \text { Johnson Company. E. F. Insert following p. } & 168 \\ \text { Howard }\end{array}$
Howard B. Jones Division 176

Komet Company 167
Keystone Carbon Company _......... 28
Jomes Knights Compony 144

1
Lens Electric Manufacfuring Co. 161

M
McCoy Electronics Compeny $\quad 34$
Mognetics Inc.
Mepco, Inc.
182
Methode Monufocturing Corp.
182
62
73
Minnesoto Mining \& Monufacturing Co.
Mincom Division Manulacturing Co.
Mognotic Products Division
$\begin{array}{r}127 \\ \hline 197\end{array}$
Moterolo Somiconductor Products Ine. 191
Muallor Brass Co.

N
Notional Cosh Register Co. The 208
National Uliratani Corp:
North Americon Electronics, Inc.
North Atlontic Industrios, Inc. 193
Ohmite MIg. Co.71
Panoramic Electronics, Ine 158
Perfection Mica Company 153
Philco, Lansdale Division $\begin{array}{r}123 \\ \\ \hline\end{array}$

Pottor Brumfield, Inc.

211

Power Designs Inc.
PRD Electronics, inc. Company 170
53

R

Radio Corporation of America Bock Cover
Rodio Frequencies Laboratories, Inc. 64
Rayclod Tubes Inc.
Rartheán Compony
Industrial Components Div. 213
Semiconductor Division
Reeves Instrument Corp.
Republic Aviation Corp.
Rite-Line Corp.
Roctiwall Products Corp
ts Corp
Tohn Manufocturina Co 162
Rotron Mig. Co., Inc. 151

5
Sangamo Electric Co Inside Front Cover

Shalleross Mfg. Co.
Sperry Rand Corp.
$\begin{array}{ll}\text { Sperry Somiconductor Division } & 149 \\ \text { Sperry Electronic Tube Division } & 164, \\ 165\end{array}$
Sprague Electric Co.4,165
7,15

Stancor Electronics. Inc.
Sylvanio Electric Products Insert following p. 50
7.15
196

Synfronic Instruments, Inc. 21 |

Teltronix, Inc. 125
Telerad Div. of Lional Corp.
Tolonic Industrios, Inc. $177,179,181,193$
Toledo Edison Co. .
…......
Torrington Mig. Co. Insert following D. 134
Transistor Electronics Corp.
217
Transitron Electronic Corp. \quad 146-147

u

United Transformer Care.
United Von Lines
178
Unired Von Lines … 74
v
Varfiez Sales Co., Ine. ...
Varion Associates Inside Back Cover
Victoreen
w
Wovaline Inc. 76
Wectresser Co.
76
Weller Electric Corp. 141
Western Rubber Co. I5
Westinghouse Mig. Corp., Somiconductor Div.

How To Get Things Done Better And Faster

BOARDMASTER YISUAL CONTROL
â Cives Craphic Picture-Saves Time, Saves Money, Prevents Errors
if Simple to operate-Type or Write on Cards. Snap in Grooves
is Ideal for Production, Traffic, Inventory Scheduling, Sales, Ere.
\& Over 500.000 in Use.
Full price $\$ 4950$ with cards
FREE
24-PAGE BOOKLET NO. Z-10 Without Obligation

Write for Your Copy Todey

 GRAPHIC SYSTEMSVanceyullio. Merth Carallea
Circle 159 on Inquiry Card

[^14]Circle 158 on Inquiry Card

EQUIPMENT, MATERIALS
PARTS \& COMPONENTS
GET IT from GOODHEART!
0.1\% SOREWSEM LIae Yoltage Iegalator sheme erana moe at hos curalus pricell lapur mbis

 hation $10.0 .1 \%$.15 llay irs.

 than se 0.15 semp 1 apous to the point where bo will

 ariout unconalitionally.
R. E. GOODHEART CO.
P. 0. Box 1220-EI

Beverly mills, Calif.

EMPLOYMENT OPPORTUNITIES

TRANSFORMER ENGINEER

Whin arpericese in the design and dovelepment of Mi-Froaurncy and Pulse trams formers for commercial and millitery ap. plleations.
Isioal epporteality for ambolious men te dovelop full petemital at mrasent small do perfinent. Solary-open. Locetion-ifio,
Pa. Cafl er sead resame to CMef Engiaser.
Erle Electrenies Division
Erie Resistor Corporation
645 West 12th Street
Erie, Pa.
GL 8-8592

SNCINEERS	
PNYBiCAL METALLURGIBT. FEmulato 8 direet scogram. atiorial A CD , thin manatic nis. Pio desires.	
On EE LOGIC DESIGM DIaltal oypome spom	
E. PACKAOINC DE8I6M. Eleetresis asulpminet. 10 yen oxpariones.	
SALEB EMGIMEE	
salarien to \$18,000 plus All axpenzes a foes paid by ellont se	
Sone rewimes at entary reguiromants to	
SNELLING \& SNELLING	
Parkade Blds.	Suite 3004
519 Federal st.	mden. N.

