ELECTRONIC INDUSTRIES
 ACHILTON PUBLICATION

Hall
 Effect
 Isolators

Permanent
Magnet

ELECTRONIC INDUSTRIES

ROBERTE．McKENNA，Publisher

＂Defogging＂

Systems Wanted ．．． Technical Filing

FTOR more than a year now Elec－ tronic Industries has been publish－ ing a series of articles dealing with the problems of radio frequency interference （RFI）．Reader response to this series has far surpassed our greatest expecta－ tions．There is a constant request for reprints and hardly a day goes by now without some new development or an－ nouncement being made on this subject by the military，government or industry． In presenting this series，our aim was to provide tutorial information．Since we are now out of print on many of these reprints，and in low supply on others，we believe that a recap of article titles in this series，names of authors and dates of issue will be of benefit．It will enable readers to preserve the ac－ tual copies of the magazine containing this infurmation．

C＇nnmider Inferference in System Jesign Kow e日，Fi，Fleckl：March 1960
＂oufrolling \boldsymbol{K} ド SuAceptibility on Rereivera II．II Sachs \＆J J Krmansky．September 1960 finiale len Rt＇l fillers：Marvin H．Folrme：Jume 1！！in
Iusfrimientafion for RFI Measurementa：F Hfalour \＆I：Shuwers；March 1961

Making Trunamillers RFl－firce：C：Hlakely A It S Balley．Marih 1960
frcalicting the Antrana＇s Role in RtI：Ernest Jucotes：May 1960
Prupatation Coxsilerafions in RFI．L．Valcilk A IR．H schulz；December 1960

RFI is Safrllice（ommuniculions：O．M Nhlati：Abrll borgo

The Fir＇＇＇untrola Han－While Noise：E．W． Allen \＆H．Garland：Octuber 1960
Artictom but in the morles that allwared an ＂нxtras＂are

IDpfecting Interference to Misailes；H．Kll－ herg：April 1960

New Syatem Defeata Multipalh Efferl：（jenrge A．Scheer：May 1960

Jesigniln RFl－Free Communicatiom Sys． temis；1．Mnz\％lotli \＆M．Engelson：May 1961

On June 12－13，the 3rd National Sym－ posium of Radio Frequency Interference will take place at the Sheraton Park Hotel in Washington，D．C．An unusual integrated selection of papers together with panel discussions on controversial topics will be presented．Three sessions will develop the theme on identification and requirements of communication－ electronic characteristics data for inter－ ference control．Rucognizing，again，the great need for tutorial information on this subject，a special series of papers will be presented that will run concur－ rently with the main program．These will cover selected subjeets in the fields of interference prevention and fixes，in－ strumentation advances，and systems problems involving prediction and con－ trol．

We wish to congratulate the sympo－ sium fathers for recognizing the need to make tutorial information available to interested attendees．RFI studies are sophisticated and complex．Tutorial in－ formation will materially aid those with limited exposures．Also，while sympo－ sium attendees get a great deal more out of such a program combination the symposium，in turn，will attract greater numbers of attendees．This other ap－ proach，therefore，might well be con－ sidered by the fathers of other symposia in other equally complex fields．

THE constant expansion of the Elec－ trunic Industries over the past dec－ ade has also given rise to a vastly in－ creased flow of technical data and in－ formation in the forms of articles， manuscripts，and catalog sheets．The problem of an adequate filing and re－ trieval system for the control of this information is acute with us all．

Most of us have definite spheres of technological interest and hence do not require or desire to work with a system as comprehensive as the Dewey Decimal Classification System．Many of us have created filing systems of our own and many of these work out very well．Yet． if you discuss this subject with engi－ neers as we have ．．．in their plants and at shows and conventions ．．．it
always seems that each man＇s system leaves a little something to be desired．

In last year＇s May issue we published an article entitled＂A Filing System for Technical Articles＂by Klaus H．Jaensch． Many of you wrote in and requested re－ prints of this material．The thought now occurs that if we could collect a number of these suggestions for filing technical information we might assist our readers in locating that missing ele－ ment in their system．We therefore now entreat and invite you to write or jot down your thoughts on this subject． even in the briefest way．Please send in your thoughts at your earliest oppor－ tunity，and we，in turn，will be happy to pass the ideas along to the entire indus－ try with equal dispatch．

ROBERT E. McKENNA, Publisher BERNARD F. OSBAHR Editor

CREIGHTON M. MARCOTI Maneging Edltor RICHARD G. STRANIX JOMN E. MICKEY Jr Amocieto Editor SMEDLE B RUTH LOUIS S. GOMOLAK DR. ALBERT F. MuRRAY Contributing Edifor ROLAND C. DAVIE Washington Nows MARIE T. MEPRID Directory Edifor ELMER KETTERER Ant Edito Editoriol Secratan MAE E. MOYE Rocderi Sorvice
EDTORIAL COREESOMOEWTE Weshingteo- 1033 Nationol Fress Pide. GEORGE MME:
NEIL RI REGEIMBAL
DAVID R. HEINL
EUSIMESS DEPARTMENT
ELMER DALTON
Circulâton Manager
DONALD I. MORAN
Markofing Manager
GORDON HERNDON

Production Manoger
DEBIONAL SALES MANABEAS
Wilodelphle (39)-514 a Chertmet SM SHORwood C-2wo

Now Yort (17)Gost and 5 t. OXford 7.340
GERALD D. PLISSIER Metropolifan N. Y MENARD DOSWELL II

Chicago (1)-3N N Michigan Ave. RAndolgh C-214 GEORGE H. FELT
Cloveland (15)-930 Kaith Iido.
SUperior 1-2a10 shelar A. MeMillion

Los Angeles (57)-1\% S. Alvoredo St.
B. WESLEY OLSON

Son Fronclsco (3)-1355 Martof SA.
UNderhill 1.7107
DON MAY
Aflente (3)-911 William-Oliver Ilde JAclson 34Ni JOHN W. SANESTON
Dalles (6)-Meadows Ride., Eapreanway

MAROLD E. MOTT
UURPMAN SALS OFFICES
London. SW. (1)-67/4 Jemmy St.
Dusceldor Mottonstrosee 17
Am Emst-Router-Man
MAX F. HOLSINGER
ChII JOMN H. KOFRON
6. C. Buzey, President

Vice Presidents: P. M, Falhrendort
Leonerd V. Kowlands, George T.
Hook, Robert E. McKonna; Treosures,
Williom H. Valler: Secretary, James
A. Montoomery; Directors: Meurice
E. Cor, Fronk P. Tighe. Everit ©. Tor-

Charles A. s. Heinle Joh H. Kolron.
Geores E. Cameron.
Comptraller, Stomley Appleby

1. C. Mollowoy, Asst. Secrefory

Coble Addrege-"CHILTON PHILADELPHIA"
ELECTRONIC INDUSTRIES, MOY, ISI, Vol. 2 No. E. A monthly publication of Chilton ComNo. Eany. Gecutive. Editorial Advertising offices of Chasthut Eiven Sts., Phila. Mv, Pa. Accepted as confrolled circulation pubilcotion at pillie. Pa. $\$ 1$ a copy. Directory lissue (Jung) is o. copy. subucripfion retes U. S. and U. $\$$. Poesee sions: 1 yr s 810.00 ; 2 vrs sio.00. Canada I year.
 10.00; 2 mi 830.00 . Copyright INI by Chilton Compary. Tire Reg. U S. Pat. On. Reproduc authorisation.

ELECTRONIC INDUSTRIES

MONTHLY NEWS ROUND-UP

Redarscope: What's Ahead for the Electroale Industries. 4
As We Ge Te Press. 7
Electronic Shoris 8
Coming Events 15
Electreaic Iadustries' News Briefs 21
TOTALS: Late Marketing Sfafistics. 23
Sacpshofs . . . Of the Eluctronic Industrios 26
Infernafional News 30
Next Month in Electronic Industries 87
Washington News Letter 162
Editorial: "De-fogging" FRI 1
Develop Practical Hall Efiect Devices
A. Hilblager. W. Scanga 8 C. Berrack 88
Designing Solid Stafe Commufałors 92
Direct Coupling and DC Stability A. N. DeSaufels 94
Analyzing a Realistic Cathode Follower R. E. Lefferty 98
For Computers . . . Basic RCTL Circuits W. D. Reehr 101Suppressing a Single Inferference Frequency........ T. A. Bickart 104UHF Phase Measurement by an AM ProcessT. A. Meere, Sp. 110
Designing RFI-Free Communication Sysfems
I. Mazzioftl \& M. Engelson 11 114
A Growing Field . . . Solid Nefworks 120
Electronic Operations 153
Recording Flow Mefer Readings 156
What's New 166
Professional Opporfunifies 178
Budgeting Manpower 176
International Electronic Sources 213
NEW PRODUCTS \& TECH DATA
New Products 124
Now Tech Dafe for Englecers. 142
DEPARTMENTS

Tele-Tips	40	Systems-Wise 155
Letters	53	Cues for Breadcasfers. 160
Personels	64	Industry News 178
Books	72	News of Mfrs. Representaflves 192

Highlights

of this issue

> Practical Hall Effect Devices Much attention is being given to the application of devices using the Hall effect; but little to design of practical units. This article describes the design of a Hall effect isolator.

Designing Solid State Commutators
 page 92
 A practical design procedure for solid state commutators is presented. Minor changes adapt circuits to individual requirements.

Direct Coupling and DC Stability

page 94
Design and performance relationships and d-c stability considera. tions for a two-stage, direct-coupled transistor amplifier capable of d-c operation point stability and high gain at temperatures in excess of $125^{\circ} \mathrm{C}$ are discussed.

Analyzing a Realistic Cathode Follower

page 98
The most common cathode follower is not the one described in textbooks. It is one, described here, that permits operation at normal bias.

Basic RCTL Circuits

page 101
A basic inverter circuit is discussed, and the NOR circuit and fip-flop are evolved. A Schmitt trigger using the basic circuit is also described.

Suppressing a Single Interference Frequency

page 104
How can interference in critical points in an analog computer system be eliminated? The "Notch" filter circuit offers one solution. Two such filter circuits are discussed.

UHF Phase measurement by an AM Process

page 110
A technique for the continuous measuring of UHF phase angles is infroduced, and the feasibility of the processes employed proven mathematically.

Designing RFI-Free Communication Systems

page 114
Three steps must be taken to reduce RFI in communications systemsprediction, design, and measurement. The way to achieve these steps is shown here.

A Growing Field . . . Solid Networks

page 120
What is the answer to the size reduction and reliobility problems? One solution appears to be the microelectronics of solid networks. New techniques are described.

Recording Flow Meter Readings

page 156
The unit described has many benefits. It eliminates human reading orrors, records from a remote position, and supplies data on punched cards.

RADARSCOPE

NEW THERMOELECTRIC MATERIAL
In this specially designed vacuum induction furnace at Westinghouse's materials laboratories a new thermoelectric material-samarium sultide -is being prepared. The new material is one of a family of ceramictype. rare earth compounds which can convert heat directly into electricity at temperafures in the neighborhood of 2,000 degrees \mathbf{F}.

EXPERIMENTAL FUEL CELLS, designed to produce auxiliary power in orbiting satellites are being developed for ARDC's Wright Air Development Div. The cells have power output of 50 w . The ion exchange membrane fuel cell will replace the present satellite batteries which run down in only a few weeks. GE's Missile and Space Vehicle Dept.. Phila., Pa., is now working on these fuel cells under a contract with WADD.

EXPENDITURES FOR R\&D in the nation equals about 2.6% of the gross national product. This ratio has remained relatively constant over the past year.

PROTECTION FOR SMALL MANLEACTURERS supplying the missile and rocket industries has been requested by EIA's Small Business Committee. As the law presently stands, small contractors could be held liable for "fantastic" losses if a test rocket falls by accident into a heavily populated area. Component manufacturers would be open to suit. together with Government and prime contractors. Research and development contractors are now protected by law against such losses but authority is lacking for similarly indemnifying production contractors.

THE PROPOSED BOYCOTT by a Chicago Labor Union against the use of foreign electronic compo-nents-principally Japanese-has been postponed for 90 days. The announcement was made following a meeting between Secretary of Commerce Luther H. Hodges and M. F. Darling, President of Chicagu Local 1031, IBEW. The delay will give both the union and Government officials time to study the problem.

THE SOVIET UNION lags behind the U. S. in most areas of basic and applied heat transfer for research and development, but is on a par in a few specific areas and may soon be ahead in some cases. This conclusion was reached by the Office of Technical Services, after reviewing the available translated Russian chemical engineering literature.

MORE STRINGENT military requirements for reliability of electronic parts will increase the cost to producers, but the rise may be offset by increased yield and greater reliability of equipment. This opinion was voiced by Paul S. Darnell, Chairman of the EIA Military Industry Study Group.

NEW OPTICAL MASER developed by IBM, from uranium, gives the first continuous generation of coherent light waves in the infrared portion of the spectrum. Important applications are expected from optical masers in communicating in space, projecting TV pictures, and diagnosing by X-rays or fluoroscopy.

MOVING IMAGES

The half-inch thick panel combines piezo-electricity and electro-luminescence to produce a moving, lighted image. Developed by General Telephone and Electronics Labs, its earliest potential is seen in military and lab devices where the production of lighted lines and dots is needed to meet loday's system requirements.

ELECTRONIC INDUSTRIES May 1961

Analyzing current developments and trends throughout the electronic

industries that will shape tomorrow's research, manufacturing and operation

EMPIOYMENT IN THE COMPUTER INDUSTRY has increased by more than 50% over the past 5 years, from 64,700 in 1956 to 103,000 in September 1960. Reporting these statistics, the Labor Dept.'s Bureau of Employment Security pointed out that while computers have been largely applied to mechanizing clerical and bookkeeping functions and for scientific and engineering calculations, the greatest growth potential lies in their application to control production processes.

PLERTO RICO'S ELECTRONIC INDUSTRY has been assigned higher minimum wage rates under the Fair Labor Standards Act by the U. S. Labor Dept. Manufacturers of capacitors, transistors, coil forms, hermetic seals, crystal units, etc., now must pay a minimum wage of $\$ 1.00$ an hour instead of the former hourly rates of 90 and 95 cents. In the classification which includes the manufacture of transformers and wire wound transistors, a minimum wage of 95 e an hour replaces the current minimums of 90 and 95 d .

THE MARITIME ADMINISTRATION has invited qualified companies to submit proposals for design and construction of an integrated ship's bridge control system. The system would permit a better integration of the watch officer's functions by providing electronic assistance to his decision-making. Any of the routine functions presently requiring the deck watch officer's attention can be performed by control surstems, the administration feels.

JAPANESE EXPORTS of electronic products to the L. S. were up 24% in 1960 over the preceding year. The dollar figures were $\$ 94$ million for 1960 , against $\$ 75.6$ for 1959. Radio receivers, which account for 74% of total shipments, registered a gain of 11% over 1959. Other products showing substantial gain were tape recorders, radio-phonos, speakers, and receiving tubes.

FIRST COURSE offering a Master's degree in reliability engineering will begin this June at Case Institute of Technology, as part of the Air Force program to establish higher reliability standards.
WASHINGTON IS CONCERNED over reports that American scientists do not have access to the top military officers who plan the country's defense. Chairman Overton Brooks of the House Committee on Science and Astronautics said that the development of military weapons systems is possibly being delayed 10 to 15 years due to this lack of communication. Spur to the investigation came from a statement by Dr. Richard J. Russell of Louisiana State University that said that industry scientists have to deal with military subordinates on the "captain or colonel level-sometimes even a lower level." Russell added that, "the people through whom the information is filtered are incapable of transmitting the ideas across to the top brass."

EXPORTS OF ELECTRONIC PRODUCTS from the United Kingdom to the U. S. in the first nine months of 1960 totaled approximately $\$ 13.7$ million, a $3^{n /}$ drop from the corresponding period of 1959. The data provided on a quarterly basis by the British Radiu Equipment Manufacturers Assoc., shows total sales to the United States were reasonably well maintained. although shipments of record players, the leading items in this trade declined about 27% from the 1959 level. There was also a sharp drop in sales of phono parts and accessories and moderate declines for electron tubes and radio receivers.

IS SMALI, BUSINESS to increase its share of defense contracts through administrative cooperation or legislative action? That was the question raised by C. J. Harrison. Chairman of the EIA Small Business Committee, commenting on the bill offered by Senator Proxmire (D.-Wis.). The Proxmire measure would empower the Small Business Administration to set up a subcentract program in which small firms would be considered "fairly" as subcontractors and suppliers to prime Government contractors, require prime and subcontractors to cope with and consult with the SBA on request, and permit SBA to obtain information and records relating to the subcontracting by Government prime contractors. Harrison said as the bill stands, the SBA becomes an additional statutory contracting party and this arrangement could only result in delays in awarding prime contracts in the selection of contractors.

FOR SPACE SIMULATION

The world's largest, most advanced general purpose analog computer. designed and built for NASA, is shown undergoing final inspection at Electronic Associates Inc.. West Long Branch, N. J. The $\$ 1,510.000$ computer will be installed at NASA's Langley field, Va., research center

Sprague's new series of small, drawn-rectangular case capacitors are far and away the best of their rype that can be produced in the present state of the art. Surpassing MIL-C-25A TypeCP-70 requirements for performance, reliability, minimum size, and temperature range without derating, DIFILM Vitamin Q $^{\circledR}$ Capacitors are made to withstand the most severe operating conditions encountered in military and industrial electronic equipment.

Type 271P Capacitors are designed to operate over the remperature range of -55 C to +85 C , while Type 272P Capacitors will withstand operation at temperatures up to 125 C without voltage derating. Because of the superior electrical characteristics of both Type 271P and 272P Capacitors, their physical
size is smaller than mineral oil capacitors customarily used where wide ambient temperature ranges are encountered.

The new dual dielectric used in these capacitors consists of both synthetic polyester film and the highest grade capacitor tissue... a combination which offers the best properties of both materials!

The impregnant is Vitamin Q, a synthetic polymer which has been used by Sprague with outstanding success in paper capacitors for many years.

Capacitor cases are of drawn-terneplate seamless construction with double-roll sealed and soldered covers. The result is a virtually leakproof container with increased reliability over MIL units using fab. ricated cases.

For complete engineering data on Drawn-Rectangular Case DIFILM Vitamin Q Capacitors, urrite for Engineering Bulletin 234080 Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.

SPRAGUE
the mark of reliability

BPRAQUE COMPONENTE:

CAPACITORS - RESISTORS - MAGNETIC COMPONENTS - TRANSISTORS - INTERFERENCEFILTERS - PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES

As We Go To Press...

Sergeant Missile System Is Accepted by the Army

The U. S. Army has accepted delivery of the first complete "Sergeant" tactical missile industrial production system from Sperry Utah Co., division of Sperry Rand Corp.

The solid-fueled "Sergeant" extends range and vastly increases the lethal power of conventional artillery. It can be transported by land. sea or air for immediate use in rapidly changing tactical situations. It was developed for use in all weather, climates or environments. It has an 85 -mile range, can be emplaced, assembled and fired within minutes by a six-man crew and replaces the currently operational liquid-fueled "Corporal."

The production system will be used at the Army Ordnance Guided Missile School, Redstone Arsenal, Ala., in training Army missile men. Previous deliveries of the surface-to-surface missile have been for research and development testing.

GE Awarded Airborne Transponder Contract

General Electric has been awarded a $\$ 2.2$ million contract for a new airborne transponder for use in the Air Force's MISTRAM missile trajectory measurement system. When operational in 1962, MISTRAM will monitor with extreme accuracy the guidance performance of missiles launched at the Atlantic Missile Range, Cape Canaveral, Fla.

The function of the transponder will be to receive and re-transmit signals for processing by ground stations, to determine position, velecity, and trajectory of a ballistic missile or space vehicle with greater accuracy than any trajectory measurement system presently available. The system will also provide accurate real time data for range safety purposes.

Optical Fingerprinting

Approximately 900 pupils in Texas are being fingerprinted by a new optical device developed by the Electronics Div. of Chance Vought Corp. Called PROOF, the system uses no ink or chemicals but makes an instant photographic record as the fingertip is touched against a glass surface.

closed-circuit ty

Engineer holds relephone which is part of a completely-integrated closed-circuit TV syspem designed by John F. McCarthy, Inc., Philadelphia. The system is used primarily by financial institutions to insure proper signapures on checks.

Space "Life Jackets"

GE engineers have under simulated space conditions made scale models of foamed plastic "space life jackets" to demonstrate how an astronaut could actually build his own nose cone for a quick emergency return to Earth.

The plastic foam fills an envelope pre-cut to a re-entry vehicle shape at the same time encasing the man. The resulting vehicle would protect him from the severe heat and shock of re-entry and landing on Earth.

"New Proposals Threaten U. S. Patent System"'

Sen. Clair Engle says that the traditional American patent system is endangered by proposals currently before Congress which would require the government to take title to patents resulting from govern-ment-financed research. The proposals call for the government to take title to patents developed in research and development performed by private industries under government contracts.

Sen. Engle said that the proposals might well lead to eventual government ownership of all patents and subsequent elimination of the patent incentive to inventors. Congress should allow the Federal agencies to follow a flexible patent policy which leaves the question of patent rights to the discretion of officials concerned.

World Communications

System designed to meet the rising demands for world-wide communications has been announced by RCA Communications, Inc. Employing data-processing techniques in international commercial communications for the first time, it is scheduled for use late in 1962. The system will be able to handle traffic transmitted by wire lines, microwave, coaxial cable, h-f radio, tropospheric scatter propagation or satellite communications systems.

More on Page 8

"MITE"
 TELEPRINTER

A U.S. Marine carries two teleprinter MITES to a helicopper for installation im the aircraft. Compact and lightweight, the entire unit including case weighs approximately 32 lbs. It operates at speeds up to 100 mpm . The Marine Corps has placed a $\$ 2$ million order for "MITES" with the Mite CorpNew Haven. Conn.

Electronic
 SHORTS

- Bell Telephone Laboratories is conducting a test program on new cathode materials. Cathodes of very pure nickel with tungsten and magnesium additives may result in high performance electron tubes that will last many years in undersea service.
- The United Air Lines passenger terminal at the Los Angeles International Airport now uses closed-circuit television to display flight arrival and departure information. Eight 27 -inch screens are placed in prominent positions throughout the lobby, concourse and baggage-claim area.
- A miniature infrared radiometer auitable for rocket exploration of the upper atmosphere is under development at RCA's Missile Electronics and Control Divieion. The overall package, including the sensor head, the complete electronic and mechanical components, in less than 3 in. in diameter and 1 in . long.
- Aerojet-General is constructing a $\$ 1 / 1 / 4$ million facility at its Azusa, Calif., plant to test and manufacture infrared subsystems for the Air Force MIDAS satellite. The testing, and manufacturing and assembly areas are enclosed in a dust-free atmosphere. Impurities are filtered down to one micron size.

The Federal Aviation Agency and the Air Force have announced the transfer of military llight service functions from the Air Force to the FAA for all military aircraft operating within the continental United States and in oceanic areas.

- NASA has negotiated a contract with the G. T. Schjeldahl Company of Northficld, Minn. for the design, development, fabrication, and testing of rigidized inflatable spheres for its passive communication satellite program, Project Echo
- Infrared Industries, Inc. announced that their infrared traffic detector has been approved for use on federally-sponsored ruads. The unit emits a "coded" beam of infrared radiation which is bounced from passing vehicles and its reflection caught by a sensitive detector.
- Pentron Electronics Corp. has developed and is currently testing a Transmissometer fog alerting system for toll road and highway application. The system will reportedly eliminate multiple pile-up type fog accidents.

With one of Information Products Corporation's Interrogators, an individual will be able to communicate directly with centralized data processing equipment by means of a simple keyboard and viewing screen. All the information required to satisfy an inquiry can be obtained in a few seconds.

- RCA has announced unique advancements in the design and development of a transistorized ultrasonic height sensor which ensures the success of autopilot-controlled hydrofoil craft. The new device provides instantaneous and constant measurement of the changing height of waves, enabling the craft to proceed smoothly and without loss through automatic adjustment as dictated by the sensor.
- According to the Bureau of Mines, Department of the Interior, synthetic borite and bornite-type minerals of the highest purity now obtainable possess no advantages over the natural erystalline compound of copper. iron and sulfur for thermoelectric and semiconductor applications.

Hughes Aircraft Co.'s Ground Systems Group, Fullerton, Calif., is investigating the feasibility of building an advanced space tracking antenna 200 to 250 ft . in dia. The antenna would increase DSIF communications capability 10 to 30 times. Caltech's Jet Propulsion Lah. Jet the contract.

- A research station for experiments in the preservation of food by atomic radiation will be built for the U. S. Army. The station will house the largest cobalt- 60 radiation source in the U. S. It will also be equipped with a large linear accelerator to irradiate foods with highvelocity electrons. Associated Nucleonics, Inc. is designing the \$1.8 million station.

Radar Navigation System

Bendix Doppler Radar Navization Systems have been adopted by Scandinavian Airlines (SAS) and Swissair for their DC-8 and ($\mathrm{V}-991$) jet aircraft. Both airlines plan fleetwide installations and are making provision for dual installation on all aircraft.
The recently developed and high. ly accurate radar navigation aid. continuously determines the aircraft's true ground speed and wind drift angle. An electronic computer combines this information with heading data to tell the pilot how many miles he has to go to his destination and how close he is to his planned course. The system is already standard equipment aboard jet aircraft of a number of U. S. airlines, and is also used on the Fiat G. 91 light-strike NATO fight. er aircraft.

Remote Control System

RCA has announced an electronic system that keeps a constant vigil over widely separated petroleum wells or cross-country pipelines, reporting breakdowns, relaying instructions from a central control point and logging vital production data. The Automatic Logging Electronic Reporting and Telemetering system (ALERT) is "wirtually foulproof."

ALERT enables the operator uf a computer to keep in constant touch with all the wellheads under control, making production changes instantaneously or according to a desired program to maintain the daily output required. It provides up-to-the-second reports on pressures, pumping station failures or power breakdowns for the pipeline operator.

"Bullpup" Missile

Maxson Electronics Corp. has been selected as the second source for guidance and control components and for assembly of the Bullpup air-to-surface missile. The Martin Co. has produced the weapon since 1958.

The Bullpup answers a need for a tactical attack weapon which will provide the launch aircraft with a high kill probability, while minimizing the exposure of the pilot and plane to the hazards of cluse enemy ground fire.

Mora News en Page 11

FABRICATING MICROMODULES TO MOBILE ROOMS

Magnetic Shields Custom Fabricated to Any Size or Shape

The industry's widest range of production facilities ... in 3 factories: PRESS FORMING AND DRAWING - HYDROFORMING - SPINNING - HAND FABRICATION OF PROTOTYPES

Already Tooled for Samples or Production

- Simple designs to elaborate - Micromodule size to a comcomplexes.
- Single or multiple laminae constructions.

ALSO AVAILABLE

 pletely prefabricated mobile shielded room weighing 5 tons which can be trans. ported anywhere - an achievement unique with Magnetic Shield Division.*- Processed stock for fabrication in your own plant.
- Co-operative design facilities.

Use this SINGLE CONVENIENT SOURCE for all magnetic shielding requirements. Saves you countless design hours . . . helps speed your project . . . lowers your costs.

We recommend NETIC and CO-NETIC magnetic shielding materials because they are non-shock sensitive, non-retentive, do not require periodic annealing and provide completely effective shielding for optimum results.
NETIC and CO-NETIC are widely specified for satellite, missile, protecting recording tapes, data processing and for innumerable other military, scientific and laboratory applications as well as for commercial applications.

PHONE YOUR NEAREST SALES OFFICE TODAY: MOpkins 7.3765
UNION CITY. NEW JERSEY
UNion $4.95 \% 1$
MERIDEN, CONNECTICUT
BEverly $7-9232$
MIAMII FLORIDA
Mighiand 4-1118
WESTMOUNT, MONTREAL.
OUEBEC
wEllington 7-1167
DALLAS, TEXAS
DALLAS, TEXAS ELES CA
PALO ALTO, CALIFORNIA PALO ALTO, CALIFO
OAvenpert 1-506 SAN DIEGO. CALIFORNIA ACademy 4-1111 SEATTLE, WASMINGTON EAst 3-8545 PMOENIX, ARIZONA AMhurst 4-4934
HOUSTON, TEXAS HOmestesd 5-7780

MAGNETIC SHIELD DIVISION

 Porfoction Mica Compuny1322 N ELSTON AVENUE, CHICAGO 22, ILLINOIS ORIGINATORS OF PEPMANENTLY EFFECTIVE NETIC CO NETIC MAGNETIC SHIELDING

Data storage tube shield, hydroform or spinning, plus hand Iabrication.

- Micro-energy switch-designed for low current, low voltage, high speed applications
- 10 mc pulse rates, collector currents as low as 1 ma collector supply voltages as low as 1 volt
- No reduction in switching speed, as with ordinary low cur. rent, low voltage devices. Permits higher density packaging
- Typical DC beta of $40 \Leftarrow V_{c \varepsilon}=-0.20 \mathrm{v}, \mathrm{I}_{c}=-2 \mathrm{ma}$

TYPE 2N769

- World's fastest switch-will operate reliably at speeds in excess of 100 mc
- Gain bandwidth product (f_{T}) typically 900 mc
- Low capacitance, Iow saturation voltage, high beta-ideal for low-level, high-frequency logic circuits
- Extremely low hole storage factor (K_{s}) typically 18 nsec

TYPE 2N779A

- Manufactured with tighter parameter control than any other transistor in the industry
- Designed to meet rigid speciffications of 16 electrical characteristics-ideal for NOR logic and other supercritical applications
- Low saturation voltage-typically 0.09 volts
- Higher in performance, lower in price than mesa tran. sistors with lesser specifications

SPRAGUE MADT* transistor line!

High-speed switching transistors in TO-18 cases are now being mass-produced by Sprague. These hermetically-sealed germanium MicroAlloy Diffused-base Transistors are made by a controlled-etch process to insure extreme uniformity. Maximum frequency capabilities have been improved by graded-base construction. Automated manufacturing techniques have brought about increased production efficiency, permitting favorable reductions in prices. This is why Sprague MADT Transistors can offer you greater performance per dollar than other highspeed devices in low-current switching circuits.
*Trademart ial Pbilco Corporation

Other Sprague Micro-Alloy Diffused-Base Transistors

APPLICATION 2N489 2N501Altra High Speed Switch (Storage Temperature, 85 C)	
	Ultra High Speed Switch (Storage Temperature, 100 C)
2N504	High Gain IF Amplifier
2N588	Oscillator, Amplifier, to 50 mc

For complete engineering information on the types in ubich you are interested, urite Technical Literature Section, Sprague Electric Company, 233 Marshall Street, North Adams, Massachusetts.
transistors
CAPACITORS
RESISTORS
magnetic Components
interference filters PULSE TRANSFORMERS PIEZOELECTRIC CERAMICS PULSE.FORMING METWURKS
high temperature magnet wire CERAMIC-BASE PRINTED NETWOAKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS

Hi-Fi Goes Afloat

New developments in record playing equipment make them suitable for the music-loving small boat skip. per, reports the Inst. of High Fidelity Manufacturers.

Previously, the rolling motion of the boat would send tone arms skidding across the record. This problem has now been solved. A new type of tone arm has the ability to play records at a slant. No matter which way the turntable tilts, these arms keep on tracking without skipping a beat or groove. They will even play upside down. An ingenious interplay of spring tension and counterweight keeps the needle pressure on the record constant regardless of the angle of the gravitational pull.

WEATHER INFORMATION

Burroughs S203 electrostatic teleprinter prints-out live weather information at 857 words per min. Meteorological information comes

from more than 600 observation points throughout U. S. and Canada. Info goes to some 2,400 subscribers within minutes. Engineer is R. N. Westley of Burroughs Corp.

Microwave Sysfem

A seven-station microwave system is being installed by RCA for the Indiana \& Michigan Electric Co's. new Breed generating plant near Fairbanks, Ind. The 2,000 MC system will cover approximately 200 miles. The link will carry six channels of RCA multiplex equipment, providing circuits for telemetering, telephone, and VHF radio control.

As We Go To Press...

Data Processing Sysfem Delivered to Air Force

One of the largest data processing systems ever built has been delivered to the Air Force by Melpar, Inc. FINDER can store up to 31.5

million bits of information, correlate and analyze military data, prepare printed reports, charts and graphs, and display on large TV type screens, visual material in five colors. Its four individual subsystems can operate simultaneously and independently of one another.
FINDER contains a modified Burroughs 220 General Purpose Computer, and 89 racks and consoles of special purpose data processing equipment designed by Melpar. With the exception of the 220 computer, the system is completely transistorized.
The total complement of approximately 17,000 printed circuit boards contains 45 circuit types and 80.000 transistors. Overall power requirements are some 275 kva .

New Sale-Leaseback Plan

Electrical and electronic companies can now sell their existing plant and equipment and immediately lease it back for terms of from three to 12 years. The plan by Na tionwide Leasing Co., 11 South La Salle St., Chicago 3, Ill, is designed specifically for firms which have an over-large investment in fixed assets and whose growth, as a result, is being hampered by tight working capital.
It will be possible for selected electrical and electronic firms to sell, for cash, fully or partially depreciated equipment at greater-than-book-value and lease it back. Custom-built equipment is included, and no security deposit is required. The minimum amount which will be considered under the plan is $\$ 25,000$. There is no maximum.

Bus Communications

General Electric Co. will install four base stations and supply 584 mobile units to the Niagara Frontier Transit System, Inc., at Buffalo, N. Y. The equipment will operate on four low-band frequencies assigned by the FCC. Dispatchers will be able to reach the operator of every bus on the streets, and to give immediate instructions in the event of traffic delays, unexpected accumulations of passengers, or mechanical difficulties. Also, bus operators can now report difficulties to the dispatcher, without leaving the bus.

Psychology in Industry

Some corporations are now using psychology to protect expensive electronic equipment. Pressuresensitive labels created by Paramount Paper Products Co. are now in use in many plants throughout the country. The labels read, "The replacement cost of this machine is \$-. Use it with care." Observers say the result of placing the label on the item is invariably the same-it is treated with heightened respect by its operator. Repair and maintenance costs fall, and time lost by breakdowns is cut drastically.

TRACKING ANTENNA

Portable microwave tracking antenna has handwheels for manual tracking in Azimuth and Elevation. Model shown has parabolic

antenna for operation at 1680 MC $\pm 50 \mathrm{MC}$ with gain of 22 db over half wavelength dipole and 10° beamwidth. Automation Dynamics is maker.

MAXIMUW 12 nsec ton

$\mathbf{V}_{\text {CE(sat) }}$ PRACTICALLY INSENSITIVE TO TEMPERATURE... CONSTANT 1 VOLT FROM $\mathbf{- 5 5}$ to $+170^{\circ} \mathrm{C}$

The fastest silicon switcher in the industry! Design today with Texas Instruments new 2N743 and 2N744 silicon epitaxial transistors and get two-times faster switching than possible from any other commercially available silicon transistor! This outstanding new epitaxial series gives you an optimum combination of ultra-fast switching times, temperaturestable R_{cg}, very low collector capacitance, and high f_{T}, to make the 2N743 and 2N744 ideal for application in current ranges from 1 to 100 ma .
Utilize the low $\mathrm{R}_{\mathrm{cs}} /$ high current characteristics of these new epitaxial units to replace large size mediumpower transistors and cut your overall switching times as much as two-thirds. Cut cost and reduce the complexity of your NOR logic designs with the new TI 2N743 series - these new epitaxial units give you
a guaranteed $I_{\text {CEx }}$ of 30μ at a $V_{\text {CE }}$ of 10 volts and V_{BE} of 0.35 volts to eliminate additional circuits previously required for an $\mathrm{I}_{\mathrm{B} 2}$ turn-off source in your computing systems.
Apply the new 2N743 and 2N744 to your designs today and get guaranteed d-c betas at three current levels. The 2 N 744 gives you a guaranteed h_{FE} of 20 at 1 and 100 ma and a $10-\mathrm{ma}$ beta spread of 40 to 120 , while the 2 N 743 features a minimum h_{FE} of 10 at 1 and 100 ma , and 60 maximum at 100 ma .
New TI 2N743 and 2N744 silicon epitaxial transistors are immediately available from distributor stocks or in mass production quantities at prices competitive with conventional silicon mesa and micro-alloy transistors.

Compare the 2N743 and 2N744 with conventional transistors!

Parameter	Approx Test Conditions	$\begin{gathered} \mathrm{TI} 1 \\ 2 \mathrm{~N} 743 \end{gathered}$	$\begin{gathered} \mathrm{TI} \\ 2 N 744 \end{gathered}$	2N834	2N706B	2N708
$\mathrm{T}_{5}($ nsec)	$I_{8(1)}=-I_{B(2)}=I_{C}=10 \mathrm{ma}$	14	18	25	25	25
$t_{\text {on }}$ (nsec)	$\begin{aligned} & T_{B(1)}=3 \mathrm{ma} \\ & I_{B(2)}=-1 \mathrm{ma} \\ & I_{C}=10 \mathrm{ma} \end{aligned}$	11 (TYP)	10 (TYP)	35	40	35
I_{0} (nsec)		22 (TYP)	25 (TYP)	75	75	75
$t_{\text {on }}(\mathrm{nsec})$	$\begin{aligned} & I_{B(1)}=40 \mathrm{ma} \\ & I_{B(2)}=-20 \mathrm{ma} \\ & I_{C}=100 \mathrm{ma} \end{aligned}$	$\begin{aligned} & 12 \\ & 6 \text { (TYP) } \end{aligned}$	$\begin{aligned} & 12 \\ & 6 \text { (TYP) } \end{aligned}$	NO SPEC	NO SPEC	NO SPEC
Lom(nsec)		$\begin{aligned} & 40 \\ & 18 \text { (TYP) } \end{aligned}$	$\begin{aligned} & 45 \\ & 23 \\ & \text { (TYP) } \end{aligned}$	NO SPEC	NO SPEC	NO SPEC
$V_{\text {CE(sat) }}$	$\begin{array}{ll} \hline I_{B} & =1 \mathrm{ma} \\ I_{C} & =10 \mathrm{ma} \\ \mathrm{~T}_{\mathrm{A}} & =+170^{\circ} \mathrm{C} \end{array}$	0.35 v	0.35 v	No High Temp. Guarantee (0.19 y MAX. (a) $25^{\circ} \mathrm{C}$)	No High Temp Guarantee ($0.4 \vee$ MAX. (a3 $25^{\circ} \mathrm{C}$)	No High Temp. Guarantee ($0.4 \cup$ MAX. (3) $25^{\circ} \mathrm{C}$)
ICEX	$\begin{aligned} & V_{C E}=10 \mathrm{~V} \\ & V_{B E}=+0.35 \mathrm{~V} \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	$30 \mu \mathrm{a}$	$30 \mu \mathrm{a}$	$\begin{gathered} \text { No } \\ \text { Guarantee } \end{gathered}$	$\begin{gathered} \mathrm{N}_{0} \\ \text { Guarantee } \end{gathered}$	

NOTE: All limits are max. unless otherwise noted.

ICON EPITAXIAL TRANSISTORS

@

1
 0

0

 maMAKE YOUR OWH COMPRRISON FROM THESE TYPICAL CIRCUITS

USE THE TI 24743 TO DOUBLE POWER OUTPUT AMD EFFICIENCY!

70-me POWER AMPLIFIER

INDUSTRV'S BROADEST LINE OF TRANEISTORE SEMICONDUCTOR-COMPONENTS DIVISION

INSTRUMENTS
INCORPORATED
P. O. Box sola - DALLAE 2a, texas

MABI 5...MABHIID.

Up where the "wild blue yonder" becomes inky black, yoe can't afford to gamble on procise, reliable temperature control. And that's the natural domais of Stevens thermostats. They are compact and lightweight ... withstand bigh G's . . . are utterly reliable even under wide temperature swings, For Stevens Thermostats an a product of creative engineering . . . coupled with the mosi stringent environmental testing and quality control programs in the induttry. If space is your dimension, take the measure of Stevens thermontats firs.

STEVENS manufacturing compeny, inc.
P. Q. Box 1007 - Mansileld, Ohio

Type MX shown;
other Certllled dise types avaliable
2° to $6^{\circ} \mathrm{F}$ Differential Standard
r to $4^{\circ} F$ Differential Special
"Maximum spread of $6^{\circ} F$
including differential and tolerance

${ }^{*} 0^{\circ} \mathrm{F}$ Ie difference between maximum open and minimum close

Coming

Events
 in the electronic industry

May 1-3: 12th Annual Appliance Tech. ('onf., Domestic Appliance Comm., AIF.E; Kentucky Hotel, Louisville, Ky.
May 1-4: 7th Annual Aero-Space Instrumentation Symp. North Texas Section, ISA; Dallas, Texas.
May 2-3: 33rd Annual Mtg. of Lead Industries Assoc., LIA; Drake Hotel, Chicago, III.

May 2-4: Industrial Waste ('onf.. Purdue Univ., West Lafayette, Ind.
May 2-1: 6th Biennial Midwest Electrical Industry and Lighting Exp., Flectric Assoc. of Chicago, Electrical Maintenance Eng. of Chicago: McCormick Pl., Chicago, III.
May 2-1: Electronic Components Conf., IRE(PGCP), AIEE, EIA. W'EMA; Jack Tar Hotel, San Francisco, Calif.
May 1: Engineering Applications of Medium sized Disital Computer. Univ. of Vermont, AIEE; Univ. of Vermont, Burlington, Vt.
May 1-5: 2nd Natl. Symp. on Human Factors in Electronics. IRE (PGHFE); Marriott-Twin Bridges Hotel, Arlington, Va.
May 8-5: Spring Textile Conf., AIEE; Heart of Atlanta Motel, Atlanta, Ga.
May 1.7: Convention of the American Women in Radio \& Television, Inc.: Statler Hilton Hotel, Washington, D. C.

May 5: Midwertern Regional Mig. SAME; Detroit, Mich.
May 6-9: Sth Midwest Symp. on Circuit Theory, IRE; Univ. of Ill., Urhana, Ill.
May 6-10: Mig. of the Electrochemical Soriety, Inc.: Statler Hotel, Los Angeles, Calif

May 7-11: 42nd International Conf. \& Office Exp., NOMA; Sheraton-Jefferson Hotel \& Kiel Auditorium, St. Louis, Mo.
May 7-11: 39th Annual Conv. \& Hroadcast Eng'g. Conf., NAB; Shoreham \& Sheraton Park Hotels, Washington, D. C.
May 7-12: 89th Conv. of the Sociely of Motion Picture TV Engra. SMPTE; King Edward Sheraton Hotel, Toronto, Canada.

May 8-10: 13th Annual Natl. AeroSpace Flectronics Conf. (NAE CON), P(iANE \& Dayton Section of the IRE; Hiltmore \& Miami Hotels, Dayton, Ohio.
May 8-10: 4th Natl. ISA Jower Instrumentation Symp.; LaSalle Hotel, Chicago, Ill.
May 9-11: Power Sourcer Symp.。U. S. Army (Signal Corps $R \& D^{\circ}$ labs.): Shelburne Hotel, Atlantic City, N. J.
May 9-11: Kastern States Show, Material Handling Institute: Convention Ilall, Phila. Penna.
May 9-11: Western Joint Computer Conf., IRE(PGEC), AIEE, ACM; Ambassadur Hotel, Los Angeles, Calif.
May 9-11: Electronic Components (conf., IRE; San Francisco, Calif.
May 10-12: Mig. of the Society for Experimental Strers Analysis; Benjamin Franklin Hotel, Phila., Pa.

May 10-12: Production Engineering Conf. \& Show, ASME: Royal York Hotel, Toronto, Canada.

Mas 10-12: Pulp and Paper Instrumentation Symp., ISA; Northland Hotel, (ireen Bay, Wisconsin

"CALL FOR PAPERS"

The Fart Lansing Symposium on Engineering Writing and Speech, Oct. 16-17. Kellogr Center for Continuing Education. Michigan State University, East Lansing, Mich. Papers to deal with the theme "Communicating Ideas-The Modern Engineer's Function." Deadline date for papers: 500 word sum-mary-July 15, 1961. Forward papers to: J. D. Chaplin, Program Chairman, Philco Corp., 3900 Welsh Rd., Willow Grove, Penna.

International Symposium on Aerospace Nuclear Propulsion. Las Vegar, Nev., Oct. 23-26, 1961. Deadline date for papers: rough draft
and 500 word abstract by July 1 , 1!961. Forward to: P. M. Uthe, University of California, Lawrence Radiation Laboratory, Box 808, Livermore, Calif.

1962 Winter Cieneral Mig., New York City, January 28-Feb. 2, 1962, American Institute of Electrical Engineers, Computing Devices Comm. Computer Systems Subcomm. Subject: "Kilomeracycle Computing Systems." Deadline for papers: 100 word abstract and 500 word informal summary. July 1 , 1961. Forward papers to: J. H. Wright (Papers Chairman) Division 12, U. S. National Bureau of Standards, Washington 25, D. C.

May 11-12: Annual Mtg. American Institute of Chemists; Statler Hotel, Washington, D. C.
May 11-13: Mtg. American Radium Society: Colorado Springs, Colo.
May 11-13: Spring Mtg. of the Acoustical Society of America; BellevueStratford Hotel, Phila., Penna.
May 12: Mtg. of the Electronic Representatives Assoc. Exec. Comm. \& Natl. Board of Governors; Conrad Hilton Hotel, Chicago, Ill.
May 12-13: III. Section Mtg. of the MAA; Univ. of Illinois, Urbana, Ill.
May 15-16: Jackaging Industry Conf.. AIEE; New Ocean House, Swampscott, Mass.
May 15-16: Annual Mtg. of the Society of American Military Engineers: Mayflower Hotel, Washing ton, D. C.
May 15-17: Natl. Symp. on Microwave Theory \& Techniques, IRE (PGMTT); Sheraton Park Hotel, Weshington, D. C.
May 17-19: North-eastern District Mig. of the AlEE; Statler Hotel, Hartford, Conn.
May 17-21: Intl. TV Symp. an part of the lst International Festival of TV Arts and Sciences, International Telecommunication Union; Montreux, Switzerland.
May 18: Tour of Environmental Facilities, IES (N. Y. Metropolitan Chapter): Brooklyn Navy Yard, N. Y.

May 18-20: Annual Board Mtg. of the Penna. Society of Prof. Engineers. Pittsburgh Hilton Hotel Pittsburgh, Penna.
May 19-20: Design and Drafting Seminar, American Institute for Design and Drafting; Oklahoma State Univ., Stillwater, Okla.
May 19-June 4: British Trade Fair: Sokolniki Park, Moscow, USSR.

May 22-24: Annual Conv. and Exp. of the American Society for Qualits Control; Sheraton Hotel, Phila., Pa.
May 22-24: Natl. Telemetering Conf. IAS, IRE, AIEE, ARS, ISA: Shera-ton-Towers Hotel, Chicago, Ill.
May 22-24: 5th Natl. Global Communications Symp. (GLOBECOM V), IRE(PGCS), AIEE; Sherman Hotel, Chicago, Ill.
May 22-24: Electronic Parts Distributors Show: Conrad Hilton Hotel, Chicago, III.

May 22-25: Design Engineering Show \& Conf. ASME; Cobo Hall, Detroit, Mich.
(Continued an page 16)

LENZ anticipates demand

 anticipating the demand with the right cable for the electronic industry's newest developments in stereophonic equipment "MULTIPLEX" Double Channel Audio Cable, Code No. 17555, can be used with any one of the several stereo multiplexing systems now under consideration.

Designed for use wherever a double channel audio cable is required, i.e. amplifier to decoder, etc., this new cable contains color-coded conductors completely insulated from each other. Construction is such that the cable is extremely Rexible with minimum diameter.

One Conductor of each pair is insulated. stranded, tinned copper wire. A spirally wrapped tinned copper shield forms the other conductor of each pair. This spirally wrapped shield is easily formed into a pig-tailed connection. Capacity-30 uuf per foot.

Be prepared for stereo-multiplexing-mail the coupon today for complete information!

Coming Events

(Continued from page 15)

May 22-26: Engineering Conf. \& Ex. hibit, ASTME; New York Coliseum \& Statler Hotel, New York, N. Y.
May 22-26: Natl. Conf. of the Socicty of Photographic Scientists \& Fingineers, SPSE; Arlington Intel, Binghamton, N. Y.
Nay 23: Fractional Hnesopower Mofors Conf.. AIEE; Biltmore Hotel Dayton, Ohio.
May 23-25: Symp. on Large Capacity Memory Terhniques for Computing Systems, ONR (Information Systems Branch); Dept. of Interior Auditorium, Washington, D. C.
May 24-26: 37th Annual Conf., Filec. tronic Industries Assoc.: Pick-Congress Hotel, Chicago, Ill.
May 25-26: Mtg. Operations Rescarch Society of America: SheratunBlackstone Hotel, Chicago, III.
May 26-29: Southwestern Div. ('ons. of the American Radin Relay league, ARRL; Westward Ho Hutel, Phoenix, Arizona.
May 30-June 2: Electronic Compu. nents Show: Grand Hall, Olympia, London, W. 14, England.
May 31-June 2: 7th Annual Radar Symp., Institute of Science and Technology; Univ. of Mich., Aun Arbor, Mich.
llay 31-June 2: Frequency Conirol Symp., U. S. Army (Signal Corp): R \& D Labs.); Shelburne Hotel, Atlantic City, N. J.

Abbreviations

ACM- Assuciation for Computing MaAhinery
Altic-American Institute of Electrical Engineers
ARRI. American Radio Relay l.eakue ARS American Hocket Society
ASME American Suciety for Mechnolical Einkineera
AST-nE-American Society of Tool and Manufuturing Engineera
F:IA- .lectronic Industries Annociation ifurmerly HF:TMA,
IAS-- In titure, \& Aerompace Scim en If:S-In:titute of Enviroomental Sciences
KL-Institute of Radio Engineers ISA-Instrument Soriety of Amieric: 1.1A Lead Induntries Amuciation MAA - Mathematical Association America
NAB National Association of Broudcasters
NOMA-National Office Munagement Absuciation
ONR-Office of Naval Research
PGiANE-Professional Group on Aeronautical Navixational Electronicn Pric P-Professional Group un Component Parts
munications System PGEC-Professional
trinic Cumputers
PliHF-Professional Group on Fartora in Electronics
P(iMTT Profestunal Group mirnt wave Theory \& Techniques
SAMED-Society of American Military
Engineers
SMPTEE-Socifty of Motion Picture \& TV Engineery
SPSE Society of Photographic Sci-
WMMA \& Enkineers
W'EMA-Weatern Electronir Mnnufac turers Association

NEWEST ULTRA HIGH SPEED

saturated logic switching TRANSISTORS FROM PSI 2N919 (formerly PT706) MEDIUM $h_{F E}$ $2 \mathrm{~N} 92 \mathrm{O}=$

- Low VCe (sat) - Low T, - High Power - High Current LAMINAR CONSTRUCTION Meet or exceed all epitaxial characteristics ... and delivery now!

TECHNICAL DATA								
TYPE	\checkmark coo	V ¢et	V сьo	$V \in \mathbb{N}$	$n \cdot{ }^{\text {c }}$ -	V¢E(sat)*	T, max. ${ }^{\text {a }}$	Pkg.
2N919	25	20	15	5	20.60	. 2	25 ns	T0.18
2N920	25	20	15	5	$40 \cdot 120$. 2	25 ns	T0-18

NOTE: GUARANTEED 15 ns Max. T, available in both types. Specify " A " versions.
-See data sheet for exact test conditions.

Phome, wire or write a nearby PSI field office for full detaits, delivery schedules and quantity prices. Off-the-shelf delivery from PSI distributors everywhere.

Pacific Semiconductors, Inc.

2 NEW TRANSISTORS

for 3 SPECIAL APPLICATIONS

- Newest Core Driver
 - Medium Power Switch
 - Clock Pulse Generator

PT600

Medium $\mathrm{h}_{\text {FE }}$

High h_{FE}

- Low VCE (sat) - High Current - Fast Switching - Controlled h_{FE}

TRIPLE DIFFUSED MESA CONSTRUCTION

TECHNICAL DATA								
TVPE	Vaso	Vcer	Viou	hre ${ }^{\circ}$	$\begin{gathered} V \operatorname{Ce}(\text { sat })^{\circ} \\ \max \end{gathered}$	ton trp.*	Pc $25{ }^{\circ} \mathrm{C}$	Phe.
Pr600	60	45	4	15-45	1.0	40 ns	13*	10.8
PTE01	60	45	4	30-90	1.0	30 ns	13w	TOB

- Measured al 1 Amp collector curient. See data sheet for exact conditions

Phone, wire or write a nearby PSI field office for full details, delivery schedules and quantity prices. Off-the-shelf delivery from PSI distributors everywhere.

Pacific Semiconductors:Inc.
 A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE INC

12955 CHADRON AVENUE, HAWTHORNE, CALIFORNIA

OR 8-4711, OS 8-2281 - TWX: HAW CAL 4270 - Cable Address PSISOCAL
SALES OFFICES
NEW YORK - 870 Broadway, Newark 4, New Jersey MUmboldt 4.5616 . TWX: NK 1010
Beston-471 Washington Streat, Wellesley B1, Mass. . CEdar 5-0171
Syracuse - 4455 E Genesee Streel. Do Witt, Now York • GIbson 6.4600
CALIFORNIA - 8271 Melrese Ave., Los Angeles 46, Calif. OLive 3.7850
San Diege-2223 El Cajon Blvd-Room 211 .
CYpress 7.3951
Pale Alto-701 Welch Rond-Suite 205. Palo Alto, Calis.

- DAvenport 1.2240

DISTRIBUTORS IN MAJOR ELECTRONIC CENTERS COAST-TO-COAST

WHO SAID IT COULDN'T BE DONE?

Lots of people thought this tiny "I-watter" was impossible. But here it is. And for the first time in this power rating, circuit designers can get all the advantages of a wire-wound, vitreous-enameled resistor with axial leads-high temperature operation, up to $350^{\circ} \mathrm{C}$: $\pm 5 \%$ tolerance; low temperature coefficient; low "noise" level; stability; and sfrong, welded construction.

Construction is the same as Ohmite's 3,5, and 10-watt sizes-including ceramic core, uniform winding, tough Ohmite vitreous enamel coating, and traditional Ohmite reliability.
Resistance values range from 1 to 6000 ohms. But you can find out all about this exclusive Ohmite development by writing for Bulletin 147F. Do it now!

OHMITE MANUFACTURING COMPANY
 3662 Howard Streot
 Skokio, llifinols

Rheostats Power Resistors
Precision Resistors Variable Transformers Tantalum Capacitors Tap Switches Relays R.F. Chokes
Germanium Diodes Micromodules

heat shrinkable

TH
 ERM PREFORMED
 O FIT. covers

Now-covers of THERMOFIT especially preformed to fit your component quickly with no positioning problems. A few second application of heat shrinks the cover to tightly encopsulate even the most complex shapes. Available in seven plastic and rubber materials for all environments.

Briefs

Capsule summaries of important happenings in affairs of equipment and component manufacturers

EAST

QADIO CORP. OF AMERICA -III add a 3. stury wing to their David Sarnoff Research atury wing to their David Sarnoff Research
Center in Princeton, N. J. It will aceummodate Center in Princeton. N. J. It will accummodate
additiunal laboratories needed for an expanding additional laboratories needed for an expanding
program of research in electrunically active program
materiale.
burnell a CO., Ine.. Pelham. N. Y., hae uequired afixed assets. inventory and name of Gray a Kuhn. Inc., Weatbury. N. Y., manufacturer of delay lines, from IMC Magneticn Corp.
dOUGLAS MICROWAVE CO.. INC., Ml. Vernon, N. Y., has purchased the Eli-Run Eilectrunicas Co., Brooklyn. N. Y. Elli-Ron will be known as the Turotron Corp.. a division of Duuglas. Turutron will design and manufacture ex expanded line of toroidal components, magnetic amplifiers and related cumpinents, as well an wave filters, atatic inverters and hish precision decade inductors.

MELPAR. INC., has leev awarded a 81.7 million Navy contract to product two operational flight trainers for the A4D-2N weepun system. This will make a total of 6 such syatems built by Melpar for the Navy.

Melean engineering labs., Princeton, N. J., has juat completed a new wing to their present building. The wing will permit expansion of the company's research and development departments.

PHILCO CORP:': new suburban Research Center in Blue Bell. Pa., nuw complete. Formal dedication ceremoniea are planned fur late Spring.

GENERAL ELECTRIC'S MSVD's new Valley Forze Space Technology Center planned investment has been increased to about $8: 30$ million. Construction has been apeeded up and the slie of the facilities expanded.

ITT PEDERAL IaBS has received an additional USAF cuntract for radio tranamitting ersuipment to suide aircraft and misailes linked to the natiun's SAGE warning network. This bringe the Nutley firm's total commitments to the SAGE prugram to 813 million.

KEYBTONE ELECTRONICB CO., Newark, N. J., has announced that they have recently been awarded several contracts for an undisclosed sum by Raytheon Mfg. Co. Contracts are for the development of filters in the Mauler Misaile Program.

MILGO ELECTRONIC CORP. Miami, Fla. will be delivering highly fexible instrumentation for NASA'. Wallops Island launching facility this Spring. The material will be delivered under a $\$ 705,000$ prime contract with NASA.
LABORATORT POR ELECTRONICB, INC. has taken the frst step in a planned, 8-year faclitien expanaion program with the aequisition of a 116 -acre site on Route 128 in Danvert, Mass. Immediate plans call for construetion of a 60,000 eq. fl. R\&D facility on this land.

NAVIGATION COMPUTER CORP.。 NormsLown, Pa., has formed a new Special Products Div. E" that their experience with etched-eireuit packaging ean be made available to industry.

ELECTRO-TEC CORP., So. Hekeasack. N. J., han been awarded $\$ 280,000$ contract for platter-type slip ring assemblies to be used it radar antennas (AN/SP26) being built for the Aif Foree by the AVCO MPE-CorD

GENERAL PRECIBION, INC., Link Div., has been awardet two new contracts, totaline more than in million from the Air Force Une contract from the Air Material Command calls for the delivery of fight simulators for pilut training for the C-180 Cargo Transport. The secund contract provides for development and manufacture of a new visual simulation yatem to be attached to Air Force simulator for modern types of aircrafte.

THE MAGNAVOX CO. enters the electronic urgan field in July. The organa will be fully trannistorized and in the popular price range. The company says that the sale of organs has increased 20% per year since 1955 and has nuw reached un annual retail aalen mark of 8188 million.

THE RAYTHEON CO. has been awarded a Navy cuntract for $\$ 28.177 .129$ for added pro duction of the Sparrow III air-to-air supernonic misaile aystem. Work on the contract will be performed at the firm's Aero/Weapons Div plants in Lowell, Mass., and Bristol, Tenn.

WESTINGROUSE ELECTRIC CORP., Pittsburgh. Pa., has received a contract for 87.3 million for the develupment and production of the weapon direction equipment for the Navy's Typhon weapon aystem. The contract le said to be unique. in that it covers the firat integrated shipboard radar and armament control ayntem to be produced for the Navy by a single cumpany.

MIOWEST

THE VICTOREEN INBTRUMENT CO. Jordan Electronice Div., has received \$434,389 cuntract from Sperry Rand Curp. for additional guidance power supplies for the U. S Army's Sergeant muided misalle sybtem.

REMINGTON RAND. Univac Military Dept., St. Paul, Minn., has received a letter contract fur $\$ 5.534 .526$ for the production of additional computer systems for the recently announced Naval Tactical Data System (NTDS).

CLEVITE CORP. Cleveland, has announced an agreement with Centralab, the Electronica Div. of Glube-Union Inc., Milwaukee, Rranting rishts under Clevite patents in lead zirconatelead titanate, piezoelectric elementa.

AMPHENOLBORG ELECTRONICS CORP. Broadview, III., and FXR, INC., Woodside, N. Y., announced an agreement "in principle" for the merger of FXR. Inc., into AmphenolBurg. The propoaal will be submitted to stockholders of both companie this month.

OAK MPG. CO., Cryatal Lake, Ill., hat acquired McCoy Electronics Co. of Mt. Holly Springa, Pa., producers of quarte erystals and Springs, Pa., producern of quarts erystals and
flters. Acquisition of McCoy is being made fiters. Acquisition of McCoy being made not disclosed.

COLLINS RADIO CO.. Cedar Rapida, Ia. has received a $\$ 524.000$ letter contract award to aupply the U. S. Air Force with HF-101 airborne communication transceivers and aca ceasories.

TELEX, INC., St. Paul, Minn., has received initial orders from three major computer cuttomens for their Telex I Mar Memory Module. Schedule calls for delivery this year. Amount of the onders was not disclosed.

THE EMEREON ELBCTRIC MPG. CO, bes eatablished anew Induatrial Electronica Div. to deaign and manufacture a broad range of pres cision electronic control devices and syatems for industry.

WEST

LITTON INDUSTRIES has acquired Hop kins Engineering Co. of San Fernando, Calif. Hupkins manufactures microminiature eapacitors and radio interference flters. The purchase in being made with an undisclosed amount of Litton stock.

TEXAS INSTRUMENTS INCORPORATED has been awarded two contracts totalling more than 8600,000 by Minneapolis-Honeywell for the development and production, by the Apparatue Div.. of electronic flight controls for use in Martin Co.'s TITAN intercontinental ballistice missile and Chance Vought Corp.'s SCOUT re search vehicle.
VARO MPG. CO., INC., Garland. Tex., and Der LTD.. Senta Barbara, Calif., have anhounced the agreement between managemen of their companies for the sale of all assets of D\&R Lid. to Varo, Inc., for an undiaclosed amount of Vero stock.
THE BENDIX CORP. N. Hollywood, Calif. hes received a 81.3 million followton production order from Convair-Pomona Div. for elec. tronic portions of Terrier misoile guidance sytem.

RUGHES AIRCRAPT CO. Culver City Calif., has made available to private induatry their complete instrument calibration laboracory. The company was enenaraged to lake the step because of the increasingly stringent standards of accuracy being imposed on manu facturers by the demands of the apace arp.

HOPPMAN ELECTRONICS CORP., Loo An seles, has received a new contract valued a approximately 81.25 million. Contract ls for the dellvery of an additional quantity of sub marine radio transmitters. This $\begin{gathered}\text { ale } \\ \text { order }\end{gathered}$ increases the value of the total orders received ω date on this program to approximately $\$ 7.75$ million.

PACIPIC BEMICONDUCTORS, INC. TE ceived a report made by the American Boach Arma Corp. indicating that only one of their diodes failed in 150 million hours uf diode operation.

MIDWESTERN INBTRUMENTS, Tulsa Okla., has received an order for $\$ 750,000$ worth of osillographs to be used in Lockheed's 'MADREC' program.

AERONUTRONIC DIV., PORD MOTOR CO. Newport Beach. Calif., has received a \$5. 361,619 contract from the U. S. Army for the continuation of the development of the stillsecret Shillelagh misaile. This new award bringe the eurrent contract cotal on this misile progrem to $\$ 20,099,789$.

AMERICAN BYSTEMB INC.. an affliace of Sehlumberger Well Surveging Corp. of Houscon. Tex., hee completed the aeguigition of the Inatrument Div. of Miero-Path Inc.

EITELMCCULLOUGA, INC., has received - \$432.000 order from the Aerospace Div. of Ryan Aeronautical Co. for traveling-wave tubes. The tubes will be used for the Q-2C Firebee target drone. The tube will make it possible for the Firebee, a pilotless radio-con erolled drone, to appear as large as a Il-52 on the radar screen of the nation's defense team. Is will aimulate a large eneiny bomber and serve as a target.

CANNON BLECTRIC CO_ Los Aareles, has announced that a license agreement between their company and New Twiat Connector Corp. of Santa Monlea, Calif., has been sisued. Under the asroement Cannon to authorised to der the agrement Cannon form of twintedwire pin contect developed by Nee Twint.

FOR

military REQUIREMENTS
BE SURE OF MAXIMUM
RELIABILITY...SPECIFY PHILCO TRANSISTORS

Abstract

Look to the pioneer producer of many millions of Military transistors for your critical applications. Philco has been the symbol of reliability from one of the industry's first JAN types (2 N 128) to the present broad Military line. The enviable record of ultra-reliable performance has resulted in the use of Philco transistors in many Military programs. The following types are available to existing Military specifications:

TYFE MO.	APPLICATIOM	MILITAEY SPEC. MO.
2N128	High frequency amplifier	MIL-T-19500/9A
2N240	High speed switch	MIL-S-19500/25A
2N393	High speed switch	MIL.S.19500/71A (Sig C)
2N495	Medium Irequency amplifier (Silicon)	MIL-T-19500/54A (Sig C)
2N496	Medium speed switch (Silicon)	MIL-S-19500/85 (Sig C)
2N499	VHF amplifier	MIL-S-19500/72A (Sig C)
2N501A	Very high speed switch	MIL-T-19500/62 (Sig C)
2N502A	VHF amplifier	MIL-S-19500/112 (Sig C)
2N599	Medium speed swith	MIL.S-19500/166 (Navy)
2N1118	Medium frequency amplifier (Silicon)	MIL-S-19500/138 (Sig C)
2N1119	Medium speed switch (Silicon)	MIL-S-19500/139 (Sig C)
2N1158A	VHF oscillator	MIL.S.19500/113 (Sig C)
2N1199A	High speed switch	MIL-S-19500/131 (Sig C)
2N1200	HF amplifier (Silicon)	MIL.S.19500/105 (Sig C)
2N1201	HF amplifier (Silicon)	MIL.S-19500/101 (Sig C)
2N1411	High speed switch	MIL.S-19500/133 (Sig C)
2N1499A	High speed switch	MIL-S.19500/170 (Sig C)
2N1500	Very high speed switch	MIL-S-19500/125 (Sig C)

For information on any of the above sypes, wrise Dept. EIS61.

LANSDALE DIVISION * LANSDALE, PENNSYLVANIA

government electionic CONTRACT AWARDS

This list clossifies ond gives the value of elactronic
equipment selocted trom controcts owarded by
government agencies in Jonuory. 196%.
Amplifiors
Antenna Multico
Antennas
Antenna Systomi
411.751

394,600
96.752

4,459
39.000

Battorios
Boacons
1,645,288
386.503

250,606
25,55।
587.188
26.568

583,601
210,491
29,000
524,058
594,000
565,200
58,345
03,655
102,050
46,610
40.520

1,019,031
115,735
46.875

490,426
400,826
71.404

26,936
262,560
1,359.925
9.466.767

38,165
3,040,476
5,232,339
232.521

160,000
303,648
89,631
131.571

35,063
520,217
122.540
102.447
124.405
57.492

185,275
78,501
130,000
273.981
196.677

379,500
2,506.717
129.889

1,366,894
42.787

1,202,250
36,000
104.700

273,932
4.268,767

230,985

U. S. DOMESTIC EXPORTS OF SELECTED ELECTRONIC PRODUCTS, ANNUAL 1960 AND 1959

(Value in thousands of dollars)

Commodity Description	1880 D	1959
Radio broadcast transmitting equipment. parts	2,354	3,821
TV broadcast transmitting equipment. parts	3,223	3.441
Radio and TV broadcast audio equipment, parts	1,495	1.463
Television broadcast studio equipment. parts	13,768	8,931
Radio beacon (beam) Iransmitters, parts	910	1.483
Automobile radio receivers	1,395	1.782
Radio-phono. combinations, without TV	515	916
Radios, home-type. without TV	2,861	4,086
Radio receiver chassis, home-type, without TV	876	835
Television receivers	14.713	17,631
Telovision receiver chassia	3,968	2,901
Electron tubee, recoiving	14,382	14,671
Tolovision camera tubes	1,468	1,682
Television pleture tubes	21,304	13,757
CRT's, not elsewhere clasefied	2,086	889
Parts, accessories for electron tubes	6,796	4,887
Crystal diodes and transistors	15,973	9,148
Capacitors (condenesrs)	7.570	6,102
Resistore.	5,379	4.175
Inductors (also transformers, colls)	4,092	3,970
Loudspeakers	1,646	2,137
Carrier current equipment, parte	1,197	2,628
Audio amplifiers, amplifier systems	2,798	3,317
Amplifiers (except audio frequency), parts	1,695	1,172
Recorders (disc, tape, wire), parts	12,971	10,888
Electronic equipment and parts, not elsewhore classified	44,001	38,813
Coin-operated phonos, now.	10.545	11,020
Coin-operated phonos, used. rebulit	2,025	2,144
Phonos, except coin-operated	2,346	3,108
Phono parte	5,687	6,864
Phono records and blanke	10,682	10,704
Signal generatore	6.041	4,651
Test instruments	11,813	7.623
Test instrument parts	18,408	18,955
Electronic computers	38.730	17,055
Parts and accessories for computera	9.018	8,820
Subtotal	304, 530	252,378
Special catogory ltems:		
Radio communications equipment	84.262	80,681
Electron tubes not elsowhere classified	18,055	13,340
Electronic dotection and navigation apparatus not olsowhore classifiod.	49,838	44,318
Total	466,488	400.725

[^0]Source: U. S. Department of Commerce, Bureau of the Census.

Acoustical noise: 85 db . at 6 inch distance

For noise at microwave frequencies, too. there's an ideal device in a small package. It's the Litton L-2000 series of miniature gas discharge noise sources. Use them for automatic monitoring of the performance and sensitivity of modern radar systems. They're available to cover the most-used frequency bands and come in a variety of mount configurations.
The series features a shielded cathode, low modulator drain. and field-replaceable tube insert. Rugged. Insensitive to a wide range of ambient temperatures. Compactly engineered for demanding air and ground environments. Economical because of replaceability, plus added advantages of logistic simplicity and ease of maintenance.

10 as pulse separated from 4 as pulse by 1.2 as space. Trace A: 100 -kc system input. Trace B: 100 -ke output. Trace C: CM-100 output. Sweep Rate: $10 \mathrm{\mu s} / \mathrm{cm}$. Vertical Deflection: $.5 \mathrm{v} / \mathrm{cm}$.

Pulses recorded on any standard 100-kc system reveal previously undisclosed data when played back on the Mincom Series CM-100 Video Instrumentation Recorder/Reproducer. At 60 ips , a prerecorded tape from a standard $100-\mathrm{kc}$ recorder will present on the CM-100 an improved frequency response of $200 \cdot 220 \mathrm{kc} \pm 4 \mathrm{db}$ with a practical limit of 250 kc . CM-100's superior playback heads and phase-compensating electronics produce better rise time, correcting for phase shift and overshoot. This recovery of hidden data is only one of the advantages of the CM-100. a 7 or 14-track 1-megacycle system which is now performing predetection recording/reproducing on an operational basis - in FM. FM/FM modulation, PCM and PCM/FM. Write for specifications.

2
 Snapshots . . . of the Electronic

COMPUTER LOGIC CIRCUIT
Raytheon Company's electronic "Spider" is actually a logie circuit for computers. Three diodes, a coupling metwork. I fransister and two resistors have been squeszed into an ordinary fransister case.

SPACE-AGE BARGE "PALAEMON"
The Palaemon is shown on its first "shakedown cruise" on the Ten nesses River. It will transport the first two stages of the Sapurn space vehicle from the Space Flight Center, Huntsville. Alabama to Cape Canaveral, Fis. for its initial flight test later this year.

dollar bill chancer

Machine converts dollar bills into a dollar's worth of nickels, dimes and quarters. Manufactured by the A.B.T. Division of Automatic Canteen Co. of America it accepts only U.S. one dollar bills and rejects all others.

BRIGHTER TV PICTURE TUBE

A rainbow of color is produced on RCA's new color TV picture tube during tests. The 21 inch color rube provides up to 50 per cent brighter piefures with greater sharpnass and conirast. It alse enhancas B6W images.

DIGITAL VOLTMETER
This digital voltmeter by the Cubic Corp. will operate when totally submerged. Developed for use aboard Polaris-firins submarines, it can withstand 50C shock, and will operate in highly volatile atmospheres.

EPITAXIAL CRYSTAL GROWTH
High purity silicon for rapid switching transistors and diodes is grown epitazially in a special furnace at Sylvania's Semiconductor Device Development Lab. Woburn, Mass

RHENIUM. MOLYBDENUM A fungsten are furnace is used to melt Rhenium - Molybdenum alloy compacts into bass. Chase Brass G Copper Co. has announced the first commercial production of the metal.

MILLION DOLLAR CLASSROOM
This trainer (right) serves as an all-weather, non-flying classroom for training CIC crews in the operation of the APS-82 Radar. Made by Huyck Systems C_{0}, it is also used to indicate limitations of the operational equipmont under normal combat conditions.

Industries

MORE MEGAWATT CYCLES PER DOLLAR *

The Shockley 4-layer diode offers you a fast, simple method for generating voltages up to 200 volts and pulse currents from 2 amps to 100 amps. Turn on time-just $0.1 \mu 8$.

This reliable, solid state device gives you simplicity along with small size, light weight, drastically reduced power consumption and high speed.

These unique advantages make the Shockley 4 layer diode an ideal device for pulse generators, pulse amplifiers, pulse modulators, squib firing
detonator circuits, for triggering thyratrons, magnetrons, traveling wave tubes...

Shockley 4-layer diodes have been proved in many, many industrial and critical military applications. If you have a circuit problem involving the fast switching of high power, the advantages and capabilities of the Shockley 4 -layer diode could help you solve it. Call your Shockley representative or write for application information.

- Even the amallest Shockley 4-layer diode will handle 2 empere puleen. (The unit price for 500 Type D diodes is \&4.)

> UNITOF CLEVITE TRANSISTOR

Shielded Interconnecting Cables

Duplex Connector Extension Cords

Low Impedance Liers
$\square G$
Cathode Ray Tube Load

Miniaturind Cables

ExClixicist $\quad 3=0$ rid Wires

Unpaired Intercom

Cables

Mr. Design Engineer... BELDEN Has It

Every electronic and electrical wine you need-from the finest drawn magnet wire to the most complex multiconductor cable.

There is a Belden wire or eable in every insulation and ahielding to meet your design and application requirements. Here is just part of this complete line. Available from stock.

One Wire Source for Everything Electronic and Electrical

- electronic wire - magnet wire - leed wiro - power supply cords - cord sets - portablo cordage
$5+1$
 Extension Cords
(2) Strain Gauge Cables
 Camera Cable
 Call System Cobles

Teflon © Wires
OOu Pont trademark

Control Cables

Coiled Test Prod Wire

RC/U Cables

Mi Fature Audio Cables

2.Conductor Power Cords

Miniature
3.Conductor Power Cords

Rubber Microphone Cables
\longrightarrow
Hook-Up Wires

Duplex Primary Wires

Pair Cables

El's International News

EUROPE

German Airfields Improve Air Sofety

Leipzig, Germany - The German Democratic Republic has awarded Pye Telecommunications Ltd., Cambridge, England, a $\$ 112,000$ contract for electronic equipment. It includes an In strument Landing System (I.L.S.) for Dresden International Airport and the latest vhf ground-to-air communications equipment for Schoenefeldt airfield and the East German area.

R.S.A.F. Bolsters Air Defense

Stockholm, Sweden-The Royal Swedish Air Force, in an effort to more effectively deploy its fighter aircraft and surface-to-air missiles, is bolstering the electronic equipment in its air defense system. More than $\$ 4,760$, 000 is being spent in the effort.
Marconi Wireless Telegraph Co., Ltd., England, is contractor for a high speed computer system which solves a larger number of interception problems simultaneously, enabling defense weapons to be deployed to best advantage.

ENGLAND

B.O.A.C. Comets

Geł Marconi Doppler

Chelmsford, Essex-The British Overseas Airways Corp. has elected to equip its fleet of 19 Comets with the Marconi Doppler Navigator, type AD2300A.
Comet captains will now have instrumentation to provide them with instantaneous and continuous information un ground speed, angle of drift and distance flown. This equipment is completely self-contained in the aircraft, and requires no ground stations for operation.

Exhibition of Nuclear Electronics

The Scientific Exhibition on Nuclear Electronics will be held at the Belgrade Fair Grounds, Belgrade, Yugoslavia, from 13 to 21 May 1961 in connection with the Conference on Nuclear Electronics. The purpose of the Exhibition will be to illustrate papers presented at the Conference by means of exhibits and to show advanced nuclear electronic equipment and instruments.

USSR

Aufomation and Process Control Get Big Push

Los Angeles, Calif.-"The Soviets attach almost as much importance to progress in the iron and steel industry as they do to their missile program," W. E. Miller, Manager of GE's steel mill engineering, told the Association of Iron and Steel Engineers, at its Western meeting.

After an 11 day trip in Russia last summer, and talks with top steel industry engineering management and development engineers, Mr. Miller states, "we had learned with considerable shock the rapid progress Russia has achieved through automation and extreme concentration of effort in this important industry." He went on further, "all indications are, that the USSR has placed its economic future in the hands of the automation and systems engineers."

Posters and signs picture a continually growing Soviet economy and the eventual death of capitalism. "In one instance," he added, "the application and wholehearted acceptance of automation by Soviet workers is pictured as the key to eventual Soviet superiority in the economic race."

ELECTRONIC CONVERTERS FOR USE IN JAPAN

Japanese engincers being trained to service the $\mathbf{2}$ electronic converters made by Digitronics Corp. for use in lapan by the Tokyo Electric Power Co. Shown in the photo are - Digitron. ics Engineer, W. Buynak, and Engineers T. Endo and K. Fu. jita of Nippon Remington Univac, Kaisha, Lid. The two electronic converters are designed to accommodate both Japanese and English languages.

BROADCASTING IN ECUADOR

Continental Electronics Sales Manager T. Moseley, left, explains one of the new features of a 10 kw radio transmitter to A . Horvath, Radio Engineer for the Ecuadorian Covernment, which has purchased iwa transmitters from the Ling-Temco subsidiary. One transmitter will operate in the standard broadeast band, the other on shortwave.

U.S. Firms Aided in Esfablishing European Sales Beachhead

Paris, France-Daniel J. Verge, Managing Director of Didot-Bottin, reports U. S. firms are now sending catalogue sheets and pricing data to their newly established Trade Information Bureau. This Bureau is designed to serve European buyers who want to make contact with American suppliers. "This program was established as a result of the survey trip I took to the United States last month," stated Mr. Verge. "We are most gratified at the response and hope that more firms will take advantage of this free offer to register their companies and their products with our headquarters in Paris."

FAR EAST

Red Chinc Modernizes Radio Manufacturing Industry

Washington - The modernization of Communist China's radio manufacturing industry, including the use of automation and semi-automation in production, is progressing "with great vigor," according to a report containing six articles on radio production in Communist China. The report, which forecasts resultant savings in manpower and sharp increase in production, is one of four translations of foreign technical literature by the Office of Technical Services, Dept. of Commerce, Washington, D. C.
(Continued on page 34)

now... a METAL FILM resistor for commercial as well as military applications

You and others in the industry have made increasing performance demands on deposited carbon and other film resistors because metal film has been too costly for many applications.
To continue our leadership as suppliers of precision film resistors, we set an objective-to produce a metal film resistor at a price comparable to deposited carbon resistor. We have mel our objective!
IRC has invested nearly $\$ 2,000,000$ in plant, automated equipment and engineering to achieve this new dimension in Metal Film Resistors.
A new technical production breakthrough makes it economically feasible to specify premium performance Metal Film Resistors for commercial as well as military applications.
T-O Metal Film Resistors are available . . . now! Write for Bulletin B-3. International Resistance Company, 401 North Broad Street, Philadelphia 8, Pennsylvania.

Leading supplier to manufacturers of electronic equipmens

NEW FROM WESTINGHOUSE AT YOUNGWOOD

New Westinghouse High Gain Transistor simplifies circuitry, increases
reliabilily, eliminates driver stage components, reduces cost of assembly.

NEW WESTINGHOUSE SILICON POWER TRANSISTOR PROVIDES

GAIN OF

Westinghouse introduces a complete new family of High Gain Silicon Power Transistors providing a gain of 1000 or more at 2 amps . . . with guaranteed minimum gain of 400 at 10 amps (WX118X series) . . . a guaranteed minimum gain of 100 at 10 amps (WX118U series). These devices can substantially reduce circuit components, increase reliability, save space and weight.

They're ideal for application in high power, high efficiency regulators, amplifiers and switching circuits. For example, 1500 watts of power can be easily controlled with a 50 milliwatt signal! For full information call your nearest Westinghouse representative or write to Semiconductor Dept., Youngwood, Penna. You can be sure . . . if it's Westinghouse.

OTHER FEATURES INCLUDE

- True Voltage Ratings to $\mathbf{1 5 0}$ volts
- Operating temperature to $+150^{\circ} \mathrm{C}$.
- Power dissipation of $\mathbf{1 5 0}$ watts
- Low thermal impedance: . $5^{\circ} \mathrm{C} /$ watt
- Collector current-10 amperes

Prototype quantities now available. Order from these Westinghouse Distributors.

EASTERM

ACK SEMICONDUCTOR, INC irmingnam 5, Ale./FA 2-050: CAMERADIO Pittsburgh, Pe./EX 1-4000 CRAMER ELECTRONICS. INC
oston, Mass /CO 7.4700
ELECTRONIC WHOLESALERS, INC
Melbourne, Florida/PA 3-14
GENERAL RADIO SUPPLY CO INC. CENESEE TADIO PARTS CO

ANM-ELLEAT ELECTRONICS, INC
Baltumore, MdiUg oize
milgray Elect Ronics
RADIO ELECTRONICS M.Y./RE 2-4400 RADIO Cleveland. Ohio/UT 1.COCO SCMWEER ELECTRONICS
cong isiand, N.Y./PI 6-6520 silver Spring. Md..1u 5-7023 MIDWESTERN
ELECTRONIC COMPONENTS FOR imDUSTRY CO. St. Louls. Mo. NO 2-8917 HALMARK IMSTRUMENTS CORP. INTE -STATE Dallas, Taxas/R1 7-9335
 LEMERT CO. Douston Teagelch 4-2es

IADIO DISTRIDUTIME CO
Indianapolis Ind./ME 7.5571 SEMICOMDUCTOR SPECIALISTS, INC STERLING CO Oetroit Mich /Be 3-2900 UNITED RADIO, INC.

WESTSRM

mar ElEctmonics
hamil Ton electeo sales
Los Aagoles, Calif//Da 2-915 NEmARK ELECTMONICS CO Inglowed, Celit /OR 4-840

To poet and pilot alike, the sea is unpredictable. But a long step toward fathoming its mysteries has recently been taken, in the form of an idea which will provide data on the effects of turbulent seas on ship motion. Among the benefits will be the design of hulls and ships better able to meet the challenges of wind and wove.
To help the U.S. Maritime Administration and the David Taylor Model Basin collect data for performing statistical analysis of ship motion, a "Seakeeping Instrumentation System" was designed by Sierra Research Corp. of Buffalo, N.Y. Operating completely unattended for periods of several weeks at a time, the system automatically goes into operation at 4 hour intervals, recording a short run if the weather is calm or a longer run if the weather is rough.
Heart of the system is a 14 -channel P.I. instrumentafion magnetic tape recorder, capturing such data as wind velocity and direction, ship's heading, roll and pitch, wave height, vertical acceleration, time pulses, and propeller shaft RPM and horsepower. The P.I. recorder was chosen for the system because of its superior reliability - no altention was required during its entire first cruise of four months - and because its compact design involves for less weight, space, and power than conventional recorders.
For details on other P.I. recorders used above and below the sea, check with your local Precision engineering representative or write direct.
S. S. MORMACPRIDE, which gothers dote of soe through the eutometic, unethanded operation of the "Seateep. ing Instrumentotion Syatem."

Clock, control unit, and recorder mounted in the Gyro Room of the Mormoeprido's Brides Deck.
P.I. Inviles inquiries from seniop engineers seeking achallenging futurn.

(1)
PRECISION INBTRUMENT COMPANY
1011 Commercial Street * San Carlos * Callfornia Phone LYtell l-4441 * TWX: SCAR 日EL 30
REPRESENTATIVES IN PRINCIPAL CITIES THROUGMOUT THE WORLO

International News

(Continued from page 80)

Agreements

The Itek Electro-Products Co.'s line of Hermes crystal filters will be manufactured and marketed internationally by Toyo Communication Equipment Co., Ltd., Kawasaki, Japan, under an agreement that will run for 7 years.

Micro Balancing, Inc., New York, has completed negotiations with Shoshin Shoji Kaisha, Ltd., to market Micro's line of Dynamic Balancers in Japan.

CANADA

Most Powerful Low-band TV Will Be Built in Canada

Montreal, Canada-The most powerful low-band television transmitter in North America will be built at CBC's CBXT-TV in Edmonton. The station will be capable of broadcasting with an effective radiated power of 318 $\mathbf{k w}$, double of any low-band station (covering Channels 2 to 6) in Canada, and three times as powerful as any in the U.S. The location of CBXT-TV is such that it is outside the 250 mile limit, for low-band power of 100 kw . of the U. S.-Canadian border. The new station is scheduled to go on the air Sept. 1st.

CENTRAL AMERICA
 Mexican Business Climate Improving

Berkeley, Calif.-The business climate in Mexico may be in for a marked improvement chiefly because of changing attitudes among some top governmental officials. That's the view of Forrest Englehart, northern California businessman and President of Automatic Plastic Molding Co., Berkeley, Calif., who just returned from an extended business trip south of the border.

Despite a "Mexicanization" policy which insists that all business be at least 51% owned by Mexican nationals, President Adolfo Lopez Mateos is known to be favorable to joint U. S.-Mexican ventures, particularly in light manufacturing. One inducement is, basic companies not operating before in Mexico are there now, and turning out a broad range of raw materials. Availability of these materials in Mexico at low cost is a big plus because of the avoidment of tariffs. Another inducement is the ever increasing availability of technically trained workers at a lower cost than in the U. S.

Because Government officials are much easier to get to than bofore, and red tape is cut to a minimum, the "climato" seems to be changing in Mexico.

THE

Elue Chip

OF THE MINIATURE

GYRO FIELD

Reeves 12IG Gyros are 1.25 inches in diameter, 2.5 inches in length overall, and weigh only 6 ounces.

Trimmed drift rate is very low . . $0.1^{\circ} \mathrm{hr}$.Mass unbalance, $1.0^{\circ} / \mathrm{hr} / \mathrm{g}$. Angular momentum, 30,000 c.g.s. units. Gyros can be supplied with or without case heaters. For more complete information, write for data file 303.

THE ULTIMATE

IN MINIATURE

FLOATED

INTEGRATING GYROS

NEW COATED GLASS INSULATION SURVIVES CLASS F PUNISHMENT

Here's an exceptional insulation for motors, transformers, coils, and other electrical equipment that operates continuously at high temperatures. New "Invington' Brand Epoxy Coated Glass No. 2525 retains its electric strength and flexibility even after sustained aging at rugged Class F temperatures. It is particularly suited for use in epoxy impregnated or cast units.
Extremely flexible and snug conforming, No. 2525 offers excellent compatibility with epoxy systems. It helps eliminate voids, hot spots, delaminations and moisture access points; will not contaminate or degrade transformer oils.
Use "Irvington" Epoxy Coated Glass No. 2525 for phase insulation, coil separator and interlayer insulation, or as an outer wrap on coils of all types. Available in tape, sheet or roll form in thicknesses of $.003^{\prime \prime}$, .007" or . $010^{\prime \prime}$. For further information write: 3M Company, 900 Bush Ave., St. Paul 6, Minnesota. Dept. ECB-51.

Irvingtom Division

Minnestota Minine ame Manuractunine company
. .. WHERE RESEARCM IS THE KEY TO TOMOREOW

Washington Award to Illinois Bell's Kahler

William V. Kahler, Pres., Illinois Bell Telephone Co., will receive the 1961 Washington Award. The award is for "distinguished leadership in business and civic affairs and for exceptional service to education and humanity."

The Washington Award is conferred upon "an engineer whose professional attainments have preeminently advanced the welfare of mankind." The Award Commission represents the American Society of Civil Engineers, American Institute of Electrical Engineers, American Society of Mechanical Engineers, American Institute of Mining, Metallurgical and Petroleum Engineers, and the Western Society of Engineers. Western Society administers the award.

Compułer-Human Study

M.I.T. is making a study aiming to optimize man-computer operation. The four-year research program, funded by the Office of Naval Research and the National Science Foundation, aims to merge man and machine in a system that would closely couple human powers of reasoning and intuition and the ability of computers to process vast quantities of information at great speed.

Now, when a scientist wants an answer to a problem, he must submit it to a computer staff and then wait-from an hour to a weekbefore the computer can solve the problem and get the answer to him. The new program at M.I.T. will try to make it easier for the scientist to work with the machine. The scientist will be able to ask the machine a question and get the answer quickly without having to relinquish his place at the machine.

Optical Radar

Scientists at the Univ. of Michigan have successfully completed an experiment demonstrating the feasibility of an optical radar. Members of the University's Institute of Science and Technology have sent a beam of very intense red light from a laser across Willow Run Airport. They were able to measure the light that was reflected from a target three miles away.

Miniaturization . . . extreme reliability . . . almost negligible power consumption . . . low bit cost-these merely provide the base for a whole stack of advantages when you choose AMP-MAD Counters over other types.
AMP.MAD Counters are made with special multiaperture magnetic cores and wire only. Cores and wiring can be totally encapsulated. AMP.MAD devices provide either static count indication, or, in the case of higher count rates, a dynamic output as the count changes.

Identical counter/driver units are triggered by pulses to be counted. As shown (below), in cascaded decade applications, units and tens "carry" kicks over following decade counter/driver and advances the count . . . with no limit to the number of decades!

(Actual length
1 27/32" max.)

MAD!

Check these additional AMP.MAD features:
$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature operating range (standard)

- small size-fits miniaturization requirements
- ultimate in reliability
- requires no sustaining power
- one to zero discrimination of 8 to 1 (20 to 1 on request)
- non-volatile count storage
- minor aperture output level up to 80 mw for incandescent light display of count (alternate output wiring scheme for that illustrated).

You'll want to know more about AMP.MAD Counters . . . Shift Registers, too! And there's more to tell. Write for complete information today.

AMP Incorporated

Select here the VOLTMETERS, AMMETERS,

 Many are

All of these widely useful -hp-instruments are available in rack-mounted
-hp-voltmeter accessories-voltage dividers, coaxial connectors, voltage

(104) 405 Digital Voltmeter Automatic range, polarity
Here's true "touch-and-read" measuring simplicIty. Automatic range, polarity selection; covers 0.001 v to $1,000 \mathrm{v}$. (Accuracy $\pm 0.2 \%$ of reading \pm 1 count). New, unique circultry provides a stabin ity of readings virtually eliminating fatiguing jitter in the last digit. Floating input, multielectronic code output for use with digital recorders. Uses electronic computing circuits to Insure low maintenance, trouble-free operation. Just $7^{\text {² }}$ hight $\$ 850.00$, $\$ 925.00$.

Complete array of ac and dc measuring equipment

versatile, precision OHMMETERS you need. multi-purposel

(400D
 10 cps to 4 MC

Regarded by mony as finest oc VIVM over built. Covers all frequencies 10 cpe to $4 M C$, extremely censitive, wide range, sccurate within 2\% to 1 MC. Measures 0.1 mv to $300 \vee$ (max. full scale sonsitivity 1 mv), 12 rances. Direct reading in v_{0} ofb. 10 megohm input impedance with 15 anf shunt insures neglisible loading to circuits under test. $\$ 250.00$.

(4) 400 L
 Log VTVM-10 cps to 4 MC

Covering 10 Cps to 4 MC , this now hp VTVM features a true logarithmic scale $5^{\prime \prime}$ long plus - 12 db linear scale. The log voltage scale plus long scale length provides a voltmeter of maximum readability, with accuracy a constant percentage of the mading. Accuracy is $\pm 2 \%$ of reading or $\pm 1 \%$ of full scale. whichever is more eccurate, to 500 KC, $\pm 5 \%$ full range. Range 0.3 mv to $300 \mathrm{v}, 12$ steps, (max. full scalo sensitivity 1 mv). $\$ 325.00$.

(4) 4108
ac to 700 MC, also de
Timetested standard all-purpoee voltmoter. Covers 200 cps to 700 MC, IUll sealo resdings 1 to 300 v . Input capecity 1.5 amp, input resistance 10 megohms. Also serves es de VTVM with 182 megohms input impectance. or ohmmeter for mesaurements 02 ofms to 500 magohms. 8215.00.
models! Also, inquire about multipliers and shunt resistors.

HEWLETT-PACKARD COMPANY
10041 Page Mill Road - Palo Alto, Callformia, U.SA
Cable "HEWPACK" DAvenport 6-7000 Field ropresentatives in all principal areas

(60) 412A Precision Volt-Ohm-Ammeter

At last a true, precision multi-purpose instrument. Measures de voltage $100 \mu \mathrm{~V}$ to $1,000 \vee$ (max. full scale sensitivity 1 mv), 1\% accuracy full scale. Measure currents 1 ue to 1 amp with $\pm 2 \%$ accuracy full scale. 13 ranges. As ohmmeter measures 0.02 ohms to 5,000 megohms. Extremely tow noiso, drift. Recorder output provides iv full scale 8400.00 .

425A Microvolt.

Milcromicroammeter

New, high sensitivity, hich stability in strument reding end scale voltages of 10 av to 1 v in 11 ranges, or currents of $10 \mathrm{~m} \mathrm{\mu}$ to 3 me in 18 step, 1-3-10 $20-$ quence. Accuracy $\pm 3 \%$ on all ranges. Drift leas then av per day. Input impodence 1 memohm $\pm 3 \%$ on all rances. Also usable as 100 db ampllifer with up to 1 v output from signals ea small es 10 MV. \$500.00.

(40) 428A/B

Clip-On Milliammeter

Employs radical now approach to current measurement which eliminates breaking leads, soldering connections or losding of circuit under test. Revolutionary "current sensing" probe clips around wire under test, measures the magnetic field around the lead. Easily measures dc current in presence of strong ac. Covors 0.3 ma to 1 amp in 6 steps; full scale sensitivity 3 ma . Accuracy $\pm 3 \%$, probe inductance loss than 0.5 mh . 2000 , ssso.

DIRECTIONAL COUPLERS • RF LOAD RESISTORS COAXIAL TUNERS•RF WATTMETERS•VSWR METERS Micray are rugged and accurate in both field and laboratory use. The patented circuit produces an output essentially independent of frequency. Over 3800 models of coupler units available. MICROMATCH instruments meet highest government and commercial standards, combine highest quality with low cost.

For more information, write:

M. C. JONES ELECTRONICS CO., INC.

185 N. MAN StRET, BRISTOL CONN
sunsidary of

Tele-Tips

RFI ODDITIES: The Denver field Office of the FCC and a local power company were both deluged with telephone calls from a particular section of that city complaining of TV interference. An FCC engineer located the place where the disturbance was strong. est. With the help of a lineman of the utility company, power line connections to various buildings were opened one at a time until the interference stopped. The culprit proved to be an unused neon sign at a gasoline service station. Bare output wires from the transformer were touch ing a brick wall which served as a conductor because it was covered with aluminum paint.

WHEN A GOVERNMENT satellite tracking station in Alabama, complained of difficulty to radio reception from a space object, the FCC monitoring net pinned the blame on spurious signals from a point-to-point station in the Netherlands. Contact with the latter brought elimination of the intruder, also a letter of thanks from the tracking station.

LONG-DISTANCE trace was made for a West German station. It asked that the origin of a certain call be located. FCC bearings showed it came from the vicinity of Ceylon, which helped to further determine that it emanated from the nearby Maldive Islands.

INTERFERENCE to transmission from California to Japan was found due to a faulty transmitter of a station in Hawaii.

AN AM STATION in Tennessee sent the FCC Atlanta field office a handbill announcing the opening of a "new broadcast station" in the same town. The latter did not appear on the Commission's records so an FCC engineer visited the scene. He found a 14 -year-old boy who had advertised a low-power device to communicate with playmates in the immediate neighborhood during certain hours.
(Continued on page 44)

(A MESA MICRO-TRANSISTOR)

AMPLIFIEA TYPES					
Tyou		Minomuan AC an (M, o)	Typical Coun. Ganderiout Profuct (${ }^{(i v e)}$	Meylmum Collactor Leakage Currem $825^{\circ} \mathrm{C}$ (a)	masimy Power Olepimation at $25^{\circ} \mathrm{C}$ Anciment (mW)
TMT Esp	45	20	45	1	T15
TMuT 800	45	40	45	1	18
TMT EA1	45	0	65	1	18
SWITCWIMG TYPES					
Troe	Mazimum Collactor Votrese (Volis)	Minumum DC Bets ($\mathrm{Hres}^{\text {) }}$	Pyplea! Gela. Condwidith Frafuct 	Mazinum Saturitien Rematiance (0 mme)	
TWT 82	45	20	85	120	1 m
TMT 843	45	45	65	120	15

- SILICON DIFFUSED

- HERMETICALLY-SEALED

- ALL-GLASS PACKAGE

INTRODUCING THE FIRST SERIES IN A

 COMPLETE LINE OF MICRO-TRANSISTORSDevelopment of the mICROT - first silicon diffused mes micro-transistor in an hermetically sealed all-glass package - represents a major step forward in microminiaturization. As compared with conventional "metal can" configurations, the micRo-T's hard glas packaging embodies a signifcant improvement in the hermetic seal between leads and package. Reliability is substantially increased; possibility of leakage in sharply reduced.
This new series of 45 -volt micro-transistors is the first designed for amall-signal low-level applications, with current operating range from 50 microamps to 20 milliamps. Other electrical characteristics include an Rea of 100 to 200 ohms: minimum Betas from 20 to 80; cut-off frequencies of over 50 megacycles. Perfectly compatible with present circuitry, micRo-T's will facilitate microminiaturizing in such critical areas as airborne, space vehicle and missile application. They are $1 / 20$ th the size of the TO-5, and $1 / 5$ th that of the TO- 18 .

The first five types of MICRO-Ts are available now. For full information, write for Bulletins No. PB-78, (Amplifier types) and PB-79, (Switching types).

hermetic seal \cdot leakage rate $\cdot 1 \times 10^{\circ} \mathrm{cc} / \mathrm{sec}$

Amphenol can do it. Sealed electrical penetrators for space simulator chambers are currently being produced with a leakage rate lower than $1 \times 10^{-9} \mathrm{cc} / \mathrm{sec}$. MPHENo: Interstage and other missile connector types are also being provided for every major missile program. Connectors up to a foot in diameter with 175 individually sealed contacts have been manufactured for ultra-reliable systems. AMPHENOL For less exotic applications, AMPHENOL supplies every type of hermetically sealed electrical connectors: MS-type receptacles with AMPHENOL-developed "Identoseal" contact identification, $3 / 8^{\prime \prime}$ square Micro Mod receptacles with 12 contacts on $.075^{\prime \prime}$ centers, and a wide variety of special and general purpose connectors. Maximum permissible leakage rate in standard connectors is $1 \times 10^{-6} \mathrm{cc} / \mathrm{sec}$. Write for full information on AMPHENOL'S capabilities in this highly important field.

Diversified line now available from stock

General Electric now offers a wide and diversified line of camera tubes which incorporate significant breakthroughs in the state of the art: sensitivity improved $50: 1$. . resolution improved by as much as 50%. . . life extended 3-5 times . . . radical new design and construction features (e.g., supersensitive, long-life magnesium oxide target introduced by General Electric).

Image Ortmicon Type	Typical Applications	Features	Spectral Respense (Angstroms)	SEMSITIVITY (photocathode Mum. in f/c; 100% Contrast Chart, 1/30 Sec.)
GL. 7409 (2.5358)	Missile- and Sateliteborne Systems Fire Control Drone Guidance	Ruggedized High Sensitivity Magnesium Oxide Target Non-burn-in Storage Capabilities	$\begin{gathered} \hline 3200-6950 \\ 4500 \cdot P e a k \\ (S-10) \end{gathered}$	500 TV Lines at $10^{-6} \mathrm{f} / \mathrm{c}$
$\begin{aligned} & \hline \text { GL. } 7538 \\ & (2.5294) \end{aligned}$	Low-light-level Surveillance Space Navigation Electro-optical Telescope Systems	High Sensitivity Magnesium Dxide Target Non-burn-in Storage Capabilities	$\begin{gathered} 3200.6950 \\ 4500 \cdot P e a k \\ (\$.10) \end{gathered}$	$\begin{aligned} & 500 \mathrm{~N} \text { Lines } \\ & \text { at } 10^{-6} \mathrm{I} / \mathrm{c} \end{aligned}$
2L.5395 ${ }^{\text {² }}$	Aerial Mapping Passive Detection Systems Spectrographic Detectors	Near-Infrared High Sensitivity Magnesium Oxide Target Storage Capabilities	$\begin{aligned} & 3200 \cdot 10.800 \\ & 8000 \cdot \text { Peak } \\ & (S-1) \end{aligned}$	200 N Lines at $10^{-6} \mathrm{f} / \mathrm{c}$ (No filter)
$\begin{aligned} & \text { GL. } 7967^{\circ} \\ & (Z .5396) \end{aligned}$	Extreme Low-light-level Surveillance Orthicon Intensifier Applications Underwater Observation	Supersensifive Magnesium Oxide Targe Storage Capabilities	$\begin{gathered} 3200 \cdot 7400 \\ 4250 \cdot \text { Peak } \\ \text { (S-20) } \end{gathered}$	$\begin{aligned} & 300 \mathrm{~V} \text { Lines } \\ & \text { at } 10^{\circ} \mathrm{f} / \mathrm{c} \end{aligned}$
$\begin{aligned} & \mathrm{GL}-7969^{\circ} \\ & (2.5453) \end{aligned}$	Missile Detection Spectrographic Detectors Underwater Observation	Ulitraviolet High Sensitivity Magnesium Oxide Targel	$\begin{aligned} & 2500 \cdot 7000 \\ & 3800 \text {-Peak } \end{aligned}$	500 TV Lines at $10^{-6} \mathrm{f} / \mathrm{c}$
GL-5820	Educational TV Video Taping Standard Monochrome Broadeast	High Sensifivity Stable Performance	$\begin{gathered} 3200 \cdot 6950 \\ 4500 \cdot \text { Peak } \\ (\$.10) \end{gathered}$	$\begin{aligned} & \text { Scene Illumination: } \\ & 100 \mathrm{f} / \mathrm{c} \end{aligned}$
$\begin{aligned} & \hline \text { GL. } 7293 \\ & \text { (field- } \\ & \text { mesh) } \end{aligned}$	Educatıonal TV Video Taping Standard High quality Monochrome Broadcast	Improved Landing and Shading Improved Corner Focus Sharp Black-to-white Transition	$\begin{gathered} 3200 \cdot 6950 \\ 4500 \cdot P e a k \\ (S \cdot 10) \end{gathered}$	$\begin{aligned} & \text { Scene Illumination: } \\ & 100 \mathrm{f} / \mathrm{c} \end{aligned}$
GL.7629	Closed Circuit Training Applications Special Monochrome and Color Broadcast	Supersensitive at Low Light Levels Magnesium Oxide Target Non-burn-in Storage Capabilities	$\begin{gathered} 3200-6950 \\ 4500 \cdot \mathrm{Peak} \\ (\mathrm{~S} \cdot 10) \end{gathered}$	Scene Illumination: Color-as low as $5 \mathrm{f} / \mathrm{c}$ Monochrome-as low as $1 \mathrm{I} / \mathrm{c}$

General Eloclric continually offors Pechnical camera tube seminars in customer plonts. A limited number of open dofer are still available. Ask now to have a moeling schod. ulod for your group.

Ruggedized versions available (21-7805, 21-7806, and 21-7807, renpedtraly). Will wimhtond fraguaner in orsme of M11 requiraments, and DC accoloration in ercest of $90 \mathrm{G}^{\circ}$

FOR INFORMATION on the above tubes, or for any specialized require-ments-including Government-classified projects, contact the camera tube representative in the nearest Power Tube Department Regional Office. General Electric Company, Camera Tube Section, Building 267, Schenectady 5, New York.

CATHODE RAY TUBE DEPARTMENT
GENERAL ELECTRIC

Waveguide dircectional couplers

The directional couplers illustrated are representative of the complete line of standard couplers designed and manufactured by Waveline. These precision microwave instruments cover the frequency range of 2.60 to 40.0 KMC in a number of basic design configurations, such as: cross-guide, narrow-wall, and precision broad-wall couplers. All models are available with standard values of coupling and are manufactured of rugged brass construction with silver plating and baked enamel finish.

Your attention is invited to the many special couplers designed and manufactured by Waveline for system applica. tions. These devices have been produced in a variety of complex configurations utilizing Waveline's engineering skills and advanced technique of aluminum flux dip brazing. Our modern facilities are capable of generating basic designs in the form of prototypes for evaluation, as well as, quantity production of established designs.

We welcome your inquiry concerning standard couplers or your special coupler requirements covering design of prototype and manufacture of production quantity.

A sir page illustrated brochure of Waveguide Directional Couplers is available on request.

W/I FIINE INC.

CALOWELL. NEW JERSEY
Phone CApital 69100
IWX Caldwell, N J 703

Tele-Tips

(Continued from page 40)
CRYSTAL-CONTROLLED Transmitter was operated by two Wisconsin youths in the middle of the broadcast band to transmit "boogie", "bop" and "roll" recorded music to teenagers within a radius of 20 miles. The youngsters proudly told the FCC engineer that they had spent eight months planning and constructing their equipment, and had even built the control console and installed a modulation monitor. They used call letters not on regular broadcast station lists.

SOME INTERFERENCE complaints boomerang:

Interference to high-flying jet planes was traced to a receiver used at the complaining airfield. Somebody had forgotten to replace the protective cover shield.

A Tucson airport interference complaint was determined to be caused by the strips of neon lights which outline its control tower.

INTERFERENCE involving manual radiotelegraph is now rare. However, one concerned complaint by an Army camp of undecipherable telegraph signals on a military frequency. Though the keying was poor, FCC monitors were able to fix them as coming from another Army post, presumably from a class studying telegraphy.

FAILURE to comply with small boat radio regulations resulted in the loss of both a fishing boat and money. Fortunately, no lives were lost. It concerned the sinking of the vessel off Florida which resulted in nine persons spending a very uncomfortable 22 hours clinging to a life-raft in sharkinfested waters. Inquiry showed that the vessel had not been equipped with proper radio apparatus for safety purposes. In consequence, forfeiture of $\$ 500$ was levied against the boat's owner, $\$ 500$ against the lessee, and $\$ 100$ against the master.

the Counter with a Memory

Continuous Readout to 10 Megacycles
The "momnry" in thos Counter constitutes an infior tant new operating aid. Pour of the instruments eight decades arte used for storage and continuous dieplas: while the remaining four devinden count continuously. At the end of twh counting intor val, the total accumatatod by the ceantatiag decaters
is transferred nutomatiually and quickly (only 100
 coumtang offers many advantages = information is *impled more often. frequency adjustments becume fasy: analog recording is greatly simplified; and copa rator eye fatigute induced by the dancing lights of intermittent dieflag's is elammationd.

The Type $1130-\mathrm{A}$ Digital Time and Frequency Meter is not just another counter. It embodies a number of new engineering contributions that are of fundamental importance.

This instrument is designed like a digital computer - to achieve a uniform level of high reliability throughout. "Down time". the bugaboo that robs the user of his full investment, is at a minimum.

Unsurpassed reliability is achieved by:

1. New decade codes and high-speed counting circuits, unlike those in other counters, that make this instrument inherently reliable.
2. Circuits designed to operate properly under the worst combination of cumulative tolerances imposed by tubes, component values, and voltage levels. Counter performs properly even with tubes approaching the half-dead state.
3. Use of proven "hard-bottoming" multivibrator dividers that make for exceptional stability - eliminate need for periodic adjustments of time-base circuits.
4. Elimination of critical voltages. Neither plate nor filament supplies are, or need be, regulated.

RANQES:
Frequency de las 10 Mr Period Io asec to 10 ' soc Also massures 10 periods. frequency ratios. phase shifts. frequency ratos. phase shrts. pulse characteris
SEASITIVITY: 0.25 rms

DISPLAY

4 digits continuous: 8 digita for sequential counting and disolay. with display-time variable from 0.1 to 10 sec

ACCURACY:
 - 1 count = timo-base osallator stability

AVAILABLE WITM SEVERAL PLUG-IN TIME-BASE OSCILLATORS

Cemplete Inatrement Trpe - Price	smart-Term Stabilliy Lamp-Term Stabilily Getier Timan Getier Then
Completoly \quad 1130-A4, 82,950	1 part in 10° per min. 5 paits in 10° ofr weel
Self.Contained $\begin{aligned} & \text { 1130-A3, } 82.670 .\end{aligned}$	1 part in 2 parts in 10^{\prime} per min. 10^{\prime} per weet
For Use from (1130-A2, 82.750.	Also operates fiom eaternal 1100 -1. Mc. and 5 Mc inpuls
$\underset{\substack{\text { External } \\ \text { Slandards }}}{\text { E, }}$ (130.A1, 22.585	Requiren S Mc driving ragnal: $C-a$ 1113 A S. Mc Standard Frequency Os. cillatot provides stabiuty of 10^{10} min. 2 parts in 10° pol $^{\circ}$ weolt.

For Digital Recording
1132-A Data Printer... $\$ 1450$.
Rocords a digits from coumter plus 4 digits from clock ol other meures, at spends to 3 prints meis ...no modification of counter is required
For Graphic Recording
1134-A Digital-to-Analog Converter . . . 5595
Masten possible low cost All-ELECTRONIC graphic atrid chart recording (no date printor noeded)... high accurscy of 0.1%

For Measurements to 500 Mc
Frequency convarsion units are undar devalopment

Write for Complete Information
GENERAL RADIO COMPANY

WEST CONCORD, MASSACHUSETTS

All G-R Producte are covered by a 2-Yiar
11arranty

NEW YORK, WOith 4.2722 NKW dERET Y, RidgeAold, WHimey 3.3140	CMICAOO Oak Pork Villoge 8-9400	PMILADELPNIA Abington MAncock 4.7419	WASMINGTOM, D.C. Silver Spring Juniper 5.1088	SAN PRANCISCO Los Alter Whiteclif 8-8233	LOS ANOELES Lor Angeles MOllywood 9.6201	$\begin{aligned} & \text { IN CANADA } \\ & \text { Torento } \\ & \text { CHeery } 6-2171 \end{aligned}$

2 NEW soud state

Power Consumption

 is less than 17 Watts for 2 Watts Output.SILICON SEMI-CONDUCTORS are used throughout the circuits to provide high reliability performance over a wide range of environmental conditions.

A FULL 2 WATTS OF RF OUTPUT is achieved through use of a unique circuit design.

CRYSTAL CONTROLLED FREQUENCY STABILITY is $.01 \%$ or beffer over a wide femperature range.

MODULAR PACKAGE DESIGN affords versatility for customer-designed systems . . . and conformity with the complete Dorsett-built line of "Twenty" series telemetering components and systems.

For your telemetry requirements, contact Dorsett. Your inquiries or specifications will receive a prompt reply.
Model TR-20-225-260 me. Model TR-21-136-137 me.
from

Dorseft Electronics

	TR.20	TR.21
Frequeney Outpul	$\begin{aligned} & 225.260 \text { me. } \\ & 2.0 \text { Waths } \\ & \text { minimum } \end{aligned}$	$\begin{aligned} & 136.137 \text { me. } \\ & 2.0 \text { WoHss } \\ & \text { minimum } \end{aligned}$
Madulation lange	$\begin{aligned} & 100 \text { cycles to } \\ & 100 \text { KC } \end{aligned}$	DC to 50 KC
Devialion	$\pm 125 \mathrm{KC}$	$\pm 75 \mathrm{KC}$
Frequency Stability	$\begin{aligned} & .01 \%\left(-20^{\circ} \mathrm{C}\right. \\ & 10+90^{\circ} \mathrm{C} . \end{aligned}$	$\begin{aligned} & .01 \times\left(-20^{\circ} \mathrm{C} .\right. \\ & \left.10+90^{\circ} \mathrm{C} .\right) \end{aligned}$
Spurious Radiation 2 RF Intorforence	Per MIL-1. 26600	Per MII.1.26600
Distortion	Less than 1\%	Less then 1\%
Oulput Impedance	50 ohms	50 ohms
Input Impedance	500,000 ohms	500,000 ohms
Power Requirementss Connector	21 v. el losi then 600 ma . Cannon! DA. 11 CIP	28 v al less than 450 ma. Conaent DA-1ICIP
Mounting	Two 6-32 coplive Screws	Two 6-32 caplive Scrows
Sise	$1.875^{\prime \prime}$ wides $2.25^{\prime \prime}$ highs $3.50^{\prime \prime}$ Iong	$1.875^{\prime \prime}$ wides $2.25^{\prime \prime}$ highs $3.50^{\prime \prime}$ long
Environmental: (Identical on both TR. 20 \& TR-21)	Altituder Acceleration, Temparalure.	Unlimined so-G in any plane $\begin{array}{r} -40^{\circ} \mathrm{Cl}_{10} \\ +90^{\circ} \mathrm{C} \end{array}$
	Vibration.	$\begin{aligned} & 15 \text { G, } 55 \mathrm{le} \\ & 2000 \mathrm{cps} . \end{aligned}$
	Short.	100 G for 11 milliseconds in eny plane.

DORSETT ELECTRONICS, INC.

Centralab Model

Linear Motion Variable Resistors

No contact bounce when vibration tested, 20-20,000 cps at 30 g 's, loaded at 80% rated load, at $\mathbf{5 0 \%}$ wiper travel, 3 planes, 10 minutes each. Induced noise less than $\mathbf{1 0}$ millivolts.

DESCRIPTION	MODEL	TERMINAL LEADS	\qquad	POWER RATING (Watts)	MAXIMUM OPERATING TEMP.	ENCAP. SULATED
Gen. Purpose (Composition)	BA-701	Nylon or Teflon	10K lo 2.5 Meg	0.25 (i3 $50{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA-702	Nyion or Tellon	1031 to 20K	$0.256 .50^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Composition)	BA.703	Printed Circuit	10K 10 2.5 Meg	$0.251950{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Wirewound)	BA. 704	Printed Circuit	10:t to 20K	$0.25\left(150{ }^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Composition)	BA-705	Nylon or Teflon	10K 102.5 Meg	$0.25\left(1150^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Wirewound)	BA. 706	Nylon or Teflon	10: 10 20K	0.25 $\left(\sim 30^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Composition)	BA-707	Printed Circuit	10K to 2.5 Meg	0.25 ${ }^{\text {c } 50}{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA. 708	Printed Circuit	$10: 11020 \mathrm{~K}$	$0.251450{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	BA-712	Tellon	1031 to 20K	$1.06 .70{ }^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	E- $\mathbf{*}$-714	Teflon	1023 to 20K	1.0 (i) $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes
High Temp. (Wirewound)	BA. 716	Printed Circuit	1031 to 20K	1.0 @ $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes

Maximum end resistance: $<1 \%$ of totar. Size:
encapsulated $23 / 64^{\circ} \times 19 / 64^{\circ} \times 1-11 / 32^{\circ}$, without encapsulation $5 / 16^{\circ} \times 1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$.

Resistances: Wirewound: $10-20-50-100-$ 200-500-1K-2K-5K-10K-20K ohms. Composition: 10K-20K-50K-100K-500K, 1 Meg, 2.5 Meg.

Standard Tolerances: $=5 \%$ Wirewound, $\pm 20 \%$ Composition. Closer tolerances available upon request.

Shock: Less than 1% change in resistance with JAN-S-44 apparatus at $100 \mathrm{~g}, 5$ shocks in each of 3 planes, Method 202A.

Meet or exceed all specifications of applicable MIL-STD 202-A, MIL-R-19A and MIL-R-94B tosts.

Industrial quantities of the Model 7 are available for Immediate delivery at factory prices from your CENTRALAB industrial distributor.

Centalab/

The Electronics Division of Globe-Union, Inc. 938 East Keofe Avenue - Milwaukee 1, Wisconsin Centralab Canada Limited • Ajax. Ontario

ELECTRONIC SWITCHES • VARIABLE RESISTORS • CERAMIC CAPACITORS • PACKAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS

How high

will you have

your

 chemical fidelity?
RCA uses 252 CLARE Printed Circuit Relays in the 501 electronic data processing system

RCA's 501 incorporates many advanced features which significantly increase reliability as well as economy. It takes up less space. weighs less and operates on less electrical power than previous models.

252 rolays (aach consisting of 12 Claread sosiod contact reed switches $-3,024$ switches in all) make up this "matrix relay." used in the model 547.6 switehing unit of the RCA 501.

CLAREED Sealed Contact Relays provide last, sure switching

Contributing to the efficiency, speed and compact structure of the RCA 501 are 252 CLAREED sealed contact reed relays. Mounted on printed circuit boards, these relays, their contacts hermetically sealed in contaminant-free inert gas, assure millions of perfect operations...hundreds of millions when operated at up to $1 / 2$ rated load.
CLAREED relays are ideal components for transistor-drive applications such as the RCA 501. Their low inductance, and the low
inductance change in the operating coil at each operation. limit the transients produced.

These relays may be mounted to meet the requirements of almost any application or environment. Consult your nearby CLARE sales engineer... or write: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Ltd., 840 Caledonia Road, Toronto 19, Ontario. Cable Address: CLARELAY. Ask for Bulletin CPC. 10.

CLAREED switch capsule consists of a pair of magnetically operated contacts, hermotically sealed in an atmosphere of inert gas.

4202A FUNCTION GENERATOR-Down to 0.008 cps; transient-freel

Uses: Electrical simulation of mechanical phenomena, vibration studies, servo research and testing, medical research, geophysical problems, subsonic and audio testing.
Advantages: No switching transients, continuously variable 0.008 to $1,200 \mathrm{cps}$ range, 30 v output peak-to-peak constant, hum less than 0.05%, square, triangular or electronically synthesized sine waves, 1% stability, 0.2 db response, less than 1% distortion (sine waves) on all but $x 100$ range.
Price: $\$ 550.00$ (cabinet model), $\$ 535.00$ (rack mount).
© 650A TEST OSCILLATOR-Flat within $1 \mathrm{db}, 10 \mathrm{cps}$ to 10 MC !
Uses: Testing TV amplifiers or wide-band systems. measuring filter transmission characteristics and tuned circuit response, determining receiver alignment, making telephone carrier and bridge measurements.
Advantages: No zero set, no adjustments during operation, output voltage range $30 \mu \mathrm{v}$ to 3 v , less than 1% distortion, 20 cps to 100 KC ; less than $2 \%, 100 \mathrm{KC}$ to 1 MC ; approx. 5% at 10 MC . Hum less than 0.5%, output voltage attenuator, self-contained voltmeter, 2% to 3% stability.
Price: $\$ 550.00$ (cabint model), $\$ 535.00$ (rack mount).
Easy to operate, highly stable, wide range

PRECISION OSCILLATORS
4 precision oscillators perform a wide variety of audio, video, and low frequency tests. They offer the outstanding advantages of flexibility and broad usefulness at moderate cost. Employing the pioneered RC resistance capacity circuit, the units combine accuracy and reliability with ease of operation and minimum adjustment.

205AG AUDIO SIGNAL GENERATOR-Six instruments in one; 20 cps to 20 KC !

Uses: Measure amplifier gain and network frequency response, measure broadcast transmitter audio and loudspeaker response, drive bridges, use in production testing or as precision source for voltages. Monitors oscillator output, measures output of device under test.
Advantages: Self-contained instrument, no auxiliary equipment needed. 5 watts output, $\pm 1 \mathrm{db}$ response, less than 1% distortion, hum more than 60 db down, no zero setting, output and input meters read v and dbm; four output impedances.
Price: $\$ 600.00$ (cabinet model), $\$ 585.00$ (rack mount).

- 206A AUDIO SIGNAL GENERATOR-Less than 0.1\% distortion; 20 cps to 20 KC !

Uses: Convenient, precision audio voltage source; checks FM transmitter response, makes high quality, high fidelity amplifier tests, transmission measurements.
Advantages: Continuously variable audio frequency voltage, (output 15 dbm) 0.2 db response, hum 75 db down, 2% frequency accuracy, less than 0.1% distortion. 111 db attenuator with 0.1 db steps.
Price: $\$ 800.00$ (cabinet model), $\$ 785.00$ (rack moant).
Data subject to change without notice. Prices f.o.b. factory.
pioneered the world-famous
resistance-capacity
oscillator circuit

HEWLETT-PACKARD COMPANY
1031B Page Mill Road
Palo Alto, California, U.S.A. Cable "HEWPACK"
DAvenport 6-7000

HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1, Geneva, Switzerland
Cable "HEWPACKSA" Tel. No. (022) 26. 43. 36 sus
Field representatives in all principal areas

ELECTRON TUBE NEWS
 ...from SYLVANIA

Design

NEYY SYLYANIA 9-TG TYPES:

Improve tube periormance! Increase chassis efficiency! Extend tuhe life! Reduce equipment costs! Sylvania-originated 9-T9 type tubes can help you achieve all four vital design requirements. Here's how: 9-T9 enables the use of large tube structures capable of high plate dissipation in printed circuit designs. Sylvania 9-T9 eliminates the octal base, uses conventional T-61/2 sockets - improves volumetric efficiency and reduces socket costs.

9-T9 Types for Vertical Deflection Oscillator-Amplifier Service

6/105W7, dissimilar double-triode . . . triode \# 1 : mu of 17.5 ; triode \# 2: 10 watts plate dissipation. 6/17HC8, triode-pentodes . . . triode section: mu of 68: high perveance beam power pentode: 11 watts plate dissipation.
6/10/13F07,dissimilardouble-triodes...triode \# 1 : mu of 68 ; triode \#2: 10 watts plate dissipation.

9-T9 Beam Power Pentodes for Audio Amplifier Applications

$66 C 5$... for quantity-produced hi-fi equipment; features high power sensitivity. In Class AI it delivers 2.1 W output with a $\mathrm{B}+$ voltage of 110 V . Electrically sımilar to octal-based 6DG6GT.
66M5 ... delivers 43W output in Class AB_{1} pushpull service, with total distortion of only 1.5%. In ultra-linear circuits it delivers 32 W with a B+ supply of 400 V . Similar to octal-based 7591.
7695 . . . features exceptionally high power sensitivity. Offers 4.5 W output with a B+ supply of only 140 V . Utilizes 50 V heater. Plate dissipation is 16 W .7754 is 6.3 V version of 7695 .
Examine the design advantages of 9-T9 types with your Sylvania Sales Engineer. Or, for data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. E, 1100 Main Street, Buffialo 9. New York.

MICROWAVE DEVICE NEWS from Stivania

NEW! GRIDOED TW's for PULSED or CW operation in S band trapulancies

Designed for Airborne ECM . . .

Sylvania TW-956L, TW-4002M are PPM-focused. magnetically shielded. weigh only 4 lbs., are just $15^{\prime \prime}$ long, $1.4^{\prime \prime}$ in diameter, temperature compensated for -65° to $+72^{\circ} \mathrm{C}$.
Utilizing a unique TWT design incorporating grids. both types exhibit sharp cutoff characteristics. They feature relatively flat frequency response over the full $2.0-4.0 \mathrm{kMc}$ frequency range.
TW-956L is capable of $2 \mathbf{W}$ CW saturated power output. TW-4002M features CW saturated power output of 10 mW . Both types can be provided with virtually any mounting.

For full data on these types contact your Sylvania Sales Engineer, or write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. MDO-E, 1100 Main St., Buffalo 9, New York.

FIRST DC BLOCK COVERING 2.5 TO $\mathbf{1 0 . 0 0 0}$ MC
Sylvania SB-100, wideband coaxial device providing dc and low frequency isolation, features low VSWR of $1.3: 1$ or less over its rated frequency range and maximum insertion loss of 0.2 db . CW power rating is 100 W . peak power is 2 KW , voltage isolation of 2 KV dc. SB- 100 offers excellent stability over a temperature range of -50° to $+100^{\circ} \mathrm{C}$. It is available with type N connectors. Soon to be available are the SB-101 having BNC connectors and the SB-102 featuring TNC connectors.

SUESIDIARV OF

Letters

to the Editor

"Measuring Return Loss"

Eififor, Fibectronic: Industries:
In the October issue of Electronic Industries there appeared an inter. esting and well-written article by Raymond E. Lafferty entitled, "Measuring Return Loss Accurately."

I should like to call your attention to the fact that there is a prior publication which describes a similar circuit used for the same purpose. The paper I am referring to was written by Chester B. Watts, Jr. and Andrew Alford. It was presented to the Na tional Convention of the IRE in 1957 . and it was published in the 1957 IRF National Convention Record, Part 5, Pages 146-150. For your convenience, " preprint of this paper is enclosed. Figures 2, 3 and 1 and equation t are particularly relevant.

Construction of my "Hybridge" is described in U. S. Patent 2,950,449 which was issued on August 23, 1960.

It might also be added that for several years the Alford Manufacturing Company has been selling "Hybridges" separately for measuring small reflections and as parts of automatic impedance plotters.

Andrew Alford Alford Manufacturing Company, Inc. 299 Atlantic Ave. Roston 10. Mass.
(Mr. Lafferty answers)
Edifor, Electronic Industries:
I wish to thank Mr. Alford for directing my attention to his paper which details u novel method for measuring VSWR. I cannot completely agree with Mr. Alford when he compares our respective methods and states that the two circuits are similar, and I believe he does an injustice to his system to so describe it. The systems may be related, but Mr. Alford has combined the features of the directional coupler or hybrid and the bridge and used it in a system which provides an automatic plot of the impedance vs. frequency and the method has much to offer where continuous investigations are required and the additional complexity is justified.

In my paper, the emphasis was on the simple, but accurate, measurement of VSWR, or return loss, using either a basic bridge circuit or directional coupler. I tried to stress that the technique was possible only because of the availability of a sensitive RF voltmeter with full scale ranges from 1 millivolt to 3 volts (such as the Boonton ELECTRONICS Corporation 91CA). This method, naturally,
(Continued on page 56)

In RF Connectors

 superiority can be demonstrated on 3 counts!

All Gremar RF' connectors are manufactured in accordance with MIL-Q-9858 or better . . . 142 separate quality control checks guarantee 100% conformance to your most exacting specs.

* ECONOMY!

Gremar makes and stocks more than 2000 types of quality-controlled RF connecturs. So, your costs of "specials", inventories, and inspection are drastically reduced.

* DELIVERY!

Gremar always has more than 750,000 assembled RF connectors on the shelf .. and more than $8,000,000$ parts ready for assembly. So, you get what you need in hours instead of days . . . in days instead of weeks.

> -(s.E.I) = Quod erut di monalruinlum
(whut wua to be frovedt

Connectronics . . . the concentration of engineering. praduction and quallty conirat. . . is the key to Gremar auperiority. Fur further evidence, contact:

POSITIONERS

 'Anchor'Antennas atNaval Postgraduate School

On the windswept beach at Monterey, California. the U.S. Naval Postgraduate School operates an antenna facility in connection with courses designed to give advanced students a broader background in antenna engineering. Recently the school made an important addition to its facilitya rugged Scientific-Atlanta tri-axial antenna positioner. Featuring extremely small deflection with maximum bending moment, this Series PAEA Positioner precisely* orients the antenna under test in all three axes of rotation. DC drive motors permit continuous speed control, and 1:1 and 36:1 precision synchros on each axis relay nonambiguous position information to the instrument shelter 400 feet away. Antenna patterns are plotted and measured by a Scientific-Atlanta receiver and recorder.

Model PAEA- 23 Heavy duty tri-axial positioner.

- Position Accuracy of Model Paea Positioner at U.S. Maval Post-graduate School (degrees): Upoper Az1muth, 0.04 ; Elevation, 0.05 ; Lower Azimuth, 0.03 .

Before the new positioner was installed, the school was limited both as to size of antennas that could be tested and the flexibility of operation. Now, even in the face of strong winds, students can test big dishes and relatively large arrays of antennas: this particular model accepts a vertical load of $10,000 \mathrm{lbs}$. and has a bending moment capacity of $10,000 \mathrm{ft}$.-lbs. And with three axes. flexibility is virtually unlimited in taking "cuts".

Scientific-Atlanta supplies positioners with various load capacities and bending moments in a modular series of azimuth, elevation, and polarization units. Restricted axes are equipped with limit switches, continuous rotation axes can be supplied with rotary joints and/or slip rings. All axes are normally supplied with precision $1: 1$ and $36: 1$ synchros. DC, variable speed drives. or servo drive amplifiers are available.
For details, write for technical bulletin. Dept. it

2162 Piedmont Road, N.E. - Atlanta 9. Georgia TRinity 5-7291

ON THE SHELFARNOLD CORES IN WAREHOUSE STOCK FOR IMMEDIATE DELIVERY

Let us handle your inventory problems and save you time and money on your magnetic core requirements.

Extensive stocks of four types of Arnold cores in the most popular sizes have been set up in our Marengo, Illinois and Fullerton, Calif. plants. Subject of course to temporary exhaustion of stock by prior sales, these cores will be shipped the same day on orders received at the warehouse by 12:00 noon. When cores are out of stock at the nearest plant, we may be able to ship within 24 hours from
the other.
Arnold core products covered by this warehouse stock program include: 1) Silectron C, E and 0 cores in 2, 4 and 12 -mil tape. 2) Type 6T aluminum-cased cores of Deltamax, Square Permalloy and Supermalloy, in 1, 2 and 4-mil tape. 3) Mo-Permalloy powder cores, both temperature-stabilized and unstabilized types, ranging down to "cheerio" sizes. 4) Iron powder toroids, threaded cores and insert cores.

All four products are available
in a wide range of selection, for your convenience and economy in ordering either prototype design lots or regular production quantities. - Stock lists, bulletins, etc. are available-write for information. The Arnold Engineering Company, Marengo, Ill.

ADDRESS DIFT. El-5

simNOLD
 SPICIALISTS In MAGNETIC MATERIALS

ERANCN OPRCES and REPRESENTATIVES In PHINCIPAL CTIEs - Find them fast in the YELLOW PAGES

FOR SUPERFINE CUTTING

twe pel Industrial
 CoWhice Airbrasive Unit

There may be easier ways to tap junior's piggy bank... but none that could craftily slice a piece out of a fragile ceramic part the way Industrial Airbrasive can.

The secret of the Airbrasive's ability to cut hard, brittle materials is its accurate stream of gas-propelled abrasive. The cutting action is cool and completely shockless. Highly flexible in use, the same tool will make a cut as fine as $0.003^{\prime \prime}$ or it will frost, abrade or clean a large area.

Every day new uses are being found for the Airbrasive in production lines and in the laboratory . . . deburring small parts . . . shaping, drilling or cleaning germanium and other crystals ... wirestripping potentiometers... removing fine films . . . printed circuits . . . micromodules ... and many others!

Important too: the cost is low... for under $\$ 1,000$ you can set up your own Airbrasive cutting unit!

Send us your most difficult samples and we will test them for you at no cost.

SEND FOR
BULLETIN 6006
. complete information.

New dual Model D:
S. S. White Industrial Division Dept. T 19A, 10 Eaet 40 th Street, New York 16, N. Y.

Letters

to the Editor

(Continusd from page 53)
requires several measurements if a frequency or impedance range is to be investigated, but for lahoratories which do not specialize in UHF measurements, the simpler approach as described in my paper is quite satis. factory. A combination which sug. gests itself is Mr. Alford's "Hybridge" and our 91CA RF voltmeter for a simple set-up for return loss measurements.

I regret that I did not know of the contribution by C. B. Watts and Andrew Alford and was therefore unable to reference it in my paper. It is interesting to note that when the wide-band measuring technique is used, the limit of measurable return loss by either method is approximately the same, i. e. 45 db . The narrow band, tuned system, described in my paper has a little more to offer in that return loss measurements up to 55 db are possible. This is equivalent to a VSWR of 1.004.

Raymond E. Lafferty Chief Engineer
Boonton ELECTRONICS
Corporation
738 Speedwell Ave.
Morris Plains, N. J.

New Markets

Editor, Electronic Industries:
In the July 1960 issue of your excellent publication, there appeared the article "Searching for New Electronic Markets." I would like to obtain about 10 reprints to circulate to our key marketing people.
D. P. Rohrbach

Marketing Research Manager Shure Brothers Incorporated
222 Hartrey Ave.
Evanston, III.

"Writing-The Key"

Editor, Electronic Industries:
Would you be kind enough, in the next issue of "Electronic Industries" to publish a correction in relation to the author's name of "Writing-Key to *your Engineering Development" (Feb. 1961). My correct name is
A. M. Morkan-Voyce

I also have received a request from the U. S. Naval Ordnance Laboratory for some reprints of the paper and presume you will be kind enough to forward them the copies.

Thank you.
A. M. Morgan-Voyce General Electric Company
Court Street
Syracuse, N. Y.
(Continued on page 60)
another Sarkes Tarzian production breakthrough!

Specifications al $25^{\circ} \mathrm{C}$			
Tarzian Type	Zenep Voltage (V)	Test Current (MA)	$\begin{gathered} \text { Dyn. } \\ \text { Imp(MAX) } \\ \text { (Ohms) } \end{gathered}$
VR6	6	25	4.0
VR1	7	25	5.0
VR8. 5	8.5	25	6.0
VR10	10	12	8.0
VR12	12	12	10
VR14	14	12	11
VR18	18	12	17
VR20	20	4	20
VR24	24	4	28
VR28	28	4	42
VR33	33	4	50
VR39	39	4	70
VR47	47	4	98
VR56	56	4	140
VR67	67	2	200
VR80	80	2	280
VRSO	90	1	340
VR105	105	1	400

$$
\begin{aligned}
& \text { Epoxy enclosed } \\
& 6 \text { to } 105 \text { volts, in } 20 \% \text { increments } \\
& \text { Standard tolerance is } 20 \% \\
& \text { (all common tolerances available on request) } \\
& \text { Immediate availability } \\
& \text { Sarkes Tarzian did it in } 1957 \text { for silicon rectifiers } \\
& \text { and has done it again in } 1961 \text { for silicon voltage } \\
& \text { regulators...devised production methods that } \\
& \text { make it possible to offer quality silicon } \\
& \text { semiconductor devices at a price level that } \\
& \text { permits their use not only in Sunday circuits } \\
& \text { but also in workday circuits. } \\
& \text { At the new low prices, more circuits can be } \\
& \text { better protected or improved in performance by } \\
& \text { the use of these small and inherently rugged } \\
& \text { devices as clippers, limiters, and regulators. } \\
& \text { Send for prlce and ordering information. }
\end{aligned}
$$

Where highest quality
is in volume production

SARKES TARZIAN, INC.
 Equipmont - Alr Trimmers o FM Radies - Magnoter Recording Tape o Semicendmeter Daviens semiconducton division - iloominoton, indiama In Conada. 700 Woston Rd.. Toromo - Export: Ad Auplome. Inc., Now Yort

Micropot ${ }^{-1}$ Potentiometers

BORG EQUIPMENT DIVISION

Amphenol-Borg Electronica Corporation Janesville, Wisconsin • Phone Pleasant 4-6616

HIGH-DENSITY WITHOUT TOOLS!

HIGH-DENSITY WTHHOUT TOOLS!

HIGH-DENSITY WITHOUT TOOLS!

HIGH-DENSITY

 WITHOUT TOOLS!THE
ONE-TRACK
MIND OF

TERMI-BLOK*
HIGH-DENSITY WITHOUT TOOLS!

HIGH-DENSITY WITHOUT TOOLS!

HIGH-DENSITY WITHOUT TOOLS!

AMP Incorporated

[^1]

When engineering specifications require continuous duty and quiet long life, Air Marine offers multistage blowers for low volume, higher pressure applications to 1 psi with air delivery to 100 CFM. Featured is long life with low noise. Where high pressure is required or on such vacuum applications as tape retention, the Air-Marine multistage blowers are the efficient answer.

Our field engineers will gladly assist you in the selection and application of motors, blowers or fans.

Air Marine motors. blowers and fans have been designed and tested to meet the specifications of both the military and industry.

WRITE TODAY FOR OUR NEW CATALOG

369 daview Arenue Am-iyodte. I I. N Y. 2221 Barry Avenue Los Angeres, California

In Canada AAE Limited, Westen, Ontario

Letters to the Editor

(Continucd from page 56)

"RFI Series-"

Editor, Electronic Industries:
I have followed many of your articles on R.F.I. throughout the past year, and would appreciate reprints of all these articles published in Electronics Industries throughout 1960. 1 would also like to receive a reprint of the article "An Introduction to Boolean Algebra" published in the June Directory and all Reference Issue.

We receive your publication here at the office and I must say it contains many interesting articles and data. Thanks for a fine selection of material.

Albert F. Collett, Engineer
New England Telephone and
Telegraph Company
50 Oliver Street
Boston 7, Mass.
Editor, Electronic Industries:
Following Your invitation on page 90 in the "Electronic Industries" (October, 1960) I should greatly appreciate to receive a reprint of the eight articles oo far published concerning Radio Frequency Interference problems.

Borge Jiesen
Kingdom of Denmark
General Directorate of
Posts and Telegraphs
Tietgengade 37
Copenhagen

Technical Dictionary

Miss Sylvia N. Berman
Group Secretary
Massachusetts Institute of Technology Instrumentation Laboratory
Cambridge 39, Massachusetts
In the January 1961 Electronic Industries, "Letters to the Editor," you suggested a manual of correctly spelled and abbreviated terms for technical secretaries.
The American Institute of Physics publishes a "Style Manual," which I think is about what you have in mind. This is a list of standard abbreviations which are quite commonly used by scientists and engineers, at least in the United States.

I feel sure this manual would be helpful to you and others in your organization. The address of the American Institute of Physics is 335 East 45th Street. New York 17, New York.
(Mrs.) M. W. Groner Office Manar.
Weinschel Engineering
10503 Metropolitan Ave.
Kensington, Md.

Firss ceaxiol funer sovering frequency range frem 1.010100 Gc

Matches VSWR's of $10: 1$ to 1.00
Insertion lass less than 1 db when correcting mismotch of 3:1
Corrocts mismatch of any phase
Standard iype N Connectors (jack to plugl For universal utilization

FXR's new, broadband coaxial slide screw tuner, Model N311A, tunes throughout the entire frequency range from 1.0 to 10.0 Gc over which VSWR's as high as 10:1 can be matched. An FXR first, this new tuner saves measurement time and equip. ment investment.
RF leakage is minimized by means of a special poly-iron choke mounted along the tuner's slot. Graduations on the body and
probe permit quick, accurate resets.
The N311A coaxial tuner, paralleling similar achievements in waveguide slide screw tuner development, is another illustration of FXR's widely acknowledged capabilities in the field of precision microwave test instrumentation.
Write or call now for data sheets on Model N3IlA and other units in the extensive FXR line of precision slide screw tuners.

FXR's COMPREHENSIVE LINE OF PRECISION WAVEGUIDE TUNERS

WAVEGUIDE TYPES					
$\begin{aligned} & \text { Slide Serem } \\ & \text { Tuaet } \\ & \text { Mathal B Prise } \end{aligned}$		E/V Tuner Model I Pricg		Frey. Rante Ce	$\begin{aligned} & \text { Wragaite } \\ & \text { Tying } \\ & \text { ee-(} / 4 \end{aligned}$
13104	\$250.	-		1.12 to 1.70	69
9310a	8325.	-		1.70 to 2.60	104
S311A	8150.	S312A	\$270.	2.60 to 3.85	48
H3IIA	\$140.	H312A	\$210	3.95 to 5.85	49
C3lla	$\$ 135$.	C312A	\$180.	5.85 to 8.20	50
W311A	\$130.	W312A	\$150.	7.05 to 10.0	51
X311A	$\$ 125$.	X312A	\$130.	$8.2010 \quad 12.40$	52
Y311A	\$130.	Y312C	\$135.	12.40 to 18.00	91
-		K312C/CF	\$135.	18.00 to 26.50	53
-		U3128	\$170.	$26.5010 \quad 40.00$	96
-		O3128	\$235.	33.00 10 50.00	97
M311A	\$225.	M312C	\$24s.	50.00 10 75.00	98
-		E312C	8390.	60.00 to 90.00	99
-		F313A	\$775.	90.00 to 140.00	138
-		G313A	5775.	140.00 to 220.00	135

All prices and characteristics subject to change without netice.
DELIVERY FROM STOCK

FXR OFFICES IN NEW YORK - BOSTON - IOS ANGELES
REPRESENTATIVES IN AII MAJOR CITIES THROUGHOUT THE WORID.

PRECISION MICROWAVE EQUIPMENT - HIGH-POWER PULSE MOOULATORS - HIGHVOLTAGE POWER SUPPLIES - ELECTRONIC TEST EQUIPMENT

ANNOUNCING THE NEW HONEYWELL IRON VANE AC \square PANEL METERS

Here are the AC counterparts of
Honeywell's popular DC panel meters. Iron Vane AC Meters are perfectly matched to the DC range and are available in both the Medalist and "standard" case styles. This means a minimum of trouble and expense in mounting. And you are assured of harmonious styling in every detail.
Iron Vane AC Meters are designed for a wide variety of commercial applications - including portable equipment, testers, power supplies, generator equipment and medical equipment. The improved moving iron mechanism features magnetic damping, impregnated field coils, and selected fixed and moving iron material to provide long, trouble-free operation.
These meters are available in a wide selection of case styles and colors. Dials can be custom designed with your company name, trade-mark or other data. For full information, contact our representative in your area - he's listed in your classified telephone directory. Or us: Precision Meter Division,
Minneapolis-Honeywell Regulator Co., Manchester, N.H., U.S.A. In Canada, Honeywell Controls Limited, Toronto 17, Ontario and around the world: HONEYWELL INTERNATIONAL Sales and service offices in all principal cities of the world.