Dafa Processing Sysfem Insfalled

An IBM RAMAC 305 Electronic Data Processing Machine has been installed at the Akron, N. Y. plant of Wales STRIPPIT, Inc. The new system will speed the processing of customer orders, shipping and billing information and make available a continually up-to-date record for production control and inventory.

FILM CAPACITORS, INC.
3900 PARK AVE New York 56. N Y. CV 2 Sles
Circle 129 on Inquiry Card

HIHHEST POWER TWT

Varian Associates' new VA-126 pulse power amplifier traveling wave tube is particularly well-suited for advanced coherent radar systems employing frequency agility. With high gain and high efficiency over the full bandwidth, the tube offers a new standard in transmitter performance.

The VA-126 produces 3 MW peak and 5 KW average power, from 5.4 to 5.9 kMc . Gain, 35db; efficiency, 30\%. Self.centering in electromagnet. Liquid cooled.

The VA-126 has 500 Mc bandwidth and excellent phase stability. These are desirable characteristics for pulse-to-pulse frequency changes, phase coding, chirping (frequency changes within the pulse), and electronically-steerable antenna arrays.

Varian's unrivaled capability in the development of advanced microwave tubes is at your service. For further data on the VA-126, write Tube Div.

VARIAN associates
PALO ALTO 19, CALIFORNIA
Subsidiaries:
BOMAC LABORATORIES, INC.
VARIAN ASSOCIATES OF CANADA. LTD
S-F.D LABORATORIES, INC.
SEMICON ABSOCIATES, INC.
SEMICON OF CALIFORNIA, INC.
VARIAN A. ©. (EWITZERLAND)

Now Beta-Control Up To 10 Amperes... Extremely Low Saturation Resistance... Power To 150 Watts At Prices Starting As Low As Comparable Germanium Power Types

Check out the outstanding features of these 24 RCA N-P-N diffused-junction silicon power transistors, immediately available at low prices to meet your industrial and military applications requirements:

- Maximum operating temperature - up to $200^{\circ} \mathrm{C}$.
- Maximum dissipation capability - up to 150 watts
- Very low thermal resistance - as low as $1.17^{\circ} \mathrm{C} /$ watt max.
- Very low saturation resistance - as low as 0.25 -ohm max
- High minimum beta
- Narrow Beta Spread

AVAILABLE THROUGH YOUR RCA DISTRIBUTOR

The Most Trusted Name in Electronics
radio corporation of america

Call your RCA Field Representative today for complete sales and price information. For further technical information, write for RCA Technical Bulletins on these types. For detailed application information on the design of military and industrial equipment using RCA Silicon Power Transistors, send for new 28-page Application Guide on RCA Silicon Power Transistors(Price: $\mathbf{5 0}$ cents per copy). Write to RCA Semiconductor and Materials Division, Commercial Engineering. Section J-50-NN. Somerville, N. J.

ECA FIELD OFFICES . . EAST, Newark, N, J., 744 Braed S1., MU S.3900 - ICamden, N. J. orea), Eriton, N. J., 625 Meriton Piks, MA 0.4802 - Syracuse, N. Y., 731 James St., Koem 402, GR 4.5591 - Eellimere, Md., EN 9.1850 - NORTMEAST: Needhom Meights 94, Mass, 64 a 59. Mt 4.7200 . SOUPMEASP: Orlonde, Fla., 1520 Edgemater Drive, Suite $=1$, GA 4470 - EAST CENTRAL: Detroit 2, Mich, 714 New Center Bldge TR 5-3600. CENiRAI: Chicogo, III., Svise IIS4, Morehondise Mort Ploze, WM 4.2900. Minneopolis, Minn. 5805 Encelsior Blud., WE 9.0676 - WE5T: LOB Angolen S4. Cailf.. Bor 54074 , 243.8361 - (Son Francisce oreo), Burlingane, Colll., 1038 ह1 Comino lool. OX 7-1820 - SOUTMWEST: Delles 7. Teses, 7903 Carpenter Freeway, FI 7-8167 - GOV'I Derton, Ohio, 224 N . Willinson Si., BA 6-2306 - Wasnington, D. C., 1725 "K" Si., N W. FE 7.8500

[^0]: 1 Fistimated total Industry shlpments Including Intra-plant and inter-plant trannfers.
 ${ }^{2}$ Includes TR, ATR, Pre-TR, discharge, spark gaps, noise sources, and other gras awitching devices.
 Includes radfation detection tubes; beam deflection tubes; deca de counters, electronic switches; orbltal beam tubes, and vacuum capacitors, switches and kaugen; excludes X-ray tubes.