Honeywell H Precition Matern

THE BEST BASIC TYPES, double.diffused silicon with low saturation resistance and a reserve of speed, power handling and current range that permit the widest latitude in circuit design.

ELECTRICAL CHARACTERISTICS
($25^{\circ} \mathrm{C}$ except as noted)

AT COMPETITIVE PRICES, now comparable or lower than industrial germanium or silicon transistor types of more limited performance.
WITH ASSURED AVAILABILITY through regular Fairchild distributors. The Fairchild name and the 2 N numbers protect the circuit designs you base on these specifications.

TMES	DESCNIPTIOM	$\begin{aligned} & \text { YEDEC } \\ & \text { OUTIME } \end{aligned}$	TYPICM	$\begin{aligned} & \text { PQQ25'C } \\ & \text { CASE TEMP. } \end{aligned}$	Mires.	VCER	${ }^{*} \mathrm{CBO}$	$V_{B E}(5 x y$ chal	$\begin{aligned} & \text { VCESSet } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { Icao@25 C } \\ & \text { max } \end{aligned}$
2N1985 2N1984 2N1983	Small signal types for AC and DC amplifiers	10.5	50 mc	2 watts	$\begin{array}{lr} 15^{\circ} & 45^{\circ} \\ 35^{\circ} & 100^{\circ} \\ 70^{\circ} & 210^{\circ} \end{array}$	40	50	-	-	$51 /$
2N1987 $2 N 1986$	Switching types	105	50 mc	2 watts	$\begin{array}{cc} 20 & 80 \\ 60 & 240 \end{array}$	40	50	0.9	0.6	51.4
$\begin{aligned} & \text { 2N1989 } \\ & \text { 2N1988 } \end{aligned}$	Higt voltage types particularty suited to video amplifiers and Rf oscillators	10.5	50 mc	2 watts	$\begin{array}{cc} 20 & 60 \\ 35 & 120 \end{array}$	60	100	1.0	2.0	5 ma
2N1991	PNP complement to the small sugnal and swicthing types	10.5	50 mc	2 watts	$15 \quad 60$	-25	-30	-1.5	-1.5	5 PA
2N1990	Neen tube and Nirie* driver type	T0.5	-	2 watts	20	60	100	1.0	0.5	-

Write for full specifications

515 WHISMAN ROND. MOUNTAIM VEW CAUF. TORKSHIRE \&BIG.TTXX MH WWCLI 853
a wholly owned subaidiary of farrenild camere and instrument Copporstion
model 317

NEWBallantine VTVM measures $300 \mu \mathrm{~V}$ to 300 V $\$ 445$.
(With probe \$495)

atrememese 10 cps to 11 Mc

- Accuracy is \% of reading anywhere on scale at any voltage Five inch mirror-backed voltage scales of 1 to 3 and 3 to 10 , each with 10% overlap: 0 to 10 db scale Use as a sensitive null detector 5 cps to 30 Mc - Use as stable 60 db wideband amplifier, 2.5 volts max output Cathode follower probe has a voltage range of $300 \mu \mathrm{~V}$ to 300 mV , and a high input impedance Instrument is average responding type. Effect of line transients nil Avalable in portable model shown or in 19 inch rack version.

VOLTAGE: $300 \mu \mathrm{~V}$ to 300 V .
FREQUENCY: 10 cps to 11 Mc (As a null detector, 5 cps to 30 Mc).
ACCURACY: \% of reading anywhere on scale af any voltage. 20 cps to $2 \mathrm{Mc}-2 \% ; 10$ cps to $6 \mathrm{Mc}-4 \%$; $10 \operatorname{cDs}$ to $11 \mathrm{Mc}-6 \%$.
SCALES Voltage. 1 to 3 and 3 to 10 , each with 10% overlap. 0 to 10 do scale. INPUT IMPEDANCE: With probe, 10 megohms shunted by 7 pF. Less probe, 2 megohms shunted by 11 pF to 24 pF .
AMPLIFIER. Gain of $60 \mathrm{db} \pm 1 \mathrm{db}$ from 6 cps to 11 Mc ; output 2.5 volts.
POWER SUPPLY: $115230 \mathrm{~V}, 50-400 \mathrm{cps}, 70$ watts.
DIMENSIONS (Inches): Portable, $13 \mathrm{~h} \times 71 / 2 \mathrm{w} \times 91 / 2 \mathrm{~d}$. Rack, $83 / 4 \mathrm{~h} \times 19 \mathrm{w} \times 81 / 2 \mathrm{~d}$,
WEIGHT: 17 pounds, Dortable or rack models. Approximately 34 pounds shipping weight.
Write for brochure giving many more delails
BALLANTINE LABORATORIES ma.

Boonton, New Jersey

chec. with ballantime first con laboratory ac vacuum pube voltmeters regardigs or voun me ou mements rob
 asm aboul our laboratort voltage stavoaros $10!000 \mathrm{MC}$

Personals

William (i Wolff-named fo the newly-created post of Applications Manager for Temptron, Inc., Reseda, Calif.
H. Herbert Jackson-to Manager of the Nimbus Weather Satellite Control System for General Electric's Missile and Space Vehicle Dept. Phila., Pa.

William L. (ireyson-appointed Manager of Research and Development for Tensolite Insulated Wire Co., Ine.

Claire Bell-joins Varian Assuciates as Manager, Instrument Product Engineering, Instrument Div., Palo Alto. Calif.

Meyer Leifer to the post of chief Engineer of the Ampex Instrumentation Products Co., Redwood City Calif.

M. Leifer

R. L. Trent

Rubert L. Trent-named Technical Director for the Semiconductor Div. of Sperry Rand Corp., Norwalk, Conn.

John Cammarata-named Manager of Product Reliability for Arma Div.. American Bosch Arma Corp., Garden City, N. Y.

Gerald D. Ewing has been appointed Supervisor of Application Engineering for Shockley Transistor unit of Clevite Transistor. Palo Alto, Calif.

William R. Bidermann-appointed to the newly created position of Chief Production Engineer of Telecomputing Corp.'s Whittaker Gyro Div., Van Nuys, Calif.

Ralph G. Lindstrom-to Manager. Engineering Services Dept. for the Western Development Laboratories of Philco Corp.. Palo Alto. Calif.

PRD Electronics. Inc., Brooklyn, N. Y., announces the appointments of Dr. L. J. Castriota as Manager of Engineering; and in the Weapons Systems Div., Ralph (i. Lohmann. Project Manager of Attack Systems and Messrs. Erick J. Koch and George H. Teommey as Project Engineers.

THE NEW
 707 ASTROJET Jefaes staes I

Now offered in regular transcontinental passenger service, American Airlines' new 707 Astrojet brings you a new standard of jet performance by the airline that's first chuice of experienced travelers.
Powered by revolutionary new Jet-Fan engines, the 707 Astrojet greatly outperforms all other airliners. It takes off more quickly, uses far less runway than the best of standard jets. Aboard it, you experience a wonderful feeling of confidence as the Astrojet climbs swiftly to
-Service mirk of American Aıflınes, Inc.
cruise easily, smoothly, within the transonic rangefaster than any other jetliner in the world.

In keeping with its 25 -year tradition of leadership, American is proud to be first in bringing you this new dimension in jets-this historic new era in air travel.

AMERICAN AIRLINES
 America's Leading Airline

NWL portable AC power supply

The portable AC power supply shown here is just the thing for hard to reach places or when the main power source is too far removed. It has numerous types of outputs and many voltages and phases offer a wide selection of power requirements. The unit can also be designed for outdoor use. Input and output are $\mathbf{3}$ 』 60 to 400 cycles, Output voltages are 120, 240, and 460 in single, 2 or 3 6. The portable AC power supply can also be furnished with an adjustable voltage control from $\mathbf{0}$ to full output. This unit can be built with any output to meet your requirements.

Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you according to your individual requirements.

MOTHELFER WINOING LABORATORIES, INC, P. O. Box 455, Dept. E15. Trenton, M J. (Spocialists in eustom-muilaing)

Personals

Dr. Henry F. H. Wigton has been appointed to the Technical Staff of Fairchild Semiconductor Corp.'s Research and Development Laboratories, Physics Section, Mountain View, Calif.

Dr. Taffee T. Taniomoto named Head of the Pattern Recognition Laboratory at Melpar's Applied Science Div.. Watertown, Mass.

John Stiles-now heads the Advanced Products Dept., Gyrodynamics Branch in Kearfott Div., General Precision, Inc., Little Falls, N. J.

Sol Wiener-named Chief Value Engineer of Polarad Electronics Corp., Long Island City, N. Y.

Thomas J. Vaughan-to the post of Manager of RF Engineering for Antenna Systems, Inc., Hingham, Mass.

Peter F. Grad-new Chief Chemical Engineer for Rotron Mfg. Co., Inc., Woodstock, N. Y.

Richard J. Martin-joins the Magne-Head Div. of General Instrument Corp. as Engineer in Charge of Evaluation and Tests.

Dr. Peter Wargo named Manager of Engineering for General Electric's Cathode Ray Tube Dept., Syracuse, N. Y.

Norman Rudnick-appointed Director of the new Transducers and Ma. terials Laboratory at Gulton Industries, Inc., Metuchen, N. J.

Dr. George M. Nonnemaker named Manager of Signal Processing Products, Missile Electronics and Controls Div., Defense Electronic Products, Radio Corp. of America, Burlington, Mass.

Hughes Aircraft Co. announces the appointment of Charles W. Cartia as Manager of the radar laboratory, ground systems group; Dr. Daniel Binder, Head of the Nuclear Measurements Dept.; Edson B. Gould III, Manager of Reliability and Quality, Semiconductor Div.; and Jose M. Tellez, Associate Manager of the Computer Laboratory, Ground Systems Group.

NTERT: BUSS

Signal Indicating •Alarm Activating GMT Fuse \& HLT Fuseholder

In the BUSS line,

you'll find the pype and size fuse to fil your every need ... plus a companion line of clips, blocks and holders.

BUSSMANN MFG. DIVISION, McGraw-Edison Co., UDIMENEITY AT JEFFERBON, 8T. LOUI8 7, MO.

Measure and record DC current, 0.1 ma to 10 amps ~ without breaking leads, without circuit loading!

New 428B Clip-on DC Milliammeter with recorder output!

Now you can measure and record dc current to 10 amps without interrupting the circuit and with no circuit loading. You simply slip the jaws of the 428B probe around a bare or insulated wire and read dc, even in the presence of equally strong ac on the same wire. No need to break leads. The 428B reads dc current directly in 9 ranges by sensing the magnetic flux induced by dc current in the wire.

To measure current difference between two separate wires just clip the probe around them both and read. then reverse one lead and read their sum! For even greater sensitivity you simply increase the number of lead loops through the probe, increasing sensitivity by the same factor as the number of loops.

The recorder/oscilloscope output, de to 300 cps , makes it easy to record dc levels as well as analyze ground buss, hum and ripple currents on an oscilloscope-all without circuit loading.

- also offers Model 428A Clip-on DC Milliammeter. This instrument is similar to 428B except that covcrage is limited to 3 ma to 1 ampere (6 ranges), the recorder output is not included, and price is somewhat lower.

SPECIFICATIONS

Current Range: $\$ 428 \mathrm{~A}, \mathrm{I}$ mato 1 a full scale in 6 ronges
4. 4288, 1 mo to 10 a full scole in 9 ranges

Accuracy: $\pm 3 \%, \pm 0.1 \mathrm{ma}$
Probe Inductance: < 0.5 uh introduced into measured circuir
Probe Induced Voltage: < 15 mv peak into meosured circuir
AC Rejection: AC with peak value less than full scale offects meter accuracy less than 2% at frequencies above 5 cps and diferent from corrier 140 KC) and its harmonics. (On 428810 amperes range, ac is limited to 4 amperes peak)
Recorder/Oscillator Ourpur: 4288, approximately 1.4 v across 1,400 ohms full seale. Frequency response dc to 300 cps
Piobe Insulation: 300 v maximum
Probe Tip: $11^{\prime \prime} \times 9 / 32^{\prime \prime}$. Aperture diam. $3 / 16^{\prime \prime}$
Size: Cabinet, $71_{2^{\prime \prime}} \times 111_{2}{ }^{\prime \prime} \times 14 \frac{1}{4^{n}}$; rock mount, $19^{\prime \prime} \times 7^{\prime \prime} \times 13^{\prime \prime}$ behind ponel
Weight: Cabinet, 19 lbs ; rack mount, 24 lbs.
Price: 428A, $\$ 500.00$ (cobinet); 928 AR, $\$ 505.00$ (rack mount) (5. 4288, $\$ 550.00$ (cabinet); 4288R, $\$ 555.00$ (rock mount)

HEWLETT-PACKARD S. A.
Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA" Tel. No. (022) 26. 13. 36

DIIITAL MODULES

building block or plug-in card

Which package fits into your design? Packaged either way, Delco Radio Digital Modules meet or exceed all MIL-E-5272D (ASG) environmental requirements. Continuing life tests on these computer circuits now exceed four and one-half million transistor hours without a failure. The modules perform all the standard logic functions and come in many basic types and variations. Delco modules in the transistorized building block package are ideally suited for airborne guidance and control because of their extreme ruggedness. compactness and reliability. All miniature building block modules employ three dimensional welded wiring techniques and are vacuum encapsulated in epoxy resin. Delco Radio can offer you off-the-shelf digital circuits packaged as building blocks or plug-in cards, or can supply circuits to meet your specific needs. Our Sales Department will be happy to send you complete engineering data. Just write or call. Physicists and electronics enginecrs: Join Delco Radio's search for new and better products through Solid State Physics.

BXPANDABLE

MODULAR DIGITAL MULTIMETER

Picture this self contained. automatic system working for you the compact Beckman 4011.01% dvm; together with converters for measuring low millivoltage DC, AC and ohms; a scanner which allows automatic readings of 29 sources of information; and finally, the Beckman solid-state, digital printer to make a permanent, indexed record of all the readings.

Price for the complete system about $\$ 4800$
For detailed specifications on all these instruments and their use together, write for Brochure A4011.

Sechman 4011
complete portable complete porta avin is availab
as are the
ther modules
hown above, les a
pertable gactrage.

A
 VERSATILE LITTLE PERFORMER

The Fairchild TP-200-a versatile little pressure transducer (2-inch nominal dia.) with many faces and as many changes of costume. It was conceived in the early dawn of the Missile Age and has soared, dived, zig-zagged and tumbled within some of America's most sophisticated aircraft, missiles, space vehicles and special weapons.
The Fairchild TP- 200 is an extremely rugged, precision potentiometer-type transducer. It measures absolute, gauge or differential pressures of corrosive and non-corrosive gaseous or liquid media, with static or dynamic inputs in the ranges of $0-5$ to $0-100$ psi full-scale-for altitude, water-depth, airspeed, pressure ratio and Mach number functions.
It is equipped with a variety of pickoffs, to suit its role-single or multiple, linear or non-linear, wirewound or deposited metal film potentiometric elements. switches, rheostats and other types of pickoffs.
Within any case design-square, cylindrical, "Quonset Hut" and others-and with any mounting configuration, there beats the same gallant heart of a true performer: a basic versatile, variable, temperature-compensated mechanical amplification system that combines the high output signal and extreme accuracy characteristics of the output elements with the reliability, ruggedness, accuracy and excellent responsiveness of a precision capsular diaphragm.

Like all Fairchild components, the TP- 200 is designed, built and tested beyond the specs for Reliability in Performance, under the most severe environments.

Write for new catalog that shows how the TP-200 fits your performance requirements.

Books

Statistical Processes and

Reliability Engineering

By Dimitai N. Charalar. Published 1960 by O Von Nostrand Co inc, 120 Alerander Streat

This study of the theory and applicaton of mathematical statistics is designed primarily as a toul for engineers, and particularly for reliability engineers. It presents to the reader an integrated approach to stochastic processes and to their use as a means for prediction and control. The author views statistics as a fundamental tool for scientific investigation. He first presents and explains statistical laws, and then explores their relationships with engineering disciplines and practices.

Electronic Tubes and Semiconductor Elements in 2 Volumes, Volume 1
Ecitad by P. Mikoloiciyh. Publishad 1950 by Pet aomon Press.
Price $\$ 20.00$.
This important reference work con tains an exhaustive compilation of data on electron tuhes and semiconductor: in seven languages: English, French, Spanish. German, Polish, Russian and Ita!ian, relating to all tubes manufacture: throughout the world used in radio receivers and transmitters (up to 500 W of dissipated power) television and television equipment, computers, etc.

Elements of Electronics, 2nd Edition

By Hentr V. Hickey and Williom M. Villines, Jr. Published i961 by Mc Grow. Hill Book Co.i Inc. 330 West 42 nd Street. New York 36, N. Y. 549 pages. Price $\$ 8.75$

This easy-to-understand book has been designed to cover sufficient material to prepare the reader for advanced work in any of the branches of electrical engineering. It begins with a comprehensive survey of basic physics. It then progresses through the study of a simple transmitter and receiver, with all associated and related material thoroughly explained.

Books Received

A History of Plotinum

By Donald McDonold. Published 1960 by Johnson Matthey $\&$ Co., Limited, Hatton Gardon, Lon. Motthey ${ }^{6}$ Co., Limitad, dotion
don. ECI. 254 pages. Price $\$ 5.50$.

Electron Optics in Television

By 1. 1. Tsukkermon. Published 1961 by Pergamon Press. Inc. 122 East 55th Street. New York 22. N. Y. Price 88.50.

Reflections on the Motive Power of Fire
By Sadi Carnot. Published 1900 by Dover Put lications, inc., 1 Do Vorick Street. New York 14

Optics and Optical Instruments

By B. K. Jonnson. Published 9960 by Dover Pub. N. Y. 224 poges, poper bound. Price $\$ 1.65$.
(Continued on page 76)

225 Pork Avenue, Hicksville, L. I., N. Y. - 6111 E. Washington Blvd., Los Angeles, Colif. TRANSDUCERS • RATE GYROS • POTENTIOMETERS • ACCELEROMETERS

This Baby is Bayonet-Locking

Meet DTK...the best little bayonet-locking electrical connector available today. DTK is short for Deutsch Tri-Kam and refers to the triple cam coupling design that assures fast, positive engagement and lock. As a direct descendant of MIL-C-26482, this baby is interchangeable with existing MS 3110 and 3116 series connectors. The DTK also inherits many desirable features from its Deutsch ancestors including superior silicone inserts and MIL-C-26836 crimp-type contacts that are insertable and removable with military standard tools. Color-keyed mating indexes and 7 -point inspection for lock, make this latest generation connector a cinch to couple, even in remote locations. For more vital statistics on the latest addition to the Deutsch family, contact your local Deutschman today or write for Data File A-5.

 in automatic logic circuit testing

Production of packaged module circuits gains new impetus with this major achievement! Now you can automatically lest the operaling characteristics of logic circuit modules, memory boards, component cards and similar units -with speed, precision and dependability.

The new Tape Programmed DIT-MCO Model 720 rapidly performs static and dynamic lests on active and passive modular circuits.

Tests that can be performed with the new Model 720 include:

- Logic circuit response to oll logical combinations of DC input levels.
- Marginal tests to evaluate logic modules under conditions of lowered or raised supply levels in combination with low. ered or raised signal input levels.
- Complete tests of conversion matrices for proper logic, levels.

The Tape Programmed DIT-MCO Model 720 will accurately test variables which are required 10 maintain $=0.5 \%$ accuracy, and 3 digit tolerance values can be programmed. Provision is made for programming AC or DC sources and external signals through the tester.

Performance of this enfirely new circuit analyzer is backed by the experience and reliability of DIT-MCO, Inc.-the nation's leader in automatic circuif testing.

Rutomntirally 4 ours

DIT

DIT-MCO, INC. Kansas City 5. Missour

911 BROADWAY HArrison $1-0011$ Los Angeles Area \quad Oregon 8-6106
New York City Area \quad MUrray Hill 2-5844

first with solid state 100-watt d-c amplifier

Inland's new Model $\mathbf{5 7 9 . 3 5 \mathrm { d } - \mathrm { c } \text { amplifier has a high }}$ power output of 100 watts when used with low impedance loads requiring direct current. And this completely transistorized amplifier is packaged in a hermetically sealed can only $21 / 2^{\circ} \times 31 / 10^{\prime \prime} \times 21 / 2^{\prime \prime}$.

Designed for use with d-c torquers, in one typical application Model 579.35 provides 65 db power gain between the output of a d-c driver stage and the input terminals of a permanent magnet torque motor. This amplifier has these outstanding performance characteristics:

- The d-c output has magnitude and polarity proportional to the input signal.
- All amplifier circuits use a combination of silicon and germanium transistors (allsilicon models also available).
- Amplifier null and gain are stable and independent of temperature.
Inland also makes a complete line of rotary amplifiers for matched use with Inland's distinctive pancake shape d-c torquers.

A brochure on this new high-power amplifier is available. For your copy and complete data on Inland Corquers and amplifiers, write Dept. 8-5.

TYPICAL SPECIFICATIONS

Maximum Power Output, watts $(6 \mathrm{hm}$ load
Power Gain
Current Gain
Voltage Gain
Frequency Response
Input Impedance, ohms
Dimensions, inches
50,000
$21 / 2$ wide
33/he long
$21 / 2$ high
Operating Temperature Range in ${ }^{\circ} \mathrm{C}$ minus 50° to plus 50°

A basic condenser discharge unit for most medium size magnets, the Model 107A provides ranges of 12,000 and 24,000 ampere-turns. It is capable of saturating most instrument magnets, including the new core type mechanisms, using adapters or wire-wound fixtures. Designed for continuous duty. Operates from 115 -volt, 60 -cycle line. Price $\$ 590$.

A high powered magnetizer (up to 200,000 ampere-turns) capable of charging large Alaico and ceramic magnets of various shapes or pole configurations. Adapters for multi-pole rotors, rod, bar, ring and other shapes are available. Designed for continuous produc. tion use. Size $30^{\prime \prime} \times 33^{\prime \prime} \times 38^{\prime \prime}$; weight 235 lbs . with 200 -uf unit. Price of basic unit is less than $\$ 2100$.

Performence of all models is rigidly guaron. reed. Pices ane net f.o.b. Boonton, N.J. and subject to change without notice.

> Radio Jrequewty Lanomionis, mec:
> Boonton. New Jersey, U.S. A.

Books

(Continurd from pagc 72)

The Dynamical Theory of Sound By Horace Lamb. Published 1960 by Dover Pub

Principles of Illumination
By H. Co'fon. Published 1961 by John Wiley 6 sons. Inc. 4 \& fourth A.enue. New York 16,

Photoelasticity, Principles and Methods
By H. T. Jessed onc F. C. Harris. Published 1900 LY Dover Publications Inc.. 180 Varick
Slieet. New York is N.Y. 184 pages, poder. slreet, New york tis N. Y. 184 poges, poder.

Weight-Strength Anolysis of Aircroft Structures
By F, R. Shanley, Publiahed minc by Dover Put

Servicing AGC Systems, Revised
Br Henry Carter and Thoman Lenh Publinted 196t by Howard W, Sams 6 Co lac, 220 , costes, coDerbeund Price 82.00

Citizens Band Radio Handbook

By David E. Hicks. Published 9961 by Howord W, Soms 6 Co Inen 2201 East 46 th Streat Indionopakis
Price $\$ 2.95$

101 Key Troubleshooting

Waveforms for Vertical.Sweep Circuits

By Bob diddieton. Putlished 19 t t ty Howcro W apelis 6 Co Ine. 2201 Eors thith Stioet. Ino o Price 1290

"ABC's of Rador"

By Aiar Andirews. Published Ey Howard W

Tube \& Semiconducfor Selection Guide 1960.1961

By Th. J. Kroen. Fublished 1960 by Centres Pub lishing Cow 2 Cederlaon Eindhoven, Halland, 160 pagen, dacartound. Prise $\$ 1.75$ U.S.

Progress in Astronautics and

Rocketry Vol II, Liquid Rockets and Propellants
Edited by Mort in Summerfeid. Publiahed 1960 by Acodrmic Press, Inc, 11t Filth Avenie. New York 3, N. Y. 62 pagnt. Price $\$ 6.50$.

Proceedings of the Second Annual Symposium on Nondestructive
Testing of Aircroft and Missile

Components

Copies moy be obianed from R. B. Wong'er Southwert Reseorch Instilute P.O.
(Contimued on page 80)

Inductrol regulators provide highly accurate, highly reliable voltage control for BMEWS.

GENERAL ELECTRIC INDUCTROL* REGULATORS PROVIDE . ..

Precise, automatic voltage control for Free World's largest radar installation

Abstract

Automatic $\pm 1 \%$ accuracy . . . stepless control . . . maximum reliability. These are just some of the voltagecontrol requirements for the U.S. Air Force's giant Ballistic Missile Early Warning System (BMEWS). General Electric Inductrol regulators meet them all in providing precise voltage control for both the BMEWS high-voltage transmitter and receiver power supplies. INDUCTROL REGULATORS Uffer you these advantages, too, for a wide variety of applications-including radar, communications equipment, rectifiers, computers, laboratory equipment and many others. You also benefit from these other important Inductrol regulator features: drift-free control: 100 percent overload capacity; 97 to over 99 percent efficiency; load, power-factor and frequency compensation: no harmful waveform distortion; and rugged. compact design.

RELIABILITY is inherent in the simple induction principle of General Electric's Inductrol regulator design. There are no tubes to replace, no sliding brushes or contacts to wear out, and no separate d-c power supply. Thus, operation is essentially maintenance-free.
FOR MORE INFORMATION, contact your nearby G-E Sales Office, or write General Electric Company. Section 457-04, Schenectady 5, N. Y. Voltage Regulator Products Section, Pittsfield, Mass.

- Registered trado-mark ol General Electric Co

Progress is Our Most Imporrint Product GENERAL ELECTRIC

for clear display of:
Single-Shot Nuclear Eventa/Transistor Switching/Fast Diode Turn-on/Radio-Frequency Wavoforms/Tunnel-Diode Ewitching

for recording high-speed

 one-shot occurrencesNOW, you can see and record non-repetitive, high-speed phenomena with a standard oscilloscope-one that does not depend upon sampling techniques. On its distributeddeflection CRT, you can observe bright displays with 100 -line-per-centimeter definition. You can photograph fractional-nanosecond signals with ease on its full 2×6 centimeter display area.

You will find the Type 519 engineered for convenience . .
Internally-all circuit components of the complete unit fit compactly, yet are readily accessible for easy maintenance. A fixed signaldelay line plus variable sweep-delay control maintains the wide display passband and eliminates any need for adjusting delay-cable lengths.

Exiernally -the Type 519 features a minimum of controls and connectors for an instrument in this range. A carefully-coordinated frontpanel layout facilitates your test setups and procedures and aids greatly in saving engineering time and effort.

You need no auxiliary equipment for many high-speed applications. In fact, for normal operation, you make two connections only: (1) you plug-in the power cord, (2) you couple-in the signal source.

With such operational ease-combined with its inherent Tektronix reliability-the Type 519 is an ideal laboratory oscilloscope for your high-speed measurements up to the KMC resion and slightly beyondespecially those applications demanding a photographic record of oneshot occurrences.

CHARACTERISTICS

Passband-from dc, 3 ab point typically above 1 KMC. Instrument Risetime-less than 0.35 nanosecond (including trigger takeoff, delay line, CRT, and termination). Synchronlzation-200 mv peak-to-peak, 1 MC to 1 KMC. Accelerating Potential-24 kilovolts. Sensitivity-10 volts/centimeter, maximum, into 125 ohms. Time Base-linear 6 -centimeter sweeps from 2 nanoseconds/centimeter to 1 microsecond/centimeter in 9 steps. Sweep Delay-through 35 nanoseconds. Triggering-jitter-iree: External-3-microwatt (20 -millivolt) pulse of 1 -nanosecond duration. Internal-2-tracewidth pulse of 1-nanosecond duration. Signal waveform undiaturbed by trigger takeoft. Power and High-Voltage Supplies-electronically regulated. Callbration-Stop Generator. Avalanche-Translator Rate Generator.

Tektronix, Inc.

P. O. Box 500 - Beaverion, Oregon

Phone Milchell 4-0161 - TWX-DEAV 311 - Cable: TEKTRONIX

Type 519 KMC Osellloscope (1.e.b. tecton) \$sse0

Please call your Tekmoniz Field Engineer for complate specifications and a demonstration of the Type 519 in your own applications.

NEWI
 SYLVANIA 2N781 epitáaxíal
 mesas

- SYLVANIA 2N781
... world's fasfost PNP germanium switch!

COMDITIOM8	max.
$V_{\text {emm }}=0.5 \mathrm{~V}_{\mathrm{i}} \mathrm{Imal}=-1 \mathrm{~mA}$	$4+460$ nsec
$V_{c c}=-3.5 \mathrm{~V} ; \mathbf{R}_{\mathrm{c}}=3000 \mathrm{hms}$	4. 20 nsec
$L_{\text {mn }}=0.25 \mathrm{~mA}$	t, 50 nsec

... foatures unusually low Vee (sat)

COMDITIONS	Max.
$L_{C}=-10 \mathrm{~mA} . \mathrm{I}_{0}=-1 \mathrm{~mA}$	-0.16 V
$\mathrm{~L}_{c}=-100 \mathrm{~mA}, \mathrm{I}_{1}=-10 \mathrm{~mA}$	-0.25 V

SYLVANIA 2N781 - a remarkable advance in epitarial mesa techniques --is a superior switching device featuring speeds previously unattainable with a germanium transistor. Too. it provides exceptionally low saturation voltage at all cursent levels.
SVLVANIA 2N782, electrically similar to the 2N781, is specifically designed for service where high speed switching. low saturation voltage and economy are prime design requirements.
SYLVANIA 2N781, 2N782, utilize the TO-18 package with the collector internally tied to the case. Both are products of highly automated Sylvania manufacturing techniques and possess exceedingly uniform electrical characteristics.

IN STOCK NOW! For immediate delivery call your Sylvania Franchised Semiconductor Distributor or contact your Sylvania Sales Engineer. Technical data available from Semiconductor Division. Sylvania Electric Products Inc., Dept. 195. Woburn, Mass.

Tolerance Buildup No Bugaboo with Punched Laminated Plastics Parts

The compounding of individual tolerances on several punched holes or cutouts over the length of the piece is not the bugaboo that many designers believe. Careful die work and good working knowledge of the laminate used minimizes tolerance buildup. A good example of what can be done is the insulated pusher fabricated by Taylor for a high-performance crossbar switch manufactured by James Cunningham, Son \& Co., Inc., Rochester, N.Y.
These switches are 3-dimensional conductor matrices. with from 30 to 1200 switching contacts, which bring intelligence from as many as 600 sources to one or more readout or signal points. They are basic components in computers, machine tool programming systems, high frequency scanning systems, thermocouple and strain gage monitoring, and similar equipment.
The insulated pusher, only 2.955 in . long and .031 in . thick, and fabricated from Taylor Grade GEC-500 glass epoxy laminate, is a critical part of the crossbar. It must be held flat within $\pm .005$ in., with total over-length buildup not exceeding $\pm .002 \mathrm{in}$.
The materials used before to fabricate the pusher proved difficult to hold to the tolerances required. The success of the GEC-500 laminate fabricated by Taylor is evidenced by marked reduction in rejects and a 20% gain in production.
Taylor Fibre's Fabricating Division has the manpower, experience and equipment to produce parts to close tolerances from any of the company's raw materials. Send us your problem-we will recommend the best material for the job and quote on production runs. Write Taylor Fibre Co., Norristown 53, Pa.

Books

(Continued from page 76)

Dietionary of Mechanical

Engineering
By Altred Del Vecchio. Published 1961 by Phil osophical Librory. Inc.i is East 40 th Street

NARM Relay Symposium Papers

A compilation of Dopers presented of the Eighth hanual Published 1961. Distributed by Pro tessor Charlas F Comeron. Oklohomo State
University. Stillwater Oklahomo ils poges. University. S
poperbound.

General Catalog 1125N, ICS
General Catalog describing over 250 standard international Correspondence Sehools home-
situdy courses. Avoilable from ICS.Scranton spudy ccurses. Avoilable from 96 pages, Doperbound. Free

Semiconductors and Transistors

By Alesonder Schure Published 1961 by John F
R.der Publisher. Inc 116 West 1sth Street
New York 11 New York. 138 poges Doper
bound. Price $\$ 2.90$

Basic Transisfors

By A. Schure. Published 1961 by John F. Rider 19. Now York. 146 poges. paperbound Price 83.95 .

Governmental Publications

Orders for reports designated (OTS) should be addressed to the Office of Technical Services, U. S. Dept. of Commerce, Washington 25 , D. C. Make check or money order payable to: "OTS, Dept. of Commerce." OTS reports may also be ordered through the Dept. of Commerce Field Offices. Prepayment is required. Use complete title and $P B$ number for each report ordered. All other reports may be ordered from the Supt. of Documents, Government Printing Office, Washinkton 25, D. C

Standard Frequencies and Time Signals from NBS Stations WWV and VH. National Bureau of Standards Miscellaneous
Publicotion 236
Issued December 1, 1960. May be ordered from Superintendent of Documents, U. S. Government
Printing Office. Washington 25, D. C. 5 poges Price 80.10

Ultrasonics and Ceramic Coatings
 By R. R. Whymark and W. E. Lawrie. 52 phaes P8illos7. Price $\$ 1.50$

Supplement 4-Maintainability
Handbook for Electronic Equipment
Design to NAVTRADEVCEN 330.1
Design for Maintainability

1. Mi. Mikendiy and others. 386 paga. Pbiciozt.

Plice is on

ELECTRONIC INDUSTRIES
May 1961

SEMICONDUCTOR-COMPONENTS DIVISION

Texas

LIMITEO
DALLAE MOAD * BEOFOMO ENOLANO

PERFECT SEALS OF METAL TO GLASS keep this Radar System on Track

Hundreds of components in this radar system-tubes, connectors, thermal relays, transistor stems, etc. contain seals of metal to glass. These seals are made possible by special metal alloys having the same expansion coefficient as glass.

At Bishop we have been making glass-to-metal sealing alloys in tubular and composite wire form for many years. In addition, we produce stainless steel and nickel tubing in mechanical, aircraft, capillary and hypodermic grades in sizes up to 1 inch OD-plus an amazing variety of "specialties" such as clad metals, super and "exotic" alloys.

We also produce a vast line of platinum products and chemicals that have been used by industry for over a century.

We are unique because of our ability to work these metals to such tiny, precise forms. Bulletin No. 12 describes our tubular products-Catalog No. P-6 describes our platinum products. Write for them.

Tubular Products Division 上.sıshopaco. platinum works
35 KING STREET, MALVERN, PENNA.

[^2]

[^3]

TYPE K-5A FREQuENCY STANDARD

Size, $31 / 2^{\prime \prime} \times 3^{\prime \prime} \times 134^{\prime \prime}$
Weight, $11 / 2 \mathrm{lbs}$.
Frequency: $\mathbf{4 0 0}$ cycles
Accuracy: $.03 \%,-55^{\circ} 10+71^{\circ} \mathrm{C}$
Input: 28V DC $\pm 10 \%$
Output: 400 cy . approx. sq wave af 115 V into 4000 ohm load (approx. 4 W)

TYPE 2007-6 FREQUENCY STANDARD

Transistorized, Silicon type
Size, $11 / 2^{\prime \prime}$ dia., $\times 31 / 2^{\prime \prime}$ H., Wi., 7 oz.
Frequencies: 360 to 1000 cy .
Accuracies:

$$
2007-6 \pm .02 \% \quad\left(-50^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
$$

$$
R 2007-6 \pm .002 \%\left(+15^{\circ} 10+35^{\circ} \mathrm{C}\right)
$$

$$
W 2007-6 \pm .005 \%\left(-65^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Input: 10 to 30 V DC at 6 ma .
Output: Multitap, 75 to 100,000 ohms

TYPE 25 PRECISION FORK

Size, s/ ${ }^{\prime \prime}$ dia. $\times 2$ 2\% $^{\prime \prime}$
Weight: 2 ounces
Frequencies: 200 to 1000 cy . (specify)
Accuracies:
R-25T and R-25V $\pm .002 \%\left(15^{\circ}, 35^{\circ} \mathrm{G}\right)$.
25 T and $\left.25 \mathrm{~V} \pm .02 \%\left(-65^{\circ} 10.85\right)^{\circ} \mathrm{C}\right)$
For use with tubes or transistors.

TYPE 15 FREQUENCY STAHDARD

Similar to Type 10 (illustrated) excepi with silicon transistort, Kermefically sealed and vibration resistant.
Size, $1^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ high
Tolerance, $\pm .01 \%$ from $-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Output IV at 50,000 ohms source impedance.

verify events

 permanently in milliseconds

Brush Operations Monitors' response to signals is virtually instantaneous-less than 4 milliseconds. Multiple high-speed events are clearly defined from start to stop, on a common time base-and at rates up to 500 per second. Portable 30 channel or rack-mounting 100 channel models record sharp reproducible traces with fixed-stylus electric writing that provides the utmost in reliability. "Built-in" transistor switching to eliminate relays is optional. No direct writing recording system can match the capabilities of Brush Operations Monitors for industrial and military analysis and control. Write for complete specifications and application data.

 CLISION of $\underset{\sim}{\text { CLERVVTTE }}$

CLEVELAND 14, OHIO

compact

transistor switching

 for millisecond monitoring

The new Brush Trans-Switcher eliminates relays-greatly simplifies your problems of operations monitoring. Designed to take full advantage of the fast response and high resolution of Brush Operations Monitors. this compact, solid-state switching unit accepts up to 100 different "on-off" signals in a broad range of pulse shapes and amplitudes. Interchangeable, plug-in decade boards are designed to accept different voltage ranges and modes of operation. Avoid the "black box" approach-specify the standard Brush Trans-Switcher for the ultimate in precise, reliable monitoring. Write for complete details.

ELECTRONIC INDUSTRIES' 4TH ANNUAL ALL-REFERENCE ISSUE and Directory of Electronic Products

- NEW FEATURES in this year's Reference Section-
- What Electronic Engineers should know about Precision Standards-frequency standards, voltage standards and current standards
- Survey of Waveguide-technical specifications on all the waveguide on the market
- Printed Circuit Laminated Boards-from the wide variety of printed circuit boards that are on the market the four types of principal intere st to the electronic engineer are discussed here
- The 1961 Diode Similarity Chart
- And These CONTINUING FEATURES—Revised and brought Up-to-date
- The 1961 Transistor Interchangeability Chart
- Survey of New Receiving Tubes and Special Purpose Tubes
- 1961 Military Electronic Procurement Guide
- In the DIRECTORY SECTION:

Over 150 pages of purchasing information, including

- Who makes it
- Where you can get it
- Who represents it
- Brand and trade names
and many other information-packed sources such as New Electronic Standards, Marketing Statistics, Government Contract Award data, Roster of Associations Serving the Electronic Industries, International Electronic Sources and Coming Events

A^{N}N "ISOLATOR" is a four-terminal, unidirectional. transmission device. Many devices fall in this class, e.g., vacuum tube and transistor amplifiers, UHF and microwave ferrite isolators, and electromechanical isolators. ${ }^{1,2}$
"Gyrator" is sometimes used interchangeably with "isolator". Basically, a gyrator is a nonreciprocal device but does not necessarily have a unidirectional characteristic.

The isolators in this article use the Hall effect in semiconductors. Theoretical analyses of Hall effect gyrators and isulators have been made. ${ }^{3}$. Such gyrators use a semiconductor element and a constant magnetic field, Fig. 1.

If an input voltage causes a clockwise current flow in the input circuit, there is one direction of the magnetic field which causes a similar flow in the output circuit, Fig. 1a. With the same magnetic field orientation, a voltage, applied to the output terminals, producing a clockwise current flow in the output circuit. causes a counter-clockwise flow in the input circuit, Fig. 1b.

This gyrator can be used as an isolator by adding
Fig. I: Notice the change in the input circuit when the load is replaced with a voltage which causes the output circuit to flow in its original direction. In both eases the magnetic field direction must be the same.

With Semiconductors and Magnetics, we . . .

Develop

shunt resistances, Fig. 2. In one direction, the transmission through the gyrator is in phase with transmission, through the resistances; in the other, the two transmissions are 180° out of phase. Cancellation occurs. There is a value of R_{s} which theoretically gives complete cancellation. This value is related to the device's four terminal network resistances.

Many articles describe Hall effect isolator use. ${ }^{5 .}$. 7 But very few describe practical devices.

Design Problems

Before this study, two brief ones were made in 1958. One used a laboratory-constructed InSb Hall generator; the other, a InAsP Hall generator. These studies revealed many design problems; but no effort was expended in solving them.

The main problems were:
(a) Low impedance levels of generators.
(b) Inherent forward loss of isolators.
(c) Frequency dependence of reverse characteristics.
(d) Need for common ground removal between input and output circuits.
Problem (a) has 2 answers: (1) development of higher impedance generators; or (2) use of impedance matching networks. Both solutions were investigated.

Several silicon generators with resistances between 30 and 300 ohms were made. The forward transmission loss of isolators with these elements was always higher than the losses with InAs generators. Further study revealed that forward loss depends on semiconductor material mobility. This suggests using higher mobility materials such as InAs, InSb and InAsP, rather than germanium and silicon.

Unless new semiconductor compounds yield high mobility, high resistivity materials, only one answer to the low impedance problem exists. And that is impedance matching transformers. The experimental isolators in this article use this technique. The use of transformer coupling also solves Problem (d).

Discovered decades ago, the Hall effect lay dormant for years. Now, much atfention is being directed to the application of devices using the effect; but little to design of practical units. Here, we correct that situation, describing the design of a Hall effect isolator.

Practical Hall Effect Devices

By AlBERT R. HILBINGER,
Engineor
WILLIAM A. SCANGA,
Manogor, Systom Eng'g. Dopt.
and DR. CARROLL M. BARRACK
Principal Development Engr.
Aircroft Armaments, Inc.
Cocheysville. Md.

The minimum forward loss for any passive resistive isolator working into a matched load is 7.66 db , Problem (b).. If the isolator works into a high impedance load, the voltage loss can be improved. In test units, 5.0 db was obtained with flux densities of 7 kilogauss; 5.7 db at 5.75 kilogauss. Recently, isolators having forward power losses as low as 2 db were obtained at § kilogauss. These devices used multicontact generator elements. ${ }^{8}$ Improvement of forward loss to 1 db has been predicted.

Voltage across the gyrator and shunt resistors must be 180° out of phase to achieve complete cancellation of transmitted signal in reverse direction. As applied signal frequency increases, circuit stray reactances decrease the reverse attenuation, Problem (c). Short leads and noninductive resistors minimize inductance.

Small surface area generators and large air gap, permanent magnets minimize capacitance. An order of magnitude improvement in upper frequency limit was noted in the test models by increasing the air gap from 0.040 to 0.090 inches. This problem will probably be less critical in a resonant isolator where the stray capacitances are tuned out.

When both shunt resistors were not the same value, a null in the reverse characteristic could still be achieved. Therefore, we concluded that possibly one shunt resistor would be sufficient. Experiments proved this to be correct.

Experimental Results
We made and tested 2 basic form isolators, Fig. 3.
The first unit, Fig. 4a, was designed for low audio frequencies. T1 and T2 are commercial transformers. The isolator input impedance is approx. 50 ohms. The Hall generator is an InAs unit; the permanent magnet, Alnico V, designed for use as a microwave ferrite isolator magnet; and R_{e}, a length of Cupron wire shunted by a potentiometer. Fig. 5 shows the forward response of this isolator under 2 load conditions:

Curve A: Input, 1 v rms; load resistance, 6.8 Kohms.

Curve B: Input, 1 V RMS; load resistance, 10 megohms.
Although an overall gain is shown, Fig. 5, this gain is due to the voltage step-up in the output transformer. The generator was not working into a matched load for any case plotted. The measured generator loss was 5.0 db at 500 cps .

Fig. 5 also shows the reverse characteristic of the

Hall Effect (Continued)

isolator with R_{s} adjusted so that the null occurs when the input signal is $20 \mathrm{cps}, 5 \mathrm{Kc}$, and 10 Kc . Although the reverse attenuation can be improved at the null frequency, the best overall reverse characteristic is obtained when the null is adjusted at the lower frequencies. Wider frequency response is possible with reactive tuning.

Using the same basic form, Fig. 3, and the same magnet, and same generator, we made an isolator to cover a wider frequency range, Fig. 4b. T1 and T2 are commercial transformers with higher frequency response. The shunt resistor R_{8} is a length of Cupron wire. No shunt potentiometer is used. Fig. 6 shows the forward response of this isolator under 2 load conditions:

Curve A: Input, 1 v RMS; load resistance, 6.8 Kohms.

Curve B: Input, 1 v RMS; load resistance, 10 megohms.
This isolator's low frequency response is limited primarily by the T2 primary dc resistance. It is less than one ohm and loads the generator at low frequencies.

Fig. 6 also shows this isolator's reverse characteristic. The reason for the wider frequency range of the reverse characteristic as compared to Fig. 5 is the permanent magnet air gap increase from 0.040 to 0.090 inches. This decreases the stray capacitance between the generator and the magnet pole faces.
The forward frequency response in both test isolators is limited by the transformers used.

A third isolator uses a tunnel diode amplifier to partially offset the generator loss, ${ }^{2}$ Fig. 7. The stable gain of the tunnel diode amplifier was limited to approx. 6 db . A gain of approx. 14 db was achieved with the same diode and an 82 ohm load resistor (no transformer).

The forward gain of the overall circuit is shown in Fig. 8. The transformer limits frequency response. The circuit has a dynamic range of 60 db (15 micro-

Fig. 4: These are the two isolators. On the left is the one designed for low audio frequencies; right, a wide range.

Fig 3: The Hall Effect isolator which was rested had this basic form. Note that there is only one resistor.
volts to 15 millivolts). The tunnel diode requires 2.3 milliwatts of dc power.

The reverse characteristic is also shown in Fig. 8. To measure the output voltage in this direction, the tunnel diode was removed from the circuit. This was necessary to protect the tunnel diode from the relatively high voltages applied. To correct for the diode gain, the recorded attenuation has been changed by 6 db at all points. We assumed the tunnel diode amplifier gain to be constant over the frequency range.

Conclusions

One disadvantage of tunnel diode amplifiers is that they are two-terminal devices and are bi-directional, having common input and output terminals. Therefore, it is difficult to cascade amplifier stages. Hall effect isolators between stages will remove this disadvantage. The 6 db gain of the untuned tunnel diode amplifier cannot be considered a limiting figure for

Fig. 5: Characteristics of the low audio frequency isolator,

Fig. 7: This isolator, the third one to be rested, uses a punnal diode amplifier to partially offset the senerator loss.

tuned amplifiers. Gains of 20 db and higher are possible at 30 mc . A tunnel diode amplifier, plus a Hall effect isolator, should have an overall gain of approx. 14 db or greater.

Using ferrite isolators and circulators in conjunction with tunnel diode amplifiers at UHF and low microwave frequencies has been discussed in several articles. ${ }^{10.11 .12}$ It is too early to guess just how high into these frequency regions the Hall effect isolator can be applied. Hall generators appear to be suited for use in UHF strip-lines. Ferrite isolators in the UHF region do not at present have a particularly high reverse attenuation, about 10 db . Comparative evaluation of the two types of isolators must be withheld until more information is available on the Hall effect type.

In any Hall effect device, a large number of factors contribute to the total noise of the device. No noise measurements were made on the isolators described in this article. However, the Group III-Group V semiconductor compounds (InSb, InAs, GaAs, etc.) exhibit lower noise characteristics than the Group IV semi-

Fig. 6: Characteristics of the second isolator tested.

conductors (Ge and Si). Generally, an InAs Hall effect isolator can be a relatively low noise device.

Reforences

(1) McMillas, E. M., "Viviatiun of the Reciprocity Theurem in Linear Passive Eaertromechanical Systems. J. of Acoustical Soclety of A merice, Vol. 18. DP 344-347 (1946).
(2) AAI Engineering Report No. ER-1836, "Proposed Iow Frequency Gyrator." Nov. 1959.
(3) Mason, W, P. Hewlet. W. H. and Wick, R. G., "Hall Fiffect Modulators and Gyratora Employing Magnetic Fleld Independent Orientatlons in Germanlum." δ of Applied Phyoic, Vol. 24. p 166 (1953).
(4) Wick, R. F." "Solution of the Fleld Problem of the Germanlum Gyrator." "J. of Applied Physics, Vol. 25, p 741 (1954). Wiley, pp $403-404$. C. Jr., An Introduction to Semiconductors. Willey, pp 103-404.
16. ${ }^{(6)}$ J Jurgen, R. K., "Hall Evfect Devices." Electronics, Jan.
(7) Fay, L. E., III, "The Hall FYfert Applications in Electrical Measurements." Semicondurfor Proiucts, May 1960, p 10 . (8) Arit, G.. "Efficlencs and Linearity of Multicontact Hall Plates." 1961 International Solld State Circults Conf., Phila., Plater." 1961 I
Pa., Feh. 1961.
(9) WatkIns. M. C. and Barrack, C. M., "Practical Tunnel IInde Clrcultry. Seventh Annual East Coast Conf. on Aeronautical and Navigatlonal Electronics, Baltimore, Md. Oct. 1960.
(10) Hines, M, E. and Anderson, W. W. "High Frequency Negative Resistance Circult Princlples for EsakI-Dlode Applications." 1960 International Sulid State Circuits Conference Digest of Technical Papers, pp 12-13.
(11) Pucel, R. A.. "The Esak! 'Tunnel' Dlode." Electrical Manufacturing, Feb. 1960.
(12) AAI Engineering Report No. ER-1880, "Proposed Tunable Solld State Amplifer: Jan. 1960.

Fig. 8: Frequency response of the third isolator tested.

> Commutafors and distributors serve many useful purposes. The solid state versions appear more advantageous than the mechanical. This article presents a practical design procedure for such devicesincluding circuitry and logic equations. Minor changes adapt circuits to individual requirements.

Designing Solid State

SOLID state commutators differ from the motordriven, mechanical type in many ways. They have no moving parts; they synchronize easily with external clocks; and, they operate at very high speeds.

Commutators, Fig. 1, collect from many voltage sources, in turn, and present a single output. Distributors, Fig. 2, do the reverse-they allot a single voltage source, in turn, to a number of outputs.

Both devices use the same building blocks: diode switches, switch control flip-flops and associated logic elements.

Diode Switches
The balanced diode switches are associated with the flip-flops. They work like a mechanical switch. Switch position depends on control lead input. These leads are M and B . The signal for our example is 0 to +15
volts to ground. However, by changing voltage levels, positive, negative, or ac signals can operate the switch. Diode forward voltage drops are assumed to be 1 volt.

Fig. 3a shows an open switch. The signal at S does not affect the signal at $S^{\prime} . Q$ is low, -2 volts on M; \bar{Q} is high, +30 volts on B. Fig. 3b shows the voltages and currents in the circuit.

Fig. 4a shows a closed switch. The signal at S^{\prime} is the same $2 s$ that at $S . Q$ is high, +30 volts on M, \bar{Q} is low, -2 volts on B. Fig. 4b shows circuit voltages and currents for an assumed signal voltage and load. The signal source and switch output can either supply or accept current. In Fig. 4b, the source and load are both receiving current, and power, from the switch.
In the distributor, holding capacitors at each switch output store the voltages between sampling intervals.

Fig. 1: Commutators collect from many sources and present one output.

Fig 2: Distributors allot a single source to a number of outputs.

By JEROME E. TOFFLER

Momber of the Technical Staff
Communications Division
Hughes Aireroff Compony
Los Angeles 45, Calif.

Commutators

In this manner, a sampled waveform can be reproduced, approximately, from its successive samples.

Switch Control Flip-Flops

The bistable flip-flop, Fig. 5, uses transistor saturation and clamping diodes to maintain accurate voltage levels. The flip-flop has inputs J and K; outputs, Q and \bar{Q}. It uses clock pulse triggering. The circuit must be able to supply, or accept, enough current to hold a diode switch turned "off." For top reliability, the input condition $J=K=1$ is avoided.

Logical Equations

The input equations can be mechanized using ordinary "diode" logic. No attempt is made to discuss diode gate design. ${ }^{1}$

Assume that a simple six-position switch is desired. Commutators and distributors use the same equations. They are:

$$
\begin{align*}
& J_{1}=K_{4}=\bar{Q}_{1} \overline{Q_{Q}} \bar{Q}_{D} \bar{Q}_{1} \bar{Q}_{3} \tag{1}\\
& J_{3}=K_{1}=Q_{1} \tag{2}\\
& J_{3}=K_{2}=Q_{2} \tag{3}\\
& J_{4}=K_{3}=Q_{3} \tag{4}\\
& J_{3}=K_{4}=Q_{4} \tag{5}\\
& J_{5}=K_{4}=Q_{4} \tag{6}
\end{align*}
$$

These equations provide that the flip-flops will be turned on sequentially, like a ring counter. The equation for J_{1} protects against 2 undesirable situations which occur when a system is first operated. These are:
(1) All flip-flops might go to their "off" states.
(2) Several flip-flops will probably go to their "on" states.
To prevent malfunction, J_{1} is written as follows:

$$
\begin{equation*}
J_{1}=\bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{2} \bar{Q}_{d} \bar{Q}_{2} \bar{Q}_{4}+\bar{Q}_{1} \bar{Q}_{2} \bar{Q}_{Q_{0}} \bar{Q}_{4} \bar{Q}_{1} Q_{1} \tag{7}
\end{equation*}
$$

Commutators (Concluded)

The first term on the right provides a starting pulse for the first flip-flop in case all are initially "off." The second term insures that the first flip-flop will be turned "on" at the next clock pluse, if the sixth flipflop is "on", and the others are all "off." This prevents more than one pulse from travelling around the ring. Eq. (7) equals Eq. (1).

Variations

One major advantage of solid state switching is versatility. By adapting the logical equations, and adding more gates and flips-flops, many desirable features can be included in the design. A few of these "optional extras" are listed below:

Fig. 5: This conventional switch control flip-flop uses transistor safuration and clamping diodes to maintain aceurate voltage levels.
(1) The sampling sequence can be started or stopped instantly at any time. Therefore, it is easy to achieve "frame synchronization;" or, to stop and sample one channel indefinitely.
(2) In some uses it may be necessary to sample one or more channels oftener than the others, or for longer periods of time. This is readily done.
(3) The sampling need not be sequential. It is practical to have random switching to one of a large number of analog channels.
(4) Individual channels can be dropped or reinserted at any time.

Sometimes it is economical to reduce the number of flip-flops. Thus, an eight-position switch actually requires only 3 flip-flops. However, the saving may be offset by other components which have to be added, such as inverting and non-inverting amplifiers to drive the diode switches.

Reference

(1) Hussey, L. W'., "Semiconductor Diode Gates" Bell System Tech. J. Vol. 32, Pages 1137-1154. Sep.. 1953.

A REPRINT
of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

By ALbert n. Desautels
Statt Enginear
Maico Eloctronics, Inc.
21 North Third St.
Minneapolis \mathbf{I}, Minn.

In Transistor Amplifiers . . . Direct

ANY change in the dc conditions of one stage of a direct-coupled amplifier, Fig. 1, creates appreciable interaction with the other stage. Considerable dc degeneration in the emitter circuit can somewhat remedy this effect. This is done by making the emitter circuit dc resistance large compared to the collector

Fig. I: The three types of coupling usually considered for control amplifer design: (top) transformer, (middle) RC, (bottom) direct.

In control amplifier design, we usually consider 3 types of coupling: łransformer, RC, and direct. Though direct coupling has definite meritminiaturization and cost savingsthe transistor interchangeability problems that result have limited its application.
This article dispels reluctance and shows how to achieve de stability.

Coupling ... and DC Stability

circuit resistance. Thus, collector current, increasing with temperature, will appear more effectively as an increase in voltage potential at the emitter. With the base voltage fixed, an increase in potential on the emitter will reduce the emitter-to-base voltage; and, thus reduce collector current. The result is a form of temperature compensation that performs fairly well.

However, the interchangeability problem still exists. If all transistors had the same characteristics, they could be freely interchanged. Since this is not the case, to achieve ac gain and dc bias stability with interchanging transistors would require careful selection of transistors, additional stabilizing networks, etc., which, in many applications, is just not practical.

Tantalum bypass capacitors also impose limits. Capacitor temperature traits are the reason. At low temperatures, ac series resistance of tantalum increases exponentially and presents a very significant degenerative effect.

Simplified Direct Coupled Circuit

One circuit. emphasizing the small size, simplicity and economy of direct coupling, still achieves excellent ac stability, Fig. 2. It uses a form of de feedback to achieve dc stability.

This simple design uses no tantalum capacitors and fewer components. Yet it is dc stable with interchanging transistors; and, provides stable gain with silicon transistors to temperatures in excess of $125^{\circ} \mathrm{C}$.
The theory of stabilization and bias is straightforward. The Zener diode, D_{1}, uses reverse diode characteristics to provide second stage constant emitter voltage, T_{2}. This diode also determines first stage dc collector voltage, T_{1}. The dc voltage drop across R_{1} provides bias current for T_{1}. The voltage drop across R_{2} fixes the base bias voltage for T_{2}. When interchanging transistors with slightly different de characteristics, or when collector currents increase with higher temperature, the circuit should automatically stabilize itself.

If $I_{c 1}$ increases with temperature, the voltage drop across R_{2} will rise. This means the base voltage of T_{2} will decrease with respect to ground. Since emitter voltage of T_{2} is constant (due to the Zener diode), decrease in base voltage will tend to decrease T_{2} collector current. Thus, the drop across R_{1} will decrease, tending to reduce the base bias current for T_{1} and thus reduce $I_{c 1}$. The same logic applies for increase in $I_{c 2}$.

A tight dc feedback loop around the two stages gives dc stability. L_{1} provides low de resistance but high ac impedance. Thus, there is tight dc coupling, but practically no ac feedback.

General Design Relationships
Analysis of Fig. 3 can provide general design equations which relate component values to power source amplitude and dc operating points. ${ }^{2}$ Knowing $V_{c 1}, I_{c 1}, V_{c 2}, I_{c 2}, E_{b 1}, a_{1}, a_{3}$, and R_{L} (dc load resistance), we can calculate component values for either PNP or NPN two-stage direct-coupled amplifiers. Use absolute values for current and voltage.

$$
\begin{gather*}
E_{D}=V_{c 1}-2 E_{b 1} \tag{1}\\
\bar{H}_{z}=\frac{E_{b 0}-E_{D}-V_{0}-I_{e:} R_{L}}{I_{e s}+\frac{I_{e x}}{\beta_{z}}-\frac{I_{e 1}}{\beta_{1}}} \tag{2}
\end{gather*}
$$

Direct Coupling
 (Continued)

Fig. 4: Amplifier response at three different remperatures with lypical Iransistors. Note the performance stability.

$$
\begin{gather*}
R_{1}=\frac{R_{2}\left(I_{e 2}+\frac{I_{e s}}{\beta_{2}}-\frac{I_{e 2}}{\beta_{1}}\right)-E_{b 1}}{\frac{I_{e 1}}{\beta_{4}}} \tag{3}\\
R_{2}=\frac{E_{\mathrm{bs}}-V_{e 1}}{I_{s 1}+\frac{I_{c I}}{\beta_{2}}} \tag{4}
\end{gather*}
$$

In ac performance terms, two-stage relationships for analysis can be made in combined terms from an equivalent circuit. However, the results are too complex for practical usage. A stage by stage study with the usual amplifier stage relationships is more convenient.

Through use of

$$
\begin{equation*}
A_{v}=\frac{\alpha r_{e} r_{L}}{r_{e}\left[r_{t}+r_{k}(1-\alpha)\right]+r_{k}\left(r_{t}+r_{b}\right)} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}=\frac{\alpha}{1-\alpha+\frac{r_{2}}{r_{z}}} \tag{6}
\end{equation*}
$$

for a known ac load impedance, r_{b} and using average small signal parameters of the selected operating points, the voltage and current gain of T_{2} is calculated. Then $r_{\text {m } 2}$ is calculated from

$$
\begin{equation*}
r_{i n i}=\left(r_{m}+r_{a 1}+r_{E D}+R_{2}\right)\left[\frac{r_{a}+r_{2}}{r_{n}\left(1-\alpha_{2}\right)+r_{L}}\right] \tag{7}
\end{equation*}
$$

The second stage input impedance, $r_{\text {in2 }}$, in parallel with R_{2} provides the first stage load impedance, $r_{L 1}$. With $r_{L 1}$ known, Eqs. (5) and (6) can again be used with small signal parameters of T_{1}. The amplifier input impedance, $r_{\text {inl }}$, would be obtained from

$$
\begin{equation*}
r_{6 t}=r_{b t}+\frac{r_{t 1}}{1-a_{4}} \tag{8}
\end{equation*}
$$

Typical performance figures for this amplifier would be

$$
\begin{aligned}
& A_{1} \cong 20,000 \\
& A_{1} \cong 500 \\
& \text { Power gain } \cong 70 \mathrm{db} \\
& \text { Input impedance } \cong 2500 \text { ohms }
\end{aligned}
$$

Temperature Performonce
The graph of Fig. 4 presents amplifier response at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ with typical transistors. Performance is stable over the temperature range.
Table I presents comparative dc collector current values as observed for the temperature extremes. There is less than 15% change in direct current from room temperature to temperature extremes.

Some DC Stability Considerations

Direct-coupled circuit de stability is especially important where wide temperature range and interchangeability requirements exist. Study of the dc biasing network provides a means for measuring circuit stability. Since the greatest contributor to dc operating point change with temperature is the change due to inverse saturation current, I_{000}, temperature characteristics, it is appropriate to connect the stability of $I_{c 1}$ and $I_{c 2}$ in Fig. 5 with the $I_{c o}$ change in both T_{1} and T_{2}.

The following 3 assumptions are made:

1. V_{e}, collector to emitter voltage, has a negligible effect on collector current.
2. Alpha is constant over the operating range.
3. $E_{\text {ber }}$ the base-emitter voltage, is negligible. For germanium. it is approx. 0.1 volt; for silicon. about 0.6 volt.
Fig. 5 gives the following differential relationships

reference paces

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHINC NEW HAS BEEN ADDED An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch wirhous obliterating any of the text. Thoy can be filed in standard three-hole notebooks or folders.

$$
\begin{align*}
& \frac{\partial I_{01}}{\partial I_{001}}=-\frac{1}{\frac{\alpha_{1} R_{3} R_{3}}{R_{3}^{2}-\left(R_{1}+R_{3}\right)\left(R_{2}-R_{2} \alpha_{8}+R_{D}+R_{3}\right)}-\left(1-a_{1}\right)} \tag{9}\\
& \frac{\partial I_{e 1}}{\partial I_{\text {eat }}}=\frac{R_{2}}{R_{2}-R_{3}\left(\frac{1-\alpha_{1}}{\alpha_{1}}\right)+\frac{\left(R_{1}+R_{3}\right)\left(1-\alpha_{1}\right)\left(R_{2}-R_{3} \alpha_{2}+R_{D}+R_{3}\right)}{\alpha_{1} R_{3}}} \tag{10}\\
& \frac{\partial I_{a}}{\partial I_{\text {sel }}}=\frac{\left(\frac{\alpha_{1}}{1-\alpha_{1}}\right)\left(\frac{R_{1} R_{2}}{R_{1}+R_{3}}\right)-\frac{R_{\mathrm{z}}^{2}}{R_{1}+R_{3}}+\left(R_{2}+R_{D}+R_{3}\right)}{\left(\frac{\alpha_{1}}{1-\alpha_{1}}\right)\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)-\frac{R_{2}^{2}}{R_{1}+R_{3}}+R_{2}\left(1-\alpha_{2}\right)+R_{D}+R_{3}} \tag{II}\\
& \frac{\partial I_{s}}{\partial I_{\mathrm{s}}}=\frac{R_{c}}{\frac{1-\alpha_{1}}{\alpha_{y}}\left[\left(\frac{\alpha_{1}}{1-\alpha_{1}}\right)\left(\frac{R_{2} R_{2}}{R_{1}+R_{3}}\right)-\frac{R_{2}^{2}}{R_{1}+\bar{R}_{3}}+R_{2}\left(1-\alpha_{3}\right)+R_{D}+R_{3}\right]} \tag{12}
\end{align*}
$$

of $I_{c 1}$ and $I_{c 2}$ to the respective collector inverse saturation currents.
From the 4 differential expressions, the change in $I_{c 1}$ can be expressed as a function of $I_{c o}$ change,

$$
\begin{equation*}
d I_{e l}=\frac{\partial I_{e 1}}{\partial I_{c a 1}} d I_{c a 1}+\frac{\partial I_{e 1}}{\partial I_{c o s}} d I_{c a t} \tag{13}
\end{equation*}
$$

and the change in $I_{c 2}$ can be expressed in a similar fashion,

$$
\begin{equation*}
d I_{c a}=\frac{\partial I_{a}}{\partial I_{\text {eat }}} d I_{\text {eet }}+\frac{\partial I_{a}}{\partial I_{a n}} d I_{\text {cet }} \tag{14}
\end{equation*}
$$

If the I_{00} temperature characteristic is the same for both transistors, then $d I_{\text {co1 }}=d I_{\text {oo2 }}$. The partial expressions of Eqs. (13) and (14) may, therefore, be combined to produce stability factors relating the change in $I_{c 1}$ and $I_{c 2}$ to $I_{c o}$ change:

$$
\begin{align*}
& \frac{d I_{c 1}}{d I_{c \infty}}=S_{1}=\frac{\partial I_{c 1}}{\partial I_{c o 1}}+\frac{\partial I_{c 1}}{\partial I_{c a s}} \tag{15}\\
& \frac{d I_{c}}{d I_{c o}}=S_{1}=\frac{\partial I_{c}}{\partial I_{c 1}}+\frac{\partial I_{c a}}{\partial I_{c a s}} \tag{16}
\end{align*}
$$

Ideally, S_{1} and S_{2} should approach zero. That is, the change in I_{0} due to one I_{00} will be cancelled by an opposing change in I_{0} due to the other $I_{c o}$. Practically, in this article's amplifier, S_{1} is about one and S_{2} is about 10.

Roferancas

1. DeSautels, A. N., "A Comparison of Three Common Emitter Transistor Servo Preamplifiers," AlEE Communicaition and Electronics, No. 23, March, 1956, DD. 17-25. (Paper No. 56-37) 2. DeSautels, A. N., "A Stable, Direct Coupled. Transistor Servo Preamplifier," i958 AIEE Fall General Meoting, Tech. Paper No, 58-1238.

Table 1.
Collector Current Tomperafure Characterisfies

Temperature	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-85^{\circ} \mathrm{C}$
$\mathrm{I}_{01}(\mathrm{ma})$	0.63	0.75	0.57
$\mathrm{I}_{02}(\mathrm{ma})$	1.5	1.68	1.38

The cathode follower most commonly used is not the circuit of the textbook. It is this one-that permits operation at normal bias. Here, by deriving equations for the input and output impedance, we will offset the literature's lack of information on this circuit.

Analyzing a

I^{7}T IS well known that of the two cathode followers shown in Fig. 1, the circuit of Fig. 1b offers the greater flexibility of design and operation. It is also generally known that the output impedance of this circuit is dependent to some degree upon the source impedance, R_{G} (Z_{0} rises as R_{G} increases). Also, the input impedance, as seen by the source, may be many times the value of the grid resistor, R_{v}.
In view of the widespread use of the circuit of Fig. 1b, and the interesting interrelations of its circuit parameters, it is surprising that it has received so little attention in the literature. We will try to correct that here.
(For the equation to Fig. 1a, we recommend any of a score of engineering texts and technical journals.)

Output Impedance

We used two different methods to derive the equation for the output impedance of the cathode follower in question. They yielded identical results.

One method applies a voltage E to the cathode. We can then write the expression for the resultant current, I. Taking the ratio E / I yields the output im-
pedance, Z_{e}. This method is suitable if only the output impedance is required.

A second approach produces an equation which permits the construction of an equivalent circuit. Using this method, the equation evolves as follows:

From the equivalent plate circuit theorem,

$$
\begin{equation*}
i_{p}=\frac{\mu f_{p}}{R_{p}+R+R_{k}} \tag{1}
\end{equation*}
$$

From Fig. 3, e_{y} can be found.
$c_{v}=e_{\theta}+i_{p}\left(R+R_{\psi}\right) \frac{\boldsymbol{R}_{t}}{R+R_{k}} \cdot \frac{\boldsymbol{R}_{\theta}}{R_{\psi}+R_{\sigma}}-i_{p}\left(R+R_{t}\right)$
Substituting this expression in Eq. (1),

$$
\begin{aligned}
& i_{v}=\frac{\mu C_{z}}{R_{p}+R+R_{k}+\mu\left(R+R_{k}\right)} \\
& -\mu\left(\boldsymbol{R}+R_{k}\right) \frac{R_{k}}{R+R_{k}} \cdot \frac{R_{\theta}}{R_{g}+R_{\theta}}
\end{aligned}
$$

Which may be rewritten in the form.

$$
\begin{equation*}
i_{p}=\frac{\frac{\mu e_{p}}{1+\mu k}}{\frac{R_{p}}{1+\mu k}+R+R_{\mathrm{t}}} \tag{2}
\end{equation*}
$$

Fig. 1: Two cathode foniower circuits: (a) the standard rext variety: (b) a more practical version offering flexibility of eperation.

(e)

(a)

Fig. 2: Equivalent circuits for the designs shown in Fig. I.

(4)

Realistic Cathode Follower

$$
\text { where, } \quad k=\left[1-\frac{1}{1+R / R_{4}} \cdot \frac{1}{1+R_{v} / R_{a}}\right]
$$

By Thevenin's theorem, Eq. (2) is manifested in the equivalent circuit of Fig. 2b, which shows this cathode follower may be considered as a generator of $\mu e_{s} /(1+\mu k)$ volts, having an internal resistance of $R_{p} /(1+\mu k)$ ohms. The output impedance of the cathode follower is the equivalent generator resistance, $R_{p} /(1+\mu k)$, in parallel with the total cathode resistance, $\left(R+R_{k}\right)$.

The equivalent generator voltage just given is in terms of the terminated source voltage, e_{q}. We can also express the equivalent generator in terms of the open-circuited source voltage, e_{G}. From Fig. 3 we can write,

$$
\epsilon_{\theta}=\epsilon_{G} \frac{R_{g}}{R_{\theta}+R_{\theta}}
$$

Substituting in Eq. (2), the equivalent generator becomes,

$$
\frac{\mu}{1+\mu k} \cdot \frac{\epsilon_{G}}{1+R_{G} / R_{F}}
$$

The calculated output impedance of a 12 AT 7 with paralleled sections is shown by the curve in Fig. 4. The measured output impedance for different source impedances is shown by the circled points. A further example of the effect of source impedance on output impedance is shown in Fig. 5.

Inpuf Impedance

The input resistance for Fig. $2 b$ can be found by writing the gain equation for $R_{a}=0$ and comparing it to the gain expression, after R_{G} is allowed to increase until the gain is one half that for $\boldsymbol{R}_{\boldsymbol{G}}=0$. Under this condition, the input resistance, $R_{\text {fin }}$, equals the generator resistance, $\boldsymbol{R}_{\boldsymbol{G}}$.

Let $\boldsymbol{R}_{g}=0, \quad(k=1)$. From Fig. $2 b$. the output voltage, e_{0}, equals

$$
\epsilon_{\mathrm{c}}=\frac{\mu}{1+\mu} \epsilon_{e} \frac{R+R_{\mathrm{k}}}{\frac{R_{p}}{1+\mu}+R+R_{\mathrm{k}}}
$$

or,

$$
\epsilon_{\theta}=\frac{\mu e_{G}\left(R+R_{k}\right)}{(1+\mu)\left(R+R_{k}\right)+R_{p}}
$$

Let R_{i} increase until the output voltage equals $e_{o} / 2$. Call this voltage e_{o}. For this condition,

$$
\epsilon_{0}=\frac{\mu}{1+\mu k} e_{\sigma} \frac{R_{g}}{R_{\sigma}+R_{g}} \cdot \frac{R+R_{k}}{\frac{R_{p}}{1+\mu k}+R+R_{k}}
$$

or,

$$
\epsilon_{\epsilon}^{\prime}=\frac{\mu \epsilon_{\theta}\left(R+R_{k}\right)}{(1+\mu k)\left(R+R_{k}\right)+R_{g}} \cdot \frac{R_{g}}{R_{a}+R_{q}}
$$

But,

Fig. 4: The calculated output impedance of a 12AT7. both halves.

Fig. 5: This typical circuit shows a 10 to I change in outpul impedance as the source impedance varies from zero to infinity.

Fig. 6: Variation of input impedance with R_{k} for the circuit of Fig. 5 ($E_{o s}$ is changed with R_{1} so that H_{b} is constant, hence E_{e}, μ and R_{p} are constant).

$$
\frac{\epsilon_{\theta}}{\ell_{\theta}}=2=\frac{\left[1+\mu\left(1-\frac{R_{z}}{R+R_{z}} \cdot \frac{R_{s}}{R_{s}+R_{\theta}}\right)\left(R+R_{z}\right)+R_{p}\right]\left(R_{\theta}+R_{\theta}\right)}{\left[(1+\mu)\left(R+R_{k}\right)+R_{z} \mid R_{s}\right.}
$$

A REPRINT

of this article can be obtained by writing on company letterhead to

The Editor

ELECTRONIC INDUSTRIES Chestnut 856 th Sts., Phila. 39, Pa.

Rearranging, and knowing that under the conditions specified, $R_{\text {in }}=R_{G}$.

$$
R_{\mathrm{in}}=\frac{\boldsymbol{R}_{\mathrm{in}}}{1-\frac{\mu R_{k}}{(1+\mu)\left(R_{1}+R\right)+R_{\nu}}}
$$

If R_{k} is much greater than R and R_{p}, Eq. (3) simplifies to $\quad \boldsymbol{R}_{\mathrm{io}}=(1+\mu) \boldsymbol{R}_{\boldsymbol{s}}$

It must be stressed that the analysis presented here
holds only for small signal, low frequency operation. Large signal excursions which approach either grid current flow or plate current cut-off, or both, cause the tube parameters to suffer a cyclic change which negates the analysis. Tube and stray capacitance will alter the equivalent circuit at high frequencies.

The author wishes to thank his former colleague, J. O. Schroeder, for his interest in this problem.

Explosive Forming

The explosions occur under water. Migh-intensity shock waves are directed against the metal pieces to be formed.

Electrical explosion techniques are being developed by GE for low-cost shaping of hard-to-form metals like titanium, stainless steel, and tungsten. The controlled explosions create shock waves of such force that intricate contours can be blown into the metals in millionths of a second.

The process is described as "capacitor discharge electro-spark forming." "No explosives are used.

The blasts occur under water. They create high-intensity shock waves which are directed against the metal pieces to be formed. Upon impact of the shock wave, the metal instantly takes the shape of the die into which it is blown. The die is evacuated to remove air pockets that could cause the piece to have surface irregularities.

The forming is done at room temperatures and no pre-heating of the metals is needed. The pieces require minimum finish machining after they have been formed. Pieces up to 10 inches in dia. and $3 / 32$ inches thick have been formed by the process.

The design of several proven Resistance Capacitance Transistor Logic circuits are given. A basic inverter circuit is discussed in detail. From it the NOR circuit and flip-flop are evolved. A Schmitt trigger using the basic circuit is also described.

For Computers . . . Basic RCTL Circuits

By WILLIAM D. ROEHR

Applicetions Engincer
Somiconductor Products Div.
Motorola Ine.
Phoenir, Ariz.

APRIME requisite in good computer design is high-speed capability in its cumponents. The mesa transistor qualifies as an ultra-high-speed switch and has therefore found wide application in the computer field. The 2 N 705 and 2N695 transistors are good examples.

Because these transistors have a gain-bandwidth product, f_{v} in excess of 300 Mc , and also a low stored charge, they are well suited to computer circuitry. Here we describe some standard Resistance Capacitance Transistor Logic (RCTL) circuits. While the RCTL circuits employ proven techniques, they have been optimized to exploit the characteristics of the 2 N 705 and 2N695.

The inverter circuit is basic and will be discussed in detail. From it the NOR circuit and flip-flop may be evolved. A Schmitt trigger, which is useful for pulse restoration or as a wave shaper for counter stages, will also be described.

1. Roehr, William D., "Total Stored 1. Roehr, William D., Total Stored ole Mese Transistors," Applicatlon Note. Division, Phoenix, Arlzona.

Inverter Circuif

Fig. 1 shows the basic inverter circuit. R_{1} and R_{2} form a voltage divider which adjusts the steady state base current which may be found from the relation:

$$
I_{B}=\frac{V_{G \mathrm{~s}}-V_{E B}}{R_{1}}+\frac{V_{B B}-V_{B B}}{R_{2}} .
$$

C_{1} supplies excess base current during switching intervals. Its
chief use is in minimizing storage time. Therefore, its proper value may be found from total charge data. D_{1} limits reverse voltage applied to Q_{1} and establishes a low reverse bias which reduces delay time. Q_{2} is used to reduce capacitive loading of Q_{1} and present a low output impedance during the interval when Q_{1} is being cut-off and Q_{2} is driven into conduction.

Table 1

Basic Circuits

(Continued)

However, in the alternate interval when Q_{1} is driven $O N$ and Q_{2} is driven OFF, the emitter follower can no longer present a low output impedance. Diode D_{2} now serves to connect Q_{1} to the output. Since C_{1} provides heavy overdrive during switching, Q_{1} can deliver a large amount of current to the load. Thus \mathbf{Q}_{1} effectively has a low output impedance.

Design Considerations

To minimize storage time, it is important not to use excessive base drive current to hold a transistor ON . The ratio of collector current to base current was determined by observing that $h_{f e}$ at 10 ma has decreased to 80% of its $25^{\circ} \mathrm{C}$ value at $0^{\circ} \mathrm{C}$. No temperature change is experienced in the region of 50 ma . The value of $h_{f e}$ for the 2 N 705 and 2N695 is guaranteed to be greater than 25 under conditions of $\mathrm{I}_{c}=$ 10 ma and $\mathrm{V}_{C E}=0.3 \mathrm{v}$. Since this test is performed in saturation, no additional base current is required to ensure saturation. Furthermore, h_{fe} at 50 ma is very close to the 10 ma value. Life-test data show virtually no degradation at 5000 hours. However, a 20\% safety factor was employed to take care of changes of other components. The stage current gains used in the design

General Cherecterisfles of All Unifs

Temperature	Input	Output Levels
Range	PRF	" $0^{\prime \prime}$ "1"
$0-60^{\circ} \mathrm{C}$	10 mc	$0 \neq 0.2 \mathrm{~V}, 3.5 \pm 0.5 \mathrm{~V}$

Typical Characteristics at $25^{\circ} \mathrm{C}$ of Each Unit
Resistive Load
Switching Times Minimum Load Maximum Load Capacitive Load (nsec)

Resistance
Capacitance (nsec)

Unit	$t_{\text {D }}$	$t_{\text {r }}$	$t^{\text {D }}$	t_{1}	(0hms)	(pF)	$t_{\text {D1 }}$	$t_{\text {r }}$	$t_{11_{2}}$	t
Inverter	20	16	20	10	50	400	30	30	28	28
Flip-Flop	28	20	34	26	50	400	30	40	44	34
Schmitt	-	18	-	20	100	250	-	40	-	24

are then determined to be 16 at 10 ma and 20 at 50 ma of collector current.
Thus the values of the resistors were determined. The value of the coupling capacitor was determined from total stored charge data. ${ }^{1}$ At the lowest drive current of 0.75 ma , the base charge, Q_{B}, is 75 picocoulombs, which yields 30 pF for C_{E}. Contrary to what might be expected, the lowest drive condition represents the worst case because of the relationship between Q_{B} and I_{B}. The additional turn-off current through R_{2} offers some safety factor. Temperature testing with a large number of sample transistors has verified this design.

The basic NOR circuit is formed by the addition of other identical input stages whose collectors are connected at point X. The addition of other input stages will lower their respective collector currents,

Fig. 2: The flip flop is essentially two inverters cross connected as shown below.

but it will $b \in$ observed that storage time remains about constant. This is in contrast to alloy-type transistors, in which an increase of storage time would be experienced. In mesa transistors most of the carrier storage occurs in the collector region. Thus diode recovery, and hence collector current, play an important part in storage time. The decrease of collector current results in an increase of excess base charge, making the net effect insignificant.
The flip-flop is essentially two inverters cross-connected as shown in Fig. 2. Transistors \mathbf{Q}_{3} and $\mathbf{Q}^{\prime}{ }_{3}$ provide a high-impedance input and trigger steering. Resistors R_{5} and R_{5}^{\prime} are necessary to isolate Q_{3} and $\mathbf{Q}^{\prime}{ }_{3}$ from \mathbf{Q}_{2} and \mathbf{Q}_{2}^{\prime} to prevent unduly loading of the trigger signal. Therefore, the coupling capacitors are increased over the value used in the inverter to compensate for this additional resistive loss.

Schmity Trigger

The inverter also appears in a slightly modified form in the Schmitt trigger. This circuit was developed primarily because a source of 10 MC square waves was needed to test the system. However, it is also useful for pulse restoration or as a general purpose square-wave generator.
The basic circuit shown in Fig. 3 is used to explain the operation of the Schmitt trigger circuit. The dc conditions are adjusted so that Q_{1} is conducting heavily and Q_{2} is cut OFF. A workable set of voltages is shown. A positive-going input signal starts to cut-off Q_{1}, causing its collector voltage to rise toward $\mathrm{V}_{\text {C }}$, thereby turning on Q_{2}. The resulting increase in current
through the common-emitter resistor produces a voltage which serves to speed the cut-off of Q_{1}. Return to the original state occurs when the input signal again allows Q_{1} to conduct. The circuit must obviously be unsymmetrical, because the "ON" current through \mathbf{Q}_{2} must be greater than the "ON" current of Q_{1} to hold Q_{1} in the cut-off condition. The greater the loop gain of the system, the better will be the "snap" action of the circuit. That is, the region of input voltage where erratic operation occurs will be minimized. Therefore, a speedup capacitor, C_{2}, is generally needed to increase loop gain during the switching interval. The circuit could also operate with Q_{1} normally off and Q_{2} normally conducting.

A Practical Example

The basic circuit of Fig. 1 was modified to produce a Schmitt trigger which would operate from 100 CPS to 10 MC with mesa $2 \mathrm{~N} 695 /-$ 2N705 transistors. The final circuit is shown in Fig. 4.

The basic limitation of the circuit speed is the speed-up network. The capacitor should be large for fast rise times, but the time constant must be small compared with the repetition frequency. The emitter follower, \mathbf{Q}_{3}, is therefore employed to lower the impedance of the speedup network. The emitter follower also provides a low-capacitance load to the collector of Q_{1}. The second emitter follower, Q_{1}, provides a low-impedance output. The silicon diode serves merely as \Perp voltagedropping device so that the output voltage may be brought to zero. It offsets the voltage drop in $\mathrm{R}_{\boldsymbol{f}}$. The peaking coils were adjusted with

the circuit operated as a linear amplifier. This was accomplished by removing the common-emitter feedback loop and placing a 100 ohm resistor from each emitter to ground. The bias was then adjusted by varying R_{1} until maximum voltage output was obtained. This was approximately 4 volts peak-to-peak. Under these conditions, the 3 db

A REPRINT

of this article can be obtained by writing on company letterhead to

The Edifor

ELECTRONIC INDUSTRIES Chestaut 856 th Sis., Phila. 39, Pa,
(0.707 voltage point) bandwidth is 20 mc . Shunt peaking, though not generally used in transistor circuits, is useful in this case because emitter feedback causes the transistor input impedance to be high.

A 0.5 volt peak-to-peak input signal will produce a stable pulse output. The input impedance is 450 ohms at low frequencies, decreasing
to approximately 400 ohms at 1 MC , and 300 ohms at 10 Mc .

Pefformance of Units

The units described will operate at 10 MC and below. Choice of clock frequency depends of course upon how many stages signals must pass through during a clock pulse. Characteristics of the units are shown in Table 1. The tolerance in output voltage is necessary because of changes in saturation voltage due to temperature, loading, and individual transistor variations. Variations of $\pm 10 \%$ in power supply voltages will not cause malfunction; however, the 4 v . line should be closely regulated because its voltage changes are reflected directly in the output.

Note that the output emitter followers must be used with a heat sink if a 2N695 is used. Since the can is electrically floating, this may be easily accomplished. No heat sink is necessary with the 2N705 because of its higher dissipation.

How can interference in critical points in an analog computer system be eliminated? Out of a specific problem encountered in a system came one solution-the "Notch" filter circuit. Two such filter circuits are discussed in this orticle.

Suppressing a

THE problem of suppressing a single frequency interference signal often occurs. An example is a 60 cps signal which is usually unwanted but unavoidable. An ideal solution to this problem would be to have a filter with a unity gain, except at the frequency of the undesired signal. It should have a zero gain at this frequency. This filter must have a linear phase characteristic to prevent phase distortion. A filter of this description would suppress the undesired signal and also any desired signal at the same frequency.
A filter having this ideal characteristic is shown in Fig. 1. Two circuits which approximate this will be described. Both will depend on the characteristic of the transfer admittance of two parallel Tee networks.

Parallel Tee Network

The parallel Tee network, Fig. 2, will determine the basic nature of the frequency characteristic of the filter. The transfer admittance, $Y_{T}\left[Y_{T}=a(i / e)\right]$, is given by Eq. 1.

$$
\begin{equation*}
Y_{T}=k\left[\frac{\omega_{1} \omega_{7}}{t+\omega_{1}}+\frac{v^{2}}{i+\omega_{2}}\right] \tag{1}
\end{equation*}
$$

The parameters are defined as follows:

$$
\begin{align*}
k & =\frac{C_{1}}{2} \quad \omega_{2}=\frac{1}{2 R_{2} C_{2}} \\
\omega_{1} & =\frac{2}{R_{1} C_{1}} \quad \omega_{1}=\frac{1}{R_{1} C_{2}} . \tag{2}
\end{align*}
$$

If $\omega_{1}=\omega_{2}$ the transfer admittance may be written as:

$$
\begin{equation*}
Y_{T}=k\left[\frac{s^{2}+\omega_{1} \omega_{1}}{s+\omega_{1}}\right] . \tag{3}
\end{equation*}
$$

This is the admittance characteristic which will be used to describe filter characteristics. To examine detailed characteristics of the filter as it may be realized in practice, it will be assumed that $\omega_{1}-\omega_{2}$ $=\delta$, where $|\delta|$ is much less than ω_{1} and ω_{2}. The transfer admittance may be approximated by:

$$
\begin{equation*}
Y_{T}=k\left[\frac{8^{2}+\delta s+\omega_{1} \omega_{1}}{v+\omega_{1}}\right] \tag{4}
\end{equation*}
$$

The pole-zero configurations for Eqs. 3 and 4 are shown in Fig. 3.

One effect of ω_{1} not being equal to ω_{2} is to prevent

Fiz 1. Showe a filfor having the ideal characteriaties desired.

Fig. 2. The parallel Tee setwork is shown.

(a)

Fig. 3a. Pole-zero configuration for Eq. $\mathbf{3}$.

$Y_{T}=k\left[\frac{s^{2}+\delta s+\omega_{1} \omega_{3}}{s+\omega_{1}}\right]$

Single Interference Frequency

DR. THEODORE A. BICKART

The Johns Hopkins University
Research Associate
Rodiation Loboratory
1315 St. Poul Street
Balfimore 2. Maryland
$\left|\boldsymbol{Y}_{\boldsymbol{T}}\right|$ from being equal to zero at $\omega=\sqrt{\omega_{1} \omega_{\gamma}}$. This is illustrated by the sketches of $\left|\boldsymbol{Y}_{\boldsymbol{T}}\right|$ in Fig. 4. Another effect of ω_{1} not being equal to ω_{2} is to introduce zeros of Y_{T} into the right-hand half of the s-plane ($R e_{8}>0$) when $\omega_{1}<\omega_{2}$. This will be a key point in specifying conditions for stability of filters using this network.

Beta Networks

If the transfer admittance is used as the feedback admittance in an operational amplifier circuit, such as in Fig. 5, the gain of the circuit, $B\left(B=e_{o} / e_{\ell}\right)$, may be written as:

$$
\begin{equation*}
B(s)=-\frac{Y_{i}(x)}{Y_{T}(s)} \tag{5}
\end{equation*}
$$

To get a general idea of the functional form of $B(s)$, the expression for $Y_{T}(8)$ given by Eq. 3 may be used to give:

$$
\begin{equation*}
B(s)=-k Y_{i}(s)\left[\frac{s+\omega_{1}}{s^{2}+\omega_{i} \omega_{s}}\right] \tag{6}
\end{equation*}
$$

If the input admittance \mathcal{Y}_{0}, is a resistor having a

Fig. 4. Is a sketch of $\left|Y_{T}\right|$

conductance of $1 / R_{0}$ then $B(8)$ is given as:

$$
\begin{equation*}
B(s)=-\frac{k}{R_{i}}\left[\frac{s+\omega_{1}}{s^{2}+\omega_{1} \omega_{n}}\right] \tag{7}
\end{equation*}
$$

If the input admittance is that which is due to a resistor and capacitor in series having an admittance of

$$
\frac{1}{R_{i}}\left[\frac{s}{i+\omega_{i}}\right]\left(\omega_{i}=\frac{1}{R_{i} C_{i}}\right)
$$

then $B(s)$ is given as:

$$
\begin{equation*}
B(s)=-\frac{k}{R_{i}}\left[\frac{s}{s+\omega_{i}}\right]\left[\frac{s+\omega_{1}}{s^{2}+\omega_{1} \omega_{i}}\right] \tag{8}
\end{equation*}
$$

If $\omega_{1}=\omega_{1}$, then $B(s)$ takes on the following form:

$$
\begin{equation*}
B(s)=-\frac{k}{R_{i}}\left[\frac{\varepsilon}{s^{2}+\omega_{1} \omega_{2}}\right] \tag{9}
\end{equation*}
$$

The two filters to be examined will employ operational amplifier circuits with gain expressions of the form given by Eqs. 7 or 9. These two expressions approach the characteristics required of the β network in the ideal filter (Fig. 1). The second of the two

Fie. 5. Operational amplifier circuit using transfer admittance as feedbeck admitranco.

Fig. 6. Is a sketch of the magnitude of
$B(\mathrm{~s})$ as given by equations 10 and 11 .

Fig. 8. Shows how the function Iexpression 151 varies with frequency.

Fig. 10. Shows how the function (expres. sion 301 varies with frequency.

Interference Frequency
(Continued)
expressions is better because it goes to zero as the frequency goes to zero.

To prevent giving the impression that the gain is infinite at the radian frequency $\omega=\sqrt{\omega_{1} \omega_{3}}$ the more realistic form for $Y_{T}(8)$ (Eq. 4) should be used in the calculation of $B(s)$. The equations corresponding to Eqs. 7 and 9 are:

$$
\begin{align*}
& B(s)=-\frac{k}{R_{1}}\left[\frac{s+\omega_{1}}{s^{2}+\delta s+\omega_{1} \omega_{n}}\right] \tag{10}\\
& B(s)=-\frac{k}{R_{i}}\left[\frac{s}{s^{2}+\delta s+\omega_{1} \omega_{2}}\right] \tag{11}
\end{align*}
$$

The magnitude of $B(s)$ for $s=j \omega$ as given by Eqs. 10 and 11, is sketched in Fig. 6 to indicate the functional form of $|B(j \omega)|$ in these two cases.

If $\dot{\varepsilon}$ is negative $\left(\omega_{1}<\omega_{2}\right), B(8)$ has two poles in the right-hand half s-plane $(\operatorname{Res}>0)$, and the system is unstable as described by Eqs. 10 or 11.

Filter 1
The filters that are to be set down will differ from an approximation to the ideal filter by a minus sign. They will approximate a negative unity gain except at the frequency of the undesired signal where they will approximate zero gain. This is being done to simplify the circuits.

The circuit realization of this first filter, using operational amplifiers, is shown in Fig. 7.
The gain of the circuit, $C\left[C=a\left(e_{o w l^{\prime}} e_{i n}\right)\right]$, is given in general by Eq. 12.

$$
\begin{equation*}
C=-\frac{1}{1-\frac{1}{10} B} \tag{12}
\end{equation*}
$$

Using Eq. 7 for B we get the following expression for C :

$$
\begin{equation*}
C=-\frac{\left(x^{2}+\omega_{1} \omega_{2}\right)}{\left(s^{2}+\omega_{1} \omega_{2}\right)+\frac{k}{10 R_{i}}\left(s+\omega_{1}\right)} . \tag{13}
\end{equation*}
$$

To simplify matters let $\omega_{0}=\omega_{1}=\omega_{3}$ and $a=\frac{k}{10 R_{i}}$, then:

$$
\begin{equation*}
C=-\frac{v^{2}+\omega_{0}^{2}}{x^{2}+a x+\omega_{0}\left(\omega_{0}+a\right)} \tag{14}
\end{equation*}
$$

The magnitude of C for $s=j \omega$ may be written as:

$$
\begin{equation*}
|C|=\left[\frac{\left[\omega_{0}^{2}-\omega^{2}\right]^{2}}{\left[\omega_{a}\left(\omega_{0}+a\right)-\omega^{2}\right]^{2}+a^{2} \omega^{2}}\right]^{1 / 2} \tag{15}
\end{equation*}
$$

The sketch of $|C|$ in Fig. 8 shows how this function varies with frequency.

The frequencies at which $|C|=1 / \sqrt{2}$ are given by Eqs. 16a and 16b.

$$
\begin{align*}
\omega_{1}^{+}=\{ & -\left[\omega_{0}\left(\omega_{0}+a\right)-2 \omega_{0}^{2}-\frac{a^{2}}{2}\right] \\
& +\left\{\left[\omega_{0}\left(\omega_{a}+a\right)-2 \omega_{0}^{2}-\frac{a^{2}}{2}\right]^{2}\right. \\
& \left.\left.-\left[2 \omega_{0}^{4}-\omega_{0}^{2}\left(\omega_{0}+a\right)^{2}\right]\right\}^{1 / 2}\right\}^{1 / 2} \tag{16a}
\end{align*}
$$

$$
\begin{align*}
\omega_{1}^{-}=\{- & {\left[\omega_{0}\left(\omega_{0}+a\right)-2 \omega_{0}^{2}-\frac{a^{2}}{2}\right] } \\
& -\left\{\left[\omega_{0}\left(\omega_{0}+a\right)-2 \omega_{0}^{2}-\frac{a^{2}}{2}\right]^{4}\right. \\
& \left.\left.-\left[2 \omega_{0}^{4}-\omega_{0}^{2}\left(\omega_{0}+a\right)^{2}\right]\right\}^{2 / 2}\right\}^{1 / 2} \tag{1;b}
\end{align*}
$$

When $a \ll \omega_{b}$, which is usually the case, Eqs. 16 take on the following simpler form:

$$
\begin{align*}
& \begin{aligned}
& \omega_{1}^{+} \approx \omega_{c}\left[1-\frac{\theta}{2 \omega_{\theta}}(1-\sqrt{3)}]\right. \\
&=\omega_{0}\left[1+0.366 \frac{a}{\omega_{0}}\right] \\
& \begin{aligned}
\omega_{1}^{-} & \approx \omega_{c}\left[1-\frac{a}{2 \omega_{0}}(1+\sqrt{3})\right.
\end{aligned} \\
&=\omega_{0}\left[1-1.33 \mathrm{jij} \cdot \frac{a}{\omega_{e}}\right] .
\end{aligned}
\end{align*}
$$

At $\omega=\omega_{m},|C|$ is a maximum, $|\bar{C}|_{m}$. The expres. sions for ω_{n} and $|C|_{m}$ are as follows:

$$
\begin{gather*}
\omega_{m}=\omega_{n}\left[\frac{1+3\left(\frac{a}{2 \omega_{n}}\right)}{1-\left(\frac{a}{2 \omega_{0}}\right)}\right]^{1 / 2} \tag{18}\\
|C|_{m}=\left[\frac{2}{1+2\left(\frac{a}{2 \omega_{n}}\right)-\left(\frac{a}{2 \omega_{n}}\right)^{2}}\right]^{1 / 3} \tag{19}
\end{gather*}
$$

For $a \ll \omega_{e}$ these Eqs. may be written as:

$$
\begin{align*}
\omega_{m} & \approx \omega_{n}\left[1+2\left(\frac{a}{2 \omega_{0}}\right)\right] \tag{20}\\
|C|_{m} & \approx \sqrt{2}\left[1-\left(\frac{a}{2 \omega_{n}}\right)\right] . \tag{21}
\end{align*}
$$

For $\omega \gg \omega_{o}$ the function $|C|$ asymptotically approaches the value of one, and for $\omega \ll \omega_{0}$ the func tion $|C|$ asymptotically approaches the value of

$$
\left[\frac{\omega_{0}}{\omega_{n}+a}\right]
$$

In any practical physical realization of this filter the function $|B(j \omega)|$ will not become infinite at $\omega=\omega_{0}$ (Fig. 6). Hence $|C|$ will not equal zero at $\omega=\omega_{0}$. At $\omega=\omega_{0},|C|$ will be equal to some small value, call it $|C|_{\text {a }}$. To get a value for $|C|_{\text {, it }}$ is first necessary to use in Eq. 12 for C the form for B given by Eq. 10:

$$
\begin{equation*}
C=-\frac{x^{2}+\delta s+\omega_{1} \omega_{s}}{x^{2}+(\delta+a) s+\left(\omega_{1} \omega_{n}+a \omega_{1}\right)} . \tag{22}
\end{equation*}
$$

From Eq. 22 an expression for $|C|$ may be calculated and set down as:

$$
\begin{equation*}
|C|=\left[\frac{\left[\omega_{1} \omega_{1}-\omega^{2}\right]^{2}+\delta^{2} \omega^{2}}{\left[\left(\omega_{1} \omega_{1}+a \omega_{1}\right)-\omega^{2}\right]^{2}+(\delta+a)^{2} \omega^{2}}\right]^{1 / 2} \tag{23}
\end{equation*}
$$

For $\omega=\sqrt{\omega_{1} \omega_{1}}=\omega_{0}$, the value of $|C|_{0}$ is found to be:

$$
|C|_{1}=\left[\frac{1}{1+2 \frac{a}{\delta}+\frac{a^{1}}{z^{1}} \frac{\omega_{1}+\omega_{2}}{\omega_{1}}}\right]^{1 / 2}
$$

(Continued on following page)

Fig. II. The Filter I circuit ghown here was designed to suppress a 60 cps inferference signal.

Fig. 12. Shows curves of Filrer I plotted according to Eq. 15.

Interference Frequency

(Continued)

Fig. 14. Shows curves for filter II plotted according to $\mathbf{E q} .30$.

For $\hat{o} \ll a$ and $\omega_{\mathrm{t}} \approx \omega_{\mathrm{s}}, \Delta$ good approximation to $|C|$, is:

$$
\begin{equation*}
|C|_{0}=\frac{\delta}{\sqrt{\overline{2} a}} \tag{25}
\end{equation*}
$$

This is the same approximation that would be obtained by the following assumption on Eq. 12.

$$
\begin{equation*}
|C|_{0}=\frac{1}{\left|B\left(j \omega_{0}\right)\right|} \tag{2t}
\end{equation*}
$$

The stability of the filter will be governed by the pole positions of C. As long as $\delta+a>0$, the filter will be stable. This is equivalent to requiring that:
$\omega_{1}>\omega_{2}-a$.
(27)

Filter II
The circuit realization of this second filter, using operational amplifiers, is shown in Fig. 9.
The gain of this circuit is given by:

$$
\begin{equation*}
C=-\frac{1}{1-\frac{R_{\mathrm{o}}}{R_{\mathrm{b}}} B} \tag{28}
\end{equation*}
$$

Using Eq. 9 for \boldsymbol{B} gives:

$$
\begin{equation*}
C=-\frac{a^{2}+\omega_{1} \omega_{2}}{a^{2}+a s+\omega_{1} \omega_{3}}, \tag{}
\end{equation*}
$$

where

$$
a=\frac{R_{\mathrm{a}}}{R_{\mathrm{b}}} \frac{k}{R_{\mathrm{i}}}
$$

The magnitude of C for $s=j \omega$ may be expressed as:

$$
|C|=\left[\frac{1}{1+\left(\frac{a \omega}{\omega_{0}^{2}-\omega^{2}}\right)^{2}}\right]^{1 / 2}
$$

where we have let $\omega_{o}=\sqrt{\omega_{1} \omega_{1}}$. The sketch of $|C|$ in Fig. 10 shows how this function varies with frequency.
The frequencies at which $|C|=1 / \sqrt{2}$ are given by the following equations.
$\omega_{1}^{*}=\left\{\left[\omega_{0}^{2}+\frac{a^{2}}{2}\right]+\left[\left(\omega_{0}^{2}+\frac{a^{2}}{2}\right)^{2}-\omega_{0}^{4}\right]^{2}\right\}^{1 / 2}$
$\omega_{l}^{-}=\left\{\left[\omega_{0}^{2}+\frac{a^{2}}{2}\right]-\left[\left(\omega_{0}^{2}+\frac{a^{2}}{2}\right)^{2}-\omega_{a^{t}}\right]^{t}\right\}^{1 / 2}$
For $a \ll \omega_{o}$, Eqs. 31 take on the following form:

$$
\begin{align*}
& \omega_{1}^{+} \approx \omega_{0}\left[1+\frac{a}{2 \omega_{0}}\right] \tag{32a}\\
& \omega_{1}^{-} \approx \omega_{0}\left[1-\frac{a}{2 \omega_{0}}\right] . \tag{32b}
\end{align*}
$$

For $\omega \ll \omega_{0}$ and $\omega \gg \omega_{o}$ the function $|C|$ asymptotically approaches the value of one.

Using Eq. 11 for B in Eq. 28 for C gives:

$$
\begin{equation*}
C=-\frac{s^{1}+z_{s}+\omega_{1} \omega_{1}}{s^{4}+(a+\delta) s+\omega_{1} \omega_{s}} . \tag{3:3}
\end{equation*}
$$

The value of $|C|_{\text {, for }}$ this filter may be calculated from Eq. 33 and found to be:

$$
\begin{equation*}
|C|_{0}=\frac{1}{1+\frac{a}{b}} \tag{31}
\end{equation*}
$$

and, if $3 \ll a$, a good approximation to $|C|_{0}$ is:

$$
\begin{equation*}
|C|_{0} \approx \frac{s}{a} . \tag{35}
\end{equation*}
$$

The condition for the stability of this filter is the same as that for the previously considered filter (Eq. 27).

TABLE 1
Dafo on flifer 1

Calculated	$\omega_{1}{ }^{+}$	$\omega_{1}{ }^{-}$			$\omega^{\text {ros }}$		'C.	
Measured		$\omega_{1}{ }^{+}$		$\omega_{1}{ }^{-}$		$\omega_{\text {ron }}$		C\| ${ }_{\text {c }}$
$a=4$	378 rps	378 rps	373 rps	374 rps	381 rps	383 pps	1.41	1.40
$a=10$	381	383	364	382	387	400	1.40	1.43
$a=40$	392	392	318	323	418	424	1.34	1.36

Investigation of Filter 1

The circuit examined experimentally was designed to suppress a 60 cps interference signal. That is, the circuit parameters were chosen to set $\omega_{1}=\omega_{2}=\omega_{3}$ $=\omega_{0}=2 \pi x 60$. The circuit is shown in Fig. 11. The potentiometers are used to adjust R_{1} and R_{2} to the correct values. A 60 cps signal is inserted at the input to the circuit and the resistors R_{1} are adjusted to minimize the output signal. The resistor R_{2} is then adjusted to further minimize it. This procedure is repeated until the output signal is minimized. If the adjustments are carried to the point of violating the condition for stability, the output signal will grow in amplitude until one of the amplifiers limits the signal.

The value for a for this circuit is:

$$
\begin{equation*}
a=\frac{2 \times 10^{n}}{R .} \tag{36i}
\end{equation*}
$$

Curves of $|C|$ versus ω for several values of a are plotted according to Eq. 15 in Fig. 12. A comparison of measured and theoretical points is given in Table I. The agreement between the calculated and measured data is quite good.

Fig. 15a. Shows the filters in flowgraph form.

(a)

Fig. 15b, With an in. terference signal added at e_{2}, the amount of signal e, contained in the output is given by expression 38 .

(b)

The measured value of $|3|$ was no greater than $1 / 20$. This made it possible to achieve small values of gain at 60 cps . The fact that $|8|$ may have been much less than $1 / 20$ was difficult to ascertain because of interference signals at frequencies other than 60 cps .

Investigation of Filter II

The circuit examined experimentally is shown in Fig. 13. The procedure for adjusting the resistors R_{1} and R_{2} is the same as that for filter 1.

The value of a for this filter is:

TABLE 2
Date on Filter II

Calculated	$\omega_{1}{ }^{+}$		ω_{1}^{-}	
Measured		$\omega_{1}{ }^{+}$		$\omega_{1}{ }^{-}$
$=15$	384	383	368	370
$a=45$	398	385	354	356
$=83$	416	421	335	337

A REPRINT

of this article can be obtained by writing on company letterhead to The Editer
ELECTRONIC INDUSTRIES, Chestaut 8 56ih Sts., Phila. 39, Po,

$$
\begin{equation*}
a=\frac{7.52 \times 10^{8}}{R_{\circ}} . \tag{37}
\end{equation*}
$$

Curves of $|C|$ versus ω for several values of a are plotted (Fig. 14) according to Eq. 30. A comparison of measured and theoretical points is given in Table II. The agreement between the calculated and measured data is satisfactory.
The measured value of $|\xi|$ was no greater than $1 / 20$ for the other filter circuit.

Conclusions

The filters presented in this report appear to provide a satisfactory means of suppressing an undesired, almost monochromatic signal superimposed upon a desired signal. Theoretically, the bandwidth of the notch (at the frequency to be rejected) may be made as narrow an desired. However, if the notch is too narrow, it is difficult to properly locate the center frequency of the notch.
The filters are represented in flowgraph form in Fig. 15a.
If in some manner an interference signal, e_{4}, were to be added at node e_{3} (Fig. 15b), the output signal would contain the amount of signal e_{4} given by the following expression:

$$
\begin{equation*}
-\frac{B(8)}{1-B(8)} e_{6} \tag{38}
\end{equation*}
$$

For $s=j \omega$ and $\omega \neq \omega_{0}$, this expression will be (for all practical purposes) zero. However, for $\omega \approx \omega_{0}$ the expression will be approximately equal to e_{4}. Thus, the interference signal introduced by the circuit at node e_{3} must be negligible at or near the notch center frequency.
Nothing has been said about the effects if the resistances R_{1} and the capacitances C_{2}, are not exactly equal. Satisfactory experimental results make it appear that this point is not too critical.

Finally, as an alternative scheme for adjusting the resistors R_{1} and R_{2} in the parallel Tee network, the circuit in Fig. 16 is presented.

This research was supported by the U.S.A.F. through WWRNGW of the Wright Air Development Division of the Air Research and Development Command.

Fig. 16. An altormarive schame for adluating the resistore R_{1} and R_{1} in the par. allel Tee metwork is presented.

> A technique has been developed for the continuous measuring of UHF phase ongles. The phase difference between two audio frequency signals is used to measure the phase difference between two UHF signols. The UHF phase angles are monitored by on audio phase meter. The feasibility of the processes employed is mathematically proven.

UHF Phase Measurement

DEVELOPMENT of high frequency (h-f) phase measurement devices has lagged behind that of h-f voltage and frequency measurement devices. The difficulties involved and the limited applications of h-f phase measurement techniques make this lag understandable. This article describes a method of measuring UHF phase angles with a high degree of accuracy.
UHF phase information is changed to low frequency phase information by the processes of amplitude modulation (AM), mixing, and filtering. While some of the principles have been previously applied to h-f phase measurement, it is felt that the AM technique introduced herein may be useful.

Theory
The processes used in transferring r-f phase information to the a-f range are outlined in Fig. 1. Two modulators are simultaneously amplitude modulated by a 1 kc signal. The 1 kc signal is shifted so that the modulating signals to the first and second modulators are in quadrature to each other. The r-f signal inputs to the modulators are also in quadrature to each other. The later addition of the modulator outputs results in a carrier component and a lower sideband component. The latter contains the r-f phase angle which is to be detected. A large r-f signal, of the same frequency as the original carrier, is combined with the sum of the modulator outputs. This produces a new reference carrier, plus the lower sideband signal which contains the unknown r-f phase angle. Detection of the new combination produces a 1 kc signal
containing the unknown r-f phase angle. A reference 1 kc signal and the detected 1 kc signal are fed into an audio phase meter. The unknown r-f phase angle is read from this meter.
The following mathematical analysis is more easily understood by referring to Fig. 1.

The UHF signal, $e_{1} \sin \left(\omega_{c} t+\theta\right)$, whose paase angle θ is to be measured, is amplitude modulated by the reference audio signal $e_{2} \sin \omega_{m} t$. The phase of the reference audio signal has been neglected for greater simplicity. The resultant signal may be expressed mathematically as:

$$
\begin{aligned}
\epsilon_{\theta 1}=k_{1} \sin \left(\omega_{c} l+\theta\right) & +\frac{k_{1} \prime_{1}}{2} \cos \left(\omega_{d} t+\theta-\omega_{m} t\right) \\
& -\frac{k_{1} m_{1}}{2} \cos \left(\omega_{c} t+\theta+\omega_{m} t\right)
\end{aligned}
$$

where k_{1} is the modulator transfer function, and m_{1}

Fig. 2. The difference in phase between the two UHF signals was obtained by a variable

by an AM Process

the modulation factor. Modulation of less than 100% may be used.

The UHF signal, $e_{1} \sin \left(\omega_{c} t+\theta\right)$, whose phase angle θ is to be measured, is also phase-shifted by 90°. The quadrature UHF signal, $e_{4} \cos \left(\omega_{c} t+\theta\right)$, is amplitude modulated by the quadrature audio signal $e_{5} \cos \omega_{m} t$. The resultant signal may be expressed mathematically as :

$$
\begin{aligned}
\epsilon_{\mathrm{at}}=k_{2} \cos \left(\omega_{\mathrm{c}} \ell+\theta\right) & +\frac{\ell_{2} m_{2}}{2} \cos \left(\omega_{d} t+\theta-\omega_{m} l\right) \\
& +\frac{k_{2} m_{2}}{2} \operatorname{cros}\left(\omega_{d} t+\theta+\omega_{m} l\right)
\end{aligned}
$$

where k_{2} is the modulator transfer function and m_{2} the modulation factor. Modulation of less than $\mathbf{1 0 0 \%}$ may be used.
The two amplitude modulated signals, $e_{o 1}$ and $e_{\iota 2}$, are added together and then mixed with the UHF reference signal $e_{3} \sin \omega_{c} t$.

For identical modulation transfer functions, $k_{1}=k_{2}$ and modulation factors, $m_{1}=m_{2}$.

$$
\begin{aligned}
c_{01}+r_{02} & =k_{1} \sin \left(\omega_{d}+\theta\right)+k_{2} \cos \left(\omega_{d}+\theta\right) \\
& +k_{1} m_{1} \cos \left(\omega_{d}+\theta-\omega_{m} l\right)
\end{aligned}
$$

A linear mixing process may be assumed for the UHF reference signal $e_{3} \sin \omega_{c} t$ much greater than $e_{v 1}+e_{v 2}$, and may be expressed mathematically as:

$$
\begin{aligned}
c_{11} & =k_{1} c_{1} \sin \left(\omega_{d}+\theta\right) \sin \omega_{d} l \\
& +k_{2} e_{3} \cos \left(\omega_{d}+\theta\right) \sin \omega_{d} \\
& +k_{1} m_{1} c_{3} \cos \left(\omega_{d}+\theta-\omega_{m} l\right) \sin \omega_{d} l
\end{aligned}
$$

After operation on the above equation:

$$
\begin{aligned}
\rho_{11} & =\frac{k_{1} \epsilon_{3}}{2} \cos (-\theta)-\cos \left(2 \omega_{d} t+\theta\right) \\
& +\frac{k_{1} \epsilon_{1}}{2} \sin \left(2 \omega_{d} t+\theta\right)+\sin (-\theta) \\
& +\frac{k_{1} m_{1} e_{3}}{2} \sin \left(2 \omega_{0} \ell+\theta-\omega_{m} t\right)+\sin \left(\omega_{m} \ell-\theta\right)
\end{aligned}
$$

After filtering out the harmonic frequencies the signal input to the audio amplifier may be expressed as:

$$
\begin{aligned}
f_{12} & =\frac{k_{1} r_{3}}{2} \cos \theta-\frac{k_{z} c_{3}}{2} \sin \theta \\
& +\frac{k_{1} m_{1} \epsilon_{1}}{2} \sin \left(\omega_{m} l-\theta\right)
\end{aligned}
$$

The first two terms of the above equation represent x dc signal for each UHF phase angle θ. They are eliminated by passing the signal e_{22} through an ac amplifier of either negligible or known phase shift.

Assuming negligible phase shift in the audio amplifier, the resultant amplified signal e_{o} is:

$$
\varphi_{0}=K_{3} \sin \left(\omega_{m} \ell-\theta\right)
$$

where K_{3} is the transfer function of the audio amplifier and includes $\frac{k_{1} m_{1} \epsilon_{3}}{2}$. The UHF phase angle θ has been transferred to the modulation frequency $\omega_{m} t$.

The amplified audio signal, e_{0}, is applied to one set of terminals of an a-f phase meter. The audio AM signal, $e_{2} \sin \omega_{m} t$, or an audio reference signal is applied to the other set of terminals. The phase meter reads the phase difference between the two audio signals directly, even though they may be of unequal amplitudes. The measured phase difference, $-\theta$, is the negative of the phase difference between the two UHF signals; $e_{3} \sin \omega_{c} t$, and $e_{1} \sin \left(\omega_{c} t+\theta\right)$. If e_{01} and e_{02} were subtracted and then mixed, the new phase difference $+\theta$, would agree exactly with the UHF phase difference.

A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

Phase Measurement (Continued)

Experimental Circuitry

In the experimental setup (Fig 2), the difference in phase between the two UHF signals was obtained by a variable trombone line. A constant impedance line stretcher was used to obtain the 90° UHF phase shift. The mixing and UHF harmonic signal filtering is accomplished in the G.R. Mixer. Any audio harmonic frequencies were eliminated by the 1 kc band pass filter. RG 58 cable was used. Particular care was given to lead lengths.
The prime requirement is to obtain two UHF signals, equal in amplitude and in quadrature, at the output summation point of the two modulators. A procedure based on phase modulation may be used to check the UHF 90° phase shift by rearranging the equipment and using null techniques. The UHF 90° phase shift may also be checked by dc measurements at the mixer when point A is disconnected. A 90° phase shift is obtained when the constant impedance line stretcher is adjusted for one half the difference between settings for maximum and minimum dc output.
Fig. 3 is a schematic drawing of the audio phasing device and modulators. The 90° audio phase shift is
accomplished in the RC phase shift circuit. The 50 k ohm potentiometer provides a phase range of zero to approximately 170°. The modulating signal on the plate of modulator 1 is set to be in quadrature with reference to the modulating signal on the plate of modulator 2. 12AU7 tubes were used as drivers for the 6AQ5 modulator tubes. The maximum modulation obtainable from the plate-modulated, grounded grid 6BC4's was approximately 90%. The doubly-tuned filters were tuned for a flat response from 400 mc to 420 mc . The UHF amplifier tubes were aligned for nearly equal frequency response, gain, and percentage modulation.

Test Results

Phase measurements were made by adjusting the trombone line. The resulting phase difference was observed on the audio phase meter. Figs. 4 and 5 are graphs showing the phase readings of a 417 mc signal. At that frequency, a 2 centimeter change in length of the trombone line should produce a calculated 10° phase change. All measurements were within the rated accuracy of the Acton Laboratories Model 320 phase meter which is 1% of full scale plus 3 degrees.

General Considerations

The accuracy of phase measurement is not limited to the care taken in alignment adjustments of the system nor to the rated accuracy of the audio phase

meter. There is a theoretical inaccuracy which was not taken into consideration. The input to the mixer consists of the resultant of the sum of the two carrier components of the two modulated waves, plus the lower side band, plus the new injected carrier signal. For proper mixing, the injected carrier signal would normally be about 1,000 times larger than carrier components of the amplitude modulated waves. However, in the mathematical analysis presented, all carrier components were neglected in the input to the mixer except the new injected carrier referred to as $e_{3} \sin \omega_{0} t$. If it is accepted that $e_{3} \sin \omega_{c} t$ is 1,000 times larger than the resultant carrier component of the modulation envelope and the latter component is neglected, then we assume a maximum theoretical phase error of less than 6% of 1 degree.
With this technique, an audio signal output e_{o} will always be available over a complete 360° phase shift of the UHF signal.

Grounded grid UHF amplifiers may be used as 100% modulation is not necessary. Suppressed carrier techniques may also be used as the carrier component of the amplitude modulated signal is not necessary in the mixing process as described. In fact, if suppressed carrier techniques are used, square law mixing may be used for identical results.

The audio modulation signal frequency may be selected for accuracy of phase measurements, and digital comparison techniques if desired for readout, convenience, or greater accuracy.

Although the measurements were for cw signals, the torhniques may be applied to detect the phase of puls UHF signals if the modulation frequency is muc lower than the pulsed repetition frequency.
The AM technique may be substituted for the suppressed carrier technique used in the phase modulation method for null indications.

Roferences

1. T.R.R. Transactions on Insfrumentatione, Dec. 1957, P. 238. 2. Proc. of 8 R E., S.S.B. Issue. Dec. 1956. Vol. 41, No. 12.

Fig. 4 Phase measurements of a 417 me signal af 360° full scale.

Fig. 5. Phaso measurements of a 417 mc signal at $90^{\circ} \mathrm{full}$ scale.

Anti-jam Radar

FIRST operational member of a new family of advanced antijam search radar will be erected at Point Arena, Calif. Built by GE's Heavy Military Electronics Dept. for the Air Force, it will be used to detect and furnish warning against supersonic aircraft and air-breathing missiles.

First Operational AN/FPS-24 Search Radar is one of the world's largest rotating radar sfructures. The 84 ft . high concrefe building will house electronic equipment and serve as amtenna base.

Over 125 ft . wide and 50 ft . high, the system, AN/FPS-24, will need four 100 hp motors to rotate the 137-ton antenna on a ball bearing 10 ft . in dia.

Made of 51 sections, the reflector screen and support backup structure contains more than two mi . of high strength aluminum and low temperature steel. The 90 -ton reflector is mounted on a 10 -foothigh rotating pedestal.

FOR the purpose of this discussion, interference will be defined as any undesired received signal which reduces the intelligence content of a desired received signal. This annoying signal may be of friendly or unfriendly origin. It may be natural or man-made.

The first problem is to determine the level of degradation that can be tolerated. This question can only be answered for a specific situation. For example, suppose that a complete message must be received, but the time for transmitting the message is unlimited. Then, if the message is continuously repeated it is only necessary to receive a small portion of the message at each repetition and a high degree of interference is acceptable.
It should be noted that due to the redundancy of the English language, if only 50% of the words are intelligible, a sentence intelligibility of 80% can be achieved. Finally if the information must be received within a specified time limit even moderate interference may cause great difficulty.

Having established a quantitative performance limit, tests have to be performed to give qualitative levels which include various intelligibility tests. These tests have been devised in order to determine the degree of interference that can be tolerated.

Listener Tests

Many of these tests require the listener to identify as best he can each of a number of words picked at random. Other tests may provide the listener with a certain amount of information about the message to

Fig. 1: The frequency of the signal generator is varied to check the receiver's susceptibility to spurious responses.
be expected. For example, the "Michigan Map Test"1 provides the listener with only a limited number of possible next words.
Each of the many tests in existence is designed to test some form of intelligibility under certain circumstances. Thus we have word or sentence intelligibility under requirements of maximum intelligibility regardless of time (allowing the message to be repeated many times), maximum intelligibility over limited time (the operator has the choice of going to the next word or repeating any previous word), etc. There are also tests which tend to eliminate the human operator. ${ }^{2}$ Generally, 80% intelligibility is sufficient for messages.
The next phase of the analysis is to consider the types of interfering signals.

Inferfering Signals

In this respect different methods of transmission and coding will produce a different degree of intelligibility for the same degree of interference present. Likewise, for one system of transmission and coding, different types of interference will produce u different end re-

Designing

sult. The following types of interference would be effective against an (FM/FM) multiplex system:

1. Pulse jamming.
2. Thermal and FM noises.
3. FM tones.
4. Frequency shift keying.
5. Single and multiple delayed voice repetitions.
6. Random sawtooth FM sweeps.
7. Jittered tone.
8. Single tone sine wave (AM).
9. Single tone square wave (AM).
10. Multi-tone AM.

Of these, the most detrimental to operation are random noise ${ }^{3}$ (This includes both a direct noise input and a carrier frequency modulated by noise. The effects of both types have been shown to be of the same order of magnitude.) which tends to mask the incoming signal, and frequency shift keying ${ }^{3}$ which will cause "capture" if the signal level of the undesired signal is sufficiently high. (At least one db above the desired signal.) Other types of interference will, in general, tend to approach, in their effects on intelligibility, the aforementioned two types. Multi-tone AM will approach the masking effect of random noise as a limit, and a strong undesired carrier at the frequency of the desired signal will produce the so-called "capture" effect.

Random Noise

Random noise causes the worst type of interference because the spectrum occupied by speech can be uniformly covered. Use of simple tones or even speech is not as effective as noise because of the computing and filtering ability of the human operator. It is relatively easy to tune out one voice in favor of another when the two are of similar loudness. Because of redundancy in the English language, a lesser signal to noise ratio (S / N) can be tolerated when transmitting a message, than when transmitting a single word.

There are three phases to the RFI reduction program in communications systems-prediction, design, and measurement. The equipment must be designed for a minimum of predicted inferference and then tested to insure reaching this goal. Here the way is shown for achieving these steps.

RFI-Free Communication Systems

By I. MAZZIOTTI and M. ENGELSON

Polarod Elactronics Carp. 43-20 34th St. Long Island City 1, N. Y.

In addition to the intentional types of interference, we must consider the various natural and man-made sources of interference. Among these are intermodulation, spurious responses, desensitization due to a strong carrier, etc., and the ever present noise (no carrier) whether natural or man-made.

Types of Interference

There are essentially two classes of interference with which the system must contend. One is "on frequency" interference (both intentional and unintentional) and the other may be lumped under the general heading of "off frequency" interference.

The "on frequency" interference. especially if it is intentional jamming, can sometimes be reduced by changes in geometry (example, location and beam width of antenna) and to a greater extent by the use of coded transmission.

The "off frequency" interference can be reduced by a judicious choice of receiver parameters.

The types of interference ${ }^{\text {4, 5. ©. } 7}$ that should be considered in receiver design are: spurious responses, intermodulation, cross modulation, desensitization and interchannel interference.

Spurious responses will occur when harmonics of the incoming signal combine with harmonics of the local oscillator to produce an i-f signal. The equation that characterizes spurious responses is:

$$
\begin{equation*}
A_{/ 4}=B_{n}=i-I \tag{1}
\end{equation*}
$$

where A and B are positive integers and

$$
\begin{aligned}
f_{0} & =\text { local oscillator frequency } \\
11 & =\text { signal frequency } \\
i-f & =\text { the intermediate frequency }
\end{aligned}
$$

Intermodulation is actually a general case of spurious responses. It occurs when two or more signals enter a receiver and interact due to non-linearities in the equipment. A Taylor series expansion of re-
ceiver non-linearities shows that the worst intermodulation is due to odd order curvature in the recevier non-linear elements.

Cross-modulation is the amplitude modulation of one signal by another. This is an AM phenomena and should have negligible effect on an FM system.

Desensitization is due to the suppression of a weak desired signal by a strong undesired signal. The undesired signal need not be modulated, as illustrated by the "capt"re" effect for FM systems.

Interchannel interference refers to interference caused by a signal getting into a channel it was not intended for.

All of the above types of interference can. to a certain extent, be predicted and guarded against by proper design of equipment.

In general, the problem in the above types of interference is due to system non-linearities and insufficient attenuation of the undesired signal on its path to the point of non-linearity.

Good preselection, particularly in the case of spurious responses, is extremely helpful in reducing the

The transistorized calibrated field intensity receiver is specifically for mobile use. It operates in the 1 to 10 kme range.

Fig. 2: Two signal generators are being used for an infermodulation test.
strength of undesired signals. It may be of interest to note here that filters have periodic structures and care should be exercised when using filters for preselection purposes. Sometimes several types of filters may have to be used to reduce spurious responses.

Equipment \& Antenna Positioning

Judicious positioning of the equipment will, in many cases, reduce unintentional interference and may make the receiver a more difficult target for deliberate jamming.

Of prime importance in this respect is the positioning and characteristics of the antenna. Experimental evidence indicates that microwave antenna gain at spurious frequencies is substantially equal to the gain at the operating frequency up to at least the 3rd harmonic. ${ }^{8}$ Thus, if a spurious signal were to fall within the beam width of the antenna, it would be little if at all reduced relative to the desired signal.

Proper placement and reduction in beam width of the receiving antenna are therefore important factors in controlling interference.

Measurement Progrom

The communications receiver needs to be checked for the following:

1. Spurious responses.
2. Intermodulation.
3. Cross-modulation (on AM receivers).
4. Inter-Channel interference.
5. Desensitization.
6. Antenna Patterns (if possible at spurious frequencies as well as in operating range).
7. Shielding effectiveness.
8. Degradation in intelligence due to various types of jamming (intelligibility tests).

Spurious Responses-The frequency of the signal generator (Fig. 1) is continuously varied over the range of interest. All frequencies at which an output is observed are noted. The rejection of the spurious signal by the equipment is computed as the power diference in db between the power input at the spurious frequency and the power input at the frequency to which the receiver is tuned, when the receiver indication is at some level (usually 3 db above noise).

When making this measurement two precautions must be taken. First, the spurious signal rejection is computed on the basis of power delivered to the receiver. The above necessitates checking of the receiver input impedance at the spurious frequencies, and the actual power delivered to the receiver computed. This is particularly troublesome when checking microwave receivers because of the necessity of providing proper waveguide to waveguide and waveguides to coax adapters as the signal generator frequency range changes.

The other problem comes about because the signal generators produce a great many harmonics. Care must be exercised, when checking for spurious responses at frequencies below the tuning range of the receiver, not to mistake a strong signal generator harmonic falling within the receiver pass band as a spurious response. Low pass filters having high attenuation at the receiver channel frequency are helpful in reducing false spurious indications.
Intermodulation-Presently there are two methods of intermodulation measurement. Both are based on the fact that two or more incoming signals will, due to system non-linearities, mix with each other, and an output will be obtained when such mixing produces an r-f or i-f frequency product.

Fig. 2 shows the block diagram for a two signal generator intermodulation test. The frequencies of the two signal generators are so adjusted that the sum or difference of the fundamentals or harmonics will produce an r-f or i-f signal. The intermodulation rejection is computed from the power difference between the intermodulating signals and a signal at the receiver frequency. The inputs are in both cases adjusted to produce a certain standard output (usually 3 or 6 db above noise).

The coupling network is necessary to provide isolation between the signal generators. If an isolation network is not employed, care must be taken not to interpret intermodulation products generating within the signal generators themselves as being caused by the receiver. Another precautionary measure would be to use low pass filters when the signal generators are set below the receiver frequency-wise. This arrangement reduces responses due to signal generator harmonics. Loss in the coupling network, filters and mismatch must be accounted for when computing the spurious power input.

Fig. 3 shows the block diagram for an impulse generator intermodulation test. This method of intermodulation testing is presently useful up to 10 KMC , this being the upper frequency of available impulse generators. Unlike the two signal generator test, the impulse generator method is a many frequency method. Test is performed by taking the difference in impulse generator spectral intensity required to obtain a discernible receiver output when the receiver is working properly and when the receiver oscillator is disabled.

REFERENCE PACES

The pages in this section are perforated for asay removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is no provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three hole notebooks or folders.

The theoretical basis for this test is as follows. The impulse generator signal is composed of a number of discreet sine waves, Fig. 4a, where the amplitude of these sine waves depends on the pulse amplitude of the impulse generator and the spacing depends on the PRR. After being amplified by the r-1 amplifier, the spectrum takes on the shape of the r-f response curve shown in Fig. 4b.

The many frequencies which fall within the r-f amplifier pass band will, in the presence of r-f amplifier non-linearities, combine with each other to form frequencies not within the r-f pass band. Those frequencies which fall within the i-1 pass band will be amplified by the i-f and indicated as a signal by the receiver.

The test is designed to check the degree of nonlinearity in the r-f amplifiers, and the ability of the amplifiers to handle wide band high level interference.

Cross Modulation-Cross modulation pertains to the amplitude modulation of a desired signal by an undesired signal. Because of its nature, the effect of cross modulation of FM systems is negligible. A simple way of checking for cross modulation is to feed a desired and undesired (out of channel) signals into the receiver and check for a transfer of modulation from one to the other.

Inter-Channel Interference - Inter-channel interference essentially refers to cross-talk between channels. This can easily be checked by transmitting a typical signal and checking for cross-talk between channels.

Fig. 3: Impulse generator is used for intermodulation testing
Desensitization-Desensitization refers to a loss in sensitivity to the desired signal caused by the presence of a strong undesired signal (usually unmodulated). In FM receivers this could be referred to as the "capture" effect. A typical measurement would consist of checking the loss in receiver audio output when a strong extraneous unmodulated signal is applied to the receiver input. The magnitude of the undesired signal required to produce a specified degradation in audio output is a measure of the desensitization properties of the receiver.

Shielding Effectiveness-Good shielding effectiveness is very important in order to eliminate all signals except those getting in through the front end of the equipment. Effective shielding against strong narrow beam signals permits the use of the terrain at the site for inter-system interference at a multi-receivertransmitter installation. Shielding effectiveness is checked by subjecting the equipment to strong electromagnetic fields of various frequency (both on and off channel). The field strength or signal power input to the radiating antenna is used as a measure of the receiver shielding effectiveness. The antenna is removed when making tests at receiver frequency.

Antenna Patterns ${ }^{10}$-The beam width of the an-

Radio interference set covers from 0.15 to 25 mc . Several types of measurements are available by front panel selection.
tenna will, in general, greatly influence the relative placement of antennas, when more than one antenna is involved. Antenna patterns are obtained by moving either the receiving or transmitting antenna in azimuth or elevation and determining the relative amount of power intercepted from a transmitting antenna as a function of angle. Once an antenna pattern is obtained, one can determine which antenna orientation, relative to transmitters whose reception is not desired, will produce least interference. It follows that the narrower the beam width and higher the antenna gain, the closer can the angle between the center of the main lobe and spurious transmissions be made.

Degradation in Intelligence-The characteristic of the receiving system that suffers most in the presence of a high ambient noise level (natural or man-made) is the sensitivity. The sensitivity of the receiving system (including antenna connecting cables, etc.) is, when considered in the context of the above statement, a function of the environment in which it is operating. The sensitivity, which is a measure of the required signal input to obtain a certain S / N output, will depend on the parameters of the receiver itself (noise figure, bandwidth, etc.) and on the ambient noise level that enters by way of the antenna. We can, once an output S / N is decided upon as being required for intelligible reception, perform sensitivity measurements as a function of various forms and strengths of the jamming signal.

Sensitivity measurements under normal (no interference) conditions would, of course, be made as part of the spurious response test, since the spurious response rejection is obtained by taking the difference between the sensitivity to the spurious and the desired signal. This method is simple to implement but not very realistic. The drawback comes from the fact that the filtering and computing properties of the human being are not being accounted for.

A REPRINT
of this article can be obtained by writing on company letterhead to

The Editor
ELECTRONIC INDUSTRIES Chestnut G 56th Sts., Phila. 39, Pa.

Fig. 4a: The output of the impulse generafor is shown. 4t shows the response of the r-f amplifier with the oscillator disabled.

RFI Elimination (Concluded)

A more realistic, though much more tedious and expensive, approach is to run a standard articulation test. This method will indicate the anti-interference qualities of the equipment under actual operating conditions. The choice of the test to be performed would depend on the accuracy desired and the time and funds available.

The tests described thus far have all been intended for the receiver portion of the communications link. The transmitter portion of the communications link is, however, not interference free, and should, therefore be considered.

Transmitter Problems

Transmitter problems which need to be considered are : spurious emissions, intermodulation, cross modulation, side-band splatter and noise output. All of the above can be measured by means of field intensity meters or spectrum analyzer and appropriate coupling devices. (See Fig. 5.)

The choice of field intensity meter or spectrum analyzer depends on the test one is performing, on the power available, and the desired accuracy. The easiest way, for example, of measuring modulation splatter is to observe the actual transmitted spectrum by means of a spectrum analyzer. A sensitive receiver

will, on the other hand, be more useful when measuring low power spurious responses. Another important difference between the two instruments is that a spectrum analyzer has a much narrower bandwidth than a ficld intensity meter. This characteristic could be advantageously exploited when checking for spurious responses in close proximity to the fundamental signal.

Conclusions

The solution to the interference problem is in many cases dependent on the question of whether the interference is intentional or unintentional. If, for example, the interference is intentional, the degree of intelligibility can be increased by a reduction in the rate of intelligence transmission or an increase of bandwidth so that the jammer will have to spread
his available power over a larger bandwidth. An increase of bandwidth will, on the other hand, reduce the \mathbf{S}, \mathbf{N} ratio when the interference is unintentional.

The only way of improving the anti-jam properties of a communications system, is in the final analysis, to design these properties into the system. In general, though minor improvements can be made by the choice of such parameters as bandwidth, antenna characteristics, and physical positioning of the equipment, the only way to obtain good anti-interference properties is to use sophisticated methods of modulation and coding. The idea is to so design the coding that the jammer must either spread his signal power over a large bandwidth, spend time to decipher the code or find the frequency of transmission. or give the impression that intelligence is not being transmitted so that the jammer will not be interested.

Unintentional interference can best be eliminated by designing the equipment to minimize predicted trouble spots. Thus, for example, one can, using Eq. 1, predict spurious response frequencies for a given i-f amplifier frequency. This would indicate which choice of i-f is best, or if the intermediate frequency is fixed one can determine how much preselection is necessary.

The three phases of the susceptibility reduction program; prediction, design, and measurement are thus seen to complement each other. One must design for a minimum of predicted interference, and then make measurements to determine how well this goal was achieved.

References

1. "The Map Test," T. G. Birdsall, Symposium on Electronic
Counter Measures, 1956 .
2. "Replacing the Listener in Articulation Testing," L. S. Billing, Symposium on Electronic Counter Measures, 1956.
3. "Interference Acceptance Ratlos in Electronic Communicatons Equipments," C. B. Pearlston, Jr., Fourth Conference on liadlo Interference Reduction and Electronic Compatiblity, 195 8 . 4. "Controlling RFI Susceptlbllity in Recelvers," H. M. Sachs, J. J. Krstansky, Electronic Industries, September 1960 .
4. "p'rediction of Recelver Intermodulation irom simple Measurements," W. M. Rogers, M. L. McKinley, C. E. Blakely, Electronic Design, March 1960.
5. "Interchannel Interference in FM and PM Systems under Noise Loading Conditions," W. IR. Bennett, H. E. Curtis, S. O. Rice, Bell System Technical Journal \#3, May 1955.
6. "Results of UHF Mutual Environment Test Program at Rome Air Development Center," J. Berliner, J. Augustine, ConRome Air Development Center, R. Berliner, J. Augustine, Conpatibllity, 1957 .
7. "The Gain of Aperture Antennas at Spurlous Frequencles, Reduction and Electronic Compatibllity, 1959 .
8. "Radio Frequency Interference Conslderations In the TD- 2 IRadio Relay System." H. E. Curtls, lell Systen. Technical Journal, March 1960.
9. "Notes on Microwave Measurements," Polarad Filectroniss Corp.
10. "The Criterion in Speech Communicalion in Nolse," J. P. Eigan, Symposlum on Flectronlc Counter Measures, 1956.
11. 'Standard Practice Manual, T.O. 31-1-48 1957, Location, 12. "Standard Practice Manual, T.O. 31-1-48 1957, Location,
Identifation, Suppression of Communications Electronlcs Inldentificatio
12. "Standard Planning Manual, T.O. 31-1-49 EngIneering terference-Free Communications-Electronlcs Systems."

IMPROVED "0". SUBMNINATURE conNectors

ELIMINATE SOLDERING

OIMENSIONS AND PART NUMBERS					
$\begin{aligned} & \text { Mo ol Contsits } \\ & \text { or Pias } \end{aligned}$	Prus Prit				
$\begin{aligned} & 9 \\ & 13 \\ & 35 \\ & 3 \\ & 30 \end{aligned}$					(1094,

DOT

MARK II GOLDEN "D"

FEATURES CRIMP.ON. SNAP.IN. REMOVABLE PINS AND CONTACTS

- Mirmotaloc Insulators of alallal phthalate Tppe MDG per Mill-M-14E
- Pins \& Contacts are copoce base alloy gold plited ar mich reliabilify
- Prube proof ciassantiey socket can tacts . designen to MS 3190
- Individual Confacts carl be ásily ve moved and replacad
- Fuliy interchangeable with Siandard D
- Golden Iridite finish - per QQ-P-416A Type II Class 2
- Insertion, Exiracifan and Crimp tools are also avialable from Cinch

For further information contact our saluz olfice in your area

Cinch Manufacturing Company
1026 South Maman Aue. Chicago 24. Ill.

The microelectronics of solid networks appears as one solution to size reduction and reliability problems. New techniques in the semi-conductor field are causing the rapid expansion. The "growing" of complete circuit packages is also changing the role of system and device engineers.

A Growing Field

Solid Networks

AGROUP of new words has ushered in a revolution in the components and semiconductor industry. With somewhat vague meanings revealing the newness of the concepts, words like microelectronics, molecular engineering, molecular electronics, molemolecular engineering, molecular electronics, mole-
tronics, microtronics, micromodules and microcircuitry appear with increasing frequency in the technical news.

Over two dozen companies are now actively engaged in the microelectronic field. The field is exploding more rapidly than its strongest advocates had foreseen. The government has already urged manufacturers to use microelectronic circuits in place of conventional sub-miniature circuitry. What are the rea-

Enlarged photo of a solid network has the elements identified

By J. J. BOWE
Depf, Heod
Research \& Development
Microelactronic \& Tunnel Diodes
Sperry Semiconductor Div.
Wilson Are.
S. Norwalk, Conn.
sons for this rapid growth, and what does the near future hold for this new product area?

There are four main divisions in microelectronics:

1. Micromodule.
2. Two-D (thin film).
3. Solid networks.
4. Blue sky microelectronics.

We will consider solid networks which offer the advantages of being, at the same time, both practical and of an advanced nature.

The microelectronics of solid networks is the science of building and using electronic blocks of solid semiconductor material to perform complex electronic functions. It has arrived on the present-day scene in a very logical way. In any practical production area, units are made in sizes and assemblies which are efficiently manufactured and handled. Then the units are joined to form larger collects.

In the electronic components industry it has been efficient to manufacture passive components such as resistors, capacitors, coils and diodes, and active components such as transistors and active diodes separately, to package them separately, and to vend them separately to a customer who assembles the packages into a large unit, a system of his own design. The system was designed with a particular component package in mind. These were either standard components or specially devised to the consumer's specifications. We have said that the individually packaged components were more efficiently manufactured. This is the equivalent of saying that this was the cheapest way of arriving at the final system.

New Techniques

New manufacturing techniques developed in the last five years now (or very soon will) make the individual
component package concept less efficient than a composite package. The integrated circuit package, because of new techniques, will be more efficiently manufactured. It will, therefore, be cheaper than the older methods of arriving at a given operating circuit function or system.

New manufacturing techniques, incidentally, developed in the semiconductor field, are equally applicable in the general components industry. Techniques for reproducibly producing the purest materials known to man, techniques for introducing known impurity in small known amounts and for localizing the impurity, and techniques for handling, machining and attaching loads to the resulting material have been developed, out of necessity, in the semiconductor field.

Impurity contents of one part in a million are easily achievable. Of great importance in the microelectronic area is the technique of solid state diffusion. By the use of diffusion, impurities to form a junction are introduced into a semiconductor in a very controllable manner. The position of the junction changes during the process at rates in the order of 0.0001 inch per hour or less, so that the junction can be positioned precisely. Transistor base widths of 0.0001 inches are not uncommon.

The use of photo-resists and etching, and the use of oxide masks have made it possible to produce in semiconductor products, such as high speed transistors, functioning parts which are dimensionally the order of 0.001 inch $\times 0.005$ inch. Wires of 0.001 inch to 0.004 inch diameters are attached as internal leads to devices by thermo-compression bonding processes.

Several hundred mesa transistors are fabricated in one $3 / 4$-inch slice of silicon a few mils thick, using diffusion and photo-etching techniques. These units are subsequently separated. Uniform diffusion is a technique which gives uniform results so that if one device in a slice of semiconductor material is good, the probability is high that all are good in that respect.

By using the above and similar techniques, individual components such as transistors and diodes are fabricated. Presently, the vast majority of these devices is then packaged individually. The packaging is the largest single cost in device production, and incidentally a large reliability problem.

It is becoming apparent that now is the time to begin to package components in large assemblies. There is a natural diversity of opinion as to just what the large assembly should be. Although, in general, there is agreement that the large assembly should perform a complete circuit function.

Consider the major steps in producing a mesa transistor. A slice of proper type and resistivity silicon is subject to two sequential diffusions to form two junctions properly spaced. By the use of proper masking, several hundred sets of two contacts (one emitter, one base) are evaporated on the surface, and subsequently alloyed in. Several hundred mesas are now etched into the slice, again with the aid of masking, so that several hundred transistors are now formed in the slice. These are separated, packaged, tested, etc.