 - An insignificant quantity and value of shipments of TV plcture tubes for millthry applications are comblned with nonmilitary shipments to avoid disclosure of proprietary informution.
 Source: Quarterly Joint Survey of Production Capabilitlen for Filectronlc Parts conducted by the Flectronlcs Production Resources Agency of the Department of Defense, and the Electronics Division, BDSA.

[^1]: THE ELECTRONICS DIVISION OF GLOBE-UNION INC. 938J EAST KEEFE AVENUE-MILWAUKEE 1, WISCONSIN In Canada: Centralab Canada Ltd.,P.O.Box 400, Ajax, Ontario
 ELECTRONIC SWITCHES - VARIABLE RESISTORS
 packaged electronic cincuits
 CERAMIC CAPACITORS - EMGINEERED CERAMICS

[^2]: P.O. BOX 862 - NORMAN, OKLAHOMA - JEFFERSON 4.3750

[^3]: This article was prepared while both men were employed by Comimunicatinna Division, Hughes Aircraft Co., Los Ankeles 4.5. Callf.

[^4]: - The resistors in the test stage, though indicated as being variable, are not potentiometers. Fixed value resistors were substituted to obtain the required test points. Potentiometers were found to be

[^5]: CALIFORNIA INSTRUMENTS CORPORATION, 3511 MIdway Drive. an Diego 10. Celit.e is introducing on automefle escillescope wit ell solid stefe circuithy and digital readout. The 10 MC escillescope has aufomatic sweep speed. aufomatle senstivity, and eutometic positioning- Remge of vertlical sensitivity ead borlsoed al gwepe are pre-

[^6]: Mate Omea: South Street, Holmdei, N. J. - Ph SH 7.5400. Woer Empaw Once: 114 Waltham, Lezingion. Mass. Ph Vo 2.7650 - Detell Omiee: 12950 West 8 Mile Rosd, Detrolt 37, Mich. - Ph: J0 6.1420 - Mid wesi Offce: 2N565 York Rd., Elmhurst. III. - Ph. BR 9.5050 - West Ceast Omee: 117 E. Providencia Ave., Burbanh, Calif. - Ph vi 9.3961 - Cancdian Ahilinle: Computing Davices of Canada, P.O. Box 508, Ottawa A. Ont. - Erpert sales offe for name of local distributor. Streat, New York 17, K. Y, siectiey Distrimiter: Contact nearest

[^7]: 3211 S. La Cienega Blvd., Los Angeles 16, Calif. • UPton 0-2761 • VErmont 9-2201

[^8]: [SEMICONDUCTOR IS OUR MIDOLE NAME]. . . SEMICONDUCTOR INTEGRATED NETWORKS (BEMI-NETB'). MEEA AND ALLOY SILICON TRANBIETORE AND DIODES
 sales orfices: chicago, illinois: Los angeles, california: westwood, new jereey, tewis. Buny, massachusetts: sykesville, mahyland.
 SEMICONDUCTOR OPPORTUNITIES
 AVAILABLE TO QUALIFIED ENGINEENS

[^9]: CIEveland Contanner COMPANY 6201 BARBERTON AVE, CLEVELAND 2, OHIO
 abrasive division at cleveland. ohio REPRESENTATIVES:

 Cleveland container CAMADA, LTD. TORONTO B prescott, ont.

 ## SALES OFFICES:

 detroit NEW YORK washington

 PHILADELPHIA: MIDLANTIC SALES CO. 9 E. ATHENS AVE., ARDMORE. PA. LOS ANGELES AREA: THE ROBISON CO
 4026 W .183 rd ST TORRANCE, CALIF 4026 W. 183 rd ST. TORRANCE. CALIF, CANADA: PAISLEY PRODUCTS CO. LTD.
 36 UPTON RD., SCAREOROUGH, ONT.

[^10]: VARIAELE TRIMMER MISTON CAPACITORE * FIXED METALIZED INDUCTOMS * LC TUNEAS * DIPLEXERS FIXED AND VAAIABLE, DIBTRIBUTED AND LUMPED CONETANT DELAY LINES P PULSE FORMING NETWOAKE

[^11]: NEED ONE NOW? 24 HOUR DELIVERY VIA TELONIC JET ORDER SERVICE

[^12]: NEED ONE NOW? 24 HOUR DELIVERY VIA TELONIC JET ORDER SERVICE

[^13]: A REPRINT
 of this article can be obtained by writing on company letterhead to

 The Editor
 ELECTRONIC INDUSTRIES Chestnut \& 56th Sis., Phila. 39, Pa.

[^14]:
 E/FD E pporl Depl. Roburn Agencies