Now, consider the production of a microelectronic circuit. A slice of proper type and resistivity silicon is, precisely as described before, subject to two sequential diffusions to form two properly spaced junctions.

Again, by using masking, various contacts are evaporated on the surface and subsequently alloyed in. An etching process, with the aid of masking. gives the slice its proper configuration so that circuits with proper resistances, capacitances, diodes and transistors are now formed in the slice. These are separated and packaged.

It is clear that for approximately the same series of steps, the end product is in one case one active device, in the other case a whole circuit. This comparison in a sense sums up the reasons for the present rapid growth of microelectronics. It is a natural outgrowth of present techniques.

Yield Considerations

An important consideration in the cost and thus the feasibility of the solid network approach is that of yield. Assume a yield for individual transistors of 50%. If the process under consideration leads to a product in which individual transistors are good (or bad) more or less independently (as in alloying), the yield of n such transistors in the same block becomes $P=P_{n}{ }_{0}$. It is clear that as the number n reaches only three or four, the total probability becomes deplorably small. However, in the case of diffused transistors, the probabilities are not independent, but show a rather strong dependence. The product on a single block tends to be all good or all bad. Thus the total yield of several transistors per block approaches that of a single transistor.

Beside the major factor of low potential cost, there

Table 1
Figures of Merif Pecking Densifies

Conventional Min-Components	5×10^{0} comp/ $/{ }^{\text {d }}$
Wold-stick or Wold-pack	1.5×10^{5} comp/t ${ }^{2}$
Micromodule (per module) (per wafor)	$2 \times 10^{5} \mathrm{comp} / \mathrm{th}^{2}$ $6 \times 10^{5} \mathrm{comp} / \mathrm{tt}^{2}$
Subassomblies 2-D (DOFL)	$1 \times 100 \mathrm{comp} / \mathrm{tr}^{8}$
Microtronic Semi-Nets	$1 \times 10^{7} \mathrm{comp} / \mathrm{ft}^{2}$

Table 2
Generalized Cost Fectors in Semicondactor Device:

> Packaging $-1 / 4$ cost of any somiconductor device Testing $-1 / 4$ cost of any semiconductor device Process - Essentially same for all diffused devices: Mesa transistors, diffused diodes, Semi-Nets

Table 3
Sources of Reliability Probloms and Improvemonts in Mieroelectronics
I. Intorconnoction faults.
2. Surface changes.
3. Package faults.

1. Eliminates up to $8 \mathrm{C} \%$ of internal connections.
2. Reduces number of vulnerable surfaces.
3. Requires only one package in place of soveral.

Solid Networks (Concluded)

are other advantages in the use of microelectronics. Consider computer applications. Microtronic SemiNets", such as Sperry Semiconductor is developing, offer between 100:1 and 1000:1 advantage in weight and volume reduction over conventional miniature components. Low power requirements lead to similar savings in the power pack. In given circumstances, either a smaller power plant is sufficient, or with a given power source more computer functions can be performed.
In addition to these obvious advantages, a major factor is increased reliability. This is, in many ways, an advantage second only to the low cost potential of the microelectronic product.

Reliability

Reliability is an important factor in computer components. In semiconductors a large proportion of failures is due to packaging and surface deterioration. Consequently, an improvement in reliability should certainly be the result of microelectronic packaging. Many components in microelectronic blocks have little or no surface because they have been fabricated in the bulk of the semiconductor material, and several individually vulnerable packages have been replaced by one to which more care can be given in assembly.
In many systems there is almost a one to one correlation between failure rate and the number of connections. This does not mean, of course, that all failures are due to connections-only that the failure rate increases with an increase in the number of connections. In microelectronics, internal circuit connections are rigorously minimized. Only those connections from the circuit to the outside world are necessarily retained. Some three-fourths of the connections hazard is thus removed. This offers an increased reliability. From these theoretical considerations it is clearly expected that reliability data now being gathered will reveal a better reliability factor.

High operational speed is, of course, a basic consideration in computers. Present microelectronic blocks operate in the megacycle range but very soon operation up to 10 MC is foreseen. At higher frequencies, especially in the 100 Mc to 1000 mc range, lead lengths and interconnections act as delay lines. A nanosecond is the order of a light-foot. In this range, in the last analysis, microelectronics is the best way to fit the necessary computer elements close enough together to operate fast enough and avoid the necessity of using large amounts of unwieldy waveguides.

Changing Roles

The changing roles of systems engineer and device engineer are worth consideration. In processing a microtronic "solid system" the user supplies the complete specifications of the function desired. We may distinguish two relationships here. The first is the present arrangement which may hold for several years.

* Trademark of Sperry Rand Corp

In this, the user also specifies the package, the lead arrangement, and consults with the manufacturer in the design of the actual circuit to perform the function. Secondly, as the user becomes more familiar with the field of microelectronics, he may take over entirely the design of the circuit to perform the function. For example, circuit engineers design their circuits around standard values of resistance, and standard tubes, although many intermediate values and designs are theoretically possible. Similarly, they will design microelectronic circuits around values practical in microelectronics, although most any value is theoretically available.
There is a third possible consumer-manufacturer relationship in which the manufacturer supplies only "standard" circuits to all consumers, assuming all consumers can agree on "standard" circuits. The "standard" circuits, in computer systems for example, would perhaps perform the functions of logic symbols and be mutually compatible. It is clear that under this concept the systems engineer would become a manipulator of logic symbols and an assembler. All computer manufacturers would operate on a par and the competitive position gained through use of proprietary circuitry would be lost.

A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut E 56 th Sts., Phila. 39, Pa.

The interconnection problem will best be handled by the systems man, with device packages and interconnection design made compatible. Standard packages would hinder the development of interconnection design from the systems viewpoint. The ultimate in microelectronics is the functional package which will replace many circuits grouped together. The development of standard circuits is not compatible with this concept. The third possibility is not likely to become a widespread reality as long as computer designers desire to develop their own circuits and guide the microelectronic manufacturer.
We have restricted our discussion thus far to microelectronic transistor circuits. Microelectronics is rapidly employing other semiconductor phenomena, incorporating them into blocks, and using them for performance of block functions. Hall effect and other electromagnetic effects, photo-conductance and electrooptics, tunnel effects and avalanche effects will play significant roles in microelectronics.

Advanced techniques are being studied which will permit fabrication of more complex functional blocks. Among the most significant techniques under development today are epitaxial growth (which can be combined with diffusion in many interesting ways) and electron beam machining (to supersede chemical machining) for closer tolerance machining.
Because of the strong present position and the large number of future possibilities, it is reasonable to predict that the microelectronics field will grow as large as the present transistor area.

A

TRANSISTORIZED 120 MC AIRCRAFT AM TRANSMITTER

PERFORMANCE -

Supply Voltage
Peak Power Outpu
Modulating Power
Efficiency
Emiciency $\quad 265 \%$
Demodulating Outpul Signal . 3 V
Supply Current .,. $\quad 155 \mathrm{~mA}$
Envelope Distortion . 25%
136 V
15 W m v
motorola MESA CIRCUITRY CUTS SIZE... SAVES WEIGHT

The transmitter circuit shown above provides more effective coverage than most conventional tube transmitters with higher RF power. Designed for airborne communications, it demonstrates only one of the many possible UHFVHF applications for Motorola Germanium Mesa transistors.
The remarkable achievement of Motorola Mesas in critical missile/space equipment proves their ability to contribute substantially to total circuit reliability. Designed for applications to 1000 mc , Motorola Mesas are ideal for a wide range of communications applications. And, they are available in quantity, for immediate use.

Fer Complete Data en the Pransisterized Transmitter shown abeve request Special Report No. 34 from your Motorola District Office or write Technical Information Dopartment. Motorola Semiconductor Products ine 5005 Easi McDowell Road Phoenis 10, Arizona. If you desire technical Data Sheets 10. Arrizona. you desire technical Data Sheets "type numbor".

mOTOROLA DISTRICT OFFICES:

Belmont. Mass. / Burlingame, Calif. / Chicago / Clifton, N. J. / Dallas Dayton / Detroit / Glenside. Pe. / Hollywood Minneapolis / Oriando, Fla. silver Sprine, Md. / Syracuse / Toronto, Canada.

MOTOROLA GERMAMIUM MESA AMPLIFIER TRANSISTORS

$\begin{aligned} & \text { MPE } \\ & \text { WO. } \end{aligned}$	Vin wotts	$\begin{aligned} & V_{\text {rat }} \\ & \text { wolls } \end{aligned}$	Pn	P. © 1 typical	-@1 ipucal	Case
20700	25	20	73	24 en @ 70 mc	50 mw - 70 me	10.17
2N700a	25	25	75		55 mw © 90 mc	10.17
2N700a(sigec	25	25	75			10.17
2N741	15	15	300	770030 mc	200 mw @ 30 mc	10.18
29741A	20	20	300		790 mw @ 30 mc	10.18
2N1561	25	25	3w	800 1mamc	. 5 w 189 mc	-
2N1562	25	25	3 w	7 doe 160 mc	4 w © 160 mc	-
2N1692	25	25	310	A dbe 160 mc	5 m © 160 mc	stud
201693	25	25	310	7 dt @ 160 me	. 4 w 160 me	stua

Immediate Avaliability - All Motorola Mesa amplifier transistors are avallable from your Motorola Semiconductor Distributor.

SOOS EAST MCDOWELL ROAD • PHOENIX 10. ARIZONA

New

VHF PREAMPLIFIER

Unit is designed for use in low noise receiving systems.

The RF75 is a wide-band r-f preamplifier with sufficient gain (over 15 db) to overcome the noise contribution of a following main amplifier. Typical specifications are: center frequency 160 MC , bandwidth greater than $75 \mathrm{MC} \pm 1 \mathrm{db}$, gain greater than 15 db , noise figure less than $6 \mathrm{db}_{1}$ input and output impedance 50Ω. LEL, Inc., 75 Akron St., Copiague, N. Y.

Circle 325 on Inquiry Card

HV SELENIUM RECTIFIER

Rectifiers are available with PIV values to $20,000 \mathrm{v}$.

Typical Super-Density Minisel Cartridge requires 75% less space. The cells used in these cartridges measure only 0.019 in . in thickness. Size reduction is shown by this example: 5000 v . peak inverse at 1 ma into a capacitive load at $40^{\circ} \mathrm{C}$ ambient, this cartridge is only 2 in . long and $1 / 8 \mathrm{in}$. in dia. These cells perform efficiently at plate temps. as high as $90^{\circ} \mathrm{C}$. The cartridges are supplied in PIV values from 50 to $20,000 \mathrm{v}$., and for current output as high as 50 ma . Electronic Devices, Inc., 50 Webster Ave., New Rochelle, N. Y.

Circle 326 on Inquiry Card

LOGIC PACS
Transistor-diode logic pac has switch. ing speed in the 20 nsec. range.

Silicon transistor-diode logic pacs with fan outs up to 5 diodes are available in engineering samples. Diodes are very fast switching silicon computer devices. The transistor used is a 2N1472, having a beta ($\mathrm{hrs}_{\mathrm{p}}$) of typically 35, saturation voltage typically 0.1 v . at 10 ma and a gain bandwidth product (f_{l}) of 175 mc . Philco Corp.. Lansdale Div., Lansdale, Pa .

Circle 327 on Inquiry Card

DELAY LINES

New series of s Tapped Delay Lines is available.

Model TDL-2197 has a delay time of $3.4 \mu \mathrm{sec}$ with input rise time of $0.1 \mu \mathrm{sec}$ and output rise time of 0.25 $\mu \mathrm{sec}$ max.; Model TDL-2194's delay time is $1 \mu s e c$ with input rise time of $0.08 \mu \mathrm{sec}$ and output rise time of 0.20 usec max.; Model TDL-2195 provides a delay of $0.5 \mu \mathrm{sec}$, input rise time of $0.05 \mu \mathrm{sec}$ and output rise time of $0.1 \mu \mathrm{sec}$ max. Input impedance for 3 models is 500 ?, dielectric is 250 vdc, attenuation is 1.0 db max. with max. distortion of 10%. Units are completely encapsulated in epoxy. Dresser Electronics, HST Div., 555 N. 5th St., Garland, Tex.

Circle 328 on Inquiry Card

ANTENNA COIL

The RTC-9258 is designed for use in small radios.

The broadcast band High "Q" Ferrite Antenna Coil can be used with any variable capacitor with a maximum capacitance between 250 and 500 pf. The inductance is easily and accurately adjusted by means of a screw driver slot. The unit is supplied complete with 18 in . of polyethylene insulated antenna wire. Chicago Standard Transformer Corp., 3501 W. Addison St., Chicago 18, Ill. Circle 329 on Inquiry Card

HI TEMP. TAPE

Pressure-sensitive vinyl plastic tape is for operation at $105^{\circ} \mathrm{C}$.

Called "Scotch" brand electrical tape No. 66, it is a black, polyvinyl chloride film coated on one side with a newly developed acrylic polymer pressure-sensitive adhesive. The new adhesive combines heat, oil and solvent resistance with resistance to plasticizers. Backing is resistant to sunlight, rain, snow, salt water and alkalis, and is self extinguishing. The tape is 11 mils thick; tensile strength, $35 \mathrm{lb} . / \mathrm{in}$. width; electric strength, $11,000 \mathrm{v}$., insulation resistance , $1 \times 10^{\circ}$ megohms. Minnesota Mining and Mfg. Co., 900 Bush Ave., St. Paul 6, Minn.

Circle 330 on Inquiry Cird

New
 Products

GEAR TRAIN SERVO UNITS

Miniature gear train servo packages have s rotary elements.

Available in 2 models, they accommodate gear ratios up to $1000: 1$ from the motor to the first synchro, and up to $36: 1$ from the first synchro to the second synchro. One of the packages is $1 \% \times 1 \% \times 21 / 6 \mathrm{in}$. Each package weighs only 6 to 10 oz . depending on the materials and rotary components selected for the particular application. Enclosed gear train withstands varying environmental condi. tions. Clifton Prevision Products Co., Inc., 5050 State Rd., Drexel Hill, Pa. Circle 331 on Inquiry Card

HIGH VOLTAGE RECTIFIERS
Series goes to 17,000 PIV, 20 ma continuous duty and 1 a. surge.

High voltage sclenjum "channel" cartridge rectifiers are designed for high tension applications such aล X-ray, beam welders, precipitators and test equipment. The rectifiers derive their name from the novel channel construction which makes them especially suitable for applications in oil. Dimensions range from $41 / 2 \mathrm{in}$. long with a cross section $1 / 2 \mathrm{in}$. sq. to $8 \frac{1}{2}$ in. long with a $8 / 6$ in. sq. cross section. Selenium Div., Radio Receptor Co., Inc., 240 Wythe Ave., Brooklyn 11, N. Y.

Circle 332 on Inquiry Card

BAND PASS DELAY LINE

U'nits are for systems requiring time delay around a fixed center freq.

Typical applications are in radar and communication i-f amplifiers. The delay lines are available in various combinations of operation freqs. and time delays generally restricted to ultrasonic type delay lines. Typical time delay values of $0.22 \mu \mathrm{sec}$, at an operating freq. of 60 MC and a bandwidth of 10 MC are attainable in a unit measuring only $1 \times 2 \times 10 \mathrm{in}$. Insertion loss is 3 db . PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif.

Circle 333 on Inquiry Card

PM MOTOR

Proven in satellite use, the motor is now being used commercially.

Providing efficiencies as high as 54% through a high flux utilization, the PM-1 requires very low input current at full load. Weighing less than $2 \frac{1}{2}$ oz., the motor is only $7 / 8 \mathrm{in}$. in dia. and less than 2 in . long for use in restricted areas. The motor may be provided with internal r-f filters to eliminate obectional freqs. and a governor to control armature speed to within 0.5% of nominal speed under wide terminal voltage and load torque variations. Reflectone Electronics, Inc., Stamford, Conn.

Circle 334 on Inquiry Card

PEAKING COILS

They are for use in telemetering and computer circuitry.

The 1300 series is comprised of 26 video peaking coils designed to assure proper bandwidth and wave shape in high freq. equipment. These coils range in inductance from 20 . wh to $950 \mu \mathrm{~h}$. All but $\$$ of the 26 coils are wound on 0.187 diameter x \%/8 in. long Phenolic form. Numbers 1307 and 1313 arr on 22 K resistor form and 1310 on 30 K resistor form. Where resistors are required Mil-R-11 resistors are used. Delta Coils, Inc., 1128 Madison Ave., Paterson 3, N. J. Circle 335 on Inquiry Card

SWITCH TUBE

Hi voltage holdoff and hi current handling are featured.

It is for high voltage, high switch rate, floating deck modulator applications. The L-3408's design makes collector current relatively independent of collector voltage over a broad range, resulting in pentode-like current characteristics. Several features of the switch tube are 150 kv max. collector voltage, 20 a. peak collector current, max. 10 kw collector dissipation. The tube is $20 \times 8 \mathrm{in}$. and weighs approx. 45 lbs. Litton Industries Electron Tube Div., 960 Industrial Rd., San Carlos, Calif.

Circla 336 on Inquiry Card

New
 Products
 ... for the Electronic Industries

Straight cable plug

Miniaturized Type 6000 is for RG$188 / \mathrm{U}$ and cables with similar diam.

The unit features Crimp-On design and reduces assembly time over 60%. The plug provides a screw-on connection for 50Ω cables mating with cable jacks, bulkhead jacks, bulkhead receptacles, cable feedthroughs, printed wiring receptacles, rightangle printed wiring receptacles, and regular right-angle receptacles. The assembly is stronger in pull-out strength than the cable itself. Sealectro Corp., 610 Fayette Ave., Mamaroneck, N. Y.

Circle 313 on Inquiry Card

HIGH VACUUM PUMP
Pump uses no fuids, hot filaments or moving parts.

Tiny Vaclon operates from 10^{-9} to $10^{-6} \mathrm{~mm} . \mathrm{Hg}$. at a pumping speed of 0.2 liters $/ \mathrm{sec}$. The electronic pump is designed to maintain high vacuums in sealed vacuum devices such as electronic vacuum tubes. Power consumption is less than 1 mw . Pump withstands temps. up to $550^{\circ} \mathrm{C}$, magnet may be heated to $250^{\circ} \mathrm{C}$. Mountable in any orientation. Dimensions are: $41 / 8 \times 21 / 2 \leq 13 / 32 \mathrm{in}$. Pump weighs 80 g ., magnet 300 g . Vacuum Products Div., Varian Assoc., 611 Hansen Way, Palo Alto, Calif.

Circle 314 on Inquiny Card

REGULATING TRANSFORMER

Input and output are isolated physically and electrically.

The Sola Standard Sinusoidal Constant Voltage Transformer is completely automatic with continuous regulation. It has a response time of $11 / 2 \mathrm{CPS}$ or 25 millisec. at 60 cPs . With no moving parts, manual adjustment or maintenance is unnecessary. The cvs is self-protecting against short circuits on output or load circuit. Available in 29 primarysecondary voltage combinations; 60 to 7500 va. Sola Electric Co., Elk Grove Village, III.

Circle 315 on Inquiry Card

PULSE GENERATOR

Unit features hi-repetition rates and fast rise and fall times.

The Solid State Model 6100 Clock Pulse Generator includes a $3-25 \mathrm{Mc}$ and a 25-100 MC unit, with appropriate overlap to provide continuous pulse sources from 3-100 mc. Specs. for the unit include rep. rates of 3-25 MC, 25-100 MC; rise/fall times of less than 4 nsec ; a pulse width of less than 3 NSDC at $1 / 2 \mathrm{pulse}$ height; $0-4 \mathrm{\nabla}$. amplitude, continuously variable; and output impedance of 93Ω. Texas Instruments Incorporated, Apparatus Div., Industrial Products Group, 3609 Buffalo Speedway, Houston 6, Texas.

Circle 316 on Inquiry Card

UNIVERSAL BLOWER

Specifically for ground support equipment, it works un ae or de.

Vaneaxial blower, VAX-3-GN, operates on $115 \mathrm{vac}, 60 \mathrm{CPS}$ or 115 vdc delivering 86 cfm of air at 1.5 in . static pressure. The unit weighs 1 lb . Diameter is 3 in .; length $31 / 6 \mathrm{in}$. Mounting is made by clamping to servo rim at either end of the blower. Integral propeller shroud and motor housing is a black anodized aluminum precision casting and the unit is designed to meet pertinent MIL specs. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

Circle 317 on Inquiry Card

SWITCHING TRANSISTOR

PADT-40 has the collector region gold doped for lower stored charge.

Germanium pnp is for hi and medium speed saturated-logic uses. Average total switching time of 135 nnec ($\mathrm{td}+\mathrm{tr}=50 \mathrm{nsec} ; \mathrm{ts}+\mathrm{tf}=85$ nsec), and a min. time of 80 nsec . It has closely controlled high current gain ($\mathrm{h}_{\mathrm{yn}}=30$) and cut-off freq. (ft $=700 \mathrm{Mc}$). It is ruggedly constructed with high voltage ratings $\left(\mathrm{BV}_{\mathrm{cbo}}=30 \mathrm{v}.\right)$, and high thermal dissipation. Amperex Electronic Corp., Semiconductor \& Special Purpose Tube Div., 230 Duffy Ave., Hicksville, L. I., N. Y.

Circle 318 on Inquiry Card

Nanocircuits bring several important advantages to computer logic design, not the least of which is size reduction. This one packs six diodes (it could have been a diode-transistor combination) into a standard TO-5 case. Equally important in the General Instrument concept: only the active components (surface-passivated for stability) are fused to the common substrate. The diodes are not exposed to the heat of such loss-generating components as resistors and capacitors whose demands differ from those of the active elements. m Not only is component reliability increased but, since the semiconductors are pre-selected from a 100%-tested standard product line, the designer can evaluate circuit reliability rather than that of individual components. This technique reduces the number of assembly and testing operations, so cost is lower, too. © General Instrument also allows the logic designer the flexibility of transferring new or existing circuits, breadboarded with conventional components, directly into nanocircuits. Let us show you how.
Get complete details on nanocircuits and other semiconductor
devices from one of oursales offices or the franchised distributor near.
est you. Or write today for Bulletin NC. 10 O 10 General Instrument,
Semiconductor Division, 65 Gouverneur Street, Newark, New Jersey.

Good things come in pairs

Hughes Semiconductors now brings you 2N1131 and 2N1132 PNP double-diffused mesa silicon transistors... plus advanced " A " versions of both types.
Hughes, the quality leader in the semiconductor field, has available for immediate delivery new high-performance twins. - First, the popular 2N1131 and 2N1132 silicon mesa transistors being used so extensively in advanced missile and satellite computer applications. - Second, 2N1131A and 2N1132A, to meet your demands for even higher performance. These new types feature higher voltages, lower leakages, lower high-temperature leakages, lower output capacitances, plus guaranteed switching times. (See chart.)

For further information contact your nearest Hughes Semiconductor sales office or Hughes authorized distributor. Or write Hughes Semiconductor Division, Marketing Department, Newport Beach, California.

HUGHES

HUSHES AMCRAT COMPANY
SEMICONDUCTOR DIVISION

New

SERVO MOTOR

Motor operates under wide variety of environmental conditions.

Type 5351-01 is 1 in . long, weighs 0.7 oz ., has 0.12 oz . in. torque at stall and $47,000 \mathrm{rad} . / \mathrm{sec}^{\text {a }}$ torque to inertia ratio. The unit can operate continuously at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temp. range. No load speed is $9,500 \mathrm{RPM}$ min., rotor moment of inertia 0.18 $\mathrm{gm} . \mathrm{cm}^{2}$, time constant 0.020 sec . and reversing time 0.034 sec . Rated voltage at 400 CPS is 26 v . (can be available in 18 v. or 33 v.). John Oster Mfg. Co., Avionic Div., Racine, Wis.

Circle 319 on Inquiry Card

TANTALUM AC CAPACITORS
Capacitances equal to conventional electrolytics 500 times their size.

Continuous duty solid slug tantalum ac capacitors operate at ambient temps. ranging from $-80^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. and will operate as high as $85^{\circ} \mathrm{C}$. without derating. Case sizes ranging from $0.155 \times 0.600 \mathrm{in}$. to $0.350 \times 1.600 \mathrm{in}$. Capacitance ranges from $1.2 \mu \mathrm{f}$ to $170 \mu \mathrm{f}$. All units are hermetically sealed in a metal case. They have a stable dissipation factor of less than 0.05 . The units operate at up to 35 v . peak 60 cPS . General Instrument Corp., Micamold Div., 65 Gouverneur St., Newark, N. J.

Circle 320 on Inquiry Card

LAMP ADAPTER

T-1 with unit, will fit any standard miniature bayonet socket.

It is designed as an economical, convenient, easy-to-use adapter for holding the ultra-miniature lamp. Unit was created to fill the longstanding need by users of this ultrasmall lamp for a fast, easy method of mounting and using the tiny lamp. The adapter is available with or without the T-1 ultra-miniature incandescent lamp. Industrial Electronic Engineers, Inc., 5528 Vineland Ave., N. Hollywood, Calif.

Circle 321 on Inquiry Card

CERAMIC ADHESIVE

High temp. adhesive bonds up to $2600^{\circ} \mathrm{F}$. with low temp. curing.

MELBOND CA-100, a ceramic adhesive, is a ready-to-use material with a max. service temp. of $2600^{\circ} \mathrm{F}$. after being cured at only $250^{\circ} \mathrm{F}$. With good electrical properties (i.e., low dielectric constant and loss tangent), it attains a high degree of mechanical strength and will not flake or disintegrate during use. Having a pastelike consistency, it can also be used for coating items requiring high temp. protection. Special Products Div., Melpar, Inc., 3000 Arlington Blvd., Falls Church, Va.

Circle 322 on Inquiry Card

SHIELDED TRANSFORMERS

Between-tho-windings-shield permits use in hazardous locations.

This type of transformer is a code requirement for Class 1 div. 1 locations in which hazardous concentrations of flammable gases or vapors exist continuously, intermittently or periodically, under normal conditions, during maintenance, because of leakage or during breakdown or as a result of faulty equipment. The line includes ratings from 100 w . to 50 kva, 120 v . input, 120 v . output. Acme Electric Corp., Cuba, N. Y.

Circle 323 on Inquiry Card

FUNCTION GENERATOR

Variety of waveforms are reproduced by changing cams.

Sine, triangle and arbitrarily modulated suppressed carrier signals of any carrier freq. to $\boldsymbol{K} \mathrm{kc}$ are available. Applications are: ac or dc servo testing; vibration machine programming; and process control testing. Specs are: freq. range, 0.001 to 10 CPS in 4 ranges at $\pm 3 \%$ of set freq.; output voltage, 20 v . max. peak to peak adjustable; load requirements: min. of 10 K ; output function: cams supplied are for sine and triangle waveforms. Tensor Electric Development Co., Brooklyn, N. Y.

Circle 324 on Inquiry Card

CUT CONTROL PANEL COSTS

AND SAVE SPACE WITH

COMBINED SIGNAL \& SWITCH

The most modern control panel designs

combine indicator lights and pushbutton switches wherever possible. This cuts costs by reducing the number of components, and speeds assembly. Overall panel size can often be reduced as much as 75%. And these "human-engineered" controls sell better because operation is obviously simplified. Here are just three of the many lighted pushbuttons available from Control Switch Division...

SWITCHLITE Model J8003 shown is a single lamp. D.P. D.T., push-push. Independent lamp circuit for 6, 14 or 28 volts. Rated 3 amp res.. 1 amp ind. © 28 VDC or 115 VAC. Mounts in $5 / /^{*}$ dia. hole. 4 button styles, sev. eral lens colors.

TWINLITE . . . two lamps with independent circuits for 2 -color lighting. Lens 1° a $.740^{\circ}$ in solid or split colors, with or without name. plate slot. Momentary or push-push action, or solenoid-held switch shown above. Rated 4 amp res., 2.5 amp ind. © 30 VDC; 5 amp © $125 / 250$ VAC. Mount in groups or singly. using barriers.

TREYLITE . . . three independent lamps, each with color filter so three colors can be sequenced on white pushbutton screen. D.P.D.T. switch rated 4 amp res., 2.5 amp ind. © 30 VDC: 5 amp @ $125 / 250$ VAC. Select momentary or push-push action. Models for flush-panel mounting (shown above) or subpanel mounting.

Manufacturers of a full line of switches, controls ant indicstors for all militery and commencial applications. All standard units stocked for immediate delivery by leading parts Distributors.

New
 Products
 for the Electronic Industries

AUTOMATIC DATA LOGGER

Uses include calibrating de millivoltmeters, recorders, and transducers.

The RS2, has been built as an integrated scanning, measuring and printing system. Unit provides 4digit voltage readings with correct polarity and range. Its securacy is 0.01% of full scale on each range. Functions include: scanning up to 20-double-pole cbannels; measuring dc voltage from ± 0.001 to ± 999.9 in ranges of $\pm 9.999 / 99.99 / 999.9$; printing channel number, 4 -digit reading, polarity and decimal point placement. Non-Linear Systems, Inc., Del Mar, Calif.

Circle 301 on Inquiry Card

ABSORPTION FILTERS

Filters are designed to eliminate har. monic radiations which cause RFI.

Seven filters for high-power microwave transmitters with fundamental freq. from 400 to $6,000 \mathrm{MC}$ are available. Location is in the waveguide transmission line between the output tube and the antenna, as close as possible to the output tube. Filter family includes the MPF-2501 and MPF. 2502 (S-band) ; MPF-1001 (L-band) ; MPF-400 (shown in photo) and MPF-800 (UHF) ; MPF-4000 (Cband); and ZMPF-2001 (1-band). General Electric Co., Traveling Wave Tube Product Section, Power Tube Dept., Palo Alto, Calif.

Circle 302 on Inquiry Card

BINARY CODED CONVERTER

New microminiature module approach reduces circuit costs.

The first BIPCO ${ }^{\text {(3 }}$ module offered is a Binary Coded Decimal-to-Decimal Converter using the 4-2-2-1 code. This device contains 40 silicon diodes and is designed to drive a Nixie indicator tube directly from inputs encoded in the binary coded decimal form. Typical specs. for the individual diodes are: minimum forward current at 1 v . $=10 \mathrm{ma} ; \mathrm{max}$. inverse current at $100 \mathrm{v} ., 25^{\circ} \mathrm{C}=5 \mu \mathrm{amps}$; PIV $=200$ v. Burroughs Corp., Electronic Tube Div., P.O. Box 1226, Plainfield, N. J.

Circle 303 on Inquiry Card

DIODE TEST SET

Reverse voltage is metered and adjustable from 0.5 to $2000 v$.

The forward current supply is metered and adjustable from $50 \mathrm{\mu a}$ to 8 a. The forward voltage is measured in 3 ranges of 1,3 , and 10 v . full scale. Reverse currents from less than 1 na to 3 ma are read directly. This test set is power line operated and contains no batteries. Special features of the Model 1808 include $\&$ high freq. reverse voltage supply for operator safety and provisions for accurate " 4 terminal" measurement of forward voltage drop. Dynatran Electronics Corp., 178 Herricks Rd., Mineola, N. Y.

Circle 304 on Inquiry Card

miniature capacitors

They offer inherent advantages of foil capacitors in miniature size.

$85^{\circ} \mathrm{C}$ Tantalytic Foil "A Case" capacitors are near in size to small solid tantalum types. Available in ratings from $12 \mu \mathrm{f}$ at 6 v . to $1.4 \mu \mathrm{f}$ at 50 v ., the units are double-ended for non-polar applications and either single-ended or double-ended for polar operation. The single-end polar type is 0.47 in . long and 0.131 in . in dia. The double-ended polar or nonpolar design is 0.54 in . long and 0.131 in. in dia. General Electric Co., Electronic Specialty Capacitor Product Section, Irmo, S. C.

Circle 305 on Inquiry Card

CRYSTAL OVEN

Oven temperature is rigidly controlled.

Mercury thermal switch Crystal Oven permits use of a wider range of crystals in both size and freq. The Manson RD-135 Crystal Oven has typical mounting bases: T51/2, HC$\mathrm{C} / \mathrm{U}, \mathrm{HC}-13$. The unit employs a precision mercury thermal switch, in the form of a miniature thermometer, to provide a constant drift-free reference for close oven control. The heater control circuit is transistorized. The internal structure is completely housed in a thermal bottle. Manson Laboratories, Inc., Stamford, Conn.

Circle 306 on Inquiry Card

Sign up for the Magnetics self-improvement course:

Here's free help to enable you to improve yourself-and your position as a magnetic circuit designer. You need it if: You don't know how to work with $\mathrm{E}=\mathrm{n} \frac{\mathrm{d} \phi}{\mathrm{dt}}$ to reduce the size of magnetic amplifier circuits. Most men who design amplifiers for cramped operation in missiles have found it invaluable.

What's more, you may only vaguely remember $\mathrm{H}=.4 \pi \frac{\mathrm{NI}}{\ell_{\mathrm{m}}}$, so how can you use it to cut circuit size by two to ten times, and shorten response time proportionately?
It's quite possible that you, like many engineers, may have bypassed or been bypassed by magnetic circuit theory as a working lool while you were in school. Yet this science has opened frontiers of static control which makes an understanding imperative if you are to do your job-and further your career. For your sake (and for ours, too, because we manufacture and sell high perme-
ability tape wound cores and bobbin cores which are used in amplifier circuits), we have started this course. Lesson 1, "How to Reduce Magnetic Circuit Size and Response Time," will be on its way to you immediately if you use the coupon below.

MAEMETICS Inc.

MAGNETICS INC., DEPT. EI-\#, BUTLER, PA.

Please enroll me in your free self-improvement courso, and and me "How To Raduce Magnetic Circuit Size and Response Tima."

name

HiNe
company
addren_

New ... for the Electronic Industries

FREQUENCY STANDARD

Instruments output signals stable to ± 2 parts in 1 billion/day.

Basic reference source is a preci-sion-made high stability oscillator. A proportional type, thermistor-controlled crystal oven eliminates cycling variations due to ambient temp. The oscillator's 3 MC signal is fed through regenerative circuits to provide the output freqs. The unit has 1 mc , 100 KC and 10 KC output signals. The VLF Secondary Freq. Standard is phaselocked to either WWVL or NBA. Dept. P-126, Motorole, Inc., 4501 W. Augusta Blvd., Chicago 51, III.

Circle 307 on Inquiry Card

SERVO AMPLIFIERS

High temp. transistorized units max. imum weight is 8 oz .

These amplifiers meet or exceed the new ABMA soldering spec PDS-C1 and Mil-E-5400A and Mil-E-5272A. Available in 3.5, 6 and 12 w . sizes (the 3.5 and 12 w . sizes are pictured). Power outputs and input impedances are: 3.5 w (size 11 motor) constant $10,000 \Omega$ resistive; 6 w (size 15 motor) $25,000 \Omega$; and 12 w (size 18 motor) $50,000 \mathrm{O}$. The basic design of each ineludes push-pull output stage, driver stage and pre-amplifier, all use silicon transistors. Bulove Watch Co., Inc., Electronics Div., 40-01 61st St., Woodside 77, N. Y.

Circle 308 on Inquiry Card

RACK COOLING UNIT

Air cooling and filter unit fits under cabinet in "toe space."

The unit supports a load of 2000 lbs. and is equipped with heavy duty dual-wheel casters. It uses centrifugal blowers supplying forced air cooling and filtered ventilation to the entire cabinet. Heat is exhausted through louvres at the top of the cabinet. The blower motors, (heavyduty, permanent split-capacitor types), can be oversized since they are housed in otherwise unused space. Units have either a 675 CFM or 350 performance rating. McLean Engineering Laboratories, Princeton, N. J. Circle 309 on Inquiry Card

DOUBLE-ENDED TRANSISTORS

Small silicon npn units are for ampli. fication and switching.

The seven electrically-welded, her-metically-sealed subminiatures are the 2N902 through 2N908. Capable of dissipating 400 mw at $25^{\circ} \mathrm{C}$ they are electrically equivalent to a variety of single-ended types. Mounting possibilities: single and multiple-board configurations, feedthrough construction, welded assemblies and special assembly mods. such as jump-wiring and isolating inputs from outputs. It operates in temps. from -65° to $+175^{\circ} \mathrm{C}$. Raytheon Co., Semiconductor Div., 215 First Ave., Needham, Mass.

Circle 310 on Inquiry Card

SWITCHING TIME TESTER

Test set measures switching time of transistors, diodes and circuits.

"Strobe scope" technique allows automatic sync without delay cables. It has built-in pulse sources, scope display, meter readout, bias supplies, and test jig. Time intervals from 1 nsec to 500 nsec can be measured with accuracies of from 3 to 5%. Unit's positionable marker bugs ride on \mathbf{O}-scope waveform and set the time interval for the meter readout. The built-in pulse sources provide a 2 mc test rate with 7 v . into 50Ω with a 1.5 nsec rise time. Wiltron Co., 717 Loma Verde Ave., Palo Alto, Calif. Circle 311 on Inquiry Card

MIKE \& TRANSMITTER

Hi- \uparrow unit is not much bigger than a pack of cigarettes.

The device consists of a small microphone and a transistorized 10 oz. transmitter. A fixed freq. FM receiver which picks up the transmission can be linked into broadcast or public address systems. The transmitter contains a crystal controlled oscillator operating at high freq. which is directly freq. modulated. It may be used with existing military operations, telemetering, and news and sports events. It covers 20 to 15,000 CPS. The Victoreen Instruments Co., 5806 Hough Ave., Cleveland, Ohio.

Circle 312 on Inquiry Card

In the design of the highly sophisticated circuitry for this advanced recorder, engineers at Ampex selected AllenBradley quality electronic components to meet the critical requirements for reliability, long life, and quiet operation. For example, the use of Allen-Bradley potentiometers - with their exclusive solid, hot molded resistance element - assures smooth control at all times. There are never any abrupt changes in resistance during adjustment as in wire-wound resistors. Also the "noise" factor is extremely low initially, and it decreases with use.
Allen-Bradley composition fixed resistors-also made by an exclusive hot molding process-are fantastically uniform. Their electrical characteristics are so consistent from resistor to resistor that performance over long periods of time can be accurately predicted. And catastrophic failure is unheard of -when you use Allen-Bradley composition resistors.

For the ultimate in reliability and performance, insist on Allen-Bradley quality electronic components. Send for Publication 6024 today.
Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

Portion of one of 14 CRT monitors, each containing 8 A.B Type G Potentiometers.

A-B QUALITY ELECTRONIC COMPONENTS
USED IN AMPEX WIDE.RANGE RECORDER

Fred Composition Resistors

Adjustable Fired Resiatore

Type G Potentiometere

Type d
Potentiometore

ALLEN-BRADLEY

mil specs for
shock, vibration
and acceleration mil specs for
shock, vibration
and acceleration mil specs for
shock, vibration
and acceleration

Potentiometers
Type J and Type K

Deperd blitiny『ROVED!

in tests at 5 Times

Hermetically Sealed Ceramic Encased Resistors Type TS Type CS Type ES

About the test

At the United States Testing Co., Inc. ${ }^{*}$ the above Allen-Bradley resistors and potentiometers were subjected to a constant acceleration of 300 g , impact shock of 150 g and vibration of 50 g from 55 to $2,000 \mathrm{cps}$. All tests were conducted in accordance with procedures outlined in the latest Mil Specs. - Test Report i71801. Sept. 1960.

In these severe tests. Allen-Bradley resistors and potentiometers have demonstrated their complete dependability in environmental extremes.

The ruggedness of A-B fixed resistors is obtained through an exclusive process in which the resistance element and the insulating jacket are hot molded into an integral unit of unusual mechanical strength. This unit is then hermetically sealed in a ceramic tube. Also, please remember, A-B fixed resistors are completely free from catastrophic failures.

A-B potentiometers have the resistance elements molded into, and are an integral part of, the base; therefore, they are virtually indestructible. In addition, operation is quiet and smooth when the potentiometer is new, and these characteristics improve with use.

For maximum reliability under severe operating conditions, insist on Allen-Bradley quality electronic components.

Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee 4. Wis. In Canada: Allen-Bradley Canada Lid., Galt, Ont.

New Products

HERMETIC SWITCHES
Switches feature ruggedness.

This group of hermetically-sealed, environment-free switchea are rugRedly constructed and includes SPDT, 2 PDT, and 4 PDT. Most of these switches are rated at $5 \mathrm{a}, 2$ v vdc res., 2.5 a. at 28 vdc ind., 4 a. motor, or 2.4 a. at 28 vdc lamp load. All these switches feature an ambient temp. range of -65° to $+250^{\circ} \mathrm{F}$ and will pass immersion test Mil-E-5272. Control Switch Div., 1420 Delmar Dr., Foleroft, Pa.

Circle 343 on Inquiry Card

Miniature cable clamp
Nylon clamps cover subminiature to jumbo size applications.

Type J, will hold a cable smaller than $1 / 16$ in. dia. Type 9, will hold cables or bundles to $1 \% \mathrm{in}$. dia. Types for special applications are offered including flat clamps, molded halfclips and snap clips. Sizes from 0.160 in. wide, 0.030 in . thick for extreme close-quarter installation of small work, to $7 / 8 \mathrm{in}$. wide, 0.070 in . thick for larger jobs are offered. Units are recommended for service between $-60^{\circ} \mathrm{F}$ and $+275^{\circ} \mathrm{F}$ under load. The material is unaffected by petroleum oils and greases at temp. to $300^{\circ} \mathrm{F}$. Clamps meet Mil-P-17091A and Amend. 2, 17091B and 20693 Type I: Mil-STD-242A and 242B (Ships) and MS-39014 (Ord.). Weckesser Co., Inc., Dept. ES-2, 5701 Northwest Hwy., Chicago 46, Ill.

Circle 344 on Inquiry Card

Hi-Voltage... $\mathrm{E}_{0}=$ Constant

sophisticated results

from simple circuit

- regulation and stabilization
- 400 to 25,000 volts
- reduces ripple
- higher reliability
- economy of cost, weight and space

5806 HOUGM AVENUE CLEVELANO 3. OHIO
EXPORT: 240 WEST ITTM ST, MEW YORK 17. NEW YORK
A 418ะ

HOW TO GET THE POWER TRANSISTORS YOU NEED?

JUST ASK DELCO. For even though our catalog lists only a handful of germanium power transistors, there is only a handful out of all those ever catalogued that we don't make. And those only because nobody ever asked for them.
We've made, by the millions, both large and small power transistors. Both diamond and round base. Both industrial and military types. And each in a wide variety of parameters that have proved themselves reliable in nearly every conceivable application.
You get Delco transistors fast. You get Delco transistors in any quantity. And for all their high reliability, you get them reasonably priced. All you have to do is contact our nearest sales office-and ask for them.

TRinity 3 . 6560

Division of General Molors Kokomo, Indiana

DELCO SEMICONDUCTORS NOW AVAILABLE AT THESE DISTRIBUTORS:

New York:
HARVEY RADIO CO., INC.

103 West 43rd St., New York 36. N. Y. JU'2-1500

Chicago:
MERQUIP ELECTRONICS, INC. 5904 West Roosevelt, Chicago, Illinois AU 7-6274

Detroit:
GLENDALE ELECTRONIC
SUPPLY COMPANY
12530 Hamilton Ave., Detroit 3, Michigan TU 3-1500

Philadelphia:
ALMO RADIO COMPANY
913 Arch St., Philadelphia, Pennsylvania WA $2-5918$

Baltimore:
RADIO ELECTRIC SERVICE
5 North Howard St., Baltimore, Maryland LE 9-3835

Los Angeles:
RADIO PRODUCTS SALES, INC. 1501 South Hill St., Los Angeles 15, Calil. R1 8-1271

San Francisco:
SCHAD ELECTRONIC SUPPLY,INC. 499 South Market St., San Jose 13, Calif. CY 7-5858

Seattle:

CEG ELECTRONICS COMPANY 2221 Third Avenue, Seattle 1, Washington MA 4-4354

Ask for a complete catalog

\section*{| New | |
| :--- | :--- |
| | Products |}

HEAT SINK

Dissipator has heat resistance of $200^{\circ} \mathrm{C}$ for 48 hrs .

It will accommodate diameters varying from 0.325 to 0.335 and JEDEC outlines have TO-5, TO-9, TO-11 and TO-39. Unit meets military demands for continued performance even under severe vibration. Methode Mfg. Corp., 7447 W . Wilson Ave., Chicago 31, Ill.

Circle 339 on Inquiry Card

SOLENOIDS

Super-T line designed for dependable use under adverse conditions.

Laminated solenoid is more rugged in construction than its predecessor the CT and has a stronger seating pull without excessive ac hum. The re-designed plunger has a sturdier pull bar. Larger contact area between co-acting parts contributes materially toward longer, troublefree performance. They may be supplied with coils completely encapsulated in epoxy resin. Three sizes are available, Models 1000, 2000 and 3000 , for use in business and commercial machines, automation equipment, vending machines and small machine tools. Dormeyer Industries, Dept. ES-2, 3418 N. Milwaukee Ave., Chicago 41, Ill.

Circle 340 on Inquiry Card

WHATEVER HAPPENED TO A-C QUADRATURE? Helipot got rid of it, that's what . . . by designing new A-C potentiometers with low quadrature and negligible phase shift!

They are the $3^{\prime \prime}$ diameter 5800 single-turn series and the $2^{\prime \prime}$ 7800 multi-turn series. Both have high input impedance and low output impedance. Which means: 1) reduced loading effects, and 2) you'll wonder where the quadrature went.
Helipot's new A.C versions straddle a frequency range of 400 to $1,000 \mathrm{cps}$. And they can be built to provide exceptional linearities . . . within resolution and without padding!

You'll also find it well to remember that Helipot's A.C potentiometers can be cascaded in series or parallel to obtain unique functions. (And, with low quadrature and all, they'll improve signal-to noise ratios in high performance servos!)
To find out more about Helipot's A-C pots, ask for our new 32-page potentiometer catalog!
Beckman'/Helipot*
POTS : MOTORS: METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton, California

- 19618.1161040

Circle 115 on Inquiry Card

SAVE TIME

 AND MONEY... reduce the NANOSECOND PENNIES in your COMPUTER DESIGN right from the start!
Specify the new Amperex ${ }^{\circ}$
 P.A.D.T 40

 the 2 timesfaster PNP Germanium Switching Transistor$*_{U=}$ nanoseconds x pennies Right from the sketch-pad stage, plan your computer switching circuits with the new PADT-40.\% The extreme speed and efficient design of the PADT- 40 gives more \mathbf{U} (usefulness factor) and lower cost x switching time. This results in fewer transistors to buy, less complicated circuits to design, ond the elimination of many costly components because of multifunction circuit usage. But speed, of course, is only one of the cost-and-production advantages inherent in the PADT-40; RELIABILITY, as only the revolutionary Post Alloy Diffusion Technique can provide, is another; AVAll. ABILITY, as only the mass-production rechniques employed at the new Amperex plant in Slatersville, R. I., can provide, is still another; LOW PRICES (no higher than for low-speed transistors)... plus INTERCHANGEABILITY with many conventional mesa transistors, round out our 'packoge'. Yes, the new Amperex PADT 40 is truly worth specifying . . . now I

High Speed, plus MECHANICAL RUGGEDNESS - guaranteed by the only process that combines the best qualities of both the alloy and the diffusion methods As n result, the PADT-40 is resistant to vibration and shock
PADT RELIABILITY - Hermetically sealed in a slandard TO-18 case, the PADT-40 has a deep diffused and extremely thin active base region As a result, the $h_{r e}$ and switching time are virtually independent of surface effects and temperature changes.
A Rugred, mechanically reliable eutectic solder joints

- Flat bed attachment for good heat dissipation
c Long path prevents weld contamination of transistor
D Gold doped for high speed
- Extremely high cut-off frequency
- High Bela - Low resistivity germanium

TOTAL SWITCHING TIME inctoding Rise. Fall, Delay and Storage
... 130 MAMOSECONDS!

New	
	Producis

PISTON CAPACITORS

Weight and size reductions are features of these trimmers.

Tiny-Trim capacitors are available in panel mount and printed circuit board types that meet Mil-C-14409A. $\$$ models ranging in capacity from 0.5 to 7.0 pf feature: overall dia.: 1/3 in.; double the sensitivity of JFD standard trimmers; operating temp.: -55° to $+125^{\circ} \mathrm{C}$.; low inductance for high freq. use; 500 vdc working voltage; 10 1 : insulation resistance; Q factor of 500 (measured as per JFD 5178). JFD Electronics Corp., 6101 16th Ave., Brooklyn, N. Y.

Circle 369 on Inquiry Card

COAXIAL RELAY

The CB series is available for a variety of enax line impedances.

Low vswr permits use at freqs. up to 300 mc . Relays are ac or de operated with SPDT internal contacts and up to DPDT auxiliary external contacts. Easy access to internal contacts is provided by a port in the housing. Both military and commercial connectors are available. Specs. are: Pull-in power: dc relay, 2 w ; ac relay, $8-10$ va. Contact rating: 5 a. res, 2 a. ind @ 26.5 vde or 115 vac. Duty cycle: continuous. Elgin Advance Relays, Electronics Div., 2435 N. Naomi St., Burbank, Calif. Circle 370 on Inquiry Card

SERVO MOTOR TACHOMETER

Size 11 unit is shorter than models of equivalent dia.

Model BT1004MA measures 1.250 in. long. Designed to operate with transistorized circuitry the unit can also be supplied with any required sear train. Input to the motor is 115 v., 400 cPs fixed phase, 20 v . control phase, center tapped. Tachometer input is 26 v . The output voltage of the unit is $0.24 \mathrm{v} . / 1000 \mathrm{RPM}$. Total weight of unit is 3.2 oz . Standard operating temp. range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. IMC Magnetics Corp., Eastern Div., 570 Main St., Westbury, L. I., N. Y. Circle 371 on Inquiry Card

COMMUNICATIONS SYSTEM

100 u SSB system is for civilian as wall an military use.

The SC-910 locks onto any freq. between 2.0 and 30.0 MC. Consisting of separate receiver, exciter, and power amplifier, the unit offers cw freq. shift keying, and independent side band as well as upper side band, lower side band, and AM operation. Digital tuning which provides selection of any one of 28,000 freqs. is by selection of digits on a one knob per digit basis. Tuning is by turret selection of fixed components. Military Products Div., General Dynamics/ Electronics, Rochester 3, N. Y.

Circle 372 on Inquiry Card

SAVE TIME
AND MONEY
Night from the start
 with Amperex. P•A•D•T40

PNP Germanium Switching Transistor

NOW AVAILABLE FROM THESE AND DTHER LEADING INDUSTRIAL ELECTRONICS DISTRIBUTORS:

CALIFORMIA

R. V. WEATMERFORD COMPANY.

Glondole I, Calif.
BRILE SEMICONDUCTOR CORP.
Ookland 6, Colif.
EImaR ELECTRONICS Ime.
Ookland 7 Colif.

coloramo

interstait radio a supply
Denver 4, Coloredo
CONWECTICUT
RADIO SMACK CORP.
Stamford, Conn.
W. Hantord, Conn.

FLORIDA

THUROW ELECTRONICS, INC.
Coroo, flo. - Jachsonville, Flo.
Miami, Fle. Orlondo, Fio.
LLIMOIS
nEWARK ELECTRONICS CORP.
Chicago, III.
massachusetts
RADIO SHACK CORP.
Boston, Mass.

NEW YORK

MILO ELECTRONICS
Now Yort, N. Y.
ROME ELECTRONICS
Rome, N. Y.

texas

ADIETA COMPANY

New Tech Data

for Engineers

CC TV Camera

Model 700-S closed-circuit television camera is now available with complete built-in microphone and amplifier sound channel. Balanced output, 0 DB level. Some features are: simple installation, just "plug it in"; lightweight, portable, and automatic exposure compensator. Camera comes complete with all necessary cables and connectors. TeleTronics Corp., 12786 Western Ave., Garden Grove, Calif.

Circle 373 on Inquiry Card

Synchros and Resolvers

A 12-page brochure from Kearfott Div., General Precision, Inc., Little Falls, N. J., describes Kearfott's Size H synchros, resolvers, servomotors, servomotor tachometers, synchronous motors, gearheads, brake clutches and permanent magnet alternators. Complete specs., diagrams, and descriptions are included.

Circle 374 on Inquiry Card

Diodes

Shockely Transistor, Unit of Clevite Transistor, Stanford Industrial Park, Palo Alto, Calif., is offering a catalog on Shockley 4 -layer diodes. Eight types of diodes are offered with complete specs., diagrams, and photographs. The Shockley 4layer is available in two series: commercial and Mil-line.

$$
\text { Circle } 375 \text { on Inquiry Card }
$$

Adapter Sockets

Catalog No. AS-1 covers adapter sockets for universal plug-in testing of all solder-terminal relays. Features of these units are dual insulated contacts for each pin on the header, accurate relay contact resistance measurement, acceptance of all terminal types and availability in wired adapter modules for use in RT-905 relay tester. Complete specs., characteristics, and diagrams are included. Electronic Engineering Co. of California, Automation Div., 1601 E. Chestnut Ave., Santa Ana, Calif.

Circle 376 on Inquiry Card

Test Equipment

Bulletin 700 is available from PRD Electronics, Inc., 202 Tillary St., Brooklyn 1, N. Y. The bulletin features a complete line of coaxial and waveguide freq. meters available, and describes, in detail, more than 50 different models from which to choose from in a variety of ranges covering 0.1 to 40 GC . Featured are coaxial and waveguide direct reading freq. meters, Mil Spec. freq, meters and precision heterodyne and freq. standard multipiers. Charts and photographs indicate freq., type, accuracy, dimensions, length, etc.

Circle 377 on Inquiry Card

Industrial Ceramics

A new 20-page catalog covers Saxonburg Ceramics, Inc., Saxonburg, Pa. complete line of industrial ceramic products. The catalog includes, photos, descriptive material, sizes on beads, tubing and rods, swageable thermocouple tubing, end seals, castables, laboratory ceramics, and special shapes. Information on materials, electrical and mechanical properties, design recommendations and summary of facilities is included.

Circle 378 on Inquiry Card

Microwave Components

The Comet line of microwave components by Don-Lan Electronics Inc., 1131 Olympic Blvd., Santa Monica, Calif., is featured in a brochure entitled "A Galaxy of Microwave Components." Units featured are DIOPTIC Antennas, coaxial r-f attenuators, coaxial switches, RODOSTUB tuner, coaxial lobing switch, cable connectors and waveguide switch.

Circle 379 on Inquiry Card

Potting Compound

A new illustrated bulletin describing GE's recently developed clear silicone potting compound (LTV-602) is now available from General Electric's Silicone Products Dept., Waterford, N. Y. Bulletin CDS-280 lists the complete properties of the low temp. vulcanizing compound, designed to provide mechanical and dielectric protection for electronic components and assemblies. It is available in liquid form and cures at 70° to $80^{\circ} \mathrm{C}$ to a flexible, resilient solid.

Circle 380 on Inquiry Card

Voltage Regulator Tubes

Photographs, graphs, schematics and application information is included in tech. data sheets available from Red Bank Div., Electron Tube Products, Bendix Corp., Eatontown, N. J. The regulator and reference types produced by Bendix, are designed to yield fast firing times.

Circle 381 on Inquiry Card

Single Crystal Silicon

Monsanto Chemical Co., Inorganic Chemicals Div., 800 N. Lindbergh Blvd., St. Louis 66, Mo., is making available to semiconductor device manufacturers an evaluation procedures manual for float-zone single crystal silicon. The technical publication describes procedures for mea. surement of lifetime, resistivity and dislocation density for single crystal silicon. Included is a timesaving and effective method of applying contacts to silicon crystals for lifetime measurement.

Circle 382 on Inquiry Card

Panel Meters

A new 1961 catalog of miniature panel meters, side indicators and other miniature components is available from International Instruments, Inc., 88 Marsh Hill Rd., Orange, Conn. Featured is an extensive line of subminiature 1 in. barrel diameter meters, internally illuminated models available in both the $11 / 2 \mathrm{in}$. and sideindicator meters. Model 2547 electronic control meter which serves as an indicator and a control is also featured.

Circle 383 on Inquiry Card

Vacuum Ion Pumps

Diagrams, photographs, specs., and graphs describe Consolidated Vacuum Corp.'s, Rochester 3, N. Y. dry vacuum ion pumps, pumps that use no fluid; need no baffles; pumps with no outlets. Bulletin 6-2 gives operating principles, features and characteristics of two Drivac pumps and an Evapor-ion pump.

$$
\text { Circle } 384 \text { on Inquiry Card }
$$

Automatic Machinery

A wide range of machines and equipment designed to automate metal finishing operations is described in a fully illustrated 29-page "Guide," published by The Meaker Co., sub. of Sel-Rex Corp., Nutley 10, N. J. Entitled, "When to Automate" the booklet also illustrates new types of automatic machinery currently in use by electronic firms for mass production processing of vital components.

$$
\text { Circle } 385 \text { on Inquiry Card }
$$

Transformer Catalog

A new 20-page, illustrated catalog describes a complete line of miniature toroidal transformers, inductors, magnetic amplifiers and other magnetic devices. Fully encapsulated and hermetically sealed, units meet the environmental requirements of Mil-E-5272 and Mil-T-27A. Included in the catalog are tech. specs., dimensional drawings, circuit diagrams, typical curves, facility phntographs, and complete ordering information. Arnold Magnetics Corp., 6050 W. Jefferson Blvd., Los Angeles 16, Calif.

Circle 386 on Inquiry Card

Silicon Rectifiers

A brochure on silicon high voltage potted rectifier assemblies includes information on how to select a potted rectifier assembly and detailed specs. on various rectifier circuits requiring multiple potted blocks. Also included are 5 charts showing performance of the potted assemblies under various operating conditions. Publication ECG 487. General Electric Co., Rectifier Components Dept., Auburn, N. Y. Circle 387 on Inquiry Card

POINT
 OF NO RETURNS

SFFPRY

SPERRY SEMICONDUCTOR DIVISION

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

Desk-aye view of a computer logic cireuif ufilizing Sperry 2 N706 Silicon Mesa Transistors.

Here's where you put your experience on the line.
Will the vendor you select confirm the confidence of your decision . . . or will the transistors he delivers return to haunt him - and you?
63 QC checks before and during mechanized manufacture. Our way of trying to make your confidence our only return!

Circle 117 on Inquiry Card

[^4]
New Tech Data

for Engineers

Magnefic Amplifiers

Acromag, Inc., 22515 Telegraph Rd., Southfield (Detroit), Mich., has a new 6-page technical bulletin, No. $10 \cdot \mathrm{C}$, describing the use of magnetic amplifiers for the thermocouples, strain gages, photocells, and other low level de signals. The data includes 4 pages of schematics and detailed application information.

Circle 388 on Inquiry Card

Display Liłes

A new tech bulletin illustrates and describes the "TEC-Lite MDL Series" of low cost miniature indicator lites. Described are a full line of high quality display units which provide flexibility for use through a selection of lens and body colors, lamp types, internal resistors and terminal options. Transistor Electronics Corp., 3357 Republic Ave., Minneapolis 26, Minn.

Circle 389 on Inquiry Card

Torque Testers

A new 12-page brochure illustrates how to measure the torque characteristics and speed of motors, gear trains, servo mechanisms, and potentiometers. Covers torque ranges from $1 / 1 \mathrm{gm}-\mathrm{cm}$ to 200 lb . $/ \mathrm{in}$. Includes formulas for computing power and efficiency, and methods of using stroboscopes and tachometers for analyzing rotating motion. Power Instruments, Inc., 7352 N. Lawndale Ave., Skokie, III.

Circle 390 on Inquiny Card

Component Cafalog

New products for 1961 catalog from Burroughs Corp., Electronic Tube Div., P.O. Box 1226, Plainfield, N. J. contains photographs and data on new product developments. Included is a new series of NIXIE® indicator tubes; BIPCO ${ }^{\text {rM }}$ modules, and BEAM-X ${ }^{\text {Th }}$ modules, Also described in this cata\log is the entire family of BEAM-X switches including the standard shielded and high current types. Data and photographs of decade counters, sphericular optic displays and the TRIXIE® modules are also included. Circle 391 on Inquiry Card

Capacitors

Metalized Mylar capacitors, a new catalog, Form 795 available from The Potter Co., 1950 Sheridan Rd., N. Chicago, Ill., describes their expanded line of miniature, hermetically sealed, metalized mylar types suitable for miniaturized applications such as transistor circuitry or printed circuits. Engineering data, descriptions and dimensions cover 3 series of mylar wrap epoxy end seal types and 2 series of mylar units in ceramic tubes; all in 200, 400 and 600 wvdc ranges.

Circle 392 on Inquiry Card

Diode

By means of graphs, charts and silent-motion-picture-era photographs, Hoffman Electronics Corp., Semiconductor Div., 1001 N. Arden Dr., El Monte, Calif., presents complete information on their Uni-Tunnel Diode. The booklet, entitled "Tale of the Hoffman Uni-Tunnel Diode or How Low can you Get," includes characteristics and application notes. The unitunnel diode, because of its forward characteristic similar to the reverse characteristic of the tunnel diode, is sometimes referred to as a "backward" diode. Reverse/forward im pedance ratios are greater than $100: 1$.

Circle 393 on Inquiry Card

Facilifies Brochure

Omnitronics, Inc., Sub. of BorgWarner Corp., 511 N. Broad St., Phila. 23, Pa., has available a facilities brochure featuring their research and development facilities. Everything from basic research and study to supplying completed devices and subsystems is available. Digital communication systems, Epace electronic devices and systems, digital data handling equipment and communication terminal equipment are some of the fields specialized in.

Circle 394 on Inquiry Card

High Voltage Devices

Jennings Radio Mfg. Corp., 970 McLaughlin Ave., P. O. Box 1278, San Jose 8, Calif. is offering a 12 -page, 3 -color brochure on vacuum power switches. Photographs, drawings, schematics and graphs tell in detai of the many uses and applications of their complete line of high voltage interrupter devices. Design notes are included.

Circle 395 on Inquiry Card

Industrial Tubes

A new 23-page booklet on the practical maintenance approach to indusrial electronic equipment problems is available. This booklet gives maintenance hints for equipments using ignitrons, thyratrons, and gas filled rectifiers. Practical suggestions for solving maintenance problems on industrial electronic equipments are offered. This booklet can be procured by enclosing twenty-five cents (25%) with written request to National Electronics, Inc., Geneva, Ill.

Circle 396 on Inquiny Card

Coil Winding Machines

A 12-page, 2-color catalog No. 61 HD by the Geo. Stevens Mfg. Co., Inc. Pulaski Rd. at Peterson, Chicago 46, Ill., illustrates and gives full technical details on 14 heavy duty transformer and field coil winding machines and 3 heavy duty tensions.

Circle 397 on Inquiry Card

Servo System

Tech Bulletin 107 covers Model 6102 Solid State Servo Amplifier, n versatile servo system when used in conjunction with the reversible non-synchronous motor for which it was designed. The carefully designed circuits function without complaint even if the dc power source fluctuates $\pm 20 \%$ and the 60 CPS chopper switching voltage fluctuates $+100 \%$. Optional gear ratios can be provided from $50: 1$ to $12,000: 1$. Solar Electronics Co., 1145 N. McCadden Place, Hollywood 38, Calif.

Circle 398 on Inquiry Card

Test Equipment

Simpson Electric Co., 5200 W. Kinzie St., Chicago 44, Ill., offers a 14page multi-colored brochure LAB-200 on laboratory test equipment. Included are wide band oscilloscopes, pulse generators, self-powered labs standard calibrators, portable equipment, vacuum tube voltmeters, multitesters, volt-ohm-milliammeters, and temp. indicating instruments and accessories.

$$
\text { Circle } 399 \text { on Inquiry Card }
$$

Digital Instrumentation

Beckman/Berkeley Div., 2200 Wright Ave., Richmond, Calif., offers a 17-page brochure on their line of measurement, counting and control instruments. Some of the instruments included are frequency counters, totalizing counters, time interval meters, transducers, data converters, scanners, and programmers. Information on transducers and standard modifications to electronic counters is included.

Circle 400 on Inquiry Card

Waveguide Components

Tech. information is available from the Waveguide Systems Div. of Microwave Associates, Burlington, Mass. on their line of high quality cast waveguide components. Compensated cast bends, folded hybrid tees, E/H and straight adapters, sidewall hybrid couplers, and waveguide-to-waveguide couplers are available for use at freq. from 1.2 to 40 GC.

Circle 401 on Inquiry Card

Transisfor Transformers

"Mites" are for max. use of chassis space, and "Buds" are for high module stacking efficiency. These units are epoxy encased in drawn steel cans and have a freq. response of 200 to 50,000 CPS. Layout diagrams, graphs, and pipe charts are included. The diameter of Mites is only \% in. The actual height of Buds is $5 / 16$ in. Decco, Inc., 2025 Farrington, Dallas 7, Tex. Catalog Supplement No. 2.

Circle 402 on Inquiry Card

BIPCO ${ }^{\text {TM }}$ Modules - Built-In-Place Components In Modular Form . . .

The Burroughs Corporation announces the commercial availability of tomorrow's techniques . . . today. BIPCO modules combine the reality of performance, low cost and immediate availability, to signal a major transition in the state of the art.

Thin Film Memory Planes and Solid State Multi-element Modules are the first of the BIPCO module family. The Thin Film Memory is capable of storing 20 words of 8 bits each for a total of 160 bits of information, and has a cycle time of 0.2 microsecond. The Solid State Module is a binary coded decimal to decimal diode converter which utilizes 40 diodes in matrix logic.

Burroughs Corporation's breakthrough in Built-in-Place Components is made possible by the unique combination of two major new techniques. First, multi-element components are simultaneously fabricated within a single device. Second, these elements are placed in a predetermined pattern in such a manner as to facilitate complex internal connections.

This combination of techniques has resulted in BIPCO Modular Devices with simple inputs and outputs which perform functions normally requiring myriads of elements and connectors.

The industry's most thoroughly characterized and medium power silicon Mesa transistors...2N477A,

Abselvte Meximum Ratings ($25^{\circ} \mathrm{C}$)
Voltoges
Collector to Base Collector to Emitter Emither to Base

	2N497A	2N498A
Vcao	60	100
Vceo	60	100
Veso	8	8
TsTe	-65 to $200^{\circ} \mathrm{C}$	
Ts	-65 to $200^{\circ} \mathrm{C}$	

2N6S6A	2N657A
60	100
60	100
8	8

volts
volts
Temperatures Storage
Total Dissipgtion
Free Air @ $25^{\circ} \mathrm{C}$
Free Air@ $25^{\circ} \mathrm{C}-1$ watt*
Cose Temperature@ $25^{\circ} \mathrm{C}-5$ watts**
${ }^{*}$ Derate $5.72 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature obove $25^{\circ} \mathrm{C}$
**Derate $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in case temperature above $25^{\circ} \mathrm{C}$

Electrical Characteristice $\left(25^{\circ} \mathrm{C}\right.$)

unless otherwise specified

	2N497A Min. Max.		2N498A Min. Mox.		2N656A Min. Max.		2N657A Min. Max.		
Veso	60		100		60		100		volts
Vcso	60		100		60		100		volts
Vero	60				60				volts
Vcso			100				100		volts
Vmo	8		8		8		5		volts
thes	12	36	12	36	30	90	30	90	
his		200		200		200		200	ohms
res (sat)		10		10		10		10	ohms
Ico		10		10		10		10	$\boldsymbol{\mu}$
Ico		250		250		250		250	$\boldsymbol{\mu}$

tested

98A, 2N656A, 57A...come from General Electric

Positive internal atmospheric control achieved through the use of General Electric's buffered-sieve encapsulation technique, higher power dissipation with lower saturation resistance and lower input impedance are important features of this line of top quality one to five watt audio switches. Especially well suited for either high level linear amplifier or switching applications, these are the industry's most thoroughly characterized and tested medium power silicon double diffused NPN transistors available today. Just take a look at the extended life test charts illustrated for convincing evidence of long term stability and reliability.

Semiconductor Products Department, Section 24E96. Electronics Park, Syracuse, New York.
For fast delivery of medium power Mesa Iransistors al factory-low prices in quantities up to 999 call your G-E semiconductor distributor.

Progress is Our Most Imporrant Product General ()6, electric

TINSLEY DELIVERS

CORNING GLASS FILTERS

IN 3.5 DAYS

Wherever you are in the United States you can get standard thick. ness Corning Glass color filters in 3.5 days from Tinsley Laborator. ies. Fast delivery, too, on special sizes and thicknesses, custom ground and pitch-polished in our laboratories. You can depend upon Tinsley and on the Corning filters we finish and supply. They are particularly useful in colorimetric work and other applications in which specific regions of the radiant spectrum must be isolated. Send for a free copy of our price list.

Circle 122 on Inquiry Card

New Tech Data

Silicon Rectifiers

Bulletin No. 300, illustrated in color, includes a list of more than 350 JEDEC types of silicon rectifiers. Condensed electrical and mechanical specs. of the units and stacks aro given in the catalog's tables. In addition, typical operating characteristics are shown in curves displaying forward current rating levels and derating curves for raised ambient temps. The silicon rectifier's stacks have a certification and guarantee policy. Semiconductor Div., Syntron Co., Homer City, Pa.

Circle 403 on Inquiry Card

Digifal Translafor

The TR-100 series transistorized digital translator is designed to convert binary-coded decimal input signals to decimal and/or binary-coded decimal outputs. Max. capacity with single output is 10 decimal digits; $\&$ decimal digits can be handled with dual output. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

Circle 404 on Inquiry Card

Synchros and Resolvers

A 27-page illustrated technical discussion of the electrical characteristics of synchros and resolvers is being offered by the Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J. The manual describes in detail the application and significance of such parameters as electrical error, electrical zero, fundamental null, total null, transformation ratio, and phase shift. Methods of measurement and the basic specs. for test equipment are also included.

Circle 405 on Inquiry Card

Variable Resistors

A brochure, Bulletin No. 42-1051 describes in detail Centralab Model 7 linear motion variable resistors. It contains specs on 6 types of Model 7 units. In addition to general electrical specs., detailed information on mechanical and environmental inspection and test specs. are included. The brochure also contains dimensional drawings of encapsulated and nonencapsulated types. Centralab, Electronics Div. of Globe-Union, Inc., 900 E. Keefe Ave., Milwaukee 1, Wis.

Circle 406 on Inquiry Card

Impedance Plofter

Tech. data Bulletin 60-3, is avail. able from Dielectric Products Engineering Co., Inc., Raymond, Me., on their new Smith Chart Impedance Plotter. The unit provides instantaneous display of impedance as a continuous function of freq. in the 10 to 3000 mc range. The unit is designed for obtaining impedance and admittance measurements of such components as antennas, filters, load resistors, transformers and other r-f networks.

Circle 407 on Inquiry Card

Nuclear Gages

A new 6-page, 2-color fold out folder describes details of basic systems employing nuclear gauges for controlling specific gravity ur density and liquid or interface levels. Fundamental ideas of using gamma radiation are described as well as components required for a complete system. Schematic diagrams visualize installations and photos show equipment. The Ohmart Corp., 2236 Bogen St., Cincinnati 22, Ohio. Bulletin No. 105-C.

Circle 408 on Inquiry Card

Modular Packaging

An 8-page booklet describes n new concept in 3-dimensional modular packaging and interconnecting of electronic components available from AMP Inc., Harrisburg, Pa. The new concept called AMP.MECA (Maintainable Electronic Component Assemblies) is described in detail, with characteristics and functions of the system. The kinds of interconnections made possible because of the modular-cell design are discussed, with illustrations.

Circle 409 on Inquiry Card

Compression Terminals

Two technical bulletins, SCT-59-101 and TCT-61-102 give complete information on glass-to-metal single lead and tubular singular lead compression terminals. A wide variety of types, sizes, voltage ratings, and current capacity terminals are offered. Electrical Industries, Div. of Philips Electronics and Pharmaceutical Industries Corp., 691 Central Ave., Murray Hill, N. J.

Circle 410 on Inquiry Card

Filters

A 6-page brochure contains complete specs. for a standard line of precision wavemeters, preselector-balanced mixers, and bandpass and low pass filters. Specs. are also provided for a custom line of bandpass filters, dual mode discriminator cavities, diplexers, wave traps and reference cavities. Frequency Standards, P.O. Box 504, Asbury Park, N. J.

Circle 411 on Inquiry Card

Compułer Diodes

Tech. information is available from Princeton Electronics Corp., P.O. Box 127, Princeton, N. J., on diffused silicon mess computer diodes, types 1N914 and 1N916. These diodes with rugged internal construction capable of meeting Mil requirements operate at 75 ma rectified forward current. They are designed for 4 nsec . max. recovery time and low capacitance.

Circle 412 on Inguiry Card

In øne Instant...

-SUPER-POWER TRANSMITTERS by Continental Electronics include:
13 Voice of America transmitters U. S. Air Force's most powerful radar U. S. Army's most powerful transmitter High power commercial transmitters

Two million watts will blast the U. S. Navy's radio signal anywhere in the world...even to a submerged submarine on the other side of the earth!
This new 2,000,000 watt VLF transmitter being built by Continental Electronics will be the most powerful in the world. With this transmitter the Navy can communicate dependably with any spot on earth. It is being built by the specialists in b-i-g power transmitting equipment.* Again, the Navy knows it is getting the very best available - another Continental Electronics transmitter.

Your best buy

 in operational amplifiers?

THE PHILBRICK USA-4J UNIVERSAL STABILIZED AMPLIFIER!

Choose this amplifier when the need for exceptional reliability justifies the price, and enjoy the bonus of remarkably high performance. Its reliabilty statistics prove it the best buy in the industrial and process control fields, although the USA-4J was originally designed for military use.

- LOW DRIFT AND MOISE:

well under 50 microvolts rms.

- GANN: 100 MILIIOM minimum open loop at dc; greater than unity it one megacycle; output, over ± 100 volts.
- COOL RUNNING:
tubes and resistors operate at a fraction of wattage ratings; capacitors operate generally below $1 / 2$ their voltage ratings.
- MIL STD PARTS:
used exclusively.
- EMINENTLY

SENSIBLE COST: Just
FOR COMMETE IMFORMATIOM WAITE

PHILBRICK RESEARCHES, INC.

127 CLambndon er. soston is, mass.
 meprosentatives im maincipal cities
 Th. Cheasa heme came thlinush

Tech Data

for Engineers

Silicon Diodes

Laminar diodes are high performance diodes consisting of a multilayered structure, surface passivated, double hermetically sealed and constructed to eliminate front contact failure due to shock or vibration. Positive front contact is achieved by decisively embedding the tungsten whisker into a gold laminated tab. 1N3257 and 1N3258 are two new types produced by this process. Pacific Semiconductors, Inc., 12955 Chadron Ave., Hawthorne, Calif.

Circle 413 on Inquiry Card

Precision Resistors

Specs., dimensions, performance data at various confidence levels, characteristics, derating curve, surface temp. rise vs. load charts are included in a brochure from Burlington Div., International Resistance Co., P.O. Box 502, Burlington, Iowa. Molded metal film resistors are half the weight in volume of precision wire wound resistors. Units have the same low temp. coefficient at all resistance values from lowest to highest.

Circle 414 on Inquiry Card

Temperature Controls

An 8-page brochure, MC-195, describes Fenwal Inc., Pleasant St., Ashland, Mass. new " 500 " line temp. controllers and indicators. The brochure gives complete details of 3 models in the line and brief descriptions of other instruments offering thermistor sensing. Also included are details on how various units can be combined from multi-point control or monitoring with a variety of optional features. Circle 415 on Inquiry Card

Antennas

A 16-page, 3-color microwave cata\log No. 100 on microwave antennas is offered by the Technical Appliance Corp., Sherburne, N. Y. Specs., graphs and photographs cover their line of dual-polarized, plane-polarized and parabolic antennas. Information on anti-icing equip. is included.

Circle 416 on Inquiry Card

Facilifies Brochure

A 24-page illustrated brochure entitled "This is the New Clary" is now a vailable from Clary Corp., Dept. 691, 408 Junipero St., San Gabriel, Calif. The booklet describes the capabilities, facilities, products and achievements of the company, which now designs, engineers and manufactures a line of computer and data handling equipment and missile components. Features in the booklet are the DE-60 computer, an arithmetic center, standard data and militarized printers, add-punches, sales recording devices and various types of peripheral equipment compatible with nearly all systems concepts.

Circle 417 on Inquiry Card

Glass-Ceramics

A revised edition of "This is Glass," a comprehensive story of glass and glass-ceramics, has been published by Corning Glass Works, Corning, N. Y. The 68 -page illustrated booklet reviews the history of glass and details the basic types of glass. Included is a section on Corning's new glass-ceramic materials, trademarked Pyroceram and a 2-page chart giving properties of selected glasses and glass-ceramics. A preview of the future of glass and glass-ceramics describes the extensive research being done with these basic engineering materials.

Circle 418 on Inquiry Card

Synchros and Resolvers

American Electronics. Inc., Instrument Div., 9503 W. Jefferson Blvd., Culver City, Calif., is making available a handy quick-reference catalog of some 200 resolvers and synchros. It is for the convenience and aid of systems and computer design engineers. The catalog offers fundamental engineering data in easy-to-read form. Ten basic parameters are covered for each unit. A quick reference to the input voltage, impedance and transformation ratio values along with typical views of the units, dimensional drawings and circuit diagrams is included.

Circle 419 on Inquïry Card

Hi-Speed Rotary Switches

A new brochure from Instrument Development Laboratories, Inc., Sub. of Royal McBee Corp., Attleboro, Mass., describes their line of "Standard" high speed rotary switches. The brochure contains facts about the units for telemetering, programming, commutating, sampling, multi-plexing, and computing with descriptions and application data for the complete line of IDL switches.

Circle 420 on Inquiry Card

TIMM

A 16-page brochure entitled "TIMM circuits are the Answer" describes by means of photographs, schematics and drawings GE Receiving Tube Dept.'s, concept of thermionic integrated micro modules. These circuits operate in high ambient temps. to $600^{\circ} \mathrm{C}$. Since these modules are of metal and ceramic construction, radiation problems are reduced in consequence. General Electric Co., Receiving Tube Dept., Owensboro, Ky.

Circle 421 on Inquiry Card

Plastic Profectors

Bulletin P-6012 describes new rectangular plastic protectors for miniature electronic pin connectors. Rectangular caps prevent damage to connectors during assembly, shipping, storage, and on-site installation. Complete dimensions, weights and prices are listed in the bulletin. Plastics Div., Dept. WLT, S. S. White Industrial Div., 10 E. 40th St., New York 16, N. Y.

Circle 422 on Inquiry Card

RF PRODUCTS BUILDS ANVIL RUGGEDNESS INTO PRECISION © COAXIAL SWITCHES-RELAYS...

Spring-leaf switching blades, gold-plated silver contacts and impedance matched connectors keep insertion loss and VSWR (1.3 © 4,000 MCs) low, Crosstalk high (in decibels down). Electro-mechanically actuated models operate and release in 8 to 20 milliseconds, depending on type and function, with a proven mechanical life of $1,000,000$ cycles minimum when operated under 10 cps . / Available for fast delivery from factory stock in a large variety of configurations and functions, including SPDT, DPDT, 1P4T, 1P6T, 1P12T and Transfer types.

AND DELIVERS IN 7 DAYS

100\% tested from factory stock

Get full details! Send for catalog DK61.

IIIIIII Sonotone.
Elestronele Absilmantions DiNation, Dope T21-31 ELBEFORD, HEW YORK

Tech Data

for Engineers

Terminals

A new press-fit teflon terminal catalog shows the entire line of units available from Sealectro Corp., 610 Fayette Ave., Mamaroneck, N. Y. The press-fit line includes a wide choice of subminiature stand-offs, subminiature feedthrough, probes and plugs, miniature stand-offs, miniature feedthrough, connectors and test jacks.

Circle 423 on Inquiry Card

Phoło Diodes

Graphs. layout diagrams, schematics, and charts are included in a 16 page brochure from Nucleonic Products Co.. Inc., 1601 Grande Vista Ave., Los Angeles 23, Calif. Four types of germanium photo diodes are discussed as is a grain boundary photo-diode type KF 11. Operating characteristic and conditions, ratings and spectral response notes are included.

Circle 424 on Inquiry Card

Precision Resistors

An 8-page 1961 catalog is available from Pyrofilm Resistor Co., Inc., U. S. Highway 46, Parsippany, N. J., describing the companies' complete line of precision deposited carbon film resistors for commercial, subminiature, Mil Type, high resistance, high voltage and microwave resistor applications.

Circle 425 on Inquiry Card

Silicon Transisfors

Two 4-page, 3-color tech data sheets are available on H new silicon mesa transistors designed for medium power sudio to medium freq. applications. ECG-528 and ECG-538 describe JEDEC types designated, 2N497, 2N497A, 2N498, 2N398A, 2 N 656 , 2N656A, 2N657 and 2N657A. General Electric Co., Kelley Bldg., Liverpool, N. Y.

Circle 426 on Inquiry Card

Piezoelectric Ceramics

Bulletin No. 6900A gives detailed information on Sprague piezoelectric ceramics. A complete line is available in an unlimited number of shapes and sizes. Typical properties of fi ceramic bodies are listed in the bulletin. Technical Literature Section, Sprague Electric Co., 233 Marshall St., N. Adams, Mass.

Circle 427 on Inquiry Card

Air Distribution Units

Barber-Colman Co., 1300 Rock St., Rockford, Ill., is offering a condensed catalog on air distribution equipment. This handy 8 -page booklet allows designers of air distribution systems to quickly survey the wide range of equipment designs, sizes, finishes, and applications available. Catalog No. F-4471-8.

Circle 428 on Inquiry Card

Capabilities Brochure

This multi-color, 12-page brochure entitled "Data from Space" tells of Lockheed Missiles and Space Div.'s capabilities in the field of radio telemetry. Information on their pulse amplitude modulation (PAM-FM) and pulse code modulation (PCM-FM) sampled-d a t a systems is featured. Lockheed Missiles and Space Div., Sunnyvale, Calif.

Circle 429 on Inquiry Card

Silicone Insulated Wire

A 4-page illustrated bulletin describes and provides data on the various kinds of silicone-insulated cable manufactured by Boston Insulated Wire and Cable Co., 63 Bay St., Boston 25, Mass. Entitled "Single and Multi-Conductor Cable with Silicone Rubber," the new bulletin features power and lighting cable, hook-up wire, ignition cable, as well as is list of conductor cable for shipboard, missiles and nuclear power purposes. A second bulletin entitled "Wire and Cable Application Cast Histories" outlines case histories involving radiation resistant cables and miniaturized switchboard wires, using silcone rubber insulation.

Circle 430 on Inquiry Card

Interval Timers

Electronic Products Corp., 4642 Belair Rd., Baltimore 6, Md., is making available an engineering bulletin No. IT-2 which covers four of their interval timers. Schematics, layout diagrams, diagrams and electrical and mechanical specs are included. Two relay type and 2 solid-state type interval timers are offered.

Circle 431 on Inquiry Card

Tuming Fork Oscillator

A bulletin is available from Fork Standards, Inc., 1915 N. Harlem Ave. Chicago 35, Ill., on a precision, miniature, signal generator which has its freq. stabilized by a temp. compensated tuning fork and provides a 1 mm output in either a sine or square wave. This transistorized unit is potted and hermetically sealed in a box approx. 6 cu . in.

Circle 432 on Inquiry Card

Capacifor Cafalog

Chicago Condenser Corp., 3255 W. Armitage, Chicago 47, Ill., is offering a 27-page, multi-colored, catalog covering their line of Mylar paper, polystyrene, AM film, ES film, Teflon, Metalized mylar (MET.A-CAPS), Kraft Tissue, and Metalized Paper Capacitors. Also included are references on their miniature dc power supplies.

Circle 433 on Inquiry Card

Miniafure Fuse Posts

A new catalog illustrates, describes and gives full tech. specs. on Mil approved 3 AG miniature fuse posts that offer combinations of fluted or knurled knobs with straight and right angle bottom terminals is available from Littlefuse, Inc., 1865 Miner St., Des Plaines, IIl.

Circle 434 on Inquiry Card

How to

establish rating values for power transistors

by RICHARD F. MOREY, JR.
Manager, Applicafions Engineering, Clevite Pransistor Division of Clevife Corporation

Every manufacturer of power transistors provides information on the various circuit valves within which a given transistor will satisfactorily perform. These valves or "ratings" are established on the absolute maximum system and are defined so that "the rating values, if exceeded, will cause permanent impairment of the device." Since permanent damage can occur as a result of exceeding rating limits or as a result of an unqualified rating, Clevite Transistor exercises great care in the development of ratings and the proof of their validity.
Clevite places particular emphasis on ratings for junction temperature, power dissipation, collector current, and collector voltage. Each of these ratings is independent and it is not generally possible to approach more than one rating simultaneously. Therefore, specific tests are performed such as "thermal resistance" to establish maximum power dissipation and collector diode leakage current $1_{\text {cmo }}$ at both room temperature and high operating temperature to establish maximum rated collector to base voltage. Figure 1 is a diagram of the Thermal resistance test, while Figure 2 indicates the testing configuration for establishing essential collector to emitter voltage ratings.

Other tests are performed to determine collector current and junction temperature. High-temperaturestorage life tests to establish maximum junction temperature are further supplemented by Clevite's process of aging transistors at temperatures in excess of the eventual maximum rating.

Fig. 1. Thermal resistance test
Perhaps the most important tests are the collector to emitter breakdown tests ($\mathbf{V}_{\mathrm{css}} \ldots$ and $\mathrm{V}_{\text {cro }}, \ldots$,) which are used to determine the maximum collector to emitter voltage. Figure 3 indicates a typical germanium power transistor operating in breakdown region. Observe that the bias applied between emitter and base differs for each of the seven curves. This bias differential causes the

Fig. 2. Collector to emitter voltage test
curves to differ significantly. Curve 1 breaks down sharply at 45 volts, while curve 6 breaks down initially at 118 volts, but upon transversing the curve, the voltage drops and another breakdown occurs at a point slightly greater than 60 volts. Curves 2, 3, 4, and 5 are somewhere between.

Curve 7 is simply the curve of the collector to base diode and is shown here for reference purposes.

It may be noted in a particular instance, such as curve 1, that at some voltage (in this case 45 volts) collector current increases without limit. This is the voltage at which collector multiplication causes the overall current gain (alpha) to equal unity.
The remaining curves serve to indicate the effect of a change in bias at different voltage and current conditions.

The tests and data shown here are only a segment of the total program undertaken by Clevite Transistor to assure a continuous high standard of product quality ... "reliability in volume."

Detailed Technical Data Bulletins are available on all Clevite's Power Transistors and Diodes. To obtain technical information, please request Application Bulletins $1 \& 2$.

Tele-Tech's
 ELECTRONIC OPERATIONS

SYSTEMS—WISE . . .

- Weather information will be available almont instantly with a system called the Wind Sonde, an air-launched missile from Allied Research Assoc., subsidiary of Boeing Airplane Co. To find wind characteristics in storms and hurricanes, etc., spinning is used along with an acceleromeler and a magnetometer to read wind velocity and direciion. Information is continuously telemetered to the launch aircraft, modified by a computer and made available for immediate use. No sround stations are required.
- United Air Lines has ordered 51 air traffic control transponders from RCA's Industrial Electronic Products. Transponders will be instulled on United's Caravelle Jets due to enter service this summer. The transponder, which generates its own signal, is triggered by air traffic radar in the ground.
- A new space chamber for the dress rehearial of large satellites prior to launch intu orbit is being huilt. The vacuum teat chamber will be 20 ft . in dia. and 27 ft . long. Hendix Corp. is building the chamber. A battery of 8 nil diffusion pumpa creates the vacuum.
- An advanced closed circuit color TV system, manufac. tured by Foto-Video Electronics. Inc., is nearing completion at the U. S. Air Force H. Q. in the Pentagon. The system was specified by the USAF for more effective, fastel and more secure briefing of decision-making personnel.
- A third giant surveillance radar gystem has been uccepted by the Air Force. Sperry Gyroscope Co. was responsible, under the Rome (N. Y.) ADC, for the FPS-35. The $\mathbf{~} 0.000-1 \mathrm{lb}, 150 \mathrm{ft}$. long, 40 ft . high antenna rests on 4 kj ft . concrete tower. Six 100 hp motors rotate the antenna, which reste on a $7,500 \mathrm{lb}$. bearing.
- The FCC has authorized AT\&T to land und operate the U. S. terminal of the firat transatlantic telephone cable between the U. S. and Great Britain. The new cable, laying to he completed in 1963, will extend about 3,500 nautical miles. It will be owned jointly by AT\&T and the British Post Office.

ASW DISPLAY AND COMPUTER SYSTEM

The AN/ASN-30 Tactical ASW Display and Computer System, developed under contract from the Aeronautical Instrument Laboratory of the Naval Air Development Center, will be a significant addition to the Grumman Aircraft Co.'s mow S2F-3 ASW "Hunter-Killer" Aircraft. This system displays input data from anti-submariae detection equip. ment and "pinpoints" targat location.

- Computers are being turned to weather forecasting through a new automatic meteorological station developed by The Siegler Corp.'s Olympic Radio and Television Div. This electronic data processing system, the AN/FMQ-5, takes meteorological information from both electronic sensing devices and human weather observers and stores. computes and distributes these data as needed over telephone lines or by radio.

Pulsed Neutron Generafor

 Completed by ithe Mapsuda Research Lab. of the Tokyo Shibaura Electric Co., Lid., it will be in. stalled at the lapan Atomic Energy Rosearch Institute. Ca. pability ranges from 10 to 100 billion naw- trons.

- An electrical system which will be used in checking out and launching the Saturn booster has been developed by the Guidance and Control Div. at the NASA George C. Marshall Space Flight Center. Monitoring over 100 functions, the system will stop the launch sequence in the event of malfunction, otherwise it performs some 50 sequential functions within the Saturn to achieve liftoff.
- Station WFAA-AM-FM-TV's new Communieations Center is equipped with a GE f-channel aterco audio syatem. It provides for live broadcasting. network programming. recording and rehearsals at the same time. The syatemis. audio nerve center is a transintorized stereo master control switching facility for AM, FM and TV sound. It consiats of 11 stereo or 22 monophonic input channels.
- Texas Instruments Incorporated has been awarded a contract from the Air Force Missile Test Center (AFMTC), Patrick Air Force Base, Fla., for PCM data recording systems. The completely transistorized ground equipment will process, record, and display PCM data in any of the standardized formats or from systems with special formats such as Minuteman and Polaris.
- The first operational member of a new family of ad. vanced anti-jam search radars built by GE will be erect. ed at Point Arena. Calif. The largest rotating antenna nystem to be inatalled on the West Coast, it will be used to detect and furnish warning against supersonic aircraft and air-breathing missiles. It is 125 ft wide and 50 ft . high.
- Collina Radio has announced initial deliveriea on a \$1. 003,990 order for airborne high freq. SSB systems to the British Ministry of Aviation. The nystem, HF-103, provides world-wide as well as short range communication in the 2.30 MC range on 28.000 directly selectable channels.

The unit described here was originaily designed for recording gas meter readings. However, the design thinking explained lends itself very well to other flow meter applications. It has many benefits such as eliminating human reading errors, recording from a remote position, and supplying data on punched cards.

At Remote Locations...
 Recording Flow Meter Readings

By PAUL C. CONSTANT, JR.
Systems Engineering Sect.
Midwast Research Inst.
425 Volker Blud.
Kansas Cify 10, Mo.

TODAY domestic gas consumption data are obtained by visual means. A utility employee makes his rounds, periodically, on a prescribed route, reading each meter's visual dial indications of gas consumption. He records his observations on a prescribed form. This recorded data of gas consumption form the basis for billing the customers for their quantity of consumption of the company's product.

The present method of obtaining gas consumption data is practicable; but it has some obvious disadvantages. Two of these disadvantages are that the method of obtaining consumption data is (a) time consuming and (b) it requires visual-manual recording techniques.
the display consists of several dial plates, each having a dial hand sweeping a decimal-calibrated face plate. This allows the correct data to be ascertained at any time.

The system described here uses an electrical pickup device attached to each dial unit in the gas meter. These pickup units, with associated equipment. enable electrical signals to be sent (via a multiconductor cable) to a point remote from the meter where they are automatically recorded on a portable recorder.
The basis for the remote recording system is the commutator plates which are embedded in a drum unit. There is one drum unit attached to each dial shaft, affording a means to obtain gas consumption data as it is registered on the

Fig. I: Block diagram illustrates, basically, the recorder system
dial indicators. Since there are normally 4 units read, i.e., the thousands, ten thousands, hundred thousands and millions of cubic feet indicators, four drum units are required for each meter.

The complete system for automatically recording gas consumption data at a remote point is quite
simple and is given in block-diagram form in Fig. 1.

As was noted previously, the visual display on the meter gives the gas consumption in the decimal system of counting. Although the pickup units employed essentially indicate shaft rotation (as do the

Fig. 2: Cross over regions on commutator plate. This method will give erroneous readings

mOTE: AREAS WITH FIG. I ARE ELECTRICAL COMOMTATOR PLATES. A,B,C,D,E ARE
CROSSOVER POIMTS.
visual dial indicators), the information transmitted to the portable recorder is in binary form and is based on a cyclic system (Gray code) of counting. The recorder accepts this binary information, and decodes and converts it to decimal form for presentation.

The System Used

Using the binary system of counting, it is possible to represent decimal numbers using zeros and ones. Table 1 gives the binary representation of decimal numbers from 0 to 15. By referring to Table 1 , it is easily seen that 3 binary digits are required to represent the decimal digits, 0 to 8, and 4 binary digits (bits) are needed to represent decimal numbers of magnitude 8 through 15. Therefore, in order to read the decimal digits which are used in gas meters, a system containing four binary digits is required.

A necessary requirement of the counting system is that it is cyclic. This is because the dial shaft rotates continuously in the same direction (clockwise or counter clockwise), repeating the decimal cycle 0 through 9 , each 360° of shaft rotation. In addition, the digits must follow a definite sequence. The sequence of binary numbers given in Table 2 can be used. However, such a sequence can give ambiguous readings. Therefore the sequence shown in Table 3 is used.
To see how ambiguities in readings come about using the sequence of binary numbers given in Table 2 , a commutator plate using this sequence as a basis for its design is shown in Fig. 2. Looking at the crossover points A, B, C, D and E (Fig. 2), it is readily seen that the brushes can be in positions such as to give incorrect readings. For example, at crossover point A, brush 1 can be in electrical contact with the commutator plate at the same time brush 2 also is in contact with it, thus indicating the decimal reading of three instead of one or two. Similar situations occur at the other crossover or boundary points $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E . The reason for the ambiguities is that there is more than one change in bits of information between consecutive numbers in the sequence. It can be noted that at the remaining crossover points, those other

DRUM AND BRUSM UMIT
than $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{I})$ and E , there is no chance for ambiguities. This is because there is a change of only one bit when advancing from one digit to the next in the sequence. Consequently, a sequence of numbering is required where there will be only one bit change in advancing digit by digit in the number sequence. Such a sequence is given in Table 3, and is the basis for the commutator plate used (Fig. 3).

The sequence of binary numbers which form the basis for the commutator plate design given in Fig. 3 is obtained from the binary equivalents (see Table 1) of the decimal numbers, 0 through 15 . The sequence $3,11,15,7,5,4,6,14$, 10,2 is used since it forms the cyclic pattern needed and there is only one bit change from number to number. Although this particular sequence does not give an apparent usable sequence of decimal numbers, it is quite workable. Hence the sequence $3,11,15,7,5$, $4,6,14,10,2$ is a coded represen-
tation of the basic binary information. This information is decoded and converted into the decimal sequence in the portable recorder.

Commutator Plate

The commutator plate or drum assembly is, in essence, the transmitting device. The electrical signals originate at the drum assembly and are transmitted, via a multiconductor cable, to $\&$ distant point.

The geometry of the commutator is quite important, and is based upon the cyclic system previously discussed.

Figure 3 shows a plane view of the commutator plate. This plate is a physical design of the cyclic system of binary numbers given in Table 3. The row of numbers directly above the plate represents the decimal equivalents of the binary numbers which are built into the commutator plate, i.e., the decimal digit 3 is the binary number 0011; the decimal number 11 is

Fig 4: Drawings illustrate the mathod of Pransferring stored information

Portable Recorder (Continued)

the binary number 1011; etc. It is to be noted that the ones are represented by the metal forming the commutator plate. The zeros are represented by the absence of metal. The top row of decimal numbers above the commutator plate in Fig. 3 are the decimal digits (0 through 9। which actually result in the print or punch out at the recording end.

Pickup Units

The pickup units (Fig. 3) consist of one commutator drum per digit recorded and 5 brushes per drum.

Each electrical insulator drum is secured to a dial indicator shaft of the meter. Embedded in the drum are the electrical commutator plates, commonly connected (Fig. 3). The surfaces of these plates are flush with the outside surface of the insulator drum. Figure 4
shows the method of transfer of stored knowledge to the recording device. Required is a spring-loaded, 5-brush assembly (the fifth brush is used for the common or return path, per drum. These 5 brushes are in continual contact with the surface of the drum and wipe the commutator plate as the commutator drum rotates. By this means, 5 contacts are required to transmit the angular position of the digit shaft on the meter to an outside location, the information actually being in binary form.

The transmission cable is a multiconductor transmission line of nominal length. The number of conductors are one plus four times the number of digit shafts employed. The extra conductor is the common conductor. Each group of 4 conductors is used for the transmission of a decimal digit of information. Thus the recording system employs a 17 conductor cable for the transmission of 4 decimal digits of information.

The Recorder
The recorder is a portable, light-
weight. relatively inexpensive, elec-trical-mechanical device which automatically records (prints or punches, gas consumption data on a card. The unit is self powered with batteries and easy to operate. A schematic diagram of the electrical circuitry is given in Fig. 5.

Basically the recorder consists of (a) a decoder-converter, (b) a power source, (c) an automatic control unit, and (d) the read-out mechanism. In addition, there are control switches, indicator lights, and mechanisms for card feeding.

A card is placed into a feed mechanism which is controlled by solenoid L_{10}. When S_{3}, a manually operated momentarily-on switch, is depressed, and S., closed, the recorder automatically records the meter reading. The reading is punched (can be punched and/or printed, on a card in decimal form via solenoids L_{0} through L_{v} (which punch decimal digits 0 through 9 . respectively). These solenoids receive power through the decoderconverter unit which consists of relays, R_{1}, R_{2}, R_{3}, and R_{4}. These 4

Fig. 5: Schematic diagram of the portable recorder shows simplicity of design.

relays are activated by electrical signals from the drum pickup units which are controlled by S_{1}.
The stepping switch, S_{1}, is used so that the lines from the four drum units stationed at each meter, may be switched in the proper order. By this means, the 10 punchsolenoids ($L_{10}-L_{9}$) are used for each decimal digit punched, thereby reducing the number of punch-solenoids required.
The system is powered by 3 batteries, E_{1}, E_{2}, and E_{3}. Source E_{1} is for the card feed mechanism; E_{2}, supplies power for the punchsolenoids; and \mathbf{E}_{3} supplies power to pulse S, and the relays in the de-coder-converter unit.
A time delay circuit $r_{2,}, C$. adjusts the stepping time of S_{1} so that the proper timing sequence for the events of card feed and punching may be obtained. The relay R_{5} serves as a control unit in the delay circuit and the pulsing circuit (which automatically advances wipers of S_{1}).
The lights $\mathrm{N}_{1}, \mathrm{~N}_{20}$ and N_{3} serve to indicate power operating conditions for the different circuits.
The motor magnet (M M coil) is connected through the interrupter

[^5]contacts (of the MM coil relay) and off-normal contact springs to a homing circuit which is under the control of relay R_{5}. Relay R_{5} is normally operated while the switching circuit (steps wipers on S_{1}) is in use. The off-normal springs (an integral part of S_{1}) close when the wipers are stepped away from home position and prepare a circuit to the magnet (MM coil). The stepping pulses from \mathbf{E}_{3} are controlled by terminal deck No. 6 of S_{1} and relay R_{0}, and will allow S_{1} to home automatically, releasing $0-N$ contacts in the home position.

The decoder-converter unit accepts signals from the drum units at the meter through S_{1}. The signals are generated as a result of power being supplied to the commutator plates from source \mathbf{E}_{3}. Depending upon which brushes are in contact with the commutator plate on a drum unit, one or more of the relays $R_{1}-R_{4}$ will be activated, thus allowing the correct solenoids (one of the $L_{0}-L_{9}$) to be energized through the proper relay contacts of the decoder-converter unit. As an example, on drum No. 1 of a meter. the binary number 0011, is read, therefore brushes 1 and 2 allow an electrical signal (via S_{1}) to activate R_{1} and R_{2}. Contact 1 of R_{1} and contact 1 of R_{2} close, allowing power to be supplied to L , through contacts Nos. 1 of R_{1} and R_{2} and through contacts Nos. 2 of \mathbf{R}_{3} and \mathbf{R}_{4}. Hence, the binary information from the meter is converted to decimal form and punched on a card for a permanent record from which billings may be made.

The device described will permit a reading of domestic utility meters at a location remote from the meter itself, usually outside the building or home of the consumer.

A REPRINT

of this article can be obrained by writing on cempany lofterbead to

The Editer
ELECTRONIC INDUSTRLES
Chastaut 6 56th Stz. Phile. 39, Pa.

It will substantially reduce the time required in securing access to the utility meters which are often located in remote locations in consumer buildings. In addition to the convenience this system offers the consumer, it is estimated that the costs entailed in the present systems for reading meters could be essentially cut in half.

Table 1
Binary Representation of Docimal Numbers

Decimal Numbers
Binary Equivalent

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
10	1001
11	1010
12	1011
13	1100
14	1101
15	1110
	1111

Table 2
Binary Equivalemee of Decimal Digifs Used In Gas Mefers
Decimal Digit Binary Equivalont

0	0000
1	0001
2	00011
3	010
4	0101
5	0110
6	0111
7	1000
8	1001

Table 3
Binary Sequence of Numbers Used
Binary Numberi Decimal Equivalent

CUES

for Broadcasters

Two views of cuing unit are shown. A grease pencil can be used to write on the plastic face.

FRONT

Construction Details For

A Video Tape Cuing Unit

\mathbf{A}^{N}N adequate cuing system for a well integrated video-tape program is an absolute necessity. The conventional methods of cuing consist of either putting an audible cue on the sound track, or backtiming from the beginning of the first video with some sort of timer or

By STAN DAVIDSON
Engineoring Dapt.
Merodith WOW-TV
3507 Fornam St.
Omaho. Nebr.
timing leader. These methods, while serving their purpose, can sometimes be inaccurate.

The following describes a unit which, when picked up on a television camera and recorded on video-tape, will give on playback a series of cues similar to that of
academy timing leader used in cuing up film.
The cue consists of a video numerical countdown with a 500 cy cle, half-second tone burst from nine seconds. On play back this allows the video-tape machine to (Continued on page 168)

Narrow tapered nose... ideal for confined places

DIAMALLOY

(3)

DIAGONAL CUTTING PLIERS

Edges ground for flush cutting, hand honed to stay sharp.

Ask your Industrial or Electronic Distributor for Diamalloy Pliers.
"There is nothing finer than a Iliamond"

3 SIZES

S54 RG • 4 inch
S55 RG• 5 inch
S56 RG • 6 inch

-1. and and forseshoe f(o) DUIUTH, MINNESOTA . TORONTO, ONTARIO

Many Other Pliers
Designed for
the Electronic Industry are Made by

Diamond Tool and Horseshoe Co.

 LN54

Curved Long Nose Plier CN54

Duck Bill Plier DN54

Transverse End Cutting Plier EC54

Diagonal Cutting Plier MS54

Wire Stripping Plier ST55

WASHINGTON

News Letter

AUTOMATION KEY THEME-The engineering sessions at the National Association of Broadcasters convention in Washington, May 7-10, will be keynoted with discussions and presentations centered on automation and miniaturization, particularly transistorized equipment. The sessions may have the largest attendance of engineering officials from the radio and television fields in NAB's history. There will be more than 50 manufacturing exhibits, the largest number in broadcast convention records. According to NAB officials, the technical reports will present a number of significant developments affecting future progress of radio and television.

OUTSTANDING SPEAKERS-For the first time in NAB convention history, the engineering conference will have its own luncheon speakers. The trio who will appear are outstanding authorities in their fields. Henry Loomis, Director of the Voice of America of the U. S. Information Agency, will speak at the May 8 luncheon. Major General J. B. Medaris, former chief of the Army's ballistic and space program and now President of the Lionel Corporation, will be the speaker May 9. Dr. Edward Teller, atomic scientist, "father" of the hydrogen bomb and now Professor of Physics at the University of California. will address the final engineering conference luncheon May 10.

SELF-REGULATION AND FUTURE - Two key themes underlie the management sessions of the $\therefore \mathrm{AB}$ convention, both in the presentations of the speakers and in the meetings of radio-television network and station executives. They are: self regulation instruments through the NAB codes to improve the status of broadcasting and the future policies of the Federal Communications Commission regarding television allocations and programming. NAB President, former Florida Governor LeRoy Collins. will preside over this years convention. He will deliver the keynote address at the May 8 opening general assembly, and the luncheon address that day. FCC Chairman Newton Minow will make his first major address to the broadcasting industry's management and station owners at the May 5 luncheon. On the final day, May 10. Chairman Minow and his fellow Commissioners will participate in a question-and-answer session of the NAB management and engineering convention delegates.

VIEWS ON SPACE-The FCC has asked communications industry organizations for their views on legal and policy questions which may arise if the Commission decides to authorize a single or limited number of commercial space communications systems. These views are to be submitted by May 1.

This was the third such inquiry into space communications questions by the Commission in a period of less than a year. The FCC propounded as basic is-sues-what plan of participation is best designed for access to, and non-discriminatory use of, satellite communications facilities by existing and future international communication common carriers, and the participation of manufacturers of satellite communication and launching equipment.

NO SPACE MONOPOLY-A monopoly in satellite communications is not sought by the Bell System. The FCC has been advised by the American Telephone \& Telegraph Co. that it desires only "the opportunity to employ private initiative, management and capital in the public interest and under publice regulation in a manner wholly consistent with traditional public policy with respect to international communications." The Commission was also informed by AT\&T that the "low-orbit system." proposed by AT\&T is "the preferred space communications system at this time since the technology is well advanced for the low-orbit satellite."

EIA MEDAL OF HONOR-The Electronic Industries Association is awarding its 1961 Medal of Honor to Dr. Jerome B. Wiesner, President Kennedy's special assistant and advisor for science and technology, for his "distinguished service contributing to the advancement of the electronics industry." Dr. Wiesner is now on leave as Director of the Massachusetts Institute of Technology Research Laboratory of Electronics. He was also chairman of the steering committee of the MIT Center for Communication Sciences established in 1958 to study both man-made and natural communication systems.

National Press Building
ROLAND C. D.AVIES
Washington 4

GOVERNMENT PROCUREMENT POLICY of withholding 20% of costs incurred by contractors fulfilling certain categories of cost reimbursement contracts until they had delivered end items has been rescinded. With the cancellation, contractors are now paid in full for their incurred cost as they accrue in work on future contracts of this type, and second, the military departments are authorized to pay present contractors the amounts currently deferred to the extent these contractors are willing to renegotiate their fee. It is estimated that some $\$ 175$ million of deferred payments to contractors could be accelerated if contractors avail themselves of this provision.

ANOTHER BENDIX FIRST! $120-$ VOLT, $110^{\circ} \mathrm{C}$. DAP TRANSISTORS

Exclusive! Available with Cerameterm* terminals that set new reliability standards

Here's important news for you if you're a design engineer. New Bendix 10- and 25 -amp DAP ${ }^{\text {ix }}$ diffused alloy power transistors switch high currents in microseconds. They also offer low input resistance for increased circuit stability over a temperature range from $-60^{\circ} \mathrm{C}$. to $+110^{\circ} \mathrm{C}$.

That's not all you get with these new DAP transistors. They're also available with new Cerameterm (ceramic-metal terminal) bases specially developed by Bendix for extra reliability in severe applications demanding high performance.
Only Bendix brings you all these advantages . . . plus many more ... that open the door wide to new design ideas and applications. Write for full details. *Trademark

NEW AENOIX SEMICONDUCTOR PLANT sinveted on 118 acres of Molmdel, N.J., is dovoted endunively feresearch, engineering. and monufacturo. A bieg reason you can continue to look me Bendiz Semiconductors for astra quality at mo antra cost.
semiconductor products
Red Bank Division
hoImdel, NEW Jeasey

 Enport Officen Iondin memational, 20 S E. 42 nd Street, Now Yort 17, N.Y.- Moner MUrray Mill 3.1100-TWX NY 1-4800. Stocking Dtsrributon-Contoes nearest salen oflice for name of local distributior.

in

50 years...
over
3,500,000,000
capacitors

For over fifty years, Cornell-Dubilier has specialized in the design, production and distribution of capacitors. William Dubilier is regarded throughout the world as the "Father of the Capacitor Industry." From a modest beginning in 1910, CDE has continued as the leader in this important phase of electronic components pioneering.

Today the many vast and widespread facilities of CDE provide a single source of unmatched capacitor technology. There are more CDE capacitors in use today than any other make - every conceivable known type, style and class-fabricated and sold by CDE in every part of the world.

Designs still unborn are being conceived and developed in CDE's Research Center . . . particularly "High Reliability" components for the most advanced applications of the Electronics Age.

Be it ceramics, mica, electrolytics, tantalum, film, paper, metalized or types yef unknown, CDE can be depended upon to meet the needs of the Electronics Industry . . . today and in the future.

CDE also produces relays, semiconductors, filters, delay lines, pulse networks, packaged circuits and systems, test instruments, vibrators and converters, and antenna rotors . . . all allied electronic devices frequently associated with capacitor technology.

When you have been around for 50 years there are reasons... uncompromising quality of materials, meticulous care in production, exhaustive testing and a compelling "Urge to Serve."

Look to CDE every time you look for Capacitors. Cornell-Dubilier Electronics Division, Federal Pacific Electric Company, 50 Paris Street, Newark I, N. J.

highly reliable electronic components and systems

What's New

Breadboards Speed Electro-Mechanical Design

LET'S start at the design engineer. In the early stages, after turning over various aspects of the project in his mind, the design engineer more than likely comes up with a rough sketch.

Normally the next step would be for the designer to prepare a scale drawing from the rough sketch. However, by using templates (available free of charge from PlC Design Corp.), this sketch can now be turned over to a draftsman or engineering assistant. He can quickly furnish a full-scale drawing. After the drawing has been finished. the parts are ordered.

The first step in assembling a model is to assemble the leg posts to the slotted mounting plate. This is accomplished by using wing nut-screws. Next, spur gears, couplings, differentials, clutches, etc., are fitted to the shafts of electrical components. The electrical components are then secured in component hangers.

Electrical components are mounted in the approximate position indicated on the drawing. The thumb screws are not securely tightened until all equipment has been mounted and can be accurately aligned. General practice is to start installing at one side of the board and work across.

The design engineer turns a rough sketch over to a draftsman who uses templates supplied tree to make a completed drawing.

Breadboard parts are assembled according to design drawing. Design can be easily changed if system does not operate as desired.

Again working across the board, shafts are fitted with gears, shaft hangers, and other components such as differentials, dials, cams, etc., and mounted in place according to the drawing.

Once all the equipment has been assembled and placed on the board, it is aligned with a square using the machined edges of the slotted plate as a guide. The thumb screws are then securely tightened.
Terminal strips are available to facilitate wiring of electric circuits.

Once the breadboard has been completed it can be operated under all electrical or mechanical conditions which might be encountered in practice. Weak points can be corrected, improved spacing arranged and a complete range of operating characteristics ubtained for evaluation and study.

Depending on the particular requirements, the project can be followed further. Let us assume that this unit is to be built in production of approximately: 100 systems. One can now, from the tried, tested, and approved schematic layout and breadboard, design this unit into a package, depending on space and specification requirements.

After the production design layout is completed. detail drawings of the few special parts, such as plates, castings, etc., are made, and a bill of materials provided which lists all standard stock items and special parts, hardware, etc.

Finally, one or two prototype units should be made in order to prove out the final production design. tolerances, fits, and mechanical clearances.

After the prototype unit is completed and testell. all corrections are made, and production manufacturing procedures finalized. All components can be ordered from stock. No delays are encountered in waiting to tool up for and produce special parts; costs are on a mass production basis.

Original production costs have been cut as much as 50% on many previously designed systems and redesigned units as a result of using stock precision instrument components.

Material for this article was supplied by PIC Design Corin. 47\% Atlantic Ave., East Rockaway. N. Y.

Illuminated Indicator Switch

ANEW illuminated push-button switch for a wide range of electronic and electrical control applications has been introduced by Sylvania Electric Products Inc. Among the applications of this device are: electronic instruments and devices, detector equipment, remotely controlled motor installations, conveyor installations, electric activating equipment. and as an indicating switch on any type of electric equipment of suitable load.

The new switch accepts Sylvania indicator lamps of $4,6,10,12,16,24,28$, and 48 volt sizes. A change in circuits merely requires a change in lamps. The lamps and also the colored push buttons can be replaced from the front of the mounting panel. The translucent nylon caps come in red, yellow, green, white and blue.

The construction of the switch incorporates four contacts for separate indicating and load circuits and it is rated at 5 amps capacity at 250 volts. The spring loaded mechanism has a one million index life. The terminals are "78" Series Amp Faston Connectors which are numbered to facilitate wiring. The switch is a single pole, double throw switch with wiping contacts.

Sylvania's new illuminated pushbuiton switch incorporates four contacts for separate indicating and lood circuits (right). Lamps can be replaced from the front of panels (below).

Pennies or Dollars?

How much do you want to save on the cost of your meters?

Substantial savings are possible in most cases if you use or specify meters in large quantities. This is being proven by the fact that many of the world's most respected manufacturers of electronic components or complete assemblies (names upon request) are today using Sekonic Meters.

Whether your needs are in simple stock-design types or the fulfillment of complex, close tolerance specifications, Sekonic's unusually fine record of precision may be of service to you.

Sekonic's in-use reliability is unquestioned and deliveries are made in strict accordance with your requirement schedules.

Inquire today . . . we believe you may be in for a pleasant surprise both in cost and quality.

Write for your FREE copy of "Sekonic Meters . . a story of Precision."

:SEKONIC INC. 130 West 42 Street. New York 36, N. Y. Cirele 158 on Inquiry Card

Tape Cuing (Concluded)

be stopped on any desired number from nine down, with the number selected indicating the remaining time before the start of the show. Six seconds is generally used. This leaves ample time for the videntape machine to come up to speed.

The countdown number appear: in the center of an identification card. The card also includes the title of the show, take number and play back date.

In practice the countdown is recorded by a stand-by camera until the number "two" appears. At "two" black is taken while the count continues on the camera monitor. At "zero" the show is switched up and the program recorded. This allows accurate timing between the starting of the tape machine and the beginning of the show.

The countdown circuit combines an audio oscillator with a com-puter-type readout indicator (Burroughs Nixie 870:31) which has over a two inch display of numbers from zero to nine. The Nixie tube requires 300 vdc for proper operation and gives ample light output for pickup on an image orthicon camera.

Operation of the circuit is as follows. Accurate half-second timing pulses are generated by a GAU'6 blocking oscillator when the start button is depressed. A relay in the plate circuit of the GAUG discharges a 20 mfd capacitor across the stepping relay. This keys the 500 cycle $12 \mathrm{AX7}$ phaseshift audio oscillator on and off. and also controls the Nixie indicator tube.

The stepping relay, which is a Western Electric 200A, has six decks with 22 positions. Since the first two positions are not used, the relay must step for one second before the countdown starts. Thereafter every other position is used. allowing counts from nine to zero with half-second blanks between counts.

Ground is applied to the Nixie tube cathodes in proper sequence by the rotor-wiper contact of the first deck. This completes the circuit ionizing the gas surrounding the numeral, causing it to glow. The rotor of the second deck of
the stepping relay is connected in the plate circuit of the audio oscillator, switching plate voltage to the tube coincident with the number. Every other position is paralleled down to two. The audio is stopped at two to prevent any chance of the tune getting on the air. It is then amplified by a GAQ5 and fed to a speaker mounted in the unit for pick-up on a mike. An rutput is also available from the cathode circuit for feeding tone directly into an audio console.

Several of the decks on the stepping relay are of the continuous wiping type with an "off" position. One of these is used to ground the cathode of the GAU6 timing generator, allowing the stepping operation to proceed until the "off" position is reached. Wepressing the start button shorts the cathode until the continuous wiper completes the circuit. The relay has several unused decks which could be used to directly key the oscillator in the cue channel of the tape recorder.

The entire unit is constructed in an 8x10x10 box with a two inch chassis attached to the front panel. All controls are mounted on the front. The Nixie tube is mounted to the rear and displays through a hole cut in the back panel. The title board is attached to this back panel. This leaves the tube slightly recessed which helps to reduce stray light.

A strip light is mounted above the title board to provide illumination for the necessary data accompanying the cue. A clear plastic face is placed over the title board to allow for easy cleaning between uses. The unit can be placed near a camera on a tote board. The start button is on the end of a short cable which allows the operation of the unit from a position near the carnera.

Paper or oil capacitors should be used in the grid circuit of the GAU6 since this capacitor, along with the timing potentiometer, adjusts the frequency of the blocking oscillator. The plate circuit relay is a SPDT sensitive, high resistance type with five amp contacts.

After construction the time can be accurately set by observing the pulses at the plate of the GAUG on a scope with a calibrated sweep or by timing the count with an accurate stop watch.

breaks through with new 75v. Solld Tantalum Capacitor...

REPRESENTATIVES FUR "KEMET" SOLID TANTALUM CAPACITORS EAST COAST, williston Park, M, Y.Electrical Manufacturers Service.
P. O. Box 128. 105 Hill side Avenue P. O. Box 128, 105 Hillside Avenue FLORIDA, Melbourne-loseph A. Adams Associates, P. O. Box 1322
middle arlawilc. Clevelane 1R. G. Sidnell \& Co., 1229 W. Lake Ave South Whittey, Ind. - Warner, Kesler s Associates, P.O. Bon 338
MIDWEST, Chicage 45 -D. Dolin Sales, 3553 West Peterson Avenue
MINMESOTA, Minneapolis 18 Stan Clothier Co., Inc., 12 West 58th St. SOUTMWEST, Dallas, TerasAmmon \& Champion Company, 2714 Bomar Street
MORTMWEST, Seattie e-
Samuel N. Stroum Co., Inc. 621 Michigan Street
ROCKY MOUNTAIM AREA, Denver 28Barnhill Associates. 1170 South Sheridan WEST COAST, San Marine, CEl.WEST COAST, San Marine. 2065 Huntington Drive

highest rated working voltage unit of its kind available today!

CAPACITANCE VALUES: I to 15 . Miorofarads - TEMPERATURE RANGE: -55 to $+125^{\circ} \mathrm{C}$.
A new frontier in capacitor technology has been opened by "Kemet's" successful achievement of a new 75 -volt solid tantalum capacitor!
"Kemet's" breakthrough comprises 14 catalog types, hermetically sealed in the four case sizes specified in MIL-C26655A for CS12 and CS13 styles . . . providing Standard E.I.A. capacitance values in tolerances of $\pm 20 \%, \pm 10 \%$, and $\pm 5 \%$.
"Kemet's" latest addition to its complete line of solid tantalum capacitors supplements its popular J-Series . . . available in capacitance values ranging from . 33 to 330 microfarads and working voltages of $6,10,15,20,35$, and 50.

Solid construction and utmost operating dependability have made "Kemet" tantalum capacitors the leader in their field. They can be specified and installed with confidence, because they have been subjected to the most exacting tests for life, temperature, humidity. vibration, and acceleration.

For data on "Kemet's" new 75 -volt J-Series tantalum capacitors, write for Bulletin $\# 38$ to Kemet Company, Division of Union Carbide Corporation, 11901 Madison Ave., Cleveland 1.
"Kemet" and "Union Carbide" are registered trade-marks for producta of
KEMET COMPANY

New narrow ultra-thin strip-the smallest strip produced today in quantity-is now available to meet specifications for microminiaturization in electronic and magnetic systems. Moly Permalloy and other high permeability alloys in thicknesses down to $.0001^{*}$ and $.015^{\prime \prime}$ widths are available in production quantities. For special applications, magnetic strip only $.005^{\prime \prime}$ wide can also be produced commercially.

This unique material is used in precision magnetic components such as twisters and tape wound bobbin cores for pulse translormers and magnetic amplifiers.

Rod, bar, loil and wire can also be supplied to meet close dimensional tolerances and physical requirements. For further information write today for Technical Data Sheet 501—Dept. El-5.
 H。 Lancaster, Pennsylvania

Tube-cavity Combination

ASIGNIFICANT advance in design of microwave equipment is seen in the development of a tube-cavity combination by. General Electric's Receiving Tube Department. The developmental Cband device operates over the 5250 to 6050 megacycle frequency range with a power output of 4 to 10 milliwatts. It is designed to act as a very stable oscillator, however the output coupling can be increased to provide adequate power to pump a parametric amplifier.
The new device may eventually replace small klystrons. The success achieved with the C-band device suggests that integral tubecavity combinations may be designed for X-band applications.

Maintenance procedures requiring replacement of tubes in microwave equipment will be simplified by the use of a tube-cavity combination. In the field. all that will be required is to replace the old tube-cavity with a new one, and to make a simple one-knob frequency adjustment.

Advantages of the tube-cavity oscillatur over a klystron or mag. netron are that it has relatively: simple power supply requirements. greater frequency stability, and is physically simpler to install and adjust.

The development and design work is scheduled for early completion.

Fluxless Solder

ANEW low heat fluxless solder. Tin-a-lum, which can join an! metal with the exception of cast iron has been developed. It can be used with almost any type of heat except a flame of sooty nature. The material to be joined is first heated to approximately 210 degrees C., and the solder applied without the use of the flame. The heat in the metal is used to melt or fuse the Tin-a-lum to the parent metals. When applied proper(Continued on page 172)

CORNING CYFM CAPACITOR has reliability you can see

You get total protection against environment for less money than ever before

The new Corning CYFM capacitor gives you reliability at a markedly lower cost than that of any like capacitor.

The CYFM goes far beyond MIL-C-11272B specs. It has proved its performance through more than 3.000 .000 hours of testing. It took a 50 -day MIL moisture test and a 96 -hour salt spray test with no measurable effects. We stopped testing only when it became evident that no more significant data could be developed. The CYFM went through other tests, with solvents, fluxes, boiling salt, and steam, 10 make sure it is the most completely sealed capacitor you can buy.

You'll see why the CYFM can take such torture when you check its design. We stack alternate layers of stable ribbon glass and aluminum foil. Then we weld the foils to the bead-terminal assembly, which has a glass bead sealed to the Dumet wire lead. With heat and pressure, the entire capacitive element is frozen in glass for complete protection
against environment and for structured protection against physical shock.

True glass-to-metal seals at the weld area and along the leads bar moisture. The seal of the leads to the glass shifts stresses from the leads to the entire monolithic unit. guarding the capacitance area. Of course, you get electrical performance to match this environmental stability. since the CYFM has our glass-foil capacitor construction.

The CYFM is machine made . . . each capacitor is the same as every other, to give you uniformity which hand production cannot match.

You can get immediate delivery on the CYFM in two types. The CYFM-10 gives capacitance values from 1 to 300 pf. The CYFM-15 provides values from 220 to 1200 pf.

For the rest of the story on this capacitor, send for our data sheet. Write to Corning Glass Works, 546 High Street, Bradford, Pa.

This is the CYFM capacitor. 6 times actual size. The dark areas between the ends of the glass and the capacitance element are youi visual proof of the complete glass-to-metal seal.

Why "tool-up time" is all the time for CONTINENTAL CONNECTORS

Cuntinental Connector makes a wide variety or standard connectors in the types shown in the panel. Naturally we are pleased when our customers use these proven types. However. with the constant development of new equipment for missiles, aircraft, computers and communications, customers often need special connectors outside the specifications of our catalog line.

When this happens to you, why not take advantage of Continental's many years' experience designing and developing new connectors for the biggest names in the electronics field In Continental Connector you will find a leader anticipating the precision connector requirements of a fastmoving industry that demands proven reliability under the most exacting environmental conditions. Our tool room (pictured above) can "tool up" on short notice to produce new dies for your special connector applications.

Next time you are faced with a connector design or production problem, try Continental Connector, and see how our finished product measures up to your critical electrical and mechanical specifications. A condensed catalog of our complete line is available free on request. Write to:

Electronic Sales Division

DEJUR-AMSCO CORPORATION
Northern Boulevard at 45th Street, Long Island City 1. N. Y. Exclusive Sales Agent

(Continued from page 170)

ly Tin-a-lum has good machineability. The finish obtained is much the same as the parent metal.

The greatest danger with aluminum is corrosion. Tests show that Tin-a-lum is less corrosive than aluminum. Where it is placed on the parent metal the risk of corrosion is less likely. The main causes of corrosion have been found to be overheating the parent metal, especially rolled aluminum and light gauge materials. These tend to lose their protective coating and then become more liable to corrosion than before. The other danger is the use of an oxidizing flame. To help the layman and others, Tin-a-lum has been produced to be used with a soldering iron.

Metals including aluminum and its alloys can now be soldered with an ordinary soldering iron and without the use of flux.
Tin-a-lum is a product of Metals for Industry, Inc., Jersey City, N. J.

New Hawaiian Cable

Lenkurt Electric's Type 23A DATATEL telegraph multiplex equipment has been selected for use on the new 1,900 -mile Hawaiian cable. It will be used for out-ofband supervisory signaling and dialing. Voice circuits on the cable employ the new "TASI" technique (time assignment speech interpolation), and can handle about twice as many channels as would be possible otherwise.

Type 23A uses frequency shift modulation, is fully transistorized, and operates at 80 bits per second, or 100 wpm . Due to comparatively narrow 120 -cycle spacing between channels, 23 A will permit more channels in a given band. In this case it provides six additional channels.

Preserving Diagrams

Kenmore Sales Co., Lowell, Mass., can take diagrams and laminate them to a plaque which will have an indestructible surface. The surface will withstand all kinds of stains, abrasions, weathering, water and yellowing. It will last in its original state for longer than the equipment. There are certain limitations as to the type of paper which can be preserved, but none on size.

CENTER
SCREWLOCK

The Untouchablēs

Specify Crucible Charges of Deposited Hyper-Pure Silicon

Free brochure - "Hyper-Pure Silicon for Semiconductor Devices." Write Dept. 3417.

Pre-packaged single piece crucible charges ... in sizes and weights to meet the exact requirements of your Czochralski crystal growing equipment . . . are now available from Dow Corning.

Accurately Preoveighed, these single piece crucible charges assure easy handling . . . smallest surface area . . . highest purity . . . an exceptionally clean melt and a savings in crucible costs.
High Quality is inherent in Dow Corning crucible charges. The deposited polycrystalline silicon in these charges has never touched a mold. Result - highest purity.
This High Purity means consistently higher quality crystals - simplifies doping procedures - increases device yield. Typical resistivity of N-type crystals grown from Dow Corning prepackaged crucible charges is greater than 100 ohms centimeter for 80% of the crystal; maximum boron content, 0.3 parts per billion atoms; maximum donor impurity, 2.0 parts per billion.

Now You Specify the W'eight and Diameter, up to 38 mm (about $1^{1 / 2} 2^{\prime \prime}$), best suited for each crucible of your Czochralski crystal growing machines. Your crucible charges will be supplied in the appropriate length to provide the exact weight you require in just one piece.
Protective Packaging guards initial deposited purity right through crucible charging. Charges are individually wrapped in special cellophane, and sealed in airtight polyethylene envelopes to assure untouchable purity.
Whatever your need - deposited silicon crucible charges; polycrystalline rod or chunk; high resistivity P-type single crystal rod; single crystal rod doped to your specifications - Dow Corning should lead your list of sources.

HYPER-PURE SILICON DIVISION
Addrese:
HEMLOCK, MICHIGAN

ELEGTRONIC ENGINEERS MATHEMATICIANS-PHYSICISTS

Current Positions Available For:

Program Systems Analysts

Will be responsible for the overall planning and supervision of computer programs. Will assign, outline and coordinate work of programmers and write and debug complex programs involving mathematical equations. Requires ESSE, Mathematics, or Physics. with experience in the operation and programming of the AN FSQ.7NB.

Computer Programmers

To develop and/or analyze logic diagrams, translate detailed flow charts into coded machine instructions, test run programs and write descriptions of completed programs. Requires BS in Math. with programming experience on the AN/FSQ-7N8 preferred, although IBM 700 series will be acceptable.

Computer Operators

To maintain data reduction and utility tape files, card files and program listings. Will utilize the BTL version of the SOC compass utility system and aid programmers in program çheckout. Requires BSEE, Mathematics, or Physics with experience in the operation and programming of the AN. FSQ.7N8 computer.

System Test Engineers

To plan, prepare and generate system test, data reduction and analysis specifications. Maintain liaison with the using agency. Resolve problems between the specifications. test methods and actual procedures in use.

Sub-System Engineers

To plan, prepare and generate specs for sub-systems tests and data reduction and analysis programs. Will be responsible for test instrumentation, personnel and other require. ments to implement test design, and effect the liaison with programming, test instrumentation and testing per. sonnel. \qquad
All aualified applicants will continue to receive consideration for employment without regard to race, creed, color or national origin

Ready to GO! Able to GROW! PHILCO TECHREP DIVISION

Now Forming Nucleus Group To Develop \& Manage Systems Engineering On America's Vital Defense Line.

SENIOR LEVEL POSITIONS... SALARY OPEN

Choose from These SIX Locations:
- Lexington, Mass. \quad Boston, Mass.
- Montgomery, Ala. Philadelphia, Pa.
- Washington, D.C. Palo Alto, Calif.

As the pioneer in electronic field engineering, PHILCO's capabilities are now being integrated into the more complex field of systems engineering.

Broadly speaking, the men we are looking for will direct their professional efforts to developing and establishing systems engineering concepts, standards, and criteria for the overall operation of computer equipment and systems.

- These are long term career positions offering first rate promotional opportunities to U.S. citizens "ready to go and able to grow" with America's foremost electronic field engineering organization.

Direct Resumes In Confidence To Dept. A D. E. DIMMIG, Employment Manager

PROFESSIONAL OPPORTUNITIES

Reporting late developments effecting the omployment picture in the Electronic Industries

Defense Contracts Urged For Depressed Areas

Senator Jacob K. Javits (RN.Y.), in presenting his latest analysis of defense contract awards said that prime defense contracts to high unemployment areas in New York State dropped by 60% during the last quarter of 1960.
()f prime contracts of $\$ 10,000$ or nure. twelve major and smaller New York State areas listed by the Depaltment of Labor as having sulsitantial labor surplus received unly $\$ 36,579,000$ during the Octo-ber-December, 1960 period. "These "re very disturbing figures," Senator Javits said, "and they stress the need for improving our machinery for channelling more defense contracts to areas of high uneniployment."

Cew York State as a whole is continuing to increase its share of U. S. defense business. For the half-year period, July-December 1!(90). New York firms received 12. 66^{\prime}, of all contracts awarded nationally. This represents the highest percentage share for this period itl five years. During the same period in 1960, California saw its percentage share decline slightly to 2f.!', of all awards. Sens. Jatits. and Keating, and the New York State Congressional Delegation halve been fighting to reverse the trend of defense contract awards t1) (alifornia at the expense of many industries located in New link and other parts of the Eust.

Senator Javits said, "It is signifi(ant that the entire amount of the more than $\$ 50$ million decline in awards to New York State, during the Octuber-December 1960 quarlev. Was absorbed by areas of substantial labor surplus. There must be a thorough revaluation of government procurement policies that permit the entire impact of this decline in defense purchases to fall upon areas whose economic problems and high unemployment are the issues of primary concern.

Demand For Engineers Continues HighSalaries, Costs of Recruiting Rise

The so-called recession is not being felt by electronic engineers. Neither those long established in the business nor those just entering from engineering schools are experiencing very great difficulties in obtaining jobs.

The Engineering Manpower Commission of the Engineers Joint Council reports engineering salaries at an all time high. Salary levels for all engineers rose about 5% last year. This continues a pattern established several years ago. The rate in-

INVESTMENT FIRM

Samuel I. Solomon (leff) receives a small business firm license from John E. Horne. Administrator, Small Business Administration. Mr. Solomon is president of the new firm Aviation Crowth Investments, Inc., which will provide financial assistance to small companies in the aviation industry.

400 Computer Men Wanted

Minneapolis - Honeywell's Electronic Data Processing Div. is planning to hire about 400 electronics service engineers in a major expansion of its field service and systems test operations. The enyineers will receive more than six months training in the checkout. programming, operation and maintenance of the Honeywell 800 and the 400 EDP systems.

FOR MORE INFORMATION

 on positions described in this cection fill eaf the conventent Inguiry card, page 189.crease is well above increases in the Consumer Price Index and the rate increases for production workers.

Median salary (all engineers in industry, education, and Government) is $\$ 9,600$. Median starting salaries range from $\$ 5,375$ for those accepting Government positinns to $\$ 6.775$ for those starting in industry. The median starting salary is $\$ 6,725$.

Company recruiters are as busy (if not busier) this year as they were last year and the year before. Some company execs are shuddering, though, over recruiting costs. They are also concerned over the false impression of industry these recruiting tactics are giving the newly-graduated engineer.

Recruiters use a whole bagful of tricks to capture the engineerespecially the bright boys at the top third of their class. Inducements include: putting the recruit on half salary an soon as he signs up: picking up the tab for expensive hotel rooms and entertainment; bird-dogging (putting pressure on prime prospects before official recruiting begins), etc.

Man! college placement officials look the other way-especially if the recruiter is from a company that contributes to the collegebut. many others are seriously concerned. The College Placement Council has drawn up a code of ethic: which lays down ground rules for both recruiter and placement officials, but they find that enforcing the code is not too easy.

By H. E. MATUSZEWSKI
Senior Stoff Engineer Electrical/Electronic Systoms Aeroiet-General Corp. 11711 South Woodruff Avenue Downey. California

More and more, engineers are drawn into the economic web of management.
And why not?
Are they not the ones who know best a project's technical requirements?
Should they not be able to estimate the
time requirements to accomplish these tasks?
We think so-
and here's a handy chart to help.

Budgeting

Manpower

HOW often do you dread the thought of costing a proposal? Budgeting al work effort? Determining time - until - completion? Many engineers have to do these tasks as part of their normal work. The chart presented here is by no means the final answer, but it can assist greatly as a guide.
The chart can be used in several ways. It is based on the average 173.3 work-hour month and rounded off to the nearest whole hour. The lower part of the chart is based on a 40 hour week and can be used when exact monthly estimates are required. The examples show a few uses.

Example 1

Given: 9 months and 6 men for the project.
Problem: How many hours will they expend? (No overtime please!)
Solution: 9360 hours. See vertical column 6 and horizontal column 9.

Example 2

Given: 1083 hours to complete work.
Problem: How many months for one person?

Solution: See vertical column 1.
The nearest number is 1040 hours or 6 months. The additional 43 hours is read as $1 / 4$ month in column 1. Therefore, it will take $61 / 4$ months.

Example 3

Given: May 1961 has 22 working days. 3 men will be on overhead for the full month.
Problem: How many hours in May on the overhead budget?
Solution: 528 hours. See vertical column 3 and horizontal column 22.

Example 4

A final example will prove useful for large complex organizations.
Given: 145 engineers will work for 2 months.
Problem: How many hours will they accumulate in 2 average months?
Solution: Find horizontal column 2 and vertical columns $1 / 2,4$, and 10. Add and multiply by 10 .
$10 \times(173+1387+3467)=$ 50,270 hours (which is very close to the true figure of 50 ,266.6 hours as done on a calculator).

$$
* * *
$$

of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut G 56ih Sis., Phila. 39, Pa.

MANPOWER CHART

Staff vs. Time

		NUMBER of MEN														
		1/4	1/3	1/2	2/3	3/4	1	2	3	4	5	6	7	8	9	10
	1/4	11	14	22	29	33		87	130	173	217	260	303	347	390	433
	1/2	22	29	43	58	65	87	173	260	347	433	520	607	693	780	867
	3/4	33	43	65	87	98	130	260	390	520	650	780	910	1040	1170	1300
	1	43	58	87	116	130	173	347	520	693	867	1040	1213	2387	1560	1733
	2	87	115	173	231	260	347	693	1040	1387	1733	2080	2427	2773	3120	3467
	3	130	173	260	347	390	520	1040	1560	2080	2600	3120	3640	4160	4680	5200
	4	173	231	347	462	520	693	1387	2080	2773	3467	4160	4853	5547	6240	6933
	5	217	289	433	578	650	867	1733	2600	3467	4333	5200	6067	6933	7800	8667
	6	260	346	520	694	780	1040	2080	3120	4160	5200	6240	7280	8320	9360	10400
	7	303	404	607	809	910	1213	2427	3640	4853	6067	7280	8493	9707	10920	12133
	8	347	462	693	925	1040	1387	2773	4160	5547	6933	8320	9707	11093	12480	13867
	9	390	519	780	1040	1170	1560	3120	4680	6240	7800	9360	10920	12480	14040	15600
	10	433	577	867	1156	1300	1733	3467	5200	6933	8667	10400	12133	13867	15600	27333
	11	477	635	953	1272	1430	1907	3813	5720	7627	9533	11440	13347	15253	17160	19067
	12	520	693	1040	1387	1560	2080	4160	6240	8320	10400	12480	14560	26640	18720	20800
	17	34	45	68	91	102	136	272	408	544	680	816	952	1088	1244	1360
	18	36	48	72	96	108	144	288	432	576	720	864	1008	1152	1296	1440
	19	38	51	76	101	114	152	304	456	608	760	912	1064	1216	1368	1520
	20	40	53	80	107	120	160	320	480	640	800	960	1120	1280	1440	1600
	21	42	56	84	112	126	168	336	504	672	840	1008	1176	1344	1512	1680
	22	44	59	88	217	132	176	352	528	704	880	1056	1232	1408	1584	1760
	23	46	61	92	123	138	184	368	552	736	920	1104	1288	1472	1656	1840
	24	48	64	96	128	144	192	384	576	768	960	1152	1344	1536	1738	1920
	25	50	67	100	133	150	200	400	600	800	1000	1200	1400	1600	1800	2000
	26	52	69	104	239	156	208	416	624	832	1040	1248	1456	1664	1872	2080
	27	54	72	108	144	162	216	432	048	864	1080	1296	1512	1728	1944	2160
	28	56	75	112	149	168	224	448	672	896	1120	1344	1568	1792	2016	2240
	29	58	77	116	155	174	232	464	696	928	1160	1392	1624	1856	2088	2320
	30	60	80	120	160	180	240	-480	720	960	1200	1440	1680	1920	2160	2400
	31	62	83	124	165	186	248	496	744	992	1240	1488	1736	1384	2232	2450

THERE IS NO CELINNG ON IDEAS

- Advanced hydrogen systems being developed by The Garretl Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fielda
Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Major fields of interest are:

- Environmental Control Systems-Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems-Largest supplier of accessory power units. AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines-World's largest producer of small gas turbine eagines. with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.

Excellent positions are available for qualifed men with M.S., Ph. [). and Sc. D. dcurees for work in these areas.

Send resume to: Mr. R. H. Horst
THE GARRETT CORPORRTHOEA
AiResearch Manufacturing Divisions
Los Angeles 45, California - Phoenix, Arizana

Industry

News

Cortlandt Van Rensselaer-named General Manager of a new division for Engineering and Manufacturing Oscilloscopes of Hewlett-Packard Co., Palo Alto, Calif.

Ralph L. Shapcott-appointed Director of Manufacturing and Assistant General Manager of Daystrom, Inc., Weston Instruments Div., Poughkeepsie, N.Y.

William S. Strout - named Vice President Purchasing, of Oak Mfg. Co., Crystal Lake, Ill.
J. C. Schraa-appointed Vice President Finance, of Illumitronic Systems Corp. and Illumitronic Engineering, affiliated Sunnyvale Calif. companies.

Zeke R. Smith-named Executive Vice President and General Manager of Potter \& Brumfield, Div. of American Machine \& Foundry Co., Princeton, Ind.

2. R. Smith

Di, C. Krsek

Dr. George Krsek has joined International Rectifier Corp., El Segundo, Calif., as Executive Vice President and General Manager.

Clifton P. Walker-named Director of Amphenol-Borg Electronics Corp., Broadview, III.

Edward H. DaCosta-elected President of Taylor Fibre Co., Norristown, Pa .

Everett M. Kruger-appointed Manager of Systems and Procedures, RCA Electronic Data Processing Div., Camden, N. J.

William Lawrence has been appointed General Manager and Howard L.. Gates as Manager of Operations of the San Diego Facilities of General Dynamics/Electronic's Military Products Div.

Herbert A. Finke - named Vice President and General Manager of Bomac Laboratories Inc., Beverly. Mass.

Stanley T. Rose-elected President of the Kolux Corp., Kokomo. Ind., sub. of The Victoreen Instrument Co., Cleveland, Ohio.

Sydney L. Capell and Roy W. Pratt have been elected Vice-Presidents of Zenith Radio Corp. of Canada, Ltd. Toronto, Canada.

Leonard K. Adamg-named Director of Export Activities for Fansteel Metallurgical Corp., N. Chicago, Ill. (Continued un page 182)

Said Johann Kepler: "The planets move in elliptical orbits about the sun, and the square of their periods of revolution are proportional to the cube of their mean distances from the sun."

With interplanetary voyages fast becoming a reality, complete information regarding the velocity requirements for travel between planets is of vital importance. With these data available, it is possible to analyze propulsion requirements, plan ultimate system configurations, and conduct feasibility studies for any particular mission.

Lockheed Missiles and Space Division scientists have actually evolved a rapid-calculation method, utilizing a high-speed computer. This has produced literally thousands of orbits, velocity requirements, and elapsed time, for design studies of trips to and from both Mars and Venus-every tenth day from now until January, 1970.

More simple to analyze are many factors which make Lockheed Missiles and Space Division a wonderful place to live and work. Located in Sunnyvale and Palo Alto, California, on the beautiful San Francisco Peninsula, Lockheed is Systems Manager for such programs as the discoverer and midas satellites and the POLARIS FBM. These, together with research and development projects in all disciplines, make possible a wide diversity of positions for creative engineers and scientists in their chosen fields.

Why not investigate future possibilities at Lockheed? Write Research and Development Staff, Dept. M-14C, 962 West El Camino Real. Sunnyvale, Calif. U.S. citizenship or existing Department of Defense industrial security clearance required. All qualified applicants will receive considerarion for employment without regard to race. creed. color or national origin.

Lockheed/missiles and space division

Systems Manager for the Navy POLARIS fBM and the Air Force AGENA Satellite in the DISCOVERER and MIDAS Programs

[^6]
(6bieas 10 MEIT

 RESISTANCE SOLDERING
... for Peffect lead-to-pin joints on All sizes of A / N and similar connections

(ehaico) GLO-MELT

 ... for Fast-Efficient Accurate-Permanent connections.POWER UNITS • HANDPIECES • ACCESSORIES for all jobs from Micro-Miniature to Heavy-Current connectors WRITE FOR DESCRIPTIVE LITERATURE, FRICES AND NEAREST DISTRIBUTOR

Circle 141 on Inquiry Card

Immediate Openings

OVERSEAS
 AND IN THE UNITED STATES FOR ——ENGINEERS

TELEPHONE ENGINEERS, SYSTEM DESIGN TELEPHONE MSIDE PLANT ENGIMEERS TELEPHONE OUTSIDE PLANT ENGIMEERS TELEPHONE TRAFFIC EMGIMEERS
RADIO RELAY SYSTEMS ENGIMEERS
RADIO RELAY ENGINEERS
RADIO EMGIMEERS
TELETYPE EMGIMEERS
MULTIPLEX EMGIMEERS
MICROWAVE TECHNICIANS
POWER EMGIMEERS
SPECIFICATION ENGIMEERS
TRAMING SUPERVISORS
U. S. CITIZENSHIP REQUIRED (FAMILIES MAY ACCOMPANY)
SUBMIT DETAILED RESUME OF SCHOOLING AND EXPERIENCE AND DEFINITE BASIC SALARY REQUIREMENTS TO:

DEPT. 439
ci- ELECTRONIC INDUSTRIES 56 th \& Chestnut Sirreots Philadelphia 39, Pa.

How To Get Things Done Better And Faster

BOARDMASTER VISUAL CONTROL

is Gives Graphic Picture-Saves Time. Saves Money, Prevents Errors
is Simple to operate-Type or Write on Cards, Snap in Grooves
is Ideal for Production. Traffic, Inventory Scheduling, Sales, Etc.
is Made of Metal. Compact and Attractive. Over 500,000 in Use.
Fall price $\$ 4950$ with cords

PRE 24.PAGE BOOKLET NO. Z.IO Withor Obligation

Write for Your Copy Today GRAPHIC SYSTEMS

Yaneoyville. Morth Capaline
Circle 142 on Inauiry Card

Industry
 News

(Continued from page 180)
G. Richard Tingley-appointed Vice President, Military and Industrial Systems Dept., CBS Laboratories, Div. of Columbia Broadcasting System, Inc., Stamford, Conn.

Hoffman Electronics Corp., Los Angeles, Calif., announces the following appointments: Jack Kuhner - Vice President in Charge of Administration; H. Edward White-Director of Industrial Relations; Capt. Will I. Bull-General Manager of the Military Products Div.; Marvin G. Whit-ney-Director of operations, Semiconductor Div.; and Vice President Theodore S. Hofiman-Director of Operations, Evanson, Ill. facility of the Semiconductor Div.

Thomas C. Weston, Jr.-appointed Marketing Manager of Hughes Aircraft Co.'s Communications Div., Culver City, Calif.

Donn L. Williams - named Vice President and General Manager for the Armament and Flight Control Operations of Autonetics, a Div. of North American Aviation, Inc., Downey, Calif.
Edward A. Williams-elected Vice President Operations Control, of Collins Radio Co., Cedar Rapids, Iowa.

E. A. Williams

T. R. Finch

Tudor R. Finch-named Assistant General Manager of Motorola's Semiconductor Products Div., Phoenix, Ariz.

Dr. Donald M. Allison, Jr.-named President of Vitro Electronics, Div. of Vitro Corp. of America, New York, N. Y.

Dr. Ernest Wantuch - appointed Vice President of the Advanced Devices Laboratory of Airtron, sub. of Litton Industries.

American Systems Inc., announces the appointments of Louis M. Ballard -Head of the Instrument Div.; Bernard Diener-Head of the Component Development Div.; William Wagenseil -Head of the Instruction Div.; Ur. Robert E. Fagen-Director of the Information Sciences Div.; M. Donald Adcock-Head of the Electromagnetic Systems Div.; John W. BozemanHead of Command and Control Div.; and Arthur W. Vance-Head of the Research Laboratories Div.
(Continued on page 184)

Immediate Delivery!

ELECTRONIC INDUSTRIES'
Exclusive

1960 ELECTRONIC SPECTRUM CHART

ORDER YOURS TODAY

- All latest revisions and up-dated specs
- 30×22 inches in size
- Prinfed to show service and frequency area in six colors with-
- Expensive lacquer proof ink that will not run. Allows you to varnish or shellac chart to prolong its life.
- Orders filled and mailed same day.
- Suitable for framing and wall mount or,
- Under glass desk-fop reference.

Order Yours Today.

Over 5,000 copies already purchased!

Prices:

Indivi	$\$ 1$.
1 to 25	
26 to 100 copies	0.75 p
More than 100	0.50

Pleose make remittances payable to Electronic Industrios and moil to Reader Service Dopartment, Electronic Industries, Chestnut ${ }^{2} 56$ th Stroets, Philadelphia 39, Pennsylvania.

NEW
 VACUUM COAXIAL RELAYS - For higher pulse power at higher frequencies

Jennings announces an entirely new series of vacuum coaxial relays for use at frequencies up to 600 mc . Small, efficient vacuum transfer relays in a specially designed coax housing enable these relays to carry up to 15 kw peak power at 600 mc .
These relays are singularly effective for use as a transmit-receive relay. Vacuum guarantees permanenty low contact resistance that does not change even if the relay is accidentally switched under load. The result is a low and stable VSWR in any environment. Some units weigh as little as 11 ounces and range in size from only $3-1 / 4$ inches to $4 \cdot 1 / 16$ inches high.
Four different sizes of housings are available to accommodate a variety of standard coaxial connectors for different power level requirements. Housings are available with the following connectors: BNC, TNC, N, UHF, C, HN, and LC.
Consider the performance characteristics of these two relays:

> Model RCAI CAI:
> Charocteristic Impedance:
> Power Roting:
> Frequency Ronge:
> VSWR:
> Crosstalk:
> Incertion Loss:
> Actuating Voltage:

Model RCAS LCA1:
Charoctoristic Impedance:
Power Rating:
Frequancy Range:
VSWR:
Crostalle:
insertion loss:
Actuating Volrage

50 ohms
2 kw average at 30 m
0 to 600 me
1.05:1 max.

Greater than -30 db isolation at 400 me 0.05 db max.

24 or 115 vde

Write for more detalled literature on denninge complete llne of coexlal and other vecuum relays.
reLlability means vacuum/vacuum means
g
2ennings
IENNINGS RADIO MFG CORP 970 MCLAUGHLIN AVE SAN IOSE 8. CALIF., PHONE CYpress 24025

Industry

News

FXR, Inc., Woodside, N. Y., has unnounced that Henry Feldmann has resumed the Presidency of the company and Walter I. Reich. Secretary. Treasurer and Controller of FXR has been elected to the company's Board of Directors.

General Dynamics-Electronics has announced the appointments of Orval L. Buckner as Manager of Quality Control, Commercial Products Div and Otto J. Howe. Manager of Production Control. Commercial Prud ucts Div.

Wilson R. Smith has been named Plant Manager, Semiconductors for CBS Electronics, Manufacturing Div. of Columbia Bruadcasting System, Inc.

Wilson R. Smith
Herbert II, RickerI

Herbert H. Rickert has been ajppointed Chief Encineer of [louglas Research Corp., a div, of Douglas Microwave Co., Inc., Mt. Vernun. N. Y

The Victoreen Instrument Co, Cleveland, Ohio has named Georke R. Lippert as Manager and (ieorge H. Lister as Chief Engineer of their new Communications Div.

Bendix-Pacific Div., Bendix lorp., North Hollywood, Calif., announces the following appointments: Dr. John A. F. Gerrard as Director of Elec tronics Engineering: and in the Ben dix Computer Div:: Ronald V. John son and Jacob Chapsky, Senior Engineers and William B. Ellern as Engineer.
R. C. Bertelsen-promoted to Manager of 3 M 's St. Paul, Minn., tape plant, and A. F. Jacobson is named Manager of 3M's tape and adhesives. coatings and sealers plant in Bristul. Pa .

The General Electric Co., Schenectady. N. Y., has announced the appointments of W. H. Roberts to head Development Engineering in the electrolytic capacitor program; Dr. R. Beringer Frank, Manager of Low Power Traveling Wave Tube Engineering: G. E. Lewis. Manager of Engineering; and Robert E. Stewart. Manager of Quality Control at GE's electronic tube plant in Palo Alto. Calif.

When Pyramid tantalum capacitors with proven dependability are incorporated into essential electronic equipment you manufacture . . . greater reliability of your product is assured.

To design engineers searching for miniature electrolytic capacitors with unusual capacitance stability and н low dissipation factor over a wide temperature range, soundly constructed tantalum capacitors are gratifying discoveries.

If the equipment you make demands small capacitors with explicit reliability and peak performance, look to Pyramid for tantalum capacitors that meet your most exacting requirements.
For full details urite or call: Sales Department PYRAMID ELECTRIC COMPANY DARLINGTON, SOUTH CAROLINA
Canada: Wm. Cohen, Ltd., 8900 Tanguay Street, Montreal Export: Morhan Exporting Co., 485 Broadway, N. Y. 13,N.Y.

With the revolutionary new Potter High Density Recording System, one tape transport has the capacity of 5 or more conventional transports.
For highly reliable computer applications, Potter High Density Recording can give you data transfer rates of 360,000 alpha-numeric characters per second, at densities up to 1500 bits per inch on 1 -inch tape. Sixteen parallel channels can be accommodated on one-inch tape. Because Potter has made the information channels self-clocking, no separate clock channel is needed, and multichannel data can be read out in true parallel form, despite interchannel time displacement. In production units delivered by Potter for the BENDIX G- 20 COMPUTING SYSTEM at the Carnegie Institute of Technology, this dramatic new technique makes recording so reliable that in 40 hours of continuous operation less than 2 seconds re-read time are required to recover information lost through transient error. Dropouts are fewer than 1 bit in 10 billion at 1100 alpha-numeric characters per inch. More than 20,000 passes of the tape can be made without losing information or significantly increasing the reading error rate,
Tested and proven in computer systems, Potter High Density Recording is presently available in the Potter 906II High Speed Digital Magnetic Tape Handler, and will be available in other Potter Tape Systems.
Write today for details on how High Density Recording can be applied to your data handling problem.

Industry

News

John E. Lillich-elected Vice Presi dent in Charge of Manufacturing, Shallcross Mfg. Co., Selma, N. C.

James K. Coleman has been named to the position of Sales Manager of Dynatran Electronics Corp., Mineola, N. Y.

Andrew E. Kimball has been named Manager of Advanced Marketing Research, Advanced Product Planning Operation, General Electric Co., Electronic Components Div., Schenectady, N. Y.

James R. Muroski has been named to the position of Sales Manager for the Thermistor Div., Keystone Carbon Co., St. Marys, Pa.
Myran A. Angier-named General Sales Manager for the Remington Rand Univac Div. of Sperry Rand Corp., New York, N. Y.

M. A. Angier

J. M. Taylor

John M. Taylor-elected Chairman of the Board of the Taylor Fibre Co., Norristown, Pa.
D. Scott Bowman has been appointed Director of Marketing, Am-phenol-Borg Electronics Corp., Broadview, Ill.

Robert A. Newman has been appointed Product Manager of Wheelock Signals, Inc., Long Branch, N. J.

John L. Gray has been named Vice President and Eastern Area Sales Manager for Motorola Semiconductor Products Inc., Phoenix, Ariz.

Richard J. Guglielmetti has been named Manager of the Market Research Dept. of Eitel-McCullough, Inc., San Carlos, Calif.

James I). Monk has been named Manager, Marketing Administration and Personnel Development for General Electric's Light Military Electronics Dept., Utica, N. Y.

Harvey J. Finison, has been appointed Director, Business Planning and Development, Electronic Components and Devices Group, Semiconductor Div., Raytheon Co., Waltham, Mass.

Leo A. Pfankuck, President of ShurLok Marine Corp., Anaheim, Calif., has been elected a Member of the Board of Directors of Telecomputing Corp., Los Angeles, Calif.

The
"heart" of a new HATHAWAY CONCEPT

ACTUAL SIZE

DRIREED

ELECTRONIC
COMMUTATORS the Newest and Best!

The NEW Hathaway DRIREED Electronic Commutator, designed to utilize Hathaway's DRIREED contact, is illustrated above in a typical rack mounted unit. Applications include telemetry, thermocouple scanning, computer inputs, strain gage scanning, transducer scanning, and PDM coding.
The unit can be packaged and tailored to fit your particular requirements.

FEATURES:

- Eliminates the transfer gain problem-closed circuit resistance less than 100 milliohms.
- No back current or channel to channel crosstalk-open circuit resistance greater than 3×10^{12} ohms.
- Output isolated from power ground and needs no "com-mon"-isolated dual ended contacts.
- Solid state drive circuit-transistor logic control of mechanical contact operation.
- Up to 1,000 sequential data points per second-DRI. REED has resonant frequency of above 2700 cps .
- Long life, highest reliability-contact rating 10 million operations at 100 milliampere, 115 volts 60 cps , resistive load; 1 billion operations at low signal levels.

PRICE AND PERFORMANCE of this commutotor make it worth considering in your application. Please address your inquiries to the address below.

hathaway denver

5806 EAST JEWELL AVE. DENVER 22, COLORADO
A division of Hathaway Inetrumente, Ine.

JFD Mctalized Inductors provide outstanding electrical performance under severe environmental conditions - . in a sinall package.

Utilizing a silver film fired permanently to a high dielectric constant glass, they offer the ultimate in inductor simplicity and stability. This inherently rugged construction results in extraordinary reliability under exeremely severe environments . - especially those of shock, vibration, temperature and altitude.

The inductance, types of windings, size, distributed capacitance, \mathbf{Q} and other parameters of JFD Metalized Inductors can be designed to meet your specific needs. Why don't you write for bulletin 223 and sec the difference they can make in your circuitry?

Features

1. Rugged construction affords unusually high stability under conditions of severe shock and vibration. 2. Use of glass dielectric assures low temperature coefficient of inductance and operation without derating over extremely severe environmental conditions.
2. Low distributed capacity.
3. Special alloy plating protects metal parts from corrosion.
4. A high Q over a broad frequency range.
5. Silver plated copper leads.
6. Available in panel mount and printed circuit mount types.
7. JFD Variable Inductors can also be supplied to order. Write for questionnaire or contact the JFD sales office or representative nearest you.

Ranges: Available in 23 values from 0.05 to $2.00 \mu \mathrm{hy}$. Q: From 100 to 180
Lengths: Panel Mounts - up to $1^{11 / 2 / 2}$ inches. Frequency of Operation: below 10 mc -over 600 mc . $0 . D_{\text {: }}=1$ ind inches.

Ranges: Available in 22
Q:
Lengins: Paner Mounis-up to 116, inches.
Wire Mounts - up to $11 / 2$ inches.
Frequency of Operation: Delow 10 mc -over 700 mc D.D.: $=0.290$ inches.

JFO

JFD ELECTRONICS CORPORATION

Components Division - 6101 16th Avenue, Brooklyn, New York - Phone DEwey 1-1000 - TWX-NY25040

- O BII OO WESTERN Po Bu 3016. 731 Van Nurs 8 ivd.
ven murs. Calt. Phone sprate 1.850
Gala w MFD MIDWESTERN

JFD NEW ENGLAND
Ruth Doive. Manalbero. Moss
Phone WUntley s.inls
me jfo Canada

[^7]
USE THIS EREE READER SERVICE CARD

Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

FIRST CLASS
PERMIT NO. 36
PHILA., PA.

BUSINESS REPLY MAIL mo postage stamp meesssary if malled im uniteo states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Box 8221

Philadelphia 4, Pennsylvania

ALPHABETICAL LISTING OF

CIRCLE THE NUMBERS OPPOSITE THE NAMES OP THE

118	Aerrivex Corporation-Metalliaed Paper Curaciturs.
77	Air Marine Motors, Inc.-Multi-Stage Blower.
111	Allen Bradley Co.
112	Allen Bradley Co.
80	Allied Chernical - "Electronic-Grade" chemicela.
172	Allied Control-6 Pole sub-miniature relay.
62	American Alrlines-Air transportation.
341	American Electrical Heater CompansResiatance soldering iron.
148	American Marhine \& Foundry Company -Catalo of preciaion meters.
112	American Time Products, Ise - Frequeney standarde.
76	AMP Ineorporated-Terminal blocke.
2	AMP Incorporated-Decade counters.
116	Amperex Electronic Corporetion-PNP germanium ewitching trasastor.
2%	Amphenol Connector Diviaion-Hermetically sealed electrical connecturo.
72	Arauld Engineering Company-Magnetic cores.
76	Amphenol-Burs Electrovice Corporattion - Precision zurne-counting dial.
125	Amphenol-Borg Electronics Corp. RF Products-Comial switches-relare.
c1	Dellantine Laboratories, Inc.-V'ucuum tube voltmeter.

130 Beadix Corporation - Diffused alloy power transistors
Bendix Curp., Pioneer Central-Lltra sonic cleaning equipment.
Herkeley Division of Beekman Invtrus ments, Ine.-Modular digital multim
thinur A Co.-Metal-to-sluss reals.
199 Bradley Semiconductor Curp.-Miniature silicon rectifiera.
$376 \mathrm{~W} \quad \mathrm{H}$. Brady Ca-Mieromialature co. prinent markers.
164 Bruno-New York Industries Corp.-"Pis ailuring machine
120 Burroughs Curporation - Modulur cum punents.
84 Buasmann Mrg. Division-GMT fuse \& HLT fuseholder
163 Itrusb Instrumenta Division of Clevite Corporation-Operstions monitors.
104 Brush Inftrumenta Division of Clevite Curpuration - Transiutor awiteber

153 Cambridge Thermionic Corporation-Insulated ierminale.
201 c'is Electronics - MADT a epitaxia)
a) Centralab Linaar motion variable renintura.

166
Subminiulure eunnecto C. P. Clare Cu.-Printed circuit relays.
18 Clevite Trunsistur-P(wer iransistors.
128 Continental Electrunics - Super-puwer trensmitters
Cuntinental Connector Corporation Connerturs
Cuntrula Combany of America - Con tinued indicmbor lights and pushbuttun suitches.
131 Cornell Dubilter Electronic Corp.-Ca pacitore Coraing Electraic Compunents-Glase Curtien Wriobs Curtie Wright Curnuration-C'leresonie delay hine.
152 Curtiee-Wrisht Corpuration - Thermal time delas relays.
162 Custom Componente, Inc.- fiermesble di-

BUSINESS REPLY MAIL
no postage stamp necessary if malled in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Boz 8221

Philadelphia 4. Pennsylvania

Wale Electrubics, Inc.- Precision rewis Dars.
Daven (co.-Miniaturized precision wire Delco Rution
belcu
l)esinntio-Dignal modules
niatie machines.
Deutseh Electronic Componunta Divinium - Basunet-lucking efectrical connectur Lialight Corporation--Liasalitew Diamund Text ani: Horserth e Co Liagonml cutcing flier
Lir MC(I, Ine--Logic circult veringe
equipment
treniminten Uume Curning Curpormion Uernailad yper-wure ilimon

ElCO-Flectrunics cmelalos

Falrchila Conirols Conmoration- Pre wure transducer.
fairrhild Semiconauctor-Silitun tran.
Esirnasunt Clormorat C.y. Iter -Goldering bux.
Fsik, for - Gasial slide berve tuhef.

Whrml filcitir. Puwer Tuka
Cieneral Eiectric, Voluge Regulator fur radar inctallaman
General Electric. Semicunductor Dept. Silicu Genera! In-trument Corporation-SemiGencral Products Corporation-Termiaal benerdu. General Radio Company-Digital tume and errivency metre
anh Halitest Company-Hallgenerator blowers.
Graphic Systemb-Visual control bunard. Grasbill Inc.-L'ltra-miniature teet cllpa. Graybill Inc.-Concentric ahaft awitch. Gremar Manufacturing Cumbany. Inc.-
KF connectora.
(51 G-V Contruls Inc. - Thermal relay

136 Hamilun Watch Company - Magnetic allos etrip.
Hashawus lienver-Electronic commute
Hewlett-Packard Company - Precisio
Hewlete-Packard C(1, b-uny - Previsi in a-Hewler-Pa
cillators.

ADVERTISERS IN THIS ISSUE
 ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

```
85 Hewlett-Packard Comymny-Clip on DC
    millismmeter. 
    Huneywell Precisium Muters-AC Denel
    melers.
    Huward Indurtries. Inc.-Fractional H.P.
        induction mutor.
    tughen Airernft Company. Varuum Tube
        Prosucte Diviaion-Electronic wolding
        erluipment.
109 Hughem Airerafl Company. Semiconduc-
        c.ra Divisiun - Luuble-diffuned men
        pilicon transiaturn
```

181 Induatrlal Electronic EugIneers, Ine.-
Self-decodibe alpha-numeric readout.
meter.
PROFESSIONAL ENGINEERING
OPPORTUNITIES
Circle number of cumpany nn eard at righ
from whumber ou desire further information.
ع61 Phileo Trechrep Divieion
91 Inland Motur Cormuration of Virginia-
100-wrett L-C amplifer
16 Internatiunal Merintunce Cord - Metal
182 Jennings Kadie Mfg Curs. - Vacuum
cuaxial relaya.
ite Juhnsun Co., E. F.-Variable capacitor
|ke Junes Livision, Howard B.. Cinch MPE
-5 M 'irp-Plugn and surbeta.
M. Conev Filectrunice Co., Ine.-KF
ments.
(1S JFD t.lectrunica-Trimmer capacitura
193 Kiny Elertric Cumsany-Hish Presuency
atteninhtors.
las hemet C umperig-Silid tintalum rapach-

7 Lersi Electric Manufacturing Cu- Louble vhebset audis reliun.
Level High Frevueney laboraturies, Ine. - Hiah fregurney Inductiun heating

Satom Industries Flectron Tube Diviaion - Minimiure ba diecharge noine source.

123 Magnetic Shield Divinion Perfection Mea -Magnetic shields of any sian of shape.
121 Manterite Industriee-Component hold.
ity Mspreuni Instrumentu-6 meter.
117 Miller Cumsinns, \mathcal{W}.-Molded chube
14 Minnesota Mining Manufacturing Co Mincom Dlviaion-Video instrumenta thin bevenivt
(2) Minnomen Alinink Manuphoturing Co. Hete fi
l0t Motcorila Semiconductur Prudurta Ine. tiertanntuft mor - emplifirt 1rsaiblar

135 Newman Inrperntion, M. M.-Spirnily-

 put pilastie puhions*3 Nuthelfer WInding I. inuraturies, Inc.-

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 175 of this issue.

Postcard valid 1 weehs only. After that use ewo letterheed describing item wanted,
MAY 1961

PROFESSIONAL ENGINEERING OPPORTUNITIES

Please send me further information on the engineering position I have circled below.

NEW subscription oridet
I wish a new complimentary subscription to ELECTRONIC INDUSTRIES

Company Name:
Nome:
Position

Company Address:
City:
Zone
State
Specific Products Manufactured

MAY 1961																			
FIRM																			
firm ad																			
CITY	OR	row									20N								
1	2	3		5	6	7		9		11		13	14						
21	22	23	8	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	${ }^{3}$	4	45	${ }^{8} 8$	47	ar	49	50	51	52	53	54	${ }^{55}$	56	57	58	59	60
61	62	63	4	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	-4	85	86	87	no	\%	M	91	92	93	94	95	96	97	48	99	100
101	102	103	104	105	106	107	14	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	123	144	145	146	147	14月	149	150	151	152	153	154	155	156	157	158	159	160
161	162	103	18	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	125	196	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	201	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	- 14	245	208	247	218	229	250	251	232	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	$27!$	272	273	274	275	276	277	278	279	280
$2 \mathrm{H1}$	282	283	284	285	286	297	208	289	290	291	292	293	294	295	296	297	298	299	300
301	. 302	303 323	310	305 325	306 326	307 3	308 328	${ }^{309}$	310 3	311 311	312 332	313 333	314	315 335	316 336	317 337	318 338	319 3	320
321	322	323	326	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	346	345	346	347	3411	349	350	351	352	353	354	355	358	357	338	358	360
361	382	363	3n4	365	368	367	3¢ ${ }^{\text {a }}$	369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	31	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
401	402	9111	Qus	405	${ }^{404}$	407	4 Cu	404	110	411	412	413	414	415	416	417	418	419	420
421	422	423	426	425	426	427	${ }^{\text {22R }}$	429	430	431	432	433	434	435	436	437	438	439	$4{ }^{4}$
441	442	443	dis	445	446	447	448	448	450	451	452	453	454	455	456	457	458	459	460
461	462	dil	464	465	466	467	0,9,	469	470	471	$4{ }^{12}$	473	474	475	476	477	478	479	480
101	482	4 Al	cha	495	${ }^{165}$	487	488	489	$\stackrel{19}{810}$	491	492	493	494	495	496	497	498	499	500
	502	1011	CHH_{5}	!.05	506	507	${ }^{308}$	509	510	511	512	513	514	515	518	517	518	519	520
521	522	523	524	525	526	527	528	529	530	531	532	533	534	${ }_{5}^{535}$	¢18	537	538	539	540
541	542	H3	sel	545	840	547	848	549.		551	652	553	554	555	560	557	558	859	560
le																			

167 Puwertron Ulerasunics Curnuration- 1% trasonie cleaning equipment
145 PRI) Electronics, Inc.-Klystron power supply.
19 Precision Instrument Company-Instrumentation maxnetic tape recurder.
Pyramid Electric Company - Tentelum capracitors.
154. Quan-Tech Laboratories-Resistur noise test set.

BUSINESS REPLY MAIL me postige stanp mecessary if malled in wite states

POSTAGE WILL BE PAID 8 Y ELECTRONIC INDUSTRIES

The Computer Center
P. O. Box 8221

Philadelphia 4, Penasylvania

BUSINESS REPLY MAIL no postage stamp mecessary if malled in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
Chestmut 8 56th Sts.
Phlledelphle 39, Pe.
Chliton Company

BUSINESS REPLY MAIL
 no postage stamp mecessary if malled in united states

POSTAGE WILL BE PAID BY
ELECTRONIC INDUSTRIES
The Computer Center
P. O. Boz 8221

Philadelphia 4. Pennsylvonia
92 Radio Irequency Labiratories, Inc.Maknet charger
1 Ratio Materials Company-Ceramic ea. paciwrs.
Rayclad, Tubes Incurporsted-Preformed covers.
Raytheun Company-Spectrum analyzer Raytheon Company-Cathode ray tuben. Reeves Inatrument Curporation-Miniature floated integrating gyrue
it Sarken Tarzian, Ine - Silicon voltage regulaturi.
Scientific-Atlente. Inc-Tri-axie! mentenna positioner.
Sekonic inc.-Meters.
Shuckley Transivtor, Unit of Clevite Transistor-4-layer diode.
Sonotone Filectronic Applications Divi-siun-Tubee.
Sperry Semiconductor Division--Silicon mesa branaistors.
Sprague Electric Company - Syathetic polyester film capacitors.
Spraque Electric Company-Germanium micro-alloy diffused-base transiawrs
Sprague Electric Company - Fuil-espe tantalum capaciurs.
Sirague Electric Company-Isofarad cm pacitors.
Sprazue Electric Company-Interferwnce loentop.
Stevens Manufacturink Cumpans. Inc. Thermostals.
121 Stewart Engineering Corporation-Back. ward wave oscillators.
Stromberg-Carlson - Telephune bandse cradle.
55 Sylvania Electric Producta Inc. Semi. cunductur biv. - liermanium mesas
transistura.

W avelime couplers
Western liubber Co-(irummets
Wiestern Sky Industries-Grummets ura. piece nylun.
Westinghouse-Silicon power transistor. S S White-Air abrasise uniss.

PORTABLE KLYSTRON POWER SUPPLY 809-A

featuring: - New compact size: $8^{\prime \prime} \times 12^{\prime \prime} \times 15^{\prime \prime}$ - New low in reflector voltage ripple: less than 1 mv rms - New planetary gears to give finer adjustment of reflector voltage - New design including internal blower, built-in cabinet tilt stand, PRD expansion coil cord with polarized ac plug - Direct reading of beam voltage or current on front panel meter.
Regulated beam voltage 250 to 600 volts; regulated reflector voltage 0 to -900 volts; 6.3 volt ac filament supply. Reflector voltage available either unmodulated or internally modulated by square wave or sawtooth. Send manars for data! PRD ELECTRONICS, INC.: 202 Tillary St., Brooklyn 1, New York, ULster 2-6800; Intiathi 1608 Centinela Ave., Inglewood, California, ORegon 8-9048. A Subsidiary of Harris-Intertype Corporation.

New from PRD!

NEW-trak osclilator CAVITY FOR CW SERVICE!

This MINIATURE TRAK Type 9127.SL(CW) Microwave Cavity is ideal as a local oscillator or low power transmitter in the new 2.22.3 KMC telemetry band. With a power output in excess of 100 mw . it is also suitable for use as a parametric pump, or the energy source for harmonic generators.

Specifications are:

Frequency	Tunable $2.15-2.45 \mathrm{KMc}$
CW Power Out	Greater than 50 mw over
	entire tuning range
	Greater than 100 mw over
	$2.2-2.4 \mathrm{KMc}$ range
Power Input	150 VOC at 10 ma and
	6.5 V at 240 ma
Temperature	Less than 1 Mc drift with
Stability	a temperature variation of
	$80^{\circ} \mathrm{C}$. Operable from
	-70° to $+120^{\circ} \mathrm{C}$.
Size	1° diameter by $4^{3} 34^{\circ}$ long
Weight	7 ounces

TRAK MICROWAVE has miniature CW Oscillators with output power of 10 mw to 2 walts at frequencies between 800 and 7000 Mc . Also, Oscillators engineered to your specifications!

Write today for new Catalog 61A, full of oscillators for CW. grid pulse and plate pulse service.

Microwave Oscillator
Engineers Wanted
See these CAVITIES at TRAK ELECTRONICS' IRE SHOW booth 3803

TRAK MICROWAVE CORPORATION
Subsidiary of
TRAK Electronics Company 5006 N. Coolidge Avenue Tampa 3. Florida
REdwood 6.6422
Circle 147 on Inquiry Card

Electronic Products Corp., Baltimore, Md., has appointed Adams McGregor, Lincoln, R. l.; Fred B. Hill Co., Minneapulis, Minn.; Mark Electronics Sales Co., No. Miami, Fla.; McDowell Redlingshafer, Kansas City, Mo.; Sydney Justin Assoc., New York 1, N. Y.; and Wiest Eleven. Inc., Los Angeles, Calif., to be its representatives in their respective territories.

Ace Electronics Assoc., Inc., Somerville, Mass., has named as its sales representatives the \mathbf{F}. W. Moulthrop Co., San Francisco, Calif., to cover North California and Nevada and the Bauman \& Bluzat Co., to cover Illi. nois, Wisconsin, and N.W. Indiana.

The International Rectifier Corp., El Segundo, Calif., has named R. G. Bowen Co., Inc., as Rocky Mountain Area representative; and Bowen and Carlberg Co., Albuquerque, N. M., to cover New Mexico and the El Paso, Tex. area.

Pentron Electronics Corp., Chicago, Ill., announces the following representative appointments: Allied Appliances Inc., Boston, to cover six counties in the Boston Metropolitan area; J. B. Charters Inc., Detroit, for Detroit and E. Michigan; and Allied Appliances Inc., Denver, for Colorado.

Packaged Electronics Div., Am-phenol-Borg Electronics Corp., Broadview. Ill., names the following representatives: Leslie M. DeVoe Co., Indianapolis, Ind., for Indiana except Lake and Porter Counties and Kentucky: Fred B. Hill Co., Minneapolis, for N. \& S. Dakota, Minnesota and Western Wisconsin; and Tech-Ser, Inc., Los Angeles, Calif. for California, Arizona and Nevada.

Servo Corp. of America has named the following representatives: Western Dynamics Corp., Seattle, Wash., to cover Washington, Oregon, and Idaho; Gentry Assoc., Orlando, Fla.. for Alabama, Florida, Georgia and Mississippi; and Kadionics, Ltd., Montreal, for the Canadian provinces.

Tru-Ohm Products, Div. of Model Engineering \& Mfg., Inc., has announced the appointment as representatives: Peyser \& Co.. Colorado Springs, Colo., for Colorado; Robert C. Foster, Rochester, N. Y. for upper New York; Scott Technical Sales, Dallas, Tex., for Texas; E. A. Dickinson \& Associates, Milwaukee, Wis., for Wisconsin.

The Potter Co., No. Chicago, Ill., announces the appointment of \mathbf{W}. R. Punt Co.. Floral Park, N. Y., as their representative in the metropolitan New York area.

Oxford Components Div. of Oxford Electric Corp., Chicago, Ill., has appointed the following representatives: Mike Bermann Sales to cover Illinois and Wisconsin; Charles Scheffler Co. for Indiana and Kentucky; and Carmine A. Vignola Associates for lowa, Kansas, Missouri, Nebraska and Southern Illinois.

Schenectady Varnish Co., Inc., Schenectady, N. Y., announces the appointment as representative of Southern Electric Sales Co., Dallas, Tex., to cover from the Oklahoma border south to Austin and from the Texarkana/Shreveport area to Lubbock in the west.

Kraeuter \& Co., Inc., Newark, N. J.. announces the appointment of $D . \mathbb{R}$. Spickler Co., No. Kansas City, Mo., as sales representatives to cover a fivestate area.

Western Transistor Corp., Gardena, Calif., has appointed the Dave Miller Sales Co., Seattle, Wash., as representatives to cover the states of Oregon, Washington, Montana, and Northern Idaho.

AT Electronics, Inc., New Haven, Conn., has appointed the following representatives: Claude R. Booth \& Assoc., Chicago, Ill., to cover Northern Illinois, Southern Wisconsin and Northern Indiana; and Robert R. Stone di Assoc., Cleveland Heights, Ohio, to cover Ohio, Western Pennsylvania and West Virginia.

Dickson Electronics, Inc., Scottsdale, Ariz., announces the appointment as representatives: Adelphi Electronics, Mineola, L. I. and Astronetics, Inc., Red Bank, N. J.
Tensolite Insulated Wire Co., Inc., Tarrytown, N. Y., has appointed the following representatives: Farwest Agencies, Seattle, Wash., to cover Washington and Oregon; Anderson and Assoc., Minneapolis, Minn., for North and South Dakota and Minnesota; Massey Assoc., Orlando, Fla., for Florida.

Cushman Electronics, Sunnyvale, Calif., has appointed A. W. Weart Bros., Compton, Calif., as representatives to cover the states of Utah, Nevada, Arizona and Southern California.

The Sessions Clock Co., Forestville, Conn., announces the following appointments as representatives; Latimer and Ziegler \& Assoc., to cover Michigan (lower part of the state) and Lucas County in Ohio (Toledo); and Nulick and Strobel, Wilowick, Ohio, to cover Ohio, North of Route 40 , except Lucas County.

News of Mirs" Representatives

REPRESENTATIVES WANTED

Electronic Firm seeks representatives for its complete line of relay and solid-state interval timers. Respondents should be calling largely on OEMs and military. Almost all territories are still available. (Box 5-1, Editor, Electronic Industries.)

Business Management Institutes

The Electronic Representatives Assoc. is scheduling three Business Management Institutes for members in 1961. One session will be held on the East Coast, June 25.30 at American University in Washington, D. C. The University of Illinois will again be the site of the central regional institute, to be held June 11-16. For members who attended last year's institute, an Advanced Management Institute will be held June 13-16, at the University of Illinois. An institute is also tentatively scheduled for Stanford University, Palo Alto, Calif., Sept. 12.16 for West Coast members.

Mr. P. Andress also announces that due to limited quotas, ERA members will be registered on a first come, first served basis.

Clevite Transistor, Waltham, Mass., announces the appointment of Statewide Electronics Supply Co.. Ine., Syracuse, N. Y., as its distributor in the Upper New York State area.

American Scale Co. of Los Angeles, Calif., has appointed Wesrep Corp., Los Angeles, Calif., as their national representative.

Wiltron Co., Palo Alto, Calif., announces the appointment of John Francis O’Halloran and Assoc., No. Hollywood, Calif., as its representative for California, Nevada, and Arizona.

Polyphase Instrument Co., announces the appointment of Staff \& Holder, Inc., as their representatives for New York State with the exception of the counties of Suffolk, Nassau, Westchester, Rockland, New York, Richmond, Queens, Kings, and Bronx.

Pyramid Electric Co., Darlington, D. C., has appointed as representatives, the B. F. Connelly Co., Seattle, Wash., to cover the Northwest area.

CRS Industries, Inc., Phila., Pa., announces the appointment of Schuliz \& James Inc.. Richmond, Va., to cover Virginia except for three northern counties: and Atech Supply Co., Detroit, Mich., to cover Michigan.

Quan-Tech Laboratories, Inc., Boonton, N. J., has appointed two representatives: Jay Stone \& Assoc. Sunnyvale, Calif., to cover Nevada and northern California; and DannemillerSmith, Inc., Dallas, Tex., to cover Oklahoma, Arkansas, Louisiana, Mississippi and Texas.

Foil-type Tantalum Capacitors Now Available in Ratings to $\mathbf{2 5 0} \mathbf{V}$

Sprague Electric Company has announced another major capacitor improvement. Higher voltage ratings, sorely-needed by circuit designers of military and industrial electronic equipment, are now available in Sprague's family of Tantalex ${ }^{\circ}$ Foiltype Tantalum Capacitors.

Plain-foil 125 C types, previously limited to 150 volts, may now be obtained in 200 volt ratings. Plainfoil capacitors designed for 85 C operation, with a previous maximum of 150 volts, are now available in 250 volt ratings. Type numbers and pertinent characteristics are shown in the following table.

Cenampan	Wlarity	Ande	$\begin{gathered} \hline \text { D-C Valtise } \\ \text { anage } \end{gathered}$
35 C Max. Operating Temperature			
$\begin{gathered} 110 \mathrm{D} \\ \hline \end{gathered}$	polar	$\begin{aligned} & \text { plan } \\ & \text { foil } \end{aligned}$	310250
1110	nonpolar	$\begin{aligned} & \text { plain } \\ & \text { foil } \end{aligned}$	610250
$\begin{array}{r} 1120 \\ \text { (MIL CL24.CL25) } \\ \hline \end{array}$	polar	etched Poil	15 to 150
113D	nonpolar	elched foil	15 to 150
125 C Man. Operating Temperature			
1200	polar	$\begin{aligned} & \text { plain } \\ & \text { foil } \end{aligned}$	1010200
121D	nonpolar	$\begin{aligned} & \text { plain } \\ & \text { foil } \\ & \hline \end{aligned}$	10 to 800
1220	polar	etched Poil	1010100
1230	non. Dolar	etched loil	1010100

Manufactured to meet or exceed the performance requirements of Specification MIL-C-3965B, this series of Tantalex Capacitors sets new standards of reliability for all types of military and industrial applications.

Tantalex Capacitors are available promptly in production quantities. For off-the-shelf delivery at factory prices on pilot quantities to 499 picces, Sprague industrial distributors stock the more popular items in Types 110D, 111D, 112D, 113D. 120 D , and 121 D , as well as MIL Types CL24, CL25, CL34, and CL35.

For complete engincering data on the types in which you are interested, write Technical Literature Section. Sprague Electric Company, 233 Marshall Street, North Adams, Mass.

ISOFARAD CAPACITORS

. . . for unmatched

 capacitance stability at moderate costHold that esepactiancel . . . with ISOFARAD Film Capacilors. Where capacifance stability is an absolute must, ISOFARAD is the one capaciter most likely to succeed. The patented duplox plastic film dioloctric used in these cepecilors has procHically no capacitance change over operating femperature ranges up to $+85^{\circ} \mathrm{C}$. Retrace on relurn to reem semperafure is within $\pm 0.10 \%$.

ISOFARAD Capacifors have insuIation resistance and dielectric absorption charactoristics which approcch those of polystyrone capacHors . . . and they're smaller. Type 145P capacilors are superior to silvered mica capacifors in insulafion resistance . . . are fubular in shape so they are more adaptable to machine insertion on printed wiring boards . . . and have acapecifance stability in use which is equivalent for most practical purposes to the more expensive silvered mice unifs.

Capacifor sections are of the ex-rended-foil design and are housed in preomolded phenolic shells with plastic-resin end seals for protecfion against moisture and mechanical demage.

For complete lechnical data on ISOFARAD Copacifors, write for Engineering Bulletin 2037A to Technical Literofure Section, Sprague Eloctric Company, 233 Marshall Street, North Adams, Massachusetts.

THE MARK OF RELIABILITY

New MADT \& Epitaxial Planar

CBS Electronics 0pens \$5 Million Engineering and Production Facility

Diffusion Furnaces shown here process thill epitaxial layers of high-resistivity material for CBS planar transistors.

In modern architecture, form follows function.

This concept is dramatically demonstrated by the new CBS Lowell Progress Center which specializes in semiconductors for computer circuitry. This most modern engineering and production facility is designed to advance immediate and long-range developments in solid state technology and processes.

The Lowell Progress Center is currently supplying industry with a broad line of rugged and reliable semiconductors: *MADT. *MAT and *SBT switching transistors-PNP and NPN germanium high-power transistors-gold-bonded and point-contact diodes. An advanced line of CBS epitaxialplanar silicon transistors will soon be available in production quantities.

Close cooperation between CBS Electronics and CBS Laboratorics is helping to shape the future of solidstate technology through the CBS microclectronics program. Under way for the past two years, this program concentrates on basic approaches to thin-film deposition on inert substrates. It stresses also the development of microminiature devices featuring increased packing densities and reduced power levels for use in compact computers.

Learn about present and future semiconductor advances coming from the Lowell Progress Center. Investigate how the broad capabilities of CBS Electronics can help you achieve your solid-state objectives. Write today to CBS Electronics, Semiconductor Operations, Lowell, Massachusetts.

Semiconductor Progress Center

Lowell Progress Center conccutrates on the engincering and production of CBS semiconductors for computer circuily. Functional design gives the 200,000 square fect of plant space built-in flexibility to help in achiev. ing highest standards of quality and reliability. Close cooperation with CBS Laboratories promises new and exciting solid-state developments for the future.

Mass Production of MADT high-speed switching transistors is accomplished on the most up-to-date equip. ment in the semiconductor industry. $E x$ ceptional reliability and uniformity are assured by automatio in-line production permitting 100% inprocess quality con. trol of each transistor.
$\xrightarrow{7} \rightarrow$

More Reliable Products through Advanced Engineering

CBS ELECTRONICS, Semiconductor Operations, Lowell, Massachusetts
A Division of Columbia Broadcasting System, Inc. - Semiconductors - tubes - audio components - microelectronics Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 - Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 • Melrose Park, III., 1990 N. Mannheim Rd., EStebrook 9-2100 • Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 • Toronto, Ont., Canadian General Electric Co., Lid., LEnnox 4-6311.

Instant Reset Voltage Compensated Vibration Resistant

Thermal Time Delay Relays

Precision-built Curtiss-Wright thermal time delay relays reset instantly when de-energized - provide the same delay period for each succeeding cycle. Compensated for wide voltage variations. Available in either 28 V DC or 115 V AC, 60 or 400 cps . Chatterfree operation, under severe shock and vibration conditions. Small sized, hermetically sealed, temperature compensated for precise, reliable operation and long life. Preset time delays from 10 to 180 seconds with SPST. SPDT or DPDT snap action contacts.

News of Mirs'
 Representatives

Elm Instrument Corp., Hempstead, N. Y., announces the following appointments of representatives: Martin \& Ozier. Hawthorne, Calif., in California, Arizona, Nevada, and New Mexico; L. E. Barnhart. Jacksonville, Fla., in Florida, Georgia, and North and South Carolina; Edwin A. Schulz Co., Indianapolis, Ind., in Indiana and Kentucky.

North Hills Electronics, Inc., Glen Cove, L. I., N. Y., has announced the appointment of Terminal Radio International, Ltd., New York, N. Y., as their foreign representative.

Scientific Components Div. of Intellux, Inc., Santa Barbara, Calif., has appointed Ault Associates, Menlo Park, Calif., to cover Northern California and Nevada.

The James S. Heaton Co., Redwood City, Calif., will represent the Elgin National Watch Co., Electronics Div., Burbank. Calif., in Northern California and Northwest Nevada.

The Monitor Relays Div. of Atlee Corp., Joliet, Ill., has appointed the following representatives: Ellinger Sales, Chicago, Ill.. to cover Indiana, Iowa. Nebraska, Illinois, Kansas, Missouri and Wisconsin; and the Reed \& Riddett Co. for New England states as well as New York City, Long Island and Northern New Jersey.

NOW!
CONTINUOUS PRODUCTION

SEMICONDUCTORIZED

 POWER SUPPIY "om 50151-50 V.D.C. - 0-1.5 AMP

IMMEDIATE DELIVERY An Puner Resigas inc
itu shames drive, westbuar, mew yom
 Circle 154 on Inquiry Card

> Meet all conditions... with Cambion ${ }^{\text {® }}$ insulated terminals

To give terminals positive protection against all known service risks, CAMBION uses five different insulating materials: Diallyl Phthalate, Teflon ${ }^{\circ}$. Ceramic, Melamine and Phenolic. CAMBION Diallyl Phthalate terminals maintain superior insulating qualities and dimensional stability under toughest service conditions, are moisture-proof, non-corrosive and have high resistance to chemicals. Teflon push-mount terminals meet special mounting requirements and withstand severe exposure conditions. Ceramic terminals prevent severe exposure conditicans. lomidity range. For facts on all CAMBION insulated terminals write Cambridge Thermionic Corporation, 504 Concord Ave., Cambridge 38, Massachusetts.
-reg. Duponit t.M

Circle 153 on Inquiry Card

with FeMDer Automatic Machines

MUTOFOMAS, Model UFTUL with eptionel hanty Mopper haed athachmeni, automatically cuts and lorms ar tails (lases of resaton, eapecitors, etc.) up to 5000 per hour This vorn file machnee wull cut and shape bey concarable lead form an mannponemt boty with coeriol leads Mandles short fun production economically. Poys for itsell auictly in time saved

 avtomaticaliy to explanget ap to 5000 miver can be reyel in minutes Prepares leads of tiodes and misitors for ral rsembly in printed circuits er conventional mining Mojustable cart herd chute permits nopo looding Stollte tipped cutters assure trowble free performance

AUTO-STMAIGKTEWER MODOI AUs straithters leads of all capacilors, resistors etc. avtomaticaliy up to 3000 pei now Handles all me bodies aligning leads pertectiy Easily couples is the FME automatic tapine machine or other auto mation equipment by mating output chute the input of the next machine

Whit Foi detaulid specificancw swets toony.

DESIGN TOOL CO

A Division of

Federal Manufacturing \& Engineoring Corp.
1055 Smen Ave., Gardion CiV, M.Y. © 2 -7400

Circle 155 on Inquiry Card

New
 Products

WAVE GUIDE SWITCHES

Compact SPDT unit is rated at soo $k w$ unpressurized and 500 ku pressurized.

The MA-1064 switches may be pressurized to 45 psi. A low insertion loss of 0.15 db and a max. VSWR of 1.10 over the entire waveguide band are featured. Isolation in excess of 35 db is achieved by design of internal chokes and precision machining. Low holding current of 150 ma is achieved without using dropping resistors. This low holding power minimizes heating allowing operation at ambient temps up to $125^{\circ} \mathrm{C}$. Waveguide Systems Div., Microwave Associates, Inc., Burlington, Mass.

Circle 341 on Inquin Card

DC POTENTIOMETER

This unit is completely "self checking."

The Type 9144 is a dial, 6 figure. dual range ($x 1: x 0.1$) dc vernier potentiometer with a total measuring capability of 2.101010 v . accuracy is $\pm 0.001 \%$ warranted for a period of $\mathbf{5} \mathbf{y r s}$. Initial adjustment is guaranteed to be with $\pm 0.0002 \mathrm{c} / \mathrm{c}(2 \mathrm{ppm})$. Stability is guaranteed to be within $\pm 0.00015 \%$ (1.5 ppm) per year or better. Thermal EMF's: Less than 1 $\mu \mathrm{v}$; Resolution: $0.1 \mu \mathrm{~V}$. ; Functions include: a resistance comparator accurate to 2 ppm ; a saturated standard cell comparator that will detect differences of $1 \mathrm{\mu v}$. Sensitive Research Instrument Corp., 310 Main St., New Rochelle, N. Y.

Circle 342 on Inquiry Card

Memory in computers Coding in felemetering and navigation
Range Marking in MTI Radar
Time Delay in precision
delayed sweeps

Magnetostrictive delay lines for missile, aircraft, marine and ground based equipment. Wide delay application 5 to 10,000 microseconds - with stability over a broad temperature range.

Small size, low cost. rugged, lightweight construction. Pulse repetition rate to one megacycle. Wide range of input and output impedances. Standard and custom built models.

Write lor latest complete
components catalog \#510
time delay relays - delay lines - rotary SOLENDIDS- SOLIO STATE COMPOMENTS-DUAL RELAYS - DIGITAL MOTORS - TIMING DEVICES

ELECTRONICS DIVISION

CORPORATION

EAST PATERSON, NEW JERSEY
Cirele 156 on Inquiry Card

High Speed, High Resolution, High Sensitivity Spectrum Analysis With Rayspan SPECTRUM ANALYZER

Raytheon Rayspan Spectrum Analyzers provide several important benefits not available with sweeping gate single filter type analyzers. Through a unique application of multiple filters, it is capable of analyzing entire spectrums as wide as 33 kc at scanning rates as high as 200 times per second with excellent resolution and sensitivity. Frequencies as low as 20 cps can be identified. Resolution for two equal-amplitude signals is approximately 0.7% or 3% of the analysis band depending on the Rayspan model employed. Dynamic range of 40 db .
Any model can be adapted for use with high speed, helix recorders to provide permanent records of frequency versus real time. A built-in timing pulse generator allows scan-by-scan synchronization of Rayspan with an oscilloscope.
The ability to analyze a wide frequency range rapidly and continuously, makes it the most versatile analyzer available for such application as Telemetered Data Analysis, Industrial Noise Reduction, Shock and Vibration Studies, Complex Waveform Analysis, Transmission Surveillance, Speech Analysis, Acoustic Studies, Equipment Inspection. For complete technical data please write to: Raytheon, Industrial Components Division, 55 Chapel Strect, Newton 58. Massachusetts.

The Raytheon CK1354 and CK1355 display cathode ray tubes, used in the SAC "Hustler." are designed to operate in unpressurized areas of aircraft at altitudes up to 100,000 feet without corona. The CK1354, a three inch tube, is used for photographic purposes and the seven inch CK1355 is used in a direct visual application. Quick disconnect features eliminate potting of high voltage terminals and allow rapid replacement.

Both tubes are designed to meet exacting mechanical dimensions for rotating deflection yoke assemblies, and
the high altitude requirements of Mil-I-6181-B.
If the development of airborne radar equipment is currently of interest to you, then investigate the many advantages offered by these remarkable tubes. Also inquire about the other types of industrial and military cathode ray tubes in Raytheon's comprehensive line.

For technical information or design assistance please write to Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

RAYTHEON COMPANY

Lob setup shows $58-15$ e versobility. (1) FM disploy measures dynamic deviation. (2) ond (3) are AM and 558 slgnels, respectively, with sine wave modulatios.

MORE ULTRASONIC analyses
faster easier high accuracy

PANORAMICS NEW, IMPROVED SB-15a spectrum analyzer 0.1 kc to 600 kc

Fiad, identify and analyze more types of witrasonic signals with Panoramic's advanced Madel 5B-15a . . . ecomomical, compact and cempletely self-contained.

- Moice, vibration a hapmonie analysis - Filter ond transmission line eheeks - Tolemetry analy. sis - Communication Systom Monitoring frequeney Responce Plotting (with sompanion equipment).
se-15a specincation
 * Crater Frequency: carialife callionied Imese
 and 180 kr Isterale - IF Aandecilla: variahle
 verivniatile in 60 tho. is dt exismited a Semai-
 38.5 di.

Write sodey for defelled techaical data on the S8.150. . NEW CATALOG DIGEST . . . and regular malling of THE PAMORAMIC AMALYZER, feefurieg application date.

540 Se. Fulten Ave., Mt. Vermen, N. Y. OWees $9-4600$ - TWX: MT-V-NY-5229 Cables: Faseramie, Me. Vernon. N. Y. Stats Circle 165 on Inquiry Card

New Products

LIGHTNING ARRESTOR

Type LA-4 uses a magnetic type spark gap.

Normally used as a transmitter arrestor, this unit has a mounting flange that can be adapted to fit into an antenna coupler or can be employed by itself. Specs are: shunt capacity: $10.5 \mu \mathrm{f}$; r-f spark gap voltage: 11.250, peak 2 MC ; lightning stroke: exceeds Mil-A-9094C; freq. range: 2-32 mc; max. r-f current at $2 \mathrm{MC}: 15 \mathrm{a}$. RMS; impact and vibration: meets Mil-A-9094C; series capacitor: $0.002 \mu \mathrm{f}$ min., $20,000 \mathrm{vdc}$ test; temp. range: $-55^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$. Date Electronics, Inc., Columbus, Nebr.

Circle 348 on Inquïry Card

CAM FOLLOWERS

Miniature stainless steel units are for precision timing applications.

Available in face widths from 0.1406 to 0.1960 , the units incorporate a shielded ABEC 7 tolerance ball bearing fitted on a concentric ground shaft to insure full-contact tracking and smooth, reliable operation. Outside dia. ranges from $1 / 4$ to $5 / 8$ in PIC Design Corp., 477 Atlantic Ave. E. Rockaway, L. I., N. Y.

Circle 345 on Inquiry Card

PRINTED CIRCUIT KITS

Kit has all materials needed for "at-the-desk' prototype make-up.

Using the kit's copper-clad Fotoceram grid boards, resist materials to lay out circuit patterns, and etch ing materials to etch away copper beyond the circuit runs, a designer can produce a printed circuit on glass-ceramic substrate in 15 min utes, without leaving his desk. Corning Glass Works, Corning, N. Y.

Circle 347 on Inquiry Card

ADHESIVE APPLICATOR

Push button controlled unit has cas!!. instantancons, regulated fous.

The applicator, Model B. feeds sulvent and water-based adhesives through a flexible hose directly into the brush under ordinary factory air pressure. It includes a pressure tank which dispenses adhesives of average viscosity at 20 lbs . pressure and an air regulator allowing accurate setting at any desired pressure. Three outlets on the tank permit 3 operators to work from one unit. Bustik Adhesives, B. B. Chemical Cu., Subsidiary of United Shoe Machinery Corp., 784 Memorial Dr., Cambridge 39, Mass.

Circle 346 on Inquiry Card

THERMISTOR PROBE

Model G-s79 is for small close work.

It is a 27 gauge hypodermic needle, made of stainless steel, and has a diameter of 0.022 in . It will accommodate a variety of different thermistors and is useful as a fast timeconstant temperature probe. Fenwal Electronics, Inc., 51 Mellen St., Framingham, Mass.

Circle 349 on Inquiry Card

COPPER-CLAD LAMINATE

Micula grade 65M2t is classified as " "ow-burming matcrial.

This new epoxy resin/paper base laminate is for printed circuit applications requiring high strength and consistent electrical properties over a wide range of humidity levels. Electrical properties include: a dissipation factor of 0.034 at 1 Mc ; dielectric constant of 4.5 at 1 mC ; insulation resistance of $\mathbf{1 0 0 , 0 0 0}$ megohms; volume resistivity of $1,000,000$ megohms/ centimeter; and a surface resistance of 1000 megohms. The material is available in sheets $36 \times 36 \mathrm{in}$. or $36 \times 72 \mathrm{in}$. and thicknesses ranging from $1 / 32 \mathrm{in}$. to $1 / 4 \mathrm{in}$. Micarta Div., Westinghouse Electric Corp., Hampton, S. C.

Circle 350 on Inquiry Card

Quantranve MEASUREMENT OF RESISTOR

Model 315 Resistor Noise Test Set

The QUAN-TECH Model 315 Resistor Noise Test set is a highly compact unit for making precise quantitative measurements of excess noise resulting from current through resistors.

Testing with the Model 315 is rapid-operating procedures are simple. Resistors of any type within the ohmic values specified below may be tested. Index of measurement is microvolts-per-volt in a decade of frequency, as recommended by the National Bureau of Standards.

In addition to the front-panel indication, outputs are available for data processing, driving go-no-go indicators, of for external monitoring. Write for complete details

- Conforms to system and specifications recommended by the National Bureau of Standards
- Accepts any type of resistor
- Simple operation; adaptable to production line "go-no-go" use
- Single, compact. bench-size unit

MADOR SPECIFICATIONE

alang:
Resistor test range 100 ohms to 22 megonms Noise voltage 0.6μ volts in a decade to $1000 \mu \mathrm{volts}$ in a decade
Applied DC voltage 3 to 300 volts
Filter: Flat-topped. 1000 cycle Dandpass. Geometric mean al 1000 cycles
Detecter: Pure RMS
Outpent: Indicated for both noise voltage and applied DC voltage on separate iront-panel meters. Analos outputs for data processing. AC monitor jack.
Aceuracy ol Moise Voltage Moasurament: $=5 \%$
Price: $\quad \$ 1550$ I.o.b. Boonton, N. J.

- Optional remote measuring cable, $\$ 75.00$

TELEMETRY BY TELE-DYNAMICS

Universal Millivolt

 Subcarrier Oscillator

For your aerospace telemetry needs here is a new Subcarrier Oscillator with true differential input . . . direct actuation from outputs of grounded or ungrounded thermocouples, strain gage bridges and any transducer with millivolt level output. Other features include isolated input and output, high common mode rejection with no D.C. level restrictions and all silicon semiconductors.
Tele-Dynamics' Type 1254A directly replaces the combination of preamplifier and high-level subcarrier oscillator now used in FM telemetry and assures reliable operation in aerospace environments.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone: TRinity 8-3000.

[^8]
New
 Products

CONTOUR CABLE

Flat cable rater space and weight in missile's and aircraft.

It consists of imbedded flat metallic strips in a plastic dielectric ribbon. U'p to 40 separate conductors may be contained in a single cable. Whereas 1000 ft . of conventional cable (20conductor, 22 -gauge aircraft type) weighs 82 lbs ; contour cable weigh. 52 lbs. for the same current carrying capacity. By applying an adhesive to the cable and sticking it to an inner missile airframe, space is saved. Hughes Aircraft Co., El Segundo, Calif.

Circle 337 on Inquiry Card

POTENTIOMETER

Rerolution at 50 hilahms is 10.1086%.

New Daystrom Squaretrim ${ }^{8}$ Model 355 provides a subminiature hightemp. precision trimming potentiometer in a high-density package $1 / 2 \mathrm{x}$ $1_{2} \times 0.2 \mathrm{in}$. Resistance values run from 10Ω to $50 \mathrm{k} \Omega$ over an operating temp. range from $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. Three 4 in., 30 AWG, Tef-lon-insulated wire leads are positioned at the narrow end. Unit is for matching, balancing, and adjusting variables in precision control, computing and telemetering circuits. Daystrom, Inc., Potentiometer Div., Archbald, Pa.

Circle 338 on Inquiry Card

... for positive retention in all mobile applications There's no jump, no sway-when a telephone handset is in the firm grip of this new Stromberg-Carlson ${ }^{*}$ handset cradle.

Retaining clip spring assembly
 assures positive retention in any mobile application on land or sea, or in the air. Evenextremely severe jars, jolts and vibrations fail to dislodge the handset.

The cradle is strong and resili. ent, fits any Stromberg-Carlson handset. Different models provide varying switch combinations with 2 or $\mathbf{4}$ Form C contacts. All models available with or without the clip assembly.

Details on request from these Stromberg-('arlson offices: Atlanta - 750 Ponce de Ieon Place N.E.; Chicago--564 W. Adams Street; Kansas City (Mo.)-2017 Grand Avenue; Rochester-1040 University Avenue; San Francisco-1805 Rollins Road.

STROMBERG-CARLEON - rnosver or

वENERAL OMNABMEE | ELEETMONKC
Circle 161 on Inquiry Card

WHEN IS
 AN ABSORBER AN ABSORBER?

When it's a symbol on the drawing board a sample under test ... a finished product?
The same question can be asked about a dielectric material, a ferrite, a core.

The answer: any microwave or rf attenuator is satisfactory only when it fulfills the requirements of the system.

As our name implies, Custom Components is more than a manufacturer of attenuator materials. We are a facility that translates the performance specifications of your system into specific materials, shapes, weights and sizes.
When is an absorber an absorber? When your attenuation problem becomes our attenuation problem!

CUSTOM COMPONENTS,

P.O.Box 248, Caldwell, N.J. inc.

CApital 6-3404
Circle 162 on Inquiry Card

\section*{| New | |
| :---: | :--- |
| | Products |}

DIRECTIONAL COUPLERS
Thase waveguide inatruments cover from 2.fill to bo.0 $\boldsymbol{G C}$.

This series of 8 models in 5 basic design configurations offers crossguide, narrow-wall and prevision broad wall versions. All models are available with standard values of coupling. Other electrical characteristics, such as: directivity, coupling sensitivity, and vSur are optimized over the complete waveguide freq. rance. These units are manufactured of rugged brass construction with silver plating and instrument grey enamel finish. Waveline Inc., Caldwell, N. J.

Circle 361 on Inquiry Card

TEST CHAMBER

Chumber is for environmental testing of electronic components.

Unit has full front opening door and is portable. Model TEC-6R, s floor standing unit is mechanically refrigerated and electrically heated with an operating temp. range of $-100^{\circ} \mathrm{F}$ to $+400^{\circ} \mathrm{F}$. The stainless steel chamber has a working volume of $1.5 \mathrm{cu} . \mathrm{ft}$. A circulating fan maintains a max. of $\pm 2 F$ temp. gradient throughout the chamber. Temp. change rates are ambient to $-100^{\circ} \mathrm{F}$ in 30 min . and ambient to $+400^{\circ} \mathrm{F}$ in 20 min . Auto-Control Laboratories, Inc., 5251 W. Imperial Hwy., Los Angeles 45. Calif.

Circle 362 on Inquiry Card

?

How important is PULSE WIDTH
in electronic welding?

Very important!

Too-long pulses waste weld energy-cause discoloration and deformation. Too-short pulses can also give unsatis. factory welds. An exhaus. tive research study, just completed, shows the results of pulse width tests of Hughes welding power supplies Tests were made during actual welding of high and low conductivity metals. Pulse widths varied from 0.0008 to 0.0025 sec . - 'Scope photos show how proper design of the weld transformer to match capacitor discharge characteristics produces the shortest practical welding pulse.

Copies of this valuable illustrated study, the first of its kind released by any manufacturer, are available on request. Write of wire today for your FREE copy of the PULSE STUDY.

Chearing anew moin. with tuctronics

HUGHES

[^9]vacuum tuar phooucts bivision

Circle 163 on Inquiry Card

Write for illustroted book to Dept. EI-5

New

Products

HIGH TEMP. VACUUM OVEN

Oven operates at Temps. up to $800^{\circ} \mathrm{C}$ and pressures down to 0.0000111 mm .

Temp uniformity is maintained $\pm 3^{\circ} \mathrm{C}$ at 0 to $800^{\circ} \mathrm{C}$. The internal construction of the high vacuum oven is a suspended muffle heated by radiant heaters and reflective shielding. Ovens are offerd with or without one of several different vacuum pumping systems, depending on requirements. Two oven sizes 8×8 x 14 in . and 14 $\times 14 \times 16 \mathrm{in}$. (inside dimensions) are offered. Provision for a total of 6 thermocouples for temp. studies is also included. Tri Metal Works, Inc. 1600 Bannard St.. Riverton, N. J.

Circle 359 on Inquiry Card

ELECTROLYTIC CAPACITORS

These units are designed for max. capacitance in small physical size.

Powerlytick Aluminum Electroly. tics find wide use in power supplies for digital computers, industrial controls, and allied equipment. Ratings to $150,000 \mu \mathrm{f}$ at 3 v . or $1000 \mu \mathrm{f}$ at 450 v . are in a standard case size of only 3 in. dia. $\times 45 / 8 \mathrm{in}$. high. Stand. ard ratings in working voltages from 3 to 450 vde at $65^{\circ} \mathrm{C}$ max. ambient temp. are available. Sprague Electric Co., 233 Marshall St., N. Adams, Mass.

Circle 358 on Inquiry Card

MINIATURE ATTENUATORS
Rugged, compact design for use where space is at a promium.

Printed circuit types enable circuit arrangement to provide up to 20 steps of attenuation. Accurate composition $1 / 2$ w resistors are featured in these units with wire-wounds available. Attenuation is increased with counter clockwise rotation. These units are available in the ladder and potentiometer. Specific requirements and performance are the same as the standard type specifications. Cinema Engineering Div. of Aerovox Corp. 1100 Chestnut St., Burbank, Calif. Circle 357 on Inquiry Card

SHIELDED CONTAINER

Ruggedized for transporting or staring magnctic tapes.

The container is constructed of stress reinforced Netic S-3 magnetic shielding alloy, meeting Mil. drop and environmental specs. Shock absorbing liner allows simple positioning of ${ }^{1}$, to 2 in . wide tapes in any combination. Rubber gasket, pressure seals upon locking, make the container virtually moisture proof. Container: are currently available for 14 in. reels; other sizes can be fabricated. Magnetic Shield Div., Perfection Mica Co., 1322 N. Elston Ave., Chicago 22. III.

Circle 360 on Inquiry Card

SPRAGUE MODEL 500 INTERFERENCE LOCATOR

This versatile instrument is a highly sensitive interference locator - with the widest frequency ronge of any standard available 1. unit! Model 500 funes across the enfire standard and FM broadcast, shorlwave, and VHF-TV spectrums from 550 kc. to 220 me. in 6 bands.

It's a compact, portable, rugged, versatile instrument-engineered and designed for most efficient operation in practical field use. If features a Iransistorized power supply, meter indi) calions proportional to carrier strength as well as sensitivity of
) 5 microvolts minimum for 5% meter deflection over entire fun.

ing range.

For full details, send for brochure IL-106.

SPRAGUE ELECTRIC COMPANY 233 Marhall Streel, North Adams. Mass.

SPRACUE
 THE MARK OF RCLIABILITY

Circle 166 on Inquiry Card
ELECTRONIC INDUSTRIES • May 1961

New
 Products

KLYSTRON

Use of a "one way" electron beam eliminates hysteresis problems.

Model LKC-5 is a single cavity oscillator with high efficiency, light weight and no magnetic field requirements. For operation at freqs. from 800 to $13,000 \mathrm{MC}$, these tubes require only one adjustment to fix oscillation freq. Characteristics are: power output, 5 w cw ; beam voltage, 1200 ± 50 vdc : control electrode voltage, 60 v . max.; beam current, (i0 ma. max.; half power bandwidth, 7.5 MC . Lewis and Kaufman Electronics Corp., Tube Div., P. O. Bux 337, Los Gatos, Calif.

Circle 367 on Inquiry Card

COMPUTER RELAY

Hi aperd unita for tramsirtor circuits "perate in less than $750 \mu \mathrm{sec}$.

Driving voltage is a nominal 20 v . They have polarized driving systems with center tapped driving coils. Switching circuits are for dry to 10 v . levels with 100 million operations reliability. Models include DPDT and SPDT. Normally open and normally closed circuits are available. James Electronics Inc., 4050 N. Rockwell St., Chicago 1x, Ill.

Circle 368 on !nquiry Card

300\% FASTER ULTRASONIC CLEANING*

WITH THE NEW SELF TUNING AUTOSONIC BY POWERTRON

Powertron Autosonics are the only cleaners that continuously tune themselves electronically to give you peak cleaning efficiency. Regardless of load changes, liquid level, liquid temperature, or operator inattention, you get top cleaning performance hour after hour with no controls other than a single switch

The Powertron self tuning feature is available in a complete line of Autosonic tank units, consoles, cabinet models, immersible transducers, and vapor degreasers that ...

ELIMINATE OPERATOR TRAINING AND MONITORING IMPROVE QUALITY
REDUCE REJETS
CUT LABOR AND SOLVENT COSTS
Case histories on file show up to 900% faster cleaning consistently and savings as bigh as $\$ 3,000$ a month in labor costs under ideal conditions.

Send for Powertron's free booklet 60-1, "How to Clean Ultrasonically with Self Tuning."

POWERTRON ULTRASONICS CORPORATION

DEPT. EI.5 - PATTERSON PL. ROOSEVELT FIELD GARDEN CITY, L.Ins N.Y. * Ploneer 1.3220 Circle 167 on Inquiry Card

MICROWAVE DELAY LINES

where accuracy counts
In delay lines, where exacting design and construction standards apply, look to Turbo.
Turbo designs are available, with complete testing. for both fixed and variable systems, for waveguide and coaxial lines. from 1 to 26 kmc . from 0.01 to 2.5 microsecond. Write for complete specification and price data for standard units. Or ask about special designs involving problems of space, configuration, and performance.
TURBD MACHINE CO., Lansdale, Pa.
Telephone: Ulysses 5-5131

Circle 168 on Inquiry Card

Gith Gianswmeterw
 Ginil Cepreimeters

evailable from stock ranges from $0-50$ up to $0-20000$ gauss, no amplifier for :rstari indication of H ,

GRH Halltest Company

authorizeld US representative for

> Siemens Hallgeneratora

157 S. Morgan Blvd., Valparaso, Ind.

New
 Products

AMPLIFIER

Dual-channel, direct-coupled amplifier is for use in analog computers.

The amplifier, designated Model 508-1)R, has a bandpass of 3 db down at 100 kc . It features long term stability, minimum phase shift, low noise level and a phase margin of 6.8. In addition to its application to standard de analog computers, the unit is suited for special instrumentation problems, precision test equipment and special purpose analog computers. Computer Systems, Inc., Culver Rd., Monmouth Junction, N. J. Circle 351 on Inquiry Card

RECORDER/REPRODUCER

T-lunc) units offcr up to 20 chamucls aud time range's from \& to ?4 his.

Features include: plug-in transistorized circuitry; and "synkinetic" dual-flywheel flutter-free drive. Specs are: freq. response: $\pm 2 \mathrm{db}, 300$ to 4000 cPS at $1 \mathrm{~T} / \mathrm{ips}, \pm 3 \mathrm{db}, 300$ to 3000 CPS at $15 / 16 \mathrm{ips}$; flutter: less than 0.5% rms at $17 / \mathrm{ips}$, less than 0.8% RMS at $15 / 16$ ips; harmonic distortion: less than 3 , at 500 CPS; signal to noise ratio: 36 db or better at 100% modulation. Applications: language laboratories, airport communications, and military communications centers. Magnasync Corp., 5546 Satsuma Ave., N. Hollywood, Calif.

Circle 352 on Inquiry Card
 STOCK RELAY
CATALOG
lllustrates, describes. prices 189 ditterent relays developed to meet exacting reliability re-quirements-carried in stock for immediate shipment-in cluding -

- General Purpose Relays
- Telephone Type Relays in a wide range of sizes and specilications
- Imin contact relays
- Sensitive Relays
- Power Relays
- Retays with removable dus? covers. see-through, her metically sealed and dust light enclosures. Send for Cat 261 today

Comprises two Class 88 relays with interlocking latch-in arms mounted on a common base. When pilled in each armature latches; the other is released and drops out.
Electrically each relay is independent. Each may be e"puipped with cont.at (ombinations to 3PI)T, contact ratings to 10 amperes. Eaclo can be furnished for most voltages, AC or DC The Class 88 rellay hats been developed to maintain exceptional reliabil. ity through long life. The pin type armature hinge is the same cuality construction used on the finest telephone type relays.
Other features, including dimensions, prices and specifications of STOCKED relays are covered in special literature. mailed promptly on request.

MAGNECRAFT ELECTRIC CO.

3350 H West Grand Avenue. Chisago 51, Ill - Everglade 4-0868 Circle 170 on Inquiry Card

Make Globe your supplier for high performance centrifugal blowers-whether you need one prototype overnight or hundreds or thousands. We stock most types for 24 hour delivery! Designs provide aluminum or plastic scrolls, d.c. permanent magnet or wound field motors (also universal a.c./d.c.), and 60 or 400 cycle a.c. as well as variable frequency motors. Request catalog CB-1 from Globe Industries, 1784 Stanley Avenue, Dayton 4, Ohio.
aluminum seroll
plastic seroll

rotor size	motor type	cfm free air	rotor size	motor type	cfm free sir
$\begin{aligned} & 11 / 2^{\prime \prime} \\ & 11 / 2^{\prime \prime} \end{aligned}$	MC a.c. MM d.c.	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1^{\prime \prime} \\ & 1^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { SC a.c. } \\ & \text { SS d.c. } \end{aligned}$	$\begin{aligned} & 9 \\ & 5 \end{aligned}$
$\begin{aligned} & 2^{\prime \prime} \\ & 2^{\prime \prime} \end{aligned}$	FC a.c. IL d.c.	$\begin{aligned} & 50 \\ & 36 \end{aligned}$	$\begin{aligned} & 11 / 2^{\prime \prime} \\ & 11 / 2^{\prime \prime} \end{aligned}$	MC a.c. MM d.c.	$\begin{aligned} & 17.5 \\ & 13 \end{aligned}$
Also available in wound field designs, custom built for free air deliveries up to several hundred cubic feet per minute.			$\begin{aligned} & \mathbf{2}^{\prime \prime} \\ & \mathbf{2}^{\prime \prime} \\ & \hline \end{aligned}$	fC a.c. LL d.c.	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$
			$21 / 2^{\prime \prime}$ $21 / 2^{\prime \prime}$	FC dic.	28 36

ALLIED'S NEW 6 POLE

 Sub-Miniature Relay with 0.2 Inch Grid Spaced Terminals*

ACTUAL SIZE
TYPE JH-18D (EPDT)

OPERATING CONDITIONS

CONTACT RATING

2 amperes non-inductive or I ampere inductive at 29 volts $\mathrm{d} . \mathrm{c}$ or 115 volts $\mathrm{a} \cdot \mathrm{c}$
Low level contacts are available on request
AMEIMMT TEMPERATURE:
$-65^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$
vienation:
5.28 cps at 0.5 inch double amplitude $28-2000 \mathrm{cps}$ at a constant 20 g

SHOCK:

50 g operational
weichts
1.8 ounces maximum
*Also available with straight pins for printed circuit application

Write for Bulletin JH-18D \# 25

GROMMETS by the Millions
Grommets for any conceivable industrial purpose from natural, all purpose (GR-S), Neoprene and Buna-N rubbers.
Western grommets come in hundreds of standard sizes, and can be ordered in any formulation from molds already prepared.
Western Rubber is fully equipped for production of either standard or custom designed grommets in any size, shape or volume. All are quality controlled and economically produced to your specifications.
Write or phone for information or a visit by our \longrightarrow sales engineer in your arva.

WESTERN RUBBER CO.
 GOSHEN 3, INDIANA

MOLDED AND LATME.CUT RUBBER PARTS FOR ALI INDUSTRIES

Circle 173 on Inquiry Card

New
 Products

SOLENOID VALVE

Compact, high pressure unit is for Huid (liquid and gas) control.

Available in 6 to 64 vdc, 6, 12, 24 and $110-220$ v., 60 CPS ac and 110 v ., 400 CPS ac models, this valve operates in any position with a max. rate of 1000 CPM at 100 psi . It is also available in water proof and fungus proof models. Using from 1 to 3 w , it will serve under pressures up to 200 psi in temp. from $-65^{\circ} \mathrm{F}$ to $+350^{\circ} \mathrm{F}$. General Magnetics. Inc., 2641 S. Louisiana Ave., Minneapolis 26, Minn.

Circle 355 on Inquiry Card

SURFACE FINISH INDICATOR

Portable transistorized unit measures finishes from 1 to 10101μ inches.

This battery-powered instrument is for measuring surface finishes on metals, plastics, ceramics and organic materials. Model MS 1000 Surfindicator has a rugged pickup stylus that can detect variations of $1 / 2 \mu$ inch within the measurement range. Three cut-off wavelengths to avoid errors resulting from surface waviness as distinguished from roughness are provided for different ranges of work: $0.030,0.010$ and 0.003 in . Brush Instruments, Div. of Clevite Corp., 37th \& Perkins, Cleveland 14, Ohio. Circle 356 on Inquiry Card

The INCREDIBLE SHRINKING Resiston

Daven has ahways deen the leader in the minieturization of precision wire wound resistors. Now. due to further advances in resistor manufacture. Daven is able to offer higher resistance values in smallet sizes than ever before.

For guided missiles, airborne radar, telemetering and for any application where extremely small size and dependability are of prime importance, specify Daven miniature wire wounds.

Circle 175 on Inquiry Card

AVTDMATJCALCY
Auromotic Marking Machine. Wrops or flags wires or camponents with Brady Markers of speeds to 1000 per hour. Accurate Easy - operate.

Write for information and free Miern-Minioture Markers samples:
w. H. BRADV co. 789 W. Glendale Ave., Milwaukee 9, Wis. Manulacturers of Quanty Presture-Sensitve Indcitrial Tape Products. Self-Bonding Nameplates. Manulacturert of Quaily Pressurr-Sensitive Inductrial Tape Froducts, Sell-Bionding Nampplatel,

Lepel

 Figh Frequency Dnduction HEATING EQUIPMENT (97) Hardening - Annealing - Soldering Brazing • Zone Refining • Crystal Growing
$1 \mathrm{kwi} 2 \mathrm{l} / \mathrm{kw} ; 5 \mathrm{kw}$; 10 kw : $20 \mathrm{kw} ; 30 \mathrm{kw} ; 50 \mathrm{kw}$ 75 kw ; 100 kw

SPARK GAP CONVERTERS:
$2 \mathrm{kw} ; 4 \mathrm{kw} ; 7 \mathrm{l}$ a kw; 15 kw ; 30 kw .

WRITE FOR THE NEW LEPEL
CATALOG 36 illustrated pages
of valuable information.

HIGH FREQUENCY LABORATORIES, INC.

55th ST. \& 37th AVE, WOODSIDE 77, M. Y.
CHICAED OFFICE G240 WEST NORTH AVE
Circle 177 on Inquiry Card

MODEL
200AB

- 2° absolute accuracy
- Readings not affected by noise and harmonics
- Frequency range 15 CPS - 30KC
- Accuracy to .01 degree with simple circuit techniques
- High sensitivity on input \& reference channels
- Can measure in-phase \& quadrature voltage component

For further inlormation contacl your neorest
representative or write for brochure

INDUSTRIAL TEST EQUIPMENT CO
S5 E. 11th ST. NEW YORK 3 . GR 3-4684

Paper Tape Problem Solved by New Reader

A problem caused by oil spots which, in effect, become "phantom holes" in paper tape for instructing computers, and led to faulty data processing results, has been solved by an RCA high-speed tape reader. The reader "knows a genuine perforation when it sees one." Photoelectric scanning principles and improved circuitry have been incorporated in RCA's Model 322 Tape Reader, enabling it to ignore everything but true perforations.

Committee Set Up By EIA

Electronic Industries Association's Subcommittee on Microminiature Components for Computer Use has been given full committee status within the EIA Engineering Dept. It will function as an advisory committee on user recommendations for discrete microminiature cumponents for all applications. The group, re-designated the Microminiature Components Advisory Committee, has been given an "across the board" advisory function.

NEW.. TYMETER GRADINETIC ${ }^{\circ}$ SECOND BY SECOMD 5 DIGIT 12 OR 24 HOUR READOUT DGHAL CLOCK

one year
 front panel time reset controls reset digits individually - Illumination controlled by independent control switch Jewel light panel indicator - Movement shock resistant to withstand shock of 2000 lbs . Completely enclosed in anodized metal dustproof case E Height $41 / 2^{\prime \prime}$, Width $12^{\prime \prime}$. Depth $31 / 2^{\prime \prime}$, Weight 6 lbs . Front panel mount . . desk or bench use - TYMETERS are powered by a rugged, completely enclosed synchronous motor with a rotor speed of 450 RPM - UL approved motor and cord Guaranteed

> SECOND BY SECOND gradient readout

AVAILABLE:

120 Vac, 50 or 60 Cps 240 Vac, 50 or 60 Cps 115 Vac, 400 Cps

Wrife for Cafelog on Complete Line Showing Speclicafions

POWER SUPPLY

Type 125 powers from 1 to \& Tckfronix Type 122 Preamplifiers.

It provides 3 different regulated supplies to these preamplifiers thru cetal interconnecting cables. Output voltages include: +135 vdc at 0 to $20 \mathrm{ma}, \pm 3^{\prime}, ;-90 \mathrm{vdc}$ at 0 to 20 $\mathrm{ma}, \pm 3 \% ;-6$ vdc at 0.7 to 4 a., $\pm 5 \%$. Dimensions are $103 / 4 \times 41 / 4$ $x \quad 13 \frac{1 / 2}{}$ in. Weight is $14^{1 / 2}$ lbs. Tek. tronix, Inc.. P. O. Box 500, Beaverton, Ore.

Circle 353 on Inquiry Card

OSCILLOSCOPE PLUG-IN

Neur horizontal plug-in mit incrases the rersatilit!, of oscilloscopes.

Model 166D Sweep Delay Generator, delays the main sweep of the Hewlett-Packard 160 B and 170 A o-scopes for detailed examination of a complex signal or pulse train. It offers a new mixed sweep feature to show an expanded waveform segment while still retaining a presentation of earlier portions of the waveform. Thus, both low speed and high speed phenomena can be observed on the same trace. Model 166D's delay time is 1μ sec to 10 sec . Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif.

Circle 354 on Inquiry Card

MEW HYDRAZINE ACTYATED GORE SOLDER FLOWS AT IDEAL RATE, LEAVES NO SOLDERING RESIDUES

Non-corrosive hYDRAZINE FLUX, used industry-wide in liquid form, has now been incorporated into core solder. This fast, efficient flux vaporizes completely at soldering temperatures. It leaves no residue which would support fungus growth. Will not corroae.
In N-32 core solder for the frst time, HYDRAZINE FLUX offers more advantages than ever. When flux is normally applied, far more than is actually needed is used. Now. the exact ratio of flux to solder provides for proper wetting. Thereafter the flux decomposes and is eliminated. Cleaning and production time are saved.
TEST HYDRAZINE FLUX AND CORE SOLDER in your own plant. Write for samples of either H-Series Fluxes or H-32 coresolder form and technical literature.

-U.S. Palein No. 2,612,45

available oniy Iram Fainnount ond ins salas agents
Fairmount
CHEMICAL CO. INC
I36 Useny SR., N. Y. B, N. Y.
Circle 180 on Inquiry Card
BINARY OPERATED READOUT

Self-Decoding

amanlew

Applications.
May be connected directly into computers, teletype, other electronic equipment.
Features Electro-magnetic operation, low power (10 milliwatts), accepts BCD code to 6 bits, does own translating and displays proper character.
Specilicatieas . Speed: 20 characters per sec Character Size: 1% "high. Dimensions: $13 / 4^{\prime \prime} \times 31 / 4^{\prime \prime} \times 63 / 4^{\prime \prime}$
WRITE TODAY FOR COMPLETE DETAILED INFORMATION. Circle 181 on Inquiry Card

Circle 182 on Inquiry Card

Circle 183 on Inquiry Card

New Sonic Energy Cleaning Systems

REDUCED INITIAL COST
25% less cost

LESS FLOOR SPACE up to 40% less
MAXIMUM RELLABLLITY
proven design-field tested
IMPROVED EFFIIENCY
compact power generation
LIFEIME WARRANTY
on new Omnimite transducer
SYSTEM INTEGRATION
improved filter, rinse \& dryer
RESTYLED CABINETS
for maximum adaptability

From Bendix . . . pioneer and largest producer of Sonic Energy Cleaning equipment

NEW!3INCHES OF wow HOWADD H.P. INOUCTION MOTOR

for Typewriters-Business Machines-Computors-Recorders-AppliancesMORE POWER, SMALLER SIZE,LONGERLIFE, TOUGHER CONSTRUC: TION... AT LOWER COST! - $3^{\prime \prime}$ diameter-26 frame size - 2 pole ratings from 15 millih.p. to $1 / 10$ h.p. \& 4 pole ratings from 15 millith.p. 10 $1 / 20$ h.p. - Available in hysteresis synchronous, permanent split capacitor, split phase and capacitor start models. Single or double shatt - Resilient mount, foot or face mount. Write for samples and prices!
Divisions: Electric Motor Corp. Cyclohm Motor Corp. - Loyd Scruges Co. Reeine Eleetric Produets
MOWARD IMDUSTBIES, IMC. * 1730 Stete Sireet * Racime, Wisconsin
Circle 185 on Inquiry Card
 R.jouCCT Smoll Plugs Ê sockofs for 1001 Mus. Coble Clamp
in Cop

- Knife-switch socket cantacts phosphop bronze cadmium plated.
- Bar type Plug contacts brass, cadmium platod, with cross section of $5 / 32^{\prime \prime}$ by $3 / 64^{\prime \prime}$.
- Installation molded bakolite.
- All Plugs and Sockets polarized.
- Motel Caps, with formed fibre linings.
- Made in 2 to 33 contacts. - For 45 volts 5 amperes. Efficient of much higher ratings where circuit charactoristics permit.

Ast for Jones Cotalog No. 2 showing complete line of Electrical Conasecting Dorlces. Mugs, Soctoth. Terminal Strips. Writs of Eire today.

[^10]
Electronic Sources

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering journals

A
 cincuits

some Circeits of Half-Cycle (High-Speed) Magnetic Amplliters for Servodrive, V. G. I.enkov et al. "Avto. i Tel." February 1961. 9 pp Three circuits uf high-npeed magnetic amplifiers for a nervodrive are conaidered. Their peculiaritiea are dincunsed. IU.S.S.R.I

Self-Saturating Marnetic Amplifier According to Voltage Iloubling Circuit. A. Lipman, A. I. Munkalev. "Avto. i Tel." February 1961. 7 pp A de output self-naturating magnetic amplifier lesigned accurding to a doubling rectifier circuit in considered. IU.S.S.R ।

Second Harmonic Marnetic Modulator with Supply from Quadrature Drift Ciremit. M. A. Rakov, L. A. Sinitzky. "Avto. I Tel." February 1961. 5 pr. Pomsibility of supply of a second harmonic magnetic medulator from quadratur Hrift circuita in cunsidered, that eliminates fll (ers from excitement nets and moslulatur con (rol neta. 'U.S.S.R.)

To Calculation of Thermal Reaintance C'ircuit with Relay Rehaviar, V. F. Hackmutaky Avitu. i Tel." January 1961. \& pp. The calcula tion technique for a thermal rewintance circuit with a relay behavior for a set diapamin of cunervilled temperature is explained. IU.S.S.R.I

Simple Transintor Cireuits. R. Gundry. "B.l. et Aute." Feb. 1961. 2 pp . Four nimple tranaintor circuits are dewcribed. IFrance.

Trechotron Driving Cirenits. "Fi. et Autu." Feb. 1461. 3 pp. Thin article describen mome kemicunductor circuitm anecially dewigned fur erochueron tubes. IFrance.

The lise of Karnaugh's Mirrer Symbol for Tranafuzors. F. Scheiber. "Frey." Feb. 1961. f pp. Tu fncilitate work with trannflumor cirruits, a nuitable tranafluxor nymbol in promaed, which in patterned after the well-known mirror aymbel for toroidal corea by Karnaugh and adopts its advantagen of simplicity and clarity. Ifermany. I

Counter Alempo-A Symbolic Analyais of Cieneral Coente of Multiple Caincidence, F. A hehringer. "Nach. Z." February 1961. A pp. The main aubject of this paper is a prouf of the fact that any pulse count which han to be carried uut by meann of a complicated multiple coincidence circuit, can be aubatituted by neveral partial counta requíring unly aimple besic circuita. IGermany.)

The Four-Lager 8ilicon Diode and its l'see an a Circuit Element. H. Keller \& G. Wieczorek. Frea," Feb. 1961. 7 pp . The paper dincuanew basic and well-proven circuita and sives a zurvey of the wide putentialitien of thin nuvel circuit element. (Germany.)

The Magnetic Flus Comnter. Ci Muller. "Nach. 7.." February 1961. 7 pp. The principle of multi-atable marnetic aturare in explained by noenne of basic corunting circuits and by a mathematical deacription of the inversion of the magnetic field and the counting process. (Germany.)

A Selective KC-Amplifier Circuit. V. S. Adreyev. "Radiutek" 16, No. 1. 1861. N pu. The author analyzem a sulective RC-amplifier. hased on a phase-inverting cascade and a Wien-bridge, and considers the possibility so raise itn equivalent efficiency by the addition of an exera amplifier. IU.S.S.R

Paramptere of Comples Electionie Circaita and Their Application to Analysea. N. I. Smirnuff. Rarliutek" 16, No. 1, 1961. \& pp. In the deaien of complex electronic circuits, it in restuired (o) perform many aimilar matrix converniuns. Such conversiona cuuld be performed on a more general way once L, reduce the total number of uperationn. However, for multi. number of "perationn. However, for multi-
pole circuit, it prements considerable difficul. pole circuit. it preaents considerable difficultien. In thin article. these difficultien are nolver tu a certain extent, and relatively aimple expresiona are exbein and etens which do not contain matrix conversjuna, IUS.S.R.I

COMPONENTS

Some Aspects of Component Reliability. J. G. Annenheim. "Mrit. C. EE." March 1461. \& pp. This article dencribes how the reliability of electronic compunenta, including transisuors. semicundurtur diuden, capacitors and resiaturs. is largely dependent upon uperating cunditionm. and how important thene are when determining reliability. IEngland.I

New Reaule of Inventigating Digital Morhanical Control end Operational Componento, H. H (ilatli. "El. Rund." Feb. 1961. 3 pp . Hydraulic and pneumatic componenta are faster and more araptable than conventiunal merhanical compunenta. Development of these hydraulic and pneumatic components sima et amall dimenaionn and hiah reliability. Hasic components. aimple circuitn, tent results and denixn exam. glem give an imprexion of the state of the art. IGermany.)

The Long-Term Rehevior of Materiala and Electronie Components. J. Tretter. "Fren." Feb. 1961.9 pp. The paper whows the prosreas in time of diascommodation, agink, recuvery. and regeneration procewses on semiconductura. fermelectric. Perromasnetic, plastic. and other materials. pointing out what in cummon and generally appliable in the behavior and attempting to give a therretical explanation (liermany.)

COMPUTERS

Blertranic Decode and Code Fanctional Gen erators, V. B. Smulov. "Avto. i Tel." February

REGULARLY REVIEWED

auspralia

AWA Tech. Rew. AWA Tectnical Reviem
Proc. AIRE. Proceedinge of the Institution Radio Engineers

CANADA

Can. Elec. Ent. Cmadian Electronles EnglEL Comm. Electronica and Communleations

ENGLAND

TE J. ATE Journal
BBC Mono. BBC Engineering Monographs
Brit. C.aE. British Communcations © Elec Pranies
II Tech. Electronie Technolney
GEC J. General Electrical Co Journal
J. BIDE. Journal of the British Institution

Proc. RIEE. Proceedio
Electrical Engineers of Instltution of
Tech. Comm. Teehnteal Communications

PRANCE

Bull. Fr. El Bultetin de la Societe Franralue dea Electriciens
Comp. Rend. Comptes Rendus Hebdomadaire
Onde. L'tinde Electrique
E. et Auta Electronlque \boldsymbol{R} Automatisme
her. Tech. Revue Technique
Telonde. Telonde
Toute R. Toute Ia Radio
Vide. Le Vide

GERMANY

aEg Pion. aEg Progress
arc. El Uter. Archis dep Eleterisichen liber-
El Rund. Electronische Rundschau
rea. Frequenz
Moshfrea. Hochfrequens-technit und Electpo alusit it
ach. 2. Nachrichtentechnlsche Zeltschrift
ht. Regelungsteehnit
Wundunt. Runifuntrechnische Mitteilungen
at. Tech. Vatuum-Technil

POLAND

Prace ITR. Prace Inststutu Tele-I Radiotech Roz. Elet. Rozprawy Electrotectionize

USS星
Arto. i Tel. Artomatlia 1 Telemakhanika
Madio. Radlo
Madiotek. Radioteknlta 1 Elekiranalia
Rad. i Elet. Radiotetrilts I Elelireanila 2. Acad. Bulletin of Aeademy of Selenter

[^11]
International ELECTRONIC SOURCES

1461. i pp. Digital-analog computens which can be used for functional decoding of dikita infurmation and fur functional cuding of ana loge infurmation are dexcribed. IU.S.S.R.

Method of Selectina Optimum Structure of Digital Analog Computers, A. V. Shileiko. "Avto. i Tel. Janumry 1NGI g rils. A merthat of selecting the diaital cumn

Telemetering in Process Control. E. Wintergent. "rt." Jan. 1461. : pp. The article begins with mathematicul and experimental investigations intu the speed transmisaion with pneumatic tele-transmission of measured values This is followed by a comparimon between the iranmport lak with pneumatic and electrical telemetering respectively. The article ends with a description of simule computers used in divect conjunction with telemetering systems. (Germany.)

Optimizing the Contral of ainter Procesa by Meann of a Digital Computer, K. J. Lesemann. "rt." Jan 1 Mail. A no. A sinter plant in chusen on example 20 prove that it is possible by Using n digital computer fur data processing and as a kind of muperior control system. t" obtain optimal process control conditions dis-
pensing with process equatiuns. I (iermany.

CONTROLS

Concerning Eatimation of Self-Cacillation Pa. rameters in Non-Linear Control Systems, V. R. Andrieviky. "Avin. I Tel." February 1961. 5 pp . The naper deals with an extimation of selfincillation parameters in non-linear control ystems which permit to use the describing function principle. IU.S.S.R.)

New Elaborations Concerning Remote Control High-Frequency Channels, Y. L. Bykhovsky. et ml. "Avto. i Tel" February 1961. \& pll The paper deals with the elaborations conerning remate cuntrol high-irelluency chan nols which were developed at the All-Union scientific Inatitute of Electrical Power (II, S. S.R.)

Tranaipnt Proresmen in Extremum Control Sya temn with Dynamic Senaitive I'nit. A. P Yurkevich. "Avto. I Tel." February 1961. 9 pp. peculiarities of trankient proceases in an ex remum contrul aystem with a memury and a kensitive unit of a dynamic type are con sidered. IU.S.S.R.I

Dual Contral Theory IV, A. A. Feldbaum "Aves. i Tel." February 1961. 14 pp. A generalized aloorithm for dual control optimum trategy of controlled object with memory and some inputs and outputs in deduced. An example of apylication of the algorithm is given. il'.S.S.R

Optimum Procenaen in Syateme with Dintributed Parameters. A. G. Hutkovsky. "Avto. Tel." January 1461 . 10 pr. A prublem of opti mum contrul ix considered fur aystems which mution is deweribed in general case by non linear intekral equations cunnecting output co ordinates of the syatem with control actions IUS.S.R.

Some Prohlema of Deairn of Syntemn with Self-Adaptive Extremam Corrective Devices V. N. Varykin. "Avu. i Tel." January 1961 i1) pp. Equations are obtained for an extremum self-adjuxtment of corrective devices of linear syatems with acan oacillation frequency which is camparable to natural frequency of control main circuit. IU.S.S.R.

Certain Numerical Methods for Determining Periodical Motiona of Automatic Control Sys temn, Yu. 1. Neimark. "Avto. i Tel." January 1461. 10 pp. Certain numerical methuds for determining periontical mutions of automatic control aystems are recommended. IU.S.S.R.

Theory of Dual Control, A. A Feldbaum "Aveo. i Tel." January 196i. It pp. Two carex of an olltimal dual contrul aystem aynthexis are considered. IU.S.S.R.)

On-Selecting Parameter Correlations of Two Typen of Third Order Single-Loop Automatic Control Syatemn with Additional Pulse on Dr rivative, L. C. Subolev. "Avto. i Tel." January 1961. 4 pp. Recommendations concerning the selection of parameter correlationa of twin ynes of third order single-loop autumatic control xystems are given. IU.S.S.R.।

Sequence Controllers Acting an Regulating Ele. mente in Principal Control Loops. R. Wetkel "rt." Jan. 1961. 5 pp. The fundamentals " such wtructures are developed and explained with the help of examples dealing with cas ade, computer, and uptimizing control syatems. (Germany.)

Contral Techniques af the 1960 Interkama Ex hibition, H. Kronmuller. "rt." Jan. 1\%61. E np. This report gives a review of the state the measuring and control eechniques ulsserved at the 1960 Interkama Exhibition ((iermany.)

Regulating Rehovior and Dinturbance Reaponse in Combuation Contral Syateras. A. Schneider "rt." Jan. 1961. T DD. The cantrolled plant resucess frum the fuel and ir intambustion pronerution of heat. (Cermany. cenerution of heat. (Germany.

GENERAL

Law Determination for Piloting Planes in Order to Obtain Optimal Trajectory When Pilating with the \mathbf{W} ind Changing. V. I). Matyizin. "Avto. i Tel." January ighi. In pp An extremum problem for determining the cunditions reluired for the quickest flicht of a plane from one to rnuther point of the and in time dependence is considered. IUSSR.

A Low Cost Trunk Cable Syatem. R. N. Burun. "Brit. C. \&E." March 1961 . I p. The considerations determining the chuice between open wire lines on poles and undergraund cable are rather different in under-develuped areas cumpared to developed onen. Thin article describes the particular requirementa in The Sudan and the methods uned to meet them. - Encland.

Stability of Multistare Marnetic Amplifiera with Negative Feedhark. M. A. Ruzenblat. c. V. Subbrtina. "Avtu. I Tel." Jan. 19fif. 11 pp . A multintage masnetic amplifier is con frequency criterion is used to investigate the atability uf the amplifier with a negative feedbeck. IUSSR.

Telemetry Signals from Sputnik III, R. E. Hendermon. "El. Tech. March 1961. \&p. Equipment is described for tranacribing telemetry nignaln from Sputnik III from magnetic tape on to photographic film. IEngland.

Automatic Optimization of Space Diatribution. L. N. Fitzner. "Avto. I Tel." Jen. 1961. 10 pp. The principles of automating the distribuion procesa of some physical value in the pace are conxidered. (USRR.)

Limited Dynamic Propertiea of Power Executive Componente of Servonystems. II. G. A. Nadzhafova. "Avto. i Tel." Fiebruary i9ti 14 pp . Limited dynamic properties of dc electrical executive mechanisms with indejendent excitation which are lunded with a mument of dry furcen are determined. tUSSR. I

About Experimental Determination of Dynamic Characterintica of Pneumatic Pipea. A. M mirnow. "Avto. i Tel." jum F96j. 2 pll An apparature for determining dymamic charfrequency chaructorintic methud is briefly decribed. IUSSR

On the Summation of Two Oncillation Fieldn 3. Owrzarok. "Roz. Elek," Vul. 6. Nu. 4. $2 \cdot 2$ in. The paper dealn with uscillation field arying ainusoinally with the same frestuency oscillation. The analysis of their summing estikating a curve of the necond descee. Poland.I

Anti-Sivmmetric Feedback Two-thannel Servo sintem with Random Disturbancea, "Avto. Tel." Feb. 1961. 14 ln . Common wayw of ana yzink randum stationery processes in linear watems are anneralized for nyutems with cum
plex transfer and weight functions, IUSSR.)

Dearription of Two New Fized Station Short wave Receivera for Telephone and Telegraph Service, 1). leypold, et al "Freq." Feh. 19fi nu. The recpivers of the Typer 1:35 F: 103 and 125 F. 101 were develuned to nuuplant the shart wave receivers $K W_{2} \mathrm{G}$ and $2 \mathrm{KW}_{1}$: far sinkle adeband and telearaph diveraity operation, re spectively: the paper reporta about their prin ipal featurex ifiermuny.

Deacription of the Telegraph Section of the New Fixed Station Shortwave Receivera. H Meiwner. "Frefl." Feh. 1461. I pp, The paner dexcriben the telegraph section of a new shurtwave receiver for fixed statiuns. (Germany.

The Quention ef Dialing by Code and Pumh Button. F. Fizzel. "Nach. Z." Felı. 1461. D py. At prosent the quention uf comed and bust hutzon dialing in telephune exchange tech niques is heavily discussed. It shown thas the main advantaged of conder number transmiswion depends wubatantially on the type of the exchunke aysiem. Wiermany.)

The Problema of Punh Button Dialing. H. Oilen "Nach. Z." Feb, 1!6i. T H5. Eiarly nkrec. ments are reguired in urder \{ll entabliwh in the uperation of push-button dialing the uni formity which curresponds to the internationn character of telecommunicatiuns. The puint which ugreemenis should be reucheil are mentiuner in the furm of it questions. IGer many.

Radioencephalography, F, Junter. "El. et Autu." Fels. 1461. 3 pr. This first part of a
 describe transisturized elfuipment. IFrmnce

Magnetostrictive Ferritea with a High Mechani cal Quality Factor. Z. Kaczkowski. "Roz. Elek." Vol. 6, Nu. 4. 24 MI. Hasic definitions for the magnitudex detprmining magnetomtricThe probertiem of the mechanical Q factor of The prohlem of the mechanical 0 factur of mechanical propertica is dincussed by way of example. IPoland.I

X-Ray Determination of Cryatal Strmeturee P. B. Braun and A. J. van Bommel. "Phil Tech.: \#t 4,1961 13 pp. The article deals with the principles underlying X-ray diffraction discusing the relation between the structure and the diffraction patterns, and how the one can be derived frum the other. INetherlands. in English.

DIRECT CONVENIENTLY COMPLETELY READING PORTABLE TRANSISTORIEE

GAUSSMETER

- Reades stoody D.C. fields Ifacilitios for A.C.) 1 gauss (20 milligauss sensifivity) to 30,000 gauss, full scale, in 10 ranges.
- Response - D.C. to 1000 cyclos A.C.
- Built-in probe calibration
speeds probe inferchangeability
Highly sensitive instrument based on Hall effect. Indicates direction and magnifude of magnetic flux directly on new ZERO CENTER METER. Indispensable in many industrial and research uses. (Greater sensitivity available in Bell Model 120 gaussmeter - 100 milligauss, full scale, to 30,000 gauss.) Write for full specifications.

When you think of magnetic field measurement, think of Bell Circle 187 on Inquiry Card

American Machine \& Foundry Company
1101 N. Royal Street, Alexandria, Virginia
A complete variable capacitor line . . . from tiny sub-miniatures to large heavy duty lypes!
From the tiny Type "U" sub-miniature, which requires less than 0.2 sq . in . for chassis or panel mounting-to the rugged heavy-duty "C" and "D" types . . the Johnson variable capacitor line is designed for more capacity in less space-offers you one of the widest standard capacitor lines in the industry! for defailed specifications on all Jothnson variable capacitors, write for your free copy of our newest components calalog, described below.

Writo roday for our newest electronic components cotolos-complete apecincort

- CAPACTTORS - TUEE SOCRETS - CONNECTORS - PILOT LUGHTS - INSULATORS - KNORS, DIALS - INDUCTORS - HARDWARE

E. F. JOHNSON CO.

2014 Second Avenue S.W. - Waseca, Minnesole
Circle 189 on Inquiry Card

International ELECTRONIC SOURCES

Germanium Double Cryatais in Grain Boundary Photecelle I. H. F. Matare. "EI. Rund." Feb. 1961. Ap. The first part of this paper dealn with the mechanical and chemical structures of the grain boundary, especially the potential field produced by free bonds and the resultins change of the electronic band diatance. (Germany.)

Inflemere of Flawe on the Pield Diatribution in the Railway Bar and Directions for Marmetical Flaw Detection. "Roz. Elek," Vol. 6. No. 4. 60 pp . Thin article includes analytical determination of the field in a rectangular bar with - thin tranaverse crack. IPoland.I

Strip-lines and Tromghs with Rectamealar Flanges. A. Y. Yakhkin. N. N. Horisuff. "Radiu | Flanges. A. Y. Yashkin. N. N. Borisort. Radius |
| :--- |
| tek' | enuations are derived relating the dimenaions of rectangular protruding flanges to critical tyre H wavex. The derived equations are applied to cuncrete designs of certain types of troughn and utrips. (USSR.

Kecording Density of Wide-Band Sienals, I. E. Gioron. Y. P. Drobyshev. "Radiotek" 16. No. 1. $1961 . \mathrm{M} \mathrm{pp}$. In this article several feasible methods for magnetic recording of wide-band signals are considered. These methods are lonsed on various principlea of signal diviaion. (1/SSR.)

Diserete Reprementation of a Time-Limited Signal. V. V. Lebedeff. "Radiutek" 16. No. 1, 1961. 6 pp . An interpolation function is considered for the representation of a timelimited signal by a set of discrete valuex. (lissR.)

INDUSTRIAL ELECTRONICS

A Nucleonic Coal Semaing Inatrameat, L R. Comper. "Brit. C.eE." Mar. 1961. 5 pp. Thin article. the last in a series from the Minine Rewewreh Eatablinhment of the National Coal Huard. described a nucleunic coal senaine system. England.I

Feel Cells. C. Denys. "El. et Auto." Feb. 1961. F 11 p . Among the new devices derianed th provide a mure efficient conversion of energy, fuel cells seem to offer more promises fur the immediate future. Variuus eypes are ntudied. IFrance.)

New Syatem of Pmeumatic Compaters, (i. T. Heresuvetz. pt al. "Avto. Tel." Jan. 1961. f pp. Methenls of constructing pneumatic rumputers with continuous action based on the application of uneumatic operational amplifipn working at low preasure $10-100 \mathrm{~mm}$ of the water columni are deacribed. CISSR.

MEASURE \& TESTING
W'eveguide Equipment for 2 mm Mieroweves. C W van Fs, ul al. "Phil. Tech." 玉4. 1961 1月 pp. Special equipment in needed for the meaxurement of frequency, phase. power, abmurption and reflection copefficient in the miero wave region. The article below is Part 1 of a aurves of apuipment developed at Philipas for 2 mm waves. Part II, to the putilished
later, will describe various setups for micro wave measurements at wavelengths of 2 mm (Netherlands, in Enclish.

Namerical Diaplay Automatic Millivoltmeter P. Lagadec. "El. et Auto." Feb. 1961. 7 pp. The use of functional electrunic sub-essemblies, or block-circuits. facilitates in a large measure the design and construction of complex equip ment. An example is provided by this auto matie digital voltmeter with numerical display on dicator tubes. (France.)

Application of Marnetic Amplifiers to Meanare Complete Resistances with the Help of Mas metically Conmected Net Method, O. G. Malline "Avto. i Tel." Feb. 1961. 7pp. An idea and adventages of a new method for measuring components of a complete reaistance $\mid R$ and X) are briefly described. (USSR.

Principles of Flar-Gate Marnetometera with All-Even Harmonic Oatput, J. Kulikowaki. M Nalecz. "Roz. Elek," Vol. 6. No. 4. 18 pp The paper deals with flux-gate magnetumeter with all-even harmonic pulse output which are used for measuring direct magnetic fields of the smallest intenaity about $100^{3} \mathrm{~A} / \mathrm{m}$. \mid Pol and. I

A New Electronic Derice for Sarge Voltare Measarement. W. Kuzniar. "Roz. Elek." Vol. 6. No. 4. 46 pp . The methud considered in this paper in based on a reversed mass-spectro Rraph principle: it was already applied by \mathbf{W}. Ehrenberg and \mathbf{H}. Hirsch 191 to constant voltage measurements. IPoland.

Sirnal Generator for the S-Band Rader Seta. R. Dick. "El. Rund." Feb. 1961. 3 pp. A pulse modulated $\mathbf{8 H F}$ aenerator for the band 2600 to $3400 \mathrm{Mc} / \mathrm{s}$ is dencribed. (Germany.)

Some New Video Meamarement Teehnigees and Apparatus. L. E. Weaver. "Rundfunk." Feb. 1961. 7 Dp. The paper attempta to sive a representative idea of the work which has been carried out recently by the BBC in the he!d of video measurement techniquen and apparatue. (Germany.)

A Survey of Serve Syatem Teat Equipment. E. J. Sumray. "Brit. C.\&E." Mar. 1961. 7 pp In this article. the operating principles, rankes and aceuracy are siven of aome commercially available systems for transfer function meanurements. (England.

Tests Made on so Year Old Wire from the Antartic. Fergus G. MeDonald. "Brit. C. \& E." Mar. 1961. S DP. Some bare aluminum wire used in a telephone circuit by Scott'u last Antaretic expedition wan found recently by a New Zealand party. This article describer. with original photorraphs, the use made of the wire, and gives the results of tenta carried out m it after fifty years of expowure in the Antaretic. (England.)

SEMICONDUCTORS

Germanium High Frequeney Mean Transistors, R. E. Warren. "Brit. C\&F." Mar. 1961. \& pp. Some of the difficult problems of manufacturing control involved in the production of high frequency mesa trannix
lined in thia article. IF.ngland.,

Tranaiator Frequency Reaponse. J. R. James and D. J. Bradley. "El. Tech." Mar. 1961. 3 pp. Recent transistur apecifications usually include typical values of IT. This article describes a praphical presentation of TT as a
function of the de working point and the advantages of this method. IEngland.

Thermal Problems of Transintora, H. J. Thuy El. Rund." Feb. 1961. 5 pp. The author discussed verious ways of measuring the thermal internal resistance, and describen several test cireuits. (Germeny.)

Tranaistorized Regulated Power Supply, F Pierre. "El. et Auto." Feb. 1961. Bp. The resulated power supply Hemletl-Packard HP 721 A uses only xemiconducturs. IFrance.)

Saterated Core Cenvertere, C. Pontier. "EI. pi Autw." Feb. 1961. 3 pp. Hecause of their high efficiency, transiators are commonly used in de to de static converters. (France.)

Teenetron and ite Applications. A. V. J. Marin. "El. et Auto." Feb. 1961. i pp. Several different sypes of tecnetruns have been prom diferent or are being developed. Thewe devices are described and their propertien briefly reviewed. (France.)

High Efieiency DC Reversive Magnetic Amplf Ser, O. A. Komuv. E. A. Manychkina. "Avto Tel.: Feb. 1961. 7 DD. A de reverajive magnetic amplifier with high effieiency proved by owitching iranaiators is considered. It is shown hat the amplifier can uperate under cumplex luading. IUSSR.I

Elemente and Unita of Ferfite-Tranaistop Cell Oae-Cycle Parallel Arithmetic Device of Digital Computer. M. I. Petrukhin. "Avto. I Tel." Feb. 1961. 10 pp. Some principlea of deairn ing one-cycle circuitn of delay elements, a ymmetric output trigrer. a shift register ani of counter-type adder for a ferrite-trannistur cell parallel arithmetic device ape conuldered. 1 USSR.

On Application of Pulse Supplyiag Measurine Bridge Circuits with Semiconductor Thermoreshatances in Devices of Temperatere Two Poaition Control. V. G. Hakhmutsky. 1. I Vinstein. "Avio. i Tel." Feb. 1961. A pp Thermal regime of a semiconductor thermo resistance with pulse supply is considered USSR.I

TELEVISIOM

A Mobile Laboratory for THF and VHF Tele viaion Surveys. "BBC Mono." Feb. 1961. 12 pp. This report describen the mobile labora tory used by the BHC Research Dept. for as sessing the reception conditions durine the Hand I Band V cumparinon teata carried out in 1957-8. (England. 1

Inare Orthirens with Field Mesh. K. Frank El. Rund. Feb. 1961. 3 pp. The discussion resulth in important viewpuints for the desien and the construction of field-menh tubes. (Germany.)

Techniral Equipment and Facilities of the HBC Television Centre. Landon, Sir Harold Bishop "Rundfunk." Feb. 1961. 8 pp. The article summarizes the most impurtant cunsiderations involved in planning the technical facilitien and eypuipment of the new BHC Televinion Centre in London. (Germany.)

Mobile Eurovision Inatallation of the Oater reichischer Rundfunk. Franz Brunner. "Rundfunk." Feb. 1961. \& pp. The Inatallation described comprisea all the technical equipment and facilitiea that are required at the point of orizin of Eurovision transmisslons, with the exception of the actual television outsidebroadeant vehicle. IGermany.)

IMMEDIATE DELIVERY OF ALL TYPES

A Survey of Simplified Image Orthicen Opration. T. Mayer and (6. F.. Partinutun. Hundfunk." Feb. 1961. i i . The A^{2}, in. 1.U. Whe introduced in Finkland in 1955 beenume of its better resolution, sisnal to noixe rutin, xrey senle and freedom from spurisus effects, and hax been found to be very atable in operation. The BBC conducled exhuustive invertikntions in order t find out which circuite were the murt important to provide a chmera channel of the highent, ntabilitity. and
theare are deacribed. Giermany.,

$\Delta G=\Delta G / n_{i} \mu_{p} \mathcal{L}$

THEORY

Bigniffeance and Applications of Distrihutiona in the circuit Theory. J. Uxiowski. "Ruz Filek." Vol. 6. No. 4. 62 plo. The buper is cumpused of two parts. The first part in deoted to mathematical foundnations of the distributions theory of one variable. Particular attention is paid to the problem of Fourier and Laplace tranmformation in the field of lixtributions an heing of exmential wikniticunce to the circuit theury. The necund bart cun thins review of nelected broblems of the
circuit thewry which arp trented and solved in lerme of distributions. |Poland.)

Determianation of Optimal Way for Changine Signal and Noime Carrier Frequency in betection Problema Based on the Theory of Giamea a Yu Gadzhiev. "Avtu. ; Tel." Jan. 1961 II IID. A conflieting situation wrising during the reretition of signal against noise when the onrrier frequency of the nixnal and the noine may chanke within the given framuency range is dexcrithed. ILSSR.

Panarge of Radio Pulmes Throagh a Multi-Aond Filter Array. M. I. Finkelxtein "Radictek" 66. Nu. 1. 1961. ? pD. The authur analyze the fимкмдe of N rectangular cuherent radic pulses through a multi-band filter array. A methid is uffered for the determination of the nvelopie form of outcomine pulxes. It is shown that in a realintie filter as the number of bulses incrensen, their amplitudes increame exominentially and divev nut rexult in on im-
prowement of the wave form whate. IlISSR.,

Induced Carrent in the Plate Cireait of a Triode. (i. A Zeyeliunuk. "Radiontek" 16, Nol 1. 1961. I1 pr. The article deals with the determinution of the active and remetive cum iminents of the induced current in the plate circuit of a triode at high siknal amplitudex [lSSR.,

General Theory on Regeneration Circuite with Variable Parameters, M. K. Relkin. "Kudion tek" 16, No. 1. 11f61. n pn. The purpuse of this article is to seneralize the wnulysis of rekenerntive circuits with varimble parametern and to extend ita apulicution to, "arametric ulluer-revenerative mmplification. The vuriatle purmmetern cowered in thin analymis are rapidy suryink resctance and alowily varyink metenum (bun IUSSR.)

An Investigation of the Operating Stability of - Pulse Generator, S. M. Taydell. "Rudiutek" 16. No. 1. 1961. ? pr. The alnbility of forced onsillations is analyzed for a mystem conainting of an uncillator and ann-linear luad. A charmcterintic erfuation determining the stmbility if the mymem is derived from the paluation of the deviation from ntationary operation. (1)SSR.)

Gen-Pro military terminal boards are manufacturad and inspected in eccordance with latest revision of MIL-T.16784, BuShips Dwg. 9000-56505-8-73214 and BuOrd Dwg 564101. Molding compound, per MIL-M-14E assures low dielectric lass, high insulation resistance, high impect strongth.

NEW MINIATURE TYPES NOW AVAILAQE
Gen-Pro miniature type military ferminal beards conform with BuShips Dwg. 9000-56505-8-73214 and other applicable specifications

W R ITE roday for now catalog
Miniafure $26 T 810$

UNION SPRINGS, NEW YORK TWX No. 169
Circle 190 on Inquiry Card

III CEDAR LANE ENGLEWOOD, NEW JERSEY Circle 192 on Inquiry Card

ROTARY MODELS

- Digital Readout
- 0-119 db
-50, 70 or 90 ohm impedance
- High.

Frequency,
Precision
Tefion \& Silver Switches

- 1\% Carbon Film Resistors
Fully Shielded Units
kay Precision High Frequency Attenuators

TOGGLE-SWITCH MODELS
- Up to 101 db
- Fized 0 or $10^{\circ} \mathrm{db}$ insertion loes

	TOGGLE SWITCH MODELS		ROTARY MODELS
	MOD 20 SERIES	MOD SERIES	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { MODEL } \\ \text { SERIES } \end{array}\right.$
SWR	1.2 : 1 MAX UP TO 250 MC 1.4: 1 MAX 250 TO 500 MC		
MIN INSERTION	0.1 db at $250 \mathrm{me} ; 0.2 \mathrm{db}$ at 500 mc		
accuracy	AT FULI ATPENU ATION A do 250 mc .1 .2 db from 250 to 500 mc	AT FUIL ATTEN. UATION 0.9 db of $250 \mathrm{mc}, 2.0 \mathrm{db}$ from 250 to 500 me.	
PRICE:			
f.o.b. factory	\$75. $1 \$ 79.1$	\$110.	\$250.
f.A.S. N. Y	\$83. $1 \$ 87.01$	\$121.	\$275.

Rotory operated
attenuators with
atlenuation (db)
lead on a direct
reading dial.

Hr te for riomoplete Cintatog Information
MAY ELECTRIC COMPAMY
Dept. El. 5 Maple Ave., Pine Brook, N. d.

CApital $6-4000$

TRANSMISSION

Comparison of Sienal Parameters an Applied omparal Tranamiasion. N. T. Petruviteh. - Signal Tranamicaion. N. T. Petruvitch. "Radiotek" 16, No. 1. 1961. \& pp. A methout for signal tranmmission in presented, which buned on comparisun of discrete sianals, creater new possibilitien in the technigue of mesmage eranamiasion. Its application in mexange carrier frequency phase comparimon is discussed. (USSR.)

Conversion of Certain Non-Electric Values inte tilertrie Signale when Required to be Ilaed in ontactiess Telemechanie Syateme, M. V. Kadzharov. "Avto. i Tel." Feb. 1961. is up The conversion of certain nun-electric values. wuch an: Level radiant enersy. aume frimble body velumes, prensure and level of liguidm, into olectric signala suitable for teletranmminnion when required to be used in contactlems iple mechanic wystems constructed on ferritedime relln in considered. "USSR.

The Theory of W'averuides and Cavities. K. A Waldron. "El. Tech." March 1961. \& irr. An outline is given of general appruach to the atudy of waveguides and eavitiea. The math ematios is not given in detail, but the difficulties encountered in setting up the math. culvical prublem for a given physical situa mand the phyeieal principles involved in he freatment are dimcused at length. IEin land.)

Education Office Supports Teaching Machine Study

The U'. S. Office of Education has granted \$88,283 to System Development Corp. for research on the use of a computer-based teaching machine to select and organize education material for high schnol students.
Experimental evidence will be obtained as to whether automated teaching devices and materials will facilitate learning in the rote and conceptual aspects of high school math, and whether such techniques are effective for students who have not been performing at a level considered proportionate to their basic aptitudes and intelligence quotients. The under-achievers will be compared with normal and overachieving students to see if the automated instructional materials have benefited them more.

SDC's experimental teaching machine is now being used to teach a course in symbolic logic, a largely conceptual subject matter. Each student sees a sequence of educational material best suited to his educational needs. A technique, 'branching,' is used in which the student is skipped over certain portions of topics if he demonstrates his proficiency in this material. He is given additional remedial material on those topics needing further amplification.

New	
	Products

VARIABLE RESISTOR

Type INS-110 is derigned for hot charrir applications.

This $\% /$ in. dia. reliable preset wirewound variable resistor has a mounting plate which insulates the control when mounted on a metal chassis. Connection through the cover to the rotating contact is provided by a solder lug. Rating is $11 / \mathrm{w}$ at 40 C derated to no load at $105^{\circ} \mathrm{C}$. Three embussed points on the contactor provide continuous contact between contactor, rotor and cover. CTS Corp., Elkhart. Ind.

Circle 365 on Inquiry Card

SPECTRUM ANALYZER

LA-21 discriminates between signals with amplitude differences of 811 db .

Covers the most widely used communication freqs. for uses including spurious response evaluation, spectrum monitoring, and filter network evaluation. Features are: an operating freq. range of 10 to 1180 mc . Signal sensitivity is 90 dbm from 10 Mc to 680 mc , with slightly reduced sensitivity to 1180 mc .100 kc and 1 me crystal controlled calibrator gives precise markers for calibration of viewing screen at any spectrum width setting. Lavoie Laboratories, Inc., Morganville, N. J.

Circle 366 on Inquiry Card

DATA STHIP no OSV-1538-10
Ventical completel mith ten No 39-28-1475 Lemp Cartinges. Oiner conifigutions 10 ader Shown actual sies. left to right Lanp Carfricters-Nos 39 6-1471. 7538 Datalite No 2497841931 mith burli in Neon lamp and resistor.

Most Adaptable and Efecrive For COMPUTERS, DATA PROCESSING, AUTOMATION, INSTRUMENTATION and MINIATURIZATION

DATALITES

 FOR USE AS SINGIE INDICATOR LIGhTS, OR GROUPED AS A DATA STRIP ${ }^{9}$ or DATR MATRIX ${ }^{\circ}$datalites by dialco are ultra-miniature Indicator Lights, made in 2 basic styles: Lampholders with dIalco's own replaceable Lamp Cartridges; or integrated datalites with Built-in Neon

Lamps * ... Mount in $3 / 8^{"}$ clearance hole ... LAMPS USED: T-13/4 Incandescent; also Neon NE-2E or NE-2H.

50 STEWART AVENUE, BROOKLYN 37, N. Y. - HYacinth 7.7600 Circle 194 on Inquiry Card

GROMMETS

ONE-PIECE NYLON

Simple Installation

- Snus fit-no rattle - Migh static strength and retention characteristics - Superior wear esistance without abrasion - Excellent elec trical properties Greatly simplify stocking. .250 Grommet is merely inserted through 2serture. A simple fool flares profruding shank untIl induced heop stresses flip shank back on itself. No heat needed in installation. Write or phene fer name of nearest roprosentativo.

WESTERN SKY INDUSTRIES

Copt.EI - 21301 Cloul Way, Havwart, Callf.
Circle 195 on Inquiry Card

Circle 196 on Inquiry Card

AEROVOX CAPACIBILITY

HIGH-TEMPERATURE

METALLIZED PAPER CAPACITORS

Designed specifically to meet critical operating requirements, Aerovox metallized paper capacitors offer many important advantages, including minimum size for space-tight applications... reliability and long service life. . . low radio frequency impedance ... and a wide range of case styles for operation to $+125^{\circ} \mathrm{C}$ without voltage derating.
Aerolene ${ }^{\text {E }}$ impregnated units are available in the temperature ranges shown at left:

Want complete technical data? Call your nearest Aerovox representative.. or write today for your free copy of catalog 131B8.

Capaci-bility An Aerovox characteristic. Capa-Capact-ailit An Aerovor characteristic. Capapacitors to best meet customers' requirements.

AEROVOX
convonotion
AEROVOX CORPORATION
NEW BEDFORD DIVISION
NEW BEDFORD, MASS.
Technical Leadership - Manufacturing Excellence

Optical Radar Could Map Moon from Earth

A "light-beam radar" for many scientific explorations, including mapping the moon more accurately than before, has been developed by Hughes Aircraft Co. as a research companion to its new "Colidar" spacecraft radar.

Eventually an optical radar operating from Earth could spotlight its beam on a moon area only 10 miles in diameter, a company scientist said. This would make possible sharper pictures (even determining more accurately the height of moon mountains) than those now made by "illuminating" the moun with radar or microwave signals from ordinary radar which disperses its beam over such large areas that their intensity is dissipated.

EQUIPMENT, MATERIALS, PARTS \& COMPONENTS

EMPLOYMENT OPPORTUNITIES

SOPHISTICATED ENGINEERS

A NEW STATE OF THE ART
We hove succeeded in the development of on entiraly now concopt for the sUCCESS. FUL placement of qualifiod engiseers and scientists. We now have in orcess at 4000 Nover in the 80.000 .00 to $800,000.00$ brackey. Nover a charge to applicant. For confi. cate indicating geographical proference and salary requirements.

BERPY ASSOCIATES, IMC.
014-15 commercial rrust Buildian
Loruit 3 - G^{2} as

DISENCHANTED ENGINEERS

It your preaent employer has failed to utilize your full potential. why not permit utilize your full potential. Why not permit
us to explore the parameters for your professional qualifications. with the mans dynamic young companies in aviation.
 have more than $\mathbf{8 . 0 0 0}$ openinge in the $\$ 8.000$ to $\$ 40.000 \mathrm{bracket}$. all of which are fee paid. Why wait? Send reaume in du. plicate at once indicating gengraphical preferencea and salary requirementa.

FIDELITY PERSONMEL OF PMILADELPHIA
1530 Chestaut St., Philadelphia 2, Pa. Established 1943

ELECTRONIC INDUSTRIES Advertisers-May 1961

This index is published as a convenience. No liability is assumed for errors or omissions.

Abstract

Aerovar Corporation Air Marine Motors, Inc Allen Eradioy Company Insert fall. pg 134 Allied Chemical, General Chemical Div. ... 40 Allied Control Company. Inc. American Airlines Americon Electricat Corporation 11202 American Heater Company 180 Americon Machine Foundry Company 215 Americen Time Products, Inc. AMP Incorporated 37. 54

Amparer Electronic Corporation 140 , 141 Amphenol-Borg Electronics Corporaflon Amphenol Connector Division Borg Equipment Division RF Products .151 Arnold Engineering Company. The 55

Sallantine Leboratories, Inc. 64
Bectiman Instruments. Inc.
Cepheley Division
Helipot Division71

Helipot Division $\quad 139$
elden Compony
29
215
Bendir Corporation, The
Jones Electronics Co., Inc., M C. 40
Pioneer Central Div.
Somiconductor Products
lishop Co., J.
Bradley Semiconductor Corp.
Brady Company. W. H
212
urroughs Corporation Electronic Tube Div 204
Dussmann Mig. Div., MeGrow-Edison Co. 4
Brush Instruments
Insert foll. pg. 24

C

Combridge Thermionic Corporation 196 CES Electronics Somiconductor Div. . I94 195
Cenfralab The Electronics Div of
Globe-Union, Ine
Cinch Manufacturing Company 119
Clare Company, C. P.
49
Clovite Transistor Products Insert foll. pg. 152
Continental Connector Corporation 172
Continental Electronics Co
149
Controls Company of Americe, Control
Controls Company of Americe, Confrol
Switch Div.
Cornall-Dubiliar Electronics Div. 164 \& 165
Corning Glass Works
197!
Curtiss.Wright Corporation 196 \& 197
Custom Components, Inc. , 203

H

1
Industrial Electronic Engineers, Inc. 211 Industrial Test Equipment Co. 209
Inland Motor Corp. of Virginia.
Subsidiary of Kollmorgen Corp. 75
Intepnational Resistance Company 31

Lenz Electric Manufocturing Co. 16
$\begin{array}{llr}\text { Lepel High Frequency Laboratories. Inc. } & 20 \% \\ \text { Litfon Industries Electron Tube Div. } & 24\end{array}$
Lectheed Missiles and Space Division 179

N
Nowman Corporation, M. M. 222
Nothelfor Winding Laboratories, Ine. 46

Ohmite Manufacturing Company 19
P
Pacific Semiconducfors, Inc. Insert foll. Dg. Is Panoramic Radio Products Ine. 200
Pennwood Numechron Co.ninu.......... 210
Philbrick Researches, Inc., George A. 150
Philco Corporation
Lansdale Div.n.wnurn. .. 22
Techrep Div.
174
Plostic Copocifors, Inc. 200
Potter Instrument Company, Inc. 184
Power Designs Inc. . CLumbiny 196
Powertron Ultrosonics Corporation 205
PRD Electronics Inc.
Precision Instrument Compeny 34
Promid Electric Company 183

0
Quan-Tech Laborotopies 201

R

RCA. Madio Corp of Americo Back Cover Radio Frequency Labopatories, Inc. 76 Radio Materials Company ... Inside Front Cover
Rayclad Tubes, Incorporated 20
Raytheon Company. Industrial Components Division
Reeves Instrument Corp.

5
Soptes Tarzion. Inc. 57
Scientific-Allanto, Inc. ...nury 54
Sotonic Inc. 167
Shockley Transistor, Unit of Clevite
Pronsisfor
Sonotone Corporation-152 15
Sperry Semiconductor Division Sperry Rand 143
Corporation 143
Sprague Electric Company \quad b 10,1938205
Stevens Monufacturing Company. Inc. 14
Stewart Engineering Corporation 160
Stromberg-Carlson, A Product of
General Dynamics 02
Sylvanic Electric Products Inc
$\begin{array}{lll}\text { Electronic Tube Div. Inserf foll. PQ. } \\ \text { Semiconductor Div. } & 79\end{array}$
\uparrow

Nicknamed the "Micro Mite", these reliable, rugged coils exhibit high Q, very low distributed capacity, all concentrated into an amazingly small package.

Miller's new "Micro Mite" coils are perfect loz use where weight. space and high \mathbf{Q} considerations are involved. Their volumetric reduction ranges up to 80%, with current ratings approximately 75.300 millamps and standard series values up to 10,000 uh.

The "Micro Mite" coil construction permits minialurization without the use of ferrite materials, thus maintaining temperature stability to $125^{\circ} \mathrm{C}$. These hermetically sealed molded coils conform to MII-C-15305A.

ASK FOR OUR MICRO-MITE BULLETIN

J. W. MILLER COMPANY • 5917 So. Main St., Los Angeles 3, Calif.

Circle 197 on Inquiry Card

Bind Wires Fast.... At Low Cost with

HELI-TUBE is a spirally-cut plastic tubing. Its shape-retaining characteristics make it ideal for bindink tike tape; holds wires together tightly; individual wires. taps, or lead-offs can be led out at any pnint. Earns cost back in rime and labor-saving.
Aisilable in 5 forms

- Clear for general apolications
- Nylon-wide temperature range
- Ultraviolep.Resistant
- Fire-Resistant

Type 275 F
Earb form in three diameters:
Insteument Size: $1 / \pi^{\prime \prime}$ O.D. - for bun. Harness Size: $1 / 4 \sim$ O.D. - for bundles up to $2^{\prime \prime}$ dia.
Giant Cable Size: $1 / 2^{\prime \prime}$ O.D - for bun. dles up to 4 " dia.

Al sour distribulor for
immediate delisery or uvile
M. M. NEWMAN CORPORATION, DEPT. 12 79 Clifton Ave., Marblehead, Mass.

Bradley

A Revolutionary Solution to

Reliability and Space Needs BC100 Miniature Silicon Rectifiers!

RATED at 1.0 Amps at $50^{\circ} \mathrm{C}$ with PRV from 50 to 1000 Volts. ONLY .105" Dia. by $.250^{\prime \prime}$ in Length.
Some of the outstanding features

- Operating temperature up to 175 * C
- Double diffused junction
- Requires ne hoat sink
- Ceramic case
- Mermetically sealed - Migh surge
- Low forward voltege drop
- Ulira low reverse leakage
- High thermal shock ability
- Designed for equipment requiring miniafurizetion of components, yet relatively high power; ecenomy, yel reliabiliey
- JEDEC Numbers essigned
 quality semiconductors since 1934 275F Welton St. New Maven 11, Conn. Circle 199 on Inquiry Card

New
 Products

SILICON DIODES

Low leakage, $1 \mu a @ 150{ }^{\circ} \mathrm{C}$ and high forward conductance, 1011 ma min. @ $1 v$.

Three mil-qualified silicon diodes are USN $1 N 483 B$, USN $1 N 485 B$ and USS 1N486B, per MIL-S-19500 118. The $1 N 486 \mathrm{~B}$ will pass all electrical specs for the older JAN types 1N457. 1 N 458 and 1 N 459 , making standardization possible. The reverse volt. ages range up to 250 v . They are in standard glass, hermetically sealed DO-7 JEDEC outline packages. Rheem Semiconductor Corp., 350 Ellis St., Mountain View, Calif. Circle 363 on Inquiry Card

ANTENNA MULTICOUPLER

Eight receivers can be opcrated similtancously from one antenna.

Offering miniaturized, solid-state, modular construction, it operates from 2 to 32 Mc in one band, while requiring only 30 w . input power, with low heat dissipation. Model \#7 is designed for use in h-f direction finding or communications systems. Gain is flat over the $2-32 \mathrm{MC}$ band and is constant between channels and units. Output vSWr is 1.14 throughout the freq. range. Input vswr is 1.7:1. Insertion gain is $2 \pm 1 \mathrm{db}$. Noise figure is less than 8 db . Min. output isolation is 40 db . Trak Electronics Co., Inc., Wilton, Conn.

Circle 364 on Inquiry Card

Now, for missile environments and for all applications where greater precision is necessary, G.V Controls offers the revolutionary new PT Thermal Relay-the most precise thermal relay ever built!

And the PT's sturdiness is unequalled in thermal relays. It withstands missile vibration and shock far better than any other thermal relay.

SPECIFICATIOMS

Time Delay: 3 to 60 seconds (Factory Set)
Setting Tolerance: $\pm 5 \%(\pm 1 / 4 \mathrm{sec} . \mathrm{min}$.
Temperature Compensation: Within $\pm 5 \%$ over $-65^{\circ} \mathrm{C}$
$10+125^{\circ} \mathrm{C}$. range ($\pm 1 / \mathrm{sec}$. min.)
Heater Valtages: 63 to 115 v . for delays up to 12 sec.:
6.3 to 230 v . for longer delays.

Power Input: 4 watts. Rated for continuous energization at $125^{\circ} \mathrm{C}$.
Contacts: SPST, normally open or normally closed. Rated
2 amps resistive at 115 v . AC or 28 v . CC.
Write for Product Data Bulletin \#PD.1015

Insulation Resistance: 1,000 megohms
Dielectric Strength: 1000 v . RMS at sea level. 500 v . RMS at $70,000 \mathrm{ft}$.
Vibration: Operating or non-operating, 20 g up to 2000 cps Sheck: Operating or non-operating, 50 \& for 11 milliseconds
Unidirectienal Acceleration: 10 g in any direction changes delay by less than $5 \%, 50$ by less than 10% with proper orientation.
Weight: 2 to $21 / 4$ ounces.

> G-V CONTROLS INC. Livingston, New Jersey

Now in 2 Case Sizes for Your Computer Designs

RCA Adds To The 2N1301 Family

THIES NETY MESAS TN TVE TO-18 BABE

Minimum Betas of 30, 40, 50
 Typical G-BP* of 40, 60, 80 Mc. Pulse Repetition Rates Up to 10 Mc.

NEW IN TO-18 CASE: RCA 2N794, 2N795, 2N796. IN TO-5 CASE: RCA 2N1300, 2N1301, 2N1683

Once again RCA meets the stringent demands of the dynamic computer industry with new high-speed switching transistors specifically designed for today's military and industrial data processing applications. Here are some of the outstanding features of these high performance types:

- High Power-Dissipation Capability-150 mw (max.) at $25^{\circ} \mathrm{C}$
- High Gain-Bandwidth Product*-40 (2N1300, 2N794), 60 (2N1301. 2N795), 80 (2N1683, 2N796). (Typical Values).
- High Beta (hre) -30 min ($2 \mathrm{~N} 1300,2 \mathrm{~N} 794$), 40 min (2 N 1301, 2N795), 50 min . (2N1683, 2N796).
- Low Total Stored Charge In Saturating Circuits-400 $\mu \mu c o u l o m b s(2 N 1300,2 N 794), 325$ uncoulombs (2N1301, 2N795), 160μ ucoulombs (2N1683. 2N796). (Max. Values)
- Rugged Mesa Structure
- Economy Performance - Top Performance at Low Cost.

Contact your RCA Representative now for complete price and delivery information. For additional technical information, write RCA Semiconductor and Materials Division. Commercial Engineering, Section E-50-NN, Somerville, N. J.

Field Offices

EAST: Newort, N. J., 744 Brood St. hU 5-3900 - Erliton, N. J., 605 Marlton Pike, HA 8.4802 - Syrocuse 3 N. Y., 731 Jomer St., Room 402, GR 4.5591 - NORTHEAST: Needham Heights 94, Mass., 64 "A" St., HI 4.7200 - SOUTHEAST: Orlando, Flo. 1520 Edgewater Drive, Suite I, GA 4.4768 - EAST CENTRAL: Delroit 2, Mich., 714 New Center Bldg., it 5.5600 - CENTRAL: Chicogo, III., Suite 1154, Merchandise Mart Plaza, WH 4.2900 - Minneapolis, Minn. S80S Encelsior BIvd., WE 9.0676 WEST: Los Angeles 54, Colif., Box 54074, RA 3.8361 - Burlingame, Calit., 1838 El Camino Real, OX 7.1620 - SOUTHWEST: Dallas 7 Peras, 7905 Corpenter Freeway, fL 7.8167 - GOV'T: Dayton 2. Ohio 224 N. Wilkinson St., BA 62366 Washington, D. C., 1725 "K" St., N.W., FE 7.8500 .

[^0]: p-Prelliminary.

[^1]: AMP products and engineering assistance are availabio through subsodiary companies in: Australia - Canada - England - france - Moltand - Italy - Sapan - Moxice - West Carmany

[^2]: A JOHNBON MATTHEV ABEOCIATE

[^3]: See this and other new Tele-Dynamics' compenents in Booth E 50 at the National Telemetering Conference May 22nd, 23 rd , 24th at Sheraton Towers, Chicage.

[^4]: EEMICONDUCTOR IS OUR MIDDLE NAME
 SEMICONDUCTOR INTEGRATED NETWORKS
 (BEMI-NETS'). TUNNEL DIODES, MESA AND ALLOY SILICON TRANSISTORS AND DIODES. SALES OFFICESI CNICAGO, ILLINOIS; EL SEGUNDO, CALIPORNIAI WESTWOOD, NEW JERBEY: TEWICSBURY, MASSACMUSETTS! STAMFORD, CONNECTICUT, TOWBON, MARYLANDI MASBAPEQUA FARK, NEW YORK.
 staiconductor oppontunities
 ${ }^{*}$ Trade Mark, Sperry Rand Corperation AVAILABLE TO QUALIFIED ENGINEERS

[^5]: Electrical Components in Recorder
 $\mathbf{K}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{a}}, \mathbf{R}_{\mathbf{4}}-\mathrm{D} . \mathrm{C}$. relays for decoderconverter.
 punch or print solenoids.

 Lan-C"ard positioning golmoid
 si-Stepplng switch
 sy-Power switch. DPST-manual opration.
 S_{8} Momentarlly on-manual operation IRn-Control relay in automatic switchthe circult.

 If M Coll-Motor magnet of S_{1}.
 r_{g}-Dincharge resistor.
 r_{y}-Time delay reslatance
 C-Time delay capacitor.
 $\mathbf{N}_{1}, \mathbf{N}_{8}, \mathrm{~N}_{8}$ Indicator lights.
 E_{1}, E_{2}, E_{5}-Battery power sources
 O-N Contacta - Off-normal contact mprings, close as \mathbf{S}_{1}. Steps off "Home" prosition.

[^6]: SUNNYVALE, PALOALTO, VAN NUYS, SANTA CRUZ, SANTA MARIA, CALIFORNIA * CAPE CANAVERAL FLORIDA * HAWAII

[^7]: VARIABLE TNIMMER PISTON CAFACITONB * FIKEO METALIZEO INDUCTORE L LC TUNEAS " DIFLEXEAS FIXED AND VANIABLE, DISTMIBUTEO AND LUMPEO CONETANT DELAY LINES * PULEE FORMING NETWOMNE

[^8]: Sep this and other now Tole-Dynamies components in Mooth E 50 at the Natlonal Telemetering Conterence May 22nd, 23 rd, 24th at Sheraton Towers, Chicago.

[^9]: 1-7UGME1 Al FCRART COMFANY

[^10]:
 Circle 186 on Inquiry Card
 ELECTRONIC INDUSTRIES • May 1961

[^11]: - Photocopies of all foreien article are available at 75 cents per pare. are available at 76 cents per page wiee indicated artieles appear in languare mative to coentry of origin.
 - A reprint of thin section "9Interne tional Electronic Sources" is available without charge.

 Requesta for the above should be eent. on company letterhead, to

 Electronic Sources Editor
 LECTRONIC INDUSTRIES
 Chestnut 56 th St
 Philadelphis 39, Pa.

